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Fitting Tails by the Empirical Residual
Coefficient of Variation: The ercv Package
by Joan del Castillo, Isabel Serra, Maria Padilla and David Moriña

Abstract This article is a self-contained introduction to the R package ercv and to the methodology on
which it is based through the analysis of nine examples. The methodology is simple and trustworthy
for the analysis of extreme values and relates the two main existing methodologies. The package
contains R functions for visualizing, fitting and validating the distribution of tails. It also provides
multiple threshold tests for a generalized Pareto distribution, together with an automatic threshold
selection algorithm.

Introduction and overview

Extreme value theory (EVT) is one of the most important statistical techniques for the applied sciences.
A review of the available software on extreme value analysis appears in Gilleland et al. (2013). R
software (R Core Team, 2017) contains some useful packages for dealing with EVT. The R package
evir (Pfaff and McNeil, 2012) provides maximum likelihood estimation (MLE) at the same time for the
block maxima and threshold model approaches. The R package ismev (Heffernan and Stephenson,
2018) allows fitting parameters of a generalized Pareto distribution depending on covariates and
offers diagnostics such as qqplots and return level plots with confidence bands. The R package
poweRlaw (Gillespie, 2015) enables power laws and other heavy tailed distributions to be fitted using
the techniques proposed by Clauset et al. (2009).This approach had been used to describe sizes of cities
and word frequency and is linked to the physics of phase transitions and to complex systems.

This paper shows that the R package ercv (del Castillo et al., 2017a), based on the coefficient
of variation (CV), is a complement, and often an alternative, to the available software on EVT. The
mathematical background is shown in Section Mathematical Background, including threshold models
and the relationship between power law distribution and the generalized Pareto distributions (GPD),
which is the relationship between the two different approaches followed by the aforementioned R
packages evir, or ismev, and poweRlaw.

Section Exploratory data analysis with cvplot function introduces the tools for the empirical
residual coefficient of variation developed in the papers del Castillo et al. (2014), del Castillo and Serra
(2015) and del Castillo and Padilla (2016). Section Examples also shows the exploratory data analysis
of nine examples, some of them from the R packages evir and poweRlaw, with the cvplot function,
see Figure 1.

Section Estimation and Model diagnostics with Tm function explains the Tm function in the R
package ercv that provides a multiple thresholds test that truly reduces the multiple testing problem in
threshold selection and provides clearly defined p-values. The function includes an estimation method
of the extreme value index. An automatic threshold selection algorithm provided by the thrselect
function is explained in Section 2.5 to determine the point above which GPD can be assumed for the
tail distribution.

Section Transformation from heavy to light tails (tdata) shows how the methodology developed in
the previous sections can be extended with the tdata function to all GPD distributions, even with no
finite moments. This technique is applied to the MobyDick example and to the Danish fire insurance
dataset, a highly heavy-tailed, infinite-variance model. Finally, Section Fitting PoT parameters and
tail plots (fitpot ccdfplot) describes the functions of the R package ercv that allow estimation of the
parameters (fitpot) and drawing of the adjustments (ccdfplot) for the peak-over-threshold method.

Mathematical Background

Extreme value theory is widely used to model exceedances in many disciplines, such as hydrology,
insurance, finance, internet traffic data and environmental science. The underlying mathematical basis
is now thoroughly established in Leadbetter et al. (1983), Embrechts et al. (1997), de Haan and Ferreira
(2007), Novak (2012) and Resnick (2013). Statistical tools and methods for use with a single time series
of data, or with a few series, are well developed in Coles (2001), Beirlant et al. (2006) and Markovich
(2007).
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Threshold models

The first fundamental theorem on EVT by Fisher and Tippett (1928) and Gnedenko (1943) characterizes
the asymptotic distribution of the maximum in observed data. Classical analyses now use the
generalized extreme value family of distribution functions for fitting to block maximum data provided
the number of blocks is sufficiently large. Another point of view emerged in the 1970’s with the
fundamental theorem by Pickands (1975) and Balkema and de Haan (1974). The Pickands-Balkema-
DeHaan (PBdH) theorem, see McNeil et al. (2005, chap 7), initiated a new way of studying extreme
value theory via distributions above a threshold, which use more information than the maximum data
grouped into blocks.

Let X be a continuous non-negative r.v. with distribution function F(x). For any threshold,
t > 0, the r.v. of the conditional distribution of threshold excesses X − t given X > t, denoted as
Xt = {X − t | X > t}, is called the residual distribution of X over t. The cumulative distribution
function of Xt, Ft(x), is given by

1− Ft(x) = (1− F(x + t))/(1− F(t)). (1)

The quantity M(t) = E(Xt) is called the residual mean and V(t) = var(Xt) the residual variance. The
plot of sample mean excesses over increasing thresholds is a commonly used diagnostic tool in risk
analysis called ME-plot (meplot function in evir R package).

The residual coefficient of variation is given by

CV(t) ≡ CV(Xt) =
√

V(t)/M(t), (2)

like the usual CV, the function CV(t) is independent under change of scale.

The PBdH theorem characterizes the asymptotic distributions of the residual distribution over a
high threshold under widely applicable regularity conditions, see Coles (2001). The result essentially
says that GPD is the canonical distribution for modelling excess over high thresholds. The probability
density function for a GPD(ξ, ψ) is given by

g(x; ξ, ψ) =

{
ψ−1(1 + ξx/ψ)−(1+ξ)/ξ , ξ 6= 0,

ψ−1 exp(−x/ψ), ξ = 0,
(3)

where ξ ∈ R is called the extreme value index (evi) and ψ > 0 is a scale parameter, 0 ≤ x ≤ −ψ/ξ
if ξ < 0, and x ≥ 0 if ξ ≥ 0. The value of ξ determines the tail type. If ξ < 0, we say that the
distribution is light tailed, if ξ = 0 we say it is exponential tailed. If ξ > 0 a GPD has finite moments of
order n if ξ < 1/n and it is called heavy tailed. The mean of a GPD is ψ/(1− ξ) and the variance is
ψ2/[(1− ξ)2(1− 2ξ)] provided ξ < 1 and ξ < 1/2, respectively. Then, the coefficient of variation is

cξ =
√

1/(1− 2ξ), (4)

the cvevi and evicv functions of the R package ercv correspond to this function and its inverse.

The residual distribution of a GPD is again GPD with the same extreme value index ξ, for any
threshold t > 0, in fact

GPDt(ξ, ψ) = GPD(ξ, ψ + ξt). (5)

Therefore, the residual CV for GPD is independent of the threshold and the scale parameter and is
given by equation (4).

The probability density functions (3) are monotone decreasing (L-shaped) for ξ > −1, covering
practically all the applications. Therefore, we are mainly concerned with the subset of data that
indicate this behaviour. For example, if the dataset is concentrated in the centre and decreases on
either side (bell-shaped) we will study the upper and lower part (changed sign) of the distribution
separately, taking the median or some other location statistic as the origin.

The power law distribution and GPD

The power law distribution is the model, introduced by Pareto,

p (x; α, σ) =
α

σ

(σ

x

)α+1
, x > σ (6)

where α > 0 is the tail index and σ > 0 the minimum value parameter. The model corresponds to the
distribution functions F with the linear relation

log [1− F (x)] = −α log(x) + α log (σ) , (7)
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see also Gillespie (2015).

Note that if X is a r.v. with probability density function p (x; α, σ), given by (6), Z = X − σ has
probability density function

g(z; 1/α, σ/α) =
α

σ

(
σ

z + σ

)α+1
, z > 0, (8)

that is, there is a one to one correspondence between power law distributions and GPD distributions
with heavy tails (ξ > 0), where ξ = 1/α and σ = ψ/ξ. However, the two statistical models (3) and (6),
with ξ > 0, are different since there is no unique transformation for all functions of the model (the
transformation Z = X− σ depends on the minimum value parameter σ of the same variable X).

The MLE for model (6) leads to the Hill estimator and Hill-plot (hill function in evir R package).
The support of the distributions in (6) depends on the minimum value parameter σ. Hence, the
MLE has no standard regularity conditions and the minimum value parameter σ is estimated with
alternative methods, see Clauset et al. (2009) and its implementation in the poweRlaw R package by
Gillespie (2015).

However, the support of the distributions in (3), with ξ > 0, does not depend on parameters and
MLE existing for large samples provided ξ > −1 and is asymptotically efficient provided ξ > −0.5,
see del Castillo and Serra (2015) and the references therein for details. The gdp function in the evir R
package provides the MLE for (3).

Note that model (3) includes all the limit distributions (heavy or not) of the residual distribution
over a high threshold and comes from a mathematical result (the PBdH theorem) and often (6) comes
from empirical evidence of the linear relationship (7) and comparison with other models. Moreover,
the linear relationship (7) is also obtained from the relationship between the parameters (8), see
the ccdfplot function in Section Fitting PoT parameters and tail plots (fitpot ccdfplot).

The residual CV approach

Gupta and Kirmani (2000) show that the residual CV characterizes the distribution in univariate
and bivariate cases, provided threre is a finite second moment (ξ < 1/2). In the case of GPD, the
residual CV is constant and is a one to one transformation of the extreme value index suggesting its
use to estimate this index. The residual CV can also be expressed in terms of probabilities, rather
than the threshold, through the inverse of the distribution function or the quantile function defined by
Q (p) = in f [x : F(x) ≥ p] , then the CV can be drawn, for 0 ≤ p < 1, for the threshold t = Q (p), that
is to plot the function p→ CV(Q(p)). This representation makes it possible to draw on the same scale
for the x axis the residual CV of distributions with different supports.

Exploratory data analysis with cvplot function

In this section the cvplot function of the R package ercv is introduced as a graphical tool for use in a
exploratory data analysis, through the nine examples described in Section 3.2. The cvplot function is
essentially the empirical residual CV whose asymptotic distribution as a stochastic process is explained
by del Castillo et al. (2014) and del Castillo and Padilla (2016).

The empirical residual CV and confidence intervals.

Assume that the raw data consist of a sequence of independent and identically distributed measure-
ments x1, ..., xn. Extreme events are identified by defining a high threshold t for which the exceedances
are {xj : xj > t}. Hence, we first identify a threshold t such that its exceedances correspond to a
constant residual CV (equivalently a GPD). We denote the ordered sample x(1) ≤ x(2) ≤ · · · ≤ x(n).
The cvplot function provides the function cv(t) of the sample coefficient of variation of the threshold
excesses (xj − t) given by

t→ cv(t) = sd{xj − t | xj > t}/mean{xj − t | xj > t}, (9)

in practice t = x(k) are the order statistics, where, k (1 ≤ k ≤ n) is the size of the sub-sample excluded.
Hereinafter the graph of this function is called CV-plot. Figure 1 shows the CV-plots of nine examples
(blue lines) that we comment on the next section.

Point-wise error limits for cv(t) under GPD(ξ, ψ) (provided ξ < 1/4) follow from the asymptotic
distribution of the empirical residual CV, by del Castillo and Padilla (2016), in particular for a fixed
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threshold t, the asymptotic confidence intervals in Figure 1 (solid orange lines) are obtained by√
n(t)(cv(t)− cξ)

d→ N(0, σ2
ξ ), (10)

where cξ is in (4), n(t) = ∑n
j=1 1(xj>t) . For an exponential distribution (ξ = 0) , c0 = 1 and σ2

0 = 1,

and for a uniform distribution (ξ = −1) , c−1 = 1/
√

3 and σ2
−1 = 8/45.

By default, if
√

2 is in the range of y’s then the cvplot function draws the line y =
√

2 (black dotted
line), which corresponds to ξ = 1/4 (finite fourth moment). Hence, CV-plot larger than this value for
high thresholds lead to very heavy tailed distribution and we suggest to switch to transformed data
through function tdata (Section 2.6). Alternatively, finite moments can be checked by a confidence
interval for the MLE estimator of evi, or the methods in the R package RobExtremes (Ruckdeschel
et al., 2019) and the references cited therein can be used.

The CV-plot is an alternative tool to Hill-plot an to ME-plot. It has two advantages over ME-plot:
first, it depends on a scale parameter and CV-plot does not; second, linear functions are defined by
two parameters and the constants by only one. So the uncertainty is reduced from three to one single
parameter. On the other hand, the Hill-plot can only be used for heavy tailed distributions.
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Figure 1: CV-plots stowed from left to right and top to bottom: four different types of execution time
distributions of automotive applications, the frequency of words in the novel Moby Dick, Danish
fire insurance data, River Nidd exceedances above value 65, Bilbao waves dataset and positive daily
returns of euro/dollar exchange rates between 1999 and 2014.
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Examples

The use of the cvplot function and its options is described using nine examples. The first four (iFFT,
FFT, BIFP and MA) correspond to different types of execution time distributions observed for a set of
representative programs for the analysis of automotive applications. Three others are in R packages:
MobyDick (“moby” in R package poweRlaw), Danish and Nidd (“danish” and ’“nidd.thresh” in the R
package evir). The Bilbao waves dataset (bilbao) was originally analysed by Castillo and Hadi (1997).
EURUSD is the dataset of euro/dollar daily exchange rates between 1999 and 2016.

We collect samples with n = 1, 000 observations for 4 of the 16 benchmarks in the EEMBC
AutoBench suite (Poovey, 2007), which is a well-known suite for real-time systems that includes
a number of programs used in embedded automotive systems. Hereinafter, these datasets will be
called iFFT (idctrn), FFT (aifftr), BIFP (basefp) and MA (matrix), leaving the real names in parentheses,
they correspond respectively to Inverse Fast Fourier Transform, Fast Fourier Transform, Basic Integer
and Floating Point and Matrix Arithmetic, see Abella et al. (2017) and del Castillo et al. (2017b). The
histograms of the four datasets are bell-shaped. Hence, when searching for L-shaped distributions, we
start the exploratory data analysis of the upper part of the distribution by taking the median as origin.
Note also that large samples increase the precision of the estimates, provided that the fitted model is
validated. The CV-plots for these four datasets are obtained, for instance, with:

library("ercv")
data(iFFT)
cvplot(iFFT,thr=median(iFFT))

The plots in Figure 1 are stowed from left to right and top to bottom. For iFFT, the CV-plot is inside
the confidence interval of the exponential distribution (evi = 0). Hence, it can be assumed that the CV
is constant equal to 1 (dashed orange line). For FFT, the CV-plot is inside the confidence interval for
the last 250 observations. For BIFP, the CV-plot looks like a constant with CV lower than 1, hence a
light tailed GPD is suggested. For MA, the CV-plot suggests a heavy tailed distribution.

The following three CV-plots in Figure 1 are made from the MobyDick, Danish and Nidd datasets,
which can be directly loaded from the R packages. The three plots are made with the default cvplot
function options, but including title, for instance:

data("moby", package = "poweRlaw")
cvplot(moby,main="MobyDick")

The second row of Figure 1 shows three examples that suggest heavy tailed distributions. In the
centre is MobyDick and on the right is the Danish fire insurance dataset, which is a highly heavy-tailed
infinite-variance example used to illustrate the basic ideas of extreme value theory, see Embrechts et al.
(1997), McNeil et al. (2005, Example 7.23) and Novak (2012, Example 9.8). Section Transformation from
heavy to light tails (tdata) shows how to analyse these examples, with the tdata function, using the
methodology developed in del Castillo and Padilla (2016).

Nidd is the dataset of high levels of the River Nidd above a threshold value of 65. Its CV-plot
is always lower than

√
2, begins in the area of heavy tails and goes into the confidence interval of

exponentially. The Bilbao waves dataset was originally analysed by Castillo and Hadi (1997). The
Nidd and Bilbao datasets are two of the most commented examples of extreme values theory, which
were also analysed by del Castillo and Serra (2015) from the MLE point of view.

By default, the cvplot function draws a 90% confidence interval of CV-plot from exponential
distribution (evi = 0). The evi parameter of the function provides confidence intervals of the corre-
sponding GPD (evi < 1/4). The conf.level parameter allows for changing confidence levels. Both evi
and conf.level may be a vector. For light tailed distributions, as is presumably the case with the wave
levels, it is also advisable to draw a confidence interval from the uniform distribution (evi = −1).
Hence, the Bilbao CV-plot in Figure 1 has confidence intervals for exponential (orange) and uniform
(green) distributions.

data(bilbao)
cvplot(bilbao,evi = c(0,-1),main="Bilbao")

EURUSD is the data frame object of the euro/dollar daily exchange rates between 1999 and 2016,
including the financial crisis of 2007-08, which was obtained from the R package quantmod (Ryan,
2016). Various parts of the EURUSD series have been studied by several authors, see Gomes and
Pestana (2007) and del Castillo and Padilla (2016). The last plot in Figure 1 shows the CV-plot of the
positive log-returns of the euro/dollar daily prices, obtained from

data("EURUSD")
prices<-ts(EURUSD$EUR.USD,frequency=365,start=1999)
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#plot(prices,col="blue",main="euro/dollar daily prices(1999-2016)")
return <- 100*diff(log(prices));
pos.return <- subset(return, return >0);
cvplot(pos.return,main="pos.returns EUR/USD 1999-2016")

The dynamics of the daily return can be described by a GARCH(1,1) model. One might then hope
that for sufficiently high values of t the subset of daily returns that are above t is so well separated in
time that independence can reasonably be assumed. Then, the CV-plot clearly shows that the tail of
the distribution looks like an exponential.

Estimation and Model diagnostics with Tm function

Following the exploratory analysis, we would like to confirm or deny some of the previous observa-
tions. It is known that in order to make optimum decisions, it is necessary to quantify the uncertainty
of information extracted from data. Statistics provides mechanisms to ensure a controlled probability
of error, but there is always the risk of misuse for multiple testing, especially in EVT where quite
small changes can be greatly magnified on extrapolation. The asymptotic distribution of the residual
coefficient of variation for GPD as a random process indexed by the threshold by del Castillo and
Padilla (2016) provides pointwise error limits for CV-plot, used in the last section, and a multiple
thresholds test that truly reduces the multiple testing problem, hence, the p-values are clearly defined.

Using the building blocks given by (10) the multiple threshold test Tm (the Tm function of the
R package ercv) for a (supplementary) number of thresholds m as large as necessary for practical
applications is constructed from

Tm(ξ) = n
m

∑
k=0

pk(cv(qk)− cξ)
2, (11)

where cξ is in (4), qk are the empirical quantiles corresponding to probabilities 1− pk and probability p
is chosen so that n pm ≈ omit, where omit is the smaller sample size used to calculate CV. This statistic
can be used to test whether a sample is distributed as a GPD with parameter ξ.

The Tm function makes it possible to see whether the 75 largest values of Nidd can be assumed to
be exponentially distributed.

data("nidd.thresh",package = "evir")
Tm(nidd.thresh,evi=0, nextremes = 75)

nextremes cvopt evi tms pvalue
75 1.000 0.000 0.981 0.310

The Tm function provides tms = Tm(evi)/(m+ 1), which is stable on vary the number of thresholds
m, the p-value says that it can not be rejected exponenciality (the number of simulations can be
increased with nsim). Moreover, by default the Tm function assumes that the parameter ξ is unknown
(evi = NA), then the cvopt is estimated as the value c̃ξ such that achieves the minimum of Tm(ξ), and
reversing (4) provides an estimator ξ̃.

The following code shows that the assumption of constant CV (GDP) is rejected for the complete
sample.

Tm(nidd.thresh)

nextremes cvopt evi tms pvalue
154 1.225 0.167 1.214 0.030

It is rejected that Bilbao dataset is uniform distributed. However, It can not be rejected GPD as the
following code shows

Tm(bilbao,evi=-1,nsim=1000)

nextremes cvopt evi tms pvalue
179 0.577 -1.000 0.629 0.003

Tm(bilbao,nsim=1000)

nextremes cvopt evi tms pvalue
179 0.650 -0.685 0.254 0.172

The R Journal Vol. 11/2, December 2019 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 62

The confidence interval for the parameter estimation evi = −0.685 can be obtained with

cievi(nextremes=length(bilbao),evi=-0.685)

5% 95%
-0.778 -0.549

Using a small threshold, (0.1%), the Tm function shows that the positive and negative returns of
the euro/dollar between 1999 and 2016 can be assumed exponentially distributed.

Tm(pos.return,m=50,evi=0,thr=0.1,nsim=1000)

nextremes cvopt evi tms pvalue
2207 1.000 0.000 0.392 0.780

neg.return <- -subset(return, return <0);
Tm(neg.return,m=50,evi=0,thr=0.1,nsim=1000)

nextremes cvopt evi tms pvalue
2187 1.000 0.000 1.160 0.231

The last statement with Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz takes elapsed=4.73 (R>
proc.time()).

Threshold selection algorithm (thrselect)

There are two different approaches to the question of threshold choice. The first approach is to regard
the free choice of the threshold as an advantageous feature of the procedure. By varying the threshold,
the data can be explored, and if a single estimate is needed it can be obtained by subjective choice. It
may well be that such a subjective approach is in reality the most useful one.

The other, to some extend opposing, view is that there is a need for an automatic method whereby
the threshold is chosen by the data. It is fairer to use the word automatic rather than objective for such a
method, because there are arbitrary decisions involved in the choice of the method itself. Nevertheless,
it is of course the case that conditional on the automatic method being used, the threshold is indeed
objective. Automatic methods need not be used in an uncritical way; they can of course be used as a
starting point for fine tuning.

The thrselect function in the R package ercv starts with the Tm(ξ) calculation (11) where the
number of thresholds m must be fixed by the researcher. This determines the thresholds where the
CV is calculated, 0 = q0 < q1 < · · · < qm, which are fixed throughout the procedure. We accept or
reject the null hypothesis for the shape parameter using all the thresholds. If the hypothesis is rejected,

the threshold excesses
(

xj − q1

)
are calculated for the sub-sample

{
xj > q1

}
. The previous steps are

repeated, but removing one threshold, to accept or reject the null hypothesis that the sample comes
from a GPD with parameter ξ, see del Castillo and Padilla (2016).

If we apply the function thrselect on the Nidd dataset the code shows

DF <- thrselect(nidd.thresh,m=10, nsim=1000)

m nextremes threshold rcv cvopt evi tms pvalue
5 6 63 87.85 1.193 1.073 0.0656 0.408 0.102

This means that the algorithm need 5 steps to achieve a p-value larger than 0.10 and it is using
in this step m = 6 thresholds. Then, constant CV can be accepted for the last 63 extremes over the
threshold 87.85, with the CV cvopt = 1.0728 and the corresponding evi = 0.0656.

The output of thrselect is in the data frame DF, the printed values are in DF$solution and
DF$options provides complementary information that can be used for a more personal approach.

print(DF$options,digits=4)

m nextremes threshold rcv cvopt evi tms pvalue
1 10 154 65.08 1.2486 1.2249 0.166758 1.33553 0.023
2 9 123 74.38 1.4082 1.2183 0.163112 1.47158 0.012
3 8 99 77.80 1.3163 1.1634 0.130594 0.93927 0.034
4 7 79 81.40 1.2587 1.1175 0.099606 0.64548 0.064
5 6 63 87.85 1.1933 1.0728 0.065559 0.40795 0.102
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6 5 50 92.82 1.1328 1.0320 0.030493 0.24415 0.217
7 4 40 99.14 1.0714 0.9945 -0.005584 0.12917 0.457
8 3 32 107.94 1.0054 0.9619 -0.040406 0.05888 0.609
9 2 26 115.93 0.9006 0.9396 -0.066323 0.04218 0.637
10 1 21 131.87 0.9473 0.9667 -0.034986 0.01755 0.597

Transformation from heavy to light tails (tdata)

It is possible to extend the previous methodology based on CV to all distributions, even without finite
moments. For CV-plots above the straight line y =

√
2 , like the three examples in the second row of

Figure 1, the datasets are transformed by the strictly increasing function that applies (0, ∞) to (0, σ),

y (x) = σ x/(x + σ),

where σ > 0, using the tdata function in the R package ercv.

This technique is founded on the following result: if X is a random variable GPD (ξ, ψ) distributed
and ξ > 0, then for σ = ψ/ξ the transformed random variable Y = y(X) is GPD (−ξ, ψ) distributed.
Furthermore, the converse is also true, as evidenced by applying the inverse transformation x (y) =
σ y/(σ− y), see also del Castillo and Padilla (2016). The σ > 0 parameter is estimated by tdata, using
MLE with the internal function egpd, (see del Castillo and Serra (2015)) or may be provided by the
researcher as a preliminary estimate.

The CV-plots for Danish and MobyDick transformed by tdata function are obtained with:

data("danish",package = "evir")
tdanish<- tdata(danish)
cvplot(tdanish,main="transformed Danish")
tmoby<- tdata(moby)
cvplot(tmoby,main="transformed MobyDick")

The CV-plots in Figure 2 for the transformed datasets are more stable than the original CV-plots
in Figure 1 and actually look light tailed. The CV-plot of the transformed MobyDick has a sawtooth
profile because the original dataset only takes positive integer values and the smaller values have a
high frequency (among the 18,855 values, 1 appears 9,161 times, 2 appears 3,085, ... ). In order to use a
GPD approach for this example we assume that the data correspond to positive values rounded to the
nearest integer.
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Figure 2: CV-plots under tdata transformation of Danish fire insurance data and frequencies of words
in the novel Moby Dick.

The Tm function rejects GPD for the complete transformation of MobyDick. The same result is
obtained with the transformation of the dataset on the thresholds 2 and 3. However, GPD is not
rejected on threshold 4, hence the frequencies of words that appear four or more times in the novel
Moby Dick (4,980 observations) can be approximated by a GPD distribution with evi = 0.982, as the
following code shows (changing the sign of evi):
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t4moby<-tdata(moby,thr=4)
Tm(t4moby,m=50,nsim=1000)

nextremes cvopt evi tms pvalue
4980 0.581 -0.982 0.198 0.293

The Danish example was studied by del Castillo and Padilla (2016). The results obtained are
validated by the Tm function after the transformation tdata

Tm(tdanish,m=20,nextremes = 951,omit = 8, nsim = 1000)

nextremes cvopt evi tms pvalue
951 0.676 -0.595 0.256 0.253

Applying the thrselect function to Danish after the transformation by tdata we obtain

DF<-thrselect(tdanish,m=30,nsim=1000)

m nextremes threshold rcv cvopt evi tms pvalue
19 12 116 1.283 0.589 0.6747 -0.598 0.265 0.11

The automatic algorithm chooses the threshold 1.283 (116 extremes) with the estimate evi = 0.598
(changing the sign of evi) really close to the previous one evi = 0.595. The result is different from that
obtained by McNeil et al. (2005) by MLE evi = 0.50 (109 extremes). However the cievi function shows
that evi = 0.50 can not be rejected, as shown by the confidence interval provided by the following
code (changing the sign of evi again),

cievi(116,evi=-0.596)

5% 95%
-0.714 -0.440

In the next section we will discuss these results with new features of the R package ercv.

Fitting PoT parameters and tail plots (fitpot ccdfplot)

The tools described in the previous sections provide an asymptotic model for threshold exceedances
over a high quantile, the so-called peak-over-threshold (PoT) method, see McNeil et al. (2005). The
PoT method is based on determining a high enough threshold from which the distribution of the
observations above this value, adjusted to zero, approaches to a GPD distribution. Then, given a
threshold t, for x > t the complementary cumulative distribution function (ccdf) is estimated by

1− F̂ (x) = p̂t
(
1− G

(
x− t; ξ̂t, ψ̂t

))
(12)

where G (x; ξ, ψ) is the cumulative distribution function of the GDP, whose probability density function
was introduced in (3), and

(
ξ̂t, ψ̂t

)
are their estimated parameters for the nt threshold exceedances

over t adjusted to zero, from a sample of size n with p̂t = nt/n. Alternatively, given nt the estimated
parameter is t.

The ppot function is the cumulative distribution function for the PoT method. That is, given
an estimate of the four parameters in (12),

(
ξ̂, ψ̂, t̂, p̂

)
, the right hand part of (12) is provided by

1−ppot
(

x,
(
ξ̂, ψ̂, t̂, p̂

))
. The qpot is the quantile function for the PoT method that assigns to each

probability p attained by ppot the value x for which ppot(x) = p, given the same vector of four
parameters. The qpot function can be used in the estimation of high quantiles, that in terms of risk
is expressed as the value at risk (VaR). For a small p, VaRp = q if and only if 1− F (q) = p. Hence, if
ε < p̂,

VaRε = t̂ + qpot
(
(1− ε/ p̂) ,

(
ξ̂, ψ̂, t̂, p̂

))
.

The fitpot function of the R package ercv provides an estimate of the four parameters in (12) that
allow approximating the empirical cumulative distribution function of a dataset. It is assumed that the
threshold t, or the number of extremes, has been chosen based on the tools of the previous sections. By
default fitpot uses MLE. However, since parameter ξ (evi) can be estimated minimizing (11) by the
Tm function, this value can be entered into the function fitpot and then it uses MLE by the restricted
model to a single parameter. From now on this method of estimation will be called CV method.

The two methods of estimation of fitpot applied to Danish explain the differences between the
results obtained by us and by other researchers, which we have discussed in the previous section, as
we can see with the code
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fit1<-fitpot(danish,nextremes =116);fit1 #MLE

evi psi threshold prob
0.446 7.462 9.200 0.054

fit2<-fitpot(danish,evi=0.598,nextremes =116);fit2 #CV

evi psi threshold prob
0.598 6.450 9.200 0.054

Naturally, different estimation methods provide different estimates, but the question of identifying
the best approach still remains. To clarify this point, we can use the ccdfplot function, which draws
the empirical complementary cumulative distribution function with the approximations provided
by the parameters estimated by fitpot. The ccdfplot function allows to draw several approaches at
several scales. The approximation is linear in the log-log scale for datasets with heavy tails, although
it is linear in log scale for datasets with exponential tails (log = "y", by default). To draw the approach
on natural scale the option log = "" has to be used.

The plots of Figure 3 have been obtained with ccdfplot function applied to Danish data with the
estimates obtained by MLE (orange) and CV method (green) on logarithmic and double logarithmic
scales, with

ccdfplot(danish,pars=list(fit1,fit2),main="Danish (log scale)")
ccdfplot(danish,pars=list(fit1,fit2),log="xy",main="Danish (log-log
scale)")
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Figure 3: Complementary cumulative distribution function of Danish fire insurance data adjusted by
MLE and CV methods. in log scale and log-log scale.

Figure 3 shows that both adjustments are reasonable. The CV method is not worse than MLE,
perhaps less optimistic or more realistic. The previous PoT approach can be validated using the
Clauset et al. (2009) point of view.

Based on the four parameters estimated by fitpot
(
ξ̂, ψ̂, t̂, p̂

)
for heavy tailed models (evi > 0),

the linear relationship (7) can be obtained for the dataset values over the threshold, with the new
threshold σ̂ = ψ̂/ξ̂ and the probability 1, see the following code.

fit1<-as.numeric(fit1$coeff);sg1<- fit1[2]/fit1[1];sg1
fit2<-as.numeric(fit2$coeff);sg2<- fit2[2]/fit2[1];sg2
exDanish<-danish[danish>fit1[3]]-fit1[3] #origin to zero
exDanish1<- exDanish+sg1 #origin to sg1
exDanish2<-exDanish+sg2 #origin to sg2
exfit1<-c(fit1[1],fit1[2],sg1,1)
exfit2<-c(fit2[1],fit2[2],sg2,1)
ccdfplot(exDanish, pars=c(exfit1),log="xy",main="adjusted by MLE")
ccdfplot(exDanish2, pars=c(exfit2),log="xy",main="adjusted by CV")

The Figure 4 plot (a) shows the linear relationship (7) for the 116 upper extremes of Danish adjusted
by MLE. Changing the previous fit1 by fit2 the linear relationship is obtained by the CV method and is
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shown in plot (b). Notice that the linear relationship (7) begins at the threshold sg1 = 16.727 for MLE
and at a threshold sg2 = 10.787 for the CV method, so we can not overlay them in the same graph. The
goodness of fit can now be measured by the correlation between the logarithm of the complementary
empirical distribution function, log(1− Fn) and the logarithm of the data, log(x + sg), where (x + sg)
are the 116 upper extremes of Danish, adjusted to sigma. The results are correlation = −0.981 using
MLE, plot (a), and correlation = −0.990 using CV-method, plot (b).

We can also calculate the threshold th having a maximum correlation between log(1− Fn) and
log(x + th), obtaining th = 6.996 and correlation = −0.992. Thus, the correlation on which the
goodness of the CV method adjustment is based on is very close to the best that can be obtained by
this procedure, which is in line with Clauset et al. (2009) and the poweRlaw R package by Gillespie
(2015) (although here the estimation of evi is different). This shows that the methodology provided by
the R package ercv complements and connects the contributions of evir (Pfaff and McNeil, 2012) and
poweRlaw by Gillespie (2015).
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Figure 4: The linear relationship for the 116 upper extremes of Danish fire insurance data adjusted by
MLE and CV method.
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