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sdpt3r: Semidefinite Quadratic Linear
Programming in R
by Adam Rahman

Abstract We present the package sdpt3r, an R implementation of the Matlab package SDPT3 (Toh
et al., 1999). The purpose of the software is to solve semidefinite quadratic linear programming
(SQLP) problems, which encompasses problems such as D-optimal experimental design, the nearest
correlation matrix problem, and distance weighted discrimination, as well as problems in graph theory
such as finding the maximum cut or Lovasz number of a graph.

Current optimization packages in R include Rdsdp, Rcsdp, scs, cccp, and Rmosek. Of these, scs
and Rmosek solve a similar suite of problems. In addition to these solvers, the R packages CXVR
and ROI provide sophisticated modelling interfaces to these solvers. As a point of difference from
the current solvers in R, sdpt3r allows for log-barrier terms in the objective function, which allows
for problems such as the D-optimal design of experiments to be solved with minimal modifications.
The sdpt3r package also provides helper functions, which formulate the required input for several
well-known problems, an additional perk not present in the other R packages.

Introduction

Convex optimization is a well traversed field with far reaching applications. While perhaps unfamiliar
to those in the statistical sciences, many problems important to statisticians can be formulated as a
convex optimization, perhaps the most well known of which would be the least squares problem. More
specifically, many problems in statistics can be formulated as a subset of these convex optimization
problems, known as conic linear optimization problems.

One such example would be the nearest correlation matrix problem (Higham, 2002), which was
first considered when attempting to find correlations between stocks, where incomplete data on daily
stock returns are not unusual. Pairwise correlations are only computed when data is available for both
pairs of stocks under consideration, resulting in a correlation matrix that contains pairwise correlations,
but is not necessarily positive semidefinite - an approximate correlation matrix. The goal is to then find
the correlation matrix that is nearest to the approximate correlation matrix in some way.

Other examples of problems that can be formulated in terms of a conic linear optimization
problem include D-optimal experimental design (Smith, 1918), classification using distance weighted
discrimination (Marron et al., 2007), minimum volume ellipsoids (John, 2014), and problems in
educational testing (Chu and Wright, 1995).

Problems in related fields can also be solved, including finding the maximum cut (or maximum
k-cut) of a graph, finding the upper bound of the Shannon entropy of a graph, also known as the
Lovasz number (Vandenberghe et al., 1998), as well as problems in control theory, Toeplitz matrix
approximation, and Chebyshev approximation.

For the purpose of solving these conic linear optimization problems, we introduce the R package
sdpt3r, an implementation of the Matlab package SDPT3 by Toh et al. (1999). Of the R packages
available to perform conic optimization, sdpt3r is among the most general. Rdsdp (Zhu and Ye, 2016)
& Rcsdp (Bravo, 2016) are capable of solving semidefinite conic optimization problems, while cccp
(Pfaff, 2015) solves linear and quadratic conic optimization problems. The sdpt3r package allows for
all of linear, quadratic, and semidefinite conic optimization to be solved simultaneously (i.e., a problem
with any combination of semidefinite, quadratic, or linear cones can be solved). Two comparable
packages, scs (O’Donoghue et al., 2017) and Rmosek (Friberg, 2012), solve a similar suite of problems.
Additionally, the R packages CXVR (Fu et al., 2017) and ROI (Theußl et al., 2017) provide sophisticated
modelling interfaces to these solvers.

As a point of difference, scs and Rmosek allow for the exponential and power cones to be included
in the constraints, while sdpt3r handles log-barrier terms in the objective function directly. The
inclusion of log-barrier terms allows for the D-optimal design of experiments and minimum volume
ellipsoid problems to be solved with minimal modifications. In addition, sdpt3r provides helper
functions which directly solve a number of well known problems (such as the “max cut” or nearest
correlation matrix problems) with minimal input burden on the user. This additional functionality is
not found in either scs or Rmosek (although scs can be used with the CVXR package).

This paper is structured as follows. In Section 52.2 we discuss in greater detail the mathematical
formulation of the linear conic optimization problem, and introduce three examples to explore the
increasing generality of the problem to be solved. Section 52.3 discusses the R implementation of
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sdpt3r, and the main function by which conic linear optimization problems are solved, sqlp, including
the required input, and the output generated. The same examples used in Section 52.2 will be used to
demonstrate how a standard conic linear optimization problem can be converted to a form solvable by
sqlp. Section 52.4 presents the classic form of several other well known problems that can be solved
using sdpt3r, as well as the helper functions available to convert them to the appropriate form. Finally
Section 52.5 provides some closing remarks.

Conic linear optimization

At its simplest, a conic linear optimization problem has the following standard form (Tütüncü et al.,
2003):

minimize
X

〈C, X〉
subject to

〈Ak, X〉 = bk, k = 1, ..., m
X ∈ K

(1)

where K is a cone. Generally, K is either a

• Semidefinite Cone - Sn = {X ∈ Rn×n : X � 0, Xij = Xji ∀ i 6= j}
• Quadratic Cone - Qn = {x = [x0; x̃] ∈ Rn : x0 ≥

√
x̃Tx̃}

• Linear Cone - Ln - non-negative orthant ofRn

Here, x̃ = [x1, . . . , xn−1], and 〈·,·〉 represents the standard inner product in the appropriate space.
In the semidefinite cone the inner product is 〈X, Y〉 = vec(X)Tvec(Y), where the operator vec is the
by-column vector version of the matrix X, that is, for the n× n matrix X = [xij], vec(X) is the n2 × 1

vector [x11, x12, x13, . . . , x(n−1)n, xnn]
T. Note that vec does not require a square matrix in general.

One of the simplest problems that can be formulated in terms of a conic linear optimization
problem is finding the maximum cut of a graph. Let G = [V, E] be a graph with vertices V and edges
E. A cut of the graph G is a partition of the vertices of G into two disjoint subsets G1 = [V1, E1],
G2 = [V2, E2], with V1 ∩V2 = ∅. The size of the cut is defined to be the number of edges connecting
the two subsets. The maximum cut is defined to be the cut of a graph G whose size is at least as large as
any other cut. For a weighted graph object, we can also define the maximum cut to be the cut with
weight at least as large as any other cut.

Finding the maximum cut is referred to as the Max-Cut Problem, and was one of the first problems
found to be NP-complete, and is also one of the 21 algorithms on Karp’s 21 NP-complete problems
(Karp, 1972). The Max-Cut problem is also known to be APX hard (Papadimitriou and Yannakakis,
1991), meaning in addition to there being no polynomial time solution, there is also no polynomial
time approximation.

Using the semidefinite programming approximation formulation of Goemans and Williamson
(1995), the Max-Cut problem can be approximated to within an approximation constant. For a weighted
adjacency matrix B, the objective function can be stated as

minimize
X

〈C, X〉
subject to

diag(X) = 1
X ∈ Sn

where Sn is the cone of symmetric positive semidefinite matrices of size n, and C = −(diag(B1)−
B)/4. Here, we define diag(a) for an n× 1 vector a to be the diagonal matrix A = [Aij] of size n× n
with Aii = ai, i = 1, . . . , n. For a matrix X, diag(X) extracts the diagonal elements from X and places
them in a column-vector.

To see that the Max-Cut problem is a conic linear optimization problem it needs to be written in the
same form as Equation 1. The objective function is already in a form identical to that of Equation 1, with
minimization occurring over X of its inner product with a constant matrix C = −(diag(B1)− B)/4.
There are n equality constraints of the form xkk = 1, k = 1, ..., n, where xkk is the kth diagonal element
of X, and bk = 1 in Equation 1. To represent this in the form 〈Ak, X〉 = xkk, take Ak to be

Ak = [aij] =

{
1, i = j = k
0, otherwise
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Now 〈Ak, X〉 = vec(Ak)
Tvec(X) = xkk as required, and the Max-Cut problem is specified as a

conic linear optimization problem.

Allowing for optimization to occur over only one variable at a time is quite restrictive, as only
a small number of problems can be formulated in this form. Allowing optimization to occur over
multiple variables simultaneously would allow for a broader range of problems to be solved.

A separable set of variables

The conic linear optimization problem actually covers a much wider class of problems than those
expressible as in Equation 1. Variables can be separated into those which are constrained to a
semidefinite cone, S , a quadratic cone, Q, or a linear cone, L. The objective function is a sum of
the corresponding inner products of each set of variables. The linear constraint is simply a sum of
variables of linear functions of each set. This more general version of the conic linear optimization
problem is

minimize
Xs ,Xq ,Xl

∑ns
j=1〈Cs

j , Xs
j 〉+ ∑

nq

i=1〈C
q
i , Xq

i 〉+ 〈Cl , Xl〉
subject to

∑ns
j=1 (A

s
j )
Tsvec(Xs

j ) + ∑
nq

i=1 (A
q
i )

T
Xq

i + (Al)
T

Xl = b

Xs
j ∈ S sj ∀ j

Xq
i ∈ Qqi ∀ i

(2)

Here, svec takes the upper triangular elements of a matrix (including the diagonal) in a column-
wise fashion and vectorizes them. In general for an n × p matrix X = [xij], svec(X) will have the

following form [x11, x12, x22, x13, ..., x(n−1)p, xnp]
T. Recall that matrices in S are symmetric, so it is

sufficient to constrain only the upper triangular elements of the matrix Xs. For this formulation, As
j ,

Aq
i and Al are the constraint matrices of the appropriate size.

Some important problems in statistics can be formulated to fit this form of the optimization
problem.

The nearest correlation matrix

First addressed by Higham (2002) in dealing with correlations between stock prices, difficulty arises
when data is not available for all stocks on each day, which is unfortunately a common occurrence. To
help address this situation, correlations are calculated for pairs of stocks only when data is available
for both stocks on any given day. The resulting correlation matrix is only approximate in that it is not
necessarily positive semidefinite.

This problem was cast by Higham (2002) as

minimize
X

||R− X||F
subject to

diag(X) = 1
X ∈ Sn

where R is the approximate correlation matrix and || · ||F denotes the Frobenius norm. Unfortunately,
the Frobenius norm in the objective function prevents the problem being formatted as a conic linear
optimization problem.

Since the matrix X is constrained to have unit diagonal and be symmetric, and the matrix R is an
approximate correlation matrix, meaning it will also have unit diagonal and be symmetric, we can
re-write the objective function as

||R− X||F = 2 ∗ ||svec(R)− svec(X)|| = 2 ∗ ||e||
Now, introduce a variable e0 such that e0 ≥ ||e||, and define e∗ = [e0; e]. The vector e∗ is now

restricted to be in the quadratic cone Qn(n+1)/2+1. This work leads to the formulation of Toh et al.
(1999)
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minimize
e∗ , X

e0

subject to
svec(R)− svec(X) = [0, In(n+1)/2] e∗

diag(X) = 1
X ∈ Sn

e∗ ∈ Qn(n+1)/2+1

Here, [X, Y] denotes column binding of the two matrices Xn×p and Yn×m to form a matrix of size
n× (p + m). By minimizing e0, we indirectly minimize e = svec(R)− svec(X), since recall we have
e0 ≥ ||e||, which is the goal of the original objective function.

To see this as a conic linear optimization problem, notice that e0 can be written as 〈Cq, Xq〉 by
letting Cq = [1; 0n(n+1)/2] and Xq = e∗. Since the matrix X (i.e., Xs) does not appear in the objective
function, the matrix Cs is an n× n matrix of zeros.

Re-writing the first constraint as

svec(X) + [0, In(n+1)/2] e∗ = svec(R)

we can easily define the constraint matrices and right hand side of the first constraint as

As
1 = In(n+1)/2

Aq
1 = [0, In(n+1)/2]

b1 = svec(R)

The second constraint is identical to the constraint from the Max-Cut problem, where each diagonal
element of X is constrained to be equal to 1. Define b2 = 1, and for the kth diagonal element of X,
define the matrix Ak as

Ak = [aij] =

{
1, i = j = k
0, otherwise

yielding 〈Ak, X〉 = xkk. To write this as (As
2)

TXs, define

As
2 = [svec(A1), ..., svec(An)]

Since e∗ does not appear in the second constraint, Aq
2 = 0n(n+1)/2+1.

The final step is to combine the individual constraint matrices from each constraint to form one
constraint matrix for each variable, which is done by defining As = [As

1, As
2], Aq = [Aq

1, Aq
2]. We also

concatenate both right hand side vectors to form a single vector by defining b = [b1; b2]. Here, the
notation [X; Y] is used to denote two matrices Xp×m and Yq×m bound vertically to form a matrix of size
(p + q)×m. With this, the nearest correlation matrix problem is written as a conic linear optimization.

Semidefinite quadratic linear programming

While Equation 2 allows for additional variables to be present, it can be made more general still to
allow even more problems to be solved. We will refer to this general form as a semidefinite quadratic
linear programming (SQLP) problem.

The first generality afforded by an SQLP is the addition of an unconstrained variable Xu, which, as
the name suggests, is not bound to a cone, but instead, it is “constrained” to the reals in the appropriate
dimension. The second generalization is to allow for what are known as log-barrier terms to exist in the
objective function. In general, a barrier function in an optimization problem is a term that approaches
infinity as the point approaches the boundary of the feasible region. As we will see, these log-barrier
terms appear as log terms in the objective function.

Recall that for any linear optimization problem, there exists two formulations - the primal formu-
lation and the dual formulation. For the purposes of a semidefinite quadratic linear programming
problem, the primal problem will always be defined as a minimization, and the associated dual
problem will therefore be a maximization
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The primal problem

The primal formulation of the SQLP problem is

minimize
Xs

j ,X
q
i ,Xl ,Xu

∑ns
j=1[〈Cs

j , Xs
j 〉 − vs

j log det Xs
j ] + ∑

nq

i=1[〈C
q
i , Xq

i 〉 − vq
i log γ(Xq

i )]

+ 〈Cl , Xl〉 − ∑nl
k=1 vl

k log Xl
k + 〈Cu, Xu〉

subject to
∑ns

j=1 As
j (X

s
j ) + ∑

nq

i=1 Aq
i Xq

i + AlXl + AuXu = b

Xs
j ∈ S sj ∀ j

Xq
i ∈ Qqi ∀ i

Xl ∈ Lnl

Xu ∈ Rnu

(3)

For each j, Cs
j and Xs

j are symmetric matrices of dimension sj, restricted to the cone of positive

semidefinite matrices of the same dimension. Similarly, for all i, Cq
i and Xq

i are real vectors of dimension
qi, restricted to the quadratic cone of dimension qi. For a vector u = [u0; ũ] in a second order cone,

define γ(u) =
√

u2
0 − ũTũ. Finally, Cl and Xl are vectors of dimension nl , restricted to linear cone of

the same dimension, and Cu and Xu are unrestricted real vectors of dimension nu.

As before, the matrices Aq
i , Al , and Au are constraint matrices in qi, nl , and nu dimensions

respectively, each corresponding to their respective quadratic, linear, or unrestricted block. As
j is

defined to be a linear map from S sj toRm defined by

A
sj

j (X
s
j ) = [〈As

j,1, Xs
j 〉; . . . ; 〈As

j,m, Xs
j 〉]

where As
j,1 . . . As

j,m ∈ S sj are constraint matrices associated with the jth semidefinite variable Xs
j .

The dual problem

The dual problem associated with the semidefinite quadratic linear programming formulation is

maximize
Zs

j ,Z
q
i ,Zl ,y

bTy + ∑ns
j=1[v

s
j log det Zs

j + sj vs
j (1− log vs

j )]

+ ∑
nq

i=1[v
q
i log γ(Zq

i ) + vq
i (1− log vq

i )]

+ ∑nl
k=1[v

l
k log Zl

k + vl
k (1− log vl

k)]
subject to

(As
j )
Ty + Zs

j = Cs
j , Zs

j ∈ S sj , j = 1, . . . , ns

(Aq
i )

T
y + Zq

i = Cq
i , Zq

i ∈ Qqi , i = 1, . . . , nq

(Al)
T

y + Zl = Cl , Zl ∈ Lnl

(Au)Ty = Cu, y ∈ Rm

(4)

where (As
j )

T is defined to be the adjoint operator of As
j , where (As

j )
Ty = ∑m

k=1 ykAs
j,k. Equations 3 and

4 represent the most general form of the linear conic optimization problem that can be solved using
sdpt3r.

Optimal design of experiments

Consider the problem of estimating a vector x from measurements y given by the relationship

y = Ax + ε, ε ∼ N (0, 1).

The variance-covariance matrix of such an estimator is proportional to (ATA)−1. A reasonable
goal during the design phase of an experiment would therefore be to minimize (ATA)−1 in some way.

There are many different ways in which (ATA)−1 might be made minimal. For example, minimiza-
tion of the trace of (ATA)−1 (A-Optimality), minimization of the maximum eigenvalue of (ATA)−1

(E-Optimality), minimization of the determinant of (ATA)−1 (D-Optimality), and maximization of the
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trace of ATA (T-Optimality) all have their merits.

Perhaps the most commonly used of these optimality criteria is D-Optimality, which is equivalent
to maximizing the determinant of ATA. Typically, the rows of A = [a1, ..., aq]T are chosen from M
possible test vectors ui ∈ Rp, i = 1, ...M, which are known in advance. That is,

ai ∈ {u1, ..., uM}, i = 1, ..., q

Given that the matrix A is made up of these test vectors ui, Vandenberghe et al. (1998) write the
matrix ATA as

ATA = q
M

∑
i=1

λiuiui
T (5)

where λi is the fraction of rows in A that are equal to the vector ui. Then, Vandenberghe et al. (1998)
write the D-optimal experimental design problem as a minimum determinant problem

minimize
λ

log det (∑M
i=1 λiuiui

T)−1

subject to
λi ≥ 0, i = 1, ..., m

∑M
i=1 λi = 1

Due to the inequality constraint, this primal formulation cannot be interpreted as an SQLP of the
form of Equation 3. By defining Z = u diag(λ) uT, the dual problem is (Toh et al., 1999)

maximize
Z, zl , λ

log det (Z)

subject to
−∑

p
i=1 λi(uiui

T) + Z = 0, Z ∈ Sn

−λ + zl = 0, zl ∈ Rp
+

1Tλ = 1, λ ∈ Rp

Keeping in mind that this is a dual configuration, and thus follows Equation 4, we proceed with
writing the D-Optimal design problem as an SQLP by first considering the objective function. The
objective function depends only on the determinant of the matrix variable Z, which is the log-barrier.
This indicates that the variable vs in Equation 4 is equal to 1 in this formulation, while vq and vl are
both zero. Since λ does not appear in the objective function, the vector b is equal to 0.

The constraint matrices A are easy to define in the case of the dual formulation, as they multiply
the vector y in Equation 4, so therefore multiply λ in our case. In the first constraint, each λi is
multiplied by the matrix formed by −uiuT

i , so define Ai to be

Ai = −uiu
T
i , i = 1, ..., p.

Then, the constraint matrix is As = [svec(A1), ..., svec(Ap)]. In the second constraint containing
the linear variable zl , the constraint matrix is Al = −Ip, and in the third constraint containing only
the unconstrained variable λ, the constraint matrix is Au = 1T. Since there is no quadratic variable,
Aq = 0.

Finally, define the right hand side of each constraint

Cs = 0n×n
Cl = 0p×1
Cu = 1

which fully specifies the D-Optimal design problem as an SQLP.

In the next section, we will demonstrate using R how these definitions can be translated for use in
the main function of sdpt3r so an SQLP problem can be solved.

Solving a conic linear optimization problem with sdpt3r

Each of the problems presented in Section 52.2 can be solved using the sdpt3r package, an R implemen-
tation of the Matlab program SDPT3. The algorithm is an infeasible primal-dual predictor-corrector
path-following method, utilizing either an HKM (Helmberg et al., 1996) or NT (Nesterov and Todd,
1997) search direction. The interested reader is directed to Tütüncü et al. (2003) for further details
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surrounding the implementation.

The main function available in sdpt3r is sqlp, which takes a number of inputs (or an sqlp_input
object) specifying the problem to be solved, and executes the optimization, returning both the primal
and dual solution to the problem. This function will be thoroughly discussed in Section 52.3.1, and
examples will be provided. In addition to sqlp, a prospective user will also have access to a number of
helper functions for well known problems that can be solved using sdpt3r. For example, the function
maxcut takes as input an adjacency matrix B, and produces an S3 object containing all the input
variables necessary to solve the problem using sqlp. These functions will be discussed in Sections
52.3.3, 52.3.4, 52.3.4, and 52.4.

For sdpt3r, each optimization variable will be referred to as a block in the space in which it is
restricted. For instance, if we have an optimization variable X ∈ Sn, we will refer to this as a
semidefinite block of size n. It is important to note that it is possible to have multiple blocks from the
same space, that is, it is possible to have both X ∈ Sn as well as Y ∈ Sm in the same problem.

Input variables

The main function call in sdpt3r is sqlp, which takes the following input variables

blk A named-list object describing the block structure of the optimization variables.
At A list object containing constraint matrices As, Aq, Al , and Au

for the primal-dual problem.
b A vector containing the right hand side of the equality constraints, b,

in the primal problem, or equivalently the constant vector in the dual.
C A list object containing the constant C matrices in the primal objective

function or equivalently the corresponding right hand side of the equality
constraints in the dual problem.

X0, y0, Z0 Matrix objects containing an initial iterate for the X, y, and Z variables for
the SQLP problem. If not provided, an initial iterate is computed internally.

control A list object providing additional parameters for use in sqlp.
If not provided, default values are used.

The input variable blk describes the block structure of the problem. Letting L be the total number
of semidefinite, quadratic, linear, and unrestricted blocks in the SQLP problem, define blk to be a
named-vector object of length L, with names describing the type of block, and values denoting the
size of the optimization variable, summarized in Table 1.

Block type Name Value
Semidefinite s sj
Quadratic q qi
Linear l nl
Unrestricted u nu

Table 1: Structure of blk.

The input variable At corresponds to the constraint matrices in Equation 3, and C the constant
matrices in the objective function. The size of these input variables depends on the block they are
representing, summarized in Table 2 for each block type.

Block type
Semidefinite Quadratic Linear Unrestricted

At s̄j ×m qj ×m nl ×m nu ×m
C sj × sj qj × 1 nl × 1 nu × 1

Table 2: Size of At and C for each block type.

Note that in Table 2, s̄j = sj(sj + 1)/2. The size of At in the semidefinite block reflects the upper-
triangular input format that has been discussed previously. In a semidefinite block, the optimization
variable X is necessarily symmetric and positive semidefinite, it is therefore more efficient to consider
only the upper-triangular portion of the corresponding constraint matrix.

It is important to note that both input variables At and C are lists containing constraint and constant
matrices for each optimization variable. In general, the user need not supply initial iterates X0, y0, and
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Z0 for a solution to be found using sqlp. The infeasible starting point generated internally by sqlp
tends to be sufficient to find a solution. If the user wishes to provide a starting point however, the size
parameters in Table 3 must be met for each block.

Block type
Semidefinite Quadratic Linear Unrestricted

X0 sj × sj qj × 1 nl × 1 nu × 1
y0 sj × 1 qj × 1 nl × 1 nu × 1
Z0 sj × sj qj × 1 nl × 1 nu × 1

Table 3: Required size for initial iterates X0, y0, and Z0.

The user may choose to depart from the default values of several parameters which could affect
the optimization by specifying alternative values in the control list. A complete list of all parameters
that can be altered can be found in Appendix 52.6.

An important example is the specification of the parbarrier parameter in control, which specifies
the presence of a log-barrier in the objective function. The default case in control assumes that the
parameters vs

j , vq
i , vl

k in Equation 3 are all 0. If this, however, is not the case, then the user must specify
an L× 1 matrix object in control$parbarrier to store the values of these parameters (including zeros).
If the jth block is a semidefinite block containing p variables, parbarrierj = [vs

j1, ..., vs
jn]. If the jth block

is a quadratic block containing p variables, parbarrierj = [vq
j1, ..., vq

jn]. If the jth block is a linear block

parbarrierj = [vl
1, ..., vl

nl
]. Finally, if the jth block is the unrestricted block, then parbarrierj = [0, ..., 0],

where 0 is repeated nu times.

When executed, sqlp simultaneously solves both the primal and dual problems, meaning solutions
for both problems are returned. The relevance of each output therefore depends on the problem being
solved. The following object of class sqlp_output is returned upon completion

pobj the value of the primary objective function
dobj the value of the dual objective function

X A list object containing the optimal matrix X for the primary problem
y A vector object containing the optimal vector y for the dual problem
Z A list object containing the optimal matrix Z for the dual problem

The examples in subsequent subsubsections will demonstrate the output provided by sqlp.

Toy Examples

Before moving on to more complex problems, consider first some very simple example to illustrate the
functionality of the sdpt3r package. First, consider the following simple linear programming problem:

Minimize x1 + x2
subject to

x1 + 4x2 = 12
3x1 − x2 = 10

This problem can be solved using sdpt3r in very straightforward fashion. First, this is a linear
programming problem with two variables, x1 and x2. This implies that blk = c("l" = 2). Next the
objective function can be written as 1 ∗ x1 + 1 ∗ x2, so C = matrix(c(1,1),nrow=1). The constraints
can be summarized in matrix form as:

A =

[
1 4
3 −1

]
so A = matrix(c(1,3,4,-1),nrow=2)) and At = t(A). Finally the right hand side can be written in
vector form as [12, 10], so b = c(12,10). Pulling these all together, the problem is solved using sqlp:

blk = c("l" = 2)
C = matrix(c(1,1),nrow=1)
A = matrix(c(1,3,4,-1), nrow=2)
At = t(A)
b = c(12,10)
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out = sqlp(blk,list(At),list(C),b)
out

$X
$X[[1]]
2 x 1 Matrix of class "dgeMatrix"

[,1]
[1,] 4
[2,] 2

$y
[,1]

[1,] 0.3076923
[2,] 0.2307692

$Z
$Z[[1]]
2 x 1 Matrix of class "dgeMatrix"

[,1]
[1,] 6.494441e-10
[2,] 1.234448e-09

$pobj
[1] 6

$dobj
[1] 6

which returns the solution x1 = 4 and x2 = 2, and the optimal primal solution of 6. Second, consider
the following simple quadratic programming problem:

Minimize 1
2 x2

1 − x2
2

subject to
2x1 − x2 = 5

x1 + x2 = 4

This problem can be solved using sdpt3r by formulating the input variables in a similar fashion as
the linear programming problem:

blk = c("q" = 2)
C = matrix(c(0.5,-1),nrow=1)
A = matrix(c(2,1,-1,1), nrow=2)
At = t(A)
b = c(5,4)

out = sqlp(blk,list(At),list(C),b)
out

$X
$X[[1]]
2 x 1 Matrix of class "dgeMatrix"

[,1]
[1,] 3
[2,] 1

$y
[,1]

[1,] 0.5
[2,] -0.5

$Z
$Z[[1]]
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2 x 1 Matrix of class "dgeMatrix"
[,1]

[1,] 2.186180e-09
[2,] -3.522956e-10

$pobj
[1] 0.5

$dobj
[1] 0.5

which returns the solution x1 = 3 and x2 = 1, with optimal primal solution of 0.5. Finally, consider
the following simple semidefinite programming problem (taken from Freund (2004)):

Minimize

 1 2 3
2 9 0
3 0 7

 ·
 x1 x2 x3

x4 x5 x6
x7 x8 x9


subject to  1 0 1

0 3 7
1 7 5

 ·
 x1 x2 x3

x4 x5 x6
x7 x8 x9

 = 11

 0 2 8
2 6 0
8 0 4

 ·
 x1 x2 x3

x4 x5 x6
x7 x8 x9

 = 9

This problem is written almost exactly in the language used by sdpt3, and so can be easily solved
by taking:

blk = c("s" = 3)
C = list(matrix(c(1,2,3,2,9,0,3,0,7), nrow=3))
A1 = matrix(c(1,0,1,0,3,7,1,7,5), nrow=3)
A2 = matrix(c(0,2,8,2,6,0,8,0,4), nrow=3)
At = svec(blk,list(A1,A2))
b = c(11,9)

out = sqlp(blk,At,C,b)
out

$X
$X[[1]]
3 x 3 Matrix of class "dgeMatrix"

[,1] [,2] [,3]
[1,] 0.08928297 0.1606827 0.2453417
[2,] 0.16068265 0.2891815 0.4415426
[3,] 0.24534167 0.4415426 0.6741785

$y
[,1]

[1,] 0.5172462
[2,] 0.4262486

$Z
$Z[[1]]
3 x 3 Matrix of class "dsyMatrix"

[,1] [,2] [,3]
[1,] 0.4827538 1.147503 -0.9272352
[2,] 1.1475028 4.890770 -3.6207235
[3,] -0.9272352 -3.620723 2.7087744

$pobj
[1] 9.525946
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$dobj
[1] 9.525946

which provides the optimal matrix solution X, and the optimal value of the objective function 9.53.
Note that the function svec is used since the problem is a semidefinite programming problem, and
thus each A matrix is necessarily symmetric.

The Max-Cut problem

Recall that the maximum cut of a graph G with adjacency matrix B can be found as the solution to

Minimize 〈C, X〉
subject to

diag(X) = 1
X ∈ Sn

where C = −(diag(B1)− B)/4. In Section 52.2, we wrote this in the form of an SQLP

Minimize 〈C, X〉
subject to

〈Ak, X〉 = 1, k = 1, . . . , n
X ∈ Sn

where we defined Ak as

Ak = [aij] =

{
1, i = j = k
0, otherwise

To convert this to a form usable by sqlp, we begin by noting that we have one optimization
variable, X, and therefore L = 1. For an adjacency matrix B of dimension n for which we would like to
determine the Max-Cut, X is constrained to the space of semidefinite matrices of size n. Therefore, for
a 10× 10 matrix B (as in Figure 1), blk is specified as

B <- rbind(c(0, 0, 0, 1, 0, 0, 1, 1, 0, 0),
c(0, 0, 0, 1, 0, 0, 1, 0, 1, 1),
c(0, 0, 0, 0, 0, 0, 0, 1, 0, 0),
c(1, 1, 0, 0, 0, 0, 0, 1, 0, 1),
c(0, 0, 0, 0, 0, 0, 1, 1, 1, 1),
c(0, 0, 0, 0, 0, 0, 0, 0, 1, 0),
c(1, 1, 0, 0, 1, 0, 0, 1, 1, 1),
c(1, 0, 1, 1, 1, 0, 1, 0, 0, 0),
c(0, 1, 0, 0, 1, 1, 1, 0, 0, 1),
c(0, 1, 0, 1, 1, 0, 1, 0, 1, 0))

n <- max(dim(B))

blk <- c("s" = n)

With the objective function in the form 〈C, X〉, we define the input C as

one <- matrix(1, nrow = n, ncol = 1)
C <- -(diag(c(B %*% one)) - B) / 4

where, again, B is the adjacency matrix for a graph on which we would like to find the maximum cut,
such as the one in Figure 1.

The matrix At is constructed using the upper triangular portion of the Ak matrices. To do this in R,
the function svec is made available in sdpt3r.

A <- list()
for(k in 1:n){
A[[k]] <- Matrix(0,n,n)
A[[k]][k,k] <- 1

}

At <- svec(blk[1],A,1)
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B =



0 0 0 1 0 0 1 1 0 0
0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 0
1 1 0 0 1 0 0 1 1 1
1 0 1 1 1 0 1 0 0 0
0 1 0 0 1 1 1 0 0 1
0 1 0 1 1 0 1 0 1 0



Figure 1: A graph object and associated adjacency matrix for which we would like to find the maximum cut.

Having each of the diagonal elements of X constrained to be 1, b is a n× 1 matrix of ones

b <- matrix(1, nrow = n, ncol = 1)

With all the input variables now defined, we can now call sqlp to solve the Max-Cut problem

sqlp(blk, At, list(C), b)

A numerical example and the maxcut function

The built-in function maxcut takes as input a (weighted) adjacency matrix B and returns the optimal
solution directly. If we wish to find to the maximum cut of the graph in Figure 1, given the adjacency
matrix B we can compute using maxcut as

out <- maxcut(B)
out

$pobj

[1] -14.67622

$X

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
V1 1.000 0.987 -0.136 -0.858 0.480 0.857 -0.879 0.136 -0.857 0.597
V2 0.987 1.000 0.026 -0.763 0.616 0.929 -0.791 -0.026 -0.929 0.459
V3 -0.136 0.026 1.000 0.626 0.804 0.394 0.592 -1.000 -0.394 -0.876
V4 -0.858 -0.763 0.626 1.000 0.039 -0.469 0.999 -0.626 0.470 -0.925
V5 0.480 0.616 0.804 0.039 1.000 0.864 -0.004 -0.804 -0.864 -0.417
V6 0.857 0.929 0.394 -0.469 0.864 1.000 -0.508 -0.394 -1.000 0.098
V7 -0.879 -0.791 0.592 0.999 -0.004 -0.508 1.000 -0.592 0.508 -0.907
V8 0.136 -0.026 -1.000 -0.626 -0.804 -0.394 -0.592 1.000 0.394 0.876
V9 -0.857 -0.929 -0.394 0.470 -0.864 -1.000 0.508 0.394 1.000 -0.098
V10 0.597 0.459 -0.876 -0.925 -0.417 0.098 -0.907 0.876 -0.098 1.000

Note that the value of the primary objective function is negative as we have defined C =
−(diag(B1) − B)/4 since we require the primal formulation to be a minimization problem. The
original formulation given in Goemans and Williamson (1995) frames the Max-Cut problem as a maxi-
mization problem with C = (diag(B1)− B)/4. Therefore, the approximate value of the maximum cut
for the graph in Figure 1 is 14.68 (recall we are solving a relaxation).

As an interesting aside, we can show that the matrix X is actually a correlation matrix by con-
sidering its eigenvalues - we can see it clearly is symmetric, with unit diagonal and all elements in
[-1,1].

eigen(out$X[[1]])

$values
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[1] 5.59e+00 4.41e+00 2.07e-07 1.08e-07 4.92e-08 3.62e-08 3.22e-08
[8] 1.90e-08 1.66e-08 9.38e-09

The fact that X is indeed a correlation matrix comes as no surprise. Goemans and Williamson
(1995) show that the set of feasible solutions for the Max-Cut problem is in fact the set of correlation
matrices. So while we may not be interested in X as an output for solving the Max-Cut problem, it is
nonetheless interesting to see that it is in fact in the set of feasible solutions.

Nearest correlation matrix

Recall that the nearest correlation matrix is found as the solution to

minimize
e∗ , X

e0

subject to
svec(R)− svec(X) = [0, In(n+1)/2] e∗

diag(X) = 1
X ∈ Sn

e∗ ∈ Qn(n+1)/2+1

In Section 52.2.1 we wrote this as the following SQLP

minimize
e∗ , X

〈C, e∗〉
subject to

(As)Tsvec(X) + (Aq)Te∗ = b
X ∈ Sn

e∗ ∈ Qn(n+1)/2+1

for C = [1, 0n(n+1)/2], and

As = [As
1, As

2]
Aq = [Aq

1, Aq
2]

b = [b1; b2]

where

As
1 = In2

Aq
1 = [0, In2 ]

As
2 = [svec(A1), . . . , svec(An)]

Aq
2 = 0n2

b1 = svec(R)
b2 = 1T

and A1, . . . , An are given by

Ak = [aij] =

{
1, i = j = k
0, otherwise

To be solved using sqlp, we first define blk. There are two optimization variables in the formula-
tion of the nearest correlation matrix - X is an n× n matrix constrained to be in a semidefinite cone,
and y is an n(n + 1)/2 + 1 length vector constrained to be in a quadratic cone, so

data(Hnearcorr)

X = Hnearcorr
n = max(dim(X))
n2 = n * (n + 1) / 2

blk <- c("s" = n, "q" = n2+1)

Note that X does not appear in the objective function, so the C entry corresponding to the block
variable X is an n× n matrix of zeros, which defines C as

C1 <- matrix(0, nrow = n, ncol = n)
C2 <- rbind(1, matrix(0, nrow = n2, ncol = 1))
C <- list(C1,C2)
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Next comes the constraint matrix for X

Aks <- matrix(list(), nrow = 1, ncol = n)
for(k in 1:n){
Aks[[k]] <- matrix(0, nrow = n, ncol = n)
diag(Aks[[k]])[k] <- 1

}

A1s <- svec(blk[1], Aks)[[1]]
A2s <- diag(1, nrow = n2, ncol = n2)

At1 <- cbind(A1s,A2s)

then the constraint matrix for e∗.

A1q <- matrix(0, nrow = n, ncol = n2 + 1)

A2q1 <- matrix(0, nrow = n2, ncol = 1)
A2q2 <- diag(1, nrow = n2, ncol = n2)
A2q <- cbind(A2q1, A2q2)

At2 <- rbind(A1q, A2q)

and the right hand side vector b

b <- rbind(matrix(1, n, 1),svec(blk[1], X))

The nearest correlation matrix problem is now solved by

sqlp(blk, list(At1,At2), C, b)

A numerical example and the nearcorr function

To demonstrate the nearest correlation matrix problem, we will modify an existing correlation matrix
by exploring the effect of changing the sign of just one of the pairwise correlations. In the context
of stock correlations, we make use of tools available in the R package quantmod (Ryan and Ulrich,
2017) to access stock data from five tech firms (Microsoft, Apple, Amazon, Alphabet/Google, and
IBM) beginning in 2007.

library("quantmod")

getSymbols(c("MSFT", "AAPL", "AMZN", "GOOGL", "IBM"))
stock.close <- as.xts(merge(MSFT, AAPL, AMZN,

GOOGL, IBM))[, c(4, 10, 16, 22, 28)]

The correlation matrix for these five stocks is

stock.corr <- cor(stock.close)
stock.corr

MSFT.Close AAPL.Close AMZN.Close GOOGL.Close IBM.Close
MSFT.Close 1.0000000 -0.2990463 0.9301085 0.5480033 0.2825698
AAPL.Close -0.2990463 1.0000000 -0.1514348 0.3908624 0.6887127
AMZN.Close 0.9301085 -0.1514348 1.0000000 0.6228299 0.3870390
GOOGL.Close 0.5480033 0.3908624 0.6228299 1.0000000 0.5885146
IBM.Close 0.2825698 0.6887127 0.3870390 0.5885146 1.0000000

Next, consider the effect of having a positive correlation between Microsoft and Apple

stock.corr[1, 2] <- -1 * stock.corr[1, 2]
stock.corr[2, 1] <- stock.corr[1, 2]
stock.corr

MSFT.Close AAPL.Close AMZN.Close GOOGL.Close IBM.Close
MSFT.Close 1.0000000 0.2990463 0.9301085 0.5480033 0.2825698
AAPL.Close 0.2990463 1.0000000 -0.1514348 0.3908624 0.6887127
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AMZN.Close 0.9301085 -0.1514348 1.0000000 0.6228299 0.3870390
GOOGL.Close 0.5480033 0.3908624 0.6228299 1.0000000 0.5885146
IBM.Close 0.2825698 0.6887127 0.3870390 0.5885146 1.0000000

Unfortunately, this correlation matrix is not positive semidefinite

eigen(stock.corr)$values

[1] 2.8850790 1.4306393 0.4902211 0.3294150 -0.1353544

Given the approximate correlation matrix stock.corr, the built-in function nearcorr solves the
nearest correlation matrix problem using sqlp

out <- nearcorr(stock.corr)

Since this is a minimization problem, and thus a primal formulation of the SQLP, the output X
from sqlp will provide the optimal solution to the problem - that is, X will be the nearest correlation
matrix to stock.corr.

out$X

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0000000 0.25388359 0.86150833 0.5600734 0.3126420
[2,] 0.2538836 1.00000000 -0.09611382 0.3808981 0.6643566
[3,] 0.8615083 -0.09611382 1.00000000 0.6115212 0.3480430
[4,] 0.5600734 0.38089811 0.61152116 1.0000000 0.5935021
[5,] 0.3126420 0.66435657 0.34804303 0.5935021 1.0000000

The matrix above is symmetric with unit diagonal and all entries in [−1, 1]. By checking the
eigenvalues,

eigen(out$X)

$values

[1] 2.846016e+00 1.384062e+00 4.570408e-01 3.128807e-01 9.680507e-11

we can see that X is indeed a correlation matrix.

D-optimal experimental design

Recall from Section 52.2.2 that the D-Optimal experimental design problem was stated as the following
dual SQLP

maximize
Z, zl , λ

log det (Z)

subject to
−∑

p
i=1 λi(uiui

T) + Z = 0, Z ∈ Sn

−λ + zl = 0, zl ∈ Rp
+

1Tλ = 1, λ ∈ Rp

which we wrote as

maximize
Z, zl , λ

log det (Z)

subject to
(As)Tλ + Z = Cs, Z ∈ Sn

(Al)
T

λ + zl = Cq, zl ∈ Rp
+

(Au)Tλ = Cu, λ ∈ Rp

where b = 0, and

As = −[svec(A1), . . . , svec(Ap)]
Al = −Ip
Au = 1T

Cs = 0n×n
Cl = 0p×1
Cu = 1

Here, A1, . . . , Ap are given by
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Ai = uiui
T, i = 1, . . . , p

To convert this to a form usable by sdpt3r, we first declare the three blocks in blk. For a matrix
The first block is semidefinite containing the matrix Z, the second a linear block containing zl , and the
third an unrestricted block containing λ

data(DoptDesign)
V = DoptDesign
n = nrow(V)
p = ncol(V)

blk = c("s" = n, "l" = p, "u" = 1)

Next, by noting the variable λ does not appear in the objective function, we specify b as a vector of
zeros

b <- matrix(0, nrow = p, ncol = 1)

Next, looking at the right-hand side of the constraints, we define the matrices C

C1 <- matrix(0, nrow = n, ncol = n)
C2 <- matrix(0, nrow = p, ncol = 1)
C3 <- 1

C = list(C1,C2,C3)

Finally, we construct At for each variable

A <- matrix(list(), nrow = p, ncol = 1)

for(k in 1:p){
A[[k]] <- -V[,k] %*% t(V[,k])

}

At1 <- svec(blk[1], A)[[1]]
At2 <- diag(-1, nrow = p, ncol = p)
At3 <- matrix(1, nrow = 1, ncol = p)

At = list(At1,At2,At3)

The final hurdle necessary to address in this problem is the existence of the log-barrier. Recall that
it is assumed that vs, vq, and vl in Equation 4 are all zero in control. In this case, we can see that is not
true, as we have a log term containing Z in the objective function, meaning vs is equal to one. To pass
this to sqlp, we define the control$parbarrier variable as

control <- list(parbarrier = matrix(list(),3,1))
control$parbarrier[[1]] <- 1
control$parbarrier[[2]] <- 0
control$parbarrier[[3]] <- 0

The D-Optimal experimental design problem can now be solved using sqlp

sqlp(blk, At, C, b, control)

A numerical example and the doptimal function

To demonstrate the output generated from a D-optimal experimental design problem, we consider
a simple 3× 25 matrix containing the known test vectors u1, ..., u25 (the data is available in the sqlp
package). To solve the problem usingsqlp, we use the function doptimal, which takes as input an
n× p matrix U containing the known test vectors, and returns the optimal solution. The output we
are interested in is y, corresponding to λ in our formulation, the percentage of each ui necessary to
achieve maximum information in the experiment.

data("DoptDesign")

out <- doptimal(DoptDesign)

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 387

out$y
[,1]

[1,] 0.000
[2,] 0.000
[3,] 0.000
[4,] 0.000
[5,] 0.000
[6,] 0.000
[7,] 0.154
[8,] 0.000
[9,] 0.000
[10,] 0.000
[11,] 0.000
[12,] 0.000
[13,] 0.319
[14,] 0.000
[15,] 0.000
[16,] 0.240
[17,] 0.000
[18,] 0.000
[19,] 0.000
[20,] 0.000
[21,] 0.000
[22,] 0.000
[23,] 0.287
[24,] 0.000
[25,] 0.000

The information matrix ATA is a linear combination of the test vectors ui, weighted by the optimal
vector y above.

Additional problems

The sdpt3r package considerably broadens the set of optimization problems that can be solved in R. In
addition to those problems presented in detail in Section 52.3, there are a large number of well known
problems that can also be formulated as an SQLP.

Each problem presented will be described briefly, with appropriate references for the interested
reader, and presented mathematically in its classical form, not as an SQLP as in Equation 3 or
4. Accompanying each problem will be an R helper function, which will solve the corresponding
problem using sqlp. Each helper function in sdpt3r (including those for the max-cut, D-optimal
experimental design, and nearest correlation matrix) is an R implementation of the helper functions
that are available to the user in the Matlab SDPT3 package (Toh et al., 1999).

Minimum volume ellipsoids

The problem of finding the ellipsoid of minimum volume containing a set of points v1, ..., vn is stated
as the following optimization problem (Vandenberghe et al., 1998)

maximize
B, d

log det(B)

subject to
||Bx + d|| ≤ 1, ∀ ]vex ∈ [v1, ..., vn]

The function minelips takes as input an n× p matrix V containing the points around which we
would like to find the minimum volume ellipsoid, and returns the optimal solution using sqlp.

data(Vminelips)
out <- minelips(Vminelips)

Distance weighted discrimination

Given two sets of points in a matrix X ∈ Rn with associated class variables [-1,1] in Y = diag(y),
distance weighted discrimination (Marron et al., 2007) seeks to classify the points into two distinct
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subsets by finding a hyperplane between the two sets of points. Mathematically, the distance weighted
discrimination problem seeks a hyperplane defined by a normal vector, ω, and position, β, such that
each element in the residual vector r̄ = YXTω + βy is positive and large. Since the class labels are
either 1 or -1, having the residuals be positive is equivalent to having the points on the proper side of
the hyperplane.

Of course, it may be impossible to have a perfect separation of points using a linear hyperplane, so
an error term ξ is introduced. Thus, the perturbed residuals are defined to be

r = YXTω + βy + ξ

Distance weighted discrimination (Marron et al., 2007) solves the following optimization problem
to find the optimal hyperplane.

minimize
r, ω, β, ξ

∑n
i=1(1/ri) + C1Tξ

subject to
r = YXTω + βy + ξ

ωTω ≤ 1
r ≥ 0
ξ ≥ 0

where C > 0 is a penalty parameter to be chosen.

The function dwd takes as input two n× p matrices X1 and X2 containing the points to be separated,
as well as a penalty term C≥ 0 penalizing the movement of a point on the wrong side of the hyperplane
to the proper side, and returns the optimal solution using sqlp.

data(Andwd)
data(Apdwd)
C <- 0.5

out <- dwd(Apdwd,Andwd,penalty)

Max-kCut

Similar to the Max-Cut problem, the Max-kCut problem asks, given a graph G = (V, E) and an integer
k, does a cut exist of at least size k. For a given (weighted) adjacency matrix B and integer k, the
Max-kCut problem is formulated as the following primal problem

minimize
X

〈C, X〉
subject to

diag(X) = 1
Xij ≥ 1/(k− 1) ∀ i 6= j

X ∈ Sn

Here, C = −(1− 1/k)/2 ∗ (diag(B1)− B). The Max-kCut problem is slightly more complex than
the Max-Cut problem due to the inequality constraint. In order to turn this into a standard SQLP, we
must replace the inequality constraints with equality constraints, which we do by introducing a slack
variable xl , allowing the problem to be restated as

minimize
X

〈C, X〉
subject to

diag(X) = 1
Xij − xl = 1/(k− 1) ∀ i 6= j

X ∈ Sn

xl ∈ Ln(n+1)/2

The function maxkcut takes as input an adjacency matrix B and an integer k, and returns the
optimal solution using sqlp.

data(Bmaxkcut)
k = 2

out <- maxkcut(Bmaxkcut,k)
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Graph partitioning problem

The graph partitioning problem can be formulated as the following primal optimization problem

minimize
X

tr(CX)

subject to
tr(11TX) = α

diag(X) = 1

Here, C = −(diag(B1)− B), for an adjacency matrix B, and α is any real number.

The function gpp, takes as input a weighted adjacency matrix B and a real number alpha and
returns the optimal solution using sqlp.

data(Bgpp)
alpha <- nrow(Bgpp)

out <- gpp(Bgpp, alpha)

The Lovasz number

The Lovasz Number of a graph G, denoted ϑ(G), is the upper bound on the Shannon capacity of the
graph. For an adjacency matrix B = [Bij] the problem of finding the Lovasz number is given by the
following primal SQLP problem

minimize
X

tr(CX)

subject to
tr(X) = 1

Xij = 0 if Bij = 1
X ∈ Sn

The function lovasz takes as input an adjacency matrix B, and returns the optimal solution using
sqlp.

data(Glovasz)

out <- lovasz(Glovasz)

Toeplitz approximation

Given a symmetric matrix F, the Toeplitz approximation problem seeks to find the nearest symmetric
positive definite Toeplitz matrix. In general, a Toeplitz matrix is one with constant descending
diagonals, i.e.,

T =


a b c d e
f a b c d
g f a b c
h g f a b
i h g f a


is a general Toeplitz matrix. The problem is formulated as the following optimization problem

maximize
X

−yn+1

subject to [
I 0
0 −β

]
+ ∑n

k=1 yk

[
0 γkek

γkeT
k −2qk

]
+ yn+1B ≥ 0

[y1, ..., yn]
T + yn+1B ≥ 0

where B is an (n + 1) × (n + 1) matrix of zeros, and B(n+1)(n+1) = 1, q1 = −tr(F), qk = sum of
kth diagonal upper and lower triangular matrix, γ1 =

√
n, γk =

√
2 ∗ (n− k + 1), k = 2, ..., n, and

β = ||F||2F.

The function toep takes as input a symmetric matrix F for which we would like to find the nearest
Toeplitz matrix, and returns the optimal solution using sqlp.
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data(Ftoep)

out <- toep(Ftoep)

The educational testing problem

The educational testing problem arises in measuring the reliability of a student’s total score in an
examination consisting of a number of sub-tests (Fletcher, 1981). In terms of formulation as an
optimization problem, the problem is to determine how much can be subtracted from the diagonal of a
given symmetric positive definite matrix S such that the resulting matrix remains positive semidefinite
(Chu and Wright, 1995).

The Educational Testing Problem (ETP) is formulated as the following dual problem

maximize
d

1Td

subject to
A− diag(d) � 0

d ≥ 0

where d = [d1, d2, ..., dn] is a vector of size n and diag(d) denotes the corresponding n× n diagonal
matrix. In the second constraint, having each element in d be greater than or equal to 0 is equivalent
to having diag(d) � 0.

The corresponding primal problem is

minimize
X

tr(AX)

subject to
diag(X) ≥ 1

X � 0

The function etp takes as input an n× n positive definite matrix A, and returns the optimal solution
using sqlp.

data(Betp)

out <- etp(Betp)

Logarithmic Chebyshev approximation

For a p× n (p > n) matrix B and p× 1 vector f, the Logarithmic Chebyshev Approximation problem
is stated as the following optimization problem (Vandenberghe et al., 1998)

minimize
x, t

t

subject to
1/t ≤ (xTBi·)/fi ≤ t, i = 1, ..., p

where Bi· denotes the ith row of the matrix B. Note that we require each element of B·j/f to be greater
than or equal to 0 for all j.

The function logcheby takes as input a matrix B and vector f, and returns the optimal solution to
the Logarithmic Chebyshev Approximation problem using sqlp.

data(Blogcheby)
data(flogcheby)

out <- logcheby(Blogcheby, flogcheby)

Linear matrix inequality problems

We consider three distinct linear matrix inequality problems, all written in the form of a dual optimiza-
tion problem. The first linear matrix inequality problem we will consider is defined by the following
optimization equation for some n× p matrix B known in advance
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maximize
η, Y

−η

subject to
BY + YBT � 0

−Y � − I
Y− ηI � 0

Y11 = 1, Y ∈ Sn

The function lmi1 takes as input a matrix B, and returns the optimal solution using sqlp.

B <- matrix(c(-1,5,1,0,-2,1,0,0,-1), nrow=3)

out <- lmi1(B)

The second linear matrix inequality problem is

maximize
P, d

−tr(P)

subject to
A1P + PA1

T + B ∗ diag(d) ∗ BT � 0
A2P + PA2

T + B ∗ diag(d) ∗ BT � 0
−d � 0

∑
p
i di = 1

Here, the matrices B, A1, and A2 are known in advance.

The function lmi2 takes the matrices A1, A2, and B as input, and returns the optimal solution using
sqlp.

A1 <- matrix(c(-1,0,1,0,-2,1,0,0,-1),3,3)
A2 <- A1 + 0.1*t(A1)
B <- matrix(c(1,3,5,2,4,6),3,2)

out <- lmi2(A1,A2,B)

The final linear matrix inequality problem originates from a problem in control theory (Boyd et al.,
1994) and requires three matrices be known in advance, A, B, and G

maximize
η, P

η

subject to [
AP + PAT 0

BP 0

]
+ η

[
0 0
0 I

]
�
[ −G 0

0 0

]
The function lmi3 takes as input the matrices A, B, and G, and returns the optimal solution using

sqlp.

A <- matrix(c(-1,0,1,0,-2,1,0,0,-1),3,3)
B <- matrix(c(1,2,3,4,5,6), 2, 3)
G <- matrix(1,3,3)

out <- lmi3(A,B,G)

Summary

In Section 52.2, we introduced the problem of conic linear optimization. Using the Max-Cut, Nearest
Correlation Matrix, and D-Optimal Experimental Design problems as examples, we demonstrated the
increasing generality of the problem, culminating in a general form of the conic linear optimization
problem, known as the semidefinite quadratic linear program, in Section 52.2.2.

In Section 52.3, we introduced the R package sdpt3r, and the main function call available in the
package, sqlp. The specifics of the necessary input variables, the optional input variables, and the
output variables provided by sqlp were presented. Using the examples from Section 52.2, we showed
how a problem written as a semidefinite quadratic linear program could be solved in R using sdpt3r.

Finally, in Section 52.4, we presented a number of additional problems that can be solved using
the sdpt3r package, and presented the helper functions available so these problems could be easily
solved using sqlp.
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The sdpt3r package broadens the range of problems that can be solved using R. Here, we discussed
a number of problems that can be solved using sdpt3r, including problems in the statistical sciences,
graph theory, classification, control theory, and general matrix theory. The sqlp function in sdpt3r is
in fact even more general, and users may apply it to any other conic linear optimization problem that
can be written in the form of Equation 3 or 4 by specifying the input variables blk, At, C, and b for
their particular problem.

control

vers specifies the search direction
0, HKM if semidefinite blocks present, NT otherwise (default)
1, HKM direction
2, NT direction

predcorr TRUE, use Mehrotra prediction-correction (default)
FALSE, otherwise

gam step-length (default 0)
expon exponent used to decrease sigma (default 1)

gaptol tolerance for duality gap as a fraction of the objective function (default 1e− 8)
inftol tolerance for stopping due to infeasibility (default 1e-8)

steptol tolerance for stopping due to small steps (default 1e-6)
maxit maximum number of iterations (default 100)

stoplevel 0, continue until successful completion, maximum iteration, or numerical failure
1, automatically detect termination, restart if small steps is cause (default)
2, automatically detect termination

scale_data TRUE, scale data prior to solving
FALSE, otherwise (default)

rmdepconstr TRUE, remove nearly dependent constraints
FALSE, otherwise (default)

parbarrier declare the existence of a log barrier term
default value is 0 (i.e., no log barrier)
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