
CONTRIBUTED RESEARCH ARTICLES 328

progenyClust: an R package for Progeny
Clustering
by Chenyue W. Hu and Amina A. Qutub

Abstract Identifying the optimal number of clusters is a common problem faced by data scientists
in various research fields and industry applications. Though many clustering evaluation techniques
have been developed to solve this problem, the recently developed algorithm Progeny Clustering
is a much faster alternative and one that is relevant to biomedical applications. In this paper, we
introduce an R package progenyClust that implements and extends the original Progeny Clustering
algorithm for evaluating clustering stability and identifying the optimal cluster number. We illustrate
its applicability using two examples: a simulated test dataset for proof-of-concept, and a cell imaging
dataset for demonstrating its application potential in biomedical research. The progenyClust package
is versatile in that it offers great flexibility for picking methods and tuning parameters. In addition,
the default parameter setting as well as the plot and summary methods offered in the package make
the application of Progeny Clustering straightforward and coherent.

Introduction

Clustering is a classical and widely-used machine learning technique, yet the field of clustering is
constantly growing. The goal of clustering is to group objects that are similar to each other and
separate objects that are not similar to each other based on common features. Clustering can, for
example, be applied to distinguishing tumor subclasses based on gene expression data (Sørlie et al.,
2001; Budinska et al., 2013), or dividing sport fans based on their demographic information (Ross,
2007). One critical challenge in clustering is identifying the optimal number of groups. Despite some
advanced clustering algorithms that can automatically determine the cluster number (e.g. Affinity
Propagation (Frey and Dueck, 2007)), the commonly used algorithms (e.g. k-means (Hartigan and
Wong, 1979) and hierarchical clustering (Johnson, 1967)) unfortunately require users to specify the
cluster number before performing the clustering task. However, most often than not, the users do not
have prior knowledge of the number of clusters that exist in their data.

To solve this challenge of finding the optimal cluster number, quite a few clustering evaluation
techniques (Arbelaitz et al., 2013; Charrad et al., 2014a) as well as R packages (e.g. cclust (Dimitriadou
et al., 2015), clusterSim (Walesiak et al., 2015), cluster (Maechler et al., 2015), Nbclust (Charrad et al.,
2014b), fpc (Hennig, 2015)) were developed over the years to objectively assess the clustering quality.
The problem of identifying the optimal cluster number is thus transformed into the problem of
clustering evaluation. In most of these solutions, clustering is first performed on the data with each
of the candidate cluster numbers. The quality of these clustering results is then evaluated based on
properties such as cluster compactness (Tibshirani et al., 2001; Rousseeuw, 1987) or clustering stability
(Ben-Hur et al., 2001; Monti et al., 2003). In particular, stability-based methods have been well received
and greatly promoted in recent years (Meinshausen and Bühlmann, 2010). However, these methods
are generally slow to compute because of the repetitive clustering process mandated by the nature of
stability assessment. Recently, a new method Progeny Clustering was developed by Hu et al. (2015)
to assess clustering quality and to identify the optimal cluster number based on clustering stability.
Compared to other clustering evaluation methods, Progeny Clustering requires fewer samples for
clustering stability assessment, thus it is able to greatly boost computing efficiency. However, this
advantage is based on the assumption that features are independent for each cluster, thus users need
to either transform data and create independent features or consult other methods if this assumption
does not hold for the data of interest.

Here, we introduce a new R package, progenyClust, that performs Progeny Clustering for contin-
uous data. The package consists of a main function progenyClust() that requires few parameter speci-
fications to run the algorithm on any given dataset, as well as a built-in function hclust.progenyClust
to use hierarchical clustering as an alternative to using kmeans. Two example datasets test and cell,
used in the original publication of Progeny Clustering , are provided in this package for testing and
sharing purposes. In addition, the progenyClust package includes an option to invert the stability
scores, which is not considered in the original algorithm. This additional capability enables the
algorithm to produce more interpretable and easier-to-plot results. The rest of the paper is organized
as follows: We will first describe how Progeny Clustering works and then go over the implementation
of the progenyClust package. Following the description of functions and datasets provided by the
package, we will provide one proof-of-concept example of how the package works and a real world
example where the package is used to identify cell phenotypes based on imaging data.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=cclust
http://CRAN.R-project.org/package=clusterSim
http://CRAN.R-project.org/package=cluster
http://CRAN.R-project.org/package=Nbclust
http://CRAN.R-project.org/package=fpc
http://CRAN.R-project.org/package=progenyClust

CONTRIBUTED RESEARCH ARTICLES 329

Progeny Clustering

In this section, we briefly review the algorithm of Progeny Clustering (Hu et al., 2015). Progeny
Clustering is a clustering evaluation method, thus it needs to couple with a stand-alone clustering
method such as k-means . The framework of Progeny Clustering is similar to other stability based
methods, which select the optimal cluster number that renders the most stable clustering. The
evaluation of clustering stability usually starts with an initial clustering of the full or sometimes partial
dataset, followed by bootstrapping and repetitive clustering, and then uses certain criterion to assess
the stability of clustering solutions. Progeny Clustering uses the same workflow, but innovates at the
bootstrapping method and improves on the stability assessment.

Consider a finite dataset {xij}, i = 1, . . . , N, j = 1, . . . , M that contains M variables (or features)
for N independent observations (or samples). Given a number K (a positive integer) for clustering, a
clustering method partitions the dataset into K clusters. Each cluster is denoted as Ck, k = 1, . . . , K.
Inspired by biological concepts, each cluster is treated as a subpopulation and the bootstrapped
samples as progenies from that subpopulation. The uniqueness of Progeny Sampling during the
bootstrapping step is that it randomly samples feature values with replacement to construct new
samples rather than directly sampling existing samples. Let Ñ be the number of progenies we generate

from each cluster Ck. Combining these progenies, we have a validation dataset {y(k)ij }, i = 1, . . . , Ñ,

j = 1, . . . , M, k = 1, . . . , K, containing K× Ñ observations with M features. Using the same number K
and the same method for clustering, we partition the progenies {y(k)ij } into K progeny clusters, denoted
by C′k, k = 1, . . . , K. A symmetric co-occurrence matrix Q records the clustering memberships of each
progeny as follows:

Qab =

{
1, if the ath progeny and the bth progeny are in the same cluster C′k
0, otherwise

. (1)

The progenies in Q were ordered by the initial cluster (Ck) they were generated from, such that
Qa, . . . , Qa+Ñ ∈ Ck, a = (k− 1) Ñ. After repeating the above process (from generating Progenies to
obtaining Q) R times, we can get a series of co-occurrence matrices Q(r), r = 1, . . . , R. Averaging Q(r)

results in a stability probability matrix P, i.e.

Pab = ∑
r

Q(r)
ab /R . (2)

From this probability matrix P, we compute the stability score for clustering the dataset {xij} into K
clusters as

S =

∑
k

∑
a,b∈Ck ,b 6=a

Pab/
(

Ñ − 1
)

∑
k

∑
a∈Ck ,b/∈Ck

Pab/
(
KÑ − Ñ

) . (3)

A schematic for this process and the pseudocode are shown in Figure 1 and Figure 2.

Figure 1: The schematic of the core steps in Progeny Clustering , illustrated using an example of
clustering a 20× 2 matrix into two groups. Schematic reproduced from Hu et al. (2015) under a
Creative Commons License.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 330

Figure 2: The pseudo code of the Progeny Clustering algorithm, from Hu et al. (2015).

After computing the stability score for each cluster number, we can then pick the optimal number
using a ‘greatest score’ criterion or a ‘greatest gap’ criterion or both. The ‘greatest score’ criterion
selects the cluster number that produces the highest stability score compared to reference datasets,
similar to what is used in Gap Statistics (Tibshirani et al., 2001). T reference datasets are first generated
from a uniform distribution over the range of each feature using Monte Carlo simulation. Each
reference dataset is then treated as an input dataset, and stability scores are computed respectively
using the same process as in Figure 1. Let {S̃(K)(t)}, t = 1, . . . , T, be the stability score for clustering
the tth reference dataset into K clusters. The stability score difference between the original dataset and
reference datasets are obtained by

D(K) = S(K) −∑
t

S̃(K)(t)/T, (4)

where K = Kmin, . . . , Kmax. The optimal cluster number with the greatest score difference is then
selected, i.e.

Ko = arg max D(K). (5)

While the ‘greatest score’ criterion requires computing stability scores from random datasets, the
‘greatest gap’ criterion does not, due to the fact that the stability score linearly increases with an
increase in cluster number among reference datasets. The ‘greatest gap’ criterion therefore searches for
peaks in the stability score curve and selects the cluster number that has the highest stability score
compared to those of its neighboring numbers, i.e.

Ko = arg max
(

2S(K) − S(K−1) − S(K+1)
)

. (6)

Compared to other stability-based evaluation methods, the major benefits of using Progeny
Clustering include less re-use of the same samples and faster computation. The progenies sampled
from the original data resemble but are hardly the same as the original samples. Thanks to this unique
feature, a small number of progenies are sufficient to evaluate the clustering stability. The reduction of
sample size for evaluation in turn saves substantial computing time, because the complexity of most
clustering algorithms is dependent on the sample size (Andreopoulos et al., 2009). The proposal of
the ‘greatest gap’ criterion further boosts computation speed of clustering evaluation by eliminating
the step of generating reference scores. The comparison of computation speed between Progeny
Clustering and other commonly used algorithms can be found in Hu et al. (2015).

The progenyClust package

The progenyClust package was developed with the aim of enabling and promoting the usage of
the Progeny Clustering algorithm in the R community. This package implements the Progeny
Clustering algorithm with an additional feature to invert stability scores. The package includes
a main function progenyClust(), plot and summary methods for “progenyClust” objects, a function

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 331

hclust.progenyClust for hierarchical clustering, and two example datasets. To perform Progeny
Clustering using the progenyClust package, users should first run the main function progenyClust()
on their dataset, then use plot and summary methods to check the stability score curves, review the
clustering results, and check the recommended cluster number. The progenyClust() function allows
flexible plug-ins of various clustering algorithms into Progeny Clustering , and directly couples with
k-means clustering algorithm as a default as well as hierarchical clustering as an alternative. Since the
clustering memberships are returned in addition to the optimal cluster number, the package integrates
the clustering process and the cluster number selection process into one, and it saves users additional
efforts that are required to complete clustering tasks. In the following sections, we will first explain
the motivation to provide score inversion, then go over the main progenyClust() function, the “S3”
methods for “progenyClust” objects, the built-in function hclust.progenyClust(), and describe the
background of the included datasets.

Inversion of the stability scores

In the original Progeny Clustering algorithm, the optimal cluster number was chosen based on stability
scores, which capture the true classification rate over the false classification rate. The higher the score
is, the more stable the clustering is, and the more desirable the cluster number is. The computation
of stability scores works well in general, except for when the false classification rate is equal to zero.
The zero false classification rate indicates a perfectly stable clustering, that is when all progenies are
correctly clustered with progenies coming from the same initial cluster. The perfectly stable clustering
will produce a positive infinite stability score, which is not ideal for plotting or for further computing
to select the optimal cluster number. Therefore, we offer a choice of inverting the stability scores in
this package to mitigate the risk of generating an infinite score. The inverted stability scores can be
interpreted as a measure of instability, calculated by false classification rate over true classification rate.
In the case of a perfectly stable clustering, the inverted stability score is equal to zero, thus is much
easier for comparison and visualization. Meanwhile, the chances of a perfectly unstable clustering
are much rarer. If the inversion of stability score is chosen when running Progeny Clustering , users
should select the cluster number with the smallest score instead of the greatest score.

The progenyClust() function

The progenyClust() function takes in a data matrix, performs Progeny Clustering , and outputs a
“progenyClust” object. The clustering is performed on rows, thus the input data matrix needs to
be formatted accordingly. A number of input arguments were offered by progenyClust() to allow
users to specify the clustering algorithm, cluster number selection criterion and parameter values
they want to use for Progeny Clustering . The output “progenyClust” object contains information
on the clustering memberships and stability scores at each cluster number, and it can work with the
plot and summary methods. Since the default values for most of the input arguments are provided,
progenyClust() can be run without any tuning. The function is used as follows:

progenyClust(data, FUNclust = kmeans, method = 'gap', score.invert = F,
ncluster = 2:10, size = 10, iteration = 100, repeats = 1, nrandom = 10, ...)

Here, we group the input arguments into three categories, and highlight the meaning and usage of
each argument.

• Input Data: data is a matrix, the rows of which are of interest to cluster. ncluster is a sequence
of candidate cluster numbers to evaluate.

• Method: Since progenyClust() is a clustering evaluation algorithm, it needs to work together
with a clustering algorithm. FUNclust is where the clustering function is specified. The input
and output of FUNclust is required to be similar to the default kmeans() function from stat,
or the alternative hclust.progenyClust() function for hierarchical clustering as provided in
progenyClust. FUNclust should be able to accept data as its first argument, accept the number
for clustering as its second argument, and return a list containing a component cluster which
is a vector of integers denoting the clustering assignment for each sample. method is the stability
score comparison criterion being selected. score.invert can be used to flip the stability scores to
instability scores when specified to be TRUE. The values of method can be ‘gap’ which represents
the ‘greatest gap’ criterion, ‘score’ which represents the ‘greatest score’ criterion, or ‘both’ which
represents using both the ‘greatest gap’ and the ‘greatest score’ criteria. In cases when optimal
cluster numbers determined by the ‘greatest gap’ and the ‘greatest score’ do not agree, we
suggest users to either review the stability score plots from both criteria and pick the most
preferred one or use the cluster number suggested by the ‘greatest score’ criterion.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=stat

CONTRIBUTED RESEARCH ARTICLES 332

• Tuning Parameters: size specifies the number of progenies to generate from each initial cluster
for stability evaluation. iteration denotes how many times the progenies are generated for
calculating the stability score. repeats is the number of times the entire algorithm should be
repeated from the initial clustering to obtaining the stability scores. If repeats is greater than one,
the standard deviation of the stability score at each cluster number will be produced. nrandom
specifies the number of random datasets to generate when computing the reference scores, if the
‘greatest score’ method is chosen. All these tuning parameters, if specified inappropriately, can
affect the accuracy and computing efficiency of the Progeny Clustering algorithm. In general,
the greater the values of size, iteration, repeats and nrandom are, the slower the computing
will be.

The output of the progenyClust() function is an object of the “progenyClust” class, which contains
information on the clustering results, the stability scores computed and the calls that were made.
Specifically, cluster is a matrix of clustering memberships, where rows are samples and columns are
cluster numbers; mean.gap and mean.score are the scores computed at each given cluster number and
normalized based on the ‘greatest gap’ and the ‘greatest score’ criteria; score and random.score are
the initial stability scores computed before using any criteria to normalize; sd.gap and sd.score are
the standard deviations of the scores when the input argument repeats is specified to be greater than
one; call, ncluster, method and score.invert return the call that was made and input arguments
specified.

The plot and summary methods for “progenyClust” objects

To identify the optimal cluster number, we provide the S3 plot and summary methods for “progeny-
Clust” objects. The plot method enables users to visualize stability scores for cluster number selection
and to visualize the clustering results. The plot function is as follows:

plot(x, data = NULL, k = NULL, errorbar = FALSE, xlab = '', ylab = '', ...)

If data is not provided, the function will visualize the stability score at each investigated cluster
number to give users an overview of the clustering stability. When data is provided, the function will
visualize data in scatter plots and represent each cluster membership by a distinct color. data can be
the orginal data matrix used for clustering or a subset of the original data with fewer variables but
the same number of samples. Additional graphical arguments can be passed to customize the plot.
The only extra input argument we added here is errorbar, which will render error bars when plotting
stability scores if errorbar = TRUE. The errbar function from Hmisc (Harrell Jr and Harrell Jr, 2015)
was used to generate the error bars. In addition, the summary method of the “progenyClust” object
produces a quick summary of what number of clusters is the best to use for the given data.

The hclust.progenyClust() function

The hclust.progenyClust() function performs hierarchical clustering by combining three existing
R functions dist(), hclust() and cutree() from stat into one. The input and output are formatted
such that they can be directly plugged into the progenyClust() function as an option for FUNclust,
similar to the default kmeans() function. The function is as follows:

hclust.progenyClust(x, k, h.method = 'ward.D2', dist = 'euclidean', p = 2, ...)

To ensure consistency between similar R functions and allow users to easily use this function, the
input arguments are largely kept the same as the ones used in fucntions dist(), hclust(), cutree().
The function returns clustering memberships, an hclust object of the tree, and a dist object of the
distance matrix.

The test and cell datasets

A couple of datasets from the original paper on Progeny Clustering (Hu et al., 2015) were included
in the progenyClust package for testing and sharing purposes. As a proof-of-concept example, test
was a simulated dataset to help users quickly test the algorithm and see how it works. The dataset
was generated by randomly drawing 50 samples from bivariate normal distributions with a common
identity covariance matrix and a mean at (-1,2), (2,0) and (-1,-2) respectively. Thus, test is a 150 by 2
matrix that contains three clusters.

The dataset cell, generated experimentally from Slater et al. (2015), contains 444 cell samples and
the first three principal components of their morphology metrics. Since the cells were engineered into 4
distinct morphological phenotypes, this dataset in theory should contain 4 clusters. More experimental
details of this dataset can be found in Slater et al. (2015) and Hu et al. (2015).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=Hmisc

CONTRIBUTED RESEARCH ARTICLES 333

Examples

In this section, we demonstrate the use of the progenyClust package in two examples. The first
example is a proof-of-concept of how progenyClust works on a simulated test dataset. The second
example demonstrates the biomedical application of progenyClust to identify the number of cell
phenotypes based on cell imaging data.

Proof-of-concept example

To show how the progenyClust() function works, we use the dataset test included in the progeny-
Clust package as the input dataset. The goal here is to find the inherent number of clusters present in
this dataset, which is known to be three. Since most of the parameters have default values, we can run
the progenyClust() function for this dataset with the default setting. The R code is as follows:

require('progenyClust')
data(test)
set.seed(1)

run Progeny Clustering with default parameter setting
test.progenyClust <- progenyClust(test)

plot stability scores computed by Progeny Clustering
plot(test.progenyClust)

plot clustering results at the optimal cluster number (default)
plot(test.progenyClust, test)

report the optimal cluster number
summary(test.progenyClust)

output from the summary
Call:
progenyClust(data = test)

Optimal Number of Clusters:
gap criterion - 3

Figure 3: Plots of the “progenyClust” object from clustering the test dataset under the default setting.
(A) Normalized stability scores based on the ‘greatest gap’ method were shown at each cluster number.
The greater the stability score is, the closer the cluster number matches the true cluster number. (B)
The clustered test data is shown with the optimal number of clusters.

The summary of the “progenyClust” object concludes that the optimal number for clustering this
test dataset is three, which agrees with the fact that the dataset was generated from three centers. The
plot result of the “progenyClust” object alone is shown in Figure 3A, displaying a curve of normalized
stability scores for all candidate numbers of clusters except for the minimum and maximum. This
score curve can provide us with insights of clustering quality at all cluster numbers, and help us
identify the second preferred number of clusters if needed. Using the test data as input, the plot()

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 334

Figure 4: Plot of the “progenyClust” object from running progenyClust() on the test dataset three
times with both evaluation methods, ‘greatest gap’ (top) and ‘greatest score’ (bottom). The score
curves from both methods estimated that the number of three clusters is best for this dataset. The plot
was customized to display the error bars.

function visualizes the data in a scatter plot with three colors, where each corresponds to a cluster
(Figure 3B).

Though the default setting of progenyClust() function works well in this example, for the purpose
of illustrating the capabilities of the function, we will change the input argument values and tune the
algorithms slightly. For example, due to the theoretical shortage of the ‘greatest gap’ criterion, the
user might want to obtain estimation from both the ‘greatest gap’ and the ‘greatest score’ methods.
Though the ‘greatest score’ method will slow down the algorithm because of the laborious process
of generating reference scores, it can evaluate clustering stabilities at the minimum and maximum
potential cluster numbers which are ignored by the ‘greatest gap’ method. The R code for the altered
version is shown below. Here, we also change the input argument repeats to repeat the algorithm
three times instead of one time to obtain standard deviations of the stability scores.

set.seed(1)

run Progeny Clustering with both methods and repeated three times
test2.progenyClust <- progenyClust(test, method = 'both', repeats = 3)

plot with error bars and summarize the output progenyClust object
plot(test2.progenyClust, errorbar = TRUE, type = 'b')
summary(test2.progenyClust)

output from the summary
Call:
progenyClust(data = test, method = "both", repeats = 3)

Optimal Number of Clusters:
gap criterion - 3
score criterion - 3

It is clear from both the summary and the score curve plots (Figure 4) that both methods agree
on the optimal cluster number being three. Specifically, the S3 plot method automatically plots two

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 335

score curves if the “progenyClust” object was generated with method = 'both'. Using the errbar()
function from Hmisc, the S3 plot method is able to display error bars with errorbar = TRUE.

Application to identifying cell phenotypes

Clustering is a useful technique for the biomedical community, and it can be widely applied to various
data-driven research projects. As a second example, we illustrate here how the progenyClust package
can be used to identify the number of cell phenotypes based on the morphology metrics derived from
cell images. In this experiment, biomedical researches used a special technique called “Image Guided
Laser Scanning Lithography (LG-LSL)” (Slater et al., 2011) to pattern cells into four shapes. Images of
all patterned cells were taken, and morphology metrics were derived to study cytoskeletal and nuclei
features of patterned cells. Finding the cell clusters based on their imaging data is of particular interest
in this case, and Progeny Clustering can help estimate the optimal number for clustering.

Similar to the first example, applying Progeny Clustering to the cell dataset using the progeny-
Clust package is straightforward. The R code is shown below. Here, we use the built-in function
hclust.progenyClust as FUNclust to run the algorithm with hierarchical clustering instead of the de-
fault kmeans, and we select the optimal cluster number based on the ‘greatest gap’ criterion. The plot
and summary methods are used to show the output scores and the estimated optimal cluster number.
From the output result (Figure 5A), we can see that clustering the cells into four groups has the highest
stability, which matches the four patterned cell shapes included in this dataset. The clustering results
are shown in Figure 5B in a table of scatter plots for each pairing of variables. Since the cell patterns
were engineered, we are fortunate in this example to have prior knowledge of the true number of
clusters and to easily test clustering algorithms. However, in a lot of similar biological experiments
(e.g. collected tumor cells), we do not possess the knowledge of the true cluster number. In these cases,
progenyClust can come in handy to identify the optimal cluster number to divide the cells into, and
subsequent analyses are then possible for characterizing each cell cluster and discovering its biological
or clinical impact.

data(cell)
set.seed(1)

run Progeny Clustering with hierarchical clustering
cell.progenyClust <- progenyClust(cell, hclust.progenyClust)

plot stability scores, clustering results at optimal cluster number, and summarize results
plot(cell.progenyClust, type = 'b')
plot(cell.progenyClust, cell)
summary(cell.progenyClust)

output from the summary
Call:
progenyClust(data = cell, FUNclust = hclust.progenyClust)

Optimal Number of Clusters:
gap criterion - 4

Summary

This paper introduces the R package progenyClust, which identifies the optimal cluster number for
any given dataset based on the Progeny Clustering algorithm. Improving on the original algorithm,
progenyClust provides the option to invert stability scores to instability scores, thus preventing
the generation of infinite scores in a perfectly stable clustering solution. A variety of parameters
(including the clustering method, the evaluation method and the size of progenies) are offered by the
package and can be easily adjusted for Progeny Clustering . In addition, the default parameter setting
specified by the package allows users to perform the algorithm with little background knowledge and
parameter tuning. Thanks to the superior computing efficiency of Progeny Clustering , this package is
a faster alternative to traditional clustering evaluation methods, and it can benefit R communities in
biomedicine and beyond.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 336

Figure 5: Plots of the “progenyClust” object from running progenyClust() on the cell dataset with
hierarchical clustering. (A) The score curve shows that the cell data is best clustered with four clusters.
(B) The clustering results with four clusters are shown in a table of scatter plots.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 337

Bibliography

B. Andreopoulos, A. An, X. Wang, and M. Schroeder. A roadmap of clustering algorithms: finding a
match for a biomedical application. Briefings in Bioinformatics, 10(3):297–314, 2009. [p330]

O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona. An extensive comparative study
of cluster validity indices. Pattern Recognition, 46(1):243–256, 2013. [p328]

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering structure in clustered
data. In Pacific Symposium on Biocomputing, volume 7, pages 6–17, 2001. [p328]

E. Budinska, V. Popovici, S. Tejpar, G. D’Ario, N. Lapique, K. O. Sikora, A. F. Di Narzo, P. Yan, J. G.
Hodgson, S. Weinrich, et al. Gene expression patterns unveil a new level of molecular heterogeneity
in colorectal cancer. The Journal of Pathology, 231(1):63–76, 2013. [p328]

M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs. Nbclust: an R package for determining the
relevant number of clusters in a data set. Journal of Statistical Software, 61(6):1–36, 2014a. [p328]

M. Charrad, N. Ghazzali, V. Boiteau, A. Niknafs, and M. M. Charrad. Package ‘nbclust’. J. Stat. Soft,
61:1–36, 2014b. [p328]

E. Dimitriadou, K. Hornik, and M. K. Hornik. Package ‘cclust’. 2015. [p328]

B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315(5814):
972–976, 2007. [p328]

F. E. Harrell Jr and M. F. E. Harrell Jr. Package ‘hmisc’. 2015. [p332]

J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979. [p328]

C. Hennig. Package ‘fpc’. 2015. [p328]

C. W. Hu, S. M. Kornblau, J. H. Slater, and A. A. Qutub. Progeny clustering: A method to identify
biological phenotypes. Scientific reports, 5, 2015. [p328, 329, 330, 332]

S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967. [p328]

M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, K. Hornik, M. Studer, and P. Roudier. Package
‘cluster’, 2015. [p328]

N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 72(4):417–473, 2010. [p328]

S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: a resampling-based method for
class discovery and visualization of gene expression microarray data. Machine Learning, 52(1-2):
91–118, 2003. [p328]

S. D. Ross. Segmenting sport fans using brand associations: A cluster analysis. Sport Marketing
Quarterly, 16(1):15, 2007. [p328]

P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics, 20:53–65, 1987. [p328]

J. Slater, J. C. Culver, B. L. Long, C. W. Hu, J. Hu, T. F. Birk, A. A. Qutub, M. E. Dickinson, and J. L.
West. Recapitulation and modulation of the cellular architecture of a user-chosen cell-of-interest
using cell-derived, biomimetic patterning. ACS nano, 2015. [p332]

J. H. Slater, J. S. Miller, S. S. Yu, and J. L. West. Fabrication of multifaceted micropatterned surfaces
with laser scanning lithography. Advanced Functional Materials, 21(15):2876–2888, 2011. [p335]

T. Sørlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, T. Hastie, M. B. Eisen, M. van de
Rijn, S. S. Jeffrey, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses
with clinical implications. Proceedings of the National Academy of Sciences, 98(19):10869–10874, 2001.
[p328]

R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via the gap
statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2):411–423, 2001.
[p328, 330]

M. Walesiak, A. Dudek, and M. A. Dudek. Package ‘clustersim’, 2015. [p328]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 338

Chenyue W. Hu
Rice University
Suite 610, BioScience Research Collaborative, 6500 Main St, Houston, TX 77030
U.S.A
wendyhu001@gmail.com

Amina A. Qutub
Rice University
Suite 610, BioScience Research Collaborative, 6500 Main St, Houston, TX 77030
U.S.A
aminaq@gmail.com

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:wendyhu001@gmail.com
mailto:aminaq@gmail.com

