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Existing GUIs

By the term “GUI”, we denote here a software interface not requiring the knowledge of
any command-line syntax (which would hinder its ease of use). A graphical interface for a
command-line tool such as BayesX (Brezger et al., 2005; Belitz et al., 2015) is therefore not
considered to be a GUI here.

Furthermore, there are GUIs designed only for specific purposes, e.g., the R package
beanz (Wang et al., 2018) which uses Stan and provides a shiny (Chang et al., 2022) app
for estimating the heterogeneity of a treatment effect between individuals. Even if these
GUISs offer special regression models (as does beanz), here we only consider GUISs offering
general-purpose regression models.

In Table 1 of the main article as well as in the following, we tried to order the existing GUIs
for Bayesian regression models (BRMs) chronologically with respect to their first release (or—
for general statistical software packages—with respect to their first release which included
BRMSs). As the exact date of the first release (or the first release which included BRMs) was
not always available, we hope our ordering reflects the true chronological order as closely
as possible.

The algorithms for inferring the posterior (as well as their abbreviations) are introduced
in section “Algorithms for inferring the posterior” of the main article.

BUGS and JAGS

The first general-purpose language and software package for Bayesian modeling was BUGS
(Gilks et al., 1994) which stands for “Bayesian inference using Gibbs sampling”. The original
BUGS software package only offers a command-line interface. Later, WinBUGS (Lunn et al,,
2000) was released for Windows systems. WinBUGS allows to specify a model graphically
via a Doodle. However, the principal way to specify models in WinBUGS is still via code.
With OpenBUGS (Spiegelhalter et al., 2014), a platform-independent alternative to WinBUGS
became available. JAGS (Plummer, 2003) (which stands for “Just another Gibbs sampler”)
may also be considered as a descendant of BUGS, but it offers no GUI at all. However,
BugsXLA (Woodward, 2011) is a Microsoft Excel (Microsoft Corporation, 2016) add-in
based on WinBUGS, OpenBUGS, and JAGS which offers a GUI for specific models (most
importantly, BRMs). Therefore, with BugsXLA, we consider WinBUGS, OpenBUGS, and
JAGS to have a full GUI for BRMs. We note that the R package iBUGS (Xie and Wang, 2013)
also offers a GUI for WinBUGS, OpenBUGS, and JAGS, but it seems to be discontinued, so
we do not consider it further here.

As suggested by their names, BUGS and all of its descendants use a Gibbs sampler
structure. If needed, various other MC and MCMC algorithms are used for sampling from
the full conditionals within this Gibbs sampler structure (Lunn et al., 2012; Congdon, 2020;
Plummer, 2017). For OpenBUGS, this includes static HMC, but not the NUTS (Lunn et al.,
2012).

BUGS and its descendants are noncommercial. An overview of the history of the BUGS
project may be found in Lunn et al. (2009) as well as in shorter form in Plummer (2003).
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IBM SPSS Amos

IBM SPSS Amos (Arbuckle, 2020) is a commercial software package with a GUI designed
for Bayesian structural equation models, so it may also be used for BRMs. Algorithmically,
IBM SPSS Amos relies on MCMC procedures (more precisely: the Metropolis algorithm and
static HMC). IBM SPSS Amos also offers a syntax.

Toolkit on Econometrics and Economics Teaching

The MATLAB (The MathWorks, Inc., 2020a) package “Toolkit on Econometrics and Eco-
nomics Teaching” (Qian, 2011) (here abbreviated by “TEET”) includes some BRMs and offers
a GUL The TEET package itself is noncommercial, but MATLAB is commercial. TEET mainly
uses MCMC algorithms (Gibbs sampling, MH-within-Gibbs, MH) but occasionally, TEET
also uses other algorithms (no HMC, though), e.g., inverse transform sampling, custom
analytic expressions, and expectation maximization with numerical integration.

JASP

JASP (JASP Team, 2022) is a noncommercial statistical software package with a GUI. At the
time of writing, the most recent JASP version was 0.16.3. JASP offers a variety of frequentist
and Bayesian methods, including (but not limited to) regression models.

According to the JASP source code (JASP Team, 2020b) and other online resources
(JASP Team, 2020a,c), JASP uses different algorithms for inferring the posterior: analytic
expressions, numerical integration, MC integration, JAGS (see Supplement section BUGS
and JAGS), and a variety of external R packages which themselves use their own algorithms.
It is via external R packages that JASP also uses Stan: Shortly after shinybrms’s (Weber,
2022) first release, JASP version 0.12 introduced a Bayesian meta-analysis feature based on
Stan and JASP version 0.13 introduced mixed BRMs based on Stan.

Bayesian Regression: Nonparametric and Parametric Models

“Bayesian Regression: Nonparametric and Parametric Models” (Karabatsos, 2015, 2017) (here
abbreviated by “BRNPM”) is a noncommercial software package built with the MATLAB
Compiler (The MathWorks, Inc., 2020b). It includes a variety of BRMs, in particular also
infinite-mixture BRMs which may be seen as nonparametric alternatives to the commonly
used BRMs. BRNPM also offers a variable selection via a spike-and-slab prior for the
regression coefficients.

At its heart, the algorithm has a Gibbs sampler structure with various other MCMC
algorithms (but not HMC) for sampling from the full conditionals within this Gibbs sam-
pler structure (Karabatsos, 2017). For the nonparametric (infinite-mixture) BRMs, special
handling is required (Karabatsos, 2017). Algorithmic details may be found in Karabatsos
(2017).

Stata

Stata (StataCorp, 2019a) is a commercial statistical software package having a GUI as well as
its own syntax. Bayesian methods were introduced in Stata version 14. Among these are
BRMs with a variety of outcome distributions, priors, and other modeling features.

For the Bayesian methods, Stata relies on the following MCMC algorithms (StataCorp,
2019b):

¢ adaptive MH (possibly blocked),

¢ hybrid MH (which is a blocked adaptive MH algorithm with Gibbs updates in user-
specified blocks),


https://CRAN.R-project.org/package=shinybrms

SUPPLEMENTARY MATERIAL

¢ full Gibbs sampling (for some models).

The choice of the algorithm is mostly up to the user, with some exceptions explained in the
“Stata Bayesian Analysis Reference Manual” (StataCorp, 2019b).

We note that there is also StataStan (Grant et al., 2017a,b), the Stata interface to Stan, but
it does not feature a GUI.

BayES

BayES (Emvalomatis, 2020) is a software package for Bayesian analyses that was originally
designed for application in econometrics. It includes some BRMs and uses direct Gibbs
sampling whenever possible, otherwise MH-within-Gibbs (Emvalomatis, 2020). BayES
offers a GUI as well as a syntax. The current BayES version 2.5 is free of charge.

IBM SPSS

IBM SPSS (IBM Corp., 2020) is a commercial statistical software package with a GUI as
well as its own syntax. Support for Bayesian methods started with IBM SPSS version 25.0.
However, IBM SPSS offers only a limited amount of Bayesian methods and only some of
them are BRMs.

Computationally, IBM SPSS mainly seems to use analytic expressions. Numerical inte-
gration and integration by MC sampling are only offered for calculating Bayes factors, with
a few exceptions where they are also used for inferring the posterior. The computational
method for inferring the posterior is always chosen automatically, i.e., not by the user.

Generally, IBM SPSS places much importance on Bayes factors and decision thresholds
for them, a hypothesis-testing approach which is discouraged (McShane et al., 2019).

BEsmarter

BEsmarter (BEsmarter Team, 2020a,b; Ramirez-Hassan and Graciano-Londofio, 2021) is a
noncommercial shiny app originally developed in the context of econometrics. It includes a
variety of BRMs and relies mostly on MCMC algorithms (MH, Gibbs sampling, and MH-
within-Gibbs) (Ramirez-Hassan and Graciano-Londono, 2021) but also offers the Bayesian
bootstrap (Rubin, 1981) for linear regression models. Compared to the methods for inferring
the posterior described in section “Algorithms for inferring the posterior” of the main article,
the Bayesian bootstrap is a somewhat different approach as it requires “peculiar model
assumptions” (Rubin, 1981).

Advanced distributional families

The following families are supported by shinybrms as “advanced” distributional families:

¢ Continuous outcome on the real line:

— brms: :student()
— brms: :skew_normal ()

— brms: :asym_laplace()

¢ Continuous outcome on the positive (or nonnegative) real line:

brms: :lognormal()

brms: :hurdle_lognormal ()

stats::Gamma()

brms: :hurdle_gamma()
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stats::inverse.gaussian()
brms: :weibull()
— brms: :exponential ()

— brms: :frechet()

¢ Count data outcome:

brms: :hurdle_negbinomial ()

brms::zero_inflated_negbinomial()

stats::poisson()

brms: :hurdle_poisson()
— brms::zero_inflated_poisson()

— brms: :geometric()
¢ Proportion as outcome:

— brms: :Beta()
— brms::zero_inflated_beta()

— brms::zero_one_inflated_beta()
¢ Circular outcome:

— brms: :von_mises()
¢ Response time outcome:

— brms: :shifted_lognormal()

— brms: :exgaussian()

Frequentist analysis of the example

In a frequentist context, an analogous regression model to the Bayesian one from section
“Example” of the main article may be fitted using Ime4 (Bates et al., 2015):

> CAP <- read.csv("CAP.csv")

> library(1lme4)

> 1lmm <- Imer(TWI ~ age + anticoagulation + diabetes + day x trt + (1 | patID),
+ data = CAP)

The output corresponding to that from shinybrms’s tab “Default summary” (Figure 9 of the
main article) is given by:

> print(summary(1lmm),

+ correlation = FALSE,
+ ranef.comp = "Std.Dev.",
+ show.resids = FALSE)

Linear mixed model fit by REML ['lmerMod']
Formula: TWI ~ age + anticoagulation + diabetes + day * trt + (1 | patID)
Data: CAP

REML criterion at convergence: 2268.3

Random effects:

Groups  Name Std.Dev.
patID (Intercept) 3.172
Residual 5.820
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Number of obs: 360, groups: patID, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 39.4827 11.0197  3.583
age 0.1010 0.1574  0.641
anticoagulationyes -1.2226 2.6427 -0.463
diabetesyes -0.6479 2.4974 -0.259
dayd3 -8.8667 1.5028 -5.900
dayd5 -6.6667 1.5028 -4.436
dayd7 -3.3667 1.5028 -2.240
trtCAP -0.6333 1.5028 -0.421
trthealthy -0.5667 1.5028 -0.377
dayd3:trtCAP -9.8000 2.1253 -4.611
dayd5: trtCAP -7.0667 2.1253 -3.325
dayd7:trtCAP -6.4667 2.1253 -3.043
dayd3:trthealthy 9.1333 2.1253  4.297
dayd5:trthealthy 7.9667 2.1253  3.748
dayd7:trthealthy 8.7667 2.1253  4.125

The point estimates from this output are quite similar to those from Figure 9: For the
population-level effects, column Estimate of the output above needs to be compared to
column Estimate from Figure 9. For the standard deviation of the group-level effects, the
output above shows an estimate of ca. 3.17 whereas Figure 9 shows a posterior median of ca.
3.53. For the residual standard deviation, the output above shows an estimate of ca. 5.82
whereas Figure 9 shows a posterior median of ca. 5.84.

Frequentist 95 % ClIs for all parameters may be produced by:

> ( prof_cis <- confint(lmm, quiet = TRUE, oldNames = FALSE) )

2.5 % 97.5 %
sd_(Intercept)|patID 1.4679897 4.1826203
sigma 5.3286728 6.1802083
(Intercept) 21.0018188 57.9636424
age -0.1629532 ©0.3648855
anticoagulationyes -5.6527729 3.2075731
diabetesyes -4.8345008 3.5386306
dayd3 -11.7734425 -5.9598908
dayd5 -9.5734425 -3.7598908
dayd7 -6.2734425 -0.4598908
trtCAP -3.5401092 2.2734425
trthealthy -3.4734425 2.3401092
dayd3:trtCAP -13.9108019 -5.6891981
dayd5: trtCAP -11.1774685 -2.9558648
dayd7:trtCAP -10.5774685 -2.3558648
dayd3:trthealthy 5.0225315 13.2441352
dayd5:trthealthy 3.8558648 12.0774685
dayd7:trthealthy 4.6558648 12.8774685

In general, these are quite similar to the Bayesian Crls from Figure 9. However, there
are some noticeable differences. For example, the standard deviation of the group-level
effects for patID has a frequentist CI of ca. (1.47,4.18) and a Bayesian CrI of ca. (2.00,7.39).
The large difference with respect to the upper boundary may be due to the fact that there
are only P = 10 patients here, meaning that the marginal posterior of the patID stan-
dard deviation is only little informed by the data and more so by the weakly informative
student_t(3, @, 7.4) prior which brms (Biirkner, 2017, 2018) has chosen by default. This
illustrates how the Bayesian prior guards against overfitting, at least to a certain extent.
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Compared to the frequentist Cls, the Bayesian Crls provide the big advantage that they
have a more intuitive interpretation: They directly reflect our uncertainty concerning the
parameters, after having seen the data and given our prior. In contrast, the frequentist Cls
have a quite complicated interpretation. For example, take the patID standard deviation
already mentioned above. Its 95% CI of ca. (1.47,4.18) means that among an infinite
number of hypothetical replications of this dermatological study, the interval constructed
this way would cover the true patID standard deviation at least 95 % of the time. In case of
highly informative data (and a prior which is not too informative), one may argue that the
frequentist results should be similar to those from a Bayesian analysis so that the frequentist
results may be interpreted (approximately) in a Bayesian way, but this argument does not
hold here where we have only P = 10 patients.

The frequentist Cls presented above are profile Cls. Apart from profile CIs, Ime4 (more
precisely, 1me4::confint.merMod()) also offers Wald and bootstrap Cls. For the Wald
CIs, the sampling distributions of the coefficient estimators are approximated by normal
distributions. This large-sample approximation is problematic at least for the patient-specific
predictors (age, anticoagulationyes, and diabetesyes) since we have only P = 10 patients
here. Note that even though the profile Cls relax the assumptions required for the Wald CIs,
they also make use of a large-sample approximation (Bates et al., 2015). As mentioned in
section “Introduction” of the main article, the Bayesian Crls from Figure 9 do not require
such a large-sample approximation. Although the bootstrap Cls also do not require a
large-sample approximation, their frequentist performance usually suffers for small sample
sizes, too (Hesterberg, 2015). This is also the case (even if not that pronounced) for the
parametric bootstrap that Ime4 uses (Scholz, 2007). The existence of three different CI
methods (profile, Wald, and bootstrap Cls) demonstrates another advantage of Bayesian
statistics mentioned in section “Introduction”, namely the fact that MCMC sampling is a
generic inference method suitable for most practical cases.

The output from tab “Custom summary” (Figure 10) can be achieved in a frequentist
context by the help of the multcomp package (Hothorn et al., 2008):

coefs <- fixef(1lmm)

ncoefs <- length(coefs)

contr_mat <- matrix(@, nrow = length(unique(CAP$day)), ncol = ncoefs,
dimnames = list(paste@(”"CAP_", unique(CAP$day)),

-

names(coefs)))

for (day_i in setdiff(unique(CAP$day), "d1")) {
contr_mat[paste@("CAP_", day_i), paste@("day"”, day_i, ":trtCAP")] <- 1

>

>

>

¥

"

> contr_mat[, "trtCAP"] <- 1

>

"

+3

> library(multcomp)

> linhyp <- glht(lmm, linfct = contr_mat)

> confint(linhyp, calpha = univariate_calpha())
Simultaneous Confidence Intervals

Fit: lmer(formula = TWI ~ age + anticoagulation + diabetes + day x
trt + (1 | patID), data = CAP)

Quantile = 1.96
95% confidence level

Linear Hypotheses:

Estimate lwr upr
CAP_d1 == @ -0.6333 -3.5788 2.3121
CAP_d3 == 0@ -10.4333 -13.3788 -7.4879

CAP_d5 == -7.7000 -10.6455 -4.7545
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CAP_d7 == -7.1000 -10.0455 -4.1545

These point and interval estimates are quite close to their Bayesian counterparts from
Figure 10, but in terms of the interval estimates, the Bayesian Crls again have a more
intuitive interpretation than the frequentist CIs presented here. Also note that the multcomp
CIs above are Wald Cls, i.e., they rely on a normal approximation.

The “Custom summary” also shows another advantage of the Bayesian analysis, namely
the easy propagation of posterior uncertainty into derived quantities. Of course, this is
less important for the Gaussian family with the identity link function used here, but it
becomes important for families with non-identity link functions. In other words, even if
frequentist methods might be able to deal with linear functions of the parameters, they
usually struggle with nonlinear functions. In a Bayesian analysis, one simply has to apply
the transformation—be it linear or not—to the parameter draws to obtain transformed
parameter draws which incorporate the uncertainty inherent to the original draws.

The conditional-effects plot from Figure 11 can be reproduced in a frequentist context by
the help of packages emmeans (Lenth, 2022) and ggplot2 (Wickham, 2016), for example:

library(emmeans)

rg <- ref_grid(Ilmm, at = list(anticoagulation = "no"”, diabetes = "no"))
em <- emmeans(rg, specs = c("day"”, "trt"))

plem <- plot(em, plotit = FALSE)

library(ggplot2)

dg <- position_dodge(width = 0.2)
ggplot(plem, aes(x = day, y = the.emmean, color = trt, group = trt)) +
geom_point(position = dg) +
ylab("TWI") +
geom_errorbar(aes(ymin = lower.CL, ymax = upper.CL),
position = dg,
width = 0.25)

+ + + + + V V V V V V V

which results in Figure S1. Note that the Cls in this plot make use of the Kenward-Roger
method (Kenward and Roger, 1997). Especially for small sample sizes, Kenward-Roger Cls
are preferable to normal-approximation CIs, but in general, they are still based on an approx-
imation to the true sampling distribution (Kenward and Roger, 1997). So the argument of
avoiding approximations through a Bayesian analysis still holds when disregarding minor
approximations induced by MCMC sampling.

Like the “Custom summary” tab, the “Conditional effects” tab also demonstrates the easy
propagation of posterior uncertainty into derived quantities, even though in this example,
we again have only linear transformations of the parameters, so the strength of the Bayesian
approach does not stand out.

The closest we could get to the PPCs (Figures 12 and 13) from a frequentist perspective
was by the help of package performance (Liidecke et al., 2021). A frequentist version of the
PPC via overlaid kernel density estimates may be achieved by:

> library(performance)

> theme_set(theme_bw())

> set.seed(847299)

> check_predictions(1lmm, iterations = 8)

which results in Figure 52. A frequentist version of the PPC viz summary statistics may be
achieved by:

> check_predictions(lmm, iterations = 4000, check_range = TRUE)

which results in Figure 53. However, the crucial difference to the Bayesian PPCs is that in
these frequentist PPC versions, the uncertainty with respect to parameter estimation is not
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Figure S1: Frequentist conditional-effects plot. The ClIs in this plot are Kenward-Roger Cls (Kenward

and Roger, 1997). This frequentist plot largely agrees with the Bayesian one from Figure 11, but differs
in terms of interpretation and generalizability (see text).

Posterior Predictive Check
Model-predicted lines should resemble observed data line

0.05-

0.04 -

0.03 -

— Model-predicted data

Density

=== Observed data
0.02+

0.01-

0.00-

20 40 60
TWI

Figure S2: Frequentist version of the PPC via overlaid kernel density estimates. The green density
line corresponds to the observed outcome values whereas each of the 8 overlaid blue density lines
corresponds to one dataset simulated under the model’s parameter estimates. The outer appearance
of this frequentist plot is roughly the same as that of the Bayesian one from Figure 12, but a major
difference is that this frequentist plot does not reflect the uncertainty from parameter estimation.

taken into account, which is a central feature of the Bayesian PPC. This demonstrates again
the easy propagation of posterior uncertainty into derived quantities.

Finally, analogously to the Bayesian Crls from Figure 14, the frequentist ClIs calculated
above can be visualized by the following code which uses ggplot2 again (note that we only
plot the profile CIs and only for those parameters which are also shown in Figure 14):
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Figure S3: Frequentist version of the PPC via summary statistics. In contrast to Figure 13, mean and
standard deviation are missing as summary statistics. For minimum and maximum, the same conclu-
sions hold as for Figure 13. The upper plot (basically the same as Figure 52, but with more iterations)
was added automatically by performance: : check_predictions() and could not be removed easily.

> point_estims <- c(sd_patID = attr(VarCorr(lmm)$patID, "stddev"),
+ sigma = sigma(lmm),

+ fixef (1mm))

> prof_cis_gg <- cbind(as.data.frame(prof_cis),

+ point_est = point_estims,

+ Parameter = rownames(prof_cis))

> pars_sel <- grep("*sigma$|”*sd_|:trthealthy”,

+ row.names(prof_cis_gg),

+ invert = TRUE)

> prof_cis_gg <- prof_cis_ggl[pars_sel, 1]

> prof_cis_gg <- within(prof_cis_gg, {

+  Parameter <- factor(Parameter, levels = rev(unique(Parameter)))
+ 1)

> ggplot(prof_cis_gg, aes(y = Parameter)) +

+ geom_point(aes(x = point_est)) +

+  xlab("") +

+ geom_errorbar(aes(xmin = “2.5 %, xmax = “97.5 %°),

+

width = 9.25)

which gives Figure 54. Comparing this with Figure 14 shows again the rough similarity of
the interval estimates, but with a more convenient interpretation of the Bayesian CrIs.

Note that unlike the frequentist CI plot, the Bayesian Crl plot also features inner intervals.
The reason is that the marginal posteriors do not need to follow a closed-form distribution,
so it makes sense to include as much information about them as possible. The kernel density
estimates for the marginal posteriors available in the shinystan (Gabry, 2022) app (not
shown here) also remind us of this flexibility.

Finally, we point out that in the Bayesian analysis from section “Example”, we did not
really make use of the advantage that a Bayesian analysis can incorporate prior information,
e.g., from expert knowledge (we picked the student_t(3, @, 30) prior for the regression
coefficients only for demonstrative purposes and left all other priors at their defaults). In a
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Figure S4: Frequentist 95 % profile CIs. This plot is restricted to those parameters which are also
shown in Figure 14. As may be seen from this plot, the frequentist Cls are quite similar to the Bayesian
CrIs (Figures 9 and 14). However, their interpretation differs (see text).

real-world application where such information is available, it should be incorporated.
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