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HRM: An R Package for Analysing
High-dimensional Multi-factor Repeated
Measures
by Martin Happ, Solomon W. Harrar, Arne C. Bathke

Abstract High-dimensional longitudinal data pose a serious challenge for statistical inference as many
test statistics cannot be computed for high-dimensional data, or they do not maintain the nominal
type-I error rate, or have very low power. Therefore, it is necessary to derive new inference methods
capable of dealing with high dimensionality, and to make them available to statistics practitioners.
One such method is implemented in the package HRM described in this article. This new method
uses a similar approach as the Welch-Satterthwaite t-test approximation and works very well for
high-dimensional data as long as the data distribution is not too skewed or heavy-tailed. The package
also provides a GUI to offer an easy way to apply the methods.

Introduction

Repeated measures designs appear in many different situations. In clinical studies, physicians might
be interested in the effect of different treatments over time. Typically, a univariate or multivariate
measurement is observed over a period of time for each subject. The subjects can be separated into
different disjoint groups and can often be assumed not to influence one another. That is, observations
on different subjects are considered independent. We refer to factors whose levels contain different
sets of subjects as whole-plot or between-subjects factors. On the other hand, the time factor is a
typical sub-plot or within-subjects factor because it structures the observations within individual
subjects. Observations on the same subject may be dependent, and for different level combinations
of the whole-plot factors, different types of dependence may be assumed. However, within a group
defined by a factor level combination or cell, the observation vectors are modeled as coming from the
same multivariate distribution. In particular, the dependence structure is the same for all subjects
within such a cell.

Let us first consider a simple, additive model for univariate repeated measures data with different
groups. This model already allows for different variances in different cells, as described above, but it
is not sufficiently general regarding the dependence structures that are encompassed, and therefore
a more general model will be considered later. An additive model for repeated measures could be
written as

Yijk = µij + Aik + εijk,

where Yijk is the observation on subject (k) in group (i) at time point (j). It is decomposed additively
into the population mean µik in group (i) for time point (k), and two random components. Namely,
Aik ∼ N(0, τ2

i ) is the specific effect for subject (k) in group (i) and εijk ∼ N(0, σ2
i ) is an additive

random error term whose variance may depend on the group. All random variables εijk and Aik
shall be assumed independent. Such a model formulation results in a covariance structure where
observations on different subjects, that is, with different index pair (i, k), are independent, and
observations Yij1k and Yij2k on the same subject (k) in group (i) all have the same variance σ2

i + τ2
i ,

as well as the same covariance τ2
i , no matter the value of their indices j1 and j2. In other words, the

correlation ρij1k,ij2k = τ2
i /(σ2

i + τ2
i ) between two observations does not depend on their time distance

|j1 − j2|.
For other dependence structures the correlation may decrease if two observations are further apart.

Such dependence models are certainly possible and sometimes justified. By inspecting the compound
symmetry structure above more closely, we also observe that also differences of two observations have
the same variance independent of the choice of time points. Indeed, this property is generally referred
to as sphericity. Therefore, the compound symmetry covariance structure is a special case of sphericity
(see e.g., Bathke et al. (2009)).

Box (1954a,b) (or in more detail Huynh and Feldt (1970)) showed that the simple F-test is no longer
valid when sphericity of the covariance structure cannot be assumed. In lower-dimensional situations,
classical corrections such as the Greenhouse-Geisser (Geisser and Greenhouse, 1958; Greenhouse and
Geisser, 1959) or Huynh-Feldt (Huynh and Feldt, 1976; Lecoutre, 1991) methods for the repeated
measures ANOVA can be used when the covariance matrix sphericity assumption is violated. However,
the performance of tests using the Greenhouse-Geisser or Huynh-Feldt corrections heavily depends
on the actual underlying covariance structures as both have been derived under the assumption of
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homoscedasticity across the levels of the between-subjects factor, which is very often not justifiable in
practice. In other words, they assume that the variance-covariance structure between the repeated
observations is the same for each cell. This assumption is rather restrictive, in particular in the presence
of high dimensionality of the data vectors, and therefore a more general model is needed. In a classical
MANOVA-design or repeated measures design, this problem was already tackled by Harrar (2009);
Chen et al. (2010); Konietschke et al. (2015); Pauly et al. (2015); Harrar and Kong (2016); and Bathke
et al. (2018), among others.

Here, and in the following, high-dimensionality of repeated measures means that the number
of repeated measurements (d) per subject is larger than the sample sizes (ni) in group (i) (d > ni).
Methods that rely on the inverse of an empirical variance-covariance matrix cannot be calculated in
this situation. A well-known example is Hotelling’s T2 test for multivariate data which can be used
to test for simple treatment effects, that is, for the hypothesis that expectation vectors are the same
for all groups. In a high-dimensional setting, the empirical variance-covariance matrix is singular,
rendering Hotelling’s T2 unusable. Alternative test statistics that can in principle still be calculated
for high-dimensional data include the ANOVA type statistic (Brunner et al., 1997; Brunner and Puri,
2001). Also, the Greenhouse-Geisser and the Huynh-Feldt correction for the repeated measures
ANOVA can technically be computed, but they do suffer from the limitations mentioned before, and
the performance of all three approaches deteriorates with increasing dimensionality (see, e.g., the
simulation results in Happ et al. (2016)). Another possible approach for high-dimensional data is
presented by the procedure proposed by Secchi et al. (2013), however this requires strong assumptions
on the covariance matrices. Specifically, when we denote with Σi the d× d dimensional variance-
covariance matrix for the i-th group, then the assumption from Secchi et al. (2013) can be formulated
as

0 < lim
d→∞

tr
(

Σk
i

)
d

< ∞

for k = 1, 2, and 4 and for all groups i = 1, . . . , a. Similar assumptions have also been used by
Srivastava (2007); Srivastava and Yanagihara (2010); Chen et al. (2010) or Harrar and Kong (2016) and
these assumptions were discussed in Pauly et al. (2015). For practical applications, it may be difficult
to verify this assumption.

The method implemented in the package HRM does not assume any particular covariance struc-
tures (Happ et al., 2016, 2017), neither homoscedasticity across the between-subjects factor levels, nor
sphericity regarding the levels of the within-subjects factor. In particular, no compound symmetry
is assumed. Also, it does not require a stringent covariance assumption as in Secchi et al. (2013) or
Srivastava and Yanagihara (2010). It is therefore rather general. A limitation exists, however, for this
method. The theory has been derived under the asumption of normal errors. While it performs well
empirically for a wide range of simulated data distributions, including discrete data, we recommend
caution when the data is very skewed or heavy-tailed. For details, see Section 2.6.

In the following subsection, we will describe the model that is underlying the HRM package.
Here, it will become clear that this model allows for rather general covariance structures, rendering
the associated R package applicable for a wide range of high-dimensional data sets.

Statistical model

Consider a setting with two whole- and two sub-plot factors. Models for other designs can be
formulated analogously. We refer to the whole-plot factors as A and S (e.g., group and subgroup)
and to the sub-plot factors as C and D, respectively. For example, in the EEG data in Section 2.5, the
sub-plot factors are variable and region. The observations are represented by independent random
vectors

Xijk =
(

X′ijk11, . . . , X′ijkbc

)′
∼ N

(
µij, Σij

)
.

Here, Xijk is the d = b × c dimensional data vector of the k-th subject in the i-th group and j-th
subgroup for i = 1, . . . , a and j = 1, . . . , s. Note that we do not impose any special dependence
structure on the covariance-matrices Σij.

Accordingly, the factors A, S, B, and C have a, s, b, and c factor levels, respectively. The sample
size in the i-th group and j-th subgroup is denoted by nij. Overall, there are N = ∑

i,j
nij experimental

units. Our hypotheses of interest concern interaction effects between two or more factors, and main
effects of a single factor. They can all be formulated as quadratic forms using appropriate projection
matrices Kφ which depend on the respective hypothesis of interest φ, namely

H0(φ) : µ′Kφµ = 0.
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In a setting with only one whole- and one sub-plot factor with a and d factor levels (group and time),
this projection matrix is simply given by a Kronecker product of two matrices, that is Kφ = Wφ ⊗ Sφ.
If we want to test for the main group effect, we choose Wφ = Pa and Sφ = 1/d Jd where Pa is the
a× a dimensional centering matrix and Jd is the d× d dimensional matrix whose entries are all equal
to 1. With the latter matrix, we average over the sub-plot factor, and the former matrix centers a vector
by subtracting its mean from all components of the vector. If we want to test for an interaction effect,
we use for both Wφ and Sφ a centering matrix and if we want to test only for the main time effect we
simply use Wφ = 1/a Ja and Sφ = Pd. The corresponding test statistic is then constructed as

T (φ) :=
X̄ ′KφX̄

tr
(

Σ̂φ

) ,

where

Σ̂φ = Kφ

 a⊕
i=1

s⊕
j=1

1
nij

Σ̂φ

 ,

X̄ is the as× d-dimensional vector containing the means of all groups at each time point, and Σ̂φ is
the empirical variance-covariance matrix for the i-th group. In general, we do not know the exact
distribution of T(φ), but we can approximate the sampling distribution of T(φ) under null hypothesis
by an F-distribution with estimated degrees of freedom f̂ and f̂0. We refer to Brunner et al. (2012);
Happ et al. (2016, 2017) for details regarding this so-called Box approximation and in particular the
estimation of the degrees of freedom.

Note that this method only provides an approximation to the sampling distribution. Although
it generally performs well, it is not asymptotically exact. There are asymptotic tests such as those
proposed by Pauly et al. (2015) or Sattler and Pauly (2017), converging under some assumptions such
as min{ni, i = 1, . . . , a} → ∞ and they also provide a small sample size approximation. Similar to the
aforementioned papers, an advantage of the approximative method in HRM is that it is working very
well even for rather small sample sizes.

The R package HRM

In the R package HRM, the test statistic is implemented for designs described in Section 2.2. It is
possible to use tests with up to four factors (at most two whole-plot or three sub-plot factors). Two S3
methods are provided to facilitate different data input formats. Both S3 methods can be called by the
generic function hrm_test. The data can either be provided in the wide table format where each row
represents the observations from one subject. This means that for each group, all observations have to
be stored in a matrix. Then the matrices from all groups need to be elements of a list. This method
only supports one whole- or one sub-plot factor, that is, a maximum of two factors can be used.

The other way is to provide the data in the long table format as a data frame. Here, all observations
are in stored in one column. The other columns of the data frame specify the factor levels to which an
observation belongs. For this type of data, at least one whole- and one sub-plot factor have to be used
and they support in general up to two whole- and two sub-plot factors. There is also the special case
of one whole- and three sub-plot factors implemented.

Depending on the type of data that is given as an argument to hrm_test, either the S3 method
hrm_test.list or hrm_test.data.frame is internally called. We will give now a short description of
these two S3 methods.

Methods

The S3 method hrm_test.list has two parameters, data and alpha. The second parameter has
its default value set to 0.05 and specifies the type-I error level of the procedure which is used for
calculating the critical value for the test procedure. The first parameter is a list containing the data in
the wide table format for all groups. That is, the list has the structure

data <- list(group_1, group_2, ..., group_a),

where group_i is the data for the i-th group in the wide table format (the repeated measurements are
the columns). Clearly, this method only works with one whole- and one sub-plot factor.

The method hrm_test.data.frame can be used for designs with up to two whole- and three
sub-plot factors, but it is limited to a maximum number of four factors. The parameter data needs
to be a data frame containing the data with the aforementioned columns. Similar to the method
hrm_test.list we can also specify the nominal type-I error rate by using the parameter alpha. The
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method hrm_test.data.frame needs a formula object. These are special R objects that allow to write a
statistical model in a compact way and is used by many R packages. Let us assume the model

Yijk = µij + εijk = αi + β j + γij + εijk,

where Yijk is the observation at time j for subject k in the i-th group and εijk is the measurement error.
The influence of the whole-plot factor is described by α and of the sub-plot factor by β. We denote by
γ the interaction between these two factors. To write this model in a compact way in R we can use the
formula

response ~ whole-plot factor * sub-plot factor.

Here the expression on the left-hand side of ∼ is the response variable. It is explained by the variables
on the right-hand side. The symbol * means that the interaction term γij is also included in the model,
that is µij = αi + β j + γij. Therefore main effects and the interaction effect are included in the model.
This formula is equivalent to

response ~ whole-plot factor + sub-plot factor
+ whole-plot factor : sub-plot factor,

where : specifically denotes for the interaction effect. Hence the ∗ notation is an abbreviation for
adding main and interaction effects. If we are only interested in the main effects then we could use the
formula

response ~ whole-plot factor + sub-plot factor,

or alternatively if we are only interested in the interaction effect, our formula has the form

response ~ whole-plot factor : sub-plot factor.

For the method hrm_test.data.fram we also need to specify the column name for the subjects. This
column name needs to be a character. Otherwise an error message is returned by the method.

All these methods previously described return an HRM object which contains a list consisting of
the results in a data.frame, the formula, the type-I error, the subject column name and the column
names of the whole- and sub-plot factors which are used, and the data used for testing.

In the special case when only one whole- and one sub-plot factor is used, it is possible to plot
the so-called profile curves. In each group i = 1, . . . , a, the mean x̄it is calculated at each time point
t = 1, . . . , d. Then, the points (1, x̄i1), . . . , (d, x̄id) are plotted for all groups i = 1, . . . , a. An example
can be seen in Figure 3. For plotting these curves, the S3 method plot.HRM is available. It needs an
object of class "HRM" which is returned by the function hrm_test. Additionally we can change the
labels for the x-axis and the y-axis with the parameters xlab and ylab respectively. Furthermore, it
is possible to disable the legend by setting the argument legend = FALSE, the title for the legend
can be changed with the argument legend.title. By setting legend.title = NULL, no legend title
is displayed. Internally, this method is only a ggplot2 wrapper (Wickham, 2009). If there is only one
sub-plot but no whole-plot factor used, it is still possible to plot profile curves (see for example Figure
5).

For objects of class "HRM", there are also the methods print.HRM and summary.HRM available. The
first method just reproduces the standard output from hrm_test whereas summary.HRM lists addition-
ally the whole- and sub-plot factors which were used in the model.

To improve the performance in case of a large dimension, this package uses mainly the dual
empirical variance-covariance matrices (Brunner et al., 2012; Happ et al., 2017). Because the trace
function is invariant under cyclic permutations, the empirical d× d variance-covariance matrix can be
reduced to an ni × ni matrix. This is especially useful if d >> ni, where ni is the sample size in the i-th
group. Another improvement is to use

tr
(

Σ̂iΣ̂j

)
= 1′d

(
Σ̂i ∗ Σ̂

′
j

)
1d

for calculating the trace of a matrix product, where ∗ is the Hadamard-Schur product. The effects
of these two improvements are only noticeable for calculating a single test statistic if d is very large
(d > 1000).

An additional enhancement for high-dimensional data is achieved by using the method hrm_test.list
instead of hrm_test.data.frame. Although it can sometimes be convenient to use the long table for-
mat in a data frame, for computing the degrees of freedom and the test statistic, the data has to be
separated internally by the whole-plot factors. This procedure can be quite time consuming for very
large datasets (dimension d > 105 and number of subjects > 100) if the data structure "data.frame" is
used. The problem in this case is that the data structure "data.frame" is not suitable for large data
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dimension d data.frame data.table

105 224.17 0.64
2× 105 1411.93 1.07

Table 1: Running times in seconds for converting a wide table into a long table for 100 subjects.

sets. But most functions that import data into R return a "data.frame" object. In such a case, it is
beneficial to provide the data already separated by the whole-plot factors in a list. This can be done
with the method hrm_test.list. One disadvantage by using this method is, that it is currently not
possible to specify more than one whole- or sub-plot factor. Another way to solve this problem is
to convert the "data.frame" object into a "data.table" object (from package data.table (Dowle and
Srinivasan, 2017)) which is specifically developed for large data sets. But the syntax for a data.table
is completely different from a data.frame and their syntax is also not compatible with each other. In
order to demonstrate the effect, we ran a small simulation with d = 105 and n = 100. Here, it takes
about 4 minutes to convert a data.frame from the wide to the long table format and when we used a
data.table it takes under 1 second to do the same (see Table 1). By increasing the dimension, the time
it takes for the conversion increases exponentially if you use a data.frame. For this simulation we used
the the function Sys.time to measure the calculation time and repeated each calculation five times.
Note that the time needed for rearranging the data heavily depends on the computer on which the R
script runs. In our case, we employed a computer with an AMD Ryzen 5 1600 CPU (6× 3.2 GHz) and
16GB DDR-4 RAM (2800 MHz). Therefore the results from this simulation cannot be generalized but it
can be an indication that a data frame should not be rearranged if the dimension is large. Therefore,
using the method hrm_test.list may help to avoid this additional step of converting your data frame
into a "data.table" object.

Graphical user interface

For more convenient access to the package’s capabilities, a graphical user interface (GUI) can be used
by typing the command hrm_GUI() into the R console. A window opens where the data file (long
table format) can be loaded and viewed. This window is shown in Figure 1. After typing the formula
as described before and selecting the column identifying the subjects, the results can be displayed
in a separate window. Optionally, the results can be saved as a LATEX-table or just as plain text. For
each hypothesis test, the degrees of freedom of the F approximation, the value of the test statistic, the
critical value for the test, and the p-value are displayed. An example of the results window for the
EEG data is shown in Figure 2. This data set contains of 160 subjects who have been divided into
one of four diagnostic groups (whole-plot factor). For each subject 40 measurements from an EEG
are available (sub-plot factor). This example is explained in more detail in Section 2.5.1. In the results
window are the test statistics along with the degrees of freedom and p-values for main and interaction
effects displayed.

If only one whole- and one sub-plot factor is being used, the profile curves of the groups are
displayed as a graphic in a separate window. The plot can be saved in the pdf format.

The GUI relies on the function hrm_test for doing the analysis and plot.HRM for creating the plot
as shown in Figure 3. That is, there is no difference between using the GUI or using both generic
functions directly. For creating the GUI, the RGtk2 package is used (Lawrence and Temple Lang, 2010).
This package allows us to utilise the cross-platform widget-toolkit GTK+ with R. The current version
2.20.34 of this package cannot be installed on macOS, therefore the GUI for the package HRM does
not work on macOS.

For opening data files, we rely on the functions provided in the package tcltk to ensure that this
procedure works on multiple computer environments. For viewing the data we utilise the package
RGtk2Extras (Taverner et al., 2012) which provides a very easy way do display and manipulate data in
a GUI. The packages cairoDevice and ggplot2 are used for plotting (Lawrence, 2017; Wickham, 2009)
profile curves. Similar as before, we have to avoid functions that only work for a specific computer
environment. Therefore we work with the package cairoDevice which is capable of displaying a
graphic in a window and does not depend on a specific computer environment. For saving the results
of the function hrm_test as a LATEX-table, we are using the package xtable (Dahl, 2016) which converts
a data.frame into the corresponding LATEX code for a table.

Because of the limitation of RGtk2, the GUI does not work on macOS (OS X 10.11.6). But the
package HRM itself can be installed on macOS and the function hrm_test can be run regardless.
Apart from that, the GUI works on all other newer operating systems (for example Debian 7.3.0-12 or
Microsoft Windows 7, 8, 10).
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Figure 1: GUI for the HRM package. The data can be loaded either by clicking ’Open File’ in the
toolbar or by clicking on the button ’Load Data’ next to the textfield for the file path. The formula has
to be specified in the appropriate textfield and the subject column needs to be chosen in the dropdown
list.

Examples

EEG Data Example

In order to demonstrate how to work with the package, we use the EEG data from Staffen et al.
(2014) which is included in the HRM package. There are 160 subjects who have been diagnosed
with Alzheimer’s disease (AD), mild cognitive impairments (MCI), or subjective cognitive complaints
(SCC+ or SCC–). For each subject, four variables (activity, complexity, mobility and brain rate) are
measured at 10 different brain regions (frontal left/right, parietal left/right, central left/right, temporal
left/right, and occipital left/right). We are using the diagnostic groups and sex as whole-plot factors,
and the region and variable as sub-plot factors. Sample sizes are given in Table 2. In all combinations
of diagnostic group and sex the dimension is larger than the sample size, therefore this is considered a
high-dimensional setting.

Sex AD MCI SCC+ SCC-

male 12 27 14 6
female 24 30 31 16

sum 36 57 45 22

Table 2: Sample sizes for the EEG data.

To perform the analysis we are using the graphical user interface and the R console. The commands

# Save EEG data from package HRM
write.table(EEG,

file = "EEG.csv",
sep = ",",
dec = ".",
col.names = TRUE)

# Open the GUI
hrm_GUI()

will load the package and save the EEG data in a ‘.csv’ file in the current working directory. The last
line launches the GUI (see Figure 1). By clicking on the ’Open File’ button we can select the ‘EEG.csv’
file we previously saved. Depending on the data, we may have to change the separator mark, decimal
mark, or deselect that the file contains header. This can be done in the fields below the textfield for
the file path. We can look at the data by clicking on the button ’View Data’ in the toolbar. A new
window is created displaying the data we have just loaded (seen in Figure 4). The data consists of
columns specifying the whole-plot (group, sex) and sub-plot factors (variable, region). Additionally,
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Figure 2: Results for the EEG data. The results can be saved as a LATEX table by clicking on the button
on the bottom or in the toolbar.

one column contains the response variable from each person (value) and the subject column identifies
the subjects. A unique identification of the subjects is necessary to determine automatically within the
function hrm_test which factors are whole- and which are sub-plot factors. By combining the factors
region and variable into just one factor, we obtain a new factor which we will simply call dimension.
It is provided in the column with the same name.

Another way to look at the data is by using the command

View(EEG)

which will also display the complete data set. After we have loaded and looked at the data we need to
specify the formula in the GUI. In this example, the formula is given by

value ~ group * sex * region * variable

which means that for the four factors tests for main and interaction effects will be performed. If we
were only interested in testing the main effects we could use the formula

value ~ group + sex + region + variable

where we are using + instead of *. If we simply want to test interaction effects we could use : instead.
In addition to specifying the formula, we need to select which column identifies the subjects. This is
done by selecting the ’subject’ column in the dropdown list. To perform the tests, we simply click on
the ’Ok’ button on the bottom of the window or the ’Get Results’ button in the toolbar. A new window
(see Figure 2) will open which contains the results of the performed tests. For each tested hypothesis,
the degrees of freedom, the value of the test statistic, and the p-value are displayed. Above the results,
a summary about the factors used in the analysis is provided. To perform these tests manually, we
may use the commands

r <- hrm_test(formula = value ~ group*sex*region*variable,
data = EEG,
subject = "subject")

library(xtable)
print(xtable(r$result), include.rownames = FALSE)

% latex table generated in R 3.4.1 by xtable 1.8-2 package
\begin{table}[ht]

\centering
\begin{tabular}{lrrrrrl}

\hline
hypothesis & df1 & df2 & crit & test & p.value & sign.code \\
\hline
group & 3.04 & 116.29 & 2.67 & 1.66 & 0.18 & \\
sex & 1.00 & 116.29 & 3.92 & 6.05 & 0.02 & * \\
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Figure 3: Profile Plot for the EEG data. The image can be saved by clicking on ’Save File’.

region & 5.59 & 246.82 & 2.18 & 196.60 & 0.00 & *** \\
variable & 1.51 & 178.72 & 3.36 & 4930.69 & 0.00 & *** \\
group:sex & 3.04 & 116.29 & 2.67 & 0.18 & 0.91 & \\
group:region & 14.09 & 246.82 & 1.73 & 0.80 & 0.67 & \\
group:variable & 4.52 & 178.72 & 2.33 & 3.34 & 0.01 & ** \\
sex:region & 5.59 & 246.82 & 2.18 & 0.99 & 0.43 & \\
sex:variable & 1.51 & 178.72 & 3.36 & 4.89 & 0.02 & * \\
region:variable & 7.76 & 299.89 & 1.99 & 143.58 & 0.00 & *** \\
group:sex:region & 14.09 & 246.82 & 1.73 & 0.58 & 0.88 & \\
group:sex:variable & 4.52 & 178.72 & 2.33 & 0.26 & 0.92 & \\
group:region:variable & 18.75 & 299.89 & 1.63 & 1.04 & 0.41 & \\
sex:region:variable & 7.76 & 299.89 & 1.99 & 1.26 & 0.27 & \\
group:sex:region:variable & 18.75 & 299.89 & 1.63 & 0.74 & 0.77 & \\
\hline

\end{tabular}

Figure 4: EEG data used in the example.
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\end{table}

to obtain the results stated here. The command xtable is used to convert a "data.frame" object into a
LATEX table. This is also possible with the GUI. In the toolbar of the results window there is a button
labeled with ’Save as LATEX table’. By clicking on it we can select a path to save a ‘.tex’ file containing
the results.

As an alternative formula, we may use the following.

value ~ group * dimension

Here, only one whole- and one sub-plot factor are specified. After clicking on the ’Ok’ button, two
windows will open. In the first window, the results of the test statistics are displayed. The other
window shows a plot of the profiles (see Figure 3). We can also create these plots by using the function

plot(hrm_test(value ~ group*dimension, data = EEG, subject = "subject"))

Here the function hrm_test returns an object of class "HRM" and the function plot is applied to an
object of such a class. If we calculate the test statistics in this two-factor example and save the results
again as a table, we obtain the following:

hrm_test(formula = value ~ group*dimension,
data = EEG,
subject = "subject")

Call:
value ~ group * dimension

hypothesis df1 df2 crit test p.value sign.code
group (weighted) 2.993584 130.10764 2.676095 1.881486 0.13600798
group 2.779981 95.00304 2.768161 1.657329 0.18482432
dimension 2.504068 268.94339 2.803050 3056.569162 0.00000000 ***
group : dimension 7.155131 268.94339 2.031723 2.376905 0.02164946 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

T-cell Activation Example

It is also possible to use the function hrm_test with only one sub-plot factor and no whole-plot
factor. A data example with such a design is included in the package longitudinal (Opgen-Rhein and
Strimmer., 2015) and is originally taken from Rangel et al. (2004). The data are from a microarray
time series for T-lymphocytes activation. Here, the expression levels of n = 58 genes are measured
at d = 100 time points (d > n), thus presenting a high-dimensional situation. In order to analyse the
data, we need to load the necessary packages first and then convert the data into the long table format.
At the end, we can use the function hrm_test which detects a significant time effect. Alternatively, we
could have used the GUI. But for this approach we would have needed to save the data as a ‘.csv’ file
first because the GUI only supports loading data sets from external files.

This data example is just used as a demonstration for the package. From a statistical point of
view, the gene expressions do not necessarily have to be independent, as different genes may have
an influence on each other. For example in eukaryotes, gene expression is highly regulated. Some
genes encode for transcription factors (for example zinc-fingers) which can up- or down-regulate
the expression of other genes. With regard to this data example the gene FYB seems to influence
the expression of several interleukin receptor genes and GATA-3 (a zinc-finger transcription factor)
(Rangel et al., 2004). Therefore, it is very plausible that the assumption of independent genes is violated
for this data example. However, for the illustration of the method we are making the simplifying
assumption that observations on different ’subjects’ (genes, in this case) are independent from each
other.

library(longitudinal)
library(tidyr)
library(HRM)

# transforming the data into the long table format
data(tcell)
data <- t(print(tcell.10))
data <- as.data.frame(data)
data$subject = 1:58
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Figure 5: Profile curve.

data_long <- gather(data, time, measurement, 1:100, factor_key = TRUE)

hrm_test(data_long, measurement ~ time, subject = "subject")

Call:
measurement ~ time

hypothesis df1 df2 crit test p.value sign.code
time 5.514332 314.3169 2.179376 6.268063 6.538363e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To plot the profile curve for this data set, we simply apply the plot function to an "HRM" object
returned by the function hrm_test. By setting the optional argument legend to FALSE, no legend is
added to the plot (see Figure 5).

object_hrm <- hrm_test(measurement ~ time, data = data_long, subject = "subject")
plot(object_hrm, legend = FALSE, xlab = "time", ylab = "mean expression level")

For the plot.HRM method it is also possible to use additional arguments which will be added to the
"ggplot2" object. As an example we want to use the theme_bw style with no legend. Here we need to
take into consideration that theme_bw overwrites everything related to the legend already specified in
plot.HRM. Therefore, we need to specify separately that a legend should not be displayed. The code

plot(object_hrm, ... = theme_bw() +
theme(legend.title = element_blank(), legend.position = "none") +
theme(axis.text = element_text(size=18), axis.title = element_text(size = 25)) )

produces Figure 6 with a white background and no legend. Because plot.HRM simply returns an
"ggplot2" object, we also could have used the following code.

plot(object_hrm) + theme_bw() +
theme(legend.title = element_blank(), legend.position = "none") +
theme(axis.text = element_text(size = 18), axis.title = element_text(size = 25))

That is we can pass additional arguments through ... in the method hrm.plot or, even easier, just
add the additional arguments directly to the object to manipulate the graphic.

Limitations

In Section 2.2, we have already stated the mathematical assumptions for the methods implemented in
the HRM package. We are assuming normally distributed observations from independent subjects. As
long as the data distribution is not ’too far’ from a normal distribution, the test works fine. However,
for very skewed or heavy-tailed distributions, the test may in general not maintain the type-I error
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Figure 6: Profile curve generated with additional arguments for ggplot2.

rate. This could especially be a problem in combination with heteroscedastic data and unbalanced
groups. Note that this limitation still holds for large sample sizes because the described method is
only an approximation and not an asymptotically exact test. This limitation also applies in particular
to the case of multivariate normally distributed observations. Therefore it is important to check the
assumptions or do some simulations to see whether the test is robust against some violations of the
assumptions. As we see in the following simulations, the test statistic is mainly affected by skewed
or heavy-tailed distributions but works well for data generated by a binomial distribution. For our
two examples used in Section 2.5 they do not satisfy the assumptions. For the genetic data, the
gene expressions (subjects) are in general correlated. The EEG data seems to violate the normality
assumption as some QQ-plots from marginal distributions show larger deviations from a straight line.
But it is very difficult to check these distributional assumptions in general for high-dimensional data
sets. In our case we only use those data sets for demonstration purposes but for real analyses one
should be careful about the assumptions, as the type-I error can be quite inflated which we can see in
the subsequent simulations.

In order to illustrate the behaviour of the proposed method when its formal assumptions are vio-
lated, we have performed several simulations for testing for the main group effect. For all simulations
we used the dimension d = 20 and performed 104 simulation runs. We have already observed that the
test statistic does not perform well for skewed data. Therefore we concentrated in this simulation study
on the exponential and log-normal distribution. But we have also considered a discrete distribution,
as in such a case the test seems to perform very well.

For the first simulation, we defined the random variables X1jk = ε1j + δ1 for j = 1, . . . , 20 and k =
1, . . . , n1 = 20. In the second group we chose X2jk = ε2j + δ2 for j = 1, . . . , 20 and k = 1, . . . , n1 = 30.
Here, δ1 ∼ E(1), δ2 ∼ E(2), ε1j ∼ E(1) and ε2j ∼ E(2), where E refers to the exponential distribution.
Then we shifted the second group equally for all 20 time points such that both groups have the
same mean which means that the null hypothesis of no main group effect holds. For this setting, the
simulated type-I error rate was 0.0688. In the second simulation we used for the second group E(4)
distributions. In this case, the simulated type-I error rate was 0.0748. Additionally, we used different
sample sizes to see the impact of negative or positive pairing. The results are displayed in Table 3. For
all these settings, the simulated type-I error was slightly inflated. We performed similar simulations
using log-normal distributions. Here, we considered δ1 ∼ LN(0, 1), δ2 ∼ LN(0, θ), ε1j ∼ LN(0, 1) and
ε2j ∼ LN(0, θ) with θ = 1

2 , 2. Both groups have been shifted such that they have the same mean. The
results in Table 4 show heavily inflated type-I error rates (up to over 30%).

In a third simulation, we considered binomial distributions as an example for discrete data. Here,
we defined δ1, ε2j ∼ Bin(m, 0.5) and δ1, ε2j ∼ Bin(m, 0.9) for m = 5, 10, 15 and for sample sizes
n1 = 20, 15 and n2 = 15, 20. The other simulation parameters were the same as for the other two
simulations. That is, the dimension was 20 and all random variables have been shifted to mean zero
such hat the null hypothesis holds. The results are shown in Table 5. For binomial data, the method
seemed to work very well even for heteroscedastic and unbalanced groups. Furthermore, the value
of m did not seem to influence the result very much and even in the case of Bernoulli distributions
(m = 1) the simulated type-I error rate was close to the nominal level of 5%.

Therefore the package HRM should not be used with distributions similar to log-normal or
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exponential distributions, that is very skewed or heavy-tailed distributions. Instead, in those cases,
we recommend using a nonparametric test such as the rank-based ANOVA type statistic or a similar
method.

θ Sample sizes Type-I error rate

2 20, 30 0.0688
4 20, 30 0.0748
2 30, 20 0.0543
4 30, 20 0.0685
2 25, 25 0.0616
4 25, 25 0.0702

Table 3: Type-I error rate simulation with different settings for testing for the main group effect. We
used centred exponential distributions with parameter θ = 1 in the first group and θ = 2, 4 for the
second group, and the dimension was d = 20.

θ Sample sizes Type-I error rate

0.5 20, 30 0.1157
2 20, 30 0.2927

0.5 30, 20 0.0917
2 30, 20 0.3126

0.5 25, 25 0.1032
2 25, 25 0.2974

Table 4: Type-I error rate simulation using log-normal distributions for testing for the main group
effect. For the first group we used centred LN(0, 1) and for the second group centred LN(0, θ)
distributions, and the dimension was d = 20.

m Sample sizes Type-I error rate

1 20, 15 0.0488
5 20, 15 0.0476

10 20, 15 0.0503
15 20, 15 0.0467
1 15, 20 0.0515
5 15, 20 0.0485

10 15, 20 0.0479
15 15, 20 0.0489

Table 5: Type-I error rate simulation using binomial distributions for testing for the main group effect.
For the first group we used centred Bin(m, 0.5) and for the second group we used centred Bin(m, 0.9)
random variables, and the dimension was d = 20.

Another drawback of our method is that it is not invariant under scale transformations of indi-
vidual variables. This means that changing the scale in one dimension (using m/s instead of km/h)
may lead to a different result because the observations are not standardized to avoid the problem of
singular empirical covariance matrices. Therefore the same scale should be used for all dimensions.

The package MANOVA.RM by Friedrich et al. (2017b) provides several asymptotically exact tests
that do not have these limitations (see for example Friedrich and Pauly (2018)). However, not all
have been extended to high-dimensional settings (Friedrich et al., 2017a) and some may also require a
resampling step which may take a while to compute for large data sets. But this might only become a
real problem if you want to simulate the power of the test for multiple situations. The ANOVA type
statistic mentioned before has the problem that it gets quite conservative when the dimension is large
(Brunner et al., 2002; Bathke et al., 2009; Friedrich et al., 2017a), and additionally, the test is also not
invariant under scale transformations. Friedrich et al. (2017a) proposed a potential solution for this
problem in the low-dimensional case.
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Conclusions

The aim of the HRM package is to provide an easy to use way to do inference on high-dimensional
repeated measures. To that end, a graphical user interface has also been implemented in this package.
With the GUI, it is possible to load and view the data, plot the profile curves and save the results
of hypothesis tests as a table which can be inserted very easily into a LATEX document. The GUI is
optional, that is, all of its functions can be used directly. There are different functions to allow for data
in the long or wide table format. Although both formats can be transformed easily into each other, not
having to do it is more convenient for users. This applies especially to statistics practitioners who are
not expert R users.

The package currently supports up to four factors. If data in the wide table format are used, the
maximum number of factors that can be used is two. For the long table format, it is possible to use up
to two whole-plot factors and up to three sub-plot factors, but the maximum number of factors is four.
Table 6 summarizes the minimum and maximum number of factors that can be used.

Table Format Whole-plot Sub-plot Total

long table 0–2 0–3 1–4
wide table 1 1 2

Table 6: Minimum and maximum number of factors which can be used with the package HRM.

There are still a few limitations to the method implemented in the package. Improvements to the
test statistic to get rid of these limitations are part of future work and will also be implemented in the
package. For example, a nonparametric version of the test statistic will be provided in the future by
setting an additional argument nonparametric = TRUE for the function hrm_test. This new test will
use (pseudo)-ranks and can be applied to metric or non-metric data. Additionally, the package will be
further improved to increase the performance for large data.
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