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Identifying and Testing Recursive vs.
Interdependent Links in Simultaneous
Equation Models via the SIRE
Package
by Gianmarco Vacca and Maria Grazia Zoia

Abstract Simultaneous equation models (SEMs) are composed of relations which either represent
unidirectional links, which entail a causal interpretation, or bidirectional links, due to feedback
loops, which lead to the notion of interdependence. The issue is of prominent interest in several
respects. Investigating the causal structure of a SEM, on the one hand, brings to light the theoretical
assumptions behind the model and, on the other hand, pilots the choice of the befitting estimation
method and of which policy to implement. This paper provides an operational method to distinguish
causal relations from interdependent ones in SEMs, such as macro-econometric models, models
in ecology, biology, demography, and so forth. It is shown that the causal structure of a system
crucially rests on the feedback loops, which possibly affect the equations. These loops are associated
to the non-null entries of the Hadamard product of matrices encoding the direct and indirect links
among the SEM dependent variables. The effectiveness of feedbacks is verified with a Wald test
based on the significance of the aforementioned non-null entries. An R package, SIRE (System of
Interdependent/Recursive Equations), provides the operational completion of the methodological
and analytic results of the paper. SIRE is applied to a macroeconomic model to illustrate how this
type of analysis proves useful in clarifying the nature of the complex relations in SEMs.

Introduction

As is well known, each equation in a simultaneous equation model (SEM) represents a specific link
between a dependent (endogenous) variable and a set of other variables which play an explicative
role for the former. These links can reflect either one-way relations between the dependent and their
explicative variables or two-ways relations, ascribable to the presence of feedback loops operating
either at a systematic or a stochastic level. SEMs are of recursive type as long as the equations
represent unidirectional links. Otherwise, if the equations are bidirectional, the SEM (or part of
it) is interdependent. Interdependence is, both structurally connected to the presence of current
endogenous variables playing an explicative role, and can result as a by-product of error-term
dependencies.

Investigating the nature, causal rather than interdependent, of a SEM is important in several
respects. First the analysis, unfolding the dynamics among variables, sheds more light on the
rationale behind the theoretical assumptions of the model. For instance, in an economic framework,
the distinction between interdependent and causal SEMs leads to models which can be traced
back to two main streams of economic theory: Neoclassical and Keynesian (Bellino et al., 2018).
Furthermore, the implication of interdependence vs. causality is crucial for undertaking parameter
estimation, given that a set of causal equations can be estimated equation by equation by ordinary
least squares (OLS), while simultaneous estimation methods, like three stage least squares (3SLS)
are required when interdependence occurs. Given that large SEMs have become increasingly popular,
the need for an analytical set-up, able to effectively detect and test causality versus interdependence,
has of course become more urgent.

Starting from this premise and following Strotz and Wold, 1960; Wold, 1964; and more recently
Faliva, 1992; Faliva and Zoia, 1994); in this paper we have devised an operational method to
distinguish the causal from the interdependent equations of a SEM. Other approaches for detecting
feedback-loops arising in deterministic (error free) models are based on either graph or system theory
(see e.g., Gilli 1992). Our methodological proposal goes beyond the aforementioned methods, as
besides covering both the cases of deterministic and error-driven feedback effects, it provides a way
for testing the feedback effectiveness. In addition, it differs in principle from other approaches, as
the one proposed by Granger (see Granger, 1980) and the Covariance Structural Analysis (CSA;
Jöreskog). The former essentially rests on a predictability criterion for defining causality regardless of
the theory behind the model. The latter, which is meant to find the best parametric approximation
of the sample covariance matrix in terms of a given theoretical SEM structure; as such, it does not
lead to a causal/interdependent interpretation of the model links as the one developed in our paper.

The feedbacks identified by the method proposed here demand statistical confirmation on certain
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empirical evidence arguments. Lack of significance of (one or more of) the estimated feedbacks can
overturn the nature of the connections among model variables. To this end, a Wald type test is
devised to check whether a given equation is significantly affected by feedback or not. The statistic
of this test hinges on the parameter matrices of the model: the matrix associated to the endogenous
variables playing an explicative role and the dispersion matrix of the error terms. If an equation is
affected by feedback loops, the testing procedure allows to diagnose which endogenous variables are
significantly connected in the loop of interest. Indeed, testing the significance of feedbacks means
also checking if the links among variables, suggested by the theory at the basis of the model, are
confirmed according to an empirical evidence argument.

The methodological approach put forth in this paper is implemented in R with the SIRE package.
Besides integrating functions usually employed for the estimation of SEM’s, the package provides
new functions meant to duly split a system of equations into its unidirectional and bidirectional
links, and test their significance. To our knowledge, extant alternative approaches to causality do
not offer a similar test.

The paper is structured as follows. The first section provides the methodological set-up devised
to single out causal and interdependent relations in a SEM. In the second section, a Wald-type
test is worked out to check whether a given equation is affected by feedbacks or not. The third
section shows how the method and the R code work for detecting and testing feedback-loops in a
macroeconomic model. An Appendix, with proofs of the main theoretical results, completes the
paper.

Detecting Loops in an Equation System

An equation system is a set of structural equations representing economic theory-driven relations
linking the variables relevant to the study at hand.

It is customary to specify an equation system as follows

yt = Γyt +Azt + εt t = 1, . . . ,T (1)

where yt is a L× 1 vector of current dependent or endogenous variables, zt is a J × 1 vector of
explicative variables and εt is a L× 1 vector of error terms. T is the sample period. Γ and A are,
respectively, L×L and L× J sparse parameter matrices. In particular Γ, expressing the relations
among current endogenous variables, is a hollow matrix to prevent any endogenous variable from
explaining itself. Furthermore, it is assumed that (I− Γ) is of full rank, meaning that the equations
are linearly independent.

Error terms are assumed to be non-systematic, stationary in a wide sense, and uncorrelated over
time, that is

E(εt) = 0L (2)

E(εtε
′
τ ) =

{
Σ(L×L) if t = τ

0(L×L) if t 6= τ

Actually, the pattern of relations recognizable in an econometric model can be interpreted either in
terms of causal or interdependent schemes. A causal relation among variables is an asymmetric,
theoretically-grounded and predictive relations which can be ideally meant as a stimulus-response
mechanism (see Wold, 1964 and Strotz and Wold 1960). The equations of a model form a causal
chain when, once they are properly ordered, each current endogenous variable turns out to be, on
the one hand, resultant of the joint effect of the endogenous which precede it in the chain and, on
the other hand, cause of the current endogenous which follow the same endogenous in the chain. A
model with equations that form a causal chain is defined recursive. The following simple equation
system provides an example of a recursive model (see Figure 1, left panel)

y1,t =a
′
1zt + ε1,t (3)

y2,t =γ2,1y1,t + a
′
2zt + ε2,t

y3,t =γ3,2y2,t + γ3,1y1,t + a
′
3zt + ε3,t

y4,t =γ4,3y3,t + γ4,1y1,t + a
′
4zt + ε4,t

Recursive systems can be easily estimated, equation by equation, using OLS, starting from the top
of the chain.

When a causal chain exists among blocks of current endogenous variables, a causal order can be
established among those blocks of equations. In this case, the current endogenous variables of a
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block are effects of the variables belonging to the blocks which come before them in the chain, as
well as the causes of the variables belonging to blocks which follow the block at stake in the chain.
In this case, the model is of block-recursive type. The following simple equation system provides an
example of a recursive model (see Figure 1, middle panel)

y1,t =γ1,2y2,t + a
′
1zt + ε1,t (4)

y2,t =γ2,1y1,t + a
′
2zt + ε2,t

y3,t =γ3,2y2,t + γ3,4y4,t + a
′
3zt + ε3,t

y4,t =γ4,3y3,t + γ4,1y1,t + a
′
4zt + ε4,t

Here, the chain is formed by two blocks of variables (y1, y2) and (y3 and y4) with the variables of
the first block explaining those of the second.

Sometimes the composite nature of the connections among variables leads to a closed sequence
of dependencies among variables to be ascribed to feedback loops. This type of interaction among
endogenous variables is usually called interdependence. Interdependence is structurally connected
to the presence of both current endogenous variables on the right-hand side of the model and the
correlation between contemporaneous error terms.See the system below as an example in this regard
(see Figure 1, right panel)

y1,t =γ1,2y2,t + a
′
1zt + ε1,t (5)

y2,t =γ2,1y1,t + γ2,3y3,t + a
′
2zt + ε2,t

y3,t =γ3,2y2,t + γ3,4y4,t + a
′
3zt + ε3,t

y4,t =γ4,3y3,t + γ4,1y1,t + a
′
4zt + ε4,t

Y1

Y2

Y3

Y4

(a) Recursive model (3).

Y1

Y2

Y3

Y4

(b) block-recursive model (4).

Y1

Y2

Y3

Y4

(c) interdependent model (5).

Figure 1: The three patterns of relations in a simultaneous equation model.

Based on this premise, it is clear that the causal or interdependent features of a model’s
equations depend on the pair of matrices Γ and Σ. The former matrix highlights the possible
(circular) dependencies or feedbacks among endogenous variables, while the latter features those
induced by the stochastic components. In fact, the correlation of error terms associated to an
equation-pair may transform the link between the endogenous, explained by these equations, into a
relation with feedback.

Moreover, the essential information concerning the causal structure of a model can be obtained
from the topological properties1 of the pair of the mentioned matrices and, at the very end, from
the topological properties of the associated binary matrices Γband Σb. 2

Following Faliva (Faliva, 1992) matrix Γ can be split as follows

Γ = C̃+ Ψ0 (6)
1The term topological properties refers to those properties of a matrix which depend exclusively on the

number and the relative position of its null and non-null elements (Marimont, 1969).
2A binary matrix associated to a matrix G is a matrix whose entries are equal to 1 if the corresponding

entries of G are non-null, or 0 otherwise. Binary matrices preserve the topological properties of the parent
matrices.
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where C̃ includes the coefficients associated to current endogenous variables involved in feedback
loops, and Ψ0 those associated to endogenous variables involved in causal relations.

Matrix C̃ is specified as follows
C̃ = C+ Ψ1 (7)

where C includes the feedbacks arising in the systematic part of the model and matrix Ψ1 those
induced by the correlation of the error terms. Matrices C and Ψ1 are defined as follows

C = Γ ∗R R =


[
L−1∑
r=1

(
Γb
)r]b

′

(8)

Ψ1 = (Γ−C) ∗
[

Σb (I+R)
]b

, (9)

where the symbol "∗" denotes the Hadamard product.34 The rationale of (8) hinges on the fact
that a direct feedback between variables yi and yj corresponds to the simultaneous non-nullity of
γi,j and γj,i of coefficient matrix Γ. This entails that a direct feedback between these two variables
exists if the (i, j)-th element of the matrix 5

Γ ∗ (Γb)′ (10)

is non null. An indirect feedback between the same variables is instead associated to a bidirectional
connection between yi and yj established through other variables and equations. In algebraic terms
this corresponds to the simultaneous non-nullity of the (i, j)-th element of Γ and of the (i, j)-th
element of a positive power of Γ′ (Fiedler, 2013). This entails that an indirect feedback exists
between the mentioned variables if the (i, j)-th element of the following matrix

Γ′ ∗


[
L−1∑
r=2

(
Γb
)r]b

′

(11)

is non-null.
Accordingly, matrix

Ψ = Γ−C (12)
includes the coefficients associated to endogenous variables which, as far as the systematic aspects
of the model are concerned, have a causal role.6

In order to show how feedbacks operating in the systematic part of a model can be detected, let
3The Hadamard product of two matrices, A and B of the same order, is defined as the matrix of the

term-to-term products of the elements of these matrices, that is (A ∗ B)(i,j) = a(i,j)b(i,j).
4An alternative approach for determining the feedbacks operating at a systematic level in a model is based

on graph theory (see Jöreskog and Wold, 1982 and Ponstein, 1966).
5The element γj,i of Γ corresponds to the element γi,j of Γ′
6It is worth mentioning that Ψ is Hadamard-orthogonal to C (two matrices A and B are said to be

Hadamard-orthogonal if A ∗ B=0). Furthermore, while matrix C is co-spectral to Γ (i.e., they have the same
eigenvalues), matrix Ψ is a hollow-nilpotent matrix, like Γ (a square matrix N is nilpotent if Nk = 0 for
some k < M , where M is the matrix dimension). A hollow, nilpotent matrix can always be expressed in
triangular form.
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us consider as an example the following deterministic model

y1,t =γ1,5y5,t + γ1,7y7,t + a
′
1zt (13)

y2,t =a
′
2z2,t

y3,t =γ3,11y11,t + a
′
3zt

y4,t =γ4,3y3,t + a
′
4zt

y5,t =γ5,10y10,t + a
′
5zt

y6,t =γ6,5y5,t + γ6,9y9,t+ a′6zt

y7,t =γ7,6y6,t + a
′
7zt

y8,t =γ8,12y12,t + a
′
8zt

y9,t =γ9,7y7,t + a
′
9zt

y10,t =γ10,5y5,t + a
′
10z2,t

y11,t =γ11,12y12,t + a
′
11zt

y12,t =γ12,4y4,t + γ12,11y11,t + a
′
12zt

y13,t =γ13,2y2,t + γ13,6y6,t + a
′
13zt

Matrix Γb is given by

Γb =



· · · · 1 · 1 · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · 1 · ·
· · 1 · · · · · · · · · ·
· · · · · · · · · 1 · · ·
· · · · 1 · · · 1 · · · ·
· · · · · 1 · · · · · · ·
· · · · · · · · · · · 1 ·
· · · · · · 1 · · · · · ·
· · · · 1 · · · · · · · ·
· · · · · · · · · · · 1 ·
· · · 1 · · · · · · 1 · ·
· 1 · · · 1 · · · · · · ·

 (14)

Using (8) and (12), Γb is split in the following two submatrices

Cb =



· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · 1 · ·
· · 1 · · · · · · · · · ·
· · · · · · · · · 1 · · ·
· · · · · · · · 1 · · · ·
· · · · · 1 · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · 1 · · · · · ·
· · · · 1 · · · · · · · ·
· · · · · · · · · · · 1 ·
· · · 1 · · · · · · 1 · ·
· · · · · · · · · · · · ·

, Ψb =



· · · · 1 · 1 · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · 1 · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · 1 ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· 1 · · · 1 · · · · · · ·

 (15)

Looking at matrix Cb, we see that the simultaneous non-nullity of the c5,10, c10,5, c11,12, and c12,11
elements imply the existence of two direct feedbacks: one between the variable-pair y5 and y10, and
the other between y11 and y12. The non-nullity of the c3,11, c4,3, and c12,4 elements denotes the
existence of indirect feedbacks between the four variables y3, y4, y11, and y12. Similarly, variables
y6, y7, and y9 are connected by an (indirect) feeback as a consequence of the non-nullity of the
c6,9, c7,6, and c9,7 elements. Looking at matrix Ψ we conclude that variables y5 and y7 have a
causal role in the first equation. Variables y5 and y12 have the same role in the equations six and
eight, while variables y2 and y6 play a causal role in the last equation. The results ensuing from the
decomposition of Γb are depicted in Figure 2.

Y1 Y7 Y3 Y4

Y5 Y6 Y9 Y11 Y12

Y10 Y13 Y2 Y8

Figure 2: Interdependent links (in red) and causal links (in black) operating in the model (13).

If the error terms are correlated, the causal structure of a model could no longer match that of
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its systematic counterpart since part of the relations that are recursive at systematic level, namely
Ψyt, may become interdependent as a consequence of the feedback mechanisms induced by the
stochastic terms in Σ. In this case, matrix Ψ turns out to be the sum of two Hadamard-orthogonal
matrices, Ψ0 and Ψ1, that is

Ψ = Ψ0 + Ψ1 Ψ0 ∗Ψ1 = 0(L×L) (16)

where
Ψb1 = Ψ ∗F F =

[
Σb (I+R)

]b
(17)

Here, matrix Ψ1 includes the coefficients associated to the endogenous variables involved in loops
induced by disturbances. In fact, it can be proved (see 1. in Appendix) that the matrix

[
Σb (I+R)

]b
is the binary counterpart of the covariance matrix between the error terms and the endogenous
variables given by

E(ε′tyt) = [Σ (I− Γ)−1] (18)
The non-null elements of the above matrix express the effect of the model’s left-hand side (LHS)
endogenous variables on the right-hand side (RHS) ones, which are induced by the error term
correlation.

Equations (16) and (17) rest on the logical relations between the concepts of causality and
predictability, where the notion of optimal predictor (in mean-square sense) tallies with that of
conditional expectation. In fact, given that causal relations are also predictive, but not vice-versa,
we can define as causal those relations that are both causal in the deterministic model and predictive
in a stochastic context. This means that if the conditional expectations of the relations, which are
causal in the deterministic model, namely Ψyt, are not affected by the error terms, then Ψyt turns
out to also have a causal role in a stochastic context. Accordingly, we can say that the stochastic
specification is neutral with respect to the underlying systematic causal structure if the following
holds (Faliva, 1992)

E(Ψyt + εt|Ψyt) = Ψyt + E(εt|Ψyt) = Ψyt (19)
meaning that

E(εt|Ψyt) = 0 (20)
Otherwise, the correlation between the error terms and the endogenous variables may affect the
conditional expectation of the error term as follows (see Faliva, 1992)

E(εt|Ψyt) = −Ψ1yt (21)

which, in turn, implies that

E(Ψyt + εt|Ψyt) = Ψyt −Ψ1yt = Ψ0yt (22)

In this case, only the subset Ψ0yt of the original set of causal relations, playing a predictive role, is
causal. This, in turn, implies that the overall feedback operating in the system is included in matrix
C̃ = C+ Ψ1.

To highlight the role played by the stochastic specification on the model causal structure, let us
consider as an example the following specification for matrix Σb

Σb =



1
· 1
· · 1
1 1 · 1
1 · · 1 1
· 1 1 1 · 1
· · 1 · · 1 1
1 1 · 1 1 1 · 1
· 1 · 1 · 1 · 1 1
1 · · 1 1 · · 1 · 1
· · 1 · · 1 1 · · · 1
1 · · 1 1 · · 1 · 1 · 1
· · 1 · · 1 1 · · · 1 · 1

 (23)

Then, matrices C̃b and Ψb0 are

C̃b =



· · · · 1 · 1 · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · 1 · ·
· · 1 · · · · · · · · · ·
· · · · · · · · · 1 · · ·
· · · · · · · · 1 · · · ·
· · · · · 1 · · · · · · ·
· · · · · · · · · · · 1 ·
· · · · · · 1 · · · · · ·
· · · · 1 · · · · · · · ·
· · · · · · · · · · · 1 ·
· · · 1 · · · · · · 1 · ·
· · · · · 1 · · · · · · ·

 = Cb + Ψb1 =



· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · 1 · ·
· · 1 · · · · · · · · · ·
· · · · · · · · · 1 · · ·
· · · · · · · · 1 · · · ·
· · · · · 1 · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · 1 · · · · · ·
· · · · 1 · · · · · · · ·
· · · · · · · · · · · 1 ·
· · · 1 · · · · · · 1 · ·
· · · · · · · · · · · · ·

+



· · · · 1 · 1 · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · 1 ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · 1 · · · · · · ·

 (24)
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Ψb0 =



· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · 1 · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· 1 · · · 1 · · · · · · ·

 (25)

The non-null correlation between the pairs of error terms {ε5, ε1}, {ε6, ε13}, {ε7, ε1} and {ε12, ε8}
(see Equation (23)) has transformed the relations among the pairs of variables {y5, y1}, {y6, y13},
{y7, y1}, and {y12, y8}, which were causal in the deterministic model (13), into interdependent links.
Figure 3 shows the effect of the stochastic specification (23) on the feedbacks originally detected in
the deterministic model (13).

Y1 Y7 Y3 Y4

Y5 Y6 Y9 Y11 Y12

Y10 Y13 Y2 Y8

Figure 3: Interdependent (in red) and causal (in black) links operating in the model (13) when
the stochastic specification is as in (23). Dashed red lines with double-headed arrows denote
interdependent links induced by the correlation of the error terms.

The flow-chart in Figure 4 shows the different cases, according to the structure of matrices Γ

and Σ.

Σ = I

Γ = C Interdependence Γ = C + Ψ1

Γ = Ψ Recursiveness Γ = Ψ0

Block recursiveness

yes

yes

no

yes

no

yesyes

no

no no

Figure 4: Flow-chart showing the possible outcome of the system decomposition in terms of Γ and
Σ.
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Testing the Significance of Feedback Loops

In the previous section an analytic framework was set up to describe the potential feedbacks operating
in a model. In fact, the analysis developed, relying on binary matrices, was meant to be qualitative
since it only highlights the feedback set that potentially operates in a model, given the characteristics
of its relations and its stochastic specification. Only once the model has been duly estimated, can the
coefficients of matrix C̃ be properly evaluated. At this point, it proves useful to devise a procedure
for testing the significance of the estimated loops (see Faliva and Zoia, 1994). To this end, let us
observe that, once the matrix including all the feedbacks operating in the model

C+ Ψ1 = C+ Ψ1 = C+ (Ψ ∗F) F = Σ(I− Γ)−1 (26)

have been properly estimated, a test for the effective functioning of feedback loops can be established,
based on the significance of its non-null entries. Any given equation, say the j-th one, turns out to
be involved in feedback loops with other equations of the model whenever the j−th row of the above
matrix is not a null vector. Should the (j, i)-th entry of this matrix be non-null, then a feedback
between the j-th and the i-th equation would be expected to exist (see A.7 in the Appendix).
Actually, it can be proved (see 2. in Appendix) that, in light of the identity

C+ (Ψ ∗F) = (C+ Ψ) ∗F = Γ ∗F (27)

a test for the significance of the loops can be based on the exam of the statistical non-nullity of
the elements of matrix Γ ∗F which, unlike C̃, does not require the preliminary split of Γ into its
components, given the feedback loops C+ Ψ1 and causal links Ψ0.

In this context (following Faliva and Zoia, 1994), it can be proved that the j-th row of matrix
Γ ∗F measures both the direct effect of the RHS endogenous variables on the j-th one and the
feedback effect of the latter on the former variables. In fact, the direct effects of the RHS endogenous
variables, collected in vector yo, on variable yj are included in the j-th row of matrix Γ (excluding
its j-th element), that is

∂E(yj |yo)
∂yo

= e′jΓMj (28)

Here, ej is the L-dimensional j-th elementary vector and Mj is the (L× (L− 1)) selection matrix
obtained from the identity matrix by deleting its j-th column, that is

Mj =

[
e1

(L,1)
, . . . ej−1

(L,1)
, ej+1

(L,1)
, . . . eL−1

(L,1)

]
(29)

The feedback effects of the yj variable on its explicative endogenous variables, yo, are included in
the j-th row of matrix F (excluding its j-th element), that is

∂E(y′o|yj)
∂yj

= (M′jF
′ej)′ (30)

To prove (30), let us focus on the j-th equation and consider this equation as the first of the system,
with the others in sequence, that is

yj
(1,1)

= γ′j
(1,L−1)

yo
(L−1,1)

+ a′j
(1,J)

z
(J,1)

+ εj
(1,1)

(31)

yo
(L−1,1)

= η
(L−1,1)

yj
(1,1)

+ Γo
(L−1,L−1)

yo
(L−1,1)

+ Ao
(L−1,J)

z
(J−1,1)

+ εo
(L−1,1)

(32)(
εj
εo

)
∼ NL (0, Σ) where Σ =

(
σjj σjo
σoj Σo

)
(33)

Looking at the j-th equation, it is clear that vector γ′j = e′jΓMj measures the direct effect of the
(RHS) endogenous variables on yj . In order to determine the feedback effect of yj on yo, let us
rewrite (32) as follows

yo = η(γ′jyo + a′jz+ εj) + Γoyo +Aoz+ εo (34)

Next, given that, under normality, the following holds

εo =
σoj
σjj

εj + ζo; ζo⊥εj (35)
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the set of equations (34) can be conveniently rewritten in the form

(I−G)yo = Dz+ dεj + ζo (36)

where

G = ηγ′j + Γo; D = ηa′j +Ao; d = η +
σoj
σjj

(37)

This, in turn (see 3. in Appendix) entails

∂E(y′o|εj)
∂yj

=
∂E(y′o|εj)

∂εj

∂εj
∂yj

= [(I−G)−1d]′ = ϕ′j =
1
σjj

e′jFMj (38)

Thus, we can conclude that the presence of non-zero elements in the vector

ρ′j = γ′j ∗ϕ
′
j = (e′jΓMj) ∗ (

1
σjj

e′jFMj) = e′j
1
σjj

(Γ ∗F)Mj (39)

reveals the simultaneous action of both the direct effects of yo on yj and the feedback effects of yj
on yo.

Accordingly, testing the significance of ρj means checking whether the j-th endogenous is involved
in feedback loops with other endogenous variables.

Actually, the statistic of the test can be derived from (39), by deleting from γ′j the elements
that, according to the exclusion constraints postulated by the economic theory, are null. This leads
to move from the former ρj vector to the following compressed vector

ρ̃j = γ̃′j ∗ ϕ̃j
′ = (Sjγj)

′ ∗ (Sjϕj)
′ (40)

which has no zero entries. Here Sj is a selection matrix selecting from γj and ϕj the non-null
entries. Accordingly, the reference model (31)-(33) can be restated as

yj = γ̃′jyr + ã′jzr + εj (41)
yr = Kz+ ϕ̃jεj + εr (42)

f(εj ,εr) ∼ NL

(
0,
(
σjj 0′
0 Ω

))
(43)

where
yr = Sjyo, ãj = Sraj , zr = Srz (44)

and Sr is the matrix selecting the non-null entries from a′j and the sub-set of predetermined variables
playing an explicative role in the j-th equation. Furthermore,

K = Sj(I−G)−1D, εr = Sj(I−G)−1ζo, Ω = E(εrε
′
r) (45)

Hence, the issue of the nature, unidirectional rather than bidirectional, of the equation at stake can
be unfolded by testing a hypothesis in the given form{

H0 : ρ̃j = 0
H1 : ρ̃j 6= 0

(46)

The Wald test takes the form
W = ˆ̃ρj

′
(ĴΨ̂

−1Ĵ′)−1 ˆ̃ρj (47)

where ˆ̃ρj is the maximum likelihood estimate of ρ̃j (see 4. in Appendix), and Ĵ, Ψ̂ are, respectively,
the Jacobian matrix

Ĵ =
∂ρ̃j(θ)

∂θ

∣∣∣∣
θ=θ̂

(48)

and the information matrix
Ψ̂ =

∂2l(θ)

∂θ∂θ′

∣∣∣∣
θ=θ̂

(49)

evaluated in correspondence of the maximum likelihood estimate of the parameter vector

θ′ = [γ̃′j , ã
′
j , ϕ̃′j , vec(K),σjj , vech(Ω)]′ (50)

Under the null hypothesis
W ≈

as.
χ2
k (51)
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where k is the dimension of ρ̃j .
If the Wald test provides evidence that the j-th equation is involved in a statistically significant

feedback loop with other equations of the model, it is worth singling out the variables that are
primarily responsible for the feedback at hand. They can be identified by checking the significance
of each non-null element of ˆ̃ρj . Under the null that the i-th element of ˆ̃ρj is non-zero, the Wald
statistic, for testing the significance of the loop bridging the i-th and j-th endogenous, turns out to
be

W = (e′i ˆ̃ρj)
′[ei(ĴΨ̂−1Ĵ′)−1e′i]( ˆ̃ρjei) ≈

as.
χ2

1 (52)

Detecting and testing causal and interdependent links in a model
with SIRE

Investigating potential feedbacks with SIRE

The analysis developed in the previous sections allows the identification of the potential feedbacks
operating in a model. By assuming the stochastic specification of the model as known, the
investigation can be carried out by using binary matrices Γb and Σb without a preliminary estimation
of the model. The causal structure, which emerges from this analysis, is implied by the theory
underlying the model and mirrored by the topological properties of matrices Γ and Σ. It is also
important to point out that the feedback loops thus detected are only potential, because their
effectiveness must find confirmation in empirical evidence. We start by loading the SIRE package.

> install.packages("SIRE")
> library(SIRE)

The function causal_decompose() is devised for decomposing the matrix Γ. If the structure of Σ is
assumed as known by the user, the function takes the following arguments:

• data: not appropriate to simulated context, set to NULL.
• eq.system: the system of equations.
• resid.est: not appropriate to simulated context, set to NULL.
• instruments: not appropriate to simulated context, set to NULL.
• sigma.in: the binary matrix Σb.

and provides the following output:

• eq.system: the system of equations given as input.
• gamma: the binary matrix Γb.
• sigma: the binary matrix Σb given as input.
• C: the binary matrix of the coefficients associated to the endogenous variables involved in

interdependent mechanisms operating at a systematic level.
• Psi1: the binary matrix of the coefficients associated to the endogenous variables involved in

interdependent mechanisms induced by error correlation (if Sigma is not diagonal).
• Psi0: the binary matrix of the coefficients associated to the endogenous variables having a

causal role.
• all.graph: the DAG object for the undecomposed path diagram (via the R package igraph;

Amestoy, 2017).
• dec.graph: the DAG object for the decomposed path diagram.

Furthermore, if the error terms are assumed to be spherical, then the SIRE package simply splits Γ

in two sub-matrices Cb and Ψb, reflecting the interdependent and causal relations operating in the
system at a deterministic level.

With regard to the system (13), the corresponding code is

> eq.system <- list(
+ eq1 = y1 ~ y5 + y7, eq2 = y2 ~ z,
+ eq3 = y3 ~ y11, eq4 = y4 ~ y3,
+ eq5 = y5 ~ y10, eq6 = y6 ~ y5 + y9,
+ eq7 = y7 ~ y6, eq8 = y8 ~ y12,
+ eq9 = y9 ~ y7, eq10 = y10 ~ y5,
+ eq11 = y11 ~ y12, eq12 = y12 ~ y4 + y11,
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+ eq13 = y13 ~ y2 + y6)
> #fictitious Sigma matrix
> Sigma <- diag(length(eq.system))
> #function call
> decompose.A <- causal_decompose(eq.system , sigma.in = Sigma)

The output is comprised of matrices Cb and Ψb given in (15). The graphical representation of the
system, given in Figure 2, is obtained with the tkplot() function of the R package igraph

> tkplot(decompose.A$dec.graph)

The following example refers to a matrix Σb specified as in (23)

> # indexes of non-null elements of Sigma
> sigma.idx <- cbind(
+ rbind(rep(1,5),c(4,5,8,10,12)), #y1
+ rbind(rep(2,4),c(4,6,8,9)), #y2
+ rbind(rep(3,4),c(6,7,11,13)), #y3
+ rbind(rep(4,6),c(5,6,8,9,10,12)), #y4
+ rbind(rep(5,3),c(8,10,12)), #y5
+ rbind(rep(6,5),c(7,8,9,11,13)), #y6
+ rbind(rep(7,2),c(11,13)), #y7
+ rbind(rep(8,3),c(9,10,12)), #y8
+ rbind(rep(10,1),c(12)), #y10
+ rbind(rep(11,1),c(13))) #y11
> # fictitious Sigma matrix
> low.tri <- as.matrix(Matrix::sparseMatrix(i = sigma.idx[2,] , j = sigma.idx[1,], x = 1,
+ dims = rep(length(eq.system),2)))
> Sigma <- low.tri + t(low.tri) + diag(length(eq.system))
> # function call
> decompose.B <- causal_decompose(eq.system = eq.system,
+ sigma.in = Sigma)

In this case, the package provides as output matrix Cb and splits matrix Ψb into sub-matrices Ψb1
and Ψb0, as in (24) and (25). The tkplot() function can still be used to obtain the pictures of the
relations among the variables given in Figure 3.

The next section will show how to perform the decomposition with causal_decompose() if the
structure of Σ is not known and the goal is to carry out estimation and feedback testing from
observed data.

Finding significant feedbacks with SIRE: an application to Italian macroeconomic
data

As pointed out in the previous section, empirical evidence aside, the results of a decomposition based
on binary matrices Γb and Σb must be considered as preliminary since they show only the potential
links acting in the system. The effectiveness of these links demands a confirmation based on a
sound empirical-evidence argument. In fact, the lack of significance of one or more of the feedbacks
thus detected can alter the nature of the connections among the endogenous variables found by the
preliminary decomposition, which is based only on the topological properties of matrices Γ and Σ.
In order to show how effective feedbacks operating in a model can be detected and tested, we have
applied the functionalities of SIRE to the Klein model (see Klein, 1950, and Greene, 2003). This
model, originally conceived for the US economy, has been recast for the Italian economy. The Italian
macroeconomic variables, mirroring the US counterparts, are available at http://dati.istat.it/.
The given model is composed of n = 60 observations on a quarterly basis and six equations explaining
the following endogenous variables: consumption expenses for Italian families [C], added value [CP],
private wages from dependent employment [WP], gross investment [I], gross capital stock [K], gross
domestic product [GDP]. The model is specified as follows

Ct
It

WPt
GDPt
CPt
Kt

 =a0 +


0 γ12 0 0 γ15 0
0 0 0 0 0 γ26
0 γ32 0 γ34 0 0
γ41 γ42 0 0 0 0
0 0 γ53 0 0 0
0 γ62 0 0 0 0




Ct
It

WPt
GDPt
CPt
Kt

+ (53)

+


a11 0 0 0
a21 0 0 0
0 0 a34 0
0 0 a44 0
0 0 0 a55
0 a62 0 0

[ CPt−1
Kt−1

GDPt−1
Tt

]
+

[ eC
eI
eWP
eGDP
eCP
eK

]
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where a0 is the intercept vector. As equation (53) shows, the set of predetermined variables includes
one exogenous variable, taxes [Tt], and three lagged endogenous variables, that is: the one-lagged
added value [CPt−1], the one-lagged gross capital stock [Kt−1], and the one-lagged gross domestic
product [GDPt−1]. We first load the data into the R workspace.

> data(macroIT)

Following Greene, the model equations have been estimated with 3SLS by using the R package
systemfit (Henningsen and Hamann, 2017). The one-lagged capital stock [Kt−1], [Tt], [CPt−1], and
[GDPt−1] have been employed as instrumental variables. Matrix Σ, if the user does not specify its
structure, is estimated by using the covariance matrix of the structural residuals. The function
causal_decompose() can be also employed to estimate both the model via 3SLS and the Σ matrix,
and yields three matrices: C, Ψ1, and Ψ0. The first two include the coefficients associated to
variables affected by feedback loops, operating either at a deterministic level or induced by error
terms, the third contains the coefficients associated to variables playing a causal role in the system.
This version of causal_decompose() takes the following arguments:

• data: data frame containing all the variables in the equations.
• eq.system: list containing all the equations, as in systemfit.
• resid.est: denotes the method used to estimate Σ, on the basis of 3SLS residuals; this

method is specified in systemfit.
• instruments: set of instruments used to estimate the model, introduced either as a list or as

a character vector, as in systemfit.
• sigma.in: not appropriate to empirical context, set to NULL.

The output of this function is a list containing the following objects:

• eq.system: the same list of equations provided as input.
• gamma, C, Psi0, Psi1, A, and Sigma: respectively matrices C, Ψ0, Ψ1, A, and Σ.
• systemfit: the output of the systemfit() function used to estimate the model.
• all.graph: the DAG object for the undecomposed path diagram.
• dec.graph: the DAG object for the decomposed path diagram.
• path: the data-set containing all the paths/relations among the endogenous variables, along

with their classification (i.e., causal, interdependent). The graph highlights which interdepen-
dent relations work at a systematic level and which are induced by the effect of correlations
among residuals).

The code below performs the decomposition using the macroIT data

> #system of equations
> eq.system <- list(eq1 <- C ~ CP + I + CP_1 ,
+ eq2 <- I ~ K + CP_1,
+ eq3 <- WP ~ I + GDP + GDP_1,
+ eq4 <- GDP ~ C + I + GDP_1,
+ eq5 <- CP ~ WP + T,
+ eq6 <- K ~ I + K_1)
> #instruments
> instruments <- ~ T + CP_1 + GDP_1 + K_1
> #decomposition
> dec.macroIT <- causal_decompose(data = macroIT,
+ eq.system = eq.system,
+ resid.est = "noDfCor",
+ instruments = instruments)

Table 1 shows the results of the model estimation. Since some coefficients are not statistically
significant (such as the coefficient associated to [I] in the equation explaining [C] and the coefficient
associated to [GDP] in the equation explaining [WP]), the model has been re-estimated and the
coefficient matrix associated to the explicative endogenous variables decomposed again.

> #system of equations
> eq.system <- list(eq1 <- C ~ CP + CP_1 ,
+ eq2 <- I ~ K,
+ eq3 <- WP ~ I + GDP_1,
+ eq4 <- GDP ~ C + I + GDP_1,
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+ eq5 <- CP ~ WP + T,
+ eq6 <- K ~ I + K_1)
> #instruments
> instruments <- ~ T + CP_1 + GDP_1 + K_1
> #decomposition
> dec.macroIT.new <- causal_decompose(data = macroIT,
+ eq.system = eq.system,
+ resid.est = "noDfCor",
+ instruments = instruments)

The results of the last estimation process are shown in Table 2. Looking at the Theil inequality
indexes (Theil, 1961) reported in the last column of the table, we can see that the estimated equations
fit the data very well. In fact, all Theil indexes are close to zero. The estimated covariance matrix
of the structural error terms is given by

Σ̂ =

 10.93
−2.51 2.61
10.75 −5.04 52.31
−7.55 1.55 3.66 7.15
−9.6 4.27 −19.73 6.07 15.08
0.43 −0.68 0.53 −0.09 −0.68 0.81

 (54)

while matrices C+ Ψ1 and Ψ0 turn out to be

C+ Ψ1 =

 0 0 0 0 0 0
0 0 0 0 0 0.73
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0.67 0 0 0 0

+

 0 0 0 0 1.02 0
0 0 0 0 0 0
0 −1.65 0 0 0 0

1.09 0.39 0 0 0 0
0 0 0.48 0 0 0
0 0 0 0 0 0

 (55)

=


0 0 0 0 1.02 0
0 0 0 0 0 0.73
0 −1.65 0 0 0 0

1.09 0.39 0 0 0 0
0 0 0.48 0 0 0
0 0.67 0 0 0 0


Ψ0 = 0 (56)

The matrix in Equation (55) embodies all the coefficients associated to variables involved in feedback
loops, while matrix (56) includes those associated to variables playing a causal role. Looking at
(55) we find a direct feedback between variables [I] and [K], while the variables of the pairs [I,
WP], [I, GDP], [C, GDP], [CP, C], and [CP, WP] are directly linked (a black arrow connects the
variables of each pair) as well as explained by equations with correlated errors. Accordingly, the
variables of each pair may be internally connected by feedback loops. The goal of our testing
procedure will be to bring out which of these feedbacks, being significant, are truly effective. Figure
5 depicts the links operating in this model, using the function tkplot() of the igraph package. In
this figure, a unidirectional arrow denotes that a variable is explicative for another. If two variables
are explicative one for the other, a direct feedback loop exists, depicted as two red arrows going
in opposite directions. Instead, a red, dashed, curved, two-headed arrow between two variables
indicates the existence of a feedback induced by error correlation.

> tkplot(dec.macroIT.new$dec.graph)

C

I

WP

GDP

CP

K

Figure 5: Path diagram of the macroeconomic model. Unidirectional arrows denote that one
variable is explicative for another. The two red unidirectional arrows denote the presence of a direct
feedback. The red, dashed, curved, double-headed arrows between pairs of variables denote feedback
loops induced by error correlation.
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Testing for feedback effects

The significance of these loops has been investigated by using the function feedback_ml() which
performs the Wald test given in (52). The 3SLS parameter estimates have been used as preliminary
estimates to obtain the maximum likelihood (ML) estimates of the parameters needed to build
the test statistic. In particular, in order to reach the global maximum of the log-likelihood, the
initial 3SLS parameter estimates have been randomly perturbed a certain number of times. The
optimizer chosen for the scope is included in the Rsolnp package where the function gosolnp is
specially designed for the randomization of starting values. The function feedback_ml() takes the
following arguments:

• data: data frame containing all the variables in the equations.
• out.decompose: the output from the previous causal decomposition which is called by using

the command causal_decompose().
• lb and ub: upper and lower bound of the parameter space (as in gosolnp).
• nrestarts, nsim and seed.in: parameters tuning the number of random initializations (as in

gosolnp).

The output of this function is a list containing the following objects:

• rho.est: a data frame containing the estimated feedback loops for a given equation. The first
column of this data frame, feedback eqn., provides the indexes of the equations involved in
the feedback loop with the equation given in input, while the coefficients associated to the
explicative endogenous for the equation in question are shown in the column rho.est.

• loglik: the estimated log-likelihood of the best model.
• theta.hessian: the estimated Hessian matrix Î.
• rho.jacobian: the estimated Jacobian matrix Ĵ.
• wald: the value of the Wald test statistic W .

As an example, let us assume that the interest is in testing the significance of the feedbacks
affecting the second equation, explaining the endogenous variable [I]. According to the previous
analysis, this variable is connected to [K] by a bidirectional link.

TheWald test for the significance of this feedback is performed by using the function feedback_ml()
specified as follows

> test.E2=feedback_ml(data = macroIT,
+ out.decompose = dec.macroIT.new,
+ eq.id = 2,
+ lb = min(dec.macroIT.new$Sigma) - 10,
+ ub = max(dec.macroIT.new$Sigma) + 10,
+ nrestarts = 10,
+ nsim = 20000,
+ seed.in = 1)

By visualizing the estimate of ρ and the Wald statistic

> test.E2$rho.tbl
Feedback eqn. rho.est

1 6 0.1641469

> test.E2$wald
[,1]

[1,] 4.115221

we can see that the existence of a feedback loop between [I] and [K] is confirmed.
Table 3 shows the results of the test for all the equations of the model. Looking at the p-values

we conclude that all feedbacks are significant except the ones involving [CP] and [GDP]. For what
concerns [CP], it is explained by [WP] without a feedback effect from the latter to the former.
Regarding [GDP], which is affected by feedback effects, a deeper analysis is required in order to
understand which of its two explicative variables [C] and [I] (if not both) are responsible for it. To
this end, we have applied the Wald statistic given in (52) which leads us to conclude that only [C] is
involved in a feedback loop with [GDP]. In the end, the path diagram fully describing the recurrent
and interdependent relationships in the model is displayed in Figure 6.
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Equation Feedback Variable Joint W p-value Singular W p-value
C CP 386.6 < .001
I K 4.115 0.042 - -

WP I 25.55 < .001 - -

GDP C 95.368 < 0.0001 84.315 < 0.0001
I 0.352 0.553

CP WP 0.046 0.831 - -
K I 19.595 <0.0001 - -

Table 3: Macroeconomic model: tests for feedback effects for the final model. Joint W denotes the
Wald statistic used to test the set of feedback loops affecting a given variable (see (47). Singular W
denotes the Wald statistic used to test the feedback effect between two specific variables (see (52)).

C

I

WP

GDP

CP

K

Figure 6: Path diagram of the modified macroeconomic model after testing for feedback effects.
Black arrows denote causal link (Ψ0), red arrows denote interdependent links (C), black arrows and
red dashed arrows denote interdependent links induced by the correlation of the error terms (Ψ1).

Discussion

The set of functions worked out in the paper allows a system of simultaneous equations to be split
into recursive and/or interdependent subsystems. The user can rely on causal_decompose() in two
ways: to assess the presence of interdependent relations with a known structure of correlation among
the error terms, or to estimate the whole model in presence of empirical data.

The significance of the feedback loops operating in the model is tested with a Wald test using
the feedback_ml() function. The 3SLS parameter estimates are used as preliminary estimates to
obtain the maximum likelihood ones, which are needed to build the test.

As for the rationale of our procedure, which rests on a properly devised test, it is worth taking
into account the considerable concern raised recently in the statistical community about the use of
significance testing (see Wasserstein and Lazar, 2016). In this connection, in order to avoid improper
use of p-values and significance-related results, it may be worth addressing the issue of detecting
feedback mechanisms in a simultaneous equations model with different approaches. Among them,
the construction of confidence intervals and the employment of Bayesian methods look particularly
promising for future investigation.

Moving now on more technical notes:

• The ML estimation is performed by concentrating the likelihood with respect to the 3SLS
estimates of A in Equation (1), to reduce the computation required to otherwise re-estimate
parameters that are unnecessary for the computation of the feedback effect.

• As far as the error covariance matrix Σ is concerned, in the current formulation of the test its
estimate Σ̂ is not involved by itself in any testing sub-routine (in fact, all of its elements are
retained after the 3SLS step), and computing the related matrix of standard errors is therefore
of secondary importance. However, if a matrix normal distribution is hypothesized on E, then
the distribution of Σ̂ turns out to be a L-dimensional Wishart with T degrees of freedom and
scale matrix Σ. Thus, the variance of its elements can be calculated straightforwardly (see
Gupta and Nagar, 1999).
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Proof of relevant formulas

In this Appendix we provide the proofs of some relevant formulas of the paper.

1. Let Σ and R be defined as in Section 2. Then, the proof that Σb(I +R) is the binary matrix
associated to Σ (I− Γ)−1 is based on the following two theorems.

Theorem 1 If two conformable matrices, A and B, are such that

A = A ∗H B = B ∗K (A.1)

then the binary matrix associated to AB is (HK)b. �

Theorem 2 If a non-singular matrix A is such that

A = A ∗H (A.2)

where H is a given binary matrix, then

(A−1) ∗ (I+
N−1∑
n=1

Hn)b = (A−1) (A.3)

where N is the matrix dimension. �

Now, upon noting that
(I−Γ) = (I−Γ) ∗ (I−Γb), (A.4)

reference to Theorem 2 leads to conclude that

(I−Γ)−1 = (I−Γ)−1 ∗ (I+R) (A.5)

Next, taking into account that Σb and (I+R) are the binary counterparts of the Σ matrix
and (I−Γ)−1 reference to Theorem entails the following

Σ(I− Γ) = [Σ(I− Γ)] ∗ [Σb(I+R)]. (A.6)

2. The proof that C and F, defined as in Section 3, satisfy the following relationship

C ∗F = C (A.7)

hinges on a preliminary result given in the following theorem.

Theorem 3 The matrices C and I+R satisfy the following relationship

Cb ∗ (I+R) = Cb (A.8)

Proof
Taking into account that the Hadamard product is both commutative (A ∗B = B ∗A) and
idempotent for binary matrices (Ab ∗Ab = Ab), and being Γ hollow, the following holds

Γb ∗ I = 0, (A.9)

simple computations yield

Cb ∗ (I+R) = Γb ∗R ∗ (I+R) = Γb ∗R ∗ I+ Γb ∗R ∗R = Cb (A.10)

�
Now, consider the following theorem (where the symbol A ≥ 0 denotes that all the elements
of matrix A are non negative numbers):

Theorem 4 Let B ≥ 0 and Ab ∗Bb = Ab. If C ≥ 0, then

Ab ∗ (B+C)b = Ab (A.11)

�

Given this premise, we can now prove (A.7). To this end, let us write Σb as follows

(I+ ∆) = Σb (A.12)
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where ∆ ∗ I = 0 is a hollow matrix, and note that, in light of (A.12) and (A.5), the binary
matrix associated to F is, according to Theorem 1, given by

Fb = [(I+ ∆)(I+R)]b (A.13)

Next, use of Theorems 3 and 4, yields the following

Cb ∗Fb = Cb ∗ [(I+ ∆)(I+R)]b = Cb ∗ [(I+R) + ∆(I+R)]b = Cb (A.14)

as (∆(I+R))b ≥ 0. This, in turn, entails that

Cb +Ψb
1 ∗Fb = (Cb +Ψb

1) ∗Fb = Γb ∗Fb (A.15)

which means that C+Ψ1 ∗F and Γ ∗F have the same topological structure. �

3. Proof of (38) . Formula (38) can be proved as follows. First, note that matrix Γ∗ weighting
the current endogenous explicative variables in the model (31), (32) can be expressed as

Γ∗ = PjΓPj (A.16)

where P j is a permutation matrix obtained from an identity matrix by interchanging its first
row with its j-th row. Then note that

Γ∗ =

[
0 γ′j
η (I− Γo)

]
and that

(I− Γ∗)−1 =

[
1 + γ′jL

−1η γ′jL
−1

L−1η L−1

]
, where

L = I− Γo − ηγ′j = (I−G) (A.17)
Accordingly

1
σjj

M′1(I− Γ∗)−1Σe1 = (I−G)−1d = ϕj , (A.18)

where ej is the first elementary vector, Σ, G and d are defined as in (33)and (37) respectively,
and M1 is the selection matrix obtained from the identity matrix by deleting its first column.
Now, taking into account that the following holds

(I− Γ∗) = Pj(I− Γ)Pj (A.19)

in light of (A.16), and that the following proves true

(I− Γ∗)−1 = Pj(I− Γ)−1Pj , (A.20)

as Pj is both symmetric and orthogonal, some computations yield

ϕj =
1
σjj

M′1(I− Γ∗
′
)−1Σe1 =

1
σjj

M′1Pj(I− Γ)−1PjΣPjPje1 = (A.21)

=
1
σjj

M′j(I− Γ)−1Σej =
1
σjj

M′jF
′ej

�

4. Derivation of the log-likelihood for the model (41)-(43)
The logarithm of the density in (43) is given by

ln f(εj ,εr) = c− 1
2 lnσjj −

1
2 ln |Ω| −

ε2j
2σjj

− 1
2ε
′
rΩ−1εr (A.22)

where c is a constant term. Now, upon noting that

|J| =
∣∣∣∣∂(εj , εr)′∂(yj , y′r)

∣∣∣∣ = 1, (A.23)

and assuming to operate with N observations on the variables of interest, the log-likelihood
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function can be written as

l =

N∑
t=1

l(yj ,y′r) = k− N

2 lnσjj −
N

2 ln |Ω| − α
′Hα

2σjj
− 1

2 tr(Ξ
′Ω−1ΞH) (A.24)

where

α′ =
[
1, −γ̃′j , −ã′jSj

]
(A.25)

Ξ =
[
−ϕ̃j , I+ ϕ̃j γ̃

′
j , ϕ̃j ã

′
jSj −K

]
(A.26)

ν′ = [yj , yo, z] (A.27)

H =

(
N∑
t=1

νtν
′
t

)
, (A.28)

and k is a constant term. Formula (A.24) can be obtained by noting that, in light of (41), the
following holds

εj = yj − γ̃′jyr − ã′jzr =
[
1,−γ̃′j ,−ã′jSr

] [yj
yr
z

]
= α′ν (A.29)

and that, according to (42), we have

εr = yr −Kz− ϕ̃jεj = (A.30)
= yr −Kz− ϕ̃j(yj − γ̃

′
jyr − ã′jSrz) = (A.31)

=
[
−ϕ̃j , I+ ϕ̃j γ̃

′
j , ϕ̃j ã

′
jSr −K

] [yj
yr
z

]
= Ξν (A.32)

This implies that
ε′rΩ−1εr = tr(ν′Ξ′Ω−1Ξν) = tr(Ξ′Ω−1Ξνν′) (A.33)

�
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