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mistr: A Computational Framework for
Mixture and Composite Distributions
by Lukas Sablica and Kurt Hornik

Abstract Finite mixtures and composite distributions allow to model the probabilistic representation
of data with more generality than simple distributions and are useful to consider in a wide range
of applications. The R package mistr provides an extensible computational framework for creating,
transforming, and evaluating these models, together with multiple methods for their visualization
and description. In this paper we present the main computational framework of the package and
illustrate its application. In addition, we provide and show functions for data modeling using two
specific composite distributions as well as a numerical example where a composite distribution is
estimated to describe the log-returns of selected stocks.

Introduction

During the history of financial mathematics mankind has developed many useful theories how to
describe financial markets. While the models in asset pricing are generally covered by the central limit
theorem (CLT) arguments, these arguments do not cover the tail behaviour and thus are usually not
appropriate in the risk management with its focus on the tails of the distribution. A simple illustration
might be the log-returns distribution of the German multinational software corporation SAP. Clearly,
the tails are much heavier than in the case of normal distribution with the same mean and standard
deviation. This behavior can be frequently found in a number of financial assets.
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Figure 1: Left: Densities of the normal distribution and daily SAP log-returns from January 2007 to
October 2017. Right: Quantile-quantile plot of the normal distribution against SAP log-returns.

A more interesting result can be seen from the quantile-quantile plot. While the normal distribution
fails in the tails, it excels in the center. This suggests to use a more suitable distribution which can
catch the fat tails presented above, yet follows a normal distribution in the center.

A simple answer to this idea is the concept of composite distributions (also known as spliced
distributions) and mixture models, where one assumes that the distribution is a finite mixture of
component distributions defined as

F(x) =
n

∑
i=1

wiFi (x|Bi) , f (x) =
n

∑
i=1

wi
Fi (Bi)

1Bi (x) fi(x) (1)

and

F(x) =
n

∑
i=1

wiFi (x) , f (x) =
n

∑
i=1

wi fi (x) , (2)

respectively, where w1, w2, . . . , wn are positive weights that sum up to one, B1, B2, . . . , Bn are Borel sets
giving a disjoint partition of the support, 1Bi is the indicator function of a set Bi, and F1, F2, . . . , Fn are
the probability distributions over R with Fi(Bi) > 0 for all i = 1, 2, . . . , n. Obviously, the composite
models are a specific case of the mixture models, where the corresponding probability distribution
functions are truncated to some disjoint support. For the presented data, a three-component composite
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model with the first and third component being some heavy-tailed distribution and its negative
transform, respectively, is clearly something that might be appropriate. Note that this also suggests
the need of a transformation framework that would be able to perform monotonic transformations on
the random variables that represent these exceedance distributions. This innovation is motivated by
the fact that even though most of the extreme value distributions belong to the location-scale family,
without a decreasing transformation these distributions cannot be used for modeling of heavy left
tails.

Moreover, composite models have gained a fair amount of attention in actuarial loss modeling.
Most frequently one employs models composed of two components, where the first is based on the log-
normal distribution and defined on the positive reals, and the second distribution is chosen according
to the data set to model extreme measurements. Common choices for these tail-modeling distributions
are, for instance, the generalized Pareto distribution or the Burr distribution. Such models have been
proposed by various authors, for more details see Nadarajah and Bakar (2013), Cooray and Ananda
(2005) and Scollnik (2007).

To offer a general framework for univariate distributions and for mixtures in general, package
mistr is specifically designed to create such models, evaluate or even fit them. This article introduces
mistr and illustrates with several examples how these distributions can be created and used.

Distributions in R

R currently employs the naming convention [prefix][name], where [name] cor-
responds to the name of the desired distribution and [prefix] is one of ‘p’, ‘d’, ‘q’
or ‘r’, indicating, respectively, the distribution, density and quantile functions,
or random number generation. However, there are many of restrictions in
this concept. What would be desirable is that one would be able to treat a
distribution as a variable and so to be able to send it to a function or perform
transformations on the random variable it represents.

Naturally, one way to do this is by using the object oriented system in R.
To even improve this idea, one can use some favored dispatching mechanism,
like S3 or S4, to let the computer decide how to handle the corresponding
distribution correctly and which functions to use. In particular, the prefixes p,
d, q, and r can still be just smartly evaluated as generic functions with appropriate methods. Moreover,
with such a system we can add other useful calls and so take the distribution operations to the next
level, such as monotonic transformation of a distribution. Additionally, once these objects containing
all necessary information about the distributions are defined, they can be then reused for the purpose
of the mixture and composite distributions.

This approach has already been used in the package distr (Ruckdeschel et al., 2006), which provides
a conceptual treatment of distributions by means of S4 classes. A parent class Distribution allows to
create objects and contains a slot for parameters as well as for the four methods mentioned above,
p(), d(), q(), and r(). While distr provides several classes for distributions and finite mixtures in
general, like many similar packages, to the best of our knowledge it does not contain any generating
functions for the composite distributions. In particular, the only packages available for composite
models are CompLognormal (Nadarajah and Bakar, 2013), evmix (Hu and Scarrott, 2018), OpVar
(Zou et al., 2018), ReIns (Reynkens and Verbelen, 2018) and gendist (Bakar et al., 2016), which do
not offer a general framework for composite models with more than two components. Whereas distr
provides an impressive functionality-rich and extensible framework implemented in S4, we decided
after careful deliberation to realize mistr based on a self-contained, light-weight framework using S3.
This offers to adjust the representations and settings of the distributions exactly to the required needs
by either mixture or composite models.

The framework provided by package mistr currently supports all distributions that are included
in the stats package and, in addition, it offers some extreme value distributions like generalized Pareto,
Pareto, Frechet, and Burr. In case that the user would like to use a distribution that is not directly
supported by the framework, a new distribution can be implemented in a very simple way. This
procedure is documented in detail in the Extensions vignette of the package.

As was already mentioned, the objects in R that represent a distribution need to contain all the
necessary information. This is, of course, for the purpose of evaluating the distribution function or
quantile function at suitable points just the knowledge of the parameters. Since the framework we
propose is beyond a simple distribution evaluation, the representation is a little bit more complex. A
simple random variable or a distribution is in our framework represented by the distribution family
which the distribution follows, together with the proper parameters and some additional information
that corresponds to the distribution. This information is either stored as a type of class or as attributes
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in a list. The framework then uses the S3 dispatching mechanism to use this information, and hence
it works with the distribution. Such a representation allows to go beyond the simple p, d, q, and r
evaluation and enables to define new and more complicated functions.

An example is the left-hand limit of the cumulative distribution function. It might not look
of crucial importance to be able to evaluate F(x−) = P(X < x), but this function plays a huge
role in the transformations and composite distributions. Of course, this function differs from the
standard distribution function only if it is applied to a distribution with a positive probability mass
in the point of interest. For this reason we simply characterize the (“pseudo”) support by the three
parameters “from”, “to” and “by”. While the parameters “from” and “to” specify the range in which
the distribution takes positive values, the parameter “by”, which is only a part of the lattice-valued
distributions, describes the deterministic step in the support and for most known discrete distributions
is equal to one, since they have support just on the integers. It might of course differ for some
distributions, which have support only on even numbers, or some scaled distributions. It is essential
that this parametrization allows to perfectly define the support of a distribution, and hence allows to
do more complicated operations and calculations, e.g., the left-hand limit of the distribution function.
In the case the user would like a distribution with no equally distanced outcomes, one can perform a
non-linear transformation, which will be dealt with in the next chapter.

Combining distributions

Having the framework defined for the simple distributions, it is desired to combine these objects in
order to define a larger class of distributions. The framework currently supports the mixture and
composite models given in, respectively, (2) and (1).

Following the definition of the composite models in the univariate case, the interval representation
of the truncation allows to use a sequence of breakpoints

−∞ = β0 < β1 ≤ β2 ≤ · · · ≤ βn−1 < βn = ∞

to fully characterize the partitions B1, B2, . . . , Bn. Note that if Fi is continuous, to ensure that the
interval has positive probability we must take βi−1 < βi.

This allows to define λ1 = 0 and for all i = 2, . . . , n,

λi =

{
Fi(βi−1) if βi−1 /∈ Bi,

Fi(βi−1−) otherwise,

where as before Fi(βi−1−) is the left-hand limit P(Xi < x), and for all i = 1, 2, . . . , n− 1,

ρi =

{
Fi(βi) if βi ∈ Bi,

Fi(βi− ) otherwise,

with ρn = 1. Then for any x ∈ Bi

Fi ((−∞, x] ∩ Bi) =

{
Fi (x)− Fi (βi−1) if βi−1 /∈ Bi,

Fi (x)− Fi (βi−1−) if βi−1 ∈ Bi.

This means that for every x ∈ Bi we can write the distribution as Fi ((−∞, x] ∩ Bi) = Fi (x)− λi.

The straightforward implication of the above equations is that supx∈Bi
Fi (x) = ρi. Thus,

Fi (Bi) = ρi − λi.

Hence, if we define pi = ∑j:j≤i wi the composite distribution satisfies

F(x) = pi−1 + wi
Fi(x)− λi

Fi(Bi)
= pi−1 + wi

Fi(x)− λi
ρi − λi

, ∀x ∈ Bi

and, in addition,
pi−1 ≤ F(x) ≤ pi, ∀x ∈ Bi and sup

x∈Bi

F(x) = pi.

If we take some p ∈ (0, 1), then since ∑i pi = 1, there exists i such that pi−1 < p < pi or p = pi.
From this it follows that

F(x) ≥ p⇔ Fi(x) ≥ λi +
p− pi

wi
(ρi − λi) ,
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which implies

F−1(p) = F−1
i

(
λi +

p− pi
wi

(ρi − λi)

)
, for pi−1 < p ≤ pi.

Using the quantile transformation method and the above quantile function we can easily simulate
from our composite distribution.

Therefore, to fully specify a composite distribution, in addition to the mixture specifications, one
needs to set the values that correspond to the breakpoints, which split R into disjoint partitions.
Moreover, if at least one distribution is not absolutely continuous, it might be desired to specify to
which adjacent interval should the breakpoint be included.

Computational framework

The objects representing a simple distribution can be created very easily. The creator functions follow a
standard naming convention from R where the “dist” suffix is appended to the name of a distribution,
and the parameters are entered as arguments. Thus, an object representing normal distribution with
mean equal to 1 and standard deviation equal to 3 can be created as follows:

N <- normdist(mean = 1, sd = 3)
N

#> Distribution Parameters
#> Normal mean = 1, sd = 3

Once the objects are created, they can be used for evaluation of various functions. The most
commonly employed functions clearly will be the methods for print() already demonstrated, and the
methods for the functions p(), d(), q() and r(). These can be easily evaluated as

d(N, c(1, 2, 3))

#> [1] 0.1329808 0.1257944 0.1064827

p(N, c(1, 2, 3))

#> [1] 0.5000000 0.6305587 0.7475075

q(N, c(0.1, 0.2, 0.3))

#> [1] -2.8446547 -1.5248637 -0.5732015

r(N, 3)

#> [1] 1.8144430 -2.6908086 0.2704776

Additional important functions provided by mistr are plim() and qlim(), which implement,
respectively, the already mentioned left-hand limit of the cumulative distribution function F(x−) =
P(X < x) and its pseudoinverse

Q(p+) = inf {x ∈ R : p < P (X ≤ x)} .

Note that the function qlim() plays a very important role when dealing with the transformations, and
just as plim(), in the case of continuous distributions it simplifies to q(). Clearly if −X has a positive
probability mass at x, then

q = P(−X ≤ x) = 1− P(X < −x)⇒ −QX(1− q+) = x.

B <- binomdist(size = 12, prob = 0.3)
plim(B, c(-3, 0, 3, 12))

#> [1] 0.0000000 0.0000000 0.2528153 0.9999995

qlim(B, plim(B, c(0, 3, 7, 12)))

#> [1] 0 3 7 12
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Adding transformation

Once the objects that represent a single distribution are created, we can use this representation to go
beyond the scope of a simple distribution function evaluation. The knowledge of the distributions class
and support range that is stored inside the object opens the doors for more complicated operations.
One such an operation is the ability to perform monotone transformations of random variables.

The transformation framework currently allows for all standard monotone transformations like
addition, subtraction, multiplication, division, logarithm, exponential and monotonic power trans-
formations, where in case of binary operators a numeric value must be used as the second operand.
Moreover, it is provided with the knowledge of invariant and direct transformations that correspond
to the distributions it offers. This information is stored as a generic function that directly dispatches
on the class of distribution family and not on the class univdist to prevent losing any information
about the distribution. An example might be the exponential distribution where a multiplication with
a positive scalar rather keeps the family and changes the parameters. On the other hand, a positive
power transformation will directly create a Weibull distribution with appropriate parameters.

E <- expdist(2)

E * 2

#> Distribution Parameters
#> Exponential rate = 1

E^2

#> Distribution Parameters
#> Weibull shape = 0.5, scale = 0.25

If the transformation is necessary and continuous on the support of the distribution, the transfor-
mation dispatches on the class univdist . For any untransformed distribution, this function will change
the whole class and the class of the distribution family is removed since the random variable does
not follow the distribution anymore. However, the information is stored for the case the distribution
would need to untransform itself later. The function then builds an expression for the transformation
and inverse transformation, along with a print expression and an expression for the derivative of
the inverse transformation. Besides these list members, also a history member is stored, a list that
records the information about the old transformations and becomes really handy when it comes to
an inverse transformation of the previous one, or updating a transformation. A simple example of a
transformation and update follows.

E2 <- E * -2
E3 <- E2 * 5
E3

#> Trafo Distribution Parameters
#> -10 * X Exponential rate = 2

The next example uses the normal distribution that we created in the last chapter.

Norm_trafo <- (N - 1)^(1/3)
Norm_trafo

#> Trafo Distribution Parameters
#> X^(1/3) Normal mean = 0, sd = 3

Note that the X− 1 transformation is not displayed in the Trafo column as it is an invariant transfor-
mation that rather changed the parameter mean from 1 to 0.

The methods that evaluate the transformed distribution are called in the same fashion as the non-
transformed distributions. Additionally, the new pseudo description of the support can be returned
using sudo_support(), which gives two numeric values (“From” and “To”) describing the range of
the support.

Binom_trafo <- -3 * log(B + 4)

q(Binom_trafo, c(0.05, 0.5, 0.95))

#> [1] -6.907755 -6.238325 -4.828314
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plim(Binom_trafo, c(-6, -5, 0))

#> [1] 0.5074842 0.9149750 1.0000000

sudo_support(Binom_trafo)

#> From To
#> -8.317766 -4.158883

Visualization

In addition, the plot() and autoplot() generics can be called. These methods are offered for any
distribution object in the mistr package and return the plot of PDF or PMF and CDF of a given object.
The function uses the introduced d() and p() functions to evaluate the required values. While the
plot() methods offer a plot constructed using base plotting, the autoplot() offers an alternative plot
that is created using the ggplot2 package (Wickham, 2016).

par(mai = c(0.4, 0.4, 0.2, 0.2))
plot(Norm_trafo, xlim1 = c(-2.5, 2.5), ylab1 = "", cex.axis = 0.75)
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Figure 2: CDF (left) and PDF (right) plot of the Norm_trafo object using plot().

library(ggplot2)
autoplot(Norm_trafo, xlim1 = c(-2.5, 2.5))
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Figure 3: CDF (left) and PDF (right) plot of the Norm_trafo object using autoplot().

Other plot functions offered for the mistr distribution objects are QQplot() and QQplotgg(). The
methods for this functions graphically compare the empirical quantiles of two data sets, or quantiles
of two distribution objects, or quantiles of a distribution with the empirical quantiles of a sample. If
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quantiles of a continuous distribution are compared with a sample, a pointwise asymptotic confidence
bound for this data is offered. This confidence “envelope” is based on the asymptotic results of the
order statistics. For a distribution F as the number of observations n tends to infinity, the pth sample
quantile is asymptotically distributed as

X([np]) ∼ AN

(
F−1 (p) ,

p(1− p)

n
[

f
(

F−1 (p)
)]2
)

,

where f (x) and F−1(p) are the density function and quantile function associated with F(x), respec-
tively. More details can be found on the order statistics Wikipedia page or in Wilks (1948), for example.
For alternative bounds see Almeida et al. (2018).

QQplotgg(Norm_trafo, r(Norm_trafo, 1000), conf = 0.99, ylab = NULL, xlab = NULL)
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Figure 4: Q-Q plot of the Norm_trafo object against normally distributed sample with 99% confidence
bound.

Combining objects

Mixtures

Mixture distributions are fully specified by the components Fi(x) (i.e., the distributions) and by the
weights wi that correspond to these components. Function mixdist() allows to create mixtures by
specifying these characterizations. This can be done in two ways. First, the user may specify the
distribution names (names from [prefix][name] functions), the list of appropriate parameters of these
distributions, and a sequence of weights. An example of such a call follows.

mixdist(c("norm", "unif"), list(c(2, 2), c(1, 5)), weights = c(0.5, 0.5))

#> Mixture distribution with:
#>
#> Distribution Parameters Weight
#> 1 Normal mean = 2, sd = 2 0.5
#> 2 Uniform min = 1, max = 5 0.5

Another way is to use the objects that have already been defined. Since the parameters are already
stored inside the object, all the function requires are the objects and the weights. This also allows
to use transformed distributions from the last chapter or more complicated objects, which will be
presented later. This means that the transformed normal and binomial distributions together with an
exponential distribution can be reused for mixture distribution as:

M <- mixdist(Norm_trafo, Binom_trafo, expdist(0.5), weights = c(0.4, 0.2, 0.4))

The information about the mixture can be accessed via multiple S3 methods. The components can
be extracted using square brackets [], the weights can be obtained using weights(), and just as with
standard distributions, the parameters are obtainable using parameters().
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Other interesting methods are those for q and qlim and mixdist objects. While finding the CDF
and PDF of the mixture model is straightforward, an explicit general expression for quantile function
of the mixture model is not available. However, it can be found numerically as a solution of a unit-root
problem:

n

∑
i=1

wiFi (Q(p))− p = 0.

What is more, one can show that the quantile of a mixture distribution Q(p) can always be found
within the range of its components quantiles, and hence

min
i∈{1,...,n}

Qi(p) ≤ Q(p) ≤ max
i∈{1,...,n}

Qi(p),

where Qi(·) is the quantile function of the i-th component. This specifies the needed interval for the
root finder that will then iteratively find the solution. Additionally, further problems are solved to
return the correct values. To show how this algorithm works we perform a simple test and create a
fully discrete mixture for which a decreasing transformation is applied. As the following plot reveals,
all the values are calculated correctly.

DM <- mixdist(3 * binomdist(12, 0.4), -2*poisdist(2) + 12, weights=c(0.5, 0.5))
y <- c(0.05, 0.4, p(-DM, c(-5, -10, -15)), 0.95)
x <- q(-DM, y)
autoplot(-DM, which = "cdf", only_mix = TRUE, xlim1 = c(-37, 0)) +

annotate("point", x, y, col = "white")
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Figure 5: CDF plot of the -DM object with calculated quantiles annotated with white dots.

Finally, since inverse transform sampling is not efficient for mixture distributions, it can be
replaced by first sampling according to the weights wi and then, conditionally on that, by drawing
from the selected component, similarly as in the actuar package (Dutang et al., 2008). This approach is
implemented in the corresponding method of the r() function. This allows to draw from a mixture
much faster than the inverse quantile transform method and can also be reused later for composite
distributions. Besides the quantile function and other main functions for evaluation, one can call other
generic functions that are designed for the class mixdist , e.g. sudo_support().

sudo_support(M)

#> From To
#> -Inf Inf

Since the mixture models are in fact distributions, one can perform transformations of mixture
random variables as well. It is easy to show that a transformation of a mixture random variable is
the same as if we applied the same transformation to all of its components. In addition, since the
support of the components is a subset of the mixture’s support, if the framework allows to transform
the mixture, then it does the components as well. Now using the mixture we created, we can perform
a decreasing non-linear transformation. An example of r() and autoplot() follows.

M_trans <- -2 * (M)^(1/3)
r(M_trans, 4)
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#> [1] 1.757693 2.247355 2.387137 -1.986538

autoplot(M_trans)

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4

CDF

0.0

0.2

0.4

0.6

−4 −2 0 2 4

PDF

Figure 6: CDF (left) and PDF (right) plot of the M_trans object.

Composite distributions

Function compdist() creates composite distributions, which like mixture distributions can be done in
two ways. Either one can directly use the objects or let the function create these objects by specifying the
sequence of names and a list of parameters. In the following example, we will directly proceed with the
first method where we define some objects inside the compdist() call to create a composite distribution.
Besides these objects one needs to set the sequences of weights and breakpoints. Additionally, one
may determine for each breakpoint to which partition should the breakpoint be included. This can be
set by the argument break.spec with values ‘R’ or ‘L’, where ‘R’ and ‘L’ stand for right (i.e., include
breakpoint to the interval on the right of the breakpoint) and left (i.e., include to the interval on the
left), respectively. If this argument is not stated, the algorithm will by default set all intervals to
be left-closed, i.e., right-open. This can be nicely seen from the following example where a linearly
transformed Pareto distribution and a geometric distribution are combined with a normal distribution
into a composite model.

C <- compdist(-paretodist(1, 1), normdist(0, 2), geomdist(0.3) + 2,
weights = c(0.15, 0.7, 0.15), breakpoints = c(-3, 3),
break.spec = c("L", "R"))

C

#> Composite distribution with:
#>
#> Trafo Distribution Parameters Weight Truncation
#> 1 -X Pareto scale = 1, shape = 1 0.15 (-Inf,-3]
#> 2 none Normal mean = 0, sd = 2 0.70 (-3,3)
#> 3 X + 2 Geometric prob = 0.3 0.15 [3,Inf)

The argument break.spec is set to (“L”, “R”), and thus the breakpoint −3 belongs to the first partition
while the second breakpoint is affiliated to the partition on the right. This can be observed from
the print of the distribution, more precisely from the Truncation column, where the parentheses are
printed according to this argument.

The package also permits to use the same breakpoint twice. This possibility allows to define a
partition on a singleton, and hence to create a mass of probability. If this feature is used, the break.spec
needs to be specified with “R” and “L”, for the first and second identical breakpoint, respectively,
or not set at all. If the break.spec is not used, the source code will change break.spec such that this
single point with probability mass is a closed set. This feature can become particularly useful when
the user wants to create a distribution that is, for example, absolutely continuous on both the negative
and positive reals and has positive mass at zero.

C2 <- compdist(-expdist(2), poisdist(), expdist(2),
weights = c(0.25, 0.5, 0.25), breakpoints = c(0, 0))

C2
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#> Composite distribution with:
#>
#> Trafo Distribution Parameters Weight Truncation
#> 1 -X Exponential rate = 2 0.25 (-Inf,0)
#> 2 none Poisson lambda = 1 0.50 [0,0]
#> 3 none Exponential rate = 2 0.25 (0,Inf)

Note that the distribution assigned to this singleton has to be a discrete distribution with support on
that point, otherwise the interval will have zero probability.

As for any distribution, the framework offers many methods that can be used to obtain additional
information or evaluate the composite distribution. One can extract the parameters, weights, or the
support in the same manner as with mixture distributions. In addition, calling breakpoints() extracts
the splicing points. Finally, there are methods for plot() and autoplot() where the components are
shown by default, which again can be turned off using the only_mix = TRUE argument.

par(mai = c(0.4, 0.4, 0.2, 0.2))
plot(C, xlim1 = c(-15, 15), ylab1 = "", cex.axis = 0.75, mtext_cex = 0.75)
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Figure 7: CDF (left) and PDF (right) plot of the C object using plot().

autoplot(C2, text_ylim = 0.01)
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Figure 8: CDF (left) and PDF (right) plot of the C2 object using autoplot().

Analogously to the mixture distributions, the framework also supports the transformations of
composite random variables. Thus, using the composite distribution we defined, we propose an
example of a linear transformation.

C_trans <- -0.5 * (C + 7)

Even with such a distribution, the user still can evaluate all functions “of interest”. To support
this, an example follows where the function q() and r() are used, and the functions p() and d() are
represented graphically using the autoplot() method.
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q(C_trans, c(0.075, 0.5, 0.7, 0.9))

#> [1] -5.500000 -3.500000 -2.833235 -1.250000

r(C_trans, 4)

#> [1] -4.635072 -3.161199 -5.500000 -4.817573

autoplot(C_trans, xlim1 = c(-10,5))
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Figure 9: CDF (left) and PDF (right) plot of the C_trans object using autoplot().

Combining mixture and composite distributions

A significant advantage of object oriented programming is that the dispatching mechanism automati-
cally knows how to treat a given object. This allows to combine mixture and composite models into
more complicated mixtures and composite distributions. Therefore, we can take the transformed
mixture and the transformed composite distribution that we created in the last chapter to compose a
composite distribution with these distributions as components. What is more, we can perform further
transformations of such a distribution.

C3 <- compdist(M_trans - 3, C_trans, weights = c(0.5, 0.5), breakpoints = -4.5)
C3_trans <- -2 * C3 + 2

Thus, the object C3_trans is a transformed composite distribution that contains a transformed
mixture and a transformed composite distribution, from which both additionally contain many
transformed and untransformed distributions. Even in such complex models, the user may evaluate
the most complicated functions like plim() and qlim(). The functions d() and p() can be again best
represented graphically, where both distributions can easily be recognized from previous chapters.

autoplot(C3_trans, xlim1 = c(0,20), text_ylim = 0.01, grey = TRUE)
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Figure 10: CDF (left) and PDF (right) plot of the C3_trans object.
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plim(C3_trans, c(6, 10, 12))

#> [1] 0.09667553 0.42195189 0.62458021

qlim(C3_trans, c(0.3, 0.5, 0.7))

#> [1] 8.785363 11.000000 12.327907

As the print() output for such a hierarchical distribution does not contain lot of information,
one can alternatively use summary() for which the package provides methods, which are particularly
useful for the hierarchical distributions. The printed result of this call consists of all the necessary
information, and much more as well. Nevertheless, since the result of summary() on the C3_trans
object is two pages long, the demonstration is left to the reader.

To finish this chapter and to show that the user may go even further, we present an example where
we combine the last object with another distribution from this chapter into a mixture distribution. The
distribution is directly plotted using autoplot().

autoplot(mixdist( C3_trans, C2 + 5, weights = c(0.7, 0.3)), xlim1 = c(0, 15))
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Figure 11: CDF (left) and PDF (right) plot of the mixture distribution with components C3_trans and
C2 + 5.

Data modeling

While the previous chapters were aimed at showing the “muscles” (i.e., generality) of the framework,
in this last chapter we will focus on examples using real data. In particular, we will present a simple
fitting for two specific composite distributions.

As motivated in the introduction, the models in financial and actuarial mathematics suggest
employing distributions which can capture the wide variety of behaviors in tails while still following
the normal distribution in the center. In the two-tailed case, this suggests to use a three components
composite distribution, where the first and third component will be used to model the extreme cases,
i.e., the tails, and the second component will try to catch the center of the empirical distribution.

The first model offered by mistr is the Pareto-Normal-Pareto (PNP) model. This means that a −X
transformation of a Pareto random variable will be used for the left tail, normal distribution for the
center and again Pareto for the right tail. From this it follows that the PDF of the model can be written
as:

f (x) =


w1

f−P(x)
F−P(β1)

if −∞ < x < β1,

w2
fN(x)

FN(β2)−FN(β1)
if β1 ≤ x < β2,

w3
fP(x)

1−FP(β2)
if β2 ≤ x < ∞,

where fP(x) = f−P(−x) and FP(x) = 1 − (K/x)α are the density and distribution function of a
Pareto distribution with F−P(x) = 1− FP(−x). fN(x) and FN(x) are the PDF and CDF of the normal
distribution, respectively.

If we follow the properties of a Pareto distribution, the conditional probability distribution of
a Pareto-distributed random variable, given that the event is greater than or equal to γ > K, is
again a Pareto distribution with parameters γ and α. This means that the conditional distribution
fP(x|K, α)/(1− FP(β2|K, α)) = fP(x|β2, α) if β2 > K. On the other hand, if β2 < K the distribution
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cannot be continuous as the support of a Pareto distribution starts at K. The same can be shown for
the transformed distribution and hence we can rewrite the PDF as

f (x) =


w1 f−P(x| − β1, α1) if −∞ < x < β1,

w2
fN(x|µ,σ)

FN(β2|µ,σ)−FN(β1|µ,σ) if β1 ≤ x < β2,
w3 fP(x|β2, α2) if β2 ≤ x < ∞,

where
β1 < 0 < β2,

α1, α2 > 0.

The condition β1 < 0 < β2 follows from the fact that the scale parameter has to be positive. Thus,
such a model can be fully used only with demeaned data sample or with data with a mean close to
zero. This is of course not a problem for stock returns, which are the aim of this chapter. What is more,
one can show that the density is continuous if for the shape parameters it holds that

α1 = −β1
w2 fN(β1|µ, σ)

w1 (FN(β2|µ, σ)− FN(β1|µ, σ))
,

α2 = β2
w2 fN(β2|µ, σ)

w3 (FN(β2|µ, σ)− FN(β1|µ, σ))
.

This condition is not only natural when modelling the real data, it additionally solves the possible
instability effects at estimation once observations come to lie close to breakpoints. Due to the fact that
a composite distribution can be represented as a mixture of truncated distributions that are truncated
to a disjoint support, the weight of each component can be estimated as the proportion of points that
correspond to each of the truncated regions. Obviously, this condition ensures that the empirical and
estimated CDF match on each of the breakpoints. Thus, conditionally on the fact that the breakpoints
are known, similarly as in Reynkens et al. (2017), the weights can be computed as

w1 =
∑n

i=1 1{xi<β1}
n

, w2 =
∑n

i=1 1{β1≤xi<β2}
n

, w3 =
∑n

i=1 1{β2≤xi}
n

,

where 1{·} is the indicator function and xi is the i-th data value. These conditions decrease the number
of parameters from 11 to 4 and imply the density function of the form:

f (x|β1, β2, µ, σ).

This model is offered by the function PNP_fit() which takes the data and a named vector of
starting values with names break1, break2, mean, and sd and returns a list of class comp_fit . Other
arguments are passed to the optimizer which then maximizes the likelihood of the above specified
model. The optimization is handled by the mle2() function from bbmle package (Ben Bolker and
R Development Core Team, 2017). To demonstrate this, we will take the same data we used in the
introduction to fit a PNP model with the default starting values.

PNP_model <- PNP_fit(stocks$SAP)

PNP_model

#> Fitted composite Pareto-Normal-Pareto distribution:
#>
#> Breakpoints: -0.019304 0.020518
#> Weights: 0.092443 0.82135 0.086207
#>
#> Parameters:
#> scale1 shape1 mean sd scale2 shape2
#> 0.019304 1.773598 0.000961 0.012950 0.020518 2.198590
#>
#> Log-likelihood: 7400.117, Average log-likelihood: 2.7146

If the fitted object is printed, the function prints all the parameters together with the log-likelihood
that was achieved by the optimization. In addition, the average log-likelihood is printed, which is
just the log-likelihood divided by the size of the data set. The user can extract parameters using
parameters(), weights using weights(), and breakpoints using breakpoints(). The distribution()
function can be used to extract the distribution with fitted parameters that can be used for evaluation.

Finally, again plot() and autoplot() methods are offered, which give a Q-Q plot of the fitted
distribution and the data, and the CDF and PDF plot of the fitted distribution, which overlap with
the empirical CDF and PDF of the data set. Again, the which argument can extract the proposed plots
separately (i.e., which = "pdf"). Other arguments are passed to the the plot calls.

plot(PNP_model, ylab1 = "", ylab2 = "")

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=bbmle


CONTRIBUTED RESEARCH ARTICLE 14

−0.6 −0.4 −0.2 0.0 0.2

−
1.

5
−

0.
5

0.
5

Q−Q plot

−0.06 −0.02 0.02

0.
0

0.
4

0.
8

CDF

9.24% 91.38%
−0.06 −0.02 0.02

0
10

20
30

PDF

9.24% 91.38%

Figure 12: Q-Q (up), CDF (bottom left) and PDF (bottom right) plot of the fitted PNP model overlapped
with empirical results indicated by blue dots using plot().

The plots indicate an overall nice fit where all quantiles are in the confidence bound.

The second model offered is a similar distribution to the previous one, except we will replace the
Pareto distributions by the generalized Pareto distributions (GPD)

FGPD(x) =

1−
(

1 + ξ x−θ
γ

)−1/ξ
if ξ 6= 0,

1− exp
(
− x−θ

γ

)
if ξ = 0.

This means that the PDF of this model can be written as:

f (x) =


w1

f−GPD(x)
F−GPD(β1)

if −∞ < x < β1,

w2
fN(x)

FN(β2)−FN(β1)
if β1 ≤ x < β2,

w3
fGPD(x)

1−FGPD(β2)
if β2 ≤ x < ∞.

The same way as in the PNP model, the scale parameters can be eliminated by the continuity
conditions, weights by the above mentioned condition and in addition, under current settings and the
continuity conditions, the value of the conditional GPD distribution depends on the location parameter
only through the conditions −β1 ≥ θ1 and β2 ≥ θ2. This suggests to choose without any loss in the
model −β1 = θ1 and β2 = θ2. This PDF is then fully characterized by

f (x|β1, β2, µ, σ, ξ1, ξ2),

where the only restriction on the parameters is −∞ < β1 < β2 < ∞.

These conditions decrease the number of parameters from 13 to 6. What is more, the function
GNG_fit() contains the argument break_fix, which fixes the breakpoints from the vector of starting
values, and so decreases the number of parameters to 4 if TRUE is assigned. In this case, the breakpoints
are fixed and weights are computed before the optimization. The function GNG_fit() takes the data,
the named vector of starting values with names break1, break2, mean, sd, shape1 and shape2, the
break_fix argument and the argument midd, which is by default set to be equal to the mean of the
data. The midd value is used to split R into two sub-intervals and then the first breakpoint is optimized
on the left of the midd value and the second breakpoint on the right.

The function returns a list of class comp_fit . The results can be then extracted, printed or visualized
in the same way as the results of PNP_fit().

GNG_model <- GNG_fit(stocks$SAP)

GNG_model
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#> Fitted composite GPD-Normal-GPD distribution:
#>
#> Breakpoints: -0.019414 0.019353
#> Weights: 0.091343 0.812546 0.096112
#>
#> Parameters:
#> loc1 scale1 shape1 mean sd loc2 scale2 shape2
#> 0.019414 0.013439 0.150141 0.000907 0.011696 0.019353 0.010842 0.096832
#>
#> Log-likelihood: 7423.245, Average log-likelihood: 2.7231

autoplot(GNG_model)
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Figure 13: Q-Q (up), CDF (bottom left) and PDF (bottom right) plot of the fitted GNG model over-
lapped with empirical results indicated by yellow dots and dashes using autoplot().

The log-likelihood has increased to 7423.2 with the average of 2.723 per data-point. In this model,
the generalized Pareto distribution explains the first 9.1% from the left tail and the last 9.6% from
the right tail. Since the GPD generalizes the Pareto distribution, the higher likelihood is a reasonable
result. Moreover, the QQ-plot suggests an almost perfect fit.

The result of these estimations is a proper continuous parametric set-up that describes the dis-
tribution of the data. What is more, the distribution has been fitted as a whole with respect to the
continuity conditions. This means that the tails take into account the whole distribution, which allows
to calculate the risk measures with an even higher precision as when only the tails are modeled.

Risk measures

Package mistr provides a function risk() which can be used for rapid calculations of point estimates
of prescribed quantiles, expected shortfalls and expectiles (in the following table denoted as VaR,
ES and Exp, respectively). For more details on these measures see McNeil et al. (2015). As input
parameters this function needs the output of the function PNP_fit() or GNG_fit() and a vector of the
desired levels. As an example we illustrate this function on our fitted object.

risk(GNG_model, c(0.02, 0.05, 0.07, 0.1, 0.2, 0.3))

#> level VaR ES Exp
#> 1 0.02 0.042341368 0.06220519 0.032240507
#> 2 0.05 0.027889909 0.04520065 0.021949976
#> 3 0.07 0.023062791 0.03952074 0.018526202
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#> 4 0.10 0.018245509 0.03380624 0.015091608
#> 5 0.20 0.010642738 0.02386181 0.008851640
#> 6 0.30 0.006167236 0.01867190 0.005168659

These results can be also visualized if arguments plot or ggplot are set to TRUE.

Summary

We introduced a new extensible framework for mixture and composite distributions in R via the mistr
package. It offers creation and manipulation of simple distributions which can be combined into more
complicated distributions to offer more generality in the current data modeling. Furthermore, the
framework provides multiple methods specifically designed to describe and visualize the distributions
or functions capable of fitting the two pre-defined composite distributions introduced in the last
chapter.

The package is additionally equipped with the possibility to extend the current list of known
distributions and monotone transformations by letting the user add these in a very simple way. This
procedure is documented in detail in the Extensions vignette. Finally, we will keep adding multiple
extensions and distributions to extend the generality even more.
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