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Indoor Positioning and Fingerprinting:
The R Package ipft
by Emilio Sansano, Raúl Montoliu, Óscar Belmonte and Joaquín Torres-Sospedra

Abstract Methods based on Received Signal Strength Indicator (RSSI) fingerprinting are in the
forefront among several techniques being proposed for indoor positioning. This paper introduces
the R package ipft, which provides algorithms and utility functions for indoor positioning using
fingerprinting techniques. These functions are designed for manipulation of RSSI fingerprint data
sets, estimation of positions, comparison of the performance of different positioning models, and
graphical visualization of data. Well-known machine learning algorithms are implemented in this
package to perform analysis and estimations over RSSI data sets. The paper provides a description
of these algorithms and functions, as well as examples of its use with real data. The ipft package
provides a base that we hope to grow into a comprehensive library of fingerprinting-based indoor
positioning methodologies.

Introduction

Intelligent spaces, as a particularity of the concept known as Ambient Intelligence (AmI) (Aarts and
Wichert, 2009; Werner et al., 2005), where agents communicate and use technology in a non-intrusive
way, have an interest in both open and closed environments. Since people spend 90% of time indoors
(Klepeis et al., 2001), one of the most relevant aspects of AmI is indoor localization, due to the large
number of potential applications: industrial and hospital applications, passenger transport, residences,
assistance to emergency services and rescue, localization and support guide for the disabled, leisure
applications, etc. It is expected that the global market for this type of location will grow from USD
7.11 billion in 2017 to USD 40.99 billion by 2022 (Research and markets, 2017), being among the key
technologies in the future. This is a technology that has already awakened but that in a short period of
time will suffer a big explosion, as happened with the systems of positioning by satellite in exteriors
and its applications.

This paper introduces the R package ipft (Sansano, 2017), a collection of algorithms and utility
functions to create models, make estimations, analyze and manipulate RSSI fingerprint data sets
for indoor positioning. Given the abundance of potential applications for indoor positioning, the
package may have a broad relevance in fields such as pervasive computing, Internet of Things (IoT) or
healthcare, among many others.

The main progress in indoor location systems has been made during the last years. Therefore,
both the research and commercial products in this area are new, and researchers and industry are
currently involved in the investigation, development and improvement of these systems. We believe
that the R language is a good environment for machine learning and data analysis related research,
as its popularity is constantly growing 1, researchers related to indoor positioning have explicitly
selected R as developing framework for their experiments (Quan et al., 2017; Harbicht et al., 2017;
Popleteev et al., 2011), it is well maintained by an active community, and provides an ecosystem of
good-quality packages that leverage its potential to become a standard programming platform for
researchers. There are some open source applications and frameworks to build indoor positioning
services, such as FIND 2, Anyplace 3 or RedPIN 4, based on fingerprinting techniques but, as far as
we know, there is not any public framework or package that provides functions and algorithms to
manipulate fingerprinting datasets and experiment with positioning algorithms.

RSSI (Received Signal Strength Indicator) positioning systems are based on measuring the intensi-
ties of the received radio signals of the emitting devices (beacons) that are available at a particular
position, and comparing them with a previously built RSSI data set (yub Lee et al., 2013). RSSI is used
to measure the relative quality of a received signal to a client device, and each chipset manufacturer is
free to define their own scale for this term. The value read by a device is given on a logarithmic scale
and can correspond to an instant reading or a mean of some consecutive readings.

In this scenario, a fingerprint is an RSSI feature vector composed of received signal values from
different emitting devices or beacons, associated to a precise position. In the last years, this technique
is becoming increasingly important for indoor localization (Liu et al., 2007; He and Chan, 2016), since
Wi-Fi is generally available in indoor environments where GPS signals cannot penetrate, and the

1https://stackoverflow.blog/2017/10/10/impressive-growth-r/
2https://www.internalpositioning.com#about
3https://anyplace.cs.ucy.ac.cy
4http://redpin.org
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Figure 1: During the on-line phase, once the radio map has been built, the fingerprinting algorithm
uses it to estimate the device’s position by comparing the RSSI values heard by the device with the
ones stored in the radio map.

wireless access points (WAPs) can be used as emitting devices (Li et al., 2006). Other types of indoor
localization RF emitters, such as Bluetooth (Wang et al., 2013), RFID (Liu et al., 2011), or Ultra Wide
Band (UWB) (Gigl et al., 2007), can be also used in combination with Wi-Fi access points or as a
standalone positioning system.

The RSSI fingerprinting localization approach requires two phases of operation: a training phase,
also known as off-line or survey phase, and a positioning phase, sometimes referred as on-line, runtime
or tracking phase. In the training phase, multidimensional vectors of RSSI values (the fingerprints)
are generated and associated with known locations. These measurements are used to build a data
set (also known as radio map) that covers the area of interest. This data set can include, along with
the collected RSSI values and the location coordinates, many other useful parameters, as the device
type used in the measurements or its orientation. Later, during the positioning phase, an RSSI vector
collected by a device is compared with the stored data to generate an estimation of its position (Figure
1).

Despite the increasing interest in RSSI positioning (Xiao et al., 2016), this topic has not been
explicitly covered yet by any publicly available R package. The proposed package has been developed
to provide users with a collection of fundamental algorithms and tools to manipulate RSSI radio maps
and perform fingerprinting analysis. While fundamental algorithms and similarity measurement
functions are implemented to provide a main framework for research and comparison purposes, these
are highly customizable, to allow researchers to tailor those methods with their own parameters and
functions.

This paper describes these algorithms and their implementation, and provides examples of how to
use them. The remainder of the paper is structured as follows: Section Problem statement. Terminology
and notation defines the fingerprinting problem statement and the nomenclature that will be used in
the rest of the paper. An overview of the implemented algorithms is given in Section An overview of the
implemented algorithms. Section Data wrangling outlines some data wrangling techniques included
in the package. Section Positioning algorithms describes the implemented positioning algorithms.
Section Beacon position estimation presents the included methods for access point position estimation.
Then, Section Data clustering discuses some tools and functions included to create clusters or groups
of fingerprints. Section Plotting functions illustrates the use of the plotting functions also included in
the package. In all these sections, functions are described and explored using practical examples, and
particular emphasis is placed on how to use them with real world examples and data sets. Finally, the
paper is summarized in Section Summary.

Problem statement. Terminology and notation

This section provides a brief and general introduction to the principles of fingerprinting positioning,
as well as a description of the notation and terminology that will be used in the next sections. The
terms described here are related to general concepts of fingerprinting techniques, while the remaining
of the paper describes the particular implementation of these concepts in the ipft package.

The main goal of the indoor localization techniques is to determine the position of a user in an
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indoor environment, where the GPS signal might not be received. This objective might require the
use of an existing infrastructure, the deployment of a new one, the use of the so-called signals-of-
opportunity (Yang et al., 2014), or even a combination of some of these techniques. Many of these
techniques take advantage of the radio-frequency signals emitted by devices, whose position can
be known or not, to estimate the user’s position from the perceived strength of these signals. There
are many kinds of devices that can be used for this purpose, such as Wi-Fi access points, bluetooth
beacons, RFID or UWB devices, but for all of them, the information provided for a given position, the
fingerprint, can be stored as a vector of received signal strength intensities (RSSI), whose length is
determined by the number of detected emitters.

A radio map, or a fingerprinting data set, is composed of a set of collected fingerprints and the
associated positions where the measurements were taken, and may contain some additional variables,
such as the the type of device used or a time stamp of the observation, among any other useful data.
Let D be a fingerprinting data set. Then:

D = {F ,L}

where F is the set of collected fingerprints and L is the set of associated locations.

For research purposes, a fingerprinting data set is usually divided into training and test sets. The
training data set is used to store the fingerprints and location data to create models of the environment
that can be used to estimate the position of a new fingerprint. The test data set is used to test the
models obtained from the training data, and to compute the errors from the results of the position
estimation.

Let Dtrain be a training data set:

Dtrain = {Ftrain,Ltrain}

where

Ftrain =
{

λtr
1 , λtr

2 , ..., λtr
n
}

Ltrain =
{

τtr
1 , τtr

2 , ..., τtr
n
}

Dtrain is composed of n fingerprints, stored as n vectors of RSSI measurements (λtr
i , i ∈ [1, 2, ..., n]),

and n locations (τtr
i , i ∈ [1, 2, ..., n]), stored as vectors, representing the position associated with its

correspondent fingerprint. Each fingerprint consists of q RSSI values (ρtr
h,i, h ∈ [1, ..., q]), where q is the

number of beacons considered when building the training set:

λtr
i =

{
ρtr

1,i, ρtr
2,i, ..., ρtr

q,i

}
, i ∈ [1, ..., n]

and each associated position is composed of one or more values, depending on the number of
dimensions to be considered and the coordinate system used. The position can be given as a vector of
values representing its coordinates, although on multi-floor and multi-building environments labels
can be used to represent buildings, floors, offices, etc. Let l be the number of dimensions of a position
vector. Then:

τtr
i =

{
νtr

1,i, νtr
2,i, ..., νtr

l,i

}
, i ∈ [1, ..., n]

The test data set is also composed of a collection of fingerprints associated to known positions.
This data set is used for testing purposes, during research or during model building adjustments, to
assess the model’s performance by comparing its estimation of the positions with the ground truth.

The situation is different in real applications, where the goal is to estimate the unknown position
of the receiver given the RSSI values detected at a particular location, using a previously built model.
In this case, the test data set is just composed of a unique fingerprint, and the objective is to estimate
the actual location of the receiver. Therefore, no information about its location is provided.

The test data set is composed of m observations:

Dtest = {Ftest,Ltest}

where

Ftest =
{

λts
1 , λts

2 , ..., λts
m
}
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Ltest =
{

τts
1 , τts

2 , ..., τts
m
}

To be able to compare the test observations with the training fingerprints, the number of RSSI
values of its respective fingerprints has to be the same, and the position in the RSSI vector must
represent the same beacon in both data sets. Therefore, each one of the m observations of the test data
set is composed of a fingerprint with q RSSI values:

λts
j =

{
ρts

1,j, ρts
2,j, ..., ρts

q,j

}
, j ∈ [1, ..., m]

and a location vector with the same spatial dimensions as the training location vectors:

τts
j =

{
νts

1,j, νts
2,j, ..., νts

l,j

}
, j ∈ [1, ..., m]

The notation depicted above will be used in the remaining of the paper to represent the finger-
printing data. Symbols i and j will be used to represent iterations over the training and test data sets,
respectively, while h will be used to iterate over the beacons present in each fingerprint.

An overview of the implemented algorithms

This section presents an introduction to the main functions, included in the ipft5 package, that
implement fingerprinting-based indoor localization methods. The package also provides two data sets
for training and validation purposes that are briefly described in this section.

The ipft package implements three algorithms to build models to estimate the position of a
receiver in an indoor environment. Two of these implementations are based on the well known
k-Nearest Neighbors algorithm (knn) (Cover and Hart, 1967) to, given an RSSI vector, select the k
most similar training examples from the radio map. The similarity between the RSSI value vectors
can be measured, for example, as the euclidean distance between them, but other distance functions
may be used (Torres-Sospedra et al., 2015b). The selection of a method to compute this measure can
be provided to the function in two ways, either choosing one of the already implemented distance
measurements (euclidean, manhattan, etc.), or by way of a reference to a function implemented by the
user that returns the distance (the lower, the more similar or ’closer’) between two matrices or vectors.
Once the k neighbors are selected, the location of the user is estimated as the weighted average of the
neighbors positions.

The first implementation, corresponding to the function ipfKnn, may behave in a deterministic way,
finding the k more similar neighbors using a deterministic similarity function such as the euclidean or
manhattan distances, or in a probabilistic way, using similarity functions such as LDG (Logarithmic
Gaussian Distance) or PLGD (Penalized Logarithmic Gaussian Distance) (Cramariuc et al., 2016b),
that are based upon statistical assumptions on the RSSI measurement error. The similarity function
can be chosen from the set of implemented options or provided by the user via a custom function.
This implementation is discussed in the Section The ipfKnn function.

The other implementation of the knn algorithm assumes a probabilistic nature for the received
signal distribution (Roos et al., 2002) and uses collections of many fingerprints at each particular
position, acquired during the training phase. Therefore, the radio map is composed of several
groups, where a group is a set of fingerprints (vectors of RSSI values) that share the same location.
Assuming that the RSSI value for a specific beacon can be modeled as a random variable following a
normal distribution (Haeberlen et al., 2004), any of these collections, or groups, of fingerprints can be
represented by the statistical parameters of this distribution, in this case, the mean and the standard
deviation. This implies that the original data set can be transformed into a new type of data structure
by storing the mean and the standard deviation of every detected beacon for every group. All the
original data for a group is transformed into two vectors, one storing the means and the other the
standard deviations. The trustworthiness of the data in the new data set will depend on the number of
measurements for every location of the original data. It is assumed that the more measurements for a
particular location, the more reliable will be their inferred statistical parameters.

The implementation of this probabilistic-based method takes the original radio map and a set
of group indices, and fits these groups of measurements to a normal (Gaussian) distribution for
every beacon and every location, so that the signal intensity distribution is determined by the mean

5The ipft package is available at CRAN and can be installed as any other R package:
> install.packages("ipft")
The package has to be loaded into the main environment to use it for the first time in an R session:
> library("ipft")
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and the standard deviation of the Gaussian fit. Then, given a test fingerprint, the algorithm esti-
mates its position by selecting the k most probable locations, making explicit use of the statistical
parameters of the data stored in the radio map to optimize the probabilities in the assignment of the
estimated position by computing a similarity function based on a summatory of probabilities. This
approach is implemented through the ipfProbabilistic function and is described in the Section The
ipfProbabilistic function.

Finally, the third implemented algorithm is based on a scenario where the location of the beacons
is known, and an estimation of the fingerprint position can be made using the log-distance path loss
model (Seybold, J.S., 2005). The strength of the received signal at a particular point can be modeled
as a function of the logarithmic distance between the receiver and the emitter and some parameters
related to the environment properties and the devices characteristics. Therefore, as this method uses
an analytical model to evaluate the position, no radio map is needed to train a model to compare
fingerprints with, since the position might be estimated from the fingerprint data and the position of
the beacons. This method is implemented by the function ipfProximity and is described in Section
The ipfProximity function.

The previous functions ipfKnn, ipfProbabilistic and ipfProximity create models based on the
training data and parameters provided. These models can then be evaluated using the ipfEstimate
function, that internally detects the algorithm to apply based on the model that receives as parameter.

The package also includes data from the IPIN20166 Tutorial data set. In the ipftrain data frame
there are n = 927 observations, including the RSSI values for q = 168 wireless access points, the location,
expressed in Cartesian coordinates, for the observation (x, y), and some other variables, as timestamps
for the measurements or an identifier for the user who took the survey. The ipftest data frame
contains m = 702 observations with the same structure, for testing and validation purposes. The
fingerprints included in both data sets where taken in the same building and the same floor. The
ipfpwap data frame contains the position of 39 of the WAPs included in the ipftrain and ipftest
data sets. The unknown positions of the remaining WAPs are stored as NA. The characteristics of these
data sets attributes are:

• RSSI values: Columns from 1 to 168. The values represent the strength of the received signal
expressed in decibels, on a scale that ranges from −30dBm to −97dBm in the training set, and
from −31dBm to −99dBm in the test set. The closer the value to zero, the stronger the signal.

• position: Columns 169 (X) and 170 (Y). The position given in Cartesian coordinates, with its
origin in the same corridor where the data was acquired.

• user id: A numeric value from 1 to 8 to represent each of the 8 users that acquired the train
data set. The test dataset was acquired by a different user, represented by the value 0.

• timestamp: The UNIX time stamp of the observation, in seconds.

There are some other publicly available indoor location data sets that have been used to develop
and test this package and that are not included for size reasons, as the UJIIndoorLoc Data Set (Torres-
Sospedra et al., 2015a) or the Tampere University data set (Cramariuc et al., 2016a).

The theoretical foundations of the algorithms and its uses are discussed in detail in Section
Positioning algorithms. A description of the functions ipfKnn, ipfProximity, ipfProbabilistic and
ipfEstimate is given while presenting some simulations to show how these algorithms can be useful
in practice.

Data wrangling

An RSSI fingerprint is a vector composed of signal strength measurements from all the emitters
received by a client device at a particular point, and can be measured in any unit of power. It is often
expressed in decibels (dBm), or as percentage values between 1-100, and can be a negative or a positive
value. Typically this values are stored as negative figures, where the strongest signals are closer to
zero.

Some algorithms are sensitive to the scale of the data. For example, Neural Networks generally
work better (?) with data scaled to a range between [0, 1] or [−1, 1], since unscaled data may slow
down the learning process and the convergence of the network parameters and, in some cases, prevent
the network from effectively learning the problem. Thus, the first step before the data can be fed to a
positioning algorithm may involve some kind of transformation, depending on the characteristics of
the original data.

The data sets included in this package represent the RSSI data from a set of wireless access points
as negative integer numbers from −99 (weakest detected signal) to −30 (strongest detected signal).

6http://www3.uah.es/ipin2016/
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When the RSSI of a WAP is not available, the value used is NA. This convention may be inconvenient
for some calculations. For example, a similarity measure between two fingerprints as the euclidean
distance will only take into account those WAPs that have been detected in both observations, causing
a loss of information that otherwise could be utilized.

The ipft package contains some functions to manipulate and wrangle raw fingerprint data. The
ipfTransform function mutates the given fingerprint data into a new data set with a specified range
for the RSSI signals. The signature of the function is:

ipfTransform <- function(data, outRange = c(0, 1), outNoRSSI = 0, inRange = NULL,
inNoRSSI = 0, trans = "scale", alpha = 24)

where:

• data: The input data set with the original RSSI fingerprints.

• outRange: A numeric vector with two values indicating the desired range of the output data.

• outNoRSSI: The desired value for not detected beacons in the output data.

• inRange: A numeric vector with two values indicating the range of signal strength values in the
input data. If this parameter is not provided, the function will infer it from the provided data.

• inNoRSSI: The value given to a not detected beacon in the original data.

• trans: The transformation to perform over the RSSI data, either ’scale’ or ’exponential’.

• alpha: The α parameter for the exponential transformation.

The scale transformation scales the input data values to a range specified by the user. The feature
scaling is performed according to Equation 1:

ρout
h,i =

{
a + b · ρin

h,i, if ρin
h,i 6= inNoRSSI

outNoRSSI, otherwise
(1)

b =
outMin− outMax

inMin− inMax
a = outMin− inMin · b

where:

– ρout
h,i and ρin

h,i are the output and input RSSI values, respectively, for the hth beacon from the ith

observation

– outMax and outMin are the maximum and minimum values, respectively, specified for the
output by the outRange parameter.

– inMax and inMin are the maximum and minimum values, respectively, of the input data.

– outNoRSSI and inNoRSSI are the values assigned in the fingerprint to represent a not detected
beacon for the output and input data, respectively, specified by the parameters outNoRSSI and
inNoRSSI.

The exponential transformation (Torres-Sospedra et al., 2015b) changes the data according to the next
equation:

ρout
h,i =

{
exp(

pos(ρin
h,i)

α ), if ρin
h,i 6= inNoRSSI

outNoRSSI, otherwise

pos(ρin
h,i) =

{
ρin

h,i − inMin, if ρin
h,i 6= inNoRSSI

0, otherwise

where α is a parameter for the exponential transformation. The authors establish α as a case-based
parameter, and find that 24 is a good value for RSSI fingerprinting data, but they did not study the
effects of α in the transformed data.

The following code scales the ipftrain and ipftest data sets RSSI data, stored in the columns
1:168, to a positive range of values, from 0 to 1, with NA representing a not detected WAP. As a not
detected WAP is represented by a NA value in the original data, this has to be indicated to the function
so it can transform these values to the desired output:
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trainRSSI <- ipfTransform(ipftrain[, 1:168], outRange = c(0.1, 1), inNoRSSI = NA,
outNoRSSI = NA)

testRSSI <- ipfTransform(ipftest[, 1:168], outRange = c(0.1, 1), inNoRSSI = NA,
outNoRSSI = NA)

The ipfTransform function returns a new data set with the same structure (vector, matrix or data
frame) as the input.

Positioning algorithms

This section describes three positioning algorithms implemented in the ipft package. The examples
illustrating each description are based on the data previously scaled in Section Data wrangling .

The ipfKnn function.

The ipfKnn and ipfEstimate functions implement a version of the knn algorithm to select the k nearest
neighbors (the k more similar vectors from the training set) to a given RSSI vector. Many different
distance metrics (Torres-Sospedra et al., 2015b) can be used to compare two RSSI vectors and measure
how ’near’ or similar they are.

The distance metrics implemented in the package include some typical functions, as the L1 norm,
or manhattan distance, or the L2, or euclidean distance. The Lu norm between two fingerprints with
indices a and b is defined as follows:

Lu =

(
q

∑
h=1
|(ρh,a − ρh,b|u

)1/u

The package also implements some fingerprinting specific distance estimation functions such as
LDG and PLGD. The LGD between two RSSI vectors λtr

i and λts
j of longitude q is given by:

LGD(λtr
i , λts

j ) = −
q

∑
h=1

log max(G(ρtr
h,i, ρts

h,j), ε)

where ε is a parameter to avoid logarithm of zero, as well as having one beacon RSSI value influence
the LGD only above a certain threshold. G(ρtr

h,i, ρts
h,j) represents the Gaussian similarity between ρtr

h,i
and ρts

h,j, defined as

G(ρtr
h,i, ρts

h,j) =

 1√
2πσ2

exp
(
−

(ρtr
h,i−ρts

h,j)
2

2σ2

)
, if ρtr

h,i 6= 0 and ρts
h,j 6= 0

0, otherwise

The σ2 parameter represents the shadowing variance (Shrestha et al., 2013). Values for σ in the
range between 4 and 10 dBm are usually good for indoor scenarios (Lohan et al., 2014).

The PLGD between two RSSI vectors λtr
i and λts

j of longitude q is given as:

PLGD(λtr
i , λts

j ) = LGD(λtr
i , λts

j ) + α(φ(λtr
i , λts

j ) + φ(λts
j , λtr

i ))

where φ(λtr
i , λts

j ) is a penalty function for the beacons that are visible in the ith training fingerprint but

not in the jth test fingerprint, φ(λts
j , λtr

i ) is a penalty function for the beacons that are visible in the jth

test fingerprint but not in the ith training fingerprint, and are defined as follows:

φ(λtr
i , λts

j ) =
q

∑
h=1

Tmax − ρtr
h,i, for 0 < ρtr

h,i ≤ Tmax and ri = 0)

φ(λts
j , λtr

i ) =
q

∑
h=1

Tmax − ρts
h,j, for 0 < ρts

h,j ≤ Tmax and rj = 0)

Tmax is an upper threshold for the strength of the signal, and α is a scaling factor.

The similarity measurement method can be chosen by means of the parameter method, or by
providing a custom function (parameters FUN and ...). The signature of the ipfKnn function is:

ipfKnn <- function(train_fgp, train_pos, k = 3, method = 'euclidean',
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weights = 'distance', norm = 2, sd = 5, epsilon = 1e-3,
alpha = 1, threshold = 20, FUN = NULL, ...)

where:

• train_fgp: A data frame of n rows and q columns containing the fingerprint vectors of the
training set.

• train_pos: A data frame of n rows and l columns containing the positions of the training
observations.

• k: The k parameter of the knn algorithm, the number of nearest neighbors to consider.

• method: The distance metric to be used by the algorithm. The implemented options are ’eu-
clidean’, ’manhatan’, ’norm’, ’LGD’ and ’PLGD’

• weights: The weight function to be used by the algorithm. The implemented options are
’distance’ and ’uniform’. The default ’distance’ function calculate the weights from the distances
as:

wj,t =
1

(1 + dj,t)Wj

where wj,t is the weight assigned to the tth (t ∈ [1..k]) neighbor of the jth (j ∈ [1..m]) test
observation, dj,t is the distance in the feature (RSSI) space between the tth neighbor and the jth

test fingerprint, andWj is a term used to normalize the values so that the total sum of the k
weights is 1.
The ’uniform’ function assigns the same weight value to each neighbor:

wj,t =
1
k

• norm,sd,epsilon,alpha,threshold: Parameters for the ’norm’, ’LGD’ and ’PLGD’ methods.

• FUN: An alternative function provided by the user to compute the distance.

• ...: Additional parameters for the function FUN.

For a training data set of n RSSI vectors (a data frame or a matrix named tr_fingerprints) and a
data set of n position vectors (a data frame or a matrix named tr_positions), the code for fitting a
knn model with a k value of 4 and the manhattan distance as the distance measurement method is:

knnModel <- ipfKnn(tr_fingerprints, tr_positions, k = 4, method = 'manhattan')

This function returns an S3 object of class ipftModel containing the following properties:

• params: A list with the parameters passed to the function.

• data: A list with the fingerprints and the location data of the radio map.

To estimate the position of a new fingerprint, the ipfEstimate function makes use of the previously
obtained model. An ipfModel object holds the data model needed by the ipfEstimate function to
apply the selected algorithm and returns an estimation of the test fingerprints positions. The signature
of ipfEstimate is:

ipfEstimate <- function(ipfmodel, test_fgp, test_pos = NULL)

where:

• ipfmodel: An S3 object of class ipfModel.

• test_fgp: A data frame of m rows and q columns containing the fingerprints of the test set.

• test_pos: An optional parameter containing a data frame of m rows and l columns with the
position of the test observations.

The ipfEstimate function returns an S3 object of the class ipfEstimation with the following elements:

• location: A m× l matrix with the predicted position for each observation in the test data set.

• errors: If the actual location of the test observations is passed in parameter test_pos, and the
data that represents the position is numeric, this property returns a numeric vector of length
n with the errors, calculated as the euclidean distances between the actual and the predicted
locations.
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• confusion: If the actual location of the test observations is passed in parameter test_pos, and
the data that represents the position is a factor, the estimation of the actual position is performed
as a classification task, and this property returns a confusion matrix summarizing the results of
this classification.

• neighbors: A m× k matrix with the indices of the k selected neighbors for each observation in
the test data set.

• weights: A m × k matrix containing the weights assigned by the algorithm to the selected
neighbors.

The following R code shows an example of the usage of the ipfKnn function with the data set
included in the package. This example takes the data previously scaled and generates a positioning
model from the input data trainRSSI (the radio map) that is stored in knnModel. Then, the model is
passed to the ipfEstimate function, along with the test data, to get an estimation of the position of the
702 test observations:

tr_fingerprints <- trainRSSI[, 1:168]
tr_positions <- ipftrain[, 169:170]
knnModel <- ipfKnn(tr_fingerprints, tr_positions, k = 7, method = "euclidean")
ts_fingerprints <- testRSSI[, 1:168]
ts_positions <- ipftest[, 169:170]
knnEstimation <- ipfEstimate(knnModel, ts_fingerprints, ts_positions)

Since the position of the test observations is known, the mean error for the 702 test observations
can be calculated as follows:

> mean(knnEstimation$errors)
[1] 3.302739

The mean positioning error is one of the most common evaluation metrics used in indoor position-
ing (Liu et al., 2007) to assess the system’s accuracy. This metric corresponds to the average Euclidean
distance between the estimated locations and the true locations. As positions in the ipftrain and
ipftest are expressed in meters, this metric represents the average error in meters for this scenario.

The neighbors selected from the training data set for the 6 first test fingerprints are:

> head(knnEstimation$neighbors)
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 71 176 126 125 127 771 130
[2,] 71 176 126 125 127 771 130
[3,] 465 914 915 913 217 77 218
[4,] 465 914 915 176 913 461 217
[5,] 176 126 125 771 130 127 914
[6,] 77 914 915 217 176 465 218

where each row of the output corresponds to the indices of the k = 7 more similar vectors from the
training data set to the ith vector of the test data set.

As an example of how to use ipfKnn with a custom function, the next code shows the definition of
a C++ function that implements a modified version of the manhattan distance. The function needs at
least two parameters, the two matrices representing the training and test data sets. A third parameter
is here introduced to represent a penalization value. This function penalizes the computed distance
between two RSSI measurements when one of the beacons is not detected (represented by the value
∅), by multiplying the resulting distance by a factor F. Given two fingerprints λtr

i and λts
j of length q,

the myD distance is:

myD(λtr
i , λts

j ) =
q

∑
h=1

myd(ρtr
h,i, ρts

h,j),

where

myd(ρtr
h,i, ρts

h,j) =

{
|ρtr

h,i − ρts
h,j|, if ρtr

h,i 6= ∅ and ρts
h,j 6= ∅

|ρtr
h,i − ρts

h,j|F, otherwise

The following code implements the myD function and shows an example of its usage with ipfKnn,
as well as the results obtained. The function is coded in C++ to improve its performance when using
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large data sets, although the method also accepts custom plain R functions. The myD function assumes
that the fingerprints are in a positive range:

library('ipft')
library('Rcpp')
cppFunction('
NumericMatrix myD(NumericMatrix train, NumericMatrix test, double F = 2.0) {
NumericMatrix distanceMatrix(test.nrow(), train.nrow());
double d = 0, pv = 0, rssi1 = 0, rssi2 = 0;
for (int itrain = 0; itrain < train.nrow(); itrain++) {
for (int itest = 0; itest < test.nrow(); itest++) {
d = 0;
for (int i = 0; i < train.ncol(); i++) {
rssi1 = R_IsNA(train(itrain, i))? 0 : train(itrain, i);
rssi2 = R_IsNA(test(itest, i))? 0 : test(itest, i);
pv = (rssi1 != 0 && rssi2 != 0)? 1 : F;
d = d + std::abs(rssi1 - rssi2) * pv;

}
distanceMatrix(itest, itrain) = d;

}
}
return distanceMatrix;

}'
)
customModel <- ipfKnn(tr_fingerprints, tr_positions, k = 1, FUN = myD, F = 0.25)
customEstimation <- ipfEstimate(customModel, ts_fingerprints, ts_positions)

> head(customEstimation$neighbors)
[,1]

[1,] 773
[2,] 773
[3,] 776
[4,] 773
[5,] 130
[6,] 130

The previous code outputs the selected neighbors for the first 6 observations in the test data set.
As the ts_positions data frame contains the actual location of the observations, the absolute error
committed by the model is returned in the ipfEstimation object:

> head(customEstimation$errors)
[1] 5.708275 5.708275 5.708275 5.708275 3.380000 3.380000

And the mean error with this custom similarity function is:

> mean(customEstimation$errors)
[1] 3.297342

An ipfEstimation object can be used directly to plot the Empirical cumulative distribution func-
tion of the error (function ipfPlotEcdf()) and the Probability density function (function ipfPlotPdf()).
Figures 1 and 2 show the plots obtained from the following code:

> ipfPlotEcdf(customEstimation)
> ipfPlotPdf(customEstimation)

The plotting functions included in the package are described in detail in Section Plotting functions.

The ipfProbabilistic function.

Given the limitations of sensors accuracy (Luo and Zhan, 2014) and the irregular character of signal
propagation (Ali et al., 2010), the RSSI vector stored for a particular position cannot have completely
reliable and accurate information about the emitters signal strength. This uncertainty is generally
modeled by a normal distribution (Haeberlen et al., 2004), but to do so many readings of the signals
at the same position are needed to obtain a representative set of statistical parameters to model each
RSSI present at that position.
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Figure 2: Funtion ipfPlotEcdf. Empirical cumulative distribution function of the error. The plot also
shows the mean (red dotted line) and the median (blue dashed line) of the errors.

Figure 3: Funtion ipfPlotPdf. Probability density function. The plot shows the normalized histogram
of the errors and its density function. The plot also shows the mean (red dotted line) and the median
(blue dashed line) of the errors.

The R Journal Vol. 11/01, June 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 12

Figure 4: δ parameter for the probabilistic approach. This parameter sets the width of the discretization
steps.

Thus, the initial collection of RSSI observations associated to a particular point is transformed into
a pair of vectors containing the means and the standard deviations of the RSSI for each beacon, and
then the complete training data is stored as a set of statistical parameters that can be used to infer the
location of a test observation as the one that maximizes a probability function.

Let D̂train be the new training set obtained from the previous procedure:

D̂train =
{
F̂train, L̂train

}
F̂train =

{
λ̂tr

1 , λ̂tr
2 , ..., λ̂tr

g

}
L̂train =

{
τ̂tr

1 , τ̂tr
2 , ..., τ̂tr

g

}
where F̂train is the set of statistical parameters obtained from the fingerprints of the training set, g
is the number of groups of fingerprints with the same associated position, and L̂train is the set of
positions associated to each group. Each one of the g observations of the training data set is now
composed of a fingerprint with q values:

λ̂tr
i =

{
θtr

1,i, θtr
2,i, ..., θtr

q,i

}
, i ∈ [1, ..., g]

θtr
h,i ∼ N (µh,i, σ2

h,i)

where µh,i and σ2
h,i are the mean and the variance, respectively, of the hth RSSI of the ith group of

original fingerprints.

Let ρts
h,j be the hth RSSI measurement of the jth test fingerprint (λts

j ), and let µh,i and σ2
h,i be the

mean and the standard deviation of the hth beacon distribution obtained for the ith position from the

training set. The probability p(i)h,j , of observing ρts
h,j at the ith position is:

p(i)h,j =
∫ ρts

h,j+δ

ρts
h,j−δ

1
σh,i
√

2π
e
− x−µh,i

2σ2
h,i dx

where δ is a parameter to allow the discretization of the normal distribution (Figure 4).

The set of all probabilities p(i)h,j , h ∈ [1, ..., q] obtained for a given test observation j, expresses the
similarity between the observation measurement and the training data for a particular location. An
evaluation of the total similarity for every location can be computed as a function of these individual
probabilities, like its sum or its product. In the ipft package, this algorithm is implemented by the
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ipfProbabilistic and ipfEstimate functions, and by default uses the sum of probabilities as default
operator to evaluate the similarity:

ψ
(i)
j =

p

∑
h=1

p(i)h,j

where ψ
(i)
j is the similarity between the jth test observation and the ith distribution from the training

data set. The function to evaluate the similarity can be passed to ipfProbabilistic as a parameter.

As well as the ipfKnn and ipfProximity funtions, ipfProbabilistic returns a ipfModel object
with the same data structure seen in Section The ipfKnn function, but with the difference that now the
data property returns the probabilistic parameters that define the fitted distributions for every group
of fingerprints on the training set. The clustering or grouping of the training data is performed by
default over the location data provided by the user, but this behavior can be customized by passing a
parameter with the columns over which to group the data, or by passing the group indices directly.
The ipft package implements two functions (ipfGroup() and ipfCluster()) to perform clustering
tasks. These functions are described in Section Data clustering.

The signature of the ipfProbabilistic function is:

ipfProbabilistic <- function(train_fgp, train_pos, group_cols = NULL, groups = NULL,
k = 3, FUN = sum, delta = 1, ...)

where train_fgp, train_pos and k have the same meaning and structure as described in Section The
ipfKnn function, and, given n observations in the training set:

• groups: is a numeric vector of length n, containing the index of the group assigned to each
observation of the training set. This parameter is optional.

• group_cols: is a character vector with the names of the columns to use as criteria to form groups
of fingerprints. This parameter is optional.

• FUN: is a function to estimate a similarity measure from the calculated probabilities.

• delta: is a parameter to specify the interval around the test RSSI value to take into account
when determining the probability.

• ...: are additional parameters for FUN.

The following code shows how to use the ipfProbabilistic function to obtain a probabilistic
model from the ipftrain and ipftest data sets. The default behavior of ipfProbabilistic groups
the training data attending at the position of each observation, in this case, its x and y coordinates:

> probModel <- ipfProbabilistic(tr_fingerprints, tr_positions, k = 7, delta = 10)
> head(probModel$data$positions)

X Y
1 -0.6 24.42
2 -0.6 27.42
3 0.0 0.00
4 0.4 0.00
5 0.4 3.38
6 0.4 6.81

Now the ipfModel$data property returns a list with 3 elements:

• means: a data frame with the means for every beacon and every group of fingerprints.

• sds: a data frame with the standard deviations for every beacon and every group of fingerprints.

• positions: a data frame with the position of each group of fingerprints.

To obtain an estimation from this model, the same code used in section The ipfKnn function can
be used to produce the estimated locations:

> ts_fingerprints <- ipftest[, 1:168]
> ts_positions <- ipftest[, 169:170]
> probEstimation <- ipfEstimate(probModel, ts_fingerprints, ts_positions)

and their errors and its mean value:

> mean(probEstimation$errors)
[1] 6.069336
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An alternative function can be passed to ipfProbabilistic. The following code uses the maximum
value of the probabilities as the similarity measure, and passes a parameter to remove NAs from the
data7:

> probModel <- ipfProbabilistic(tr_fingerprints, tr_positions, k = 9, delta = 10,
+ FUN = max, na.rm = TRUE)
> probEstimation <- ipfEstimate(probModel, ts_fingerprints, ts_positions)
> mean(probEstimation$errors)
[1] 8.652321

The ipfProximity function.

When the location of the access points is known, it’s possible to estimate the position of a fingerprint
using the log-distance path loss model (Seybold, J.S., 2005). Given a set of q beacons, and a fingerprint
vector λ =

{
ρ1, ρ2, ..., ρq

}
of length q, this model is expressed as:

ρh = P1m,h − 10α log10 dh − γ, h ∈ [1, 2, ..., q]

where ρh is the value of the received signal from the hth beacon, dh is the distance from the observation
to the beacon, P1m,h is the received power at 1 meter from the emitter, α is the path loss exponent, and
γ ∼ N (0, σ2

γ) represents a zero mean Gaussian noise that models the random shadowing effects of the
environment.

The estimator of the distance between the emitting beacon and the position where the signal is
received is:

d̂h = 10
ρh−P1m,h

10α

This estimation follows a log-normal distribution that is:

ln d̂h ∼ N (ln dh, σ2
d )

where σd = (σγln10)/(10α).

The mean and the variance of the distribution are:

E[d̂h] = dh eσ2
d /2

Var[d̂h] = d2
h eσ2

d (eσ2
d − 1)

Note that the variance grows quadratically with the distance, making the estimation less reliable
as the distance becomes larger. Therefore, the distances estimated from different beacons will have
different accuracies. To take this into account, the algorithm estimates the position of a fingerprint as a
minimization problem of the overall squared error of the estimated distances. The objective function
to minimize is:

min
τ

J =
p

∑
h=1

ωh(d̂h − ‖sh − τ‖)2

where τ is the position that minimizes the function, that is, the estimated position, q is the number of
beacons present in the fingerprint, and ωh = 1/Var[d̂h] are the weights.

The functions ipfProximity and ipfEstimate implement this design, and uses the Broyden-
Fletcher-Goldfard-Shano algorithm (BFGS) (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970), a quasi-Newton method, to minimize the previous function to make an estimation of the
fingerprint position. The accuracy of the estimation is strongly dependent on the reliability of the
emitters positions. When these positions are unknown, they can be estimated with the function
ipfEstimateBeaconPositions. Section Beacon position estimation details the implementation and
usage of this function. The ipfProximity function returns an ipfModel object with the data needed by
the ipfEstimate function to estimate a fingerprint position.

The signature of the ipfProximity function is:

ipfProximity <- function(bpos, rssirange = c(-100, 0), norssi = NA, alpha = 5,

7The ipfProbabilistic function takes into account the NAs contained in the data when using the default
function (sum), but the user needs to manage this situation when a custom function is provided. In this example,
the data is not previously transformed, is passed as it is, with NAs for not detected WAPs, to illustrate this situation.
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wapPow1 = -30)

where:

• bpos: a matrix or a data frame containing the position of the beacons, in the same order as they
appear in fingerprints.

• rssirange: the range of the RSSI data in the fingerprints.

• norssi: the value used to represent a not detected beacon.

• alpha: the path loss exponent (α).

• wapPow1: a numeric vector with the received power at one meter distance from the beacon
(P1m,h). If only one value is supplied, it will be assigned to all beacons.

In the following example, the goal is to estimate the position of the 702 fingerprints included in
the test set, using the known position of the WAPs and the log-distance path loss model. The ipfpwap
dataset contains the location of 39 of the 168 wireless access points of the ipftrain and ipftest
data sets. The ipfProximity function returns a model that is used to estimate the position of the
fingerprints. As the real position of the test fingerprints is known, this information can be also passed
to the ipfEstimate function. Thus, the returned ipfEstimation object will contain, along with the
estimated positions, the associated errors:

> proxModel <- ipfProximity(ipfpwap, alpha = 4, rssirange = c(-100, 0),
+ norssi = NA, wapPow1 = -32)
> fingerprints <- ipftest[, 1:168]
> positions <- ipftest[, 169:170]
> proxEstimation <- ipfEstimate(proxModel, ipftest[, 1:168], ipftest[, 169:170])
> mean(proxEstimation$errors)
[1] 8.0444

Positioning algorithms comparison

In a classical fingerprint-based positioning system, the radio map is constructed in accordance to
the positioning algorithm to be used in the online phase. The knn algorithm follows a deterministic
approach that performs well in most cases, while the probabilistic method is based on the assumption
that there is enough training data for each particular position to obtain reliable parameters to model a
distribution for each signal at each survey location. As regards to the proximity algorithm, it is based
on two assumptions; first, the ability to realistically simulate the propagation model of the signal, and
second, the known positions of the emitter beacons. These conditions are not met in many scenarios,
where changes in occupation, for example, modify the propagation model and thus the performance
of the positioning system.

To illustrate the previous considerations, Table 1 shows the mean and the quartile errors in meters
for the implemented algorithms, computed using the dataset included in the package. In this particular
case, given the characteristics of the training data, knn performs better than the rest.

Quartile error (m)
algorithm mean error (m) 0% 25% 50% 75% 100%

knn 3.3027 0.15172 1.46891 2.61281 4.08992 19.84650
probabilistic 6.0693 0.14289 3.26988 5.63051 8.19933 17.93031
proximity 8.0444 2.49865 5.71055 7.42602 9.88427 20.12029

Table 1: Comparison of the algorithms’ accuracy on the dataset included in the package

To compare the performance of the proposed implementation of the previous positioning algo-
rithms, we ran a benchmark test of 1000 iterations on each function, using the dataset included in
the package. The results for the model fitting functions are shown in Table 2. As it can be seen, the
proximity and knn algorithms are the fastest, as expected, since their model fitting process basically
consists in storing the training data for later processing during the estimation stage. In contrast, the
probabilistic algorith has to fit a normal distribution for each signal received at each position, and thus,
it takes longer to complete the process.

The outcomes are different when considering the results for the estimation function (Table 3).
The position estimation for the probabilistic algorithm is faster that the rest. For the knn algorithm,
the estimation process could be improved using clustering techniques to avoid comparing the test
fingerprint with all the instances in the training set. With regards to the estimation process for the
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function elapsed (sec) relative

ipfKnn 0.031 1.409
ipfProbabilistic 1035.446 47065.727
ipfProximity 0.022 1.000

Table 2: Performance comparison of the model building functions

proximity algorithm, the fact that the result is computed by solving an unconstrained nonlinear
optimization through an iterative method highly penalyzes its performance.

model function elapsed (sec) relative

knn ipfEstimate 2508.079 2.998
probabilistic ipfEstimate 836.651 1.000
proximity ipfEstimate 28259.110 33.776

Table 3: Performance comparison of the estimation functions on each model

Beacon position estimation

If the actual position of the beacons is unknown, it can be estimated in many ways from the RSSI
data. Two basic methods for estimation of the beacons location have been included in the ipft pack-
age through the ipfEstimateBeaconPositions function. The ’centroid’ and the ’weighted centroid’
methods.

Both methods use the fingerprint data to guess the position of the beacons. Let q be the number of
beacons and τB be the set of beacons locations:

τB =
{

νB1,h, νB2,h, νB3,h

}
, h ∈ [1, 2, ..., q]

the position of the hth beacon is given by:

τBh =

{
n

∑
i=1

ωiν
tr
1,i,

n

∑
i=1

ωiν
tr
2,i,

n

∑
i=1

ωiν
tr
3,i

}
where n is the number of fingerprints in the training set. The value of ωi is:

ωi =
1
n

for the ’centroid’ method and:

ωi =
ρtr

h,i

∑n
l=1 ρtr

h,l

for the ’weighted centroid’ method. Since the biggest weights have to be assigned to the strongest RSSI
values, the fingerprint vector values should be positive, or at least, positively correlated to the beacon
received intensity. This is checked by the function implementation so the input data is internally
transformed to a positive range when needed.

This is the signature of the ipfEstimateBeaconPositions function:

ipfEstimateBeaconPositions <- function(fingerprints, positions, method = 'wcentroid',
rssirange = c(-100, 0), norssi = NA)

where:

• fingerprints: is a data frame with the fingerprint vectors as rows.

• positions: a data frame with the position of the fingerprints.

• method: the method to use by the algorithm, either ’centroid’ or ’wcentroid’.

• rssirange: the range of the signal strength values of the fingerprints.

• norssi: the value assigned in the fingerprints to a non detected beacon.
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The following code uses the function ipfEstimateBeaconPositions with the ’weighted centroid’
method to estimate the position of the wireless access points, under the assumption that this position
is unknown. Finally, the function ipfProximity estimates the positions of the first 6 test fingerprints:

> bc_positions <- ipfEstimateBeaconPositions(ts_fingerprints, ts_positions,
method = 'wcentroid')

> proxModel <- ipfProximity(bc_positions, rssirange = c(0.1, 1),
+ norssi = NA)
> proxEstimation <- ipfEstimate(proxModel, fingerprints[1:6,],
+ positions[1:6,])
> proxEstimation$location

V1 V2
1 1.686950 12.02117
2 1.686950 12.02117
3 1.654255 10.91767
4 1.682121 10.96035
5 1.711448 10.88966
6 1.695007 10.09507

Data clustering

Clustering techniques can be used with the aim of enhancing localization performance and reducing
computational overhead (Cramariuc et al., 2016b). The ipft package includes some functions for
cluster analysis and grouping of the fingerprinting and location data. These functions can be used to
create or detect clusters based on the position of the observations, on its signal levels, or on any other
criteria that might be useful to group the data by. Performing RSSI clustering before the positioning
process groups a large number of reference points into various clusters that can be used to perform
first-level classification. This allows to assess the testing point location by using only the fingerprints
in the matched cluster rather than the whole radio map. Furthermore, given the amplitude atenuation
that building partitions cause to electromagnetic signals, clusters usually can be related to physical
spaces such as buildings, floors or even rooms.

The main function for clustering tasks is ipfCluster. The more basic usage of the function takes
the provided data and uses the k-means algorithm to classify it into k disjoint sets of observations,
by selecting a set of k cluster centers to minimize the sum of the squared distances between the data
vectors and their corresponding centers.

The k-means clustering procedure begins with an initial set of randomly selected centers, and
iteratively tries to minimize the sum of the squared distances. This makes the algorithm very sensitive
to the arbitrary selection of initial centers, and introduces variability in the results obtained from one
execution to another. Besides, the number of clusters has to be established beforehand, and that may
be inconvenient in some scenarios.

The signature of the ipftCluster function is:

ipfCluster <- function(data, method = 'k-means', k = NULL, grid = NULL, ...)

where

• data: is a data frame with the data to cluster. When using the k-means method, the data frame
must not contain any NA values.

• method: the algorithm used to create clusters. The implemented algorithms are ’k-means’ for
k-means algorithm, ’grid’ for clustering based on spatial grid partition, and ’AP’ for affinity
propagation algorithm.

• k: a numeric parameter for k-means algorithm.

• grid: a numeric vector with the size of the grid for the grid algorithm.

When using the default k-means algorithm, the function behaves as a wrapper around the k-means
function of the stats package, and therefore, the usage can be further customized by passing extra
parameters, as the number of iterations or the algorithm to be used ("Hartigan-Wong" is the default).

The following example will find k = 30 clusters of similar fingerprints in the ipftrain dataset.
First the data set of fingerprints is transformed to eliminate the NA values that represent a not detected
beacon. Then, the data is passed to the ipfCluster function to find the 30 clusters using the ’MacQueen’
algorithm:
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> set.seed(1)
> cl_fingerprints <- ipfTransform(tr_fingerprints, inNoRSSI = NA, outNoRSSI = 0)
> clusterData <- ipfCluster(cl_fingerprints, k = 30, iter.max = 20,
+ algorithm = "MacQueen")
> head(clusterData$clusters)
[1] 3 3 3 3 3 3

The outcome of the ipfCluster function is a list containing the indices of the k clusters and
its centroids. Given the previous example, clusterData$centers will return the k centroids, and
clusterData$clusters will return the cluster index i ∈ [1, .., k] for every observation in ipftrain.

The ipfCluster function includes an implementation of the affinity propagation (AP) algorithm
(Frey and Dueck, 2007) that can be used to estimate the number of distinct clusters present in the radio
map. AP does not require the number of clusters to be determined before running it. It finds members
of the input set, known as ’exemplars’, that are representative of clusters by creating the centers
and the corresponding clusters based on the constant exchanging of reading similarities between the
observations. This message-passing process continues until a good set of centers and corresponding
clusters emerges.

The following code uses AP clustering to find groups of similar RSSI vectors from the ipftrain
data set. With no further parametrization, it will classify the RSSI data into 43 distinct clusters:

> clusterData <- ipfCluster(tr_fingerprints, method = 'AP')
> dim(clusterData$centers)
[1] 43 168

Now, clusterData$centers holds the 43 ’exemplars’, those RSSI vectors from the radio map
that are representative of a cluster, and clusterData$clusters contains the indices that link every
observation of the data set with its assigned cluster.

To perform a more simple grouping based on a precise set of variables, the ipfGroup function
provides a method to group the data by column name. The function signature is:

ipfGroup <- function(data, ...)

where

• data: is a data frame with the data to group.

• ...: The variables to group the data by.

The ipfGroup function returns a numeric vector with the same length as the number of observations
contained in the data data frame, containing the index of the group assigned to each observation. The
following example groups the data according to the position of the observations, that in the ipftrain
and ipftest datasets are represented by the columns ’X’ and ’Y’:

> groups <- ipfGroup(ipftrain, X, Y)
> head(groups)
[1] 4 4 4 4 22 22
> length(unique(groups))
[1] 41

Plotting functions

Indoor positioning generally involves statistical analysis of datasets, and the ipft provides some useful
functions to produce graphs for exploring data. All the graphic functions included in the package are
built upon the ggplot2 package (Wickham, 2011), and return a ggplot object that can be plotted or
further personalized with custom labels, theme, etc.

The ipfPlotPdf and the ipfPlotEcdf have already been introduced in Section The ipfKnn function.
These functions will plot the probability density function and the empirical cumulative distribution
function, respectively. Both functions take an ipfEstimation object to produce the plot, while the axis
labels and plot tittle can be also supplied by the parameters xlab, ylab and tittle. Their respective
signatures are:

ipfPlotPdf <- function(estimation, xlab = 'error', ylab = 'density',
title = 'Probability density function')

ipfPlotEcdf <- function(estimation, xlab = 'error',
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ylab = 'cumulative density of error',
title = 'Empirical cumulative density function')

The function ipfPlotLocation will produce a plot of the location of the data. The following code
shows its signature and presents an example of its use. The example calls the function with parameter
plabel set to TRUE, to plot labels identifying each location, and reverseAxis set to TRUE to swap the
axis. It also modifies the resulting object by changing the default ggplot2 theme to the white one. The
result is shown in Figure 5.

ipfPlotLocation <- function(positions, plabel = FALSE, reverseAxis = FALSE,
xlab = NULL, ylab = NULL, title = '')

library(ggplot2)
ipfPlotLocation(ipftrain[, 169:170], plabel = TRUE, reverseAxis = TRUE) + theme_bw()

The function ipfPlotEstimation plots the estimated position of the test observations based on an
ipfModel object and an ipfEstimation object, as well as the actual position (parameter testpos), if
known, and the position of the k selected fingerprints from the training set used to guess its location
(parameter showneighbors). The green dots indicate the actual position of the observations, while
the black dots indicate the estimated ones. The blue lines connect the estimated positions with the k
neighbors from which the location has been estimated, and the red arrows connect the actual position
of the fingerprint with the estimated one. The following code shows the function signature and
provides an example of its usage. The result plot is shown in Figure 6:

ipfPlotEstimation <- function(model, estimation, testpos = NULL, observations = c(1),
reverseAxis = FALSE, showneighbors = FALSE,
showLabels = FALSE, xlab = NULL, ylab = NULL,
title = '')

library(ggplot2)
probModel <- ipfProbabilistic(ipftrain[, 1:168], ipftrain[, 169:170])
probEst <- ipfEstimate(probModel, ipftest[, 1:168], ipftest[, 169:170])
ipfPlotEstimation(probModel, probEst, ipftest[, 169:170],

observations = c(61:62, 81:82), reverseAxis = TRUE,
showneighbors = TRUE, showLabels = TRUE) + theme_bw()

Summary

In this paper, the package ipft is presented. The main goal of the package is to provide researchers
with a set of functions to manipulate, cluster, transform, create models and make estimations using
indoor localization fingerprinting data. This package enables researchers to use a well established set
of algorithms and tools to manipulate and model RSSI fingerprint data sets, and also allows them to
customize the included algorithms with personalized parameters and functions to adapt the working
mode to their particular research interests.

In this work some of the fundamental algorithms used in indoor fingerprinting localization
techniques have been formally presented and illustrated, while detailed examples and information
about its usage and implementation have been provided.

Future work

This package is an ongoing work, and future versions will implement new algorithms and tools
with the aim of providing a base framework for researchers, and become a reference library for
fingerprinting-based indoor positioning research.

In particular, future lines of work should consider the implementation of deep learning based
algorithms. Many deep learning techniques can be exploited to try to obtain better positioning perfor-
mance. Recurrent neural networks could be used to learn not only spatial but also temporal patterns
of the received signals. Deep autoencoders can be implemented as a way to encode fingerprints and
reduce their dimensionality to a few number of significant features. Their variational and generative
extensions can be of use to better model the stochastic nature of RSSI data. These models can also be
applied to generate new training data for deep learning-based clasisifiers, increasing the robustness of
positioning systems and trying to address problems caused by heterogeneity of devices.
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Figure 5: Location of fingerprints included in the ipftrain data frame. The labels indicate the group
indices.

Figure 6: Estimated and actual positions of test observations 61, 62, 81 and 82 from the ipftrain data
set. The circles indicate the actual positions of the observations. The squares show the estimated
positions. The red arrows connect the actual positions with the estimated ones. The dashed lines
connect the estimated positions with the k neighbors from which the location has been estimated,
represented by the crosses.
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