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dr4pl: A Stable Convergence Algorithm
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by Hyowon An, Justin T. Landis, Aubrey G. Bailey, James S. Marron and Dirk P. Dittmer

Abstract The 4 Parameter Logistic (4PL) model has been recognized as a major tool to analyze the
relationship between doses and responses in pharmacological experiments. A main strength of this
model is that each parameter contributes an intuitive meaning enhancing interpretability of a fitted
model. However, implementing the 4PL model using conventional statistical software often encounters
numerical errors. This paper highlights the issue of convergence failure and presents several causes
with solutions. These causes include outliers and a non-logistic data shape, so useful remedies such
as robust estimation, outlier diagnostics and constrained optimization are proposed. These features
are implemented in a new R package dr4pl (Dose-Response analysis using the 4 Parameter Logistic
model) whose code examples are presented as a separate section. Our R package dr4pl is shown to
work well for data sets where the traditional dose-response modelling packages drc and nplr fail.

Introduction

Dose-response models are a primary tool of pharmacological and toxicological studies. After fitting a
suitably chosen model to experimental data, the fitted parameters are used to evaluate the potency of a
drug or compare the potencies of different drugs. Based on outcomes of the analysis, drug candidates
may be advanced to further development. One of the most popular models among dose-response
models is the 4 Parameter Logistic (4PL) model whose detailed explanation is given in Subsection 4
Parameter Logistic model. In this paper, we focus on some important challenges in the 4PL model and
present methods to handle those challenges.

Fitting dose-response models to data is usually a nonlinear regression problem. One of the prob-
lems with nonlinear regression is that numerical errors often occur during a model fitting optimization
process. The 4PL model is not an exception. Examples of problem data sets and diagnostics of their
problems are presented in Subsection Motivation: convergence failure.

In this paper, we analyze the convergence failure problem within the context of the 4PL model.
Descriptions of the 4PL model and existing methods are presented in Section Existing methods.
Problems are clearly illustrated using the contour of the likelihood function, shown in Section Diagnosis
of convergence failure. This suggests a useful set of constraints to put on the parameter space, and their
effectiveness is analyzed in that section as well. Non-convergence is indicated by our R package dr4pl
(Landis et al., 2018) when crossing one of these boundaries, in which case robust parameter estimates
are returned as described in Section Remedy for outliers. Section Remedy for the support problem
presents a new method of selecting initial parameter estimates which is not currently implemented in
other dose-response modelling R packages. This method will be shown to be effective in handling a
non-logistic data shape in that section. Walk-through of R functions in dr4pl with real-world data sets
will be presented in Section Walk-through in R.

Existing methods

This section describes the 4PL model and existing methods that have been implemented for the 4PL
model. Example data sets that motivate our research are presented as well.

4 Parameter Logistic model

The response in a pharmacological process usually slowly trends downward at low dose levels,
then rapidly drops at a certain dose level and finally stabilizes. Tracking this sort of change in
response results in a reverse S shaped curve motivating sigmoidal curves as primary models of interest.
Robertson (1908) suggested that the biochemical nature of such processes is well modelled by the
differential equation

dg
dz

=
θ3
θ1

g(z) (θ1 − g(z)) , (1)

where z is a dose level, g(z) is the response at the level z and θ1, θ3 ∈ R are parameters. Solving this
differential equation yields

g(z|θ1, θ2, θ3) = θ1 −
θ1

1 + (z/θ2)θ3
,
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where θ2 > 0 is a parameter coming from a boundary condition given to Equation (1). Since this
model allows the response value g(z) to range only between 0 and θ1, a common extension uses a shift
parameter θ4 ∈ R yielding the well-known 4 parameter logistic (4PL) model or Hill model given in Hill
(1910) as

f (x|θ) = θ1 +
θ4 − θ1

1 + 10θ3(x−log10θ2)

= θ1 +
θ4 − θ1

1 + (z(x)/θ2)
θ3

, (2)

where x ∈ R is a log 10 dose, z(x) = 10x > 0 is the corresponding dose and the parameter vector
θ = (θ1, θ2, θ3, θ4) determines the relationship between the log 10 dose x and the response f (x).
Working on this log 10 scale has been shown to accurately model many physical reactions.

A major strength of the 4PL model is that each of the four parameters has an intuitive meaning.
The parameters θ1 and θ4 are called the upper asymptote and lower asymptote, respectively, since we
have from Equation (2) that

if θ3 > 0, then lim
x→−∞

f (x|θ) = θ4, lim
x→∞

f (x|θ) = θ1,

if θ3 < 0, then lim
x→−∞

f (x|θ) = θ1, lim
x→∞

f (x|θ) = θ4.

In this paper, we assume that θ1 > θ4 holds. This implies that θ3 > 0 corresponds to an increasing
curve while θ3 < 0 corresponds to a decreasing curve. A response usually decreases as a dose increases
in a pharmacological experiment, so we focus on decreasing curves throughout this paper. However,
all the functionalities such as model fitting and confidence interval calculation are implemented in
the R package dr4pl for both decreasing and increasing curves. The parameter θ2 is called the half
maximum inhibitory concentration (IC50) or effective concentration (EC50), depending on whether the
curve is decreasing or increasing, which represents the dose level whose response lies halfway between
the upper and lower asymptotes. That is, we have f (θ2) = (θ1 + θ4) /2. The parameter θ3 is related to
the slope of the function f at θ2 as given in Appendix A of Giraldo et al. (2002) by

d
dx

f (x|θ)
∣∣∣∣
x=log10θ2

= (ln 10) (θ4 − θ1) θ3,

where ln indicates the natural logarithm.

The effects of the IC50 parameter θ2 and the slope parameter θ3 on the 4PL model is illustrated in
Figure 1. For each plot in the figure, the x-axis represents dose levels on a log 10 scale and the y-axis
represents response values. For both the left and right plots, the upper asymptote θ1 is fixed at 100
and the lower asymptote θ4, which is represented by a horizontal gray dashed line, is fixed at 0. The
left plot shows the change in the dose response curve as the IC50 parameter θ2 changes. Note that the
blue dotted curve with the largest θ2 value of 10 is located on the right while the red solid curve with
the smallest θ2 value of 0.1 is located on the left. However, the rate of decrease θ3 of each curve is the
same. The right plot shows that the blue dotted curve with the most negative θ3 value of −2 most
rapidly decreases around the IC50 value while the red solid curve with the least negative θ3 value of
−0.5 most slowly decreases. Note that all three curves in the right plot achieve the half response θ2 at
the same dose level, i.e. they have the same IC50 values.

Motivation: convergence failure

As mentioned in Section Introduction, dose-response models are prone to numerical errors in their
optimization processes like other nonlinear regression models; see Bates and Watts (1988) and Seber
and Wild (1989) for theoretical and practical issues related to nonlinear regression models. The specific
type of errors in dose-response models depends on the data and statistical software at hand, and here
we focus on R packages developed for bioassay data. The R package drc (Ritz et al., 2005) provided
various non-linear regression models for bioassay data analysis. The R package nplr (Commo and Bot,
2016) focused on the family of n-parameter logistic regression models with an option to choose an
optimal value n based on a goodness-of-fit measure. Unfortunately, these two R packages have only
scant solutions to the convergence failure problem. For example, drc provides a function argument
errorm to control whether an error or a warning message is drawn when convergence failure happens,
and nplr provides a weighting scheme that reduces the effect of outliers. Both methods did not suffice
to prevent convergence failure as shown in the following.

Figure 2 shows four real-world data sets. The R package drc fails to converge on all these four data
sets and the R package nplr fails on the last data set. In each plot of the figure, the x-axis represents
doses on a log 10 scale and the y-axis represents responses. Data points flagged as problematic by our
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Figure 1: 4PL models with different values of the IC50 parameter θ2 (left plot) and the slope parameter
θ3 (right plot). The other parameters are fixed at θ1 = 100, θ4 = 0 with θ3 = −1 in the left plot and
θ2 = 1 in the right plot. The left plot implies that θ2 controls horizontal shifts while the right plot
implies that θ3 drives rates of decrease.

R package are shown as red triangles. These include strong outliers in every case, and are found as
described in Subsection Robust regression and outlier detection. Error Case 1 in the upper left plot has
an outlier at the dose level 10−5 which seems to result from an error in measurement. Error Case 2 in
the upper right plot has more complicated problems. There exists a strong outlier at the dose level
1.35, and the two responses measured at the dose level 0.135 seem to be measured at a wrong scale.
Both of them have abnormally large values and their values are far more different from each other
than the responses measured at other dose levels. Even though these two responses were not detected
as outliers by our method, this plot indicates that the data set of Error Case 2 requires users’ attention.

The data in the lower two plots have a different problem in addition to outliers. They seem to
have insufficient data points on the right side of their IC50 parameters. This situation is well known
in dose-response experiments in cases where solubility issues limit the maximal drug concentration
that can be used in dose titration. Error Case 3 in the lower left plot shows two strong outliers with
abnormally small response values at the dose level 10. In addition, the response starts decreasing at
the dose levels 10 and 100 but no more responses are measured at higher dose levels. This is because
the drug fell out of solution at higher concentrations in this experiment. We call this type of problem a
support problem because of a lack of data points on the right side, and possibly also on the left side, of
the IC50 parameter. This lack in Error Case 3 can result in instability of an optimization process due
to difficulty in estimation of the IC50 parameter θ2 and the slope parameter θ3. Indeed, the package
drc draws an error message for that data. Error Case 4 in the lower right plot has a similar support
problem also resulting in a drc error.

Convergence failure of numerical optimization methods can be overcome in various ways. Experi-
menters often try other starting parameter values or adopt a simpler mathematical model. However,
both solutions have a drawback in dose-response modelling since they require arbitrary decisions
by experimenters. This limits their utility for automated, high-throughput screening and may be
cost-prohibitive depending on the expense per data point. It can be foolhardy to decide which starting
values should be tried next unless problems with data are diagnosed. Performing a grid search on
the parameter space can be an alternative as claimed in Wang et al. (2010), but even this does not
fundamentally solve the problems with the data sets in Figure 2. Shifting to a simpler model can result
in loss of interpretability of the 4PL model. As pointed out in Di Veroli Giovanni et al. (2015) and Lim
(2015), the 4PL model conveys useful intuitive content through their parameters.

Diagnosis of convergence failure

The 4PL model given in Equation (2) is fitted to a data set {(xi, yi) |i = 1, 2, · · · , n} where xi is the log
10 dose level of the i-th observation and yi is the corresponding response value. The most commonly
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Figure 2: Data that generate numerical errors in the R packages drc and nplr. The y-axis represents
responses and the x-axis represents doses in a log 10 scale. All data sets have at least one strong outlier
which are denoted by red triangles. Data in the lower row also have insufficient numbers of data
points on the right sides of the dose-response curves.
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chosen loss function is the sum-of-squares errors essentially given as

L(θ) = 1
n

n

∑
i=1

(yi − f (xi|θ))2 , (3)

where the function f was given in Equation (2) as

f (x|θ) = θ1 +
θ4 − θ1

1 + 10θ3(x−log10θ2)
. (4)

Since this function is nonlinear in the parameters θ, minimization of L is a typical nonlinear regression
problem. Gadagkar and Call (2015) mentioned the optimization problem is indeed a non-convex
optimization, so different initial parameter estimates can result in different fitted models or even
convergence failure. Example data sets with such a convergence failure problem were given in Figure
2. In this section, we present one possible solution to the convergence problem based on statistical
theory, which can help users diagnose problems with their data.

Shape of a loss function

To find a reason behind the convergence failure, we draw contour plots of the sum-of-squares loss
function given in Equation (3). To visualize the loss function L (θ|x), we first fix the values of θ1 and
θ4 at ymax and ymin defined as

ymax = max
1≤i≤n

yi + 0.001 ·
(

max
1≤i≤n

yi − min
1≤i≤n

yi

)
,

ymin = min
1≤i≤n

yi − 0.001 ·
(

max
1≤i≤n

yi − min
1≤i≤n

yi

)
, (5)

respectively. The reason for choosing the above estimates is that the R package drc uses them as a
default. Then we draw contour plots of the loss functions in terms of θ2 and θ3 yielding Figure 3
in which the contour plots of the data of Figure 2 are shown. In each plot, the x-axis represents the
IC50 parameter θ2 in a log 10 scale and the y-axis represents the slope parameter θ3. The parameter
values corresponding to the same loss function value are connected as a solid line and the error value
is given as text inserted into that line. It can be seen from the upper two plots that the loss function
monotonically decreases as the IC50 parameter θ2 decreases towards zero. This results in numerical
errors in computing the estimated mean response in Equation (4), since as θ2 → 0, the log10(θ2)→ −∞.
The lower two plots also indicate that the loss function tends to decrease as the values of the IC50
parameter θ2 increase towards infinity. Similarly to the upper two plots, this causes numerical errors
in finding the minimizer of the loss function.

Hill bounds: safeguards on the parameter space

The primary resolution of the convergence failure problem comes from imposing appropriate bound-
aries on the parameter space to prevent parameter estimates from diverging to infinity or converging
to 0. These bounds should be broad enough to contain the global minimum of the loss function when
it has any local minimum. To obtain reasonable sizes of bounds on the parameters, we focus on the
Hill plot. Recall from Equation (2) that the mean response is modelled as

f (x|θ) = θ1 +
θ4 − θ1

1 + 10θ3(x−log10θ2)
,

where x is a log 10 dose. Note that the nonlinear nature of the 4PL model comes from the fact that the
linear function of x, θ3 (x− log10θ2), appears as an exponential in the denominator of the expression.
This motivates us to rearrange the terms to yield the Hill equation modeled as

log10

(
f (x|θ)− θ4
θ1 − f (x|θ)

)
= θ3x− θ3log10(θ2) . (6)

The left hand side of this equation is the logit-transformed mean response and the right hand side is
the linear function of log 10 dose x. Since both the asymptotes θ1 and θ4 are unknown, we use ymax
and ymin defined in Equation (5) as their estimates in real data approximation as

log10

(
yi − ymin
ymax − yi

)
≈ −θ3log10(θ2) + θ3xi. (7)

See Chapter 2 of Pratt and Taylor (1990) for detailed discussion of the Hill plot and Hill equation.
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Figure 3: Contour plots of data shown in Figure 2. The x-axis represents the IC50 parameter θ2 and
the y-axis represents the slope parameter θ3. The loss functions in the upper two plots decrease as the
IC50 θ2 decreases, and the loss functions in the lower two plots decrease as θ2 increases; a minimum is
not achieved in the plots.
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To obtain reasonable bounds on the parameters θ2 and θ3, we first view Equation (7) as a linear
regression problem. If we re-parameterize Equation (7) as

log10

(
yi − ymin
ymax − yi

)
= β2 + β3xi + εi, (8)

where β2 = −θ3log10 (θ2), β3 = θ3 and εi ∼ N
(
0, σ2), we can obtain interval estimators of β2 and β3

based on (1− α) confidence intervals based on the normality assumption. That is, we compute(
β̃2 − z1−α/2s.e.

(
β̃2
)

, β̃2 + z1−α/2s.e.
(

β̃2
))

,(
β̃3 − z1−α/2s.e.

(
β̃3
)

, β̃3 + z1−α/2s.e.
(

β̃3
))

, (9)

where β̃2 and β̃3 are the least squares solutions of Equation (8), zp is the p-th quantile of the standard
normal distribution and s.e. is the abbreviation for the standard errors of the regression coefficients.
If the linear model of Equation (7) well approximates the original 4PL model of Equation (2), then
parameter estimates will rarely be out of the bounds in Equation (9) during the optimization process.

However, using these bounds in optimization have limitations in practice in that they may miss
important nonlinear structure inherent in the 4PL model. In real data analysis, such confidence
intervals imposed too narrow bounds on the parameters and hindered optimization processes from
convergence even when data have good logistic shapes. Section 5.1 of Seber and Wild (1989) present
approximate confidence intervals of the true parameters of nonlinear regression models based on the
derivatives of the mean response function f . When data have sufficiently many data points, the least
squares estimators θ̂ have asymptotically normal distributions

θ̂ − θ∗
d→N

(
0, C−1

)
, (10)

where θ∗ is the true parameter vector and C = JT J with J being the Jacobian matrix whose (i, j)-
th element is given as ∂ f (xi|θ) /∂θj. In actual computation of confidence intervals, the parameter

estimators θ̂ are used to approximate J, i.e. we substitute Ĵ whose (i, j)-th element is ∂ f ( xi| θ) /∂θj

∣∣∣
θ=θ̂

for J.

Based on this asymptotic theory, the approximate confidence intervals for the true parameters are
given in Section 5.1 of Seber and Wild (1989) as(

θ̂j + tα/(2·p)
n−p s

√
ĉj,j, θ̂j + t1−α/(2·p)

n−p s
√

ĉj,j

)
, (11)

for 1 ≤ j ≤ p where p is the number of parameters, s2 is the residual sum of squares, tα
n is the α-th

quantile of the t-distribution with n degrees of freedom and ĉj,j is the j-th diagonal element of the

matrix Ĉ−1 =
(

ĴT Ĵ
)−1. In the context of the 4PL model, we evaluate the interval estimators based on

parameter estimators θ̃1, θ̃2, θ̃3, θ̃4 obtained from the Hill equation in Equation (7) and standard errors
obtained from Equation (11). That is, we have(

θ̃j + tα/8
n−4s

√
c̃j,j, θ̃j + t1−α/8

n−4 s
√

c̃j,j

)
, (12)

for 1 ≤ j ≤ 4 where c̃jj is the j-th diagonal element of the variance-covariance matrix C̃−1 evaluated at
the initial parameter estimators θ̃ obtained from the Hill equation. Since the bounds in Equation (12)
originate from the Hill model, we call these the Hill bounds. Subsection 5.2.2 of Seber and Wild (1989)
suggests using Ĥ/2 instead of ĴT Ĵ when computing confidence intervals where

Ĥj,k =
∂2L

∂θj∂θk

∣∣∣∣∣
θj=θ̂j ,θk=θ̂k

,

is an estimated Hessian matrix of the loss function L. We implement both versions of the Hill bounds
based on H̃/2 and J̃T J̃ in our R package with the default being the latter, since the latter tends to yield
broader Hill bounds. Users can try using both options in real data analysis. The confidence level α is
set at 0.0001 as a default and can be given by users as a tuning parameter.

One can wonder if bounds on the upper asymptote θ1 and lower asymptote θ4 are needed as well.
The following theorem shows that such bounds are unnecessary since diverging values of θ1 and θ4
always increase loss function values.
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Figure 4: Dose response models presented in Table 2 and an example data set generated by Model
7. The left plot shows the dose response curves of the models in Table 2. The right plot shows data
generated by Model 7 of Table 2.

Model Parameters (θ1, θ2, θ3, θ4) Model Parameters (θ1, θ2, θ3, θ4)

1 (100,0.01,-0.5,0) 6 (100,0.1,-1.5,0)
2 (100,0.01,-1,0) 7 (100,1,-0.5,0)
3 (100,0.01,-1.5,0) 8 (100,1,-1,0)
4 (100,0.1,-0.5,0) 9 (100,1,-1.5,0)
5 (100,0.1,-1,0)

Table 1: Model numbers and their parameters used in our simulation.

Theorem 2.3.1. Let θ2 > 0 and θ3 ∈ R be fixed. Then there exist constants θ′1, θ′4 ∈ R such that

∂L(θ)
∂θ1

> 0 ∀θ1 ≥ θ′1,
∂L(θ)

∂θ4
< 0 ∀θ4 ≤ θ′4

for fixed θ4 ∈ R and θ1 ∈ R, respectively. That is, loss function values increase as the values of parameters θ1
and θ4 grow to the infinity and the negative infinity, respectively, which prevents their estimates from diverging.

Proof. See Appendix.

Analysis of the Hill bounds

In this subsection, we evaluate whether the Hill bounds are appropriate as a criterion for convergence
failure. We simulate data following the 4PL model and check whether the Hill bounds prevent
optimization processes from finding the global minimum of the loss function L. To evaluate this, we
generate data and count the numbers of times the Hill bounds miss the true parameters. We also
count the numbers of times that optimization procedures encounter the Hill bounds at the end of
optimization. Lower counts in both cases indicate that the Hill bounds do not hinder optimization
processes from converging to desired parameter estimates.

Figure 4 shows parameter settings of our simulation. The left plot shows nine dose-response curves
that generate data whose values of parameters are shown in Table 1. The levels of slope parameter
θ3 are denoted by line types while the levels of IC50 parameter are denoted by colors. The right plot
shows the dose-response curve of Model 7 with data generated by the model. This model is chosen
since it exhibits the most severe support problem among all the nine models. Even though data in
the right plot are generated by a normal distribution, it seems that any optimization procedure can
have trouble fitting the 4PL model to that data. We simulate 1,000 data sets with five observations at
each dose level resulting in 25 observations in total. The standard deviation of the underlying normal
distribution of a 4PL model is fixed at 5 throughout the simulations.
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Parameters θ3 = −0.5 θ3 = −1 θ3 = −1.5

θ2 = 0.01 0.054 0.014 0
θ2 = 0.1 0 0 0.002
θ2 = 1 0.181 0 0

Table 2: Proportions of times out of 1,000 simulations that the Hill bounds miss any of the true IC50
and slope parameters. The Hill bounds contain the true parameters for most of the cases, except when
data have a support problem (bottom row) and the slope is gradual (leftmost column).

Parameters θ3 = −0.5 θ3 = −1 θ3 = −1.5

θ2 = 0.01 0.038 0.009 0.1
θ2 = 0.1 0.12 0.002 0.195
θ2 = 1 0.398 0.258 0.079

Table 3: Proportions of times out of 1,000 simulations that the Hill bounds are attained by optimization
procedures. The Hill bounds do not prevent optimization processes from achieving local minima of L
for most of cases, except when data have support problems as shown in the bottom row.

Table 2 shows the proportions of times that the Hill bounds miss true parameters of the nine
models given in Figure 4. For each simulated data set, we counted the number of times that the
Hill bounds miss any of the IC50 and slope parameters. Note from the table that the Hill bounds
contain the true parameters for most of the simulated data. The only exception is when data have a
severe support problem (θ2 = 1) and the slope of the dose-response curve is very gradual (θ3 = −0.5).
Since we do not have well-shaped data for this case, we take the fact that the Hill bounds miss the
true parameters for these data as an advantage. When the Hill bounds are attained at the end of the
optimization, it is recommended to look at the scatter plot, to investigate potential support problems.
As illustrated in the top two rows of the table, in cases where the range of the data is enough for
estimation on both sides of the IC50, the Hill bounds successfully contain the true parameters.

Table 3 presents the proportion of times the Hill bounds are hit at the end of optimization processes
out of 1,000 simulations. The final parameter estimates are inside the Hill bounds for most cases.
This indicates that the Hill bounds are not too restrictive for optimization procedures to find a local
minimum of the loss function L. However, when there are severe support problems as shown in the
bottom left and bottom middle cells, the Hill bounds restrict optimization processes to be inside the
bounds. As implied in the previous paragraph, this can help users realize that their data suffer from
support problems and actions should be taken.

Remedy for outliers

As seen in the previous section, it seems that the convergence failure results from either outliers or
the support problem. We tackle each of the causes with a different approach. Outlier problems are
often dealt with by robust estimation methods. The paper Riazoshams et al. (2009) reviewed various
methods of outlier detection in the context of nonlinear regression, especially when the form of the
mean response function f is known. On the other hand, Dixon’s Q test in Dean and Dixon (1951)
can be used to detect an outlier without any assumptions on the form of f , but this method is most
effective when a data size is less than or equal to 10. In this paper, we use a novel method presented in
Motulsky and Brown (2006) that combines robust estimation and outlier detection. This method is
currently adopted in GraphPad Prism and called the ROUT method therein as a default outlier detection
method. The indices of outliers in data and a scatter plot with a robust fit are provided to users to
enhance their understanding of problems.

Robust regression and outlier detection

As noted in Subsection Motivation: convergence failure, one of the main reasons for convergence failure
is strong outliers. In this case, the contour of the loss function L(θ|x, y) can exhibit monotonicity as a
function of the IC50 parameter θ2 as shown in Figure 2. This implies that the Hill bounds of Subsection
Hill bounds: safeguards on the parameter space can be attained at the end of an optimization process.
The R package dr4pl reports in this case that there seems to exist a problem in data and it requires a
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user’s attention. Meanwhile, the R package fits a robust regression model to data and reports indices
of outliers in data with a plot highlighting the outliers in red triangles, which will be shown in Figure
6. By studying the robust fit and the indicated outliers, the user can get some insight into the data and
decide whether the observations denoted as outliers should be removed or not.

To determine which data observations are outliers, we use the method given in Motulsky and
Brown (2006). Define the i-th residual of a fitted dose-response model

ri = yi − f
(

xi|θ̂
)

,

where the mean response f is given in Equation (2) and θ̂ is the estimator obtained by a robust
regression model. The method of that paper approximates the distribution of ri by a t-distribution
and then adjusts p-values by the false discovery rate (FDR). See Benjamini and Yekutieli (2001) for
explanation of FDR. Adapting their algorithm in the context of the 4PL model yields the following.

1. Fit a dose-response model to data using a robust regression model to obtain residuals ri for
i = 1, 2, · · · , n. Detailed description of a robust regression model is given in the following
paragraphs.

2. Compute the median absolute deviation (MAD) of absolute valued residuals r(a)
i = |ri| as

σ̂ = med1≤i≤n

{∣∣∣r(a)
i −med1≤i≤n

{
r(a)

i

}∣∣∣} ,

where med stands for the sample median.

3. Rank the absolute values of the residuals from the smallest to the largest, so that r(a)
i:n is the i-th

order statistic of the absolute valued residuals.

4. Loop from i = b0.7× nc to n

(a) Compute αi = 0.01(n− (i− 1))/n and ti:n = r(a)
i:n /σ̂ for i = 1, 2, · · · , n.

(b) Compute the two-tailed p-value pi of the statistic ti:n from the t distribution with n− 4
degrees of freedom.

(c) If any of pj is less than or equal to αj, then end the loop and report all the observations for
1 ≤ i ≤ j as outliers.

Contrary to the suggestion of Motulsky and Brown (2006) to use their quantile based measure of scale,

σ̃ =
n

n− 4
q0.6827,

where q0.6827 is the 0.6827-th quantile of absolute valued residuals, we use the median absolute
deviation. The reason is that for small sample sizes around 10, the constant factor n/(n− 4) in this
equation significantly increases a scale estimate, often resulting in non-rejection of any observations
in a data set. For example, the method of Motulsky and Brown (2006) with their estimator σ̃ did not
detect any observation in Error Case 2 in Figure 2 as an outlier. We adopt the constant 0.01 in the
definition of αi as recommended by Motulsky and Brown (2006).

For robust regression, we adopt M-estimators. The letter M implies that the M-estimators are
obtained from equations that are in similar forms with maximum likelihood estimators. The M-
estimators are obtained by minimizing

Lρ(θ|x, y) =
1
n

n

∑
i=1

ρ(ri) ,

where ρ : R→ R+ is a differentiable function. See Huber and Ronchetti (2009) for detailed discussion
of the M-estimators. Note that the loss function in Equation (3) is a special case of the loss function Lρ

when ρ(r) = r2. Various forms of the functions ρ for the M-estimation suggested in the literature are
as follows,

Absolute : ρ1(r) = |r|,

Huber : ρH(r) =
{

r2, |r| ≤ AH ,
2AH |r| − A2

H , |r| > AH ,

Tukey’s biweight : ρT(r) =
{

r6/A4
T − 3r4/A2

T + 3r2, |r| ≤ AT ,
A2

T , |r| > AT ,
(13)

where AH = 1.345 was suggested by Huber (1964) and AT = 4.685 was suggested by Mosteller and
Tukey (1977). The constant AT was shown in Mosteller and Tukey (1977) to possess 95% efficiency
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Figure 5: The functions ρ for different M-estimators. The x-axis represents residual values while the
y-axis represents the values of the function ρ.

when errors follow a normal distribution, while guaranteeing resistance to contamination of up to 10%
of outliers in terms of the breakdown point. These definitions are valid when the standard deviation of
the residuals ri is 1, otherwise a robust estimator of the scale of residuals should divide the residuals.

Figure 5 shows the shape of the ρ functions corresponding to different M-estimators. The x-axis
represents residual values while the y-axis represents the values of the function ρ. Note from the
figure that the Huber loss and squared loss coincide with each other for residual values less than
AH , but they deviate from each other as the value of the residual r grows larger. The linearity of
Huber’s loss above AH prevents a regression model from being heavily affected by outliers that have
large absolute values of residuals. Tukey’s biweight loss can be thought of as being more robust since
it gives constant values to all residuals whose absolute values exceed the cutoff AT . This implies
that a strong outlier with a large absolute value will have the same effect on a regression fit with an
observation with an absolute valued residual equal to AT .

Using M-estimators in nonlinear regression has a few problems. First of all, the conditions for
M-estimators to have asymptotic normality are complicated and difficult to be verified as mentioned
in Section 12.3 of Seber and Wild (1989). This prevents us from obtaining approximate confidence
intervals of true parameters based on M-estimators and their standard errors. On top of that, there are
no known general results about consistency of M-estimators in nonlinear regression, which hinders us
from trusting fitted parameter estimates by M-estimators. However, the absolute loss function was
shown in Oberhofer (1982) to exhibit weak consistency in a nonlinear regression setting. Hence, we set
the absolute loss estimator to be a default robust estimation method in our R package when the Hill
bounds are attained.

Figure 6 shows the results of applying the R package dr4pl to the error cases of Figure 2. Unlike
the R packages drc and nplr, the package dr4pl succeeded in fitting a robust regression model to all
four data sets. The x-axis represents doses in a log 10 scale and the y-axis represents responses. The
black solid line shows a fit obtained by the absolute loss function and red triangles show the outliers
detected by the method described in this section. Note from all the plots that the outliers that we
pointed out in Section Motivation: convergence failure are marked as outliers. This implies that the
method of Motulsky and Brown (2006) is successful in solving the convergence failure problem of the
4PL model.

Remedy for the support problem

The next cause of the convergence failure is the support problem whose possible solution is presented
in this section. Final parameter estimates of the 4PL model obtained by an optimization procedure
depend on initial estimates supplied to the procedure. The traditional R packages drc and nplr use
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Figure 6: The dose-response curves fitted by the absolute loss function in Equation (13) denoted by
black curves and outliers detected by the method of Motulsky and Brown (2006) denoted by red
triangles. Note that the curves are reasonably estimated.
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the logistic method which computes the initial parameter estimates as

θ̃
(L)
1 = ymax, θ̃

(L)
2 = 10−β̃2/β̃3 , θ̃

(L)
3 = β̃3, θ̃

(L)
4 = ymin

where ymin, ymax, β̃2 and β̃3 are defined in Subsection Hill bounds: safeguards on the parameter space.
As demonstrated in Figure 2, those initial parameter estimates do not always lead the optimization
process to convergence. We present possible improvements to the logistic method and show a new
initialization method that is effective in handling the support problem with data.

Logistic method combined with a grid search

The paper Wang et al. (2010) presented a grid algorithm for fitting the 4PL model to many data sets
generated by a high throughput screening experiment. A main idea of their research is that fitting
the Hill equation in Equation (6) with multiple initial values of the upper and lower asymptotes, θ1
and θ4, and starting from the best parameter estimates can yield a better result. That is, we search the
grids G1 and G4 on θ1 and θ4 for the initial estimates

(
θ̃1, θ̃2, θ̃3, θ̃4

)
with the least loss value where

θ̃1 ∈ G1, θ̃4 ∈ G4 and the other two estimates θ̃2 and θ̃3 are obtained by the Hill equation in Equation
(6). The paper suggested naive grids on θ1 and θ4 based on constant multiples of ymax and ymin, but
we suggest new grids that statistically make sense.

The basic idea of choosing grids resembles the idea of the Hill bounds in that it uses asymptotic
normality of parameter estimators presented in Equation (10). Since we use θ̃

(L)
1 = ymax and θ̃

(L)
4 = ymin

as initial estimators of the upper and lower asymptote parameters in the logistic method, we can
obtain approximate standard errors of those estimators from Equation (12). Based on these standard
errors, we set the grids on θ1 and θ4 as

θ̃1 ∈
{

θ̃
(L)
1 − 2s.e.

(
θ̃

(L)
1

)
, θ̃

(L)
1 − s.e.

(
θ̃

(L)
1

)
, θ̃

(L)
1 , θ̃

(L)
1 + s.e.

(
θ̃

(L)
1

)
, θ̃

(L)
1 + 2s.e.

(
θ̃

(L)
1

)}
,

θ̃4 ∈
{

θ̃
(L)
4 − 2s.e.

(
θ̃

(L)
4

)
, θ̃

(L)
4 − s.e.

(
θ̃

(L)
4

)
, θ̃

(L)
4 , θ̃

(L)
4 + s.e.

(
θ̃

(L)
4

)
, θ̃

(L)
4 + 2s.e.

(
θ̃

(L)
4

)}
,

where s.e.
(

θ̃
(L)
j

)
= s
√

c̃j,j for j = 1, 4, and the two estimators s and c̃j,j are defined in Equations (11)

and (12), respectively. If any of data observations is greater than θ̃1 or smaller than θ̃4, then those
observations are removed from data and the logistic method proceeds with remaining observations.

Mead’s method

An advanced method of obtaining initial parameter estimates is illustrated in Subsection 8.3.2 of
Ratkowsky (1983). The method is basically a variant of the method given in Mead (1970) which used
a weighted least squares criterion to obtain an approximate solution of the ordinary least squares
problem. We call this Mead’s method in this paper. Unlike the logistic method, Mead’s method estimates
the upper asymptote and the IC50 parameter from a linear model by first fixing the slope and lower
asymptote. Since Mead’s method performs a grid search on the slope parameter, it can better obtain
initial parameter estimates when there are support problems like those in the lower row of Figure 2. In
such cases, obtaining a proper initial estimate of the slope parameter is difficult and performing a grid
search for it can be useful.

Mead’s method starts from a model

Y = f (x|µ)ε, (14)

where
f (x|µ) = 1

µ1 + µ2µx
3

, (15)

the parameters satisfy µ1, µ2, µ3 > 0, x is a log 10 dose and ε follows a log-normal distribution, i.e.
log(ε) ∼ N (0, σ2). We call this model the multiplicative error model. This model is easy to work with
because its parameters are related to characteristics of dose-response curves like the 4PL model. For
example,

if 0 < µ3 < 1, then lim
x→−∞

f (x|µ) = 0, lim
x→∞

f (x|µ) = 1
µ1

,

if µ3 > 1, then lim
x→−∞

f (x|µ) = 1
µ1

, lim
x→∞

f (x|µ) = 0.

This implies that 1/µ1 is the upper asymptote of the model and zero is its lower asymptote. The IC50
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of the multiplicative error model is more complicated than that of the 4PL model as can be seen in the
following,

f
(

x = logµ3

(
µ1
µ2

)∣∣∣∣ µ

)
=

1
2µ1

.

The parameters of a multiplicative error model are related to those of a 4PL model by

θ1 =
1

µ1
, θ2 =

(
µ1
µ2

)1/log10µ3

, θ3 = log10µ3, θ4 = 0.

It seems that the 4PL model has been preferred due to these more intuitive meanings of the parameters.
This equation shows that the parameter µ3 is related to the slope of a dose-response curve.

To find estimators of µ1, µ2, µ3 in Equations (14) and (15), we consider a weighted least squares
loss function

L(µ|x, y) =
n

∑
i=1

σ2

Var (Yi)
{yi − E (Yi)}2 . (16)

For a differentiable function g : R→ R we have

g (Yi)− g (E (Yi)) ≈
dg(y)

dy

∣∣∣∣
y=E(Yi)

{Yi − E (Yi)} .

Hence, we can approximate Var (g (Yi)) by

Var (g (Yi)) ≈
dg(y)

dy

∣∣∣∣2
y=E(Yi)

Var (Yi) .

If we let g(y) = log(y), then we have

Var (Yi) ≈ Var (logYi) {E (Yi)}2 = σ2 {E (Yi)}2 .

Substituting this into Equation (16) yields

L(µ|x, y) ≈ 1
n

n

∑
i=1

{
yi

E (Yi)
− 1
}2

.

Substituting the expression E (Yi) = f (xi|µ) into this equation yields an approximate linear model

L(µ|x, y) ≈ 1
n

n

∑
i=1

{
yi
(
µ1 + µ2µxi

3
)
− 1
}2 . (17)

To obtain estimates of µ1 and µ2, we take µ3 ∈ G with the grid

G = {q0.04, q0.08, · · · , q0.92, q0.96}

where qp is the p-th quantile of the Cauchy distribution. The Cauchy distribution was chosen because
it can provide a broad range of quantile values due to its heavy tailedness. For each µ3 ∈ G, the
loss function L(µ|x, y) can be minimized over µ1 and µ2 by the standard linear regression. That is,
a linear regression model with the response 1, the first predictor yi and the second predictor yiµ

xi
3

without an intercept can be fitted to obtain parameter estimates. Note that this regression model is
fitted for all µ3 ∈ G and parameter estimates µ̃1, µ̃2, µ̃3 with the smallest value of L(·|x, y) are chosen
as initial parameter estimates. A nonlinear optimization method starts from these estimates to find
final parameter estimates.

Comparison of the logistic and Mead methods

As pointed out in the previous subsection, Mead’s method is expected to find better initial parameter
estimates than the logistic method when data have the support problem. By simulating data and
fitting 4PL models with different initialization techniques, we can see whether the Mead method
actually results in final fitted models with lower loss values than the logistic method. We also compare
the two methods when data do not exhibit a support problem. By doing that, we can get insight into
their relative strengths under various situations.

In this simulation study, we generate data from the models of Subsection Analysis of the Hill
bounds whose mean response curves are presented in the left plot of Figure 4 and whose parameter
values are given in Table 2. As mentioned in that subsection, Models 1, 2 and 3 represent models
without any support problem, while Models 7, 8 and 9 represent severe support problems. Models 4, 5
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Parameters θ3 = −0.5 θ3 = −1 θ3 = −1.5

θ2 = 0.01 442 443 697
θ2 = 0.1 651 568 682
θ2 = 1 661 767 843

Table 4: The numbers of times that the Mead method outperforms the logistic method in the sense
that it has a lower loss value for final fitted models. The bottom row (θ2 = 1) represents data with a
support problem. It can be seen that the superiority of Mead’s method is maximal when data have a
support problem.

and 6 exhibit mild levels of support problems. For each model, 1,000 data sets are generated and the
standard deviation of normally distributed errors was fixed at 5.

Table 4 shows the numbers of times that the Mead method outperforms the logistic method in the
sense that it has a lower loss value for final fitted models out of 1,000 simulations. The top row of the
table represents Models 1, 2 and 3 from left to right. As can be seen from the top row, the Mead method
generally performs worse than the logistic method except when the slope is very steep (θ3 = −1.5). In
the middle and bottom rows, the Mead method performs better than the logistic method. The degree
of outperformance becomes larger when the support problem is more severe (θ2 = 1) or the slope
parameter is more negative (θ3 = −1.5). This coincides with our conjecture made in the previous
subsection that Mead’s method can be particularly useful when data do not sufficiently exist on the
right side of the dose-response curves so that estimating the slope and lower asymptote parameters is
difficult. In addition, the degree of inferiority of the Mead method to the logistic method when there is
no support problem (upper left cell) is not severe, which supports our use of the Mead method as the
default initialization method in dr4pl.

Walk-through in R

In this section, we walk through example R code in which dose-response data are analyzed using our
R package dr4pl. By following steps shown below, users can understand how to use dr4pl to handle
data sets that have the convergence failure issue and what kind of detailed analysis can be done by
setting options of R functions in dr4pl.

Main R function dr4pl

We start with Error Case 1 shown in Figures 2 and 6. As can be seen in those figures, this data set
contains an extreme outlier at the dose level 10−5. If the R package drc is used to fit the 4PL model to
this data set, the following error message is returned.

> library(drc)
>
> drm(Response~Dose, data = drc_error_1, fct = LL.4())
Error in optim(startVec, opfct, hessian = TRUE, method = optMethod, control =
list(maxit = maxIt, : non-finite finite-difference value [4]

Error in drmOpt(opfct, opdfct1, startVecSc, optMethod, constrained, warnVal, :
Convergence failed

Note that this error message indicates convergence failure but no explanation about its cause is
given. On the contrary, fitting the 4PL model with dr4pl returns an object of the class "dr4pl" which
contains useful information about the convergence failure and a possible solution.

> library(dr4pl)
>
> dr4pl.error.1 <- dr4pl(Response~Dose, data = drc_error_1, method.init = "logistic",
+ use.Hessian = TRUE)
> class(dr4pl.error.1)
[1] "dr4pl"
> dr4pl.error.1$convergence # TRUE indicates convergence success,
+ # FALSE indicates convergence failure.
[1] FALSE
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In this code, some input arguments such as method.init and use.Hessian are specified as different
values from the default values of dr4pl. For example, the default value of method.init is Mead but it
is specified as logistic in the code. This is to ensure that the function dr4pl works with the same
parameter setting as drc. The R package drc uses the logistic method as its default initialization
method and the Hessian matrix in its confidence interval estimation. Note that the function dr4pl
does not throw an error but returns the member dr4pl.error.1$convergence which indicates that
convergence failure happens during the optimization process.

As a possible solution to the convergence failure, the object dr4pl.error.1 provides a member
object dr4pl.robust that results from robust estimation and the outlier detection algorithm explained
in Subsection Robust regression and outlier detection. We call the object dr4pl.error.1$dr4pl.robust
the robust child object of its parent object dr4pl.error.1.

> dr4pl.robust.1 <- dr4pl.error.1$dr4pl.robust
> class(dr4pl.error.1$dr4pl.robust)
[1] "dr4pl"
> dr4pl.robust.1$convergence
[1] TRUE

It can be seen from these code lines that the robust child object does not report the convergence
failure issue. To check results of robust estimation and outlier detection, we check the plot of the object
dr4pl.robust.1.

> dr4pl.robust.1$idx.outlier
[1] 132 140 127 134 133 137 141 139 130 129 128 102
> plot(dr4pl.robust.1, indices.outlier = dr4pl.robust.1$idx.outlier)

The member idx.outlier of the object dr4pl.robust.1 shows the indices of the outliers in the
input data frame drc_error_1 detected by our algorithm. It can be seen that the last sentence in this
code generates the same plot as the upper left plot of Figure 6. As mentioned in Subsection Robust
regression and outlier detection, the absolute loss is given as the default robust estimation method.
This implies that adopting the absolute loss successfully resolves the convergence failure problem of
Error Case 1.

Our R package dr4pl provides other real-world data sets than Error Cases 1 - 4. We analyze the
data set sample_data_5 to compare the two different initialization methods, the logistic and Mead
methods, which were presented in Section Remedy for the support problem.

> dr4pl.logistic.5 <- dr4pl(Response~Dose,
+ data = sample_data_5,
+ method.init = "logistic")
> ggplot.logistic <- plot(dr4pl.logistic.5, text.title = "Logistic method")
>
> dr4pl.Mead.5 <- dr4pl(Response~Dose,
+ data = sample_data_5)
> ggplot.Mead <- plot(dr4pl.Mead.5, text.title = "Mead's method")
>
> grid.arrange(ggplot.logistic, ggplot.Mead, nrow = 1, ncol = 2)

Running this code generates the two plots in Figure 7. Note that outliers are not denoted by red
triangles in these plots since they are generated by the parent objects but not by their robust child
objects. It can be seen from the figure that the data set has the support problem in the sense that it
is hard to determine an IC50 parameter value visually and data points on the right side of possible
IC50 parameter values are not sufficiently provided. Mead’s method shown in the right plot seems
to yield a closer fit to the right-most data point. This coincides with our explanation in Subsection
Mead’s method that the method can result in better final parameter estimates particularly when data
suffer from the support problem.

Auxiliary R functions

The R function summary of the R package dr4pl shows the 95% asymptotic confidence intervals of
the final parameter estimates of a "dr4pl" object. The following code lines show example output of
summary applied to the data set sample_data_3.

> dr4pl.3 <- dr4pl(Response~Dose, data = sample_data_3)
> summary(dr4pl.3)
$call
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Figure 7: Dose-response curves fitted by dr4pl with two initialization methods: the logistic (left plot)
and Mead (right plot) method. It can be seen that Mead’s method yields a closer fit to the right-most
data point than the logistic method.

dr4pl.formula(formula = Response ~ Dose, data = sample_data_3)

$coefficients
Estimate StdErr 2.5 % 97.5 %

UpperLimit 59858.0700194 1.328219e-01 58678.1496415 61037.9903974
IC50 5.0794918 1.531608e-05 3.7133017 6.9483278
Slope -0.6117371 1.440712e-05 -0.7397224 -0.4837518
LowerLimit 980.8205686 1.354448e-01 -222.4002527 2184.0413899

attr(,"class")
[1] "summary.dr4pl"

Recall from Subsection 2.2.1 that the IC50 is the dose level whose response value is halfway
between the upper and lower asymptotes θ1 and θ4. Similarly, other inhibitory concentrations of
interest can be defined according to different proportions between θ1 and θ4 as ιp which satisfies the
following equation,

f
(
ιp
)
= pθ1 + (1− p)θ4

where 0 ≤ p ≤ 1. It can be easily seen that ι0.5 corresponds to the IC50 parameter θ2.

Like the R function ED of drc and the R function getEstimates of nplr, the R package dr4pl
implements the function IC to compute inhibitory concentration parameters ιp for 0 ≤ p ≤ 1. The
following code shows a simple use of IC to compute ι0.1, ι0.3, ι0.5, ι0.7, ι0.9 for the data sample_data_3.

> IC(dr4pl.3, c(10, 30, 50, 70, 90))
InhibPercent:10 InhibPercent:30 InhibPercent:50 InhibPercent:70 InhibPercent:90

184.3784198 20.2930770 5.0794918 1.2714305 0.1399363

Summary and future extension

The 4PL model has often suffered from convergence failure problems preventing experimenters from
obtaining fitted 4PL models to data sets. Without diagnosing problems with data sets, experimenters
should often try many different initial parameter estimates, which still does not guarantee stable
convergence of optimization processes. In this paper, we presented a novel method based on studying
convergence failure problems. By imposing proper conditions on the parameter space of the 4PL
models, our new R package dr4pl reports convergence failure during an optimization process and
presents possible resolutions to users.

Another important issue can be memory usage and speed of dr4pl, relative to other R packages
nplr and drc. Measuring time and memory consumed by the three R packages for the 13 data sets
provided in dr4pl showed that nplr is much slower, and used much more memory, than either of the
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other two methods. The enhanced features of dr4pl resulted in its being only slightly slower, with
somewhat more memory usage than drc.

Asymptotic confidence intervals of M-estimators have been developed in Lim et al. (2013). An
interesting open problem is the numerical implementation of these in the 4PL context. Another area of
potential future extension is modelling interaction between different drugs. The R packages drc and
MixLow support functionality for drug interaction modelling. While we are not aware of data sets
reported in the literature that cause the convergence failure problem when there are more than one
drug, it seems that outliers or the support problem may cause instability of optimization processes in
those cases as well. Analysis of the Hill bounds can be a remedy for those, which is an important area
of future research.

Appendix: proof of Theorem 2.3.1

Let Θ = { θ =(θ1, θ2, θ3, θ4)| θ1, θ3, θ4 ∈ R, θ2 > 0}. From Equation (3), it can be seen that

∂L(θ)
∂θj

= − 2
n

n

∑
i=1
{yi − f (xi|θ)}

∂ f (xi|θ)
∂θj

, (18)

for j = 1, 2, 3, 4. In addition, we have from Equation (2) that

∂ f (x|θ)
∂θ1

= 1− 1
1 + (10x/θ2)θ3

> 0,

∂ f (x|θ)
∂θ4

=
1

1 + (10x/θ2)θ3
> 0, (19)

for all x ∈ R and θ ∈ Θ since we have θ2 > 0. From these equations, it can be seen that the function f
is increasing in θ1 and θ4 and

lim
θ1→∞

f (x|θ) = ∞, lim
θ4→−∞

f (x|θ) = −∞.

for all x ∈ R and θ ∈ Θ. Fix θ2 > 0, θ3 ∈ R. Then there exist two constants −∞ < θ′1, θ′4 < ∞ such that

f (xi|θ) > yi ∀θ1 ≥ θ′1, f (xi|θ) < yi ∀θ4 ≤ θ′4, (20)

for fixed θ4 ∈ R and θ1 ∈ R, respectively, for i = 1, 2, · · · , n. Substituting Equations (19) and (20) into
Equation (18) yields

∂L(θ)
∂θ1

> 0 ∀θ1 ≥ θ′1,
∂L(θ)

∂θ4
< 0 ∀θ4 ≤ θ′4,

for those fixed θ4 ∈ R and θ1 ∈ R, respectively.
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