
CONTRIBUTED RESEARCH ARTICLE 343

Variable Importance Plots—An
Introduction to the vip Package
by Brandon M. Greenwell, Bradley C. Boehmke

Abstract In the era of “big data”, it is becoming more of a challenge to not only build state-of-the-art
predictive models, but also gain an understanding of what’s really going on in the data. For example,
it is often of interest to know which, if any, of the predictors in a fitted model are relatively influential
on the predicted outcome. Some modern algorithms—like random forests (RFs) and gradient boosted
decision trees (GBMs)—have a natural way of quantifying the importance or relative influence of
each feature. Other algorithms—like naive Bayes classifiers and support vector machines—are not
capable of doing so and model-agnostic approaches are generally used to measure each predictor’s
importance. Enter vip, an R package for constructing variable importance scores/plots for many
types of supervised learning algorithms using model-specific and novel model-agnostic approaches.
We’ll also discuss a novel way to display both feature importance and feature effects together using
sparklines , a very small line chart conveying the general shape or variation in some feature that can
be directly embedded in text or tables.

Introduction

Too often machine learning (ML) models are summarized using a single metric (e.g., cross-validated ac-
curacy) and then put into production. Although we often care about the predictions from these models,
it is becoming routine (and good practice) to also better understand the predictions! Understanding
how an ML model makes its predictions helps build trust in the model and is the fundamental idea of
the emerging field of interpretable machine learning (IML).1 For an in-depth discussion on IML, see
Molnar (2019b). In this paper, we focus on global methods for quantifying the importance2 of features
in an ML model; that is, methods that help us understand the global contribution each feature has to a
model’s predictions. Computing variable importance (VI) and communicating them through variable
importance plots (VIPs) is a fundamental component of IML and is the main topic of this paper.

While many of the procedures discussed in this paper apply to any model that makes predictions, it
should be noted that these methods heavily depend on the accuracy and importance of the fitted model;
hence, unimportant features may appear relatively important (albeit not predictive) in comparison to
the other included features. For this reason, we stress the usefulness of understanding the scale on
which VI scores are calculated and take that into account when assessing the importance of each feature
and communicating the results to others. Also, we should point out that this work focuses mostly on
post-hoc interpretability where a trained model is given and the goal is to understand what features
are driving the model’s predictions. Consequently, our work focuses on functional understanding
of the model in contrast to the lower-level mechanistic understanding (Montavon et al., 2018). That
is, we seek to explain the relationship between the model’s prediction behavior and features without
explaining the full internal representation of the model.3

VI scores and VIPs can be constructed for general ML models using a number of available
packages. The iml package (Molnar, 2019a) provides the FeatureImp() function which computes
feature importance for general prediction models using the permutation approach (discussed later). It
is written in R6 (Chang, 2019) and allows the user to specify a generic loss function or select one from a
pre-defined list (e.g., loss = "mse" for mean squared error). It also allows the user to specify whether
importance is measured as the difference or as the ratio of the original model error and the model error
after permutation. The user can also specify the number of repetitions used when permuting each
feature to help stabilize the variability in the procedure. The iml::FeatureImp() function can also be
run in parallel using any parallel backend supported by the foreach package (Revolution Analytics
and Weston).

The ingredients package (Biecek et al., 2019a) also provides permutation-based VI scores through
the feature_importance() function. (Note that this function recently replaced the now deprecated
DALEX function variable_importance() (Biecek, 2019).) Similar to iml::FeatureImp(), this function
allows the user to specify a loss function and how the importance scores are computed (e.g., using the

1Although “interpretability” is difficult to formally define in the context of ML, we follow Doshi-Velez and Kim
(2017) and describe “interpretable” as the “. . . ability to explain or to present in understandable terms to a human.”

2In this context “importance” can be defined in a number of different ways. In general, we can describe it as
the extent to which a feature has a "meaningful" impact on the predicted outcome . A more formal definition and
treatment can be found in van der Laan (2006).

3We refer the reader to Poulin et al. (2006), Caruana et al. (2015), Bibal and Frénay (2016), and Bau et al. (2017),
for discussions around model structure interpretation.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=iml
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=ingredients
https://CRAN.R-project.org/package=DALEX

CONTRIBUTED RESEARCH ARTICLE 344

difference or ratio). It also provides an option to sample the training data before shuffling the data to
compute importance (the default is to use n_sample = 1000), which can help speed up computation.

The mmpf package (Jones, 2018) also provides permutation-based VI scores via the
mmpf::permutationImportance() function. Similar to the iml and ingredients implementation, this
function is flexible enough to be applied to any class of ML models in R.

The varImp package (Probst, 2019) extends the permutation-based method for RFs in package
party (Hothorn et al., 2019) to arbitrary measures from the measures package (Probst, 2018). Addition-
ally, the functions in varImp include the option of using the conditional approach described in Strobl
et al. (2008) which is more reliable in the presence of correlated features. A number of other RF-specific
VI packages exist on CRAN, including, but not limited to, vita (Celik, 2015), rfVarImpOOB (Loecher,
2019), randomForestExplainer (Paluszynska et al., 2019), and tree.interpreter (Sun, 2019).4.

The caret package (Kuhn, 2020) includes a general varImp() function for computing model-specific
and filter-based VI scores. Filter-based approaches, which are described in Kuhn and Johnson (2013),
do not make use of the fitted model to measure VI. They also do not take into account the other
predictors in the model. For regression problems, a popular filter-based approach to measuring the
VI of a numeric predictor x is to first fit a flexible nonparametric model between x and the target Y;
for example, the locally-weighted polynomial regression (LOWESS) method developed by Cleveland
(1979). From this fit, a pseudo-R2 measure can be obtained from the resulting residuals and used as a
measure of VI. For categorical predictors, a different method based on standard statistical tests (e.g.,
t-tests and ANOVAs) can be employed; see Kuhn and Johnson (2013) for details. For classification
problems, an area under the ROC curve (AUC) statistic can be used to quantify predictor importance.
The AUC statistic is computed by using the predictor x as input to the ROC curve. If x can reasonably
separate the classes of Y, that is a clear indicator that x is an important predictor (in terms of class
separation) and this is captured in the corresponding AUC statistic. For problems with more than two
classes, extensions of the ROC curve or a one-vs-all approach can be used.

If you use the mlr interface for fitting ML models (Bischl et al., 2020), then you can use the
getFeatureImportance() function to extract model-specific VI scores from various tree-based models
(e.g., RFs and GBMs). Unlike caret, the model needs to be fit via the mlr interface; for instance, you
cannot use getFeatureImportance() on a ranger (Wright et al., 2020) model unless it was fit using
mlr.

While the iml and DALEX packages provide model-agnostic approaches to computing VI, caret,
and to some extent, mlr, provide model-specific approaches (e.g., using the absolute value of the
t-statistic for linear models) as well as less accurate filter-based approaches. Furthermore, each package
has a completely different interface (e.g., iml is written in R6). The vip package (Greenwell et al.,
2019) strives to provide a consistent interface to both model-specific and model-agnostic approaches
to feature importance that is simple to use. The three most important functions exported by vip are
described below:

• vi() computes VI scores using model-specific or model-agnostic approaches (the results are
always returned as a tibble (Müller and Wickham, 2019));

• vip() constructs VIPs using model-specific or model-agnostic approaches with ggplot2-style
graphics (Wickham et al., 2019);

• add_sparklines() adds a novel sparkline representation of feature effects (e.g., partial depen-
dence plots) to any VI table produced by vi().

There’s also a function called vint() (for variable interactions) but it is experimental and will not
be discussed here; the interested reader is pointed to Greenwell et al. (2018). Note that vi() is actually
a wrapper around four workhorse functions, vi_model(), vi_firm(), vi_permute(), and vi_shap(),
that compute various types of VI scores. The first computes model-specific VI scores, while the latter
three produce model-agnostic ones. The workhorse function that actually gets called is controlled by
the method argument in vi(); the default is method = "model" which corresponds to model-specific
VI (see ?vip::vi for details and links to further documentation).

Constructing VIPs in R

We’ll illustrate major concepts using the Friedman 1 benchmark problem described in Friedman (1991)
and Breiman (1996):

Yi = 10 sin (πX1iX2i) + 20 (X3i − 0.5)2 + 10X4i + 5X5i + εi, i = 1, 2, . . . , n, (1)

4These packages were discovered using pkgsearch’s ps() function (Csárdi and Salmon, 2019) with the key
phrases “variable importance” and “feature importance”.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mmpf
https://CRAN.R-project.org/package=varImp
https://CRAN.R-project.org/package=party
https://CRAN.R-project.org/package=measures
https://CRAN.R-project.org/package=vita
https://CRAN.R-project.org/package=rfVarImpOOB
https://CRAN.R-project.org/package=randomForestExplainer
https://CRAN.R-project.org/package=tree.interpreter
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=mlr
https://CRAN.R-project.org/package=ranger
https://CRAN.R-project.org/package=vip
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=pkgsearch

CONTRIBUTED RESEARCH ARTICLE 345

where εi
iid∼ N

(
0, σ2). Data from this model can be generated using the vip::gen_friedman(). By

default, the features consist of 10 independent variables uniformly distributed on the interval [0, 1];
however, only 5 out of these 10 are actually used in the true model. The code chunk below simulates
500 observations from the model in Equation (1) with σ = 1; see ?vip::gen_friedman for details.

trn <- vip::gen_friedman(500, sigma = 1, seed = 101) # simulate training data
tibble::as_tibble(trn) # inspect output

#> # A tibble: 500 x 11
#> y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 14.9 0.372 0.406 0.102 0.322 0.693 0.758 0.518 0.530 0.878 0.763
#> 2 15.3 0.0438 0.602 0.602 0.999 0.776 0.533 0.509 0.487 0.118 0.176
#> 3 15.1 0.710 0.362 0.254 0.548 0.0180 0.765 0.715 0.844 0.334 0.118
#> 4 10.7 0.658 0.291 0.542 0.327 0.230 0.301 0.177 0.346 0.474 0.283
#> 5 17.6 0.250 0.794 0.383 0.947 0.462 0.00487 0.270 0.114 0.489 0.311
#> 6 18.3 0.300 0.701 0.992 0.386 0.666 0.198 0.924 0.775 0.736 0.974
#> 7 14.6 0.585 0.365 0.283 0.488 0.845 0.466 0.715 0.202 0.905 0.640
#> 8 17.0 0.333 0.552 0.858 0.509 0.697 0.388 0.260 0.355 0.517 0.165
#> 9 8.54 0.622 0.118 0.490 0.390 0.468 0.360 0.572 0.891 0.682 0.717
#> 10 15.0 0.546 0.150 0.476 0.706 0.829 0.373 0.192 0.873 0.456 0.694
#> # ... with 490 more rows

From Equation (1), it should be clear that features X1–X5 are the most important! (The others don’t
influence Y at all.) Also, based on the form of the model, we’d expect X4 to be the most important
feature, probably followed by X1 and X2 (both comparably important), with X5 probably being less
important. The influence of X3 is harder to determine due to its quadratic nature, but it seems likely
that this nonlinearity will suppress the variable’s influence over its observed range (i.e., 0–1).

Model-specific VI

Some machine learning algorithms have their own way of quantifying the importance of each feature,
which we refer to as model-specific VI . We describe some of these in the subsections that follow.
One particular issue with model-specific VI scores is that they are not necessarily comparable across
different types of models. For example, directly comparing the impurity-based VI scores from tree-
based models to the the absolute value of the t-statistic in linear models.

Decision trees and tree ensembles

Decision trees probably offer the most natural model-specific approach to quantifying the importance
of each feature. In a binary decision tree, at each node t, a single predictor is used to partition the
data into two homogeneous groups. The chosen predictor is the one that maximizes some measure of
improvement it. The relative importance of predictor X is the sum of the squared improvements over
all internal nodes of the tree for which X was chosen as the partitioning variable; see Breiman et al.
(1984) for details. This idea also extends to ensembles of decision trees, such as RFs and GBMs. In
ensembles, the improvement score for each predictor is averaged across all the trees in the ensemble.
Fortunately, due to the stabilizing effect of averaging, the improvement-based VI metric is often more
reliable in large ensembles; see Hastie et al. (2009, p. 368).

RFs offer an additional method for computing VI scores. The idea is to use the leftover out-of-bag
(OOB) data to construct validation-set errors for each tree. Then, each predictor is randomly shuffled
in the OOB data and the error is computed again. The idea is that if variable X is important, then the
validation error will go up when X is perturbed in the OOB data. The difference in the two errors is
recorded for the OOB data then averaged across all trees in the forest. Note that both methods for
constructing VI scores can be unreliable in certain situations; for example, when the predictor variables
vary in their scale of measurement or their number of categories (Strobl et al., 2007), or when the
predictors are highly correlated (Strobl et al., 2008). The varImp package discussed earlier provides
methods to address these concerns for random forests in package party, with similar functionality
also built into the partykit package (Hothorn and Zeileis, 2019). The vip package also supports the
conditional importance described in (Strobl et al., 2008) for both party- and partykit-based RFs; see
?vip::vi_model for details. Later on, we’ll discuss a more general permutation method that can be
applied to any supervised learning model.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=partykit

CONTRIBUTED RESEARCH ARTICLE 346

To illustrate, we fit a CART-like regression tree, RF, and GBM to the simulated training data. (Note:
there are a number of different packages available for fitting these types of models, we just picked
popular implementations for illustration.)

Load required packages
library(rpart) # for fitting CART-like decision trees
library(randomForest) # for fitting RFs
library(xgboost) # for fitting GBMs

Fit a single regression tree
tree <- rpart(y ~ ., data = trn)

Fit an RF
set.seed(101) # for reproducibility
rfo <- randomForest(y ~ ., data = trn, importance = TRUE)

Fit a GBM
set.seed(102) # for reproducibility
bst <- xgboost(
data = data.matrix(subset(trn, select = -y)),
label = trn$y,
objective = "reg:squarederror",
nrounds = 100,
max_depth = 5,
eta = 0.3,
verbose = 0 # suppress printing

)

Each of the above packages include the ability to compute VI scores for all the features in the
model; however, the implementation is rather package-specific, as shown in the code chunk below.
The results are displayed in Figure 1 (the code to reproduce these plots has been omitted but can be
made available upon request).

Extract VI scores from each model
vi_tree <- tree$variable.importance
vi_rfo <- rfo$variable.importance # or use `randomForest::importance(rfo)`
vi_bst <- xgb.importance(model = bst)

x10

x8

x9

x7

x6

x3

x5

x1

x2

x4

0 1000 2000 3000 4000
Importance

Single tree

x6

x7

x8

x10

x9

x3

x5

x1

x2

x4

0 20 40 60
Importance

Random forest

x8

x10

x7

x6

x9

x3

x5

x1

x2

x4

0.0 0.1 0.2 0.3 0.4
Importance

Gradient boosting

Figure 1: Model-specific VIPs for the three different tree-based models fit to the simulated Friedman
data.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 347

As we would expect, all three methods rank the variables x1–x5 as more important than the others.
While this is good news, it is unfortunate that we have to remember the different functions and ways
of extracting and plotting VI scores from various model fitting functions. This is one place where vip
can help. . . one function to rule them all! Once vip is loaded, we can use vi() to extract a tibble of VI
scores.5

Load required packages
library(vip)

Compute model-specific VI scores
vi(tree) # CART-like decision tree

#> # A tibble: 10 x 2
#> Variable Importance
#> <chr> <dbl>
#> 1 x4 4234.
#> 2 x2 2513.
#> 3 x1 2461.
#> 4 x5 1230.
#> 5 x3 688.
#> 6 x6 533.
#> 7 x7 357.
#> 8 x9 331.
#> 9 x8 276.
#> 10 x10 275.

vi(rfo) # RF

#> # A tibble: 10 x 2
#> Variable Importance
#> <chr> <dbl>
#> 1 x4 74.2
#> 2 x2 59.9
#> 3 x1 53.3
#> 4 x5 37.1
#> 5 x3 22.5
#> 6 x9 1.05
#> 7 x10 0.254
#> 8 x8 -0.408
#> 9 x7 -1.56
#> 10 x6 -2.00

vi(bst) # GBM

#> # A tibble: 10 x 2
#> Variable Importance
#> <chr> <dbl>
#> 1 x4 0.403
#> 2 x2 0.225
#> 3 x1 0.189
#> 4 x5 0.0894
#> 5 x3 0.0682
#> 6 x9 0.00802
#> 7 x6 0.00746
#> 8 x7 0.00400
#> 9 x10 0.00377
#> 10 x8 0.00262

Notice how the vi() function always returns a tibble6 with two columns: Variable and Importance
(the exceptions are coefficient-based models which also include a Sign column giving the sign of the
corresponding coefficient, and permutation importance involving multiple Monte Carlo simulations,

5In order to avoid deprecation warnings due to recent updates to tibble and ggplot2, the code examples in this
article are based on the latest development versions of both vip (version 0.2.2.9000) and pdp (version 0.7.0.9000);
the URL to the development version of each package is available on its associated CRAN landing page.

6Technically, it’s a tibble with an additional "vi" class.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 348

but more on that later). Also, by default, vi() always orders the VI scores from highest to lowest; this,
among other options, can be controlled by the user (see ?vip::vi for details). Plotting VI scores with
vip() is just as straightforward. For example, the following code can be used to reproduce Figure 1.

p1 <- vip(tree) + ggtitle("Single tree")
p2 <- vip(rfo) + ggtitle("Random forest")
p3 <- vip(bst) + ggtitle("Gradient boosting")

Display plots in a grid (Figure 1)
grid.arrange(p1, p2, p3, nrow = 1)

Notice how the vip() function always returns a "ggplot" object (by default, this will be a bar
plot). For large models with many features, a Cleveland dot plot is more effective (in fact, a number of
useful plotting options can be fiddled with). Below we call vip() and change a few useful options (the
resulting plot is displayed in Figure 2). Note that we can also call vip() directly on a "vi" object if it’s
already been constructed.

Construct VIP (Figure 2)
library(ggplot2) # for theme_light() function
vip(bst, num_features = 5, geom = "point", horizontal = FALSE,

aesthetics = list(color = "red", shape = 17, size = 5)) +
theme_light()

0.1

0.2

0.3

0.4

x3 x5 x1 x2 x4

Im
po

rt
an

ce

Figure 2: Illustrating various plotting options.

Linear models

In multiple linear regression, or linear models (LMs), the absolute value of the t-statistic (or some
other scaled variant of the estimated coefficients) is commonly used as a measure of VI.7 The same
idea also extends to generalized linear models (GLMs). In the code chunk below, we fit an LM to the
simulated Friedman data (trn) allowing for all main effects and two-way interactions, then use the
step() function to perform backward elimination. The resulting VIP is displayed in Figure 3.

Fit a LM
linmod <- lm(y ~ .^2, data = trn)
backward <- step(linmod, direction = "backward", trace = 0)

Extract VI scores
(vi_backward <- vi(backward))

#> # A tibble: 21 x 3
#> Variable Importance Sign
#> <chr> <dbl> <chr>
#> 1 x4 14.2 POS
#> 2 x2 7.31 POS

7Since this approach is biased towards large-scale features it is important to properly standardize the predictors
(before fitting the model) or the estimated coefficients.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 349

#> 3 x1 5.63 POS
#> 4 x5 5.21 POS
#> 5 x3:x5 2.46 POS
#> 6 x1:x10 2.41 NEG
#> 7 x2:x6 2.41 NEG
#> 8 x1:x5 2.37 NEG
#> 9 x10 2.21 POS
#> 10 x3:x4 2.01 NEG
#> # ... with 11 more rows

Plot VI scores; by default, `vip()` displays the top ten features
pal <- palette.colors(2, palette = "Okabe-Ito") # colorblind friendly palette
vip(vi_backward, num_features = length(coef(backward)), # Figure 3

geom = "point", horizontal = FALSE, mapping = aes(color = Sign)) +
scale_color_manual(values = unname(pal)) +
theme_light() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

5

10

x6
x1

:x6 x9
x1

:x3 x3
x2

:x8 x8
x1

:x8 x7
x3

:x7
x8

:x9
x3

:x4 x1
0
x1

:x5
x2

:x6

x1
:x1

0
x3

:x5 x5 x1 x2 x4

Im
po

rt
an

ce Sign

NEG

POS

Figure 3: Example VIP from a linear model fit to the simulated Friedman data. The points are colored
according to the sign of the associated coefficient.

A major limitation of this approach is that a VI score is assigned to each term in the model, rather
than to each individual feature! We can solve this problem using one of the model-agnostic approaches
discussed later.

Multivariate adaptive regression splines (MARS), which were introduced in Friedman (1991), is
an automatic regression technique and can be seen as a generalization of LMs and GLMs. In the
MARS algorithm, the contribution (or VI score) for each predictor is determined using a generalized
cross-validation (GCV) statistic (though, other statistics can also be used; see ?vip::vi_model for
details). An example using the earth package (Milborrow, 2019) is given below (the results are plotted
in Figure 4):

Load required packages
library(earth)

Fit a MARS model
mars <- earth(y ~ ., data = trn, degree = 2, pmethod = "exhaustive")

Extract VI scores
vi(mars, type = "gcv")

#> # A tibble: 10 x 2
#> Variable Importance
#> <chr> <dbl>
#> 1 x4 100
#> 2 x1 83.2
#> 3 x2 83.2
#> 4 x5 59.3
#> 5 x3 43.5

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=earth

CONTRIBUTED RESEARCH ARTICLE 350

#> 6 x6 0
#> 7 x7 0
#> 8 x8 0
#> 9 x9 0
#> 10 x10 0

Plot VI scores (Figure 4)
vip(mars)

x10

x6

x7

x8

x9

x3

x5

x1

x2

x4

0 5 10 15
Importance

Figure 4: Example VIP from a MARS model fit to the simulated Friedman data.

To access VI scores directly in earth, you can use the earth::evimp() function.

Neural networks

For neural networks (NNs), two popular methods for constructing VI scores are the Garson algorithm
(Garson, 1991), later modified by Goh (1995), and the Olden algorithm (Olden et al., 2004). For
both algorithms, the basis of these VI scores is the network’s connection weights. The Garson
algorithm determines VI by identifying all weighted connections between the nodes of interest.
Olden’s algorithm, on the other hand, uses the products of the raw connection weights between each
input and output neuron and sums these products across all hidden neurons. This has been shown to
outperform the Garson method in various simulations. For DNNs, a similar method due to Gedeon
(1997) considers the weights connecting the input features to the first two hidden layers (for simplicity
and speed); but this method can be slow for large networks. We illustrate these two methods below
using vip() with the nnet package (Ripley, 2016) (see the results in Figure 5).

Load required packages
library(nnet)

Fit a neural network
set.seed(0803) # for reproducibility
nn <- nnet(y ~ ., data = trn, size = 7, decay = 0.1,

linout = TRUE, trace = FALSE)

Construct VIPs
p1 <- vip(nn, type = "garson")
p2 <- vip(nn, type = "olden")

Display plots in a grid (Figure 5)
grid.arrange(p1, p2, nrow = 1)

Model-agnostic VI

Model-agnostic interpretability separates interpretation from the model. Compared to model-specific
approaches, model-agnostic VI methods are more flexible and can be applied to any supervised

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=nnet

CONTRIBUTED RESEARCH ARTICLE 351

x9

x7

x8

x10

x6

x5

x4

x3

x1

x2

0.0 0.1 0.2
Importance

x7

x6

x9

x2

x10

x1

x8

x3

x5

x4

0 25 50 75 100
Importance

Figure 5: Example VIPs from a single-hidden-layer NN fit to the simulated Friedman data.

learning algorithm. In this section, we discuss model-agnostic methods for quantifying global feature
importance using three different approaches: 1) a simple variance-based approach, 2) permutation-
based feature importance, and 3) Shapley-based feature importance.

Variance-based methods

Our first model-agnostic method is based on a simple feature importance ranking measure (FIRM); for
details, see Greenwell et al. (2018), Zien et al. (2009), and Scholbeck et al. (2019). The specific approach
used here is based on quantifying the “flatness” of the effects of each feature.8 Feature effects can
be assessed using partial dependence plots (PDPs) (Friedman, 2001) or individual conditional expectation
(ICE) curves (Goldstein et al., 2015). PDPs and ICE curves help visualize the effect of low cardinality
subsets of the feature space on the estimated prediction surface (e.g., main effects and two/three-
way interaction effects.). They are also model-agnostic and can be constructed in the same way for
any supervised learning algorithm. Below, we fit a projection pursuit regression (PPR) model (see
?stats::ppr for details and references) and construct PDPs for each feature using the pdp package
Greenwell (2017). The results are displayed in Figure 6. Notice how the PDPs for the uninformative
features are relatively flat compared to the PDPs for features x1–x5!

10

20

30

0.00 0.25 0.50 0.75 1.00
x1

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x2

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x3

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x4

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x5

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x6

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x7

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x8

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x9

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x10

yh
at

Figure 6: PDPs of main effects in the PPR model fit to the simulated Friedman data.

Next, we compute PDP-based VI scores for the fitted PPR and NN models. The PDP method
constructs VI scores that quantify the relative “flatness” of each PDP (by default, this is defined by
computing the standard deviation of the y-axis values for each PDP). To use the PDP method, specify
method = "firm" in the call to vi() or vip() (or just use vi_firm() directly):

8A similar approach is taken in the vivo package (Kozak and Biecek, 2019).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=pdp
https://CRAN.R-project.org/package=vivo

CONTRIBUTED RESEARCH ARTICLE 352

Fit a PPR model (nterms was chosen using the caret package with 5 repeats of
5-fold cross-validation)
pp <- ppr(y ~ ., data = trn, nterms = 11)

Construct VIPs
p1 <- vip(pp, method = "firm") + ggtitle("PPR")
p2 <- vip(nn, method = "firm") + ggtitle("NN")

Display plots in a grid (Figure 7)
grid.arrange(p1, p2, ncol = 2)

x7

x8

x9

x10

x6

x3

x5

x1

x2

x4

0 1 2 3
Importance

PPR

x7

x8

x10

x6

x9

x5

x3

x1

x2

x4

0 1 2
Importance

NN

Figure 7: PDP-based feature importance for the PPR and NN models fit to the simulated Friedman
data.

In Figure 7 we display the PDP-based feature importance for the previously obtained PPR and NN
models. These VI scores essentially capture the variability in the partial dependence values for each
main effect.

The ICE curve method is similar to the PDP method, except that we measure the “flatness” of each
individual ICE curve and then aggregate the results (e.g., by averaging). If there are no (substantial)
interaction effects, using ICE curves will produce results similar to using PDPs (which are just averaged
ICE curves). However, if strong interaction effects are present, they can obfuscate the main effects and
render the PDP-based approach less useful (since the PDPs for important features can be relatively
flat when certain interactions are present; see Goldstein et al. (2015) for details). In fact, it is probably
safest to always use ICE curves when employing the FIRM method.

Below, we display the ICE curves for each feature in the fitted PPR model using the same y-axis
scale; see Figure 8. Again, there is a clear difference between the ICE curves for features x1–x5 and
x6–x10; the later being relatively flat by comparison. Also, notice how the ICE curves within each
feature are relatively parallel (if the ICE curves within each feature were perfectly parallel, the standard
deviation for each curve would be the same and the results will be identical to the PDP method). In
this example, the interaction term between x1 and x2 does not obfuscate the PDPs for the main effects
and the results are not much different.

Obtaining the ICE-based feature importance scores is also straightforward, just specify ice = TRUE
when using the FIRM approach. This is illustrated in the code chunk below and the results, which are
displayed in Figure 9, are similar to those obtained using the PDP method.

Construct VIPs
p1 <- vip(pp, method = "firm", ice = TRUE) + ggtitle("PPR")
p2 <- vip(nn, method = "firm", ice = TRUE) + ggtitle("NN")

Display plots in a grid (Figure 9)
grid.arrange(p1, p2, ncol = 2)

When using method = "firm", the feature effect values are stored in an attribute called "effects".
This is a convenience so that the feature effect plots (e.g., PDPs and ICE curves) can easily be re-
constructed and compared with the VI scores, as demonstrated in the example below (see Figure
10):

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 353

10

20

30

0.00 0.25 0.50 0.75 1.00
x1

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x2

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x3

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x4

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x5

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x6

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x7

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x8

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x9

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x10

yh
at

Figure 8: ICE curves for each feature in the PPR model fit to the simulated Friedman data. The red
curve represents the PDP (i.e., the averaged ICE curves).

x7

x10

x9

x6

x8

x3

x5

x2

x1

x4

0 1 2 3
Importance

PPR

x10

x8

x7

x6

x9

x5

x3

x1

x2

x4

0 1 2
Importance

NN

Figure 9: ICE-based feature importance for the PPR and NN models fit to the simulated Friedman
data.

Construct PDP-based VI scores
(vis <- vi(pp, method = "firm"))

#> # A tibble: 10 x 2
#> Variable Importance
#> <chr> <dbl>
#> 1 x4 2.93
#> 2 x2 2.05
#> 3 x1 2.04
#> 4 x5 1.53
#> 5 x3 1.38
#> 6 x6 0.183
#> 7 x10 0.139
#> 8 x9 0.113
#> 9 x8 0.0899
#> 10 x7 0.0558

Reconstruct PDPs for all 10 features (Figure 10)
par(mfrow = c(2, 5))
for (name in paste0("x", 1:10)) {
plot(attr(vis, which = "effects")[[name]], type = "l", ylim = c(9, 19), las = 1)

}

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 354

0.0 0.4 0.8

10

12

14

16

18

x1

yh
at

0.0 0.4 0.8

10

12

14

16

18

x2

yh
at

0.0 0.4 0.8

10

12

14

16

18

x3

yh
at

0.0 0.4 0.8

10

12

14

16

18

x4

yh
at

0.0 0.4 0.8

10

12

14

16

18

x5

yh
at

0.0 0.4 0.8

10

12

14

16

18

x6

yh
at

0.0 0.4 0.8

10

12

14

16

18

x7

yh
at

0.0 0.4 0.8

10

12

14

16

18

x8

yh
at

0.0 0.4 0.8

10

12

14

16

18

x9

yh
at

0.0 0.4 0.8

10

12

14

16

18

x10

yh
at

Figure 10: PDPs for all ten features reconstructed from the pdp attribute of the vis object.

Permutation method

The permutation method exists in various forms and was made popular in Breiman (2001) for RFs,
before being generalized and extended in Fisher et al. (2018). The permutation approach used in
vip is quite simple and is outlined in Algorithm 1 below. The idea is that if we randomly permute
the values of an important feature in the training data, the training performance would degrade
(since permuting the values of a feature effectively destroys any relationship between that feature
and the target variable). This of course assumes that the model has been properly tuned (e.g., using
cross-validation) and is not over fitting. The permutation approach uses the difference between some
baseline performance measure (e.g., training R2, AUC, or RMSE) and the same performance measure
obtained after permuting the values of a particular feature in the training data (Note: the model is
NOT refit to the training data after randomly permuting the values of a feature). It is also important to
note that this method may not be appropriate when you have, for example, highly correlated features
(since permuting one feature at a time may lead to unlikely data instances).

Let X1, X2, . . . , Xj be the features of interest and letMorig be the baseline performance metric for
the trained model; for brevity, we’ll assume smaller is better (e.g., classification error or RMSE). The
permutation-based importance scores can be computed as follows:

1. For i = 1, 2, . . . , j:

(a) Permute the values of feature Xi in the training data.

(b) Recompute the performance metric on the permuted dataMperm.

(c) Record the difference from baseline using imp (Xi) =Mperm −Morig.

2. Return the VI scores imp (X1) , imp (X2) , . . . , imp
(
Xj
)
.

Algorithm 1: A simple algorithm for constructing permutation-based VI scores.

Algorithm 1 can be improved or modified in a number of ways. For instance, the process can
be repeated several times and the results averaged together. This helps to provide more stable VI
scores, and also the opportunity to measure their variability. Rather than taking the difference in
step (c), Molnar (2019b, sec. 5.5.4) argues that using the ratioMperm/Morig makes the importance
scores more comparable across different problems. It’s also possible to assign importance scores to
groups of features (e.g., by permuting more than one feature at a time); this would be useful if features
can be categorized into mutually exclusive groups, for instance, categorical features that have been
one-hot-encoded .

To use the permutation approach in vip, specify method = "permute" in the call to vi() or vip()
(or you can use vi_permute() directly). Note that using method = "permute" requires specifying a
few additional arguments (e.g., the training data, target name or vector of target values, a prediction
function, etc.); see ?vi_permute for details.

An example is given below for the previously fitted PPR and NN models. Here we use R2 (metric
= "rsquared") as the evaluation metric. The results, which are displayed in Figure 11, agree with

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 355

those obtained using the PDP- and ICE-based methods.

Plot VI scores
set.seed(2021) # for reproducibility
p1 <- vip(pp, method = "permute", target = "y", metric = "rsquared",

pred_wrapper = predict) + ggtitle("PPR")
p2 <- vip(nn, method = "permute", target = "y", metric = "rsquared",

pred_wrapper = predict) + ggtitle("NN")

Display plots in a grid (Figure 11)
grid.arrange(p1, p2, ncol = 2)

x7

x10

x9

x8

x6

x3

x5

x1

x2

x4

0.0 0.2 0.4 0.6
Importance

PPR

x7

x10

x9

x6

x8

x3

x5

x1

x2

x4

0.0 0.2 0.4
Importance

NN

Figure 11: Permutation-based feature importance for the PPR and NN models fit to the simulated
Friedman data.

The permutation approach introduces randomness into the procedure and therefore should be run
more than once if computationally feasible. The upside to performing multiple runs of Algorithm 1
is that it allows us to compute standard errors (among other metrics) for the estimated VI scores, as
illustrated in the example below; here we specify nsim = 10 to request that each feature be permuted
10 times and the results averaged together. (Additionally, if nsim >1, you can set geom = "boxplot" in
the call to vip() to construct boxplots of the raw permutation-based VI scores. This is useful if you
want to visualize the variability in each of the VI estimates; see Figure 12 for an example.)

Use 10 Monte Carlo reps
set.seed(403) # for reproducibility
vis <- vi(pp, method = "permute", target = "y", metric = "rsquared",

pred_wrapper = predict, nsim = 15)
vip(vis, geom = "boxplot") # Figure 12

All available performance metrics for regression and classification can be listed using the list_metrics()
function, for example:

list_metrics()

#> Metric Description Task
#> 1 accuracy Classification accuracy Binary/multiclass classification
#> 2 error Misclassification error Binary/multiclass classification
#> 3 auc Area under (ROC) curve Binary classification
#> 4 logloss Log loss Binary classification
#> 5 mauc Multiclass area under (ROC) curve Multiclass classification
#> 6 mae Mean absolute error Regression
#> 7 mse Mean squared error Regression
#> 8 r2 R squared Regression
#> 9 rsquared R squared Regression
#> 10 rmse Root mean squared error Regression
#> 11 sse Sum of squared errors Regression

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 356

x10

x7

x9

x6

x8

x3

x5

x1

x2

x4

0.0 0.2 0.4 0.6
Importance

Figure 12: Boxplots of VI scores using the permutation method with 15 Monte Carlo repetitions.

We can also use a custom metric (i.e., loss function). Suppose for example you want to measure
importance using the mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

∣∣∣Yi − f̂ (X i)
∣∣∣ , (2)

where f̂ (X i) is the predicted value of Yi. A simple function implementing this metric is given
below (note that, according to the documentation in ?vi_permute, user-supplied metric functions
require two arguments: actual and predicted).

mae <- function(actual, predicted) {
mean(abs(actual - predicted))

}

To use this for computing permutation-based VI scores just pass it via the metric argument (be
warned, however, that the metric used for computing permutation importance should be the same as
the metric used to train and tune the model). Also, since this is a custom metric, we need to specify
whether a smaller value indicates better performance by setting smaller_is_better = TRUE. The
results, which are displayed in Figure 13, are similar to those in Figure 11, albeit a different scale.

Construct VIP (Figure 13)
set.seed(2321) # for reproducibility
pfun <- function(object, newdata) predict(object, newdata = newdata)
vip(nn, method = "permute", target = "y", metric = mae,

smaller_is_better = TRUE, pred_wrapper = pfun) +
ggtitle("Custom loss function: MAE")

Although permutation importance is most naturally computed on the training data, it may also
be useful to do the shuffling and measure performance on new data! This is discussed in depth in
Molnar (2019b, sec. 5.2). For users interested in computing permutation importance using new data,
just supply it to the train argument in the call to vi(), vip(), or vi_permute(). For instance, suppose
we wanted to only use a fraction of the original training data to carry out the computations. In this
case, we could simply pass the sampled data to the train argument as follows:

Construct VIP (Figure 14)
set.seed(2327) # for reproducibility
vip(nn, method = "permute", pred_wrapper = pfun, target = "y", metric = "rmse",

train = trn[sample(nrow(trn), size = 400),]) + # sample 400 observations
ggtitle("Using a random subset of training data")

When using the permutation method with nsim >1, the default is to keep all the permutation
scores as an attribute called "raw_scores"; you can turn this behavior off by setting keep = FALSE in
the call to vi_permute(), vi(), or vip(). If keep = TRUE and nsim >1, you can request all permutation
scores to be plotted by setting all_permutation = TRUE in the call to vip(), as demonstrated in the
code chunk below (see Figure 15). This also let’s you visually inspect the variability in the permutation
scores within each feature.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 357

x9

x10

x6

x7

x8

x5

x3

x1

x2

x4

0.0 0.5 1.0 1.5 2.0 2.5
Importance

Custom loss function: MAE

Figure 13: Permutation-based VI scores for the NN model fit to the simulated Friedman data. In this
example, permutation importance is based on the MAE metric.

x9

x10

x7

x6

x8

x5

x3

x1

x2

x4

0 1 2 3
Importance

Using a random subset of training data

Figure 14: Permutation-based feature importance for the NN model fit to the simulated Friedman data.
In this example, permutation importance is based on a random sample of 400 training observations.

Construct VIP (Figure 15)
set.seed(8264) # for reproducibility
vip(nn, method = "permute", pred_wrapper = pfun, target = "y", metric = "mae",

nsim = 10, geom = "point", all_permutations = TRUE, jitter = TRUE) +
ggtitle("Plotting all permutation scores")

Benchmarks

In this section, we compare the performance of four implementations of permutation-based VI scores:
iml::FeatureImp() (version 0.10.0), ingredients::feature_importance() (version 1.3.1),
mmpf::permutationImportance (version 0.0.5), and vip::vi() (version 0.2.2.9000).

We simulated 10,000 training observations from the Friedman 1 benchmark problem and trained a
random forest using the ranger package. For each implementation, we computed permutation-based
VI scores 100 times using the microbenchmark package (Mersmann, 2019). For this benchmark we
did not use any of the parallel processing capability available in the iml and vip implementations. The
results from microbenchmark are displayed in Figure 16 and summarized in the output below. In this
case, the vip package (version 0.2.2.9000) was the fastest, followed closely by ingredients and mmpf.
It should be noted, however, that the implementations in vip and iml can be parallelized. To the best
of our knowledge, this is not the case for ingredients or mmpf (although it would not be difficult to
write a simple parallel wrapper for either). The code used to generate these benchmarks can be found
at http://bit.ly/2TogXrq.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=microbenchmark
http://bit.ly/2TogXrq

CONTRIBUTED RESEARCH ARTICLE 358

x10

x7

x8

x6

x9

x5

x3

x1

x2

x4

0 1 2
Importance

Plotting all permutation scores

Figure 15: Permutation-based feature importance for the NN model fit to the simulated Friedman
data. In this example, all the permutation importance scores (points) are displayed for each feature
along with their average (bars).

iml

ingredients

mmpf

vip

10 20 30
Time [seconds]

Figure 16: Violin plots comparing the computation time from three different implementations of
permutation-based VI scores across 100 simulations.

Shapley method

Although vip focuses on global VI methods, it is becoming increasing popular to asses global impor-
tance by aggregating local VI measures; in particular, Shapley explanations (Štrumbelj and Kononenko,
2014). Using Shapley values (a method from coalitional game theory), the prediction for a single
instance x? can be explained by assuming that each feature value in x? is a “player” in a game with a
payout equal to the corresponding prediction f̂ (x?). Shapley values tell us how to fairly distribute
the “payout” (i.e., prediction) among the features. Shapley values have become popular due to the
attractive fairness properties they posses (Lundberg and Lee, 2017). The most popular implementation
is available in the Python shap package (Lundberg and Lee, 2017); although a number of implemen-
tations are now available in R; for example, iml, iBreakDown (Biecek et al., 2019b), and fastshap
(Greenwell, 2019).

Obtaining a global VI score from Shapley values requires aggregating the Shapley values for
each feature across the entire training set (or at least a reasonable sample thereof). In particular, we
use the mean of the absolute value of the individual Shapley values for each feature. Unfortunately,
Shapley values can be computationally expensive, and therefore this approach may not be feasible
for large training sets (say, >3000 observations). The fastshap package provides some relief by
exploiting a few computational tricks, including the option to perform computations in parallel
(see ?fastshap::explain for details). Also, fast and exact algorithms (Lundberg et al., 2019) can be
exploited for certain classes of models.

Starting with vip version 0.2.2.9000 you can now use method = "shap" in the call to vi() (or use
vi_shap() directly) to compute global Shapley-based VI scores using the method described above

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=iBreakDown
https://CRAN.R-project.org/package=fastshap

CONTRIBUTED RESEARCH ARTICLE 359

(provided you have the fastshap package installed)—see ?vip::vi_shap for details. To illustrate, we
compute Shapley-based VI scores from an xgboost model (Chen et al., 2019) using the Friedman data
from earlier; the results are displayed in Figure 17.9 (Note: specifying include_type = TRUE in the
call to vip() causes the type of VI computed to be displayed as part of the axis label.)

Load required packages
library(xgboost)

Feature matrix
X <- data.matrix(subset(trn, select = -y)) # matrix of feature values

Fit an XGBoost model; hyperparameters were tuned using 5-fold CV
set.seed(859) # for reproducibility
bst <- xgboost(X, label = trn$y, nrounds = 338, max_depth = 3, eta = 0.1,

verbose = 0)

Construct VIP (Figure 17)
vip(bst, method = "shap", train = X, exact = TRUE, include_type = TRUE)

x10

x8

x6

x7

x9

x3

x5

x1

x2

x4

0.0 0.5 1.0 1.5 2.0 2.5
Importance (mean(|Shapley value|))

Figure 17: Shapley-based VI scores from an XGBoost model fit to the simulated Friedman data.

Drawbacks of existing methods

As discussed in Hooker and Mentch (2019), permute-and-predict methods—like PDPs, ICE curves,
and permutation importance—can produce results that are highly misleading.10 For example, the
standard approach to computing permutation-based VI scores involves independently permuting
individual features. This implicitly makes the assumption that the observed features are statistically
independent. In practice, however, features are often not independent which can lead to nonsensical VI
scores. One way to mitigate this issue is to use the conditional approach described in Strobl et al. (2008);
Hooker and Mentch (2019) provides additional alternatives, such as permute-and-relearn importance .
Unfortunately, to the best of our knowledge, this approach is not yet available for general purpose. A
similar modification can be applied to PDPs (Parr and Wilson, 2019)11 which seems reasonable to use
in the FIRM approach when strong dependencies among the features are present (though, we have
not given this much thought or consideration).

We already mentioned that PDPs can be misleading in the presence of strong interaction effects.
This drawback, of course, equally applies to the FIRM approach using PDPs for computing VI scores.
As discussed earlier, this can be mitigated by using ICE curves instead. Another alternative would be
to use accumulated local effect (ALE) plots (Apley and Zhu, 2016) (though we haven’t really tested
this idea). Compared to PDPs, ALE plots have the advantage of being faster to compute and less
affected by strong dependencies among the features. The downside, however, is that ALE plots are

9Note that the exact = TRUE option is only available if you have fastshap version 0.0.4 or later
10It’s been argued that approximate Shapley values share the same drawback, however, Janzing et al. (2019)

makes a compelling case against those arguments.
11A basic R implementation is available at https://github.com/bgreenwell/rstratx.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=xgboost
https://github.com/bgreenwell/rstratx

CONTRIBUTED RESEARCH ARTICLE 360

more complicated to implement (hence, they are not currently available when using method = "firm").
ALE plots are available in the ALEPlot (Apley, 2018) and iml packages.

Hooker (2007) also argues that feature importance (which concern only main effects) can be
misleading in high dimensional settings, especially when there are strong dependencies and interaction
effects among the features, and suggests an approach based on a generalized functional ANOVA
decomposition—though, to our knowledge, this approach is not widely implemented in open source.

Use sparklines to characterize feature effects

Starting with vip 0.1.3, we have included a new function add_sparklines() for constructing HTML-
based VI tables; however, this feature requires the DT package (Xie et al., 2019). The primary difference
between vi() and add_sparklines() is that the latter includes an Effect column that displays a
sparkline representation of the partial dependence function for each feature. This is a concise way
to display both feature importance and feature effect information in a single (interactive) table. See
?vip::add_sparklines for details. We illustrate the basic use of add_sparklines() in the code chunk
below where we fit a ranger-based random forest using the mlr3 package (Lang et al., 2019).12

Load required packages
library(mlr3)
library(mlr3learners)

Fit a ranger-based random forest using the mlr3 package
set.seed(101)
task <- TaskRegr$new("friedman", backend = trn, target = "y")
lrnr <- lrn("regr.ranger", importance = "impurity")
lrnr$train(task)

First, compute a tibble of VI scores using any method
var_imp <- vi(lrnr)

Next, convert to an HTML-based data table with sparklines
add_sparklines(var_imp, fit = lrnr$model, train = trn) # Figure 18

Show 10 entries Search:

Showing 1 to 10 of 10 entries Previous 1 Next

Variable Importance Effect

1 x4 3801.341

2 x2 2456.534

3 x1 2048.462

4 x5 1492.825

5 x3 952.217

6 x8 380.200

7 x10 368.846

8 x6 354.177

9 x7 346.030

10 x9 338.066

Figure 18: Variable importance scores along with a sparkline representation of feature effects.

Ames housing example

For illustration, we’ll use the Ames housing data (Cock, 2011) which are available in the AmesHousing
package (Kuhn, 2017). These data describe the sale of individual residential properties in Ames, Iowa
from 2006–2010. The data set contains 2930 observations, 80 features (23 nominal, 23 ordinal, 14
discrete, and 20 continuous), and a continuous target giving the sale price of the home. The version

12Note: Here we use the ... argument to pass the original training to pdp::partial(); this is to avoid conflicts
caused by mlr3’s data.table backend (Dowle and Srinivasan, 2019).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ALEPlot
https://CRAN.R-project.org/package=DT
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=AmesHousing
https://CRAN.R-project.org/package=data.table

CONTRIBUTED RESEARCH ARTICLE 361

we’ll load is a cleaned up version of the original data set and treats all categorical variables as nominal
(see ?AmesHousing::make_ames for details).

Using the R package SuperLearner (Polley et al., 2019), we trained five models using 5-fold cross-
validation: a GBM using the xgboost package, an RF using the ranger package, a MARS model using
the earth package, a GLMNET model using the glmnet package (Friedman et al., 2019), and a support
vector regression model using the kernlab package (Karatzoglou et al., 2019). The magnitude of
the coefficients from the meta learner indicate which models contribute the most (if at all) to new
predictions.

Load the Ames housing data
ames <- AmesHousing::make_ames()
X <- subset(ames, select = -Sale_Price)
y <- ames$Sale_Price

Load required packages
library(SuperLearner)

List of base learners
learners <- c("SL.xgboost", "SL.ranger", "SL.earth", "SL.glmnet", "SL.ksvm")

Stack models
set.seed(840) # for reproducibility
ctrl <- SuperLearner.CV.control(V = 5L, shuffle = TRUE)
sl <- SuperLearner(Y = y, X = X, SL.library = learners, verbose = TRUE,

cvControl = ctrl)
sl

#>
#> Call:
#> SuperLearner(Y = y, X = X, SL.library = learners, verbose = TRUE, cvControl = ctrl)
#>
#>
#>
#> Risk Coef
#> SL.xgboost_All 580713682 0.41384425
#> SL.ranger_All 666208088 0.08083034
#> SL.earth_All 553872844 0.50532541
#> SL.glmnet_All 908881559 0.00000000
#> SL.ksvm_All 6784289108 0.00000000

In the code chunks below we request permutation-based VI scores and a sparkline representation
of the PDPs for the top ten features. For this we need to define a couple of wrapper functions: one for
computing predictions (for the permutation VI scores), and one for computing averaged predictions
(for the PDPs).

Prediction wrapper functions
imp_fun <- function(object, newdata) { # for permutation-based VI scores
predict(object, newdata = newdata)$pred

}
par_fun <- function(object, newdata) { # for PDPs
mean(predict(object, newdata = newdata)$pred)

}

To speed up the process, we perform the computations in parallel by setting parallel = TRUE in
the calls to vi() and add_sparklines(). Note that we first need to set up a parallel backend for this to
work. Both vip and pdp use plyr (Wickham, 2019)—which relies on foreach—so any parallel backend
supported by the foreach package should work. Below we use a socket approach with the doParallel
backend (Corporation and Weston, 2019) using a cluster of size five.

Setup parallel backend
library(doParallel) # load the parallel backend
cl <- makeCluster(5) # use 5 workers
registerDoParallel(cl) # register the parallel backend

Permutation-based feature importance

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=SuperLearner
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=kernlab
https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=doParallel

CONTRIBUTED RESEARCH ARTICLE 362

set.seed(278) # for reproducibility
var_imp <- vi(sl, method = "permute", train = X, target = y, metric = "rmse",

pred_wrapper = imp_fun, nsim = 5, parallel = TRUE)

Add sparkline representation of feature effects (# Figure 19)
add_sparklines(var_imp[1L:10L,], fit = sl, pred.fun = par_fun, train = X,

digits = 2, verbose = TRUE, trim.outliers = TRUE,
grid.resolution = 20, parallel = TRUE)

Show 10 entries Search:

Showing 1 to 10 of 10 entries Previous 1 Next

Variable Importance StDev Effect

1 Gr_Liv_Area 25635.72 850.88

2 Total_Bsmt_SF 13265.57 498.07

3 Year_Built 12304.25 333.00

4 Overall_Qual 10898.85 122.88

5 Mas_Vnr_Type 7945.17 1778.07

6 Year_Remod_Add 6615.39 227.31

7 Lot_Area 4144.14 189.51

8 Bsmt_Unf_SF 3679.64 150.87

9 Garage_Cars 2670.93 82.78

10 Fireplaces 1977.49 75.63

Figure 19: VIP with sparkline representation of feature effects for the top ten features from a Super
Learner fit to the Ames housing data.

Shut down cluster
stopCluster(cl)

Summary

VIPs help to visualize the strength of the relationship between each feature and the predicted response,
while accounting for all the other features in the model. We’ve discussed two types of VI: model-
specific and model-agnostic, as well as some of their strengths and weaknesses. In this paper, we
showed how to construct VIPs for various types of “black box” models in R using the vip package.
We also briefly discussed related approaches available in a number of other R packages. Suggestions
to avoid high execution times were discussed and demonstrated via examples. This paper is based
on vip version 0.2.2.9000. In terms of future development, vip can be expanded in a number of
ways. For example, we plan to incorporate the option to compute group-based and conditional
permutation scores. Although not discussed in this paper, vip also includes a promising statistic
(similar to the variance-based VI scores previously discussed) for measuring the relative strength
of interaction between features. Although VIPs can help understand which features are driving
the model’s predictions, ML practitioners should be cognizant of the fact that none of the methods
discussed in this paper are uniformly best across all situations; they require an accurate model that
has been properly tuned, and should be checked for consistency with human domain knowledge.

Acknowledgments

The authors would like to thank the anonymous reviewers and the Editor for their helpful comments
and suggestions. We would also like to thank the members of the 84.51◦ Interpretable Machine
Learning Special Interest Group for their thoughtful discussions on the topics discussed herein.

Bibliography

D. Apley. ALEPlot: Accumulated Local Effects (ALE) Plots and Partial Dependence (PD) Plots, 2018. URL
https://CRAN.R-project.org/package=ALEPlot. R package version 1.1. [p360]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ALEPlot

CONTRIBUTED RESEARCH ARTICLE 363

D. W. Apley and J. Zhu. Visualizing the effects of predictor variables in black box supervised learning
models, 2016. [p359]

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying interpretability
of deep visual representations. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017. [p343]

A. Bibal and B. Frénay. Interpretability of machine learning models and representations: an introduc-
tion. In ESANN, 2016. [p343]

P. Biecek. DALEX: Descriptive mAchine Learning EXplanations, 2019. URL https://CRAN.R-project.
org/package=DALEX. R package version 0.4.9. [p343]

P. Biecek, H. Baniecki, and A. Izdebski. ingredients: Effects and Importances of Model Ingredients, 2019a.
URL https://CRAN.R-project.org/package=ingredients. R package version 0.5.0. [p343]

P. Biecek, A. Gosiewska, H. Baniecki, and A. Izdebski. iBreakDown: Model Agnostic Instance Level
Variable Attributions, 2019b. URL https://CRAN.R-project.org/package=iBreakDown. R package
version 0.9.9. [p358]

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, Z. Jones, G. Casalicchio, M. Gallo, and P. Schratz.
mlr: Machine Learning in R, 2020. URL https://CRAN.R-project.org/package=mlr. R package
version 2.17.0. [p344]

L. Breiman. Bagging predictors. Machine Learning, 8(2):209–218, 1996. URL https://doi.org/10.
1023/A:1018054314350. [p344]

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. URL https://doi.org/10.1023/A:
1010933404324. [p354]

L. Breiman, J. Friedman, and R. A. O. Charles J. Stone. Classification and Regression Trees. The Wadsworth
and Brooks-Cole statistics-probability series. Taylor & Francis, 1984. ISBN 9780412048418. [p345]

R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad. Intelligible models for healthcare:
Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 1721–1730, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450336642. URL https:
//doi.org/10.1145/2783258.2788613. [p343]

E. Celik. vita: Variable Importance Testing Approaches, 2015. URL https://CRAN.R-project.org/
package=vita. R package version 1.0.0. [p344]

W. Chang. R6: Encapsulated Classes with Reference Semantics, 2019. URL https://CRAN.R-project.org/
package=R6. R package version 2.4.1. [p343]

T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell, I. Cano, T. Zhou, M. Li,
J. Xie, M. Lin, Y. Geng, and Y. Li. xgboost: Extreme Gradient Boosting, 2019. URL https://CRAN.R-
project.org/package=xgboost. R package version 0.90.0.2. [p359]

W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the American
Statistical Association, 74(368):829–836, 1979. doi: https://doi.org/10.1080/01621459.1979.10481038.
[p344]

D. D. Cock. Ames, iowa: Alternative to the boston housing data as an end of semester regression
project. Journal of Statistics Education, 19(3):1–15, 2011. URL https://doi.org/10.1080/10691898.
2011.11889627. [p360]

M. Corporation and S. Weston. doParallel: Foreach Parallel Adaptor for the ’parallel’ Package, 2019. URL
https://CRAN.R-project.org/package=doParallel. R package version 1.0.15. [p361]

G. Csárdi and M. Salmon. pkgsearch: Search and Query CRAN R Packages, 2019. URL https://CRAN.R-
project.org/package=pkgsearch. R package version 3.0.2. [p344]

F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning, 2017. [p343]

M. Dowle and A. Srinivasan. data.table: Extension of ‘data.frame‘, 2019. URL https://CRAN.R-project.
org/package=data.table. R package version 1.12.8. [p360]

A. Fisher, C. Rudin, and F. Dominici. Model class reliance: Variable importance measures for any
machine learning model class, from the "rashomon" perspective. arXiv preprint arXiv:1801.01489,
2018. [p354]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=ingredients
https://CRAN.R-project.org/package=iBreakDown
https://CRAN.R-project.org/package=mlr
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/2783258.2788613
https://CRAN.R-project.org/package=vita
https://CRAN.R-project.org/package=vita
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=xgboost
https://doi.org/10.1080/10691898.2011.11889627
https://doi.org/10.1080/10691898.2011.11889627
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=pkgsearch
https://CRAN.R-project.org/package=pkgsearch
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table

CONTRIBUTED RESEARCH ARTICLE 364

J. Friedman, T. Hastie, R. Tibshirani, B. Narasimhan, and N. Simon. glmnet: Lasso and Elastic-Net
Regularized Generalized Linear Models, 2019. URL https://CRAN.R-project.org/package=glmnet. R
package version 3.0-2. [p361]

J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1–67, 1991. URL
https://doi.org/10.1214/aos/1176347963. [p344, 349]

J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics,
29(5):1189–1232, 2001. URL https://doi.org/10.1214/aos/1013203451. [p351]

D. G. Garson. Interpreting neural-network connection weights. Artificial Intelligence Expert, 6(4):46–51,
1991. [p350]

T. Gedeon. Data mining of inputs: Analysing magnitude and functional measures. International Journal
of Neural Systems, 24(2):123–140, 1997. URL https://doi.org/10.1007/s10994-006-6226-1. [p350]

A. Goh. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in
Engineering, 9(3):143–151, 1995. URL https://dx.doi.org/10.1016/0954-1810(94)00011-S. [p350]

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black box: Visualizing statistical
learning with plots of individual conditional expectation. Journal of Computational and Graphical
Statistics, 24(1):44–65, 2015. URL https://doi.org/10.1080/10618600.2014.907095. [p351, 352]

B. Greenwell. fastshap: Fast Approximate Shapley Values, 2019. URL https://github.com/bgreenwell/
fastshap. R package version 0.0.3.9000. [p358]

B. Greenwell, B. Boehmke, and B. Gray. vip: Variable Importance Plots, 2019. URL https://github.com/
koalaverse/vip/. R package version 0.2.1. [p344]

B. M. Greenwell. pdp: An r package for constructing partial dependence plots. The R Journal, 9(1):
421–436, 2017. URL https://journal.r-project.org/archive/2017/RJ-2017-016/index.html.
[p351]

B. M. Greenwell, B. C. Boehmke, and A. J. McCarthy. A simple and effective model-based variable
importance measure. arXiv preprint arXiv:1805.04755, 2018. [p344, 351]

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction, Second Edition. Springer Series in Statistics. Springer-Verlag, 2009. [p345]

G. Hooker. Generalized functional anova diagnostics for high-dimensional functions of dependent
variables. Journal of Computational and Graphical Statistics, 16(3):709–732, 2007. URL https://doi.
org/10.1198/106186007X237892. [p360]

G. Hooker and L. Mentch. Please stop permuting features: An explanation and alternatives, 2019.
[p359]

T. Hothorn and A. Zeileis. partykit: A Toolkit for Recursive Partytioning, 2019. URL https://CRAN.R-
project.org/package=partykit. R package version 1.2-5. [p345]

T. Hothorn, K. Hornik, C. Strobl, and A. Zeileis. party: A Laboratory for Recursive Partytioning, 2019.
URL https://CRAN.R-project.org/package=party. R package version 1.3-3. [p344]

D. Janzing, L. Minorics, and P. Blöbaum. Feature relevance quantification in explainable ai: A causal
problem, 2019. [p359]

Z. Jones. mmpf: Monte-Carlo Methods for Prediction Functions, 2018. URL https://CRAN.R-project.
org/package=mmpf. R package version 0.0.5. [p344]

A. Karatzoglou, A. Smola, and K. Hornik. kernlab: Kernel-Based Machine Learning Lab, 2019. URL
https://CRAN.R-project.org/package=kernlab. R package version 0.9-29. [p361]

A. Kozak and P. Biecek. vivo: Local Variable Importance via Oscillations of Ceteris Paribus Profiles, 2019.
URL https://CRAN.R-project.org/package=vivo. R package version 0.1.1. [p351]

M. Kuhn. AmesHousing: The Ames Iowa Housing Data, 2017. URL https://CRAN.R-project.org/
package=AmesHousing. R package version 0.0.3. [p360]

M. Kuhn. caret: Classification and Regression Training, 2020. URL https://CRAN.R-project.org/
package=caret. R package version 6.0-85. [p344]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/s10994-006-6226-1
https://dx.doi.org/10.1016/0954-1810(94)00011-S
https://doi.org/10.1080/10618600.2014.907095
https://github.com/bgreenwell/fastshap
https://github.com/bgreenwell/fastshap
https://github.com/koalaverse/vip/
https://github.com/koalaverse/vip/
https://journal.r-project.org/archive/2017/RJ-2017-016/index.html
https://doi.org/10.1198/106186007X237892
https://doi.org/10.1198/106186007X237892
https://CRAN.R-project.org/package=partykit
https://CRAN.R-project.org/package=partykit
https://CRAN.R-project.org/package=party
https://CRAN.R-project.org/package=mmpf
https://CRAN.R-project.org/package=mmpf
https://CRAN.R-project.org/package=kernlab
https://CRAN.R-project.org/package=vivo
https://CRAN.R-project.org/package=AmesHousing
https://CRAN.R-project.org/package=AmesHousing
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret

CONTRIBUTED RESEARCH ARTICLE 365

M. Kuhn and K. Johnson. Applied Predictive Modeling. SpringerLink : Bücher. Springer New York, 2013.
ISBN 9781461468493. [p344]

M. Lang, B. Bischl, J. Richter, P. Schratz, and M. Binder. mlr3: Machine Learning in R - Next Generation,
2019. URL https://CRAN.R-project.org/package=mlr3. R package version 0.1.6. [p360]

M. Loecher. rfVarImpOOB: Unbiased Variable Importance for Random Forests, 2019. URL https://CRAN.R-
project.org/package=rfVarImpOOB. R package version 1.0. [p344]

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems 30, pages 4765–4774. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-
predictions.pdf. [p358]

S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb,
N. Bansal, and S.-I. Lee. Explainable ai for trees: From local explanations to global understanding.
arXiv preprint arXiv:1905.04610, 2019. [p358]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2019. URL https://CRAN.R-project.org/
package=microbenchmark. R package version 1.4-7. [p357]

S. Milborrow. earth: Multivariate Adaptive Regression Splines, 2019. URL https://CRAN.R-project.org/
package=earth. R package version 5.1.2. [p349]

C. Molnar. iml: Interpretable Machine Learning, 2019a. URL https://CRAN.R-project.org/package=iml.
R package version 0.9.0. [p343]

C. Molnar. Interpretable Machine Learning. 2019b. https://christophm.github.io/interpretable-
ml-book/. [p343, 354, 356]

G. Montavon, W. Samek, and K.-R. Müller. Methods for interpreting and understanding deep neural
networks. Digital Signal Processing, 73:1–15, 2018. URL https://doi.org/10.1016/j.dsp.2017.10.
011. [p343]

K. Müller and H. Wickham. tibble: Simple Data Frames, 2019. URL https://CRAN.R-project.org/
package=tibble. R package version 2.1.3. [p344]

J. D. Olden, M. K. Joy, and R. G. Death. An accurate comparison of methods for quantifying variable
importance in artificial neural networks using simulated data. Ecological Modelling, 178(3):389–397,
2004. URL https://dx.doi.org/10.1016/j.ecolmodel.2004.03.013. [p350]

A. Paluszynska, P. Biecek, and Y. Jiang. randomForestExplainer: Explaining and Visualizing Ran-
dom Forests in Terms of Variable Importance, 2019. URL https://CRAN.R-project.org/package=
randomForestExplainer. R package version 0.10.0. [p344]

T. Parr and J. D. Wilson. Technical report: A stratification approach to partial dependence for
codependent variables, 2019. [p359]

E. Polley, E. LeDell, C. Kennedy, and M. van der Laan. SuperLearner: Super Learner Prediction, 2019.
URL https://CRAN.R-project.org/package=SuperLearner. R package version 2.0-26. [p361]

B. Poulin, R. Eisner, D. Szafron, P. Lu, R. Greiner, D. S. Wishart, A. Fyshe, B. Pearcy, C. MacDonell, and
J. Anvik. Visual explanation of evidence in additive classifiers. In Proceedings of the 18th Conference
on Innovative Applications of Artificial Intelligence - Volume 2, IAAI’06, pages 1822–1829. AAAI Press,
2006. [p343]

P. Probst. measures: Performance Measures for Statistical Learning, 2018. URL https://CRAN.R-project.
org/package=measures. R package version 0.2. [p344]

P. Probst. varImp: RF Variable Importance for Arbitrary Measures, 2019. URL https://CRAN.R-project.
org/package=varImp. R package version 0.3. [p344]

Revolution Analytics and S. Weston. foreach: Provides Foreach Looping Construct. [p343]

B. Ripley. nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models, 2016. URL https:
//CRAN.R-project.org/package=nnet. R package version 7.3-12. [p350]

C. A. Scholbeck, C. Molnar, C. Heumann, B. Bischl, and G. Casalicchio. Sampling, intervention,
prediction, aggregation: A generalized framework for model agnostic interpretations. CoRR,
abs/1904.03959, 2019. URL http://arxiv.org/abs/1904.03959. [p351]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=rfVarImpOOB
https://CRAN.R-project.org/package=rfVarImpOOB
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=earth
https://CRAN.R-project.org/package=earth
https://CRAN.R-project.org/package=iml
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://dx.doi.org/10.1016/j.ecolmodel.2004.03.013
https://CRAN.R-project.org/package=randomForestExplainer
https://CRAN.R-project.org/package=randomForestExplainer
https://CRAN.R-project.org/package=SuperLearner
https://CRAN.R-project.org/package=measures
https://CRAN.R-project.org/package=measures
https://CRAN.R-project.org/package=varImp
https://CRAN.R-project.org/package=varImp
https://CRAN.R-project.org/package=nnet
https://CRAN.R-project.org/package=nnet
http://arxiv.org/abs/1904.03959

CONTRIBUTED RESEARCH ARTICLE 366

C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance
measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(25), 2007. URL http://www.
biomedcentral.com/1471-2105/8/25. [p345]

C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. Conditional variable importance for
random forests. BMC Bioinformatics, 9(1):307, 2008. URL https://doi.org/10.1186/1471-2105-9-
307. [p344, 345, 359]

Q. Sun. tree.interpreter: Random Forest Prediction Decomposition and Feature Importance Measure, 2019.
URL https://CRAN.R-project.org/package=tree.interpreter. R package version 0.1.0. [p344]

M. van der Laan. Statistical inference for variable importance. The International Journal of Biostatistics, 2
(1), 2006. URL https://doi.org/10.2202/1557-4679.1008. [p343]

H. Wickham. plyr: Tools for Splitting, Applying and Combining Data, 2019. URL https://CRAN.R-
project.org/package=plyr. R package version 1.8.5. [p361]

H. Wickham, W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, K. Woo, and H. Yutani.
ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics, 2019. URL https://CRAN.R-
project.org/package=ggplot2. R package version 3.2.1. [p344]

M. N. Wright, S. Wager, and P. Probst. ranger: A Fast Implementation of Random Forests, 2020. URL
https://CRAN.R-project.org/package=ranger. R package version 0.12.1. [p344]

Y. Xie, J. Cheng, and X. Tan. DT: A Wrapper of the JavaScript Library ’DataTables’, 2019. URL https:
//CRAN.R-project.org/package=DT. R package version 0.11. [p360]

A. Zien, N. Kraemer, S. Sonnenburg, and G. Raetsch. The feature importance ranking measure, 2009.
[p351]

E. Štrumbelj and I. Kononenko. Explaining prediction models and individual predictions with feature
contributions. Knowledge and Information Systems, 31(3):647–665, 2014. URL https://doi.org/10.
1007/s10115-013-0679-x. [p358]

Brandon M. Greenwell
University of Cincinnati
2925 Campus Green Dr
Cincinnati, OH 45221
United States of America
ORCiD—0000-0002-8120-0084
greenwell.brandon@gmail.com

Bradley C. Boehmke
University of Cincinnati
2925 Campus Green Dr
Cincinnati, OH 45221
United States of America
ORCiD—0000-0002-3611-8516
bradleyboehmke@gmail.com

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://www.biomedcentral.com/1471-2105/8/25
http://www.biomedcentral.com/1471-2105/8/25
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-9-307
https://CRAN.R-project.org/package=tree.interpreter
https://doi.org/10.2202/1557-4679.1008
https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ranger
https://CRAN.R-project.org/package=DT
https://CRAN.R-project.org/package=DT
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x
https://orcid.org/0000-0002-8120-0084
mailto:greenwell.brandon@gmail.com
https://orcid.org/0000-0002-3611-8516
mailto:bradleyboehmke@gmail.com

	Variable Importance Plots—An Introduction to the vip Package
	Introduction
	Constructing VIPs in R

	Model-specific VI
	Decision trees and tree ensembles
	Linear models
	Neural networks

	Model-agnostic VI
	Variance-based methods
	Permutation method
	Shapley method

	Drawbacks of existing methods
	Use sparklines to characterize feature effects
	Ames housing example
	Summary
	Acknowledgments

