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Spatial Uncertainty Propagation Analysis
with the spup R Package
by Kasia Sawicka, Gerard B.M. Heuvelink and Dennis J.J. Walvoort

Abstract Many environmental and geographical models, such as those used in land degradation, agro-
ecological and climate studies, make use of spatially distributed inputs that are known imperfectly.
The R package spup provides functions for examining the uncertainty propagation from input data
and model parameters onto model outputs via the environmental model. The functions include
uncertainty model specification, stochastic simulation and propagation of uncertainty using Monte
Carlo (MC) techniques. Uncertain variables are described by probability distributions. Both numerical
and categorical data types are handled. The package also accommodates spatial auto-correlation
within a variable and cross-correlation between variables. The MC realizations may be used as input
to the environmental models written in or called from R. This article provides theoretical background
and three worked examples that guide users through the application of spup.

Introduction and motivation

Environmental models that are used to understand and manage natural systems often rely on spatial
data as input. Uncertainty in the input data propagates into model predictions. There is a need for
systematic analysis of spatial uncertainty propagation in all major inputs and an accounting of spatial
auto- and cross-correlation between input uncertainties. Spatial uncertainty propagation analysis has
been widely recommended and practised across environmental disciplines, for example, hydrology
and water quality (e.g. Hengl et al., 2010; Hamel and Guswa, 2015; Muthusamy et al., 2016; Nijhof
et al., 2016; Yu et al., 2016), biogeochemistry (e.g. Boyer et al., 2006; Nol et al., 2010; Pennock et al., 2010;
Hugelius, 2012; Vanguelova et al., 2016), or ecology and conservation planning (e.g. Jager et al., 2005;
Fisher et al., 2010; Lechner et al., 2014). However, as far as we know, there is no widely applicable
software that facilitates such analysis.

Currently, a growing number of software tools are available for uncertainty propagation and
uncertainty assessment, some of which have functionality for dealing with spatial uncertainties.
These include both free software, like OpenTURNS (Andrianov et al., 2007), Dacota (Adams et al.,
2009) and DUE (Brown and Heuvelink, 2007); commercial options, like COSSAN (Schueller and
Pradlwarter, 2006); or free packages for licenced software, like the SAFE (Pianosi et al., 2015) or UQLab
(Marelli and Sudret, 2014) toolboxes for MATLAB. A broad review of existing software packages
are available in Bastin et al. (2013). The use of powerful but complex languages like C++ in Dakota,
Python in OpenTURNS or Java in DUE often discourage relevant portions of the scientific community
without formal programming skills from the adoption of otherwise powerful tools. There are a
number of R packages relating to uncertainty analysis through sensitivity analysis or use of Bayesian
frameworks for model calibration. We have found only three packages: propagate (Spiess, 2014),
errors (Ucar, 2017) and metRology (Ellison, 2017) that deal with uncertainty propagation explicitly.
However, none of these packages provides functionality for spatial models and variables. Therefore,
we undertook a project to develop an R package that facilitates uncertainty propagation analysis in
spatial environmental and geographical modelling.

In this article, we present the spup package for R (Sawicka et al., 2017), which implements a
methodology for spatial uncertainty propagation analysis using Monte Carlo (MC) methods. The spup
package includes functions for uncertainty model specification, sampling, propagation of uncertainty
using MC techniques and examples of results visualization. In this way, it provides support for the
entire chain from uncertainty model definition, simulation and propagation to visualization. It is also
a generic tool that can handle a great variety of cases. It is suitable for models that consider spatial
variables saved in a spatial data frame or raster, as well as non-spatial variables, both continuous
and categorical. It works with models written in R or other programming languages that can be
called from R. The spup package is intended for researchers and practitioners who recognise the
problems of uncertainty in data and models, and are looking for a simple, accessible implementation
of a methodology for uncertainty propagation assessment and visualization. At the same time, it
is designed to enable more experienced users to easily understand, customise, and possibly further
develop the code.

Here, we provide a description of the implemented methodology, describe the package design
and illustrate the usage with three simple examples. We demonstrate that the spup package is an
effective and easy tool that can be used for multi-disciplinary research, model-based decision support
and educational purposes.
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Methodology implemented in spup

Uncertainty propagation aims to analyse how uncertainty (e.g. from measurement error, sampling,
or interpolation) in spatial data, combined with modeling uncertainty (e.g. in model parameters
and structure) propagate through the model (Heuvelink et al., 2007). Many environmental and
geographical phenomena of interest are spatial in nature and often have strong spatial correlations
imposed by the physics and dynamics of the natural systems, making uncertainty evaluation difficult.

A common approach to uncertainty propagation analysis makes use of MC stochastic simulation
(Hammersley and Handscomb, 1979; Lewis and Orav, 1989). The MC approach is very flexible and
can reach an arbitrary level of accuracy, and is therefore generally preferred over analytical methods
such as the Taylor series method (Heuvelink et al., 1989). The MC method for uncertainty propagation
analysis consists of the following main steps: (i) uncertainty about the variables is expressed by
probability distribution functions (pdfs); (ii) many sets of possible uncertain inputs are generated from
their marginal or joint probability distribution using a pseudo-random number generator; (iii) the
model is run for each of the simulated input sets; (iv) the set of model outputs forms a random sample
from the output pdf, so that the parameters of the output distribution, such as the mean, standard
deviation and quantiles, can be estimated from the sample. In other words, the spread in the model
outputs characterises how uncertainty about the model inputs has propagated to the model output.
Note that the above ignores uncertainty in model parameters and model structure, but these can
easily be included if available as pdfs. For example, these might have been obtained through Bayesian
calibration (Van Oijen et al., 2005). The above four steps are described in detail further below.

Step 1 – Characterise uncertain model inputs with pdfs

The most frequently used uncertainty quantification approach represents uncertainty with probability
distribution functions (pdfs). In order to represent input uncertainty with a pdf we have to define, for
each possible input value, the corresponding probability or probability density. Probability distribution
functions can be very complex and can have many parameters. In practice, when information and data
from which to derive the pdf are limited, assumptions and simplifications have to be made to obtain
reliable estimates of the pdf. In order to reduce the complexity of a pdf for a continuous variable,
the distribution function may be described with a simple parametric shape, such as the normal,
uniform or lognormal distribution (Bertsekas and Tsitsiklis, 2008). Categorical uncertain variables
can be represented by non-parametric distribution, comprising a set of possible outcomes and their
probabilities. The probabilities should be non-negative and the sum of the outcome probabilities
should equal 1 (Heuvelink, 2007).

Individual variables and the uncertainties associated with them may also be statistically dependent
on other variables and their uncertainties. For example, visibility and water vapour in the atmosphere
are correlated, and so is the uncertainty between these two properties. Note that correlation between
variables as derived from pair observations need not be the same as the correlation between measure-
ment or interpolation errors associated with these variables. For example, elevation and temperature
in mountainous area are negatively correlated, while the associated uncertainties may not be correlated
at all because of independent measurements methods. Thus, when multiple inputs are uncertain,
cross-correlations in their uncertainties must be addressed. In that case, the uncertainty model is
described using a joint probability distribution function (jpdf). If the uncertainties are independent,
the jpdf is the product of the univariate pdfs and can be estimated by estimating each pdf separately. If
the uncertainties are statistically dependent, these dependencies must be estimated alongside the pdfs.
In practice, few parametric shapes are available to describe the jpdf of variables that are statistically
dependent. For continuous numerical variables, a common assumption is that the multivariate uncer-
tainty model follows a joint-normal distribution with a vector of means µ and variance-covariance
matrix Σ, where the latter must be square, symmetric and positive-semidefinite.

In different environmental or geographical studies, many variables are spatially distributed and it
is likely that there is a relationship between nearby values (i.e. they are auto-correlated). Uncertainty
in such cases may be described by the following geostatistical model:

Z(x) = µ(x) + σ(x)ε(x) (1)

where µ(x) is the mean of the variable Z(x) at any location x ∈ D, D is the geographic domain of
interest, σ(x) is a spatially variable standard deviation associated with µ(x) (i.e. σ parameterises uncer-
tainty such that it may be greater in some regions than in others), and ε is a zero-mean, unit-variance,
second-order stationary residual (i.e. spatial auto-correlation depends only on a distance vector),
modelled with a semivariogram or a correlogram (Diggle and Ribeiro, 2007; Webster and Oliver,
2007; Plant, 2012). For defining spatial correlation, spup supports a wide range of positive-definite
functions implemented in the gstat package (Pebesma, 2004; Gräler et al., 2016). The mathematical
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background for these calculations is presented in Brown and Heuvelink (2007) and Heuvelink (2007).
In case of spatial variables that are cross-correlated with other spatial variables, the linear model of
coregionalization (Goovaerts, 1997) is assumed.

Table 1 summarises common assumptions and simplifications in uncertainty propagation analysis
for three categories of data: continuous, discrete and categorical. These assumptions are included in
the implementation of spup.

Step 2 – Repeatedly sample from spatial pdfs for uncertain inputs

When an uncertain variable is characterised by a pdf, simulation relies on a pseudo-random number
generator. The most common sampling method is independent identically distributed (IID) sampling,
in which case each realization is generated as independent draws from the same pdf. In case of
a single parameter or univariate distribution, a realization can be easily drawn from various pdfs
using algorithms implemented in the stats package in R (see https://cran.r-project.org/web/
views/Distributions.html for details). For a spatially distributed variable (e.g. a DEM) that has a
multivariate normal distribution, spup relies on the unconditional Gaussian simulation algorithm
implemented in the gstat package (Pebesma, 2004). For simulation from multivariate normal pdfs of
non-spatial variables, spup uses the mvtnorm package (Genz et al., 2017; Genz and Bretz, 2009).

In case the input is high-dimensional, straightforward random drawing from the jpdf may not
yield a sample that is representative across the whole range of allowable values for each variable,
unless the sample size is extremely large. Therefore stratified sampling methods, where values are
selected for each variable from each of a pre-specified number of intervals with equal probability mass
(Iman and Conover, 1982), are also implemented in spup. The latter can also be done in a spatial
context (Pebesma and Heuvelink, 1999).

Step 3 – Run a model with sampled inputs and store model outputs

Step 3 consists of running a model (e.g. an environmental model) for all sample elements (“simulated
realities”) generated in Step 2. It is crucial that all models are automated and can be run in batch mode,
as in many practical cases, the number of model runs for a Monte Carlo analysis should be at least
100, and often many more (Heuvelink, 1998). In general, the MC sample size must be large enough to
guarantee that the outcome of the uncertainty propagation analysis is sufficiently accurate (Heuvelink,
2006). The limitation here is that the required sample size cannot be calculated beforehand because it
is derived from the MC output.

It is important to plan what information one needs to retrieve from the set of model outputs.
Strategies will vary if the user is interested in the combined or separate effect of uncertain input data
or parameters. The simplest approach to estimating the uncertainty contribution of a single uncertain
input or parameter is to perform the uncertainty propagation analysis with only the input or, one
or more parameters made uncertain. The remaining uncertain parameters are then assumed certain
and fixed on their central value. Comparison of the output uncertainties of different inputs (e.g. ratio
of variances) provides a measure of the relative contribution. More details on stochastic sensitivity
analysis can be found in Saltelli et al. (2000).

Running the model for multiple simulated realities resulting from step 2 may be computationally
demanding, particularly when the model is complex and requires much computing time. The compu-
tation time can be reduced, as the MC method is very suited for parallel computing with multi-core ma-
chines and for grid computing technology (Leyva-Suarez et al., 2015). In this way, computation times
can be dramatically reduced. Numerous high-performance and parallel computing packages have
been developed in R suiting various approaches. A continuously maintained descriptive list of these is
available online at https://cran.r-project.org/web/views/HighPerformanceComputing.html (Ed-
delbuettel, 2017).

Step 4 – Compute and visualise summary statistics of model outputs

The resulting set of model outputs forms a random sample from the model output probability distribu-
tion. This means that output pdf parameters, such as the mean, median, variance, standard deviation,
interquartile range, percentiles, coefficient of variation and threshold exceedance probabilities can
be estimated from the sample. For example, the percentiles of the sample can be computed by the
quantile() function in R. The accuracy of the sample estimates can also be computed (de Gruijter
et al., 2006), although this is currently not implemented in spup. The sample of output values should
be stored in case the model output is used as uncertain input for a next model.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=stats
https://cran.r-project.org/web/views/Distributions.html
https://cran.r-project.org/web/views/Distributions.html
https://CRAN.R-project.org/package=mvtnorm
https://cran.r-project.org/web/views/HighPerformanceComputing.html


CONTRIBUTED RESEARCH ARTICLES 183
Ta

bl
e

1:
C

om
m

on
as

su
m

pt
io

ns
fo

r
de

fin
in

g
un

ce
rt

ai
nt

y
m

od
el

s
w

it
h

a
pr

ob
ab

ili
ty

di
st

ri
bu

ti
on

fu
nc

ti
on

fo
r

co
nt

in
uo

us
an

d
di

sc
re

te
va

ri
ab

le
s,

an
d

ca
te

go
ri

ca
lv

ar
ia

bl
es

.

Q
ua

nt
if

yi
ng

th
e

un
iv

ar
ia

te
pd

f
U

nc
er

ta
in

ty
in

sp
at

ia
ll

y
di

st
ri

bu
te

d
va

ri
ab

le
s

C
ro

ss
-c

or
re

la
ti

on
be

tw
ee

n
va

ri
ab

le
s

C
on

ti
nu

ou
s

va
ri

-
ab

le
(e

.g
.

ra
in

fa
ll

,
po

ll
ut

an
t

co
nc

en
-

tr
at

io
n,

el
ev

at
io

n)

A
p

d
f

is
of

te
n

as
su

m
ed

to
fo

llo
w

th
e

no
rm

al
d

is
tr

ib
u

ti
on

w
it

h
m

ea
n

µ
an

d
st

an
d

ar
d

d
ev

ia
ti

on
σ

.N
on

-n
or

m
al

d
is

-
tr

ib
u

ti
on

s
(s

u
ch

as
th

e
ex

p
on

en
ti

al
or

lo
gn

or
m

al
di

st
ri

bu
tio

n)
m

ay
al

so
be

as
-

su
m

ed
.F

or
d

is
tr

ib
ut

io
ns

su
pp

or
te

d
in

sp
up

se
e

th
e

sp
up

m
an

u
al

.
A

lt
er

na
-

ti
ve

ly
,

va
ri

ab
le

s
m

ay
be

tr
an

sf
or

m
ed

to
en

su
re

th
at

th
e

tr
an

sf
or

m
ed

va
ri

ab
le

ha
s

a
no

rm
al

d
is

tr
ib

u
ti

on
.

C
om

m
on

tr
an

sf
or

m
at

io
ns

ar
e

sq
u

ar
e

ro
ot

,l
og

a-
ri

th
m

an
d

th
e

Bo
x-

C
ox

tr
an

sf
or

m
.H

ar
d

m
in

im
a

an
d

m
ax

im
a

ca
n

be
im

po
se

d
by

us
in

g
tr

un
ca

te
d

di
st

ri
bu

tio
ns

th
at

le
av

e
th

e
sh

ap
e

of
d

is
tr

ib
u

ti
on

s
u

nc
ha

ng
ed

ex
ce

p
t

th
at

be
lo

w
th

e
m

in
im

u
m

an
d

ab
ov

e
th

e
m

ax
im

u
m

th
e

p
ro

ba
bi

lit
y

(d
en

si
ty

)i
s

se
tt

o
ze

ro
.

Fo
r

co
nt

in
u

ou
s

u
nc

er
ta

in
in

p
u

ts
th

at
ar

e
sp

at
ia

lly
co

rr
el

at
ed

,t
he

no
rm

al
di

s-
tr

ib
ut

io
n

is
of

te
n

im
po

se
d

be
ca

us
e

w
ith

-
ou

t
it

th
e

u
nc

er
ta

in
ty

qu
an

ti
fi

ca
ti

on
w

ou
ld

be
co

m
e

to
o

co
m

pl
ex

.T
he

re
fo

re
,

it
is

re
co

m
m

en
de

d
to

as
su

m
e

th
at

th
e

in
-

pu
to

r
so

m
e

tr
an

sf
or

m
at

io
n

of
it

is
m

ul
-

ti
va

ri
at

e
no

rm
al

ly
d

is
tr

ib
u

te
d

an
d

d
e-

fin
e

th
e

un
ce

rt
ai

nt
y

in
te

rm
s

of
th

e
no

r-
m

al
ly

d
is

tr
ib

u
te

d
(t

ra
ns

fo
rm

ed
)

va
ri

-
ab

le
.I

n
ad

di
tio

n,
‘s

ec
on

d-
or

de
r

st
at

io
n-

ar
ity

’i
s

al
so

of
te

n
as

su
m

ed
(G

oo
va

er
ts

,
19

97
;D

ig
gl

e
an

d
R

ib
ei

ro
,2

00
7)

,i
nd

ic
at

-
in

g
th

at
th

e
sp

at
ia

lc
or

re
la

tio
n

be
tw

ee
n

er
ro

rs
at

tw
o

lo
ca

tio
ns

de
pe

nd
s

on
ly

on
th

e
d

is
ta

nc
e

ve
ct

or
be

tw
ee

n
th

e
lo

ca
-

ti
on

s.
T

hi
s

en
ab

le
s

us
to

re
pr

es
en

ts
pa

-
ti

al
co

rr
el

at
io

n
w

it
h

a
si

m
p

le
fu

nc
ti

on
(c

or
re

lo
gr

am
).

T
he

st
at

is
ti

ca
l

d
ep

en
d

en
ci

es
be

tw
ee

n
jo

in
tl

y
no

rm
al

ly
-d

is
tr

ib
ut

ed
un

ce
rt

ai
n

va
ri

ab
le

s
ar

e
fu

lly
ch

ar
ac

te
ri

se
d

w
it

h
a

co
rr

el
at

io
n

m
at

ri
x.

T
he

co
rr

el
at

io
n

m
a-

tr
ix

is
a

sq
ua

re
,s

ym
m

et
ri

c
an

d
po

si
tiv

e-
se

m
id

efi
ni

te
m

at
ri

x
w

ith
un

it
va

lu
es

on
th

e
di

ag
on

al
an

d
va

lu
es

be
tw

ee
n

-1
an

d
1

on
th

e
of

f-
di

ag
on

al
s.

C
or

re
la

tio
ns

ca
n

be
es

tim
at

ed
us

in
g

pa
ir

ed
ob

se
rv

at
io

ns
of

th
e

va
ri

ab
le

s
of

in
te

re
st

.
H

ow
ev

er
,

it
is

im
p

or
ta

nt
to

no
te

th
at

th
e

co
rr

el
a-

tio
n

be
tw

ee
n

va
ri

ab
le

s
as

de
ri

ve
d

fr
om

p
ai

re
d

ob
se

rv
at

io
ns

ne
ed

no
t

be
th

e
sa

m
e

as
th

e
co

rr
el

at
io

n
be

tw
ee

n
m

ea
-

su
re

m
en

t
or

in
te

rp
ol

at
io

n
er

ro
rs

as
so

-
ci

at
ed

w
it

h
th

es
e

va
ri

ab
le

s.
E

.g
.,

D
O

C
an

d
N

H
4

co
nc

en
tr

at
io

ns
of

ri
ve

r
w

a-
te

r
ar

e
ty

p
ic

al
ly

p
os

it
iv

el
y

co
rr

el
at

ed
,

w
hi

le
th

ei
r

re
sp

ec
ti

ve
m

ea
su

re
m

en
te

r-
ro

rs
ar

e
no

t,
if

m
ea

su
re

d
in

de
pe

nd
en

tly
.

D
is

cr
et

e
va

ri
ab

le
(e

.g
.

fis
h

co
un

t,
nu

m
be

r
of

w
il

d-
fir

es
in

a
gi

ve
n

ar
ea

an
d

ti
m

e
pe

ri
od

)

T
he

p
d

f
ca

n
be

re
p

re
se

nt
ed

by
a

p
ar

a-
m

et
ri

c
sh

ap
e,

e.
g.

Po
is

so
n

di
st

ri
bu

ti
on

,
w

it
h

m
ea

n
or

ra
te

λ
,w

he
re

µ
Z
=

σ
Z
=

λ
.I

n
ca

se
no

ap
pr

op
ri

at
e

sh
ap

e
is

av
ai

l-
ab

le
,a

ll
p

os
si

bl
e

ou
tc

om
es

an
d

as
so

ci
-

at
ed

pr
ob

ab
ili

ti
es

m
us

tb
e

ta
bu

la
te

d
or

lis
te

d
in

a
no

n-
pa

ra
m

et
ri

c
pd

f.

W
he

n
d

is
cr

et
e

or
ca

te
go

ri
ca

lv
ar

ia
bl

es
ar

e
sp

at
ia

lly
d

is
tr

ib
u

te
d

,t
he

si
m

p
le

st
ap

pr
oa

ch
is

to
as

su
m

e
sp

at
ia

ls
ta

tis
tic

al
in

de
pe

nd
en

ce
or

pe
rf

ec
ts

pa
ti

al
de

pe
n-

de
nc

e.
M

or
e

ad
va

nc
ed

ap
pr

oa
ch

es
th

at
al

lo
w

in
te

rm
ed

ia
te

le
ve

ls
of

st
at

is
ti

ca
l

d
ep

en
d

en
ce

in
cl

u
d

e
th

e
M

ar
ko

v
ra

n-
d

om
fi

el
d

ap
pr

oa
ch

(B
la

ke
et

al
.,

20
11

)
an

d
th

e
G

en
er

al
is

ed
Li

ne
ar

G
eo

st
at

is
ti

-
ca

lM
od

el
(D

ig
gl

e
an

d
R

ib
ei

ro
,2

00
7)

.I
t

is
al

so
po

ss
ib

le
to

d
iv

id
e

or
cl

us
te

r
th

e
ar

ea
in

to
su

b-
re

gi
on

s,
w

it
h

a
co

m
pl

et
e

d
ep

en
d

en
ce

w
it

hi
n

an
d

in
d

ep
en

d
en

ce
be

tw
ee

n
su

b-
re

gi
on

s.

C
ro

ss
-d

ep
en

de
nc

ie
s

be
tw

ee
n

un
ce

rt
ai

n
ca

te
go

ri
ca

lv
ar

ia
bl

es
ar

e
ad

d
re

ss
ed

by
tr

ea
ti

ng
al

lc
om

bi
na

ti
on

s
of

ca
te

go
ri

es
as

se
p

ar
at

e
cl

as
se

s.
E

ac
h

co
m

bi
na

ti
on

is
as

si
gn

ed
a

pr
ob

ab
ili

ty
.T

hi
s

in
cr

ea
se

s
th

e
nu

m
be

r
of

cl
as

se
s

d
ra

m
at

ic
al

ly
,s

o
th

at
ge

ne
ra

lis
at

io
n

is
of

te
n

ne
ed

ed
in

p
ra

ct
ic

e
an

d
th

e
to

ta
ln

u
m

be
r

of
co

m
-

bi
ne

d
cl

as
se

s
is

re
du

ce
d

to
te

n
or

fe
w

er
.

C
at

eg
or

ic
al

va
ri

-
ab

le
(e

.g
.

la
nd

us
e,

bu
il

di
ng

ty
pe

)

Fo
r

m
os

tc
at

eg
or

ic
al

va
ri

ab
le

s,
a

p
ar

a-
m

et
ri

c
sh

ap
e

m
ay

no
t

be
av

ai
la

bl
e.

In
th

at
ca

se
,

ea
ch

p
os

si
bl

e
ou

tc
om

e
an

d
as

so
ci

at
ed

pr
ob

ab
ili

ty
m

us
tb

e
lis

te
d

in
a

no
n-

pa
ra

m
et

ri
c

pd
f.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 184

It is important that the uncertainty statistics are communicated in an efficient way that is simulta-
neously informative and understandable to users that have varied backgrounds in statistics. There
should be ample explanation of the results and a visual representation of the uncertainty (MacEachren,
1992; Hengl et al., 2004). For non-spatial and non-temporal data, a number of simple statistical plots
can be used to visualise uncertainty represented by probability distributions. If the full probability
distribution function is known, this can be visualised in pdf or cumulative distribution function (cdf)
plots. Error bars, interquartile range and box plots can be used to show the distribution of values.
Uncertainties about categorical data can be shown using stacked bars for the probability for each of
the categories, or entropy that provides a summary measure of the spread of probabilities over the
categories.

It is important to distinguish between presentation techniques and presentation modes for un-
certaintly visualisation of spatial data. General presentation techniques are (i) adjacent maps, (ii)
sequential presentation and (iii) bi-variate maps (MacEachren et al., 2005). These techniques can be
presented in three modes: static, dynamic and interactive (Kinkeldey et al., 2014). A common example
of adjacent maps for continuous variables is to put maps of the mean and standard deviation next
to each other. For visualising categorical attribute uncertainty, the simplest method is also using
adjacent maps, for example by showing a map of the the most probable category next to a map of the
probability of that category. Sequential presentation may be shown in dynamic mode.

The spup package

The spup package is developed in R to provide a simple solution for those who wish to include
uncertainty analysis in their studies, with emphasises on studies including spatial variables. The spup
package implements the methodology described in Section Methodology implemented in spup. We
describe spup version 1.3-1 available on CRAN. The development version is available on gitHub at
https://github.com/ksawicka/spup. The package is freely available under the GPL3.

Three example datasets are provided with the spup package:

1. Digital Elevation Model of Zlatibor region in Serbia (3x4.5km, 30m resolution) (Hengl et al.,
2008)

2. Soil organic carbon and total nitrogen content of the south region of Lake Alaotra in Madagascar
(33x33km, 250m resolution) (Hengl et al., 2017)

3. Rotterdam neighbourhood buildings distribution (Kadaster, The Netherlands).

These datasets are used in Section Application examples and in the vignettes included in the package.
Additionally, the package includes simple R and C functions that represent environmental models
used in examples.

Define 
uncertainty 

model 
(UM)

Realiza-
tions

(model 
inputs)

Propag-
ation

Realiza-
tions

(model 
output)

makeCRM()
defineUM()
defineMUM()

genSample() propagate()

template() render() executable()

Workflow:

Case: model inputs as objects in R and a model written in R

Case: model inputs saved in files on disk and a model 
written in a language callable from R

Visualization

The package provides 
extensive vignettes that 
include guidance on 
uncertainty 
visualization using 
existing R functions.

Figure 1: Flowchart presenting workflow with functions implemented in spup.

Figure 1 presents a flowchart with the workflow and key functions implemented in spup. The
package is designed in a way that the key functions correspond with the steps presented in Sec-
tion Methodology implemented in spup. The output of functions for defining the uncertainty model
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becomes an input to functions for generating a MC sample. The generated MC sample in turn is
used as input to functions facilitating propagation of uncertainty. Qualitative descriptions of the key
functions are given in Table 2. More details about functions arguments and output can be found in the
package manual (Sawicka et al., 2017) and in the examples below.

Table 2: Key functions in package spup.

Function Description

makeCRM() Define a spatial correlogram model.
defineUM() Define marginal uncertainty distributions for model input-

s/parameters for subsequent Monte Carlo analysis. Output
class depends on the arguments provided.

defineMUM() Allows the user to define joint uncertainty distributions for
continuous model inputs/parameters for subsequent Monte
Carlo analysis.

genSample() Methods for generating a Monte Carlo sample of uncertain
variables.

template() Defines a "container" class to store all templates with model
inputs.

executable() Produces an R function wrapper around a model that can be
called using system2() from R.

render() Replaces the tags in moustaches in template file or character
object by text.

propagate() Runs the model repeatedly with Monte Carlo realizations of
the uncertain input/parameters.

Application examples

Example 1 - Uncertainty propagation analysis with auto- and cross- correlated variables

In many geographical studies, variables are cross-correlated. As a result, uncertainty in one variable
may be statistically dependent on uncertainty in the other. For example, soil properties such as organic
carbon (OC) and total nitrogen (TN) content are cross-correlated. These variables are used to derive the
C/N ratio, which is important information to evaluate soil management and increase crop productivity.
Errors in OC and TN maps will propagate into the C/N ratio map. The cross-correlation between the
uncertainties in OC and TN will affect the degree of uncertainty in the C/N ratio.

The example data for C/N calculations are a 250m resolution mean OC and TN of a 33km x 33km
area adjacent to lake Alaotra in Madagascar (Figure 2) (Hengl et al., 2017). The datasets include four
spatial objects: a mean OC and TN of the area, with their standard deviations assumed to be equal to
10% of the mean.

# load packages
library(spup)
library(raster)
library(purrr)

# set seed
set.seed(12345)

# load and view the data
data(OC, OC_sd, TN, TN_sd)
class(OC); class(TN)

par(mfrow = c(1, 2), mar = c(1, 1, 2, 2), mgp = c(1.7, 0.5, 0), oma = c(0, 0, 0, 1),
las = 1, cex.main = 1, tcl = -0.2, cex.axis = 0.8, cex.lab = 0.8)

plot(OC, main = "Mean of Organic Carbon", xaxt = "n", yaxt = "n")
plot(TN, main = "Mean of Total Nitrogen", xaxt = "n", yaxt = "n")

The first step in uncertainty propagation analysis is to define an uncertainty model for the uncertain
input variables, here OC and TN. First, the marginal uncertainty model is defined for each variable
separately, and next the joint uncertainty model is defined for the variables together. In case of OC
and TN, the ε (Eq. 1) are spatially correlated. For each of the variables, the makeCRM() function collates
all necessary information into a list. We assume that the spatial autocorrelation of the OC and TN
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Figure 2: Maps of means of soil organic carbon and soil total nitrogen near lake Alaotra in Madagascar.

errors are both described by a spherical correlation function with a short-distance correlation of 0.6
for OC and 0.4 for TN, with a range parameter of 1000m (Figure 3). It is important at this step to
ensure that the correlation function types as well as the ranges are the same for each variable. This
is a requirement for further analysis, because spup employs the linear model of co-regionalization
(Wackernagel, 2003).

# define spatial correlogram models
OC_crm <- makeCRM(acf0 = 0.6, range = 1000, model = "Sph")
TN_crm <- makeCRM(acf0 = 0.4, range = 1000, model = "Sph")

par(mfrow = c(1, 2), mar = c(3, 2.5, 2, 1), mgp = c(1.7, 0.5, 0), oma = c(0, 0, 0, 0),
las = 1, cex.main = 1, tcl = -0.2, cex.axis = 0.8, cex.lab = 0.8)

plot(OC_crm, main = "OC correlogram")
plot(TN_crm, main = "TN correlogram")
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Figure 3: Spatial correlograms of soil OC and TN in the study area.

Spatial correlograms summarise patterns of spatial autocorrelation in data and model residuals.
They show the degree of correlation between values at two locations as a function of the separation
distance between the locations. In the case above, as is usually the case, the correlation declines with
distance. Here, the correlation is zero for distances greater than 1000m. More information about
correlograms is included in the spup DEM vignette. In order to complete the description of each
individual uncertain variable, the defineUM() function collates all information about the OC and TN
uncertainty.

# define uncertainty model for the OC and TN
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OC_UM <- defineUM(distribution = "norm", distr_param = c(OC, OC_sd),
crm = OC_crm, id = "OC")

TN_UM <- defineUM(distribution = "norm", distr_param = c(TN, TN_sd),
crm = TN_crm, id = "TN")

class(OC_UM)
[1] "MarginalNumericSpatial"
class(TN_UM)
[1] "MarginalNumericSpatial"

Both variables are of the same class "MarginalNumericSpatial". This is one of the requirements
for defining a multivariate uncertainty model. The defineMUM() function collates information about
uncertainty in each variable, and information about their cross-correlation.

# define multivariate uncertainty model
mySpatialMUM <- defineMUM(UMlist = list(OC_UM, TN_UM),

cormatrix = matrix(c(1, 0.7, 0.7, 1),
nrow = 2, ncol = 2))

class(mySpatialMUM)
[1] "JointNumericSpatial"

In this example, a geostatistical model for OC and TN is defined that assumes multivariate normality
and has spatial correlation functions as follows:

ρOC(h) = 1 for h = 0

ρOC(h) = 0.6 · {1− 3
2

h
1000

+
1
2
(

h
1000

)3} for 0 < h < 1000

ρOC(h) = 0 for h ≥ 1000

(2)

ρTN(h) = 1 for h = 0

ρTN(h) = 0.4 · {1− 3
2

h
1000

+
1
2
(

h
1000

)3} for 0 < h < 1000

ρTN(h) = 0 for h ≥ 1000

(3)

ρOC,TN(h) = 0.7 for h = 0

ρOC,TN(h) = 0.7 ·
√

0.6 · 0.4 · {1− 3
2

h
1000

+
1
2
(

h
1000

)3} for 0 < h < 1000

ρOC,TN(h) = 0 for h ≥ 1000

(4)

where h is Euclidean distance and where the mathematical definition of the spherical correlation
function (i.e., the semivariogram) has been used (Webster and Oliver, 2007).

Generating possible realities of the selected variables is completed by using the genSample()
function:

# create possible realizations from the joint distribution of OC and TN
MC <- 100
OCTN_sample <- genSample(UMobject = mySpatialMUM, n = MC, samplemethod = "ugs",

nmax = 20, asList = FALSE)

Note the argument asList has been set to FALSE. This indicates that the sampling function will
return an object of a class of the distribution parameters class. This is useful if there is a need to
visualise the sample or compute summary statistics quickly.

A first assessment of uncertainty is done by plotting the means and standard deviations of the
sampled OC and TN. Note that if the sample size is very large, then the sample mean and standard
deviation would approximate the mean and standard deviation (Figure 4).

# compute and plot OC and TN sample statistics
# e.g. mean and standard deviation
OC_sample <- OCTN_sample[[1:MC]]
TN_sample <- OCTN_sample[[(MC+1):(2*MC)]]
OC_sample_mean <- mean(OC_sample)
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TN_sample_mean <- mean(TN_sample)
OC_sample_sd <- calc(OC_sample, fun = sd)
TN_sample_sd <- calc(TN_sample, fun = sd)

par(mfrow = c(1, 2), mar = c(1, 1, 2, 2), mgp = c(1.7, 0.5, 0), oma = c(0, 0, 0, 1),
las = 1, cex.main = 1, tcl = -0.2, cex.axis = 0.8, cex.lab = 0.8)

plot(OC_sample_mean, main = "Mean of OC realizations", xaxt = "n", yaxt = "n")
plot(TN_sample_mean, main = "Mean of TN realizations", xaxt = "n", yaxt = "n")
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Figure 4: Maps of means of sampled realizations of OC and TN.

In order to perform uncertainty propagation analysis using spup, the model through which
uncertainty is propagated needs to be defined as an R function:

# C/N model
C_N_model_raster <- function (OC, TN) OC/TN

The propagation of uncertainty occurs when the model is run with uncertain inputs. Running the
model with a sample of realizations of uncertain input variable(s) yields an equally large sample of
model outputs that can be further analysed. We use the propagate() function to run the C/N ratio
model with the OC and TN realizations. To run propagate(), the samples of the uncertain input
variables must be saved in lists and then collated into a list of lists. The existing OCTN_sample object
can be coerced or generated automatically by setting asList = TRUE in genSample().

# coerce a raster stack to a list
l <- list()
l[[1]] <- map(1:100, function(x){OCTN_sample[[x]]})
l[[2]] <- map(101:200, function(x){OCTN_sample[[x]]})
OCTN_sample <- l

# run uncertainty propagation
CN_sample <- propagate(realizations = OCTN_sample, model = C_N_model_raster, n = MC)

Uncertainty in C/N predictions can be visualised by calculating and plotting the relative error
(Figure 5). The relative error gives an indication of the accuracy relative to its size.

# coerce C/Ns list to a raster stack
CN_sample <- stack(CN_sample)
names(CN_sample) <- paste("CN.", c(1:nlayers(CN_sample)), sep = "")

# compute and plot the slope sample statistics
CN_mean <- mean(CN_sample)
CN_sd <- calc(CN_sample, fun = sd)

par(mfrow = c(1, 2), mar = c(1, 1, 2, 2), mgp = c(1.7, 0.5, 0), oma = c(0, 0, 0, 1),
las = 1, cex.main = 1, tcl = -0.2, cex.axis = 0.8, cex.lab = 0.8)

plot(CN_mean, main = "Mean of C/N", xaxt = "n", yaxt = "n")
plot((CN_sd/CN_mean)*100, main = "Relative error of C/N [\%]", xaxt = "n", yaxt = "n")
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Figure 5: Maps of standard deviation and relative error of C/N ratio sample in the study area.

Further analysis may include identification of all locations where the C/N ratio is in a specific
range with decreasing probability. For example identifying areas where the C/N ratio is higher than
20 might help farmers to identify which plots require action to improve soil quality (Figure 6).

# calculate quantiles
CN_sample_df <- as(CN_sample, "SpatialGridDataFrame")
CN_q <- quantile_MC_sgdf(CN_sample_df, probs = c(0.01, 0.1, 0.5, 0.9), na.rm = TRUE)

CN_q$good4crops99perc <- ifelse(CN_q$prob1perc > 20, 1, 0)
CN_q$good4crops90perc <- ifelse(CN_q$prob10perc > 20, 1, 0)
CN_q$good4crops50perc <- ifelse(CN_q$prob50perc > 20, 1, 0)
CN_q$good4crops10perc <- ifelse(CN_q$prob90perc > 20, 1, 0)

CN_q$good4crops <- CN_q$good4crops99perc + CN_q$good4crops90perc +
CN_q$good4crops50perc + CN_q$good4crops10perc

CN_q$good4crops[CN_q$good4crops == 4] <- "No improvement needed"
CN_q$good4crops[CN_q$good4crops == 3] <- "Possibly improvement needed"
CN_q$good4crops[CN_q$good4crops == 2] <- "Likely improvement needed"
CN_q$good4crops[CN_q$good4crops == 1] <- "Definitely improvement needed"
CN_q$good4crops[CN_q$good4crops == 0] <- "Definitely improvement needed"

CN_q$good4crops <- factor(CN_q$good4crops,
levels = c("Definitely improvement needed",

"Likely improvement needed",
"Possibly improvement needed",
"No improvement needed"))

spplot(CN_q, "good4crops", col.regions = c("red3", "sandybrown", "greenyellow",
"forestgreen"), main = "Areas with sufficient C/N for cropping")

Example 2 - Uncertainty propagation analysis with categorical data

In many aspects of life, information take the form of categorical data. For example, in a city neigh-
bourhood or a district, each building may be assigned a function such as housing, office, recreation, or
other. The city council may impose different tax levels depending on the building function. Suppose
that the function of a building is assigned depending on the percentage of the building used for living
(i.e., the residential use) and number of addresses in the building. If the residential area is greater
than 80% and has at least one address registered, then the building is classified as “residential”. If the
residential area is smaller than 80% and at least one address is present, then the building is classified as
“office”. If no address is present, the building function is classified as “other”. The city council imposes
annual tax of €1000 for residential buidings, €10000 for office buildlings, and €10 for other buildings.
The 80% threshold is approximate, and some buildings classified as “other” could have an assigned
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Figure 6: Map of soil quality classification (depending on C/N ratio) for crop production.

address that has not yet been entered into the tax system. Therefore, the council wishes to calculate
the uncertainty in tax revenue introduced by erroneous building classification. For this example, we
will use the spatial distribution of buildings in a neighborhood of Rotterdam, NL (Figure 7).

# load packages
library(sp)
library(spup)
library(purrr)
library(png)

set.seed(12345)

# load data
data(woon)

# Netherlands contour and Rotterdam location
NL <- readPNG("RotterdamNL.png")
# collate info about figure size and type
NL_map <- list("grid.raster", NL, x = 89987, y = 436047, width = 120, height = 152,

default.units = "native")
# collate info about a scale bar location in the figure, type and colour
scale <- list("SpatialPolygonsRescale", layout.scale.bar(),

offset = c(90000, 435600), scale = 100,
fill = c("transparent", "black"))

# collate info about minimum value on a scale bar
text1 <- list("sp.text", c(89990, 435600), "0", cex = 0.8)
# collate info about maximum value on a scale bar
text2 <- list("sp.text", c(90130, 435600), "500 m", cex = 0.8)
# collate info about North arrow
arrow <- list("SpatialPolygonsRescale", layout.north.arrow(),

offset = c(89990, 435630), scale = 50)
# plot "woon" object with a location miniature,
# North arrow and scale bar defined above
spplot(woon, "check", do.log = TRUE, col.regions = "transparent",
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colorkey = FALSE, key.space = list(x = 0.1, y = 0.93, corner = c(0,1)),
sp.layout = list(scale, text1, text2, arrow, NL_map),
main = "Neighbourhood in Rotterdam, NL")

Neighbourhood in Rotterdam, NL

0 500 m

Figure 7: Map of a neighbourhood of Rotterdam used as study area. Contours represent buildings.

The woon object is a SpatialPolygonDataFrame where each building is represented by one polygon
(Figure 7). The attributes include:

• vbos: The number of addresses present in the building

• woonareash: The percentage residential area

• Function: The assigned category depending on vbos and woonareash, where 1 represents
residental; 2, office, and 3, other.

• residential: Probability that the building is residential

• office: Probability that the building is an office buildling

• other: Probability that the building has another function

Figure 8 illustrates the probabilities associated with each building for the three possible categories.

# plot probabilities for each polygon
spplot(woon[c(4,5,6)])

residential office other
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Figure 8: Probabilities of correct classification of each building.
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In case of categorical variables, the uncertainty is described by a non-parametric pdf. In this case, it
is a vector of probabilities that a building belongs to a certain category. In case of spatially distributed
variables, this must be done for each polygon, hence the dataset has maps of these probabilities saved
in the same object. We further assume that uncertainties are spatially independent, implying that the
joint pdf of all buildings in the neighbourhood is the product of the marginal pdfs for all buildings.
Thus, we can generate possible realities for all buildings independently. To unite all information
of the uncertainty model for the building function, we use the defineUM() function that collates all
information into one object.

# define uncertainty model for the building function
woonUM <- defineUM(TRUE, categories = c("residential", "office", "other"),

cat_prob = woon[, c(4:6)])

# create possible realizations of the building function
woon_sample <- genSample(woonUM, 100, asList = FALSE)

# view several realizations
woon_s <- woon_sample@data
woon_s <- lapply(woon_sample@data, as.factor)
woon_sample@data <- as.data.frame(woon_s)
rm(woon_s)

spplot(woon_sample[c(3,4,1,2)], col.regions = c("#5ab4ac", "#f5f5f5", "#d8b365"),
main = list(label = "Examples of building function realizations", cex = 1))

Examples of building function realizations

sim3 sim4

sim1 sim2

office

other

residential

Figure 9: Examples of Monte Carlo realizations of possible classifications for each building.

Examples of building functions Monte Carlo realizations are shown in Figure 9.

To propagate uncertainty, we run the model repeatedly with the sample created above. The tax
model is defined as:

# define tax model
tax <- function (building_Function)
{
building_Function$tax2pay <- NA
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building_Function$tax2pay[building_Function$Function == "residential"] <- 1000
building_Function$tax2pay[building_Function$Function == "office"] <- 10000
building_Function$tax2pay[building_Function$Function == "other"] <- 10
total_tax <- sum(building_Function$tax2pay)
total_tax

}

As in the previous C/N ratio example, in order to run the propagation function, the sample of an
uncertain input variable must be saved in a list. We must either coerce the existing woon_sample object
or get it automatically by setting up asList = TRUE argument in genSample().

# coerce SpatialPolygonDataFrame to a list of individual SpatialPolygonDataFrames
woon_sample <- map(1:ncol(woon_sample), function(x){woon_sample[x]})
for (i in 1:100) names(woon_sample[[i]]) <- "Function"

# run uncertainty propagation
tax_sample <- propagate(woon_sample, model = tax, n = 100)

tax_sample <- unlist(tax_sample)
ci95perc <- c(mean(tax_sample) - 1.96*(sd(tax_sample)/10),
mean(tax_sample) + 1.96*(sd(tax_sample)/10))
ci95perc
[1] 2281978 2312449

The result of the uncertainty propagation shows that on average, the city council should obtain a
tax revenue of approximately €2,300,000 and that the associated 95% confidence interval is (€2,281,978,
€2,312,449).

Example 3 - Uncertainty propagation analysis with a model written in C

Environmental models are often developed in languages other than R, such as C or FORTRAN, that
can significantly speed up processing. In this example, we demonstrate how to perform uncertainty
analysis with a basic model written in C.

We begin by showcasing functions to manipulate model inputs stored in ASCII files. For external
models, this additional code is needed to (i) modify ASCII input files, and (ii) run the external
model. For rendering ASCII input files, the mustache templating framework is available on GitHub at
https://mustache.github.io, and in the R package whisker.

Suppose we have a simple linear regression model: Y = b0 + b1 ∗ X that requires an input file
input.txt. The file contains values for the two parameters b0 and b1 as follows:

library(spup)
library(dplyr)
library(readr)
library(whisker)
library(purrr)

set.seed(12345)

read_lines("input.txt")
[1] "-0.789 0.016"

Function template() allow user to define a "container" class to store templates with model inputs.
The aim of this class is to organise model input files and perform necessary checks. A print() method
is available for the class "template". A template is simply an ASCII file with:

1. The additional extension .template.

2. Input that needs to be modified is replaced by mustache-style tags.

The corresponding template file should be named input.txt.template and should replace the original
numbers with b0 and b1 placed in moustaches: {{...}}.

# function template() reads the file into R as an object of class "template"
my_template <- template("input.txt.template")
my_template %>%
read_lines
[1] "{{b0}} {{b1}}"
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Rendering is the process of replacing the tags in moustaches with text. Rendering creates a new file,
called input.txt.

my_template %>%
render(b0 = 3, b1 = 4)
[1] "input.txt"

Below is an example external model written in the C language. This code can be saved in a file with
the .c extension, for example, ‘dummy_model.c’. The model below calculates a value of a simple linear
regression:

#include <stdio.h>
int main() {

FILE *fp;
double x[9] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
double y;
double b0;
double b1;
int i;

fp = fopen("input.txt", "r");
if (fp == NULL) {

printf("Can't read input.txt\n");
return 1;

}
fscanf(fp, "%lf %lf\n", &b0, &b1);
fclose(fp);

fp = fopen("output.txt", "w");
if (fp == NULL) {

printf("Can't create output.txt\n");
return 1;

}
else {

for (i=0; i<9; i++) {
y = b0 + b1 * x[i];
fprintf(fp, "%10.2f\n", y);

}
fclose(fp);

}
return 0;

}

To compile this code to a MS-Windows executable one can use GCC at the DOS command prompt
as follows: gcc dummy_model.c -o dummy_model. This creates a file dummy_model.exe, which can be
wrapped in R as follows:

dummy_model <- executable("dummy_model.exe")

Running the rendering procedure passes values for b0 and b1 to the model, which gives:

# render the template
render(my_template, b0 = 3.1, b1 = 4.2)

# run external model
dummy_model()

# read output (output file of dummy_model is "output.txt")
scan(file = "output.txt", quiet = TRUE)
[1] 7.3 11.5 15.7 19.9 24.1 28.3 32.5 36.7 40.9

To perform the uncertainty propagation analysis, we derive multiple realizations of the model
output in steps as follows: (i) render the template, (ii) run the model, (iii) read the results, and (iv)
process the results. For example:

# number of Monte Carlo runs
n_realizations <- 100
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n_realizations %>%
purrr::rerun({

# render template
render(my_template, b0 = rnorm(n = 1), b1 = runif(n = 1))

# run model
dummy_model()

# read output
scan("examples/output.txt", quiet = TRUE)

}) %>%
set_names(paste0("r", 1:n_realizations)) %>%
as_data_frame %>%
apply(MARGIN = 1, FUN = quantile)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
0% -1.660 -0.9300 -0.7400 -0.730 -0.710 -0.700 -0.680 -0.660 -0.650
25% -0.060 0.4775 0.8625 1.203 1.720 1.970 2.345 2.607 2.848
50% 0.745 1.2400 1.7200 2.310 2.965 3.375 3.910 4.405 4.850
75% 1.518 2.1425 2.7725 3.453 4.147 4.832 5.453 6.135 6.947
100% 2.990 3.3800 4.2700 5.170 6.080 6.990 7.890 8.800 9.710

Summary and future directions

In this paper, we presented the R package spup which implements methodologies for spatial uncer-
tainty propagation analysis. The package architecture and its core components were described and
three examples were presented. We explained the package functions for examining the uncertainty
propagation, starting from input data and model parameters via the environmental model to model
predictions. Sources of uncertainty include model specification, stochastic simulation and propagation
of uncertainty using MC techniques. We include recommendations for visualizing results. We also
explained how numerical and categorical data types are handled, and how we accomodate spatial
auto-correlation within an attribute and cross-correlation between attributes. The MC realizations may
be used as an input to environmental models written in R or other programming languages that can
be called from R. The presented examples and the vignettes included in the spup package provide
insight into the selection of appropriate static uncertainty visualizations that are understandable to
audiences of differing levels of statistical literacy. As an effective and easy tool, spup has potential to
be used for multi-disciplinary research, model-based decision support and educational purposes.

The package could benefit from further development including facilitating uncertainty analysis
with time series, one of the most common types of data in environmental studies. For uncertainty
propagation, the package has implemented the MC approach with efficient sampling algorithms such
as stratified random sampling; implementing Latin Hypercube sampling would complement this
approach. Further direction may include interactive visualization methods could be developed via the
shiny package (Chang et al., 2017). As it is based on MC methodology, spup is suitable to be used
with parallel computing.
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