The

Journal

Volume 11/2, December 2019

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial . . . . . . . . . e e e e e 4

Contributed Research Articles

Using Web Services to Work with GeodatainR. . . . . . . . . . . . . .. . .. 6
orthoDr: Semiparametric Dimension Reduction via Orthogonality Constrained Opti-
mization . . . . . . . L L0 Lo s e e e e e e e 24

coxed: An R Package for Computing Duration-Based Quantities from the Cox Propor-

tional Hazards Model. . . . . . . . . . . . ..o 000000 oo 38
Modeling regimes with extremes: the bayesdfa package for identifying and forecasting

common trends and anomalies in multivariate time-series data. . . . . . . . . . . 46
Fitting Tails by the Empirical Residual Coefficient of Variation: The ercv Package. . . 56
biclustermd: An R Package for Biclustering with Missing Values. . . . . . . . . . 69
auditor: an R Package for Model-Agnostic Visual Validation and Diagnostics . . . . 85
The R Package trafo for Transforming Linear Regression Models . . . . . . . . . . 99
BondValuation: An R Package for Fixed Coupon Bond Analysis . . . . . . . . . . 124
ConvergenceClubs: A Package for Performing the Phillips and Sul’s Club Conver-

gence Clustering Procedure . . . . . . . . . . . . . .. ..o 142
PPCI: an R Package for Cluster Identification using Projection Pursuit . . . . . . . 152
dr4pl: A Stable Convergence Algorithm for the 4 Parameter Logistic Model . . . . . 171
cvcrand: A Package for Covariate-constrained Randomization and the Clustered

Permutation Test for Cluster Randomized Trials . . . . . . . . . . . . . . . .. 191
jomo: A Flexible Package for Two-level Joint Modelling Multiple Imputation . . . .205
Time Series Forecasting with KNN in R: the tsfknn Package . . . . . . . . . . . . 229
rollmatch: An R Package for Rolling Entry Matching . . . . . . . . . . . . . .. 243
Associative Classification in R: arc, arulesCBA, andrCBA. . . . . . . . . . . . . 254
Indoor Positioning and Fingerprinting: The R Packageipft . . . . . . . . . . .. 268
roahd Package: Robust Analysis of High Dimensional Data . . . . . . . . . . .. 291
The IDSpatialStats R Package: Quantifying Spatial Dependence of Infectious Disease

Spread . . . . .. L 308
Comparing namedCapture with other R packages for regular expressions. . . . . . 328

The Landscape of R Packages for Automated Exploratory Data Analysis . . . . . . 347


https://CRAN.R-project.org/package=arc
https://CRAN.R-project.org/package=arulesCBA
https://CRAN.R-project.org/package=rCBA
https://CRAN.R-project.org/package=namedCapture

HCmodelSets: An R Package for Specifying Sets of Well-fitting Models in High
Dimensions . . . . . . . . . . . .00 370

Resampling-Based Analysis of Multivariate Data and Repeated Measures Designs
with the R Package MANOVARM . . . . . . . . . . . . . . ... ... ... 380

spGARCH: An R-Package for Spatial and Spatiotemporal ARCH and GARCH models 401
Ipirfs: An R Package to Estimate Impulse Response Functions by Local Projections . . 421

News and Notes

Conference Report: ConectaR2019 . . . . . . . . . . . . . . . . . ... ... 439
RFoundationNews . . . . . . . . . . . . 443
Changeson CRAN . . . . . . . . . . . . . o 444
News from the Bioconductor Project . . . . . . . . . . . . . . . . ... ... 447
RNews. . . . . . . . . o o e e e e e 448

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications
regarding this publication should be addressed to the
editors. All articles are licensed under the Creative
Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Michael Kane, Yale University, USA

Executive editors:
Dianne Cook, Monash University, Australia
Colin Gillespie, New Castle University, England
Catherine Hurley, Maynooth University, Ireland

Email:
r-journal@R-project.org

R Journal Homepage:
https://journal.r-project.org/

Editorial advisory board:

Bettina Gruen, Johannes Kepler Universitdt Linz, Austria
Deepayan Sarkar, Indian Statistical Institute, Delhi, India
Friedrich Leisch, University of Natural Resources and Life
Sciences, Vienna, Austria
Hadley Wickham, RStudio, Houston, Texas, USA
Heather Turner, University of Warwick, Coventry, UK
John Fox, McMaster University, Hamilton, Ontario, Canada
Kurt Hornik, WU Wirtschaftsuniversitdt Wien, Vienna,
Austria
Paul Murrell, University of Auckland, New Zealand
Peter Dalgaard, Copenhagen Business School, Denmark
Martyn Plummer, International Agency for Research on
Cancer, Lyon, France
Vincent Carey, Harvard Medical School, Boston, USA
Torsten Hothorn, University of Zurich, Switzerland

The R Journal is indexed /abstracted by EBSCO and
Thomson Reuters.

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859


http://creativecommons.org/licenses/by/4.0/
https://journal.r-project.org/

Editorial

by Michael |. Kane

On behalf of the editorial board, I am pleased to present Volume 11, Issue 2 of the R Journal
and my first issue as the Editor in Chief. This year, both Colin Gillespie and Catherine
Healey join the Editorial Board, and Norm Matloff will rotate out. The R Journal continues
to see increases in impact and popularity and this year we plan on making advances to
better serve the community and streamline the publishing process to meet the increase in
submissions we have seen over the last few years.

In this issue

Along with news and notes are provided from the ConectaR 2019 conference, the R Foun-
dation, CRAN, and Bioconductor, this issue features 26 articles. I have categorized them
below.

Papers focusing on performance and novel, domain-specific applications:

¢ “Comparing namedCapture with other R packages for regular expressions

* “cvcrand: a Package for Covariate-constrained Randomization and the Clustered
Permutation Test for Cluster Randomization Trials

¢ “Indoor Positioning and Fingerprinting: The R package ipft
Data preprocessing, imputation, validation, and exploration:

* “jomo: a Flexible Package for Two-level Joint Modelling Multiple Imputation”

e “auditor: an R Package for Model-Agnostic Visual Validation and Diagnostics”

¢ “Fitting tails by the empirical residual coefficient of variation: The ercv package”
¢ “The Landscape of R Packages for Automated Exploratory Data Analysis”

* “The R Package trafo for Transforming Linear Regression Models”

¢ “orthoDr: semiparametric dimension reduction via orthogonality constrained opti-
mization”

Spatial statistics:

* “spGARCH: An R Package for Spatial and Spatiotemporal ARCH models”

¢ “The IDSpatialStats R package: Quantifying spatial dependence of infectious disease
spread”

* “Using Web Services to Work with Geodata in R”
Time-series analysis and finance:

* “lpirfs: An R-package to estimate impulse response functions by local projections”
¢ “Time Series Forecasting with KNN in R: the tsfknn Package”

¢ “rollmatch: An R Package for Rolling Entry Matching”

“BondValuation: An R Package for Fixed Coupon Bond Analysis”
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* “Modeling regimes with extremes: the bayesdfa package for identifying and forecast-
ing common trends and anomalies in multivariate time-series data”

Clustering:

* “roahd Package: Robust Analysis of High Dimensional Data”
e “PPCI: an R Package for Cluster Identification using Projection Pursuit”

¢ “ConvergenceClubs: A Package for Performing the Phillips and Sul’s Club Conver-
gence Clustering Procedure”

¢ “biclustermd: An R Package for Biclustering with Missing Values”
And supervised modeling;:

e “drdpl: A stable convergence algorithm for the 4 Parameter Logistic model”

¢ “coxed: An R Package for Computing Duration Based Quantities from the Cox Pro-
portional Hazards Model”

* “Analysis of Multivariate Data and Repeated Measures Designs with the R Package
MANOVA.RM”

e “Associative Classification in R: arc, arulesCBA, and rCBA”

¢ “HCmodelSets: An R Package for Specifying Sets of Well-fitting Models in High
Dimensions”

Michael |. Kane
michael.kane@r-project.org
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Using Web Services to Work with
Geodata in R

by Jan-Philipp Kolb

Abstract Through collaborative mapping, a massive amount of data is accessible. Many individuals
contribute information each day. The growing amount of geodata is gathered by volunteers or obtained
via crowd-sourcing. One outstanding example of this is the OpenStreetMap (OSM) Project which
provides access to big data in geography. Another online mapping service that enables the integration
of geodata into the analysis is Google Maps. The expanding content and the availability of geographic
information radically changes the perspective on geodata (Chilton 2009). Recently many application
programming interfaces (APIs) have been built on OSM and Google Maps. That leads to a point where
it is possible to access sections of geographical information without the usage of a complex database
solution, especially if one only requires a small data section for a visualization.

First tools for spatial analysis have been included in the R language very early (Bivand and
Gebhardt, 2000) and this development will continue to accelerate, underpinning a continual change.
Notably, in recent years many tools have been developed to enable the usage of R as a geographic
information system (GIS). With a GIS it is possible to process spatial data. QuantumGIS (QGIS) is a
free software solution for these tasks, and a user interface is available for this purpose. R is, therefore,
an alternative to geographic information systems like QGIS (QGIS Development Team 2009). Besides,
add-ins for QGIS and R-packages (ROGIS) are available, that enables the combination of R and QGIS
(Muenchow and Schratz 2017). It is the target of this article to present some of the most important
R-functionalities to download and process geodata from OSM and the Google Maps API. The focus of
this paper is on functions that enable the natural usage of these APIs.

Introduction and outline

This paper introduces some interesting web services for downloading, processing and visualizing
geodata. The focus especially in the second half of the paper is on OpenStreetMap-data, because
it is released under the Open Database License (ODbL) 1.0. That allows multiple uses of the data
(Schmidt et al., 2013). The study of Barrington-Leigh and Millard-Ball (2017) shows for example, that
the data quality available at OSM is already sufficient in many countries to use it for scientific and
analytic purposes. However, Barron et al. (2014) state that the quality of the OSM-data depends on the
individual use case. And Grippa et al. (2018) mention that it is essential to consider the variations at
regional or national scales. One example of a scientific analysis based on OSM-data is the Simulation
of Urban MObility (SUMO) project (Behrisch et al. 2011). Meijer et al. (2018) for example use OSM-data
to analyze global patterns of road infrastructure. Gervasoni et al. (2018) use OSM-data to generate
urban features that help to estimate population density at a higher resolution. Arsanjani et al. (2015)
give an overview of typical and recent examples of studies done with OSM-data. Much more research,
carried out in various countries, is listed at OpenStreetMap Wiki (2017e).

The focus is on the most important APIs to download geodata. The significant advantage of using
these specific APIs is that we can obtain data free of charge. Short examples are used to describe how
the data can be imported into R and processed. Some examples show the easiest and fastest way to get
the information needed. In other examples I look a bit further behind the scenes. Static maps can be
used as background information for geographic visualization and may be used to highlight positions
of so-called points of interest (poi). A prerequisite to visualise these points is the availability of their
exact spatial location. With the Overpass API (http://wiki.openstreetmap.org/wiki/Overpass_API)
for example, we can get the positions for many points of interest. This application programming
interface (API) is perfect to download data on very particular topics. For example, if you are looking
for special map features.

The used API’s are listed in the individual sections below. I discuss an example where I am inter-
ested in public transportation in Amsterdam. In the next section (Background Maps - Download via
Map Tile Servers), hints on the download of static maps from so-called map tile servers are presented.
In the third section (Geocoding with Application Programming Interfaces (APIs) the functionality
of APIs like the Google Maps and OSM Nominatim API is used to realize geocoding. It is shown,
how the Nominatim API can be used to search OSM-data by name and address (OpenStreetMap Wiki
2018a). In the fourth section (Downloading and Importing OSM-data) I show various possibilities
to download more general OSM-data. The usage of the main OSM-API is presented as well as some
functions of the osmdata package, which also uses the Overpass API, are described in this section.
Possibilities to process OSM-data with R are presented in the fifth section (Processing OSM-data). A
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summary follows at the end.

Background maps - download via Map Tile Servers

If a background map is needed, it is possible to use a tile server to download them. Map tiles are
quadratic bitmap graphics which are arranged in a grid to show a map. The vector tile is a newer
format developed recently which is for example used by Mapbox (https://www.mapbox.com/). Vector
tiles have a vector representation (OpenStreetMap Wiki 2018d, p. 1). The tiles contain vector data
instead of the rendered image and provide readable, descriptive, and extensible content (Li et al. 2018).
Vector tiles can be rendered dynamically and allow for an efficient extraction of the relevant data
(Gaffuri 2012, p. 94).

So-called map tile servers offer to download static maps of various types. It is, for example,
possible to get maps on such diverse issues as biking, public transportation, or land shading.' Map
Tiles are very suitable for the use as background image. Various R-packages can be used to access map
tile servers. One way to get static maps is the package OpenStreetMap. It is a package to access high-
resolution raster maps using the OSM protocol (Fellows, 2016). A high number of satellite, topographic
and road map servers can be accessed directly using the JMapViewer Java component (Stotz, 2018).
The used map servers are for example CloudMade, Mapnik, Bing, Stamen, and MapQuest. The
function openmap can be used to retrieve a map. It is necessary to provide values for the upper left
latitude and longitude value as well as for the lower right values. In the example below;, this is done
for some coordinates in Amsterdam. Also, we have to specify the type of source. That may be the
tile server from which to get the map or the uniform resource locator (URL) pattern. However, OSM
servers have limited capacity, and heavy use adversely affects the purpose of use. With the package
OpenStreetMap, it is also possible to access other web services. Bing Maps, the web mapping service
provided by Microsoft is one example. In the following code example, the function openmap is used to
get a map based on latitude and longitude coordinates.

We need a geocode to get a map of Amsterdam. In the next section, geocodes will be explained in
more detail. We specify the tile server with the argument type. In this example, OSM is chosen, but a
Bing map would also be possible. The result of this call is visible in Figure 1.

library("OpenStreetMap”)

map <- openmap(c(52.278174, 4.729242),
c(52.431064, 5.079162),
type = "osm")

plot(map)

Stamen is an alternative source. Stamen Design publishes maps under a Creative Commons license
CC BY-3.0 (Attribution). The maps are based on OSM-data (Lamigueiro 2014, p. 95). We get a Stamen
map when we add further arguments to the openmap call. In the following the source is stamen. The
type was specified as toner and watercolor. The resulting Stamen maps are depicted in Figure 2. The
downloaded maps are very suitable as background for info graphics. It is possible to add further
layers using, for example, the ggplot2 framework (Wickham 2009). That will be shown later.

map_stt <- OpenStreetMap: :openmap(c(52.385914, 4.874383), c(52.35514, 4.92054),

type = "stamen-toner")
map_st <- OpenStreetMap: :openmap(c(52.278174, 4.729242), c(52.431064, 5.079162),
type = "stamen-watercolor”)

plot(map_st)
plot(map_stt)

Another package to get static maps is ggmap (Kahle and Wickham 2013). This package provides a
collection of functions to visualize spatial data and models on top of static maps from various online
sources, like Google Maps, OSM, Stamen Maps and CloudMade Map (Kahle and Wickham, 2013).
Only a few lines of code are necessary to get a map for a freely selectable location. The default source
of ggmap is the Google Static Maps API, and with the download of these images, you agree to the
terms of usage (https://developers.google.com/maps/terms - Dorman 2014). Recently, the Google
Maps API terms of use have changed. Now you need an account to use the API for downloading
a static map. The development version on Github (https://github.com/dkahle/ggmap) already has
the function register_google where you can define your key. Previously you have to register your
project at https://cloud.google.com/maps-platform/. The function qmap is a wrapper for ggmap and
get_map. It is necessary to specify the place for which the map should be downloaded and a zoom
factor, whereas the zoom parameter takes values between three and 21. A whole continent is visible

1 An overview on the map tile servers is available at http://wiki.openstreetmap.org/wiki/Tileserver
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Figure 1: Map of Amsterdam - data from OSM

Figure 2: Static stamen maps of Amsterdam
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on the map for a zoom factor of three whereas only one building is on the map for a zoom factor of 21.
The default value is ten. In this case, a city is visible on the map.

The RgoogleMaps package can be used for querying OSM servers for static maps in the form of
portable network graphics (PNGs) (Loecher and Ropkins, 2015). Map tiles can be downloaded using,
for example, the command GetMap . bbox. In this case, the center and a zoom level have to be provided.
The center is determined using so-called geocodes. Geocodes are used to specify a precise location on
the map. More information about these codes will be given in the next section.

Also, it is possible to create interactive maps with online mapping services. This can be done for
example with the R-package leaflet created by Cheng and Xie (2016). The package can be used to
create interactive maps for websites. These kinds of maps are also known as slippy maps where it is
possible to zoom and pan (OpenStreetMap Wiki 2016b). That means that the map slips around when
you drag the mouse. Slippy maps in OSM are based on the AJAX library OpenLayers which is written
in JavaScript. Here, the default OSM tiles can be added to the interactive map visualization. It is also
possible to use Stamen maps or CartoDB as background for slippy maps (Abernathy 2016, p. 311).
A good starting point for the work with this package is https://rstudio.github.io/leaflet/. In
the following example, the pipe-forward operator of package magrittr is used which enables chain
operations. The first operation in this chain is the creation of a leaflet map widget (function leaflet).
The second operation is to add a layer (function addTiles), and in the last operation a marker is added
(function addMarkers). Here we have to specify the position of the marker and the text that pops up.

library(leaflet)
leaflet() %>%
addTiles() %>%
addMarkers(1ng=4.891013, lat=52.38054, popup = "Amsterdam")

Map Tiles are a good possibility for geographic data visualization. They can be valuable to
get a first impression, but these visualizations may also occlude relevant geodata. Therefore it is
useful to know, how to add further information to the map. In the next section, it is shown how to
append more information to either the static map or the interactive map. Interactive maps can for
example be produced very easily with tmap and mapview (Appelhans et al. 2018) and many other
packages. The functionalities for interactive maps in both mentioned packages are built on top of the
R-package leaflet. The interface to Javascript allows a very vital exchange. The R-package mapdeck
is for example a very suitable tool, for a browser based visualization of geodata. Like most of the
interactive graphics in R this package is also based on a Javascript library. In this case Mapbox GL
JS is used (Cooley 2018a). Like for package deckard (see Hansel 2018), the package also provides
access to the Deck.gl framework of Uber (Lovelace et al. 2018). A registration is necessary to use the
framework. The package lawn provides a client for the geospatial analysis with the javascript library
Turfjs (Chamberlain and Hollister 2017). That allows us to use for example Javascript libraries like
geojson-random and geojsonhint, which can be used to randomly create GeoJSON objects and to
color them. For example the gr_polygon function can be used to create an example object. Then you
can plot the object with the generic function view.

We have seen in the examples above, that we need a set of coordinates to locate a point of interest
or pop-up. For a study on the transport system, it is for example good to know which public transport
stops (train or bus stops, etc. ) are located in the surrounding of the area under research. The geocoding
for an address list of these stops can be done with the Nominatim API of the OSM project. In the next
section it is shown how this geocoding process is done in R.

Geocoding with Aplication Programming Interfaces (APIs)

Geocoding is the derivation of a structured spatial representation from textual information like postal
codes (Aitchison, 2009, p. 157). Many possibilities are available to realize geocoding with R. The
most popular is perhaps the usage of interfaces like the Google Maps API. The API is described
in Svennerberg (2010). It can be accessed directly from R using the R-package ggmap (Kahle and
Wickham, 2013, p. 156). The ggmap-package was one of the first R packages to provide an interface
for data exchange between R and the Google Maps API. The process can be implemented using the
geocode function. Then we just need an adress to get the corresponding coordinates. For the example
"Waterlooplein 1, Amsterdam, Zentrum" we get the latitude and longitude coordinates visible in Table
1 as a result of this call.

The Mercator-projection is used in Google Maps (Moore and Drecki 2008, p. 206). The European
Petroleum Survey Group Geodesy (EPSG) published a system of globally unique key numbers of
geodetic data records (EPSG codes). The used coordinate reference system and the projection are
determined using this EPSG codes (http://epsg.org/). The EPSG code used in this example is 3857
(Harris 2016). One of the issues when using the Google Maps API is that only 2,500 requests per day
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10

lat lon

1 4901323 52.36896

Table 1: Latitude and longitude coordinates of the address "’ Amsterdam, Waterlooplein 1"

can be performed free of charge, which might cause problems with large data sets. The terms of usage
of the API can be seen at https://developers.google.com/maps/terms. It is clear that nobody should
use such an online service to geocode privacy sensitive data. The googleway package also connects to
Google (Cooley 2018b). To use the package, the registration and an API key is necessary to use most
of the functionalities. When we have done this, it is for example possible to query the distance, the
elevation or the timezone. Additional information on the visinity of a point is accessible using for
example the packages geonames (https://github.com/ropensci/geonames) or RDSTK.

A less known alternative described here in more detail is the usage of the Nominatim API of the
OSM project (Warden, 2011, p. 25). This tool is an open source system designed on top of OSM-data
to search by name and address (Clemens, 2015). Nominatim (OpenStreetMap Wiki 2018a) is the
main geocoder maintained by OSM (Abernathy, 2016). Detailed information on this geocoder is
available at http://wiki.openstreetmap.org/wiki/Nominatim. Similar to the geocoding with the
Google Maps AP], the service Nominatim can be used to query the name of the reference object to
obtain corresponding GPS coordinates. When using the Nominatim AP], it is possible to choose
between different output formats. We can choose between HTML, XML, JSON and JSONV2. The

RJSONIO and jsonlite packages can be used to import JSON files to R (Lang 2014 and Ooms 2014).

The core from the following example is the command fromJSON of package RJSONIO. It converts
JSON content to R objects. The code chunk is designated to get the corresponding coordinates for

the address "Rozengracht 1" in Amsterdam. With the function url we specify a path to be opened.

In this case it is the adress of the Nominatim API http://nominatim.openstreetmap.org/ plus some
additional information (format and adress details).

library("RJSONIO")

con <- url("http://nominatim.openstreetmap.org/search?format=json&
addressdetails=1&extratags=1&g=Amsterdam+Niederlande+Rozengracht+1")
geoc <- fromJSON(paste@(readLines(con, warn=F)))

close(con)

The result is an object that contains a lot of information. We can get an overview when we query
the names of the first object in geoc.

names(geoc[[111)
[1] "place_id" "licence” "osm_type" "osm_id" "boundingbox”
[6] "lat” "lon" "display_name” "class” "type”

[11] "importance” "address"” "extratags"

This object contains for example information on the license which is ODbL 1.0 (http://www.

openstreetmap.org/copyright). We get the latitude and longitude coordinates:

geoloc <- c(geoc[[1]][which(names(geoc[[1]]) == "lat")],
geoc[[1]]1[which(names(geoc[[1]]) == "lon")1)

lat lon
1 52.3737223 4.8826404

We also get the combination of OSM id and the OSM type, which can be useful information, when
downloading and processing specific OSM-data. And then we have some key-value pairs, which will
be explained below. The package jsonlite can also be used for importing json data:

link <- url("http://nominatim.openstreetmap.org/search?format=json&
addressdetails=18extratags=1&q=Amsterdam+Niederlande+Rozengracht+1")

geoc2 <- jsonlite::fromJSON(link)

geoc2df <- with(geoc2, data.frame(osm_id, lat,lon))

geoc2df$house_number <- geoc2$address$house_number
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osm_id lat lon house_number

1 2721815875 52.3737223 4.8826404 1

2 2743624072 52.3719482 4.8755534 237-1

3 2721830930 52.3736673 4.8823914 7-1

4 2721827922 52.3734021 4.8813371 53-1

5 2721824637 52.372232  4.8767542 231-1

6 2721823434 52.3724786 4.8776618 187-1

7 2721820122 52.3727335 4.8786657 137-1

8 2721816644 52.3729874 4.8797588 105E-1

9 2720971311 52.3727658 4.8775263 194-1
10 2720971056 52.3728019 4.8775994 184-1

Table 2: Adresses for house number with one - "Rozengracht"

The dataframe geoc2df contains several addresses in the "Rozengracht" street that all start with a
one. Parts of the adresses are visible in the following table.

The package tmaptools offers tool functions to supply the workflow to create thematic maps. It
provides the function geocode_0SM which is a wrapper for geocoding using the OSM Nominatim
API (Tennekes 2018). A bounding box can be created with the tmap: :bb command. The functions
tmaptools: :bb_poly, and osmdata: : getbb are also worth mentioning here, in particular with regard
to extracting bounding polygons rather than mere boxes. In the following example for function
geocode_OSM of package tmaptools we get only the coordinates as output because the default value of
the argument details is FALSE.

library("tmaptools™)
gc_tma <- geocode_OSM("Amsterdam, Buiten Brouwersstraat")

Info Nominatim Google Maps
CRS  EPSG:4326 EPSG:3857

Projection Mercator Mercator
Longitude 4.891013 4.900478
Latitude 52.380541 52.36859

Table 3: Result of the geocoding request for a poi in Amsterdam

The result of the request for a postal address in Amsterdam is visible in Table 3 in the second
column. A big difference becomes apparent when we compare the result for Nominatim and the result
for Google Maps API (third column). The projection and the coordinate reference system (CRS) may
be of great importance (Brown, 2016). The projection is used to display the three-dimensional earth.
Typically, this is a projection onto a two-dimensional map display. Google Maps uses, for example, the
Mercator projection, which is good for zoomed-in viewing, but causes distortions when zoomed out
(Turner 2006). For the Nominatim-query we get EPSG:4326 (Maier 2014).

The projection of the data is often necessary for the work with geodata from different sources,
and this is true if we want to combine the gained information with other geodata, for example, static
maps or satellite pictures. In the following example a transformation is shown. In a first step we create
a data.frame which is called poi. In a second step we use the function coordinates to set spatial
coordinates and to create a spatial object. Then we set the projection attributes with the command
proj4string. In this case we use the epsg projection 4326. Afterwards it is possible to transform the
spatial points using the function spTransform.

library(sp)
poi <- data.frame(lat = gc_tma$coords["x"],

lon = gc_tma$coords["y"]1)
sp::coordinates(poi) <- c("lat”, "lon")
sp::proj4string(poi) <- sp::CRS("+init=epsg:4326")
res <- spTransform(poi, CRS("+init=epsg:3035"))

We get the following numbers for the coordinates:
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res@coords
lat lon
3973434 3264547

A clearer alternative to realize the coordinate reference system transformation is included in
package sf:

library(sf)
poi2 <- st_sfc (st_point(gc_tma$coords), crs = 4326)
res2 <- st_transform (poi2, crs = 3035)

Further functions are available to switch between reference systems. The OpenStreeetMap pack-
age has the openproj function to translate from Mercator to another coordinate reference system
and can be used to create ggplot2 and base graphics. Lovelace et al. (2017) present a possibility
to transform the reference system. A whole section in the book of Pebesma and Bivand (2019) is
dedicated to this topic. Brown (2016) also explains how to work with map projections and coordinate
reference systems in R. More information is available in Plant et al. (2012). Further, the mapmisc
package provides projection capabilities and utilities for producing maps (Brown 2016). The function
projection supplies information on the coordinate reference system.

The accessed geocodes might be combined with a static map in the next step. As already shown,
the openmap function from package OpenStreetMap can be utilized to download a background map.
We have to re-project the original OSM map, for example with the function openproj from package
OpenStreetMap. The static map can then be combined with the extracted geocode. The result is
visible in Figure 3.

poi <- data.frame(lon = gc_tma$coords["x"],
lat = gc_tma$coords["y"]1)
adm_map <- openproj(map_stt,
projection = "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
library(ggmap)
autoplot(adm_map) + geom_point(aes(x = lon, y = lat), data = poi,size=5, col="red")

Figure 3: Amsterdam, Buiten Brouwersstraat

Only the coordinates are available for the download in the Waterlooplein example. In the following
example, the package opencage is used for geocoding. The Opencage service (https://opencagedata.
com/) combines the quality of multiple geocoders in one API. An access token is necessary to use this
geocoder. With the free token, up to 2,500 calls per day are possible. The command opencage_forward
can be used for geocoding. A small part of the information in the resulting object (for argument
placename = "Amsterdam,Van Woustraat"”), the address information, is visible in Table 4. We also get
the suburb, the city district, the city, the state district, the state and the postcode area in which the
object is located.

Reverse geocoding is the counterpart to geocoding. It is the target to retain additional infor-
mation from the geocodes. The procedure described above is reversed. Thus, the starting point
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Value

road Van Woustraat
neighbourhood de Pijp
suburb Zuid
city Amsterdam
state  Noord-Holland
postcode 1017
country Nederland
country_code nl

Table 4: Address information for an object in Amsterdam, Van Woustraat.

is the geocode and the task is to extract textual information, such as an address or a name, from
these geographic coordinates (Kounadi et al. 2013). The Nominatim API can be used for this. The
function rev_geocode_0SM of package tmaptools can be used to realize this. The Nominatim ser-
vice runs on donated servers. It is necessary to be careful with the usage. No heavy use is ac-
cepted. The absolute maximum is one request per second. For details on the usage see https:
//operations.osmfoundation.org/policies/nominatim/. If bulk geocoding of larger amounts of
OSM-data is intended, it is necessary to look for alternatives. One possibility are third-party providers
like MapQuest (https://developer.mapquest.com/documentation/open/nominatim-search/). An-
other possibility is the offline geocoding. The source code of the Nominatim API is available in the
OSM svn repository. The readme is very detailed and can be used as a step by step guide to set up an
offline geocoder.

As seen above, it is possible to geocode a list of addresses. E.g. with the Nominatim APIL. If we
want to know in general which objects are present in a certain map section, we can use the main OSM
Api. This is introduced in the following section.

Downloading general OSM-data

The ‘tagging’ scheme is crucial for the work with OSM-data. Its basic data structures (nodes, ways,
and relations) are tagged with a key value pair (Ramm et al., 2011). Examples of this scheme are given
in Table 4. A topic, category, or type of feature is named in the key. The value is used to describe
the particular form. For example, there are numerous OSM objects with key=highway. It can be a
footpath (value=pathway) or a highway (value=motorway). This tagging scheme is a core part of
the OSM project (Haklay and Weber, 2008). A list of the available OSM map features is available at
http://wiki.openstreetmap.org/wiki/Map_Features.

Three different object types exist in OSM. There are simple nodes or points. This can be, for
example, a public transport stop (key=highway and value=bus_stop) or a station where you get
potable water for consumption (key=amenity and value=drinking_water). The second object type is
ways. This is a sequence of points that describe, for example, the course of roads or rivers. The third
object type is relations, a grouping of objects that are logically related (Pruvost and Mooney 2017).

There are several ways to get the OSM data. The Humanitarian Open Streetmap Team (https:
//export.hotosm.org) offers customized extracts of up-to-date OSM data. Basically the raw data are
offered in protocolbuffer binary format (PBF) or in extensible markup language (XML) format. An
alternative to download large OSM sections is the Geofabrik page (http://download.geofabrik.de/).
Here you can download current excerpts as well as shapefiles. The shapefile format is a popular
format of spatial vector data for geographic information systems (GIS). This file type is a geodata
format originally developed for ESRI’s ArcView software.

A special feature of the OSM project is that you can not only get geolocations, but also down-
load individual objects or collections of objects from OSM. The OSM API version 0.6 (http://api.
openstreetmap.org/api/0.6/) is optimized for editing. That means, it is used for fetching and saving
raw geodata. It is a REST (representational state transfer) API. Thus, it is possible to make HTTP GET
calls to the OSM API (Mooney and Corcoran, 2011). For more information on REST APIs and RESTful
web service interfaces see for example Masse (2011). For this paper, it is important that an extract for a
pre-defined area can be retrieved from the OSM database using REST.

It is instructive to see how to parse the information to R. In the following use case, information
for Amsterdam is downloaded to R. We can get the OSM id using the search function at https:
//www.openstreetmap.org/. This id is essential for the work with OSM-data. With the object id it is
possible to uniquely identify an object. In the case below we download information for the relation
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Amsterdam, which has the OSM id 47811. The first step is to specify the correct url. This url is a
combination of a fixed part, the address of the API (https://www.openstreetmap.org/api/0.6/) and
a variable part based on the object to be downloaded (relation/4290854847). Thus, we need to know
if the object is a node, a way, or a relation. In addtion we need the object id. In a second part, the file is
downloaded from the Internet using the download. file command and saved.

url2 <-"https://www.openstreetmap.org/api/@.6/node/4290854847"
download.file(url2, "4290854847.xml")

It is also possible to save the object as a . osm file, a format that uses the data tree structure of XML
(OpenStreetMap Wiki 2017c¢). This format is human readable due to a clear structure, and it is machine

independent because of exact definitions. But a . osm file might be very huge, when it is decompressed.

In the following case information for a node is downloaded.

ghURL2<-"https://www.openstreetmap.org/api/@.6/relation/47811"
download.file(ghURL2, "amsterdam.osm")

If the interest is in information in the vicinity of a point, we can download information for a small
section. The following example shows the download for a section around the main train station in
Amsterdam. I used the export function of https://www.openstreetmap.org/ to download the section
visible in Figure 4 as .osm. The same section can be downloaded using the command curl_download
from package curl (Ooms 2018). The download of these small map sections are subject to the OSM
API usage policy (OpenStreetMap Wiki 2018b and OpenStreetMap Wiki 2017a).

library(curl)
uac<-"https://api.openstreetmap.org/api/@.6/map?bbox=4.89359,52.37640,4.90589,52.38172"
curl_download(uac, "amsterdamcentraal.osm”)

Figure 4: Export functionality https://www.openstreetmap.org/

Thus, it is possible to use the OSM API to download all objects in a map section. The Overpass API
can be used to download all elements of a specific type. The Overpass API written by Roland Olbricht
allows developers to download small extractions of user-generated content from OSM according to
given criteria (OpenStreetMap Wiki 2016a). Overpass is a read-only API that provides custom selected
parts of the OSM-data. It can be understood as a database over the web, it uses the fact that OSM
is enriched with additional information ranging from city names to e.g. locations of street lamps or
energy generators (Schmidt et al., 2013). If it is the target, to get all bus stops in Amsterdam, then it is
possible to download the information from Overpass Turbo (https://overpass-turbo.eu/), using
the key highway and the value bus_stop. An example is depicted in Figure 5. Overpass turbo is a
web-based data collection tool for OSM. It runs with any overpass API query and displays the results
on an interactive map (OpenStreetMap Wiki 2017d).

With a query by the client to the API you get the corresponding data. The API is streamlined
for data consumers that need a few elements within a short time, selected by search criteria like for
example type of objects, location, proximity, tag properties, or combinations of them (Mongiello et al.,
2015). The usage of the Overpass API is especially advisable if only points of interest for a particular
topic and a bigger section are relevant. It is possible to download the data in GeoJSON, GPX and KML
format. The Keyhole Markup Language (KML) is a language used to describe geodata. It was used in
Google Earth. KML also follows the XML-syntax. In addition also the raw data can be downloaded
form Overpass Turbo. The package XML can be used to access the API directly from R (Lang and the
CRAN Team 2016).
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Figure 5: Bus stops in Amsterdam

Processing OSM-data

In this section the processing of the downloaded OSM-data is presented. The online book of Lovelace
et al. (2018) gives a very good overview on tasks like this. In the previous section we have seen how
to download data from the main OSM API. Now we parse the string containing XML content and
generate an R-structure using the function xmlParse from package XML.

library(XML)
AM <- xmlParse("amsterdam.osm")

This XML-file contains information about nodes, ways, and relations. In a next step, the informa-
tion has to be extracted. For some OSM objects there is a lot of tagged information available. But some
key-value pairs are very seldom, whereas the geocode is available for every object. With the XML Path
syntax, it is possible to find XML nodes that match a particular criterion. You can get the right search
criterion by looking closer at the downloaded XML file. In the following example the typical OSM
key-value pair structure is used to get information about the downloaded node.

xpathApply (AM,"//tag[@k = 'population']")
In the result we get the population of Amsterdam:

117
<tag k="population" v="844952"/>

attr(,"class")
[1] "XMLNodeSet"

The .osnm files can also be imported using the package sf. With the function st_layers we can
check which layers are available.

library(sf)
st_layers("amsterdam.osm")
Driver: OSM
Available layers:

layer_name geometry_type features fields
1 points Point NA 10
2 lines Line String NA 9
3 multilinestrings Multi Line String NA 4
4 multipolygons Multi Polygon NA 25
5 other_relations Geometry Collection NA 4

In a seond step, the multipolygons layer can be imported with the function st_read.
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points_am <- st_read("amsterdam.osm”, "points")

Sf is the abbreviation for simple features. With the integration of simple features in R, the inter-
national standard ISO 19125-1:2004 was implemented. This standard describes how geographical
information is handled (Pebesma et al. 2018). A feature might be a tree or a building. A feature may
consist of several other features. The same as abouth also works for an . xml file. The outcome is the
Table 5 with the layer names, the geometry type and the number of fields.

library("sf")
st_layers("4290854847.xml")

name geomtype fields
1 points Point 10
2 lines Line String 9
3 multilinestrings Multi Line String 4
4 multipolygons ~ Multi Polygon 25
5 other_relations = Geometry Collection 4

Table 5: Available layers in object 4290854847.xml (Driver: osm)

We can also import . xml files with the commandst_read.
centraal <- st_read("4290854847.xml", "points")

The result is information of the the node or point. The function st_read can also be used to import
for example the GeoJSON format. The information in the object centraal can be accessed relatively
conveniently with the dollar sign. For example, the coordinates result from the following command:

centraal$geometry

For a query on the first level of the object centraal the first lines the geometry type, the dimension,
the bounding box and the epsg code results. If we work with simple features we can use the function
st_transform from package sf.

Geometry set for 1 feature
geometry type: POINT

dimension: XY

bbox: xmin: 4.90058 ymin: 52.3789 xmax: 4.90058 ymax: 52.3789
epsg (SRID): 4326

proj4string: +proj=longlat +datum=WGS84 +no_defs

POINT (4.900581 52.3789)

If very large excerpts or the entire planet file are downloaded from OSM, the XML files can become
very large. Here the protocolbuffer binary format (PBF) offers an efficient alternative, which will
spread further in the future (OpenStreetMap Wiki 2018c). It is for example planned to implement
this file format in the osmdata package. The XML structure of OSM objects is unfortunately not very
intuitive at first glance. Despite these disadvantages, the XML format still has its justification, since
the use of XML formats is widespread (see for example Nolan and Lang 2014). In the following I use
the command st_layers from sf to see which layers are available in the downloaded data.

The osmdata package provides functionality to download OSM-data using the Overpass API. The
data can be imported as simple features and spatial objects (Padgham et al. 2017). With this package,
it is possible to download information for one object (node, way or relation) or a collection of objects.

library(osmdata)
dat_rw <- opq(bbox = 'Amsterdam') %>%
add_osm_feature(key = 'railway',

value = 'tram_stop') %>%
osmdata_sf ()

It is obvious and simple to combine the information obtained with osmdata with further informa-
tion to a map. We can e.g. also extract information for other types of highways. In the following that is
done with the package osmplotr. In a first step a bounding box is generated with the command getbb
from osmdata. The functions add_osm_feature and osmdata_sf can be used to get the raw XML data
from Overpass API.
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library(osmplotr)
bbox <- getbb("Amsterdam")
dat_pa <- extract_osm_objects(key = 'highway',

value = "primary”,
bbox = bbox)

dat_sa <- extract_osm_objects(key = "highway',
value = "secondary”,
bbox = bbox)

The function osm_basemap from package osmplotr creates a base OSM plot (Padgham 2017).

map <- osm_basemap(bbox = bbox, bg = c("#F5F5DC"))

map <- add_osm_objects(map, dat_pa, col = c("#00008B"))
map <- add_osm_objects(map, dat_sa, col = "green")

# further objects can be added

print_osm_map(map)

In the following figure 6, the highways with value cycleway, footway, pedestrian, primary, sec-
ondary, tertiary and residential are used to depict the colored lines.

=

) B

Figure 6: Map of Amsterdam with roads

library(tmap)
gtm(dat_pa$geometry, fill = "#8B1ATA")

In the following code chunk I use this object to create an interactive map with the aforementioned
R-package mapview.

library(mapview)
mapview(centraal)

In the previous section I downloaded an object and named it amsterdamcentraal.osm. The .osm-
file (e.g. for the section visible in Figure 4) can parsed to R with the function st_read from package sf.
With the sf package it is possible to import all available layers of the .osm file. We can check which
layers are available with the function st_layers. In this case we also get information on ways and
relations:

library(sf)
st_layers("amsterdamcentraal.osm")
am_cen <- st_read("amsterdamcentraal.osm”, "multipolygons")
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An outcome is an simple feature collection. We can access the information relatively conveniently
with the dollar sign. The first part of the object contains general information about the geometry type,
bounding box, and EPSG code:

Simple feature collection with 53 features and 25 fields
geometry type: MULTIPOLYGON

dimension: XY

bbox : xmin: 11.48829 ymin: 48.13825 xmax: 11.5604 ymax: 48.14688
epsg (SRID): 4326

proj4string: +proj=longlat +datum=WGS84 +no_defs

The second part then lists specific information about the individual features. For example the OSM
id and in the last column the geometry we need for visualization. In Table 6 we can see the first rows
and some selected columns of the feature table.

osm_id type building geometry

56955 multipolygon yes MULTIPOLYGON (((11.54238 48...
<NA> <NA> yes MULTIPOLYGON (((11.54157 48...
<NA> <NA> yes MULTIPOLYGON (((11.54245 48...
<NA> <NA> yes MULTIPOLYGON (((11.54201 48...
<NA> <NA> yes MULTIPOLYGON (((11.54041 48...
<NA> <NA> yes MULTIPOLYGON (((11.54134 48...
<NA> <NA> yes MULTIPOLYGON (((11.54058 48...
<NA> <NA> yes MULTIPOLYGON (((11.54254 48...
<NA> <NA> <NA> MULTIPOLYGON (((11.54276 48...
<NA> <NA> yes MULTIPOLYGON (((11.54038 48...

Table 6: Table of tags for the imported osm section

A comparison between Table 2 and 6 shows that the level of information varies. sf simply calls
GDAL, which only imports the osm_id value of the containing object but discards values of all
members of a MULTIPOLYGON for example. The different degree of information can therefore
be traced back to the definition of simple features standard. The osmdata package will provide an
equivalent version of Table 6 in which all osm_id values will have been retained.

The number of nodes is bounded at 50,000 as well as the size of the area (Roick et al., 2011, p. 4).
Subsequently, it is possible to work with the data in the standard R-manner. The data can be converted
into available infrastructure provided by existing R-packages, e.g. sp and igraph objects (Bivand et al.
2013 and Csardi and Nepusz 2006).

houses <- am_cen[!is.na(am_cen$building),]
other_tags <- am_cen[!is.na(am_cen$other_tags),]

Based on this information maps can be plotted using either base graphics, or the plot functions in
package sp. The package tmap by Tennekes (2018) also offers an intuitive and fast way to visualize
this information (see Kolb 2016 for a description). With this package it is possible to create thematic
maps with flexibility. In the following, we use the tm_shape command from the tmap-package. So far
we extracted mainly nodes and lines within the specified bounding box. It is also possible to obtain
polygones. In this case, we can use for instance building as key. Than we subselect the related objects
and we plot them. The result is visible on the right-hand side of figure 7.

library(tmap)
tm_shape(houses) + tm_fill("royalblue") + tm_shape(other_tags) + tm_borders("gray")

Summary

The OSM project offers a great variety of possibilities to access interesting geo-information. We can
combine this data with static maps (e.g. satellite maps) from the Google Maps API. Thus, it is for
example possible to create valuable visualizations quite fast with the APIs. And they offer much more
possibilities. Very early, there were packages available in R that could be used to process and display
geographic information. Especially lately, the number of these packages is increasing.

The map tile servers of the OSM project provide possibilities to work with static maps in R. They
also provide the necessary information to create interactive maps using the package leaflet. Lately
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Figure 7: Amsterdam Centraal - two levels of information

many packages have been developped based on Javascript libraries like e.g. mapdeck and deckard,
are a good example of how quickly interactive maps evolve. With these packages it is possible to create
many different interactive graphics. These kind of visualizations are developing very fast. Already
now there are various fascinating possibilities available, and it is to be expected that soon many more
possibilities will be added.

There are packages available in R to realize geocoding using the Nominatim API or the Google
Maps API. With the Overpass AP], it is possible to obtain useful information for particular points of
interest like restaurants, fuel stations, bakeries and so on. The ggmap package can be used to combine
and visualize this information. The combination of the OSM API's with packages like osmdata allows
downloading collections of objects. The Overpass APl is about downloading information on a specified
key-value combination. In contrast, with the main OSM API you can get all the information available
for a section.

There are already massive amounts of data available free of charge. And thanks to numerous
volunteers, the database is getting better and more comprehensive. So it is very crucial to handle
this treasure of information with care. If it is the target to work with big data from OSM, it is highly
recommended to install OSM locally and therefore, to download the whole planet file, or an excerpt.
Geofabrik (http://www.geofabrik.de/) may be used for this (OpenStreetMap Wiki 2017b). It has to
be mentioned that the data quality of the information may be heterogeneous and that the completeness
may vary, depending on the region (see Kounadi 2009 and Goodchild and Li 2012).
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orthoDr: Semiparametric Dimension
Reduction via Orthogonality Constrained

Optimization
by Ruogqing Zhu, Jiyang Zhang, Ruilin Zhao, Peng Xu, Wenzhuo Zhou and Xin Zhang

Abstract orthoDr is a package in R that solves dimension reduction problems using orthogonality
constrained optimization approach. The package serves as a unified framework for many regression
and survival analysis dimension reduction models that utilize semiparametric estimating equations.
The main computational machinery of orthoDr is a first-order algorithm developed by Wen and
Yin (2012) for optimization within the Stiefel manifold. We implement the algorithm through Rcpp
and OpenMP for fast computation. In addition, we developed a general-purpose solver for such
constrained problems with user-specified objective functions, which works as a drop-in version of
optim(). The package also serves as a platform for future methodology developments along this line
of work.

Introduction

Dimension reduction is a long-standing problem in statistics and data science. While the traditional
principal component analysis (Jolliffe, 1986) and related works provide a way of reducing the dimen-
sion of the covariates, the term “sufficient dimension reduction” is more commonly referring to a
series of regression works originated from the seminal paper on sliced inverse regression (Li, 1991). In
such problems, we observe an outcome Y € R, along with a set of covariates X = (X3, ..., Xp)T € RP.
Dimension reduction models are interested in modeling the conditional distribution of Y given X,
while their relationship satisfies, for some p x d matrix B = (8, ..., ﬁp),

Y =h(X,e) =h(B'X,e) =h(BiX,...,B3X,€), 1

where € represents any error terms and #, with a slight abuse of notation, represents the link function
using X or B"X. One can easily notice that when d, the number of columns in B, is less than p, a
dimension reduction is achieved, in the sense that only a d dimensional covariate information is
necessary for fully describing the relationship (Cook, 2009). Alternatively, this relationship can be
represented as (Zeng and Zhu, 2010)

Y L X | B'X, )

which again describes the sufficiency of B'X. Following the work of Li (1991), a variety of methods
have been proposed. An incomplete list of literature includes Cook and Weisberg (1991); Cook and Lee
(1999); Yin and Cook (2002); Chiaromonte et al. (2002); Zhu et al. (2006); Li and Wang (2007); Zhu et al.
(2010b,a); Cook et al. (2010); Lee et al. (2013); Cook and Zhang (2014); Li and Zhang (2017). For a more
comprehensive review of the literature, we refer the readers to Ma and Zhu (2013b). One advantage of
many early developments in dimension reduction models is that only a singular value decomposition
is required to obtain the reduced space parameters B through inverse sliced averaging. However,
this comes at a price of assuming the linearity assumption (Li, 1991), which is almost the same as
assuming that the covariates follow an elliptical distribution (Li and Dong, 2009; Dong and Li, 2010).
Moreover, some methods require more restrictive assumptions on the covariance structure (Cook and
Weisberg, 1991). Many methods attempt to avoid these assumptions by resorting to nonparametric
estimations. The most successful ones include Xia et al. (2002) and Xia (2007). However, recently a
new line of work started by Ma and Zhu (2012b,a, 2013a) shows that by formulating the problem into
semiparametric estimating equations, not only we can avoid many distributional assumptions on the
covariates, the obtained estimator of B also enjoys efficiency. Extending this idea, Sun et al. (2017)
developed a framework for dimension reduction in survival analysis using a counting process based
estimating equations. The method performs significantly better than existing dimension reduction
methods for censored data such as Li et al. (1999); Xia et al. (2010) and Lu and Li (2011). Another
recent development that also utilizes this semiparametric formulation is Zhao et al. (2017), in which
an efficient estimator is derived.

Although there are celebrated theoretical and methodological advances, estimating B through the
semiparametric estimating equations is still not a trivial task. Two challenges remain: first, by a careful
look at the model definition 1, we quickly noticed that the parameters are not identifiable unless certain
constraints are placed. In fact, if we let A be any d x d full rank matrix, then (BA)"X preserves the same
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column space information of B"X, hence, we can define h*((BA)"X, €) accordingly to retain exactly
the same model as (1). While traditional methods can utilize singular value decompositions (SVD) of
the estimation matrix to identify the column space of B instead of recovering each parameter (Cook
and Lee, 1999), it appears to be a difficult task in the semiparametric estimating equation framework.
One challenge is that if we let B change freely, the rank of the B matrix cannot be guaranteed, which
makes the formulation meaningless. Hence, for both computational and theoretical concerns, Ma
and Zhu (2012b) resorts to an approach that fixes the upper d x d block of B as an identity matrix,
ie, B = (Ijx4 B*")T, where B* is a (p — d) x d matrix that sits in the lower block of B. Hence, in
this formulation, only B* needs to be solved. While the solution is guaranteed to be rank 4 in this
formulation, as pointed out by Sun et al. (2017), this approach still requires correctly identifying and
reordering of the covariate vector x such that the first d entries are indeed important, which creates
another daunting task. Another challenge is that solving semiparametric estimating equations requires
the estimation of nonparametric components. These components need to be computed through kernel
estimations, usually the Nadaraya-Watson type, which significantly increases the computational
intensity of the method considering that these components need to be recalculated at each iteration of
the optimization. Up to date, these drawbacks remain as the strongest criticism of the semiparametric
approaches. Hence, although enjoying superior statistical asymptotic properties, are not as attractive
as a traditional sliced inverse type of approaches such as Li (1991) and Cook and Weisberg (1991).

The goal of our orthoDr package is to develop a computationally efficient optimization platform
for solving the semiparametric estimating equation approaches proposed in Ma and Zhu (2013a), Sun
et al. (2017) and possibly any future work along this line. Revisiting the rank preserving problem of B
mentioned above, we can essentially set a constraint that

B'B=1, 3)

where I'is a d x d identity matrix. A solution of the estimating equations that satisfies the constraint
will correctly identify the dimensionality-reduced subspace. This is known as optimizing on the Stiefel
manifold, which is a class of well-studied problems (Edelman et al., 1998). A recent R development
(Martin et al., 2016) utilizes quasi-Newton methods such as the well known BFGS method on the
Riemannian manifold (Huang et al., 2018). However, second order optimization methods always
require forming and storing large hessian matrices. In addition, they may not be easily adapted to
penalized optimization problems, which often appear in high dimensional statistical problems Zhu
et al. (2006); Li and Yin (2008). On the other hand, first-order optimization methods are faster in
each iteration, and may also incorporate penalization in a more convenient way Wen et al. (2010).
By utilizing the techniques developed by Wen and Yin (2012), we can effectively search for the
solution in the Stiefel manifold, and this becomes the main machinery of our package. Further
incorporating the popular Repp (Eddelbuettel and Francois, 2011) and ReppArmadillo (Eddelbuettel
and Sanderson, 2014) toolboxes and the OpenMP parallel commuting, the computational time for
our package is comparable to state-of-the-art existing implementations (such as ManifoldOpthm),
making the semiparametric dimension reduction models more accessible in practice.

The purpose of this article is to provide a general overview of the orthoDr package (version 0.6.2)
and provide some concrete examples to demonstrate its advantages. orthoDr is available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=orthoDr and
GitHub at https://github.com/teazrq/orthoDr. We begin by explaining the underlying formulation
of the estimating equation problem and the parameter updating scheme that preserves orthogonality.
Next, the software is introduced in detail using simulated data and real data as examples. We further
demonstrate an example that utilizes the package as a general purpose solver. We also investigate the
computational time of the package compared with existing solvers. Future plans for extending the
package to other dimension reduction problems are also discussed.

Model description

Counting process based dimension reduction

To give a concrete example of the estimating equations, we use the semiparametric inverse regression
approach defined in Sun et al. (2017) to demonstrate the calculation. Following the common notations
in the survival analysis literature, let X; be the observed p dimensional covariate values of subject
i, Y; = min(T;, C;) is the observed survival time, with failure time T; and censoring time C;, and
6; = I(T; < C;) is the censoring indicator. A set of i.i.d. observations {X;, Y, ;}_; is observed. We
are interested in a situation that the conditional distribution of failure time T;| X; depends only on the
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reduced space B"X;. Hence, to estimate B, the estimating equation is given by

:Zl{xi—ﬁ(xlyzlf,»BTxi)}fﬁT(Yj) {a1G=0-Bx)}|, @

j
5=1

where the operator vec(+) is the vectorization of matrix. Several components are estimated nonparasit-
ically: the function ¢(u) is estimated by sliced averaging,

Xl <Yi<u+Aud=1) Y XI(Y; > u)

(P(u) = _;'1:1 I(M < Yi <u-+ Au,éi = 1) - ?:1 I(Yl > u) ' (5)

where Au is chosen such that there are hin number of observations lie between u and u + Au. The
conditional mean function E (X Y > u,B"X= z) is estimated through the Nadaraya-Watson kernel
estimator

iq XiKy(B'X;—2)I(Y; > u)

E(X|Y > u,B'X=2z)= . (6)
(l ) i1 K (B'X;=2)I(Y; > u)
In addition, the the conditional hazard function at any time point u can be estimated by
~ " Ky(Y; —u)8iKy(B™X; —z
)\(u|BTX=z): Zz:ll h( i ) i h(T i ) (7)
i1 1(Y; = ) K (BTX; — 2)

However, this substantially increase the computational burden since the double kernel estimator
requires O(n?) flops to calculate the hazard at any given u and z. Instead, an alternative version using
Dabrowska (1989) can greatly reduce the computational cost without compromising the performance.
Hence, we estimate the conditional hazard function by

X(M‘BTX:Z) _ ?:1 I(Yi :u)l(éi :1)Kh(BTXi—Z)
L I(Y: > u)Ky (BTX; — z)

, ®)

which requires only O(n) flops. In the above equations (5), (6) and (8), h is a pre-specified kernel
bandwidth and K}, (-) = K(-/h)/h, where K(+) is the Gaussian kernel function. By utilizing the method
of moments estimators (FHansen, 1982) and noticing our constraint for identifying the column space of
B, solving for the solution of the estimating equations (4) is equivalent to

minimize f(B) = ¥, (B) P, (B) )
subjectto B'B =1. (10)

Essentially all other semiparametric dimension reduction models described in Ma and Zhu (2013a),
and more recently Ma and Zhang (2015) Xu et al. (2016), Sun et al. (2017), Huang and Chiang (2017) and
many others can be estimated in the samimilar fashion as the above optimization problem. However,
due to the difficult in the constrains and the purpose of identifiability, all of these methods resort to
either fixing the upper block of the B matrix as an identity matrix or adding a penalty of || B'B — I||r to
preserve the orthogonality constraint. There appears to be no existing method that solves (9) directly.
Here, we utilize Wen and Yin (2012)’s approach which can effectively tackle this problem.

Orthogonality preserving updating scheme

The algorithm works in the same fashion as a regular gradient decent, except that we need to preserve
the orthogonality at each iteration of the update. As described in Wen and Yin (2012), given any
feasible point By, i.e., By"Bg = I, which can always be generated randomly, we update B as follows.
Let the p x d gradient matrix be

9f(Bo) )
G= V) ) (11)
(330(111) {i,j}
Then, utilizing the Cayley transformation, we have
T\ 1 T
Brew = (1 T EA) (1 - EA) By, (12)

with the orthogonality preserving property Bl Bnew = I. Here, A = GBy" — BoG' is a skew-
symmetric matrix. It can be shown that {Bnew(7)}r>0 is a descent path. Similar to line search
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algorithms, we can then find a proper step size T through a curvilinear search. Recursively updating
the current value of B, the algorithm stops when the tolerance level is reached. An initial value is also
important for the performance of nonconvex optimization problems. A convenient initial value for
our framework is the computational efficient approach developed in Sun et al. (2017), which only
requires a SVD of the estimation matrix.

The R package orthoDr

There are several main functions in the orthoDr package: orthoDr_surv, ortho_reg and ortho_optim.
They are corresponding to the survival model described perviously (Sun et al., 2017), the regression
model in Ma and Zhu (2012b), and a general constrained optimization function, respectively. In this
section, we demonstrate the details of using these main functions, illustrate them with examples.

Semiparametric dimension reduction models for survival data

The orthoDr_surv function implements the optimization problem defined in Equation (9), where the
kernel estimations and various quantities are implemented and calculated within C++. Note that
in addition, the method defined previously, some simplified versions are also implemented such as
the counting process inverse regression models and the forward regression models, which are all
described in Sun et al. (2017). These specifications can be made using the method parameter. A routine
call of the function orthoDr_surv proceed as

orthoDr_surv(x, y, censor, method, ndr, B.initial, bw, keep.data,
control, maxitr, verbose, ncore)

* x: A matrix or data.frame for features (numerical only).

e y: A vector of observed survival times.

* censor: A vector of censoring indicators.

¢ method: The estimating equation method used.

— "dm" (default): semiparametric inverse regression given in (4).
— "dn": counting process inverse regression.
- "forward": forward regression model with one structural dimensional.
¢ ndr: The number of structural dimensional. For method = "dn"” or "dm”, the default is 2. For

method = "forward” only one structural dimension is allowed, hence the parameter is sup-
pressed.

* B.initial: Initial B values. Unless specifically interested, this should be left as default, which
uses the computational efficient approach (with the CPSIR() function) in Sun et al. (2017) as the
initial. If specified, must be a matrix with ncol (x) rows and ndr columns. The matrix will be
processed by Gram-Schmidt if it does not satisfy the orthogonality constrain.

* bw: A kernel bandwidth, assuming each variables have unit variance. By default we use the
Silverman rule-of-thumb formula Silverman (1986) to determine the bandwidth

1.06 LEAELI
= — T
bw .06 x ( Fn 2) n- a4,
This bandwidth can be computed using the silverman(n,d) function in our package.
* keep.data: Should the original data be kept for prediction? Default is FALSE.

* control: A list of tuning variables for optimization, including the convergence criteria. In
particular, epsilon is the size for numerically approximating the gradient, ftol, gtol, and
btol are tolerance levels for the objective function, gradients, and the parameter estimations,
respectively, for judging the convergence. The default values are selected based on Wen and Yin
(2012) .

e maxitr: Maximum number of iterations. Default is 500.

* verbose: Should information be displayed? Default is FALSE.

* ncore: Number of cores for parallel computing when approximating the gradients numerically.

The default is the maximum number of threads.

We demonstrate the usage of orthoDr_surv function by solving a problem with generated survival
data.
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# generate some survival data with two structural dimensions
R> set.seed(1)

R> N = 350; P = 6; dataX = matrix(rnorm(NxP), N, P)

R> failEDR = as.matrix(cbind(c(1, 1, 0, @, @, @, rep(@, P-6)),

+ c(90, o, 1, -1, 0, 0, rep(0, P-6))))

R> censorEDR = as.matrix(c(@, 1, @, 1, 1, 1, rep(@, P-6)))
R> T = exp(-2.5 + dataX %*% failEDR[,1] + @.5x(dataX %%

+ failEDR[,1])*(dataX %x% failEDR[,2]) + 0.25*log(-log(1-runif(N))))
R> C = exp( -0.5 + dataX %*% censorEDR + log(-log(1-runif(N))))
R> Y = pmin(T, C)

R> Censor = (T < C)

# fit the model
R> orthoDr.fit = orthoDr_surv(dataX, Y, Censor, ndr = 2)
R> orthoDr.fit

[,11] [,2]
[1,] -0.689222616 0.20206497
[2,] -0.670750726 ©.19909057
[3,]1 -0.191817963 -0.66623300
[4,] 0.192766630 0.68605407
[5,]1 0.005897188 0.02021414
[6,]1 0.032829356 ©.06773089

To evaluate the accuracy of this estimation, a distance function distance() can be used. This
function calculates the distance between the column spaces generated by the true B and the estimated
version B. Note that the sine angle distance between the two column spaces is closely related to the
canonical correlation between the two matrices B and B.

distance(s1, s2, method, x)

* s1: A matrix for the first column space (e.g., B).
e 52: A matrix for the second column space (e.g., B).

* method:

- "dist": the Frobenius norm distance between the projection matrices of the two given
matrices, where for any given matrix B, the projection matrix P = B(BTB)_lBT.

— "trace": the trace correlation between two projection matrices tr(PP)/d, where d is the
number of columns of the given matrix.

— "canonical”: the canonical correlation between BTX and B'X.

— "sine": the sine angle distance || sin ®||f obtained from Py (I — P;) = Usin®V".

¢ x: The design matrix X (default = NULL), required only if method = "canonical” is used.
We compare the accuracy of the estimations obtained by the method ="dm" and "dn". Note that
the "dm” method enjoys double robustness property of the estimating equations, hence the result is

usually better.

# Calculate the distance to the true parameters
R> distance(failEDR, orthoDr.fit$B, "dist")

[1] 0.1142773

# Compare with the counting process inverse regression model

R> orthoDr.fit1 = orthoDr_surv(dataX, Y, Censor, method = "dn"”, ndr = 2)
R> distance(failEDR, orthoDr.fit1$B, "dist")

[1] 0.1631814

Semiparametric dimension reduction models for regression

The orthoDr_reg function implements the semiparametric dimension reduction methods proposed
in Ma and Zhu (2012b). A routine call of the function orthoDr_reg proceed as
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orthoDr_reg(x, y, method, ndr, B.initial, bw, keep.data, control,
maxitr, verbose, ncore)

e x: A matrix or data.frame for features (numerical only).
e y: A vector of observed continuous outcome.

* method: We currently implemented two methods: the semiparametric sliced inverse regression
method ("sir"), and the semiparametric principal Hessian directions method ("phd").

”

— "sir": semiparametric sliced inverse regression method solves the sample version of the
estimating equation

E([E(X|Y) — E{E(X|Y)[B"X}][X — E(X|B"X)]") = 0

— "phd": semiparametric principal Hessian directions method that estimates B by solving
the sample version of

E[{Y — E(Y[B"X)}{XX" — E(XX"[B'X)}] =0

e ndr: The number of structural dimensional (default is 2).

e B.initial: Initial B values. For each method, the initial values are taken from the corresponding
traditional inverse regression approach using the dr package. The obtained matrix will be
processed by Gram-Schmidt for orthogonality.

* bw, keep.data, control, maxitr, verbose and ncore are exactly the same as those in the orthoDr_surv
function.

To demonstrate the usage of orthoDr_reg, we consider the problem of dimension reduction by
fitting a semi-PHD model proposed by Ma and Zhu (2012b).

R> set.seed(1)

R> N = 100; P = 4; dataX = matrix(rnorm(N*P), N, P)
R>Y = -1 + dataX[,1] + rnorm(N)

R> orthoDr_reg(dataX, Y, ndr = 1, method = "phd")

Subspace for regression model using phd approach:
[,1]

[1,] ©.99612339

[2,] ©0.06234337

[3,]1 -0.04257601

[4,] -0.04515279

Parallelled gradient approximation through OpenMP

The estimation equations of the dimension reduction problem in the survival and regression settings
usually have a complicated form. Especially, multiple kernel estimations are involved, which results
in difficulties in taking derivatives analytically. As an alternative, numerically approximated gradients
are implemented using OpenMP. A comparison between a single core and multiple cores (4 cores) is
given in the following example. Results from 20 independent simulation runes are summarized in
Table 1. The data generating procedure used in this example is the same as the survival data used in
Section Semiparametric dimension reduction models for survival data. All simulations are performed
on an i7-4770K CPU.

R> t0 = Sys.time()

R> dn.fit = orthoDr_surv(dataX, Y, Censor, method = "dn", ndr = ndr,
+ ncore = 4, control = list(ftol = 1e-6))

R> Sys.time() - to

Table 1: Computational cost of different numbers of cores

# of cores

1 4
n=350, p=6 3.9831 1.2741
n=350,p=12 12.7780 3.4850

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

30

General solver for orthogonality constrained optimization

ortho_optimis a general purpose optimization function that can incorporate any user defined objective
function f (and gradient function if supplied). The usage of ortho_optim is similar to the widely used
optim() function. A routine call of the function proceed as

ortho_optim(B, fn, grad, ..., maximize, control, maxitr, verbose)

e B: Initial B values. Must be a matrix, and the columns are subject to the orthogonality constrains.

It will be processed by Gram-Schmidt if not orthogonal.

e fn: A function that calculates the objective function value. The first argument should be B.

Returns a single value.

e grad: A function that calculate the gradient. The first argument should be B. Returns a matrix
with the same dimension as B. If not specified, a numerical approximation is used.

* ...: Arguments passed to fn and grad besides B.

* maximize: By default, the solver will try to minimize the objective function unless maximize =
TRUE.

* The parameters maxitr, verbose and ncore works in the same way as introduced in the previous
sections.

To demonstrate the simple usage of ortho_optim as a drop-in function of optim(), we consider
the problem of searching for the first principle component for a data matrix.

# an example of searching for the first principal component

R> set.seed(1)

R> N = 400; P = 100; X = scale(matrix(rnorm(N*P), N, P), scale = FALSE)
R> w = gramSchmidt(matrix(rnorm(P), P, 1))$%Q

R> fx <- function(w, X) t(w) %*% t(X) %*% X %*% w

R> gx <- function(w, X) 2xt(X) %*% X %*x% w

# fit the model
R> fit = ortho_optim(w, fx, gx, X = X, maximize = TRUE, verbose = 0)
R> head(fit$B)

[,1]
[1,] 0.01268226
[2,] -0.09065592
[3,] -0.01471700
[4,] 0.10583958
[5,] -0.02656409
[6,] -0.04186199

# compare results with the prcomp() function
R> library(pracma)
R> distance(fit$B, as.matrix(prcomp(X)$rotation[, 1]1), type = "dist")

[1] 1.417268e-05

The ManifoldOptim (Martin et al., 2016) package is known for solving optimization problems on
manifolds. We consider the problem of optimizing Brockett cost function (Huang et al., 2018) on the
Stiefel manifold with objective and gradient functions written in R. The problem can be stated as

min trace(B"XBD), (13)
BTB=I,, BER"*"

where X € R"", X = X', D = diag(p1, 2, ..., ip) With pg > o > ... > . We generate the data
with exactly the same procedure as the documentation file provided in the ManifoldOptim package,
with only a change of notation. For our orthoDr package, the following code is used to specify the
objective and gradient functions and solve for the optimal B.

R>n = 150; p = 5; set.seed(1)

R> X <- matrix(rnorm(n*n), nrow=n)
R> X <= X + t(X)
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R> D <- diag(p:1, p)

R> f1 <- function(B, X, D) { Trace( t(B) %*% X %*% B %x% D ) }
R> g1 <- function(B, X, D) { 2 * X %*x% B %*% D }

R> b1 = gramSchmidt(matrix(rnorm(n*p), nrow=n, ncol=p))$Q
R> res2 = ortho_optim(b1, fn = f1, grad = g1, X, D)
R> head(res2$B)

[,1] [,2] [,3] [,4] [,5]
[1,] -0.110048632 -0.060656649 -0.001113691 -0.03451514 -0.063626067
[2,] -0.035495670 -0.142148873 -0.011204859 ©.01784039 0.129255824
[3,] ©0.052141162 0.015140614 -0.034893426 0.02600569 ©0.006868275
(4,1 0.151239722 -0.008553174 -0.096884087 .01398827 0.132756189
[5,] -0.001144864 -0.056849007 ©.080050182 ©.23351751 -0.007219738
[6,] -0.140444290 -0.112932425 ©0.082197835 0.18644089 -0.057003273

[SEESENSEN SIS

Furthermore, we compare the performence with the ManifoldOptim package, using four opti-
mization methods: "LRBFGS”, "LRTRSR1”, "RBFGS" and "RTRSR1" (Huang et al., 2018). We wrote the
same required functions for the Brockett problem in R. Further more, note that different algorithms
implements slightly different stoping criterion, we run each algorithm a fixed number of iterations
with a single core. We consider three smaller settings with n = 150, and p = 5,10 and 15, and a
larger setting with n = 500 and p = 50. Each simulation is repeated 100 times. The functional value
progression (Figures 1 and 2) and the total time cost up to a certain number of iterations (Table 2) are
presented.

We found that "LRBFGS" and our orthoDr package usually achieve the best performance, with
functional value decreases the steepest in the log scale. In terms of computing time, "LRBFGS" and
orthoDr performers similarly. Although "LRTRSR1" has similar computational time, its functional
value falls behind. This is mainly because the theoretical complexity of second-order algorithms is
similar to first order algorithms, both are of order O(p3). However, it should be noted that for a
semiparametric dimension reduction method, the major computational cost is not due to the parameter
updates, rather, it is calculating the gradient since complicated kernel estimations are involved. Hence,
we believe there is no significant advantage using either "LRBFGS" or our orthoDr package regarding
the efficiency of the algorithm. However, first order algorithms may have an advantage when
developing methods for penalized high-dimensional models.

Table 2: Running times with a fixed number of iterations (in seconds)

iterati ManifoldOpthm thoD

P Meralion Ty REEGS  LRTRSR1I  RBFGS RTRSRI . °rorr
150 5 250 0.053 0062  0.451 0.452 0.065
150 10 500 0.176 0201 4985 5.638 0.221
150 20 750 0.526 0589 28.084  36.142 0.819
150 50 1000 2.469 2.662 - - 6.929
500 5 250 0.403 0414 7382 7.426 0.423
500 10 500 1.234 1305 57.047  67.738 1.332
500 20 750 3.411 3.6 - - 3.974
500 50 1000 13.775 14.43 - - 19.862

Examples

We use the Concrete Compressive Strength (Yeh, 1998) dataset as an example to further demonstrate
the orthoDr_reg function and to visualize the results. The dataset is obtained from the UCI Machine
Learning Repository.

Concrete is the most important material in civil engineering. The concrete compressive strength is
a highly nonlinear function of age and ingredients. These ingredients include cement, blast furnace
slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate. In this dataset, we have
n = 1030 observation, 8 quantitative input variables, and 1 quantitative output variable. We present
the estimated two directions for structural dimension and further plot the observed data in these two
directions. A non-parametric kernel estimation surface is further included to approximate the mean
concrete strength.
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Figure 1: Log of function value vs. iteration (n = 150)
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From left to right, top to bottom: p = 5,10, 20 and 50 respectively.

R> concrete_data = read.csv(choose.files())

R> X = as.matrix(concrete_datal[,1:8])

R> colnames(X) = c("Cement”, "Blast Furnace Slag”, "Fly Ash”, "Water”,
"Superplasticizer”, "Coarse Aggregate”, "Fine Aggregate”, "Age")

R> Y = as.matrix(concrete_datal,9])

R> result = orthoDr_reg(X, Y, ndr = 2, method = "sir

+ keep.data = TRUE)

R> rownames(result$B) = colnames(X)

R> result$B

Cement

Blast Furnace Slag
Fly Ash

Water
Superplasticizer
Coarse Aggregate
Fine Aggregate

Age

[SEESENGINS S SIS

Discussion

1]

.08354280
.27563507
.82665328
.20738201
.43496780
.01141892
.02936740
.02220664

[,2]
.297899899
.320304097
.468889856
.460314093
.540733516
.011870495
.004718979
.290444936

"

, maxitr = 1000,

Using the algorithm proposed by Wen and Yin (2012) for optimization on the Stiefel manifold, we
developed the orthoDr package that serves specifically for semi-parametric dimension reductions
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Figure 2: Log of function value vs. iteration (n = 500)
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From left to right, top to bottom: p = 5,10, 20 and 50 respectively.

problems. A variety of dimension reduction models are implemented for censored survival outcome
and regression problems. In addition, we implemented parallel computing for numerically appropriate
the gradient function. This is particularly useful for semi-parametric estimating equation methods
because the objective function usually involves kernel estimations and the gradients are difficult
to calculate. Our package can also be used as a general purpose solver and is comparable with
existing manifold optimization approaches. However, since the performances of different optimization
approaches could be problem dependent, hence, it could be interesting to investigate other choices
such as the “LRBFGS” approach in the ManifoldOptim package.

Our package also serves as a platform for future methodology developments along this line of
work. For example, we are currently developing a personalized dose-finding model with dimension
reduction structure (Zhou and Zhu, 2018). Also, when the number of covariates p is large, the
model can be over-parameterized. Hence, applying a L penalty can force sparsity and allow the
model to handle high-dimensional data. To this end, first-order optimization approaches can have
advantages over second-order approaches. However, persevering the orthogonality during the
Cayley transformation while also preserve the sparsity can be a challenging task and requires new
methodologies. Furthermore, tuning parameters can be selected through a cross-validation approach,
which can be implemented in the future.
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coxed: An R Package for Computing
Duration-Based Quantities from the Cox
Proportional Hazards Model

by Jonathan Kropko and Jeffrey |. Harden

Abstract The Cox proportional hazards model is one of the most frequently used estimators in duration
(survival) analysis. Because it is estimated using only the observed durations’ rank ordering, typical
quantities of interest used to communicate results of the Cox model come from the hazard function
(e.g., hazard ratios or percentage changes in the hazard rate). These quantities are substantively vague
and difficult for many audiences of research to understand. We introduce a suite of methods in the R
package coxed to address these problems. The package allows researchers to calculate duration-based
quantities from Cox model results, such as the expected duration (or survival time) given covariate
values and marginal changes in duration for a specified change in a covariate. These duration-based
quantities often match better with researchers’ substantive interests and are easily understood by most
readers. We describe the methods and illustrate use of the package.

Introduction

The Cox proportional hazards model (Cox, 1972) is frequently used for duration (survival) analysis
in a myriad of disciplines including the health sciences, social sciences, operations research, and
engineering. For many researchers who employ the Cox model, the chief concept of substantive
interest is the duration of an event, such as the survival time of a patient or the duration of a civil
war. However, the standard methods of reporting results from the Cox model—which are based
in the hazard function—communicate no specific information about duration. As a result, standard
interpretations of Cox model results are often substantively vague and difficult for many audiences of
research to understand.

Here we introduce an R package implementation of Cox proportional hazards model with expected
durations, or COX ED (Kropko and Harden, 2020). The COx ED suite of methods available in the coxed
package provides a more intuitive approach to communicating results from the Cox model. Specifically,
it computes duration-based quantities of interest, such as the expected time until event occurrence
according to the estimated model. These quantities have long been available with parametric duration
models, but in some instances researchers may not wish to make the distributional assumptions
required of those estimators. The COX ED methods allow researchers to stay within the Cox model
framework, but communicate results in the language of time. This affords more conceptual precision
when conversing with other researchers and makes the results of the analysis more intuitive and
accessible for general audiences.

The methodology

The goal of COX ED is to generate expected durations for individual observations and/or marginal
changes in expected duration given a change in a covariate from the Cox model. Specifically, the
methods can compute (1) the expected duration for each observation used to fit the Cox model, given
the covariates, (2) the expected duration for a “new” observation with a covariate profile set by the
analyst, or (3) the first difference, or change, in expected duration given two new observations.

There are two different methods of generating duration-based quantities in the package. The
first method employs a generalized additive model (GAM) to map the model’s exponentiated linear
predictor values to duration times. The second method calculates expected durations by using
nonparametric estimates of the baseline hazard and survivor functions. We present overviews of
these methods here. See Kropko and Harden (2020) for additional details, including simulation
results comparing the two methods. Importantly, both approaches use coefficient estimates from
the Cox model, so researchers must first estimate the model just as they always have. COX ED is a
postestimation procedure, not a new estimator. All of the choices required of applied researchers in
estimating the Cox model must be made first, at the estimation stage, before proceeding to implement
Cox ED.

]Additionally, because it is used after estimation, more extensive modeling features—such as non-linear effects
or time-varying covariates—can be incorporated into the use of Cox ED.
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Method 1: GAM

The GAM approach to COX ED proceeds according to five steps. As is noted above, the first step is
model estimation. Then the method computes expected values of risk for each observation by matrix-
multiplying the covariates, X, by the estimated coefficients from the model, B, then exponentiating
the result. This creates exp(X), or the exponentiated linear predictor (ELP). Then the observations
are ranked from smallest to largest according to their values of the ELP. This ranking is interpreted
as the expected order of failure; the larger the value of the ELP, the sooner the model expects that
observation to fail, relative to the other observations.

The next step is to connect the model’s expected risk for each observation (ELP) to duration time
(the observed durations). A GAM fits a model to data by using a series of locally-estimated polynomial
splines set by the user (Hastie and Tibshirani, 1990). It is a flexible means of allowing for the possibility
of nonlinear relationships between variables. COX ED uses a GAM to model the observed durations
as a function of the linear predictor ranks generated in the previous step. More specifically, the method
utilizes a cubic regression spline to draw a smoothed line summarizing the bivariate relationship
between the observed durations and the ranks (for more details, see Wood, 2006, 2011).

The GAM fit can be used directly to compute expected durations, given the covariates, for each
observation in the data. However, for most researchers it is more useful to assess how a change to
a particular covariate of interest corresponds to changes in expected duration. In order to examine
such marginal changes, it is necessary to create two or more “new” observations corresponding
to theoretically-interesting, hypothetical covariate profiles. For example, the analyst might set an
indicator variable to 0 and 1 or a continuous variable to a “low” and a “high” value. COx ED allows
the covariates in the model to vary naturally over the entire data, then averages over them in the
computations.3 For instance, to estimate the effect of an increase in a covariate Xy from 0 to 1 on the
expected duration, we use the following steps:

(a) Set Xj to 1 for the entire data (all N observations) and calculate the ELP for every observation,
then take an average value of those computations (the median is the default).

(b) Repeat step (a) while setting X; equal to 0.

(c) Take the values obtained in steps (a) and (b) and append them to the list of ELP values from the
original Cox model in which Xj is left as exogenous data. Then compute new rankings of the
linear predictor values from this list, which is now length N + 2.

(d) Pass the list of rankings from step (c) to the GAM as new data to generate expected values. Note
that a new GAM is not estimated at this step. Rather, expected durations are generated for each
observation—including the two new ones created in steps (a) and (b)—using the previously
estimated GAM. This produces point estimates of the expected durations for those two new
observations.

(e) Compute the difference between the two estimates obtained in step (d): the expected duration
for the data in which Xj is set to 1 and the expected duration for the data in which Xj is set to 0.
This quantity is a point estimate for the marginal effect, or first difference, corresponding to the
change in X; from 0 to 1.

Finally, to produce estimates of uncertainty, the GAM approach repeats this process via bootstrap-
ping. The method generates bootstrap samples of the data and re-estimates the Cox model coefficients
on each bootstrap sample.* At each iteration, this produces a new vector of actual durations and a new
ranking of ELP values, which are then used to fit a new GAM. This process results in a distribution
of expected durations for each independent variable profile (e.g., step d) and a distribution of the
marginal effect (step e). These distributions can be used to produce standard errors and confidence
intervals for the estimates.” Importantly, by bootstrapping the entire process, this step incorporates
the uncertainty from the Cox model estimation and the uncertainty from the GAM.

2The GAM is fit with the uncensored observations only. If the sample contains a large proportion of censored
observations, the NPSF method (see below) may be preferable to the GAM method.

3This default option can be changed at the discretion of the analyst.

4Standard bootstrapping at the observation level or bootstrapping at the group level (Cameron et al., 2008) are
both available.

5By default, the method computes the standard errors of each quantity as the standard deviation of its bootstrap
distribution. The halfwidth of the confidence interval is then computed by multiplying a tunable critical value
based on the standard normal distribution by the standard error. The default critical value is 1.96 (i.e., a 95%
confidence interval). Fully non-parametric confidence intervals based on quantiles or bias-corrected quantiles of
the bootstrap distribution are also available (see below).
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Method 2: Nonparametric step-function

One drawback to the GAM approach is that it uses two statistical models (Cox model and GAM),
which yields two sources of estimation uncertainty. An alternative approach comes from the method
proposed by Cox and Oakes (1984, 107-109) for estimating the cumulative baseline hazard function.
This method is nonparametric and results in a step-function representation of the cumulative baseline
hazard; we refer to it as the nonparametric step-function (NPSF) approach.

Cox and Oakes (1984, 108) show that the cumulative baseline hazard function can be estimated
after fitting a Cox model by

Ho(t) =) ﬁ/ 1)

where T represents time points earlier than ¢, d i is a count of the total number of failures at T;, §R(T]) is
the remaining risk set at 7;, and ¢ (/) represents the ELP from the Cox model for observations still in
the risk set at 7;. The NPSF method uses equation (1) to calculate the cumulative baseline hazard at all
time points in the range of observed durations with the following steps.

(a) Tied durations are handled by collapsing the dataset by unique duration. The method calculates
d;, the numerator in equation (1), for all time points 7; by summing the indicator for a non-
censored failure within each unique duration (d; = 0 only if all observed durations at 7; are
right-censored). Additionally, it sums the ELPs for all observations with the same duration,
because these observations leave the risk set at the same time.

(b) The NPSF approach calculates a running sum, in reverse, for the collapsed ELPs. That is, at
the first time point this sum includes the ELP for observations at every time point. At the
second time point, this sum includes the ELP for every observation except for those with the
earliest observed duration. At the last time point, this sum is equal to the sum of only the ELPs
of observations with the latest observed duration. These sums represent the denominator of
equation (1).

(c) For each time point, the method divides the number of failures d; by the sum of ELPs for
observations still in the risk set.

(d) Finally, the method calculates the running sum of the ratios we derived in the previous step.
This running sum is the non-parametric estimate of the cumulative hazard function.

This procedure yields a stepwise function. Time points with no failures do not contribute to the
cumulative hazard, so the function is flat until the next time point with observed failures.

The NPSF approach next obtains expected durations and marginal changes in expected duration
by first calculating the baseline survivor function from the cumulative hazard function, using

So(t) = exp[—Ho(t)]. )

Each observation’s survivor function is related to the baseline survivor function by

Si(t) = So(t)?, 3)

where (i) is the ELP for observation i. These survivor functions can be used directly to calculate
expected durations for each observation. The expected value of a non-negative random variable can
be calculated by

E(X) = /Ow (1 _ F(t))dt, @)

where F(.) is the cumulative distribution function for X. In the case of a duration variable ¢;, the
expected duration is
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where T is the largest possible duration and S(t) is the individual’s survivor function. The NPSF
method approximates this integral with a right Riemann-sum by calculating the survivor functions at
every discrete time point from the minimum to the maximum observed durations, and multiplying
these values by the length of the interval between time points with observed failures:

E(t) = Y. (t—tj—1)Si(t). (6)

t]‘ € [O,T]

To calculate a marginal effect, the NPSF approach to Cox ED follows the same strategy employed
in the GAM approach. It creates two new covariate profiles, setting a variable of interest to two
theoretically interesting values. It calculates expected values from each profile, then computes the
difference in the two estimates. Finally, the method bootstraps to obtain a standard error and/or
confidence intervals for this point estimate.

Implementation in R and empirical example

The methods described above are mostly automated in the package; analysts generally need only a
coxph model object from the survival package (Therneau, 2015) or a cph model object from the rms
package (Harrell, 2018), and, if covariate effects are desired, the name of the variable of interest and the
two values of that variable they wish to input.® However, the functions also allow for several changes
to default settings, such as the formulation of the GAM in the first approach or the computation of
confidence intervals.

We illustrate the main features of the package with an empirical example. Martin and Vanberg
(2003) examine the determinants of negotiation time among political parties forming coalition govern-
ments in Western Europe. The outcome variable in this analysis is the number of days between the
beginning and end of the bargaining period. The covariates include the range of government—the
ideological distance between the extreme members of the coalition—the number of parties in the
coalition, as well as several others. Their main hypotheses predict negative coefficients on the range of
government and number of parties variables. They expect that increases in the ideological distance
between the parties and the size of the coalition correspond with decreases in the risk of government
formation, or longer negotiation times.

The authors demonstrate support for their hypotheses with a sample of data on bargaining in
Western European democracies between 1950 and 1995. They estimate a Cox model, then interpret the
covariate effects with quantities based in the hazard rate. As an alternative, we employ COX ED with
these data. We use the coxed() function to predict bargaining duration for every case in the data. Then
test the first of their hypotheses by computing estimates of bargaining duration at different values of
ideological range of government.

The first step with COX ED is to estimate the model. We estimate the Cox model from Martin and
Vanberg (2003) using the Surv() and coxph() functions from the survival package:

library(coxed)
data(martinvanberg)

mv.surv <- Surv(martinvanberg$formdur, event = rep(1, nrow(martinvanberg)))
mv.cox <- coxph(mv.surv ~ postel + prevdef + cont + ident + rgovm + pgovno +
tpgovno + minority, data = martinvanberg)

We report these results in Table 1.

Next we use the GAM version of coxed() to examine expected durations and marginal changes in
duration.” We can calculate standard errors and confidence intervals for any of these quantities with
the bootstrap = TRUE option. By default the bootstrapping procedure uses 200 iterations (to set this
value to a different number, use the B argurne1r1’c).‘g

Future versions of the software may accept Cox models estimated from other packages, such as timereg
(Scheike and Zhang, 2011).

7For an example of this analysis using the NPSF method, see the vignette for the coxed package.

8Here we use 30 iterations simply to ease the computational burden of compiling this example. For more
reliable results, set B to a higher value. There are different methods for calculating a bootstrapped confidence
interval. The default method used by coxed() (setting the argument confidence = "studentized”) adds and
subtracts gnorm(level - (1 - level)/2) times the bootstrapped standard error to the point estimate, where
level is the analyst’s chosen threshold for evaluating statistical significance. The alternative approach is to take the
(1 - level)/2and level + (1 - level)/2 quantiles of the bootstrapped draws, which can be done by specifying
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Table 1: Cox model results from Martin and Vanberg (2003). Entries report coefficients with standard
errors in parentheses. These results represent a common approach to presenting Cox model output,
but the coefficients themselves are not immediately intuitive.

Range of government —0.213*

(0.120)
Number of government parties 1.191%*

(0.124)
Number of government parties —0.432**
x In(t) (0.035)
Do negotiations commence —0.5777*
immediately after an election? (0.169)
Did the government take a —0.100
parliamentary defeat? (0.230)
Continuation 1.100%**

(0.240)
Identifiability 0.146

(0.119)
Minority government —0.428**

(0.208)
Observations 203
Max. Possible R? 1.000
Log Likelihood —745.478
Wald Test 218.130*** (df = 8)
LR Test 277.239%** (df = 8)
Score (Logrank) Test 279.277*** (df = 8)

ed <- coxed(mv.cox, method = "gam”, bootstrap = TRUE, B = 30)

Note: Cell entries report Cox model coefficient estimates with standard errors in parentheses.
*p<0.1; **p<0.05; ***p<0.01.

Now every predicted duration has a standard error and a 95% confidence interval. The first several
cases’ predicted durations are estimated as follows:

>

head(ed$exp.dur)

ub

exp.dur bootstrap.se 1b

1 48.978295 5.6915889 37.8229859 60.133605
2 42.036276 4.8132767 32.6024267 51.470125
3 55.440293 6.8188818 42.0755303 68.805056
4 15.734577 1.7119205 12.3792749 19.089880
5 1.530695 0.3512462 0.8422652 2.219125
6 64.449942 7.7421823 49.2755433 79.624340

The summary () function, when applied to coxed() output, reports either the mean or median estimated
duration along with the bootstrapped standard error and confidence interval for the statistic:

> summary(ed, stat = "mean”)

confidence = "empirical”. We recommend a higher number of bootstrap iterations for empirical confidence
intervals. Additionally, the nonparametric bias corrected and accelerated (BC,) method can be computed with
confidence = "bca”, which implements the bias correction and acceleration procedure in DiCiccio and Efron
(1996) using code modified from the mediation package (Tingley et al., 2014).
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mean bootstrap.se 1b ub
28.034 1.998 24.119 31.95
> summary(ed, stat = "median”)
median bootstrap.se 1b ub
21.208 2.263 16.773 25.643

coxed() can be used to provide duration predictions for observations outside of the estimation sample.
Suppose that we observe five new cases and place them inside a data frame:

new.coalitions <- data.frame(postel = c(1, 1, 1, 0, 1),
prevdef = c(0, o, 1, 1, @),
cont = c(1, 0, 1, o, 1),
ident = c(1, 2, 2, 3, 3),
rgovm = c(.3, .8, 1.1, .2, .35),
pgovno = c(2, 3, 3, 2, 4),
tpgovno = ¢(3.2, @, 5, @, 2.6),
minority = c(@, @, 1, 0, 0))

To forecast durations for these cases along with standard errors and confidence intervals, we use the
coxed() function and place new.coalitions into the newdata argument:

forecast <- coxed(mv.cox, newdata = new.coalitions, method = "gam”,
bootstrap = TRUE, B = 30)

> forecast$exp.dur

exp.dur bootstrap.se 1b ub

.5845636 2.7517846 -0.8088352 9.977962

.9542265 0.5656203 -0.1543688 2.062822

.2816962 1.1323172 3.0623953 7.500997

.2358600 0.4684499 0.3177151 2.154005

.5924056 0.7286877 -0.8357961 2.020607

g~ w N =
(S S S

The data used by coxed() to map rankings to durations are stored in the gam. data attribute, and
can be used to visualize the fit of the GAM, as in Figure 1.

Figure 1: Mapping duration rankings to observed durations using a GAM. The x-axis plots the ranks
of the linear predictor from smallest to largest and the y-axis plots the observed durations. The

downward trend shows a non-linear relationship between the model’s expectation and the observed
data.
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We use coxed() to provide an answer to the key question, “how much longer will negotiations
take for an ideologically polarized coalition as compared to an ideologically homogeneous one?”
Specifically, we call coxed() and specify two new datasets, one in which rgovm = 0 indicating that
all political parties in the governing coalition have the same ideological position (i.e., a coalition of
one party), and one in which rgovm = 1.24, indicating that the parties have very different ideological
positions.” We use mutate() from the dplyr package (Wickham et al., 2018) to quickly create new data
frames in which rgovm equals 0 or 1.24 for all cases, and set these two data frames as newdata and
newdata? inside coxed().

me <- coxed(mv.cox, method = "gam"”, bootstrap = TRUE, B = 30,
newdata = mutate(martinvanberg, rgovm = 0),
newdata2 = mutate(martinvanberg, rgovm = 1.24))

coxed() calculates expected durations for all cases under each new data frame and subtracts the
durations for each case. To obtain point estimates we can request the mean or median difference.

> summary(me, stat = "mean”)
mean bootstrap.se 1b ub
newdata2  28.927 3.285 22.489 35.365
newdata 25.321 2.632 20.163 30.480
difference 3.605 2.417 -1.133 8.343
> summary(me, stat = "median”)
median bootstrap.se 1b ub
newdata2 22.392 3.234 16.053 28.730
newdata 19.692 3.449 12.932 26.451
difference 2.928 1.931 -0.857 6.714

These results demonstrate that a coalition in which the parties have average ideological differences
will take 3.6 more days on average (with a median of 2.9 days) to conclude negotiations than a coalition
in which all parties have the same position (i.e., a single-party government).

The NPSF method can be used to compute estimates of these same quantities simply by specifying
method = "npsf” in the coxed() function. Additionally, the package includes a function called
sim.survdata() designed for simple simulations of duration data that do not assume a distributional
form for the baseline hazard. This method, which is fully described in Harden and Kropko (2019), can
be useful in several applied and computational settings that involve the Cox model.

Conclusions

The Cox model is popular among applied researchers in a wide range of disciplines due to its inherent
flexibility. However, this flexibility makes conveying the substantive meaning of results challenging.
By using only the rank ordering of the observed duration times, the Cox model limits researchers to
interpreting results in the language of hazard and changes in risk. This yields two key problems. First,
it is substantively vague because hazard does not have a meaningful scale. This hinders researchers’
capacity to determine whether an estimated effect is substantively “large” or “small.” Furthermore,
hazard-based interpretations require specialized knowledge to understand. This makes the research
less accessible to general audiences, who may be able to learn from the work but cannot due to the
means by which results are communicated.

The Cox ED methods provide a solution to these problems by allowing researchers to compute
duration-based quantities from the Cox model. Communicating results in the language of time allows
for more substantive precision and is intuitive to a broad audience of readers. We demonstrate above
that Cox ED is straightforward to implement in R. The coxed package contains functions that allow
researchers to use the methods even with minimal knowledge of R. Additionally, the functions are
flexible; users can make several changes to many of their features to suit the problem at hand. Finally,
the output from the functions provide point estimates, standard errors, and confidence intervals, so
researchers can report their results with appropriate measures of uncertainty.

In sum, the coxed package provides a useful alternative for researchers to communicate results
from the Cox model. It gives them the benefits of the intuitive quantities available in parametric
models while retaining the desirable estimation properties of the Cox model. Thus, the analysis can be
guided by appropriate modeling choices, but reported in an intuitive, accessible manner.

“Martin and Vanberg (2003) select these values in making hazard rate comparisons. The value rgovm = 1.24
reflects the average ideological range of coalition governments in the sample.
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Modeling regimes with extremes: the
bayesdfa package for identifying and
forecasting common trends and

anomalies in multivariate time-series data
by Eric J. Ward, Sean C. Anderson, Luis A. Damiano, Mary E. Hunsicker, Michael A. Litzow

Abstract The bayesdfa package provides a flexible Bayesian modeling framework for applying dy-
namic factor analysis (DFA) to multivariate time-series data as a dimension reduction tool. The core
estimation is done with the Stan probabilistic programming language. In addition to being one of the
few Bayesian implementations of DFA, novel features of this model include (1) optionally modeling
latent process deviations as drawn from a Student-t distribution to better model extremes, and (2)
optionally including autoregressive and moving-average components in the latent trends. Besides
estimation, we provide a series of plotting functions to visualize trends, loadings, and model pre-
dicted values. A secondary analysis for some applications is to identify regimes in latent trends. We
provide a flexible Bayesian implementation of a Hidden Markov Model — also written with Stan — to
characterize regime shifts in latent processes. We provide simulation testing and details on parameter
sensitivities in supplementary information.

Overview

A goal of many multivariate statistical techniques is to reduce dimensionality in observed data to
identify shared or latent processes. Factor analysis models represent a general class of models used to
relate multiple observations to a lower dimension (factors), while also considering different covariance
structures of the observed data. Factors are not directly observed, but represent a hidden, shared
process among variables. Though goals of factor analysis are sometimes similar to techniques such as
principal component analysis (PCA), factor analysis models explicitly estimate residual error terms,
whereas PCA does not (Anderson and Rubin, 1956; Jolliffe, 1986). These factor models are written as
yi = u; + Z f; + ¢;, where observed data y; is a linear combination of an intercept u#; and the product
of latent factors f; and loadings Z (loadings are sometimes referred to in the literature as L).

In a time-series setting, factor models may be extended to dynamic factor analysis (DFA) models.
DFA models aim to reduce the dimensionality of a collection of time series by estimating a set of
shared trends and factors, representing the linear effects of each trend on the observed data (Molenaar,
1985; Zuur et al., 2003; Stock and Watson, 2005). The number of trends m is chosen to be less or
equal than the number of time series n. The general form of the DFA model can be formulated as
a state-space model (Petris, 2010). The latent processes (also referred to as ‘trends’) are generally
modeled as random walks, so that trend i is modeled as x; ;1 = x;; + w; ; where x;; is the value of
the i-th latent trend at time ¢, and the deviations w; ; are modeled as white noise. Across trends, these
deviations are modeled as w; ~ MVN(0, Q). The latent trends x; ; are linked to data via a loadings
matrix Z whose values do not evolve through time, y; = Zx; + a + Bd; + e;. The loadings matrix Z
is dimensioned n X m so that Z;; represents the effect of trend i on time series j. The parameters a
and B are optional parameters, representing time-series-specific intercepts and effects of covariates, d;.
Finally, the residual errors are assumed to be e; ~ MVN(0, R), where R is an estimated covariance
matrix.

Estimation of DFA models is typically done in a maximum likelihood framework, using the
expectation-maximization (EM) algorithm or other optimization tools. Implementation of these
methods is available in multiple R packages including dlm (Petris, 2010), KFAS (Helske, 2017),
MARSS (Holmes et al., 2012b), and tsfa (Gilbert and Meijer, 2005). Challenges in parameter estimation
and interpretation for DFA models have been well studied. Without constraints, parameters in the
DFA model are not identifiable (Harvey, 1990; Zuur et al., 2003). To ensure identifiability of variance
parameters, for example, the covariance matrix Q is generally fixed as an identity matrix (Harvey,
1990). To avoid confounding the latent trends and loadings matrix Z, elements of Z must also be
constrained. A common choice of constraints is for the elements in the first m — 1 rows of Z to be set to
zero if the column index is greater than the row index, j > i (Harvey, 1990), though other constraints
have been proposed (Bai and Wang, 2015). For a 3-trend DFA model for instance, these constraints
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would mean that the Z matrix parameters would be configured as

Ziy 00
Zon Zpp O .
Z31 Z3zp Z33

Several previous approaches to DFA estimation in a maximum likelihood framework also center
(subtract the sample means) or standardize (subtract the sample means and divide by the sample
standard deviations) data prior to fitting DFA models and set the intercepts a equal to zero to avoid
potential confounding of level parameters (Holmes et al.,, 2012a). We adopt a similar approach,
allowing users to either center or standardize data before estimation, and not including the intercepts
as estimated parameters.

Label switching

We developed our DFA model in a Bayesian framework, using Stan and the package rstan (Stan
Development Team, 2016), which implements Markov chain Monte Carlo (MCMC) using the No-U
Turn Sampling (NUTS) algorithm (Hoffman and Gelman, 2014; Carpenter et al., 2017). Although
estimation of the DFA model in a Bayesian setting is not new (Aguilar and West, 2000; Koop and
Korobilis, 2010; Stock and Watson, 2011), it presents several interesting challenges over the EM
algorithm. In addition to the constraints on Q and Z, Bayesian estimation suffers from a problem of
label switching. In particular, elements of F or Z may flip sign within an MCMC chain, or multiple
chains may converge on parameters that are identical in magnitude but with different signs.

To minimize issues with label switching, previous work on Bayesian factor analysis has proposed
additional constraints on the loadings matrix, including setting the elements of Z to be constrained (-1,
1), or adding a positive constraint to the diagonal, Z;; > 0 (Aguilar and West, 2000; Geweke and Zhou,
1996). Though these constraints generally help, there may be situations where MCMC chains still do
not converge. To address this issue, we adopt the parameter-expanded priors for the loadings and
trends proposed by Ghosh and Dunson (2009). To ensure that the sign of the estimated quantities is
the same across MCMC chains, we created the function flip_trends() to flip the posterior samples of
MCMC chains relative to the first chain as needed.

The Bayesian dynamic factor model with extremes

There are several approaches for modeling extreme deviations in time series models. Techniques
include modeling deviations as a two-component mixture (Ward et al., 2007; Evin et al., 2011), or
modeling deviations with non-Gaussian distributions including the Student-t distribution (Praetz,
1972; Anderson et al., 2017; Anderson and Ward, 2018). There are several existing packages to include
Student-t distributions; these include heavy for applications to regression and mixed effects models
(Osorio and E,, 2018), bsts for univariate time series models (Scott, 2018), and stochvol for stochastic
volatility models (Kastner, 2016). Because switching from a Gaussian to Student-t distribution only
introduces a single parameter, v, the degrees of freedom, we extend the latter approach to a multivariate
setting to model extreme events in the latent trends, so that deviations in the trends are modeled as
wy ~ MVT(v,0,Q). As before, Q is fixed as an identity matrix I. Our parameterization constrains DFA
models to have the same degrees of freedom v in the residuals of the multiple trends, which may be
fixed a priori or treated as a free parameter with a gamma(shape = 2, rate = 0.1)[2,00] prior (Judrez and
Steel, 2010).

Including autoregressive and moving average components

The trends of the dynamic factor model are most commonly modeled as non-stationary random
walks, x;j;+1 = X;; + w;;, where the w;; ~ N(0,1) are Gaussian white noise. Like with other
vector autoregressive time series models, this framework can be easily extended to include optional
autoregressive (AR) or moving average (MA) components (Chow et al., 2011). We allow for AR(1)
and MA(1) processes to be specified with boolean arguments to the fit_dfa() function. For both the
AR(1) and MA(1) components, we assume separate parameters for each trend. Including the AR(1)
component ¢; makes the trend process become x; ;.1 = ¢;x; ; + w; ;, where values of ¢; close to 1 make
the trend behave as a random walk, and small values of ¢; close to 0 make the trend behave as white
noise. Similarly, we model the MA(1) component as an AR(1) process on the error terms w; ;. Instead
of being independent at each time step, 6; controls the degree of autocorrelation among deviations,
w;; ~ N (6;w;;_1,1). For stationarity and invertability, we constrain |¢;| <1 and |6;| < 1.
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Rotation of trends and loadings

Like factor analysis models, there are many solutions from a DFA model capable of producing the
same fit to the data. Following previous authors, we use a varimax rotation of the loadings matrix Z to
transform the posterior loadings and trends (Kaiser, 1958; Harvey, 1990; Holmes et al., 2012a). If Zis
the posterior mean of the loadings matrix from a DFA model of 4 time series and 2 trends for example,
the rotation matrix W * = varimax(Z) is dimensioned 2 x 2. The rotated loadings matrix can then
be calculated as Z° = Z W * and rotated trends calculated as X* = W * 1%, where X is the posterior
mean of the trends.

Identifying data support for the number of trends

Since the number of trends in a DFA model is not a parameter, comparing data support across models
is often necessary. Using model selection tools to identify data support is available via Akaike’s
Information Criterion (AIC) in packages implementing maximum likelihood for estimation of state-
space models (Petris, 2010; Holmes et al., 2012b). In addition to comparing the relative support of
different number of trends, model selection for Bayesian dynamic factor models may be useful for
evaluating the error structure for the residual error covariance matrix R, whether covariates should
be included, whether latent trends are better modeled with a distribution allowing for extremes
(MVT versus MVN), and whether the latent trends support estimation of AR or MA components. For
our Bayesian DFA models, we extend the loo package (Vehtari et al., 2016a,b) to generate estimates
of LOOIC (Leave-One-Out Information Criterion) for fitted models. To ease the selection process,
bayesdfa includes the function find_dfa_trends() to run multiple models specified by the user. It
returns a table of LOOIC values (denoting which of those failed convergence criteria) and the model
with the lowest LOOIC value.

Anomalies or black-swan events

As a diagnostic tool, we include the function find_swans() to fitted DFA models. We adopt the same
approach and terminology for ‘black-swan events’ as in Anderson et al. (2017), where black-swan
events are rare and unexpected extremes. Our find_swans() function first-differences the posterior
mean estimates of each DFA trend and evaluates the probability of observing a difference that is more
extreme than expected under a normal distribution with the same scale parameter. Events beyond a
user-defined threshold (e.g. 1 in 100, or 1 in 10,000) are then classified as outliers and plotted.

Simulation tests

To evaluate the ability of the Bayesian DFA model to identify anomalies in latent processes, we
created simulated data using our sim_dfa() function. We generated simulated multivariate time series
(n = 4 time series with T = 20 time steps each) with m = 2 underlying latent trends. Extremes were
included as a step-change in the midpoint of the first trend in each simulated dataset. We varied the
value of the step from -4 to -8, which represent unlikely events under the assumption that temporal
deviations in the latent trends are distributed according to N(0,1). Because increased observation
error may corrupt inference about anomalies in the trends, we considered three levels of observation
error (0 = 0.25,0.75,1.25). We generated 200 simulated samples for each permutation of parameters,
resulting in a total of 3000 datasets.

We fit the Bayesian DFA model with Student-t errors to each simulated dataset. As expected, the
posterior estimates from these simulations illustrate that the ability to estimate low degrees of freedom
is related to the magnitude of extremes (Figure 1). Similarly, higher observation error corrupts the
ability to estimate extreme events, even when they are large in magnitude (Figure 1).

Using HMMs to classify regimes in latent DFA trends

An alternative approach to DFA for dimension reduction of multivariate time series data are Hidden
Markov Models (HMMs). Like DFA models, they model a latent process for a time series (or collection
of multivariate time series). Instead of the latent process being modeled continuously (e.g. as a
random walk in DFA), HMMs conceive the latent process as a series of discrete-time, discrete-state
first-order Markov chains s; € {1,...,G} with the number of possible states G specified a priori.
State transition is characterized by the G x G transition matrix with simplex rows A = {a,-g} where

a;q = p(st = gls;—1 = i) represents the probability of transitioning from state i to g. Useful quantities
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Figure 1: Results for simulated data illustrating support for the Student-t distribution (low values
of nu), varying the magnitude of extremes (standard deviations from the mean) and magnitude of
observation error.

from HMMs include the transition probabilities between latent states, and the probability of being in a
given lantent state at each point in time (Zucchini et al., 2017).

HMMs can be applied to raw multivariate data to identify latent states; however, they may also
be linked with DFA to identify regimes and transitions in the latent DFA trends. Similar to DFA,
applications of HMMs are widely available in R, including via the packages depmixS4 (Visser and
Speekenbrink, 2010), HMM (Himmelmann, 2010), and msm (Jackson, 2011). Consistent with our
implementation of the Bayesian DFA model, we include fully Bayesian inference in Stan based on
Damiano et al. (2018). We apply independent HMM models to each DFA trend to identify alternate
states or regimes. Like with the estimation of DFA models, we use the LOOIC metric to evaluate
the relative support for HMMs with different numbers of underlying states, selecting the converged
model with the lowest LOOIC. By default, we assume the observation model of the input time series
to be normally distributed with the scale parameter equal to the estimated residual variance. However,
for some applications, such as datasets with changing sampling frequencies over time, uncertainty
in DFA trends may also vary through time. To propogate this uncertainty forward, we also allow
the residual variance to be entered as a known quantity for every data point in our find_regimes()
function.

Example application: identifying common patterns in sea surface temper-
atures in the Northeast Pacific Ocean

To illustrate an example application of the bayesdfa package to real data, we use monthly anomalies
of sea surface temperature (SST, measured in C°). SST is observed from satellite and buoy data at
fixed locations, and model-based interpolations are used to generate estimates at additional gridded
locations'. We used estimates generated at the locations of 4 observing stations used by the Pacific
Fisheries Environmental Laboratory2 from the west coast of North America (USA). The four stations
have some degree of correlation with one another, and are separated by approximately 6 degrees
of latitude from one another. In summary, we work with n = 4 monthly time series with T = 167
observations each (from 2003-01 to 2016-05) and no missing values.

Initially, we fit a DFA model with 2 hidden trends, and will assume the 4 time series to have the
same error variances R. We will fit the DFA model with possible extremes, modeling process error
with a Student-t distribution by using the argument estimate_nu(). To evaluate whether these data
support an extreme DFA with trends modeled as a t-distribution, we will fit two competing forms: one
modeling the random walks with a Gaussian distribution, and the other using a Student-t distribution.
Generating posterior samples for each model takes approximately 7 minutes per chain, when MCMC
chains aren’t run in parallel.

Ihttps://coastwatch.pfeg.noaa.gov/erddap/info/osuSstAnom/index. html
2https://www.pfeg.noaa.gov/
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Figure 2: Sea surface temperature anomalies, at four stations on the west coast of the USA ordered by
increasing latitude. The station coordinates are (113W, 24N), (119W, 30N), (122W, 36N), (125W, 42N).
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Figure 3: MCMC trace plots of loading parameters (Z) in the DFA model with Student-t errors.

After fitting the models, we confirm whether the MCMC chains are consistent with convergence
using a threshold value of R =1.05 (Gelman et al., 2014) using our is_converged() function. We also
visually inspect chain traceplots (e.g. Figure 3) and check the minimum effective sample size across
parameters: NaN.

As a consistency diagnostic, we also retrieve the estimated degrees of freedom from the Student-t
model v. By visual inspection, Figure 4 shows that the posterior distribution on v is lower than the
prior distribution.

Visualizing the trends and loadings

We will focus the remaining portion of our analysis on the results from the DFA model with Student-t
deviations. In Figure 5, we observe that Trend 1 and Trend 2 both support SST anomalies increasing
over the latter half of the time series. Both trends appear to have reversed direction (reverting to the
mean in the last 2-3 years) and this pattern is more evident in Trend 1. Because we do not model
seasonality explicitly, for example by including a covariate effect for the month, each of the estimated
trends also includes the within-year variability that describes seasonal patterns in observed sea surface
temperature.

In the violin plot of Figure 6, we note that more southern stations (24 and 30N) contribute largely
to Trend 1, while the more northern stations appear to load more heavily on Trend 2.
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Figure 5: Latent trends from the DFA model with Student-t process deviations. Trends are rotated
using the stats: :varimax() rotation.
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Figure 6: Loadings from the DFA model with Student-t process deviations. Loadings are rotated using
the stats: :varimax() rotation.
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Regimes LOOIC Trend1 LOOIC Trend 2
1 855.5 756.7
2 31.0 30.3
3 69.1 99.9
4 139.7 164.6

Table 1: LOOIC estimates across different numbers of regimes for each latent DFA trend. LOOIC is
calculated using the 1oo: :1oo() function.
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Figure 7: Estimated regimes from the 2-regime HMM in Trend 1 of the DFA model fit to the sea surface
temperature anomaly data. The visualization summarizes the assignment probabilities p(s; = 1|xT)
of Trend 1 being in State 1 (for the sea surface temperature case study, State 1 is associated with warm
periods). Dots represent the latent DFA trend scaled to an interval [0, 1]. The black line represents the
median and the shaded area uncertainty (90% posterior interval).

Identifying regimes in the latent DFA trends with Hidden Markov Models

For each trend, we apply independent HMMs to examine the support for differing numbers of
underlying regimes. Both the posterior mean and standard deviation (optional argument) will be the
inputs to the HMM.

Using LOOIC as a metric of support for the number of regimes, the estimates reported in Table 1
support the inclusion of 2 regimes for both Trends 1 and 2.

Our fit_regimes() function computes the probability of each time point being in one of the
regime states, which may also be visualized using plot_regime_model (). For example, the output of
the 2-regime model for Trend 1 in Figure 7 suggests a change in the middle of the time series, then
changing back again to State 1. Similarly, by the end of the series, the HMM assigns Trend 1 to being
in State 1.

Extensions

There are a number of extensions to our implementation of the Bayesian DFA model with extremes that
could make the model more applicable to a wider range of problems. Examples for the process model
include adopting a skew-t distribution for asymmetric extremes. For models estimating multiple

trends, multiple parameters may be treated hierarchically (e.g. covariate effects, variance parameters).

For the observation or data model, our implementation of the Bayesian DFA model only includes data
arising from a Gaussian or Student-t distribution, though this could be extended to include discrete or
other continuous densities. Finally, spatial dynamic factor models (sDFA) have emerged as a useful
tool for complicated multivariate spatial datasets (Lopes et al., 2011; Thorson et al., 2015), and could
be similarly implemented in Stan.
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Conclusion

This paper presents the bayesdfa package for applying Bayesian DFA to multivariate time series as a
dimension reduction tool, particularly if extreme events may be present in observed data. In addition
to allowing for the inclusion of covariates, we also extend the conventional dynamic factor model to
include optionial moving average and autoregressive components in the latent trends. Applying this
package to a dataset of sea surface temperature from the Northeast Pacific Ocean, we fit DFA models
with Gaussian and Student-t errors. Though the model with Student-t errors has slightly lower LOOIC,
the results from the two models are similar. Output from these 2-trend DFA models of sea surface
temperature are useful in demonstrating a north-to-south gradient in temperature anomalies (Figure
6). Standardized temperature data from southern stations experience more interannual variability and
temperatures that are greater in magnitude compared to northern stations (Figure 5). We also illustrate
how latent trends from DFA models can be analyzed in a HMM framework to identify regimes and
transitions; applied to the sea surface temperature data, both Trend 1 and Trend 2 support 2-regime
models (roughly interpreted as ‘warm’ and ‘cool’ regimes; Figure 7).
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Fitting Tails by the Empirical Residual

Coefficient of Variation: The ercv Package
by Joan del Castillo, Isabel Serra, Maria Padilla and David Morifia

Abstract This article is a self-contained introduction to the R package ercv and to the methodology on
which it is based through the analysis of nine examples. The methodology is simple and trustworthy
for the analysis of extreme values and relates the two main existing methodologies. The package
contains R functions for visualizing, fitting and validating the distribution of tails. It also provides
multiple threshold tests for a generalized Pareto distribution, together with an automatic threshold
selection algorithm.

Introduction and overview

Extreme value theory (EVT) is one of the most important statistical techniques for the applied sciences.
A review of the available software on extreme value analysis appears in Gilleland et al. (2013). R
software (R Core Team, 2017) contains some useful packages for dealing with EVT. The R package
evir (Pfaff and McNeil, 2012) provides maximum likelihood estimation (MLE) at the same time for the
block maxima and threshold model approaches. The R package ismev (Heffernan and Stephenson,
2018) allows fitting parameters of a generalized Pareto distribution depending on covariates and
offers diagnostics such as qqplots and return level plots with confidence bands. The R package
poweRlaw (Gillespie, 2015) enables power laws and other heavy tailed distributions to be fitted using
the techniques proposed by Clauset et al. (2009).This approach had been used to describe sizes of cities
and word frequency and is linked to the physics of phase transitions and to complex systems.

This paper shows that the R package ercv (del Castillo et al.,, 2017a), based on the coefficient
of variation (CV), is a complement, and often an alternative, to the available software on EVT. The
mathematical background is shown in Section Mathematical Background, including threshold models
and the relationship between power law distribution and the generalized Pareto distributions (GPD),
which is the relationship between the two different approaches followed by the aforementioned R
packages evir, or ismev, and poweRlaw.

Section Exploratory data analysis with cvplot function introduces the tools for the empirical
residual coefficient of variation developed in the papers del Castillo et al. (2014), del Castillo and Serra
(2015) and del Castillo and Padilla (2016). Section Examples also shows the exploratory data analysis
of nine examples, some of them from the R packages evir and poweRlaw, with the cvplot function,
see Figure 1.

Section Estimation and Model diagnostics with Tm function explains the Tm function in the R
package ercv that provides a multiple thresholds test that truly reduces the multiple testing problem in
threshold selection and provides clearly defined p-values. The function includes an estimation method
of the extreme value index. An automatic threshold selection algorithm provided by the thrselect
function is explained in Section 12.5 to determine the point above which GPD can be assumed for the
tail distribution.

Section Transformation from heavy to light tails (tdata) shows how the methodology developed in
the previous sections can be extended with the tdata function to all GPD distributions, even with no
finite moments. This technique is applied to the MobyDick example and to the Danish fire insurance
dataset, a highly heavy-tailed, infinite-variance model. Finally, Section Fitting PoT parameters and
tail plots (fitpot ccdfplot) describes the functions of the R package ercv that allow estimation of the
parameters (fitpot) and drawing of the adjustments (ccdfplot) for the peak-over-threshold method.

Mathematical Background

Extreme value theory is widely used to model exceedances in many disciplines, such as hydrology,
insurance, finance, internet traffic data and environmental science. The underlying mathematical basis
is now thoroughly established in Leadbetter et al. (1983), Embrechts et al. (1997), de Haan and Ferreira
(2007), Novak (2012) and Resnick (2013). Statistical tools and methods for use with a single time series
of data, or with a few series, are well developed in Coles (2001), Beirlant et al. (2006) and Markovich
(2007).
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Threshold models

The first fundamental theorem on EVT by Fisher and Tippett (1928) and Gnedenko (1943) characterizes
the asymptotic distribution of the maximum in observed data. Classical analyses now use the
generalized extreme value family of distribution functions for fitting to block maximum data provided
the number of blocks is sufficiently large. Another point of view emerged in the 1970’s with the
fundamental theorem by Pickands (1975) and Balkema and de Haan (1974). The Pickands-Balkema-
DeHaan (PBdH) theorem, see McNeil et al. (2005, chap 7), initiated a new way of studying extreme
value theory via distributions above a threshold, which use more information than the maximum data
grouped into blocks.

Let X be a continuous non-negative r.v. with distribution function F(x). For any threshold,
t > 0, the r.v. of the conditional distribution of threshold excesses X — f given X > t, denoted as
Xy = {X—t| X > t}, is called the residual distribution of X over t. The cumulative distribution
function of X;, Ft(x), is given by

1—F(x)=(1—=F(x+1t))/(1—F(t)). (1)

The quantity M(t) = E(X;) is called the residual mean and V (t) = var(X;) the residual variance. The
plot of sample mean excesses over increasing thresholds is a commonly used diagnostic tool in risk
analysis called ME-plot (meplot function in evir R package).

The residual coefficient of variation is given by

CV(t) = CV(Xy) = /V(£)/M(H), @)

like the usual CV, the function CV () is independent under change of scale.

The PBdH theorem characterizes the asymptotic distributions of the residual distribution over a
high threshold under widely applicable regularity conditions, see Coles (2001). The result essentially
says that GPD is the canonical distribution for modelling excess over high thresholds. The probability
density function for a GPD(¢, ¢) is given by

Y A+ Ex/p)F9/E, z 40,

where ¢ € R is called the extreme value index (evi) and ¢ > 0 is a scale parameter, 0 < x < —¢/¢
if < 0,and x > 0if § > 0. The value of ¢ determines the tail type. If { < 0, we say that the
distribution is light tailed, if ¢ = 0 we say it is exponential tailed. If { > 0 a GPD has finite moments of
order n if ¢ < 1/n and it is called heavy tailed. The mean of a GPD is ¢/ (1 — ) and the variance is
$?/[(1—&)?(1 —2¢)] provided & < 1 and & < 1/2, respectively. Then, the coefficient of variation is

2(x:8,p) = { ®

ce = /1/(1-20), @)

the cvevi and evicv functions of the R package ercv correspond to this function and its inverse.

The residual distribution of a GPD is again GPD with the same extreme value index ¢, for any
threshold ¢ > 0, in fact

GPD:(&, ) = GPD(G, ¢ +Gt). )

Therefore, the residual CV for GPD is independent of the threshold and the scale parameter and is
given by equation (4).

The probability density functions (3) are monotone decreasing (L-shaped) for ¢ > —1, covering
practically all the applications. Therefore, we are mainly concerned with the subset of data that
indicate this behaviour. For example, if the dataset is concentrated in the centre and decreases on
either side (bell-shaped) we will study the upper and lower part (changed sign) of the distribution
separately, taking the median or some other location statistic as the origin.

The power law distribution and GPD

The power law distribution is the model, introduced by Pareto,

o o a+1
p(xu0) = - (;) , x>0 (6)
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where & > 0 is the tail index and ¢ > 0 the minimum value parameter. The model corresponds to the
distribution functions F with the linear relation

log[1—F (x)] = —alog(x) +alog (0), (7)

see also Gillespie (2015).

Note that if X is a r.v. with probability density function p (x;«,0), given by (6), Z = X — ¢ has
probability density function

oc\z+0

a+1
g(z;l/zx,a/a):g( 7 ) , z2>0, 8)

that is, there is a one to one correspondence between power law distributions and GPD distributions
with heavy tails (¢ > 0), where ¢ = 1/« and 0 = /¢. However, the two statistical models (3) and (6),
with ¢ > 0, are different since there is no unique transformation for all functions of the model (the
transformation Z = X — ¢ depends on the minimum value parameter ¢ of the same variable X).

The MLE for model (6) leads to the Hill estimator and Hill-plot (hill function in evir R package).
The support of the distributions in (6) depends on the minimum value parameter o. Hence, the
MLE has no standard regularity conditions and the minimum value parameter ¢ is estimated with
alternative methods, see Clauset et al. (2009) and its implementation in the poweRlaw R package by
Gillespie (2015).

However, the support of the distributions in (3), with ¢ > 0, does not depend on parameters and
MLE existing for large samples provided { > —1 and is asymptotically efficient provided ¢ > —0.5,
see del Castillo and Serra (2015) and the references therein for details. The gdp function in the evir R
package provides the MLE for (3).

Note that model (3) includes all the limit distributions (heavy or not) of the residual distribution
over a high threshold and comes from a mathematical result (the PBAH theorem) and often (6) comes
from empirical evidence of the linear relationship (7) and comparison with other models. Moreover,
the linear relationship (7) is also obtained from the relationship between the parameters (8), see
the ccdfplot function in Section Fitting PoT parameters and tail plots (fitpot ccdfplot).

The residual CV approach

Gupta and Kirmani (2000) show that the residual CV characterizes the distribution in univariate
and bivariate cases, provided threre is a finite second moment ({ < 1/2). In the case of GPD, the
residual CV is constant and is a one to one transformation of the extreme value index suggesting its
use to estimate this index. The residual CV can also be expressed in terms of probabilities, rather
than the threshold, through the inverse of the distribution function or the quantile function defined by
Q(p) =inf[x : F(x) > p], then the CV can be drawn, for 0 < p < 1, for the threshold t = Q (p), that
is to plot the function p — CV(Q(p)). This representation makes it possible to draw on the same scale
for the x axis the residual CV of distributions with different supports.

Exploratory data analysis with cvplot function

In this section the cvplot function of the R package ercv is introduced as a graphical tool for use in a
exploratory data analysis, through the nine examples described in Section 3.2. The cvplot function is
essentially the empirical residual CV whose asymptotic distribution as a stochastic process is explained
by del Castillo et al. (2014) and del Castillo and Padilla (2016).

The empirical residual CV and confidence intervals.

Assume that the raw data consist of a sequence of independent and identically distributed measure-
ments X1, ..., X,. Extreme events are identified by defining a high threshold ¢ for which the exceedances
are {x; : xj > t}. Hence, we first identify a threshold t such that its exceedances correspond to a
constant residual CV (equivalently a GPD). We denote the ordered sample x(1) < X(2) <. < X(p)-
The cvplot function provides the function cv(t) of the sample coefficient of variation of the threshold
excesses (xj — t) given by

t = co(t) =sd{x;j—t|x; > t}/mean{x; —t [ x; > t}, )

in practice t = xy are the order statistics, where, k (1 < k < n) is the size of the sub-sample excluded.
Hereinafter the graph of this function is called CV-plot. Figure 1 shows the CV-plots of nine examples
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(blue lines) that we comment on the next section.

Point-wise error limits for co(t) under GPD(E, i) (provided ¢ < 1/4) follow from the asymptotic
distribution of the empirical residual CV, by del Castillo and Padilla (2016), in particular for a fixed
threshold t, the asymptotic confidence intervals in Figure 1 (solid orange lines) are obtained by

n(t)(co(t) - cz) % N(0,03), (10)

where ¢z is in (4), n(t) = 27:1 L(x;>t) - For an exponential distribution (E=0),co=1land g =1,

and for a uniform distribution (¢ = —1),c_ = 1/v/3 and ¢, = 8/45.

By default, if V2 isin the range of y’s then the cvplot function draws the line y = V2 (black dotted
line), which corresponds to § = 1/4 (finite fourth moment). Hence, CV-plot larger than this value for
high thresholds lead to very heavy tailed distribution and we suggest to switch to transformed data
through function tdata (Section 12.6). Alternatively, finite moments can be checked by a confidence
interval for the MLE estimator of evi, or the methods in the R package RobExtremes (Ruckdeschel
et al., 2019) and the references cited therein can be used.

The CV-plot is an alternative tool to Hill-plot an to ME-plot. It has two advantages over ME-plot:
first, it depends on a scale parameter and CV-plot does not; second, linear functions are defined by
two parameters and the constants by only one. So the uncertainty is reduced from three to one single
parameter. On the other hand, the Hill-plot can only be used for heavy tailed distributions.
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Figure 1: CV-plots stowed from left to right and top to bottom: four different types of execution time
distributions of automotive applications, the frequency of words in the novel Moby Dick, Danish
fire insurance data, River Nidd exceedances above value 65, Bilbao waves dataset and positive daily
returns of euro/dollar exchange rates between 1999 and 2014.
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Examples

The use of the cvplot function and its options is described using nine examples. The first four (iFFT,
FFT, BIFP and MA) correspond to different types of execution time distributions observed for a set of
representative programs for the analysis of automotive applications. Three others are in R packages:
MobyDick (“moby” in R package poweRlaw), Danish and Nidd (“danish” and "“nidd.thresh” in the R
package evir). The Bilbao waves dataset (bilbao) was originally analysed by Castillo and Hadi (1997).
EURUSD is the dataset of euro/dollar daily exchange rates between 1999 and 2016.

We collect samples with n = 1,000 observations for 4 of the 16 benchmarks in the EEMBC
AutoBench suite (Poovey, 2007), which is a well-known suite for real-time systems that includes
a number of programs used in embedded automotive systems. Hereinafter, these datasets will be
called iFFT (idctrn), FFT (aifftr), BIFP (basefp) and MA (matrix), leaving the real names in parentheses,
they correspond respectively to Inverse Fast Fourier Transform, Fast Fourier Transform, Basic Integer
and Floating Point and Matrix Arithmetic, see Abella et al. (2017) and del Castillo et al. (2017b). The
histograms of the four datasets are bell-shaped. Hence, when searching for L-shaped distributions, we
start the exploratory data analysis of the upper part of the distribution by taking the median as origin.
Note also that large samples increase the precision of the estimates, provided that the fitted model is
validated. The CV-plots for these four datasets are obtained, for instance, with:

library("ercv")
data(iFFT)
cvplot (iFFT, thr=median(iFFT))

The plots in Figure 1 are stowed from left to right and top to bottom. For iFFT, the CV-plot is inside
the confidence interval of the exponential distribution (evi = 0). Hence, it can be assumed that the CV
is constant equal to 1 (dashed orange line). For FFT, the CV-plot is inside the confidence interval for
the last 250 observations. For BIFP, the CV-plot looks like a constant with CV lower than 1, hence a
light tailed GPD is suggested. For MA, the CV-plot suggests a heavy tailed distribution.

The following three CV-plots in Figure 1 are made from the MobyDick, Danish and Nidd datasets,
which can be directly loaded from the R packages. The three plots are made with the default cvplot
function options, but including title, for instance:

data("moby"”, package = "poweRlaw")
cvplot(moby,main="MobyDick")

The second row of Figure 1 shows three examples that suggest heavy tailed distributions. In the
centre is MobyDick and on the right is the Danish fire insurance dataset, which is a highly heavy-tailed
infinite-variance example used to illustrate the basic ideas of extreme value theory, see Embrechts et al.
(1997), McNeil et al. (2005, Example 7.23) and Novak (2012, Example 9.8). Section Transformation from
heavy to light tails (tdata) shows how to analyse these examples, with the tdata function, using the
methodology developed in del Castillo and Padilla (2016).

Nidd is the dataset of high levels of the River Nidd above a threshold value of 65. Its CV-plot
is always lower than v/2, begins in the area of heavy tails and goes into the confidence interval of
exponentially. The Bilbao waves dataset was originally analysed by Castillo and Hadi (1997). The
Nidd and Bilbao datasets are two of the most commented examples of extreme values theory, which
were also analysed by del Castillo and Serra (2015) from the MLE point of view.

By default, the cvplot function draws a 90% confidence interval of CV-plot from exponential
distribution (evi = 0). The evi parameter of the function provides confidence intervals of the corre-
sponding GPD (evi < 1/4). The conf.level parameter allows for changing confidence levels. Both evi
and conf.level may be a vector. For light tailed distributions, as is presumably the case with the wave
levels, it is also advisable to draw a confidence interval from the uniform distribution (evi = —1).
Hence, the Bilbao CV-plot in Figure 1 has confidence intervals for exponential (orange) and uniform
(green) distributions.

data(bilbao)
cvplot(bilbao,evi = c(@,-1),main="Bilbao")

EURUSD is the data frame object of the euro/dollar daily exchange rates between 1999 and 2016,
including the financial crisis of 2007-08, which was obtained from the R package quantmod (Ryan,
2016). Various parts of the EURUSD series have been studied by several authors, see Gomes and
Pestana (2007) and del Castillo and Padilla (2016). The last plot in Figure 1 shows the CV-plot of the
positive log-returns of the euro/dollar daily prices, obtained from

data(”EURUSD")
prices<-ts(EURUSD$EUR.USD, frequency=365,start=1999)
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#plot(prices,col="blue”,main="euro/dollar daily prices(1999-2016)")
return <- 100xdiff(log(prices));

pos.return <- subset(return, return >0);
cvplot(pos.return,main="pos.returns EUR/USD 1999-2016")

The dynamics of the daily return can be described by a GARCH(1,1) model. One might then hope
that for sufficiently high values of ¢ the subset of daily returns that are above ¢ is so well separated in
time that independence can reasonably be assumed. Then, the CV-plot clearly shows that the tail of
the distribution looks like an exponential.

Estimation and Model diagnostics with Tm function

Following the exploratory analysis, we would like to confirm or deny some of the previous observa-
tions. It is known that in order to make optimum decisions, it is necessary to quantify the uncertainty
of information extracted from data. Statistics provides mechanisms to ensure a controlled probability
of error, but there is always the risk of misuse for multiple testing, especially in EVT where quite
small changes can be greatly magnified on extrapolation. The asymptotic distribution of the residual
coefficient of variation for GPD as a random process indexed by the threshold by del Castillo and
Padilla (2016) provides pointwise error limits for CV-plot, used in the last section, and a multiple
thresholds test that truly reduces the multiple testing problem, hence, the p-values are clearly defined.

Using the building blocks given by (10) the multiple threshold test Ty, (the Tm function of the
R package ercv) for a (supplementary) number of thresholds m as large as necessary for practical
applications is constructed from

m

Tu(&) =n Y pF(colqr) — ), (11)

k=0

where c¢ is in (4), gy are the empirical quantiles corresponding to probabilities 1 — pk and probability p
is chosen so that n p™ =2 omit, where omit is the smaller sample size used to calculate CV. This statistic
can be used to test whether a sample is distributed as a GPD with parameter ¢.

The Tm function makes it possible to see whether the 75 largest values of Nidd can be assumed to
be exponentially distributed.

data("”nidd.thresh”,package = "evir")
Tm(nidd.thresh,evi=0, nextremes = 75)

nextremes cvopt evi tms  pvalue
75 1.000 0.000 0.981 0.310

The Tm function provides tms = Tm(evi)/(m + 1), which is stable on vary the number of thresholds
m, the p-value says that it can not be rejected exponenciality (the number of simulations can be
increased with nsin). Moreover, by default the Tm function assumes that the parameter ¢ is unknown
(evi = NA), then the cvopt is estimated as the value ¢z such that achieves the minimum of Ty, (&), and

reversing (4) provides an estimator ¢.

The following code shows that the assumption of constant CV (GDP) is rejected for the complete
sample.

Tm(nidd. thresh)

nextremes cvopt evi tms pvalue
154 1.225 0.167 1.214 0.030

It is rejected that Bilbao dataset is uniform distributed. However, It can not be rejected GPD as the
following code shows

Tm(bilbao,evi=-1,nsim=1000)

nextremes  cvopt evi tms pvalue
179  0.577 -1.000 0.629 0.003

Tm(bilbao,nsim=1000)

nextremes cvopt evi tms pvalue
179 0.650 -0.685 0.254 0.172
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The confidence interval for the parameter estimation evi = —0.685 can be obtained with
cievi(nextremes=length(bilbao),evi=-0.685)

5% 95%
-0.778 -0.549

Using a small threshold, (0.1%), the Tm function shows that the positive and negative returns of
the euro/dollar between 1999 and 2016 can be assumed exponentially distributed.

Tm(pos.return,m=50,evi=0, thr=0.1,nsim=1000)

nextremes cvopt evi tms pvalue
2207 1.000 0.000 0.392 0.780

neg.return <- -subset(return, return <0);
Tm(neg.return,m=50,evi=0, thr=0.1,nsim=1000)

nextremes cvopt evi tms pvalue
2187 1.000 ©.000 1.160 0.231

The last statement with Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz takes elapsed=4.73 (R>
proc.time()).

Threshold selection algorithm (thrselect)

There are two different approaches to the question of threshold choice. The first approach is to regard
the free choice of the threshold as an advantageous feature of the procedure. By varying the threshold,
the data can be explored, and if a single estimate is needed it can be obtained by subjective choice. It
may well be that such a subjective approach is in reality the most useful one.

The other, to some extend opposing, view is that there is a need for an automatic method whereby
the threshold is chosen by the data. It is fairer to use the word automatic rather than objective for such a
method, because there are arbitrary decisions involved in the choice of the method itself. Nevertheless,
it is of course the case that conditional on the automatic method being used, the threshold is indeed
objective. Automatic methods need not be used in an uncritical way; they can of course be used as a
starting point for fine tuning.

The thrselect function in the R package ercv starts with the T;, (&) calculation (11) where the
number of thresholds m must be fixed by the researcher. This determines the thresholds where the
CV is calculated, 0 = g9 < q1 < - -+ < gm, which are fixed throughout the procedure. We accept or
reject the null hypothesis for the shape parameter using all the thresholds. If the hypothesis is rejected,

the threshold excesses ( x; — g7 | are calculated for the sub-sample 4 x; > 41 ¢ . The previous steps are

repeated, but removing one threshold, to accept or reject the null hypothesis that the sample comes
from a GPD with parameter ¢, see del Castillo and Padilla (2016).

If we apply the function thrselect on the Nidd dataset the code shows
DF <- thrselect(nidd.thresh,m=10, nsim=1000)

m nextremes threshold rcv cvopt evi tms pvalue
5 6 63 87.85 1.193 1.073 0.0656 0.408 0.102

This means that the algorithm need 5 steps to achieve a p-value larger than 0.10 and it is using
in this step m = 6 thresholds. Then, constant CV can be accepted for the last 63 extremes over the
threshold 87.85, with the CV cvopt = 1.0728 and the corresponding evi = 0.0656.

The output of thrselect is in the data frame DF, the printed values are in DF$solution and
DF$options provides complementary information that can be used for a more personal approach.

print(DF$options,digits=4)

m nextremes threshold rcv cvopt evi tms pvalue
1 10 154 65.08 1.2486 1.2249 ©0.166758 1.33553 0.023
2 9 123 74.38 1.4082 1.2183 0.163112 1.47158 0.012
3 8 99 77.80 1.3163 1.1634 0.130594 0.93927 0.034
4 7 79 81.40 1.2587 1.1175 0.099606 0.64548 0.064
5 6 63 87.85 1.1933 1.0728 0.065559 0.40795 0.102
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6 5 50 92.82 1.1328 1.0320 0.030493 0.24415 0.217
7 4 40 99.14 1.0714 0.9945 -0.005584 0.12917 0@.457
8 3 32 107.94 1.0054 0.9619 -0.040406 0.05888 0.609
9 2 26 115.93 0.9006 0.9396 -0.066323 0.04218 0.637
10 1 21 131.87 ©.9473 0.9667 -0.034986 0.01755 @.597

Transformation from heavy to light tails (tdata)

It is possible to extend the previous methodology based on CV to all distributions, even without finite
moments. For CV-plots above the straight line y = V2, like the three examples in the second row of
Figure 1, the datasets are transformed by the strictly increasing function that applies (0, c0) to (0, ),

y(x) = ox/(x+0),

where ¢ > 0, using the tdata function in the R package ercv.
This technique is founded on the following result: if X is a random variable GPD (¢, ¢) distributed

and ¢ > 0, then for ¢ = /¢ the transformed random variable Y = y(X) is GPD (—¢, ) distributed.

Furthermore, the converse is also true, as evidenced by applying the inverse transformation x (y) =
oy/ (o —y), see also del Castillo and Padilla (2016). The o > 0 parameter is estimated by tdata, using
MLE with the internal function egpd, (see del Castillo and Serra (2015)) or may be provided by the
researcher as a preliminary estimate.

The CV-plots for Danish and MobyDick transformed by tdata function are obtained with:

data("danish”,package = "evir")

tdanish<- tdata(danish)
cvplot(tdanish,main="transformed Danish")
tmoby<- tdata(moby)
cvplot(tmoby,main="transformed MobyDick")

The CV-plots in Figure 2 for the transformed datasets are more stable than the original CV-plots
in Figure 1 and actually look light tailed. The CV-plot of the transformed MobyDick has a sawtooth
profile because the original dataset only takes positive integer values and the smaller values have a
high frequency (among the 18,855 values, 1 appears 9,161 times, 2 appears 3,085, ... ). In order to use a
GPD approach for this example we assume that the data correspond to positive values rounded to the
nearest integer.

(a) Transformed Danish (b) Transformed MobyDick
Threshold Threshold
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Figure 2: CV-plots under tdata transformation of Danish fire insurance data and frequencies of words
in the novel Moby Dick.

The Tm function rejects GPD for the complete transformation of MobyDick. The same result is
obtained with the transformation of the dataset on the thresholds 2 and 3. However, GPD is not
rejected on threshold 4, hence the frequencies of words that appear four or more times in the novel
Moby Dick (4,980 observations) can be approximated by a GPD distribution with evi = 0.982, as the
following code shows (changing the sign of evi):

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

64

t4moby<-tdata(moby, thr=4)
Tm(t4moby,m=50,nsim=1000)

nextremes  cvopt evi tms pvalue
4980 0.581 -0.982 0.198 0.293

The Danish example was studied by del Castillo and Padilla (2016). The results obtained are
validated by the Tm function after the transformation tdata

Tm(tdanish,m=20,nextremes = 951,omit = 8, nsim = 1000)

nextremes  cvopt evi tms pvalue
951 0.676 -0.595 0.256 0.253

Applying the thrselect function to Danish after the transformation by tdata we obtain
DF<-thrselect(tdanish,m=30,nsim=1000)

m nextremes threshold rcv cvopt evi tms pvalue
19 12 116 1.283 0.589 0.6747 -0.598 ©0.265 .11

The automatic algorithm chooses the threshold 1.283 (116 extremes) with the estimate evi = 0.598
(changing the sign of evi) really close to the previous one evi = 0.595. The result is different from that
obtained by McNeil et al. (2005) by MLE evi = 0.50 (109 extremes). However the cievi function shows
that evi = 0.50 can not be rejected, as shown by the confidence interval provided by the following
code (changing the sign of evi again),

cievi(116,evi=-0.596)

5% 95%
-0.714 -0.440

In the next section we will discuss these results with new features of the R package ercv.

Fitting PoT parameters and tail plots (fitpot ccdfplot)

The tools described in the previous sections provide an asymptotic model for threshold exceedances
over a high quantile, the so-called peak-over-threshold (PoT) method, see McNeil et al. (2005). The
PoT method is based on determining a high enough threshold from which the distribution of the
observations above this value, adjusted to zero, approaches to a GPD distribution. Then, given a
threshold t, for x > t the complementary cumulative distribution function (ccdf) is estimated by

1—F(x)=p (1= G (x—t;¢, ) (12)

where G (x; {, ) is the cumulative distribution function of the GDP, whose probability density function
was introduced in (3), and (zft, 1/3t) are their estimated parameters for the 7; threshold exceedances
over t adjusted to zero, from a sample of size n with p; = n;/n. Alternatively, given n; the estimated
parameter is £.

The ppot function is the cumulative distribution function for the PoT method. That is, given
an estimate of the four parameters in (12), (& ¢,#,p), the right hand part of (12) is provided by
1—ppot(x, (é, ,1,p)). The gpot is the quantile function for the PoT method that assigns to each
probability p attained by ppot the value x for which ppot(x) = p, given the same vector of four
parameters. The gpot function can be used in the estimation of high quantiles, that in terms of risk
is expressed as the value at risk (VaR). For a small p, VaR, = q if and only if 1 — F (q) = p. Hence, if
e<p,

VaRe = F+ qpot (1 —¢/p), (¢, $.5,p)).

The fitpot function of the R package ercv provides an estimate of the four parameters in (12) that
allow approximating the empirical cumulative distribution function of a dataset. It is assumed that the
threshold ¢, or the number of extremes, has been chosen based on the tools of the previous sections. By
default fitpot uses MLE. However, since parameter ¢ (evi) can be estimated minimizing (11) by the
Tm function, this value can be entered into the function fitpot and then it uses MLE by the restricted
model to a single parameter. From now on this method of estimation will be called CV method.

The two methods of estimation of fitpot applied to Danish explain the differences between the
results obtained by us and by other researchers, which we have discussed in the previous section, as
we can see with the code
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fit1<-fitpot(danish,nextremes =116);fit1 #MLE
evi psi threshold prob

0.446 7.462 9.200 0.054

fit2<-fitpot(danish,evi=0.598,nextremes =116);fit2 #CV
evi psi threshold prob

0.598 6.450 9.200 0.054

Naturally, different estimation methods provide different estimates, but the question of identifying
the best approach still remains. To clarify this point, we can use the ccdfplot function, which draws
the empirical complementary cumulative distribution function with the approximations provided
by the parameters estimated by fitpot. The ccdfplot function allows to draw several approaches at
several scales. The approximation is linear in the log-log scale for datasets with heavy tails, although

it is linear in log scale for datasets with exponential tails (log = "y", by default). To draw the approach
on natural scale the option log = "" has to be used.

The plots of Figure 3 have been obtained with ccdfplot function applied to Danish data with the
estimates obtained by MLE (orange) and CV method (green) on logarithmic and double logarithmic
scales, with

ccdfplot(danish,pars=list(fit1,fit2),main="Danish (log scale)")
ccdfplot(danish,pars=list(fit1,fit2),log="xy",main="Danish (log-log
scale)")

(a) Danish (log scale) (b) Danish (log-log scale)
o o
T - T -
g 8 |\ g 8 ™
3 _ o _| \
7] % 7] %
= N
33 4 . N
E T | | | | 1 T T T T T T T 1
0 50 100 200 1 2 5 20 50 200
data data

Figure 3: Complementary cumulative distribution function of Danish fire insurance data adjusted by
MLE and CV methods. in log scale and log-log scale.

Figure 3 shows that both adjustments are reasonable. The CV method is not worse than MLE,
perhaps less optimistic or more realistic. The previous PoT approach can be validated using the
Clauset et al. (2009) point of view.

Based on the four parameters estimated by fitpot (& ¢, f, p) for heavy tailed models (evi > 0),
the linear relation§hip (7) can be obtained for the dataset values over the threshold, with the new
threshold ¢ = /¢ and the probability 1, see the following code.

fitl<-as.numeric(fit1$coeff);sgli<- fit1[2]1/fit1[1];sgl
fit2<-as.numeric(fit2$coeff);sg2<- fit2[2]1/fit2[1];sg2
exDanish<-danish[danish>fit1[3]]-fit1[3] #origin to zero
exDanish1<- exDanish+sg1 #origin to sgl
exDanish2<-exDanish+sg?2 #origin to sg2
exfiti<-c(fit1[1],fit1[2],sg1,1)

exfit2<-c(fit2[1],fit2[2],sg2,1)

ccdfplot(exDanish, pars=c(exfit1),log="xy",main="adjusted by MLE")
ccdfplot(exDanish2, pars=c(exfit2),log="xy",main="adjusted by CV")

—_n

The Figure 4 plot (a) shows the linear relationship (7) for the 116 upper extremes of Danish adjusted
by MLE. Changing the previous fit1 by fit2 the linear relationship is obtained by the CV method and is
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shown in plot (b). Notice that the linear relationship (7) begins at the threshold sg1 = 16.727 for MLE
and at a threshold sg2 = 10.787 for the CV method, so we can not overlay them in the same graph. The
goodness of fit can now be measured by the correlation between the logarithm of the complementary
empirical distribution function, log(1 — F,) and the logarithm of the data, log(x + sg), where (x + sg)
are the 116 upper extremes of Danish, adjusted to sigma. The results are correlation = —0.981 using
MLE, plot (a), and correlation = —0.990 using CV-method, plot (b).

We can also calculate the threshold th having a maximum correlation between log(1 — F,) and
log(x + th), obtaining th = 6.996 and correlation = —0.992. Thus, the correlation on which the
goodness of the CV method adjustment is based on is very close to the best that can be obtained by
this procedure, which is in line with Clauset et al. (2009) and the poweRlaw R package by Gillespie
(2015) (although here the estimation of evi is different). This shows that the methodology provided by
the R package ercv complements and connects the contributions of evir (Pfaff and McNeil, 2012) and
poweRlaw by Gillespie (2015).

(a) Danish extremes by MLE (b) Danish extremes by CV
o | \ o | *\
n n
S N\ o

ccdf
|1

ccdf
|1

8 | S 8 |
o H_ o
g ]1 g |
© T T T T © 7 T T T 1
20 50 100 200 10 20 50 100 200
data data

Figure 4: The linear relationship for the 116 upper extremes of Danish fire insurance data adjusted by
MLE and CV method.
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biclustermd: An R Package for

Biclustering with Missing Values
by John Reisner, Hieu Pham, Sigurdur Olafsson, Stephen Vardeman and Jing Li

Abstract Biclustering is a statistical learning technique that attempts to find homogeneous partitions
of rows and columns of a data matrix. For example, movie ratings might be biclustered to group both
raters and movies. biclust is a current R package allowing users to implement a variety of biclustering
algorithms. However, its algorithms do not allow the data matrix to have missing values. We provide
anew R package, biclustermd, which allows users to perform biclustering on numeric data even in
the presence of missing values.

Introduction

Traditional (one-way) clustering (such as with complete-link hierarchical clustering or k-means)
aims to partition only rows (or columns) of a data matrix into homogeneous subsets. Rows or
columns are clustered simply based upon their relational similarity to other observations. Biclustering
simultaneously groups rows and columns to identify homogeneous “cells”. Biclustering is known to
be NP-hard; as such, every existing algorithm approaches this problem heuristically. This methodology
was first investigated by Hartigan (1972) but was not given much attention until applied to gene
expression data (Cheng and Church, 2000). Today, biclustering is applied across many areas such as
biomedicine, text mining, and marketing (Busygin et al., 2008).

For our purposes, we consider rearranging a data matrix to obtain a checkerboard-like structure
where each cell is as homogeneous as possible. In this regard, our algorithm has the same goal as
spectral biclustering (Kluger et al., 2003), but approaches the problem in a different way. In contrast to
clustering with the end goal being a checkerboard-like structure, other techniques have been proposed
based on the singular value decomposition (Lazzeroni and Owen, 2002; Bergmann et al., 2003) and
others are based on a graph-theoretic approach (Tan and Witten, 2014). Although each technique is
different, each has the goal of finding substructure within the data matrix. In Figure 1 we provide a
visual suggestion of our biclustering goal. The color scheme represents similar numeric values and
our goal is to rearrange the data matrix so that these values form homogeneous cells.

RawDataMatrix0805ShuffledDataMatrix0805

Figure 1: Biclustering with checkerboard-like structure

A publicly available R package for biclustering is biclust by Kaiser and Leisch (2008). This appears
to be a commonly used package developed with the intent of allowing users to choose from a variety
of algorithms and renderable visualizations. Other biclustering packages include superbiclust, iBBiG
QUBIC, s4vd, BiBitR which each provide unique algorithms and implementations (KKhamiakova,
2014; Gusenleitner and Culhane, 2019; Zhang et al., 2017; Sill and Kaiser, 2015; Ewoud, 2017). However,
from an implementation and algorithmic standpoint, the methods implemented in these packages
fail when given a data matrix with missing values. This is clearly a limitation since there exist many
rectangular datasets with missing values. For handling missing data, many imputation methods exist
in the literature. While this does produce a complete two-way data table, which can subsequently
be fully analyzed using existing biclustering algorithms, it has inherent limitations. When large
percentages of data are missing, such as is, for example, common in plant breeding and movie rating
applications to be discussed later, it is difficult and impossible to reasonably infer missing values.
Even if a small number of values are missing values those are potentially missing not-at-random due
to non-random and unknown devices. For example, in plant breeding, observation may be missing
because it is unreasonable to plant a crop in a particular environment or simply because a plant breeder
decides to not plant in certain environments. In these cases, imputing missing values would imply
that one can confidently estimate the performance of (say) crop yield in an environment where it was
never observed growing. There is a large body of literature on the difficult nature of this problem.
With this as motivation, our goal was to produce a biclustering algorithm which can successfully deal
with data with missing values without applying imputation or making any assumptions about why
data are missing.
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Biclustering with missing data

The package described in this paper, biclustermd, implements the biclustering algorithm of Li et al.

(2020) and their paper gives a thorough explanation of the proposed biclustering algorithm as well as
its applicability. For completeness we give an overview of their algorithm here.

Notation

* X is a data matrix with [ rows and ] columns. X;; is a response measure of row i in column j for
ie{1,2,...,I}andje {1,2,...,]}.

e Row indexsetZ = {1,2,...,I} is partitioned into r mutually exclusive and exhaustive sets
T, Ty,...,T;. Q = partition of the row index set.

e Column index set 7 = {1,2,..., ]} is partitioned into ¢ mutually exclusive and exhaustive sets
51,S2,...,5¢. P = partition of the column index set.

Our goal for biclustering is to generate a rearranged data matrix with a checkerboard structure
such that each “cell” of the matrix defined by Q and P is as homogeneous as possible. Depending on
specifics of a real problem, “homogeneous” can have different subject matter meanings, and hence
optimization of different objective functions can be appropriate. We present our algorithm here with
the goal of optimizing a total within-cluster sum of squares given both the row groups in Q and
column groups in P. This can be interpreted as the total sum of squared errors between cell means
and data values within cells. Hence we refer to this as SSE. Using the above notations we have r row
groups (or row clusters) and ¢ column groups (or column clusters). Let A denote an r X ¢ “cell-average
matrix” with entries

1

Apn = - -
m H{Xij:i € Tw; j € Sn; Xij # NA}|

Xij 1)
{Xi/-:ie To; jGSy,; X,']#NA}

forme1,2,...,randn €1,2,...,c. Here, |-| is the set cardinality function and NA denotes a missing
value. Then, the within-cluster sum of squares function to be minimized is

sse=y. Y (Xij - Amn>2. 2)
mu X #NA
iET,,,
JESH

Biclustering with missing data algorithm

1. Randomly generate initial partitions Q(*) and P(©) with respectively r row groups and ¢ column
groups.

2. Create a matrix A(%) using Equation (1) and the initial partitions. In the event that a “cell” (m, n)
defined by {(i,j) |i € Ty and j € S, } is empty, Ay, can be set to some pre-specified constant
or some function of the numerical values corresponding to the non-empty cells created by the
partition. (For example, the mean of the values coming from non-empty cells in row m or in
column 7 can be used.) This algorithmic step should not be seen as imputation of responses for
the cell under consideration, but rather only a device to keep the algorithm running.

3. At iteration s of the algorithm, with partitions P(*~1) and Q=1 and corresponding matrix
AG=D in hand, fori = 1,2,...,1 let

1
MR = 2 X
n ‘{]ES’”XU#NA} . é(eS;ZNA 1]
-t Xij

foreachn =1,2,...,cand compute form =1,2,...,r

s, = il(Amn —Mg;>2_ H] € Sl Xy # NAH.
=

Then create Q(5)* by assigning each row i to T, with minimum X .

4. If for Q)* every Ty, is non-empty, proceed to Step 5. If at least one Ty, = @ do the following:
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(a) Randomly choose a row group T,y with |T,s| > kR. (a user-specified positive integer
parameter) and choose kR . < kR. row indices to move to one empty T;,. Choose those

indices i from T, with the largest kX ., corresponding values of the sum of squares

C

2
YooY (x-mh)
n=1  jes,
s.t. X,]#NA

(b) If after the move in (a) no empty row group remains, proceed to Step 5. Otherwise return
to (a).

5. Replace Q°~1) in Step 3 with the updated version of Q(*)* and cycle through Steps 3 and 4 a
times, where « is a user-specified integer parameter. If row_shuffles > 1, replace Q(S_l) in 3.
with the updated version of Q(°)* and cycle through steps 3. and 4. row_shuffles—1 times.

6. Set Q) = Q()*_ Then update A~ to A)* using the partitions Q(*) and P(~1) in Equation
(D).

7. Forj=1,2,...,]let

1
ME = X
jm ‘{1€Tm|Xl]7éNA} St;{%WNA ij
X

foreachm =1,2,...,rand compute forn =1,2,...,c
r 2
C C .
S, = 21 (Awn — M) Hz € TulXy # NAH.
m=

Then create P(*)* by assigning each column j to S, with minimum djcn.

8. If for P(*)* every S, is non-empty, proceed to Step 9. If at least one S, = @ do the following:

(a) Randomly choose a column group S, with |S,/| > kglin (a user-specified positive integer

parameter) and choose k§,,ye < kS, column indices to move to one empty S,. Choose
those indices j from S, with the largest k$,, e corresponding values of the sum of squares

r

2
C
Z E (Xif - Mjm) :
m=1 i€Ty,
s.t. X,]#NA

(b) If after the move in (a) no empty column group remains, proceed to Step 9. Otherwise
return to (a).

9. Replace P~V in Step 3 with the updated version of P(®)* and cycle through Steps 7 and 8 B
times, where § is a user-specified integer parameter. If col_shuffles > 1, replace P~V in 3.
with the updated version of P5)* and cycle through steps 7. and 8. col_shuffles—1 times.

10. Set P() = P(9)* and we have new partitions Q5) and P(*). Then update A®)* to A(®) using
the partitions Q) and P(*) in Equation (1).
11. Steps 3-10 are executed N times or until the algorithm converges, which is when the Rand

Indices for successive row and column partitions are both 1. (See the description of the Rand
Index below.)

Intuitively, our proposed algorithm is nothing more than a rearrangement of rows and columns
with the objective to minimize the objectives given in Steps 3 and 7. We consider Step 1 (the random
generation of initial cluster assignments) to be of high importance to avoid any bias in the original
structure of the data. As a quantitative way to measure the effectiveness of our biclustering, we
consider the sum of squared errors (SSE) as the measure of within cell homogeneity. Paired with the
SSE, we allow for three different convergence criteria, the Rand Index (Rand, 1971), the Adjusted
Rand Index (Hubert and Arabie, 1985), and the Jaccard Index (Goodall, 1966). These indices provide
measures for the similarity between two clusterings.

Overview of biclustermd

The biclustermd package consists of six main functions with the most important being bicluster().
This function is where the algorithmic process is embedded and contains numerous tunable parame-
ters.
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* data: dataset to bicluster. Must be a data matrix/table with only numbers and missing values in
the dataset. It should have row names and column names.

* row_clusters: The number of clusters to partition the rows into. Default is L\ﬁ J

¢ col_clusters: The number of clusters to partition the columns into. Default is | /] |

* missing_val: Value or function used to represent empty cells of the data matrix. If a value, a
random normal variable centered at itself with standard deviation miss_val_sd is used each
iteration. Note that this is not data imputation but a temporary value used by the algorithm.

* missing_val_sd: Standard deviation of the normal distribution miss_val follows if miss_val is
a number. By default this equals 1.

¢ similarity: The metric used to compare two successive clusterings. Can be "Rand" (default),
"HA" for the Hubert and Arabie adjusted Rand index or "Jaccard". See clues for details.

* row_min_num: Minimum row cluster size in order to be eligible to be chosen when filling an
empty row cluster. Defaultis |I/r].

* col_min_num: Minimum column cluster size in order to be eligible to be chosen when filling
an empty column cluster. Defaultis |]/c|.

* row_num_to_move: Number of rows to remove from the sampled cluster to put in an empty
row cluster. Default is 1.

* col_num_to_move: Number of columns to remove from the sampled cluster to put in an empty
column cluster. Defaultis 1.

¢ row_shuffles: Number of times to shuffle rows in each iteration. Default is 1.
¢ col_shuffles: Number of times to shuffle columns in each iteration. Default is 1.
¢ max.iter: Maximum number of iterations to let the algorithm run.

* verbose: Logical. If TRUE, will report iteration progress.

In the following sections, we provide an overview of the functionality of biclustermd. For the first
dataset, we display the array of visualizations available, in the second example we demonstrate the
impact of numerous tunable parameters, our final example demonstrates the computational times of
our algorithm.

Example with NYCflights13

For a first example, we will utilize the flights dataset from Wickham'’s package nycflights13 (Wickham,
2017). Per the package documentation, flights contains data on all flights in 2013 that departed NYC
via JFK, LaGuardia, or Newark. The variables of interest are month, dest, and arr_delay these are the
rows, columns and response value, respectively. In a dataset such as this, an application of biclustering
would be to determine if there exist subsets of months and airports with similar numbers of delays.
From a pragmatic perspective, this discovery may allow for air officials to investigate the connection
between these airports and months and why delays are occurring.

Using functions from tidyverse (Wickham, 2016), we generate a two-way data table such that
rows represent months, columns represent destination airports, and the numeric response values
are the average arrival delays in minutes. This data matrix contains 12 rows (months), 105 columns
(destination airports), and approximately 11.7% missing observations. Below is a snippet of our data
matrix.

> flights[1:5,1:5]

ABQ ACK ALB ANC ATL
January NA NA 35.17460 NA 4.152047
February NA NA 17.38889 NA 5.174092
March NA NA 17.16667 NA 7.029286
April 12.222222 NA 18.00000 NA 11.724280
May -6.516129 3.904762 10.19643 NA 8.187036

The first step is to determine the number of clusters for months and the number of clusters for
destination airports. Since we are clustering months, in this analysis, choosing r = 4 row clusters
seems reasonable (create a group for each season/quarter of the year). Although this is arbitrary, we
choose ¢ = 6 column clusters. Since this algorithm incorporates purposeful randomness (by row and
column cluster initialization), biclustermd() should be run multiple times keeping the result with the
lowest sum of squared errors (SSE) since it may be expected that for different initialization one can
obtain a different local minimum (Li et al., 2020).
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> bc <- biclustermd(data = flights, col_clusters = 6, row_clusters = 4,

+ miss_val = mean(flights, na.rm = TRUE), miss_val_sd = 1,
+ col_min_num = 5, row_min_num = 3,

+ col_num_to_move = 1, row_num_to_move = 1,

+ col_shuffles = 1, row_shuffles = 1,

+ max.iter = 100)
> bc

Data has 1260 values, 11.75% of which are missing

10 Iterations

Initial SSE = 186445; Final SSE = 82490

Rand similarity used; Indices: Columns (P) = 1, Rows (Q) =1

The output of biclustermd() is a list of class “biclustermd” and “list” containing the following:

* The two-way table of data provided to the function.

¢ The final column and row partition matrices.

* SSE generated from the initial partitioning.

* SSE of each iteration, as an “biclustermd_sse” object.

* Similarity measures for rows and columns for each iteration, as an “biclustermd_sim” object.
* The number of iterations to convergence.

* A table of resulting cell means.

Analyzing the NYCflights13 biclustering

The list output of biclustermd() is used for rendering plots and to obtain cell information. One such
visual aid is a plot of the convergence indices versus iteration, given in Figure 2. From this graphic,
we can determine the rate at which convergence occurs for both row and column clusters. Moreover,
this provides confirmation that our algorithm can indeed achieve good clusterings along both dimen-
sions. Plotting of the similarity measures and SSE is done with autoplot.biclustermd_sim() and
autoplot.biclustermd_sse(), methods added to autoplot() of ggplot2 (Wickham, 2009).

> autoplot(bc$Similarities, ncol = 3) +
+  theme_bw() +

+  theme(aspect.ratio = 1) +

+ scale_x_continuous(breaks = 0:9)

Adjusted Rand (HA) Jaccard Rand
1.00 /
0.754
Dimension
g
< 0501 Column
>
—— Row
0.254
0.00 4

0123456789 0123456789 012342526789
Iteration

Figure 2: Plot of similarity measures for the flights biclustering

In addition to the similarity plots, one can utilize the SSE graphic as an indication of convergence
to a (local) minimum biclustering. This can be seen in Figure 3. From this we can observe the rate of
decrease of the SSE as well as the relative difference between the first and final iteration. Observing
closely each of the three convergence criteria suddenly decrease in value along the columns, namely
from iteration three to four. The algorithm is simply (attempting to) obtain a lower SSE which may
result in column shuffles which differ from iteration to iteration.

> autoplot(bc$SSE) +
+  theme_bw() +
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+  theme(aspect.ratio = 1) +
+ scale_y_continuous(labels
+ scale_x_continuous(breaks

comma) +
0:9)

100,000

95,000 1

SSE

90,000 1

85,000 A

Iteration

Figure 3: SSE plot of flights biclustering

Traditionally visualizations of biclustering plots are in a heat map fashion. autoplot.biclustermd()
makes visual analysis of biclustering results easy by rendering a heat map of the biclustered data
and allows for additional customization. Each of Figure 4-7 provide an example of the flexibility of
this function. Recall that the algorithm uses purposeful randomness, so a replicated result may look
different.

In Figure 4, we provide the default visualization without additional parameters. The white space
represent cells without any observations which is directly useful for our interpretation, and the color
scale is represented on the same spread as the numerical response.

> autoplot(bc) +

+ scale_fill_viridis_c(na.value = 'white') +
+ labs(x = "Destination Airport”,

+ y = "Month”,

+ fill = "Average Delay")

Average Delay
90

60

Month

Destination Airport

Figure 4: A heat map of the flights biclustering without transforming colors.

Often it may aid in interpretation to run the data through an S-shaped function before plotting.
Two parameter arguments in autoplot() are transform_colors = TRUE and c where c is the constant
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to scale the data by before running it through a standard normal cumulative distribution function.
See Figure 5 for an illustration. Applying this transformation, one can immediately notice the distinct
dissimilarity between cells that were not clearly present in Figure 4.

> autoplot(bc, transform_colors = TRUE, c = 1/15) +
+ scale_fill_viridis_c(na.value = 'white') +

+ labs(x = "Destination Airport”,

+ y = "Month”,

+ fill = "Average Delay")

Average Delay

Month

il

Destination Airport

Figure 5: A heat map of the flights biclustering after transforming colors.

To further aid interpretations, we make use of reorder_biclust in Figure 6. This command
reorders row and column clusters from increasing to decreasing mean. In our fights dataset, this may
be particularly useful to determine if there is a slow shift in airport locations moving from a high to
low number of delays.

> autoplot(bc, reorder = TRUE, transform_colors = TRUE, ¢ = 1/15) +
+ scale_fill_viridis_c(na.value = 'white') +

+ labs(x = "Destination Airport”,

+ y = "Month”,

+ fill = "Average Delay")

Lastly, with large heat maps the authors have found it useful to zoom into selected row and column
clusters. In Figure 7, row clusters three and four and column clusters one and four are shown, using
the row_clusts and col_clusts arguments of autoplot(). Colors are not transformed.

> autoplot(bc, col_clusts = c(3, 4), row_clusts = c(1, 4)) +
+ scale_fill_viridis_c(na.value = 'white') +

+ labs(x = "Destination Airport”,

+ y = "Month",

+ fill = "Average Delay")

There are two additional visualizations that provide insight into the quality of each cell: mse_heatmap ()
and cell_heatmap(). mse_heatmap() gives the mean squared error (MSE) of each cell. Here, MSE
is defined as the mean squared difference between data values and the mean in each cell. Whereas
cell_heatmap() provides a heatmap with the total number of observations in the given cell. Combined,
these tools provide valuable insight into the homogeneity of each cell.

> mse_heatmap(bc) +

+  theme_bw() +

+ scale_fill_viridis_c() +

+ labs(fill = "Cell MSE") +

+ scale_x_continuous(breaks = 1:6)
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Month

Destination Airport

Figure 6: An ordered heat map of the flights biclustering after transforming colors
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Figure 7: A zoomed in view of the heat map of the biclustering
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Figure 8: A heat map of cell MSEs for the flights biclustering

> cell_heatmap(bc) +
+  theme_bw() +
+ scale_fill_viridis_c()

Cell Size

Row Cluster Index

2 3 4 5
Column Cluster Index

Figure 9: A heat map of cell sizes for the flights biclustering

Finally, for interpretation purposes, retrieving row or column names and their corresponding
clusters is easily done using the biclustermd method of row.names() (for rows) and use of a new
generic col.names () and its method col.names.biclustermd() (for columns). Two final examples are
given below showing the output of each function, which have class data. frame.

> row.names(bc) %>% head()

row_cluster name
1 1 January
2 1 April
3 2 February
4 2 March
5 2 August
6 3 May

> col.names(bc) %>% head()
col_cluster name

1 1 ABQ
2 1 ACK
3 1 AUS
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4 1 AVL
5 1 BGR
6 1 BON

Further capabilities

As previously mentioned, due to the purposeful randomness of initial row and column clusterings,
multiple runs of the algorithm can produce different results. Hence it is recommended to perform
several trials (with various parameters) and store the result which obtains the lowest SSE. These multi-
ple runs can easily be done in parallel using the tune_biclustermd() function with the parameters as
listed below. To utilize this, first a tuning grid must be defined as an input for tune_biclustermd().
Below we provide an illustration of the process.

¢ data: Dataset to bicluster. Must to be a data matrix with only numbers and missing values in
the data set. It should have row names and column names.

* nrep: dataset to bicluster. The number of times to repeat the biclustering for each set of
parameters. Default 10.

¢ parallel : Logical indicating if the user would like to utilize the foreach parallel backend.
Default is FALSE.

* ncores: The number of cores to use if parallel computing. Default 2.

* tune_grid: A data frame of parameters to tune over. The column names of this must match the
arguments passed to biclustermd().

> flights_grid <- expand.grid(

+ row_clusters = 4,

+ col_clusters = c(6, 9, 12),

+ miss_val = fivenum(flights),

+ similarity = c("Rand”, "Jaccard")
+

)

> flights_tune <- tune_biclustermd(
+ flights,

+ nrep = 10,

+ parallel = TRUE,

+  tune_grid = flights_grid

+)

The output of tune_biclustermd() is a list of class “biclustermd” and “list” containing the following:

* best_combn: The best combination of parameters
* best_bc: The minimum SSE biclustering using the parameters in best_combn

¢ grid: tune_grid with columns giving the minimum, mean, and standard deviation of the final
SSE for each parameter combination

¢ runtime: CPU runtime & elapsed time.

Users can easily identify which set of tuning parameters gives the best results and corresponding
performance with the below code. The minimum SSE is obtained when 12 column clusters are used,
the missing value used is —34, and the Rand similarity is used. A minimum SSE of 70,698 was
obtained in the 10 repeats with that combination, which is a 16% reduction in SSE from our original
parameter guesses above. Due to the unsupervised nature of biclustering, ultimately, it is the user’s
responsibility to choose reasonable number of row and column clusters for interpretations. Each
domain and application of biclustering may lead to a different number of desired row or column
clusters for a given array size. We simply utilize the SSE and convergence criteria as quantitative
measures in determining the quality of the biclustering result.

> flights_tune$grid[trimws(flights_tune$grid$best_combn) == "'x' ]
row_clusters col_clusters miss_val similarity min_sse mean_sse sd_sse best_combn
3 4 12 -34 Rand 70697.95 76581.85 4934.83 *

Any of the previously discussed exploratory functions can be used on the biclustering fit with the
best tuning parameters by accessing the best_bc element of flights_tune since it is a biclustermd
object:
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> flights_tune$best_bc

Data has 1260 values, 11.75% of which are missing

8 Iterations

Initial SSE = 184165; Final SSE = 69586

Rand similarity used; Indices: Columns (P) = 1, Rows (Q) =1

Finally, biclustermd also possesses a method for gather() (Wickham and Henry, 2019) which
provides the name of the row and column a data point comes from as well as its corresponding
row and column group association. This is particularly useful since we can easily determine the cell
membership of each row and column to do further analysis. Namely, given these associations one
can further analyze the quality of each cell and paired with domain knowledge of their data make
informed judgments about the value of the biclustering. The following output was created from
flights_tune$best_bc.

> gather(flights_tunes$best_bc) %>% head()

row_name col_name row_cluster col_cluster bicluster_no value
1 January ABQ 1 1 1 NA
2 March ABQ 1 1 1 NA
3 April ABQ 1 1 1 12.22222
4 January ACK 1 1 1 NA
5 March ACK 1 1 1 NA
6 April ACK 1 1 1 NA

Example with soybean yield data

For our next example, we perform biclustering on a dataset which has a larger fraction of missing data
to further show the practicability of our algorithm. Using data from a commercial soybean breeding
program, we consider 132 soybean varieties as rows, 73 locations as columns, and yield in bushels per
acre as the response. The locations span across the Midwestern United States and includes parts of
Illinois, Iowa, Minnesota, Nebraska, and South Dakota, and each of the 132 soybean varieties represent
a different genetic make-up. As one can imagine, not every soybean is grown in each location, as such
we obtain a dataset with approximately 72.9% missing values. One application of a dataset such as
this would be to determine if there are some subset of soybeans that perform consistently better (or
worse) in some locations than others. From a plant breeding perspective, it is of vital importance to
understand the relationship between the genetics and environments of crops, and identifying cells
non-overlapping homogeneous cells from biclustering can provide insights into this matter (Malosetti
et al., 2013).

The main purpose of this dataset is to demonstrate our algorithm on a dataset with a large amount
of missing values as well as show the usefulness of the tuning parameters. Below is our first trial on
the soybean yield data where we partition into 10 column clusters, 11 row clusters, and use the Jaccard
similarity measure.

> yield_bc <- biclustermd(

+ yield,

+ col_clusters = 10,

+ row_clusters = 11,

+ similarity = "Jaccard"”,

+ miss_val_sd = sd(yield, na.rm = TRUE),
+ col_min_num = 3,

+  row_min_num = 3

+)

> yield_bc

Data has 9636 values, 72.9% of which are missing

13 Iterations

Initial SSE = 239166; Final SSE = 51813, a 78.3% reduction
Jaccard similarity used; Indices: Columns (P) = 1, Rows (Q) =1

In observing Figure 10, we notice that perfect convergence through the Rand Index, adjusted
Rand Index, and Jaccard similarity; however, the similarities suggest that the columns converge more
quickly than the rows. This may be attributed to the high percentage of missing values in the rows of
the data table. That is, for each location there is more data available than there is for each soybean
variety. Again we notice decreases in the values for each of the three indices, but observing Figure
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11, we are assured that the algorithm is only making a column/row swap because a lower SSE is

obtainable.

> autoplot(yield_bc$Similarities, facet = TRUE, ncol = 3, size = @) +

+  theme_bw() +
+  theme(aspect.ratio = 1)

Adjusted Rand (HA) Jaccard Rand
1.004 /-—_/\/—\/‘
0.751
g
= 0.50
>
0.25 1
0.00
0.0 25 5.0 7.5 10.0 12.50.0 2.5 5.0 7.5 10.0 12.%0.0 2.5 5.0 7.5 10.0 125
Iteration

Figure 10: Plot of similarity measures for the soybean yield biclustering

> autoplot(yield_bc$SSE, size = 1) +
theme_bw() +

+  theme(aspect.ratio = 1) +

+ scale_y_continuous(labels = comma)

+
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Figure 11: SSE plot of soybean yield biclustering
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For the initial trial we observe that the Jaccard index converges in 13 iterations to an SSE value of
51,813. To see if it is possible to decrease this SSE even further, we test the impact of col_shuffles and
row_shuffles. Recall that these parameters determine how many row and column rearrangements
the algorithm makes before completing one iteration. Below we use tune_biclustermd() to test
combinations of col_shuffles and row_shuffles as well as its corresponding SSE. We define the tune
grid to mimic that of the yield_bc creation above, but let col_shuffles and row_shuffles take on
values in {1,3, 6} independent of each other. We repeat the biclustering ten times for each parameter,
specified by nrep = 10. Note that parallel = TRUE allows us to tune over the grid in parallel.

> yield_tbc <- tune_biclustermd(
+ yield,

+ nrep = 10,

+  tune_grid = expand.grid(

+ col_clusters = 10,
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)

yield_tbc$grid[, c('row_shuffles', 'col_shuffles', 'min_sse', 'sd_sse', 'best_combn')]

row_shuffles col_shuffles min_sse sd_sse best_combn
1 51202.74 2640.662

54073.92 2766.218

52203.23 3198.391

51296.99 1883.676

52869.85 2118.745

50530.38 2107.578 *

51442.19 1895.268

52111.31 2015.416

52870.18 2652.400

+ row_clusters = 11,

+ similarity = "Jaccard",

+ miss_val_sd = sd(yield, na.rm = TRUE),
+ col_min_num = 3,

+ row_min_num = 3,

+ row_shuffles = c(1, 3, 6),
+ col_shuffles = c(1, 3, 6)
),

+ parallel = TRUE,

+ ncores = 2

+

>

W oo N Ul Wi —
oW =0 w =0 Ww
OO W W W ===

Algorithm time study with movie ratings data

For our last example, we focus our attention on a movie ratings dataset obtained from MovieLens
(Harper and Konstan, 2015). If we consider movie raters as defining rows, movies as defining columns,
and a rating from 1-5 (with 5 being the most favorable) as a response, then biclustering can be used to
determine subsets of raters who have similar preferences towards some subset of movies.

The main topic of this section will be to perform time studies to test the scalability of our proposed
algorithm. In some applications, it is not uncommon to have a two-way data table with 10,000+ rows
or columns. Intuitively as the dimensions of the two-way data table increases so will the computational
time. In it is not uncommon for other biclustering algorithms to run for 24+ hours (Oghabian et al.,
2014). We ran the biclustering over a grid of 80 combinations of I rows, | columns, r row clusters, and
¢ column clusters with 30 replications for each combination. In addition to the four grid parameters,
we consider the following metrics which are byproducts of the four parameters: the size of the dataset
N = I x ], average row cluster size I/r, and average column cluster size J/c. Table 1 summarizes the
grid parameters, their byproducts and the defined lower and upper limits on each.

N=1Ix] I ] r c I/r J/c
Lower Limit 2,500 50 50 4 4 5 5
Min 18,146 86 98 4 4 5 5
Mean 665,842 784 839 42 45 49 47
Max 1,929,708 1,495 1,457 239 258 293 346

Upper Limit 2,225,000 1,500 1,500 300 300 375 375

Table 1: Summary of the movie data runtime grid with defined lower and upper limits

Table 2 gives a five number summary and the mean runtime in seconds paired with the parameters
which produced run times closest to each statistic. In all, we see that the algorithm can take less
than a second to run, while in the other extreme the algorithm requires 39 minutes to converge. It is
particularly interesting that for the two parameter combinations closest to the median run time, one
dataset is nearly twice the size of the other. Furthermore, note than the mean run time is more than
twice that of the median, but the size of the dataset is just 38% of that at the median. However, at the
mean, 3744 = 72 - 52 biclusters are computed, while at the medians, only 80 = 20 - 4 and 481 = 13 - 37
biclusters are computed. For a visual summary of the results, we point the reader to Figure 12.

Figure 12 plots run times versus the five parameters controlled for in the study as well as average
row cluster size, average column cluster size, and sparsity. We encourage the reader to personally
explore the results; the run time data is the runtimes dataset in the package. Moreover, Li et al. (2020),
provides further insights into the effect of sparsity on runtimes.

Finally, we address the trade-off between interpretability and computation time. Figure 13 plots
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Seconds I ] N r c Sparsity
Min 04 210 98 20,580 10 9 96.2%
Q1 247 820 184 150,880 53 12 98.2%
Median 63.6 988 1,240 1,225,120 20 4 98.5%
Median 635 501 1,302 652,302 13 37 98.0%
Mean 1375 1,084 427 462,868 72 52 98.4%
Q3 141.0 485 875 424,375 36 126 98.0%
Max 2,369.0 1,495 1,233 1,843,335 147 204 98.5%

Table 2: Five number summary and mean runtime in seconds along with parameters achieved at
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Figure 12: Relationship between movie grid parameters and elapsed time

elapsed time versus average cluster size on a doubly log 10 scales for row clusters (left) and column
clusters (right). Clearly, computation time can be decreased by increasing the average cluster size, but
doing so potentially reduces the interpretability of results; biclusters may be too large for certain use
cases. Keeping in mind that the y-axis is on a log 10 scale, increasing average cluster size will have
diminishing returns. Reviewing the plot on the right-hand side of the second row and the left-hand
side of row three in Figure 12 sheds more light into this notion.

Summary

Based on the work of (Li et al., 2020) we provide a user-friendly R implementation of their proposed
biclustering algorithm for missing data as well as a variety of visual aids that are helpful for biclustering
in general and biclustering with missing data specifically. The unique benefit biclustermd provides
is in its ability to operate with missing values. Compared to other packages which do not allow
incomplete data or make use of some sort of imputation, we approach this problem with a novel
framework that does not alter the structure of an inputted data matrix. Moreover, given the tunability
of our biclustering algorithm, users are able to run trials on numerous combinations in an attempt to
best bicluster their data.
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auditor: an R Package for Model-Agnostic

Visual Validation and Diagnostics
by Alicja Gosiewska and Przemystaw Biecek

Abstract

Machine learning models have successfully been applied to challenges in applied in biology,
medicine, finance, physics, and other fields. With modern software it is easy to train even a complex
model that fits the training data and results in high accuracy on test set. However, problems often
arise when models are confronted with the real-world data. This paper describes methodology and
tools for model-agnostic auditing. It provides functinos for assessing and comparing the goodness of
fit and performance of models. In addition, the package may be used for analysis of the similarity of
residuals and for identification of outliers and influential observations. The examination is carried out
by diagnostic scores and visual verification. The code presented in this paper are implemented in the
auditor package. Its flexible and consistent grammar facilitates the validation models of a large class
of models.

Introduction

Predictive modeling is a process using mathematical and computational methods to forecast outcomes.
Many algorithms in this area have been developed and novel ones are continuously being proposed.
Therefore, there are countless possible models to choose from and a lot of ways to train a new new
complex model. A poorly- or over-fitted model usually will be of no use when confronted with
future data. Its predictions will be misleading (Sheather, 2009) or harmful (O’Neil, 2016). That is why
methods that support model diagnostics are important.

Diagnostics are often carried out only by checking model assumptions. However, they are often
neglected for complex machine learning models and they may be used as if they were assumption-free.
Still, there is a need to verify their quality. We strongly believe that a genuine diagnosis or an audit
incorporates a broad approach to model exploration. The audit includes three objectives.

¢ Objective 1: Enrichment of information about model performance.
* Objective 2: Identification of outliers, influential and abnormal observations.

* Objective 3: Examination of other problems relating to a model by analyzing distributions
of residuals, in particular, problems with bias, heteroscedasticity of variance and autocorrelation
of residuals.

In this paper, we introduce the auditor package for R, which is a tool for diagnostics and visual
verification. As it focuses on residuals' and does not require any additional model assumptions,
most of the presented methods are model-agnostic. A consistent grammar across various tools
reduces the amount of effort needed to create informative plots and makes the validation more
convenient and available.

Diagnostic methods have been a subject of much re-
search (Atkinson, 1985). Atkinson and Riani (2012) focus
on graphical methods of diagnostics regression analy-
sis. Liu et al. (2017) present an overview of interactive
visual model validation. One of the most popular tools
for verification are measures of the differences between
the values predicted by a model and the observed values
(Willmott et al., 1985). These tools include Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE)
(Hastie et al., 2001). Such measures are used for well-
researched and easily interpretable linear model as well
as for complex models such as random forests (o, 1995),
gradient-boosted trees (Chen and Guestrin, 2016), or neu-
ral networks (Venables and Ripley, 2002).

Figure 1: Anscombe Quartet data sets are

identical when examined with he use of
However, no matter which measure of model per- simple summary statistics. The difference

formance we use, it does not reflect all aspects of the is noticeable after plotting the data.

model. For example, Breiman (2001) points out that a

linear regression model validated only on the basis of R?

IResidual of an observation is the difference between the observed value and the value predicted by a model.
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may lead to many false conclusions. The best known example of this issue is the Anscombe Quartet
(Anscombe, 1973). It contains four different data sets constructed to have nearly identical simple
statistical properties such as mean, variance, correlation, etc. These measures directly correspond
to the coefficients of the linear models. Therefore, by fitting a linear regression to the Anscombe
Quartet we obtain four almost identical models (see Figure 1). However, residuals of these models
are very different. The Anscombe Quartet is used to highlight that the numerical measures should be
supplemented by graphical data visualizations.

The analysis of diagnostics is well-researched for linear and generalized linear models. The said
analysis is typically done by extracting raw, studentized, deviance, or Pearson residuals and examining
residual plots. Common problems with model fit and basic diagnostics methods are presented in
Faraway (2002) and Harrell Jr. (2006)

Model validation may involve both checking the overall trend in residuals and looking at residual
values of individual observations (Littell et al., 2007). Gatecki and Burzykowski (2013) discussed
methods based on residuals for individual observation and groups of observations.

Diagnostics methods are commonly used for linear regression (Faraway, 2004). Complex models
are treated as if they were assumption-free, which is why their diagnostics is often ignored. Con-
sidering the above, there is a need for more extensive methods and software dedicated for model
auditing. Many of diagnostic tools, such as plots and statistics developed for linear models, are still
useful for exploring machine learning models. Applying the same tools to all models facilitates their
comparison.

The paper is organized as follows. Section 16.2 summarizes related work and state of the art.
Section 16.3 contains an architecture of the auditor package. Section 16.4 provides the notation.
Selected tools that help to validate models are presented in Section 16.5 and conclusions can be found
in Section 16.6.

Related work

In this chapter, we overview common methods and tools for auditing and examining the validity of
the models. There are several attempts to validate. They include diagnostics for predictor variables
before and after model fit, methods dedicated to specific models, and model-agnostic approaches.

Data diagnostics before model fitting

The problem of data diagnostics is related to the Objective 2 presented in the Introduction, that is, the
identification of problems with observations. There are several tools that address this issue. We review
the most popular of them.

* One of the tools that supports the identification of errors in data is the dataMaid package
(Petersen and Ekstrom, 2018). It creates a report that contains summaries and error checks for
each variable in data. Package lumberjack (van der Loo, 2017) provides row-wise analysis. It
allows for monitoring changes in data as they get processed. The validatetools (de Jonge and
van der Loo, 2018) is a package for managing validation rules.

* The datadist function from rms package (Harrell Jr, 2018) computes distributional summaries
for predictor variables. They include the overall range and certain quantiles for continuous
variables, as well as distinct values for discrete variables. It automates the process of fitting and
validating several models due to storing model summaries by datadist function.

¢ While above packages use pipeline approaches, there are also tools that focus on specific step of
data diagnostic. The package corrgram (Wright, 2018) calculates a correlation of variables and
displays corrgrams. Corrgrams (Friendly, 2002) are visualizations of correlation matrices, that
help to identify the relationship between variables.

Diagnostics methods for linear models

As linear models have a very simple structure and do not require high computational power, they have
been and still are used very frequently. Therefore, there are many tools that validate different aspects
of linear models. Below, we overview the most widely known tools implemented in R packages.

* The stats package provides basic diagnostic plots for linear models. Function plot generates
six types of charts for "1Im" and "glm" objects, such as a plot of residuals against fitted values,
a scale-location plot of +/|residuals| against fitted values and a normal quantile-quantile plot.
These visual validation tools may be addressed to the Objective 3 of diagnostic, related to the
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examination of model by analyzing the distribution of residuals. The other three plots, that

include: a plot of Cook’s distances, a plot of residuals against leverages, and a plot of Cook’s
leverage

distances against T—Teverage

(Objective 1).

* Package car (Fox and Weisberg, 2011) extends the capabilities of stats by including more types of
residuals, such as Pearson and deviance residuals. It is possible to plot against values of selected
variables and to group residuals by levels of factor variables. What is more, car provides more
diagnostic plots such as, among others, partial residual plot (crPlot), index plots of influence
(infIndexPlot) and bubble plot of studentized residuals versus hat values (influencePlot).
These plots allow for checking both the effect of observation and the distribution of residuals,
what address to the Objective 2 and the Objective 3 respectively.

may be addressed to the identification of influential observations

* A linear regression model is still one of the most popular tools for data analysis due to its simple
structure. Therefore, there is a rich variety of methods for checking its assumptions, for example,
the normality of residual distribution and the homoscedasticity of the variance.

The package nortest (Gross and Ligges, 2015) provides five tests for normality: the Anderson-
Darling (Anderson and Darling, 1952), the Cramer-von Mises (Cramer, 1928; Von Mises,
1928), the Kolmogorov-Smirnov (Stephens, 1974), the Pearson chi-square (F.R.S., 1900), and
the Shapiro-Francia (Sanford Shapiro and S. Francia, 1972) tests. The Imtest package (Zeileis
and Hothorn, 2002) also contains a collection of diagnostic tests: the Breusch-Pagan (Breusch
and Pagan, 1979), the Goldfield-Quandt (Goldfeld and Quandt, 1965) and the Harrison-McCabe
(Harrison and McCabe, 1979) tests for heteroscedasticity and the Harvey-Collier (Harvey and
Collier, 1977), the Rainbow (Utts, 1982), and the RESET (Ramsey, 1969) tests for nonlinearity
and misspecified functional form. A unified approach for examining, monitoring and dating
structural changes in linear regression models is provided in strucchange package (Zeileis et al.,
2002). It includes methods to fit, plot and test fluctuation processes and F-statistics. The gvlima
implements the global procedure for testing the assumptions of the linear model (find more
details in Pefia and Slate (2006)).

The Box-Cox power transformation introduced by Box and Cox (1964) is a way to transform the
data to follow a normal distribution. For simple linear regression, it is often used to satisfy the
assumptions of the model. Package MASS (Venables and Ripley, 2002) contains functions that
compute and plot profile log-likelihoods for the parameter of the Box-Cox power transformation.

® The broom package (Robinson, 2018) provides summaries for about 30 classes of models.
It produces results, such as coefficients and p-values for each variable, R?, adjusted R?, and
residual standard error.

Other model-specific approaches

There are also several tools to generate validation plots for time series, principal component analysis,
clustering, and others.

¢ Tang et al. (2016) introduced the ggfortify interface for visualizing many popular statistical
results. Plots are generated with ggplot2 (Wickham, 2009), what makes them easy to modify.
With one function autoplot it is possible to generate validation plots for a wide range of models.
It works for, among others, 1m, glm, ts, glmnet, and survfit objects.
The autoplotly (Tang, 2018) package is an extension of ggfortify and it provides functionalities
that produce plots generated by plotly (Sievert et al., 2017). This allows for both modification
and interaction with plots.
However, ggorftify and autoplotly do not support some popular types of models, for instance,
random forests from randomForest (Liaw and Wiener, 2002) and ranger (Wright and Ziegler,
2017) packages.

e The hnp package (Moral et al., 2017) provides half-normal plots with simulated envelopes.
These charts evaluate the goodness of fit of any generalized linear model and its extensions. It
is a graphical method for comparing two probability distributions by plotting their quantiles
against each other. The package offers a possibility to extend the hnp for new model classes.
However, this package provides only one tool for model diagnostic. In addition, plots are not
based on ggplot2, what makes it difficult to modify them.
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Model-agnostic approach

The tools presented above target specific model classes. The model-agnostic approach allows us to
compare different models.

e The DALEX (Descriptive mAchine Learning EXplanations) (Biecek, 2018) is a methodology
for exploration of black-box models. Main functionalities focus on understanding or proving
how the input variables impact on final predictions. There are also two simple diagnostics:
reversed empirical cumulative distribution function for absolute values of residuals and box
plot of absolute values of residuals. As methods in the DALEX are model-agnostic, they allow
for comparison of two or more models.

¢ The package iml (Molnar et al., 2018) also contains methods for structure-agnostic exploration
of model. For example, a measure of a feature’s importance by calculating the change of the
model performance after permuting values of a variable.

Model-agnostic audit

In this paper, we present the auditor package for R, which fills out the part of model-agnostic validation.
As it expands methods used for linear regression, it may be used to verify any predictive model.

Package Architecture

The auditor package works for any predictive model which returns a numeric value. It offers a consis-
tent grammar of model validation, what is an efficient and convenient way to generate plots and diag-
nostic scores. A diagnostic score is a number that evaluates one of the properties of a model. That might
be, for example, an accuracy of model, an independence of residuals or an influence of observation.

Figure 2 presents the architecture of the package. The auditor provides 2 pipelines for model
validation. First of them consists of two steps. Function audit wraps up the model with meta-data, then
the result is passed to the plot or score function. Second pipeline includes an additional step, which
consists of calling one of the functions that generate computations for plots and scores. These functions
are: modelResiduals, modelEvaluation, modelFit, modelPerformance, and observationInfluence.
Further, we call them computational functions. Results of these functions are tidy data frames
(Wickham, 2014).

modelResiduals()

mode1EYa1uation() plot (type=.)

mode] modelFit() ccore(typer.)

data audit() modelPerformace() ypes=..
explainer observationInfluence()

plot(type=..)
score(type=..)

Figure 2: Architecture of the auditor. The blue color indicates the first pipeline, while orange
indicates the second. Function audit takes model and data or "explainer” object created with
the DALEX package.

Both pipelines for model audit are compared below.

1. model %>% audit() %>% computational function %>% plot(type=...)
We recommend this pipeline. Function audit wraps up a model with meta-data used for model-
ing and creates a "modelAudit” object. One of the computational functions takes "modelAudit”
object and computes the results of validation. Then, outputs may be printed or passed to
functions score and plot with defined type. We describe types of plots in Chapter 16.5. This
approach requires one additional function within the pipeline. However, once created output
of the computational function contains all necessary calculations for related plots. Therefore,
generating multiple plots is fast.

2. model %>% audit() %>% plot(type=...)
This pipeline is shorter than the previous one. The only difference is that it does not include
computational function. Calculations are carried out every time a generic plot function is called.
Omitting one step might be convenient for ad-hoc model analyses.
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Implemented types of plots are presented in Table 1. Scores are presented in Table 2. All plots are
generated with ggplot2, what provides a convenient way to modify and combine plots.

Plot Function plot(type =...) Reg. Class.
Autocorrelation Function modelResiduals "ACF" + +
Autocorrelation modelResiduals "Autocorrelation” + +
Cooks’s Distances observationInfluence "CooksDistance” + +
Half-Normal modelFit "HalfNormal” + +
LIFT Chart modelEvaluation "LIFT” +
Model Correlation modelResiduals "ModelCorrelation” + +
Model PCA modelResiduals "ModelPCA" + +
Model Ranking modelPerformance "ModelRanking” + +
Predicted Response modelPerformance "ModelPerformance” + +
REC Curve modelResiduals "REC" + +
Residuals modelResiduals "Residual” + +
Residual Boxplot modelResiduals "ResidualBoxplot” + +
Residual Density modelResiduals "ResidualDensity” + +
ROC Curve modelEvaluation "ROC" +
RROC Curve modelResiduals "RROC" + +
Scale-Location modelResiduals "ScalelLocation” + +
Two-sided ECDF modelResiduals "TwoSidedECDF" + +

Table 1: Columns contain respectively: name of the plot, name of the computational function, value
for type parameter of the function plot, indications whether the plot can be applied to regression and
classification tasks.

Score Function score(type = ...) Reg. Class.
Cook’s Distance observationInfluence "CooksDistance” + +
Durbin-Watson modelResiduals "DW" + +
Half-Normal modelFit "HalfNormal” + +
Mean Absolute Error modelResiduals "MAE" + +
Mean Squared Error modelResiduals "MSE" + +
Area Over the REC modelResiduals "REC” + +
Root Mean Squared Error modelResiduals "RMSE" + +
Area Under the ROC modelEvaluation "ROC" +
Area Over the RROC modelResiduals "RROC" + +
Runs modelResiduals "Runs” + +
Peak modelResiduals "Peak"” + +

Table 2: Columns contain respectively: name of a score, name of a computational function, value for
type parameter of function the score, indications whether the score can be applied to regression and
classification tasks.

Notation

Let us use the following notation: x; = (x§1>,x52), ...,xfp)) € X C RPisavectorinspace X, y; € Ris

an observed response associated with x;. A single observation we denote as a pair (y;, x;) and 7 is
the number of observations.

Let us denote a model as a function f : X — R. Predictions of the model f for particular
observation we shall denote as

f(xi) = 4. 1)

The row residual, or simply the residual, is the difference between the observed value y; and the
predicted value 1j;. We shall denote residual of particular observation as

ri =Yyi— i 2

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 90

Illustrations

Diagnostics allows for evaluation of different properties of a model. They may be related to the
following questions: Which model has better performance? Does the model fit data? Which observa-
tions are abnormal? These questions are directly related to the diagnostics objectives described in the
Introduction. First of them refers to the evaluation of a model performance, which was proposed as
the Objective 1. The second question concerns the examination of residuals distribution (Objective 3).
The last one refers to outliers and influential observations (Objective 2).

In this Section we illustrate chosen validation tools that allow for exploration of the above issues.

To demonstrate applications of the auditor, we use the data set apartments available in the DALEX
package. First, we fit two models: simple linear regression and random forest.

library("auditor")
library("DALEX")
library("randomForest")

Im_model <- 1Im(m2.price ~ ., data = apartments)
set.seed(59)
rf_model <- randomForest(m2.price ~ ., data = apartments)

The next step creates "modelAudit” objects related to these two models.

Im_audit <- audit(lm_model, label = "1m",

data = apartmentsTest, y = apartmentsTest$m2.price)
rf_audit <- audit(rf_model, label = "rf",

data = apartmentsTest, y = apartmentsTest$m2.price)

Below, we create objects of class "modelResidual”, which are needed to generate plots. Parame-
ter variable determines the order of residuals in the plot. When the variable argument is set to
"Fitted values" residuals are sorted by values of predicted responses. Entering a name of a variable
"m2.price” implies that residuals will be in order of this variable.

Im_res_fitted <- modelResiduals(lm_audit, variable = "Fitted values")

rf_res_fitted <- modelResiduals(rf_audit, variable = "Fitted values")

Im_res_observed <- modelResiduals(lm_audit, variable = "m2.price")

rf_res_observed <- modelResiduals(rf_audit, variable = "m2.price")
Model Ranking Plot

In this subsection, we propose a Model Ranking plot which compares models performance across
multiple measures (see Figure 3). The implemented measures are listed in Table 2 in Chapter 16.3. The
descriptions of all scores are in (Gosiewska and Biecek, 2018).

Model Ranking Radar plot consists of two parts. On the left side there is a radar plot. Colors
correspond to models, edges to values of scores. Score values are inverted and rescaled to [0, 1].

Let us use the following notation: m; € M is a model in a finite set of models M, where | M| =k,
score : M — R is aloss function for the model under consideration. Higher values mean worse model
performance. The score(m;) is a performance of model m;.

Definition 16.5.1. We define the inverted score of model m; as

1
invscore(m;) = score(my) jr}linkscore(mj). (3)
i) j=1..

Models with the larger invscore are closer to the centre. Therefore, the best model is located the
farthest from the center of the plot. On the right side of the plot is a table with results of scoring. The
third column contains scores scaled to one of the models.

Let m; € M where!l € {1,2, ..., k} be a model to which we scale.
Definition 16.5.2. We define the scaled score of model m; to model m; as

score(m
scaled;(m;) = W. 4)
1

As values of scaled;(m;) are always between 0 and 1, comparison of models is easy, regardless of
the ranges of scores.
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The plot below is generated by plot function with parameter type = "ModelRanking” or by
function plotModelRanking. The scores included in the plot may be specified by scores parameter.

rf_mp <- modelPerformance(rf_audit)
Im_mp <- modelPerformance(1lm_audit)
plot(rf_mp, lm_mp, type = "ModelRanking")

Model Ranking Radar

inv MAE
1

name label values scaled
MAE rf  2.16e+02 1.000
MAE Im 2.63e+02 0.821
MSE rf 821e+04 1.000
MSE Im 8.01e+04 1.025
REC rf 2.16e+02 1.000
REC Im 2.63e+02 0.821

RROC rf 3.32e+12 1.000

RROC Im 3.24e+12 1.024

inv REC

Figure 3: Model Ranking Plot. Random forest (red) has better performance in aspect of MAE and REC
scores, while linear model (blue) is better in aspect of MSE and RROC scores.

REC Curve Plot

Regression Error Characteristic (REC) curve (see Figure 4) is a generalization of Receiver Operating
Characteristic (ROC) curve for binary classification (Swets, 1988).

REC curve estimates the Cumulative Distribution Function of the error. On the x axis of the plot
there is an error tolerance. On the y axis there is an accuracy at the given tolerance level. Bi and
Bennett (2003) define the accuracy at tolerance € as a percentage of observations predicted within the
tolerance €. In other words, residuals larger than € are considered as errors.

Let us consider pairs (y;, x;) introduced in the beginning of Chapter 16.5. Bi and Bennett (2003)
define an accuracy as follows.

Definition 16.5.3. An accuracy at tolerance level € is given by

() oss(f(xi)y) i =1, b
n

acc(e)

©)

REC Curves implemented in the auditor are plotted for a special case of Definition 16.5.3 where
the loss is defined as

loss(f (xi),yi) = 1f (xi) = yil = |ril- )

The shape of the curve illustrates the behavior of errors. The quality of the model can be evaluated
and compared for different tolerance levels. The stable growth of the accuracy does not indicate any
problems with the model. A small increase of accuracy near 0 and the areas where the growth is fast
signalize bias of the model predictions.

The plot below is generated by plot function with parameter type = "REC" or by plotREC function.

plot(rf_res_fitted, lm_res_fitted, type = "REC")
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REC Curve

100 %
90 %
80 %
70 %
60 % label

50 % rf
40 % — Im
30 %
20 %
10 %

0%

0 500 1000
error tolerance

Figure 4: REC curve. Curve for linear model (blue) suggests that the model is biased. It displays poor
accuracy when the tolerance € is small. However, once € exceeds the error tolerance 130, accuracy
rapidly increases. The random forest (red) has a stable increase of accuracy when compared to the
linear model. However, there is s fraction of large residuals.

As often it is difficult to compare models on the plot, there is an REC score implemented in the
auditor. This score is the Area Over the REC Curve (AOC), which is a biased estimate of the expected
error for a regression model. As Bi and Bennett (2003) proved, AOC provides a measure of the overall
performance of regression model.

Scores may be obtained by score function with type = "REC" or scoreREC function.

scoreREC(1m_res_fitted)
scoreREC(rf_res_fitted)

Residual Boxplot Plot

Residual boxplot shows the distribution of the absolute values of residuals ;. They may be used
for analysis and comparison of residuals. Example plots are presented in Figure 5. Boxplots (Tukey,
1977) usually consist of five components. The box itself corresponds to the first quartile, median,
and third quartile. The whiskers extend to the smallest and largest values, no further than 1.5 of
Interquartile Range (IQR) from the first and third quartile respectively. Residual boxplots consists of
a sixth component, namely a red dot which stands for Root Mean Square Error (RMSE). In case of
an appropriate model, most of the residuals should lay near zero. A large spread of values indicates
problems with a model.

The plot presented below is generated by plotResidualBoxplot or by plot function with parame-
ter type = 'ResidualBoxplot' function.

plot(lm_res_fitted, rf_res_fitted, type = "ResidualBoxplot")
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Boxplots of | residuals |
Red dot stands for root mean square of residuals

Im
label
‘ rf
- Im
rf

0 500 1000

Figure 5: Boxplots of absolute values of residuals. Dots are in similar places, hence RMSE for both
models is almost identical. However, the distribution of residuals of these two models is different. For
the linear model (blue), most of the residuals are around the average. For the random forest (red),
most residuals are small. Nevertheless, there is also a fraction of large residuals.

Residual Density Plot

Residual Density plot detects the incorrect behavior of residuals. An example is presented in Figure 6.
On the plot, there are estimated densities of residuals. For some models, the expected shape of density
derives from the model assumptions. For example, simple linear model residuals should be normally
distributed. However, even if the model does not have an assumption about the distribution of
residuals, such a plot may be informative. If most of the residuals are not concentrated around zero,
it is likely that the model predictions are biased. Values of errors are displayed as marks along the
x axis. That makes it possible to ascertain whether there are individual observations or groups of
observations with residuals significantly larger than others.

The plot below is generated by plotResidualDensity function or by plot function with parameter
type = "ResidualDensity”.

plot(rf_res_observed, lm_res_observed, type = "ResidualDensity"”)
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Figure 6: Residual Density Plot. The density of residuals for the linear model (blue) forms two peaks.
There are no residuals with values around zero. Residuals do not follow the normal distribution, what
is one of the assumptions of the simple linear regression. There is an asymmetry of residuals generated
by random forest (red).

Two-sided ECDF Plot

Two-sided ECDF plot (see Figure 7) shows an Empirical Cumulative Distribution Functions (ECDEF)
for positive and negative values of residuals separately.

Let xq, ..., X, be a random sample from a cumulative distribution function F(t). The following
definition comes from van der Vaart (2000).

Definition 16.5.4. The empirical cumulative distribution function is given by
1 n
Fa(t) = Y Ui <) 7)
i=1

Empirical cumulative distribution function presents a fraction of observations that are less than or
equal to f. It is an estimator for the cumulative distribution function F(#).

On the positive side of the x-axis, there is the ECDF of positive values of residuals. On the negative
side, there is a transformation of ECDF:

Frev(t) :17F(t)' 8

Let ny and np be numbers of negative and positive values of residuals respectively. Negative part of
the plot is normalized by multiplying it by the ratio of the nyy over ny + np. Similarly, positive part is
normalized by multiplying it by the ratio of the np over ny + np. Due to the applied scale, the ends of
the curves add up to 100% in total. The plot shows the distribution of residuals divided into groups
with positive and negative values. It helps to identify the asymmetry of the residuals. Points represent
individual error values, what makes it possible to identify "outliers’.

The plot below is generated by plotTwoSidedECDF function or by plot function with parameter
type = "TwoSidedECDF".

plot(rf_res_fitted, 1m_res_fitted, type = "TwoSidedECDF")
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Figure 7: Two-sided ECDF plot. The plot shows that majority of residuals for the random forest (red)
is smaller than residuals for the linear model (blue). However, random forest has also fractions of
large residuals.

Conclusion and future work

In this article, we presented the auditor package and selected diagnostic scores and plots. We dis-
cussed the existing methods of model validation and proposed new visual approaches. We also
specified three objectives of model audit (see Section 16.1), proposed relevant verification tools, and
demonstrated their usage. Model Ranking Plot and REC Curve enrich the information about model
performance (Objective 1). Residual Boxplot, Residual Density, and Two-Sided ECDF Plots expand the
knowledge about the distribution of residuals (Objective 3). What is more, the latter two tools allow
for identification of outliers (Objective 2). Finally, we proposed two new plots, the Model Ranking
Plot and the Two-Sided ECDF Plot.

We implemented all the presented scores and plots in the auditor package for R. The included
functions are based on a uniform grammar introduced in Figure 16.3. Documentation and examples
are available at https://mi2datalab.github.io/auditor/. The stable version of the package is on
CRAN, the development version is on GitHub (https://github.com/MI2Datalab/auditor). A more
detailed description of methodology is available in the extended version of this paper on arXiv:
https://arxiv.org/abs/1809.07763 (Gosiewska and Biecek, 2018).

There are many potential areas for future work that we would like to explore, including more
extensions of model-specific diagnostics to model-agnostic methods and residual-based methods for
investigating interactions. Another potential aim would be to develop methods for local audit based
on the diagnostics of a model around a single observation or a group of observations.
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The R Package trafo for Transforming
Linear Regression Models

by Lily Medina, Ann-Kristin Kreutzmann, Natalia Rojas-Perilla and Piedad Castro

Abstract Researchers and data-analysts often use the linear regression model for descriptive, predictive,
and inferential purposes. This model relies on a set of assumptions that, when not satisfied, yields
biased results and noisy estimates. A common problem that can be solved in many ways — use of less
restrictive methods (e.g. generalized linear regression models or non-parametric methods ), variance
corrections or transformations of the response variable just to name a few. We focus on the latter
option as it allows to keep using the simple and well-known linear regression model. The list of
transformations proposed in the literature is long and varies according to the problem they aim to
solve. Such diversity can leave analysts lost and confused. We provide a framework implemented
as an R-package, trafo, to help select suitable transformations depending on the user requirements
and data being analyzed. The package trafo contains a collection of selected transformations and
estimation methods that complement and increase the breadth of methods that exist in R.

Introduction

To study the relation between two or more variables, the linear regression model is one of the most
employed statistical methods. For an appropriate usage of this model, a set of assumptions needs
to be fulfilled. These assumptions are, among others, related to the functional form and to the error
terms, such as linearity and homoscedasticity. However, in practical applications, these assumptions
are not always satisfied. This leads to the question of how to move on with the analysis in such cases.
One way to proceed is to conduct the analysis ignoring the model assumption violations which is,
of course, not recommended as it would likely yield misleading results. An alternative solution is to
use more complex methods such as generalized linear regression models or non-parametric methods,
as they might fit the data and problem better. A third method—and the focus of the present work-
is the application of suitable transformations. Throughout the current manuscript, we use the term
transformations to refer to the application of monotonic functions to the response variable of a linear
regression model. For more flexible transformation functions, please refer to (e.g.) Hothorn et al.
(2018).

Transformations have the potential to correct certain violations of model assumptions and by
doing so, allow an analysis to continue with the linear regression model. Due to its convenience,
transformations such as the logarithm or the Box-Cox (Box and Cox, 1964) are commonly applied in
many branches of sciences; for example in economics (Hossain, 2011) and neuroscience (Morozova
etal., 2016). In order to simplify the choice and the usage of transformations in the linear regression
model, the R package trafo (Medina et al., 2018) is developed. The present work is inspired by the
framework proposed in Rojas-Perilla (2018, pp. 9-45) and extends other existing R packages that
provide transformations.

Many packages that contain transformations do not specifically focus on the use of transformations
(Venables and Ripley, 2002; Fox and Weisberg, 2011; Molina and Marhuenda, 2015; Ribeiro Jr. and
Diggle, 2016). They often only include widely used transformations like the logarithmic or the
Box-Cox transformation family. The package car (Fox and Weisberg, 2011) expands the selection of
transformations; it includes the Box-Cox, the Tukey (Tukey, 1957), and the Yeo-Johnson (Yeo and
Johnson, 2000) transformation families, and uses the maximum likelihood approach for the estimation
of the transformation parameter (Box and Cox, 1964). The package rcompanio (Mangiafico, 2019)
focuses on the Tukey transformation with estimation via goodness of fit tests. In addition to the
logarithm and Box-Cox, the package bestNormalize (Peterson, 2019) also includes the glog (see e.g.
Durbin et al., 2002) and Yeo-Johnson transformations. An exponential transformation proposed by
Manly (1976) is provided in the package caret (Kuhn, 2008) and the multiple parameter Johnson
transformation (Johnson, 1949) in the packages Johnson (Fernandez, 2014) and jtrans (Wang, 2015).
While the packages MASS (Venables and Ripley, 2002) and car (Fox and Weisberg, 2011) solely provide
the maximum likelihood approach for the estimation of the transformation parameter for the Box-Cox
family, the package AID (Dag et al., 2017) includes a wide range of methods, mostly based on goodness
of fit tests like the Shapiro-Wilk or the Anderson-Darling test. Though the use of these methods is
limited to the Box-Cox transformation. For a summary of the various transformations available in R
packages, please see Table 1.

It is noticeable that most of the above-mentioned packages do not help the user in the process
of deciding which transformation is actually suitable according to the users needs. Furthermore,
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Table 1: Overview of available transformations and estimation methods in R packages

AID DbestNormalize car caret Johnson jtrans MASS rcompanion trafo

Transformation

Log X
Log (shift) X
Glog

Neglog

Reciprocal X
Tukey

Box-Cox X X
Box-Cox (shift) X

Log-shift opt

Bickel-Docksum

Yeo-Johnson X X X X X
Square Root (shift)

Manly X

Modulus

Dual

Gpower

Customized

> X X
> X
> X X X X

> X X X

M X X X XX X X X XX

Estimation method

Maximum likelihood theory X X X X
Distribution moments optimization

Divergence minimization

Via goodness of fit tests X X X
Rank-mapping X

Via percentiles X

> X X

most packages do not provide tools to “eyeball” whether the employed transformation improves
the data with regard to fulfilling the model assumptions. Package trafo combines and extends the
features provided by the packages mentioned above. Additionally to transformations that are already
provided by existing packages, the trafo package includes, among others, the Bickel-Doksum (Bickel
and Doksum, 1981), modulus (John and Draper, 1980), the neglog (Whittaker et al., 2005) and glog
(see e.g. Durbin et al., 2002) transformations that are modifications of the Box-Cox and the logarithmic
transformation in order to deal with negative values in the response variable. The selection of
estimation methods for the transformation parameter is enlarged by methods based on moments and
divergence measures (see e.g. Taylor, 1985; Yeo and Johnson, 2000; Royston et al., 2011). The main
benefits of the package trafo can be summarized as follows:

* An initial check can be conducted that helps to decide if and which transformation is useful for
the researchers’ needs.

¢ The untransformed model and a model with a transformed dependent variable can be easily
compared under the light of the model assumptions (more on this below). Alternatively, two
transformed models can be run and compared simultaneously

* Extensive diagnostics are provided in order to check if the transformation helps to fulfill the
model assumptions normality, homoscedasticity, and linearity.

Transformations and estimation methods

The equation describing and summarizing the relationship between a continuous outcome variable
y and different covariates x (either categorical or continuous) is defined by y; = xlTﬁ + e;, with
i =1,...,n. This is also known as the linear regression model and is composed by a deterministic and
a random component, which rely on different assumptions. Among others, these assumptions can be
summarized as follows:

¢ Normality (N): The conditional distribution of y given x follows a normal distribution. This is
an optional, but often desired assumption (e.g. Box and Cox (1964)).

* Homoscedasticity (H): The conditional variance of y given x is constant.

¢ Linearity (L): The conditional expectation of the outcome variable y given the continuous
covariates x is a linear function in x.

As already mentioned, different approaches have been proposed to overcome the violations of
these model assumptions. Some of them include alternative estimation methods of the regression
terms or more complex regression models (see e.g. Nelder and Wedderburn, 1972; Berry, 1993). In
the present manuscript, we focus on defining a parsimonious modification for the model, such as the
usage of non-linear transformations of the outcome variable. The transformations implemented in the
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package trafo particularly help to achieve normality. However, most of them simultaneously correct
other assumptions (see also Table 2 and Table 3).

We classify transformations in two groups: non-parametric transformations and data-driven transfor-
mations with a transformation parameter that needs to be estimated. The first set of transformations
presented in Table 2 comprises, among others, the logarithmic transformation, which is considered
due to its popularity and straightforward application. The data-driven transformations presented in

Table 2: Non-parametric transformations

Transformation  Source Formula Support N H
Log (shift) Box and Cox (1964) log(y +s) yeE{-s0} X X X
Glog Rocke and Durbin (2001)  log(y + /¥*>+ 1) yeR X X X

Durbin et al. (2002)

Huber et al. (2002, 2003)
Neglog Whittaker et al. (2005) Sign(y)log(Jy| +1) yeR
Reciprocal Tukey (1957 J y#0

> X

Table 3 are dominated by the Box-Cox transformation and its modifications or alternatives, e.g. the
modulus or Bickel-Doksum transformation. More flexible versions of the logarithmic transformation,
as the log-shift opt, or the Manly transformation, an exponential transformation, are also included in
the package trafo.

Table 3: Data-driven transformations.

Transformation Source Formula Support N H L
[ L .
Box-Cox (shift) Box and Cox (1964) A ifA#0; y € {—s;00} X X X
log(y+s) ifA=0.
Log-shift opt Feng et al. (2016) log(y +A) ye{-s0} X X X
i ick . . ly/sign(y)-1
Bickel-Docksum Bickel and Doksum (1981) EEEE— i A >0 yeR X X

A
el A £ 0y >0
log(y+1) ifA=0,y>0;

Yeo-Johnson Yeo and Johnson (2000) 2A ) yEeR X X
UE Tl A £2,y <0
)
—log(1—-y) ifA=2y<0.
Square Root (shift) ~ Medina et al. (2018) Vy+A y€R X X
A .
Manly Manly (1976) o EA#D yeR x X
: y if A =0.
; (yl+10A -1 . .
Modulus John and Draper (1980) S?gn(y) A %f AF#D; y€R X
Sign(y) log (Jy| +1) ifA =0.
W .
Dual Yang (2006) n A0 y>0 x
log(y) ifA=0.
/A -1 ; .
Gpower Kelmansky et al. (2013) x ifA#£0; yeR X
log(y +/y*>+1) ifA=0.

Table 2 and 3 provide information about the range y that is supported by the transformation. Some
transformations are only suitable for positive values of y. This is generally true for the logarithmic
and Box-Cox transformations. However, in case that the dependent variable contains negative values,
the values are shifted by a deterministic shift s such that y +s > 0 by default in package trafo.
Furthermore, the tables highlights which assumptions the transformation helps to achieve. Kindly
note that we are proposing general suggestions and the benefits of transformations depend on the
data. For specific properties of each transformation we refer to the further references. The square root
shift transformation with a data-driven shift in analogy to the log-shift opt transformation is, to the
best of our knowledge, firstly implemented in this work. In contrast, a square root transformation
with deterministic shift, for example, is suggested in Bartlett (1947).

Below, we summarize the collection of methods included in trafo to estimate the parameters of the
transformations presented in Table 3. The benefit of each estimation method depends on the research
analysis and the underlying data.

e Maximum likelihood theory (Box and Cox, 1964)

* Distribution moments optimization: Skewness or kurtosis (Carroll and Ruppert, 1987; Royston
et al., 2011; Rojas-Perilla, 2018)

¢ Divergence minimization: Following Kolmogorov-Smirnov (KS), Cramér-von-Mises (KM) or
Kullback-Leibler (KL) measurements (Cramér, 1928; Kolmogorov, 1933; Smirnov, 1939; Kullback
and Leibler, 1951; Hernandez and Johnson, 1980; Rojas-Perilla, 2018)
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Table 4: Diagnostic checks provided in the package trafo.

Assumption Diagnostic check Fast check

Normality Skewness and kurtosis X
Shapiro-Wilk/ Anderson-Darling test X
Quantile-quantile plot
Histograms

Homoscedasticity =~ Breusch-Pagan test X

Residuals vs. fitted plot
Scale-location

Linearity Scatter plots between y and x X
Observed vs. fitted plot

The maximum likelihood estimation method finds the set of values for the transformation parame-
ter that maximizes the likelihood function of the dataset under the selected transformation (Box and
Cox, 1964). This is a standard approach that is also implemented in several of the mentioned R pack-
ages (Venables and Ripley, 2002; Fox and Weisberg, 2011). However, since the maximum likelihood
estimation is rather sensitive to outliers, the skewness or kurtosis optimization might be preferable for
the estimation of the transformation parameter in the presence of outliers (see e.g. Royston et al., 2011).
The use of kurtosis over skewness optimization depends entirely on the shape of the distribution of the
data and the goal of the analyst — skewness optimizations corrects for asymmetry and kurtosis for light
or heavy tails. Additionally, if the focus lies on comparing the whole distribution of the transformed
data with a normal distribution, and not only on some moments, different divergence measures as
the KS, KM or KL can be used (see e.g. Yeo and Johnson, 2000). For all estimation methods, a range
on which the functions are evaluated needs to be proposed. Therefore, default values are set for the
predefined transformations. For more information about different estimation methods we refer to
Rojas-Perilla (2018, pp. 9-45).

Since the user can only decide if the transformation is helpful by checking the above mentioned
assumptions, the package trafo contains a wide range of diagnostic checks (e.g. Anderson and Darling,
1954; Shapiro and Wilk, 1965; Breusch and Pagan, 1979). A smaller selection is used in the fast check
that helps to decide if a transformation might be useful. Table 4 summarizes the implemented
diagnostic checks that are simultaneously returned for the untransformed and a transformed model
or two differently transformed models and indicates which diagnostics are conducted in the fast
check. Additionally, plots are provided that help to detect outliers such as the Cook’s distance plot
and influential observations by the residuals vs leverage plot.

Another feature of the package trafo is the possibility of defining a customized transformation.
Thus, a user can also use the infrastructure of the package for a transformation that suits the individuals
needs better than the predefined transformations. However, in this version of the package trafo the
user needs to define the transformation and the standardized transformation in order to use this
feature. For the derivation of the standardized transformation of all predefined transformations, see
the Appendix.

Applications

The usage of transformations in practice may help to meet model assumptions but it can also
lead to complexities as the interpretation of parameters and standard errors in inference or back-
transformation biases in prediction (Rojas-Perilla, 2018). For instance, it is questionable how to address
the estimation of the transformation parameter in inference. Box and Cox (1964) point out that after
applying the Box-Cox transformation to the outcome variable, the transformation parameter should
be treated as fixed and known and the subsequent analysis could be done in the transformed scale.
However, Bickel and Doksum (1981) emphasize that estimating a transformation parameter in a model
could overestimate the parameters’ variance yielding conservative confidence intervals. In prediction,
on the other hand, lost interpretability of parameters and standard errors may be less important but
the back-transformation could lead to a bias neglecting the non-linearity of the transformation (see e.g.
Mosimann et al., 2018).

Nevertheless, several studies show how transformations can be useful in applications. Pek
et al. (2017) demonstrate how the log transformation can be used for describing the relation between
earnings and years of experience and the reciprocal transformation for the effect of intelligence quotient
(IQ) on performance on mental sum problems. The logarithm and the Box-Cox transformation are
often applied in econometric research, e.g. to describe monetary policies (Zarembka, 1968, 1974).
Transformations have also been used to improve the functional form in studies of demand functions
for meat (shyong Chang, 1977), travel costs (Vaughan et al., 1982), and recreation (Ziemer et al., 1980)
in the U.S and for import equations in the Republic of Ireland (Boylan et al., 1982). Another research
field for the application of transformations is genetics (Huber et al., 2003). The data sets often exhibit a
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Table 5: Core functions of package trafo.

Function Description

assumptions() Enables a fast check whether A transformation is suitable.
trafo_Im() Compares the untransformed model with a transformed model.
trafo_compare() Compares two differently transformed models.
diagnostics() Returns information about the transformation and different
diagnostics checks in form of tests.
plot() Returns graphical diagnostics checks.

high variability and non-normality problems. To address this, the glog and gpower can be useful in
practice (Durbin et al., 2002; Kelmansky et al., 2013).

When using package trafo for applications, it should be noted that the package focuses on finding
a suitable transformation with regards to fulfilling specific model assumptions, the user still has to
decide if the transformation is reasonable in a specific application. The following section shows which
functionalities the package provides for the user.

Case study

In order to show the functionality of the package trafo, we present — in form of a case study — the steps
a user faces when checking the assumptions of the linear model. For this illustration, we use the data
set called University from the R package Ecdat (Croissant, 2016). This data set contains variables
measuring the equipment and costs of university teaching and research. These data can be made
available as follows:

R> library(Ecdat)
R> data(University)

A practical question for the head of a university could be how study fees (stfees) raise the universities
net assets (nassets). Both variables are metric. Thus, a linear regression could help to explain the
relation between these two variables. A linear regression model can be conducted in R using the 1m
function.

R> linMod <- 1lm(nassets ~ stfees, data = University)

The features in the package trafo that help to find a suitable transformation for this model and to
compare different models are summarized in Table 5 and illustrated in the next subsections.

Finding a suitable transformation

It is well known that the reliability of the linear regression model depends on the assumptions
presented above. In this section, we focus on presenting how the user can decide and assess which
(and whether) transformations help to fulfill these model assumptions. A first fast check of these
model assumptions can be used in the package trafo in order to find out if the untransformed
model meets these assumptions or if using a transformation seems suitable. The fast check can be
conducted by the function assumptions. This function returns the skewness, the kurtosis and the
Shapiro-Wilk/ Anderson-Darling test for normality, the Breusch-Pagan test for homoscedasticity and
scatter plots between the dependent and the explanatory variables for checking the linear relation. All
possible arguments of the function assumptions are summarized in Table 6. In the following, we only
show the returned normality and homoscedasticity tests. The results are ordered by the p value of the
Shapiro-Wilk and Breusch-Pagan test.

R> assumptions(linMod)

The default lambdarange for the log shift opt transformation is calculated
dependent on the data range. The lower value is set to -2035.751 and the upper
value to 404527.249

The default lambdarange for the square root shift transformation is calculated

dependent on the data range. The lower value is set to -2035.751 and the upper
value to 404527.249
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Table 6: Arguments of function assumptions.

Argument Description Default
object Object of class 1m.
method Estimation method for the transformation parameter. Maximum likelihood
std Normal or standardized transformation. Normal
Addtional arguments can be added, especially for changing Default values of
the lambda range for the estimation of the parameter, e.g. lambda range of
manly_lr = c(0.000005,0.00005). each transformation

Test normality assumption
Skewness Kurtosis Shapiro_W Shapiro_p

logshiftopt -0.4201 4.0576 0.9741 0.2132
boxcox -0.4892 4.2171 0.9621 0.0527
bickeldoksum -0.4892 4.2171 0.9621 0.0527
gpower -0.4892 4.2171 0.9621 0.0527
modulus -0.4892 4.2171 0.9621 0.0527
yeojohnson -0.4892 4.2171 0.9621 0.0527
dual -0.4837 4.2180 0.9619 0.0519
sqrtshift 0.6454 5.2752 0.9504 0.0139
log -1.1653 5.1156 0.9140 0.0004
neglog -1.1651 5.1150 0.9140 0.0004
glog -1.1653 5.1156 0.9140 0.0004
untransformed 2.4503 12.7087 0.7922 0.0000
reciprocal -3.7260 19.0487 0.5676 0.0000

Test homoscedasticity assumption
BreuschPagan_V BreuschPagan_p

modulus 0.1035 0.7477
yeojohnson 0.1035 0.7477
boxcox 0.1035 0.7476
bickeldoksum 0.1036 0.7476
gpower 0.1035 0.7476
dual 0.1128 0.7369
logshiftopt 0.1154 0.7341
neglog 0.7155 0.3976
log 0.7158 0.3975
glog 0.7158 0.3975
reciprocal 1.6109 0.2044
sqrtshift 5.4624 0.0194
untransformed 9.8244 0.0017

Following the Shapiro-Wilk test, the log-shift opt transformation yields a transformed outcome
variable that is (statistically) normally distributed (p = 0.2132). The same applies for the Box-Cox,
Bickel-Doksum, gpower, modulus and Yeo-Johnson transformations though at lower significance
level (« = 0.05). For improving the homoscedasticity assumption, all transformations help except the
square root (shift) transformation. As mentioned before, default values for the range of lambda for all
transformations are predefined and these are used in this fast check. Since the default values for the
log-shift opt and square root (shift) transformation depend on the range of the response variable, the
chosen range is reported in the return. The Manly transformation is not in the list since the default
lambda range for the estimation of the transformation parameter is not suitable for this data set. For
such a case, the user can change the lambda range for the transformations manually. Similarly, the
user can change the estimation methods for the transformation parameter. For instance, if symmetry
is of special interest for the user the skewness minimization might be a better choice than the default
maximum likelihood method. In this case study all assumptions are assumed to be equally important.
Thus, we choose the Box-Cox transformation for the further illustrations even though some other
transformations would be suitable as well.
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Comparing the untransformed model with a transformed model

For a more detailed comparison of the transformed model with the untransformed model, a function
called trafo_1m (for the arguments see Table 7) can be used as follows:

R> linMod_trafo <- trafo_lm(1linMod)

The Box-Cox transformation is the default option such that only the 1m object needs to be given to
the function. The object 1inMod_trafo is of class trafo_lm and the user can conduct the methods
print, summary and plot in the same way as for an object of class 1Im. The difference is that the
new methods simultaneously return the results for both models, the untransformed model and the
transformed model. Furthermore, a method called diagnostics helps to compare results of normality
and homoscedasticity tests. In the following, we will show the return of the diagnostics method and
some selected plots in order to check the normality, homoscedasticity, and the linearity assumption of
the linear regression model.

R> diagnostics(linMod_trafo)

Diagnostics: Untransformed vs transformed model

Transformation: boxcox
Estimation method: ml
Optimal Parameter: 0.1894257

Residual diagnostics:

Normality:
Pearson residuals:

Skewness Kurtosis Shapiro_W Shapiro_p
Untransformed model 2.4503325 12.708681 0.7921672 6.024297e-08
Transformed model  -0.4892222 4.217105 0.9620688 5.267566e-02

Heteroscedasticity:

BreuschPagan_V BreuschPagan_p
Untransformed model 9.8243555 0.00172216
Transformed model 0.1035373 0.74762531

The first part of the output shows information of the applied transformation. As chosen, the Box-Cox
transformation is used with the optimal transformation parameter around 0.19 which is estimated
using the maximum likelihood approach that is also set as default. The optimal transformation
parameter differs from 0, which would be equal to the logarithmic transformation, and 1, which
means that no transformation is optimal. The Shapiro-Wilk test rejects normality of the residuals of
the untransformed model but it does not reject normality for the residuals of the transformed model
on a 5% level of significance. Furthermore, the skewness shows that the residuals in the transformed
model are more symmetric and the kurtosis is closer to 3, the value of the kurtosis of the normal
distribution. The results of the Breusch-Pagan test clearly show that homoscedasticity is rejected in
the untransformed model but not in the transformed model. These two findings can be supported by
diagnostic plots shown in Figure 1.

R> plot(linMod_trafo)

In order to evaluate the linearity assumption, scatter plots of the dependent variable against the
explanatory variable can help. Figure 2 shows that the assumption of linearity is violated in the
untransformed model. The upper panel shows the Pearson correlation coefficient. In contrast, the
relation between the transformed net assets and the study fees seems to be linear. As shown above,
the user can obtain diagnostics for an untransformed and a transformed model with only a little
more effort in comparison to fitting the standard linear regression model without transformation.
While we only show the example with the default transformation, the user can also easily change
the transformation and the estimation method. For instance, the user could choose the log-shift opt
transformation with the skewness minimization as estimation method.

R> linMod_trafo2 <- trafo_lm(object = linMod, trafo = ''logshiftopt'',
+ method = "skew")

Compare two transformed models

The user can also compare different transformations within the frame of the model assumptions.
Oftentimes the logarithm is blindly used without much consideration about its usefulness. In order to
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Figure 1: Selection of diagnostic plots obtained by using plot(linMod_trafo). (a) shows Q-Q plots
error terms of the untransformed and the transformed model. (b) shows the residuals against the
fitted values of the untransformed and the transformed model.
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Figure 2: Selection of obtained diagnostic plots by using plot(linMod_trafo). (a) shows the scatter
plot of the untransformed net assets and the study fees (b) shows scatter plot of the transformed net
assets and the study fees. The numbers specify the correlation coefficient between the dependent and
independent variable.

Table 7: Arguments of function trafo_1lm.

Argument Description Default
object Object of class 1m.
trafo Selected transformation. Box-Cox
lambda Estimation or a self-selected numeric value. Estimation
method Estimation method for the transformation parameter. Maximum likelihood
lambdarange Determines range for the estimation of the Default lambdarange
transformation parameter. for each transformation.
std Normal or standardized transformation. Normal
custom_trafo Add customized transformation. None
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Table 8: Arguments of function trafo_compare.

Argument Description Default

object Object of class 1m.
trafos List of objects of class trafo.
std Normal or standardized transformation. Normal

compare the logarithm with (e.g.) the selected Box-Cox transformation, the user needs to specify two
objects of class trafo as follows:

R> boxcox_uni <- boxcox(linMod)
R> log_uni <- logtrafo(linMod)

The utility of trafo objects is twofold. First, the user can use the functions for each transformation in
order to simply receive the transformed vector. The print method gives first information about the
vector and the method as.data. frame returns the whole data frame with the transformed variable in
the last column. The variable is named as the dependent variable with an added t.

R> head(as.data. frame(boxcox_uni))

nassets stfees nassetst
3669.71 2821 19.71248
12156.00 4037 26.07723
185203.00 17296 47.24867
323100.00 18800 53.08840
32154.00 9314 32.42140
41669.00 7388 34.31882

o O w N =

Second, the objects can be used to compare linear models with differently transformed dependent
variable using function trafo_compare. The arguments of this functions are shown in Table 8. The
user creates an object of class trafo_compare by:

R> linMod_comp <- trafo_compare(object = linMod,
+ trafos = list(boxcox_uni, log_uni))

For this object, the user can use the same methods as for an object of class trafo_Lm. In this work, we
only want to show the return of method diagnostics.

R> diagnostics(linMod_comp)

Diagnostics of two transformed models

Transformations: Box-Cox and Log
Estimation methods: ml and no estimation
Optimal Parameters: ©.1894257 and no parameter

Residual diagnostics:

Normality:
Pearson residuals:

Skewness Kurtosis Shapiro_W Shapiro_p
Box-Cox -0.4892222 4.217105 0.9620688 0.0526756632
Log -1.1653028 5.115615 0.9140135 0.0003534879

Heteroscedasticity:

BreuschPagan_V BreuschPagan_p
Box-Cox 0.1035373 0.7476253
Log 0.7158162 0.3975197

The first part of the return points out that the Box-Cox transformation is a data-driven transformation
with a transformation parameter while the logarithmic transformation does not adapt to the data.
Furthermore, we can see that normality is rejected for the model with a logarithmic transformed
dependent variable, while it is not rejected when the Box-Cox transformation is used. The violation of
the homoscedasticity assumption can be fixed by both transformations.
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Additional features

Extract the transformed model and vector

The trafo package provides focused but limited methods to analyze the model. However, the trans-
formed model can be easily extracted from the trafo_lm object.

R> class(linMod_trafo$trafo_mod)
[1] "1m”

The extracted object is of class 1m such that all available methods for "Im" objects can also be used for
the extracted object.

Similarly, it is possible to get the transformed vector.

R> head(linMod_custom$trafo_mod$model)
nassetst stfees

1 13466771 2821

2 147768336 4037

3 34300151209 17296

4 104393610000 18800

5 1033879716 9314

6 1736305561 7388

Customized transformation

As summarized in the introduction, many R packages, including package trafo, provide a large
number of transformations. Naturally, we do not include the comprehensive list of available trans-
formations as this would be a too ambitious task, though we do acknowledge that depending on
the needs of the user, a non-implemented transformation might be of interest (for the wide range of
possible transformations, see e.g. Rojas-Perilla, 2018). Motivated by this, we include the option to
employ our framework-e.g. the estimation of the transformation parameter — with transformations
not provided in our package. In the following lines, we show the application of this future using the
Tukey transformation (Tukey, 1957).

In a first step, the transformation and the standardized or scaled transformation need to be defined.

R> tukey <- function(y, lambda = lambda) {
lambda_cases <- function(y, lambda = lambda) {
lambda_absolute <- abs(lambda)
if (lambda_absolute <= 1e-12) {
y <= log(y)
} else {
y <= y*2
}
return(y)}
y <- lambda_cases(y =y, lambda = lambda)

return(y = y)}

+ 4+ + o+ + o+ o+ 4+

R> tukey_std <- function(y, lambda) {

+ gm <- exp(mean(log(y)))

+ if (abs(lambda) > 1e-12) {

+ y <- (y*lambda) / (lambda * ((gm)*(lambda - 1)))
+ 3} else {

+ y <- gm x log(y)

+ %

+  return(y)}

Second, the user inserts the two functions as a list argument to the trafo_lm function. Further-
more, the user needs to specify for the trafo argument if the transformation is without a parameter
(""custom_wo'") or with one parameter (' 'custom_one'"'). The Tukey transformation relies on a
transformation parameter. Thus, a lambdarange argument will be speified.

R> linMod_custom <- trafo_lm(linMod, trafo = "custom_one",
+  lambdarange = c(@, 2), custom_trafo = list(tukey, tukey_std))
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One limitation of this feature is the necessity to insert both the transformation and the scaled trans-
formation since the latter is often not known. Furthermore, the framework is only suitable for
transformations without and with one transformation parameter.

Conclusions and future developments

Although transformations were developed in the absence of efficient machines as an alternative to
high memory-consumming methods, they are still a parsimonious way to meet model assumptions
for linear regression model. We showed how the package trafo helps the user to easily decide whether
and which transformations are suitable to fulfill normality, homoscedasticity, and linearity. To the best
of our knowledge trafo is the only R package that supports this decision process. Furthermore, the
package trafo provides an extensive collection of transformations usable in linear regression models
and a wide range of estimation methods for the transformation parameter. In future versions, we plan
to enlarge this collection as well as providing similar functionality for other types of data, e.g. count
data. Additionally, more methods that are available for the class 1m could be developed for objects of
class trafo_lm. We would also like to expand the infrastructure for linear mixed regression models.
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Appendix: Likelihood derivation of the transformations

Log (shift) transformation

Let J(y) denote the Jacobian of a transformation from y; to y}. In order to obtain z}, the scaled log
(shift) transformation, given by #)’i,n, and for simplicity, we use a modification of the definition of

the geometric mean, denoted by j; 5. Therefore, the Jacobian, the scaled, and the inverse of the log
(shift) transformation are given below.

The log (shift) transformation presented in Table 2 is defined as:
yi =log (yi +s).
In case, the fixed shift parameter s would not be necessary, the standard logarithm function
(logarithmic transformation with s = 0) is applied.

The modification of the definition of the geometric mean for this transformation is:

1

n

n
JLs = Yi+s
i=1

Therefore, the expression of the Jacobian is defined as:
L dy;
i1 4y
n 1
B =1 Yits

_ 51
=VYs-

J(y) =

The scaled transformation is given by:

zj =log (yi +5) JLs-
The inverse function of the log (shift) transformation is denoted as:
fyi) =log (yi +5)
yi =log(yi+s)
yi = eyy* — 5
S f =e =,
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Glog transformation

Let J () denote the Jacobian of a transformation from y; to y}. In order to obtain z}, the scaled glog
transformation, given by ](yi)’i/,,, and for simplicity, we use a modification of the definition of the
Yy

geometric mean, denoted by . Therefore, the Jacobian, the scaled, and the inverse of the glog
transformation are given below.

The glog transformation presented in Table 2 is defined as:

The modification of the definition of the geometric mean for this transformation is:

"

oL =

n
[Tt+v?
i=1

Therefore, the expression of the Jacobian is defined as:
T

S QR IV
i=1y;+\/yF +1 2/y2+1

The scaled transformation is given by:

z; =log (y,- + \/ylz?) ]7(%1.
The inverse function of the glog transformation is denoted as:
fyi) = log (yz- + W)
y; =log (yi + \/y??)
v~y = \/yf?

(ey? *%‘)2 =y +1

eyz*z — Zgyz*yi =1
(1 — eyfz)

yi= -~ 2V}
1— ¥’
= f )= _<Ze-‘/?>'

Neglog transformation

Let J(y) denote the Jacobian of a transformation from y; to y}. In order to obtain z7, the scaled neglog
transformation, given by W, and for simplicity, we use a modification of the definition of the

geometric mean, denoted by 7. Therefore, the Jacobian, the scaled, and the inverse of the neglog
transformation are given below.
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The neglog transformation presented in Table 2 is defined as:

y; =sign(y;)log (lyil +1).
The modification of the definition of the geometric mean for this transformation is:

1

i=1

INL = |:ﬁ(3/i +1)

Therefore, the expression of the Jacobian comes to:

im1 Y

J(y) =
n
. 1
= | |sign(y;) ———
n n -1
= Sign(nyi) (H lyil + 1>
i=1 i=1
n
oo ([T )
i=1
The scaled transformation is given by:
n
zj = sign(y;) log (|y:| + 1) sign(Hyi) UNL-
i=1
The inverse function of the neglog transformation is denoted as:
f(yi) = sign(y;) log (Jyi| +1)

y; = sign(y;)log (|yi| +1)
lyi| = eSign(viyi _q

) =+ [esignw,*)y? _ 1} .

Reciprocal transformation

Let J(y) denote the Jacobian of a transformation from y; to y;. In order to obtain z}, the scaled
reciprocal transformation, given by W, and for simplicity, we use a modification of the definition

of the geometric mean, denoted by jjr. Therefore, the Jacobian, the scaled, and the inverse of the
reciprocal transformation are given below.

The reciprocal transformation presented in Table 2 is defined as:
yi = 1
o

The definition of the geometric mean is:

n "
YR = [H%‘]
i=1
Therefore, the expression of the Jacobian is defined as:

Jv) =11

i1 4y

Il
':]:

Il
—_
=2 <<
. -M‘ =

-2
R

|
|
<y
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The scaled transformation is given by:

1

Zf = ——ia.
i Yi YR
The inverse function of the reciprocal transformation is denoted as:
1
flyi) = -
1
1
* _—
vi Yi
1
Yi = f
_ 1
=l =
1

Box-Cox (shift) transformation

f3) = W=l ey £ 0 (A);
vi log(y; +s) ifA=0 (B).

Box-Cox (shift) transformation case (A)

Let J(A,y) denote the Jacobian of a transformation from y; to y;(A). In order to obtain z}(A), the
scaled Box-Cox (shift)(A) transformation, given by %, and for simplicity, we use a modification

of the definition of the geometric mean, denoted by ipc. Therefore, the Jacobian, the scaled, and the
inverse of the Box-Cox (shift)(A) transformation are given below.

The Box-Cox (shift)(A) transformation presented in Table 3 is defined as:

RRYEE
ﬁM):g@t%—JﬁfA#a

In case, the fixed shift parameter s is not necessary for making the dataset positive, the standard
Box-Cox transformation (with s = 0) is applied.

The definition of the geometric mean is:

1
n

n
¥Bc = |:Hyi +s

i=1

Therefore, the expression of the Jacobian comes to:

“rdy;(A)
JAy) =TT
=1
D
i=1 A
n
=T+
i=1
_n(A-1
= eV
The scaled transformation is given by:
. +s5)t -1 1
()= Y 2 v
YBc
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The inverse function of the Box-Cox (shift)(A) transformation is denoted as:

) A
flyi) = 7(]/1-%;) !
. (i)t -1
Vi="

yi=Ay; +1)7 =5
= ) = (Ayf + 1)

==

—S.

Box-Cox (shift) transformation case (B)

This case is exactly equal to the log (shift) case.

Log-shift opt transformation

Let J(A,y) denote the Jacobian of a transformation from y; to y;(A). In order to obtain z}(A), the

scaled log-shift opt transformation, given by %, and for simplicity, we use a modification of the

definition of the geometric mean, denoted by 1 so. Therefore, the Jacobian, the scaled, and the inverse
of the log-shift opt transformation are given below.

The log-shift opt transformation presented in Table 3 is defined as:

yi (A) = log(yi + 7).
The modification of the definition of the geometric mean for this transformation is:

1
n

n
Jrso = {H%‘ +A
i=1

Therefore, the expression of the Jacobian is defined as:

tdyi (M)
dy
1
yi+A

JAy) =

—

[y

1=

=

Ll
L

n
SO

<
=

The scaled transformation is given by:
z; (A) = log(yi + M)FLso-

The inverse function of the log-shift opt transformation is denoted as:

fyi) =log(yi +A)

y; =log(yi +A)
yi=eli —A
=) =e — A

Bickel-Docksum transformation

Let J(A,y) denote the Jacobian of a transformation from y; to y;(A). In order to obtain z;(A), the
scaled Bickel-Docksum transformation, given by %, and for simplicity, we use a modification

of the definition of the geometric mean, denoted by #/gp. Therefore, the Jacobian, the scaled, and the
inverse of the Bickel-Docksum transformation are given below.

The Bickel-Docksum transformation presented in Table 3 is defined as:

JAsi ) —
() = il SIgrAl(yz) L aso.
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The modification of the definition of the geometric mean for this transformation is:

1
. ;
gep = | [ Tlwil| -
i=1
Therefore, the expression of the jacobian comes to:

tdyt(A)

JAy) =11

o1 dy

_ ﬁ sign(yi))?lyilH

i=1

= Sign<ﬁyi) (fyyil)Al

i=1

n
= sign<H i) ygg\fl).

=1
The scaled transformation is given by:
|*sign(y;) — 1 1
A . _(A=1
sign ( [Ty ]/i) ]/%D )

Z%()L) _ ‘yi )

1

The inverse function of the Bickel-Docksum transformation is denoted as:

|Asien (y;) — 1
Fly) = i gA(yz)
. lyil*sign(y;) — 1
Yi = A

lvil = [sign(y?) (yiA + 1))
= F(y;) = + [sign(y}) (A +1)]F .

Yeo-Johnson transformation

WAL A £ 0,y 2 0 (A);
. log(yi+1) ifA=0,y,=20 (B);
ij(A) = 1

——g— ifA#£2,y;,<0 (C);

—log(1—y;) ifA=0,,<0 (D).

Yeo-Johnson transformation case (A)

This case is exactly equal to the Box-Cox (shift) case (A), with s = 1.

Yeo-Johnson transformation case (B)

This case is exactly equal to the log (shift) case, with s = 1.

Yeo-Johnson transformation case (C)

Let ] (A,y) denote the Jacobian of a transformation from y; to y; (A). In order to obtain z} (1), the
yi(A)

scaled Yeo-Johnson(C) transformation, given by FORTL and for simplicity, we use a modification
g

of the definition of the geometric mean, denoted by ﬁyc. Therefore, the Jacobian, the scaled, and the
inverse of the Yeo-Johnson(C) transformation are given below.

The Yeo-Johnson(C) transformation presented in Table 3 is defined as:

— ,2_/\7
Vi (A) 2—(1?17,\1 if A#2and y; <0.
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The modification of the definition of the geometric mean for this transformation is:

1
n n
Jyc = {Hl yi] .

i=1

Therefore, the expression of the Jacobian comes to:

dyy (M)
JAy) =11+
i1y

_re-yna-ywtt

The scaled transformation is given by:

<1 y >27/\ .
¥ i T _n(1-A
z; (A) = —Tﬁc )

The inverse function of the Yeo-Johnson(C) transformation is denoted as:

N )
*7_(1_]/1‘)27)\_1
¥i = 2 A\

- =0-y) -1
vi=1-[-y @-1) +1)%7

1

= Uy =1-[-y;2-A) +1]77.

Yeo-Johnson transformation case (D)

Let J (y) denote the Jacobian of a transformation from y; to y;. In order to obtain z, the scaled

Yeo-Johnson(D) transformation, given by %, and for simplicity, we use a modification of the

definition of the geometric mean, denoted by iyp. Therefore, the Jacobian, the scaled, and the inverse
of the Yeo-Johnson(D) transformation are given below.

The Yeo-Johnson(D) transformation presented in Table 3 is defined as:

yi = —log(1—y;).

The modification of the definition of the geometric mean for this transformation is:

n ;17
Yyp = { 1- yi] .
i1

Therefore, the expression of the Jacobian is defined as:

The scaled transformation is given by:
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The inverse function of the Yeo-Johnson(D) transformation is denoted as:
fyi) = —log (1 i)
yi = —log(1—yi)
Yi —Eiy; +1
S F) = et

Square root-shift opt transformation

Let J (A,y) denote the Jacobian of a transformation from y; to ¥} (A). In order to obtain z}, the scaled

square root-shift opt transformation, given by ] (yj </)\1) 7, and for simplicity, we use a modification of the
Y
definition of the geometric mean, denoted by isr. Therefore, the Jacobian, the scaled, and the inverse

of the square root-shift opt transformation are given below.

The square root-shift opt transformation presented in Table 3 is defined as:
yi(A) = Vyi+A.
The definition of the geometric mean is:

n

n
yitA
=1

y_SR—|:4

1

Therefore, the expression of the Jacobian is defined as:

n dy?k
J(Ay) = !
(Ay) g 2y

n
The scaled transformation is given by:

The inverse function of the square root-shift opt transformation is denoted as:
flyi) = Vyi+a
yi = Vyi+A
vi=yi?—A
= f D =y A

Manly transformation

= [ A0 ()
Yi ifA=0 (B).

Manly transformation case (A)

Let J (A, y) denote the Jacobian of a transformation from y; to y; (A). In order to obtain z} (1), the

]?A(A)i)m , and for simplicity, we use a modification of the
Y
definition of the geometric mean, denoted by #y;. Therefore, the Jacobian, the scaled, and the inverse

of the Manly(A) transformation are given below.

scaled Manly(A) transformation, given by
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The Manly(A) transformation presented in Table 3 is defined as:

M — 1

yi(A) =

The modification of the definition of the geometric mean for this transformation is:

1
— |:e):;1:1 yz} "
= e

A

1
n

Therefore, the expression of the Jacobian comes to:

J(Ay)

The scaled transformation is given by:

The inverse function of the Manly(A) transformation is denoted as:

Ayi _ 1
e
fly) =—
eMi -1
Vi =7
M +1= M
_log (Ay; +1)
o A
_ log (Ayf +1
= i) - D
Manly transformation case (B)
The variable remains equal, y; = y;.
Modulus transformation
A
(\%‘H/\l) -1 ifA£0

yi(A) = {sign (i)

sign(y;) log (|y;| +1)

Modulus transformation case (A)

Let J (A,y) denote the Jacobian of a transformation from y; to y; (A). In order to obtain z} (1), the
yi(A)
J(Ay

scaled modulos(A) transformation, given by
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definition of the geometric mean, denoted by ij\pa . Therefore, the Jacobian, the scaled, and the inverse
of the modulus(A) transformation are given below.

The modulus(A) transformation presented in Table 3 is defined as:

) A
v ) = sign () D=3 20

The modification of the definition of the geometric mean for this transformation is:

n

lyil +1
1

n
1=

ImMA = [
Therefore, the expression of the Jacobian comes to:

o= 40

i
sign (yi)A(lyil +1
A

n " A—1
sign (m) (n i+ 1)
i=1 i=1
. L _n(A—1)
= SIgn Hyz yMA .
i=1

The scaled transformation is given by:

[y

S|

)Afl

Il
—_

. , T+ =1 1
() =sign(y) W= 1
sign (Hi:1 Vi) Yma

1)°

The inverse function of the modulus(A) transformation is denoted as:

. A
f (i) = sign (v;) W#
¢ _ gign(y il D" =1

Vi = Slgn(yz)f

lyil = [sign (y}) A +1]% —1
= fyp) =+ [(sign(y)A+1)* —1].

Modulus transformation case (B)

This case is exactly equal to the neglog transformation case.

Dual power transformation

oo U A s 0 (a);
yi(Ad) = .
log (y;) ifA=0 (B).

Dual power transformation case (A)

Let J (A,y) denote the Jacobian of a transformation from y; to y; (A). In order to obtain z} (1), the
yi (M)

I( A,y)l/ ns

the definition of the geometric mean, denoted by ips. Therefore, the Jacobian, the scaled, and the

inverse of the dual power(A) transformation are given below. The dual power(A) transformation

presented in Table 3 is defined as:

scaled dual power(A) transformation, given by and for simplicity, we use a modification of

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

119

The modification of the definition of the geometric mean for this transformation is:

i=1

1 A—1 A—1 %
Jpa = |:H<y;‘ +y T )} .
Therefore, the expression of the Jacobian comes to:

ndyt (M)
J(\y) = !
E dy

nAy T Ay !

- U 24
i=1

1_
= Ey%A'

The scaled transformation is given by:

‘) = oyt 2

2A ¥pa
The inverse function of the dual power(A) transformation is found by solving the quadratic by
completing the square as:

A

Fly =% B

g = v} ;AyfA

20 =y} —y?
. 1
20y} =y} - s
20y = y%/\ -1

1
1
iyt =yt -1
1+ A%y =yt =207y + A2y;2
1+ A%y = (v} — Ayp)?

1+ A2+ Ayf =y}
vi= {\/1 +A%y2 + Ay?}

1
X
= £ = VTR ]

Dual power transformation case (B)

This case is exactly equal to the Box-Cox (shift) transformation, case (B).

Gpower transformation

(V7)1 ,
wrvyir) ifA£0 (A);

log (y,-:- JE+1) ifA=0 (B).

yi(A) =

Gpower transformation case (A)

Let ] (A,y) denote the Jacobian of a transformation from y; to y; (A). In order to obtain z} (1), the

scaled gpower(A) transformation, given by ; (y):;;ﬂ) 7, and for simplicity, we use a modification of the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 120

definition of the geometric mean, denoted by 4. Therefore, the Jacobian, the scaled, and the inverse
of the gpower(A) transformation are given below.

The gpower(A) transformation presented in Table 3 is defined as:

_ it Vng]Aq if A £0.

yi (A) T

The modification of the definition of the geometric mean for this transformation is:

n

4 = {l—[ (yﬁ\/ﬁ)M (Hy")] 7.

i=1 v +1
Therefore, the expression of the Jacobian comes to:
Lody; (A)

JAy) =11

i1y

ﬁA (vi+ /v +1>A71 (1+ 2\;%)
=] -
i=1

__=n
=Yga-

The scaled transformation is given by:

2 (A) = e ] 1

: A jca’

The inverse function of the gpower(A) transformation is denoted as:

Flys) = [W@r”
[+ ] -1
A

A
yit y2+1]

yi =

.1 1—=(Ayr+1
yiAyi + )7 = (yz’ )
1—(Ay;‘+1)§}
yi=— 1
2(Ayr +1)3
_ 1— (Ay;+1)7
=y = - [T
2(Ay; + 1)

Gpower transformation case (B)

This case is exactly equal to the glog transformation case.
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BondValuation: An R Package for Fixed
Coupon Bond Analysis

by Wadim Djatschenko

Abstract The purpose of this paper is to introduce the R package Bond Valuation for the analysis of
large datasets of fixed coupon bonds. The conceptual heterogeneity of fixed coupon bonds traded
in the global markets imposes a high degree of complexity on their comparative analysis. Contrary
to baseline fixed income theory, in practice, most bonds feature coupon period irregularities. In
addition, there are a multitude of day count methods that determine the interest accrual, the cash
flows and the discount factors used in bond valuation. Several R packages, e.g., fBonds, RQuantLib,
and YieldCurve, provide tools for fixed income analysis. Nevertheless, none of them is capable
of evaluating bonds featuring irregular first and/or final coupon periods, and neither provides
adequate coverage of day count conventions currently used in the global bond markets. The R package
BondValuation closes this gap using the generalized valuation methodology presented in Djatschenko
(2019).

Introduction

Although bond valuation using the traditional present value approach is fundamental in financial the-
ory and practice, the R community lacks applications that comprehensively handle the peculiarities of
real-world fixed coupon bonds. A possible reason for the slow development of adequate computation
tools concerns the matter’s theoretical intricacy, characterized by a complex interaction of day count
conventions (DCC) and irregularities in the temporal structure of the fixed income instruments.

A day count convention is an instrument-specific set of rules that prescribes the way in which
calendar dates are converted to numerical values. Thus, given a schedule of a bond’s anniversary
dates (i.e., issue date, coupon payment dates, maturity date), a day count convention is used, e.g., to
determine the fraction of regular coupon periods between two calendar dates within the bond’s life.
Irregular first and final coupon periods occur irrespective of the stipulated day count convention. The
lengths of the first and final coupon periods are measured in fractions of regular coupon periods and
calculated according to the rules of the specified day count convention. A fist or final coupon period is
irregular, if its length differs from 1, which is the length of a regular coupon period.'

The R package RQuantLib (Eddelbuettel et al., 2018) provides access to parts of QuantLib (QuantLib
Team, 2018), which is the leading open-source software library for quantitative finance. Currently,
QuantLib incorporates methods for the analysis and valuation of a wide variety of financial instru-
ments, such as options, swaps, various financial derivatives, and several types of bonds, including
fixed rate bonds. Nevertheless, QuantLib does not implement methods for handling irregular coupon
periods, and the coverage of DCCs is not exhaustive with nine different conventions.

A closer examination of bond market data reveals the importance of this problem. According
to the Thomson Reuters EIKON database, 99.66% of the plain vanilla fixed coupon bonds that were
issued worldwide in 2017 are spread over 15 different DCCs, and 67% of them feature irregular first
and/or final coupon periods. Given the enormous size of the global bond market, neglecting irregular
coupon periods potentially leads to cash flow miscalculations in the tens of billions of US dollars, as
Djatschenko (2019) points out.

Essentially, DCCs influence bond valuation in three places. First, the amounts of interest payable at
the end of any irregular coupon period are computed according to the respective convention. Second,
the powers of the discount factors used in present value calculations depend on the stipulated DCC.
Finally, in contrast to stocks, the full prices of bonds are usually not directly observable but need to
be calculated as the sum of the quoted clean price and accrued interest, which is paid by the buyer
to the seller if the transaction is conducted between two coupon payment dates. Accrued interest is
computed conformal to the stipulated bond- and market-specific DCCs.

Dijatschenko (2019) addresses these three aspects and proposes a generalized valuation methodol-
ogy for fixed coupon bonds that allows for irregular first and final coupon periods and is compatible
with any conceivable DCC. In summary, the methodology can be described as follows. In a first step,
Djatschenko (2019) introduces a standardized bond-specific temporal structure, which is determined
by the stipulated DCC. Based on this time structure, a valuation formula is derived that allows for
first and final coupon periods of any lengths. The novelty of this proposed evaluation formula lies

IDjatschenko (2019) provides a comprehensive overview of most day count conventions currently used in the
global bond markets and demonstrates their interactions with irregular coupon periods.
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in the isolation of each DCC-dependent parameter, resulting in a modular structure that can easily
integrate any conceivable DCC. In addition, Djatschenko (2019) presents closed-form solutions for the
valuation formula’s first and second derivatives, which are useful in the Newton-Raphson based
determination of the bond’s yield as well as in calculation of duration and convexity. The approach
outlined in Djatschenko (2019) relies exclusively on information that is typically provided by financial
data vendors and is seamlessly implemented in the R package Bond Valuation.

The remainder of this paper consists of the two main sections, ”The BondValuation package”
and ”Application of the package BondValuation”. The section entitled "The Bond Valuation package”
provides an overview of the functions implemented in the R package BondValuation and briefly
illustrates the underlying theoretical concepts. The subsection entitled “Day count conventions”
introduces the DCCs covered by Bond Valuation and demonstrates their impact on interest accrual using
the function AccrInt (). Subsequently, the Bond-specific temporal structure and its implementation
within the function AnnivDates() are illustrated. In the following subsection, the calculation of
Cash flows, accrued interest, and dirty price is demonstrated using the functions AnnivDates()
and DP(). Next, the functions BondVal.Yield() and BondVal.Price() are used to compute Yield to
maturity, duration, and convexity. The section entitled “Application of the package BondValuation”
demonstrates how the R package BondValuation can be used for the analysis of large data frames of
fixed coupon bonds. The paper ends with a short “Conclusion”.

The BondValuation package

The R package Bond Valuation consists of five functions, AccrInt(), AnnivDates(), BondVal.Price(),
BondVal.Yield(),and DP(), and four data frames, List.DCC, NonBusDays.Brazil, PanelSomeBonds2016,
SomeBonds2016.

The workhorse function of the package, AnnivDates(), performs a variety of sanity checks on the
input data and, if possible, automatically corrects corrupted entries. It determines the bond-specific
temporal structure and cash flows. The output of AnnivDates() is used in the downstream processes of
the functions BondVal.Price(), BondVal.Yield(), and DP(). While AnnivDates(), BondVal.Price(),
BondVal.Yield(), and DP() require bond data as input, the function AccrInt() simply computes the
amount of interst accruing from some start date to some end date.

The data frames PanelSomeBonds2016 and SomeBonds2016 provide simulated data of 100 plain
vanilla fixed coupon corporate bonds issued in 2016. List.DCC provides an overview of the DCCs
implemented in the R package BondValuation. NonBusDays.Brazil is used with the BusDay/252
(Brazilian) convention and contains all non-business days in Brazil from 1946-01-01 to 2299-12-31 based
on the Brazilian national holiday calendar.

Day count conventions

All DCCs that are identified by Thomson Reuters EIKON for plain vanilla fixed coupon bonds in 2017,
and, additionally, the 30E/360 (ISDA) method, are covered by the R package BondValuation?:

> # example 1
> library(BondValuation)
> print(List.DCC, row.names = FALSE)

DCC DCC.Name DCC.Reference
1 ACT/ACT (ISDA) ISDA (1998); ISDA (2006) section 4.16 (b)
2 ACT/ACT (ICMA) ICMA Rule 251; ISDA (2006) section 4.16 (c)
3 ACT/ACT (AFB) ISDA (1998); EBF (2004); SWX (2003)
4 ACT/365L ICMA Rule 2571; SWX (2003)
5 30/360 ISDA (2006) section 4.16 (f); MSRB (2017) Rule G-33
6 30E/360 ICMA Rule 251; ISDA (2006) section 4.16 (g); SWX (2003)
7 30E/360 (ISDA) ISDA (2006) section 4.16 (h)
8 30/360 (German) EBF (2004); SWX (2003)
9 30/360 US Mayle (1993); SWX (2003)
10 ACT/365 (Fixed) ISDA (2006) section 4.16 (d); SWX (2003)
11 ACT(NL) /365 Krgin (2002); Thomson Reuters EIKON
12 ACT/360 ISDA (2006) section 4.16 (e); SWX (2003)
13 30/365 Krgin (2002); Thomson Reuters EIKON
14 ACT/365 (Canadian Bond) ITAC (2018); Thomson Reuters EIKON
15 ACT/364 Thomson Reuters EIKON

16 BusDay/252 (Brazilian) Caputo Silva et al. (2010), Itau Unibanco S.A. (2017)

2Djatschenko (2019) provides a comprehensive overview of these DCCs.
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The function AccrInt() can be used to compare the differences in interest accrual between the
day count methods. As an example, the code below returns the number of days and the amount of
interest (in percent of the bond’s par value) accrued from Start = 2011-08-31 to End = 2012-02-29
with different DCCs, ceteris paribus. In this example, we assume that CpY = 2 coupons are paid per
year, the nominal interest rate p.a. is Coup = 5.25%, the bond is redeemed at RV = 100% of its par value,
and payments follow the End-of-Month rule’, ie., EOM = 1. In addition, some of the DCCs require
specification of the next coupon payment’s year figure, YearNCP = 2012, and the maturity date, Mat =
2021-08-31.

> # example 2
> library(BondValuation)
> DCC_Comparison<-data.frame(Start = rep(as.Date("2011-08-31"), 16),
End = rep(as.Date("2012-02-29"), 16),
Coup = rep(5.25, 16),
DCC = seq(1, 16),
DCC.Name = List.DCC[, 2],
RV = rep(100, 16),
CpY = rep(2, 16),
Mat = rep(as.Date("2021-08-31"), 16),
YearNCP = rep(2012, 16),
EOM = rep(1, 16))
AccrIntOutput <- suppressWarnings(
apply(
DCC_Comparison[, c('Start', 'End', 'Coup', 'DCC', 'RV', 'CpY', 'Mat',
'YearNCP', 'EOM')1], 1,
function(y) AccrInt(y[1], y[2]1, y[31, y[41, y[51, y[61, y[7]1, y[8], y[91)

)
)
Accrued_Interest <- do.call(rbind, lapply(AccrIntOutput, function(x) x[[11]))
Days_Accrued <- do.call(rbind, lapply(AccrIntOutput, function(x) x[[2]1]))
DCC_Comparison <- cbind(DCC_Comparison, Accrued_Interest, Days_Accrued)
print(DCC_Comparison[, c('DCC.Name', 'Start', 'End', 'Days_Accrued',
"Accrued_Interest')], row.names = FALSE)

+ VV VYV + + 4+ + + 4V + 4+ + + + + + + +

DCC.Name Start End Days_Accrued Accrued_Interest

ACT/ACT (ISDA) 2011-08-31 2012-02-29 182 2.615490

ACT/ACT (ICMA) 2011-08-31 2012-02-29 182 2.625000

ACT/ACT (AFB) 2011-08-31 2012-02-29 182 2.617808

ACT/365L 2011-08-31 2012-02-29 182 2.610656

30/360 2011-08-31 2012-02-29 179 2.610417

30E/360 2011-08-31 2012-02-29 179 2.610417

30E/360 (ISDA) 2011-08-31  2012-02-29 180 2.625000

30/360 (German) 2011-08-31 2012-02-29 180 2.625000

30/360 US 2011-08-31 2012-02-29 179 2.610417

ACT/365 (Fixed) 2011-08-31 2012-02-29 182 2.617808
ACT(NL)/365 2011-08-31 2012-02-29 182 2.617808

ACT/360 2011-08-31 2012-02-29 182 2.654167

30/365 2011-08-31 2012-02-29 179 2.574658

ACT/365 (Canadian Bond) 2011-08-31 2012-02-29 182 2.625000
ACT/364 2011-08-31 2012-02-29 182 2.625000

BusDay/252 (Brazilian) 2011-08-31  2012-02-29 124 2.549769

Bond-specific temporal structure

The function AnnivDates() evaluates bond-specific information and returns the bond’s time-invariant
characteristics in the data frame Traits, the bond’s temporal structure in the data frame DateVectors
and, if the nominal interest rate is passed, the bond’s cash flows in the data frame PaySched.* The
classes and formats of input data are checked and adjusted, if possible. Moreover, AnnivDates() per-
forms several plausibility tests, e.g., whether the provided calendar dates are in a correct chronological
order and whether there are inconsistencies among the provided parameters. The results of these
sanity checks are reported in the data frame Warnings.

3See manual to the R package BondValuation for details on implementation and Krgin (2002) for the theoretical
background of the End-of-Month rule.
4See Djatschenko (2019) for theoretical background.
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The minimum accepted input for AnnivDates() are two calendar dates, of which the first is
interpreted as the bond’s issue date and the second as its maturity date. If, as illustrated below, only
two dates are passed to AnnivDates(), several parameters take on default values, which are reported
in warning messages.

> # example 3
> library(BondValuation)
> AnnivDates(as.Date("2019-05-31"), "2021-07-31")

$*Warnings®
Em_FIAD_differ EmMatMissing CpYOverride RV_setl@@percent NegLifeFlag
0 0 1 1 0
ZeroFlag  Em_Mat_SameMY ChronErrorFlag FIPD_LIPD_equal IPD_CpY_Corrupt
0 0 0 0 [}
EOM_Deviation EOMOverride DCCOverride NoCoups
0 1 1 0
$Traits
DateOrigin CpY FIAD Em Em_Orig FIPD
1970-01-01 2 <NA>  2019-05-31  2019-05-31 <NA>
FIPD_Orig est_FIPD LIPD LIPD_Orig est_LIPD Mat
<NA> 2019-07-31 <NA> <NA>  2021-01-31 2021-07-31
Refer FCPType FCPLength LCPType LCPLength Par
2021-07-31 short 0.3370166 regular 1 100
CouponInPercent.p.a DayCountConvention EOM_Orig est_EOM EOM_used
NA 2 NA 1 1
$DateVectors

RealDates  RD_indexes CoupDates CD_indexes AnnivDates  AD_indexes

2019-05-31 0.6629834  2019-07-31 1 2019-01-31 4
2019-07-31 1.0000000 2020-01-31 2 2019-07-31 1
2020-01-31 2.0000000 2020-07-31 3 2020-01-31 2
2020-07-31 3.0000000 2021-01-31 4 2020-07-31 3
2021-01-31 4.0000000 2021-07-31 5  2021-01-31 4
2021-07-31 5.0000000 <NA> NA  2021-07-31 5

Warning messages:
1: In InputFormatCheck(Em = Em, Mat = Mat, CpY = CpY, FIPD = FIPD,
The maturity date (Mat) is supplied as a string of class "character” in the
format "yyyy-mm-dd”. It is converted to class "Date" using the command
"as.Date(Mat, "%Y-%m-%d")" and processed as Mat = 2021-07-31
2: In AnnivDates(as.Date("”2019-05-31"), "2021-07-31") :
Number of interest payments per year (CpY) is missing or NA. CpY is set 2!
3: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
Redemption value (RV) is missing or NA. RV is set 100!
4: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
EOM was not provided or NA! EOM is set 1
Note: The available calandar dates suggest that EOM = 1
5: In AnnivDates(as.Date("2019-05-31"), "2021-07-31") :
The day count indentifier (DCC) is missing or NA. DCC is set 2 (Act/Act (ICMA))!

Since neither the first nor the penultimate coupon payment date is passed to AnnivDates(), the
calendar dates in the data frame DateVectors are constructed backwards starting from the matu-
rity date 2021-07-31. This results in a bond with a short first coupon period having a length of
$Traits$FCPLength = 0.3370166 regular coupon periods.

The data frame DateVectors contains three vectors of calendar dates, RealDates, CoupDates,
and AnnivDates, and their corresponding indexes, RD_indexes, CD_indexes, and AD_indexes. The
vector RealDates comprises the bond’s issue date, maturity date, and all coupon payment dates in
between, while CoupDates contains only the coupon payment dates. The vector AnnivDates consists
of the bond’s so-called anniversary dates, i.e., scheduled coupon dates and notional coupon dates
located before the first and after the penultimate coupon payment dates. The lengths of the first
($Traits$FCPLength) and final coupon periods ($Traits$LCPLength) are calculated as differences
between the coresponding values of the vectors AD_indexes and RD_indexes. RD_indexes are used
in the functions BondVal.Price(), BondVal.Yield(), and DP() to determine the powers of discount
factors in pricing formulas.

As warning message 4 in the example above reports, the function AnnivDates() analyzes the

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 128

provided calendar dates to ascertain whether the bond follows the End-of-Month rule (EOM). An auto-
mated replacement of the provided value of EOM by the value determined by the function AnnivDates()
can be activated by setting option FindEOM = TRUE, which defaults to FALSE.

The following example illustrates the effect of EOM on DateVectors. In addition to issue date (Em)
and maturity date (Mat), the first coupon payment date (FIPD), the penultimate coupon payment date
(LIPD), the number of coupon payments p.a. (CpY), and EOM are passed to the function AnnivDates():

> # example 4

> library(BondValuation)

> # example 4a: computing DateVectors for EOM = 1
> EOM.input <- 1

> AnnivDates(Em = as.Date("2019-05-31"),

+ Mat = as.Date("2021-07-31"),

+ CpY = 2,

+ FIPD = as.Date("2020-02-29"),

+ LIPD = as.Date("2021-02-28"),

+ EOM = EOM.input)$DateVectors

RealDates RD_indexes CoupDates CD_indexes AnnivDates  AD_indexes
1 2019-05-31 -0.500000 2020-02-29 1.000000 2019-02-28 -1
2 2020-02-29 1.000000 2020-08-31 2.000000 2019-08-31 0
3 2020-08-31 2.000000 2021-02-28 3.000000 2020-02-29 1
4 2021-02-28 3.000000 2021-07-31 3.831522  2020-08-31 2
5 2021-07-31 3.831522 <NA> NA 2021-02-28 3
6 <NA> NA <NA> NA 2021-08-31 4

Warning messages:

1: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"),
Redemption value (RV) is missing or NA. RV is set 100!

2: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"),
The day count indentifier (DCC) is missing or NA. DCC is set 2 (Act/Act (ICMA))!

>
> # example 4b: computing DateVectors for EOM = @
> EOM.input <- @
> AnnivDates(Em = as.Date("2019-05-31"),
+ Mat = as.Date("2021-07-31"),
+ CpY = 2,
+ FIPD = as.Date("2020-02-29"),
+ LIPD = as.Date("2021-02-28"),
+ EOM = EOM.input)$DateVectors

RealDates RD_indexes CoupDates CD_indexes AnnivDates  AD_indexes
1 2019-05-31 -0.4945055  2020-02-29 1.000000 2019-02-28 -1
2 2020-02-29 1.0000000 2020-08-29 2.000000 2019-08-29 (/]
3 2020-08-29 2.0000000 2021-02-28 3.000000 2020-02-29 1
4 2021-02-28 3.0000000 2021-07-31 3.840659  2020-08-29 2
5 2021-07-31 3.8406593 <NA> NA 2021-02-28 3
6 <NA> NA <NA> NA 2021-08-29 4

Warning messages:

1: In AnnivDates(Em = as.Date("”2019-05-31"), Mat = as.Date("2021-07-31"),
Redemption value (RV) is missing or NA. RV is set 100!

2: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"),
The available calandar dates suggest that EOM = 1
Option FindEOM = FALSE is active. Provided EOM is not overridden and remains
EOM = 0 .

3: In AnnivDates(Em = as.Date("2019-05-31"), Mat = as.Date("2021-07-31"),
The day count indentifier (DCC) is missing or NA. DCC is set 2 (Act/Act (ICMA))!

In contrast to example 3, the bond in example 4 features a long first and a short final coupon period.
The function AnnivDates () has checked whether the provided dates FIPD and LIPD are on each other’s
annivesary dates and constructed the calendar dates in DateVectors backwards and forwards from
LIPD. The values of RD_indexes and AD_indexes are illustrated in Figure 1, where E corresponds to
the first element of RD_indexes and M is the final element of RD_indexes.

As shown in example 4, all else equal, the value of EOM affects the DCC-conformal temporal locations
of the issue date E and the maturity date M and, hence, the lengths of the first and final coupon
periods, which, in turn, determine the amounts of interest paid on the first and final coupon payment
dates. So far, no value of DCC was passed to the function AnnivDates(). As reported in the warning
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messages in example 4, the parameter DCC defaults to the Act/Act (ICMA) convention. The following,

example 5, illustrates how RD_indexes, FCPLength and LCPLength vary across DCCs for EOM = 0.

tq tr to t ty t3 tm 14
\ ~ 7 W—/
FCPLength LCPLength

Figure 1: Timeline illustration of the bonds in examples 4 and 5.

# example 5
library(BondValuation)
TempStruct.by.DCC <- data.frame(Em = rep(as.Date("2019-05-31"), 16),
Mat rep(as.Date("2021-07-31"), 16),
CpY = rep(2, 16),
FIPD = rep(as.Date("2020-02-29"), 16),
LIPD = rep(as.Date("2021-02-28"), 16),
FIAD = rep(as.Date("2019-05-31"), 16),
DCC = seq(1, 16),
EOM = rep(0, 16),
DCC.Name = List.DCC[, 21)
# Applying AnnivDates() to the data frame TempStruct.by.DCC for EOM = @
suppressWarnings(
FullAnalysis.EOMO <- apply(
TempStruct.by.DCC[, c('Em','Mat','CpY','FIPD','LIPD', " 'FIAD','DCC', 'EOM')],
1, function(y) AnnivDates(

y[11, y[21, y[31, y[4]1, y[51, y06]1, , , y[71, y[8D)
)
)
FCPLength.EOMO <- lapply(lapply(lapply(FullAnalysis.EOM@, ‘[[‘, 2), “[[‘, 15)
, ha.omit)

FCPLength.EOM@ <- as.data.frame(do.call(rbind, lapply(FCPLength.EOM@, round, 4)))
LCPLength.EOMO <- lapply(lapply(lapply(FullAnalysis.EOM@, ‘[[‘, 2), ‘[[‘, 17)

, ha.omit)
LCPLength.EOMO <- as.data.frame(do.call(rbind, lapply(LCPLength.EOM@, round, 4)))
TempStruct.EOMO <- lapply(lapply(lapply(FullAnalysis.EOM@, ‘L[, 3), ‘[[%, 2)

, ha.omit)
TempStruct.EOMO <- lapply(TempStruct.EOM@, ‘length<-*,

max (lengths(TempStruct.EOMQ)))

TempStruct.EOM@ <- as.data.frame(do.call(rbind, lapply(TempStruct.EOM@, round, 4)))

TempStruct.by.DCC.EOM@ <- cbind(TempStruct.by.DCC, TempStruct.EOMO,
FCPLength.EOM@, LCPLength.EOM@)
names(TempStruct.by.DCC.EOM@)[c(10:16)] <- c("E", "@01", "02", "@3", "M",
"FCPLength"”, "LCPLength")
print(TempStruct.by.DCC.EOMO[, c(9:ncol(TempStruct.by.DCC.EOM@))],
row.names = FALSE)

DCC.Name E o1 02 03 M FCPLength LCPLength

ACT/ACT (ISDA)  -0.4945 1 2 3 3.8407 1.4945 0.8407

ACT/ACT (ICMA) -0.4945 1 2 3 3.8407 1.4945 0.8407

ACT/ACT (AFB)  -0.4945 1 2 3 3.8407 1.4945 0.8407

ACT/365L  -0.4945 1 2 3 3.8407 1.4945 0.8407

30/360 -0.4862 1 2 3 3.8453 1.4862 0.8453

30E/360 -0.4917 1 2 3 3.8398 1.4917 0.8398

30E/360 (ISDA) -0.4972 1 2 3 3.8380 1.4972 0.8380

30/360 (German) -0.4972 1 2 3 3.8380 1.4972 0.8380

30/360 US  -0.4862 1 2 3 3.8453 1.4862 0.8453

ACT/365 (Fixed) -0.4945 1 2 3 3.8407 1.4945 0.8407
ACT(NL)/365  -0.4945 1 2 3 3.8407 1.4945 0.8407

ACT/360  -0.4945 1 2 3 3.8407 1.4945 0.8407

30/365 -0.4862 1 2 3 3.8453 1.4862 0.8453

ACT/365 (Canadian Bond)  -0.4945 1 2 3 3.8407 1.4945 0.8407
ACT/364  -0.4945 1 2 3 3.8407 1.4945 0.8407

BusDay/252 (Brazilian) -0.5040 1 2 3 3.8425 1.5040 0.8425
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The output of example 5 shows that for the specified bond, there is little variation in temporal struc-
ture across the DCCs. Specifically, with DCC € {1, 2, 3, 4, 10, 11, 12, 14, 15}, the values of RD_indexes
are {—0.4945, 1, 2, 3, 3.8407}; with DCC € {5, 9, 13}, it holds RD_indexes = {—0.4862, 1, 2, 3, 3.8453},
and with DCC € {7, 8}, we get RD_indexes = {—0.4972, 1, 2, 3, 3.8380}. Only the DCCs 6 and 16
produce a unique temporal structure for this bond. Nevertheless, it would be wrong to infer from this
that the temporal structure always has so little variation across the DCCs, as example 6 illustrates.
> # example 6
library(BondValuation)

TempStruct.by.DCC <- data.frame(Em = rep(as.Date("2019-10-31"), 16),
Mat = rep(as.Date("2024-02-29"), 16),
CpY = rep(2, 16),

FIPD = rep(as.Date("2020-03-30"), 16),
LIPD = rep(as.Date("2023-03-30"), 16),
FIAD = rep(as.Date("2019-10-31"), 16),
DCC = seq(1, 16),

EOM = rep(0, 16),

DCC.Name = List.DCC[, 21)

# Applying AnnivDates() to the data frame TempStruct.by.DCC for EOM = @
suppressWarnings(
FullAnalysis.EOM@ <- apply(
TempStruct.by.DCC[, c('Em','Mat','CpY', 'FIPD', 'LIPD', 'FIAD','DCC', 'EOM')],
1, function(y) AnnivDates(
y[1]1, y[21, y(31, y[4]1, y[51, y(6l1, , , y[7]1, y[81)
)

FCPLength.EOM@ <- lapply(lapply(lapply(FullAnalysis.EOM@, “[[‘, 2), ‘[[‘, 15)

, ha.omit)

FCPLength.EOM@ <- as.data.frame(do.call(rbind, lapply(FCPLength.EOM@, round, 4)))
LCPLength.EOM@ <- lapply(lapply(lapply(FullAnalysis.EOM@, “[[‘, 2), ‘[[‘, 17)

, ha.omit)

LCPLength.EOM@ <- as.data.frame(do.call(rbind, lapply(LCPLength.EOM@, round, 4)))
TempStruct.EOMO <- lapply(lapply(lapply(FullAnalysis.EOM@, “[[‘, 3), ‘[[‘, 2)

, ha.omit)

TempStruct.EOMO <- lapply(TempStruct.EOM@, ‘length<-*,

max (lengths(TempStruct.EOM@)))

TempStruct.EOMO <- as.data.frame(do.call(rbind, lapply(TempStruct.EOM@, round, 4)))
TempStruct.by.DCC.EOM@ <- cbind(TempStruct.by.DCC, TempStruct.EOMO,
FCPLength.EOM@, LCPLength.EOM@)

names (TempStruct.by.DCC.EOMO)[c(10:20)]1 <- c(”E",”01","02","03","04" ,"05","06"
"@7","M", "FCPLength”,"LCPLength")
print(TempStruct.by.DCC.EOMO[, c(9:ncol(TempStruct.by.DCC.EOM@))],

>
>
+
+
+
+
+
+
+
+
>
>
>
+
+
+
+
+
+)
>
+
>
>
+
>
>
+
>
+
>
>
+
>
+
>
+ row.names = FALSE)

DCC.Name E 01 02 03 04 05 06 07 M FCPLength LCPLength

ACT/ACT (ISDA) ©.17¢6 1 2 3 4 5 6 7 8.8354 0.8294 1.8354

ACT/ACT (ICMA) ©.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352

ACT/ACT (AFB) ©.17¢8 1 2 3 4 5 6 7 8.8375 0.8292 1.8375

ACT/365L ©.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352

30/360 ©.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

30E/360 ©0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

30E/360 (ISDA) ©0.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

30/360 (German) ©.1667 1 2 3 4 5 6 7 8.8333 0.8333 1.8333

30/360 US ©.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

ACT/365 (Fixed) ©.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
ACT(NL)/365 ©.1713 1 2 3 4 5 6 7 8.8398 0.8287 1.8398

ACT/360 ©.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352

30/365 ©.1667 1 2 3 4 5 6 7 8.8278 0.8333 1.8278

ACT/365 (Canadian Bond) ©.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352
ACT/364 ©.1703 1 2 3 4 5 6 7 8.8352 0.8297 1.8352

BusDay/252 (Brazilian) ©.1840 1 2 3 4 5 6 7 8.8279 0.8160 1.8279

The output of example 6 reveals that, all else equal, the specified bond can feature 7 different
temporal structures, depending on the stipulated DCC. While in example 5 the “ACT/ACT” family of
DCCs produced the same temporal structure, in example 6 most of the “30/360” DCCs result in the same
day count.
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Cash flows, accrued interest, and dirty price

In the preceding examples of AnnivDates(), no information on nominal interest rate (Coup) and
redemption value (RV) was passed to the function. If this information, however, is provided, then
AnnivDates() generates the data frame PaySched, consisting of the scheduled coupon dates and the
corresponding cash flows. As Djatschenko (2019) points out, precise application of the respective
DCC’s mathematical rule results in varying interest payments. While this is intended for calculation
of the cash flows paid at the ends of irregular first and final coupon periods, most issuers design
their bonds to pay the same cash flow at the end of each regular period. With default RegCF.equal
= 0 the function AnnivDates() calculates all cash flows according to the mathematical rule of the
respective DCC. Passing any other value to RegCF. equal forces all regular cash flows to be equal sized.
The following, example 7, uses the same input as example 6 supplemented by information on nominal
interest rate p.a. (Coup = 10%) and redemption value (RV = 100%) and illustrates the differences in
cash flows (in percent of the bond’s par value) by DCC between the two modes of RegCF . equal.

> # example 7

> library(BondValuation)

> CashFlows.by.DCC <- data.frame(Em = rep(as.Date(”2019-10-31"), 16),
Mat rep(as.Date("2024-02-29"), 16),
CpY = rep(2, 16),

FIPD = rep(as.Date("2020-03-30"), 16),
LIPD = rep(as.Date("2023-03-30"), 16),
FIAD = rep(as.Date("2019-10-31"), 16),

RV = rep(100, 16),

Coup = rep(10, 16),

DCC = seq(1, 16),

EOM = rep(0, 16),
DCC.Name = List.DCC[, 21])

# Applying AnnivDates() to the data frame CashFlows.by.DCC for EOM = @
# with option RegCF.equal = @ and RegCF.equal = 1
Suffix <- c("RegCFvary”,"RegCFequal")
for (i in c(0,1)) {
suppressWarnings(

FullAnalysis <- apply(

CashFlows.by.DCC[, c('Em', 'Mat','CpY','FIPD','LIPD', 'FIAD', 'RV',

"Coup','DCC','EOM')],
1, function(y) AnnivDates(
y[11,y[21,y[3],y[4],y[5],y0[6],y[7]1,y[8],y[9],y[10], RegCF.equal = i)
)
)
CashFlows <- lapply(lapply(lapply(FullAnalysis, ‘[[‘, 4), ‘[[%, 2)
, ha.omit)

CashFlows <- as.data.frame(do.call(rbind, lapply(CashFlows, round, 4)))
CashFlows <- cbind(CashFlows.by.DCC, CashFlows)
names(CashFlows)[c(12:19)] <- c(

"CF.1","CF.2","CF.3","CF.4" "CF.5","CF.6","CF.7", "CF.M")
assign(paste@(”"CashFlows.by.DCC.",Suffix[i+1]),CashFlows)
rm(FullAnalysis,CashFlows)

}

# RegCF.equal = 0, \textit{i.e.}, regular cash flows may vary
print(CashFlows.by.DCC.RegCFvary[, c(11:ncol(CashFlows.by.DCC.RegCFvary))],
row.names = FALSE)
DCC.Name CF.1 CF.2 CF.3 CF.4 CF.5 CF.6 CF.7 CF.M

+ VVV + ++ 4+ +++++++++++++VVVVV+++ + 4+ + + + + +

ACT/ACT (ISDA) 4.1303 5.0273 4.9519 5.0411 4.9589 5.0411 4.9589 9.2011
ACT/ACT (ICMA) 4.1484 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1758
ACT/ACT (AFB) 4.1257 5.0411 4.9589 5.0411 4.9589 5.0411 4.9589 9.2055
ACT/365L 4.1257 5.0273 4.9589 5.0411 4.9589 5.0411 4.9589 9.1803

30/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30E/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30E/360 (ISDA) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389
30/360 (German) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1667
30/360 US 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389
ACT/365 (Fixed) 4.1370 5.0411 4.9589 5.0411 4.9589 5.0411 4.9589 9.2055
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ACT(NL)/365 4.1096 5.0411 4.9589 5.0411 4.9589 5.0411 4.9589 9.2055

ACT/360 4.1944 5.1111 5.0278 5.1111 5.0278 5.1111 5.0278 9.3333

30/365 4.1096 4.9315 4.9315 4.9315 4.9315 4.9315 4.9315 9.0137

ACT/365 (Canadian Bond) 4.1370 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1644
ACT/364 4.1484 5.0549 4.9725 5.0549 4.9725 5.0549 4.9725 9.2308

BusDay/252 (Brazilian) 3.9332 4.8809 4.8809 4.8809 4.8809 4.8809 4.8809 9.0060

>
> # RegCF.equal = 1, \textit{i.e.}, regular cash flows forced to be equal
> print(CashFlows.by.DCC.RegCFequall, c(11:ncol(CashFlows.by.DCC.RegCFequal))],
+ row.names = FALSE)
DCC.Name CF.1 CF.2 CF.3 CF.4 CF.5 CF.6 CF.7 CF.M

ACT/ACT (ISDA) 4.1303 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2011

ACT/ACT (ICMA) 4.1484 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1758

ACT/ACT (AFB) 4.1257 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2055

ACT/365L 4.1257 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1803

30/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30E/360 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30E/360 (ISDA) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

30/360 (German) 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1667

30/360 US 4.1667 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1389

ACT/365 (Fixed) 4.1370 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2055
ACT(NL)/365 4.1096 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2055

ACT/360 4.1944 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.3333

30/365 4.1096 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.0137

ACT/365 (Canadian Bond) 4.1370 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.1644
ACT/364 4.1484 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 9.2308

BusDay/252 (Brazilian) 3.9332 4.8809 4.8809 4.8809 4.8809 4.8809 4.8809 9.0060

Please note that, irrespective of the value of RegCF.equal passed to AnnivDates(), the cash flows
at the ends of all regular coupon periods are equal sized with the conventions ACT/ACT (ICMA),
ACT/365 (Canadian Bond), and BusDay/252 (Brazilian). This is due to the DCC-specific rules described
in Djatschenko (2019). While with the majority of DCCs, the cash flows are computed based upon the
ratio of the nominal interest rate p.a. and the number of interest payments per year, which yields
regular cash flows of 5%, BusDay/252 (Brazilian) determines them exponentially, resulting in regular
cash flows of 4.8809%.

The vast majority of bonds are quoted clean, i.e., their observable prices do not contain accrued
interest. The actual price that a bond buyer pays to the seller is called full or dirty price and computed
as the sum of the quoted clean price and accrued interest, which is calculated according to the
respective DCC. Accrued interest and the dirty price of a specific bond can be calculated using the
function DP(). In addition to the input parameters required by AnnivDates(), the clean price (CP) and
the settlement date (SETT) need to be passed to the function DP(). The following, example 8, returns
the accrued interest and dirty price by DCC for the same bond as used in example 7, assuming that on
the settlement dates SETT1 = 2020-09-28, SETT2 = 2023-03-30, and SETT3 = 2024-01-15, the quoted
clean price is 105% of the bond’s par value.

> # example 8

> library(BondValuation)

> AccrIntDP.by.DCC <- data.frame(CP = 105,

SETT1 = rep(as.Date("2020-09-28"), 16),
SETT2 = rep(as.Date("2023-03-30"), 16),
SETT3 = rep(as.Date("2024-01-15"), 16),
Em = rep(as.Date("2019-10-31"), 16),
Mat = rep(as.Date("2024-02-29"), 16),
CpY = rep(2, 16),

FIPD = rep(as.Date("2020-03-30"), 16),
LIPD = rep(as.Date("2023-03-30"), 16),
FIAD = rep(as.Date("2019-10-31"), 16),
RV = rep(100, 16),

Coup = rep(10, 16),

DCC = seq(1, 16),

EOM = rep(0, 16),

DCC.Name = List.DCC[, 21)

V o+ 4+ + + + 4+ + + + + + o+ 4+

> Suffix <- c(”SETT1"”,"SETT2",”SETT3")
> for (i in c(1:3)) {
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DP.Output<-suppressWarnings(
apply(AccrIntDP.by.DCC[,c('CP',paste@('SETT',i), 'Em', 'Mat', 'CpY"', 'FIPD"',
‘LIPD','FIAD','RV', 'Coup','DCC')],
1,function(y) DP(y[1],y[2],y[3],y[4]1,y[5]1,y[6],y[7],
y[81,y[9],y[10]1,y[111)))
AI<-do.call(rbind,lapply(lapply(lapply(DP.Output, ‘[[‘, 2), ‘[[‘, 3), round, 4))
DP<-do.call(rbind, lapply(lapply(lapply(DP.Output, ‘[[*, 2), ‘[[*, 1), round, 4))
AccrIntDP.by.DCC<-cbind(AccrIntDP.by.DCC,AI,DP)
names (AccrIntDP.by.DCC)[
c((ncol(AccrIntDP.by.DCC) - 1) : ncol(AccrIntDP.by.DCC))] <- c(
paste@("AI.", Suffix[i]), paste@("DP.", Suffix[i]))
rm(DP.Output,AI,DP)
}
print(AccrIntDP.by.DCCL,c(15:ncol(AccrIntDP.by.DCC))], row.names = FALSE)
DCC.Name AI.SETT1 DP.SETT1 AI.SETT2 DP.SETT2 AI.SETT3 DP.SETT3

V o+ + 4+ + + + o+ + o+ o+ o+

ACT/ACT (ISDA)  4.9727 109.9727 0 105 7.9716 112.9716

ACT/ACT (ICMA)  4.9457 109.9457 0 105  7.9396 112.9396

ACT/ACT (AFB)  4.9863 109.9863 0 105  7.9726 112.9726

ACT/365L  4.9727 109.9727 0 105 7.9508 112.9508

30/360  4.9444 109.9444 0 105  7.9167 112.9167

30E/360  4.9444 109.9444 0 105  7.9167 112.9167

30E/360 (ISDA)  4.9444 109.9444 0 105 7.9167 112.9167

30/360 (German)  4.9444 109.9444 0 105  7.9167 112.9167

30/360 US  4.9444 109.9444 0 105  7.9167 112.9167

ACT/365 (Fixed) 4.9863 109.9863 0 105 7.9726 112.9726
ACT(NL)/365  4.9863 109.9863 0 105  7.9726 112.9726

ACT/360 5.0556 110.0556 0 105 8.0833 113.0833

30/365 4.8767 109.8767 0 105 7.8082 112.8082

ACT/365 (Canadian Bond)  4.9863 109.9863 0 105 7.9315 112.9315
ACT/364 5.0000 110.0000 0 105  7.9945 112.9945

BusDay/252 (Brazilian) 4.8412 109.8412 0 105 7.7354 112.7354

Yield to maturity, duration, and convexity

The yield to maturity p.a. is determined as the value y that fulfills equation (1).

CFiyx CFp + RV

I

DP; = CP; + AC(t;) = )

In equation (1), DP; denotes the dirty price, consisting of the quoted clean price CPr and accrued
interest AC(tr). Conformal with the notation in Djatschenko (2019), t; is the settlement date and
T its index in the temporal structure established by the function AnnivDates(). On the right side
of equation (1), CN(#¢) denotes the next coupon payment after the settlement date ¢, and w is the
fraction of a regular coupon period left until this payment. The set CF;,; withi € {x e N | x € [1,7]}
contains all interest payments after t;, excluding the final coupon payment, CFy;, where k is the
index of the next coupon date after ¢, 77 is the number of interest payment dates between ¢ and the
penultimate coupon date, and M is the index corresponding to the bond’s maturity date. RV denotes
the redemption payment, z represents the length of the final coupon period, and / represents the
number of regular interest payments per year.

The dirty price DP; and the accrued interest AC(7) are computed as illustrated in example 8. The
cash flows CN(t¢), CF;k, and CFy; are calculated as demonstrated in example 7. The powers in the
denominators in equation (1) are found based on the temporal structure established by the function
AnnivDates(), as shown in example 6.

Essentially, the same DCC is used for computation of cash flows, accrued interest and the indexes of
the temporal structure. Nevertheless, the option Calc.Method in the functions BondVal.Price() and
BondVal.Yield() allows for switching the calculation method for the temporal structure to DCC = 2,
i.e., ACT/ACT (ICMA), while keeping the DCC passed to the function for determination of cash flows
and accrued interest.

The function BondVal.Price() can be used to compute a bond’s clean price, (CP;), given its yield
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to maturity p.a. (v), while the function BondVal.Yield() returns y given CP;. Besides accrued interest

(AC(t7)) and dirty price (DPr), both functions return 7, MacAulay duration, modified duration, and
convexity of the specified bond.” The following, example 9, demonstrates the use of the function
BondVal.Yield() for the bond analyzed in example 8. In the output of example 9, YtM denotes the
bond’s yield to maturity p.a. in percent, DUR is the bond’s modified duration in years, and Conv is the

bond’s convexity in years. The suffixes .S1, .S2, and . S3 correspond to the three analyzed settlement

dates, SETT1
first column of the displayed data frame contains the DCC-codes instead of their names.

> # example 9
> library(BondValuation)
> YtM.by.DCC <- data.frame(CP = 105,
rep(as.Date("2020-09-28"), 16),
rep(as.Date("2023-03-30"), 16),
rep(as.Date("2024-01-15"), 16),
Em = rep(as.Date("2019-10-31"), 16),

i<

+ + + + + + + + + + + A+ A+ FVVVYV o+ o+ o+ o+ o+ o+ + 4+

}

-1

for (i in c(1:3)) {

SETT
SETT
SETT

Mat = rep(as.Date("2024-02-29"), 16),

1
2
3

CpY = rep(2, 16),

FIPD = rep(as.Date("2020-03-30"), 16),
rep(as.Date("2023-03-30"), 16),
rep(as.Date(”2019-10-31"), 16),

LIPD
FIAD
RV =

Coup = rep(10, 16),
seq(1, 16),
rep(@, 16))

DCC
EOM

Suffix <- ¢(”S1","S2","S3")

rep(100, 16),

BondValYield.Output<-suppressWarnings(

apply(YtM.by.DCC[,c('CP',paste@('SETT',i), 'Em', 'Mat', 'CpY','FIPD',
'LIPD','FIAD','RV', 'Coup','DCC')],

2020-09-28, SETT2 = 2023-03-30, and SETT3 = 2024—01-15.Forspacereasons,the

1,function(y) BondVal.Yield(y[1],y[2],y[3],y[4],y[5],y(6]1,y[7],

y[81,y[9]1,y[101,y[111)))

YtM<-do.call(rbind, lapply(lapply(BondValYield.Output, ‘[[‘, 4), round, 3))
ModDUR<-do.call(rbind, lapply(lapply(BondValYield.Output, ‘[[‘, 5), round, 4))
Conv<-do.call(rbind, lapply(lapply(BondValYield.Output, ‘[[‘, 7), round, 4))
YtM.by.DCC<-cbind (YtM.by.DCC, YtM, ModDUR, Conv)

names (YtM.by.DCC) [

c((ncol(YtM.by.DCC) - 2) : ncol(YtM.by.DCC))] <- c(
paste@("YtM.", Suffix[i]), paste@("DUR.", Suffix[i]),
paste@("Conv.", Suffix[i]))
rm(BondValYield.Output, YtM,ModDUR, Conv)

> print(YtM.by.DCC[,c(13,15:ncol(YtM.by.DCC))], row.names = FALSE)
Conv.S2

DCC

0 NO O W N =

e}

10
11
12
13
14
15
16

Yt

8.

O 0O 0O 0O 00O 00 00 0 O O O CoO 0O 00 00

M.S1
244
.252
.245
.238
.251
.251
.251
.252
.251
.248
.243
.381
.120
.236
.274
.032

DUR.S1
.7593
.7590
.7595
.7604
.7564
.7564
.7564
.7584
.7564
. 7587
.7604
.7505
.7645
.7593
.7570
L7729

NN DNNDNDNNDNDNDNNDNDNDNDDNDDNDNDDNDDN

N

Conv.S1

4.
.9766
.9793
.9813
.9676
.9676
.9676
.9746
.9676
.9763
.9824
.9554
.9882
.9776
L9722
.0104

OB B2 DDA

9777

YtM.S2

4.
.334
.360
.339
.313
.313
.313
.329
.313
.365
.354
.498
.183
.322
.391
175

R T T G TG T T N S S - S S

360

SDjatschenko (2019) provides the theoretical background on the implemented key figures.
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Application of the package BondValuation

This section demonstrates how the R package BondValuation can be applied for the analysis of large

data frames. For this purpose, the two sample data frames, SomeBonds2016 and PanelSomeBonds2016,

are used. SomeBonds2016 contains time-invariant information of 100 hypothetical bonds. PanelSomeBonds2016
provides daily clean prices and yields of the same bonds in long format.

Checking the data with AnnivDates()

Since erroneous entries in the data are often an issue, the function AnnivDates() performs several
plausibility checks. Example 10 provides a summary of SomeBonds2016 and illustrates a strategy for
error identification in this data frame.

> # example 10
> library(BondValuation)
> summary (SomeBonds2016)

ID.No Coup.Type Issue.Date FIAD.Input
Min. :1.00 Length:100 Min. :2016-01-01 Min. :2016-01-01
1st Qu.: 25.75 Class :character 1st Qu.:2016-04-25 1st Qu.:2016-04-25
Median : 50.50 Mode :character Median :2016-06-12 Median :2016-06-12
Mean : 50.50 Mean :2016-06-19 Mean :2016-06-19
3rd Qu.: 75.25 3rd Qu.:2016-08-23 3rd Qu.:2016-08-23
Max. :100.00 Max. :2016-10-14 Max. :2016-10-28

FIPD.Input LIPD.Input Mat.Date CpY.Input
Min. :2016-04-24 Min. :2016-08-23 Min. :2017-01-24 Min. 1.0
1st Qu.:2016-09-30 1st Qu.:2019-02-14 1st Qu.:2019-07-24 1st Qu.: 2.0
Median :2016-12-15 Median :2020-06-08 Median :2020-11-20 Median : 2.5
Mean :2016-12-15 Mean :2021-11-11 Mean :2022-05-18 Mean : 4.3
3rd Qu.:2017-03-02 3rd Qu.:2022-11-04 3rd Qu.:2023-05-05 3rd Qu.: 6.0
Max. :2017-08-23 Max. :2056-05-20 Max. :2056-08-31 Max. :12.0
Coup. Input RV.Input DCC. Input EOM. Input

Min. : 0.010 Min. :100 Min. : 1.00 Min. :0.00
1st Qu.: 0.800 1st Qu.:100 1st Qu.: 5.00 T1st Qu.:1.00
Median : 1.410 Median :100 Median :10.00 Median :1.00
Mean 1 2.270 Mean 1100 Mean : 8.95 Mean :0.79
3rd Qu.: 2.869 3rd Qu.:100 3rd Qu.:13.00 3rd Qu.:1.00
Max. :24.020 Max. :100 Max. :16.00 Max. :1.00

The summary information above reveals that all bonds in the data frame were issued (Issue.Date)
and started to accrue interest (FIAD. Input) in 2016. The terms to maturity (Mat.Date) span from about
1 to approximately 40 years. The summary of variable CpY. Input shows that there are no zero coupon
bonds in the dataset and the number of interest payments per year varies from 1 to 12. Nominal
interest rates (Coup. Input) average 2.27%, varying from 0.01% to 24.02%. All bonds are redeemed
(RV.Input) at 100% of their respective par values and 79% of them follow the End-of-Month rule
(EOM. Input). Now AnnivDates() is used to analyze the data for plausibility.

# example 10: continued (I)

>
>
> # Applying AnnivDates() to the data frame SomeBonds2016.
> FullAnalysis<-suppressWarnings(

+  apply(

+ SomeBonds2016[,c('Issue.Date', 'Mat.Date', 'CpY.Input', 'FIPD.Input',

+ '"LIPD.Input', 'FIAD.Input','RV.Input', 'Coup.Input’,

+ 'DCC.Input', 'EOM.Input')], 1,

+ function(y) AnnivDates(y[1], y[21, y[31, y[4], y[51, yl[6l, y[7],

+ y[81, y[91, y[101)

+ )

+)

> # Extracting the data frame Warnings and binding the Warnings to the bonds
> BondsWithWarnings<-cbind(

+  SomeBonds2016, do.call(

+ rbind, lapply(FullAnalysis, ‘[[%, 1)

+ )

+)
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> summary (BondsWithWarnings[,c((ncol(SomeBonds2016)+1):ncol(BondsWithWarnings))1)
Em_FIAD_differ EmMatMissing CpYOverride RV_set1@0@percent NegLifeFlag

Min. :0.00 Min. 10 Min. 10 Min. 10 Min. 10
1st Qu.:0.00 1st Qu.:0 1st Qu.:0 1st Qu.:0 1st Qu.:0
Median :0.00 Median :0 Median :0 Median :0 Median :0
Mean :0.04 Mean 10 Mean 10 Mean H Mean 10
3rd Qu.:0.00 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0 3rd Qu.:0
Max. :1.00 Max. 10 Max. 10 Max. H) Max. 10
ZeroFlag  Em_Mat_SameMY ChronErrorFla FIPD_LIPD_equal IPD_CpY_Corrupt
Min. 10 Min. 10 Min. :0.00 Min. :0.00 Min. :0.00
1st Qu.:0 Tst Qu.:0 Tst Qu.:0.00 1st Qu.:0.00 1st Qu.:0.00
Median :0 Median :0 Median :0.00 Median :0.00 Median :0.00
Mean 10 Mean :0 Mean :0.01 Mean :0.02 Mean :0.09
3rd Qu.:0 3rd Qu.:0  3rd Qu.:0.00 3rd Qu.:0.00 3rd Qu.:0.00
Max. 10 Max. 10 Max. :1.00 Max. :1.00 Max. :1.00
EOM_Deviation EOMOverride DCCOverrid NoCoups
Min. :0.00 Min. :0.00 Min. :0 Min. :0.00
1st Qu.:0.00 1st Qu.:0.00 1st Qu.:0 1st Qu.:0.00
Median :1.00 Median :1.00 Median :0 Median :0.00
Mean :0.69 Mean :0.68 Mean 10 Mean :0.01
3rd Qu.:1.00 3rd Qu.:1.00 3rd Qu.:0 3rd Qu.:0.00
Max. :1.00 Max. :1.00 Max. :0 Max. :1.00

The summary information in example 10: continued (I) reveals that 1% of the bonds suffer from a
chronological error (ChronErrorFlag) and 9% feature inconsistencies between the coupon payment
dates and the number of interest payment dates per year CpY (IPD_CpY_Corrupt). To illustrate the
rationale behind the plausibility analysis, a manual inspection of the affected bonds is performed
below.°

> # example 10: continued (II)

>

> # manual examination of the rows where ChronErrorFlag = 1

> print(BondsWithWarnings[

+  which(BondsWithWarnings$ChronErrorFlag == 1),

+ c('ID.No', 'Issue.Date', 'FIAD.Input', 'FIPD.Input', 'LIPD.Input', 'Mat.Date')],

+ row.names = FALSE)

ID.No Issue.Date FIAD.Input FIPD.Input LIPD.Input Mat.Date
17 2016-08-23 2016-08-23  2017-08-23  2016-08-23  2017-08-23

>

> # manual examination of the rows where IPD_CpY_Corrupt = 1

> print(BondsWithWarnings[

+  which(BondsWithWarnings$IPD_CpY_Corrupt == 1),

+ c('ID.No', 'Issue.Date', 'FIAD.Input', 'FIPD.Input', 'LIPD.Input', 'Mat.Date',

+ '"CpY.Input')], row.names = FALSE)

ID.No Issue.Date FIAD.Input FIPD.Input LIPD.Input Mat.Date CpY.Input
2 2016-06-23 2016-06-23 2016-07-15 2019-05-15 2019-06-15
4  2016-05-24 2016-05-24 2016-05-31 2017-04-30  2017-05-31
19  2016-09-28 2016-09-28 2017-02-28  2021-08-31 2021-09-28
56 2016-07-26 2016-07-26  2017-01-26  2020-07-26  2020-10-26
64 2016-04-13 2016-04-13  2016-04-24 2017-03-24  2017-04-24
65 2016-09-30 2016-09-30 2016-10-31 2018-02-28  2018-03-29
70 2016-08-26 2016-08-26 2016-11-20 2056-05-20  2056-08-31
82 2016-06-30 2016-06-30 2016-07-15 2028-09-15 2028-12-15
84  2016-07-20 2016-07-20 2016-07-24 2016-09-24 2017-01-24

NN 2 2 0 = = N A

The chronological error occurred because the provided penultimate coupon date (LIPD.Input)
is located prior to the supplied first interest payment date (FIPD. Input). Since the authenticity of
FIPD.Input and LIPD.Input is unclear in this case, both are automatically dropped by AnnivDates(),
and the calculation continues based upon the provided values of Issue.Date and Mat.Date.

As can be seen in the manual examination of the rows where IPD_CpY_Corrupt = 1, for all of them,
there are inconsistencies between the value of CpY.Input and the interval between FIPD. Input and
LIPD.Input. In the first row, for example, CpY.Input indicates that coupons are paid quarterly. If the

®Please refer to the package manual of BondValuation for detailed descriptions of the other warning flags.
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value of FIPD. Input is correct, coupon payments should occur on July 15th, October 15, January
15t and April 15t 1f the value of LIPD. Input is genuine, however, interest should be paid on May
15, August 15™, November 151, and February 15, Finally, in this case, FIPD. Input and LIPD. Input
can both be correct, lying on each other’s anniversary dates for a value of CpY.Input = 6. Since it
is not clear which of the three values is correct, AnnivDates() cannot automatically revise the input
but only helps the user to identify the inconsistency. If the data are passed to AnnivDates() as they
are, CpY. Input is assumed to be genuine, FIPD.Input and LIPD. Input are dropped, and the execution
continues as if they were not provided in the first place, resulting in the temporal structure and cash
flows provided below in example 10: continued (III).

> # example 10: continued (III)
> # Printing data frame DateVectors for bond with ID.No = 2
> print(
+ as.data.frame(do.call(rbind, lapply(FullAnalysis, ‘[[‘, 3)[21)),
+ row.names = FALSE)
RealDates RD_indexes CoupDates CD_indexes AnnivDates  AD_indexes

2016-06-23 0.08888889 2016-09-15 1 2016-06-15 Q
2016-09-15 1.00000000 2016-12-15 2 2016-09-15 1
2016-12-15 2.00000000 2017-03-15 3 2016-12-15 2
2017-03-15 3.00000000 2017-06-15 4 2017-03-15 3
2017-06-15 4.00000000 2017-09-15 5 2017-06-15 4
2017-09-15 5.00000000 2017-12-15 6 2017-09-15 5
2017-12-15 6.00000000 2018-03-15 7 2017-12-15 6
2018-03-15 7.00000000 2018-06-15 8 2018-03-15 7
2018-06-15 8.00000000 2018-09-15 9 2018-06-15 8
2018-09-15 9.00000000 2018-12-15 10 2018-09-15 9
2018-12-15 10.00000000 2019-03-15 11 2018-12-15 10
2019-03-15 11.00000000 2019-06-15 12 2019-03-15 11
2019-06-15 12.00000000 <NA> NA 2019-06-15 12
>

> # Printing data frame PaySched for bond with ID.No = 2

> print(

+ as.data.frame(do.call(rbind, lapply(FullAnalysis, ‘[[‘, 4)[2])),
+ row.names = FALSE)
CoupDates  CoupPayments

2016-09-15 0.7368611
2016-12-15 0.8087500
2017-03-15 0.8087500
2017-06-15 0.8087500
2017-09-15 0.8087500
2017-12-15 0.8087500
2018-03-15 0.8087500
2018-06-15 0.8087500
2018-09-15 0.8087500
2018-12-15 0.8087500
2019-03-15 0.8087500
2019-06-15 0.8087500

The consequences of the plausibility-check-induced automated data revision by AnnivDates()
are stored in the data frame Traits. Alongside the values that were initially provided and that are
actually used in the subsequent calculations, Traits contains information on the types and lengths of
the first and final coupon periods. Example 10: continued (IV) demonstrates how the data frame Traits
can be extracted from the output of AnnivDates() and provides summary information on the lengths
and types of the first and final coupon periods in the data frame SomeBonds2016. Of the 100 bonds
in SomeBonds2016, only 20 have regular first coupon periods and 28 feature final coupon periods of
regular length. The lengths of the first coupon periods vary from 1.37% to 1,200% of the bond-specific
regular coupon period length, while the final coupon periods average 238% and span from 2.78% to
1,200% of the respective bond’s regular coupon period length.

> # example 10: continued (IV)

> # Extracting the data frame Warnings and binding the Warnings to the bonds
> BondsWithTraits<-cbind(

+  SomeBonds2016, do.call(

+ rbind, lapply(FullAnalysis, ‘[[%, 2)

t )
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+)
> summary(BondsWithTraits[, c('FCPType', 'LCPType', 'FCPLength', 'LCPLength')])
FCPType LCPType FCPLength LCPLength
long  :49 long  :51 Min. : 0.01366 Min. : 0.02778
short :31 regular:28 1st Qu.: ©0.92150 1st Qu.: 1.00000
regular:20 short :21 Median : 1.00000 Median : 1.25140
Mean 1 2.19291 Mean : 2.38417
3rd Qu.: 3.00000 3rd Qu.: 3.00000
Max. :12.00000 Max. :12.00000

Applying BondVal.Yield() to long format data

In addition to the time-invariant information in SomeBonds2016, the data frame PanelSomeBonds2016
provides daily clean prices (CP. Input) and yields to maturity (YtM. Input) that correspond to the trade
dates, TradeDate, and settlement dates, SETT. TradeDate is the calendar date on which the transaction
is initiated and the quoted clean price is observed; SETT is the actual calendar date on which the
transfer of cash and assets is completed. The settlement date is used for the following computation.
Example 11 below shows that PanelSomeBonds2016 has 12,718 rows and 16 columns and provides
summary information regarding the time-variant variables. The clean prices span from 90.38% to
224.16%, while the yields to maturity average —0.01593%, varying from —1.725% to 2%.

> # example 11
> library(BondValuation)
> dim(PanelSomeBonds2016)
[1] 12718 16
> summary(PanelSomeBonds2016[, c(13:16)1)

TradeDate SETT CP.Input YtM. Input
Min. :2016-01-29 Min. :2016-02-02 Min. : 90.38 Min. :-1.72500
1st Qu.:2016-08-03 1st Qu.:2016-08-05 1st Qu.:102.73 1st Qu.:-0.35000
Median :2016-10-03 Median :2016-10-05 Median :105.79 Median :-0.02500

Mean :12016-09-20 Mean 12016-09-23 Mean :112.53 Mean :-0.01593
3rd Qu.:2016-11-17 3rd Qu.:2016-11-21 3rd Qu.:113.21 3rd Qu.: 0.27500
Max. 12016-12-30 Max. 12017-01-03 Max. 1224.16 Max. 1 2.00000

In the following, example 12, the function BondVal.Yield() is used to determine 7, accrued interest,
dirty price, yield to maturity, modified duration, MacAulay duration, and convexity for each bond
and settlement date in PanelSomeBonds2016. In alternative 1, the function BondVal.Yield() is applied
to every row of the data frame PanelSomeBonds. Alternative 2 demonstrates a significantly faster
approach, where AnnivDates() is applied to every bond’s time-invariant characteristics before its
output is passed to BondVal.Yield() for every settlement date. Alternative 2 takes less than half the
time of alternative 1.”

> # example 12

# analysis of PanelSomeBonds2016 with BondValuation

library(BondValuation)

Panel <- PanelSomeBonds2016

Vars <- c("tau","AccrInt”,”DP","YtM", "ModDUR", "MacDUR", "Conv")

Panel[, c((ncol(Panel) + 1) : (ncol(Panel) + length(Vars)))] <- as.numeric(NA)
names (Panel)[(ncol(Panel) - length(Vars) + 1) : ncol(Panel)] <- Vars

# Alternative 1: loop through the data frame

# applying BondVal.Yield to each row

Time.Alt01 <- system.time(

for (i in c(1:nrow(Panel))) {
BondVal.Out <- suppressWarnings(
BondVal.Yield(CP = Panel$CP.Input[i],

SETT = Panel$SETT[il,
Em = Panel$Issue.Datel[i],
Mat = Panel$Mat.Date[i],
CpY = Panel$CpY.Inputlil,
FIPD = Panel$FIPD.Input[il,
LIPD = Panel$LIPD.Input[i],

+ + + + + + + + + V V VYV VYV VVYVYV

7On an "Intel(R) Core(TM) i7-3687U CPU @ 2.10GHz" machine, alternative 1 takes about 350 seconds, while
alternative 2 takes ca. 170 seconds.
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FIAD = Panel$FIAD.Inputl[i],
RV = Panel$RV.Input[i],
Coup = Panel$Coup.Inputlil,
DCC = Panel$DCC.Inputl[il,
EOM = Panel$EOM.Input[i],
Precision = .Machine$double.eps*@.5
)
)
Panel[i, c((ncol(Panel) - length(Vars) + 1) : ncol(Panel))] <-
round(as.numeric(BondVal.Out[c(11, 2 : 7)1), 4)
}, gcFirst = TRUE
)

# Alternative 2: Run AnnivDates() once per Bond-ID and pass its output
# to BondVal.Yield() for every row with the same Bond-ID
NonDuplID <- c(which(!duplicated(Panel$ID.No)), (nrow(Panel)+1))
Time.Alt02 <- system.time(
for (i in c(1 : (length(NonDuplID) - 1))) {
BondCount <- NonDuplID[i]
AnnivDates.Out <- suppressWarnings(
AnnivDates(Em = Panel$Issue.Date[BondCount],
Mat = Panel$Mat.Date[BondCount],
CpY = Panel$CpY.Input[BondCount],
FIPD = Panel$FIPD.Input[BondCount],
LIPD = Panel$LIPD.Input[BondCount],
FIAD = Panel$FIAD.Input[BondCount],
RV = Panel$RV.Input[BondCount],
Coup = Panel$Coup.Input[BondCount],
DCC = Panel$DCC. Input[BondCount],
EOM = Panel$EOM. Input[BondCount]

)
)
for (j in c(NonDuplID[i] : (NonDuplID[i + 11 - 1))) {
BondVal.Out <- suppressWarnings(
BondVal.Yield(CP = Panel$CP.Input[j],
SETT = Panel$SETT[j],
Em = Panel$Issue.Date[j],
Mat = Panel$Mat.Date[j],
CpY = Panel$CpY.Input[j],
FIPD = Panel$FIPD.Input[j],
LIPD = Panel$LIPD.Inputl[j],
FIAD = Panel$FIAD.Input[j],
RV = Panel$RV.Input[j],
Coup = Panel$Coup.Inputl[j],
DCC = Panel$DCC.Inputl[j],
EOM = Panel$EOM.Input[j],
InputCheck = 0,
Precision = .Machine$double.eps”0.5,
AnnivDatesOutput = AnnivDates.Out

)
)
Panel[j, c((ncol(Panel) - length(Vars) + 1) : ncol(Panel))] <-
round(as.numeric(BondVal.Out[c(11, 2 : 7)1), 4)
3
}, gcFirst = TRUE

)

V 4+ 4+ 4+ 4+ 4+ 4+ + + + + + + + A+ 4+ A+ A+ A+ + A+ FFFFNVVVVVV A+ o+ +

> round(Time.A1t@2[[3]] / Time.ALt@1[[3]1]1, 2)
[1] 0.48
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Conclusion

This article introduces the R package BondValuation and provides guidance on its application for
analysis of large data frames of fixed coupon bonds. The theoretical foundation of the package is the
generalized valuation methodology developed by Djatschenko (2019). Its seamless implementation
in BondValuation is framed by a set of routines that assist the user in data quality evaluation and
automatically correct corrupted entries.

BondValuation is the first R package that properly handles irregular first and final coupon periods
of fixed coupon bonds and provides a comprehensive coverage of the day count conventions (DCC)
used in the global bond markets. Currently, 16 different DCCs are implemented, which account for the
vast majority of the methods used in the global fixed income markets. Within its scope, the R package
BondValuation performs correctly and efficiently. Nevertheless, the current version of the software
remains open for further development and refinement. Essentially, the calculations are performed
under the assumption that interest accrual and temporal structure follow the same DCC. The option
CalcMethod in the functions BondVal.Price() and BondVal.Yield() can be used to force the temporal
structure to follow the ACT/ACT (ICMA) method, while the DCC passed to the respective function is
used to compute accrued interest. In future versions of the package, I intend to implement an explicit
assignment of DCC to both interest accrual and temporal structure, which will increase the flexibility of
the package.

A further limitation is that the calendar dates of the temporal structure are currently returned,
regardless of whether or not they are business days. Although this is the common approach in
theoretical bond valuation, including the possibility of business day adjustments for cash flows would
be particularly appealing to practitioners. Along with business day adjustments, future versions of
BondValuation can be extended by methods for bond portfolio analysis.

The current version of Bond Valuation is designed for processing non-callable, option-free, non-
sinkable fixed coupon bonds and zero bonds. With the implemented methods, callable bonds can
be analyzed through appropriate adjustment of the maturity date to the next call date, returning
the so-called yield-to-worst and the corresponding duration and convexity measures. Based on the
implemented functions, the R package Bond Valuation can be extended to incorporate methods for
explicit treatment of callable, sinkable and convertible fixed and floating rate bonds.

The R package BondValuation provides the computational foundation for the exploration of
a variety of interesting research questions related to the analysis of fixed income securities across
markets. Even considering the limitations described above, the software is also useful to practitioners.
Iintend to continuously extend and improve the package, and I highly appreciate feedback from the
users.
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ConvergenceClubs: A Package for
Performing the Phillips and Sul’s Club
Convergence Clustering Procedure

by Roberto Sichera and Pietro Pizzuto

Abstract This paper introduces package ConvergenceClubs, which implements functions to perform
the Phillips and Sul (2007, 2009) club convergence clustering procedure in a simple and reproducible
manner. The approach proposed by Phillips and Sul to analyse the convergence patterns of groups
of economies is formulated as a nonlinear time varying factor model that allows for different time
paths as well as individual heterogeneity. Unlike other approaches in which economies are grouped a
priori, it also allows the endogenous determination of convergence clubs. The algorithm, usage, and
implementation details are discussed.

Introduction

Economic convergence refers to the idea that per—capita incomes of poorer economies will tend to
grow at faster rates than those of richer economies. The issue has been widely investigated in economic
literature since the classical contributions on economic growth and development (Solow, 1956; Myrdal,
1957). In addition to the traditional concepts of beta and sigma convergence, an increasing amount
of literature has recently emerged on the concept of club convergence. This notion was originally
introduced by Baumol (1986) to describe convergence among a subset of national economies and it has
quickly spread also at the regional level. Several contributions have tried to empirically investigate the
topic proposing different methodologies. For example, Quah (1996) developed a Markov chain model
with probability transitions to estimate the evolution of income distribution. Le Gallo and Dall’Erba
(2005) proposed a spatial approach to detect convergence clubs using the Getis-Ord statistic. Corrado
et al. (2005) introduced a multivariate stationarity test in order to endogenously identify regional club
clustering.

More recently, Phillips and Sul (2007, 2009) proposed a time-varying factor model that allows for
individual and transitional heterogeneity to identify convergence clubs. Due to its positive attributes,
this methodology has become predominant in the analysis of the convergence patterns of economies.
In fact, it has several advantages. First, it allows for different time paths as well as individual
heterogeneity, therefore, different transitional paths are possible'. Second, unlike other approaches
in which economies are grouped a priori, this methodology enables the endogenous (data—driven)
determination of convergence clubs. Third, the test does not impose any particular assumption
concerning trend stationarity or stochastic non—stationarity since it is robust to heterogeneity and to
the stationarity properties of the series.

As for existing routines, Phillips and Sul (2007, 2009) provided Gauss (Aptech Systems, 2016) code
used in their empirical studies. Schnurbus et al. (2017) provided a set of R functions to replicate the
key results of Phillips and Sul (2009), while Du (2018) developed a full Stata (StataCorp, 2017) package
to perform the club convergence algorithm. A dedicated R package for this methodology has been
missing. The ConvergenceClubs (Sichera and Pizzuto, 2019) package fills this gap, since it allows to
carry out the Phillips and Sul’s methodology in a simple and reproducible fashion, allowing for easy
definition of the parameters. Moreover, our package also implements the alternative club merging
algorithm developed by von Lyncker and Thoennessen (2017).

The remainder of the paper is organised as follows. First, the club convergence methodology is
presented. Then, the main features of the package are listed and described. Finally, an example based
on Phillips and Sul (2009) data is provided.

Methodology

The log-t test

The approach proposed by Phillips and Sul is based on a modification of the conventional panel
data decomposition of the variable of interest. In fact, panel data Xj; are usually decomposed in the

IFor example, in the context of income convergence, the approach proposed by Phillips and Sul allows to
account for heterogeneity in technology growth rates and in the speed of convergence, unlike the traditional
neoclassical model 4 la Solow that assumes homogeneous technological progress.
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following way:
Xip = git +4ait, )

where g;; is the systematic factor (including the permanent common component) and a;; is the
transitory component. In order to account for temporal transitional heterogeneity they modify eq. (1)
as follows:

Xy = (%ﬂt) = bjspe, 2

where b;; is the systematic idiosyncratic element that is allowed to evolve over time and to include a
random component that absorbs a;;, and p is the common factor. In this dynamic factor formulation,
that allows to separate common from idiosyncratic components, b;; becomes the transition path of
the economy to the common steady—state growth path determined by y;. Particularly, the common
growth component j;, may follow either a trend—stationary process or a non—stationary stochastic
trend with drift, since a specific assumption regarding the behaviour of y; is not necessary.

In order to test if different economies converge, a key role is played by the estimation of b;.
According to the authors, the estimation of this parameter is not possible without imposing additional
structural restrictions and assumptions. However, as a viable way to model this element, they propose
the construction of the following relative transition component:

_ Xit _ bit
NIYN Xy  NIZN by

hi ®)
which is called relative transition path and can be directly computed from the data. In such a way
it is possible to remove the common steady-state trend y, tracing an individual trajectory for each
economy i in relation to the panel average. In other words, the relative transition path describes the
relative individual behaviour as well as the relative departures of the i-th economy from the common
growth path ;.

In presence of convergence, there should be a common limit in the transition path of each economy
and the coefficient h;; should converge towards unity (h;; — 1) foralli =1,...,N, ast — co. At the
same time, the cross—sectional variation H;; (computed as the quadratic distance measure for the panel
from the common limit) should converge to zero:

N
H=N1Y (hy—1>—>0 as t— . @)
i=1

In order to construct a formal statistical test for convergence, Phillips and Sul (2007, 2009) assume
the following semi-parametric specification of bj:

i Git
L(t)t’

bt = b; + ©)
where b; is fixed (time invariant), the &; are i.i.d. N(0,1) random variables across i, but weakly
dependent over ¢, L(t) is a slowly varying increasing function (with L(¢) — o0 as t — c0), and « is the
decay rate, or more specifically in this case, the convergence rate. The null hypothesis of convergence
can be written as Hy : b; = b and a« > 0 versus the alternative Hj : b; # b for all i, or « < 0. Under
Hy, different transitional paths are possible, including temporary divergence (a stylized way in which
economies may converge is shown in fig. 1).

More formally, to test the presence of convergence among different economies, Phillips and Sul
(2007, 2009) suggest to estimate the following equation model through the ordinary least squares
method:

log% = —2log(logt) =a+ Blogt+us, fort=[rT),[rT]+1,...,T, (6)

where H; = N~! Zili 1 (hig — 1)2, and Hj/H; is the cross—sectional variance ratio; 8 is the speed of
convergence parameter of b;;; —2 log(log t) is a penalization function that improves the performance
of the test mainly under the alternative; r assumes a positive value in the interval (0, 1] in order to
discard the first block of observation from the estimation, and [rT] is the integer part of rT. To this
regard, Phillips and Sul suggest to use r € [0.2, 0.3] for small sample size (T < 50) as a result of Monte
Carlo simulations. The null hypothesis of convergence is tested through a one-sided t-test robust to
heteroskedasticity and autocorrelation (HAC) of the inequality « > 0 (using the estimated = 2 &)
and specifically it is rejected at the 5% level if ¢ 3 < —1.65. This procedure, generally called log-t test,
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Figure 1: Different transition paths and phases of transition. Source: Phillips and Sul (2009).

has power against cases of club convergence. Hence, if the log-t test is rejected for the whole sample,
the authors suggest to repeat the test procedures according to a clustering mechanism consisting of
four steps, described below (see next section).

The clustering algorithm

When the log t-test is rejected for the whole sample, the test procedure should be repeated according
to the following clustering mechanism:

1. (Cross—section last observation ordering): Sort units in descending order according to the last
panel observation of the period;

2. (Core group formation): Run the log—t regression for the first k units (2 < k < N) maximizing
k under the condition that t-value > —1.65. In other words, choose the core group size k* as
follows:

k* = argmkax{tk} subject to min {#;} > —1.65. (7)

If the condition ¢, > —1.65 does not hold for k = 2 (the first two units), drop the first unit and
repeat the same procedure. If ¢, > —1.65 does not hold for any units chosen, the whole panel
diverges;

3. (Sieve the data for club membership): After the core group k* is detected, run the log—t regression
for the core group adding (one by one) each unit that does not belong to the latter. If t; is greater
than a critical value c¢* add the new unit in the convergence club. All these units (those included
in the core group k* plus those added) form the first convergence club;

4. (Recursion and stopping rule): If there are units for which the previous condition fails, gather
all these units in one group and run the log-t test to see if the condition t;, > —1.65 holds. If
the condition is satisfied, conclude that there are two convergence clubs. Otherwise, step 1 to
3 should be repeated on the same group to determine whether there are other subgroups that
constitute convergence clubs. If no further convergence clubs are found (hence, no k in step 2
satisfies the condition t; > —1.65), the remaining units diverge.

Phillips and Sul (2007) suggest to make sure t; > —1.65 for the clubs. Otherwise, repeat the procedure
by increasing the value of the ¢* parameter until the condition ¢, > —1.65 is satisfied for the clubs.

The merging algorithms

Due to the fact that the number of identified clubs strongly depends on the core group formation, a
key role is played by the critical value c*. The choice of this parameter is related to the desired degree
of conservativeness, where a higher level of c¢* corresponds to a more conservative selection. In other
words, the higher is ¢* the less likely we add wrong members to the convergence clubs. Related to
this, for small samples (T < 50) Phillips and Sul suggest to set ¢* = 0.

However, as the same authors suggest, a high value of c* can lead to more groups than those really
existing. For these reasons Phillips and Sul (2009) suggest a club merging algorithm to avoid this
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over—determination. This algorithm suggests to merge for adjacent groups. In particular, it works as
follows:

1. Take the first two groups detected in the basic clustering mechanism and run the log-t test. If
the t statistic is larger than —1.65, these groups together form a new convergence club;

2. Repeat the test adding the next group and continue until the basic condition (t statistic > —1.65)
holds;

3. If the convergence hypothesis is rejected, conclude that all previous groups converge, except
the last one. Hence, start again the merging algorithm beginning from the group for which the
hypothesis of convergence did not hold.

In our package we also provide the implementation in R of an alternative club merging algorithm
developed by von Lyncker and Thoennessen (2017). They introduce two innovations in the club
merging algorithm by Phillips and Sul. First, they add a further condition to the club clustering
algorithm to avoid mistakes in merging procedures in the case of transition across clubs. Second, they
propose an algorithm for diverging units. The first algorithm works as follows:

1. Take all the P groups detected in the basic clustering mechanism and run the t-test for adjacent
groups, obtaining a (M x 1) vector of convergence test statistics { (where M = P — 1 and
m=1,...,M);

2. Merge for adjacent groups starting from the first, under the conditions t(m) > —1.65 and
t(m) > t(m + 1). In particular, if both conditions hold, the two clubs determining t(m) are
merged and the algorithm starts again from step 1, otherwise it continues for all following pairs;

3. For the last element of vector M (the value of the last two clubs) the only condition required for
merging is t(m = M) > —1.65.

For the second algorithm, von Lyncker and Thoennessen (2017) claim that units identified as divergent
by the original clustering procedure by Phillips and Sul might not necessarily still diverge in the case
of new convergence clubs detected with the club merging algorithm. To test if divergent units may be
included in one of the new convergence clubs, they propose the following algorithm:

1. Run a log-t test for all diverging units; if t, > —1.65, all these units form a convergence club
(this step is implicitly included in Phillips and Sul basic algorithm);

2. Run a log-t test for each diverging units and each club, creating a matrix of t—statistic values
with dimension d x p, where each row d represents a divergent region and each column p
represents a convergence club;

3. Take the highest t—value greater than a critical parameter ¢* and add the respective region to the
corresponding club, then start again from step 1. The authors suggest to use e* = t = —1.65;

4. The algorithm stops when no t-value > e* is found in step 3, and as a consequence all remaining
units are considered divergent.

The ConvergenceClubs package

ConvergenceClubs aims to make the clustering procedure described above easy to perform and
simply reproducible.

The log-t test is performed by function estimateMod(). It takes as main input the vector of
cross—sectional variances H for the units to be tested for convergence, which can be obtained through
function computeH():

# Compute cross-sectional variances
computeH(X, quantity = "H", id)

# Perform the log-t test
estimateMod(H, time_trim=1/3, HACmethod = c("FQSB", "AQSB"))

The former takes a matrix or data.frame object containing time series data and returns either the vector
of cross—sectional variances H or the matrix of transition paths #, or both, depending on the value
of argument quantity. These quantities can also be computed on a subset of units by selecting the
unit IDs through argument id. Function estimateMod() takes two additional arguments, time_trim
and HACmethod, described later. These two functions are available for the user who wants to test the
convergence hypothesis on a set of units. This is especially useful to assess the opportunity of carrying
out the clustering procedure during the initial phase of a study.

Nonetheless, the log—t test over the whole sample is automatically performed before starting the
clustering procedure by function findClubs(). This is the main function of the package, as it carries
out Phillips and Sul’s clustering algorithm:
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findClubs(X, dataCols, unit_names = NULL,
refCol, time_trim = 1/3, cstar = @, HACmethod = c("FQSB", "AQSB"))

where X is a data frame containing the data, dataCols is an integer vector indicating the column indices
of the time series data, and unit_names is an integer scalar, indicating the index of the column of X
that includes id codes for the units (e.g. the name of the countries/regions). The parameters of the
clustering procedure are regulated by the following arguments.

* refCol: takes an integer value representing the index of the column to use for ordering data;

* time_trim: accepts numeric scalars between 0 and 1, and indicates the portion of time periods
to trim when running the log-t regression model. By default, time_trim=1/3, which means
that the first third of the time series period is discarded, as suggested by Phillips and Sul (2007,
2009);

* cstar: takes a scalar indicating the threshold value of the sieve criterion ¢* to include units in
the detected core (primary) group (step 3 of Phillips and Sul (2007, 2009) clustering algorithm).
The default value is 0;

* HACmethod: accepts a character string indicating whether a Fixed Quadratic Spectral Bandwidth
(HACmethod="FQSB") or an Adaptive Quadratic Spectral Bandwidth (HACmethod="AQSB") should
be used for the truncation of the Quadratic Spectral kernel in estimating the log—t regression
model with heteroskedasticity and autocorrelation consistent standard errors. The default
method is FQSB.

The clustering procedure is performed by iteratively calling two internal functions: coreG() and
club(), which implement steps 2 and 3 of Phillips and Sul clustering algorithm, respectively.

Function findClubs() returns an object belonging to the S3 class "convergence.clubs”. Objects
belonging to this class are lists that include results about clubs and divergent units that have been
detected by the clustering procedure. Their structure can be analysed through function str(), and
their elements can be accessed as commonly done with list elements.

Information about clubs and divergent units can be easily displayed by means of functions print()
and summary (), for which the package provides specific methods for class "convergence.clubs”. A
plot() method is available for class "convergence.clubs”, which provides a way to visualise the
transition paths of the units included in convergence clubs, and also the average transition paths for
each club:

plot(x, y = NULL, nrows = NULL, ncols = NULL, clubs, avgTP = TRUE, avgTP_clubs,
y_fixed = FALSE, legend = FALSE, save = FALSE, filename, path, width = 7,
height = 7, device = c("pdf"”, "png”, "jpeg"), res, ...)

Plot customisation (i.e. clubs to be displayed or the number of rows and columns of the graphical
layout) and options to export it to a file are discussed in more details in the package manual (Sichera
and Pizzuto, 2019). Finally, the merging algorithms described in the previous section are implemented
in function mergeClubs():

mergeClubs(clubs, time_trim, mergeMethod = c("PS", "vLT"),
threshold = -1.65, mergeDivergent = FALSE, estar = -1.65)

Merging is performed on argument clubs, an object of class "convergence.clubs”, by means of either
the Phillips and Sul (2009) or the von Lyncker and Thoennessen (2017) algorithm, selected through
argument mergeMethod. Through argument threshold it is possible to change the significance level
of the log—t test for club merging. Moreover, argument mergeDivergent determines whether the test
for diverging units according to von Lyncker and Thoennessen (2017) should be performed, while
argument estar is used to set the value of the critical parameter e*. Function mergeClubs() returns an
object of class "convergence.clubs” as well, thus information about the new clubs can be accessed
and summarised as previously discussed.

A detailed example of all functionalities of the package is presented in the next section.

Application to the country GDP dataset

In this section we provide an example that replicates the results of Phillips and Sul (2009). The dataset
GDP, available in package ConvergenceClubs, covers a panel of 152 countries for the period 1970-2003.

First, we filter the data using the Hodrick-Prescott filter methodology by means of function
hpfilter in package mFilt