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auditor: an R Package for Model-Agnostic
Visual Validation and Diagnostics
by Alicja Gosiewska and Przemysław Biecek

Abstract

Machine learning models have successfully been applied to challenges in applied in biology,
medicine, finance, physics, and other fields. With modern software it is easy to train even a complex
model that fits the training data and results in high accuracy on test set. However, problems often
arise when models are confronted with the real-world data. This paper describes methodology and
tools for model-agnostic auditing. It provides functinos for assessing and comparing the goodness of
fit and performance of models. In addition, the package may be used for analysis of the similarity of
residuals and for identification of outliers and influential observations. The examination is carried out
by diagnostic scores and visual verification. The code presented in this paper are implemented in the
auditor package. Its flexible and consistent grammar facilitates the validation models of a large class
of models.

Introduction

Predictive modeling is a process using mathematical and computational methods to forecast outcomes.
Many algorithms in this area have been developed and novel ones are continuously being proposed.
Therefore, there are countless possible models to choose from and a lot of ways to train a new new
complex model. A poorly- or over-fitted model usually will be of no use when confronted with
future data. Its predictions will be misleading (Sheather, 2009) or harmful (O’Neil, 2016). That is why
methods that support model diagnostics are important.

Diagnostics are often carried out only by checking model assumptions. However, they are often
neglected for complex machine learning models and they may be used as if they were assumption-free.
Still, there is a need to verify their quality. We strongly believe that a genuine diagnosis or an audit
incorporates a broad approach to model exploration. The audit includes three objectives.

• Objective 1: Enrichment of information about model performance.

• Objective 2: Identification of outliers, influential and abnormal observations.

• Objective 3: Examination of other problems relating to a model by analyzing distributions
of residuals, in particular, problems with bias, heteroscedasticity of variance and autocorrelation
of residuals.

In this paper, we introduce the auditor package for R, which is a tool for diagnostics and visual
verification. As it focuses on residuals1 and does not require any additional model assumptions,
most of the presented methods are model-agnostic. A consistent grammar across various tools
reduces the amount of effort needed to create informative plots and makes the validation more
convenient and available.

Figure 1: Anscombe Quartet data sets are
identical when examined with he use of
simple summary statistics. The difference
is noticeable after plotting the data.

Diagnostic methods have been a subject of much re-
search (Atkinson, 1985). Atkinson and Riani (2012) focus
on graphical methods of diagnostics regression analy-
sis. Liu et al. (2017) present an overview of interactive
visual model validation. One of the most popular tools
for verification are measures of the differences between
the values predicted by a model and the observed values
(Willmott et al., 1985). These tools include Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE)
(Hastie et al., 2001). Such measures are used for well-
researched and easily interpretable linear model as well
as for complex models such as random forests (Ho, 1995),
gradient-boosted trees (Chen and Guestrin, 2016), or neu-
ral networks (Venables and Ripley, 2002).

However, no matter which measure of model per-
formance we use, it does not reflect all aspects of the
model. For example, Breiman (2001) points out that a
linear regression model validated only on the basis of R2

1Residual of an observation is the difference between the observed value and the value predicted by a model.
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may lead to many false conclusions. The best known example of this issue is the Anscombe Quartet
(Anscombe, 1973). It contains four different data sets constructed to have nearly identical simple
statistical properties such as mean, variance, correlation, etc. These measures directly correspond
to the coefficients of the linear models. Therefore, by fitting a linear regression to the Anscombe
Quartet we obtain four almost identical models (see Figure 1). However, residuals of these models
are very different. The Anscombe Quartet is used to highlight that the numerical measures should be
supplemented by graphical data visualizations.

The analysis of diagnostics is well-researched for linear and generalized linear models. The said
analysis is typically done by extracting raw, studentized, deviance, or Pearson residuals and examining
residual plots. Common problems with model fit and basic diagnostics methods are presented in
Faraway (2002) and Harrell Jr. (2006)

Model validation may involve both checking the overall trend in residuals and looking at residual
values of individual observations (Littell et al., 2007). Gałecki and Burzykowski (2013) discussed
methods based on residuals for individual observation and groups of observations.

Diagnostics methods are commonly used for linear regression (Faraway, 2004). Complex models
are treated as if they were assumption-free, which is why their diagnostics is often ignored. Con-
sidering the above, there is a need for more extensive methods and software dedicated for model
auditing. Many of diagnostic tools, such as plots and statistics developed for linear models, are still
useful for exploring machine learning models. Applying the same tools to all models facilitates their
comparison.

The paper is organized as follows. Section 2.2 summarizes related work and state of the art.
Section 2.3 contains an architecture of the auditor package. Section 2.4 provides the notation. Selected
tools that help to validate models are presented in Section 2.5 and conclusions can be found in
Section 2.6.

Related work

In this chapter, we overview common methods and tools for auditing and examining the validity of
the models. There are several attempts to validate. They include diagnostics for predictor variables
before and after model fit, methods dedicated to specific models, and model-agnostic approaches.

Data diagnostics before model fitting

The problem of data diagnostics is related to the Objective 2 presented in the Introduction, that is, the
identification of problems with observations. There are several tools that address this issue. We review
the most popular of them.

• One of the tools that supports the identification of errors in data is the dataMaid package
(Petersen and Ekstrom, 2018). It creates a report that contains summaries and error checks for
each variable in data. Package lumberjack (van der Loo, 2017) provides row-wise analysis. It
allows for monitoring changes in data as they get processed. The validatetools (de Jonge and
van der Loo, 2018) is a package for managing validation rules.

• The datadist function from rms package (Harrell Jr, 2018) computes distributional summaries
for predictor variables. They include the overall range and certain quantiles for continuous
variables, as well as distinct values for discrete variables. It automates the process of fitting and
validating several models due to storing model summaries by datadist function.

• While above packages use pipeline approaches, there are also tools that focus on specific step of
data diagnostic. The package corrgram (Wright, 2018) calculates a correlation of variables and
displays corrgrams. Corrgrams (Friendly, 2002) are visualizations of correlation matrices, that
help to identify the relationship between variables.

Diagnostics methods for linear models

As linear models have a very simple structure and do not require high computational power, they have
been and still are used very frequently. Therefore, there are many tools that validate different aspects
of linear models. Below, we overview the most widely known tools implemented in R packages.

• The stats package provides basic diagnostic plots for linear models. Function plot generates
six types of charts for "lm" and "glm" objects, such as a plot of residuals against fitted values,
a scale-location plot of

√
|residuals| against fitted values and a normal quantile-quantile plot.

These visual validation tools may be addressed to the Objective 3 of diagnostic, related to the
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examination of model by analyzing the distribution of residuals. The other three plots, that
include: a plot of Cook’s distances, a plot of residuals against leverages, and a plot of Cook’s
distances against leverage

1−leverage may be addressed to the identification of influential observations
(Objective 1).

• Package car (Fox and Weisberg, 2011) extends the capabilities of stats by including more types of
residuals, such as Pearson and deviance residuals. It is possible to plot against values of selected
variables and to group residuals by levels of factor variables. What is more, car provides more
diagnostic plots such as, among others, partial residual plot (crPlot), index plots of influence
(infIndexPlot) and bubble plot of studentized residuals versus hat values (influencePlot).
These plots allow for checking both the effect of observation and the distribution of residuals,
what address to the Objective 2 and the Objective 3 respectively.

• A linear regression model is still one of the most popular tools for data analysis due to its simple
structure. Therefore, there is a rich variety of methods for checking its assumptions, for example,
the normality of residual distribution and the homoscedasticity of the variance.
The package nortest (Gross and Ligges, 2015) provides five tests for normality: the Anderson-
Darling (Anderson and Darling, 1952), the Cramer-von Mises (Cramer, 1928; Von Mises,
1928), the Kolmogorov-Smirnov (Stephens, 1974), the Pearson chi-square (F.R.S., 1900), and
the Shapiro-Francia (Sanford Shapiro and S. Francia, 1972) tests. The lmtest package (Zeileis
and Hothorn, 2002) also contains a collection of diagnostic tests: the Breusch-Pagan (Breusch
and Pagan, 1979), the Goldfield-Quandt (Goldfeld and Quandt, 1965) and the Harrison-McCabe
(Harrison and McCabe, 1979) tests for heteroscedasticity and the Harvey-Collier (Harvey and
Collier, 1977), the Rainbow (Utts, 1982), and the RESET (Ramsey, 1969) tests for nonlinearity
and misspecified functional form. A unified approach for examining, monitoring and dating
structural changes in linear regression models is provided in strucchange package (Zeileis et al.,
2002). It includes methods to fit, plot and test fluctuation processes and F-statistics. The gvlma
implements the global procedure for testing the assumptions of the linear model (find more
details in Peña and Slate (2006)).
The Box-Cox power transformation introduced by Box and Cox (1964) is a way to transform the
data to follow a normal distribution. For simple linear regression, it is often used to satisfy the
assumptions of the model. Package MASS (Venables and Ripley, 2002) contains functions that
compute and plot profile log-likelihoods for the parameter of the Box-Cox power transformation.

• The broom package (Robinson, 2018) provides summaries for about 30 classes of models.
It produces results, such as coefficients and p-values for each variable, R2, adjusted R2, and
residual standard error.

Other model-specific approaches

There are also several tools to generate validation plots for time series, principal component analysis,
clustering, and others.

• Tang et al. (2016) introduced the ggfortify interface for visualizing many popular statistical
results. Plots are generated with ggplot2 (Wickham, 2009), what makes them easy to modify.
With one function autoplot it is possible to generate validation plots for a wide range of models.
It works for, among others, lm, glm, ts, glmnet, and survfit objects.
The autoplotly (Tang, 2018) package is an extension of ggfortify and it provides functionalities
that produce plots generated by plotly (Sievert et al., 2017). This allows for both modification
and interaction with plots.
However, ggorftify and autoplotly do not support some popular types of models, for instance,
random forests from randomForest (Liaw and Wiener, 2002) and ranger (Wright and Ziegler,
2017) packages.

• The hnp package (Moral et al., 2017) provides half-normal plots with simulated envelopes.
These charts evaluate the goodness of fit of any generalized linear model and its extensions. It
is a graphical method for comparing two probability distributions by plotting their quantiles
against each other. The package offers a possibility to extend the hnp for new model classes.
However, this package provides only one tool for model diagnostic. In addition, plots are not
based on ggplot2, what makes it difficult to modify them.
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Model-agnostic approach

The tools presented above target specific model classes. The model-agnostic approach allows us to
compare different models.

• The DALEX (Descriptive mAchine Learning EXplanations) (Biecek, 2018) is a methodology
for exploration of black-box models. Main functionalities focus on understanding or proving
how the input variables impact on final predictions. There are also two simple diagnostics:
reversed empirical cumulative distribution function for absolute values of residuals and box
plot of absolute values of residuals. As methods in the DALEX are model-agnostic, they allow
for comparison of two or more models.

• The package iml (Molnar et al., 2018) also contains methods for structure-agnostic exploration
of model. For example, a measure of a feature’s importance by calculating the change of the
model performance after permuting values of a variable.

Model-agnostic audit

In this paper, we present the auditor package for R, which fills out the part of model-agnostic validation.
As it expands methods used for linear regression, it may be used to verify any predictive model.

Package Architecture

The auditor package works for any predictive model which returns a numeric value. It offers a consis-
tent grammar of model validation, what is an efficient and convenient way to generate plots and diag-
nostic scores. A diagnostic score is a number that evaluates one of the properties of a model. That might
be, for example, an accuracy of model, an independence of residuals or an influence of observation.

Figure 2 presents the architecture of the package. The auditor provides 2 pipelines for model
validation. First of them consists of two steps. Function audit wraps up the model with meta-data, then
the result is passed to the plot or score function. Second pipeline includes an additional step, which
consists of calling one of the functions that generate computations for plots and scores. These functions
are: modelResiduals, modelEvaluation, modelFit, modelPerformance, and observationInfluence.
Further, we call them computational functions. Results of these functions are tidy data frames
(Wickham, 2014).

Figure 2: Architecture of the auditor. The blue color indicates the first pipeline, while orange
indicates the second. Function audit takes model and data or "explainer" object created with
the DALEX package.

Both pipelines for model audit are compared below.

1. model %>% audit() %>% computational function %>% plot(type=. . . )
We recommend this pipeline. Function audit wraps up a model with meta-data used for model-
ing and creates a "modelAudit" object. One of the computational functions takes "modelAudit"
object and computes the results of validation. Then, outputs may be printed or passed to
functions score and plot with defined type. We describe types of plots in Chapter 2.5. This
approach requires one additional function within the pipeline. However, once created output
of the computational function contains all necessary calculations for related plots. Therefore,
generating multiple plots is fast.

2. model %>% audit() %>% plot(type=. . . )
This pipeline is shorter than the previous one. The only difference is that it does not include
computational function. Calculations are carried out every time a generic plot function is called.
Omitting one step might be convenient for ad-hoc model analyses.
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Implemented types of plots are presented in Table 1. Scores are presented in Table 2. All plots are
generated with ggplot2, what provides a convenient way to modify and combine plots.

Plot Function plot(type = ...) Reg. Class.
Autocorrelation Function modelResiduals "ACF" + +
Autocorrelation modelResiduals "Autocorrelation" + +
Cooks’s Distances observationInfluence "CooksDistance" + +
Half-Normal modelFit "HalfNormal" + +
LIFT Chart modelEvaluation "LIFT" +
Model Correlation modelResiduals "ModelCorrelation" + +
Model PCA modelResiduals "ModelPCA" + +
Model Ranking modelPerformance "ModelRanking" + +
Predicted Response modelPerformance "ModelPerformance" + +
REC Curve modelResiduals "REC" + +
Residuals modelResiduals "Residual" + +
Residual Boxplot modelResiduals "ResidualBoxplot" + +
Residual Density modelResiduals "ResidualDensity" + +
ROC Curve modelEvaluation "ROC" +
RROC Curve modelResiduals "RROC" + +
Scale-Location modelResiduals "ScaleLocation" + +
Two-sided ECDF modelResiduals "TwoSidedECDF" + +

Table 1: Columns contain respectively: name of the plot, name of the computational function, value
for type parameter of the function plot, indications whether the plot can be applied to regression and
classification tasks.

Score Function score(type = ...) Reg. Class.
Cook’s Distance observationInfluence "CooksDistance" + +
Durbin-Watson modelResiduals "DW" + +
Half-Normal modelFit "HalfNormal" + +
Mean Absolute Error modelResiduals "MAE" + +
Mean Squared Error modelResiduals "MSE" + +
Area Over the REC modelResiduals "REC" + +
Root Mean Squared Error modelResiduals "RMSE" + +
Area Under the ROC modelEvaluation "ROC" +
Area Over the RROC modelResiduals "RROC" + +
Runs modelResiduals "Runs" + +
Peak modelResiduals "Peak" + +

Table 2: Columns contain respectively: name of a score, name of a computational function, value for
type parameter of function the score, indications whether the score can be applied to regression and
classification tasks.

Notation

Let us use the following notation: xi = (x(1)i , x(2)i , ..., x(p)
i ) ∈ X ⊂ Rp is a vector in space X , yi ∈ R is

an observed response associated with xi. A single observation we denote as a pair (yi, xi) and n is
the number of observations.

Let us denote a model as a function f : X → R. Predictions of the model f for particular
observation we shall denote as

f (xi) = ŷi. (1)

The row residual, or simply the residual, is the difference between the observed value yi and the
predicted value ŷi. We shall denote residual of particular observation as

ri = yi − ŷi. (2)
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Illustrations

Diagnostics allows for evaluation of different properties of a model. They may be related to the
following questions: Which model has better performance? Does the model fit data? Which observa-
tions are abnormal? These questions are directly related to the diagnostics objectives described in the
Introduction. First of them refers to the evaluation of a model performance, which was proposed as
the Objective 1. The second question concerns the examination of residuals distribution (Objective 3).
The last one refers to outliers and influential observations (Objective 2).

In this Section we illustrate chosen validation tools that allow for exploration of the above issues.
To demonstrate applications of the auditor, we use the data set apartments available in the DALEX
package. First, we fit two models: simple linear regression and random forest.

library("auditor")
library("DALEX")
library("randomForest")

lm_model <- lm(m2.price ~ ., data = apartments)
set.seed(59)
rf_model <- randomForest(m2.price ~ ., data = apartments)

The next step creates "modelAudit" objects related to these two models.

lm_audit <- audit(lm_model, label = "lm",
data = apartmentsTest, y = apartmentsTest$m2.price)

rf_audit <- audit(rf_model, label = "rf",
data = apartmentsTest, y = apartmentsTest$m2.price)

Below, we create objects of class "modelResidual", which are needed to generate plots. Parame-
ter variable determines the order of residuals in the plot. When the variable argument is set to
"Fitted values" residuals are sorted by values of predicted responses. Entering a name of a variable
"m2.price" implies that residuals will be in order of this variable.

lm_res_fitted <- modelResiduals(lm_audit, variable = "Fitted values")
rf_res_fitted <- modelResiduals(rf_audit, variable = "Fitted values")

lm_res_observed <- modelResiduals(lm_audit, variable = "m2.price")
rf_res_observed <- modelResiduals(rf_audit, variable = "m2.price")

Model Ranking Plot

In this subsection, we propose a Model Ranking plot which compares models performance across
multiple measures (see Figure 3). The implemented measures are listed in Table 2 in Chapter 2.3. The
descriptions of all scores are in (Gosiewska and Biecek, 2018).

Model Ranking Radar plot consists of two parts. On the left side there is a radar plot. Colors
correspond to models, edges to values of scores. Score values are inverted and rescaled to [0, 1].

Let us use the following notation: mi ∈ M is a model in a finite set of modelsM, where |M| = k,
score :M→ R is a loss function for the model under consideration. Higher values mean worse model
performance. The score(mi) is a performance of model mi.

Definition 2.5.1. We define the inverted score of model mi as

invscore(mi) =
1

score(mi)
min

j=1...k
score(mj). (3)

Models with the larger invscore are closer to the centre. Therefore, the best model is located the
farthest from the center of the plot. On the right side of the plot is a table with results of scoring. The
third column contains scores scaled to one of the models.

Let ml ∈ M where l ∈ {1, 2, ..., k} be a model to which we scale.

Definition 2.5.2. We define the scaled score of model mi to model ml as

scaledl(mi) =
score(ml)

score(mi)
. (4)

As values of scaledl(ml) are always between 0 and 1, comparison of models is easy, regardless of
the ranges of scores.
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The plot below is generated by plot function with parameter type = "ModelRanking" or by
function plotModelRanking. The scores included in the plot may be specified by scores parameter.

rf_mp <- modelPerformance(rf_audit)
lm_mp <- modelPerformance(lm_audit)
plot(rf_mp, lm_mp, type = "ModelRanking")

Figure 3: Model Ranking Plot. Random forest (red) has better performance in aspect of MAE and REC
scores, while linear model (blue) is better in aspect of MSE and RROC scores.

REC Curve Plot

Regression Error Characteristic (REC) curve (see Figure 4) is a generalization of Receiver Operating
Characteristic (ROC) curve for binary classification (Swets, 1988).

REC curve estimates the Cumulative Distribution Function of the error. On the x axis of the plot
there is an error tolerance. On the y axis there is an accuracy at the given tolerance level. Bi and
Bennett (2003) define the accuracy at tolerance ε as a percentage of observations predicted within the
tolerance ε. In other words, residuals larger than ε are considered as errors.

Let us consider pairs (yi, xi) introduced in the beginning of Chapter 2.5. Bi and Bennett (2003)
define an accuracy as follows.

Definition 2.5.3. An accuracy at tolerance level ε is given by

acc(ε) =
|{(x, y) : loss( f (xi), yi) ≤ ε, i = 1, ..., n}|

n
. (5)

REC Curves implemented in the auditor are plotted for a special case of Definition 2.5.3 where the
loss is defined as

loss( f (xi), yi) = | f (xi)− yi| = |ri|. (6)

The shape of the curve illustrates the behavior of errors. The quality of the model can be evaluated
and compared for different tolerance levels. The stable growth of the accuracy does not indicate any
problems with the model. A small increase of accuracy near 0 and the areas where the growth is fast
signalize bias of the model predictions.

The plot below is generated by plot function with parameter type = "REC" or by plotREC function.

plot(rf_res_fitted, lm_res_fitted, type = "REC")
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Figure 4: REC curve. Curve for linear model (blue) suggests that the model is biased. It displays poor
accuracy when the tolerance ε is small. However, once ε exceeds the error tolerance 130, accuracy
rapidly increases. The random forest (red) has a stable increase of accuracy when compared to the
linear model. However, there is s fraction of large residuals.

As often it is difficult to compare models on the plot, there is an REC score implemented in the
auditor. This score is the Area Over the REC Curve (AOC), which is a biased estimate of the expected
error for a regression model. As Bi and Bennett (2003) proved, AOC provides a measure of the overall
performance of regression model.

Scores may be obtained by score function with type = "REC" or scoreREC function.

scoreREC(lm_res_fitted)
scoreREC(rf_res_fitted)

Residual Boxplot Plot

Residual boxplot shows the distribution of the absolute values of residuals ri. They may be used
for analysis and comparison of residuals. Example plots are presented in Figure 5. Boxplots (Tukey,
1977) usually consist of five components. The box itself corresponds to the first quartile, median,
and third quartile. The whiskers extend to the smallest and largest values, no further than 1.5 of
Interquartile Range (IQR) from the first and third quartile respectively. Residual boxplots consists of
a sixth component, namely a red dot which stands for Root Mean Square Error (RMSE). In case of
an appropriate model, most of the residuals should lay near zero. A large spread of values indicates
problems with a model.

The plot presented below is generated by plotResidualBoxplot or by plot function with parame-
ter type = 'ResidualBoxplot' function.

plot(lm_res_fitted, rf_res_fitted, type = "ResidualBoxplot")
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Figure 5: Boxplots of absolute values of residuals. Dots are in similar places, hence RMSE for both
models is almost identical. However, the distribution of residuals of these two models is different. For
the linear model (blue), most of the residuals are around the average. For the random forest (red),
most residuals are small. Nevertheless, there is also a fraction of large residuals.

Residual Density Plot

Residual Density plot detects the incorrect behavior of residuals. An example is presented in Figure 6.
On the plot, there are estimated densities of residuals. For some models, the expected shape of density
derives from the model assumptions. For example, simple linear model residuals should be normally
distributed. However, even if the model does not have an assumption about the distribution of
residuals, such a plot may be informative. If most of the residuals are not concentrated around zero,
it is likely that the model predictions are biased. Values of errors are displayed as marks along the
x axis. That makes it possible to ascertain whether there are individual observations or groups of
observations with residuals significantly larger than others.

The plot below is generated by plotResidualDensity function or by plot function with parameter
type = "ResidualDensity".

plot(rf_res_observed, lm_res_observed, type = "ResidualDensity")
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Figure 6: Residual Density Plot. The density of residuals for the linear model (blue) forms two peaks.
There are no residuals with values around zero. Residuals do not follow the normal distribution, what
is one of the assumptions of the simple linear regression. There is an asymmetry of residuals generated
by random forest (red).

Two-sided ECDF Plot

Two-sided ECDF plot (see Figure 7) shows an Empirical Cumulative Distribution Functions (ECDF)
for positive and negative values of residuals separately.

Let x1, ..., xn be a random sample from a cumulative distribution function F(t). The following
definition comes from van der Vaart (2000).

Definition 2.5.4. The empirical cumulative distribution function is given by

Fn(t) =
1
n

n

∑
i=1

1{xi ≤ t}. (7)

Empirical cumulative distribution function presents a fraction of observations that are less than or
equal to t. It is an estimator for the cumulative distribution function F(t).

On the positive side of the x-axis, there is the ECDF of positive values of residuals. On the negative
side, there is a transformation of ECDF:

Frev(t) = 1− F(t). (8)

Let nN and nP be numbers of negative and positive values of residuals respectively. Negative part of
the plot is normalized by multiplying it by the ratio of the nN over nN + nP. Similarly, positive part is
normalized by multiplying it by the ratio of the nP over nN + nP. Due to the applied scale, the ends of
the curves add up to 100% in total. The plot shows the distribution of residuals divided into groups
with positive and negative values. It helps to identify the asymmetry of the residuals. Points represent
individual error values, what makes it possible to identify ’outliers’.

The plot below is generated by plotTwoSidedECDF function or by plot function with parameter
type = "TwoSidedECDF".

plot(rf_res_fitted, lm_res_fitted, type = "TwoSidedECDF")
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Figure 7: Two-sided ECDF plot. The plot shows that majority of residuals for the random forest (red)
is smaller than residuals for the linear model (blue). However, random forest has also fractions of
large residuals.

Conclusion and future work

In this article, we presented the auditor package and selected diagnostic scores and plots. We dis-
cussed the existing methods of model validation and proposed new visual approaches. We also
specified three objectives of model audit (see Section 2.1), proposed relevant verification tools, and
demonstrated their usage. Model Ranking Plot and REC Curve enrich the information about model
performance (Objective 1). Residual Boxplot, Residual Density, and Two-Sided ECDF Plots expand the
knowledge about the distribution of residuals (Objective 3). What is more, the latter two tools allow
for identification of outliers (Objective 2). Finally, we proposed two new plots, the Model Ranking
Plot and the Two-Sided ECDF Plot.

We implemented all the presented scores and plots in the auditor package for R. The included
functions are based on a uniform grammar introduced in Figure 2.3. Documentation and examples
are available at https://mi2datalab.github.io/auditor/. The stable version of the package is on
CRAN, the development version is on GitHub (https://github.com/MI2DataLab/auditor). A more
detailed description of methodology is available in the extended version of this paper on arXiv:
https://arxiv.org/abs/1809.07763 (Gosiewska and Biecek, 2018).

There are many potential areas for future work that we would like to explore, including more
extensions of model-specific diagnostics to model-agnostic methods and residual-based methods for
investigating interactions. Another potential aim would be to develop methods for local audit based
on the diagnostics of a model around a single observation or a group of observations.
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