
Contributed Research Articles 310

Finding Optimal Normalizing
Transformations via bestNormalize
by Ryan A. Peterson

Abstract The bestNormalize R package was designed to help users find a transformation that can
effectively normalize a vector regardless of its actual distribution. Each of the many normalization
techniques that have been developed has its own strengths and weaknesses, and deciding which to
use until data are fully observed is difficult or impossible. This package facilitates choosing between
a range of possible transformations and will automatically return the best one, i.e., the one that
makes data look the most normal. To evaluate and compare the normalization efficacy across a suite
of possible transformations, we developed a statistic based on a goodness of fit test divided by its
degrees of freedom. Transformations can be seamlessly trained and applied to newly observed data
and can be implemented in conjunction with caret and recipes for data preprocessing in machine
learning workflows. Custom transformations and normalization statistics are supported.

Introduction

The bestNormalize package contains a suite of transformation-estimating functions that can be used
to normalize data. The function of the same name attempts to find and execute the best of all of
these potential normalizing transformations. In this package, we define “normalize” as in “to render
data Gaussian”, rather than transform them to a specific scale.

There are many instances where researchers may want to normalize a variable. First, there is
the (often problematic) assumption of normality of the outcome (conditional on the covariates) in
the classical linear regression problem. Over the years, many methods have been used to relax this
assumption: generalized linear models, quantile regression, survival models, etc. One technique
that is still somewhat popular in this context is to “beat the data” to look normal via some kind of
normalizing transformation. This could be something as simple as a log transformation or something
as complex as a Yeo-Johnson transformation (Yeo and Johnson, 2000). In fact, many complex
normalization methods were designed expressly to find a transformation that could render regression
residuals Gaussian. While perhaps not the most elegant solution to the problem, often, this technique
works well as a quick solution. Another increasingly popular application of normalization occurs in
applied regression settings with highly skewed distributions of the covariates (Kuhn and Johnson,
2013). In these settings, there exists the tendency to have high leverage points (and highly influential
points), even when one centers and scales the covariates. When examining interactions, these
influential points can become especially problematic since the leverage of that point gets amplified
for every interaction in which it is involved. Normalization of such covariates can mitigate their
leverage and influence, thereby allowing for easier model selection and more robust downstream
predictor manipulations (such as principal components analysis), which can otherwise be sensitive
to skew or outliers. As a result, popular model selection packages such as caret (Kuhn, 2017) and
recipes (Kuhn and Wickham, 2018) have built-in mechanisms to normalize the predictor variables
(they call this “preprocessing”). This concept is unique in that it forgoes the assumption of linearity
between the outcome (Y) and the covariate, opting instead for a linear relationship between Y and
the transformed value of the covariate (which in many cases may be more plausible).

This package is designed to make normalization effortless and consistent. We have also introduced
Ordered Quantile (ORQ) normalization via the orderNorm function, which uses a rank mapping of
the observed data to the normal distribution in order to guarantee normally distributed transformed
data (if ties are not present). We have shown how ORQ normalization performs very consistently
across different distributions, successfully normalizing left- or right-skewed data, multi-modal data,
and even data generated from a Cauchy distribution (Peterson and Cavanaugh, 2019).

In this paper, we describe our R package bestNormalize, which is available via the Comprehensive
R Archive Network (CRAN). First, we describe normalization methods that have been developed and
that we implement in the package. Second, we describe the novel cross-validation-based estimation
procedure, which we utilize to judge the normalization efficacy of our suite of normalization
transformations. Third, we go through some basic examples of bestNormalize functionality and a
simple implementation of our methods within the recipes package. We illustrate a more in-depth use-
case in a car pricing application, performing a transform-both-sides regression as well as comparing
the performance of several predictive models fit via caret. Finally, we conclude by discussing the
pros and cons of normalization in general and future directions for the package.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=bestNormalize
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=recipes

Contributed Research Articles 311

Normalization methods

Many normalization transformation functions exist, and though some can be implemented well in
existing R packages, bestNormalize puts them all under the same umbrella syntax. This section
describes each transformation contained in the bestNormalize suite.

The Box-Cox transformation

The Box-Cox transformation was famously proposed in Box and Cox (1964) and can be implemented
with differing syntax and methods in many existing packages in R (e.g., caret, MASS (Venables and
Ripley, 2002), and more). It is a straightforward transformation that typically only involves one
parameter, λ:

g(x; λ) = 1(λ̸=0)
xλ − 1

λ
+ 1(λ=0) log x ,

where x refers to the datum in its original unit (pre-transformation). Given multiple observations,
the λ parameter can be estimated via maximum likelihood, and x must be greater than zero.

The Yeo-Johnson transformation

The Yeo-Johnson transformation (Yeo and Johnson, 2000) attempts to find the value of λ in the
following equation that minimizes the Kullback-Leibler distance between the normal distribution
and the transformed distribution.

g(x; λ) = 1(λ̸=0,x≥0)
(x + 1)λ − 1

λ

+ 1(λ=0,x≥0) log(x + 1)

+ 1(λ̸=2,x<0)
(1 − x)2−λ − 1

λ − 2
+ 1(λ=2,x<0) − log(1 − x)

This method has the advantage of working without having to worry about the domain of x. As
with the Box-Cox λ, this λ parameter can be estimated via maximum likelihood.

The Lambert W x F transformation

The Lambert W x F transformation, proposed in Goerg (2011) and implemented in the LambertW
package, is essentially a mechanism that de-skews a random variable X using moments. The method
is motivated by a system theory and is alleged to be able to transform any random variable into
any other kind of random variable, thus being applicable to a large number of contexts. One of the
package’s main functions is Gaussianize, which is similar in spirit to the purpose of this package.
However, this method may not perform as well on certain shapes of distributions as other candidate
transformations; see Peterson and Cavanaugh (2019) for some examples.

The Gaussianize transformation can handle three types of transformations: skewed, heavy-
tailed, and skewed heavy-tailed. For more details on this transformation, consult the LambertW
documentation.1 While the transformations contained and implemented by bestNormalize are
reversible (i.e., 1-1), in rare circumstances, we have observed that the lambert function can yield
non-reversible transformations.

The Ordered Quantile technique

The ORQ normalization technique (orderNorm) is based on the following transformation (originally
discussed, as far as we can find, in Bartlett (1947) and further developed in Van der Waerden
(1952)):

Let x refer to the original data. Then the transformation is:
1As of version 1.2.0 of bestNormalize, lambert methods are not performed by default in bestNormalize,

but they are still available via the allow_lambert arguments.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=LambertW

Contributed Research Articles 312

g(x) = Φ−1
(

rank(x) − 1/2
length(x)

)
This nonparametric transformation as defined works well on the observed data, but it is not

trivial to implement in modern settings where the transformation needs to be applied on new data;
we discussed this issue and our solution to it in Peterson and Cavanaugh (2019). Basically, on new
data within the range of the original data, ORQ normalization will linearly interpolate between two
of the original data points. On new data outside the range of the original data, the transformation
extrapolates using a shifted logit approximation of the ranks to the original data. This is visualized
below via the iris data set on the Petal.Width variable.

−1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

ORQ Normalization

Original Value

Tr
an

sf
or

m
ed

 V
al

ue

Original data
Transformed values for new data
Approximation for extrapolation

Figure 1: ORQ normalization visualization on Fisher’s iris data.

The shifted logit extrapolation ensures that the function is 1-1 and can handle data outside the
original (observed) domain. The effects of the approximation will usually be relatively minimal since
we should not expect to see many observations outside the observed range if the training set sample
size is large relative to the test set. The ORQ technique will not guarantee a normal distribution in
the presence of ties, but it still could yield the best normalizing transformation when compared to
the other possible approaches. More information on ORQ normalization can be found in Peterson
and Cavanaugh (2019) or in the bestNormalize documentation.

Other included transformations

In addition to the techniques above, the bestNormalize package performs and evaluates:

• logb(x + a) where a = max(0, − min(x) + ϵ) and b = 10 by default
•

√
x + a where a = max(0, − min(x)) by default

• exp(x)
• arcsinh(x) = log(x +

√
x2 + 1)

Other not-included transformations

A range of other normalization techniques has been proposed that are not included in this package
(at the time of writing). These include (but are not limited to): Modified Box-Cox (Box and Cox,
1964), Manly’s Exponential (Manly, 1976), John/Draper’s Modulus (John and Draper, 1980), and
Bickel/Doksum’s Modified Box-Cox (Bickel and Doksum, 1981). However, it is straightforward to
add new transformations into the same framework as other included transformations; each one is

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 313

treated as its own S3 class, so in order to add other transformations, all one must do is define a new
S3 class and provide the requisite S3 methods. To this end, we encourage readers to submit a pull
request to the package’s GitHub page with new transformation techniques that could be then added
as a default in bestNormalize. Otherwise, in a later section, we show how users can implement
custom transformations alongside the default ones described above.

Which transformation “best normalizes” the data?

The bestNormalize function selects the best transformation according to an extra-sample estimate
of the Pearson P statistic divided by its degrees of freedom (DF). This P statistic is defined as

P =

k∑
i=1

(Oi − Ei)
2

Ei
,

where Oi is the number observed, and Ei is the number of expected (under the hypothesis of
normality) to fall into “bin” i. The bins (or “classes”) are built such that observations will fall
into each one with equal probability under the hypothesis of normality. A variety of alternative
normality tests exist, but this particular one is relatively interpretable as a goodness of fit test, and
the ratio P /DF can be compared between transformations as an absolute measure of departure from
normality. Specifically, if the data in question follow a normal distribution, this ratio will be close
to 1 or lower. The transformation which produces data with the lowest normality statistic is thus
the most effective at normalizing the data, and gets selected by bestNormalize. The bestNormalize
package utilizes nortest (Gross and Ligges, 2015) to compute this statistic; more information on its
computation and degrees of freedom can be found in D’Agostino (1986) and Thode (2002).

Normality statistics for all candidate transformations can be estimated and compared with one
simple call to bestNormalize, whose output makes it easy to see which transformations are viable
and which are not. We have found that while complicated transformations are often most effective
and therefore selected automatically, sometimes a simple transformation (e.g., the log or identity
transforms) may be almost as effective, and ultimately the latter type will yield more interpretable
results.

It is worth noting that when the normality statistic is estimated on in-sample data, the ORQ
technique is predestined to be most effective since it is forcing its transformed data to follow a normal
distribution exactly (Peterson and Cavanaugh, 2019). For this reason, by default, the bestNormalize
function calculates an out-of-sample estimate for the P /DF statistic. Since this method necessitates
cross-validation, it can be computationally frustrating for three reasons: (1) the results and the
chosen transformation can depend on the seed, (2) it takes considerably longer to estimate than the
in-sample statistic, and (3) it is unclear how to choose the number of folds and repeats.

In order to mediate these issues, we have built several features into bestNormalize. Issue (1) is
only important for small sample sizes, and when it is a concern, the best transformations should
look similar to one another. We address two solutions to (2) in the next section. In short, we have
methods to parallelize or simplify the estimation of the statistic. For (3), we recommend 10-fold
cross-validation with 5 repeats as the default, but if the sample is small, we suggest using 5 (or
fewer) folds instead with more repeats; accurate estimation of P /DF requires a relatively large
fold size (as a rule of thumb, 20 observations per fold seems to be enough for most cases, but this
unfortunately depends on the distribution of the observed data).

Simple examples

In this section, we illustrate a simple use-case of the functions provided in bestNormalize.

Basic implementation

First, we will generate and plot some skewed data:

x <- rgamma(250, 1, 1)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://github.com/petersonR/bestNormalize
https://CRAN.R-project.org/package=nortest

Contributed Research Articles 314

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

x

Figure 2: Simulated skewed data for simple example.

To perform a suite of potential transformations and see how effectively they normalized this
vector, simply call bestNormalize:

(BNobject <- bestNormalize(x))

#> Best Normalizing transformation with 250 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 1.7917
#> - Box-Cox: 1.0442
#> - Center+scale: 3.0102
#> - Exp(x): 9.5306
#> - Log_b(x+a): 1.7072
#> - orderNorm (ORQ): 1.1773
#> - sqrt(x + a): 1.144
#> - Yeo-Johnson: 1.1875
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> Standardized Box Cox Transformation with 250 nonmissing obs.:
#> Estimated statistics:
#> - lambda = 0.3254863
#> - mean (before standardization) = -0.3659267
#> - sd (before standardization) = 0.9807881

Evidently, the Box-Cox transformation performed the best, though many other transformations
performed similarly. We can visualize the suite of transformations using the built-in plot method:

plot(BNobject, leg_loc = "topleft")

0 1 2 3 4

−
4

−
2

0
2

4
6

x

g(
x)

boxcox
arcsinh_x
center_scale
exp_x
log_x
orderNorm
sqrt_x
yeojohnson

| || || || ||| || | ||| || ||| || | |||| || | |||| || || || || || || || ||| ||| ||| || |||| | | | || |||| | | | ||| | ||||| || | || || || || | | | || || || | ||| ||| | || || || ||| ||| ||| | | ||| || || || || | | | ||| || || || ||| || || ||||| ||| || || | || | || ||| || | | ||| || |||| || || | | || || || | || ||| || || | || |||| | ||| | ||| | ||| || ||||| | | || | |||

Figure 3: The suite of transformations estimated by default in bestNormalize (trained on simulated
right-skewed data).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 315

Finally, we can execute the best performing normalization on new data with predict(BNobject,
new_x) or reverse the transformation with predict(BNobject, new_x_t,inverse = TRUE). Note
that normalized values can either be obtained using predict or by extracting x.t from the object.
The best transformation, in this case, is plotted in Figure 4.

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

Original Data

x

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

Best Normalizing Transformation: boxcox

BNobject$x.t

0 1 2 3 4

−
4

−
2

0
2

4
6

Normalizing transformations

x

g(
x)

boxcox
arcsinh_x
center_scale
exp_x
log_x
orderNorm
sqrt_x
yeojohnson

| || || || ||| || | ||| || ||| || | |||| || | |||| || |||| || || || || ||| ||| ||| || |||| | | | || |||| | | | ||| | ||||| || | || || || || || | || || || | ||| ||| | || || || ||| ||| ||| | | ||||| || || || | | | ||| || || || ||| |||| ||||| ||| |||| | || | || ||| || | | ||| || |||| || || | | || || || | || ||| || || | || |||| | ||| | ||| | ||| || ||||| | | || | |||

−2 −1 0 1 2

0
5

10

Normalizing transformations (inverse)

g(x)

x

boxcox
arcsinh_x
center_scale
exp_x
log_x
orderNorm
sqrt_x
yeojohnson

_

_

_

__

_
_
_

__
_
__

_

_

__
_
_
__

_

_

_

_
_

_

_

_

_

_
_

_

_
__

__

_
__

__

__

__

_
_
_
_
_
_
_

_
__
_

__
_

__

_
_

__

_

_

_

_

_

_
__

_

_

_

_

__

_

__
_

_

_
__

_

_

__

_
_

_
__

_
_

_

_
_
__

_

_

__
_

_

_

_
_

_

__

_
__

_

_
_
_
__

_

_

_
_
_
_

_
_
__
_
__
_

Figure 4: Summary of transformations performed on simulated right-skewed data.

Performing transformations individually

Each method can be performed (and stored) individually:

(arcsinh_obj <- arcsinh_x(x))

#> Standardized asinh(x) Transformation with 250 nonmissing obs.:
#> Relevant statistics:
#> - mean (before standardization) = 0.7383146
#> - sd (before standardization) = 0.5458515

(boxcox_obj <- boxcox(x))

#> Standardized Box Cox Transformation with 250 nonmissing obs.:
#> Estimated statistics:
#> - lambda = 0.3254863
#> - mean (before standardization) = -0.3659267
#> - sd (before standardization) = 0.9807881

(yeojohnson_obj <- yeojohnson(x))

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 316

#> Standardized Yeo-Johnson Transformation with 250 nonmissing obs.:
#> Estimated statistics:
#> - lambda = -0.7080476
#> - mean (before standardization) = 0.4405464
#> - sd (before standardization) = 0.2592004

(lambert_obj <- lambert(x, type = "s"))

#> Standardized Lambert WxF Transformation of type s with 250 nonmissing obs.:
#> Estimated statistics:
#> - gamma = 0.3729
#> - mean (before standardization) = 0.6781864
#> - sd (before standardization) = 0.7123011

(orderNorm_obj <- orderNorm(x))

#> orderNorm Transformation with 250 nonmissing obs and no ties
#> - Original quantiles:
#> 0% 25% 50% 75% 100%
#> 0.001 0.268 0.721 1.299 4.161

All normalization techniques in bestNormalize have their own class with convenient S3 methods
and documentation. For instance, we can use the predict method to perform the transformation
on new values using the objects we have just created, visualizing them in a plot:

xx <- seq(min(x), max(x), length = 100)
plot(xx, predict(arcsinh_obj, newdata = xx), type = "l", col = 1)
lines(xx, predict(boxcox_obj, newdata = xx), col = 2)
lines(xx, predict(yeojohnson_obj, newdata = xx), col = 3)
lines(xx, predict(orderNorm_obj, newdata = xx), col = 4)

0 1 2 3 4

−
4

−
2

0
2

4

x

g
(x

)

arcsinh
Box−Cox
Yeo−Johnson
OrderNorm

Figure 5: Manually plotting transformations trained on simulated right-skewed data.

In-sample normalization efficacy

To examine how each of the normalization methods performed (in-sample), we can visualize the
transformed values in histograms (Figure 6), which plot the transformed data, x.t, stored in the
transformation objects we created previously.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 317

−1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Arcsinh transformation

arcsinh_obj$x.t

−2 −1 0 1 2

0.
0

0.
2

0.
4

Box−Cox transformation

boxcox_obj$x.t

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

Yeo−Johnson transformation

yeojohnson_obj$x.t

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

OrderNorm (ORQ) transformation

orderNorm_obj$x.t

Figure 6: Normalized values for trained transformations on simulated right-skewed data.

Evidently, ORQ normalization appears to have worked perfectly to normalize the data (as
expected), and the Box-Cox method seemed to do quite well too.

Out-of-sample normalization efficacy

The bestNormalize function performs repeated (r=5) 10-fold cross-validation (CV) by default and
stores the estimated normality statistic for each left-out fold/repeat into oos_preds. Users can
access and visualize these results via a boxplot (see below), which may give some insight into whether
the transformation is truly preferred by the normality statistic or if another (possibly simpler)
transformation can be applied that would achieve the approximately the same results. In this
example, Box-Cox, square-root, Yeo-Johnson, and ORQ seem to do similarly well, whereas the
identity transform2, hyperbolic arc-sine, logging, and exponentiation are performing worse.

boxplot(BNobject$oos_preds, log = 'y')
abline(h = 1, col = "green3")

arcsinh_x boxcox center_scale exp_x log_x orderNorm sqrt_x yeojohnson

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

Figure 7: Cross-validation results for each normalization method, where our estimated normality
statistic is plotted on the y-axis.

2Since standardize=TRUE, the identity transformation is represented in Figure 7 by center_scale, which
yields the exact same normality statistic.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 318

Leave-one-out CV can be optionally performed in bestNormalize via the loo argument, which,
if set to TRUE, will compute the leave-one-out CV transformations for each observation and method.
Specifically, bestNormalize will be run n separate times where each observation is individually left
out of the fitting process and subsequently plugged back in to get a “leave-one-out transformed value”.
Instead of taking the mean across repeats and folds, in this case, we estimate normalization efficacy
using the full distribution of leave-one-out transformed values. This option is computationally
intensive. Note that as with the “in-sample” normality statistics, the leave-one-out CV approach
tends to select the ORQ transformation since ORQ’s performance improves as the number of points
in the training set relative to the testing set increases.

bestNormalize(x, loo = TRUE)

#> Best Normalizing transformation with 250 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 4.42
#> - Box-Cox: 0.7055
#> - Center+scale: 8.258
#> - Exp(x): 62.085
#> - Log_b(x+a): 3.546
#> - orderNorm (ORQ): 0.012
#> - sqrt(x + a): 0.9145
#> - Yeo-Johnson: 1.608
#> Estimation method: Out-of-sample via leave-one-out CV
#>
#> Based off these, bestNormalize chose:
#> orderNorm Transformation with 250 nonmissing obs and no ties
#> - Original quantiles:
#> 0% 25% 50% 75% 100%
#> 0.001 0.268 0.721 1.299 4.161

Important features

Improving speed of estimation

Because bestNormalize uses repeated CV by default to estimate the out-of-sample normalization
efficacy, it can be quite slow for larger objects. There are several means of speeding up the process.
Each comes with some pros and cons. The first option is to specify out_of_sample = FALSE. This
will highly speed up the process. However, for reasons previously discussed, ORQ normalization
will always be chosen unless allow_orderNorm = FALSE. Therefore, a user might as well use the
orderNorm function directly as opposed to only setting out_of_sample = FALSE since the end result
will be the same (and orderNorm will run much faster). Note below that the in-sample normality
results may differ slightly from the leave-one-out even when this may be unexpected (i.e., for the log
transformation); this is due to slight differences in the standardization statistics.

bestNormalize(x, allow_orderNorm = FALSE, out_of_sample = FALSE)

#> Best Normalizing transformation with 250 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 4.401
#> - Box-Cox: 0.7435
#> - Center+scale: 8.087
#> - Exp(x): 64.6975
#> - Log_b(x+a): 3.47
#> - sqrt(x + a): 0.9145
#> - Yeo-Johnson: 1.7125
#> Estimation method: In-sample
#>
#> Based off these, bestNormalize chose:
#> Standardized Box Cox Transformation with 250 nonmissing obs.:
#> Estimated statistics:
#> - lambda = 0.3254863
#> - mean (before standardization) = -0.3659267
#> - sd (before standardization) = 0.9807881

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 319

Another option to improve estimation efficiency is to use the built-in parallelization functionality.
The repeated CV process can be parallelized via the cluster argument and the parallel and doRNG
(Gaujoux, 2020) packages. A cluster can be set up with makeCluster and passed to bestNormalize
via the cluster = argument.

cl <- parallel::makeCluster(5)
b <- bestNormalize(x, cluster = cl, r = 10, quiet = TRUE)
parallel::stopCluster(cl)

The amount by which this parallelization will speed up the estimation of out-of-sample estimates
depends (for the most part) on the number of repeats, the number of cores, and the sample size of
the vector to be normalized. The plot below shows the estimation time for a run of bestNormalize
with 15 repeats of 10-fold CV on a gamma-distributed random variable with various sample sizes
and numbers of cores.

Figure 8: Potential speedup using parallelization functionality.

Implementation with caret, recipes

The step_best_normalize and the step_orderNorm functions can be utilized in conjunction with
the recipes package to preprocess data in machine learning workflows with tidymodels (Kuhn and
Wickham, 2020) or in combination with caret. The basic usage within recipes is shown below; for
implementation with caret, refer to this paper’s application.

rec <- recipe(~ ., data = iris) %>% # Initialize recipe
step_best_normalize(all_predictors(), -all_nominal()) %>% # Transform predictors
prep(iris) %>% # Prep (train) recipe
bake(iris) # Bake (apply) recipe

Options can be supplied to step_best_normalize to speed up or alter performance via the
transform_options argument, which passes a list of options to bestNormalize.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=parallel
https://CRAN.R-project.org/package=doRNG
https://CRAN.R-project.org/package=tidymodels

Contributed Research Articles 320

Additional customization

Two important means of customization are available: 1) users may add custom transformation
functions to be assessed alongside the default suite of normalization methods, and 2) users may
change the statistic used “under the hood” by bestNormalize to estimate the departure from
normality of the transformed data. This section contains examples and guidance for both extensions.

1) Adding user-defined functions

Via the new_transforms argument, users can use bestNormalize’s machinery to compare custom,
user-defined transformation functions to those included in the package. Below, I consider an
example where a user may wish to compare the cube-root function with those provided in the
package. bestNormalize requires two functions to implement this: the transformation function and
an associated predict method. The custom cube-root transformation shown below is simple, but
its skeleton can readily be made arbitrarily more complex.

Define custom function
cuberoot_x <- function(x, ...) {

x.t <- (x)^(1/3)

Get in-sample normality statistic results
ptest <- nortest::pearson.test(x.t)

val <- list(
x.t = x.t,
x = x,
n = length(x.t) - sum(is.na(x)),
norm_stat = unname(ptest$statistic / ptest$df)

)

Assign class, return
class(val) <- c('cuberoot_x')
val

}

S3 method that is used to apply the transformation to newly observed data
predict.cuberoot_x <- function(object, newdata = NULL, inverse = FALSE, ...) {

If no data supplied and not inverse
if (is.null(newdata) & !inverse)

newdata <- object$x

If no data supplied and inverse transformation is requested
if (is.null(newdata) & inverse)

newdata <- object$x.t

Perform inverse transformation
if (inverse) {

Reverse-cube-root (cube)
val <- newdata^3

Otherwise, perform transformation as estimated
} else if (!inverse) {

val <- (newdata)^(1/3)
}

Return transformed data
unname(val)

}

Optional: print S3 method
print.cuberoot_x <- function(x, ...) {

cat('cuberoot(x) Transformation with', x$n, 'nonmissing obs.\n')
}

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 321

These functions can then be passed as a named list to bestNormalize:

custom_transform <- list(
cuberoot_x = cuberoot_x,
predict.cuberoot_x = predict.cuberoot_x,
print.cuberoot_x = print.cuberoot_x

)

set.seed(123129)
x <- rgamma(100, 1, 1)
(b <- bestNormalize(x = x, new_transforms = custom_transform))

#> Best Normalizing transformation with 100 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 1.2347
#> - Box-Cox: 1.0267
#> - Center+scale: 2.0027
#> - cuberoot_x: 0.9787
#> - Exp(x): 4.7947
#> - Log_b(x+a): 1.3547
#> - orderNorm (ORQ): 1.1627
#> - sqrt(x + a): 1.0907
#> - Yeo-Johnson: 1.0987
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> cuberoot(x) Transformation with 100 nonmissing obs.

Evidently, the cube-root was the best normalizing transformation for this gamma-distributed
random variable, performing comparably to the Box-Cox transformation.

2) Re-defining normality

The question “what is normal?” outside of a statistical discussion is quite loaded and subjective.
Even in statistical discussions, many authors have contributed to the question of how to best detect
departures from normality; these solutions are diverse, and several have been implemented well
in nortest already. In order to accommodate those with varying opinions on the best definition of
normality, we have included a feature that allows users to specify a custom definition of a normality
statistic. This customization can be accomplished via the norm_stat_fn argument, which takes
a function that will then be applied in lieu of the Pearson test statistic divided by its degree of
freedom to assess normality.

The user-defined function must take an argument x, which indicates the data on which a user
wants to evaluate the statistic.

Here is an example using the Lilliefors (Kolmogorov-Smirnov) normality test statistic:

bestNormalize(x, norm_stat_fn = function(x) nortest::lillie.test(x)$stat)

#> Best Normalizing transformation with 100 Observations
#> Estimated Normality Statistics (using custom normalization statistic)
#> - arcsinh(x): 0.1958
#> - Box-Cox: 0.1785
#> - Center+scale: 0.2219
#> - Exp(x): 0.3299
#> - Log_b(x+a): 0.1959
#> - orderNorm (ORQ): 0.186
#> - sqrt(x + a): 0.1829
#> - Yeo-Johnson: 0.1872
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> Standardized Box Cox Transformation with 100 nonmissing obs.:
#> Estimated statistics:
#> - lambda = 0.3281193
#> - mean (before standardization) = -0.1263882
#> - sd (before standardization) = 0.9913552

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 322

Here is an example using the Lillifors (Kolmogorov-Smirnov) normality test’s p-value:

(dont_do_this <- bestNormalize(x, norm_stat_fn = function(x) nortest::lillie.test(x)$p))

#> Best Normalizing transformation with 100 Observations
#> Estimated Normality Statistics (using custom normalization statistic)
#> - arcsinh(x): 0.4327
#> - Box-Cox: 0.4831
#> - Center+scale: 0.2958
#> - Exp(x): 0.0675
#> - Log_b(x+a): 0.3589
#> - orderNorm (ORQ): 0.4492
#> - sqrt(x + a): 0.4899
#> - Yeo-Johnson: 0.4531
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> Standardized exp(x) Transformation with 100 nonmissing obs.:
#> Relevant statistics:
#> - mean (before standardization) = 6.885396
#> - sd (before standardization) = 13.66084

Note: bestNormalize will attempt to minimize this statistic by default, which is definitely not
what you want to do when calculating the p-value. This is seen in the example above, where the
worst normalization transformation, exponentiation, is chosen. In this case, a user is advised to
either manually select the best one or reverse their defined normalization statistic (in this case by
subtracting it from 1):

best_transform <- names(which.max(dont_do_this$norm_stats))
do_this <- dont_do_this$other_transforms[[best_transform]]
or_this <- bestNormalize(x, norm_stat_fn = function(x) 1-nortest::lillie.test(x)$p)

A p-value for normality should not be routinely used as the sole selector of a normalizing
transformation. A normality test’s p-value, as a measure of the departure from normality, is
confounded by the sample size (a high sample size may yield strong evidence of a practically
insignificant departure from normality). Therefore, we suggest the statistic used should estimate the
departure from normality rather the strength of evidence against normality (e.g., Royston, 1991).

Application to Autotrader data

Background

The autotrader data set was scraped from the autotrader website as part of this package (and
because at the time of data collection in 2017, the package author needed to purchase a car). We
apply the bestNormalize functionality to de-skew mileage, age, and price in a pricing model. See
?autotrader for more information on this data set.

data("autotrader")
autotrader$yearsold <- 2017 - autotrader$Year

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://www.autotrader.com/

Contributed Research Articles 323

Table 1: Sample characteristics of ‘autotrader‘ data.

Overall (N=6,283)

Make
- Acura 185 (2.9%)
- Buick 252 (4.0%)
- Chevrolet 1,257 (20.0%)
- GMC 492 (7.8%)
- Honda 1,029 (16.4%)
- Hyundai 381 (6.1%)
- Mazda 272 (4.3%)
- Nissan 735 (11.7%)
- Pontiac 63 (1.0%)
- Toyota 1,202 (19.1%)
- Volkswagen 415 (6.6%)
Price ($)
- Mean (SD) 17,145 (8,346)
- Range 722 - 64,998
Mileage
- Mean (SD) 63,638 (49,125)
- Range 2 - 325,556
Year
- Mean (SD) 2011.9 (3.5)
- Range 2000.0 - 2016.0
Age (years old)
- Mean (SD) 5.1 (3.5)
- Range 1.0 - 17.0

Transform-both-sides regression

Transform-both-sides (TBS) regression has several benefits that have been explored thoroughly
elsewhere (see Harrell (2015) for an overview). Importantly, TBS regression can often (though not
always) yield models that better satisfy assumptions of linear regression and mitigate the influence
of outliers/skew. This approach has been shown to be useful in shrinking the size of prediction
intervals while maintaining closer to nominal coverage in this data set (Peterson and Cavanaugh,
2019).

First, we will normalize the outcome (price).

(priceBN <- bestNormalize(autotrader$price))

#> Best Normalizing transformation with 6283 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 3.8573
#> - Box-Cox: 2.2291
#> - Center+scale: 3.5532
#> - Log_b(x+a): 3.8573
#> - orderNorm (ORQ): 1.1384
#> - sqrt(x + a): 2.1977
#> - Yeo-Johnson: 2.2291
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> orderNorm Transformation with 6283 nonmissing obs and ties
#> - 2465 unique values
#> - Original quantiles:
#> 0% 25% 50% 75% 100%
#> 722 11499 15998 21497 64998

We can see that the estimated normality statistic for the ORQ transformation is close to 1, so
we know it is performing quite well despite the ties in the data. It is also performing considerably
better than all of the other transformations.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 324

(mileageBN <- bestNormalize(autotrader$mileage))

#> Best Normalizing transformation with 6283 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 3.4332
#> - Box-Cox: 3.0903
#> - Center+scale: 14.7488
#> - Log_b(x+a): 3.4354
#> - orderNorm (ORQ): 1.1514
#> - sqrt(x + a): 5.1041
#> - Yeo-Johnson: 3.0891
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> orderNorm Transformation with 6283 nonmissing obs and ties
#> - 6077 unique values
#> - Original quantiles:
#> 0% 25% 50% 75% 100%
#> 2 29099 44800 88950 325556

Similarly, the ORQ normalization performed best for mileage.

(yearsoldBN <- bestNormalize(autotrader$yearsold))

#> Best Normalizing transformation with 6283 Observations
#> Estimated Normality Statistics (Pearson P / df, lower => more normal):
#> - arcsinh(x): 83.2706
#> - Box-Cox: 83.2909
#> - Center+scale: 83.4324
#> - Exp(x): 574.3318
#> - Log_b(x+a): 83.0756
#> - orderNorm (ORQ): 81.3615
#> - sqrt(x + a): 83.4373
#> - Yeo-Johnson: 84.0028
#> Estimation method: Out-of-sample via CV with 10 folds and 5 repeats
#>
#> Based off these, bestNormalize chose:
#> orderNorm Transformation with 6283 nonmissing obs and ties
#> - 17 unique values
#> - Original quantiles:
#> 0% 25% 50% 75% 100%
#> 1 3 4 7 17

For age, we see something peculiar; none of the normalizing transformations performed well
according to the normality statistics. By plotting the data, it becomes evident that the frequency of
ties in age makes it very difficult to find a normalizing transformation (see figure below). Even so,
orderNorm is chosen as it has the lowest estimated P /DF statistic.

0 20000 40000 60000

0e
+0

0
4e

−0
5

Price

−4 −2 0 2 4

0.
0

0.
2

0.
4

Price (transformed)

0 100000 250000

0.
0e

+0
0

1.
5e

−0
5

Mileage

−4 −2 0 2 4

0.
0

0.
2

0.
4

Mileage (transformed)

5 10 15

0.
0

0.
2

0.
4

0.
6

Age

−2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

Age (transformed)

Figure 9: Distributions of car variables before and after normalization.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 325

Next, we will fit a linear model on the transformed values of each variable for our TBS regression.
The reverse-transformation functions will allow us to visualize how these variables affect model
predictions in terms of their original units.

p.t <- priceBN$x.t; m.t <- mileageBN$x.t; yo.t <- yearsoldBN$x.t
fit <- lm(p.t ~ m.t + yo.t)

Table 2: TBS regression results for autotrader data.

Variable Estimate Std. Error t value Pr(>|t|)

Intercept 0.005 0.010 0.553 0.58
g(Mileage) -0.234 0.016 -14.966 < 0.001
g(Age) -0.441 0.016 -27.134 < 0.001

Unsurprisingly, we find that there are very significant relationships between transformed car price,
mileage, and age. However, to interpret these values, we must resort to visualizations since there is no
inherent meaning of a “one-unit increase” in the ORQ normalized measurements. We utilize the visreg
package (Breheny and Burchett, 2017) to perform our visualizations, using predict.bestNormalize
in conjunction with visreg’s trans and xtrans options to view the relationship in terms of the
original unit for the response and covariate respectively (formatting omitted).3 For the sake of
illustration, we have also plotted the estimated effect of a generalized additive (spline) model fit
with mgcv (Wood, 2011).

visreg(fit, "m.t")
visreg(fit, "m.t",

partial = TRUE,
trans = function(price.t)

predict(priceBN, newdata = price.t, inverse = TRUE)/1000,
xtrans = function(mileage.t)

predict(mileageBN, newdata = mileage.t, inverse = TRUE)
)

−4 −2 0 2 4

−3

−2

−1

0

1

2

3

g(Mileage)

g(
P

ric
e)

0 100000 200000 300000

0

10

20

30

40

50

60

Mileage

P
ric

e
($

10
00

)

GAM
TBS model

Figure 10: TBS regression visualized on transformed units (left) and original units (right).

Below, we visualize the age effect, demonstrating how one might visualize the effect outside of
visreg (plot formatting is omitted).

3Alternatively, one can use scales (Wickham and Seidel, 2020) and ggplot2 (Wickham, 2016) to visualize
any transformation fit using bestNormalize; instructions are included in the package vignette.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=visreg
https://CRAN.R-project.org/package=mgcv
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=ggplot2

Contributed Research Articles 326

Set up data for plotting line
new_yo <- seq(min(autotrader$yearsold), max(autotrader$yearsold), len = 100)
newX <- data.frame(yearsold = new_yo, mileage = median(autotrader$mileage))
newXt <- data.frame(yo.t = predict(yearsoldBN, newX$yearsold),

m.t = predict(mileageBN, newX$mileage))

line_vals_t <- predict(fit, newdata = newXt) # Calculate line (transformed)
line_vals <- predict(priceBN, newdata = line_vals_t, inverse = TRUE)
plot(autotrader$yearsold, autotrader$price)
lines(new_yo, line_vals)

5 10 15

0
10

00
0

30
00

0
50

00
0

Age (Jittered)

P
ric

e

GAM
TBS model

Figure 11: Age effect on car price (re-transformed to original unit).

Implementation with recipes

To build a predictive model for the price variable that uses each vehicle’s model and make in addition
to its mileage and age, we can utilize the caret and recipes functionality to do so. This section
outlines how to use bestNormalize in conjunction with these other popular ML packages. Price is
logged instead of ORQ transformed in order to facilitate the interpretation of measures for prediction
accuracy.

library(tidymodels)
library(caret)
library(recipes)

set.seed(321)
df_split <- initial_split(autotrader, prop = .9)
df_train <- training(df_split)
df_test <- testing(df_split)

rec <- recipe(price ~ Make + model + mileage + status + Year, df_train) %>%
step_mutate(years_old = 2017 - Year) %>%
step_rm(Year) %>%
step_log(price) %>%
step_best_normalize(all_predictors(), -all_nominal()) %>%
step_other(all_nominal(), threshold = 10) %>%
step_dummy(all_nominal()) %>%
prep()

fit1 <- train(price ~ ., bake(rec, NULL), method = 'glmnet')
fit2 <- train(price ~ ., bake(rec, NULL), method = 'earth')
fit3 <- train(price ~ ., bake(rec, NULL), method = 'rf')

r <- resamples(fits <- list(glmnet = fit1, earth = fit2, rf = fit3))
summary(r) # Extra-sample CV results

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

Contributed Research Articles 327

Table 3: CV prediction accuracy of various ML methods.

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

MAE
glmnet 0.181 0.184 0.186 0.189 0.194 0.198 0
earth 0.147 0.151 0.154 0.155 0.158 0.163 0
rf 0.136 0.141 0.143 0.144 0.147 0.157 0

RMSE
glmnet 0.242 0.247 0.252 0.256 0.264 0.276 0
earth 0.203 0.209 0.214 0.217 0.226 0.235 0
rf 0.193 0.208 0.213 0.210 0.215 0.217 0

RSQ
glmnet 0.767 0.772 0.785 0.782 0.789 0.801 0
earth 0.807 0.833 0.845 0.842 0.855 0.864 0
rf 0.835 0.845 0.855 0.854 0.860 0.873 0

Evidently, the random forest generally performed better in cross-validated prediction metrics,
achieving a higher R-squared (RSQ), lower root-mean-squared error (RMSE), and lower mean
absolute error (MAE). Since price was logged, RMSE and MAE are on the log scale. For the test set,
we calculate these quantities in price’s original unit (2017 US dollars) using the yardstick package
(Kuhn and Vaughan, 2020).

Out of sample prediction accuracy
results <- lapply(fits, function(x) {

p <- c(predict(x, newdata = bake(rec, df_test)))
yardstick::metrics(data.frame(est = exp(p), truth = df_test$price),

truth = truth, estimate = est)
})
results

Table 4: Test data prediction accuracy of various ML methods. RMSE and MAE can be interpreted
in terms of 2017 US dollars.

Method RMSE RSQ MAE

glmnet 4076 0.772 2847
earth 3619 0.814 2500
rf 3257 0.853 2294

After normalization of mileage and age, a random forest had the optimal predictive performance
on car price given a car’s make, model, age, and mileage compared to other ML models, achieving
out-of-sample R-squared 0.853 on a left-out test data set. We conjecture that the random forest
performs best because it can better capture differential depreciation by make and model than the
other methods.

Discussion

We have shown how the bestNormalize package can effectively and efficiently find the best normalizing
transformation for a vector or set of vectors. However, normalization is by no means something
that should be applied universally and without motivation. In situations where units have meaning,
normalizing prior to analysis can contaminate the relationships suspected in the data and/or reduce
predictive accuracy. Further, depending on the type of transformations used, interpreting regression
coefficients post-transformation can be difficult or impossible without using a figure since the
transformation function itself will look completely different for different distributions. So, while
normalization transformations may well be able to increase the robustness of results and mitigate
violations to the classical linear regression assumption of Gaussian residuals, it is by no means a
universal solution.

On the other hand, when hypotheses are exploratory or when data is of poor quality with
high amounts of skew/outliers, normalization can be an effective means of mitigating downstream

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=yardstick

Contributed Research Articles 328

issues this can cause in the analyses. For example, in machine learning contexts, some predictor
manipulations rely on second-order statistics (e.g., principal components analysis or partial least
squares), for which the variance calculation can be sensitive to skew and outliers. Normalizing
transformations can improve the quality and stability of these calculations. Similarly, predictor
normalization reduces the tendency for high-leverage points to have their leverage propagated into
engineered features such as interactions or polynomials. Ultimately, these benefits can often produce
predictive models that are more robust and stable.

We focused on making this package useful in a variety of machine learning workflows. We are
enthusiastic in our support of bestNormalize, and will continue to maintain the package while it
is found to be useful by R users. We hope to continue to build up the repertoire of candidate
transformations using the same infrastructure so that additional ones can be considered by default
in the future.

Bibliography

M. S. Bartlett. The use of transformations. Biometrics, 3(1):39–52, 1947. ISSN 0006341X, 15410420.
URL https://doi.org/10.2307/3001536. [p311]

P. J. Bickel and K. A. Doksum. An analysis of transformations revisited. Journal of the American
Statistical Association, 76(374):296–311, 1981. URL https://doi.org/10.1080/01621459.1981.
10477649. [p312]

G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical
Society. Series B (Methodological), 26(2):211–252, 1964. ISSN 00359246. URL https://doi.org/
10.2307/2984418. [p311, 312]

P. Breheny and W. Burchett. Visualization of regression models using visreg. The R Journal, 9(2):
56–71, 2017. [p325]

R. B. D’Agostino. Goodness-of-fit-techniques, volume 68. CRC press, 1986. [p313]

R. Gaujoux. doRNG: Generic Reproducible Parallel Backend for ’foreach’ Loops, 2020. URL
https://CRAN.R-project.org/package=doRNG. R package version 1.8.2. [p319]

G. M. Goerg. Lambert w random variables-a new family of generalized skewed distributions with
applications to risk estimation. The Annals of Applied Statistics, 5(3):2197–2230, 09 2011. URL
https://doi.org/10.1214/11-AOAS457. [p311]

J. Gross and U. Ligges. nortest: Tests for Normality, 2015. URL https://CRAN.R-project.org/
package=nortest. R package version 1.0-4. [p313]

F. E. Harrell. Regression modeling strategies: with applications to linear models, logistic and ordinal
regression, and survival analysis. Springer, 2015. [p323]

J. A. John and N. R. Draper. An alternative family of transformations. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 29(2):190–197, 1980. URL https://doi.org/10.
2307/2986305. [p312]

M. Kuhn. caret: Classification and Regression Training, 2017. URL https://CRAN.R-project.org/
package=caret. R package version 6.0-78. [p310]

M. Kuhn and K. Johnson. Applied Predictive Modeling. Springer, 2013. URL https://doi.org/10.
1007/978-1-4614-6849-3. [p310]

M. Kuhn and D. Vaughan. yardstick: Tidy Characterizations of Model Performance, 2020. URL
https://CRAN.R-project.org/package=yardstick. R package version 0.0.7. [p327]

M. Kuhn and H. Wickham. recipes: Preprocessing Tools to Create Design Matrices, 2018. URL
https://CRAN.R-project.org/package=recipes. R package version 0.1.2. [p310]

M. Kuhn and H. Wickham. tidymodels: Easily Install and Load the ’Tidymodels’ Packages, 2020.
URL https://CRAN.R-project.org/package=tidymodels. R package version 0.1.0. [p319]

B. F. J. Manly. Exponential data transformations. Journal of the Royal Statistical Society. Series D
(The Statistician), 25(1):37–42, 1976. URL https://doi.org/10.2307/2988129. [p312]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.2307/3001536
https://doi.org/10.1080/01621459.1981.10477649
https://doi.org/10.1080/01621459.1981.10477649
https://doi.org/10.2307/2984418
https://doi.org/10.2307/2984418
https://CRAN.R-project.org/package=doRNG
https://doi.org/10.1214/11-AOAS457
https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=nortest
https://doi.org/10.2307/2986305
https://doi.org/10.2307/2986305
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://doi.org/10.1007/978-1-4614-6849-3
https://doi.org/10.1007/978-1-4614-6849-3
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=recipes
https://CRAN.R-project.org/package=tidymodels
https://doi.org/10.2307/2988129

Contributed Research Articles 329

R. A. Peterson and J. E. Cavanaugh. Ordered quantile normalization: a semiparametric transfor-
mation built for the cross-validation era. Journal of Applied Statistics, pages 1–16, 2019. URL
https://doi.org/10.1080/02664763.2019.1630372. [p310, 311, 312, 313, 323]

P. Royston. Estimating departure from normality. Statistics in Medicine, 10(8):1283–1293, 1991. doi:
https://doi.org/10.1002/sim.4780100811. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/sim.4780100811. [p322]

H. C. Thode. Testing for normality, volume 164. CRC press, 2002. [p313]

B. Van der Waerden. Order tests for the two-sample problem and their power. In Indagationes
Mathematicae (Proceedings), volume 55, pages 453–458. Elsevier, 1952. [p311]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth
edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0. [p311]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p325]

H. Wickham and D. Seidel. scales: Scale Functions for Visualization, 2020. URL https://CRAN.R-
project.org/package=scales. R package version 1.1.1. [p325]

S. N. Wood. Fast stable restricted maximum likelihood and marginal likelihood estimation of
semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 73(1):3–36,
2011. [p325]

I. Yeo and R. A. Johnson. A new family of power transformations to improve normality or symmetry.
Biometrika, 87(4):954–959, 2000. URL https://doi.org/10.1093/biomet/87.4.954. [p310, 311]

Ryan A. Peterson
Department of Biostatistics and Informatics
University of Colorado Anschutz Medical Campus 13001 East 17th Place Aurora, Colorado 80045
ORCID: 0000-0002-4650-5798
https: // petersonr. github. io/
ryan.a.peterson@cuanschutz.edu

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.1080/02664763.2019.1630372
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780100811
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780100811
http://www.stats.ox.ac.uk/pub/MASS4
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=scales
https://doi.org/10.1093/biomet/87.4.954
https://petersonr.github.io/
mailto:ryan.a.peterson@cuanschutz.edu

	Finding Optimal Normalizing Transformations via bestNormalize
	Introduction
	Normalization methods
	The Box-Cox transformation
	The Yeo-Johnson transformation
	The Lambert W x F transformation
	The Ordered Quantile technique
	Other included transformations
	Other not-included transformations

	Which transformation ``best normalizes'' the data?
	Simple examples
	Basic implementation
	Performing transformations individually
	In-sample normalization efficacy
	Out-of-sample normalization efficacy

	Important features
	Improving speed of estimation
	Implementation with caret, recipes
	Additional customization

	Application to Autotrader data
	Background
	Transform-both-sides regression
	Implementation with recipes

	Discussion

