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DRHotNet: An R package for detecting
differential risk hotspots on a linear
network
by Álvaro Briz-Redón, Francisco Martínez-Ruiz and Francisco Montes

Abstract One of the most common applications of spatial data analysis is detecting zones, at a certain
scale, where a point-referenced event under study is especially concentrated. The detection of such
zones, which are usually referred to as hotspots, is essential in certain fields such as criminology,
epidemiology, or traffic safety. Traditionally, hotspot detection procedures have been developed over
areal units of analysis. Although working at this spatial scale can be suitable enough for many research
or practical purposes, detecting hotspots at a more accurate level (for instance, at the road segment
level) may be more convenient sometimes. Furthermore, it is typical that hotspot detection procedures
are entirely focused on the determination of zones where an event is (overall) highly concentrated. It
is less common, by far, that such procedures focus on detecting zones where a specific type of event is
overrepresented in comparison with the other types observed, which have been denoted as differential
risk hotspots. The R package DRHotNet provides several functionalities to facilitate the detection of
differential risk hotspots within a linear network. In this paper, DRHotNet is depicted, and its usage
in the R console is shown through a detailed analysis of a crime dataset.

Introduction

Hotspot detection consists of finding zones across space where a certain event is highly concentrated.
There exists a wide variety of methods in the literature that allow researchers to identify hotspots
at a certain level of accuracy or spatial aggregation. Some of them have been massively used in the
last decades, including certain local indicators of spatial association such as LISA (Anselin, 1995)
or the Getis-Ord statistic (Getis and Ord, 1992), and the spatial scan statistic (Kulldorff, 1997). The
first two of these methods are implemented in the R package spdep (Bivand et al., 2013), whereas
the scan statistic is implemented in DCluster (Gómez-Rubio et al., 2005) (although other R packages
also provide an implementation of these methods). Furthermore, many new R packages focused
on hotspot detection have been released in the last few years. Most of them are model-based and
oriented to disease mapping studies that are carried out over administrative (areal) units (Allévius,
2018; Gómez-Rubio et al., 2019; Meyer et al., 2017).

However, the analysis of certain types of events requires detecting hotspots at a level of spatial
accuracy greater than that provided by administrative or regular areal units. Indeed, many research
studies of the fields of criminology (Andresen et al., 2017; Weisburd, 2015) and traffic safety (Briz-
Redón et al., 2019b; Nie et al., 2015; Xie and Yan, 2013) that have been published in recent years were
entirely carried out on road network structures rather than on administrative units. More specifically,
some quantitative criminologists have estimated that around 60% of the total variability in crime
incidence occurs at the street segment level (Schnell et al., 2017; Steenbeek and Weisburd, 2016). A fact
that shows the essentiality of using road segments instead of areal structures to properly capture the
spatial concentration of certain events.

Fortunately, road network structures were introduced in the context of spatial statistics some years
ago, providing the basis for analyzing events lying on such structures, which are usually referred to as
linear networks. Indeed, a planar linear network, L, is defined as a finite collection of line segments,
L = ∪n

i=1li, in which each segment contains the points li = [ui, vi] = {tui + (1 − t)vi : t ∈ [0, 1]}
(Ang et al., 2012; Baddeley et al., 2015, 2017). Following graph theory nomenclature, these segments
are sometimes referred to as the edges of the linear network, whereas the points that determine the
extremes of such segments are known as the vertices of the network.

Hence, a point process X on L is a finite point process in the plane (Diggle, 2013) such that all
points of X lie on the network L, whereas a collection of events that is observed on L is known as a
point pattern, x, on L (Ang et al., 2012; Baddeley et al., 2015, 2017). In particular, when every event
of a point pattern has one or several attributes, the point pattern is referred to as a marked point
pattern. Each of the attributes, which can be in the form of either a numerical or a categorical variable,
is known as a mark of the pattern. The intensity function of a process on L, denoted by λ(x), satisfies
that the number n(X ∩ B) of points of X falling in B ⊂ L has expectation E[n(X ∩ B)] =

∫
B λ(u)d1u,

where d1u denotes integration with respect to arc length (McSwiggan et al., 2017). Thus, given a point
pattern, a typical objective is to estimate the intensity function of the process from which the locations
of the events are assumed to be drawn, either through parametric or nonparametric techniques (Diggle,
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2013).

The investigation of spatial patterns lying on linear networks has gained attention in the last
few years. The design of new and more accurate/efficient kernel density estimators (McSwiggan
et al., 2017; Moradi et al., 2018, 2019; Rakshit et al., 2019b), the introduction of graph-related intensity
measures (Eckardt and Mateu, 2018), the construction of local indicators of spatial association (Eckardt
and Mateu, 2021), or the estimation of relative risks (McSwiggan et al., 2019) are some topics that have
recently started to be developed for linear networks.

Besides the theoretical advances, it is worth noting that using linear networks for carrying out a
spatial or spatio-temporal analysis entails certain technical difficulties. In this regard, the R package
spatstat.linnet of the spatstat family (Baddeley et al., 2015) provides multiple specific functions that
allow R users to carry out statistical analyses on linear networks. Furthermore, efforts are constantly
being made to reduce the computational cost of adapting certain classical spatial techniques to the
singular case of linear networks (Rakshit et al., 2019a).

Despite the existing necessity of analyzing point-referenced data coming from certain fields of
research at the street level, there are not many software tools fully designed for hotspot detection on
road networks. One relevant contribution in this regard is the KDE+ software (Bíl et al., 2016), but
this is not integrated into R. The package DRHotNet is specifically prepared for allowing R users
to detect differential risk hotspots (zones where a type of event is overrepresented) along a linear
network. While the function relrisk.lpp from spatstat.linnet also allows R users to compute the
spatially-varying probability of a type of event located in a linear network, DRHotNet provides a full
procedure to detect, with high accuracy, the segments of a network where the probability of occurrence
of a given type of event is considerably higher and optimize hotspot detection in terms of a prediction
accuracy index widely used in criminology and other fields. There is no other R package currently
providing this functionality.

A procedure for detecting differential risk hotspots

The procedure for differential risk hotspot detection available in DRHotNet was introduced by Briz-
Redón et al. (2019a), who also show an application of the method considering a traffic accident dataset.
Overall, hotspot detection methods can be classified into partition-, hierarchy- and density-based
methods (Deng et al., 2019). The one implemented in DRHotNet belongs to the last of these three
groups.

Hence, the following subsections describe each of the steps that are carried out by the DRHotNet
package. The specification and exemplification of the functions required for each of them are given in
the following sections.

Estimating a relative probability surface

The first step consists in using kernel density estimation to infer the relative probability of occurrence
for a certain type of event along a linear network. Given a marked point pattern x = {x1, ..., xn},
where a binary mark yi indicates if xi corresponds, or not, to the type of event of interest, the following
expression is used to estimate this relative probability (Kelsall and Diggle, 1998):

ph(x) =
λ
{xi :yi=1}
h (x)

λ
{x1,...,xn}
h (x)

, (1)

where λ
{xi :yi=1}
h (x) is an estimate of the intensity of the pattern formed by the events of interest

(those that satisfy yi = 1) at location x, and λ
{x1,...,xn}
h (x) is an estimate of the intensity of the com-

plete pattern at x. Both estimates are nonparametric and depend on a bandwidth parameter, h.

Specifically, in DRHotNet package, λ
{xi :yi=1}
h (x) and λ

{x1,...,xn}
h (x) are computed according to the

network-constrained equal-split continuous kernel density estimation provided by McSwiggan et al.
(2017). This version of kernel density is implemented in the function density.lpp of spatstat.linnet,
which computes kernel density values rapidly by solving the classical heat equation defined on the
linear network, as shown by McSwiggan et al. (2017). Despite the great performance of this approach,
the computational cost of this version of kernel smoothing increases quadratically with h, so choosing
very high values of h can become too time-consuming.

Therefore, Equation 1 allows establishing a relative probability surface (referring to the type of
event represented by yi = 1) on the linear network. To this end, given a location, x, of the linear
network, the events which mainly contribute to the estimation of ph(x) are those situated within a
linear radius (following the linear network structure) of h meters from x. Thus, increasing the value of
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h leads to smoother representations of the probability surface, whereas smaller values of the bandwidth
parameter produce the opposite effect. On the choice of an optimal bandwidth parameter, the method
described by McSwiggan et al. (2019) could be followed, which modifies previous proposals made for
planar patterns (Kelsall and Diggle, 1995a,b).

Estimating a relative probability surface implies, in practice, estimating a relative probability value
at the middle points of the segments forming the road network. In this regard, it is necessary to split
the original road network structure into shorter line segments called lixels (Xie and Yan, 2008), which
are analogous to pixels for a planar surface. This step provides accuracy and homogeneity to the
process of hotspot formation. Then, the segments satisfying certain conditions (details are provided in
the next section) are selected and joined together forming the differential risk hotspots.

Determining differential risk hotspots

Once a relative probability surface has been estimated along the linear network, it is time to detect
differential risk hotspots. The procedure for their detection relies on two parameters k and n. Parameter
k is used together with the standard deviation of all the relative probabilities estimated to define a
threshold that needs to be exceeded to consider a segment as a candidate to be part of a differential
risk hotspot. Then, parameter n is employed to select the segments, from those satisfying the threshold
condition, with n or more events at a distance lower than h. More precisely, a segment, i, of the linear
network is considered to be part of a differential risk hotspot if:

p̂i > mean({ p̂j}S
j=1) + k · SD({ p̂j}S

j=1)

#{x ∈ {x1, ..., xn} : dL(x, mi) < h} ≥ n,

where p̂i is the relative probability of occurrence for the type of event of interest estimated at the
middle point of segment i, mean and SD denote, respectively, the mean and the standard deviation of
a finite set of numbers, S is the number of segments of the linear network, # denotes the cardinality of
a finite set, mi is the middle point of segment i, and dL(x, mi) represents the shortest-path distance
(distance along the network) between x and mi.

The segments that fulfill the two conditions indicated above are then joined, forming differential
risk hotspots. More precisely, two segments satisfying the aforementioned conditions belong to
the same differential risk hotspot if they are neighbors. Given two segments of a linear network, a
neighboring relationship exists between them if they share a vertex of the network, which is equivalent
to the queen criterion used for defining polygon neighborhoods (Lloyd, 2010). This relationship
between segments is referred to as a first-order one. Similarly, higher-order neighboring relationships
are defined recursively (for instance, for a second-order relationship): i and j are second-order
neighbors if one neighbor of i and one neighbor of j are first-order neighbors.

Note that choosing a higher value of either k or n implies being stricter in terms of determining
differential risk segments. If the choice is too strict, segments that meet both conditions may not be
found. One criterion for finding suitable values of k and n is to perform a sensitivity analysis on
k and n (consisting of testing a set of plausible values for k and n) and choosing a combination of
both parameters that maximizes a measure that reflects the ability of the procedure to capture the
overrepresentation of the event of interest along the network. These issues are clarified in subsequent
sections.

Measuring differential risk hotspots importance and significance

The prediction accuracy index

Given a collection of hotspots in a planar surface, Chainey et al. (2008) defined the prediction accuracy
index (PAI) as follows:

PAI =
Hit rate

Area percentage
=

n/N
a/A

, (2)

where n is the total number of events that lie on the hotspots, N is the total number of events observed,
a is the area formed by all the hotspots together, and A is the total area of the surface. Hence, a higher
value of PAI is desirable in terms of hotspot detection as it represents a higher concentration of the
events in relation to the size of the space they cover. This formula can be easily adapted to the case of
linear networks using segment lengths in the place of areas.

In the context of detecting hotspots where the relative probability of one type of event is particularly
high, the PAI needs to be modified. A type-specific version of the PAI (denoted by PAIt) was proposed
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in Briz-Redón et al. (2019a) (for linear networks):

PAIt =
nt/Nt
ℓ/L

, (3)

where nt is the number of events of the type of interest that lie on the hotspots, Nt is the total number
of events of that type that are observed, ℓ is the length of all the hotspots together, and L is the total
length of the network. The interpretation of the PAIt is analogous to the one for the PAI. That is, a
higher PAIt value indicates a higher proportion of the type of interest compared to the proportion of
road network length. Some researchers have recently explored the possibility of using the number of
segments (in total and within the hotspots) instead of segment length (Drawve and Wooditch, 2019) in
the denominator of this formula, but we opted for segment length proportions.

It is also worth noting that the PAIt can be computed for the whole set of differential risk hotspots
detected, as indicated above, or for each differential risk hotspot individually. The first option is
useful for comparing the level of spatial concentration that two or more types of events show along
the network or for assessing the efficiency of different hotspot detection procedures. The second
option is suitable for determining which differential risk hotspot maximizes the quotient between the
proportion of the type and the proportion of road length spanned, which may represent the importance
of the hotspot.

Estimating a p-value

Finally, assigning a statistical significance value to each differential risk hotspot is necessary to avoid
the possibility of focusing on certain microzones of the network that do not deserve such attention.
Thus, a Monte Carlo approach was used to estimate an empirical p-value for each differential risk
hotspot yielded by the previous step of the procedure. This approach is similar in spirit to the one
proposed by Bíl et al. (2013), which is applied in the KDE+ software mentioned before.

Getting back to previous notation, if {x1, ..., xn} is a marked point pattern, and yi a binary mark
that indicates if xi corresponds, or not, to the type of event under analysis, the Monte Carlo approach
implemented consists in generating K simulated datasets where the locations are left fixed and the
marks permutated. Concretely, this means to keep the locations {x1, ..., xn} and to obtain a new
collection of marks defined by yk

i = yρ(i), where k indicates the iteration number (k = 1, ..., K), and ρ
is a permutation of the first n natural numbers. For each simulation, the average relative probability
presented by each differential risk hotspot (computed as the weighted average per segment length of
the relative probabilities estimated at the middle points of the segments composing the hotspot) is
obtained and denoted by ŝk (k = 1, ..., K). Therefore, if r̂ represents such average relative probability
for a hotspot, considering the original dataset, the rank of r̂ within the ordered vector formed by the
ŝk’s and r̂ allows estimating an empirical p-value for the corresponding hotspot:

p = 1 − #{k ∈ {1, ..., K} : ŝk ≤ r̂}
K + 1

Dealing with linear networks in R

Classes and functions

Linear networks can be represented in R by the class SpatialLines of package sp (Pebesma and
Bivand, 2005; Bivand et al., 2013) or by simple features with packages sf (Pebesma, 2018) and sfnet-
works (van der Meer et al., 2021). However, the class linnet from the spatstat.linnet package is
optimal for doing spatial analysis and modeling on linear networks.

There are several functions in R that facilitate the conversion between SpatialLines and linnet
objects. Specifically, as.linnet.SpatialLines from the maptools (Bivand and Lewin-Koh, 2017)
R package converts SpatialLines into linnet objects, whereas the double application (in this
order) of the as.psp and as.SpatialLines.psp functions of the spatstat.geom and maptools
packages, respectively, enable the conversion from a linnet object into a SpatialLines one.

Other useful functions available in spatstat.linnet for the use of linear networks are, for example,
connected.linnet (computes the connected components of a linear network), diameter.linnet
(computes the diameter and bounding radius of a linear network), insertVertices (inserts new
vertices in a linear network), and thinNetwork (removes vertices or segments from a linear network).
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Preprocessing the linear network

Although not strictly necessary, preprocessing the linear network is convenient to facilitate the subse-
quent statistical analysis. The SpNetPrep package (Briz-Redón, 2019) can be used for this purpose.
The manual edition of the network, the addition of directionality, and the curation of a point pattern
lying on a network can be performed through a Shiny-based application implemented in this package
if the linear network represents a road network (which is the most common scenario and the one
we assume for the example shown in this paper). Furthermore, SpNetPrep contains a function,
SimplifyLinearNetwork, that allows users to reduce the network’s complexity by merging some
pairs of edges of the network that meet certain conditions on their length and angle. In this regard,
another option is to use the gSimplify function of rgeos (Bivand and Rundel, 2020), which provides
an implementation of the Douglas-Peuker algorithm for curve simplification (Douglas and Peucker,
1973).

Creating a point pattern on a linear network

Function lpp of package spatstat.linnet can be used to create an R object that represents a point
pattern lying on a linear network. The lpp function only requires the coordinates of the events and a
linnet object corresponding to a linear network. For instance, the following commands can be typed
to create a point pattern of 100 points over the simplenet network provided by spatstat.data, which
lies within the [0, 1]× [0, 1] window:

> x <- runif(100, 0, 1)
> y <- runif(100, 0, 1)
> simplenet.lpp <- lpp(data.frame(x, y), simplenet)

Marks can be attached to the points forming the pattern by introducing several more columns next
to the x and y coordinates. For example, one can introduce a continuous random mark following a
standard normal distribution or a categorical random mark.

> random_cont_mark <- rnorm(100, 0, 1)
> random_cat_mark <- letters[round(runif(100, 0, 5))+1]
> simplenet.lpp <- lpp(data.frame(x, y, random_cont_mark, random_cat_mark),

simplenet)

In order to fit the objective of computing a relative probability for one type of event, categorical
marks are required. However, recoding a continuous mark into several categories to facilitate the
estimation of a specific relative risk is one possible alternative.

Using DRHotNet

This section shows the complete use of the DRHotNet package with a dataset of crime events recorded
in Chicago (Illinois, US). The reader should note that some of the outputs may vary slightly due to
possible changes over time in some of the packages used. First of all, the following R libraries have to
be loaded to reproduce the example:

> library(DRHotNet)
> library(lubridate)
> library(maptools)
> library(raster)
> library(rgeos)
> library(sp)
> library(spatstat.core)
> library(spatstat.linnet)
> library(spdep)
> library(SpNetPrep)
> library(tigris)

Downloading and preparing the linear network

The examples provided in this section fully employ open data available for Chicago. First, geographic
data from Chicago was downloaded from the United States Census Bureau through package tigris
(Walker, 2016). Specifically, census tracts and the road network of the state of Massachusetts were
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loaded into the R console. The function intersect from the package raster (Hijmans, 2019) can be
used.

0 m 500 m 1000 m

Figure 1: Road network (in gray) corresponding to the Near West Side Community Area of Chicago.
Census tracts of the area are overlayed in black.

> cook.tracts <- tracts(state = "Illinois", county = "031", class = "sp")
> class(cook.tracts)
[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"
> cook.network <- roads(state = "Illinois", county = "031", year = 2011,

class = "sp")
> class(cook.network)
[1] "SpatialLinesDataFrame"
attr(,"package")
[1] "sp"

The objects cook.tracts and cook.network are composed of 1319 polygons and 86227 lines,
respectively (as of the end of June 2021). Now, both spatial objects are intersected to construct a smaller
road network that corresponds to the Near West Side Community Area of Chicago.

> names.tracts <- as.character(cook.tracts@data[,"NAME"])
> select.tracts <- c("8378","2804","8330","2801","2808","2809","8380",

"8381","8331","2819","2827","2828","8382","8329",
"2831","2832","8333","8419","8429","2838")

> cook.tracts.select <- cook.tracts[which(names.tracts%in%select.tracts),]
> chicago.SpLines <- intersect(cook.network, cook.tracts.select)
> length(chicago.SpLines)
[1] 1357

Object chicago.SpLine (SpatialLinesDataFrame) has 1357 lines. Then, this object’s coordi-
nates are converted into UTM (Chicago’s UTM zone is 16):

> chicago.SpLines <- spTransform(chicago.SpLines,
"+proj=utm +zone=16 ellps=WGS84")
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Now the corresponding linnet object is created:

> chicago.linnet <- as.linnet(chicago.SpLines)
> chicago.linnet
Linear network with 10602 vertices and 11910 lines
Enclosing window:

rectangle = [442564.6, 447320] x [4634170, 4637660] units

It is worth noting how the transformation of the network into a linnet object increases dra-
matically the number of line segments (from 1357 to 11910). This is a consequence of the fact that
SpatialLines objects can handle curvilinear segments, made of multiple line segments, as a single
line. However, linnet objects follow the definition of the linear network provided in the Introduction
section, which excludes this possibility.

It is required that the network is fully connected to allow the computation of a distance between
any pair of points. This can be checked with the function connected.

> table(connected(chicago.linnet, what = "labels"))

1 2 3 4 5 6 7 8 9
10575 5 2 2 2 5 2 2 7

This output indicates that there is a connected component of 10575 vertices and other eight com-
ponents with only a few vertices. The use of connected with the option what = "components"
enables us to extract the larger connected component for the analysis, discarding the others.

> chicago.linnet.components <- connected(chicago.linnet,
what = "components")

> chicago.linnet.components[[1]]
Linear network with 10575 vertices and 11891 lines
Enclosing window:
rectangle = [442564.6, 447320] x [4634170, 4637660]
units
> chicago.linnet <- chicago.linnet.components[[1]]

At this point, it is worth considering the possibility of reducing the network’s complexity. The
function SimplifyLinearNetwork of SpNetPrep can be used for this purpose. A reasonable
choice of the parameters is Angle = 20 and Length = 50 (Briz-Redón, 2019). This choice of the
parameters means that a pair of segments meeting at a second-degree vertex are merged into one
single segment if the angle they form (measured from 0◦ to 90◦) is lower than 20◦ and if the length
of each of them is lower than 50 m. Hence, the network’s complexity is reduced (in terms of the
number of segments and lines) while its geometry is preserved. The following lines of code execute
SimplifyLinearNetwork and redefine chicago.SpLine according to the structure of the final
linnet object.

> chicago.linnet <- SimplifyLinearNetwork(chicago.linnet,
Angle = 20, Length = 50)

> chicago.linnet
Linear network with 3026 vertices and 4339 lines
Enclosing window:
rectangle = [442564.6, 447320] x [4634170, 4637660] units
> chicago.SpLines <- as.SpatialLines.psp(as.psp(chicago.linnet))

Thus, the final road network from Chicago that we use for the analysis has 4339 lines and 3026
vertices. An example of how SimplifyLinearNetwork reduces the network’s complexity is shown
in Figure 2, which corresponds to a squared zone of Chicago’s network with a diameter of 600 m.

Downloading and preparing crime data

Point-referenced crime datasets corresponding to several cities from the United States of America
can be downloaded through the R package crimedata (Ashby, 2019). Concretely, crimedata currently
provides (as of June 2021) crime open data recorded in Austin, Boston, Chicago, Detroit, Fort Worth,
Kansas City, Los Angeles, Louisville, Mesa, New York, San Francisco, Tucson, and Virginia Beach.
Therefore, the function get_crime_data from this package can be used for downloading a dataset
of crime events recorded in Chicago in the period 2007-2018.
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(a) (b)

Figure 2: Extracting a part of the road network structure analyzed from Chicago. Original structure
extracted (left), made of 285 lines and 272 vertices, and simplified version of it (right) with 122 lines
and 109 vertices.

> chicago.crimes <- get_crime_data(years = 2007:2018, cities = "Chicago")
> dim(chicago.crimes)
[1] 39206 12

The year, month, and hour of occurrence of each crime can be extracted with the corresponding
functions of the package lubridate (Grolemund and Wickham, 2011).

> chicago.crimes$year <- year(chicago.crimes$date_single)
> chicago.crimes$month <- month(chicago.crimes$date_single)
> chicago.crimes$hour <- hour(chicago.crimes$date_single)

Then, a marked point pattern lying on chicago.linnet can be created with function lpp
to provide the framework required by the DRHotNet package. A data.frame is passed to lpp
including the coordinates of the events (in UTM), the type of event according to the receiver of
the offense (offense_against), and the year, month, and hour of occurrence that have been just
computed.

> chicago.crimes.coord <- data.frame(x = chicago.crimes$longitude,
y = chicago.crimes$latitude)

> coordinates(chicago.crimes.coord) <-~ x + y
> lonlat_proj <- "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"
> utm_proj <- "+proj=utm +zone=16 ellps=WGS84"
> proj4string(chicago.crimes.coord) <- lonlat_proj
> chicago.crimes.coord <- spTransform(chicago.crimes.coord, utm_proj)
> X.chicago <- lpp(data.frame(x = chicago.crimes.coord@coords[,1],

y = chicago.crimes.coord@coords[,2],
offense_against = chicago.crimes$offense_against,
year = chicago.crimes$year,
month = chicago.crimes$month,
hour = chicago.crimes$hour),
chicago.linnet)

Warning message:
38006 points were rejected as lying outside the specified window

A total of 38006 points are rejected because they lie outside the road network. Hence, a marked
point pattern of 1200 crimes that lie on chicago.linnet remains for the analysis. The four marks
are categorical, presenting the following values and absolute frequencies:

> table(X.chicago$data$offense_against)
other persons property society
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86 257 749 108
> table(X.chicago$data$year)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
126 131 97 111 100 110 87 84 76 93 92 93
> table(X.chicago$data$month)
1 2 3 4 5 6 7 8 9 10 11 12

103 71 101 92 110 100 128 102 111 109 95 78
> table(X.chicago$data$hour)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
45 34 29 25 19 14 18 41 53 51 48 54 71 71 69 71 60 72
18 19 20 21 22 23
64 67 60 52 62 50

Hence, DRHotNet functionalities are now applicable to X.chicago. In the main example shown,
the relative occurrence of crimes against persons along the road network included in X.chicago
is analyzed. To this end, the functions of the package are used following the steps that have been
established for the differential risk hotspot detection methodology previously described.

Estimating a relative probability surface

The function relpnet of DRHotNet has to be used at first to estimate a relative probability surface
over the linear network. As it has been explained, this implies estimating a relative probability in the
middle point of each segment of the network.

> rel_probs_persons <- relpnet(X = X.chicago,
lixel_length = 50,
h = 250,
mark = "offense_against",
category_mark = "persons")

The available parameter finespacing is by default set to FALSE in order to reduce the com-
putational cost (as FALSE is the default value, it can be omitted in the specification of the function).
If finespacing is set to TRUE, more accurate kernel density estimates are obtained at short seg-
ments, but the computational cost can become prohibitive. The interested reader can consult the
documentation of the densityHeat function of spatstat.linnet to know precisely how this parameter
works.

In this example, an upper bound of 50 m is chosen for the lixel length. This means that segments
shorter than 50 m are not split, whereas those longer than 50 m are split into several shorter lixels of
no more than 50 m lengths. This operation is performed internally by relpnet with the function
lixellate from spatstat.linnet. The bandwidth parameter, h, is set to 250 m. The mark and
category_mark parameters are used to specify the type of event that is under analysis.

The exploration of the object rel_probs_persons with function str allows the user to check
that the choice of a 50 m threshold for the lixel length produces 8617 segments along the network.
Thus, a relative probability is estimated in the middle point of each of these segments, which can be
accessed by typing $probs:

> str(rel_probs_persons)
List of 5
$ probs : num [1:8617] 0.129 0.138 0.202 0.492 0.662 ...
$ lixel_length : num 50
$ h : num 250
$ mark : chr "offense_against"
$ category_mark: chr "persons"

The function plotrelp can then be used to obtain a map of the relative probability surface like
the one shown in Figure 3b. Figure 3 also contains the relative probability surfaces corresponding to
the choices of h = 125 (Figure 3a), h = 500 (Figure 3c) and h = 1000 (Figure 3d). In this particular case,
using an Intel(R) Core(TM) i7-6700HQ processor, it takes approximately 1 second to execute relpnet
if h = 125, and 8 seconds if h = 1000.

Figure 1 allows us to observe that the choice of a larger value for h smooths the relative probability
surface, which in the case of h = 500 or h = 1000 leads to the configuration of a small number of clearly
distinguishable zones of the network in terms of the relative probability of offenses against persons.
Indeed, whereas the use of h = 125 allows the user to obtain quite extreme relative probability values
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Relative probabilities ’persons’ (offense_against),

lixel_length = 50, h = 125

[0, 0.03] ]0.03, 0.11] ]0.11, 0.22] ]0.22, 0.38] ]0.38, 1]

(a)

Relative probabilities ’persons’ (offense_against),

lixel_length = 50, h = 250

[0, 0.11] ]0.11, 0.17] ]0.17, 0.24] ]0.24, 0.33] ]0.33, 0.91]

(b)

Relative probabilities ’persons’ (offense_against),

lixel_length = 50, h = 500

[0, 0.14] ]0.14, 0.19] ]0.19, 0.24] ]0.24, 0.3] ]0.3, 0.52]

(c)

Relative probabilities ’persons’ (offense_against),

lixel_length = 50, h = 1000

[0.1, 0.15] ]0.15, 0.22] ]0.22, 0.24] ]0.24, 0.27] ]0.27, 0.33]

(d)

Figure 3: Outputs from the function plotrelp for the following choices of h: 125 (a), 250 (b), 500 (c)
and 1000 (d).

at some segments of the network (the relative probability estimates cover the [0,1] interval), choosing
h = 1000 causes that all the relative probabilities lie in the interval [0.10, 0.33].

In view of Figure 3, we consider that h = 250 is a reasonable choice (although some procedures
for bandwidth selection could be explored for taking this decision). Therefore, this selection of the
bandwidth parameter is maintained to display now how the drhot function of the package works.

Detecting differential risk hotspots

The function drhot needs four parameters to be specified: X (a point pattern on a linear network),
rel_probs (an object like the one obtained in the previous step), k, and n. Parameters k and n control
the differential risk hotspot procedure, as it has been explained before. For example, we can try with k
= 1 and n = 30:

> hotspots_persons <- drhot(X = X.chicago,
rel_probs = rel_probs_persons,
k = 1, n = 30)

The output of the function drhot presents the following structure:

> str(hotspots_persons)
List of 8
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$ DRHotspots :List of 5
..$ : num [1:42] 248 249 502 503 576 ...
..$ : num 2971
..$ : num 7551

$ k : num 1
$ n : num 30
$ lixel_length : num 50
$ h : num 250
$ mark : chr "offense_against"
$ category_mark: chr "persons"
$ PAI_t : num 12.1

The first component of hotspots_persons contains the differential risk hotspots that have been
detected for the values of k and n provided to drhot. In this case, three differential risk hotspots are
found, which are formed by 42, 1, and 1 road segments, respectively. The object hotspots_persons
also contains the values of the parameters involved in the computation of the hotspots and a final
component that includes the global PAIt for the set, which is 12.10 in this example.

The function drsummary can be used to provide a summary of each of the differential risk hotspots
determined by drhot:

> summary_persons <- drsummary(X = X.chicago,
rel_prob = rel_probs_persons,
hotspots = hotspots_persons)

The output of drsummary includes a count of the number of events located within each differential
risk hotspot and how many of these correspond to the category “persons”:

> summary_persons[,c("Events type (ctr)", "All events (ctr)",
"Prop. (ctr)")]

Events type (ctr) All events (ctr) Prop. (ctr)
1 16 35 0.46
2 0 0 NaN
3 0 0 NaN

The summary also contains the length (in meters) of each differential risk hotspot and the PAIt
that corresponds to each of them:

> summary_persons[,c("Length in m (ctr)", "PAI_t (ctr)")]
Length in m (ctr) PAI_t (ctr)

1 1532.51 12.59
2 42.99 0.00
3 25.22 0.00

Furthermore, the output of drsummary also provides the same statistics for an extension of each
of the hotspots. The reason to include this information is that if there are not many events available in
the dataset (as it happens in this example), the method can determine differential risk hotspots where
very few events, if any, have taken place. Indeed, in the output of drsummary shown above, there are
two hotspots including zero events. The fact of employing kernel density estimation to infer a relative
probability surface makes it more convenient to think of each differential risk hotspot as the union of a
center or core (what drhot returns, the hotspot itself) and an extension of it. Hence, by considering
an extension of the differential risk hotspot, one can better appreciate the zone of the network that has
been accounted for in the estimation of the relative probability values corresponding to the segments
of the hotspot.

By default, the extension computed by drsummary coincides with a neighbourhood of the seg-
ments forming each differential risk hotspot of order o = h

Lixel length (rounded to the nearest integer),
although a different order can be specified through the parameter order_extension. In this exam-
ple, we have o = 250

50 = 5, which is used by drsummary if no other order is indicated:

> summary_persons[,c("Events type (ext)", "All events (ext)",
"Prop. (ext)")]

Events type (ext) All events (ext) Prop. (ext)
1 22 57 0.39
2 11 26 0.42
3 10 24 0.42
> summary_persons[,c("Length in m (ext)", "PAI_t (ext)")]
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Length in m (ext) PAI_t (ext)
1 6283.36 4.22
2 1700.86 7.80
3 1189.04 10.14

It can be observed that all extensions of the differential risk hotspots include a reasonable number
of events and that the corresponding proportions of offenses against persons are clearly above the
global proportion for the dataset, which is 257/1200 = 21.42.

Assessing the statistical significance of the hotspots

Following the choice of k = 1 and n = 30, it only remains to estimate a p-value for each differential
risk hotspot detected. This can be done by calling the function drsummary again and specifying
compute_p_value = T. A total of 20 iterations are selected for performing the Monte Carlo simula-
tion process:

> summary_persons <- drsummary(X = X.chicago,
rel_prob = rel_probs_persons,
hotspots = hotspots_persons,
compute_p_value = T,
n_it = 200)

> summary_persons$`p-value`
[1] 0.000 0.000 0.000

Therefore, the five differential risk hotspots detected with k = 1 and n = 30 are statistically
significant (p < 0.05). It is worth noting, however, that the usual significance level of 0.05 should be
reduced (corrected) if many differential risk hotspots are detected to avoid the presence of multiple
comparison problems.

Choosing k and n

Remember that a higher value of either k or n represents using a more stringent criterion regarding
hotspot detection. This is illustrated through the four maps available in Figure 4, which can be
generated with the function plothot of DRHotNet. For instance, as in the following example for the
object hotspots created previously (which corresponds to Figure 4d):

> plothot(X = X.chicago, hotspots = hotspots_persons)

Indeed, Figure 4 shows the differential risk hotspots that drhot detects for the choices of k =
0.5 and n = 20 (Figure 4a), k = 1.5 and n = 20 (Figure 4b), k = 1 and n = 10 (Figure 4c), and
k = 1 and n = 30 (Figure 4d). Two of these combinations of conditions on k and n are implicitly
represented by the other two. Consequently, the differential risk hotspots shown in Figure 4b are
contained in Figure 4a, and those in Figure 4d are contained in Figure 4c. The choice of k = 1 and n
= 30 leads to the highest global PAIt among the four combinations of parameters indicated with the
value of 12.1 mentioned before. In this regard, we recommend performing a sensitivity analysis on the
values of k and n to decide which combination is more convenient. The sensitivity analysis carried out
by Briz-Redón et al. (2019a) yielded that a choice around k = 1.5 and n = 45 was optimal in terms of
the PAIt for the traffic accident dataset that was investigated. However, each dataset should require a
specific analysis.

Thus, a sensitivity analysis on k and n can be carried out with the function drsens. The user has
to provide a point pattern (X), an object containing the relative probabilities of a type of event along
the network (rel_probs) and a set of values for k and n (ks and ns, respectively):

> sensitivity_analysis <- drsens(X = X.chicago,
rel_prob = rel_probs_persons,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_analysis
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 3.34 5.07 6.75 12.35 12.05
k = 0.5 4.47 6.52 7.92 12.82 12.05
k = 1 5.15 8.62 8.92 10.93 12.05
k = 1.5 5.94 9.12 10.89 10.88 13.70
k = 2 2.16 10.06 NA NA NA
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k = 2.5 NA NA NA NA NA
k = 3 NA NA NA NA NA

The output from drsens is a matrix that contains the PAIt values that correspond to each combi-
nation of k and n indicated by ks and ns. A NA value represents that no differential risk hotspots can
be found for such a combination of parameters. According to this matrix, the highest PAIt value is
achieved for k = 1.5 and n = 30.

Therefore, one can choose the values of k and n that maximize the PAIt (considering the parameters
provided in ks and ns) to determine the final set of differential risk hotspots. However, this criteria
may sometimes lead to detecting a very low number of differential risks hotspots and hence to miss
zones of the network that may also deserve some attention. Hence, a more conservative approach
could be considering several combinations of k and n that yield some of the highest values of PAIt
and explore each set of differential risk hotspots associated. Then, one could investigate the output
of drsummary for each combination of parameters (including the computation of p-values) to better
decide which zones of the network are relevant for the type of event of interest.

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, h = 250,

k = 0.5, n = 20

DRHotspot (center) DRHotspot (extension), order = 5

(a)

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, h = 250,

k = 1.5, n = 20

DRHotspot (center) DRHotspot (extension), order = 5

(b)

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, h = 250,

k = 1, n = 10

DRHotspot (center) DRHotspot (extension), order = 5

(c)

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, h = 250,

k = 1, n = 30

DRHotspot (center) DRHotspot (extension), order = 5

(d)

Figure 4: Outputs from the function plothot for the following choices of k and n: k = 0.5 and n = 20
(a), k = 1.5 and n = 20 (b), k = 1 and n = 10 (c), and k = 1 and n = 30 (d).

Other applications of the methodology

This final section shows the results that are obtained for other type of events for comparative purposes.
First, the marks X.chicago are recoded into binary outcomes as follows:
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> year_after_2012 <- ifelse(X.chicago$data$year>2012, "Yes", "No")
> month_winter <- ifelse(X.chicago$data$month%in%c(12,1,2), "Yes", "No")
> hour_21_3 <- ifelse(X.chicago$data$hour%in%c(21:23,0:3), "Yes", "No")
> marks(X.chicago) <- data.frame(as.data.frame(marks(X.chicago)),

year_after_2012 = year_after_2012,
month_winter = month_winter,
hour_21_3 = hour_21_3)

The relative probability surfaces have to be computed. We used the same values for lixel.length
and h than in the previous examples.

> rel_probs_after_2012 <- relpnet(X = X.chicago,
lixel_length = 50,
h = 250,
mark = "year_after_2012",
category_mark = "Yes")

> rel_probs_winter <- relpnet(X = X.chicago,
lixel_length = 50,
h = 250,
mark = "month_winter",
category_mark = "Yes")

> rel_probs_21_3 <- relpnet(X = X.chicago,
lixel_length = 50,
h = 250,
mark = "hour_21_3",
category_mark = "Yes")

The corresponding sensitivity analyses are carried out:

> sensitivity_after_2012 <- drsens(X = X.chicago,
rel_prob = rel_probs_after_2012,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_after_2012
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 2.47 3.35 4.59 6.36 10.96
k = 0.5 3.08 4.28 7.11 14.00 15.09
k = 1 2.84 4.38 8.33 25.76 29.98
k = 1.5 2.65 4.63 7.03 0.00 0.00
k = 2 2.24 0.00 NA NA NA
k = 2.5 NA NA NA NA NA
k = 3 NA NA NA NA NA
> sensitivity_winter <- drsens(X = X.chicago,

rel_prob = rel_probs_winter,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_winter
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 2.75 3.63 4.81 5.17 4.86
k = 0.5 2.83 3.60 4.41 8.35 0.00
k = 1 3.62 3.86 0.00 0.00 NA
k = 1.5 7.59 8.56 0.00 NA NA
k = 2 NA NA NA NA NA
k = 2.5 NA NA NA NA NA
k = 3 NA NA NA NA NA
> sensitivity_21_3 <- drsens(X = X.chicago,

rel_prob = rel_probs_21_3,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_21_3
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 2.86 4.55 5.41 6.75 7.78
k = 0.5 3.50 5.21 6.02 7.11 7.34
k = 1 4.17 5.90 4.84 0.00 0.00
k = 1.5 4.78 6.92 5.52 NA NA
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k = 2 5.14 5.64 3.00 NA NA
k = 2.5 4.59 1.75 0.00 NA NA
k = 3 NA NA NA NA NA

The highest PAIt values for year_after_2012, month_winter, and hour_21_3 are 29.98, 8.56,
and 7.78, respectively. The differential risk hotspots that are obtained for the combination of k and n
that lead to these PAIt values can be visualized with plothot (Figure 5):

> hotspots_after_2012 <- drhot(X = X.chicago,
rel_prob = rel_probs_after_2012,
k = 1,
n = 30)

> plothot(X = X.chicago, hotspots_after_2012)

> hotspots_winter <- drhot(X = X.chicago,
rel_prob = rel_probs_winter,
k = 1.5,
n = 15)

> plothot(X = X.chicago, hotspots_winter)

> hotspots_21_3 <- drhot(X = X.chicago,
rel_prob = rel_probs_21_3,
k = 0,
n = 30)

> plothot(X = X.chicago, hotspots_21_3)

Differential risk hotspots ’Yes’ (year_after_2012),

lixel_length = 50, h = 250,

k = 1, n = 30

DRHotspot (center) DRHotspot (extension), order = 5

(a)

Differential risk hotspots ’Yes’ (month_winter),

lixel_length = 50, h = 250,

k = 1.5, n = 15

DRHotspot (center) DRHotspot (extension), order = 5

(b)

Differential risk hotspots ’Yes’ (hour_21_3),

lixel_length = 50, h = 250,

k = 0, n = 30

DRHotspot (center) DRHotspot (extension), order = 5

(c)

Figure 5: Outputs from the function plothot for the marks year_after_2012, month_winter,
and hour_21_3 and the categorical value Yes for the three, considering the combinations of k and n
that maximize the PAIt (for the values of k and n tested).

Summary

The R package DRHotNet for detecting differential risk hotspots on linear networks has been described.
The use of linear networks in the context of hotspot detection is becoming more important over the
years, particularly in the fields of criminology and traffic safety. In addition, it is also of great
interest sometimes to detect zones of a linear network where a certain type of event is especially
overrepresented. Hence, DRHotNet consists of an easy-to-use tool implemented in R to accurately
locate the microzones of a linear network where the incidence of a type of event is considerably higher
than in the rest of it.

Bibliography

B. Allévius. scanstatistics: Space-time anomaly detection using scan statistics. The Journal of Open
Source Software, 3:515, 2018. [p380]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 395

M. A. Andresen, A. S. Curman, and S. J. Linning. The trajectories of crime at places: understanding
the patterns of disaggregated crime types. Journal of Quantitative Criminology, 33(3):427–449, 2017.
[p380]

Q. W. Ang, A. Baddeley, and G. Nair. Geometrically corrected second order analysis of events on a
linear network, with applications to ecology and criminology. Scandinavian Journal of Statistics, 39(4):
591–617, 2012. [p380]

L. Anselin. Local indicators of spatial association—LISA. Geographical Analysis, 27(2):93–115, 1995.
[p380]

M. P. Ashby. Studying Crime and Place with the Crime Open Database: Social and Behavioural Scienes.
Research Data Journal for the Humanities and Social Sciences, 1(aop):1–16, 2019. [p386]

A. Baddeley, E. Rubak, and R. Turner. Spatial point patterns: methodology and applications with R. CRC
Press, 2015. [p380, 381]

A. Baddeley, G. Nair, S. Rakshit, and G. McSwiggan. “Stationary” point processes are uncommon on
linear networks. Stat, 6(1):68–78, 2017. [p380]

M. Bíl, R. Andrášik, and Z. Janoška. Identification of hazardous road locations of traffic accidents
by means of kernel density estimation and cluster significance evaluation. Accident Analysis &
Prevention, 55:265–273, 2013. [p383]

M. Bíl, R. Andrášik, T. Svoboda, and J. Sedoník. The KDE+ software: a tool for effective identification
and ranking of animal-vehicle collision hotspots along networks. Landscape Ecology, 31(2):231–237,
2016. [p381]

R. Bivand and N. Lewin-Koh. maptools: Tools for Reading and Handling Spatial Objects, 2017. URL
https://CRAN.R-project.org/package=maptools. R package version 0.9-2. [p383]

R. Bivand and C. Rundel. rgeos: Interface to Geometry Engine - Open Source (’GEOS’), 2020. URL
https://CRAN.R-project.org/package=rgeos. R package version 0.5-3. [p384]

R. S. Bivand, E. Pebesma, and V. Gómez-Rubio. Applied spatial data analysis with R, Second edition.
Springer, NY, 2013. URL http://www.asdar-book.org/. [p380, 383]

Á. Briz-Redón. SpNetPrep: An R package using Shiny to facilitate spatial statistics on road networks.
Research Ideas and Outcomes, 5:e33521, 2019. [p384, 386]

Á. Briz-Redón, F. Martínez-Ruiz, and F. Montes. Identification of differential risk hotspots for collision
and vehicle type in a directed linear network. Accident Analysis & Prevention, 132:105278, 2019a.
[p381, 383, 391]

Á. Briz-Redón, F. Martínez-Ruiz, and F. Montes. Spatial analysis of traffic accidents near and between
road intersections in a directed linear network. Accident Analysis & Prevention, 132:105252, 2019b.
[p380]

S. Chainey, L. Tompson, and S. Uhlig. The utility of hotspot mapping for predicting spatial patterns of
crime. Security Journal, 21(1-2):4–28, 2008. [p382]

M. Deng, X. Yang, Y. Shi, J. Gong, Y. Liu, and H. Liu. A density-based approach for detecting network-
constrained clusters in spatial point events. International Journal of Geographical Information Science,
33(3):466–488, 2019. [p381]

P. J. Diggle. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. CRC press, 2013. [p380]

D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature. Cartographica: the International Journal for Geographic
Information and Geovisualization, 10(2):112–122, 1973. [p384]

G. Drawve and A. Wooditch. A research note on the methodological and theoretical considerations for
assessing crime forecasting accuracy with the predictive accuracy index. Journal of Criminal Justice,
page 101625, 2019. [p383]

M. Eckardt and J. Mateu. Point patterns occurring on complex structures in space and space-time: An
alternative network approach. Journal of Computational and Graphical Statistics, 27(2):312–322, 2018.
[p381]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=maptools
https://CRAN.R-project.org/package=rgeos
http://www.asdar-book.org/


CONTRIBUTED RESEARCH ARTICLE 396

M. Eckardt and J. Mateu. Second-order and local characteristics of network intensity functions. TEST,
30(2):318–340, 2021. [p381]

A. Getis and J. Ord. The Analysis of Spatial Association by Use of Distance Statistics. Geographical
Analysis, 24(3), 1992. [p380]

G. Grolemund and H. Wickham. Dates and Times Made Easy with lubridate. Journal of Statistical
Software, 40(3):1–25, 2011. URL http://www.jstatsoft.org/v40/i03/. [p387]

V. Gómez-Rubio, J. Ferrándiz-Ferragud, and A. López-Quílez. Detecting clusters of disease with R.
Journal of Geographical Systems, 7(2):189–206, 2005. [p380]

V. Gómez-Rubio, P. Moraga, J. Molitor, and B. Rowlingson. Dclusterm: Model-based detection of
disease clusters. Journal of Statistical Software, Articles, 90(14):1–26, 2019. ISSN 1548-7660. doi:
10.18637/jss.v090.i14. URL https://www.jstatsoft.org/v090/i14. [p380]

R. J. Hijmans. raster: Geographic Data Analysis and Modeling, 2019. URL https://CRAN.R-project.
org/package=raster. R package version 2.8-19. [p385]

J. E. Kelsall and P. J. Diggle. Kernel estimation of relative risk. Bernoulli, 1(1-2):3–16, 1995a. [p382]

J. E. Kelsall and P. J. Diggle. Non-parametric estimation of spatial variation in relative risk. Statistics in
Medicine, 14(21-22):2335–2342, 1995b. [p382]

J. E. Kelsall and P. J. Diggle. Spatial variation in risk of disease: a nonparametric binary regression
approach. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(4):559–573, 1998.
[p381]

M. Kulldorff. A spatial scan statistic. Communications in Statistics-Theory and Methods, 26(6):1481–1496,
1997. [p380]

C. Lloyd. Spatial data analysis: an introduction for GIS users. Oxford University Press, 2010. [p382]

G. McSwiggan, A. Baddeley, and G. Nair. Kernel density estimation on a linear network. Scandinavian
Journal of Statistics, 44(2):324–345, 2017. [p380, 381]

G. McSwiggan, A. Baddeley, and G. Nair. Estimation of relative risk for events on a linear network.
Statistics and Computing, pages 1–16, 2019. [p381, 382]

S. Meyer, L. Held, and M. Höhle. Spatio-Temporal Analysis of Epidemic Phenomena Using the R
Package surveillance. Journal of Statistical Software, 77(11), 2017. [p380]

M. M. Moradi, F. J. Rodríguez-Cortés, and J. Mateu. On kernel-based intensity estimation of spatial
point patterns on linear networks. Journal of Computational and Graphical Statistics, 27(2):302–311,
2018. [p381]

M. M. Moradi, O. Cronie, E. Rubak, R. Lachieze-Rey, J. Mateu, and A. Baddeley. Resample-smoothing
of Voronoi intensity estimators. Statistics and Computing, 29(5):995–1010, 2019. [p381]

K. Nie, Z. Wang, Q. Du, F. Ren, and Q. Tian. A network-constrained integrated method for detecting
spatial cluster and risk location of traffic crash: A case study from Wuhan, China. Sustainability, 7
(3):2662–2677, 2015. [p380]

E. Pebesma. Simple Features for R: Standardized Support for Spatial Vector Data. The R Jour-
nal, 2018. URL https://journal.r-project.org/archive/2018/RJ-2018-009/index.
html. [p383]

E. J. Pebesma and R. S. Bivand. Classes and methods for spatial data in R. R News, 5(2):9–13, November
2005. URL https://CRAN.R-project.org/doc/Rnews/. [p383]

S. Rakshit, A. Baddeley, and G. Nair. Efficient Code for Second Order Analysis of Events on a Linear
Network. Journal of Statistical Software, 90(1):1–37, 2019a. [p381]

S. Rakshit, T. Davies, M. M. Moradi, G. McSwiggan, G. Nair, J. Mateu, and A. Baddeley. Fast Kernel
Smoothing of Point Patterns on a Large Network using Two-dimensional Convolution. International
Statistical Review, 2019b. [p381]

C. Schnell, A. A. Braga, and E. L. Piza. The influence of community areas, neighborhood clusters,
and street segments on the spatial variability of violent crime in Chicago. Journal of Quantitative
Criminology, 33(3):469–496, 2017. [p380]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

http://www.jstatsoft.org/v40/i03/
https://www.jstatsoft.org/v090/i14
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://journal.r-project.org/archive/2018/RJ-2018-009/index.html
https://journal.r-project.org/archive/2018/RJ-2018-009/index.html
https://CRAN.R-project.org/doc/Rnews/


CONTRIBUTED RESEARCH ARTICLES 397

W. Steenbeek and D. Weisburd. Where the action is in crime? An examination of variability of crime
across different spatial units in The Hague, 2001–2009. Journal of Quantitative Criminology, 32(3):
449–469, 2016. [p380]

L. van der Meer, L. Abad, A. Gilardi, and R. Lovelace. sfnetworks: Tidy Geospatial Networks, 2021. URL
https://CRAN.R-project.org/package=sfnetworks. R package version 0.5.2. [p383]

K. Walker. tigris: An R package to access and work with geographic data from the US Census Bureau.
The R Journal, 8(2):231–242, 2016. [p384]

D. Weisburd. The law of crime concentration and the criminology of place. Criminology, 53(2):133–157,
2015. [p380]

Z. Xie and J. Yan. Kernel density estimation of traffic accidents in a network space. Computers,
Environment and Urban Systems, 32(5):396–406, 2008. [p382]

Z. Xie and J. Yan. Detecting traffic accident clusters with network kernel density estimation and local
spatial statistics: an integrated approach. Journal of Transport Geography, 31:64–71, 2013. [p380]

Álvaro Briz-Redón
Statistics and Operations Research
University of València
Spain
alvaro.briz@uv.es

Francisco Martínez-Ruiz
Statistics Office
City Council of València
Spain
fmartinezr@valencia.es

Francisco Montes
Statistics and Operations Research
University of València
Spain
francisco.montes@uv.es

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=sfnetworks
mailto:alvaro.briz@uv.es
mailto:fmartinezr@valencia.es
mailto:francisco.montes@uv.es

	DRHotNet: An R package for detecting differential risk hotspots on a linear network
	Introduction
	A procedure for detecting differential risk hotspots
	Estimating a relative probability surface
	Determining differential risk hotspots

	Measuring differential risk hotspots importance and significance
	The prediction accuracy index
	Estimating a p-value

	Dealing with linear networks in R
	Classes and functions
	Preprocessing the linear network
	Creating a point pattern on a linear network

	Using DRHotNet
	Downloading and preparing the linear network
	Downloading and preparing crime data
	Estimating a relative probability surface
	Detecting differential risk hotspots
	Assessing the statistical significance of the hotspots
	Choosing k and n
	Other applications of the methodology

	Summary


