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survidm: An R package for Inference and
Prediction in an Illness-Death Model

by Gustavo Soutinho, Marta Sestelo and Luis Meira-Machado

Abstract Multi-state models are a useful way of describing a process in which an individual moves
through a number of finite states in continuous time. The illness-death model plays a central role in
the theory and practice of these models, describing the dynamics of healthy subjects who may move to
an intermediate "diseased" state before entering into a terminal absorbing state. In these models, one
important goal is the modeling of transition rates which is usually done by studying the relationship
between covariates and disease evolution. However, biomedical researchers are also interested in
reporting other interpretable results in a simple and summarized manner. These include estimates
of predictive probabilities, such as the transition probabilities, occupation probabilities, cumulative
incidence functions, and the sojourn time distributions. The development of survidm package has
been motivated by recent contribution that provides answers to all these topics. An illustration of the
software usage is included using real data.

Introduction

Multi-state models are very useful for describing complex event history data with multiple endpoints.
These models may be considered a generalization of survival analysis where survival is the ultimate
outcome of interest but where information is available about intermediate events which individuals
may experience during the study period. For instance, in most biomedical applications, besides the
"healthy’ initial state and the absorbing ‘dead’ state, one may observe intermediate (transient) states
based on health conditions (e.g., diseased), disease stages (e.g., stages of cancer or HIV infection),
clinical symptoms (e.g., bleeding episodes), biological markers (e.g., CD4 T-lymphocyte cell counts;
serum immunoglobulin levels), or they can represent a non-fatal complication in the course of the
illness (e.g., cancer recurrence, transplantation, etc.). Graphically, these models may be illustrated
using diagrams with boxes representing the states and with arrows between the states representing
the possible transitions. The complexity of the multi-state model greatly depends on the number of
states and also on the possible transitions. The illness-death model is probably the most popular one in
the medical literature. The irreversible version of this model (Figure 1) describes the pathway from an
initial state to an absorbing state either directly or through an intermediate state. Many event-history

data sets from biomedical studies with multiple endpoints can be reduced to this generic structure.

There exists extensive literature on multi-state models. Main contributions include books by Andersen
et al. (1993) and Hougaard (2000) (Chapter 5 and 6). Recent reviews on this topic may be found in the
papers by Putter et al. (2007), Meira-Machado et al. (2009), and Meira-Machado and Sestelo (2019).

0. Healthy 1. lliness

Figure 1: Progressive illness-death model.

One important goal in multi-state modeling is to relate the individual characteristics with the
intensity rates through a covariate vector, but biomedical researchers are also interested in reporting
interpretable results in a simple and summarized manner. These include estimates of predictive
probabilities, such as the transition probabilities, occupation probabilities, cumulative incidence
functions, and the sojourn time distributions. The development of survidm R package has been
motivated by several recent contributions that account for these problems; in particular the newly

developed methods based on subsampling (see Meira-Machado and Sestelo (2019) for further details).

The current version of the package provides seven different approaches to estimate the transition
probabilities, two methods for the sojourn distributions and two approaches for the cumulative
incidence functions. In addition, these probabilities can also be estimated conditionally on covariate
measures. The package also allows the user to perform multi-state regression where the estimation of
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the covariate effects is achieved using Cox regression in which different effects of the covariates are
assumed for different transitions.

Several researchers have recently developed software for multi-state survival analysis. A com-
prehensive list of the available packages in the Comprehensive R Archive Network (CRAN) can
be seen in the CRAN task view ’Survival Analysis’ (Allignol and Latouche, 2018). In R, several
packages provide functions for estimating the transition probabilities (e.g., the package p3state.msm
(Meira-Machado and Roca-Pardifias, 2011), TPmsm (Aratjo et al., 2014), etm (Allignol et al., 2011),
mstate (de Wreede et al., 2011), and TPidm (Balboa and de Ufa-Alvarez, 2018)), but none implements
all the methods addressed by survidm which includes all newly developed methods based on the
subsampling approach (see de Uria-Alvarez and Meira-Machado (2015) and references therein). In
addition, not all allow the users to obtain estimates of the transition probabilities conditional to
covariates. The cmprsk and the timereg R packages can be used to estimate the cumulative incidence
functions in a competing risks model. The package survival (via survfit and coxph functions) can
also be used for competing risks data. The msSurv can be used to estimate the state occupation
probabilities and the sojourn distributions for multi-state models subject to right-censoring (possibly
state-dependent) and left-truncation. The package also provides matrices of transition probabilities
between any two states. However, none of the available software provides an encompassing package
which can be used to estimate all these quantities. Finally, the use of different packages for estimating
these quantities separately is rather difficult because each of the current programs requests its own
data structure. This paper introduces survidm (available from the Comprehensive R Archive Net-
work at https://cran.r-project.org/web/packages/survidm/), a software application for R which
performs inference in a progressive illness-death model. It describes the capabilities of the program
for estimating semiparametric regression models and for implementing nonparametric estimators for
all quantities mentioned above.

The remainder of this paper is organized as follows. The following section provides a brief
introduction to the methodological background. Then, a detailed description of the package is
presented, and its usage is illustrated through the analysis of a real data set. Finally, the last section
contains the main conclusions of this work.

Methodology background

The mathematical background underlying the survidm package is briefly introduced in this section.
A more detailed introduction can be found in Meira-Machado and Sestelo (2019). The present
contribution builds on this article by offering guidelines for using the software to implement the
proposed methods.

Notation

A multi-state model is a model for a time-continuous stochastic process (Y (t),t > 0) which at any
time occupies one of a few possible states. In this paper, we consider the progressive illness-death
model depicted in Figure 1, and we assume that states are numbered as 0 — healthy, 1 — illness, and
2 — death. We also assume that all subjects enter the study in State 0 and that they may either visit
State 1 at some time point; or not, going directly to the absorbing state (State 2).

This model is characterized by the joint distribution of (Z, T), where Z denotes the sojourn time in
the initial State 0, and T is the total survival time of the process. As usual with survival data, individuals
are generally followed over a certain period of time, providing right-censored observations which
are modeled by considering a censoring variable C, which we assume to be independent of of (Z, T).
Due to censoring, rather than (Z, T), we observe 7 = min(Z,C), T = min(T,C), Ay = I(Z < C),
and A = I(T < C) for the respective censoring indicators of Z and T. Finally, the available data is
(Z;, T;, A1, A7), 1 < i < m,iid. copies of (Z,T,Aq,A).

Regression models for transitions intensities

One important goal in multi-state modeling is to study the relationships between the different predic-
tors and the outcome. To relate the individual characteristics to the intensity rates, several models
have been used in the literature. A common simplifying strategy is to decouple the whole process into
various survival models by fitting separate intensities to all permitted transitions using semiparametric
Cox proportional hazard regression models (Cox, 1972), while making appropriate adjustments to the
risk set. The most common models are characterized through one of the two model assumptions that
can be made about the dependence of the transition intensities and time. The transition intensities
may be modeled using separated Cox models assuming the process to be Markovian (also known as
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the clock forward modeling approach), which states that past and future are independent given the
present state. They can also be modeled using a semi-Markov model in which the future of the process
does not depend on the current time but rather on the duration in the current state. Semi-Markov
models are also called “clock reset’ models because each time the patient enters a new state, the time is
reset to 0. The package survidm is restricted to these two semiparametric multi-state models, but other
models are possible for the analysis of multi-state survival data. For example, time-homogeneous
markov models and model with piecewise constant intensities are implemented in the msm R package
(Jackson, 2011). Aalen additive model (Aalen et al., 2001) and accelerated failure time models (Wei,
1992) are another class of regression models that can be an alternative to the Cox proportional hazards
model.

Transition probabilities

For two states &, j and two time points s < ¢, the so-called transition probabilities py;(s, t) = P(Y(t) =
jlY(s) = h) are introduced. In the progressive illness-death model, there are five different transition
probabilities to estimate: poo(s,t), po1(s,t), po2(s, t), p11(s, t), and p1a(s, t). Since poo (s, t) + po1 (s, t) +
po2(s,t) = 1 and p11(s,t) + p12(s,t) = 1, in practice, one only needs to estimate three of these
quantities. The state occupation probabilities are defined as p;(t) = P(Y(t) = j). If we assume that all
subjects are in State 0 at time ¢ = 0, then p;(t) = p;(0, t) and, therefore, the occupation probabilities
can be seen as a particular case of the transition probabilities. Estimating these quantities is interesting
since they allow for long-term predictions of the process.

The standard nonparametric method to estimate a transition probability matrix is the time-honored
Aalen-Johansen (AJ) estimator (Aalen and Johansen, 1978). This estimator benefits from the assumption
of Markovianity on the underlying stochastic process extending the time-honored Kaplan-Meier
estimator (Kaplan and Meier, 1958) to Markov chains. Explicit formulae of the Aalen-Johansen
estimator for the illness-death model are available (Borgan, 1988).

Moreira et al. (2013) propose a modification of the Aalen-Johansen estimator in the illness-death
model based on a preliminary smoothing (also known as presmoothing, Dikta (1998); Cao et al. (2005))
of the censoring probability for the total time (respectively, of the sojourn time in State 0), given
the available information. The presmoothed Aalen-Johansen (PAJ) estimator proposed by Moreira
et al. (2013) is obtained by replacing the censoring indicators (in the transition probabilities poo (s, t)
and p11 (s, t)) by an estimator of a binary (logistic) regression function. The authors verified through
simulations that the use of presmoothing can lead to improved estimators with less variability.

The Markov assumption may be violated in practice. For example, for the progressive illness-
death model, the arrival time to the intermediate state of the process often influences the subsequent
transition hazard, leading to non-Markov structures. If the Markov property is violated, then the
consistency of the time-honored Aalen-Johansen estimator and of its presmoothed versions can not be
ensured in general. Exceptions to this are the estimators for po(s, t) or for the so-called occupation
probabilities, po;(0, t) (Datta and Satten, 2001).

Estimators for the transition probabilities in the progressive illness-death model, which do not
rely on the Markov assumption, were introduced for the first time by Meira-Machado et al. (2006).
The proposed estimators were defined in terms of multivariate Kaplan-Meier integrals with respect
to the marginal distributions of Z and T. These authors showed the practical superiority of their
estimators relative to the Aalen-Johansen in situations in which the Markov condition is strongly
violated. However, their proposal has the drawback of requiring that the support of the censoring
distribution contains the support of the lifetime distribution. Otherwise, they only report valid
estimators for truncated transition probabilities. To avoid this issue, corrected estimators (labeled in
this paper as LIDA, the acronym of Lifetime Data Analysis, the journal in which this estimator was
published for the first time) were proposed by de Uia-Alvarez and Meira-Machado (2015) for po1 (s, t)
and p11(s, t).

The paper by de Ufa-Alvarez and Meira-Machado (2015) also introduces estimators based on
subsampling. The idea behind subsampling, also referred to as landmarking (Van Houwelingen,
2007), is to consider the subset of individuals observed in State & by time s. To be specific, given the
time point s, to estimate Poj (s,t) for j = 0,1, 2, the landmark analysis is restricted to the individuals
observed in State 0 at time s. Whereas, to estimate p; ]-(s, t),j = 1,2, the landmark analysis proceeds
from the sample restricted to the individuals observed in State 1 at time s. The procedure is then
based on (differences between) Kaplan-Meier estimators derived from these subsets of the data. These
estimators are termed LM in the present paper as well as in the survidm package.

In some cases, subsampling leads to small sample sizes which may result in estimators with high
variability. To avoid this problem, a valid approach is to consider a modification of the landmark
estimator based on presmoothing (Meira-Machado, 2016). The presmoothed landmark estimators
(PLM) are a good alternative in these situations since they give mass to all the event times, including
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the censored observations.

Subsampling was later used by Putter and Spitoni (2018) to derive a landmark Aalen-Johansen
estimator (LMAJ) of the transition probabilities. The idea behind the proposed estimator is to use the
Aalen-Johansen estimator of the state occupation probabilities derived from those subsets (consisting
of subjects occupying a given state at a particular time) for which consistency have already been
proved in multi-state models that are not necessarily Markov (Datta and Satten, 2001). In this latter
approach, the application of presmoothed estimators (PLMAJ) is possible too.

Also of interest is the estimation of the transition probabilities given a covariate (or a vector of
covariates) that is observed for an individual before the individual makes a particular transition of
interest. One standard method, particularly well-suited to the setting with multiple covariates, is to
consider estimators based on a Cox’s regression model (Cox, 1972) fitted marginally to each transition
with the corresponding baseline hazard function estimated by the Breslow’s method (Breslow, 1972).
One alternative and flexible nonparametric approach is to consider local smoothing by means of
kernel weights based on local constant (Nadaraya-Watson) regression. Right censoring is handled by
applying inverse probability of censoring weighting. This is a fully nonparametric approach which
provides flexible effects of the continuous covariates (Meira-Machado et al., 2015; Rodriguez-Alvarez
et al.,, 2016; Meira-Machado and Sestelo, 2019). The two possible approaches are implemented in the
survidm package and labeled as breslow and IPCW, respectively.

Cumulative incidence functions

Another quantity of interest in multi-state modeling is the cause-specific cumulative incidence function,
as defined by Kalbfleisch and Prentice (1980). In the illness-death model, two cumulative incidence
functions are of particular interest: the cumulative incidence of the illness and the cumulative incidence
of dying without the disease. These quantity represents the probability of an individual being or
having been diseased at time ¢. One possible estimator for the cause-specific cumulative incidence
function in a competing risks setting can be performed using the estimator proposed by Geskus
(2011). This estimator based on the subdistribution hazard is obtained by applying the Nelson-Aalen
estimator and the product-limit estimator of the disease-free survival. This estimator can also be
expressed in terms of the Kaplan-Meier weights of the distribution of Z, the sojourn time in State 0,
as introduced in the paper by Meira-Machado and Sestelo (2019). A modification of this estimator
based on presmoothing can be introduced to reduce its variability. Both methods are implemented
in the survidm package. Estimation methods for the cumulative incidence function conditionally on
covariate measures based on local constant (Nadaraya-Watson) regression are also implemented in the
package.

Sojourn distributions

The estimation of the marginal distributions in multi-state modeling is an interesting topic too. In the
context of the illness-death model, if the independence assumption between the censoring variable C
and the vector of times (Z, T) is assumed, the marginal distribution of the sojourn time in State 0, Z,
can be consistently estimated by the Kaplan-Meier estimator based on the (Zi, Aq;)’s. Similarly, the
distribution of the total time may be consistently estimated by the Kaplan-Meier estimator based on
the (Ti, A;)’s. However, the estimation of the marginal distribution of the sojourn time in State 1 is not
such a simple issue. Nonparametric estimates for this marginal distribution allowing for state and
path-dependent censoring were proposed by Satten and Datta (2002).

survidm in practice

This section introduces an overview of how the package is structured.

This software enables both numerical and graphical outputs to be displayed for all methods
described in the previous section. This software is intended to be used with the R statistical program
(R Core Team, 2019). Our package is composed of 17 functions that allow users to obtain estimates for
all proposed methods. Details on the usage of the functions (described in Table 1) can be obtained
with the corresponding help pages.

It should be noted that to implement the methods described in the methodology section, one needs
the following variables of data: timel, event1, Stime, and event. Covariates can also be included.
The variable time1 represents the sojourn time in State 0 and Stime the total time, whereas event1
and event are the respective censoring indicators. This means that event1 will take the value 1 if the
subject leaves State 0 and 0 otherwise; event takes value 1 if the subject reaches State 2 and 0 otherwise.
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Function Description

survIDM Create a survIDM object.

coxidm Fits proportional hazards regression models for each transition.
tprob Estimation of the transition probabilities.

CIF Estimation of the cumulative incidence functions.

sojourn Nonparametric estimation of the sojourn distribution in the interme-

autoplot.survIDM
plot.survIDM
print.survIDM

diate state.

Visualization of survIDM objects with ggplot2 and plotly graphics.
Plot for an object of class survIDM.

Print for an object of class survIDM.

summary.survIDM Summary for an object of class survIDM.

nevents Counts the number of observed transitions in the multi-state model.

markov. test Performs a test for the Markov assumption.

KM Computes the Kaplan-Meier product-limit of survival.

PKM Computes the presmoothed Kaplan-Meier product-limit of survival.

Beran Computes the conditional survival probability of the response, given
the covariate under random censoring.

KMW Returns a vector with the Kaplan-Meier weights.

PKMW Returns a vector with the presmoothed Kaplan-Meier weights.

LLW Returns a vector with the local linear weights.

Nww Returns a vector with the Nadaraya-Watson weights.

Table 1: Summary of functions in the survidm package.

For illustration, we apply the proposed methods to data from a large clinical trial on Duke’s
stage III patients affected by colon cancer that underwent a curative surgery for colorectal cancer
(Moertel et al., 1990). This data set is freely available as part of the R survival package. The data is
also available as part of the R package survidm. Besides the two event times (disease-free survival
time and death time) and the corresponding indicator statuses, a vector of covariates including rx
(treatment: Obs(ervation), Lev(amisole), Lev(amisole)+5FU), sex (1 - male), age (years), nodes (number
of lymph nodes with detectable cancer), surge (time from surgery to registration: 0 = short, 1 = long),
adhere (adherence to nearby organs) are also available. The covariate ‘recurrence’ is the only time-
dependent covariate, while the other covariates included are fixed. Recurrence can be considered as
an intermediate transient state and modeled using the progressive illness-death model with transient
states ‘alive and disease-free’ and ‘alive with recurrence’, and the absorbing state ‘dead’. In the
following, we will demonstrate the package capabilities using this data. Below is an excerpt of the
data.frame with one row per individual. Individuals were chosen in order to represent all possible
combinations of movements among the three states.

> library("survidm")
> data(colonIDM)
> colonIDM[c(1:2,16,21),1:7]

timel eventl Stime event rx sex age
1 968 1 1521 1 Levt5FU 1 43
2 3087 0 3087 0 Lev+5FU 1 63
16 1323 1 3214 0 Obs 1 68
21 2789 1 2789 1 Obs 1 64

Individual represented in the first line experienced a recurrence of the tumor and have died. In
such cases, event1 =1 and time1 = Stime indicate that the individual observed a direct transition
from State 0 to State 1 (with event1 = 1). Individual represented in line 2 remain alive and without
recurrence at the end of follow-up (event1 = 0 and event = 0). Individual represented in line 16 of the
original data set, with event1 = 1 and event = 9, corresponds to an individual with an observed
recurrence that remains alive at the end of the follow-up. Note that in this case, the disease-free
survival time is equal to the death time (time1 = Stime). Finally, individual represented in line 21 of
the original data set has died without observing a recurrence. We note that event1 = 1and event = @
correspond to individuals with an observed recurrence that remain alive at the end of the follow-up.

Of the total of 929 patients, 468 developed a recurrence, and among these 414 died, 38 patients
died without developing a recurrence. A summary of the data with the number of the undergoing
transitions can be obtained through the nevents function. The colums of the data set must include
at least the four columns named time1, event1, Stime, and event according to the requirements of
the survIDM function presented in the help file. Parameter state.names enables to change the default
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values of states, ‘healthy’, ‘illness’, and ‘death’.

> nevents(with(colonIDM, survIDM(timel, eventl, Stime, event)),
state.names = c("healthy”, "recurrence”, "death"))

healthy recurrence death

healthy 423 468 38
recurrence Q 54 414
death % 0 452

Regression models for transitions intensities

To relate the individual characteristics to the intensity rates, semiparametric multi-state regression
models are used. Specifically, separated Cox models assuming the process to be Markovian (i.e., the
transition intensities only depend on the history of the process through the current state) or using a
semi-Markov model in which the future of the process does not depend on the current time but rather
on the duration in the current state. Therefore, practical interest to determine whether the Markov
property holds within a particular data set to determine whether a Markov model or a semi-Markov
model is more appropriate.

The Markov assumption

The Markov assumption may be checked, among others, by including covariates depending on the
history. For the progressive illness-death model, the Markov assumption is only relevant for mortality
transition after recurrence. We can examine whether the time spent in the initial state "Alive and
disease-free" (i.e., the past) is important in the transition from the recurrence state to death (i.e., the
future). For doing that, let Z be the time spent in State 0 and ¢ the current time. Fitting a model
a1(t; Z) = agp0(H)exp{BZ}, we now need to test the null hypothesis, Hy : § = 0, against the general
alternative, Hy : B # 0. This would assess the assumption that the transition rate from the disease
state into death is unaffected by the time spent in the previous state.

> library(survival)
> fit <- coxph(Surv(timel, Stime, event) ~ timel, data = colonIDM,
subset=c(timel < Stime))
> fit
coef exp(coef)  se(coef) z p
timel -0.0002475 0.9997526 ©0.0001737 -1.424 0.154

Likelihood ratio test=2.04 on 1 df, p=0.1533
n= 468, number of events= 414

Following this procedure, we verified that the effect of time spent in State 0 reported a p-value
of 0.154 (regression coefficient: - 0.0002475), revealing no evidence against the Markov model for the
colon data. Results from this test can also be obtained through the function markov. test, which has
an output fairly similar to those obtained from coxph function.

> mk <- markov.test(survIDM(timel, eventl, Stime, event) ~ 1, data = colonIDM)
> mk

Since there is no evidence on the lack of Markovianity, a multi-state Markov regression model
based on the Cox model can be fitted through the following input command:

> fit.cmm <- coxidm(survIDM(timel, eventl, Stime, event) ~ rx + sex + age +
nodes + surg + adhere, data = colonIDM)

> summary (fit.cmm)

Cox Markov Model: transition @ -> 1

coef exp(coef) lower @.95 upper 0.95 Pr(>|z])
rxLev -0.061251858 0.9405863 ©.7596976 1.1645457 5.740592e-01
rxLev+5FU -0.515170844 ©0.5973985 ©.4713678 0.7571264 2.031682e-05
sex -0.149177218 ©0.8614164 0.7160077 1.0363552 1.137849e-01
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age -0.004669254 ©0.9953416 ©.9876802 1.0030625 2.362711e-01
nodes 0.083943790 1.0875678 1.0686993 1.1067694 5.418662e-21
surg 0.251798521 1.2863368 1.0509673 1.5744186 1.460249e-02
adhere 0.296839791 1.3455997 1.0551768 1.7159575 1.671466e-02
Cox Markov Model: transition @ -> 2

coef exp(coef) lower @.95 upper 0.95 Pr(>|zl)
rxLev -0.29152482 0.7471235 ©.3271685 1.706135 4.889711e-01
rxLev+5FU -0.11211853 ©.8939383 0.4220165 1.893589 7.697006e-01
sex 0.39293182 1.4813174 0.7641923 2.871399 2.445966e-01
age 0.08422764 1.0878765 1.0476871 1.129608 1.157046e-05
nodes 0.07538428 1.0782984 ©.9895116 1.175052 8.552937e-02
surg 0.41564547 1.5153485 0.7703441 2.980851 2.285509e-01
adhere 0.05435239 1.0558566 ©.4377875 2.546517 9.036879e-01
Cox Markov Model: transition 1 -> 2

coef exp(coef) lower @.95 upper 0.95 Pr(>|zl)
rxLev 0.068953592 1.071386 ©.8533466 1.345138 5.525534e-01
rxLev+5FU ©0.327043851 1.386862 1.0741245 1.790656 1.212756e-02
sex 0.214094887 1.238740 1.0138220 1.513557 3.623833e-02
age 0.009342474 1.009386 1.0014760 1.017359 1.994502e-02
nodes 0.046061552 1.047139 1.0249376 1.069821 2.522475e-05
surg -0.012258877 ©0.987816 ©.7944594 1.228232 9.121722e-01
adhere 0.137708158 1.147641 0.8851963 1.487895 2.985854e-01

The transition intensities characterize the hazard for movement from one state to another, revealing
how the different covariates affect the various permitted transitions. The results obtained indicate that
none of the covariates were found to have a strong effect on all three transitions. Save for covariates age
and sex, all the remaining predictors were considered important for recurrence transition. Interestingly,
age displayed a strong linear effect on mortality transition without recurrence, whereas all the other
covariates failed to show relevant association on this transition. Finally, save for covariates surg
and adhere, all the remaining predictors were considered important for the mortality transition after
recurrence. The coxidm function also returns the analysis of the deviance for each Cox model. In this
case, only an overall p-value is presented for categorical variables. To obtain the outputs, we have to

indicate type="anova’ in summary function.

> summary(fit.cmm,type = 'anova')

Cox Markov Model: transition @ ->

loglik Chisqg Df Pr(>|Chi
NULL -2954.2
rx -2941.8 24.6964 2 4.338e-
sex -2941.0 1.6402 1 0.200
age -2939.8 2.3435 1 0.125
nodes -2909.0 61.6050 1 4.198e-
surg -2906.2 5.7134 1 0.016
adhere -2903.5 5.3740 1 0.020

Signif. codes: @ ‘xxx’ 0.001 ‘x*’

Cox Markov Model: transition @ ->

loglik Chisqg Df Pr(>|Chi
NULL -231.79

rx -231.54 0.4938 2 0.78
sex -231.04 1.0065 1 0.31
age -219.26 23.5445 1 1.22%e-
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nodes -218.04 2.4536 1 0.1173
surg  -217.35 1.3830 1 0.2396
adhere -217.34 0.0145 1 0.9043
Signif. codes: @ ‘x*%x’ 0.001 ‘xx’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Cox Markov Model: transition 1 -> 2

loglik  Chisqg Df Pr(>|Chi])

NULL  -1897.5

rx -1895.0 4.8864 2 0.0868804 .

sex -1892.8 4.3995 1 0.0359501 =%

age -1890.8 4.0650 1 0.0437799 *

nodes -1883.4 14.7205 1 0.0001247 *x%*

surg -1883.4 0.0090 1 0.9242629

adhere -1882.9 1.0505 1 0.3054007

Signif. codes: @ ‘x*%x’ 0.001 ‘xx’ 0.01 ‘x’ 0.05 ‘.’ 0.1 ¢’ 1

The effect of the continuous covariates on the log hazards is often assumed to have a linear
functional form in all intensities. To introduce flexibility into the Cox Markov model, several smoothing
methods may be applied, but P-splines (Eilers and Marx, 1996) are being most frequently considered
in this context. Results showed a strong nonlinear effect for nodes (checked through a formal test)
when using a Cox model on the recurrence transition. Figure 2 returns a centered set of predictions on
a log hazard scale. The average predicted value is zero with a mean value of nodes as the reference
(see the vignette 'Splines, plots, and interactions’ in (Therneau, 2021)). The main curve depicts the
smooth curve for nodes on a log hazard scale, indicating that the risk of recurrence increases rapidly
until about 6 nodes. The apparent decrease after 23 nodes is not significant due to the wide confidence
intervals.

Vv

library(ggplot2)
library(plotly)

A\

> fit2.cmm <- coxidm(survIDM(timel, eventl, Stime, event) ~ rx + sex + age +
pspline(nodes) + surg + adhere, data = colonIDM)

> d<-data.frame(x=fit2.cmm$termo1$nodes$x, y=fit2.cmm$termdi$nodessy,
y1=fit2.cmm$term@1$nodes$y-1.96*xfit2.cmm$termdi$nodess$se,
y2=fit2.cmm$term@1$nodes$y+1.96xfit2.cmm$termd1$nodessse)

> nonlinear<-ggplot(d, aes(x,y))+theme(axis.text=element_text(size=13))+
theme_bw()+labs(x = "nodes”) +
labs(y = "Partial for pspline(nodes)"”)+
geom_ribbon(aes(ymin=y1,ymax=y2),fill="gray92',6alpha=0.9)+
geom_line(aes(x,y))+
geom_line(color=1,size=1)

Vv

ggplotly(nonlinear)

The proportional hazards assumption can be tested formally using the summary function. The
output can be obtained putting type='ph' in summary function.

> summary(fit2.cmm, type = 'ph')

Cox Markov Model: transition @ -> 1
Test the Proportional Hazards Assumption

chisq df p

rx 4.12e-01 2.00 0.81
sex 2.10e+00 1.00 0.15
age 9.37e-04 1.00 0.98
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Partial for pspline(nodes)
=

o

nodes

Figure 2: Predicted values of the smooth log hazard based on penalized splines (black line) with
pointwise 95% confidence intervals obtained from the partial residuals for nodes (recurrence intensity),
using the colon cancer data.

pspline(nodes) 7.60e+00 3.95 0.10

surg 1.97e+00 1.00 0.16
adhere 6.13e-01 1.00 0.43
GLOBAL 1.30e+01 9.94 0.22

Cox Markov Model: transition @ -> 2
Test the Proportional Hazards Assumption

chisq df p

rx 1.6292 2.00 0.44
sex 0.0668 1.00 0.80
age 0.8396 1.00 0.36
pspline(nodes) ©.7859 4.00 0.94
surg 0.4955 1.00 0.48
adhere 2.3606 1.00 0.12
GLOBAL 6.1424 9.99 0.80

Cox Markov Model: transition 1 -> 2
Test the Proportional Hazards Assumption

chisq df p

rx 5.03913 1.99 0.08
sex 0.02204 1.00 0.88
age 0.73628 1.00 0.39
pspline(nodes) 4.25500 4.09 0.39
surg 2.02427 1.00 0.15
adhere 0.00177 1.00 0.97
GLOBAL 13.19170 10.08 0.22

A semi-Markov model could be obtained by including the argument semiMarkov = TRUE in the
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coxidm function.

Occupation probabilities and transition probabilities

The occupation probabilities and the transition probabilities are key quantities of interest in multi-state
models. They offer interpretable results in a simple and summarized manner.

Estimates and plots of the transition probabilities for all methods introduced in Section 2.2 can be
obtained using the tprob function. The default method is the Aalen-Johansen estimator (AJ) which
assumes the process to be Markovian. The presmoothed version of the Aalen-Johansen estimator
(PAJ) also assumes the process to be Markovian while the remaining methods (LIDA, LM, PLM, LMAJ, and
PLMAJ) are free of the Markov condition.

When one is confident of the Markov assumption, the Aalen-Johansen is preferred over the non-
Markovian estimators since it reports a smaller variance in estimation. Estimates and plot for the
Aalen-Johansen method can be obtained through the following input commands:

> tpAJ <- tprob(survIDM(timel, eventl, Stime, event) ~ 1, s = 365,
method = "AJ", conf = TRUE, data = colonIDM)

> summary(tpAJ, times=365%2:6)

Estimation of pij(s=365,t)

t 00 01 02 11 12
730 0.7966309 0.1300071 0.0733620 0.4686360 0.5313640
1095 ©0.7192603 0.1224599 0.1582799 0.2533822 0.7466178
1460 0.6805333 0.0884287 0.2310380 0.1335300 0.8664700
1825 0.6444157 ©.0859123 0.2696720 0.0932851 0.9067149
2190 0.6131533 ©.0774912 0.3093556 0.0632835 0.9367165
2.5%
t 00 01 02 11 12
730 ©.7673408 0.1093487 0.0589350 0.4105298 0.4728114
1095 0.6867036 ©0.1026150 0.1354061 0.2105314 0.7011204
1460 0.6468259 0.0714743 0.2030840 0.1047501 0.8346547
1825 0.6098804 0.0688614 0.2396632 0.0708282 0.8813846
2190 0.5780541 ©.0612090 0.2777007 0.0464018 0.9172849
97.5%
t 00 01 02 11 12
730 0.8270390 0.1545683 0.0913208 0.5349666 0.5971676
1095 0.7533604 0.1461425 0.1850177 0.3049547 0.7950677
1460 0.7159973 0.1094050 ©.2628397 0.1702170 ©.8994981
1825 0.6809066 ©.1071852 0.3034384 0.1228620 ©0.9327733
2190 0.6503836 ©0.0981045 0.3446188 0.0863070 0.9565597

> autoplot (tpAJ)

Besides being consistent regardless the Markov condition, the landmark non-Markov estimators
(LM, PLM, LMAJ, and PLMAJ) can be preferable in many situations due to their greater accuracy (smaller
bias). When comparing the original nonparametric landmark estimator (LM) and the Aalen-Johansen
estimator, some discrepancies are observed for t = 730 and t = 1095 (2 and 3 years, respectively).
In addition to the aforementioned discrepancy between the two estimates, the plots for the two
methods (Figure 3) also show that the confidence bands are narrower in the case of the Aalen-Johansen,
revealing less variability for this method.

> tpLM <- tprob(survIDM(timel, eventl, Stime, event) ~ 1, s = 365,
method = "LM", conf = TRUE, data = colonIDM)

> summary(tpLM, times=365%2:6)

Estimation of pij(s=365,t)
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Figure 3: Transition probability estimates using the AJ (left hand side) and LM (right hand side) method,
using the colon cancer data.

t 00 01 02 1 12
730 ©.7966309 0.14750103 0.0558681 0.38815789 0.6118421
1095 0.7192603 0.14320925 0.1375305 0.15789474 0.8421053
1460 0.6805333 0.09446864 0.2249981 0.10526316 0.8947368
1825 0.6444157 ©0.08583643 0.2697479 0.09210526 0.9078947
2190 0.6131533 0.07465238 0.3121944 0.06432749 0.9356725
2.5%
t 00 01 02 1 12
730 ©0.7673274 ©0.12294665 0.0411836 ©.31792669 0.5390734
1095 0.6866872 ©0.12033558 0.1142137 0.10937624 0.7860868
1460 0.6468058 0.07447488 0.1960521 0.06621973 0.8472552
1825 0.6098421 0.06804756 0.2387239 0.05591405 0.8630680
2190 0.5777125 ©.05742370 0.2791810 0.03480413 0.8969820
97.5%
t 00 01 02 1 12
730 ©.8270534 0.17695930 0.07578852 0.4739034 0.6944337
1095 0.7533784 0.17043081 0.16560740 0.2279357 0.9021157

0 0 0 0
0 0 0 0
1460 0.7160195 ©0.11982998 0.25821767 ©.1673268 0.9448794
1825 0.6809493 0.10827565 0.30480372 0.1517218 0.9550498
2190 0.6507682 ©0.09705015 ©.34911161 ©.1188947 0.9760319

> autoplot(tpLM)

Since the landmark estimators of the transition probabilities are free of the Markov assumption,
they can also be used to introduce such tests (at least in the scope of the illness-death model) by
measuring their discrepancy to Markovian estimators. The function markov. test performs a local
graphical test for the Markov condition. This graphical test is based on a PP-plot which compares the
estimations reported by the Aalen-Johansen transition probabilities to their non-Markov counterparts.
The corresponding plot for a local test of Markovianity (s = 365) can be obtained through the following
input command:

> mk <- markov.test(survIDM(timel, eventl, Stime, event) ~ 1, s = 365, data = colonIDM)
> autoplot(mk)

The plot shown in Figure 4 compares the Aalen-Johansen estimator and the landmark non-
Markovian estimator for poi (s, t), po2(s, t), and p12(s, t), for s = 365. Existing deviations of the plots
with respect to the straight line y = x reveals some evidence on the lack of Markovianity of the
underlying process beyond one year after surgery. For further illustration, this figure jointly displays
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Figure 4: Graphical test for the Markov condition, s = 365. The second row shows the landmark
(Markov-free) estimator with 95% pointwise confidence limits (black line) and Aalen-Johansen estima-
tor (red line) for the transition probability p12(365, t), using the colon cancer data.

the landmark non-Markovian estimator and the Aalen-Johansen estimator for py2(s = 365, f). In this
plot, the differences between both estimators are clearly seen. Thus, in principle, the application of the
Aalen-Johansen method is not recommended here due to possible biases.

The variability of the nonparametric landmark estimator (LM) may be successfully reduced us-
ing presmoothing ideas (Dikta, 1998; Cao et al., 2005). The presmoothed landmark estimator is
implemented in the same function through the method PLM. The same ideas can be used to reduce
the variability of the Markovian Aalen-Johansen estimator and the (non-Markov) Landmark Aalen-
Johansen estimator through methods PAJ and PLMAJ, respectively.

The package survidm also allows for the computation of the above quantities conditional on
covariates that are observed for an individual before the individual makes a particular transition of
interest. For continuous covariates, one possible and flexible nonparametric approach is to consider
local smoothing by means of kernel weights based on local constant (Nadaraya-Watson: NW) regression.
This estimator is implemented in our package through function tprob using the method = IPCW. Below
are the input commands to obtain the estimates of the transition probabilities at time s = 365 for an
individual of 48 years old. For the bandwidth in the estimator, we use dpik function, which is available

from the R KernSmooth package. This is the data-based bandwidth selector of Wand and Jones (1997).
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Figure 5: Conditional transition probabilities given that the subject is alive and disease-free at s = 365
days for a 48-years-old patient, using the colon cancer data.

> tpIPCW.age <- tprob(survIDM(timel, eventl, Stime, event) ~ age, s = 365,
method = "IPCW", z.value = 48, conf = FALSE, data = colonIDM,
bw = "dpik"”, window = "gaussian”, method.weights = "NW")

> summary (tpIPCW.age, time=365%2:6)
Estimation of pij(s=365,t)

t 00 01 02 I 12
730 ©0.7662208 ©.1921290 0.04165012 ©.28946129 0.7105387
1095 0.7308496 ©0.1688189 0.10033149 0.12631010 0.8736899
1460 0.6980293 0.1088373 ©.19313342 0.05905711 0.9409429
1825 0.6310625 ©0.1186104 0.25032706 ©0.05903929 0.9409607
2190 0.6157095 ©.1051797 ©0.27911080 0.04035816 0.9596418

> autoplot (tpIPCW.age)

The curves depicted in Figure 5, which are purely nonparametric, enable flexible modeling of the
data providing flexible and robust effects of the covariate that can be used at least as a preliminary
attempt, providing insights on the data being analyzed. Such methods can be used to capture
nonstandard data features that may not be detected through parametric or semiparametric proposals.
A general problem in multivariate nonparametric regression estimation is the so-called curse of
dimensionality. In higher dimensions, the observations are sparsely distributed even for large sample
sizes. Consequently, estimators based on local averaging (like those based on kernel smoothing)
perform unsatisfactorily in this situation.

An alternative method is to consider estimators based on Cox’s regression model (Cox, 1972) fitted
marginally to each transition with the corresponding baseline hazard function estimated by Breslow’s
method (Breslow, 1972). The following input commands illustrate the use of the tprob function in this
context:

> tp.breslow.age <- tprob(survIDM(timel, eventl, Stime, event) ~ age, s = 365,
method = "breslow”, z.value = 48, conf = FALSE, data = colonIDM)

> summary(tp.breslow.age, time=365%2:6)
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Estimation of pij(s=365,t)

t 00 01 02 11 12
730 ©.7970855 0.15020199 ©0.05271253 0.37528949 0.6247105
1095 ©0.7198657 ©.14999685 0.13013746 0.14814634 0.8518537
1460 0.6826444 0.10384005 0.21351550 0.09843946 0.9015605
1825 ©0.6451532 0.09850122 0.25634562 0.08617378 0.9138262
2190 0.6139465 0.08891388 0.29713961 0.06066618 ©.9393338

Note that if the argument z.value is missing, then the tprob function computes the predicted
conditional transition probabilities at the average values of the covariate. The Breslow method (based
on the Cox regression model) is particularly well-suited to the setting with multiple covariates:

> tp.breslow <- tprob(survIDM(timel, eventl, Stime, event) ~ rx + age + nodes, s = 365,
method = "breslow”, z.value = c('Obs', 50, 10), conf = FALSE,
data = colonIDM)

> summary(tp.breslow, time=365%2:6)
Estimation of pij(s=365,t)

t 00 01 02 11 12
730 ©0.6423398 0.24905912 0.1086010 ©.30017412 0.6998259
1095 0.5222992 0.21890332 0.2587975 0.09465150 0.9053485
1460 0.4680828 0.12787851 0.4040387 0.05433167 0.9456683
1825 0.4181094 0.10712224 0.4747684 ©0.04519157 0.9548084
2190 0.3762996 0.08424903 0.5394514 0.02685212 0.9731479

Cumulative Incidence Function

Another quantity of interest in multi-state modeling is the cause-specific cumulative incidence of the
illness (recurrence). Function CIF can be used to obtain the nonparametric estimator of Geskus (2011)
(default method), which is equivalent to the classical Aalen-Johansen estimator. The corresponding
presmoothed version (Meira-Machado and Sestelo, 2018) is also implemented through the argument
presmooth = TRUE

> cif <- CIF(survIDM(timel, eventl, Stime, event) ~ 1, data = colonIDM, conf = TRUE)
> summary(cif, time=365%1:6)

Estimation of CIF(t)

t CIF
365 0.2378902
730 0.3844412
1095 0.4372663
1460 0.4620841
1825 0.4859813
2190 0.5032043
2.5%
t CIF
365 0.2088267
730 ©.3509039
1095 0.4038141
1460 0.4296740
1825 0.4540347
2190 0.4697608
97.5%
t CIF

365 0.2616792
730 0.4103338
1095 0.4666664
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Figure 6: Cumulative incidence function in the recurrence state with 95% bootstrap confidence bands,
using the colon cancer data.

1460 0.4900876
1825 0.5161684
2190 0.5319749

> autoplot(cif, ylim=c(@, 0.6), confcol = 2)

Figure 6 depicts the estimates of cumulative incidence function for the recurrent state together
with a 95% pointwise confidence bands based on simple bootstrap that resamples each datum with
probability 1/n. From this plot, it can be seen that individuals have a probability of recurrence higher
than 50%. This cumulative probability is about 43% at three years after surgery.

Figure 7 depicts the estimates of the (conditional) cumulative incidence function for patients
with 1 and 9 lymph nodes with detectable cancer. Curves depicted in this figure, which are purely
nonparametric, indicate that patients with 9 lymph nodes with detectable cancer have a considerably
higher probability of recurrence. The corresponding input commands are shown below:

> cif.1.nodes <- CIF(survIDM(timel, eventl, Stime, event) ~ nodes, data = colonIDM,
conf = FALSE, z.value = 1)
> cif.9.nodes <- CIF(survIDM(timel, eventl, Stime, event) ~ nodes, data = colonIDM,
conf = FALSE, z.value = 9)

> d<-as.data.frame(cbind(rep(cif.1.nodes$est[,1]1,2),c(cif.1.nodes$est[,2],
cif.9.nodes$est[,2]), c(rep(”1 nodes”, length(cif.1.nodes$est[,11)),
rep("9 nodes”, length(cif.1.nodes$est[,2])))))

> names(d)<-c('time', 'cif', 'type')
> cif<-ggplot(d, aes(x=as.numeric(time), y=as.numeric(cif),group=factor(type),
color=factor(type)))+theme_bw()+labs(x = 'Time (days)',

y = '"CIF(t|nodes)"')
> cif+geom_step(size=1)+ theme(legend.title=element_blank())
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Figure 7: Conditional cumulative incidence function for the colon cancer data for nodes = 1 and nodes
= 9, using the colon cancer data.

Sojourn distribution

Another interesting quantity is the sojourn time in each state. Estimates for the distribution function
of the sojourn time in the recurrence state can be obtained using the estimator by Satten and Datta
(2002) through function sojourn.

> soj <- sojourn(survIDM(timel, eventl, Stime, event) ~ 1,
data = colonIDM, method = "Satten-Datta”, conf = FALSE)
> summary(soj, time=365x1:6)

Estimation of sojourn(t)

t  sojourn

365 0.4852424
730 0.7723636
1095 0.8755021
1460 0.8983714
1825 0.9102335
2190 0.9220849

The estimates for the distribution function of the sojourn time in the recurrence state, corresponding
to the time between entry in recurrence and death, reveal that the distribution function increases to a
value near 49% and 78% for a time of one and two years, respectively, revealing a high risk of death
shortly after relapse.

The methods for implementing some of the proposed methods can be computationally demanding.
In particular, the use of bootstrap resampling techniques is time-consuming process because it is
necessary to estimate the model a great number of times. In such cases, we recommend the use
of parallelization (cluster = TRUE). This should considerably increase performance on multi-core/
multi-threading machines.
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Conclusions

There has been several recent contributions for the inference in the context of multi-state models.
Many of these contributions were made for the illness-death model. One important and perhaps
undervalued aspect of multi-state models is the possibility to apply them to obtain predictions of the
clinical prognosis. This is usually achieved using estimates of the transition probabilities and survival
estimates. However, there are several other quantities that could also be used in the analysis of these
data, such as the state occupation probabilities, the sojourn time distributions, and the cumulative
incidence functions. To provide the biomedical researchers with an easy-to-use tool for obtaining
predictive estimates for all these quantities, we develop an R package called survidm. This package
can be used to implement several nonparametric and semiparametric estimators for the transition
probabilities. In addition, estimators have also implemented that account for the influence of covariates.
Bootstrap confidence bands are provided for all methods. The software can also be used to perform
multi-state regression (using type-specific Cox models).

One limitation of the survidm R package is that it can only be used in the progressive illness-death
model. However, this turns out to be an advantage for those users that only wish to analyze data from
a progressive illness-death model. For such cases, the survidm package is ideal since it is user-friendly
(as illustrated in the real data analysis as well as in the help files of the main functions tprob, sojourn,
and CIF) with a strong resemblance to the well-known and widely used survival package.
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