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Model Builder for Item Factor Analysis
with OpenMx
by Joshua N. Pritikin and Karen M. Schmidt

Abstract We introduce a shiny web application to facilitate the construction of Item Factor Analysis
(a.k.a. Item Response Theory) models using the OpenMx package. The web application assists with
importing data, outcome recoding, and model specification. However, the app does not conduct any
analysis but, rather, generates an analysis script. Generated Rmarkdown output serves dual purposes:
to analyze a data set and demonstrate good programming practices. The app can be used as a teaching
tool or as a starting point for custom analysis scripts.

An overview of OpenMx

OpenMx, a modular package originally designed for structural equation modeling (Neale et al., in
press), recently gained the ability to handle Item Factor Analysis (a.k.a. Item Response Theory, Modern
Test Theory) models (Pritikin et al., 2015). Although a goal of OpenMx is to cater to the statistical
power user and facilitate analyses that are difficult to conduct in other software, the development
team is always on the lookout for ways to ease the learning curve for novice users as well. Here
we introduce a new shiny (RStudio and Inc., 2014) web application to generate OpenMx code in
Rmarkdown format (Allaire et al., 2014). We believe this code generator substantially lowers the
barrier to entry for novice users of Item Factor Analysis (IFA) and encourages a culture of literate
programming (Knuth, 1984) and reproducible science (Peng, 2011; Nosek et al., 2015). The generated
code can be customized at many levels. This flexibility enables the production of custom analyses and
reports as users grow more sophisticated in their modeling expectations.

The statistical model

Item analysis is concerned with items that are scored correct/incorrect or on an ordinal scale. Many
psychological surveys use an ordinal scale. For example, participants may be asked to respond to an
item like, “I feel I am in charge of the situation in which I live.” on a 5-point Likert scale from agree to
disagree. Whether dichotomous or ordinal, the conditional likelihood of response xij to item j from
person i with item parameters ξ j and latent ability (a.k.a. latent trait) θi is

L(xi|ξ, θi) = ∏
j

Pr(pick = xij|ξ j, θi). (1)

One implication of Equation 1 is that items are assumed to be conditionally independent given the
latent ability θi. That is, the outcome of one item does not have any influence on another item after
controlling for ξ and θi. The unconditional likelihood is obtained by integrating over the latent
distribution θi,

L(xi|ξ) =
∫

L(xi|ξ, θi)L(θi)dθi. (2)

With an assumption that examinees are independently and identically distributed, we can sum the
individual log likelihoods,

L = ∑
i

log L(xi|ξ). (3)

Optimization consists of finding the ξ that maximizes this function. OpenMx presently offers only
one choice for optimization, an Expectation-Maximization algorithm using equal interval quadrature
to evaluate the integral in Equation 2 (Bock and Aitkin, 1981). In the future, we plan to add comple-
mentary algorithms such as Metropolis-Hastings Robbins-Monro, that is more efficient at optimizing
certain problems (Cai, 2010b).

Several models are readily available to plug in as the response probability function Pr(pick =
xij|ξ j, θi) in Equation 1. All of these response probability functions are built from the logistic function,

logistic(l) ≡ logit−1(l) ≡ 1
1 + exp(−l)

.
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Details of the parameterizations are given here. A discussion of these item models more appealing to
intuition is given in the next section.

Dichotomous model

The dichotomous response probability function can model items when there are exactly two possible
outcomes. It is defined as,

Pr(pick = 0|a, b, g, u, τ) = 1− Pr(pick = 1|a, b, g, u, τ) (4)

Pr(pick = 1|a, b, g, u, τ) = logit−1(g) + (logit−1(u)− logit−1(g))
1

1 + exp(−(aτ + b))
(5)

where a is the slope, b is the intercept, g is the pseudo-guessing lower asymptote expressed in logit
units, u is the upper asymptote expressed in logit units, and τ is the latent ability of the examinee
(Birnbaum, 1968; Loken and Rulison, 2010). A #PL naming shorthand has been developed to refer to
versions of the dichotomous model with different numbers of free parameters. Model nPL refers to
the model obtained by freeing the first n of parameters b, a, g, and u.

Graded response model

The graded response model is a response probability function for 2 or more outcomes (Samejima, 1969;
Cai, 2010b). For outcomes k in 0 to K, slope vector a, intercept vector b, and latent ability vector τ, it is
defined as,

Pr(pick = K|a, b, τ) =
1

1 + exp(−(aτ + bK))
(6)

Pr(pick = k|a, b, τ) =
1

1 + exp(−(aτ + bk))
− 1

1 + exp(−(aτ + bk+1))
(7)

Pr(pick = 0|a, b, τ) = 1− Pr(pick = 1|a, b1, τ). (8)

Nominal model

The nominal model is a response probability function for items with 3 or more outcomes (e.g., Thissen
et al., 2010). It can be defined as,

a = Taα (9)

c = Tcγ (10)

Pr(pick = k|s, ak, ck, τ) = C
1

1 + exp(−(sτak + ck))
(11)

where ak and ck are the result of multiplying two vectors of free parameters α and γ by fixed matrices
Ta and Tc, respectively; a0 and c0 are fixed to 0 for identification; s is the per-item slope; and C is a
normalizing constant to ensure that ∑k Pr(pick = k) = 1.

Item models

●●●
●●●●

●●●
●●
●●

●●
●
●●●●

●●●
●
●●●●●●●●●

●●●
●

●
●
●●●●●●

●●●●
●●

●●●●●●●●●●●●
●
●
●
●●
●
●●●

●
●●●●

●
●
●●

●●
●●●●●●●●●

●●●●
●
●●
●●●
●●●●●●

●●●●
●
●●
●●● ●

●●●●
●●●●●

●
●
●

●●
●
●
●
●
●
● ●●●●●

●
●●
●●●●●●

●
●
●●●●

●
●●●●●●

●●●●●
●
●●

●●●●
●●●

●
●
●●●●

●●●
●●●
●●●●●●●

●
●
●●●

●●
●
●
●●●●●

●●●
●
●
●●●
●
●●●

●
●
●●●●●●

●●

●

●●
●
●●
●●●●

●

●

●

●
●●
●●

●

●●

●

●

●

●●●

●●

●
●●●●●

●

●●●●

●

●
●
●●
●●●
●
●
●●●●

●

●●

●
●

●

●

●
●
●

●
●
●
●●

●

●●

●

●

●

● ●

●

●●●

●

●●●
●●●●

●●

●
●
●
●

●

●●
●

●

●●
●

●

●

●●

●
●

●
●●●●●●

●
●
●
●
●●

●●●
●
●
●
●
●●●●●●

●
●
●●

●

●

●

●
●●●●●●

●

●
●●●●
●
●●
●●●
●
●●●●●●●●●●●●●●

●●
●●●●
●
●
●●●●●●●

●●●●
●●●

●●●●
●
●●●

●
●●●●

● ●●●●● ●●●
●
●
●●●●●●

●
●●
●
●
●●
●
●
●●●
●
●●●

●●●●
●●●●●●

●
●

●
●●●
●
●●

0 0 0 0 0 0 17 29 74 88 98 10
0

10
0

FALSE

TRUE

−5.0 −2.5 0.0 2.5 5.0
skill

%
 c

or
re

ct

Figure 1: Dichotomous data converted into contin-
uous data conditional on examinee skill.

Modern test theory employs item models,
Pr(pick = xij|ξ j, θi) (from Equation 1). To better
appreciate how modern test theory works, it is
helpful to develop an intuitive understanding of
item models. The essential idea is the conversion
of ordinal (or dichotomous) data into continuous
data conditional on examinee skill. In Figure 1,
the black dots represent the dichotomous data.
Here we assume that examinee skill is known so
that we can plot the black dots at the appropriate
place on the x axis. The next step is to partition
the x axis into equal interval bins. The propor-
tion of examinees who responded correctly is displayed in blue in the middle of each bin. These
blue numbers are our new continuous data, conditional on examinee skill. While we assumed that
examinee skill was known, this assumption is actually unnecessary. The optimization algorithm can
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make a rough estimate of examinee skill, proceed to improve the model, and repeat this process until
change is less than some epsilon.

To further inform your intuition about item models, it can be helpful to place yourself in the
position of the optimization algorithm. Enter the following commands to launch the model explorer
tool and browse to the output web server address. It is possible to do this without RStudio, but
RStudio makes everything easier so we recommend using RStudio. Note that the port number (3726
printed below) may be different on your computer.

> library(ifaTools)
> itemModelExplorer()

Listening on http://127.0.0.1:3726

Figure 2: Item model explorer with the dichoto-
mous model selected. The upper plot exhibits the
model predicted chance of outcomes conditional
on the latent trait (theta). The lower plot exhibits
the theoretical item information conditional on the
latent trait.

Your browser should show a screen similar
to Figure 2. Try experimenting with all the con-
trols. Early in the development of item models,
model parameters closely corresponded to the
psychological concepts of difficulty and discrim-
ination (Birnbaum, 1968). For example, difficult
items are only answered correctly by the bright-
est examinees while most examinees may cor-
rectly answer easy items. Discrimination quanti-
fies how much we learn from a given response.
Well-designed items discriminate examinee skill.
The causes of poor item discrimination are many.
An item may be hurt by awkward wording,
by asking examinees something that is some-
what off-topic, or by asking the same question
in slightly different ways.

Some item model parameters still retain a
close connection to difficulty and discrimination.
For example, the dichotomous model’s a param-
eter corresponds with discrimination and the
negative b parameter divided by a corresponds
with difficulty (Equation 5). However, as item
models have grown more flexible, the parameter
values and intuitive interpretation have become
more distant. To understand item models in gen-
eral, it is helpful to plot category curves and information by the latent trait (Figure 2). Some examples
of latent traits which can be measured in this framework are mathematical skill, vocabulary, or sleep
quality.

The way to interpret these plots is to start by picking a value for the latent trait. Suppose we know
that examinee Alice has a latent ability of 2 logit units. If we trace across the plot where the x axis is 2
then we find that Alice has a 75% chance of getting the item correct (blue curve) and a 25% chance of
getting it incorrect (red curve). In addition, we find that this item will give us 0.05 units of information
about Alice (black curve). The difficulty of the item is where the correct and incorrect curves cross at
about 0.2 logits. The discrimination of the item is given by the information plot. This item provides
more information about examinees with latent skill between −1 and 2 than elsewhere on the skill
continuum.

Much can be gleaned about item models by inspection of these plots. However, it is worth
conveying a few additional details specific to particular item models. The dichotomous model’s g and
u asymptote parameters are in logit units. To transform these values back into probabilities use R’s
plogis function. The g parameter may represent the chance of an examinee guessing the item correctly.
This parameter is also often called the pseudo-guessing parameter due to the probability of a low
ability examinee getting an item correct at a non-zero asymptote. The u parameter, or upper asymptote
parameter, may represent the chance of an examinee committing a careless mistake, reflecting high
ability examinee behavior. In this case, the upper asymptote never reaches one (Loken and Rulison,
2010).

By default, the nominal model uses trend for the T.a and T.c matrices (Equation 10). This parame-
terization is also known as the Fourier basis. The effect is that the alf and gam parameters control the
lowest frequency variation to the highest frequency variation. To develop an intuition for how this
works, set all parameters to zero then set a, alf1 and gam2 to 1. Experiment with the gam parameters
before you experiment with the alf parameters. Refer to Thissen et al. (2010) for discussion of the
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Figure 3: Initial screen shown after start up.

possibilities of this item model. Custom T.a and T.c matrices are not available in the model explorer
app, but can be specified in R code.

The “Show/Edit parameters” checkbox has a special didactic purpose. Open two copies of the
item model explorer. On one copy, un-check the “Show/Edit parameters” checkbox to hide the
parameters and click the “Draw new parameters” button. On the second copy of the item model
explorer, adjust the item model parameters to try to match the plot produced on the first item model
explorer. You can check your answers by checking the “Show/Edit parameters” checkbox. When you
play this game, you are doing part of what the optimization algorithm does when it fits models to
data. Note that there is no need to practice this skill. The computer will do it for you.

The model builder

Enter the following commands to launch the model builder tool and browse to the output web server
address. As before, it is possible to do this without RStudio, but RStudio makes everything easier so
we recommend using RStudio. Note that the port number (3726 printed below) may be different on
your computer.

> library(ifaTools)
> modelBuilder()

Listening on http://127.0.0.1:3726

Figure 4: After loading the g341-19.csv data.

Your browser should show a screen similar
to Figure 3. Take care not to hit the Reload but-
ton because that will reset the app. Learn how
to save your work (detailed below) before you
experiment with the Reload button. Across the
top are tabs that organize the major functions
of the model builder app. On the left side is
a control panel for the currently selected tab
Data. Example data sets are available at the
bottom of the control panel. You are welcome
to experiment with these, but we will focus on
the process of loading an external data set. If
you prefer to follow along with a video then
browse to http://youtu.be/xHeb5_CWnCk for di-
chotomous data and http://youtu.be/iwtpleltteQ for polytomous data.
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Dichotomous data

Click on the “Choose File” button1 and select g341-19.csv, a dichotomous data set that is available in
the ifaTools package (Pritikin, 2015a). The first 6 lines will appear in the “Unparsed content” section
(see Figure 4).2 This makes it easy to see how the file is formatted. The “Parsed content” section
reports an error. By reading the error carefully, you will find mention that “duplicate ‘row.names’ are
not allowed.” Since “Row names?” is enabled in the control panel, the model builder app expects the
first column of data to be dedicated to row names. A row name is typically the examinee’s name or
numeric identifier. A glance at the unparsed content reveals that no row names have been given in
this data set.

Figure 5: A summary of the g341-19.csv data set
when parsed incorrectly as a single column.

Click the “Row names?” checkbox in the
control panel to disable row names. Immedi-
ately (without reloading the data), the error mes-
sage in the “Parsed content” section will be
replaced by some of the data organized into
a single column. The column name will read
X010111111100. A column name like that should
raise suspicion. Since the “Header?” checkbox is
enabled in the control panel, the model builder
app expects the first line of the data to contain
column names. Therefore, the first line of data is
misinterpreted.

Click the “Header?” checkbox in the control
panel to disable column names. The column
in the “Parsed content” section will now be
labeled V1. Click on the “Item summary” con-
trol as an alternate way to verify that the data
is loaded and parsed accurately. The main content area includes two elements, a selection for
the “Row frequency column” and a table of items by Outcomes and Missing (see Figure 5). The
“Row frequency column” selection is used when you have already reduced your data to unique
rows and row counts. The example data set LSAT6 is in this format. For our current data set, leave
“Row frequency column” set to −.

The information conveyed in the item table should rouse suspicion. There is only 1 row (or 1 item)
with 721 outcomes. What happened is that the parsing is still not working and all the items are treated
as a single column. For example, the first row “0 1 0 1 1 1 1 1 1 1 0 0” is not treated as 12 separate
numbers but as a single uninterpreted unit. To fix the parsing, we need to select Whitespace as the
Separator in the control panel. With this last error corrected, the table is updated with 12 items labeled
V1, V2, . . . , V12 and all with 2 outcomes. With the data correctly loaded, click on the “Outcomes” tab
on the top bar.

Figure 6: The Outcomes tab without any recoding
rules.

The control panel on the “Outcomes” tab
packs a lot of functionality (Figure 6). The first
two selectors are mutually exclusive and per-
mit working with all items having the same out-
comes or with specific items, respectively. The
outcome set “V1” is currently selected as seen in
the control panel on the left side. In these data,
all items have the same possible outcomes (0 or
1). Therefore, there is only one outcome set. The
name “V1” does not just refer to the item “V1”
but to all items, because all items have the same
outcomes.

For clarity, it is often helpful to rename out-
comes. The “Recode from” selector should have
“0” selected. Change the to selector to <Rename>,
enter “incorrect” for the “New name” value, and
click the “Add mapping” button. This will cre-
ate a recoding rule that will show up in the
“Recode Table” output (Figure 7). Similarly, re-
name the “1” outcome to “correct” and again

1It may read “Choose CSV File’.” The exact appearance may differ on your system.
2We are aware that these screenshots are illegible when printed on paper. Inspect them using magnification on

your computer.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=ifaTools


CONTRIBUTED RESEARCH ARTICLES 187

click the “Add mapping” button. At this point, you should have 2 rules in the “Recode Table” output.

Figure 7: The outcome “0” is renamed to “in-
correct” and we are poised to rename “1” to
“correct.” In a moment, we will click the “Add
mapping” button.

Figure 8: The outcome reorder tool with 1 re-
ordering rule.

Click on the “Reorder” tab. Here you will find the outcomes sorted in lexical order. Drag one of
the outcomes to reverse the order (as in Figure 8). Similar to the operation of renaming outcomes, this
reordering step is not strictly necessary but is often helpful to keep things straight in our minds. With
dichotomous outcomes, there are not that many ways that things can go wrong. However, it is good
practice to use self-explanatory labels and standardized ordering. This is especially true when there
are more than 2 outcomes to worry about.

We will not use the “Reverse” tab and other control panel elements in the present example. In
survey design, it is common for outcomes to have a canonical order with some items reverse scored.
The “Reverse” tab is used to reverse the outcome order of some subset of items without dragging the
outcomes around with the “Reorder” tool. This can save a lot of dragging when there are more than 2
outcomes. The “Add outcome” tool permits the addition of outcomes that are not represented in the
data. This might happen when a measure is in development and we are fitting a preliminary model just
to get a vague idea of how the item is working. To fit an item that lacks data on some outcomes, it is usu-
ally necessary to use the nominal response model with a less than full rank parameterization (similar to
Thissen et al., 1989). In addition to renaming, the recode mappings tool can merge or collapse outcomes.

Figure 9: Configuration of latent factors.

For example, we might have an outcome set
consisting of “Agree,” “Agree somewhat,” “Not
sure,” “Disagree somewhat,” and “Disagree.” It
is straightforward to merge “Agree somewhat”
to “Agree” and “Disagree somewhat” to “Dis-
agree,” resulting in only 3 outcomes. Of course,
it is not always obvious which outcomes to
merge. The recode tool can also recode an out-
come to <NA>, which causes that outcome to be
interpreted as missing. Finally, the “Discard”
button at the bottom of the control panel allows
us to discard any rule that we created. So feel
free to experiment.

Click on the “Model” tab on the top bar. The
first decision we need to make is how many la-
tent factors to include in our model (Figure 9).
If we are not sure, a good starting point is 1. By
default, the first latent factor is called teacup. In
case there was any doubt, “teacup” is not a very
good name for a latent trait. We deliberately
picked ridiculous factors names to encourage
users to pick names that make sense in the context of the data under analysis. For example, a good
factor name for a math test might be math. If you cannot think of a good factor name, you could use
“latent trait,” but this name only works well for a single factor model. You really should make an effort
to think of descriptive names before you start using trait1, trait2, etc. If you are not sure how many
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factors to use then use 1 for now. We will revisit this question later.

The “Reorder” tab allows you to change the order of your items. This can be helpful because of the
way that item model and parameter editing works. To get familiar with how item editing works, click
on the “Parameters” tab. The main content area of the “Parameters” tab contains a lot of information.
The first thing to notice is that all of the tables have the same column labels. Each item is assigned to a
column. Using the control panel, we will focus on only a subset of items. Change the first selector
“Edit items from:” from V1 to V7. This will hide the first 6 items, making the tables in the main
content area look more manageable (Figure 10). The first two selectors facilitate item range selection.
To reveal all items again, use the “Focus all items” button. Item selection is important to understand
because the remainder of the controls in the control panel operate on only the selected (visible) items.

Figure 10: Editing the models and parameters of a
subset of items.

With only items V7 to V12 visible, just to
demonstrate how it is done, let us place an equal-
ity constraint on the slope or latent factor loading.
Type “slope” into the Label textbox and click the
“Set Label” button. The label slope should ap-
pear in all columns of the first row of the Labels
table in the main content area. Now let us switch
to the first 6 items. This can be accomplished in
a variety of ways. One way is to change the first
selector from V7 to V6 and the second selector
from V12 to V1.

With only items V1 to V6 visible, select drm
from the “Model” selector. The value drm is an
abbreviation for the 4PL dichotomous response
model (Loken and Rulison, 2010), which has four
parameters when there is one factor. The g and
u rows should appear in all of the tables in the
main content area. Parameter g is the pseudo-
guessing lower bound and u is the upper bound.
The upper bound has been used to better model
high ability examinees in a Computerized Adap-
tive Testing context (Magis, 2013). Even high
ability examinees may occasionally miss an easy
item. Here we will fix the upper bound to 1 (meaning that an examinee with sufficiently high ability
will never answer incorrectly). Since the bound parameters are expressed on a logit scale, we will use
logit(1). Select u from the “Parameter” selector and Inf from the “Free” selector (since logit(1) = inf).
The row of “Starting values” for u should change to Inf and the corresponding “Is free” row
should change from TRUE to FALSE. With this constraint, the 4PL dichotomous response model is
equivalent to the 3PL model (Birnbaum, 1968).

Figure 11: Item tables after setting up our model.

The pseudo-guessing lower bound g repre-
sents the chance that an examinee will get the
item correct by guessing. Typically, the expected
guessed-correct probability for a 3-alternative
item is 1

3 and 1
n for an n-alternative item. Es-

timating the lower bound from data without
telling the model a priori how many alternatives
were presented typically requires much more
data than is required to estimate other kinds of
parameters. This is especially true for easy items
because few participants will need to guess. It
could be argued that easy items should have the
lower bound set to a probability of zero. How-
ever, in an item set with some lower bounds
fixed to zero and some free, the items with the
lower bounds fixed to zero will provide more
information than the items that take the chance
of guessing into account. Therefore, we suggest
fixing the lower bound to 1

n for an n-alternative
item when estimation of the lower bound is not of interest.

As a compromise between fixing and freeing, a Bayesian prior can be used with the mode of
the prior set to the expected probability. While some researchers are uneasy about the use of priors
(Gelman, 2008), the practice is not new (e.g, Baker and Kim, 2004, Chapter 7). The prior ensures that
a parameter will converge even when there is not enough data to estimate it, but at the same time,
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the model retains some flexibility to adapt to unexpected data. To set a prior, drag the “Prior mode”
slider and click the “Set” button. Let us imagine that these items had 4 alternatives. Select g from
the Parameter selector, move the “Prior mode” slider to 4, and click the nearby Set button. Two
tables will change. Each cell of the g row of the Labels table will be assigned a unique label. This
is necessary because Bayesian priors are associated with labels, not with particular parameters. In
addition, the “Bayesian prior mode” table will show logit(1/4) in the g row. The logit usage reflects
that the parameter is estimated on the logit scale, but it is much easier for humans to understand a
probability expressed as a fraction rather than raw logit units.

We will not use the “Nominal Tc” selector for these data. “Nominal Tc” only applies to items with
more than 2 possible outcomes when using the nominal response model (Thissen et al., 2010). Before
proceeding, go ahead and click the “Focus all items” button. Your screen should look like Figure 11,
except for different starting values. Click on the “Exclude” tab. This is an easy way to exclude some of
the items from analysis. Finally, click on the “Summary” tab. Here you will find a summary of your
model settings. Note that the number of outcomes may differ from the number of outcomes reported
in the summary table found on under the “Data” top bar page due to recoding.

Figure 12: Restoring the settings.

We are done setting up our model. Before
proceeding, it would be wise to save our model
configuration so we can come back at a later
time and make small adjustments without go-
ing through the whole exhaustive process again.
Click Settings on the top bar. In the main con-
tent area, you will find a preview of what the
settings file will look like. Click the “Download”
button and move the file to a suitable location
on your computer.

To verify that you can reliably restore the
saved settings, open a new browser tab to the
same address by pasting the URL address from
the current tab (without closing the current one).
You should get a screen like Figure 3. Again
go through the procedure of loading the data
(Figures 4 and 5). Once your data is loaded, click
Settings on the top bar and load the file that you recently saved. If all goes well, you should see a
screen similar to Figure 12. Go ahead and look back through the editors under the Outcomes and Model
sections of the top bar. You should find all your hard work faithfully preserved. Now you can close
either of the 2 browser tabs that you have open. They both have the same status.

With our model set up and saved, click Analysis on the top bar. This screen looks and functions
similarly to the Settings screen. However, the control panel offers a few options specific to code
generation. The “Functional form for dichotomous bound prior density” selector chooses the
distributional form of the Bayesian prior. Logit-normal is the more recent scheme (Cai et al., 2011).
The “Information matrix method” control is set to Oakes by default. In a simulation study included
with OpenMx, the Oakes method (Oakes, 1999) exhibited accuracy comparable to central difference
with Richardson extrapolation and time linear in the number of parameters. Click the “Download”
button and save the Rmarkdown code. The Rmarkdown file and your data need to be in the same directory.
Either move the Rmarkdown file to your data directory, or alternately, you can specify a full path in the
read.csv statement (lines 16–17). Open the file in RStudio and click the “Knit HTML” button.

1 ---
2 title: "g341 -19"
3 date: "14-Nov -2014"
4 output: html_document
5 ---
6

7 ```{r}
8 options(width = 120, scipen = 2, digits = 2)
9 suppressPackageStartupMessages(library(OpenMx ))

10 suppressPackageStartupMessages(library(rpf))
11 suppressPackageStartupMessages(library(ifaTools ))
12 library(xtable)
13 options(xtable.type = 'html')
14

15 # Adjust the path in the next statement to load your data
16 data <- read.csv(file = 'g341 -19. csv', header = FALSE , sep = ' ',
17 stringsAsFactors = FALSE , check.names = FALSE)
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18 colnames(data) <- mxMakeNames(colnames(data), unique = TRUE)
19

20 factors <- "ability"
21 numFactors <- length(factors)
22 spec <- list()
23 spec [1:6] <- rpf.drm(factors = numFactors)
24 spec [7:12] <- rpf.grm(factors = numFactors , outcomes = 2)
25 names(spec) <- c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10",
26 "V11", "V12")
27

28 missingColumns <- which(is.na(match(names(spec), colnames(data ))))
29 if (length(missingColumns )) {
30 stop(paste('Columns missing in the data:',
31 omxQuotes(names(spec)[ missingColumns ])))
32 }
33

34 data[names(spec)] <- mxFactor(data[names(spec)], levels = 0:1,
35 labels = c("incorrect", "correct"))
36

37 set.seed (1) # uncomment to get the same starting values every time
38 startingValues <- mxSimplify2Array(lapply(spec , rpf.rparam ))
39 rownames(startingValues) <- paste0('p', 1:nrow(startingValues ))
40 rownames(startingValues )[1: numFactors] <- factors
41

42 imat <- mxMatrix(name = 'item', values = startingValues ,
43 free = !is.na(startingValues ))
44 imat$free['p4' ,1:6] <- FALSE
45 imat$values['p4' ,1:6] <- Inf
46 imat$labels['ability ' ,7:12] <- 'slope '
47 imat$labels['p3' ,1:1] <- 'V1_g'
48 imat$labels['p3' ,2:2] <- 'V2_g'
49 imat$labels['p3' ,3:3] <- 'V3_g'
50 imat$labels['p3' ,4:4] <- 'V4_g'
51 imat$labels['p3' ,5:5] <- 'V5_g'
52 imat$labels['p3' ,6:6] <- 'V6_g'
53 hasLabel <- !is.na(imat$labels)
54 for (lab1 in unique(imat$labels[hasLabel ])) {
55 imat$values[hasLabel & imat$labels == lab1] <-
56 sample(imat$values[hasLabel & imat$labels == lab1], 1)
57 }
58 data <- compressDataFrame(data)
59 itemModel <- mxModel(model = 'itemModel ', imat ,
60 mxData(observed = data , type = 'raw',
61 numObs = sum(data[['freq']]), sort = FALSE),
62 mxExpectationBA81(ItemSpec = spec , weightColumn = 'freq'),
63 mxFitFunctionML ())
64

65 priorLabels <- c("V1_g", "V2_g", "V3_g", "V4_g", "V5_g", "V6_g")
66 priorParam <- mxMatrix(name = 'priorParam ', nrow = 1,
67 ncol = length(priorLabels), free = TRUE , labels = priorLabels)
68 priorParam$values <- imat$values[ match(priorParam$labels , imat$labels) ]
69 priorMode <- c(priorParam$values)
70 priorMode [1:6] <- logit(1/4)
71 priorModel <- univariatePrior('logit -norm', priorLabels , priorMode)
72 container <- mxModel(model = 'container ', itemModel , priorModel ,
73 mxFitFunctionMultigroup(groups = c('itemModel.fitfunction ',
74 'univariatePrior.fitfunction ')))
75

76 emStep <- mxComputeEM('itemModel.expectation ', 'scores ',
77 mxComputeNewtonRaphson (), verbose = 2L,
78 information = 'oakes1999 ', infoArgs = list(fitfunction = 'fitfunction '))
79 computePlan <- mxComputeSequence(list(EM = emStep ,
80 HQ = mxComputeHessianQuality (),
81 SE = mxComputeStandardError ()))
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82

83 m1Fit <- mxRun(container)
84

85 m1Grp <- as.IFAgroup(m1Fit$itemModel , minItemsPerScore = 1L)
86 ```

The details of the generated report are likely to evolve. There may be some differences between
the generated code in this article and the most recent version, but there should be a correspondence
between the basic elements. The first chunk of code builds the model and optimizes it. We adjust
the output of long lines and numbers (line 8) and load packages (lines 9–13). The data set is loaded
(Figure 5) in lines 16–17. Latent factors are configured (Figure 9) in lines 20–24. We strongly encourage
the use of informative column (item) names, but line 18 will take care of assigning syntactically valid
column names if informative names are not available. The script is crafted such that it can work on
other data sets as long as the required columns are found (line 28). mxFactor does the recoding and
reordering (Figures 6–8). mxFactor offers a number of important safety and convenience features
beyond what is available from factor or ordered (line 34). The item mxMatrix (line 43) contains most
of the information in the item tables (Figure 11). Everything goes into the container model (line 72).
The model is optimized (line 83). Since we did not disable "Show model fitting progress" (reflected
by verbose = 2L at line 77), we obtain some diagnostics upon knitting the Rmarkdown to HTML.

87 [0] ComputeEM: Welcome , tolerance =1e-09 accel=varadhan2008 info=2
88 [0] ComputeEM: msteps 2 initial fit 37185.0001
89 [0] ComputeEM [2]: msteps 11 fit 34167.9816 rel change 0.0882995805
90 [0] ComputeEM [3]: msteps 5 fit 33699.978 rel change 0.0138873556
91 [0] ComputeEM [4]: msteps 14 fit 33549.9723 rel change 0.00447111437
92 [0] ComputeEM [5]: msteps 5 fit 33455.9478 rel change 0.00281039684
93 [0] ComputeEM [6]: msteps 3 fit 33454.4705 rel change 4.41596231e-05
94 [0] ComputeEM [7]: msteps 3 fit 33453.8021 rel change 1.99793343e-05
95 [0] ComputeEM [8]: msteps 3 fit 33453.2067 rel change 1.77968988e-05
96 [0] ComputeEM [9]: msteps 2 fit 33453.2062 rel change 1.57420931e-08
97 [0] ComputeEM [10]: msteps 2 fit 33453.206 rel change 5.03007605e-09
98 [0] ComputeEM [11]: msteps 2 fit 33453.2059 rel change 2.89615064e-09
99 [0] ComputeEM [12]: msteps 2 fit 33453.2059 rel change 6.61823582e-10

100 [0] ComputeEM: cycles 12/500 total mstep 54 fit 33453.205893
101 [0] ComputeEM: Oakes1999 method=simple perturbation =0.001000
102 [0] ComputeEM: deriv of gradient for 0
103 [0] ComputeEM: deriv of gradient for 1
104 [0] ...
105 [0] ComputeEM: deriv of gradient for 24

Given that the starting values are random, the initial fit and trajectory (lines 88–99) should differ
when you try optimizing the same model but the optimum (line 100) should be the same to within
10−2. If you do not reach the same solution, try again with different starting values. At the time of
writing, optimization is faster on multicore CPUs running on operating systems other than Microsoft
Windows. As soon as Windows supports OpenMP then we expect performance differences between
operating systems to narrow.

The function as.IFAgroup (line 85) is a bridge between OpenMx and rpf (Pritikin, 2015b). The
rpf name is an acronym for response probability function and contains many IFA-specific diagnostic
functions. In addition, rpf can be used to analyze IFA models optimized by packages other than
OpenMx. This modularity facilitates the comparison of parameter estimates between packages. While
most of the code discussed so far is related to OpenMx, the remainder of this report will mostly
involve rpf.

106 An item factor model was fit with `r length(factors)`
107 factors (`r factors `), -2LL = $`r m1Fit$output$fit `$.
108 The condition number of the information
109 matrix was `r m1Fit$output$conditionNumber `.

This is a boilerplate report of model fit. It renders as, “An item factor model was fit with 1 factors
(ability), −2LL = 33453.21. The condition number of the information matrix was 70.91.” It is not really
feasible to generate a complete Results section because there are always considerations idiosyncratic
to a particular project that dictate how the Results section should best unfold. However, it is likely
that some additional boilerplate reporting will be added to the model builder app in a future release.

Although IFA models consider an examinee’s response pattern as the unit of analysis, the sum-
score is often of chief practical importance. For example, students taking the Standardized Aptitude
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V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

V2 0.1
V3 −0.0 −2.6
V4 1.7 −0.1 1.2
V5 −0.6 −0.9 −1.3 5.1
V6 0.2 0.1 −0.3 0.3 −1.1
V7 0.1 6.4 0.6 2.4 0.3 5.0
V8 −0.5 −0.3 −0.7 −4.0 −0.2 0.1 3.9
V9 3.6 10.7 1.1 2.6 1.8 5.8 37.1 0.3

V10 −2.0 9.1 0.3 −0.3 0.1 −0.2 10.2 −0.5 16.2
V11 −1.0 −11.5 −2.6 −1.1 −0.6 −1.4 −1.9 −4.8 −0.5 −0.7
V12 −0.1 −1.7 3.9 −2.9 −1.9 −0.7 0.8 −2.0 −0.1 0.6 −7.1

Table 1: Log p-value of local dependence between item pairs.

Test for college admission only receive their sum-score and do not even know which items they
answered correctly or incorrectly (unless they earned the maximum sum-score). The observation that
the sum-score is important has lead to the development of a family of diagnostic tests that examine
how well an IFA model predicts sum-scores.

110 ```{r,fig.height =2}
111 got <- sumScoreEAPTest(m1Grp)
112 df <- data.frame(score = as.numeric(names(got[['observed ']])),
113 expected = got[['expected ']], observed = got[['observed ']])
114 df <- melt(df, id = 'score ', variable.name = 'source ',
115 value.name = 'n')
116 ggplot(df, aes(x = score , y = n, color = source )) + geom_line()
117 ```
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Figure 13: Comparison of the predicted and ob-
served sum-scores.

The first plot provides an overview of how
all the items work together to predict sum-scores
(Figure 13). sumScoreEAPTest also conducts a
statistical test to produce a p-value, but this is
not reported here because the test is fairly new
and the meaning of the test has not yet been well
established (Li and Cai, 2012). However, it is still
worth looking at this plot because you might no-
tice something that is obviously wrong with the
model (i.e., if the curves mismatch drastically).

118 ```{r,results='asis'}
119 ct <- ChenThissen1997(m1Grp)
120 print(xtable(ct$pval ,
121 paste('Log p-value of local dependence between item pairs.')))
122 ```

A test of local dependence is important to examine, as it is an assumption of IFA (Yen, 1993).
Table 1 exhibits the log p-value of the null hypothesis that there is no local dependence between item
pairs. Since log(.01) ≈ −4.6, any absolute magnitude greater than 4.6 can be interpreted as rejecting
the null hypothesis at the .01 level. The sign of each p-value is determined by ordinal gamma, a measure
of association (Agresti, 1990). Positive numbers indicate more correlation than expected. These are
cause for concern and suggest local dependence (Chen and Thissen, 1997). Negative numbers indicate
less correlation than expected. Table 1 is also a good example of a weakness of comparing expected
and observed frequencies: all you can know is that something is suboptimal, but not specifically what.
The local dependence is most severe between item pairs V7/V9, V9/V10, and V2/V9. Item pair
V2/V11 also has a large magnitude value, but this is less of a concern because the sign is negative.
Unfortunately, this diagnostic only reveals potential deficiencies, but does not suggest how to address
them. Improvement of the model (or the items) often requires some guesswork and trial-and-error.

123 ```{r,results='asis'}
124 sfit <- SitemFit(m1Grp)
125 tbl <- t(sapply(sfit , function(r)
126 c(n = r$n, df = r$df, stat = r$statistic , pval = r$pval )))
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n df statistic log p-value

V1 2844 8 6.58 −0.54
V2 2844 8 7.30 −0.68
V3 2844 8 7.17 −0.66
V4 2844 8 10.12 −1.36
V5 2844 8 19.00 −4.21
V6 2844 8 8.50 −0.95
V7 2844 9 33.45 −9.10
V8 2844 9 5.48 −0.24
V9 2844 9 34.42 −9.49

V10 2844 10 12.61 −1.40
V11 2844 8 43.06 −13.97
V12 2844 8 20.20 −4.64

Table 2: Sum-score item-wise fit.

127 print(xtable(tbl , paste0('Sum -score item -wise fit.'))
128 ```

Sum-score item fit is another tool for model assessment (Orlando and Thissen, 2000; Kang and
Chen, 2008). Each item is tested against the null hypothesis that the other items accurately predict the
outcome of the item of interest (Table 2). Again p-values are in log units so a magnitude larger than 4.6
is significant at the .01 level. In contrast to the test for local dependence, the sign of the p-value does
not mean anything special here. The column n is included for data sets with missingness. When there
is missingness, it can be advantageous to exclude the item with the most missing values to increase
the sample size of the test. Refer to the SitemFit help for details on the options for missing data.

129 ```{r,fig.height =2}
130 map1 <- itemResponseMap(m1Grp , factor = 1)
131 ggplot(map1 , aes(x = score , y = item , label = outcome )) +
132 geom_text(size = 4, position = position_jitter(h = .25))
133 ```
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Figure 14: Item outcome by average latent score.

An item response map is a crude tool for
diagnosing certain model misspecifications (Fig-
ure 14). Each outcome is assigned the average
latent score of all the examinees who picked that
outcome. Usually we advocate the use of the
actual outcome labels (e.g., “incorrect” and “cor-
rect”) instead of numbers. For this plot, how-
ever, we make an exception because the numbers
make it easy to inspect whether the outcomes
are in ascending order. If descending order is
observed then it is worth checking whether the
item needs to be reverse scored or to consider whether the item was misinterpreted by some examinees.
If the response data were manually collected then the data entry process should also be checked for
errors.
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Figure 15: Expected and observed outcome by
sum-score.
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Figure 16: Expected and observed outcome by
latent score.

134 ```{r,fig.height =3}
135 pl <- lapply(names(sfit), function(item) { SitemPlot(sfit , item) })
136 for (px in 1: length(pl)) {
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137 print(pl[[px]])
138 }
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Figure 17: Item information by latent score.

Two approaches are available to plot re-
sponse probability functions against a latent trait.
The same ingredients that go into the production
of Table 2 can also be plotted (Figure 15). A
similar plot can be obtained by plotting the out-
comes probabilities against the latent trait. This
is known as an item characteristic curve plot (Fig-
ure 16). The main advantage of SitemPlot over
iccPlot is that SitemPlot is one-dimensional re-
gardless of the number of latent factors. With
iccPlot, you must pick a basis vector in the la-
tent space. The tiny numbers across the proba-
bility = 1 line of Figures 15 and 16 are the sample size at that point on the x axis.

139 basis <- rep(0, length(factors ))
140 basis [1] <- 1
141 plotInformation(m1Grp , width = 5, basis = basis)
142 ```

Figure 17 exhibits item information by latent score. Similar to iccPlot, this plot requires the
selection of a basis vector when there is more than 1 latent factor. Notice that items V7-V12 peak at the
same height (near 0.31). This is due to our equality constraint on the slope or factor loading on these
items. By placing this constraint, we assume a priori that each of these items contributes exactly the
same amount of information.

143 ```{r}
144 summary(m1Fit)
145 ```

Summary of container

free parameters:
name matrix row col Estimate Std.Error

1 itemModel.item[1,1] itemModel.item ability V1 1.82 0.278
2 itemModel.item[2,1] itemModel.item p2 V1 -0.51 0.230
3 V1_g itemModel.item p3 V1 -1.14 0.208
4 itemModel.item[1,2] itemModel.item ability V2 1.24 0.119
5 itemModel.item[2,2] itemModel.item p2 V2 2.58 0.140
6 V2_g itemModel.item p3 V2 -1.27 0.337
7 itemModel.item[1,3] itemModel.item ability V3 1.56 0.261
8 itemModel.item[2,3] itemModel.item p2 V3 -1.03 0.272
9 V3_g itemModel.item p3 V3 -1.16 0.192
10 itemModel.item[1,4] itemModel.item ability V4 1.36 0.161
11 itemModel.item[2,4] itemModel.item p2 V4 0.41 0.158
12 V4_g itemModel.item p3 V4 -1.10 0.277
13 itemModel.item[1,5] itemModel.item ability V5 1.41 0.196
14 itemModel.item[2,5] itemModel.item p2 V5 -0.47 0.203
15 V5_g itemModel.item p3 V5 -1.03 0.203
16 itemModel.item[1,6] itemModel.item ability V6 1.50 0.130
17 itemModel.item[2,6] itemModel.item p2 V6 1.84 0.119
18 V6_g itemModel.item p3 V6 -1.43 0.317
19 slope itemModel.item ability V7 1.12 0.037
20 itemModel.item[2,7] itemModel.item p2 V7 3.50 0.097
21 itemModel.item[2,8] itemModel.item p2 V8 1.57 0.056
22 itemModel.item[2,9] itemModel.item p2 V9 2.70 0.075
23 itemModel.item[2,10] itemModel.item p2 V10 2.27 0.066
24 itemModel.item[2,11] itemModel.item p2 V11 -0.28 0.047
25 itemModel.item[2,12] itemModel.item p2 V12 0.15 0.047

observed statistics: 720
estimated parameters: 25
degrees of freedom: 695
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fit value ( -2lnL units ): 33453
number of observations: 2844
Information Criteria:

| df Penalty | Parameters Penalty | Sample-Size Adjusted
AIC: 32063 33503 NA
BIC: 27926 33652 33573
To get additional fit indices, see help(mxRefModels)
timestamp: 2016-02-24 10:14:59
Wall clock time (HH:MM:SS.hh): 00:00:02.72
OpenMx version number: 2.3.1.254
Need help? See help(mxSummary)

Exhibited above is the OpenMx provided summary of model fit. IFA models are exponential
family models so we obtain AIC and BIC. More fit statistics are available if we provide the saturated
and independence reference models. Reference models will be requested in our next example.

Polytomous data

Figure 18: Data with a row frequency column.

Since many things are common between dichoto-
mous and polytomous items, we will move
quickly through the process of model set up and
result interpretation. Click on the “Choose File”
button and select preschool.csv, a data set from
Thissen and Steinberg (1988) available in the ifa-
Tools package. Click the “Row names?” check-
box in the control panel to disable row names.
The format of these data are closer to what is ex-
pected by default than our first example so less
fiddling is required. Click on the “Item summary”
tab. Here it appears that there are 3 items, but
the freq column is not an item. freq indicates
how many times a row appeared in the original
data. These data are compressed; only unique
rows are provided with frequency counts. To
instruct the model builder to interpret the freq column as frequency counts, select freq from the
“Row frequency column” selector (Figure 18).

This data set is from a preschool test of numerical knowledge. Each item is actually a combination
of 2 dichotomous items. Similar questions were asked regarding the number 3 and the number 4 and
the pattern of responses mapped to an outcome code. The outcomes should be renamed with the
recoding tool under the “Outcomes” tab on the top bar (recall Figure 7). Outcomes 0, 1, 2, and 3 should
be renamed to “neither,” “3 only,” “4 only,” and “both correct,” respectively, using the “Recode” tab
under the Outcomes top bar page. After renaming, reorder the items into the correct order (Figure 19).

Click Model on the top bar. On the “Factors” tab, we will name the single latent factor “math.”
Switch to the Parameters tab. Here we select nrm from the “Model” selector. The acronym “nrm”
stands for the nominal response model (Thissen et al., 2010). This parameterization of the nominal
model can accommodate basis matrices Ta and Tc to customize the meaning of the slope and intercept
coefficients, respectively. In principle, the basis matrices can take any pattern, but the model builder
app is limited to a Fourier basis (a.k.a. trend basis) for the Ta matrix and a small number of options for
the Tc matrix.

With Ta set to the trend basis, we cannot free both math and alf1 because they have the same
effect on the model and would cause the model to be unidentified. Fix alf1 to 1. Select alf1 from the
“Parameter” selector and select 1 from the “Free” selector. Since we have worked with this data set
already, we know a few things that can give us a more parsimonious model. The alf2 parameters
can be set equal since both items exhibit poor discrimination between neither, 3 only, and 4 only
but good discrimination between these outcomes and both correct. Select alf2 with the “Parameter”
selector and set the label to eq1. Since both items are equally difficult, we can equate gam1. Select gam1
with the “Parameter” selector and set the label to eq2. To avoid overfitting with the highest frequency
basis vector, fix gam3 to 0. Select gam3 with the Parameter selector and select 0 with the Free selector.
Figure 20 exhibits the final parameter settings.

Click Analysis on the top bar. Ensure that “Fit reference models” is selected, and download
the analysis script. The Rmarkdown file and your data need to be in the same directory. Either move
the Rmarkdown file to your data directory, or alternately, you can specify a full path in the read.csv
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Figure 19: Outcomes renamed and reordered. Figure 20: Item model and parameter configura-
tion with equality constraints.

statement (line 162). Open the file in RStudio and click the “Knit HTML” button. Although this is a
simple model, it can take almost 100 E-M cycles to converge. Therefore, we omit reproduction of the
diagnostic output issued during model fit.

146 ---
147 title: "preschool"
148 date: "18-Nov -2014"
149 output: html_document
150 ---
151

152 ```{r}
153 options(width = 120, scipen = 2, digits = 2)
154 suppressPackageStartupMessages(library(OpenMx ))
155 suppressPackageStartupMessages(library(rpf))
156 suppressPackageStartupMessages(library(ifaTools ))
157 library(xtable)
158 options(xtable.type = 'html')
159

160 # Adjust the path in the next statement to load your data
161 data <- read.csv(file = 'preschool.csv', stringsAsFactors = FALSE ,
162 check.names = FALSE)
163 colnames(data) <- mxMakeNames(colnames(data), unique = TRUE)
164 data[['freq']] <- as.numeric(data[['freq']])
165

166 factors <- "math"
167 numFactors <- length(factors)
168 spec <- list()
169 spec [1:2] <- rpf.nrm(factors = numFactors , outcomes = 4,
170 T.a = 'trend ', T.c = 'trend ')
171 names(spec) <- c("Match", "Identify")
172

173 missingColumns <- which(is.na(match(names(spec), colnames(data ))))
174 if (length(missingColumns )) {
175 stop(paste('Columns missing in the data:',
176 omxQuotes(names(spec)[ missingColumns ])))
177 }
178

179 data[names(spec)] <- mxFactor(data[names(spec)], levels = 0:3,
180 labels = c("neither", "3 only", "4 only", "both correct"))
181

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 197

n df statistic log p-value

Match 592 7 9.46 −1.51
Identify 592 7 9.33 −1.47

Table 3: Sum-score item-wise fit.

182 set.seed (1) # uncomment to get the same starting values every time
183 startingValues <- mxSimplify2Array(lapply(spec , rpf.rparam ))
184 rownames(startingValues) <- paste0('p', 1:nrow(startingValues ))
185 rownames(startingValues )[1: numFactors] <- factors
186

187 imat <- mxMatrix(name = 'item', values = startingValues ,
188 free = !is.na(startingValues ))
189 imat$free['p2',] <- FALSE
190 imat$values['p2' ,1:2] <- 1
191 imat$free['p7',] <- FALSE
192 imat$values['p7' ,1:2] <- 0
193 imat$labels['p3',] <- 'eq1'
194 imat$labels['p5',] <- 'eq2'
195 hasLabel <- !is.na(imat$labels)
196 for (lab1 in unique(imat$labels[hasLabel ])) {
197 imat$values[hasLabel & imat$labels == lab1] <-
198 sample(imat$values[hasLabel & imat$labels == lab1], 1)
199 }
200 itemModel <- mxModel(model = 'itemModel ', imat ,
201 mxData(observed = data , type = 'raw', numObs = sum(data[['freq']]),
202 sort = FALSE),
203 mxExpectationBA81(ItemSpec = spec , weightColumn = 'freq'),
204 mxFitFunctionML ())
205

206 emStep <- mxComputeEM('itemModel.expectation ', 'scores ',
207 mxComputeNewtonRaphson (), verbose = 2L,
208 information = 'oakes1999 ',
209 infoArgs = list(fitfunction = 'fitfunction '))
210 computePlan <- mxComputeSequence(list(emStep ,
211 mxComputeHessianQuality (),
212 mxComputeStandardError ()))
213

214 m1Fit <- mxRun(mxModel(itemModel , computePlan ))
215

216 m1Grp <- as.IFAgroup(m1Fit , minItemsPerScore = 1L)
217 ```

Although response pattern frequencies are typically natural numbers, fractional frequencies are
not prohibited (line 164). A Fourier basis is used for both nominal model transformation matrices
(line 170). Customization is limited in the model builder app, but you can use any matrices by editing
the generated code. Starting values must respect equality constraints (line 197). By default OpenMx,
sorts data prior to optimization. Since our data are already compressed, no benefit would be obtained
by sorting (line 202).

218 An item factor model was fit with `r length(factors)`
219 factors (`r factors `), -2LL = $`r m1Fit$output$fit `$.
220 The condition number of the information matrix was
221 `r round(m1Fit$output$conditionNumber )`.

The boilerplate renders as, “An item factor model was fit with 1 factors (math), −2LL = 2767.48.
The condition number of the information matrix was 85.07.” Since we have already seen much of the
code to generate model diagnostics, we omit it here.

222 ```{r}
223 summary(m1Fit , refModels = mxRefModels(m1Fit , run = TRUE))
224 ```
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Summary of itemModel

free parameters:
name matrix row col Estimate Std.Error

1 itemModel.item[1,1] item math Match 0.82 0.37
2 eq1 item p3 Match -1.18 0.27
3 itemModel.item[4,1] item p4 Match 0.50 0.19
4 eq2 item p5 Match 0.18 0.05
5 itemModel.item[6,1] item p6 Match -0.78 0.20
6 itemModel.item[1,2] item math Identify 0.79 0.35
7 itemModel.item[4,2] item p4 Identify -0.25 0.36
8 itemModel.item[6,2] item p6 Identify -1.40 0.21

observed statistics: 15
estimated parameters: 8
degrees of freedom: 7
fit value ( -2lnL units ): 2767
saturated fit value ( -2lnL units ): 2758
number of observations: 592
chi-square: X2 ( df=7 ) = 9.2, p = 0.24
Information Criteria:

| df Penalty | Parameters Penalty | Sample-Size Adjusted
AIC: 2753 2783 NA
BIC: 2723 2819 2793
CFI: 0.98
TLI: 0.97 (also known as NNFI)
RMSEA: 0.023 [95% CI (0, 0.064)]
Prob(RMSEA <= 0.05): 0.88
timestamp: 2016-02-24 10:15:07
Wall clock time (HH:MM:SS.hh): 00:00:04.55
OpenMx version number: 2.3.1.254
Need help? See help(mxSummary)

12 3 4

1 2 3 4

Identify

Match

−0.75 −0.50 −0.25 0.00 0.25
score

ite
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Figure 21: Item outcome by average latent score.

Although the outcomes are not strictly or-
dered for Identify in the item outcome map
(Figure 21), other measures of model fit look rea-
sonable. The sum-score item fit tests are not
statistically significant at the 0.01 level (Table 3).
This indicates good item-level fit. Since we re-
quested a saturated and independence model
(mxRefModels; line 223), CFI (Comparative Fit
Index), TLI (Tucker Lewis Index), and RMSEA
(Root Mean Square Error of Approximation) are available in the OpenMx summary and suggest
adequate model fit. These relative indices of fit are appropriate for these data because there are
observations for all possible response patterns. However, be forewarned that as the multinomial table
becomes more sparse, these indices become inaccurate. For sparse data, a more accurate assessment
of model fit is available using other methods (Bartholomew and Tzamourani, 1999; Cai and Hansen,
2013).

Rasch diagnostics

A Rasch model is obtained when all slope parameters are constrained to be equal and the variance is
fixed to 1.0, or equivalently, all slopes are fixed to 1.0 with free variance (Rasch, 1960/1993). If your
interest is Rasch models with a single latent factor then you can take advantage of Rasch residual-based
fit statistics. Infit and outfit are available from rpf.1dim.fit.

Item factor analysis

A common problem is that we do not know how many latent factors to employ to most accurately
model our data. Fortunately, there is a method item factor analysis (Bock et al., 1988) analogous
to factor analysis of continuous indicators (Lovie and Lovie, 1996). We will employ the likelihood
ratio test for inference. The likelihood ratio test is asymptotically consistent for sparse multinomial
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> container2 <- container
> container2$itemModel$item$labels['ability', ] <- NA
> m3 <- addExploratoryFactors(container2, 0)
> m3 <- mxRun(m3, silent = TRUE)
> mxCompare(m3, m1)

base comparison ep minus2LL df AIC diffLL diffdf p
1 container1 <NA> 30 33369 690 31989 NA NA NA
2 container1 container1 25 33454 695 32064 85 5 7.7e-17
> m4 <- addExploratoryFactors(container2, 1)
> m4 <- mxRun(m4, silent = TRUE)
> mxCompare(m4, m2)

base comparison ep minus2LL df AIC diffLL diffdf p
1 container2 <NA> 41 33325 679 31967 NA NA NA
2 container2 container2 36 33339 684 31971 14 5 0.013
> grid.arrange(plotTwoFactors(m2$itemModel$item$values[1:2, ]) +
+ labs(title = "a."), plotTwoFactors(m4$itemModel$item$values[1:2, ]) +
+ labs(title = "b."), ncol = 2)
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Figure 22: Factor loadings for items with (a) and without (b) the slope constraint. The code for
plotTwoFactors is given in the Appendix.
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Figure 23: Log Euclidean distance (l2-norm) of error by quadrature width and number of points for
1 factor (left) and 2 factors (right). A wider width is important to accommodate data that conform
less closely to a normal distribution. Even with clean simulated data, a width of 3 is too narrow and
interferes with accuracy (both panes). In the 1 factor case (left), at least 21 points are required for high
accuracy. For 2 factors (right), at least 23 points are required for a width of 4 and 27 points for a width
of 5. The bright strips at even numbers of point (12, 14, 16, etc) indicate that an odd number of points
obtain somewhat better accuracy than even numbers of points.

distributions (Haberman, 1977). However, in finite samples, we should not expect that the null
distribution is well calibrated. In brief, the p-values should not be taken too seriously.

> m1 <- addExploratoryFactors(container, 0)
> m1 <- mxRun(m1, silent = TRUE)
> m2 <- addExploratoryFactors(container, 1)
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> m2 <- mxRun(m2, silent = TRUE)
> mxCompare(m2, m1)

base comparison ep minus2LL df AIC diffLL diffdf p
1 container2 <NA> 36 33339 684 31971 NA NA NA
2 container2 container1 25 33454 695 32064 115 11 1.5e-19

Here we find that there is reasonably good support in favor of a two factor solution. However, the
slope of items 7-12 are constrained equal. Maybe this constraint was a mistake. It is possible that these
items are well modeled by a single factor when all the slopes are freed. We cannot directly compare
m2 against a single factor model without the slope constraint because these models are not nested.
However, we can make a number of similar comparisons.

We find that there is a dramatic improvement in fit whether we relax the constraint on items 7-12
or we add another factor. Without knowing more about how the data were collected, parsimony favors
a single factor model without constraints on the slopes. We can further check this idea by comparison
of two factor models with and without the slope constraint (Figure 22).

A p-value of 0.013 is statistically significant at the customary 0.05 level, but we regard this as non-
significant in comparison to the other p-values that are less than 10−16. We conclude that there is no
difference between these models. For two factor models, it can be helpful to plot item factor loadings.
A varimax rotation eliminates rotational indeterminacy. Promax axes are helpful to illustrate the rough
directions of variability (Bock et al., 1988, p. 265). In both plots, the promax axes are separated by
an angle close to π radians, suggesting a single latent factor. The slight differences between plots (a)
and (b) are probably due to overfitting. More precise p-values could be obtained using Monte Carlo
techniques.

Repercussions of the use of numerical quadrature for integration

Recall that the optimization algorithm uses equal interval quadrature to evaluate the integral in
Equation 2. It is important to understand how the quadrature grid influences model optimization
accuracy and time. Let Q be the number of quadrature points per dimension and Qwidth be the
one-sided width of the quadrature for one dimension. Points Xq are arranged as

Xq = Qwidth(1−
2q

Q− 1
) for q ∈ {0, . . . , Q− 1}. (12)

Generalization to more dimensions is accomplished by replication of the same 1 dimensional grid along
each dimension. For example, a two factor model with 31 points per dimension involve 312 = 961
grid points. Hence, optimization time is exponential in the number of general factors.

Figure 23 exhibits a simulation study of the influence of quadrature on model accuracy. All
comparisons are against a 41 point quadrature of width 5.0. Before computing the Euclidean distance
(l2-norm), the slope matrix was converted into factor loadings,

slope[
1 + rowSums(slope2)

] 1
2

. (13)

For two factor models, a varimax rotation was applied to eliminate rotational indeterminacy. The
l2-norm was applied to the resulting slope entries (ignoring intercepts). Each grid area in Figure 23
represents the average of 5 trials with different random starting values.

Item factor analysis with more than two factors requires patience and expertise. Model optimiza-
tion time becomes an uncomfortable hindrance to experimentation. An optimization algorithm better
suited to many latent factors, such as the Metropolis-Hastings Robbins-Monro algorithm (Cai, 2010b),
is not yet available in OpenMx. The model builder offers as many as five factors because additional
factors do not always increase estimation time. Suppose all items load on a general factor. In the
special case that each item loads on at most one additional factor, many additional factors will not
increase estimation time. One important use for this kind of factor structure is to account for local
dependence (DeMars, 2006). For example, a reading comprehension test might have 3-4 items that
relate to a single passage. The items within each passage will likely exhibit local dependence. One way
to account for this kind of test structure is to add passage specific latent factors. Since the passages are
disjoint, all of the passage specific factors will count as a single factor with respect to estimation time
(Cai, 2010a).
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Discussion

We gave detailed instructions on how to set up IFA models for analysis of both dichotomous and
polytomous data using the model builder app. We hope this will ease the learning curve for the
construction of IFA models in OpenMx. The model builder app offers limited flexibility by design
to reduce the number of options for novice users. For example, there is no facility for construction
of multiple group models. This may be construed as a disadvantage, but we argue that keeping the
app as simple as possible is important for newcomers to IFA. Learning OpenMx can be a daunting
prospect. OpenMx, rpf, and ifaTools are free software. The source code is available for everybody to
view, modify, and use. If you find this software useful, we hope you will cite us in your publications.

Appendix

Factors are plotted in a coordinate system determined by a varimax rotation (line 2). Promax axes are
superimposed (line 9).

1 plotTwoFactors <- function(slope) {
2 lvm <- varimax(toFactorLoading(slope))$loadings
3 if (any(abs(lvm[lvm < 0]) > .001)) stop("Got negative loadings")
4 lvm[lvm <0] <- 0
5 df <- as.data.frame(lvm[, 1:2])
6 df$name <- rownames(df)
7 pl <- ggplot(df, aes_string(x = rownames(slope )[1],
8 y = rownames(slope )[2], label = "name")) + geom_text(size = 3)
9 pm <- promax(lvm[, 1:2])$rotmat

10 for (dx in 1:ncol(pm)) {
11 d1 <- .5 * pm[, dx] / sqrt(sum(pm[, dx]^2))
12 pl <- pl + geom_segment(x = .5, y = .5, xend = d1[1] + .5,
13 yend = d1[2] + .5, arrow = arrow(length = unit(.5, "cm")))
14 }
15 pl + xlim(0, 1) + ylim(0, 1)
16 }
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