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lg: An R package for Local Gaussian
Approximations
by Håkon Otneim

Abstract The package lg for the R programming language provides implementations of recent
methodological advances on applications of the local Gaussian correlation. This includes the estimation
of the local Gaussian correlation itself, multivariate density estimation, conditional density estimation,
various tests for independence and conditional independence, as well as a graphical module for
creating dependence maps. This paper describes the lg package, its principles, and its practical use.

Introduction

Tjøstheim and Hufthammer (2013) propose the local Gaussian correlation (LGC) as a new measure of
statistical dependence between two stochastic variables X1 and X2, which has the following important
property yet unrivaled in the literature: It can separate between positive and negative nonlinear
dependence while still reducing to the ordinary Pearson correlation coefficient if X1 and X2 are jointly
normally distributed. The R-package localgauss (Berentsen et al., 2014) provides two important
functions in this context; one that calculates the sample LGC based on observed values of (X1, X2),
and one that uses the estimated LGC to perform a local test of independence between X1 and X2 as
described in detail by Berentsen and Tjøstheim (2014).

We have lately seen a number of new applications of the LGC that the localgauss package does
not support, however. Støve et al. (2014) use the LGC to test for financial contagion across markets
during crises. Otneim and Tjøstheim (2017) present a procedure for estimating multivariate density
functions via the LGC, which Otneim and Tjøstheim (2018) modify in order to compute estimates of
conditional density functions. Lacal and Tjøstheim (2017) present a test for serial independence within
a time series, which Lacal and Tjøstheim (2018) extend in order to include a test for cross-correlation
between two time series. Finally, Otneim and Tjøstheim (2021) develop the local Gaussian partial
correlation (LGPC) as a measure of conditional dependence and a corresponding test for conditional
independence.

This paper describes the lg package (Otneim, 2019), which provides a unified framework to
implement all these methods, as well as a tool for visualizing the LGC and LGPC as dependence maps.
Jordanger and Tjøstheim (2020) use the LGC in spectral analysis of time series, but those methods
have their own computational ecosystem in the localgaussSpec package (Jordanger, 2018).

In Section 2.2, we provide a brief introduction to the LGC as well as the methods and applications
referred to above. In Section 2.3, we describe the core function in the lg package and move on to
demonstrate the implementation of various applications in Section 2.4. We conclude this paper in
Section 2.5 by demonstrating the graphical capabilities of the lg package.

Statistical background

Consider a random vector X having the unknown probability density function fX (x). It is a standard
task to estimate fX based on a random sample X1, . . . , Xn, and the statistical literature provides an
abundance of methods to accomplish this. One may, for example, make the assumption that the
unknown density function has a particular parametric form, fX ∈ Fθ , where Fθ = { f (x; θ), θ ∈ Θ} is a
family of probability density functions indexed by some parameter θ, and where Θ is the parameter
space. Under this assumption, we will typically produce an estimate of the parameter θ, written θ̂,
using the maximum likelihood method. The estimated probability density function is then given as

f̂X (x) = f
(

x; θ̂
)

.

A different approach is to estimate fX (·) without any prior parametric assumptions. The classical
method for nonparametric density estimation is the kernel estimator

f̂X (x) =
1

nb

n

∑
i=1

K
(

Xi − x
b

)
,

where K is a symmetric density function (the kernel) and b is a tuning parameter (the bandwidth)
that controls the smoothness of the estimate f̂X (·). See Silverman (1986) for an introduction to this
topic. There is also a massive statistical literature on density estimation containing extensions and
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1000 consecutive trading days.

Figure 1: Two dependence maps

improvements to the classical methods to be used in various practical situations.

Hjort and Jones (1996) provide one such idea. They consider a parametric family Fθ , but instead
of searching for a single parameter value θ0 for which fX (x) = f (x; θ0) (or approximately so), they
rather assert that different members of Fθ may approximate fX locally in different parts of its domain.
In other words, they seek to estimate a parameter function θ0 (x) for which fX (x) = f (x; θ0 (x)) (or
approximately so), and do this by maximizing a local likelihood function in each point x:

θ̂ (x) = arg max
θ∈Θ

Ln (θ, x)

= arg max
θ∈Θ

1
nb

n

∑
i=1

K
(

Xi − x
b

)
log f (Xi; θ)−

∫ 1
b

K
(

y − x
b

)
f (y; θ) dy, (1)

where, again, K is a symmetric density function and b is a bandwidth parameter that controls the
smoothness of the estimate. The second term in the local likelihood function is a penalty that ensures

that the estimated density f̂X (x) = f
(

x; θ̂ (x)
)

converges correctly to the true density function fX (x)
as the sample size n increases to infinity and the bandwidth b decreases towards zero. See Hjort and
Jones (1996) for a detailed discussion about this construction.

Tjøstheim and Hufthammer (2013) consider the bivariate case X = (X1, X2) and take Fθ to be the
family of bivariate normal distributions consisting of densities on the form

f (x; θ) = ψ (x1, x2; µ1, µ2, σ1, σ2, ρ)

=
1

2πσ1σ2
√

1 − ρ2

× exp

{
− 1

2(1 − ρ2)

(
(x1 − µ1)

2

σ2
1

− 2ρ
(x1 − µ1) (x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

)}
, (2)

where θ = (µ1, µ2, σ1, σ2, ρ) is the vector of parameters. Using a sample {X1i, X2i}, i = 1, . . . , n, they
estimate θ locally in the point x by maximizing the local likelihood function (1), producing

θ̂ (x) = (µ̂1 (x) , µ̂2 (x) , σ̂1 (x) , σ̂2 (x) , ρ̂ (x)) ,

and take special interest in the estimated correlation function ρ̂ (x) (i.e., the LGC) because it serves as
an attractive local measure of statistical dependence between X1 and X2. They show that the LGC
reveals many types of nonlinear statistical dependence that are not captured by the ordinary (global)
Pearson correlation coefficient. Furthermore, the LGC distinguishes between positive and negative
dependence and reduces to the Pearson ρ if X1 and X2 are jointly normal. We refer to Tjøstheim and
Hufthammer (2013) for a detailed treatment of the theoretical foundations of the LGC as well as several
examples and rather present two simple illustrations at this point in order to demonstrate the concept.

In Figure 1, we have plotted the estimated LGC for two bivariate data sets on a grid; 1000 simulated
observations from a binormal distribution having correlation equal to 0.5, and the daily return on
the CAC40 and FTSE100 stock indices on 1000 consecutive trading days starting on May 5th 2014
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(Datastream, 2018). In the first panel, we see that the estimated local correlation coincides with the
global correlation, except for the estimation error which is comparable to the uncertainty observed
in other nonparametric estimation methods such as the kernel density estimator (see, for instance,
Otneim and Tjøstheim (2017) for a formal asymptotic analysis of relevant convergence rates). In the
second panel, we see clearly that the local correlation, and thus the dependence, is stronger in the
lower left and upper right regions of the distribution than in the central parts. The phenomenon of
local dependence is well known in the financial literature, and using the LGC it can be measured,
interpreted, and visualized in a natural way. The interpretation of this particular figure is that extreme
observations on the two stock indices are more strongly dependent than the less extreme observations.

One may obtain these particular estimates from the older localgauss package (as well as the lg
package, of course), but the plotting routine that was used to produce these figures is included in the
lg package and will be described in more detail in Section 2.5.

Taking the LGC as a measure of dependence opens up a number of possibilities to construct
statistical tests. Berentsen and Tjøstheim (2014) show that ρ (x) ≡ 0 implies that X1 and X2 are
independent. They show further that independence between X1 and X2 implies ρ (x) ≡ 0 if the
population values of the local mean and standard deviation functions satisfy the following conditions:
µi (x1, x2) = µi (xi) and σi (x1, x2) = σi (xi) for i = 1, 2. Equivalence between independence and
ρ (x) ≡ 0 holds in general if the observations have been suitably transformed according to a procedure
presented later in this section. It follows then that departures from ρ̂ (x) ≡ 0 may be taken as evidence
against the hypothesis that X1 and X2 are statistically independent. Berentsen and Tjøstheim (2014)
formalize this notion by testing whether ρ (x) ≡ 0 for all x ∈ S ⊂ R2 using the test statistic

Tn,b =
∫

S
h (ρ̂ (x)) dFn(x) (3)

for some non-negative function h, for example h (x) = x2 or h (x) = |x|. Critical values may be ob-
tained by permutations of the data under the null hypothesis, and we demonstrate the implementation
of this test using the lg package in Section 2.4.2.

Consider next the stationary time series {Xt}. The autocorrelation function (ACF) ρk = ρ (Xt, Xt−k)
is a well known concept for describing the serial dependence in the time series, but the ACF is, again,
only capable to completely capture linear serial dependence. Lacal and Tjøstheim (2017) seek to
remedy this by rather calculating the local correlation between Xt and Xt−k. This leads to a test
for serial independence in a natural way. In fact, this work is mainly a theoretical exercise in order
to accommodate time series dependence. Testing for independence between Xt and Xt−k using
observations {Xt, Xt−k}T

t=k+1 leads to the same test statistic (3) and bootstrap procedure as the test for
independence between X1 and X2 that we described above.

Lacal and Tjøstheim (2018) extend this problem to test for serial cross-dependence between two
time series {Xt, Yt} by measuring the LGC between Xt and Yt−k. Departures from ρ̂ (x, y) ≡ 0 are,
again, taken as evidence against independence, and the test statistic (3) provides an aggregate measure
of this discrepancy in the specified region S. In this case, however, we can not obtain replicates of
the test statistic under the null hypothesis by simple permutations of the data. Lacal and Tjøstheim
(2018) suggest two block bootstrap procedures instead to this end, using fixed and random block sizes,
respectively. The tests for serial dependence and serial cross-dependence are both implemented in the
lg package, as we demonstrate in Section 2.4.2.

We find another application of the local Gaussian approximation in work by Støve et al. (2014),
who measure and test for financial contagion. They define contagion as "a significant increase in
cross-market linkages after a shock to one country" (Forbes and Rigobon, 2002, p. 2223) and employ the
LGC to quantify this potential linkage. The authors estimate the LGC on a grid {x1, x2}k, k = 1, . . . , K
along the diagonal D = {(x1, x2) : x1 = x2} before and after some critical event in the financial markets,
denoted as the crisis (C) and the non-crisis (NC) periods, respectively. They compare the two estimates
using the following test statistic,

TD
n,b =

K

∑
k=1

{ρ̂C (xk, xk)− ρ̂NC (xk, xk)}w (xk, xk) ,

where w (·, ·) is a weight function that serve the same purpose as the integration area S in (3). In
this case, Støve et al. (2014) show that a standard bootstrap will suffice in order to produce approxi-
mate replicates of TD

n,b under the null hypothesis of no financial contagion, and we demonstrate the
implementation of this test using the lg package in Section 2.4.3.

Although the original work by Hjort and Jones (1996) provide a general framework for local
likelihood density estimation using any p-variate parametric family as the local family, it is evident
that the method may struggle in multivariate applications much in the same way as the kernel
density estimator does. This is a consequence of the curse of dimensionality, the effect of which is

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=localgauss
https://CRAN.R-project.org/package=lg
https://CRAN.R-project.org/package=lg
https://CRAN.R-project.org/package=lg
https://CRAN.R-project.org/package=lg
https://CRAN.R-project.org/package=lg


CONTRIBUTED RESEARCH ARTICLES 41

sought remedied by an algorithm provided by Otneim and Tjøstheim (2017). The idea is to fit the
p-variate normal distribution ψ (µ, Σ) locally, where µ is the vector of p expectations, and Σ is the
p × p covariance matrix (to which the correlation matrix R corresponds), but under the following
structural simplifications:

µi (x) = µi
(

x1, . . . , xp
) def
= µi (xi) (4)

σi (x) = σi
(

x1, . . . , xp
) def
= σi (xi) (5)

ρij (x) = ρij
(

x1, . . . , xp
) def
= ρij

(
xi, xj

)
. (6)

Otneim and Tjøstheim (2017) estimate the local parameters above by first obtaining univariate marginal
locally Gaussian fits (eqs. 4 and 5), and then pairwise bivariate locally Gaussian fits (eq. 6). In the

second step, the estimates µ̂i (xi), µ̂j

(
xj

)
, σ̂i (xi), and σ̂j

(
xj

)
are kept fixed in the estimation of the

pairwise local correlation. They argue further that the following transformation technique will produce
better density estimates in many situations. The motivation for introducing the simplifications defined
in equations 4-6 can be compared to the practical advantages of estimating additive regression models,

where E (Y) = f
(

x1, . . . , xp
) def
= f1 (x1) + · · ·+ fp

(
xp
)
.

Denote by Fi (xi), i = 1, . . . , p the marginal distribution functions of the stochastic vector X, and
by F̂i (xi) = n−1 ∑n

i=1 1 (Xi ≤ xi) their empirical counterparts. They then estimate the density fZ (z)
of the vector Z =

{
Φ−1 (Fi (Xi))

}
i=1,...,p. In practice it is approximated by

Ẑ =
{

Φ−1
(

F̂i (Xi)
)}

i=1,...,p
, (7)

and where Ψ (·) is the univariate standard normal cdf. In that case, they simplify the estimation
problem even further and fix

µi (zi)
def
= 0 and σi (zi)

def
= 1, i = 1, . . . , p, (8)

so that the only parameter functions left to estimate are the pairwise local Gaussian correlations

R (z) =
{

ρij

(
zi, zj

)}
i<j

. We use the notation Z, zi, and zj to signify that the estimation is performed

on the (approximate) standard normal scale or z-scale for short. We can then estimate the joint density
fZ (z) of Z as

f̂Z (z) = ψ
(

z; µ (z) = 0, σ (z) = 1, R = R̂ (z)
)

, (9)

where µ (z) = {µi (z)} and σ (z) = {σi (z)} for i = 1, . . . , p, and then substitute fZ for f̂Z in the
following relation obtained by Otneim and Tjøstheim (2017) in order to estimate the unknown density
fX :

f (x) = fZ
(
Φ−1 (F1 (x1)) , . . . , Φ−1 (Fp

(
xp
)) )

×
p

∏
i=1

fi (xi)

ϕ
(
Φ−1 (Fi (xi))

) , (10)

where ϕ (·) is the standard normal pdf. This estimator is implemented the lg package as demonstrated
in Section 2.4.1.

One particular feature enjoyed by the jointly normally distributed vector X is that for any parti-

tioning X =
(

X(1), X(2)
)

, the conditional distribution of X(1)|X(2) = x(2) is also normal. In fact, if

X ∼ N (µ, Σ), and µ and Σ is partitioned according to
(

X(1), X(2)
)

as

µ =

(
µ1
µ2

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
,

then X(1)|X(2) = x(2) ∼ N (µ∗, Σ∗), where

µ∗ = µ1 + Σ12Σ−1
22

(
x(2) − µ2

)
(11)

Σ∗ = Σ11 − Σ12Σ−1
22 Σ21, (12)

see e.g. Johnson and Wichern (2007, chapter 4). Otneim and Tjøstheim (2018) demonstrate that this
property may be translated into a corresponding local argument without modification. That is, if the
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joint density fX (·) can be written on a locally Gaussian form

fX (x) = ψ (x, µ (x) , Σ (x)) ,

then the conditional density of X(1)|X(2) = x(2) can also be written on the same locally Gaussian form
with local parameters given by equations (11) and (12), except that all quantities are x-dependent.
If we use the transformation technique described above together with simplification (8), the local
versions of equations (11) and (12) simplify to

µ∗ (z) = R12 (z) R22 (z)
−1 z(2), (13)

Σ∗ (z) = R11 (z)− R12 (z) R22 (z)
−1 R21 (z) , (14)

where we, again, switch to z-notation in order to make it clear that these quantities are estimated
on the standard normal z-scale. An estimator f̂X(1) |X(2) (·|·) of the conditional density fX(1) |X(2) (·|·)
follows immediately from an expression corresponding to (10), and the lg package provides functions
for implementing this estimator in R. We describe the implementation of this functionality in Section
2.4.1.

Finally, we refer to Otneim and Tjøstheim (2021) who take the local version of the conditional
covariance matrix (12) (or (14) in the transformed case) as a measure for conditional dependence,
and thus as an instrument to test for conditional independence. Consider the stochastic vector

X =
(

X(1), X(2), X(3)
)

, where X(1) and X(2) are scalars and X(3) may be a vector. X(1) is conditionally

independent from X(2) given X(3), written X(1) ⊥ X(2) | X(3), if the stochastic variables X(1) | X(3) and
X(2) | X(3) are independent, or, equivalently, if the joint conditional density of X(1) and X(2) given X(3)

can be written as the product

fX(1) ,X(2) |X(3)

(
x(1), x(2)|x(3)

)
= fX(1) |X(3)

(
x(1)|x(3)

)
× fX(2) |X(3)

(
x(2)|x(3)

)
. (15)

In this case, denote by α (z) the off-diagonal element in the 2 × 2 local correlation matrix R∗ (z) (which
derives directly from Σ∗ (z) as given in (14)). If X has a local Gaussian distribution, the conditional
independence (15) is equivalent to α (z) ≡ 0, and Otneim and Tjøstheim (2021) take departures from
this relation as evidence against the hypothesis of conditional independence between X(1) and X(2)

given X(3). The natural way to quantify this is the test functional

TCI
n,b =

∫
h (α̂ (z)) dFn(z). (16)

Otneim and Tjøstheim (2021) describe a bootstrap procedure for generating replicates of TCI
n,b under

the null hypothesis. In Section 2.4.4, we demonstrate how the lg package may be used to extract
estimates of the local partial correlation and perform tests for conditional independence according to
this scheme.

The first step: Creating the lg-object

The local Gaussian correlation may be used to perform a number of statistical analyses, as is evident
from the preceding section. The practitioner must first, however, make three quite specific modeling
choices; namely (i) to choose an estimation method, i.e., the level of simplification in multivariate
applications, (ii) to determine whether the data should be transformed towards marginal standard
normality before estimating the LGC, and (iii) to choose a set of bandwidths or at least a method for
calculating bandwidths. The architecture of the lg package requires the user to make these choices
before endeavoring further into specific applications by imposing a strict, two-step procedure:

1. Create an lg-object.

2. Apply relevant analysis functions to the lg-object.

In the following, we assume that one has a data set x loaded into the R workspace, which must be
an n × p matrix (one column per variable, one row per observation), possibly including NAs which
will be excluded from the analysis, or a data frame having the same dimensions. The fundamental
syntax for creating an lg-object is lg_object <-lg_main(x), and we will, in this section, explain how
the modeling decisions (i)-(iii) can be encoded into the lg-object by using appropriate arguments in
this function.
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Selecting the estimation method

Given a data set x having n rows and p ≥ 2 columns, the user must choose between four distinct
estimation methods and specify this choice by using the argument est_method to the lg_main()-
function. We look at the built-in bivariate data set faithful, which records the waiting time between
eruptions and the duration of the eruption for the Old Faithful geyser in the Yellowstone National
Park, USA (see the help file in R for more details: ?faithful), and load the lg package in order to
demonstrate the implementation:

R> x <- faithful
R> library(lg)

1. A full locally Gaussian fit for bivariate data. If p = 2, we may fit the bivariate normal ψ (x, θ)
locally to f (x), and by a "full local fit", we mean that we jointly estimate the five parameters

θ (x) =
(
µ1 (x1, x2) , µ2 (x1, x2) , σ1 (x1, x2) , σ2 (x1, x2) , ρ (x1, x2)

)
by optimizing the local likelihood function (1) in the grid point x = (x1, x2). To use this estimation
method in the subsequent analysis, specify est_method = "5par" in the call to lg_main():

R> lg_object <- lg_main(x, est_method = "5par")

The resulting lg_object is a list of class lg, and we may confirm that the assignment has been carried
out correctly by inspecting its est_method-element:

R> lg_object$est_method

[1] "5par"

Note that the full locally Gaussian fit for raw data is not available if the number of variables p is
greater than 2. The lg_main()-function will check for this and print out an error message if p > 2 and
est_method = "5par".

2. A simplified locally Gaussian fit for multivariate data. As described in the preceding section,
we may construct a simplified estimation procedure for calculating the LGC in two steps, which in
principle works for any number of dimensions (including p = 2):

1. Calculate µi (xi) and σi (xi), i = 1, . . . , p by fitting the univariate normal distribution locally to
each marginal density fi (xi) of f (x).

2. Keep µ̂i (x) and σ̂i (xi), i = 1, . . . , p from step 1 fixed when estimating ρij

(
xi, xj

)
, 1 ≤ i < j ≤ p

by fitting the bivariate normal distribution to each pair of variables Xi and Xj.

To use this method, create the lg-object by running the following line:

R> lg_object2 <- lg_main(x, est_method = "5par_marginals_fixed")

3. A simplified locally Gaussian fit for marginally standard normal data. This estimation
method is applicable for marginally standard normal data, or data that have been transformed to
approximate marginal standard normality by, e.g., the transformation (7). In that case, we fix the
marginal expectation functions and standard deviation functions to the constant values 0 and 1,
respectively, and estimate only the pairwise local Gaussian correlations as in (9). To use this estimation
method, create the lg-object by running

R> lg_object3 <- lg_main(x, est_method = "1par")

Note that the function call above will issue a warning if the option for transforming the data to
marginal standard normality is not at the same time set to TRUE, see the next sub-section on data
transformation for details.

4. A full locally Gaussian fit for trivariate data. If the number of variables p is equal to 3, and we
choose to transform the data to marginal standard normality (see the next sub-section), the transformed
density fZ (·) in (9) may be estimated by jointly estimating the three local correlations ρ12 (z1, z2, z3),
ρ13 (z1, z2, z3), and ρ23 (z1, z2, z3). This estimation method was introduced recently by Otneim and
Tjøstheim (2021) in order to increase power of their conditional independence test, but it can be used
in any application described in this paper that consider trivariate data. To use this estimation method,
create the lg-object by running

R> lg_object4 <- lg_main(x, est_method = "trivariate")

This command will throw an error if the data set x does not have exactly three columns.
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(a) The original data.
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(b) The same data transformed to marginal standard
normality.

Figure 2: The same data on different scales.

Data transformation

Next, the user must determine if the local Gaussian correlation should be estimated directly on the
raw data or on the marginally normal pseudo observations (7). This is carried out by using the logical
transform_to_marginal_normality-argument in lg_main, for example:

R> lg_object <- lg_main(x, transform_to_marginal_normality = TRUE)

The resulting lg_object now includes the element transform_to_marginal_normality set accord-
ing to the input, and if this is TRUE, it also includes the transformed_data and a function trans_new()
that may be used later to apply the same transformation to, e.g., grid points. If the transformation
option is set to FALSE, the transformed_data element contains the input data x, and trans_new() is
nothing more than the identity mapping for points in Rp. See Figure 2 for two plots that demonstrate
the effect of the data transformation on the example data.

Bandwidth selection

Finally, the user must specify a set of bandwidths or a method for calculating them. Given that the
different estimation methods described in Section 2.3.1 require different sets of bandwidths (i.e, joint,
marginal, and/or pairwise), the easiest approach for the user is to leave the selection and formatting
of the bandwidths to the lg_main()-function.

The bandwidth plays a slightly different role in local likelihood estimation than elsewhere in the
nonparametric literature. It controls the level of localization and thus only indirectly the smoothness of
the estimates. Indeed, suppose we concentrate on the univariate case for the moment and assume
that the (single) bandwidth b is small. In that case, we see from the local likelihood function (1) that
only the very few observations closest to a fixed grid point x0 will have significant weight when
determining the local parameter estimates θ̂0 (x) at that point. Moving on to another nearby point, x1
may then lead to a fairly different estimate θ̂ (x1) because the set of observations having weight in this
point is very different. This may, again, lead to rougher parameter estimates θ̂ (x) and in turn also to

rougher density estimates f
(

x, θ̂ (x)
)

.

If the bandwidth b grows large, on the other hand, all observations receive similar weights, and
furthermore: the local likelihood function (1) becomes approximately proportional to the ordinary
(global) likelihood function Ln (θ) = ∑n

i=1 log f (Xi; θ). In other words, the local parameter estimates
θ̂ (x) are smoothed towards the constant maximum likelihood estimates θ̂ML, and the estimated density

f
(

x; θ̂ (x)
)

towards the maximum likelihood estimate f
(

x; θ̂ML

)
. This means that the bandwidth

may be chosen to reflect the goodness-of-fit of f (x; θ) to the true density f (x).
In the multivariate applications referred to in this paper, the bandwidth b in (1) is a diagonal

matrix, and 1/b is naturally taken to represent its inverse.

We have in practice seen two automatic bandwidth selectors employed in the applications referred
to in Section 2.2: a cross-validation procedure that is fairly slow to compute but accurate with respect
to density estimation, and a plug-in bandwidth that is much quicker to calculate but less accurate with
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respect to density estimation. We use the argument bw_method to the lg_main()-function in order to
choose between the two.

1. Choosing bandwidths by cross-validation. The functional

CV (b) = − 1
n

n

∑
i=1

log f
(

Xi; θ̂(−i) (Xi)
)

,

where θ̂(−i) (x) is the parameter estimate obtained after deleting observation Xi from the data, is

proportional to a quantity that estimates the Kullback-Leibler distance between f
(
·, θ̂ (·)

)
and the

true density f (·); see Berentsen and Tjøstheim (2014). The cross-validated bandwidth bCV is hence
given by

bCV = arg min
b

CV (b) .

If we, for example, wish to use the simplified estimation procedure on the transformed data, we need
bandwidths for the marginal estimates of the local means and standard deviations, as well as a 2 × 2
diagonal bandwidth matrix for each pair of variables. This is accomplished by the following call to
lg_main():

R> # Create the lg-object with bandwidths chosen by cross-validation
R> lg_object <- lg_main(x,
R+ est_method = "5par_marginals_fixed",
R+ transform_to_marginal_normality = TRUE,
R+ bw_method = "cv")

The lg_object now contains the necessary bandwidths for this configuration, as can be seen by
inspecting the contents of its bw-element:

R> # Print out the bandwidths
R> lg_object$bw

$marginal
[1] 0.9989327 0.9875333

$marginal_convergence
[1] 0 0

$joint
x1 x2 bw1 bw2 convergence
1 1 2 0.2946889 0.331971 0

This is itself a list, containing the crucial elements marginal for the p marginal bandwidths, and joint
that contains the p(p − 1)/2 bandwidth matrices, one for each pair of variables (which in this bivariate
example just one variable pair, (x1, x2)). The convergence flags stem from the built-in R functions
optim() and optimize() that we use to obtain the minimizer of CV (·), and 0 indicates successful
convergence.

2. Using plug-in bandwidths. Obtaining cross-validated bandwidths is unfortunately fairly slow
on a standard computer. For sample sizes in the 500-1000 range, the process may take several minutes,
which is unfeasible when embarking on analyses that require, e.g., resampling. We have, therefore,
implemented a quick plug-in bandwidth selector as well that may suffice in many practical situations,
especially at the initial or exploratory stage.

Otneim and Tjøstheim (2017) show that the simplified version of the local Gaussian fit have
the same convergence rates as the corresponding nonparametric kernel density estimator for which
Silverman (1986) derives the plug-in formula b = 1.08 · sd (x) · n−1/5. By specifying bw_method =
"plugin", the lg_main()-function will select the bandwidths correspondingly, except that the exponent
changes to −1/6 for joint bandwidths, and the proportionality constant is by default set to 1.75. The
latter number is the result of regressing bCV on n−1/6 in a large simulation experiment covering
various data generating processes (Otneim, 2016). We see the effect of switching to plug-in bandwidths
in the code below:

R> # Make the lg-object with plugin bandwidths
R> lg_object <- lg_main(x,
R+ est_method = "5par_marginals_fixed",
R+ transform_to_marginal_normality = TRUE,
R+ bw_method = "plugin")
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Argument Explanation Default value

x The data, an n × p matrix or data frame
bw_method Method for calculating the bandwidths "plugin"

est_method Estimation method "1par"

transform_to_

marginal_normality Transform the data TRUE

bw The bandwidths to use if already calculated NULL

plugin_constant_

marginal Prop. const. in plugin formula for marg. bw. 1.75
plugin_exponent_

marginal Exponent in plugin formula for marg. bw. −1/5
plugin_constant_

joint Prop. const. in plugin formula for joint bw. 1.75
plugin_exponent_

joint Exponent in plugin formula for joint bw. −1/6
tol_marginal Abs. tolerance when optimizing CV (b), marg. 10−3

tol_joint Abs. tolerance when optimizing CV (b), joint 10−3

Table 1: Arguments to the initialization function lg_main()

R> # Print out the bandwidths
R> lg_object$bw

$marginal
[1] 0.5703274 0.5703274

$marginal_convergence
[1] NA NA

$joint
x1 x2 bw1 bw2 convergence

1 1 2 0.6875061 0.6875061 NA

Summary of the initialization function

In the sub-section above, we present the three most important arguments to lg_main(). Each of them
allows the user to configure one of the three crucial modeling choices. Let us complete this treatment
by covering some possibilities to make further adjustments to those choices.

1. The user may supply the bandwidths directly to lg_main() by passing them to the bw-argument.
They have to be in the correct format, though, which is a list containing the vector $marginal if
est_method = "5par_marginals_fixed", and always a data frame $joint specifying all variable
pairs in the x1 and x2 columns and the corresponding bandwidths in the bw1 and bw2 columns.
The function bw_simple() will assist in creating bandwidth objects.

2. If bw_method = "plugin" the user may change the proportionality constant and exponent in the
plugin formula for the joint and, if applicable, the marginal bandwidths. See Table 1 for the
necessary argument names.

3. If bw_method = "cv", the user may change the numerical tolerance in the optimization of CV (b).
See Table 1 for the necessary argument names.

Statistical inference using the lg package

We proceed in this section to demonstrate how to implement each of the tasks that we discussed
in Section 2.2. The general pattern is to pass the lg-object to one of the estimation or test functions
provided in the lg package. We will look at some financial data in the examples: the monthly returns on
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Figure 3: Local correlations and density estimates calculated using the dlg()-function.

the S&P500, FTSE100, DAX30, and TOPIX stock indices from January 1985 to March 2018 (Datastream,
2018).

Density estimation

We start by introducing a basic function for estimating the LGC on a grid as described by Otneim and
Tjøstheim (2017), and thus also a probability density estimate. We create a grid, x0, having the same
number of columns as the data in the code below. Note that we use the pipe operator %>% from the
magrittr package (Bache and Wickham, 2014) as well as functions from the dplyr package (Wickham
et al., 2018) for easy manipulation of data frames. We then pass the grid and the lg-object containing
our modeling choices to the dlg()-function in order to do the estimation.

R> # Create an lg-object
R> lg_object <- lg_main(x = stock_data %>% select(-Date),
R+ est_method = "1par",
R+ bw_method = "plugin",
R+ transform_to_marginal_normality = TRUE)
R>
R> # Construct a grid diagonally through the data.
R> grid_size <- 100
R> x0 <- stock_data %>%
R+ select(-Date) %>%
R+ apply(2, function(y) seq(from = -7,
R+ to = 7,
R+ length.out = grid_size))
R>
R> # Estimate the local Gaussian correlation on the grid
R> density_object <- dlg(lg_object, grid = x0)

The last line of code creates a list containing a number of elements. The two most important are
$loc_cor, which is a matrix of local correlations having one row per grid point and one column per
pair of variables (the columns correspond to the rows in density_object$pairs), and $f_est, which is
a vector containing the estimate f̂X (x) of the joint density fX (x) in the grid points specified in x0. The
estimated local correlations for this example is plotted in Figure 3a, and the corresponding density
estimate is plotted (along the diagonal x1 = x2 = x3 = x4 = x) in Figure 3b.

The list density_object contains the estimated standard deviations of the local correlations in
$loc_cor_sd, as well as lower and upper confidence bands $loc_cor_lower and $loc_cor_upper at
the 95% level. We refer to Table 2 for a complete overview of the arguments to dlg().

Note that the configuration transform_to_marginal_normality = TRUE and est_method = 5par
in the bivariate case coincides with the situation considered by Tjøstheim and Hufthammer (2013).
In that case, dlg() serves as a wrapper for the function localgauss() in the localgauss-package
(Berentsen et al., 2014).

Obtaining the estimate of a conditional density using the Otneim and Tjøstheim (2018) algorithm
described in Section 2.2 is very similar. However, one must take particular care of the ordering of the
variables in the data set. The estimation function, clg(), will always assume that the free variables
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Argument Explanation Default value

lg_object The lg-object created by lg_main()

grid The evaluation points for the LGC NULL

level Level for confidence bands 0.95
normalization The estimated density does not integrate to one by
_points construction. dlg() will generate the given number

of normal variables, having the same moments as
the data, approximate

∫
f̂X (x) dx by a Monte Carlo

integral, and then normalize the density estimate
accordingly

NULL

bootstrap Calculate bootstrapped confidence intervals instead
of asymptotic expressions FALSE

B Number of bootstrap replicates 500

Table 2: Arguments to the dlg()-function

come first and the conditioning variables last. Let us illustrate this in the following code chunk by
estimating the joint conditional density of S&P500 and FTSE100, given that DAX30 = TOPIX = 0.

R> # We must make sure that the free variables come first
R> returns1 <- stock_data %>% select(SP500, FTSE100, DAX30, TOPIX)
R>
R> # Create the lg-object
R> lg_object <- lg_main(returns1,
R+ est_method = "1par",
R+ bw_method = "plugin",
R+ transform_to_marginal_normality = TRUE)
R>
R> # Create a grid
R> x0 <- returns1 %>%
R+ select(SP500, FTSE100) %>%
R+ apply(2, function(y) seq(from = -7,
R+ to = 7,
R+ length.out = grid_size))
R>
R> # Calculate the conditional density
R> cond_density <- clg(lg_object, grid = x0, cond = c(0, 0))

The key argument in the call to clg() above is cond = c(0, 0). This means that the last two
variables are conditioning variables (and hence, that the first 4 − 2 = 2 variables are free). The value
of the conditioning variables are fixed at DAX30 = 0 and TOPIX = 0, respectively. This also means that
the number of columns in the grid x0 plus the number of elements in cond must equal the number of
variables p in the data set, and the call to clg() will result in an error message if this requirement is
not fulfilled. The clg()-function takes mostly the same arguments as dlg() listed in Table 2, and the
conditional density estimate in our example is available in the vector cond_density$f_est.

Tests for independence

Three independence tests based on the LGC have appeared in the literature thus far:

1. A test for independence between the stochastic variables X1 and X2 based on iid data, cf.
Berentsen and Tjøstheim (2014).

2. A test for serial independence between Xt and Xt−k within a time series {Xt}, cf. Lacal and
Tjøstheim (2017).

3. A test for serial cross-dependence between Xt and Yt−k for two time series {Xt} and {Yt}, cf.
Lacal and Tjøstheim (2018).
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Argument Explanation Default value

lg_object The lg-object created by lg_main()

h The function h(·) in (3) function(x) x^2

S The integration area S in (3). Must function(x)

be a logical function on potential as.logical(rep(1,

grid points in R2 nrow(x)))

bootstrap The bootstrap method, must
_type be either "plain", "block" or "stationary" "plain"

block Block length for the block bootstrap,
_length mean block length for the stationary

bootstrap. Calculated by np::b.star()

(Hayfield and Racine, 2008) if not provided NULL

n_rep Number of bootstrap replicates 1000

Table 3: Arguments to the ind_test()-function

As we noted in Section 2.2, their practical implementations are very similar, and the lg package
provides the function ind_test() to perform the tests. Let us first consider the i.i.d. case, and generate
500 observations test_x from the well known parabola model X2 = X2

1 + ε, where both X1 and ε are
independent and standard normal. In this case, X1 and X2 are uncorrelated but obviously strongly
dependent. Berentsen and Tjøstheim (2014) considers mainly the full bivariate fit to the raw data,
which we easily encode into the lg-object as before. The implementation of the test using 100 bootstrap
replicates is shown below.

R> # Make the lg-object
R> lg_object <- lg_main(test_x,
R+ est_method = "5par",
R+ transform_to_marginal_normality = TRUE)
R> # Perform the independence test
R> test_result <- ind_test(lg_object, n_rep = 100)
R> # Print out the p-value of the test
R> test_result$p_value

[1] 0

This may take a few minutes to run on a desktop computer due to bootstrapping. The small p-value
indicates that we reject the null hypothesis of independence between X1 and X2 in the parabola model
defined above. We can further specify the function h and the integration area S in the test statistic (3);
see Table 3 for details.

The only difference when testing for serial independence within a time series {Xt} is to create a
two-column data set consisting of Xt and Xt−k. For example, if we wish to perform this test for k = 1
for one of the variables in the stock-exchange series, create the matrix of observations as below, and
proceed exactly as in the i.i.d. case.

R> returns2 <- stock_data %>% select(SP500) %>%
R+ mutate(sp500_lagged = lag(SP500))

Finally, the only thing that we must alter in order to perform the third test for serial cross-
dependence is the bootstrap method. In the applications above, it suffices to use the standard bootstrap,
where we resample with replacement from the data. This is implemented in the ind_test()-function
by setting the bootstrap_type-argument to "plain", which is the default option. When testing for
serial cross-dependence, we need to use a block-bootstrap procedure, and Lacal and Tjøstheim (2018)
consider two options here: The block bootstrap with either fixed (Kunsch, 1989) or random (Politis
and Romano, 1994) block sizes. This choice is specified by choosing bootstrap_type = "block" or
bootstrap_type = "stationary", respectively, in the call to ind_test(). Lacal and Tjøstheim (2018)
do not report significant differences in test performance using the different bootstrap types.
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Argument Explanation Default value

lg_object_nc The lg-object covering the non-crisis period
lg_object_c The lg-object covering the crisis period
grid_range Range of diagonal for measuring the LGC (5%, 95%) quantiles
grid_length The number of grid points to use 30
n_rep Number of bootstrap replicates 1000
weight Weight function function(y)

rep(1,nrow(y))

Table 4: Arguments to the cont_test()-function

Test for financial contagion

Assume that we observe two financial time series {Xt} and {Yt} at times t = 1, . . . , T, and that
some crisis occurs at time T∗ < T. As described in Section 2.2, Støve et al. (2014) measure the local
correlation between {Xt} and {Yt} before and after T∗, and take significant differences between these
measurements as evidence against the null hypothesis of no linkage, or contagion, between the time
series. In order to implement this test using the lg package, one must create two lg-objects: one for
the observations covering the non-crisis period and one covering the crisis period. We do not enter a
discussion here how to empirically identify such time periods; this is a job that must be done by the
practitioner before performing the statistical test.

Let us illustrate the implementation of this test by looking at the same financial returns data that
we have used in preceding sections. However, this time we will, in the spirit of Støve et al. (2014),
concentrate on GARCH(1,1)-filtrated daily returns on the S&P500 and FTSE100 indices from 2 January 1985
to 29 April 1987 in order to test for financial contagion between the US and UK stock markets following
the global stock market crash of 19 October 1987 (“Black Monday”). Assume that these observations
are loaded into the R workspace as the n1 × 2 data frame x_nc containing the observations covering the
n1 = 728 days preceding the crisis and the n2 × 2 data frame x_c containing the observations covering
the n2 = 140 consecutive trading days starting on Black Monday (see the online code supplement for
details concerning the GARCH-filtration and data processing). In the code below, we construct one
lg-object for each of these data frames with configuration matching the setup used by Støve et al. (2014)
and perform the test by means of the cont_test()-function.

This function returns a list containing the estimated p-value as well as other useful statistics,
including the empirical local correlations measured in the two time periods. See Table 4 for details
concerning other arguments that may be passed to this function.

R> # Create the two lg-objects
R> lg_object_nc <- lg_main(x_nc,
R+ est_method = "5par",
R+ transform_to_marginal_normality = FALSE)
R>
R> lg_object_c <- lg_main(x_c,
R+ est_method = "5par",
R+ transform_to_marginal_normality = FALSE)
R>
R> # Run the test with a limited number of bootstrap replicates for
R> # demonstration purposes.
R> result <- cont_test(lg_object_nc, lg_object_c, n_rep = 100)
R>
R> # Print out the p-value
R> result$p_value

[1] 0.01

The small p-value means that we reject the null-hypothesis of no financial contagion between the
time series after the crisis.
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Partial local correlation

Consider the work finally by Otneim and Tjøstheim (2021), who take the off-diagonal element in
the local correlation matrix corresponding to the local conditional covariance matrix (12) or (14) as
a local measure of conditional dependence between two stochastic variables X(1) and X(2) given
the stochastic vector X(3). Furthermore, in the case with data having been transformed to marginal
standard normality, they take the statistic

TCI
n,b =

∫
h (α̂ (z)) dFn (z) (17)

as a measure of global conditional dependence. The lg package provides two key functions in this
framework. The first, partial_cor(), calculates the local partial correlations as well as their estimated

standard deviations on a specified grid in the
(

x(1), x(2), x(3)
)

-space, and is essentially a wrapper
function for the clg()-function presented in Section 2.4.1. See Table 5 for details. The second function,
ci_test(), performs a test for conditional independence between the first two variables in a data set
given the remaining variables using the test statistic (17) and a special bootstrap procedure (described
briefly below) for approximating the null distribution.

It is well known in the econometrics literature that conditional independence tests are instrumental
in the empirical detection of Granger causality (Granger, 1980). For example, if we continue to
concentrate on the monthly stock returns data that we have already loaded into memory, we may test
whether

H0 : RFTSE100,t ⊥ RSP500,t−1 | RFTSE100,t−1 (18)

in the period starting in January 2009, the converse of which is a sufficient, but not necessary, condition
for RSP500,t Granger causing RFTSE100,t. We perform the test by running the code below, where x is a
data frame having the following columns strictly ordered as RFTSE100,t, RSP500,t−1, and RFTSE100,t−1
(see the online supplement for the pre-processing of data).

The critical values of this test are calculated using the bootstrap under the null hypothesis by

independently resampling replicates from the conditional density estimates f̂X(1) |X(3)

(
x(1)|x(3)

)
and

f̂
X(2)|X(3)

(
x(2)|x(3)

)
, as obtained by the clg()-function, using an approximated accept-reject algorithm.

In order to avoid excessive optimization of the local likelihood function (1), we estimate f
X(1)|X(3)

and f
X(2)|X(3) on the univariate regular grids x(1)0 and x(2)0 , respectively (while keeping x(3) fixed at

the observed values of X(3)), and produce interpolating functions f̃X(1) |X(3) and f̃X(2) |X(3) using cubic

splines. It is much less computationally intensive to generate replicates from f̃ than directly from f̂ .

We refer to the documentation of the lg package for details on how to finely tune the behavior of
the bootstrapping algorithm by altering the arguments of the ci_test()-function and limiting our
treatment to describing the arguments most suitable for modifications by the user in Table 6.

R> # Create the lg-object
R> lg_object <- lg_main(returns4)
R>
R> # Perform the test
R> test_result <- ci_test(lg_object, n_rep = 100)
R>
R> # Print out result
R> test_result$p_value

[1] 0.51

The conditional independence test does not provide evidence against the null-hypothesis (18).

Graphics

We conclude this article by describing the corplot() function for drawing dependence maps such
as those displayed in Figure 1. Berentsen et al. (2014) report on such capabilities in the localgauss
package, but the possibility of creating dependence maps was unfortunately removed from localgauss
in the latest version 0.4.0 due to incompatibilities with the ggplot2 (Wickham, 2016) plotting engine.
We make up for this loss by providing corplot(), a function that plots the estimated local correlations
as provided by dlg(), or the estimated local partial correlations as provided by partial_cor().

The plotting function is highly customizable and provides a number of options covering most
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basic graphical options. Users well versed in the ggplot2 package may also modify the graphical
object returned by corplot() in the standard way by adding layers as demonstrated in the example
below.

In the first example, we generate a set of bivariate normally distributed data using the mvtnorm
package (Genz et al., 2018) and estimate the local Gaussian correlation on a regular grid using the
dlg()-function. Passing the resulting dlg_object to corplot() without further arguments results in
Figure 4.

R> # Make a regular grid in the domain of the distribution
R> grid <- expand.grid(seq(-3, 3, length.out = 7),
R+ seq(-3, 3, length.out = 7))
R>
R> x <- mvtnorm::rmvnorm(500, sigma = matrix(c(1, rho, rho, 1), 2))
R> lg_object <- lg_main(x,
R+ est_method = "5par",
R+ transform_to_marginal_normality = FALSE,
R+ plugin_constant_joint = 4)
R> dlg_object <- dlg(lg_object, grid = grid)
R>
R> # Make a dependence map using default setup
R> corplot(dlg_object)

We may tweak the appearance of our dependence map by passing further arguments to corplot().
Some of the options are demonstrated in the code chunk below, in which we, for example, superimpose
the observations (by setting plot_obs = TRUE) and preventing the estimated local correlations from
being plotted in areas without data. The latter option is available through the argument plot_thres,
which works by calculating a bivariate kernel density estimate f̃ (x1, x2) for the pair of variables in
question and only allowing ρ̂ (x1, x2) to be plotted if f̃ (x1, x2) / max f̃ (·) > plot_thres. Adding
layers to a dependence map using the ordinary ggplot2 syntax works as well, which we demonstrate
in Figure 5 by changing the ggplot2 theme.

The plotting function works in the same way when plotting the local partial correlations returned
by partial_cor(), and the arguments of corplot() are summarized in Table 7.

R> corplot(dlg_object1,
R+ plot_obs = TRUE,
R+ plot_thres = 0.01,
R+ plot_labels = FALSE,
R+ alpha_point = 0.3,
R+ main = "",
R+ xlab = "",
R+ ylab = "") +
R+ theme_classic()

Conclusion

The statistical literature has seen a number of applications of local Gaussian approximations in the
last decade, covering several topics in dependence modeling and inference, as well as the estimation
of multivariate density and conditional density functions. In this paper, we demonstrate the imple-
mentation of these methods in the R programming language using the lg package, as well as the
graphical representation of the estimated local Gaussian correlation. The package is complete in the
sense that all major methods that have been published within this framework is now easily accessible
to the practitioner. The package is also designed with a modular infrastructure that allows future
methodological developments using local Gaussian approximations to be easily added to the package.
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Argument Explanation Default value

lg_object The lg-object created by lg_main()

grid The evaluation points for the LGPC, must be a
data frame or matrix having 2 columns NULL

cond Vector with fixed values for X(3) NULL

level Significance level for approximated confidence bands 0.95

Table 5: Arguments to the partial_cor()-function

Argument Explanation Default value

lg_object The lg-object created by lg_main()

h The function h(·) in (16) function(x) x^2

n_rep Number of bootstrap replicates 500

Table 6: Arguments to the ci_test()-function

Argument Explanation Default value

dlg_object The object created by dlg() or partial_cor()
pair Which pair to plot if more than two variables 1
gaussian_scale Logical. Plot on the marginal st. normal scale? FALSE

plot_colormap Logical. Plot the colormap? TRUE

plot_obs Logical. Superimpose observations? FALSE

plot_labels Logical. Plot labels on dependence map? TRUE

plot_legend Logical. Add legend? FALSE

plot_thres Threshold for plotting the estimated LGC 0
alpha_tile Transparency of color tiles 0.8
alpha_point Transparency of points 0.8
low_color Color representing ρ̂ = −1 "blue"

high_color Color representing ρ̂ = +1 "red"

break_int Break interval for color coding 0.2
label_size Size of labels in plot 3
font_family Font family for labels "sans"

point_size Size of points, if plotted NULL

xlim, ylim Axis limits NULL

xlab, ylab Axis labels NULL

rholab Title of legend NULL

main, subtitle Title and subtitle of plot NULL

Table 7: Arguments to the corplot()-function
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Figure 4: Dependence map produced by corplot() using the default configuration
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Figure 5: Dependence map produced by tweaking the arguments of corplot()
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