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Matching with Clustered Data: the
CMatching Package in R
by Massimo Cannas and Bruno Arpino

Abstract Matching is a well known technique to balance covariates distribution between treated and
control units in non-experimental studies. In many fields, clustered data are a very common occurrence
in the analysis of observational data and the clustering can add potentially interesting information.
Matching algorithms should be adapted to properly exploit the hierarchical structure. In this article we
present the CMatching package implementing matching algorithms for clustered data. The package
provides functions for obtaining a matched dataset along with estimates of most common parameters
of interest and model-based standard errors. A propensity score matching analysis, relating math
proficiency with homework completion for students belonging to different schools (based on the
NELS-88 data), illustrates in detail the use of the algorithms.

Background

Causal inference with observational data usually requires a preliminary stage of analysis corresponding
to the design stage of an experimental study. The aim of this preliminary stage is to reduce the imbalance
in covariates distribution across treated and untreated units due the non-random assignment of
treatment before estimating the parameters of interest. Matching estimators are widely used for this
task (Stuart, 2010). Matching can be done directly on the covariates (multivariate matching) or on the
propensity score (Rosenbaum and Rubin, 1983). The latter is defined as the probability of the treatment
given the covariates value and it has a central role for the estimation of causal effects. In fact, the
propensity score is a one dimensional summary of the covariates and thus it mitigates the difficulty of
matching observations in high dimensional spaces. Propensity score methods have flourished and
several techniques are now well established both in theory and in practice, including stratification on
the propensity score, propensity score weighting (PSW), and propensity score matching (PSM).

Whilst the implementation of matching techniques with unstructured data has became a standard
tool for researchers in several fields (Imbens and Rubin, 2016), the increasing availability of clustered
(nested, hierarchical) observational data poses new challenges. In a clustered observational study
individuals are partitioned into clusters and the treatment is non-randomly assigned in each cluster so
that confounders may exist both at the individual and at the cluster level. Note that this framework is
different from clustered observational data where a treatment is non-randomly assigned for all units
in the cluster, for which an optimal matching strategy has been suggested by Zubizarreta and Keele
(2017). Such nested data structures are ubiquitous in the health and social sciences where patients are
naturally clustered in hospitals and students in schools, just to make two notable examples. If relevant
confounders are observed at both levels then a standard analysis, adjusting for all confounders,
seems reasonable. However, when only the cluster label — but not the cluster level variables — is
observed there is not a straightforward strategy to exploit the information on the clustering. Intuitively,
the researcher having a strong belief on the importance of the cluster level confounders may adopt
a ’within-cluster’ matching strategy. On the other extreme, a researcher may decide to ignore the
clustering by using only the pooled data. It is important to note that this pooling strategy implicitly
assumes that cluster level variables are not important confounders. Indeed, there have been a few
proposals to adapt PSW and PSM to clustered data, see Cafri et al. (2018) for a review. Li et al. (2013)
proposed several propensity score weighting algorithms for clustered data showing, both analytically
and by simulation, that they reduce the bias of causal effects estimators when "clusters matter," that
is, when cluster level covariates are important confounders. In the PSM context, Arpino and Mealli
(2011) proposed to account for the clustering in the estimation of the propensity score via multilevel
models. Recently, Rickles and Seltzer (2014) and Arpino and Cannas (2016) proposed caliper matching
algorithms to perform PSM with clustered data. As we will discuss shortly, these algorithms can be
used not only for PSM but also in the more general context of multivariate matching.

In the remaining of this paper, after reviewing the basic ideas underlying matching estimators,
we briefly describe the available packages for matching in the R environment. Then, we describe the
algorithms for matching with clustered data proposed by Arpino and Cannas (2016) and we present
the package CMatching implementing these algorithms. The applicability of these algorithms is very
broad and refers to all situations where cluster-level data are present (in medicine, epidemiology,
economics, etc.). A section is devoted to illustrate the use of the package on data about students and
schools, which is a common significant occurrence of clustered data.
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Packages for matching unstructured data in R

A list of the most important packages for matching available for R users is shown in Table 1. The
Matching package, which is required to run CMatching, is a remarkably complete package offering
several matching options. Matching implements many greedy matching algorithms including genetic
matching (Diamond and Sekhon, 2013). It also contains a general MatchBalance function to measure
pre- and post-matching balance with a large suite of diagnostics. As for optimal matching, there are
dedicated packages like designmatch and optmatch. The latter can also be called from MatchIT, a
general purpose package implementing also the Coarsened Exact Matching approach of Iacus et al.
(2011). Full matching is a particular form of optimal matching implemented by quickmatch with
several custom options.

Package Description Reference

Matching Greedy matching and balance analysis Sekhon (2011)
MatchIT Greedy matching and balance analysis Iacus et al. (2011)
optmatch Optimal matching Hansen and Klopfer (2006)
quickmatch Generalized full matching Savje et al. (2018)
designmatch Optimal matching and designs Zubizarreta et al. (2018)

Table 1: General purpose packages available from CRAN implementing matching algorithms. The list
is not exhaustive as there are several packages covering specialized matching routines: a list can be
found at http://www.biostat.jhsph.edu/ estuart/propensityscoresoftware.html.

At the time of writing none of the packages described above offers specific routines for clustered
data. The CMatching package fills this important gap implementing the algorithms for matching
clustered data described in the next section.

Matching clustered data

Let us consider a clustered data structure D = {yij, xij, tij}, i = 1, · · · nj, j = 1, · · · J. For observa-
tion i in cluster j we observe a vector of covariates X and a binary variable T specifying the treatment
status of each observation. Here n = ∑ nj is the total number of observations and J is the number of
clusters in the data. We observe also a response variable Y whose average value we are willing to
compare across treated and untreated units. A matching algorithm assigns a (possibly empty) subset of
control units to each treated unit. The assignment is made with the aim of minimizing a loss function,
typically expressed in terms of covariates distance between treated and untreated units. Matching
algorithms can be classified as greedy or optimal depending whether the cost function is minimized
locally or globally, respectively. Optimal matching algorithms are not affected by the order of the units
being matched so they can reach the global optimum, but they are typically more computer-intensive
than greedy algorithms proceedings step by step. To bound the possibility of bad matches in greedy
matching, it is customary to define a maximum distance for two units to be matched, i.e., a caliper,
which is usually expressed in standard deviation units of the covariates (or of the propensity score). A
greedy matching procedure can then be articulated in the following steps:

1. fix the caliper;

2. match each treated with control unit(s) at minimum covariates distance (provided that distance
< caliper);

3. measure the residual covariates’ imbalance in the matched dataset and count the number of
unmatched units (drops);

4. carefully consider both the balance and the number of drops: if they are satisfactory then
proceed to the outcome analysis; otherwise stop or revise previous steps.

If matching proves successful in adjusting covariates, the researcher can proceed to outcome
analysis where the causal estimand of interest is estimated from the matched data using a variety of
techniques (Ho et al., 2007). On the other hand, if the procedure gives either an unsatisfactory balance
or an excessive number of unmatched units, the investigator may try to modify some aspects of the
procedure (e.g., the caliper, the way the distance is calculated).

Conceptually, the same procedure can be used also for hierarchical data. Indeed, it is not atypical
to find analysis ignoring the clustering and pooling together all units. A pooling strategy implicitly
assumes that the clustering is not relevant. However, in several cases the clustering does matter,
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that is, the researcher can hypothesize or suspect that some important cluster-level confounders are
unobserved. In this case, the information on the cluster labels can be exploited in at least two ways: i)
forcing the matching to be implemented within-cluster only; ii) performing a preferential within-cluster
matching, an intermediate approach between the two extremes of pooled and within-cluster matching
(Arpino and Cannas, 2016). A within-cluster matching can be obtained by modifying step 2 above in
the following way:

2’ match each treated with the control unit(s) in group j at minimum covariate distance (provided
that distance < caliper).

This procedure may result in a large number of unmatched units (drops) so it increases the risk
of substantial bias due to incomplete matching (Rosenbaum and Rubin, 1985), in particular when
the clusters are small. This particular bias arises when a matched subset is not representative of the
original population of treated units because of several non random drops. Even in the absence of bias
due to incomplete matching, a high number of drops reduces the original sample size with possible
negative consequences in terms of higher standard errors.

It is possible to profit as much as possible of the the exact balance of (unobserved) cluster-level
covariates by first matching within clusters and then recovering some unmatched treated units in
a second stage. This leads to the preferential within-cluster matching, which can be obtained by
modifying step 2 above in the following way:

2” a) match each treated with the control units(s) in group j at minimum covariate distance (distance
< caliper);

2” b) match each unmatched treated unit from previous step with the control unit(s) at minimum
covariate distance in some group different from j (provided that distance < caliper).

Now consider the outcome variable Y. We can define for each unit potential outcomes Y1, Y0 as
the outcome we would observe under assignment to the treatment and control group, respectively
(Holland, 1986). Causal estimands of interest are the Average Treatment effect: ATE = E[Y1− Y0]
or, more often, the Average Treatment effect on the treated: ATT = TE[Y1−Y0]. Given that a unit is
either assigned to the treatment or control group it is not possible to directly observe the individual
causal effect on each unit; we have Y = T ·Y1 + (1− T) ·Y0. In a randomized study T is independent
of (Y0, Y1) so, for k = 0, 1, we have

E(Yk) = E(Yk | T = k) = E(Y | T = k)

which can be estimated from the observed data. In a observational study, matching can be used to
balance covariates across treated and control units and then the previous relation can be exploited
to impute the unobserved potential outcomes from the matched dataset. In our clustered data context,
after the matched dataset has been created using one of the algorithms above, the ATT and its standard
error can be estimated using a simple regression model:

Yij = αj + Tijβ (1)

that is, a linear regression model with clustered standard errors to take into account within-cluster
dependence in the outcome (Arpino and Cannas, 2016). The resulting ATT estimate is the difference
of outcome means across treated and controls, i.e., ÂTT := mean(Y | T = 1) − mean(Y | T = 0),
computed on the matched data. Standard errors are calculated using the cluster bootstrapping method
for estimating variance-covariance matrices proposed by Cameron et al. (2011) and implemented in
the package multiwayvcov. In general, calculating standard errors for PSM in clustered observational
studies is a difficult problem requiring prudence from the researcher. While close formulae exist
for weighting estimators (Li et al., 2013), standard error estimation after PSM matching relies upon
approximation (Cafri et al., 2018), modelling assumption (Arpino and Cannas, 2016), or simulation
(Rickles and Seltzer, 2014).

Multisets and matching output

In this section we briefly detail the two routines in the CMatching package. Multisets are useful
to compactly describe pseudo code so we recall some definitions and basic properties herein. A
multiset is a pair {U, m} where U is a given set, usually called universe, and m : x → N ∪ {0} is
the multiplicity function assigning each x ∈ U its frequency in U. Both the summation symbol and
union symbols are used to manipulate multisets and they have different meanings: if A and B are
multisets then C ≡ A ∪ B is defined by mC(x) = max(mA(x), mB(x)), while C ≡ A + B is defined
by mC(x) = mA(x) + mB(x). For example if A ≡ {1, 2, 2} and B ≡ {1, 2, 3} then A ∪ B ≡ {1, 2, 2, 3},
A + B ≡ {1, 1, 2, 2, 2, 3}. In our framework U is the set of observations indexes and thus m gives
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information about the number of times a given observation occurred in the matched dataset. Multisets
then allow to naturally represent multiple matches arising from matching with replacement. When
using multiset notation to describe the output of a matching algorithm, we are implicitly overlooking
the fact that the output of a matching algorithm is richer as it also brings out the pairings, i.e., the
associations between matched treated and untreated observations. However, it can be noted that this
pairing is not relevant for calculating common estimates or common balance measures (e.g., the ATT),
as they are invariant to permutations of the labels of the matched observations.

The routines MatchW and MatchPW

We denote with Wi and Wi the sets of treated observations matched within clusters and unmatched
within clusters, respectively. In Algorithms 1 and 2 the summation symbol (∑) denotes multiset sum.

Algorithm 1 Algorithm for within-cluster matching

1: procedure MATCHW(data)
2: find Wi for each i using Match function
3: M := ∑i Wi
4: mdata := data[M] . extracts matched data
5: if data contains outcome variable Y then:
6: estimate ÂTT and sd(ÂTT) from model on mdata
7: else
8: ÂTT<-sd(ÂTT)<-NULL
9: return mdata, ÂTT and sd(ÂTT)

In the first two lines, common to both algorithms, the Match function is repeatedly run to produce
the matched-within subsets Mi i =, ..., J. Then, in algorithm 1 the sum of the Mi in line 3 gives the
matched subset M. Algorithm 2 is similar but after finding the Mi’s an "additional" subset B is found
by recovering some unmatched units (line 3) and then combined to give the final matched dataset. If a
response variable Y was included the output of both algorithms also contains an estimate of the ATT
(default, but the user can choose also other estimands) and its standard error.

Algorithm 2 Algorithm for preferential within-cluster matching

1: procedure MATCHPW(data)
2: find Wi and Wi for each i using Match function
3: B := Match(∑i Wi ∪ all controls)
4: M := ∑i Wi + B
5: mdata := data[M] . extracts matched data
6: if data contains outcome variable Y: then
7: estimate ÂTT and sd(ÂTT) from model on mdata
8: else
9: ÂTT<-sd(ÂTT)<-NULL

10: return mdata, ÂTT and sd(ÂTT)

Functions in the CMatching package

CMatching can be freely downloaded from CRAN repository and it contains the functions listed in
Table 2. The main function CMatch performs within-cluster and preferential within-cluster matching
via subfunctions MatchW and MatchPW, respectively. The output of the main function can be passed
to functions CMatchBalance and summary to provide summaries of covariates balance and other char-
acteristics of the matched dataset. CMatch exploits the Match function (see Matching) implementing
matching for unstructured data. Given a covariate X and a binary treatment T, the call Match(X,T,...)
gives the set of indexes of matched treated and matched control units. The CMatch function has the
same arguments plus the optional arguments G (specifying the cluster variable) and type to choose
between within-cluster matching or preferential-within-cluster matching. We highlight that we chose
to frame the CMatch in the Match function style so that Matching users can easily implement PSM
with clustered data in a familiar setting.
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Function Description Input Output

CMatch Match X, T, G A matched dataset
MatchW Match within X, T, G A matched dataset
MatchPW Match preferentially within X, T, G A matched dataset
summary.Match S3 method for CMatch objects A matched dataset General summaries
CMatchBalance Balance analysis A matched dataset Balance summaries

Table 2: Main input and output of functions in CMatching package.
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Figure 1: Different matching solutions for the toy dataset (caliper = 2). Green and violet circles
indicate cluster 1 and cluster 2 units, respectively; arrows indicate matched pairs of treated (left) and
control units (right). For each matching we report the absolute percent standardized mean difference
of x in the matched subset (asam), a measure of residual imbalance.

A simple usage example

For an illustration let us consider an artificial dataset consisting of two clusters, the first containing
two treated units and two control units, and the second containing two treated and four controls. We
use g for the cluster identifier, x for the value of the individual level confounder, and t for the binary
treatment indicator:

> toy
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

id 1 2 3.0 4.0 5.0 6 7 8 9.0 10.0
g 1 1 2.0 2.0 1.0 1 2 2 2.0 2.0
t 1 1 1.0 1.0 0.0 0 0 0 0.0 0.0
x 1 1 1.1 1.1 1.4 2 1 1 1.3 1.3

We also fix a caliper of 2 (in standard deviation units of X, i.e., all units at distance greater or
equal than 2 · sd(x) ≈ 2 · 0.312 = 0.624 will not be matched together) and we assume that the ATT is
the target parameter. Although artificial the dataset aims at representing the general situation where
pooled matching results in matched treated and control units not distributed homogeneously across
clusters (see Figure 1, left).

The pooled, within and preferential-within matchings for the toy data are depicted in Figure 1. For
each matching we report the asam, a measure of residual imbalance given by the absolute percent mean
difference of x across treated and controls divided by standard deviation of the treated observations
alone. The asam is widely used as a measure of imbalance (Stuart, 2010); its value in the unmatched
data is 491. The pooled matching (left) is a complete matching, i.e., all the treated units could be
matched. However, note that units in pairs 1-7 and 2-8 may differ in cluster level covariates. Matching
within-cluster (center) guarantees perfect balance in cluster level covariates but it is incomplete because
unit 2 cannot be matched within-cluster with the given caliper. This is a typical disadvantage of within-
cluster matching with smaller clusters. Unit 2 is matched with 9 in the preferential within matching
(right), which again is a complete matching.

The above matching solutions can be obtained easily using CMatch as follows. For the pooled

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 6

matching it is enough to call Match (or, equivalently, CMatch without type specification) while for
within and preferential-within matching it is enough to specify the appropriate type in the Match call:

#pooled matching
pm <- Match(Y=NULL, Tr=t, X=x, caliper=2)

# same output as before (with a warning about the absence of groups,
# ties=FALSE,replace=FALSE)
pm <- CMatch(type="within", Y=NULL, Tr=t, X=x, Group=NULL, caliper=2)

#within matching
wm <- CMatch(type="within", Y=NULL, Tr=t, X=x, Group=g, caliper=2)

#preferential-within matching
pwm <- CMatch(type="pwithin", Y=NULL, Tr=t, X=x, Group=g, caliper=2)

The output of these object is quite rich. However, a quick look at the matchings can be obtained by
directly calling the index set of matched observations:

> pm$index.treated; pm$index.control
[1] 1 2 5 6
[1] 7 8 10 9
> wm$index.treated; wm$index.control
[1] 1 5 6
[1] 3 7 8
> pwm$index.treated; pwm$index.control
[1] 1 2 5 6
[1] 3 7 8 10

Note that vertical alignments in the table above correspond to arrows in Figure 1. With larger
datasets and when multiple matches are allowed (i.e., when replace=TRUE) it is probably better to
summarize the output. The output objects are of class "CMatch" and a summary method is available
for these objects. The summary shows the number of treated and the number of controls by group.
Moreover, when Y is not NULL it also shows the point estimate of ATT with its model-based estimate
of the standard error:

> summary(wm)

Estimate... 0
SE......... NULL

Original number of observations.............. 10
Original number of treated obs............... 4
Original number of treated obs by group......

1 2
2 2

Matched number of observations............... 3
Matched number of observations (unweighted). 3

Caliper (SDs).......................................... 2
Number of obs dropped by 'exact' or 'caliper' ......... 1
Number of obs dropped by 'exact' or 'caliper' by group

1 2
1 0

This summary method does not conflict with the corresponding method for class "Match" which
is still available for objects of that class. From the summary above (see also Figure 1, center) we can
easily see that matching within groups resulted in one unmatched treated unit from group two. The
exact pairing can be recovered from the full output, in particular from the object mdata containing
the list of matched and unmatched units. As we noticed in the introduction, it is essential to analyze
covariate balance to evaluate the effectiveness of matching as a balancing tool. To this end objects of
class "CMatch" can be input of the CMatchBalance function, a wrapper of MatchBalance which offers a
large number of balance diagnostics:
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> CMatchBalance( t~x , match.out=wm)

***** (V1) x *****
Before Matching After Matching

mean treatment........ 1.05 1.0667
mean control.......... 1.3333 1.1333
std mean diff......... -490.75 -115.47
(...)

From the output we see that the asam decreased from 491 to 115. One can more directly obtain the
standardized difference in means of these matchings by subcomponents:

> bwm$After[[1]]["sdiff"]
$sdiff
[1] -115.4701

> bpwm$After[[1]]["sdiff"]
$sdiff
[1] -216.5064

Whilst artificial, the previous example prompts some general considerations:

• forcing within-cluster matching may result in suboptimal matches with respect to pooled
matching. In the toy example, unit 2 is best matched with unit 8 but it is unmatched when
type=within is chosen (or it could be matched with a less similar control in the same cluster). In
both cases the increased bias (due to either incomplete matching or greater imbalance in the
observed x) may be at least in part compensated by lower imbalance in cluster level variables;

• preferential-within matching may occasionally recover all unmatched treated units in the within
step by matching them between in step 2. However, this complete matching is generally different
from the complete pooled matching obtained by ignoring the clustering. In the toy example,
unit 2 is recovered in the preferential step but the final matching has a higher imbalance than the
pooled one. Again, it is up to the researcher to tune the trade-off between bias due to incomplete
matching and bias due to unobserved differences in group covariates.

In applications, when cluster level confounders are unobserved, it is not straightforward to decide
which of the matching strategies is the best. However, combining the within and preferential-within
routines offered by CMatching with sound subject matter knowledge, the researcher can decide how
much importance should be given to balance within-clusters based on the hypothesized strength
of unobserved cluster level confounders. Note that CMatching uses the same caliper for clusters,
under the assumption that the researcher is typically interested in estimating the causal effect of the
treatment in the whole population of treated units and not by each cluster. This is the main difference
between MatchW and Matchby from the Matching package. The latter exactly matches on a categorical
variable and the caliper is recalculated in each subset and for this reason MatchW estimates generally
differ from those obtained from Matchby. Another difference is that Matchby does not adjust standard
errors for within-cluster correlation in the outcome. A third difference is that CMatching provides
some statistics (e.g., number of drops) by cluster to better appreciate how well the matched dataset
resembles the original clustered structure in terms for example of cluster size.

Demonstration of the CMatching package on NELS-88 data

The CMatching package includes several functions designed for matching with clustered data. In this
section we illustrate the use of CMatching with a an educational example.

Schools dataset

The example is based on data coming from a nationally representative, longitudinal study of 8th
graders in 1988 in the US, called NELS-88. CMatching contains a selected subsample of the NELS-88
data provided by Kraft and de Leeuw (1998) with 10 handpicked schools from the 1003 schools in the
full dataset. The subsample, named schools, is a data frame with 260 observations on 19 variables
recording either school or student’s characteristics.

For the purpose of illustrating matching algorithms in CMatching, we consider estimation of the
causal effect of doing homework on mathematical proficiency. More specifically, our treatment is a
binary variable taking value 1 for students that spent at least one hour doing math homework per
week and 0 otherwise. The latter is a transformation of the original variable "homework" giving two
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almost equal-sized groups. The outcome is math proficiency measured on a discrete scale ranging
from 0 to 80. For simplicity we first attach the dataset (attach(schools)) and name the treatment
and the outcome variables as T and Y, respectively. The variable schid is the school identifier and we
rename it as Group:

> T <- ifelse(homework>1, 1, 0)
> Y <- math
> Group <- schid

Since the NELS-88 study was an observational study, we do not expect a simple comparison of
math scores across treated and control students (those doing and those not doing math homework) to
give an unbiased estimate of the "homework effect" because of possible student-level and school-level
confounders. For the purpose of our example, we will consider the following student-level con-
founders: "ses" (a standardised continuous measure of family socio-economic status), "sex" (1 = male, 2
= female) and "white" (1 = white, 0 other race). The NELS-88 study also collected information on school
characteristics. In general, a researcher needs to include all potential confounders in the matching pro-
cedure, irrespective of the hierarchical level. Here we considered one school-level confounder: "public"
(1 = public schools, 0 = private) but it is plausible to assume that one or more relevant confounders at
the school-level are not available. It is clear that, to make the unconfoundedness assumption more
plausible, richer data should be used. For example, students’ motivation and parents’ involvement are
potentially important confounders. Thus, the following estimates should be interpreted with caution.

Before illustrating the use of CMatching, it is useful to get a better understanding of the data
structure. In the school dataset we have a fairly balanced number of treated and control units (128
and 132, respectively). However, in some schools we have more treated than control students, with
proportion of treated ranging from 20% to 78%:

> addmargins(table(Group, T))

T
Group 0 1 Sum
7472 17 6 23
7829 6 14 20
7930 12 12 24
24725 15 7 22
25456 17 5 22
25642 16 4 20
62821 15 52 67
68448 8 13 21
68493 15 6 21
72292 11 9 20
Sum 132 128 260

From the table above we can notice that the total school sample size is fairly homogeneous with the
exception of one school (code = 62821) where the number of treated students (52) is considerably higher
than the number of control students (15). These considerations are important for the implementation
of the within-cluster and preferential within-cluster matching algorithms. In fact, within-cluster
matching can be difficult in groups where the proportion of treated units is high because there are
relatively few controls that can potentially serve as a match. Preferential-within-cluster matching
would be less restrictive.

This preliminary descriptive analysis is also useful to check if treated and control units are present
in each group. In fact, if a group is only composed of treated or control students then within-cluster
matching cannot be implemented. Groups with only treated or controls should be dropped before the
within-cluster matching algorithm is implemented. We now describe how Cmatching can be used to
implement matching in our school-clustered dataset.

Propensity score matching

CMatching requires to estimate the propensity score before implementing the matching. Here we
estimate propensity scores using a simple logistic regression with only main effects and then estimate
the predicted probability for each student:

> pmodel <- glm(T~ses + as.factor(sex) + white + public, family=binomial(link="logit"))
> eps <- fitted(pmodel)
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We do not report the output of the propensity score model because in PSM the propensity score
is only instrumental to implement the matching. Within-cluster propensity score matching can be
implemented by using the function CMatch with the option type="within":

> psm_w <- CMatch(type="within", Y=Y, Tr=T, X=eps, Group=Group)

The previous command implements matching on the estimated propensity score, eps, by using
default settings of Match (one-to-one matching with replacement and a caliper of 0.25 standard devia-
tions of the estimated propensity score). The output is an object of class "CMatch" and a customized
summary method for objects of this class gives the estimated ATT and the main features of the matched
dataset:

> summary(psm_w)

Estimate... 5.2353
SE......... 2.0677

Original number of observations.............. 260
Original number of treated obs............... 128
Original number of treated obs by group......

7472 7829 7930 24725 25456 25642 62821 68448 68493 72292
6 14 12 7 5 4 52 13 6 9

Matched number of observations............... 119
Matched number of observations (unweighted). 120

Caliper (SDs).......................................... 0.25
Number of obs dropped by 'exact' or 'caliper' ......... 9
Number of obs dropped by 'exact' or 'caliper' by group

7472 7829 7930 24725 25456 25642 62821 68448 68493 72292
0 2 0 0 0 0 2 5 0 0

The summary starts reporting the original total number of students in our sample (260), the total
number of treated students (128) and how they are distributed across the different schools. It is of
utmost importance to check how many treated units could be matched to avoid bias from incomplete
matching. For this reason the output indicates that 119 students in the treatment group found a
match ("Matched number of observations"), while the remaining 9 were dropped. Note that the
unweighted number of treated observations that found a match ("Matched number of observations
(unweighted)") is different because of ties. Ties management can be controlled by option ties of the
Match function: if ties=TRUE when one treated observation matches with more than one control unit
all possible pairs are included in the matched dataset and each pair is weighted equal to the inverse of
the number of matchedcontrols. If instead ties=FALSE is used ties are randomly broken. Note that the
summary reports the number of treated matched and dropped units because it is assumed by default
the ATT is the target estimand. Then the output also reports how the 9 unmatched treated students
are distributed across schools. For example, we notice that in one school (68448), 5 of the 13 treated
students did not find a match. This is because for these 5 students there was no control student in the
same school with a propensity score falling within the caliper. The report also recalls the caliper, which
was set to 0.25 standard deviations of the estimated propensity score in this example. The caliper can
be set in standard deviation units using the homonymous argument caliper. It may be more useful
to calculate the percentage of dropped units instead of the absolute numbers. These percentages are
not reported in the summary but they can be easily retrieved from the CMatch output. For example,
we can calculate the percentage of unmatched treated units, both overall and by school:

# percentage of drops
> psm_w$ndrops / psm_w$orig.treated.nobs

[1] 0.0703

# percentage of drops by school
> psm_w$orig.dropped.nobs.by.group / table(Group)

Group
7472 7829 7930 24725 25456 25642 62821 68448 68493 72292
0.00 0.10 0.00 0.00 0.00 0.00 0.03 0.24 0.00 0.00
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confirming that the percentage of drops is very low in all schools. We could also similarly calculate
the percentage of drops over treated observations, which turn out to be high for school 64448. The next
step before accepting a matching solution is the evaluation of the achieved balance of confounders
across the treatment and control groups. To this end the package contains function CMatchBalance
that can be applied to an object of class "CMatch" to compare the balance before and after matching
(the matched dataset must be specified in the match.out argument):

> b_psm_w <- CMatchBalance(T~ses + as.factor(sex) + white + public, data=schools,
match.out=psm_w)

***** (V1) ses *****
Before Matching After Matching

mean treatment........ 0.23211 0.24655
mean control.......... -0.36947 0.14807
std mean diff......... 61.315 10.086

***** (V2) as.factor(sex)2 *****
Before Matching After Matching

mean treatment........ 0.52344 0.52941
mean control.......... 0.46212 0.56303
std mean diff......... 12.229 -6.706

***** (V3) white *****
Before Matching After Matching

mean treatment........ 0.73438 0.7563
mean control.......... 0.7197 0.71429
std mean diff......... 3.3103 9.7458

***** (V4) public *****
Before Matching After Matching

mean treatment........ 0.59375 0.57983
mean control.......... 0.88636 0.57983
std mean diff......... -59.346 0

(...)

The output reports the balance for each variable to allow the researcher to assess the effectiveness
of matching in balancing each variable. Many balance metrics are provided but for simplicity of
exposition we focus on comparing on the standardized mean difference between the two groups of
students. Note that the asam can be easily obtained by averaging the standardized mean differences:

vec <-vector()
for(i in 1:length()) {vec[[i]] <- b_psm_w$AfterMatching[[i]]$sdiff}
> mean(abs(vec))
[1] 6.634452

from which we can see that the initial asam of 34 (see Table 3) sharply decreased after matching.
Balance improved dramatically for ses and public (results not shown). In fact, for the latter it was
possible to attain exact matching. This is guaranteed by within-cluster matching because it forces
treated and control students to belong to the same school. For the same reason, within-cluster matching
also guarantees a perfect balance of all other school-level variables (even unobservable) not included
in the propensity score estimation. The balance improved also for the sex variable but not for the
dummy white (from 3.31% to 9.75%). In a real study, the investigator may attain a matching solution
with an even better balance of the dummies for white and sex by changing the propensity score model
or one or more options in the matching algorithms. For example, a smaller caliper could be tried. Note
that CMatchBalance is a wrapper of the MatchBalance function (Matching package) so it measures
balance globally and not by group. This is acceptable also in a hierarchical context since we first and
foremost consider the overall balance. While a group-by-group balance analysis may be useful it is
only the average asam which matters when estimating the ATT on the whole population of treated units.

We highlighted that the within-cluster algorithm always guarantees a perfect balance in all cluster-
level confounders as in the example above. However, note that it was not possible to match some
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treated observations and in part this can be due to the matching constrained to happen only within
clusters. The researcher can relax the constraint using preferential within-cluster matching. This
algorithm can be invoked using the option type="pwithin" in the CMatch function:

> psm_pw <- CMatch(type="pwithin", Y=Y, Tr=T, X=eps, Group=Group)
> summary(psm_pw)

PSM MAH†

Statistics within pwithin within pwithin

Orig. number of obs. 260 260 260 260
Orig. number of treated obs. 128 128 128 128
Matched number of treated obs. 119 128 84 128
Number of drops 9 0 44 0
ASAM before 34.05 34.05 34.05 34.05
ASAM after 6.63 8.13 0.47 6.31
ATT 5.24 5.18 4.25 4.34
SE 2.07 2.14 2.23 1.83

† PSM: propensity score matching; MAH: Mahalanobis matching.

Table 3: Matching to allow a fair comparison of math test score of students doing (treated) and not
doing homework in a school clustered dataset (NELS-88 data): comparing matching solutions obtained
from CMatching.

A comparison of results between within and preferential within matching is given in Table 3.
The preferential within-cluster matching was able to match all treated students ("Matched number
of obs" = 128), i.e., the number of unmatched treated students is 0 ("Number of drops" = 0). In this
example, the 9 treated students that did not find a matched control within the caliper in the same
school found a control match in another school. Looking to the overall balance attained by matching
preferentially within, we can notice that preferential within-cluster matching showed a slightly higher
asam than within-matching. In fact there is no clear "winner" between the two algorithms: the balance
of the individual level variables ses and white improves slightly with the preferential within-cluster
matching while for sex the within-cluster matching is considerably better (not shown). Importantly,
using preferential within-cluster matching the absolute standardized mean difference for the school-
level variable public is 3.2% This is not a high value because most of the treated units actually found a
match within schools. However, this finding points to the fact that preferential within-cluster matching
is not able to perfectly balance cluster level variables as the within-cluster approach.

Finally, having achieved a satisfactory balance with a very low number of drops we can estimate
the ATT on the matched dataset. When the argument Y is not NULL, an estimate is automatically given
otherwise the output of the CMatch function only gives information about the matching. The estimated
average effect of studying math for at least one hour per week on students’ math score is 5.24 with a
standard error of 2.07 when matching within schools (Table 3). It is worth mentioning that the reported
SE is model based and adjusts for non-independence of students within schools. From Table 3 we can
see that the estimated ATT and SE for the preferential-within school approach are very similar to those
obtained with the within-cluster approach. We stress that the estimated ATT should be considered
carefully and only after checking the matching solution.

In conclusion, preferential within-cluster matching is expected to improve the solution of the
within-cluster matching in terms of a reduced number of unmatched units. On the other hand,
within-cluster matching guarantees a perfect balance of school-level variables (both observed and
unobserved) while preferential within does not. The researcher, choosing between the two algorithms,
has to consider the trade-off between having a perfect balance of cluster level variables (within-cluster
matching) or reducing the number of unmatched treated units (preferential within-cluster matching).
The researcher can also implement both approaches and compare the results as a sort of sensitivity
analysis.

Multivariate covariate matching

Instead of matching on the propensity score, the researcher may match directly on the covariates space.
This strategy can be advantageous when the number of covariates is fairly low and it is expected to
match exactly a large number of units on the original space. The syntax is very similar to the above for
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propensity score matching: the only difference is that the user indicates the covariate matrix instead of
the propensity score in the X argument:

> mal_w <- CMatch(type="within", Y=Y, Tr=T, X=cbind(ses, sex, white, public),
Group=Group)

When X is a matrix, the covariate distance between a treated and a control unit is measured
by Mahalanobis metrics, i.e., essentially the multivariate Euclidean distance scaled by the standard
deviation of each covariate, a metrics which warrants an homogeneous imbalance reduction property
for (approximately) ellipsoidally distributed covariates (Rubin, 1980). From Table 3, columns 3-4,
we can see that the balance of covariates was indeed very good. Note that the estimated ATT using
Mahalanobis matching is lower than the corresponding estimate obtained with propensity score
matching. However, within-cluster matching using the Mahalanobis distance has generated a large
number of unmatched treated units (44). Therefore, in this case preferential within-cluster matching
could be used to avoid an high proportion of drops.

Other strategies

Other strategies for controlling unobserved cluster covariates in PSM have been suggested by Arpino
and Mealli (2011). The basic idea is to account for the clustering in the estimation of the propensity
score by using random- or fixed-effects models. This strategy can be combined with the matching
strategies presented before in order to ’doubly’ account for the clustering. This can be done easily
with CMatching. As an example we consider estimating the propensity score with a logit model with
dummies for schools and then matching preferentially within-schools using the estimated propensity
score:

# estimate ps
> mod <- glm(T ~ ses + parented + public + sex + race + urban

schid - 1, family=binomial(link="logit"), data=schools)
eps <- fitted(mod)

# match within on eps
> dpsm <- CMatch(type="pwithin", Y=math, Tr=T, X=eps, Group=NULL)

In concluding this section, we also mention some other matching strategies which can be imple-
mented using CMatching and some programming effort. First, the utility of the algorithms naturally
extends when there are more than two levels. In this case, it can be useful to match preferentially on
increasingly general levels, for example by allowing individuals to be matched first between regions
and then between countries. Another natural extension involves data where units have multiple
membership at the same hierarchical level. In this case it is possible to combine match within (or
preferential-within) across levels, for example by matching students both within schools and within
living district (e.g. 1 out of 4 possible combinations).

Summary

In this paper we presented the package CMatching implementing matching algorithms for clustered
data. The package allows users to implement two algorithms: i) within-cluster matching and ii)
preferential within-cluster matching. The algorithms provide a model-based estimate of the causal
effect and its standard error adjusted for within-cluster correlation among observations. In addition, a
tailored summary method and a balance function are provided to analyze the output. We illustrated
the case for within and preferential within-cluster matching analyzing data on students enrolled
in different schools for which it is reasonable to assume important confounding at the school level.
Finally, since the analysis of clustered observational data is an active area of research, we are willing to
improve on standard error calculations for matching estimators with clustered data if new theoretical
results in the causal inference literature will become available.
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