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CopulaCenR: Copula based Regression
Models for Bivariate Censored Data in R
by Tao Sun and Ying Ding

Abstract Bivariate time-to-event data frequently arise in research areas such as clinical trials and
epidemiological studies, where the occurrence of two events are correlated. In many cases, the
exact event times are unknown due to censoring. The copula model is a popular approach for
modeling correlated bivariate censored data, in which the two marginal distributions and the between-
margin dependence are modeled separately. This article presents the R package CopulaCenR, which
is designed for modeling and testing bivariate data under right or (general) interval censoring in
a regression setting. It provides a variety of Archimedean copula functions including a flexible
two-parameter copula and different types of regression models (parametric and semiparametric)
for marginal distributions. In particular, it implements a semiparametric transformation model for
the margins with proportional hazards and proportional odds models being its special cases. The
numerical optimization is based on a novel two-step algorithm. For the regression parameters, three
likelihood-based tests (Wald, generalized score and likelihood ratio tests) are also provided. We use
two real data examples to illustrate the key functions in CopulaCenR.

Introduction

Bivariate data arise frequently in many research areas such as health, epidemiology, and economics.
For example, bivariate time-to-event endpoints are often used in clinical trials studying bilateral
diseases (e.g., eye diseases) or complex diseases (e.g., cancer and psychiatric disorders). The two
events are correlated as they come from the same subject. In many situations, the two event times
cannot be precisely observed, leading to bivariate censored data. Specifically, bivariate right-censored
data occur when the study ends prior to the occurrence of one or both events. An example of such
data comes from a clinical study assessing the treatment effect on preventing blindness in Diabetic
Retinopathy patients where each patient had one eye randomized to the treatment and the other
eye received no treatment (Huster et al., 1989), and the time-to-blindness are bivariate and right-
censored. We will illustrate the analysis of this study in Section 2.4. In another situation, bivariate
interval-censored data occur when the status of both events are periodically examined at intermittent
assessment times. In this case, the right censoring could also happen if the event still does not occur at
the last assessment time. A special case of interval-censored data is the current status data if there
is only one assessment time and the event is only known to occur or not by its assessment time. An
example of bivariate interval-censored data will be demonstrated in Section 2.4, which came from a
clinical trial studying the progression of a bilateral eye disease, Age-related Macular Degeneration
(AMD), where the progression time to late-AMD are interval or right censored (AREDS Group, 1999).
More examples can be found in books Hougaard (2000) and Sun (2007).

The development of our package is motivated by researches that are interested in (1) discovering
covariates that are significantly associated with the bivariate censored outcomes, and (2) characterizing
the joint and conditional risks of two events. For the bivariate events, the joint and conditional
risks could be clinically more important than the marginal risk (of a single event). For example,
the joint 5-year progression-free probability for both eyes helps identify patients with a high risk of
progressing to late-AMD. For another example, for patients having one eye already progressed, the
conditional 5-year progression-free probability for the non-progressed eye (given its fellow eye already
progressed) provides important information for both clinicians and the patient since patients with
both eyes progressed to the late stage of the disease may lose the ability to live independently.

There are three major approaches to fit regression models for bivariate censored data. The simplest
way is to fit a marginal model and estimate the variance-covariance by a robust sandwich estimator
(for example, Wei et al., 1989). This approach takes a working independence assumption, and
thus cannot generate joint or conditional distributions. The second approach is based on frailty
models (for example, Oakes, 1982), which are essentially mixed effects models and account for
the dependence between two events by a latent frailty variable. However, the covariate effects in
frailty models are usually interpreted on a conditional level (by conditioning on the frailty term),
which is not straightforward. The third approach is to use copula models (for example, Clayton,
1978). Unlike the marginal or frailty approaches, the copula approach models the joint survival
distribution by directly connecting the two marginal distributions through a copula function. One
unique advantage of the copula is that it separately models the marginal distributions and the
dependence parameter(s), allowing flexibility in marginal models and straightforward interpretation
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for covariate effects. Moreover, the challenge from censoring can be naturally handled through the
marginal distributions within the copula function. Besides, the joint and conditional distributions can
be obtained based on the copula model.

Along with these three major approaches, multiple endeavors have been devoted to the develop-
ment of software, mostly R (R Core Team, 2019) packages, to build regression models for bivariate
censored data. For bivariate right-censored data, the survival (Therneau, 2018b) package can fit para-
metric or semiparametric Cox (Cox, 1972) marginal and frailty models. Also, packages such as parfm
(Munda et al., 2012) and frailtypack (Rondeau et al., 2012) implement proportional hazards (PH)
frailty models under the parametric and semiparametric settings. Other R packages such as coxme
(Therneau, 2018a) and phmm (Donohue and Xu, 2019) also fit PH frailty models for right-censored
data. For bivariate interval-censored data, the survival and frailtypack packages provide marginal
and frailty models under the parametric or semiparametric (Cox PH) situation, respectively. The C++
program IntCens (codes located under https://dlin.web.unc.edu/software/intcens/) implements
a class of semiparametric frailty models, including both PH and proportional odds (PO) models.

To the best of our knowledge, there exists no R package for fitting copula-based regression models
for both bivariate right-censored and interval-censored data. The existing copula packages for bivari-
ate data handle either the non-censoring (i.e., complete data) or the right-censoring situation. In the
non-censoring situation, the package copula (Hofert et al., 2018) by Yan (2007) and Kojadinovic and
Yan (2010) implements multivariate copula models without covariates for complete data and obtains
the maximum likelihood estimator for the copula dependence parameter. It gives useful codes for
implementing regression models in bivariate complete data in the appendix of Yan (2007). It also
provides copula goodness-of-fit tests for model selection purpose. The package VineCopula (Schep-
smeier et al., 2018) can also model bivariate or multivariate complete data without covariates through
the vine copula models (Aas et al., 2009). Packages such as CopulaRegression (Nicole Kraemer, 2014)
and gcmr (Masarotto and Varin, 2017) can provide copula-based regression models with parametric
margins for bivariate or multivariate complete data and provide maximum likelihood estimators
for model parameters. The package gamCopula (Nagler and Vatter, 2020) implements a generalized
additive model that can take into account the effect of the predictors on the dependence structure of
bivariate and vine copula models (Vatter and Chavez-Demoulin, 2015). For the right-censoring situa-
tion, the Copula.surv package (Emura, 2018) can estimate the Clayton copula dependence parameter
in bivariate right-censored data without covariates and also perform a goodness-of-fit test for a fitted
Clayton model (Emura et al., 2010). The Sunclarco package (Prenen et al., 2017b) provides Clayton
or Gumbel copula-based regression models with parametric (Weibull and piecewise constant) or
Cox semiparametric margins for multivariate right-censored data (Prenen et al., 2017a). The package
GJRM (Marra and Radice, 2020) can fit both marginal and copula regression models in complete and
right-censored data (Marra and Radice, 2017; Marra et al., 2017; Marra and Radice, 2019). By far, there
is no copula-based R package for bivariate interval-censored data.

We develop the CopulaCenR package, which fits copula-based regression models for both bivari-
ate right-censored and interval-censored data. The package is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=CopulaCenR. The main advan-
tage of CopulaCenR relies on the diverse choice of copula and marginal models for both bivariate
right-censored and interval-censored data. Specifically, it provides a class of Archimedean copulas
that correspond to a variety of dependence structures, as illustrated in Table 1. In particular, in addi-
tion to these frequently used one-parameter Archimedean copulas, a two-parameter copula function
(Copula2) is also included. This Copula2 has more flexibility in modeling dependence structure, as we
show in Section 2.2. Furthermore, CopulaCenR implements a list of parametric and semiparametric
marginal regression models, as illustrated in Table 2. For parameter estimation, the package utilizes a
novel two-step procedure that is computationally stable and efficient. For the inference of regression
parameters, three likelihood-based tests such as Wald, generalized score and likelihood ratio tests are
provided.

We will describe the major features of CopulaCenR in Section 2.2 and presents the model and
estimation procedure in Section 2.3. We will demonstrate two real data examples in Section 2.4 using
the version 1.1.2 of CopulaCenR. Finally, we will conclude and discuss in Section 2.5.

Package Features

The most popular copula family for bivariate censored data is the Archimedean copula family, which
has an explicit form of

Cη(u, v) = φη{φ−1
η (u) + φ−1

η (v)},
where u and v are two uniformly distributed margins; φη is the generator function, which is a continu-
ous, strictly decreasing and convex function; φ−1

η is the inverse of φη . One generator function uniquely
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determines an Archimedean copula. The copula parameter η has a one-to-one correspondence with
the popular dependence measure Kendall’s τ. Another property of the copula is the tail dependence
(i.e., τL and τU for lower and upper tail dependence), which measure the dependence between two
margins in the lower and upper tails. More details about Archimedean copulas can be found in Nelsen
(2006).

Table 1 lists six Archimedean family copula models that are implemented in CopulaCenR. Two
most frequently used Archimedean copulas are Clayton (Clayton, 1978) and Gumbel (Gumbel, 1960)
models, which account for the lower or upper tail dependence between two margins using a single
parameter η. Other Archimedean copulas, such as Frank (Frank, 1979), Joe (Joe, 1993) and Ali-Mikhail-
Haq (AMH) (Ali et al., 1978), are also one-parameter copulas. In addition to these five copulas, we also
include a flexible two-parameter Archimedean copula model (Joe and Hu, 1996; Joe, 1997), namely,
Copula2 (also called the “BB1" family), which is formulated as

Cα,κ(u, v) = [1 + {(u−1/κ − 1)1/α + (v−1/κ − 1)1/α}α]−κ , α ∈ (0, 1], κ ∈ (0, ∞). (1)

The two dependence parameters (α and κ) are explicitly connected to Kendall’s τ with τ = 1 −
2ακ/(2κ + 1), and they account for the correlation between u and v at upper and lower tails. In
particular, when α = 1, Copula2 becomes the Clayton copula, and when κ → ∞, it becomes the
Gumbel copula. Thus, the two-parameter copula model provides more flexibility in modeling the
between-margin dependence than the one-parameter copulas such as Clayton or Gumbel (Joe, 2014).
Figure 1 illustrates the scatter plots of bivariate event times generated from the six copula models in
Table 1.

Family Parameter Space Generator φη(t), t ∈ [0, ∞) Generator Inverse φ−1
η (s), s ∈ (0, 1] τL τU Kendall’s τ

Clayton η > 0 (1 + t)−1/η s−η − 1 2−1/η 0 η/(2 + η)
Gumbel η ≥ 1 exp(−t1/η) (− log s)η 0 2− 21/η 1− 1/η
Frank η ≥ 0 −η−1 log{1 + e−t(e−η − 1)} − log{(e−ηs − 1)/(e−η − 1)} 0 0 1 + 4{D1(η)− 1}/η
AMH η ∈ [0, 1) (1− η)/(et − η) log[{1 + η(s− 1)}/s] 0 0 1− 2{(1− η)2 log(1− η) + η}/(3η2)
Joe η ≥ 1 1− (1− e−t)1/η − log{1− (1− s)η} 0 2− 21/η 1− 4 ∑∞

k=1 1/{k(ηk + 2)[η(k− 1) + 2]}
Copula2 α ∈ (0, 1], κ > 0 {1/(1 + tα)}κ (s−1/κ − 1)1/α 2−ακ 2− 2α 1− 2ακ/(2κ + 1)

τL and τU are the lower and upper tail dependence measures.

D1(·) is the Debye function written as D1(η) =
1
η
∫ η

0
t

et−1
dt.

Table 1: Summary of implemented Archimedean copula families.

Figure 1: Scatter plots of bivariate event times generated from various copula models.

To fit a copula-based regression model, one also needs to choose a regression model for the
margins. Table 2 lists the available marginal models in CopulaCenR. For bivariate right-censored data,
users can fit either a parametric marginal model via the function rc_par_copula or a semiparametric
Cox PH model via the function rc_spCox_copula (Sun et al., 2019). Specifically, the parametric
models incorporate both the PH (e.g., Weibull, Gompertz) and the PO (e.g., Loglogistic) models. For
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bivariate interval-censored data, one can choose to fit a parametric marginal model via the function
ic_par_copula. Moreover, the package can also fit a semiparametric transformation model via the
function ic_spTran_copula. It contains a variety of marginal models including the PH and PO models,
as we explain in Section 2.3.3. A novel two-step sieve estimation procedure is implemented (Sun and
Ding, 2019).

Type Models Survival Distributions S(t) Corresponding R Functions

Parametric
Weibull exp{−(t/λ)keZ>β}

rc_par_copula, ic_par_copulaGompertz exp{− b
a (e

at − 1)eZ>β}
Loglogistic {1 + (t/λ)keZ>β}−1

Semiparametric Cox exp{−Λ(t)eZ>β} rc_spCox_copula

Transformation exp[−G{Λ(t)eZ>β}] ic_spTran_copula

Table 2: Summary of implemented marginal models.

For the inference of the covariate effects, three types of likelihood-based tests are implemented
in CopulaCenR: the Wald test (built within rc_par_copula, rc_spCox_copula, ic_par_copula, and
ic_spTran_copula), the generalized score test (score_copula) and the likelihood-ratio test (lrt_copula).

After a copula model being fitted, fitted values (i.e., linear predictors, survival probabilities) can be
extracted by the general S3 function fitted. For new observations, the linear predictors and survival
probabilities can be obtained using the function predict. Moreover, the user can plot three types
of distributions (joint, conditional and marginal) using the general functions plot and lines. In
particular, an interactive 3D contour will be plotted to visualize the joint distribution.

Besides, the package provides a bivariate event time generating function data_sim_copula, which
can generate random bivariate event times based on a specified copula function, a marginal distribu-
tion, and covariate values.

In summary, the key functions of CopulaCenR are

• rc_par_copula: for fitting parametric regression models to bivariate right-censored data;

• rc_spCox_copula: for fitting a semiparametric Cox regression model to bivariate right-censored
data;

• ic_par_copula: for fitting parametric regression models to bivariate interval-censored data;

• ic_spTran_copula: for fitting a semiparametric transformation model to bivariate interval-
censored data;

• score_copula: for performing the generalized score test on covariate effects;

• lrt_copula: for performing the likelihood ratio test (LRT) on covariate effects between two
nested models;

• tau_copula: for calculating Kendall’s τ from copula parameter estimates;

• plot,lines: S3 methods for plotting joint, conditional and marginal distributions based on a
fitted copula model;

• fitted,predict: S3 methods for extracting fitted values and predicting new observations;

• summary,print,coef,logLik,AIC,BIC: other S3 functions for a fitted object;

• data_sim_copula: for generating bivariate event times through a specified copula model and
marginal distributions.

We use two real data examples to illustrate the implementation of these functions in Section 2.4.

Methods

Copula model for bivariate censored data

Let (T1, T2) be the true bivariate event times, with marginal survival functions Sj(tj) = Pr(Tj > tj), j =
1, 2, and joint survival function S(t1, t2) = Pr(T1 > t1, T2 > t2). Assume there are n independent
subjects in a study. When (T1, T2) are subject to right-censoring, for subject i = 1 · · · n, we observe
Di = {(Yij, ∆ij, Zij) : Yij = min(Tij, Cij), ∆ij = I(Tij ≤ Cij), j = 1, 2}, where Cij is the censoring
time of Tij, ∆ij is the censoring indicator and Zij is the covariate vector. When (T1, T2) are under
interval-censoring, we observe Di = {(Lij, Rij, Zij), j = 1, 2} for subject i, where (Lij, Rij] is the time
interval that Tij lies in and Zij is the covariate vector.
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By the Sklar’s theorem (Sklar, 1959), so long as the marginal survival functions Sj are continuous,
there exists a unique function Cη that connects two marginal survival functions into the joint survival
function: S(t1, t2) = Cη{S1(t1), S2(t2)}, t1, t2 ≥ 0. Here, the function Cη is called a copula and its
parameter η measures the dependence between the two margins. A signature feature of the copula is
that it allows the dependence to be modeled separately from the marginal distributions.

Joint likelihood functions for bivariate censored data

In this section, we present the joint likelihood functions for bivariate right-censored data and bivariate
interval-censored data, respectively.

Define the density function for copula Cη(u, v) as cη(u, v) = ∂2Cη(u, v)/∂u∂v. Let f (t1, t2) =

∂2S(t1, t2)/∂t1∂t2 = cη{S1(t1), S2(t2)} f1(t1) f2(t2) denote the corresponding density function of
S(t1, t2). Denote by θ = (β> = (β>1 , β>2 ), η, S01, S02)

> all the unknown parameters in S(t1, t2), where
β j is the regression coefficient vector and S0j is the baseline survival function for the jth margin. Then,
the joint likelihood for the observed data D = {Di}n

i=1 can be written as

Ln(θ|D) =
n

∏
i=1

f (yi1, yi2|Zi1, Zi2)
δi1δi2 ×

[
− ∂S(yi1, yi2|Zi1, Zi2)

∂yi1

]δi1(1−δi2)

×
[
− ∂S(yi1, yi2|Zi1, Zi2)

∂yi2

](1−δi1)δi2

× S(yi1, yi2|Zi1, Zi2)
(1−δi1)(1−δi2)

=
n

∏
i=1

[
cη{S1(yi1|Zi1), S2(yi2|Zi2)} f1(yi1|Zi1) f2(yi2|Zi2)

]δi1δi2

×
[
−

∂ Cη{S1(yi1|Zi1), S2(yi2|Zi2)}
∂yi1

]δi1(1−δi2)

×
[
−

∂ Cη{S1(yi1|Zi1), S2(yi2|Zi2)}
∂yi2

](1−δi1)δi2

× Cη{S1(yi1|Zi1), S2(yi2|Zi2)}(1−δi1)(1−δi2),

(2)

where (δi1, δi2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
Similarly, using the notation introduced in Section 2.3.1, the joint likelihood function for bivariate

interval-censored data from n subjects can be written as

Ln(θ|D) =
n

∏
i=1

Pr(Li1 < Ti1 ≤ Ri1, Li2 < Ti2 ≤ Ri2|Zi1, Zi2)

=
n

∏
i=1

[
Pr(Ti1 > Li1, Ti2 > Li2|Zi1, Zi2)− Pr(Ti1 > Li1, Ti2 > Ri2|Zi1, Zi2)

−Pr(Ti1 > Ri1, Ti2 > Li2|Zi1, Zi2) + Pr(Ti1 > Ri1, Ti2 > Ri2|Zi1, Zi2)

]
=

n

∏
i=1

[
Cη{S1(Li1|Zi1), S2(Li2|Zi2)} − Cη{S1(Li1|Zi1), S2(Ri2|Zi2)}

−Cη{S1(Ri1|Zi1), S2(Li2|Zi2)}+ Cη{S1(Ri1|Zi1), S2(Ri2|Zi2)}
]

. (3)

The right interval Rij can take values in (0, ∞]. For a given subject i, if Rij = ∞ (i.e., Tij is right-
censored), then any term involving Rij becomes 0 and the joint survival function for subject i reduces
to only one (if both Ri1 and Ri2 are ∞) or two (if one Rij is ∞) terms. The special case of bivariate
current status data (i.e., only one assessment time for each subject) can also fit into this framework,
where for each Tij, either Lij = 0 (Tij is smaller than the assessment time, which is Rij in this case) or
Rij = ∞ (Tij is greater than the assessment time, which is Lij in this case). Therefore, the likelihood
function (3) can handle the bivariate data under general interval-censoring.

Marginal models

We implement several popular parametric marginal models in CopulaCenR, as shown in Table 2. For
example, the marginal Weibull survival distribution can be written as

Sj(tj|Zj) = exp{−(tj/λj)
k j eZ>j β j}, j = 1, 2,
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where λj and kj are the scale and shape parameters of the baseline Weibull distribution, and β j are the
covariate effects. The model follows the PH assumption. In this case, the parameter set θ becomes
(β>, η, λ1, k1, λ2, k2)

>. Other parametric distributions including Gompertz and Loglogistic are also
implemented in the package.

More generally, we implement the semiparametric Cox PH marginal model for bivariate right-
censored data. The model does not specify the marginal distribution for the baseline hazards function.
Instead, the baseline hazards are treated as piecewise constants between all uncensored event times as
suggested by Breslow (1972). The model is expressed as

Sj(tj|Zj) = exp{−Λj(tj)e
Z>j β j}, j = 1, 2,

in which the Breslow baseline cumulative hazard function Λj(t) is given by

Λj(t) =
n

∑
i=1

I(Yij ≤ t)δij

∑k∈Rij
exp Z>k β j

,

where Rij = {k : Yk ≥ Yij} denotes the at-risk set at time Yij.

We also consider a class of semiparametric linear transformation models for the marginal distribu-
tion of the interval-censored data. The model is expressed as:

Sj(tj|Zj) = exp[−Gj{Λj(tj)e
Z>j β j}], j = 1, 2. (4)

Λj(·) is an unknown and non-decreasing function of t, which is not necessarily the baseline cumulative
hazards function. In CopulaCenR, we approximate Λj in a sieve space constructed by Bernstein
polynomials. A Bernstein basis polynomial with degree m is expressed as:

Bk(t, m, l, u) =
(

m
k

)
(

t− l
u− l

)k(1− t− l
u− l

)m−k, k = 0, ..., m, (5)

where l and u are the lower and upper bounds of all observed times. One big advantage of Bernstein
polynomials is that they do not require the specification of interior knots, as seen from (5), making
them easy to work with. More details can be found in Sun and Ding (2019).

In model (4), Gj(·) is a pre-specified strictly increasing function, such as the Box-Cox and the
logarithmic transformation functions. The package uses a G(·) function as specified in Zhou et al.
(2017):

Gj(x) =


(1+x)r−1

r , 0 < r ≤ 2,

log{1+(r−2)x}
r−2 , r > 2.

(6)

Note that the model (4) contains a class of survival models. For example, when G(x) = x at
r = 1, the marginal function Sj(t|Z) becomes exp{−Λj(t)eZ>β j}, which is essentially a PH model.

Likewise, when Gj(x) = log(1 + x) at r = 3, Sj(t|Z) becomes {1 + Λj(t)eZ>β j}−1, which is a PO
model. In practice, the value of r can be either selected according to model AIC or treated unknown
and estimated together with other model parameters.

Two-step estimation procedure

In this section, we illustrate the estimation procedure for the unknown parameter θ. For simplicity,
we use the general notation θ = (β>1 , β>2 , η, S01, S02)

> throughout this section. In principle, we can
maximize the joint log-likelihood function based on formula (2) or (3) directly, written as ln(θ|D) =
log Ln(θ|D) = ∑n

i=1 log L(θ|Di). Due to the complex structure of the log-likelihood function, we
implement a novel two-step estimation procedure, which is proven to be computationally more stable
and efficient than the one-step procedure, as shown in Sun et al. (2019) and Sun and Ding (2019).
Essentially, the two-step procedure implements an extra step to obtain appropriate initial values for all
the unknown parameters. The estimation procedure is described below:

1. Obtain initial estimates of θn:

(a) (β̂
(1)
jn , Ŝ(1)

0j ) = arg max
(β j ,S0j)

ljn(β j, S0j), where ljn denotes the log-likelihood for the marginal

model, j = 1, 2;
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(b) η̂
(1)
n = arg max

(η)

ln{β̂(1)n = (β̂
(1)
1n , β̂

(1)
2n ), η, Ŝ(1)

01 , Ŝ(1)
02 }, where β̂

(1)
jn and Ŝ(1)

0j are the initial

estimates from (a), and ln is the joint log-likelihood.

2. Simultaneously maximize the joint log-likelihood to get final estimates:

θ̂n = (β̂n, η̂n, Ŝ01, Ŝ02) = arg max
(β,η,S01,S02)

ln(β, η, S01, S02) with initial values (β̂
(1)
n , η̂

(1)
n , Ŝ(1)

01 , Ŝ(1)
02 ) ob-

tained from step 1(a) and 1(b).

[Remark 1.] In the case of semiparametric Cox PH margins (with the Breslow baseline cumulative
hazard estimator), although the maximum likelihood estimators from step 2 are consistent and asymp-
totically normal, the Hessian matrix cannot be directly used for estimating the variance-covariance
matrix of (β̂, η̂) (Sun et al., 2019). Therefore, the bootstrap procedure is implemented in the package
for producing a valid variance-covariance estimator.

[Remark 2.] In the case of semiparametric transformation model margins (with the use of Bernstein
polynomials), the two-step estimation procedure becomes a two-step “sieve” estimation procedure.
Sun and Ding (2019) rigorously proved the asymptotic properties of the sieve maximum likelihood
estimators.

The main model-fitting functions (rc_par_copula, rc_spCox_copula, ic_par_copula and
ic_spTran_copula) provide a built-in optimization option, which is a wrapper to the optimization
routines optim and nlm in R.

Likelihood-based tests for covariate effects

We now separate β into two parts: βg and βng, where βg is the parameter set of interest for hypothesis
testing and βng denotes the rest of the regression coefficients. In certain cases, βg can be the entire
regression parameter β. The package implements three likelihood-based tests including the Wald
test, the generalized score test (Cox and Hinkley, 1979) and the likelihood ratio test, which are
asymptotically equivalent and follow the chi-squared distribution with d f = dim(βg). In particular,
the generalized score test is usually faster than the other two tests for large-scale testings such as
the genome-wide association study (GWAS) (Sun et al., 2019; Sun and Ding, 2019). Due to the
complex structure of the joint log-likelihood, instead of analytically deriving the first and second order
derivatives, we use the Richardson’s extrapolation (Lindfield et al., 1989) to approximate the score
function and observed Fisher information numerically.

Examples

Bivariate event time generation

The package CopulaCenR provides a user-friendly function data_sim_copula for generating random
bivariate event times based on a specified copula model, marginal distributions and covariate values.
The arguments n, copula, and eta assign the sample size, the copula type, and the dependence
parameter value. For marginal distributions, the argument dist can be one of the three parametric
distributions in Table 2 (i.e., Weibull, Loglogistic and Gompertz), and their distribution parameters
are given through baseline. For Weibull and Loglogistic, the baseline parameters are λ (scale) and
k (shape); whereas a (shape) and b (rate) for the Gompertz distribution. In this current version, we
assume that the two margins share the same set of covariates and effects, which are assigned by
var_list and COV_beta, respectively. Lastly, x1 and x2 input a data frame of covariate values for the
two margins, respectively. Figure 2 illustrates a scatter plot of 500 simulated bivariate event times
from a Clayton model with Weibull margins, as demonstrated in the code below.

library(CopulaCenR)
set.seed(1)
dat <- data_sim_copula(n = 500, copula = "Clayton", eta = 3, dist = "Weibull",

baseline = c(0.1,2), var_list = c("var1", "var2"), COV_beta = c(0.1, 0.1),
x1 = cbind(rnorm(500, 6, 2), rbinom(500, 1, 0.5)),
x2 = cbind(rnorm(500, 6, 2), rbinom(500, 1, 0.5)))

head(dat)

id ind var1 var2 time
1 1 6.130533 1 8.062168
1 2 6.154606 1 7.472649
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2 1 8.070653 1 6.317247
2 2 5.406263 1 5.904064
3 1 10.520432 1 4.195788
3 2 3.633516 1 4.771523

plot(x = dat$time[dat$ind == 1], y = dat$time[dat$ind == 2],
xlab = expression(t[1]), ylab = expression(t[2]), cex.axis = 1, cex.lab = 1.3)

Figure 2: Simulated bivariate event times from the Clayton copula with Weibull margins.

Fitting copula models for bivariate right-censored data

The bivariate right-censored input dataset shall be a data frame including the covariates and four
additional key input columns:

• id: the subject/cluster id,

• ind: the margin indicator (1, 2),

• obs_time: the exact observed time,

• status: censoring indicator (1 for event, 0 for right-censoring).

We use the DRS (Diabetic Retinopathy Study) data as an example. The DRS data contain bivariate
right-censored time to blindness from 197 diabetic retinopathy patients. These patients were from
a 50% random sample of the patients with "high-risk" diabetic retinopathy as defined by the DRS
(Huster et al., 1989). Each patient had one eye randomized to one of the two laser treatments and the
other eye received no treatment. For each eye, the event of interest was the time from initiation of
treatment to the time to blindness in months. Censoring was caused by death, dropout, or end of the
study. The data can be loaded by

data("DRS", package = "CopulaCenR")
head(DRS)

id ind obs_time status treat age type
5 1 46.23 0 0 28 2
5 2 46.23 0 2 28 2
14 1 42.50 0 2 12 1
14 2 31.30 1 0 12 1
16 1 42.27 0 1 9 1
16 2 42.27 0 0 9 1

There are three covariates: treat is treatment with 0 for no treatment, 1 for xenon laser treatment
and 2 for argon laser treatment; age is the age at diagnosis of diabetes; type is the type of diabetes
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with 1 for juvenile (age ≤ 20 at diagnosis) and 2 for adult. The primary question of the DRS study was
to assess the treatment effectiveness while accommodating the dependence between two eyes.

We now demonstrate how to fit a Clayton copula model with Weibull margins to the DRS data
using the function rc_par_copula. We are interested in the treatment effect, as indicated in argument
var_list. The arguments copula and m.dis specify the fitted copula model and marginal baseline
distributions. The default optimization method is BFGS (Nash, 1990). Other optimization methods and
control parameters can also be applied (see ?optim).

library(CopulaCenR)
clayton_wb <- rc_par_copula(data = DRS, var_list = "treat", copula = "Clayton",

m.dist = "Weibull", method = "BFGS")

summary(clayton_wb)

Copula: Clayton
Margin: Weibull

estimate SE stat pvalue
lambda 90.6440318 13.1887218 47.2360 6.293e-12 ***
k 0.8062766 0.0586207 189.1758 < 2.2e-16 ***
treat1 -0.5714498 0.1997080 8.1878 0.004217 **
treat2 0.0052997 0.1739106 0.0009 0.975689
eta 0.6205855 0.2610638 5.6508 0.017447 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(The Wald tests are testing whether each coefficient is 0)

Final llk: -839.7212
Convergence is completed successfully

The estimation and Wald test results suggest the xenon treatment significantly reduced the risk
of blindness compared to controls (p = 0.004217 for treat1). We also compared our estimates with
previous findings in Huster et al. (1989). Due to the differences in the model parameterization, we first
transformed our estimates into comparable forms. Specifically, the xenon treatment effect in Huster
et al. (1989) can be expressed as −k log(λ) + treat1 = −4.20 and similarly the argon treatment effect is
−k log(λ) + treat2 = −3.63, which are consistent with the reported estimates (−4.20,−3.42) in the
Table 2 (page 151) of Huster et al. (1989). The AIC and BIC of this model can be obtained from the S3
methods AIC and BIC.

AIC(clayton_wb)

1689.442

BIC(clayton_wb)

1705.858

After the model is fitted, Kendall’s τ can be estimated through the function tau_copula.

tau_copula(eta = as.numeric(coef(clayton_wb)["eta"]), copula = "Clayton")

0.2368118

The fitted values (i.e., linear predictors and survival probabilities) can be extracted through the
function fitted. As the model is a PH model, the linear predictors (type is “lp”) are the estimated log
proportional hazards.

fit1 <- fitted(clayton_wb, type = "lp")
fit1[1:3, ]

id lp1 lp2
5 0.000000000 0.005299655
14 0.005299655 0.000000000
16 -0.571449835 0.000000000

When type is “survival”, the fitted outputs are marginal (S1,S2) and joint (S12) survival probabili-
ties at the observed times (t1,t2).
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fit2 <- fitted(clayton_wb, type = "survival")
fit2[1:3, ]

id t1 t2 S1 S2 S12
5 46.23 46.23 0.5592967 0.5575724 0.3643588
14 42.50 31.30 0.5793467 0.6542323 0.4234880
16 42.27 42.27 0.7369175 0.5823995 0.4655204

Similarly, the predict function provides predictions for new observations with covariates. Its
outputs can be either linear predictors or survival probabilities (at specified times). The following
newdata1 example contains two subjects under different treatments.

newdata1 <- data.frame(id = rep(1:2, each=2), ind = rep(c(1,2),2),
time = rep(40,4), treat = factor(c(0,1,0,2)))

newdata1

id ind time treat
1 1 40 0
1 2 40 1
2 1 40 0
2 2 40 2

predict(clayton_wb, newdata = newdata1, type = "lp")

id lp1 lp2
1 0 -0.571449835
2 0 0.005299655

predict(clayton_wb, newdata = newdata1, type = "survival")

id t1 t2 S1 S2 S12
1 40 40 0.5962669 0.7467754 0.4799705
2 40 40 0.5962669 0.5946309 0.4024998

Fitting copula models for bivariate interval-censored data

The bivariate interval-censored input dataset shall be a data frame including the covariates and five
key input columns:

• id: the subject/cluster id,

• ind: the margin indicator (1 or 2),

• Left: the left bound of the observed interval,

• Right: the right bound of the observed interval (can take “Inf”),

• status: the censoring indicator (1 for left- or interval-censoring, 0 for right-censoring).

We use the AREDS (Age-Related Eye Disease Study) data as an example. The event of interest is
the AMD (Age-related Macular Degeneration) disease, which is a leading cause of blindness in the
developed world (Swaroop et al., 2009). It is known as a polygenic, progressive and neurodegenerative
disorder. The AREDS study is a multi-center randomized clinical trial studying the development
and progression of AMD, sponsored by the National Eye Institute (AREDS Group, 1999). Due to
intermittent assessment times (every 6 months up to the first 6 years and every 1 year since after), the
exact time when each eye progressed to late-AMD was only known to lie in a certain interval. As a
result, the outcome data are bivariate interval-censored. The package includes a subset data of 629
Caucasian participants from AREDS who had at least one eye in moderate AMD stage at baseline. The
data can be loaded by

data("AREDS", package = "CopulaCenR")
head(AREDS)

id ind Left Right status SevScaleBL ENROLLAGE rs2284665
1 1 0.0 2.0 1 6 67.0 1
1 2 0.0 2.0 1 8 67.0 1
2 1 0.0 2.0 1 7 68.0 0
2 2 5.9 9.3 1 4 68.0 0
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3 1 8.0 9.1 1 7 64.9 0
3 2 10.0 Inf 0 7 64.9 0

Out of these 629 subjects, 273 subjects developed late-AMD in both eyes during the study and
the times to late-AMD were interval-censored; 138 subjects developed late-AMD in one eye (interval-
censored) and did not develop late-AMD before the end of the study (right-censored); the rest 218
subjects were right-censored for late-AMD in both eyes.

There are three continuous covariates: SevScaleBL for baseline AMD severity score (a value
between 1 and 8 with a higher value indicating more severe AMD), ENROLLAGE for baseline age and
rs2284665 for a genetic variant (0, 1, 2 for GG, GT, TT) that might be associated with AMD progression.
The two clinical covariates SevScaleBL and ENROLLAGE are well-known risk factors of AMD. Thus, our
primary interest is to find out whether the genetic variant rs2284665 is significantly associated with
AMD progression.

We fit a two-parameter copula semiparametric transformation model for the AREDS data through
the function ic_spTran_copula. The arguments l and u are the range of event times, which need to be
pre-specified by the user. In practice, l and u can be set as the minimum and maximum of observed
times. The argument m corresponds to the degree of Bernstein polynomials (as shown in formula 5),
with the default value m = 3. The argument r specifies the form of marginal transformation model (as
shown in formula 6). In practice, the values of m and r can be chosen based on the smallest AIC for a
list of fitted models with different values.

We now demonstrate how to fit a two-parameter copula semiparametric model to the AREDS data.
We chose the range of event times as l = 0 and u = 15, use the default Bernstein polynomial degree as
m = 3 and assume PO for the margins (i.e., r = 3).

library(CopulaCenR)
copula2_sp <- ic_spTran_copula(data = AREDS, copula = "Copula2",

var_list = c("ENROLLAGE","rs2284665","SevScaleBL"),
l = 0, u = 15, m = 3, r = 3)

summary(copula2_sp)

Copula: Copula2
Margin: semiparametric

estimate SE stat pvalue
ENROLLAGE 0.042610 0.012271 12.057 0.0005159 ***
rs2284665 0.397712 0.091180 19.026 1.290e-05 ***
SevScaleBL 0.722681 0.053258 184.132 < 2.2e-16 ***
alpha 0.930508 0.058714 251.167 < 2.2e-16 ***
kappa 0.974037 0.226081 18.562 1.645e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(The Wald tests are testing whether each coefficient is 0)

Final llk: -2104.178
Convergence is completed successfully

From the output, the estimated odds ratio for the genetic variant rs2284665 is exp(0.397712) = 1.49
with a p-value 1.29× 10−5, implying it has a “harmful” effect for AMD patients by having more copies
of its minor allele T. The AIC and BIC values are 4226.356 and 4266.353, respectively.

AIC(copula2_sp)

4226.356

BIC(copula2_sp)

4266.353

Also, the estimated Kendall’s τ is 0.38, suggesting moderate dependence in AMD progression
between two eyes.

tau_copula(eta = as.numeric(coef(copula2_sp)[c("alpha","kappa")]),
copula = "Copula2")

0.3851248
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Furthermore, we can test the effect of rs2284665 by the generalized score test. We first fit a null
model without rs2284665 and then test its effect using the function score_copula.

copula2_sp_null <- ic_spTran_copula(data = AREDS, copula = "Copula2",
var_list = c("ENROLLAGE","SevScaleBL"),
l = 0, u = 15, m = 3, r = 3)

score_copula(object = copula2_sp_null, var_score = "rs2284665")

stat pvalue
1.943163e+01 1.042661e-05

The LRT can also be performed by applying two nested models to the function lrt_copula.

lrt_copula(model1 = copula2_sp, model2 = copula2_sp_null)

stat pvalue
9.543119588 0.002007003

The following codes plot the 3D joint survival probabilities for the three subjects in newdata2,
which have the same SevScaleBL = 3 in both eyes and ENROLLAGE = 60, but vary in the genotype
of rs2284665. In the plot function, the argument class specifies the plot type, which can be one of
“joint”, “conditional” and “marginal”. When class = "joint", it generates a 3D interactive contour
that can be manually rotated for the desired visualization. Figure 3 is a snapshot of 3D contours for
the three subjects in newdata2.

newdata2 <- data.frame(id = rep(1:3, each=2), ind = rep(c(1,2),3),
SevScaleBL = rep(3,6), ENROLLAGE = rep(60,6),
rs2284665 = c(0,0,1,1,2,2))

newdata2

id ind SevScaleBL ENROLLAGE rs2284665
1 1 3 60 0
1 2 3 60 0
2 1 3 60 1
2 2 3 60 1
3 1 3 60 2
3 2 3 60 2

plot(x = copula2_sp, class = "joint", newdata = newdata2)

Figure 3: Estimated joint progression-free probability contours for subjects with different genotypes
of rs2284665 (age 60 and severity score 3 in both eyes).

Similarly, the conditional survival probabilities (Figure 4) can be obtained for the left eyes from
the same three subjects, given their right eyes (i.e., cond_margin = 2) had progressed (to late-AMD) at
year 5 (i.e., cond_time = 5).

plot(x = copula2_sp, class = "conditional", newdata = newdata2,
cond_margin = 2, cond_time = 5, ylim = c(0.25,1),
ylab = "Conditional Survival Probability")
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Figure 4: Estimated conditional progression-free probability of remaining years (after year 5) for the
left eye, given the right eye has progressed by year 5, for subjects with different genotypes of rs2284665
(age 60 and severity score 3 in both eyes).

Likewise, we can also obtain the eye-level marginal survival probabilities (i.e., plot_margin = 1
for the left eyes) for the same three subjects, as illustrated in Figure 5.

plot(x = copula2_sp, class = "marginal", newdata = newdata2,
plot_margin = 1, ylim = c(0.6,1), ylab = "Marginal Survival Probability")

Figure 5: Estimated marginal progression-free probability for one eye from subjects with different
genotypes of rs2284665 (age 60 and severity score 3 in both eyes).

Summary

This paper presents the R package CopulaCenR for implementing copula-based regression models in
bivariate censored data, including both bivariate right-censored data and bivariate interval-censored
data. A variety of Archimedean copulas, including a flexible two-parameter copula, are built in the

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CopulaCenR


CONTRIBUTED RESEARCH ARTICLE 279

package to accommodate different dependence structures. Moreover, the package can fit various
parametric and semiparametric regression models for the two margins within the copula function. In
particular, a general semiparametric transformation model with PH and PO models being its special
cases is implemented for the margins in this package. For parameter estimation, a novel two-step
procedure is adopted to guarantee stable and fast computation. For the inference of covariate effects,
all three likelihood-based tests are provided. Lastly, two real data examples are given to demonstrate
the key features and capabilities of this package.

One future extension of this package is to allow multivariate copula functions for handling
multivariate censored events. Another important research extension is to add goodness-of-fit tests,
which is critical for choosing a proper copula model. However, there are limited works in testing copula
models in bivariate censored data, especially in bivariate interval-censored data under the regression
setting. The current literature (e.g., Shih, 1998; Andersen et al., 2010; Emura et al., 2010; Wang, 2010)
only focus on testing copulas in bivariate right-censored data without covariates. We are currently
investigating these directions and plan to incorporate them in a future version of CopulaCenR.
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