
CONTRIBUTED RESEARCH ARTICLE 152

TensorTest2D: Fitting Generalized Linear
Models with Matrix Covariates
by Ping-Yang Chen, Hsing-Ming Chang, Yu-Ting Chen, Jung-Ying Tzeng, and Sheng-Mao Chang

Abstract The TensorTest2D package provides the means to fit generalized linear models on second-
order tensor type data. Functions within this package can be used for parameter estimation (e.g.,
estimating regression coefficients and their standard deviations) and hypothesis testing. We use two
examples to illustrate the utility of our package in analyzing data from different disciplines. In the
first example, a tensor regression model is used to study the effect of multi-omics predictors on a
continuous outcome variable which is associated with drug sensitivity. In the second example, we
draw a subset of the MNIST handwritten images and fit to them a logistic tensor regression model.
A significance test characterizes the image pattern that tells the difference between two handwritten
digits. We also provide a function to visualize the areas as effective classifiers based on a tensor
regression model. The visualization tool can also be used together with other variable selection
techniques, such as the LASSO, to inform the selection results.

1 Introduction

Tensors are multidimensional arrays and are increasingly encountered in practices due to the bur-
geoning development of high throughput technology, e.g., brain image data (Zhou et al., 2013) and
multi-omics data (Chang et al., 2021). Within the framework of regression analysis, tensor-structured
data can play a role in the response variable, the explanatory variable, or in both. Some available R
packages, such as TRES and MultiwayRegression, consider tensor regression with general tensor
structure. The package TRES (Wang et al., 2020) provides tools to perform regression analysis with a
tensor envelope structure in the tensor regression model, and the output of which includes p-values
for the regression coefficients. TRES aims at variable selection via significance tests. The package
MultiwayRegression (Lock, 2018, 2019) performs L2 penalized tensor regression which is useful for
predictive modeling but not for the identification of important variables. Both the TRES and the
MultiwayRegression consider regression models with continuous outcome variables only. Compared
to existing R packages, the proposed package TensorTest2D (Chen et al., 2021) considers a generalized
linear model (GLM) with matrix-structured predictors and a scalar outcome, and it can be used for
outcome prediction or testing.

There are four main functions in TensorTest2D. The function tensorReg2D() is designed to provide
estimates of regression coefficients and their standard deviations, as well as the p-value for testing
whether a regression coefficient is significantly different from zero. The function summary() organizes
the above information into an output table. The function plot() can be used to visualize the locations
of the predictors significantly affecting the response variable in the predictor matrix. Finally, the
function predict() can be used to predict the response values using the conditional mean given a
specific predictor matrix.

The rest of this paper is arranged as follows. First, we describe a regression model with tensor
predictors under GLM. Next, we illustrate the main functions in package TensorTest2D using two
examples, and illustrate the relevancy of using low-rank tensor regression. The first example focuses
on association testing, where we apply tensor regression to identify genomic variables that affect the
drug sensitivity for lung cancer treatment. The second example is for classification, where we apply
logistic tensor regression to model the relationship between a binary response variable and images of
handwritten digits in the MNIST database. We also use significance testing of the image predictors
to identify locations of an image that play important roles in distinguishing between two different
handwritten digits. The datasets being used in these two examples are included in the package
TensorTest2D — users can use data(omics) to load the dataset of the first (association) example and
data(mnist_mp2c2) to load the dataset of the second (classification) example.

2 Generalized tensor regression model

In this work, we consider tensor regression under the GLM framework and extend the inference
procedure of tensor parameters in Chang et al. (2021) from continuous responses to binary and
count responses. Suppose that there exists a dataset consisting of n independent triplets, {yi, wi, Xi},
i = 1, . . . , n, where yi is a scalar outcome, wi is a d-dimensional covariate vector and Xi is a P × Q
matrix predictor. Without loss of generality, we assume hereafter P ≤ Q. For two matrices, say X1 and

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=TensorTest2D
https://CRAN.R-project.org/package=TRES
https://CRAN.R-project.org/package=MultiwayRegression
https://CRAN.R-project.org/package=TRES
https://CRAN.R-project.org/package=TRES
https://CRAN.R-project.org/package=MultiwayRegression
https://CRAN.R-project.org/package=TRES
https://CRAN.R-project.org/package=MultiwayRegression
https://CRAN.R-project.org/package=TensorTest2D
https://CRAN.R-project.org/package=TensorTest2D
https://CRAN.R-project.org/package=TensorTest2D
https://CRAN.R-project.org/package=TensorTest2D

CONTRIBUTED RESEARCH ARTICLE 153

X2, of the same size, define the dot product of these two matrices as X1 ◦ X2 = ∑P
p=1 ∑Q

q=1 X1,pqX2,pq

where Xj,pq is the (p, q)th entry of the matrix Xj, j = 1, 2. The GLM with an order-2 tensor predictor
can therefore be defined as

g (E(yi)) = w⊤
i β + Xi ◦ B, (1)

where g(·) is the link function, β ∈ Rd and B ∈ RP×Q. If there are P × Q unconstrained parameters in
B, the above representation is equivalent to a glm with d + PQ covariates, including the intercept. In
TensorTest2D, we implement linear regression with identity link, Poisson regression with log link,
and logistic regression with logit link.

When PQ is relatively small, one can vectorize the matrix Xi so that (1) can be expressed as a
conventional GLM with d + PQ covariates. When PQ is large, one can explore the matrix structure of
predictors and consider a low-rank tensor GLM so as to reduce the number of parameters of interest
while retaining the variable-specific resolution. The main idea of tensor GLM is to model B by a
low-rank-constrained B so that B can be fully specified using fewer unconstrained parameters. See
Hung and Wang (2012) and Chang et al. (2021) for more detail. Take the MNIST handwritten image
classification as an example, where handwritten images are recorded in 10 × 10 matrices. When there
is no constraint on B, the number of parameters of interest is PQ = 100. On the other hand, if we
restrict the rank of B to be r, the number of unconstrained parameters is (P + Q)× r − r2 that takes
a value of 19, 36, 51, and 64 when r = 1, 2, 3, and 4, respectively. The reduction in the number of
parameters is significant when r is small.

Given a pre-specified rank r = R, one can model B with a low-rank constraint by setting B = B1B⊤
2 ,

where B1 ∈ RP×R, B2 ∈ RQ×R and R ≤ P (Zhou et al., 2013; Chang et al., 2021). The low-rank tensor
regression model is therefore

g (E(yi)) = w⊤
i β + Xi ◦

(
B1B⊤

2

)
. (2)

Additional constraints on B1B⊤
2 are needed to ensure parameter identifiability, see Zhou et al. (2013)

for example. We adopt in this package the constraints considered by Chang et al. (2021), that leaves
the total number of unconstrained parameters to be d + (P + Q)R − R2. Denote η as the vector which
collects all unconstrained parameters in (2). According to the theory of GLM, the score function and
the Fisher information matrix with respect to the model are

n

∑
i=1

∂µi
∂η

(yi − µi) and
n

∑
i=1

∂µi
∂η

Vi

(
∂µi
∂η

)⊤
,

respectively, where µi = E(yi) and Vi = Var(yi). However, we are interested in estimating B = B1B⊤
2

and testing whether entries of B are nonzero. The derivation of the sampling distribution of B̂ is
omitted here, for the process is similar to that in Chang et al. (2021) and it does not need to be
reproduced here again to misdirect readers’ attention. As the true rank of B is unknown, following
Chang et al. (2021), we use the Akaike information criterion (AIC) to determine the optimal rank.

Before giving a brief description of how Chang et al. (2021) place constraints on tensor regression
parameterization, we wish to emphasize that the process of estimating for ∂µi/∂η is in typical not
exactly simple. It is known that the matrix factorization (decomposition) B = B1B⊤

2 is not unique

because, for every invertible matrix O ∈ RR×R, B =
(
B1O−1) (OB2

⊤
)

. Write

B1 =

[
B11
B21

]
,

where B11 ∈ RR×R and B21 ∈ R(P−R)×R, and assume B11 is invertible. One way to ensure the
uniqueness of the matrix factorization is to force O = B11, and thus

B1B⊤
2 =

[
B11
B21

]
O−1OB⊤

2 =

[
B11O−1

B21O−1

]
B̃⊤

2 =

[
IR

B̃21

]
B̃⊤

2 ,

where B̃21 = B21O−1 and B̃2 = B2O⊤. Consequently, the unknown parameter matrices are B̃21 ∈
R(P−R)×R and B̃2 ∈ RQ×R with a total of (P − R)× R + Q × R unknown parameters. We believe that
an exact formula for ∂µi/∂η̃ can not be found prior to the work by Chang et al. (2021) in the case when
η̃ = (vec(B̃12)

⊤, vec(B̃1)
⊤)⊤, and the same formula is used in TensorTest2D.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=TensorTest2D
https://CRAN.R-project.org/package=TensorTest2D

CONTRIBUTED RESEARCH ARTICLE 154

3 Data analysis examples

In this section, we present examples of real data analysis by using the package TensorTest2D. The
main function, tensorReg2D, in our TensorTest2D package is used for following data analysis. The
inputs are the response vector, y, covariates matrix X, collecting tensor data, and vector W, collecting
adjustment information such as age and gender. The key configurable parameters are the rank of B,
n_R, and the type of response variable, family. The tensorReg2D handles three types of generalized
regression problems. For continuous response, set family = "gaussian" and it fits the linear regression
model based on identity link function. If the responses are binary, by setting family = "binomial", it
runs logistic regression modeling through the logit link. When the response variable is non-negative
integer, the log link corresponding to poisson regression is used by setting family = "poisson".
The function tensorReg2D() returns a list object which includes the following variables: b_EST repre-
sents the coefficient vector β̂; b_SD represents the the corresponding standard deviation vector and b_PV
the p-value vector; B_EST represents the coefficient matrix B̂ for the image effect, B_SD the standard
deviations of the coefficient estimates and B_PV the matrices of p-values; the output IC contains the
AIC and BIC values for the purpose of model selection.
See ?tensorReg2D for more details of the configuration and the output values.

Example 1: Tensor regression for continuous response using CCLE dataset

The package TensorTest2D includes a data set, omics, which consists of a continuous response variable
and 30 omics predictors that can be organized into a 3 × 10 matrix. The response variable is the drug
sensitivity of vandetanib measured by log-transformed activity area. Vandetanib is a drug targeting
gene EGFR for lung cancer treatment. The 30 omics predictors are the genomic information of 10
genes measured from 3 platforms: copy number variation (CNV), methylation and mRNA expression.
Among the 10 genes, 7 of them (EGFR, EREG, HRAS, KRAS, PTPN11, STAT3, and TGFA) are involved
in the protein-protein interaction network of EGFR (https://string-db.org) and the rest (ACTB,
GAPDH, and PPIA) are arbitrarily chosen housekeeping genes with permuted entries and serve as
negative controls. The included data, omics.RData, is a subset of the data set provided by cancer cell
line encyclopedia (CCLE) project (Barretina et al. (2012); https://sites.broadinstitute.org/ccle/).
Detailed pre-processing procedure for omics is available in (Chang et al., 2021). The data set omics can
be loaded via the following syntax:

library(TensorTest2D)
data(omics)
The size of the data P, Q, n
print(dim(omics$omics))

#> [1] 3 10 68

In the omics example, wi only consists of intercepts and Xi being a P × Q matrix with P = 3 and
Q = 10. As described, this matrix consists of expression values of 10 genes evaluated under three
different platforms. For the reason of R ≤ min {P, Q} (see Chang et al. (2021)), there are three possible
tensor models, namely, the rank-1, the rank-2 and the rank-3 model, to describe the relationship
between the outcome and the matrix predictors. The models with the smallest AIC value will be
selected as the optimal one, and here the rank-1 model has the smallest AIC value. The rank-1 model
identifies two important variables: EGFR under methylation platform (coefficient = -0.2416; p-value
= 0.0022) and EGFR under CNV platform (coefficient = 0.2508; p-value = 0.0061). Those lines of
code below this paragraph were used as an example to perform and print out the results of model
fitting. The utility function summary(omicsMdl) shows the model structure, summary statistics about
the residuals, and the table of significance tests for the coefficients. On top of the result table, the
model structure y ~ I + X of this case is revealed where I is the intercept term and X is the matrix
covariate. The names of the coefficients appear in the first column of the table. In addition to the
(Intercept) and the terms of w, Xi.j is the coefficient of the ith row and jth column of X. If the row
and the column names of X are specified, then the names of coefficients in X are ROWi:COLUMNj. Those
values in the summary table can also be returned separately. Here, we print the attributes of the tsglm
object separately for the estimated coefficients and their standard deviations, along with the p-values
by the Wald test (see Wald (1943)).

set.seed(100) # Set seed for reproducibility
Try from rank-1 to rank-3 models
omicsAIC <- numeric(3)
for (k in 1:3) {
Temporary storage for the rank-k model for withdrawing its AIC value

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=TensorTest2D
https://CRAN.R-project.org/package=TensorTest2D
https://CRAN.R-project.org/package=TensorTest2D
https://string-db.org
https://sites.broadinstitute.org/ccle/

CONTRIBUTED RESEARCH ARTICLE 155

omicsTmp <- tensorReg2D(y = omics$Y, X = omics$omics,
W = matrix(1, length(omics$Y), 1),
n_R = k, family = "gaussian",
opt = 1, max_ite = 1000, tol = 10^(-7))

omicsAIC[k] <- omicsTmp$IC[1] # AIC
}
sprintf('Rank-%d model is the best with smallest AIC = %4.4f', which.min(omicsAIC), min(omicsAIC))

#> [1] "Rank-1 model is the best with smallest AIC = -62.3135"

Train the tensor regression model of rank 1
omicsMdl <- tensorReg2D(y = omics$Y, X = omics$omics,

W = matrix(1, length(omics$Y), 1),
n_R = which.min(omicsAIC), family = "gaussian",
opt = 1, max_ite = 1000, tol = 10^(-7))

Return the results of significance tests for all coefficients
summary(omicsMdl)

#> Call:
#> formula = y ~ I + X
#>
#> Residuals:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -1.31835 -0.29160 0.03354 0.00000 0.40356 1.06511
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.06078 0.07044 -0.86285 0.3919672
#> cnv:EGFR 0.25078 0.08796 2.85098 0.0061255 ***
#> meth:EGFR -0.24162 0.07511 -3.21673 0.0021740 ***
#> rna.rpkm:EGFR 0.08933 0.07857 1.13696 0.2604852
#> cnv:EREG -0.00751 0.05094 -0.14743 0.8833301
#> meth:EREG 0.00724 0.0494 0.14648 0.8840812
#> rna.rpkm:EREG -0.00268 0.01849 -0.14468 0.8854906
#> cnv:HRAS -0.04866 0.05983 -0.81334 0.4195282
#> meth:HRAS 0.04689 0.06056 0.77425 0.4421012
#> rna.rpkm:HRAS -0.01733 0.02956 -0.5865 0.5599385
#> cnv:KRAS -0.0267 0.05067 -0.52699 0.6003203
#> meth:KRAS 0.02573 0.04913 0.52367 0.6026098
#> rna.rpkm:KRAS -0.00951 0.01754 -0.54244 0.5897064
#> cnv:PTPN11 0.09193 0.06183 1.48669 0.1428065
#> meth:PTPN11 -0.08857 0.05093 -1.73886 0.0876539 *
#> rna.rpkm:PTPN11 0.03275 0.03289 0.99558 0.3238137
#> cnv:STAT3 -0.05747 0.05517 -1.0417 0.3021072
#> meth:STAT3 0.05537 0.04953 1.11792 0.2684585
#> rna.rpkm:STAT3 -0.02047 0.0257 -0.79672 0.4290423
#> cnv:TGFA 0.05049 0.06361 0.79367 0.4307973
#> meth:TGFA -0.04864 0.05903 -0.82399 0.4135018
#> rna.rpkm:TGFA 0.01798 0.02625 0.68526 0.4960557
#> cnv:ACTB -0.03107 0.05212 -0.5961 0.5535539
#> meth:ACTB 0.02993 0.05128 0.58371 0.5618033
#> rna.rpkm:ACTB -0.01107 0.02339 -0.47307 0.6380374
#> cnv:GAPDH -0.04123 0.04963 -0.83059 0.4097953
#> meth:GAPDH 0.03972 0.04737 0.83856 0.4053450
#> rna.rpkm:GAPDH -0.01469 0.02221 -0.66128 0.5111932
#> cnv:PPIA -0.04299 0.06373 -0.67454 0.5027957
#> meth:PPIA 0.04142 0.05989 0.69153 0.4921444
#> rna.rpkm:PPIA -0.01531 0.02711 -0.56477 0.5745259
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Estimated coefficients
print(round(omicsMdl$B_EST, 3))

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 156

cnv meth rna.rpkm

EGFR

EREG

HRAS

KRAS

PTPN11

STAT3

TGFA

ACTB

GAPDH

PPIA

2.9

−3.2

Figure 1: The image plot of the values for t-statistics of matrix covariate in the omics data. The effective
pixels identified by the tensor regression model are marked out by the ⊠ symbol.

#> EGFR EREG HRAS KRAS PTPN11 STAT3 TGFA ACTB GAPDH PPIA
#> cnv 0.251 -0.008 -0.049 -0.027 0.092 -0.057 0.050 -0.031 -0.041 -0.043
#> meth -0.242 0.007 0.047 0.026 -0.089 0.055 -0.049 0.030 0.040 0.041
#> rna.rpkm 0.089 -0.003 -0.017 -0.010 0.033 -0.020 0.018 -0.011 -0.015 -0.015

The standard deviation of the coefficients
print(round(omicsMdl$B_SD, 3))

#> EGFR EREG HRAS KRAS PTPN11 STAT3 TGFA ACTB GAPDH PPIA
#> cnv 0.088 0.051 0.060 0.051 0.062 0.055 0.064 0.052 0.050 0.064
#> meth 0.075 0.049 0.061 0.049 0.051 0.050 0.059 0.051 0.047 0.060
#> rna.rpkm 0.079 0.018 0.030 0.018 0.033 0.026 0.026 0.023 0.022 0.027

The p-values of the coefficients by the Wald test
print(round(omicsMdl$B_PV, 3))

#> EGFR EREG HRAS KRAS PTPN11 STAT3 TGFA ACTB GAPDH PPIA
#> cnv 0.006 0.883 0.420 0.600 0.143 0.302 0.431 0.554 0.410 0.503
#> meth 0.002 0.884 0.442 0.603 0.088 0.268 0.414 0.562 0.405 0.492
#> rna.rpkm 0.260 0.885 0.560 0.590 0.324 0.429 0.496 0.638 0.511 0.575

In our package TensorTest2D, the function plot() can be used to visualize the importance of the
matrix predictor. The output is an P × Q heat map that the plotted values on it are controlled by
the option type. If the unit of data varies across the rows or columns in X, it is suggested to choose
the t-statistics of the coefficients (type = "tval") instead of their values type = "coef". In addition,
the function plot() also marks the pixels with p-values smaller than a pre-determined significance
level. Users can select the p-value adjusting method (see help("p.adjust")) by the option method
and specify the significance level through the option alpha. We plot in Figure 1 the t-statistics of
the coefficients in B̂, where red and blue colors represent the pixels of positive and negative values,
respectively. For those coefficients with p-values less than alpha, their corresponding pixels are
marked with the symbol, ⊠, in this example, cnv:EGFR and meth:EGFR.

plot(x = omicsMdl, method = "none", alpha = 0.05, type = "tval",
showlabels = TRUE, plot.legend = TRUE)

Example 2: Logistic tensor regression and classification using MNIST dataset

MNIST is a well-known benchmark database for image recognition in machine learning. It consists
of over 60,000 training images and 10,000 testing images. For R users, one can obtain the image data
from the dslabs package (Irizarry and Gill, 2019). For the purpose of demonstration, we reduce the
size of MNIST image data by a max-pooling step with 2 × 2 block, as shown in the images on the left
and in the middle of Figure 2. The original 28 × 28 images are thus pixelated into 14 × 14 max-pooled
images. Because pixels at the edges and the corners of the max-pooled images take no information
across almost all images, we removed those pixels and ended up with P × Q = 10 × 10 sub-images as
illustrated in the image on the right of Figure 2. The mean image of the pre-processed training set for
each label in the MNIST database is shown in Figure 3. These pre-processed images of 10 × 10 pixels
are included in the package TensorTest2D and can be imported using the following commands:

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=TensorTest2D
https://CRAN.R-project.org/package=dslabs
https://CRAN.R-project.org/package=TensorTest2D

CONTRIBUTED RESEARCH ARTICLE 157

Figure 2: Data pre-processing for the MNIST dataset. First, the left subfigure shows the max-pooling
step for reducing the image size. Next, the center subfigure shows the edge-cutting step for removing
the noninformative pixels. Finally, the right subfigure shows the data pre-process result.

Figure 3: The mean plots of pre-processed images in the training dataset. The value at each pixel of
the mean plot is the average grayscale value over the pre-processed images in the training dataset.

library(TensorTest2D)
data(mnist_mp2c2)
mnist_train <- mnist_mp2c2$train
mnist_test <- mnist_mp2c2$test

The aim of this data analysis is to recognize the digit for a given handwritten image using logistic
regression. Here, we choose images of ‘2’ and ‘5’ for demonstration. Let Yi = 1 if the ith image
represents the digit ‘5’, and Yi = 0 if the ith image represents a ‘2’. The predictor matrix Xi here
is a 10 × 10 matrix with its entries the pixel values of the handwritten image in grayscale. In the
following, we first describe the data processing steps and provide the code being used to obtain our
training data in the analysis. Our training data, train_X, is a P × Q × n = 10 × 10 × 2000 array, which
contains subsets of 1,000 images of the digit ‘2’ and 1,000 images of the digit ‘5’ randomly chosen
from the MNIST training set mnist_train. In this MNIST example, some pixels in the corners and on
the edges take on the value zero across all handwritten images, which yields singularity when the
alternating maximum likelihood algorithm is applied to the training data. To solve this problem, we
can simply drop only those zero-valued pixels. However, doing so breaks the matrix form and hence
low-rank model is no longer valid. Alternatively, we add independent standard normal noise to the
images in our training data set that results in no significant harm to the prediction power, because
the signal-noise ratio is high and the training set sample size is sufficiently large. Hereafter, we call
images with random error the contaminated images.

library(abind)
Draw image data of labels 2 and 5
x0_all <- mnist_train$image[,,which(mnist_train$label == 2)]
x1_all <- mnist_train$image[,,which(mnist_train$label == 5)]
Random sampling from MNIST training set for each label
nSampleEach <- 1000
n0 <- dim(x0_all)[3]; n1 <- dim(x1_all)[3]
set.seed(2021)
s0 <- sample(1:n0, nSampleEach, replace = FALSE)
s1 <- sample(1:n1, nSampleEach, replace = FALSE)

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 158

Normalizing image values into [-0.5, 0.5]
x0 <- x0_all[,,s0]/255 - 0.5
x1 <- x1_all[,,s1]/255 - 0.5
Combine training data
train_X <- abind(x0, x1, along = 3)
Add negligible noise for the images
(so no constant zero values in one pixel over all covariate matrices)
set.seed(2021) # Set seed for reproducibility
train_n <- array((rnorm(prod(dim(train_X)), 0, 0.1)), dim(train_X))
train_Xn <- train_X + train_n # Contaminated images
Define Y = 0 for label 2, and Y = 1 for label 5
train_y <- c(rep(0, dim(x0)[3]), rep(1, dim(x1)[3]))

In the package TensorTest2D, the function tensorReg2D() is also used for fitting the logistic tensor
regression model to data:

log
Pr(Yi = 1 | Xi)

Pr(Yi = 0 | Xi)
= β + Xi ◦ B

Thus, a prediction for the digit presented in image Xi is

Ŷi = arg max
k∈{0,1}

Pr(Yi = k | Xi) = I{Pr(Yi = 1 | Xi) > 0.5},

where I{E} = 1, if E is true, and I{E} = 0, otherwise. To analyze the sampled data set, first, we feed
the response variable, train_y, and the contaminated images, train_Xn, as inputs for model training.
There is no auxiliary information available to further stratify the yi’s, we specify a constant vector W =
matrix(1, length(train_y), 1) of length n, and if a rank R = 4 model is needed, we set n_R = 4.
(In fact, the rank-4 model is the best model in this logistic tensor regression.)

Train the logistic tensor regression model
lgMdl <- tensorReg2D(y = train_y, X = train_Xn,

W = matrix(1, length(train_y), 1),
n_R = 4, family = "binomial",
opt = 1, max_ite = 100, tol = 10^(-7))

Print model summary (not run)
#summary(lgMdl)
Print the p-values of the estimates
cat("FDR-adjusted p-values of B_pq:\n")

#> FDR-adjusted p-values of B_pq:

round(matrix(p.adjust(as.vector(lgMdl$B_PV), method = "fdr"), 10, 10), 3)

#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 0.263 0.830 0.114 0.243 0.019 0.480 0.595 0.629 0.491 0.830
#> [2,] 0.558 0.552 0.098 0.491 0.263 0.948 0.137 0.816 0.491 0.953
#> [3,] 0.923 0.927 0.029 0.012 0.999 0.017 0.204 0.050 0.471 0.008
#> [4,] 0.648 0.541 0.004 0.019 0.029 0.204 0.004 0.655 0.541 0.156
#> [5,] 0.293 0.491 0.055 0.004 0.381 0.004 0.101 0.024 0.081 0.006
#> [6,] 0.110 0.491 0.954 0.491 0.648 0.948 0.954 0.865 0.491 0.825
#> [7,] 0.023 0.652 0.889 0.019 0.489 0.491 0.110 0.188 0.042 0.029
#> [8,] 0.137 0.706 0.830 0.491 0.244 0.145 0.491 0.491 0.889 0.889
#> [9,] 0.655 0.034 0.655 0.977 0.083 0.114 0.019 0.629 0.706 0.471
#> [10,] 0.137 0.055 0.491 0.764 0.491 0.602 0.019 0.471 0.454 0.025

For binary classification problems, we can apply the function plot() of our package TensorTest2D
in two ways. Similar to that Figure 1, we can make a plot first for the values of t-statistics for the pixels
by using the plot() function as shown below this paragraph. Here, we adjust the p-values according
to the approach in Benjamini and Hochberg (1995) by setting the parameter method = "fdr". The
resulting plot is shown in Figure 4, and most of the effective pixels can be found on the left half side of
the plot.

plot(x = lgMdl, method = "fdr", alpha = 0.05, type = "tval",
showlabels = TRUE, plot.legend = TRUE)

To understand which areas of an image that contribute the most information to classify between
labels 2 and 5, we also add a meaningful background image by specifying an argument to the parameter

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=TensorTest2D
https://CRAN.R-project.org/package=TensorTest2D

CONTRIBUTED RESEARCH ARTICLE 159

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

3.9

−3.9

Figure 4: The image plot of the values for t-statistics of matrix covariate in the handwritten label data.
The effective pixels identified by the logistic tensor regression model are marked out by the ⊠ marks.

Figure 5: Effective pixels identified by the logistic tensor rgression model. The important pixels to
discriminate between labels 2 and 5 are marked by red and blue frames, which indicate positive and
negative coefficients, respectively.

background for the function plot(). In this example, we show separately the mean image of label
2 and the mean image of label 5 as the background image by assigning the value xm0 or xm1 to the
parameter background. To adjust the visual style of the background image, one can assign the value
gray(0, 1, 0.05) to the parameter col to create a grayscale colour map for contrast. Please refer
to help("image") for more detail on the options available when creating a plot. Our resulting plots
are shown in Figure 5. On top of both images, there are marks for the important pixels with red and
blue frames. A red rectangle indicates that the corresponding estimate in B̂ has a significant positive
coefficient and a blue one highlights a significant negative coefficient. In our example, important
pixels are found to locate majorly at the curvy parts of 2 and 5.

xm0 <- xm1 <- matrix(0, dim(train_X)[1], dim(train_X)[2])
Background image: mean image of label 2
for (k in 1:dim(x0)[3]) {
xm0 <- xm0 + (1/nSampleEach)*x0[,,k]

}
Background image: mean image of label 5
for (k in 1:dim(x1)[3]) {
xm1 <- xm1 + (1/nSampleEach)*x1[,,k]

}
Draw for visualizing effective pixels for both background images
par(mfrow = c(1, 2), mar = c(1, 1, 1, 1))
plot(x = lgMdl, method = "fdr", alpha = 0.05, background = xm0,

showlabels = FALSE, plot.legend = FALSE, col = gray(seq(0, 1, 0.05)))
plot(x = lgMdl, method = "fdr", alpha = 0.05, background = xm1,

showlabels = FALSE, plot.legend = FALSE, col = gray(seq(0, 1, 0.05)))

We use the function predict() to predict the label for the new images in the testing data set. The

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 160

input data must be a 3-dimensional array of size P × Q × n∗, where n∗ is the number of testing images.
We note here that, one need to reshape the P × Q matrix object into the 3-dimensional array by the
R command array(x, c(P, Q, 1)). The function predict() returns the predictions in two ways.
By setting the option type = "link", it returns the values of the linear predictors; and by setting
type = "response", it returns the expected values of response variable. For example, for our logistic
regression model, the predictions are log-odds (odds ratios on logarithmic scale) if type = "link" is
chosen, or they are the predicted probabilities of Y = 1 if type = "response" is chosen.

Normalize image values of the testing data into [-0.5, 0.5]
tx0 <- mnist_test$image[,,which(mnist_test$label == 2)]/255 - 0.5
tx1 <- mnist_test$image[,,which(mnist_test$label == 5)]/255 - 0.5
Combine testing data and assign the vector of the true responses
test_X <- abind(tx0, tx1, along = 3)
test_y <- c(rep(0, dim(tx0)[3]), rep(1, dim(tx1)[3]))
Print some predictions with different settings of type
pred_link <- predict(lgMdl, test_X, type = "link")
pred_prob <- predict(lgMdl, test_X, type = "response")
head(round(pred_link, digits = 2))

#> [,1]
#> [1,] -3.38
#> [2,] -16.24
#> [3,] -4.93
#> [4,] -5.38
#> [5,] -9.94
#> [6,] -6.41

head(round(pred_prob, digits = 4))

#> [,1]
#> [1,] 0.0331
#> [2,] 0.0000
#> [3,] 0.0072
#> [4,] 0.0046
#> [5,] 0.0000
#> [6,] 0.0016

Compute the prediction accuracy for the testing data
pred_test_y <- (pred_prob > .5)
cat(
sprintf("Accuracy = %2.2f%%",

100*sum(pred_test_y == test_y)/length(test_y)))

#> Accuracy = 96.10%

In addition, we provide a visualization tool that works with other methods in variable selection
for 2D images. For example, the penalized regression via lasso (Tibshirani, 1996) is one of the popular
approaches. Below are the codes that we implemented to train a LASSO model, including the use
of the function cv.glmnet() (Friedman et al., 2010). The object l1B is the 10 × 10 array of LASSO
estimates. Since LASSO tends to shrink small coefficients to zero, we treat those image pixels with
zero-valued coefficients to be irrelevant to distinguish between images of 2 and 5. To visualize the
effective pixels identified by LASSO, our package TensorTest2D provides the function draw.coef() to
produce the marked image similar to that in Figure 5. Different from the function plot.tsglm(), users
need to provide an input as the markers for effective pixels. The markers in our example here are
the LASSO estimates, and by specifying marks = l1B, the pixels with non-zero coefficients are then
marked. In addition, by specifying markstyle = "bi-dir", as shown in Figure 6, the pixels marked
out with red rectangles correspond to those of positive LASSO estimates, and the pixels with blue
rectangles are those of negative LASSO estimates.

library(glmnet)
Vectorize the hand-written images
xv <- t(sapply(1:dim(train_X)[3], function(k) as.vector(train_X[,,k])))
Train the LASSO model using cross-validation
set.seed(2021) # Set seed for reproducibility
l1Mdl <- cv.glmnet(xv, train_y, family = "binomial", alpha = 1, standardize = FALSE)
Draw the LASSO coefficients from the best model

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=TensorTest2D

CONTRIBUTED RESEARCH ARTICLE 161

Figure 6: Effective pixels identified by the LASSO model. The important pixels to discriminate between
labels 2 and 5 are marked by red and blue frames, which indicate positive and negative coefficients,
respectively.

l1B <- matrix(l1Mdl$glmnet.fit$beta[,which.min(l1Mdl$cvm)], 10, 10)
The LASSO estimates
print(round(l1B, digits = 3))

#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] -0.247 0.000 0.253 0.000 -0.409 0.000 0.000 0.000 0.000 0.000
#> [2,] -0.559 0.000 0.000 0.000 -0.200 0.000 0.000 0.000 -0.691 0.000
#> [3,] 0.000 0.000 -0.248 -0.513 0.000 1.287 0.000 0.000 0.000 -0.914
#> [4,] 0.000 0.000 -1.526 -1.805 0.734 1.237 1.804 0.000 0.000 -0.254
#> [5,] 0.142 0.000 -0.593 -0.795 0.000 1.280 0.929 0.000 -0.699 -0.738
#> [6,] 1.625 -0.251 0.000 -1.429 -0.527 0.000 0.000 0.000 0.000 -0.592
#> [7,] 0.592 -0.136 -0.668 -0.554 0.000 0.000 0.000 -0.406 -0.397 -0.285
#> [8,] 0.074 -0.204 0.000 -0.757 0.265 -0.211 -1.082 0.000 0.000 0.000
#> [9,] 0.000 -0.574 0.000 0.000 0.360 -1.558 0.000 0.000 0.638 0.000
#> [10,] 0.000 0.000 -0.628 -0.144 0.000 0.000 0.479 1.340 0.303 0.845

Draw for visualizing effective pixels identified by LASSO for both background images
par(mfrow = c(1, 2), mar = c(1, 1, 1, 1))
draw.coef(img = xm0, marks = l1B, markstyle = "bi-dir", showlabels = FALSE,

plot.legend = FALSE, grids = FALSE, col = gray(seq(0, 1, 0.05)))
draw.coef(img = xm1, marks = l1B, markstyle = "bi-dir", showlabels = FALSE,

plot.legend = FALSE, grids = FALSE, col = gray(seq(0, 1, 0.05)))

4 Summary

Issues in estimation and test of hypothesis that emerged from fitting regression models with predictor
variables that has a matrix form are of our major interest. Low-rank modelling can be applied to
improve the efficiency of estimation. In this line, we developed the R package TensorTest2D to conduct
tensor regression analysis within the framework of generalized linear models. In addition to model
estimation and hypothesis testing, this package also includes a visualization tool that can be used to
indicate the positions of effective or significant pixels when the tensor predictor is of image data type.

Bibliography

J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin, S. Kim, C. J. Wilson, J. Lehár,
G. V. Kryukov, D. Sonkin, A. Reddy, M. Liu, L. Murray, M. F. Berger, J. E. Monahan, P. Morais,
J. Meltzer, A. Korejwa, J. Jané-Valbuena, F. A. Mapa, J. Thibault, E. Bric-Furlong, P. Raman, A. Ship-
way, I. H. Engels, J. Cheng, G. K. Yu, J. Yu, P. Aspesi, M. de Silva, K. Jagtap, M. D. Jones, L. Wang,
C. Hatton, E. Palescandolo, S. Gupta, S. Mahan, C. Sougnez, R. C. Onofrio, T. Liefeld, L. Mac-
Conaill, W. Winckler, M. Reich, N. Li, J. P. Mesirov, S. B. Gabriel, G. Getz, K. Ardlie, V. Chan,
V. E. Myer, B. L. Weber, J. Porter, M. Warmuth, P. Finan, J. L. Harris, M. Meyerson, T. R. Golub,

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=TensorTest2D

CONTRIBUTED RESEARCH ARTICLE 162

M. P. Morrissey, W. R. Sellers, R. Schlegel, and L. A. Garraway. The cancer cell line encyclope-
dia enables predictive modelling of anticancer drug sensitivity. Nature, 483:603–607, 2012. URL
https://doi.org/10.1038/nature11003. [p154]

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society: series B (Methodological), 57(1):289–300, 1995.
[p158]

S.-M. Chang, M. Yang, W. Lu, Y.-J. Huang, Y. Huang, H. Hung, J. C. Miecznikowski, T.-P. Lu, and
J.-Y. Tzeng. Gene-set integrative analysis of multi-omics data using tensor-based association test.
Bioinformatics, 03 2021. URL https://doi.org/10.1093/bioinformatics/btab125. [p152, 153, 154]

M. Chen, S.-M. Chang, W. Lu, J.-Y. Tzeng, and P.-Y. Chen. TensorTest2D: Fitting Second-Order Tensor
Data, 2021. URL https://CRAN.R-project.org/package=TensorTest2D. R package version 1.0.3.
[p152]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL http://www.jstatsoft.org/
v33/i01/. [p160]

H. Hung and C.-C. Wang. Matrix variate logistic regression model with application to EEG data.
Biostatistics, 1(14):189–202, 07 2012. URL https://doi.org/10.1093/biostatistics/kxs023. [p153]

R. A. Irizarry and A. Gill. dslabs: Data Science Labs, 2019. URL https://CRAN.R-project.org/package=
dslabs. R package version 0.7.3. [p156]

E. F. Lock. Tensor-on-tensor regression. Journal of Computationaland Graphical Statistics, (27):638–647,
2018. doi: 10.1080/10618600.2017. [p152]

E. F. Lock. MultiwayRegression: Perform Tensor-on-Tensor Regression, 2019. URL https://CRAN.R-
project.org/package=MultiwayRegression. R package version 1.2. [p152]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
series B (Methodological), 58(1):267–288, 1996. [p160]

A. Wald. Tests of statistical hypotheses concerning several parameters when the number of ob-
servations is large. Transactions of the American Mathematical Society, 11 1943. URL https:
//doi.org/10.2307/1990256. [p154]

W. Wang, J. Zeng, and X. Zhang. TRES: Tensor Regression with Envelope Structure and Three Generic
Envelope Estimation Approaches, 2020. URL https://CRAN.R-project.org/package=TRES. R package
version 1.1.3. [p152]

H. Zhou, L. Li, and H. Zhu. Tensor regression with applications in neuroimaging data analysis. Journal
of the American Statistical Association, 108(502):540–552, 2013. doi: 10.1080/01621459.2013.776499.
URL https://doi.org/10.1080/01621459.2013.776499. [p152, 153]

Ping-Yang Chen
Chimes AI
12F., No. 201-8, Dunhua N. Rd., Songshan Dist.,
Taipei City 105076, Taiwan
pychen@chimes.ai

Hsing-Ming Chang
Department of Statistics and Institute of Data Science, National Cheng Kung University
1 University Road,
Tainan 70101, Taiwan
nckuhmchang@ncku.edu.tw

Yu-Ting Chen
Department of Statistics, Purdue University
250 N. University St, West Lafayette,
IN 47907, United States of America
l501l501l@gmail.com

Jung-Ying Tzeng
Department of Statistics and Bioinformatics Research Center, North Carolina State University

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://doi.org/10.1038/nature11003
https://doi.org/10.1093/bioinformatics/btab125
https://CRAN.R-project.org/package=TensorTest2D
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
https://doi.org/10.1093/biostatistics/kxs023
https://CRAN.R-project.org/package=dslabs
https://CRAN.R-project.org/package=dslabs
https://CRAN.R-project.org/package=MultiwayRegression
https://CRAN.R-project.org/package=MultiwayRegression
https://doi.org/10.2307/1990256
https://doi.org/10.2307/1990256
https://CRAN.R-project.org/package=TRES
https://doi.org/10.1080/01621459.2013.776499
mailto:pychen@chimes.ai
mailto:nckuhmchang@ncku.edu.tw
mailto:l501l501l@gmail.com

CONTRIBUTED RESEARCH ARTICLE 163

North Carolina State University
Raleigh NC, 27695, United States of America
jytzeng@ncsu.edu

Sheng-Mao Chang
Department of Statistics, National Taipei University
No. 151, University Rd., Sanxia Dist.,
New Taipei City 237303, Taiwan
Corresponding Author
smchang110@gm.ntpu.edu.tw

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

mailto:jytzeng@ncsu.edu
mailto:smchang110@gm.ntpu.edu.tw

	TensorTest2D: Fitting Generalized Linear Models with Matrix Covariates
	Introduction
	Generalized tensor regression model
	Data analysis examples
	Example 1: Tensor regression for continuous response using CCLE dataset
	Example 2: Logistic tensor regression and classification using MNIST dataset

	Summary

