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alineR: an R Package for Optimizing
Feature-Weighted Alignments and
Linguistic Distances
by Sean S. Downey, Guowei Sun and Peter Norquest

Abstract Linguistic distance measurements are commonly used in anthropology and biology when
quantitative and statistical comparisons between words are needed. This is common, for example,
when analyzing linguistic and genetic data. Such comparisons can provide insight into historical
population patterns and evolutionary processes. However, the most commonly used linguistic
distances are derived from edit distances, which do not weight phonetic features that may, for
example, represent smaller-scale patterns in linguistic evolution. Thus, computational methods for
calculating feature-weighted linguistic distances are needed for linguistic, biological, and evolutionary
applications; additionally, the linguistic distances presented here are generic and may have broader
applications in fields such as text mining and search, as well as applications in psycholinguistics
and morphology. To facilitate this research, we are making available an open-source R software
package that performs feature-weighted linguistic distance calculations. The package also includes a
supervised learning methodology that uses a genetic algorithm and manually determined alignments
to estimate 13 linguistic parameters including feature weights and a skip penalty. Here we present the
package and use it to demonstrate the supervised learning methodology by estimating the optimal
linguistic parameters for both simulated data and for a sample of Austronesian languages. Our results
show that the methodology can estimate these parameters for both simulated and real language
data, that optimizing feature weights improves alignment accuracy by approximately 29%, and that
optimization significantly affects the resulting distance measurements. Availability: alineR is available
on CRAN.

Introduction

Human speech patterns change through time in response to both cultural and demographic processes
of speech communities such as migration and social contact. Analyzing differences among languages
can provide insight into historical patterns and general processes of biological and cultural evolution
(Pagel, 2012). Linguistic distances based on the comparison of two words are often used when
quantitative analyses are required. For example, numerous studies make language/gene comparisons
on continental and regional scales (Sokal, 1988; Barbujani and Sokal, 1990; Cavalli-Sforza et al., 1992;
Smouse and Long, 1992; Chen et al., 1995; Cavalli-Sforza, 1991; Cox, 2003; Hunley and Long, 2005;
Diamond and Bellwood, 2003; Nettle and Harriss, 2003), and also at smaller geographical scales
(Lansing et al., 2007; Downey et al., 2008; Tumonggor et al., 2014; Cox and Lahr, 2006). In addition,
edit distances are used in text mining, for example in the extraction of news content (Qiujun, 2010),
and in biological applications such as extracting mutation data from the literature (Horn et al., 2004).

The use of evolutionary linguistics in anthropology suggests that further development of quan-
titative methods are necessary in order to identify new patterns in language families, to identify
controversial or undiscovered language families, and to address outstanding problems in human
prehistory (Croft, 2008). Research in computational phonology has developed several quantitative
metrics for measuring linguistic distances between pairs of words. Algorithms for quantifying the
distance between cognate pairs (words with a shared meaning) include measuring phonetic sequence
distance based on types of segments (Covington, 1998), or the feature scores of phonemes (Somers,
1998). However, the most common approach is the Levenshtein distance – also called the ’edit distance’
– which is defined as the minimum total number of additions, deletions, and substitutions of symbols
necessary to transform one word to the other (Levenshtein, 1966). Various mathematical refinements
to the Levenshtein distance have been proposed (Wichmann et al., 2010; Petroni and Serva, 2010),
including an approach that uses empirically determined log-odds (Fine and Jaeger, 2013). The Lev-
enshtein distance is parsimonious and robust and it has been found to correlate with perceptions of
dialectical distances (Gooskens and Heeringa, 2004); however, feature-based alignment approaches
have been found to be a complementary approach to calculating linguistic distances (Kondrak, 2000).

The ALINE algorithm

ALINE is an automatic phonetic sequence alignment algorithm that determines the similarity of
two words (Kondrak, 2000). It uses dynamic programming to calculate the optimal similarity score
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of candidate alignments. In addition to binary character comparisons, insertions, and deletions,
the algorithm uses phonetic information to determine the resulting optimal score. A set of feature
weighting parameters and a skip penalty are used to determine individual similarity scores for each
phonetic feature in the words being measured; thus, the optimal phonetic sequence alignment depends
on the values of the feature weight parameters, and the resulting similarity scores are sensitive to the
selection of these values.

Similarity scores can range from [0, ∞] and are strongly influenced by word length. To facilitate
integration with biological and evolutionary research we previously defined the ALINE Distance as,

ALINEDist = 1 − 2s
s1 + s2

(1)

where s is the similarity score and s1,2 are similarity scores for each word’s self-comparison (Downey
et al., 2008). This equation results in a finite value [0, 1] that can be easily compared, for example,
to common population differentiation statistics such as the fixation index (Fst). For this reason, our
package by default returns ALINEDist, but can optionally return the similarity score. Because similarity
scores and ALINE distances are expected to be sensitive to feature weights, the package parameterizes
the values used by the ALINE algorithm so they can be easily modified within the R environment.

We provide alineR as an open-source package for the R statistical computing language that
facilitates calculation of linguistic distances using the ALINE algorithm. The original ALINE algorithm
is provided as an executable (http://webdocs.cs.ualberta.ca/~kondrak/) so the default parameters
cannot be modified. An open-source python version called PyAline (Huff, 2010) (http://pyaline.
sourceforge.net) allows these values to be modified; however, parameter estimation was not a focus.
And while the R base command adist() and several packages can calculate Levenshtein distances
(see stringdist() in stringdist (van der Loo, 2014), levenshteinDist() in RecordLinkage (Borg and
Sariyar, 2016), and stringDist() in Biostrings (Pagès et al., 2017)), to the best of our knowledge, this
is the first time ALINE distances can be calculated directly from an R function.

An important new feature of alineR is to provide a way to estimate the feature-weight parameters
and skip penalty. Below we analyze how changing these values affects the resulting alignments and
distance measurements. We present a supervised learning methodology that uses manual alignment
determinations and a genetic algorithm (GA) to estimate the optimal feature weights for any paired
word data. First, we use a simulation analysis and determine that the GA can correctly estimate known
feature weights for simulated data. Second, we show that a supervised learning methodology can
successfully estimate optimal (unknown) linguistic parameters for a data set consisting of Austronesian
word lists from Sumba in Eastern Indonesia. Third, we show that optimizing feature weights improves
alignment accuracy using manual determinations as a baseline. Finally, we show how estimating
feature-weights and skip penalties affects the resulting distance calculations.

Parameterizing the ALINE algorithm

The ALINE algorithm is a phonetic sequence alignment algorithm based on multivalued features.
The program runs quickly because it uses dynamic programming and it is written in C++. Twelve
(12) features are considered in calculating the phonetic similarity score: syllabic, voice, lateral, high,
manner, long, place, nasal, aspirated, back, retroflex, and round. In addition, there is a skip penalty.
Weighting values for each of these parameters are used to choose the optimal string alignments as
well as the resulting similarity score. However, in the publicly available version of ALINE the default
values were compiled into the original program so they could not be modified. Our alineR package
includes a modified version of the original ALINE code that interfaces directly with R.

Overview of article

In the next section we provide a how-to guide for calculating ALINE distances and similarity scores
with alineR. We present simple instructions for basic alignment operations and for users who want
to calculate linguistic distances using this alternative to the Levenshtein distance, the instructions
in this section may be sufficient. We then describe the genetic algorithm and illustrate with simple
examples how to use it with supervised-learning to optimize ALINE’s feature-weight parameters.
Next, we show the results from a simulation experiment that validates that the GA can recover a set
of ’unknown’ feature weighting parameters. We then present a proof-of-concept case study in which
we use the GA to determine the optimal feature-weighting values for a sample of languages from
Eastern Indonesia. This includes a description of the training dataset and the work flow necessary
to reproduce the analysis. We perform a statistical analysis of the effect the supervised learning and
GA optimization process has on the resulting linguistic distance measurements. Finally, we perform a
bootstrap analysis to determine whether the results are stable. We close by briefly discussing some
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possible applications of alineR in psycholinguistics and morphology.

Basic alignment and distance calculations with alineR

Calculating ALINE distances minimally requires two scalar words using UTF-8 file encoding. Word
lists should be encoded in the International Phonetic Alphabet to maximize the use of phonetic feature
information (Association, 1999). If IPA is not available, the ASCII subset can also be used.

First, load the alineR package in the standard way.

library('alineR')

Consider the following example for calculating the phonetic distance between two related words
meaning ’to float’ from Borneo: [ k@rampu ] and [ l@m@ntUN] . The most basic use of alineR entails
passing the two words as the first and second parameters to the aline() function. The standardized
ALINEDist is returned.

aline("k@rampu", "l@m@ntUN")
[1] 0.4864198

More typically, word lists will be passed as two vectors that will be analyzed such that ALINEDist
will be calculated for matching elements of each vector. For example, here we pass two vectors
representing two cognate pairs (“stone” and “to float”) for two related languages. Note that the
phonetic difference between u and U does not yield a quantitative difference in the resulting ALINE
score.

aline(c("batu", "k@rampuU"), c("batU", "l@m@ntUN") )
[1] 0.0000000 0.4864198

The aline() function has several parameters that provide additional functionality.

aline( w1, w2, sim = FALSE, m1 = NULL, m2 = NULL, mark = FALSE, alignment = FALSE, ...)

The first and second elements, w1 and w2, are required and they are used for passing the two
word vectors to be compared as shown above. All additional parameters are optional and provide
additional functionality, which will be illustrated in more detail below. These include the following:
sim = TRUE returns the similarity score rather than the ALINE Distance; m1 and m2 allow user-defined
feature mappings; setting mark = TRUE will mark invalid characters with an @ character to assist in
data checking; setting alignment = TRUE will return the IPA word pairs vertically arranged so that the
aligned characters can be delimited with vertical bars (|). Additionally, feature weighting parameters
can also be passed to the internal raw.alignment() function using .... In the next sections we explain
some more advanced uses of alineR which require using these optional parameters.

A typical use in historical linguistics is to calculate a matrix of language-distance comparisons
among multiple lanaguges. Given the numerous ways that language data can be stored, the need for
data consistency, and the difficulty of providing comprehensive error-handling, we do not provide
a built-in function for multiple-language comparisons in alineR. However, data processing in R is
relatively straight-forward. Here we illustrate one possible approach that can be used as a starting
point for more complicated analyses. This example processes three word lists that each include three
glosses. The results are combined into a distance matrix composed of average ALINE Distance scores.

# multiple language comparisons
word.lists <- rbind(c("baqa", NA, "anax"), c("haqa", "dodo", "anar"),

c("abut", "suli", "oan"))
glosses <- colnames(word.lists) <- c("akar", "alir_me", "anak")
languages <- rownames(word.lists) <- c("language.1", "language.2", "language.3")
word.lists

akar alir_me anak
language.1 "baqa" NA "anax"
language.2 "haqa" "dodo" "anar"
language.3 "abut" "suli" "oan"

# dim empty matrices: a (ALINE scores), and n (a counter)
n <- matrix(0, nrow = length(languages), ncol = length(languages),

dimnames = list(languages, languages))
a <- n
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# nested loops for calculating the mean ALINE Distances for multiple languages and glosses
for(i in 1:length(glosses)){ # loop glosses

for(j in 1:length(languages)){ # outer language loop
for(k in 1:length(languages)){ # inner language loop

if(j >= k){
x <- word.lists[j, i] # first word to compare
y <- word.lists[k, i] # second word to compare
if( !is.na(x) & !is.na(y) ) { # skip if missing data

a[j, k] <- a[j, k] + aline(x, y) # ALINE Distance
n[j, k] <- n[j, k] + 1 # increment counter

}
}

}
}

}

as.dist(a / n) # distance matrix composed of mean ALINE Distances

language.1 language.2
language.2 0.3500000
language.3 0.3869697 0.5479798

alineR uses a custom ASCII encoding scheme to identify features. Valid encodings include
lowercase letters from a to z, and the uppercase modifiers shown in Table 1 are used to indicate
features.

Feature Code

dental D
palato-alveolar V
retroflex X
palatal P
spirant S
nasal N
aspirated A
long H
front F
central C

Table 1: ALINE features

The full list of IPA::feature mappings, including ASCII values, is stored in a data frame included in
the package. It can be seen using the show.map() function. For example, row 2 indicates that Latin
Capital B with the Unicode value of 66 will be encoded as a spirant “b”, “bS”, with the two ASCII
values, 98 and 83.

show.map()
IPA Aline U.Val A.Val

1 32
2 B bS 66 98 83
3 O oF 79 111 70
4 a a 97 97
5 b b 98 98
...
102 N 8319 78

The encode.ALINE() function can be used to see the ASCII character encoding of an IPA character
string or vector.

encode.ALINE("diŋŋira", "dinnira")

diŋŋira dinnira
"digNgNira" "dinnira"
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It is not required for basic usage to to manually encode words because this function is called
internally. However, if an unknown IPA character is used in an alignment, under the default behavior
a warning is issued, the character is dropped, and the remaining characters are aligned as usual. When
this occurs, the encode.ALINE() command may be used with mark = TRUE to substitute all unknown
characters with the @ symbol. In the following example, È is an unknown feature type.

encode.ALINE(c("ũmlatT", "ÈmlatT"), mark = TRUE)
Invalid character: Èin ÈmlatT

ũmlatT ÈmlatT
"uNmlattS" "@mlattS"

In such cases, it is possible to eliminate the system warnings by providing these characters with
feature mappings. In addition, it is possible to over-ride existing mappings given by show.map(). Both
can be done using the m1 and m2 parameters of aline(). For example, the following substitutes all
instances of “È" with "o".

aline(w1 = c("ũmlatT", "dinnira"), w2 = c("ÈmlatT", "diŋŋira"), m1 = "È", m2 = "o")
[1] 0.07647059 0.10810811

By default, aline() returns a vector of ALINE distances indexed by the position in the input
vectors. However, additional information about the alignments can also be returned, including the
optimal alignment and the similarity score, as shown here.

aline("watu", "dat", alignment = TRUE, sim = TRUE)
pair1

w1 watu
w2 dat
scores 50
a1 | - w a t | u
a2 | d - a t | -

In this example, setting the optional parameter alignment = TRUE will change the output format
to a data frame in which each column represents a word-pair comparison. In this example, only one
pair of words is compared. Rows 1 and 2 in this data frame contain word 1 ("w1"), and word 2 ("w2").
The third element will contain either the ALINE distance (if sim = FALSE) or the similarity score (if
sim = TRUE). Rows 4-5 contain the optimal alignment of word 1 and word 2. If three pairs of words
are compared, the data frame would consist of three columns and five rows. We adopted this output
format as a convenience so that the alignments in rows 4 and 5 could be easily examined directly in
the R command output window.

In determining the optimal alignment, the ALINE algorithm associates feature values, or weights,
with particular phonemes based on phonologically similar features. Note that each element of the
resulting optimally aligned vector maps corresponding elements within the vertical bars. So when
aligning watu and dat, the phonetic similarity of at yielded the highest similarity score, 50. In making
these calculations, the algorithm calculates weighted feature values for each pair of features, including
skips, to determine the optimal similarity score. A vector of the individual similarity scores for the
phoneme pairs can be extracted using the ALINE.segments() function:

aline("watu", "dat", sim = TRUE) # returns similarity score for comparison
[1] 50
align <- raw.alignment(c("watu", "dat"))
cat(align[[3]], align[[4]], sep = "\n")
| - w a t | u
| d - a t | -
s <- ALINE.segments(align)
s
[1] 0 0 15 35
sum(s)
[1] 50
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One of the key features of alineR is the ability to easily change the default feature weight values used
to determine the optimal alignment and resulting ALINE distances. Here for example, reducing the
weight given to Place from the default of 40 to 10 reduces the values of non-zero distances.

aline(c("batu", "k@rampuU"), c("batU", "l@m@ntUN"))
[1] 0.0000000 0.4864198

aline(c("batu", "k@rampuU"), c("batU", "l@m@ntUN"), Place = 10)
[1] 0.0000000 0.4567901

In examples introduced below, it will be more convenient to store the feature weights in a vector.
In these instances, the vector can be passed as an argument to aline() by constructing a named list
and using do.call():

opts <- c(61, 92, 51, 26, 54, 38, 20, 40, 31, 38, 66, 72, 60) # feature weights
names(opts) <- names(formals(raw.alignment)[-1]) # add feature names

args <- c(list(w1 = c("batu", "k@rampuU"), w2 = c("batu", "l@m@ntUN")), opts)
do.call("aline", args)
[1] 0.0000000 0.5604938

Optimal parameter estimation using a genetic algorithm for alineR

The 13 parameters used by ALINE creates a high-dimensional search space, and a grid search would
therefore be computationally inefficient. Instead, we employ a genetic algorithm (Back et al., 1997)
to determine the optimal feature weights for a given word list. The general approach is to mimic
biological evolution and natural selection by using a performance function that iteratively evaluates
alignments generated with candidate parameters. We define the performance function as the total
number of “correct” alignments, where correctness is determined manually by a linguist trained in
phonetic analysis.

An overview of the algorithm is provided in Figure 1. At startup, the total population size (N) and
number of iterations are defined for each run of the genetic algorithm. (1) N vectors are initialized
by sampling uniformly between [0, 100] for each of the linguistic parameters. (2) The performance of
each vector in the current (initial or iterated) population is evaluated using the performance function.
(3) Each parameter vector in the population is ranked according to performance and the top .25N
are retained. (4) A new 0.25N vectors are initialized into the current generation. (5) Crossover 1 –
the retained vectors (from step 3) are recombined using a crossover procedure to create .25N in the
current generation. (6) Crossover 2 – the retained vectors (from step 3) are recombined with the new
random vectors (from step 4) using a crossover procedure to create .25N new vectors. (7) The four
subpopulations from steps 3-6 are combined. (8) Check if the maximum number of iterations has been
reached. If not, the algorithm returns to step 2, but otherwise continues to step 9. (9) Aggregate all
parameter vectors and estimate medians and variances from the top ranked .25N. Both crossover
procedures involve selecting pairs of vectors, selecting a sequence of adjacent elements within each
vector, and exchanging them between vectors. Crossover 1 samples .25N individuals from ns (with
replacement) and pairs them for the crossover procedure. Crossover 2 samples .125N individuals
from ns and pairs them with an equal number from nr. Each GA run generates a vector of optimized
values for each linguistic feature, and when convergence is achieved the median of each distribution
is used to parameterize the ALINE algorithm for the training data. Convergence is determined using
visual diagnostic plots. To account for the possibility that a single GA run incompletely explores
the parameter space, we run multiple iterations and consolidate the results of all runs. In practice,
we minimize the computation time by parallelizing this process, as we will demonstrate below. We
note, however, that the GA we provide is only one approach to solving this high-dimensional search
problem. There are any number of supervised and unsupervised optimization routines that could
potentially be used to estimate the linguistic features available in alineR.

Supervised learning procedure using the genetic algorithm

We developed a supervised learning procedure for estimating the optimal feature weights using the
GA. It is based on expert alignment determinations that are selected from a list of possible alignments
for a given set of word lists. Commands in alineR are provided to implement this procedure. First,
to create a training dataset we require a set of cognates and we use simulation to sample linguistic
parameters from a uniform distribution to determine a list of possible alignments for each cognate
pair. The simulation excludes the skip penalty (which creates numerous alternative alignments),
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Figure 1: A flowchart showing how the linguistic parameters for ALINE are estimated using a genetic
algorithm

and it eliminates cognate pairs with only a single alignment. We then quantify the number of
possible alignments for each cognate pair. First, to prepare the cognate lists for the manual alignment
determinations we will create some example data.

training_wordlists <- rbind(c("hamate", "kanabu", "delu"), c("pameti", "penaPo", "telu"))
training_wordlists

[,1] [,2] [,3]
[1,] "hamate" "kanabu" "delu"
[2,] "pameti" "penaPo" "telu"

The next step is to perform the simulation process described above to generate a list of unique
alignments. In the following series of commands, generate_training() will return an R object that
will be used internally during the optimization process. However, specifying the optional table =
TRUE parameter will export a file named ‘candidate_alignments.csv’ to the working directory that can be
used to create a spreadsheet for manually identifying the best alignments.

training_set <- generate.training(raw.data = training_wordlists, search.size = 10,
table = TRUE)

Typically, each cognate pair can generate 3-6 unique alignments. But long words contain more
phonemes and therefore comparisons between long words will result in a greater number of possible
alignments, and in rare cases some cognate pairs can generate 17 or more. When this procedure is
used, the list of possible alignments is then provided as a spreadsheet to a trained linguist for manual
evaluation (Table 2). Minimally, this requires identifying the “best” of the provided alignments based
on the rules of phonology and knowledge of the languages. The linguist’s decisions are then provided
to the GA as a vector indicating the numeric index of the “best” alignment. These are subsequently
used in the optimization process. The following configuration initializes 200 populations and instructs
the GA to run 50 iterations and return a list of feature weights. These parameters are designed to
run quickly for demonstration purposes, and therefore the following optimization examples do not
converge. More realistic parameters may run slowly.

linguist_determinations <- c(2, 1, 2)
optimal_set <- optimize.features(set = training_set, ranking = linguist_determinations,

num = 200, step = 50, replication = 3)
optimal_set
[1] 69 41 47 12 40 65 71 43 48 20 54 76 51
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Alignment No. Cognate pair 1 Cognate pair 2 Cognate pair 3

hamate kanabu delu
pameti penaPo telu

1 | - h a m - a t - | e | - - k a n a - b u | - | - d e l u |
| p - a m e - t i | - | p e - - n a P - - | o | t - e l u |

2 | - h a m - a t e | | k - a n a - b u | - | d e l u |
| p - a m e - t i | | p e - n a P - - | o | t e l u |

3 | h a m - a t - | e | k - a n a - b u |
| p a m e - t i | - | p e - n a P - o |

4 | h a m - a t e | | k - a n a b - | u
| p a m e - t i | | p e - n a P o | -

Linguist’s Choices 2 1 2

Table 2: Manual alignment determination worksheet

By default, optimize.features() returns a vector containing the optimized feature weights, but
when list = TRUE the returned object can be used with the features.plot() function to generate a
multi-panel plot showing the results of the optimization process (see Figure 3).

optimal_set <- optimize.features(set = training_set, ranking = linguist_determinations,
num = 200, step = 50, replication = 3, list = TRUE)

features.plot(optimal_set) # not shown, but see Figure 3.

As noted above, the GA can be computationally intensive and may require replicates. Therefore
it may be necessary to perform multiple runs. The following code illustrates this using a single
processing core.

reps <- 4
MultiOptResult <- matrix(NA, nrow = reps, ncol = 13)
for (i in 1:reps){

MultiOptResult[i,] <- optimize.features(set = training_set,
ranking = linguist_determinations, num = 200, step = 50, replication = 3)

}
round(apply(MultiOptResult, 2, FUN = median)) # optimized feature weights
[1] 53 20 32 22 63 70 52 68 47 71 42 47 70

Here we show how to parallelize feature optimization using the doMC package (Revolution
Analytics and Steve Weston, 2015).

# ...replicate using parallelization (OSX/linux)
library(doMC)
registerDoMC(cores = 4)
reps <- 4
MultiOptResult <- foreach(i = 1:reps, .combine = rbind) %dopar% {

optimize.features(set = training_set, ranking = linguist_determinations, num = 200,
step = 50, replication = 3)

}
opts <- round(apply(MultiOptResult, 2, FUN = median)) # optimized feature weights
names(opts) <- names(formals(raw.alignment)[-1])
opts
[1] 61 92 51 26 54 38 20 40 31 38 66 72 60

Finally, we illustrate how to pass the results from the optimization process in opts to aline(), and
the effects on the resulting ALINE distances.

list1 <- c("batu", "k@rampuU")
list2 <- c("batu", "l@m@ntUN")

aline(list1, list2)
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[1] 0.0000000 0.4864198 # with default feature weights

args <- c(list(w1 = list1, w2 = list2), opts) # construct nested list for do.call()
do.call("aline", args)
[1] 0.0000000 0.5506173 # optimized Aline distances

Results

The alineR package redistributes a modified version of the original C++ ALINE code, and we main-
tained the original feature weight values originally used by Kondrak as defaults. Therefore, when the
aline() function is used without providing optional feature weight parameters, the default perfor-
mance should be equivalent with Kondrak’s original algorithm. In this section we present the results
of analyses we conducted to validate and test our GA optimization process. We do this by making an
explicit comparison of the default performance of the ALINE algorithm provided in alineR (which is
equivalent to the original C++ version of ALINE) to its performance using optimized parameters.

Genetic algorithm validation

First, we use a simulation experiment to validate that our algorithm converges under ideal condi-
tions. We randomly simulate linguistic parameters and generate alignments for our data set that
we designated as “correct” and then used the GA to estimate these values. The results are shown
in Figure 2A. Under these conditions, the GA quickly converges and returns linguistic parameter
values that correctly align all the cognate pairs in the training set. Figure 2B also shows results from a
proof-of-concept trial of the supervised learning methodology, which we described in the next section.

Figure 2: Genetic algorithm convergence plots showing (A) GA convergence using 100 simulated
feature parameter sets. In all cases, the GA discovers parameters that could replicate the optimal
alignments determined by the simulated parameter values; (B) GA performance estimating unknown
parameter values using alignments determined manually by a trained linguist; (C) the alignment
performance of the default parameter values when compared to manual determinations. In all cases
the GA was run with a population of 100 and for 100 iterations to ensure convergence; only time steps
1-50 are plotted here.

Supervised learning with Indonesian languages

The overall goal of the optimization methodology is to determine whether our procedure can effectively
estimate linguistic alignment parameters using real word lists with meaningful phonetic patterns.
The reason this is important is because the frequency of linguistic features is expected to vary among
languages or groups of languages so the optimal weighting parameters may also vary (Kondrak,
2003). As a proof-of-concept, we analyze word lists that were collected on the island of Sumba in
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Eastern Indonesia (Lansing et al., 2007). The data set includes 11,515 unique words organized in a
matrix consisting of 56 word lists and 439 cognates. Even though this sample includes a relatively
small number of languages, there are approximately 12,000 unique pairwise cognate comparisons.
To generate a training data set, we used a stratified framework to sample 203 cognate pairs from the
database that are broadly representative of local phonemic complexity and submitted this data set
to the linguist for manual alignment determinations. Strata were defined using the proportion of
cognate pairs with each number of alignments (1-5) throughout the complete database. A historical
linguist (Norquest) determined the “best” alignment for a sample of cognate pairs by manually
examining each word pair and choosing from the list of candidate alignments. These determinations
were made qualitatively, based on detailed knowledge from our previous study of the historical
relationships among these languages, including sound changes, drift, and inheritance. We then
analyzed the performance of the default ALINE parameters for identifying the best possible alignment
and compared it to the performance of optimized parameters determined by the genetic algorithm
and the supervised learning methodology outlined above. The results of the supervised learning
procedure are shown in Figure 3.

Figure 3: Distribution of optimized feature weights

Alignment accuracy using optimized and default weights

We analyze the ability of the GA to estimate unknown parameters using the alignments manually
selected by the linguist. Figure 2 shows that GA performance converges at a lower level when
analyzing these alignments. However, suboptimal performance is expected because the manual
coding process necessitates trade-offs between optimal features for aligning any given cognate pair
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and the optimal values for the entire training set. Nevertheless, we find that the optimized parameters
performed better than the default parameters. Since the ALINE algorithm encodes linguistic rules, it is
expected to achieve a certain number of correct alignments regardless of parameter weights. We find
that this is the case: the median number of correct alignments using simulated random parameters
is 19, while the default parameters achieve 118 correct alignments, and the optimized parameters
achieve 158. Thus, our results show that in comparison to randomly selected feature weights, the
optimal feature weights are approximately 29% more accurate than the defaults.

Statistical analysis of optimized and default weights

Next, we test whether the difference between the parameter estimates from the GA and the default
values are statistically significant. The population of optimized candidate parameter values from the
GA is used to determine empirical distributions for each linguistic parameter and to calculate the
probability for each. The default values, median estimated values, and probabilities are reported in
Table 3. We find 9/13 features differed from the default values. We include α ≤ .10 because of the size
of the training sample – a larger data set is expected to return even more significant results. Regardless
of sampling, it is expected that not all features would be significant in a given language family because
certain features are more important than others for classification tasks (Kondrak, 2003). In two cases
(aspirated, long), the estimated parameters differ significantly from the defaults based on the empirical
distributions, but in these cases the algorithm is not sensitive to these parameters, most likely because
those features are not prominently represented in the training data set.

Parameter Default Optimized Pr(X<>x)

Syllabic 5 3 *** 0.0022
Place 40 38 ** 0.0108
Stop 50 26 *** < 1.0−16

Voice 10 18 * 0.0506
Nasal 10 8 * 0.0626
Retroflex 10 9 0.6972
Lateral 10 14 0.4710
Aspirated 5 52 * 0.0946
Long 1 52 ** 0.0194
High 5 9 *** 0.0004
Back 5 0 0.1580
Round 5 9 0.1762
Skip 10 0 *** < 1.0−16

Sig. levels: α ≤ .01 (***); α ≤ .05 (**); α ≤ .1 (*)

Table 3: Summary statistics for a population of optimized parameters

Cross-validation

To determine whether the resulting optimized parameters can correctly align reserved data, we use
leave-one-out cross-validation. We iteratively optimize parameters using 202/203 of the cognate pairs
from the training data such that each cognate pair is reserved once. After each iteration, the optimized
parameters are used to align the reserved pair and a success is recorded when the automated alignment
matches the linguist-determined alignment. In this binary classification routine the default parameters
successfully predicted 118/203 (58%) of the manual determinations and the optimized parameters
predicted 151/203 (75%).

Statistical analysis of distances generated with optimized and default weights

Finally, to determine whether optimizing parameters affects the linguistic distance measurements, we
analyze the distribution of the pairwise differences between the distances calculated by the optimized
and default parameters. A Wilcoxon signed rank test for paired samples finds that the median
optimized distance is 0.0096 greater than the default median and that this difference is statistically
significant (Mo = 0.1896, Md = 0.1800, V = 9247, p < 2.612 × 10−07). We also note that there are
instances when the difference between the default and optimized distances is less than 0. This suggests
that optimizing linguistic parameters may have nonlinear effects on the resulting distances.
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Future research: potential synchronic uses for alineR

Although our work has been used primarily for diachronic applications (the generation of phylogenetic
trees), it has potential synchronic applications as well.1 One potential use involves the computation of
what are known as phonological neighbors – words which are similar to a target word but differ from
that target by a single phoneme. The total number of words fitting this definition can be described as a
phonological neighborhood. A word’s neighborhood size can affect the way we understand and use
it. When we hear a word, everything that sounds like that word becomes slightly more accessible in
memory. It therefore takes listeners longer to determine what a word is when that word has several
neighbors (Luce and Pisoni, 1998). Take, for example, the phonological neighborhood of cat, where
each word in the neighborhood differs from cat by a single phoneme (either consonant or vowel):

cat cab, cad, can, cam, cap, cart, cash, catch, caught, coat, cot, court, cut, bat, chat, fat, hat, kit, kite,
mat, pat, rat, sat, that

With a large neighborhood such as the one above, it is more difficult to eliminate the words that
were not said; cot or cap for example, rather than cat. A word like green, which has fewer neighbors
than cat, is less confusable, and thus requires less work to identify:

green grain, gran, greed, grief, grease, Greece, Greek, greet, grin, grown, groan

While phonological neighbors can be viewed in terms of differing segments, a finer-grained
analysis may also break these segments down into phonological features. For example, cad differs
from cat by one feature: voicing in the third segment. On the other hand, cab differs from cat in both
voicing and place of articulation of the final segment. Likewise, grain differs from green by one feature
in the vowel (height), but groan differs from green by three features (height, backness, and rounding).

As a feature-driven algorithm, ALINE could allow the members of a phonological neighborhood
to be mapped in a quantitative way based on phonological distance. The resulting neighborhood maps
can then be used in psycholinguistic experiments, testing the hypothesis that phonological distance
between neighbors at the feature level correlates with both access times and production values.

Another way in which ALINE could be used synchronically involves certain kinds of speech
errors and neologisms. Strictly phonological errors include metathesis, sound-exchange errors, and
spoonerisms. These are all instances in which the linear order of a pair of phonemes is reversed, as in
the examples below:

Metathesis pus pocket > pos pucket

Sound-exchange error night life > knife light

Spoonerism light a fire > fight a liar

Other forms of phonological errors include additions and deletions:

Addition optimal > moptimal

Deletion unanimity > unamity

Still other forms include anticipation and perseveration, where a phoneme (or sequence of
phonemes) in one word influences the articulation of another word in the same phrase:

Anticipation reading list > leading list

Perseveration black boxes > black bloxes

With ALINE’s feature-driven alignment capabilities, and given an adequate corpus of errors,
generalizations could be quickly drawn about both the position of errors within the word as well as
the frequency with which various phonemes participate in unitary instances as well as in pairs.

A final example, which occurs in both speech errors and intentional neologisms, is what are known
as blends:

channel x tunnel > chunnel
breakfast x lunch > brunch
The ALINE algorithm could foster some unique insights in these cases. In unmarked blends such

as chunnel and brunch, the initial part of the first donor word (the onset of the initial syllable in these
cases) replaces the same in the second donor word. On the other hand, in the unintentional blend
perple, an entire syllable is copied from the first donor word:

1We would like to thank an anonymous reviewer for suggesting the inclusion of this section.
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person x people > perple
At first it is not clear why this example differs from the ones given above. However, one fact which

stands out is that the initial consonant [p] is common to both of the input forms as well as the output
form (a fact which would be reflected in the output score of an ALINE comparison). Since both donor
words have the same initial consonant, if the same rule was applied here which operated in the chunnel
and brunch examples, the hypothetical blend would be indistinguishable from the second donor word:

person x people > people
A more ambiguous case is that of motel, where the blend contains two phonemes (a vowel and a

consonant) which are shared between the donor words:

motor x hotel > motel
An ALINE analysis would indicate this ambiguity via the output score which correlates with the

shared material overlapping between the two donor words.

ALINE could therefore be used to quickly analyze and categorize different kinds of blends
(particularly in the case of a large corpus), with an eye toward answering questions such as what
determines the size of the constituents of a blend (how many segments or syllables are copied from the
donor words to the blend), what determines the type of constituents in a blend (i.e. are they syllable
onsets, full syllables, and so on), and what role segmental overlap plays in blend formation. While an
analysis of these phenomena lies outside the scope of this paper, given the appropriate type and size
of corpi, we consider the examples above to be fruitful prospects for future research in phonology and
psycholinguistics.

Conclusion

In conclusion, alineR is a new R package for calculating and optimizing feature-weighted linguistic
distances. It is now available on CRAN. Supplemental materials accompanying this paper include
an R script (‘downey.R’) for the commands and analyses included above. The linguistic data from
Sumba used for training the GA is in the train object in ‘downey.Rdata’. We suggest that optimized
feature-weighted linguistic distances are an important complement to other linguistic distances such
as the edit or Levenshtein distance. In addition to calculating the ALINE distance and returning
relevant alignment information and similarity scores, the package provides a genetic algorithm that
can be used to estimate linguistic parameters using supervised learning. It may be particularly useful
for bioinformatic applications in anthropology and historical linguistics or in comparisons with well-
resolved quantitative distance measurements (e.g., Fst). As such, it has the potential to help advance
our understanding of the evolutionary relationships between languages and genetics. Not only can
this help uncover historical demographic patterns, but coevolutionary analyses using the ALINE
Distance may provide insight into general processes of biological and cultural evolution.
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