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ConvergenceConcepts: An R Package to
Investigate Various Modes of Convergence
by Pierre Lafaye de Micheaux and Benoit Liquet

Abstract: ConvergenceConcepts is an R pack-
age, built upon the tkrplot, tcltk and lattice
packages, designed to investigate the conver-
gence of simulated sequences of random vari-
ables. Four classical modes of convergence may
be studied, namely: almost sure convergence
(a.s.), convergence in probability (P), conver-
gence in law (L) and convergence in r-th mean
(r). This investigation is performed through ac-
curate graphical representations. This package
may be used as a pedagogical tool. It may give
students a better understanding of these notions
and help them to visualize these difficult theo-
retical concepts. Moreover, some scholars could
gain some insight into the behaviour of some
random sequences they are interested in.

Introduction

Many students are exposed, during their graduate
school years, to the difficult concepts of convergence
of a sequence of random variables (see Sethuraman
(1995)). Indeed, as pointed out by Bryce, Gould,
Notz and Peck (2001), “statistical theory is an im-
portant part of the curriculum, and is particularly
important for students headed for graduate school”.
Such knowledge is prescribed by learned statistics
societies (see Accreditation of Statisticians by the Sta-
tistical Society of Canada, and Curriculum Guide-
lines for Undergraduate Programs in Statistical Sci-
ence by the American Statistical Association). In the
main textbooks (see for example Billingsley (1986),
Chung (1974), Ferguson (1996), Lehmann (2001),
Serfling (2002)), around 15 pages without graphs
are allotted to defining these convergence concepts
and their interrelations. But, very often, these con-
cepts are only described through their definitions
and some of their properties. Thus, some students
may not fully visualize how a random variable con-
verges to some limit. They also may not fully under-
stand the differences between the various modes, es-
pecially between convergence in probability and al-
most surely.

Moreover, a statistician could be interested in
whether or not a specific random sequence con-
verges. To explain the modes of convergence, we
could follow Bryce, Gould, Notz and Peck (2001)’s
advice: “a modern statistical theory course might,
for example, include more work on computer in-
tensive methods”. With regard to the convergence
in law, Dunn (1999) and Marasinghe, Meeker, Cook

and Shin (1996) have proposed tools to explain this
concept in an interactive manner. Mills (2002) pro-
posed a review of statistical teaching based on sim-
ulation methods and Chance and Rossman (2006)
have written a book on this subject. Our package
enables one to investigate graphically the four clas-
sical modes of convergence of a sequence of random
variables: convergence almost surely, convergence
in probability, convergence in law and convergence
in r-th mean. Note that it is tightly associated with
the reading of Lafaye de Micheaux and Liquet (2009)
which explains what we call our “mind visualization
approach” of these convergence concepts.

The two main functions to use in our package are
investigate and check.convergence. The first one
will be described in the next section, investigating
pre-defined Exercise 1 from Lafaye de Micheaux and
Liquet (2009). The second one will be described in
the last section, where it is shown how to treat your
own examples.

At this point, note the necessary first two steps to
perform before working with our package:

install.packages("ConvergenceConcepts")
require(ConvergenceConcepts)

Pre-defined examples

Our package contains several pre-defined examples
and exercises (all introduced and solved in Lafaye de
Micheaux and Liquet (2009) and in its associated on-
line Appendix), some of which are classical ones. To
investigate these examples, just type in the R console:

investigate()

Any entry can be selected by clicking in the left
panel displayed in Figure 1. The corresponding text
then appears inside the right panel. Next, by clicking
the OK button, the relevant R functions are called to
help the user to visualize the chosen modes of con-
vergence for the random variable sequence under in-
vestigation. You will then be able to twiddle a few
features.

For example, the first entry corresponds to the
following problem.
Exercise 1: Let Z be a uniform U[0,1] random vari-
able and define Xn = 1[m/2k ,(m+1)/2k ](Z) where n =
2k + m for k ≥ 1 and with 0 ≤ m < 2k. Thus X1 = 1,
X2 = 1[0,1/2)(Z), X3 = 1[1/2,1)(Z), X4 = 1[0,1/4)(Z),

X5 = 1[1/4,1/2)(Z), . . .. Does Xn
a.s.−→ 0? Does Xn

P−→
0?
Solution to exercise 1: The drawing on Figure 2 ex-
plains the construction of Xn.
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Figure 1: A call to investigate().

Figure 2: One fictitious sample path for Xn.

Let us apply our visual reasoning as explained in
Section 2 of (Lafaye de Micheaux and Liquet, 2009).
Once a z value is randomly drawn, the entire associ-
ated sample path is fully determined. As n increases,
each sample path “stays” for a longer time at 0 but
eventually jumps to 1. In fact it will jump to 1 an
infinite number of times after each fixed n value.

This can be seen using our package. After having
selected the first entry and clicked on the OK button
displayed in Figure 1, we obtain the following plot.

On the left panel of this plot, we see some sample
paths associated with Xn. One can thus notice, on
left panel of Figure 3, that for all n = 1, . . ., all these

sample paths will jump to 1 somewhere (and even at
many places) in the grey block beginning at position
n.

By definition, Xn
a.s.−→ 0 if and only if ∀ε > 0 : an =

IP [ω;∃k ≥ n : |Xk,ω | > ε] −→
n→∞

0. In this definition,
and in the one thereafter on convergence in proba-
bility, ω can be viewed as some kind of labelling of
a sample path. We define ân to be a frequentist esti-
mate of an. It is the proportion of the pieces of gen-
erated sample paths beginning at position n that go
outside the horizontal band [−ε,+ε] (see Lafaye de
Micheaux and Liquet (2009) for more details). Using
our package, the user can interactively move the grey
block on left side of Figure 3. He can thus observe
the pieces of sample paths which leave the horizon-
tal band. Red marks indicate, for each sample path,
the first time when this happens. Simultaneously we
can observe their proportion ân (equal to 1 here) on
right side of Figure 3 as indicated by a sliding red
circle. We can see that we cannot have almost sure
convergence.

By definition, Xn
P−→ 0 if and only if ∀ε > 0 : pn =

IP [ω; |Xn,ω | > ε] −→
n→∞

0. We define p̂n to be a frequen-
tist estimate of pn. It is the proportion of generated
sample paths lying outside a band [−ε,+ε] in the bar
at position n. Note that, for this example, this corre-
sponds to the proportion of [0,1]-uniform z values
falling into an interval whose length gets narrower.
We can investigate graphically convergence in prob-
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Figure 3: Seeing almost sure convergence in action. On the left panel, we visualize only 10 sample paths
among the M = 500 simulated realizations of the sequence of random variables defined in exercise 1. It can be
seen that all these sample paths go off [−ε,+ε] in the block beginning at position n = 104. On the right panel,
we visualize the ân values for each n between 1 and 200. We see that ân equal 1.

ability by sliding the vertical bar (click first on radio
button Probability for this bar to appear, see Figure 4)
and observe that p̂n is going towards 0. This lets us
perceive that in this case, we do have convergence in
probability.

For the interested reader, a mathematically rigor-
ous proof of this exercise can be found in Lafaye de
Micheaux and Liquet (2009).

Investigating your own examples

We now introduce two new problems that have not
been either pre-included or treated in the package.
We show how a user can define his own functions in
order to investigate the convergence of Xn towards
X, or equivalently of Xn−X to 0. These problems are
rather simple, but the objective here is only to show
how to use our package. The two steps will consist
in coding your generator of the Xi’s and then using
the check.convergence function.

This last function has several arguments whose
description is now given.

nmax : number of points in each sample path.

M : number of sample paths to be generated.

genXn : a function that generates the first n Xn − X
values, or only the first n Xn values in the law case.

argsXn : a list of arguments to genXn .

mode : a character string specifying the mode of con-
vergence to be investigated, must be one of "p" (de-
fault), "as", "r" or "L".

epsilon : a numeric value giving the interval end-
point.

r : a numeric value (r>0) if convergence in r-th mean
is to be studied.

nb.sp : number of sample paths to be drawn on the
left plot.

density : if density=TRUE, then the plot of the density
of X and the histogram of Xn is returned. If den-
sity=FALSE, then the plot of the distribution function
F(t) of X and the empirical distribution Fn(t) of Xn
is returned.

densfunc : function to compute the density of X.

probfunc : function to compute the distribution func-
tion of X.

tinf : lower limit for investigating convergence in law.

tsup : upper limit for investigating convergence in
law.

trace : function used to draw the plot; plot or points.

...: optional arguments to trace .

Problem 1: Let X1, X2, . . . be independent, identi-
cally distributed, continuous random variables with
a N(2,9) distribution. Define Yi = (0.5)iXi, i =
1,2, . . .. Also define Tn and An to be the sum and the
average, respectively, of the terms Y1,Y2, . . . ,Yn.

(a) Is Yn convergent in probability to 0?

(b) Is Tn convergent in probability to 2?

(c) Is An convergent in probability to 0?

(d) Is Tn convergent in law to a N(2,3) ?

The R Journal Vol. 1/2, December 2009 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 21

Figure 4: Seeing convergence in probability in action. On the left panel, we visualize only 10 sample paths
among the M = 500 simulated realizations of the sequence of random variables defined in exercise 1. It can be
seen that, among these ten, only one sample path go off [−ε,+ε] in the bar at position n = 104. On the right
panel, we visualize the p̂n values for each n between 1 and 200. We see that p̂n goes towards 0.

Solution to problem 1:

(a) We first define a random generator (called
genYn) for the Yi’s then we call the function
check.convergence.

genYn <- function(n) {
res <- (0.5)^(1:n)*rnorm(n,2,3)
return(res)

}
check.convergence(2000,500,genYn,mode="p")

We can zoom in the left panel of Figure 5
(from n1 = 1 to n2 = 10) and see the 10 sam-
ple paths going rapidly inside the horizontal
band [−ε,+ε]. Looking at the evolution of p̂n
towards 0 in the right panel, we can assume
that Yn converges in probability towards 0.

(b) We first define a random generator (called
genTn) for the (Ti − 2)’s then we call the func-
tion check.convergence.

genTn <- function(n) {
res <- cumsum((0.5)^(1:n)*rnorm(n,2,3))-2
return(res)

}
check.convergence(2000,500,genTn,mode="p")

Each one of the sample paths rapidly evolve to-
wards an horizontal asymptote, not the same
for each sample path, and not contained inside
the horizontal band [−ε,+ε]. Looking at the
evolution of p̂n in the right panel of Figure 6,
we can assume that Tn does not converge in
probability towards 2.

(c) We first define a random generator (called
genAn) for the Ai’s then we call the function
check.convergence.

genAn <- function(n) {
x<-1:n
res<-cumsum((0.5)^x*rnorm(n,2,3))/cumsum(x)
return(res)

}
check.convergence(2000,500,genAn,mode="p")

In this case, we can zoom in (from n1 = 1 to
n2 = 50) to better see the sample paths which
all end up inside the horizontal band [−ε,+ε].
Looking at the evolution of p̂n towards 0 in the
right panel of Figure 7, we can assume that An
converges in probability towards 0.

(d) We first define a random generator (called
genTnL) for the Ti’s then we call the function
check.convergence.

genTnL <- function(n) {
res <- cumsum((0.5)^(1:n)*rnorm(n,2,3))
return(res)

}
check.convergence(2000,1000,genTnL,mode="L",
density = F,
densfunc = function(x){dnorm(x,2,sqrt(3))},
probfunc=function(x){pnorm(x,2,sqrt(3))},
tinf = -4, tsup = 4)

By definition, Xn
L−→ X if and only if ln(t) =

|Fn(t)− F(t)| −→
n→∞

0, at all t for which F (the dis-
tribution function of X) is continuous, where
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Figure 5: Investigating the convergence in probability towards 0 for the sequence of random variables Yn of
Problem 1.(a). On the right panel, we see that p̂n goes towards 0.

Figure 6: Investigating the convergence in probability towards 2 for the sequence of random variables Tn of
Problem 1.(b). On the right panel, we see that p̂n equals 1.
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Figure 7: Investigating the convergence in probability towards 0 for the sequence of random variables An of
Problem 1.(c). On the right panel, we see that p̂n goes towards 0.

Figure 8: Investigating convergence in law.
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Fn(t) is the distribution function of Xn. We de-
fine F̂n(t) to be the empirical distribution func-
tion of Xn (based on M realizations of Xn) and
l̂n(t) = |F̂n(t)− F(t)|.

We can move the slider (right part of Figure
8) and see that the red curve comes closer to
the black one. Also, on the right you can see
the tri-dimensional plot of |F̂n(t) − F(t)| for
n = 1, . . . ,nmax = 2000 to see if gets closer to
the zero horizontal plane. These plots suggest
a convergence in distribution.

Problem 2: Let X1, X2, . . . be i.i.d. random variables
with a uniform distribution on [0,1]. We define Mn =
max{X1, . . . , Xn}.

(a) Show that Mn converges in probability and al-
most surely to 1.

(b) Show that Mn converges in quadratic mean to
1.

Solution to problem 2:
We first define our random generator of the (Xi −

1)’s.

genMn <- function(n) {
res <- cummax(runif(n))-1
return(res)

}

(a) We now call the check.convergence function.

check.convergence(2000,500,genMn,mode="p")

Obviously, all the sample paths are strictly in-
creasing towards 1. Looking at the right panel
of Figure 9, we see ân and p̂n decreasing to-
wards 0. This makes us believe that we are con-
templating a convergence almost surely and
convergence in probability towards 1.

(b) We now call the check.convergence function to
investigate the quadratic mean convergence.

check.convergence(2000,500,genMn,mode="r",r=2)

By definition, Xn
r−→ X if and only if en,r =

E|Xn − X|r −→
n→∞

0. We define, in an obvious
fashion, ên,r to be a Monte Carlo estimate of en,r,
precisely defined in Lafaye de Micheaux and
Liquet (2009).

Looking at Figure 10, one can expect Mn to con-
verge in quadratic mean towards 1 since ên,r is
decreasing towards 0.

Figure 10: p̂n and ân going towards 0.

Conclusion

We have described how this package can be used as
interactive support for asymptotics courses. A few
examples were given to show how to investigate al-
most sure convergence, convergence in probability,
convergence in law, or in r-th mean.
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