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spGARCH: An R-Package for Spatial
and Spatiotemporal ARCH and
GARCH models
by Philipp Otto

Abstract In this paper, a general overview on spatial and spatiotemporal ARCH models is provided.
In particular, we distinguish between three different spatial ARCH-type models. In addition to
the original definition of Otto et al. (2016), we introduce an logarithmic spatial ARCH model in
this paper. For this new model, maximum-likelihood estimators for the parameters are proposed.
In addition, we consider a new complex-valued definition of the spatial ARCH process. Moreover,
spatial GARCH models are briefly discussed. From a practical point of view, the use of the R-package
spGARCH is demonstrated. To be precise, we show how the proposed spatial ARCH models can be
simulated and summarize the variety of spatial models, which can be estimated by the estimation
functions provided in the package. Eventually, we apply all procedures to a real-data example.

Introduction

Whereas autoregressive conditional heteroscedasticity (ARCH) models are applied widely in time
series analysis, especially in financial econometrics, spatial conditional heteroscedasticity has not
been seen as critical issue in spatial econometrics up to now. Although it is well-known that classical
least squares estimators are biased for spatially correlated data as well as for spatial data with
an inhomogeneous variance across space, there are just a few papers proposing statistical models
accounting for spatial conditional heteroscedasticity in terms of the ARCH and GARCH models
of Engle (1982) and Bollerslev (1986). The first extensions to spatial models attempted were time
series models incorporating spatial effects in temporal lags (see Borovkova and Lopuhaa 2012 and
Caporin and Paruolo 2006, for instance). Instantaneous spatial autoregressive dependence in the
conditional second moments, i.e., the conditional variance in each spatial location is influenced by
the variance nearby, has been introduced by Otto et al. (2016). Further details and derivations
can also be found in Otto et al. (2018, 2019). Their models allow for these instantaneous effects
but require certain regularity conditions. In this paper, we propose an alternative specification
of spatial autoregressive conditional heteroscedasticity based on an exponential definition of the
conditional variance. This new model can be seen as the spatial equivalent of the log-GARCH model
by Pantula (1986); Geweke (1986); Milhøj (1987). Other recent papers propose a mixture of these
two approaches (see Sato and Matsuda 2017, 2018b). Moreover, all these models can be used in
spatiotemporal settings (see Otto et al. 2018; Sato and Matsuda 2018a).

In addition to the novel spatial logarithmic ARCH model, this paper demonstrates the use of the
R-package spGARCH. From this practical point of view, the simulation of several spatial ARCH-type
models as well as the estimation of a variety of spatial models with conditional heteroscedasticity
are shown. There are several packages implementing geostatistical models, kriging approaches,
and other spatial models (cf. Cressie 1993; Cressie and Wikle 2011). One of the most powerful
packages used to deal with models of spatial dependence is spdep, written by Bivand and Piras
(2015). It implements most spatial models in a user-friendly way, such as spatial autoregressive
models, spatial lag models, and so forth (see, also, Elhorst 2010 for an overview). These models are
typically called spatial econometrics models, although they are not tied to applications in economics.
In contrast, the package gstat provides functions for geostatistical models, variogram estimation,
and various kriging approaches (see Pebesma 2004 for details). For dealing with big geospatial
data, the Stem package uses an expectation-maximization (EM) algorithm for fitting hierarchical
spatiotemporal models (see Cameletti 2015 for details). For a distributed computing environment,
the MATLAB software D-STEM from Finazzi and Fasso (2014) also provides powerful tools for
dealing with heterogeneous spatial supports, large multivariate data sets, and heterogeneous spatial
sampling networks. Additionally, these fitted models are suitable for spatial imputation. Contrary to
these EM approaches, Bayesian methods for modeling spatial data are implemented in the R-INLA
package (see Rue et al. 2009 for technical details of the integrated nested Laplace approximations
and Martins et al. 2013 for recently implemented features). Along with this package, the R-INLA
project provides several functions for diverse spatial models incorporating integrated nested Laplace
approximations.

In contrast to the above mentioned software for spatial models, the prevalent R-package for time
series GARCH-type models is rugarch from Ghalanos (2018). Since spGARCH has been developed
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mainly to deal with spatial data, we aim to provide a package which is user-friendly for researchers
and data scientists working in applied spatial science. Thus, the package is coordinated with the
objects and ideas of R packages for spatial data rather than packages for dealing with time series.

We structure the paper as follows. In the next Section 2.2, we discuss all covered spatial
and spatiotemporal ARCH-type models. In addition, we introduce a novel logarithmic spatial
ARCH model, which has weaker regularity conditions than the other spatial ARCH models. In the
subsequent section, parameter estimation based on the maximum-likelihood principle is discussed
for both the previously proposed spatial ARCH models as well as the new logarithmic spatial ARCH
model. Furthermore, spatial GARCH models are briefly discussed. However, the focus of this paper
should be on ARCH-type models. After these theoretical sections, we demonstrate the use of the
R-package spGARCH in Section 2.5. Further, we fit a spatial autoregressive model with exogenous
regressors and spatial ARCH residuals for a real-world data set. In particular, we analyze prostate
cancer incidence rates in southeastern U.S. states. Section 2.7 concludes the paper.

Spatial ARCH-type models

Let {Y (s) ∈ R : s ∈ D} be a univariate stochastic process having a spatial autoregressive structure
in the conditional variance. The process is defined in a multidimensional space D, which is typically
a subset of the q-dimensional real numbers Rq, as space is usually finite. For dealing with spatial
lattice data, D is subset of the q-dimensional integers Zq. For both cases, it is important that the
subset contains a q-dimensional rectangle of positive volume (cf. Cressie and Wikle 2011). Moreover,
this definition is suitable for modeling spatiotemporal data, as one might assume that D is the
product set Rk ×Zl with k+ l = d.

To define spatial models, in particular areal spatial models such as the simultaneous autoregressive
(SAR) models, it is convenient to consider a vector of observations
Y = (Y (s1), . . . ,Y (sn))

′ at all locations s1, . . . , sn. For spatial ARCH models, we specify this
vector as

Y = diag(h)1/2ε , (1)
an analogue to the well-known time series ARCH models (cf. Engle 1982; Bollerslev 1986). However,
note that the vector h does not necessarily coincide with the conditional variance

V ar(Y (si)|Y (s1), . . . ,Y (si−1)) ,

as the variance in any location sj also depends on Y (si) for j 6= i (see Otto et al. 2018 for details).
We now distinguish between several spatial ARCH-type models via the definition of h.

Spatial ARCH model

First, we define this vector h in such a way as to be analogous to the definition in Otto et al. (2018).
For this model, the vector hO is given by

hO = α1 + ρWdiag(Y )Y , (2)

where diag(a) is a diagonal matrix with the entries of a on the diagonal. In order to be consistent with
the implementation in the R-package spGARCH, we focus on the special case with two parameters
α and ρ, whereas Otto et al. (2018) proposed a more general model with a vector α = (α1, . . . ,αn)′
and the first-order spatial lag Wdiag(Y )Y .

For this definition, there is a one-to-one relation between Y and ε via the squared observations
Y (2) = (Y (s1)

2, . . . ,Y (sn)
2)′ and squared errors ε(2) = (ε(s1)

2, . . . , ε(sn)2)′ with

Y (2) = α (I−A)−1 ε(2) , (3)

where W is a predefined spatial weighting matrix and

A = ρ diag
(
ε(s1)

2, . . . , ε(sn)2
)

W .

Thus,
hO = α1 + ραW (I−A)−1 ε(2) .

It is important to assume that the spatial weighting matrix is a non-stochastic, positive matrix
with zeros on the main diagonal to ensure that a location is not influenced by itself (cf. Elhorst
2010; Cressie and Wikle 2011). The vector of random errors is denoted by ε. Due to the complex
dependence implied by the weighting matrix W, hO is not necessarily positive; thus, diag(h)1/2
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Figure 1: Moran’s I of the observations Y and the squared observations Y (2), including the
asymptotic 95% confidence intervals of I for ρ ∈ {0, 0.05, . . . , 2}. The resulting bound a is plotted
as a bold, black line.

does not necessarily have a solution in the real numbers such that the process in (1) is well-defined.
This is only the case if the condition of the following lemma is fulfilled.

Lemma 1 (Otto et al. 2018). Suppose that α ≥ 0, ρ ≥ 0 and that det(I−A2) 6= 0. If all elements
of the matrix

(I−A2)−1 (4)

are nonnegative, then all components of Y (2) are nonnegative, i.e., Y (si)
2 ≥ 0 for i = 1, . . . ,n.

Moreover, hO(si) ≥ 0 for i = 1, . . . ,n.

It is important to note that A depends on both the weighting matrix and the realizations of the
errors. In order to ensure that this condition is fulfilled, Otto et al. (2018) propose to truncate the
support of the error distribution on the interval (−a, a) with

a =

{
∞ ∃k > 0 : ρWk = 0

1/ 4
√
ρ2||W2||1 ρ2||W2||1 > 0

,

where || · ||1 denotes the matrix norm based on the Manhattan norm.
There are two cases in which the support of the errors does not need to be constrained. If ρ = 0,

the process coincides with a spatial white noise process such that a equals ∞. Moreover, all entries
of h are non-negative if W is similar to a strictly triangular matrix. Then, W is nilpotent. This case
covers the classical time-series ARCH(p) models introduced by Engle (1982) as well as the so-called
oriented spARCH processes. For these processes, the spatial dependence has a certain direction, e.g.,
observations are only influenced by observations in a southward direction or by observations which
are closer to an arbitrarily chosen center. The setting also covers recent time-series GARCH models
incorporating spatial information (e.g., Borovkova and Lopuhaa 2012; Caporin and Paruolo 2006).

Of course, the truncated support of the errors has an impact on the extent of the spatial
dependence on the conditional variances. Obviously, the support need not be constrained regarding
ρ = 0. However, this support decreases with increasing values of ρ. For instance, if ρ = 1, then the
parameter a is equal to 0.968 for Rook’s contiguity matrices on a two-dimensional lattice. As a
measure of the spatial dependence of the variance, one might consider Moran’s I for the squared
observations (see Moran 1950). Moreover, we observe that the growth rate of I decreases with
increasing spatial weights. This trend can be explained by the compact support of the errors. Since
there cannot be large variations ε(si) in absolute terms, there also cannot be large spatial clusters of
high or low variance. To illustrate this behavior, Figure 1 depicts Moran’s I for simulated observations
Y and their squares for ρ ∈ {0, 0.05, . . . , 2}. For the Monte Carlo simulation study, we simulate
n = 400 observation on a two-dimensional lattice D = {s = (s1, s2)

′ ∈ Z2 : 0 ≤ s1, s2 ≤ 20}.
The weighting matrix is a common Rook’s contiguity matrix, and the simulation is done for 105

replications. Although the exact distribution of Moran’s statistic is bounded, the standardized
statistic is asymptotically normally distributed for the “majority of spatial structures” (Tiefelsdorf
and Boots 1995, see also Cliff and Ord 1981). Thus, the asymptotic 95% confidence intervals are
plotted in Figure 1, as well.
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Spatial Log-ARCH model

Next, we consider an logarithmic spatial ARCH process (log-spARCH). In this setting, we define
the natural logarithm of hE = (hE(s1), . . . ,hE(sn))′ as

lnhE = α1 + ρWgb(ε) , (5)

with a function gb : Rn → Rn. Like Nelson (1991), we assume that

gb(ε) = (ln |ε(s1)|b, . . . , ln |ε(sn)|b)′

for positive values of b. For this definition, there is a one-to-one relation between Y and ε, as we
show in the following theorem.

Theorem 1. Suppose that α > 0, ρ ≥ 0, and wij ≥ 0 for all i, j = 1, . . . ,n and gb(ε) =

(ln |ε(s1)|b, . . . , ln |ε(sn)|b)′. Then there exists one and only one Y (s1), . . . ,Y (sn) that corresponds
to each ε(s1), . . . , ε(sn) for b > 0.

At location si, the value of hE(si) is then given by

lnhE(si) = α+
n∑
v=1

ρbwiv ln |ε(sv)| for i = 1, . . . ,n .

For this definition of gb, one could rewrite lnh as

lnhE = S (α1 + ρbW ln |Y |) (6)

with

S = (sij)i,j=1,...,n =

(
I + 1

2ρbW
)−1

.

In contrast to the spARCH process described in Section 2.2.1, Corollary 1 shows that the entries of
hE are positive for all ρ ≥ 0 and α > 0. Hence, the process is well-defined and there are no further
restrictions needed, as in the case for the spARCH model.

Corollary 1. Assume that the assumptions of Theorem 1 are fulfilled, then hE(si) ≥ 0 for all
i = 1, . . . ,n.

For all proofs, we refer to the Appendix.

Complex Spatial ARCH model

Now, we propose a complex-valued spARCH process. In order to obtain a solution of diag(h)1/2 in
the n-dimensional space of real numbers for the model defined in (2), all elements of the matrix
(I−A2)−1 must be nonnegative (see Otto et al. 2018). For the complex spARCH process, we relax
the assumption that there should be a solution to diag(h)1/2 in the real numbers and also consider
complex solutions. Thus, the definition of h coincides with hO of the original model, i.e.,

hC (si) = α+
n∑
v=1

ρwivY (sv)
2 . (7)

Spatiotemporal ARCH model

Finally, we show that spatiotemporal processes are covered directly by these approaches. For
spatiotemporal data, the vector s simply includes both the spatial location ss and the point in
time t, i.e., s = (ss, t)′. In addition, it is important to assume that future observations do not
influence past observations, i.e., the weights wij must be zero if tj ≥ ti. However, the dimension
of the weighting matrix W might become very large for this representation. More precisely, the
matrix has dimension NT ×NT , where N is the total number of spatial locations and T stands
for the total number of time points. From a computational perspective, this is not necessarily a
drawback since W is usually sparse and could also have a block diagonal structure. Moreover, it is
often reasonable to assume that h(si) is only influenced by the neighbors of ss,i at the same point
of time and by past observations at the same location. Then the weighting matrix would have the
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Process
type

Definition of h Comments

spARCH hO = α1 + ρW (I−A)−1 (αε(2)) ε is simulated from multivariate normal
distribution (MN) truncated on the
interval[
−1/ 4

√
||ρ2W2||1, 1/ 4

√
||ρ2W2||1

]
spARCH
(oriented)

hO = α1 + ρW (I−A)−1 (αε(2)) ε ∼ MN(0, I), W must be a strictly
triangular weighting matrix

spatial log-
ARCH

lnhE = S (α1 + ρbW ln |Y |) ε ∼ MN(0, I), but moments of Y differ
from the moments of classical spARCH
process (cf. Otto et al. 2018)

spARCH
(complex)

hC = α1 + ρW (I−A)−1 (αε(2)) ε ∼ MN(0, I), but complex-valued Y

Table 1: Overview of all types of spARCH models implemented in the spGARCH package.

following structure

W =


W1 0 · · · 0

I W2 · · · 0
...

...
. . .

...
0 0 · · · WT

 .

Indeed, it is plausible to weight the spatial and temporal lags differently by replacing ρW by a sum

ρ


W1 0 · · · 0

0 W2 · · · 0
...

...
. . .

...
0 0 · · · WT

+ φ1


0 0 · · · 0
I 0 · · · 0
...

...
. . .

...
0 0 · · · 0

+ . . .

with positive weights φk for all temporal lags 1 ≤ k ≤ p.

Spatial ARCH Disturbances

Since all conditional and unconditional odd moments of spatial ARCH processes are equal to
zero, these ARCH-type models can easily be added to any kind of (spatial) regression model
without influencing the mean equation as well as the spatial dependence in the first conditional
and unconditional moments. This makes the spatial ARCH models flexible tools for dealing with
conditional spatial heteroscedasticity in the residuals of spatial models. For instance, one can
consider spatial autoregressive models for Y , i.e.,

Y = λBY + Xβ + u (8)

with u following either a spatial ARCH model with the original definition hO or the logarithmic
model with hE . Thus,

u = diag(h)1/2ε . (9)

Further, we call this model the SARspARCH model. For λ = 0, the model collapses to a simple
linear regression model; if, additionally, β = 0, the model coincides with the previously discussed
ARCH models. Thus, these coefficients can be used for testing against nested models.

In contrast to other models for heteroscedastic errors, such as the SARAR or SARMA models,
which assume spatial autoregressive or spatial moving average error terms (cf. Kelejian and
Prucha 2010; Fingleton 2008; Haining 1978), the SARspARCH model does not affect the spatial
autocorrelation of the process, just the spatial heteroscedasticity, because all conditional and
unconditional odd moments are equal to zero. Thus, λB can be interpreted directly as the spatial
dependence of the process, while ρW describes the spatial dependence in the second conditional
moments. Moreover, these two parts can be interpreted separately, as we will demonstrate in the
last section via an empirical example.
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Generalized Spatial ARCH Models

Additionally, one may include spatially lagged observations of h to construct spatial GARCH-type
models. For instance, a spatial GARCH model is given by

hG = α1 + ρWdiag(Y )Y + λW̆hG (10)
= (I− λW̆)−1 (α1 + ρWdiag(Y )Y ) , (11)

where W̆ is a second spatial weighting matrix and λ is the corresponding spatial GARCH parameter.
Obviously, the spatial GARCH-type models requires that (I− λW̆) is non-singular. In a similar
manner, hLG can be specified as

lnhLG = α1 + ρWgb(ε) + λW̆hLG , (12)

to define a spatial log-GARCH model. For theoretical details of spatial GARCH-type models, we
refer to Otto and Schmid (2019) introducing a unified spatial GARCH model covering various spatial
ARCH and GARCH models. Moreover, Otto and Schmid (2019) introduce an exponential spatial
GARCH model allowing for asymmetry via an alternative definition of g in (5). To be precise, g is
given by

g(ε) = (Θε1 + ζ(|ε1| −E(|ε1|)), . . . , Θεn + ζ(|εn| −E(|εn|))′

for the exponential spatial GARCH model.

Parameter Estimation

The parameters of a spatial ARCH process can be estimated by the maximum-likelihood approach.
To obtain the joint density for Y = k(ε), the Jacobian matrix of k−1 at the observed values y must
be computed (e.g., Bickel and Doksum 2015). If fε is the distribution of the error process, then the
joint density fY of Y is given by

fY (y) = f(Y (s1),...,Y (sn))(y1, . . . , yn)

= fε

(
y1√
h1

, . . . , yn√
hn

)
| det

(∂yj/
√
hj

∂yi

)
i,j=1,...,n

 | . (13)

If the residuals are additionally independent and identically distributed, the parameter estimates
can be obtained from the maximization of the log-likelihood as follows

(α̂, ρ̂) = arg max
α>0,ρ≥0

ln | det

(∂yj/
√
hj

∂yi

)
i,j=1,...,n

 |+ n∑
i=1

ln fε(yi) .

The Jacobian matrix, of course, depends on the definition of h. For the spARCH process, this
Jacobian matrix can be specified as

∂yj/
√
hj

∂yi
=

{
1 /
√
hj for i = j

− yiyj

h3/2
j

ρwji for i 6= j .

In contrast, the Jacobian matrix for the log-spARCH process is slightly different, namely

∂yj/
√
hj

∂yi
=

{
1 /
√
hj for i = j

− byj

2yih
3/2
j

ρsjiwji for i 6= j

with

hj = exp
(

n∑
v=1

sjv (α+ ρwjv ln |yv|)
)

.

From a computational perspective, the computation of the log determinant of this matrix is
feasible for large data sets. To be precise, the log-determinant is equal to

ln |det
(
diag

(
h1
y2

1
, . . . , hn

y2
n

)
− ρW′

)
|+

n∑
i=1

ln y2
i

h3/2
i
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for the spARCH process. Similarly, it is given by

ln | det
(

diag
(

2h1
b

, . . . , 2hn
b

)
− ρS′ ◦W′

)
|+

n∑
i=1

ln b

2h3/2
i

.

for the log-spARCH process, where ◦ stands for the Hadamard product.
In the spGARCH package, we implemented the iterative maximization algorithm with inequality

constraints proposed by Ye (1988), which is implemented in the R-package Rsolnp (see Ghalanos
and Theussl 2012). It is important to note that the log determinant of the Jacobian also depends on
the parameters in such a way that it needs to be computed in each iteration (see, also, Theorem
13.7.3 of Harville (2008) for the computation of a determinant for the sum of a diagonal matrix and
an arbitrary matrix), but W, and therefore S ◦W, are usually sparse. Thus, the required time for
the estimation of the parameters depends mainly on the dimension and sparsity of W.

Certainly, the choice of the weighting matrices are an important design choice of the models,
which has to be prespecified. However, the true structure of W is rarely known in practice. Moreover,
all estimated parameters depend on the selection of this matrix. Hence, inference on these parameters
and the coefficients itself must be interpreted based on the choice of W. For empirical applications,
one might gain insights on the structure of W by looking at spatial autocorrelation functions or
variograms. It is worth noting that the observations are uncorrelated for spatial ARCH models,
so one should also look at squared observations. Then, the weighting scheme is typically chosen
from a set of candidate schemes by maximizing certain goodness-of-fit criteria, like information
criteria or out-of-sample prediction errors. For instance, W could be chosen as contiguity matrix,
i.e., two locations are connected having positive weights, if they share a common border or if
their distance is less than a certain threshold. For instance, in studies in spatial econometrics or
epidemiology, the spatial domain is often a set of municipalities or counties (e.g., Amin et al. 2014;
Buettner 2003). In this case, contiguity matrices are straightforward and if these binary matrices are
additionally row-standardized, Wdiag(Y )Y can be interpreted as average of the squared neighboring
observations. Alternatively, W can be specified as k-nearest-neighbor matrix, i.e., only the k nearest
locations get positive weights, or as inverse-distance matrix, i.e., the weight between two locations is
based on the distance between these locations. Further choices of W are discussed by Otto et al.
(2018). Finally, it is worthy to mention that the weights could also depend on exogenous variables
or other factors. For instance, they could incorporate economic disparities, e.g., differences in the
gross domestic products, poverty rates, household incomes etc., or other covariates, like the wind
direction and speed when modeling spatial dependence of air pollutants (cf. Merk and Otto 2019).
For spatiotemporal autoregressive processes, there are also some approaches to estimate the entire
spatial dependence structure using machine learning methods (e.g., Lam and Souza 2016; Otto and
Steinert 2018).

Overview of the R-Package spGARCH

The R-package spGARCH provides several basic functions for the analysis of spatial data showing
spatial conditional heteroscedasticity. In particular, the process can be simulated for arbitrarily
chosen weighting matrices according to the definitions in Section 2.2. Moreover, we implement a
function for the computation of the maximum-likelihood estimators. To generate a user-friendly
output, the object generated by the estimation function can easily be summarized by the generic
summary() function. We also provide all common generic methods, such as plot(), print(),
logLik(), and so forth. To maximize the computational efficiency, the actual version of the package
contains compiled C++ code (using the packages Rcpp and RcppEigen, cf. Eddelbuettel and François
2011; Bates and Eddelbuettel 2013). A brief overview of the package and its main functions is given
in Table 2. Further, we focus on the two main aspects of the package, i.e., the simulation (described
in detail in Section 2.5.1) and estimation (Section 2.5.2) aspects of the spARCH, log-spARCH, and
SARspARCH processes.

Simulation of ARCH-type stochastic processes

The simulations of all spatial ARCH-type models are implemented in one function, namely, the
sim.spARCH() function. The different definitions of the model are specified via the argument type.
The use of sim.spARCH() is very similar to how a basic random number generator is used, meaning
that the first argument n is the number of generated values and all further arguments specify the
parameters of the spARCH process. For instance, one might simulate an oriented spARCH process
(meaning W is triangular) on a d× d spatial lattice with ρ = 0.7 and α = 1 using the following lines.
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Function Description
Main functions

sim.spARCH() Simulation of spARCH and log-spARCH processes
sim.spGARCH() Simulation of spGARCH, E-spGARCH, and log-spGARCH

processes
qml.spARCH() Quasi-maximum-likelihood estimation for spARCH models
qml.SARspARCH() Quasi-maximum-likelihood estimation for SAR models with

spARCH residuals
Generic methods

summary() Summary of an object of ‘spARCH’ class generated by
qml.spARCH() or qml.SARspARCH()

print() Printing method for ‘spARCH’ class or summary.spARCH class
fitted() Extracts the fitted values of an object of ‘spARCH’ class
residuals() Extracts the residuals of an object of ‘spARCH’ class
logLik() Extracts the log-likelihood of an object of ‘spARCH’ class
extractAIC() Extracts the AIC of an object of ‘spARCH’ class
plot() Provides several descriptive plots of the residuals of an object

of ‘spARCH’ class

Table 2: Summary of the main functions of the spGARCH package.

R> require("spdep")
R> rho <- 0.7
R> alpha <- 1
R> d <- 50
R> n <- d^2
R> nblist <- cell2nb(d, d, type = "queen")
R> W <- nb2mat(nblist)
R> W[upper.tri(W)] <- 0
R> Y <- sim.spARCH(n = n, rho = rho, alpha = alpha, W = W,
+ type = "spARCH", control = list(seed = 5515))

To build the spatial weighting matrix, we used cell2nb() from the spdep package, returning an
nb object of a d× d lattice (see Cressie 1993; Bivand and Piras 2015). Further, we converted the
nb object into a contiguity matrix, as sim.spARCH() requires either a matrix (class matrix) or a
sparse matrix (class dgCMatrix) as an argument. Usually, spatial weighting matrices are sparse
by construction. Thus, W is always converted internally to a dgCMatrix matrix or rather to a
SparseMatrix object defined in the eigen library in C++. Via the control parameter, a random
seed might be passed to the simulation function. If not, a random seed is assigned randomly from
a uniform distribution and printed in console in order that one might reproduce the result even
without having a random seed specified in advance. We prefer to print a single number in the console
rather than returning to the random number generator (RNG) state as an attribute of the returned
vector. Thus, a random seed might either be passed as an optional argument to sim.spARCH() or
set before calling sim.spARCH() by set.seed().

There are several types of spatial ARCH processes which can be simulated by sim.spARCH().
They are all specified by the argument type. If

• type = "spARCH", then the original spARCH process according to the definition in Otto et al.
(2018) is simulated.

– If there exists a permutation such that W is a strictly triangular matrix, then the
function simulates automatically an oriented spARCH process with independent and
identically gaussian distributed errors.

– If there is no such permutation, then the errors are simulated from a truncated normal
distribution with a = 1/ 4

√
ρ2||W||1.

• type = "log-spARCH", an log-spARCH process is simulated with an user-specified value of b
(default 2) and standard normal random errors.

• type = "complex-spARCH", complex solutions of diag(h)1/2 are considered in order to simulate
the spARCH process.

Figure 2 illustrates the behavior of different types of spatial ARCH processes. All of them
are simulated with the same parameters and random seeds in such a manner that the vector ε is

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859

https://CRAN.R-project.org/package=spGARCH
https://CRAN.R-project.org/package=spdep


Contributed research article 409

s1

s 2

−3 −2 −1 0 1 2 3

s1

s 2

−4 −2 0 2 4

s1

s 2

−4 −2 0 2 4

s1

s 2

−1.0 −0.5 0.0 0.5 1.0

s1

s 2

−4 −2 0 2 4

s1

s 2

−20 −10 0 10 20

Above left: spatial white noise for comparison; center: oriented spARCH (type = ``gaussian''); right:
spatial E-ARCH (type = ``exp'').

Below left: spARCH with truncated normal errors (type = ``gaussian''); center: spatial E-ARCH (type =
``exp''), right: complex spARCH (type = ``complex'').

Figure 2: Simulations on a two-dimensional lattice for triangular matrices (above) and non-
triangular matrices (below). For all simulations, we set ρ = 0.7 and α = 1, and W is chosen to be
the Queen’s contiguity matrix.

identical for all types of processes, except for the spARCH process with the truncated normal errors.
In the first row, the spatial weighting is achieved via a strictly triangular Queen’s contiguity matrix,
which means that the spatial dependence has its origin in the upper left corner. To the contrary,
W presents a classical Queen’s contiguity matrix in the second row. We additionally plot a spatial
white noise process for comparison, as we used a rather unconventional two-color scheme. Using
this kind of color scheme, one might distinguish between positive and negative observations, such
that it is easier to see the spatial volatility clusters. Areas of smaller volatility are characterized by
rather evenly gray pixels, whereas clusters of high volatility have rather intense colors. Moreover,
the colors fluctuate irregularly between blue and red.

As pointed out in Section 2.2, spatiotemporal ARCH models are directly covered if time is
considered as one dimension of the q-dimensional space D. Thus, a two-dimensional spatiotemporal
process {Yt(s) : t = 1, . . . ,T ; s ∈ Ds} with Ds being a d× d unit grid and T = 20 points of time
could be simulated as follows.

R> d <- 4
R> T <- 20
R> D_s <- 1:(d^2)
R> D_t <- 1:T
R> n <- length(D_s) * length(D_t)
R> nblist <- cell2nb(d, d, type = "queen")
R> W_list <- nb2listw(nblist)
R> W_s <- Matrix(listw2mat(W_list))
R> W <- W_s
R> for(t in D_t[-1]){
R> W <- bdiag(W, W_s)
R> }
R> diag(W[-c(1:length(D_s)), -c((n - length(D_s)+1):n)]) <- 0.2
R> set.seed(1)
R> Y <- sim.spARCH(n = n, rho = 0.8, alpha = 1, W = W, type = "log-spARCH")
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Note that the true spatial orientation is preserved in this representation (4 × 4 grid), i.e., plots appearing
close to each other are also located close to each other in space and they are, therefore, more related than
more distant locations. An alternative representation as consecutive spatial random fields is shown in Figure
4.

Figure 3: Simulated spatiotemporal log-ARCH process depicted as individual time series. The
process has been simulated on a 4× 4 spatial unit grid and for 20 points in time. The spatial ARCH
parameter ρ equals 0.9 and α = 1.

The spatial weighting scheme has been chosen as block diagonal matrix like proposed above, i.e.,
constant matrices W1 = W2 = . . . = WT = Ws along the diagonal define the instantaneous spatial
interactions, while constant weights of 0.2 below the diagonal define the extend of the temporal
dependence. For instance, a central location would be weighted equally by all eight spatial neighbors
with a weight of 0.125 and by the observation of the same location at the previous time point by 0.2.
Thus, W describes the structure and the extend of the dependence in space and time. Eventually, ρ
has been chosen as 0.8 and we simulated the process as logarithmic spatial ARCH process.

The resulting simulation is depicted in Figures 3 and 4. Whereas the simulated values are shown
as time series plots placed at their correct spatial locations in Figure 3, 4 depicts the observations
as consecutive spatial random fields. Note that the same color coding has been chosen for both
representations. On the one hand side, one can observe spatial volatility clusters (e.g. in the pre-last
plot in Figure 4, t = 19, in which the conditional variance is low in the upper left corner, whereas
the conditional variance of the remaining locations is high). On the other hand, temporal volatility
cluster can be observed as well. For example, at location 16, the variance is high at the first and
last five time points, while it is lower between t = 6 and t = 14.

For sake of completeness, we briefly demonstrate the simulation of spatial GARCH-type models
using the sim.spGARCH() function. Like for sim.spARCH(), the type of the spatial GARCH model
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t = 1 t = 2 t = 3 t = 4 t = 5

...

t = 19 t = 20

The first five and the last two time points are plotted as spatial random fields, i.e., the simulations are shown
in their natural temporal ordering. An alternative representation as time series in their true spatial ordering
is shown in Figure 3.

Figure 4: Simulated spatiotemporal log-ARCH process depicted as consecutive spatial random
fields. The process has been simulated on a 4× 4 spatial unit grid and for 20 points in time. The
spatial ARCH parameter ρ equals 0.9 and α = 1.

can be chosen by the argument type. More precisely, there are the following options

• type = "spGARCH" for simulation of spatial GARCH models according to the definition in
(10),

• type = "e-spGARCH" for simulation of exponential spatial GARCH models according to the
definition in (12) with g,

• type = "log-spGARCH" for simulation of logarithmic spatial GARCH models according to the
definition in (12) with gb, and

• type = "complex-spGARCH" for simulation of a complex-valued spatial GARCH model.

To simulate a spatial GARCH process, two spatial weights matrices need to be specified via the
arguments W1 and W2. Moreover, two parameters ρ and λ are passed to the simulation function by
the arguments rho and lambda. For instance, a spatial GARCH model can be simulated on a d× d
spatial unit grid as follows

R> require("spdep")
R> rho <- 0.5
R> lambda <- 0.3
R> alpha <- 1
R> d <- 20
R> nblist <- cell2nb(d, d, type = "rook") # Rook's contiguity matrix
R> W_1 <- nb2mat(nblist)
R> W_2 <- W_1
R> Y <- sim.spGARCH(rho = rho, lambda = lambda, alpha = alpha,
+ W1 = W_1, W2 = W_2, type = "spGARCH")

Similarly, spatial log-GARCH processes and exponential spatial GARCH processes can be simulated
by changing the argument type. In this case, the parameters b must be provided for the log-GARCH
or Θ and ζ for the e-spGARCH, respectively. These parameters can easily passed to sim.spGARCH()
by the arguments b, theta, and zeta.

Maximum-likelihood estimation

Other important functions of the package are the qml.spARCH() and qml.SARspARCH() functions,
which implement a quasi-maximum-likelihood estimation algorithm (QML). As for the sim.spARCH()
function, many spARCH models are covered in the qml.spARCH() and
qml.SARspARCH() function. Thus, the user needs to specify which particular spARCH model
is to be fitted via the argument type. Moreover, the model for the mean equation is a user-specified
formula, making the use of the estimation functions similar to the use of the common lm() or glm()
functions.

In general, the estimators exhibited good performances for a variety of error distributions in
simulation studies, although the likelihood function was derived under the normality assumption.
This is not surprising, as the maximum-likelihood estimators have good properties under mild
assumptions for the error processes of a variety of similar spatial econometrics models (cf. Lee 2004;
Lee and Yu 2012, 2010b,a). Thus, we refer to the approach as the QML approach, and the name
of the estimation functions start with qml instead of ml. In the following paragraphs, we start the
simulation of one specific sample, which is then used further to illustrate the log-likelihood functions
as well as to demonstrate parameter estimation.
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Figure 5: Logarithmic likelihood function.

Compared to the log-spARCH processes, the likelihood functions of spARCH models are rather
flat around the global maximum. This behavior is illustrated for simulated processes in Figure 5.
The observations for the log-spARCH process have been simulated as follows.

R> nblist <- cell2nb(20, 20, type = "queen")
R> W <- nb2mat(nblist)
R> y <- sim.spARCH(n = 20^2, rho = 0.5, alpha = 1, W = W,
+ type = "log-spARCH", control = list(seed = 5515))

To simulate an oriented process, the entries of W above the diagonal must be set to zero and the
argument type must be changed to "spARCH", i.e.,

R> W[upper.tri(W)] <- 0
R> y2 <- sim.spARCH(n = 20^2, rho = 0.5, alpha = 1, W = W,
+ type = "spARCH",
+ control = list(seed = 5515))

To estimate the parameters of an intercept-free log-spARCH model without any regressors,
the formula passed to the function qml.spARCH() should be specified as y 0. In addition, a
data.frame can be passed via the data argument to the qml functions. Although the likelihood
function of a spARCH process is flat, good estimates can be obtained through iterative maximization.
Otto et al. (2018) analyze the performance of the estimators in detail. The algorithm implemented
in the packages is based on the Rsolnp package, allowing for both equality and inequality parameter
constraints (cf. Ghalanos and Theussl 2012).

The results of the estimation procedure are returned via an object of the class ‘spARCH’, for
which we provide additionally several generic functions. First, there is a summary() function for the
‘spARCH’ object. The summary shows all important estimation results, i.e., the parameter estimates,
standard errors, test statistics, and asymptotic p-values, including significance stars. The estimation
of the above simulated log-spARCH process would return the following results.

R> spARCH_object <- qml.spARCH(y ~ 0, W = W, type = "log-spARCH")
R> summary(spARCH_object)
Call:

qml.spARCH(formula = y ~ 0, W = W, type = "log-spARCH")

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
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-2.6867629 -0.6197315 -0.0053580 -0.0002615 0.5708346 2.8576621

Coefficients:
Estimate Std. Error t value Pr(>|t|)

alpha 0.919324 0.128544 7.1518 8.564e-13 ***
rho 0.402998 0.056519 7.1304 1.001e-12 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

AIC: 543.01, BIC: 539.01 (Log-Likelihood: -269.51)

Moran's I (residuals): -0.028568, p-value: 0.31795

Moran's I (squared residuals): 0.035239, p-value: 0.14479

The standard errors are estimated as Cramer-Rao bounds from the Hessian matrix of the log-
likelihood function. For triangular weighting matrices, the estimators are asymptotically normally
distributed (Otto et al. 2018). In addition to the Akaike and Bayesian Schwarz information criteria,
the results of Moran’s test on the residuals and squared residuals are reported for the spatial
autocorrelation of the residuals. However, it is possible to use functions like AIC() or BIC(), since
there is a logLik() method for the objects from class ‘spARCH’. Additionally, the fitted values and
residuals can be extracted by fitted() and residuals(), respectively.

To analyze the residuals, we provide additionally several descriptive plots via the generic plot()
function. The first two plots are produced by moran.plot() imported from the package spdep. They
inspect the spatial autocorrelation of the residuals and the squared residuals. In addition, the error
distribution is depicted in the third graphic by a normal Q-Q-plot. The output obtained for the
above numerical example is given below and in Figure 6.

%\begin{CodeInput}
%R> AIC(spARCH_object)
%R> BIC(spARCH_object)
%R> par(mfcol = c(1,3))
%R> plot(spARCH_object)
%\end{CodeInput}
R> AIC(spARCH_object)
[1] 543.0126
R> BIC(spARCH_object)
[1] 550.9956
R> par(mfcol = c(1,3))
R> plot(spARCH_object)
Reproduce the results as follows:

eps <- residuals(x)
W <- as.matrix(x$W)
moran.plot(eps, mat2listw(W), zero.policy = TRUE,

xlab = "Residuals", ylab = "Spatially Lagged Residuals")
Reproduce the results as follows:

eps <- residuals(x)
W <- as.matrix(x$W)
moran.plot(eps, mat2listw(W), zero.policy = TRUE,

xlab = "Residuals", ylab = "Spatially Lagged Residuals")
Reproduce the results as follows:

eps <- residuals(x)
std_eps <- (eps - mean(eps))/sd(eps)
qqnorm(eps, ylab = "Standardized Residuals")
qqline(eps)

The mean equation can be specified as formula for all models, i.e., the spARCH, log-spARCH,
and SARspARCH models. Thus, there is a huge variety of possible spatial ARCH models as well as
regression models with spARCH residuals which can be fitted by the estimation functions. In addition
to linear models of the form y a + b, more sophisticated models can also be fitted, e.g., models with
interactions y a + b:c, factor models y factor, polynomial models y poly(a,3), seasonally
or regularly varying models of the form y sin(t) + cos(t) or y sin(long) + cos(long) +
sin(lat) + cos(lat), and so forth. We also implement an extractAIC() method for ‘spARCH’
objects, such that one might also use step() for stepwise model selection. Table 3 provides an
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Figure 6: Resulting graphical output of plot().

overview of possible combinations of the arguments formula and type and shows the resulting
models, which can be fitted by the functions qml.spARCH() and qml.SARspARCH(), respectively.

Real-data example: prostate cancer incidence rates

Below, the focus is on the incidence rates (2008–2012) for prostate cancer provided by the Centers
for Disease Control and Prevention (U.S. Department of Health and Human Services, Centers for
Disease Control and Prevention and National Cancer Institute 2015). In particular, we analyze
the incidence rates in all counties of several southeastern U.S. states, namely Arkansas, Louisiana,
Mississippi, Tennessee, North and South Carolina, Georgia, Alabama, and Florida. This area also
covers the counties along the Mississippi River collectively known as “cancer alley” (see Nitzkin
1992; Brent 2010; Berry 2003). All rates are age-adjusted to the 2000 U.S. standard population (cf.
U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and
National Cancer Institute 2015). To reproduce the example, the logarithmic incidence rates as well
as several covariates are included in the package.

As explanatory variables, we included a large set of environmental, climate, behavioral, and
health covariates, which might have an influence on incidence rates for prostate cancer. For instance,
we consider air pollution, such as PM2.5, PM10, SO2, NO2, CO, O3, and CH2O, as potential
environmental hazard factors. Moreover, we account for smoking, drinking, sport activities, and
further healthcare-related variables as potential influences on the cancer incidence rates. In total, we
account for 34 explanatory variables, which were obtained by inverse-distance-kriging from spatial
points processes. Most of the variables are correlated, so we performed a factor analysis on 5
subgroups to identify 10 common factors. The factor loadings are summarized in Table 4. Note
that the factor scores are directly included in the dataset prostate_cancer. Eventually, the final
explanatory factors were chosen by minimizing the Bayesian information criterion using the generic
function step() as follows.

R> data(prostate_cancer)
R> out <- step(qml.SARspARCH(formula, B = B, W = W, type = "spARCH",
+ data = prostate_cancer), k = log(length(Y)))

The formula object simply defines a linear model between the logarithmic incidence rates and
all factors. Further, matrix B describes the predefined spatial dependence structure in the mean
equation. For this analysis, B has been chosen as a row-standardized contiguity matrix of the direct
neighbors. For the spatial dependence in the spatial ARCH term of the residuals, we also included all
neighbors up to order 4. Hence, W is the row-standardized matrix of the sum of the first-, second-,
third-, and fourth-lag neighbors.

By minimizing the BIC criterion, the 2nd and 10th factor has been selected. Whereas the 2nd
factor has positive loadings mainly for fine particulate matters, PM2.5 and PM10, the 10th describes
the tendency for high blood pressure and cholesterol in the county’s population. However, note that
this analysis is based on aggregated data rather than individual patients; hence, the selected factors
cannot be interpreted as carcinogenic factors.

Using the generic summary() for the ‘spARCH’ class, the estimated model can be summarized as
follows.

Call:
qml.SARspARCH(formula = formula, B = B, W = W, type = "spARCH",
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Function formula type Resulting model
qml.spARCH() y 0 "spARCH" spARCH model (see (1) and (2))
qml.spARCH() y 1 "spARCH" spARCH model with an additional intercept

for the mean equation
qml.spARCH() y a + b "spARCH" Linear Regression with regressors a and b and

spARCH residuals
qml.spARCH() y a + b:c "spARCH" Linear Regression with more complex expres-

sions and spARCH residuals
qml.spARCH() y 0 "log-spARCH"log-spARCH model (see (1) and (5))
qml.spARCH() y 1 "log-spARCH"log-spARCH model with an additional inter-

cept for the mean equation
qml.spARCH() y a + b "log-spARCH"Linear Regression with regressors a and b and

log-spARCH residuals
qml.spARCH() y a + b:c "log-spARCH"Linear Regression with more complex expres-

sions and log-spARCH residuals
qml.SARspARCH() y 0 "spARCH" SAR model without an intercept, but with

spARCH residuals (see (8) and (9))
qml.SARspARCH() y 1 "spARCH" SAR model with an intercept and spARCH

residuals
qml.SARspARCH() y a + b "spARCH" SAR model with an intercept and the regres-

sors a and b and spARCH residuals
qml.SARspARCH() y a + b:c "spARCH" SAR model with more complex expressions

and spARCH residuals
qml.SARspARCH() y 0 "log-spARCH"SAR model without an intercept, but with

log-spARCH residuals (see (8) and (9))
qml.SARspARCH() y 1 "log-spARCH"SAR model with an intercept and log-spARCH

residuals
qml.SARspARCH() y a + b "log-spARCH"SAR model with an intercept and the regres-

sors a and b plus log-spARCH residuals
qml.SARspARCH() y a + b:c "log-spARCH"SAR model with more complex expressions

and log-spARCH residuals

Table 3: Overview of spatial models, which can be fitted by qml.spARCH() and qml.SARspARCH().
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data = prostate_cancer)

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.7492270 -0.1079639 -0.0001509 -0.0005261 0.1121190 0.6404564

Coefficients:
Estimate Std. Error t value Pr(>|t|)

alpha (spARCH) 0.0203839 0.0042674 4.7766 1.783e-06 ***
rho (spARCH) 0.3782104 0.1309656 2.8879 0.003879 **
lambda (SAR) 0.6768133 0.0356765 18.9708 < 2.2e-16 ***
(Intercept) 1.5388985 0.1702222 9.0405 < 2.2e-16 ***
F_2 0.0192857 0.0069917 2.7584 0.005809 **
F_10 -0.0205693 0.0064450 -3.1915 0.001415 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

AIC: -1734.2, BIC: -1746.2 (Log-Likelihood: 873.11)

Moran's I (residuals): -0.022899, p-value: 0.32023

Moran's I (squared residuals): 0.021409, p-value: 0.00050052

First, we see that the model has a significant spatial autocorrelation in the mean equation
since λ̂ (lambda (SAR)) differs significantly from zero. This implies that there are clusters of higher
prostate cancer incidence rates and, vice versa, lower incidence rates. Second, the error process
shows conditional, autoregressive heteroscedasticity in space, which is captured by the spARCH
component of the model, i.e., ρ̂ = 0.378 and α̂ = 0.020. This can be interpreted as differences in the
local uncertainty of the model. Hence, there are regions where the model predicts the true incidence
rates more accurately, and there are regions with a worse fit. This can also be interpreted as local
risks coming from unobserved, hidden factors. Note additionally that it is important to account for
spatial conditional heteroscedasticity, as the estimates of spatial autoregressive models are biased if
the error variance is not homogeneous across space. Inspecting the residuals, one can see that the
spatial autocorrelation has been fully captured by the model, as Moran’s I of the residuals is close
to zero. In contrast, there is a weak spatial dependence in the squared residuals. To inspect the
reason for this dependence graphically, the function plot() can be used to produce the plots shown
in Figure 7.

After fitting the model, one also may include further regressors or estimate an intercept-only
model via update(). For illustration, we added the percentage of positive results for a prostate-
specific antigen (PSA) test in each county as an additional explanatory variable by

R> out2 <- update(out, . ~ . + PSA_test)

The PSA test is used for prostate cancer screening, meaning that there should definitely be a
positive dependence between the PSA test and the incidence rates. In fact, the estimated parameter
is positive, and the AIC is lower compared to the previous model. To be precise, the updated
parameters are

Estimate Std. Error t value Pr(>|t|)
alpha (spARCH) 0.0199281 0.0043105 4.6231 3.78e-06 ***
rho (spARCH) 0.3902185 0.1280266 3.0479 0.0023041 **
lambda (SAR) 0.6643605 0.0366748 18.1149 < 2.2e-16 ***
(Intercept) 1.1349551 0.2301554 4.9313 8.17e-07 ***
F_2 0.0198504 0.0069903 2.8397 0.0045159 **
F_10 -0.0224035 0.0065828 -3.4034 0.0006656 ***
PSA_test 0.0095962 0.0042728 2.2459 0.0247125 *

Summary and discussion

This paper examines spatial models for autoregressive conditional heteroscedasticity. In contrast to
previously proposed spatial GARCH models, these models allow for instantaneous autoregressive
dependence in the second conditional moments. Previous approaches only allowed for spatial
dependence in the first temporal lag. However, these models are also captured by the spatial ARCH
approach, since temporal dependence can be included by appropriate choices of the weighting matrix.
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Figure 7: Resulting graphical output of plot() for the real-data example.

F. 1 F. 2 F. 3 F. 4 F. 5 F. 6 F. 7 F. 8 F. 9 F. 10
PM2.5 concentration 0.69 0.72
SO2 concentration 0.33 -0.03
NO2 concentration 0.13 -0.12
CO concentration 0.31 0.05
PM10 concentration 0.07 0.44
O3 concentration 1.00 -0.02
Solar radiation 0.60 0.44
Precipitation -0.08 -0.26
Outdoor temperature 1.00 -0.05
Temperature differences 0.32 0.94
Ambient maximal temperature 0.08 -0.39
CH2O -0.23 0.32
Percentage of current smokers 0.47 -0.85
Percentage of former smokers 0.92 0.37
Smoke some days -0.07 -0.62
Never smoked -0.96 0.25
Aerobic activity -0.05 0.58
Exercises 0.41 0.33
Physical activity index -0.09 0.99
Alcohol consumption 0.04 0.62
Binge drinking 0.07 0.44
Heavy drinking 0.43 0.02
High cholesterol 0.00 1.00
Cholesterol checked 0.55 0.00
Overweight (BMI 25.0-29.9) 0.99 0.09
Obese (BMI 30.0 - 99.8) -0.75 0.01
Blood stool test 0.56 -0.23
Sigmoidoscopy 0.14 -0.16
High blood pressure 0.03 0.79
Flu shot 0.81 -0.13
Pneumonia vaccination 0.51 -0.26
Health care coverage 0.58 0.18
Seatbelt use -0.58 0.10

Table 4: Overview of all included regressors and factor loading for the 10 common factors. The
regressors were divided into 5 subgroups to allow for distinctions between the factors.
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In addition to discussing previously proposed models, we introduced a novel spatial logarithmic
ARCH model, for which the probability density has been derived and maximum-likelihood estimators
discussed.

In addition to this theoretical model, we focus on the computational implementation of all
considered spatial ARCH models in the R-package spGARCH. In particular, the simulation and
estimation has been demonstrated. Regarding maximum-likelihood estimation, a broad range of
spatial models are implemented in the package. Furthermore, the spatial weights matrices, as well
as the mean model, can easily be specified by the user, providing a flexible and easy-to-use tool for
spatial ARCH models. All estimation functions return an object for class ‘spARCH’, for which several
generic functions are provided, such as summary(), plot(), and AIC(). This setup also allows the
use of the R-base functions, such as step() for stepwise model selection or update() for updating
the results of different mean models. Eventually, the use of these functions are demonstrated by an
empirical example, namely county-level incidence rates of prostate cancer.

In the future, the package should be extended for further spatial ARCH-type models. Along
this vein, a class for model specifications should be added alongside the actual implementations via
arguments for the fitting functions. In that way, the package can be aligned to common time series
ARCH packages, such as the rugarch package. Furthermore, the package could benefit from robust
estimation methods, another focus for future research.
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Appendix

Proof of Theorem 1. For this definition of gb, one could rewrite lnh as

lnhE = S (α1 + ρbW ln |Y |) (14)

with

S = (sij)i,j=1,...,n =

(
I + 1

2ρbW
)−1

.

Since wij ≥ 0 for all i, j = 1, . . . ,n, W is positive definite and it holds that

det
(

I + 1
2ρbW

)
≥ 1 +

1
2ρb det(W) > 0 .

Thus, the relation between Y (s1), . . . ,Y (sn) and ε(s1), . . . , ε(sn) is given by (1) and (14).

Proof of Corollary 1. For ρ ≥ 0, b ≥ 0, and wij ≥ 0 for all i, j, the inverse

S = (sij)i,j=1,...,n =

(
I + 1

2ρbW
)−1

.

is a non-negative matrix. Thus,

lnhE = S (α1 + ρbW ln |Y |)

is positive for α > 0.
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