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fICA: FastICA Algorithms and Their
Improved Variants
by Jari Miettinen, Klaus Nordhausen, and Sara Taskinen

Abstract In independent component analysis (ICA) one searches for mutually independent non-
gaussian latent variables when the components of the multivariate data are assumed to be linear
combinations of them. Arguably, the most popular method to perform ICA is FastICA. There are
two classical versions, the deflation-based FastICA where the components are found one by one, and
the symmetric FastICA where the components are found simultaneously. These methods have been
implemented previously in two R packages, fastICA and ica. We present the R package fICA and
compare it to the other packages. Additional features in fICA include optimization of the extraction
order in the deflation-based version, possibility to use any nonlinearity function, and improvement to
convergence of the deflation-based algorithm. The usage of the package is demonstrated by applying
it to the real ECG data of a pregnant woman.

Introduction

The goal of independent component analysis is to transform a multivariate dataset so that the resulting
components are as independent as possible. The idea is to separate latent components from the dataset
which is assumed to consist of linear mixtures of them.

The basic independent component (IC) model is thus written as

xi = Azi, i = 1, . . . , n, (1)

where X = (x1, . . . , xn) is a centered p× n data matrix, A is a p× p mixing matrix, and z1, . . . , zn are
realizations of a zero mean random p-vector z = (z1, . . . , zp)T with mutually independent components
and at most one Gaussian component. The aim of ICA is then to estimate the unmixing matrix
W = A−1 and/or Z from the data matrix X alone (Hyvärinen et al., 2001; Cichocki and Amari,
2002; Comon and Jutten, 2010; Nordhausen and Oja, 2018). Indeed, ensuring independence and
nongaussianity of the components of z is sufficient for their consistent estimation, but only up to
signs and scales (Comon, 1994). The scales of the independent components are often fixed by the
assumption Cov(z) = Ip, and we may proceed from Model 1 to

xst = UTz, (2)

where xst = Cov(x)−1/2(x− IE(x)) and U is an orthogonal p× p matrix. This means the problem can
be reduced to that of finding an orthogonal matrix and the final unmixing matrix estimate is then
W = UCov(x)−1/2.

ICA has become a widely used tool in various fields, including brain imaging, image and audio
signal processing, and financial time series analysis. Despite the vast amount of literature on ICA
methodology, the classical FastICA (Hyvärinen and Oja, 1997; Hyvärinen, 1999) methods are still
the most popular tools with which to estimate the independent components. FastICA functions
are available for several programming languages such as Matlab, in package FastICA (Gävert et al.,
2005); R, in packages fastICA (Marchini et al., 2013) and ica (Helwig, 2015); C++, as part of package
IT++ (Cayre and Furon, 2004); and Python, as part of packages MDP (Zito et al., 2008) and Scikit-
learn (Pedregosa et al., 2011).

Here we introduce the R package fICA (Miettinen et al., 2017b). In addition to the classical FastICA
methods, fICA includes functions for three recently proposed improved variants of FastICA, which are
presented in the following section. Then we discuss how the fICA package differs from the packages
fastICA and ica, and finally, we give some examples on the usage of the fICA package.

FastICA estimators in the fICA package

The fICA package includes implementations of the classical FastICA estimators as well as three
improved variants, which we will now describe in detail. For other variants of FastICA, see Koldovský
and Tichavský (2015).

All the methods maximize the nongaussianity of the components of Uxst, when the nongaus-
sianity of a univariate random variable x is measured by | IE[G(x)]| with some twice continuously
differentiable and nonquadratic function G which satisfies IE[G(y)] = 0 for the standard Gaussian
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random variable y. The established and most popular options for G are

pow3: G(x) = (x4 − 3)/4,

tanh: G(x) = log(cosh(x))− ct ,

gaus: G(x) = − exp(−x2/2)− cg ,

where ct = IE[log(cosh(y))] ≈ 0.375 and cg = IE[− exp(−y2/2)] ≈ −0.707. The names pow3, tanh,
and gaus originate from the first derivatives of the functions, the so called nonlinearities, g(x) = x3,
g(x) = tanh(x), and g(x) = x exp(−x2/2). The choice pow3 always yields consistent estimates,
whereas tanh and gaus do not. However, the examples (Miettinen et al., 2017c; Wei, 2014) of such
distributions of the independent components where tanh and gaus fail are quite artificial, and we agree
with Hyvärinen (1999) stating that tanh and gaus work with most of the reasonable distributions. For
further discussions concerning possible nonlinearities and their properties, see Dermoune and Wei
(2013) and Virta and Nordhausen (2017).

Deflation-based FastICA and its variants

The first FastICA paper (Hyvärinen and Oja, 1997) used pow3 to find the independent components one
after the other. In this deflation-based FastICA, the kth row of U = (u1, . . . , up)T maximizes

| IE[G(uT
k xst)]|

under the constraints uT
k uk = 1 and uT

j uk = 0 for j = 1, . . . , k − 1. A modified Newton-Raphson
algorithm iterates the following steps until convergence:

uk ← IE[g(uT
k xst)xst]− IE[g′(uT

k xst)]uk

uk ←
(

Ip −
k−1

∑
l=1

ulu
T
l

)
uk

uk ← ||uk||−1uk

where the last two steps perform the Gram-Schmidt orthonormalization.

In addition to the global maximum, the objective function has several local maxima to which the
FastICA algorithm may converge. The order in which the rows of U are found depends on their initial
values. The extraction order affects the estimation performance, and to our knowledge, fICA is the
only R package which provides a function to estimate the rows of U in such order that the objective
function is maximized globally at each stage. This extraction order is usually better than a random
order, even though not always optimal.

The statistical properties including asymptotic normality of the deflation-based FastICA estimator
were studied rigorously in Ollila (2009, 2010); Nordhausen et al. (2011). The derivation of the asymp-
totic variances of the unmixing matrix estimate lead to reloaded FastICA (Nordhausen et al., 2011)
which first computes an initial estimate Ẑ of the sources applying some simple IC method such as
FOBI (Cardoso, 1989) or k-JADE (Miettinen et al., 2013). For all components of Ẑ, one then computes
certain quantities from which the optimal extraction order can be deduced.

The adaptive deflation-based FastICA (Miettinen et al., 2014) differs from the other estimators here,
as instead of one nonlinearity it uses a candidate set of multiple nonlinearities, from which the best
one is chosen for each component. Again, an initial estimate of the sources is computed and then
the same quantities as in reloaded FastICA are obtained, but now for for each candidate in the set of
nonlinearities. In addition to identifying the optimal extraction order, the optimal nonlinearity for each
independent component is also chosen separately. The default set of nonlinearities for the function
adapt_fICA in the R package fICA includes pow3, tanh, gaus, and the following eleven options:

g(x) = x3 g(x) = (x− 0.2)2
+ + (x + 0.2)2

−
g(x) = tanh(x) g(x) = (x− 0.4)2

+ + (x + 0.4)2
−

g(x) = xexp(−x2/2) g(x) = (x− 0.6)2
+ + (x + 0.6)2

−
g(x) = (x + 0.6)2

− g(x) = (x− 0.8)2
+ + (x + 0.8)2

−
g(x) = (x− 0.6)2

+ g(x) = (x− 1.2)2
+ + (x + 1.2)2

−
g(x) = (x)2

+ + (x)2
− g(x) = (x− 1.4)2

+ + (x + 1.4)2
−

g(x) = (x− 1)2
+ + (x + 1)2

− g(x) = (x− 1.6)2
+ + (x + 1.6)2

−

where (x)+ = x if x > 0 and 0 otherwise, and (x)− = x if x < 0 and 0 otherwise.
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Symmetric and squared symmetric FastICA

The symmetric FastICA (Hyvärinen, 1999) estimator maximizes

p

∑
j=1
| IE[G(uT

j xst]|

under the orthogonality constraint UUT = Ip. Now the rows of U = (u1, . . . , up)T are estimated in
parallel, and the steps of the iterative algorithm are

uk ← IE[g(uT
k xst)xst]− IE[g′(uT

k xst)]uk, k = 1, . . . , p

U ← (UUT)−1/2U.

The first update step is similar to that of the deflation-based version. In a way, the orthogonalization
step can be seen as taking an average over the vectors of the first step, while in the Gram-Schmidt
orthogonalization the errors in estimating the first rows of U will remain throughout the estimation. It
is said that the error accumulates in the deflation-based approach. The symmetric FastICA is usually
considered superior to the deflation-based FastICA, but there are also cases where the accumulation is
preferable to the averaging. This occurs when some independent components are easier to find than
the others. Statistical properties of symmetric FastICA are given in Miettinen et al. (2015); Wei (2015);
Miettinen et al. (2017c).

The squared symmetric FastICA (Miettinen et al., 2017c) estimator maximizes

p

∑
j=1

(IE[G(uT
j xst])

2

under the orthogonality constraint UUT = Ip. The first step of the algorithm

uk ← IE[G(uT
k xst)](IE[g(uT

k xst)xst]− IE[g′(uT
k xst)]uk), k = 1, . . . , p,

U ← (UUT)−1/2U

is that of the classical symmetric version multiplied by IE[G(uT
k xst)]. Hence, the squared symmetric

version puts more weight on the rows which correspond to more nongaussian components, which
most often, but not always, is advantageous.

For both of the symmetric versions, the initial value of U is not important when the sample size is
large, as the algorithms converge always to the global maxima. With small sample sizes the initial
value plays a role.

Comparison of the packages

The FastICA algorithms sometimes fail to converge when the sample size is small. However, this is
not obvious if one uses the R package fastICA or ica since they do not give errors or warnings if the
algorithm does not converge, but simply return the estimate after the maximum number of iterations
has been reached. In the fastICA package, the information about convergence can be obtained, but
since it is not given in the default setup, many of the users will not notice it. Similarly, in the ica
package the number of iterations is included in the output and could be used as an indicator for
convergence, but convergence problems might still go unnoticed. Growing the number of iterations
does usually not help because if the algorithm has not converged after 2000 iterations, it is often
repeating a loop of values. In contrast, the functions in the R package fICA give an error message if
the algorithm does not converge. When computing the symmetric estimators, the user can choose the
number of random orthogonal matrices which are generated for the initial values of the algorithms.
If this number is at least two, the function returns the estimate which yields the highest value of the
objective function and gives a warning if none of the algorithm runs converge. To avoid the repeating
loop in the deflation-based case, fICA alternates the step size. The update of the vector uk is of the
form

uk ← wuk + (1− w)
(

IE[g(uT
k xst)xst]− IE[g′(uT

k xst)]uk

)
,

where w is zero for most iterations and takes small nonzero values with some selected iteration
numbers with an irregular pattern.

To sum up the key differences of fICA to the fastICA and ica packages, we present Table 1.

The number of nonlinearities in fICA is basically unlimited. In addition to the already implemented
suggestions, the user can provide their own functions by specifying g and its derivative. We provide
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Table 1: The properties of the three R packages which include the FastICA algorithm.

fICA fastICA ica

Symmetric FastICA YES YES YES
Squared symm. FastICA YES NO NO
Deflation-based FastICA YES YES YES
Optimized extraction order YES NO NO
Adaptive defl. FastICA YES NO NO
Error if no convergence YES NO NO
Number of nonlinearities ∞ 2 3

an example of the user-specified option in the next section.

Examples

To illustrate the use of the fICA package, we give the following two examples.

Electrocardiography data

First, we analyze an electrocardiography recording (ECG) dataset foetal_ecg.dat (de Lathauwer
et al., 2000), which can be downloaded from the supplementary files of Miettinen et al. (2017d). An
ECG measures the electrical potential on the body surface. This recording is from a pregnant woman
and consists of eight signals from five sensors on the stomach and three on the chest. The lengths of
the signals are 2500 time points.

The signals are mixtures of fetus’ and mother’s heart beats and possibly some artifacts. The goal is
to separate these sources using independent component analysis.

> library(fICA)
> library(JADE)
> options(digits = 4)
>
> dataset <- matrix(scan("https://www.jstatsoft.org/index.php/jss/article/
+ downloadSuppFile/v076i02/foetal_ecg.dat"), 2500, 9, byrow = TRUE)
> X <- dataset[ , 2:9]
> plot.ts(X, nc = 1, main = "Data")

After downloading the data and plotting it in Figure 1, we see that the main feature in each
signal are 14 peaks, which are presumably produced by mother’s heart beats. Next, we show how
to apply the function adapt_fICA with a modified set of nonlinearities. We demonstrate how to use
the pre-programmed pow3 , tanh, and gaus options in the packages, and demonstrate how to use a
user-specified function by providing g and its derivative for another classical nonlinearity called skew
given by g(x) = x2.

> g <- function(x){ x^2 }
> dg <- function(x){ 2*x }
> gf_new <- c(gf[1:3], g)
> dgf_new <- c(dgf[1:3], dg)
> gnames_new <- c(gnames[1:3], "skew")
>
> res <- adapt_fICA(X, gs = gf_new, dgs = dgf_new, name = gnames_new, kj = 1)
>
> res
W :

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] -0.04135 0.059521 0.004006 0.001754 -0.010123 0.0076023 0.0001551
[2,] 0.01731 -0.023294 0.002298 0.002663 0.008367 0.0022727 -0.0075911
[3,] 0.09352 0.071699 -0.106091 -0.004342 0.175369 -0.0030657 -0.0063677
[4,] -0.05358 0.106633 0.076979 0.044062 -0.024241 -0.0261067 -0.0522030
[5,] 0.15805 0.039095 0.233377 -0.041272 -0.169486 0.0104065 -0.0116267
[6,] -0.06605 0.114817 0.201392 -0.021387 0.234210 -0.0106505 0.0254791
[7,] 0.07817 -0.001272 0.146718 0.220175 -0.180189 -0.0008764 0.0035999
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Figure 1: The ECG signals of a pregnant woman.
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[8,] -0.25492 0.313232 0.049493 0.089799 0.028816 0.0232881 -0.0535985
[,8]

[1,] -0.009234
[2,] 0.009301
[3,] 0.013034
[4,] 0.022396
[5,] 0.028662
[6,] -0.010261
[7,] -0.009922
[8,] 0.034743

gs :
[1] "pow3" "tanh" "gaus" "skew"

used_gs :
[1] "gaus" "gaus" "gaus" "tanh" "tanh" "tanh" "tanh"

alphas :
comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp 7 comp 8

pow3 0.7445 0.6119 1.4060 1.994 5.014 9.628 23.28 50087.8
tanh 0.2433 0.2569 0.7769 1.374 3.189 8.400 21.53 343.3
gaus 0.2058 0.2336 0.7336 1.458 3.351 10.829 22.87 215.1
skew 0.5457 0.4126 11.8980 7.091 12.867 9.118 25.00 108.7

init_est :
[1] "1-JADE"

In the output, we have the 8× 8 unmixing matrix, the names of the available nonlinearities, the
nonlinearities used, the criterion values for the selection of the extraction order and the nonlinearities,
and the name of the initial estimator. Note that the used_gs output does not give a nonlinearity for
the last component since the last component is fixed by the seven previous components due to the
orthogonality constraint.

> plot.ts(bss.components(res), nc=1, main="Estimated components")

Figure 2 plots the estimated independent components. Clearly, the first two components are related to
mother’s heart beat and the third one is related to fetus’ heart beat. The third row of the unmixing
matrix estimate shows which data signals contribute to the estimate of the fetal heart beat. Not
surprisingly, the nonzero coefficients correspond to sensors 1, 2, 3, and 5, which are located on the
stomach area.

Simulations

In this simulation example, we also take a look at the related R package BSSasymp (Miettinen et al.,
2017a), which computes asymptotic covariance matrices of several mixing and unmixing matrix
estimates, including the FastICA variants discussed in this paper and implemented in fICA. The
p = 3 independent components in the simulation setup are generated from a t9-distribution, an
exponential distribution with rate 1, and the normal distribution. Each density is standardized so that
the expected value is 0 and the variance is 1. In each of the 1000 repetitions, the sample size is 5000,
the mixing matrix is the same randomly generated 3× 3 matrix, and we collect the unmixing matrix
estimates given by (1) the reloaded deflation-based FastICA using tanh from fICA; (2) deflation-based
FastICA using tanh from fastICA; and (3) deflation-based FastICA using tanh from ica. The goal of the
simulation is to show that the extraction order of the components indeed matters.

> library(fICA)
> library(fastICA)
> library(ica)
> library(BSSasymp)
> library(JADE)
>
> options(digits = 4)
> set.seed(1145)
>
> rort <- function(p){qr.Q(qr(matrix(rnorm(p * p), p)))}
>
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Figure 2: The estimated independent components from the ECG data.
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>
> n <- 5000
> p <- 3
> A <- matrix(rnorm(p^2), p, p)
>
> Ws1 <- Ws2 <- Ws3 <- vector("list", 1000)
>
> for(i in 1:1000){
+ Z <- cbind(rt(n, 9) / sqrt(9/7), rexp(n, 1) - 1, rnorm(n))
+
+ X <- tcrossprod(Z,A)
+
+ init = rort(p)
+
+ Ws1[[i]] <- reloaded_fICA(X, g = "tanh")$W
+ res <- fastICA(X, n.comp = 3, alg.typ = "deflation" )
+ Ws2[[i]] <- t(res$W) %*% t(res$K)
+ Ws3[[i]] <- icafast(X, nc = 3, alg = "def", Rmat = init)$W
+ }

To obtain the theoretical asymptotic variances, the density functions of the independent com-
ponents and their supports are required. Function ASCOV_FastICAdefl computes the values for
deflation-based variants of FastICA. However, when the initial matrix is random as it is in fastICA
and ica, there are no asymptotic results. Therefore, we only consider the reloaded FastICA for which
the asymptotic variances are derived using ASCOV_FastICAdefl with method = "adapt" and only one
nonlinearity. The output component $COV_W gives the asymptotic covariance matrix of the unmixing
matrix estimate with the variances on the diagonal. The variances can be estimated using the function
ASCOV_FastICAdefl_est and the data matrix. Here we estimate the variances from the last dataset
generated above. In this case, the estimated variances are slightly higher than the theoretical values.
Finally, we compute the variances from the simulations, and notice that they are quite close to the
theoretical and the estimated variances.

> f1 <- function(x){ dt(x*sqrt(9/7),9)*sqrt(9/7) }
> f2 <- function(x){ dexp(x+1,1) }
> f3 <- function(x){ dnorm(x) }
> supp <- matrix(c(-Inf, -1, -Inf, Inf, Inf, Inf), p, 2)
>
> COV <- ASCOV_FastICAdefl(c(f1,f2,f3), gf[2], dgf[2], Gf[2],
+ method = "adapt", name = c("tanh"), supp = supp, A = A)$COV_W
> matrix(diag(COV), p, p)

[,1] [,2] [,3]
[1,] 6.974 1.486 4.157
[2,] 27.813 5.163 10.895
[3,] 4.703 1.533 9.879
> COV_est <- ASCOV_FastICAdefl_est(X, gf[2], dgf[2], Gf[2],
+ method="adapt", name=c("tanh"))$COV_W
> matrix(diag(COV_est), p, p)*n

[,1] [,2] [,3]
[1,] 7.219 1.369 4.356
[2,] 39.321 6.399 12.983
[3,] 5.714 1.552 16.177
> apply(simplify2array(Ws1), c(1,2), var)*n

[,1] [,2] [,3]
[1,] 7.128 1.582 4.132
[2,] 29.009 5.334 11.498
[3,] 4.939 1.528 10.639

The minimum distance index (Ilmonen et al., 2010) can be used to quantify the separation perfor-
mance of an unmixing matrix Ŵ in a simulation study where the mixing matrix is known. It is defined
as

D̂ =
1√

p− 1
inf
C∈C
‖CŴA− Ip‖,

where ‖ · ‖ is the Frobenius norm and

C = {C : each row and column of C has exactly one non-zero element}.
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The minimum distance index takes values between 0 and 1, where zero means perfect separation. The
function ASCOV_FastICAdefl gives the limiting expected value of D̂2n(p− 1), which is independent of
the mixing matrix A. Below, the expected value is computed for the optimal extraction order (first the
exponential, then the t9-distribution, and the Gaussian component last), and for the other reasonable
order (first the t9-distribution, then exponential, and the Gaussian last). If the Gaussian component is
found first or second, the limiting expected value goes to infinity. We also compute the averages of
D̂2n(p− 1) over the 1000 repetitions for the three estimates. The average of the reloaded FastICA is
close to the expected value of the optimal order, while the other two estimates with a random initial
value have larger averages, indicating that the components are often found in non-optimal order.

> EMD_opt <- ASCOV_FastICAdefl(c(f1,f2,f3), gf[2], dgf[2], Gf[2],
+ method = "adapt", name = c("tanh"), supp = supp, A = A)$EMD
> EMD_opt
[1] 44.74
> EMD2 <- ASCOV_FastICAdefl(c(f1,f2,f3), gf[2], dgf[2], Gf[2],
+ method = "regular", name = c("tanh"), supp = supp, A = A)$EMD
> EMD2
[1] 67.66
> MD1 <- unlist(lapply(Ws1, MD, A=A))
> MD2 <- unlist(lapply(Ws2, MD, A=A))
> MD3 <- unlist(lapply(Ws3, MD, A=A))
>
> mean(MD1^2)*n*(p-1) # fICA
[1] 46.74
> mean(MD2^2)*n*(p-1) # fastICA
[1] 67.87
> mean(MD3^2)*n*(p-1) # ica
[1] 69.34

This simulation shows the effect of the extraction order in deflation-based fastICA. To date, only fICA
has offered tools to find the optimal extraction order.

Summary

FastICA is the most widely used method to carry out independent component analysis. The R package
fICA contributes to existing methods in two ways. First, it introduces the reloaded and adaptive
deflation-based FastICA and the squared symmetric FastICA. Second, it improves on the existing R
functions for classical FastICA algorithms by allowing user-specified nonlinearities and enhancing the
convergence of the deflation-based FastICA. We gave a short review of the FastICA estimators, and
examples on how to use them with the fICA package.
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