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SurvMetrics: An R package for Predictive
Evaluation Metrics in Survival Analysis
by Hanpu Zhou, Hong Wang, Sizheng Wang and Yi Zou

Abstract Recently, survival models have found vast applications in biostatistics, bioinformatics,
reliability engineering, finance and related fields. But there are few R packages focusing on evalu-
ating the predictive power of survival models. This lack of handy software on evaluating survival
predictions hinders further applications of survival analysis for practitioners. In this research, we
want to fill this gap by providing an "all-in-one" R package which implements most predictive
evaluation metrics in survival analysis. In the proposed SurvMetrics R package, we implement
concordance index for both untied and tied survival data; we give a new calculation process of
Brier score and integrated Brier score; we also extend the applicability of integrated absolute error
and integrated square error for real data. For models that can output survival time predictions, a
simplified metric called mean absolute error is also implemented. In addition, we test the effectiveness
of all these metrics on simulated and real survival data sets. The newly developed SurvMetrics R
package is available on CRAN at https://CRAN.R-project.org/package=SurvMetrics and GitHub
at https://github.com/skyee1/SurvMetrics.

1 Introduction

Survival analysis is an important part of biostatistics. It is frequently used to define prognostic indices
for mortality or recurrence of a disease, and to study the outcome of treatment (Wang et al., 2019;
Wijethilake et al., 2021; Fan et al., 2016; Wiens et al., 2016). Recent decades have witnessed many other
applications of survival analysis in various disciplines such as finance, engineering and social sciences
(Steyerberg et al., 2010; Bender et al., 2021; Wang et al., 2019). Evaluating the ability to predict future
data is one of the most important considerations in the development of these survival models (Wang
et al., 2019).
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Figure 1: Frequency of survival model evaluation metrics appearing in journals such as "Annals of
Statistics", "Biometrika", "Journal of the American Statistical Association", "Journal of the Royal Statistical
Society, Series B", "Statistics in Medicine", "Artificial Intelligence in Medicine", "Lifetime Data Analysis" from
2010 to 2021.

When evaluating a prediction model, the predictive performance of the survival model is com-
monly addressed by appropriate measures which quantify the ’distance’ or the agreement between
the observed and predicted outcomes (Uno et al., 2011; Bylinskii et al., 2018). By investigating the
predictive measures frequently used in the statistical literature (top or specialized statistical journals)
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in the past decade (from 2010 to 2021) in Figure 1 and Figure 2, we have found that among these 136
research papers, the popular predictive metrics for survival models mainly include: concordance index
(C-index), Brier score (BS), integrated Brier score (IBS), integrated absolute error (IAE), integrated
square error (ISE) and mean absolute error (MAE) (Harrell et al., 1982; Brier, 1950; Graf et al., 1999;
HooraMoradian et al., 2017; Schemper, 1992).
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Figure 2: This graphic shows the percentage of metrics appearing from 2010 to 2021 in journals such
as "Annals of Statistics", "Biometrika", "Journal of the American Statistical Association", "Journal of the Royal
Statistical Society, Series B", "Statistics in Medicine", "Artificial Intelligence in Medicine", "Lifetime Data
Analysis". It indicates that the use of C-index is steadily increasing and it has become a dominant
predictive measure recently. Meanwhile, other metrics do not have an adequate seat in survival
prediction practices.

From Figure 1, we can see that the two most frequently used metrics are C-index and IBS, while
the other metrics are less used. This may be partly due to the fact that the available predictive metrics
are scattered across several R packages, and differences in input data of these tools make it difficult
for non-specialists to use or compare the survival models (Schröder et al., 2011; Peters and Hothorn,
2021). Hence, software which provides easy input data formats and includes most popular metrics is
desirable (Schröder et al., 2011; Wang et al., 2019).

Figure 2 indicates that the use of C-index is steadily increasing and it has become a dominant
predictive measure recently (Jing et al., 2019; Amico et al., 2021). On the one hand, this implies that
the lack of handy evaluation metrics tools since other measures are also very important in survival
analysis but do not have an adequate seat in survival prediction practices (Nemati et al., 2021; Li et al.,
2021; Ensor et al., 2021). On the other hand, it reminds us that providing an accurate C-index measure
which can take various situations into account is extremely important (H Ea Gerty and Zheng, 2005;
Kang et al., 2015; Zadeh and Schmid, 2020; Zhang et al., 2021).

Different from common classification or regression problems where tools to evaluate predictive
performance are abundant, there are few R packages focusing on evaluating the predictive power of
survival models (Harrell Jr, 2021; Peters and Hothorn, 2021). To make things worse, most of these
available packages have implemented only one or two evaluation metrics and/or some of them often
throw errors in real survival problems (Peters and Hothorn, 2021). Take the C-index for an example,
if the user wants to compare two samples with the same survival time, this scenario returns NA in
Hmisc, survivals, and survcomp packages. However, as described by Ishwaran et al. (2008), "for
sample pairs, where observed time Xi = Xj and both are deaths, count 1 if predicted outcomes are
tied." This error is mainly due to the fact that the above packages ignore this possible scenario in
practice. Omitting such scenarios can result in the loss of information from survival data, especially
when the sample size is small with high data collection costs. In SurvMetrics, we have implemented
the method described by Ishwaran et al. (2008) to cover all tied scenarios. There are also functions
available in the ipred package to calculate BS and IBS values, but a list of survfit objects is required
in the calculation process (Peters and Hothorn, 2021). However, for most survival models, only a
survival probability vector or matrix is provided, making calculations of such values a challenging
problem (Ishwaran et al., 2008). It is not easy for non-specialists to get IBS using the ipred package
directly on the survival model results.

We argue that an appealing survival evaluation metric tool should satisfy the following two
properties. First, the evaluation metrics should not depend on any specific model and they can be
applied to evaluating survival models without specifying a specific model form (Schröder et al., 2011).
Second, the metrics should be computationally tractable and user has the choice to input only the
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fitted model without any additional processing, especially for the non-specialist (Harrell et al., 1982;
Graf et al., 1999; HooraMoradian et al., 2017; Ishwaran et al., 2008).

In this research, we are trying to develop a comprehensive and effective R package with the above
two properties. In the proposed SurvMetrics package, the calculation process of most metrics does
not depend on the specific model form and only predicted survival probability vector (or matrix)
is needed. This feature is particularly desirable for non-statistical researchers such as clinical and
financial practitioners (Ali et al., 2021). To illustrate the effectiveness of our tool, we choose two popular
survival models, namely, a semi-parametric Cox model and a non-parametric random survival forest
model (RSF) to check and test the provided functionalities (Cox, 1972; Ishwaran et al., 2008).

2 Predictive evaluation metrics in survival analysis

In this section, we will present the survival model evaluation metrics and some implementing details.
The following Table 1 presents some popular R packages and the metrics they provide.

Packages C-index BS IBS IAE ISE MAE
survival ! % % % % %

Hmisc ! % % % % %

survcomp ! ! ! % % %

ipred % ! ! % % %

mlr % % % % % !

SurvMetrics ! ! ! ! ! !

Table 1: R packages that are commonly used to evaluate survival predictions.

As can be seen in Table 1, the proposed SurvMetrics package implements all popular evaluation
metrics, while other packages mostly implement just one or two. With our SurvMetrics package, one
can compare and evaluate different survival models in a convenient and comprehensive way.

C-index

The most popular evaluation metric in survival predictions is C-index (Harrell et al., 1982; Li et al.,
2016; Lee et al., 2018; Devlin and Heller, 2021; Subramanian et al., 2020; Hsu and Lin, 2020; Zadeh and
Schmid, 2020; Zhang et al., 2021; Wang and Zhou, 2017; Wang and Li, 2019), which is a generalization
of the ROC curve (H Ea Gerty and Zheng, 2005; Obuchowski, 2006; Kang et al., 2015; Li et al., 2016).
C-index intends to measure the proportion of predictions of the binary survival status that agree with
the true survival status. If the study is concerned with the comparison of survival probability between
different samples, for example, which component in the device shows damage earlier, the C-index can
be used.

To calculate the values of C-index from different models, Hmisc, survcomp and survival R
packages are frequently used in practice (Harrell et al., 1996; Schröder et al., 2011; Therneau, 2021;
Harrell Jr, 2021). All the above-mentioned packages in their current versions do not consider the cases
of tied survival data, i.e., samples with the same survival time. As shown in Table 3, they return 0
or NA for all cases of survival data tied. However, in practice, cancer patients are usually surveyed
annually or monthly after surgery for survival status and with the advent of big data, tied samples are
becoming commonplace. Simply ignoring the presence of tie data in calculating C-index will result in
evaluation bias among survival models.

Meanwhile, in the calculation of the C-index, not all sample pairs are comparable, e.g., for those
pairs whose shorter survival time is censored. So it is necessary to filter the sample pairs (i, j) that
can be compared in the calculation, i and j denote any two samples in the data set, respectively. By
defining the comparable sample pair in the following way, when npij = 1, all comparable sample
pairs described by Ishwaran et al. (2008) can be covered.

In the proposed R package, we will take a similar strategy adopted in Ishwaran et al. (2008). δi
denotes the survival status of sample i (0 means censoring, 1 means event), Yi and Xi represent the
predicted survival time and the observed survival time, respectively. By defining csign and sign, we
can easily distinguish which sample pairs meet the concordance and which are not.

(a) The comparable sample pair is defined as:

npij

(
Xi, δi, Xj, δj

)
= max(I

(
Xi ⩾ Xj

)
δj, I

(
Xi ⩽ Xj

)
δi). (1)
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(b) The complete concordance (CC) is defined as:

CC = ∑
i,j

I(sign(Yi, Yj) = csign(Xi, Xj)|npij = 1), (2)

where
sign(Yi, Yj) = I

(
Yi ⩾ Yj

)
− I

(
Yi ⩽ Yj

)
(3)

and
csign(Xi, δi, Xj, δj) = I(Xi ⩾ Xj)δj − I

(
Xi ⩽ Xj

)
δi. (4)

(c) We derive the partial concordance (PC):

PC = ∑
i,j

I
(

Yi = Yj | npij = 1, Xi ̸= Xj

)
+ I

(
Yi ̸= Yj | npij = 1, Xi = Xj, δi = δj = 1

)
+ I

(
Yi ≥ Yj | npij = 1, Xi = Xj, δi = 1, δj = 0

)
.

(5)

(d) The C-index value can be given by:

C-index =
concordance
permissible

=
CC + 0.5 × PC

∑i,j npij(Xi, δi, Xj, δj)
, (6)

From the above, we know C-index lies between 0 and 1 and usually the larger the C-index, the
more accurate prediction the model can get.

To further illustrate the proposed Cindex() function in SurvMetrics with other packages, we first
give a toy example in Table 2.

sample S1 S2 S3 S4 S5 S6 S7 S8
time 1 1 2 2 2 2 2 2
status 0 1 1 0 1 1 0 1
predicted 0.2 0.3 0.3 0.3 0.4 0.2 0.4 0.3

Table 2: A simulation data set which can include all the possible sample pairs, where time and status
are the observed survival time and survival status of samples S1...S8, respectively, and predicted is the
survival probability predicted by survival models.

Based on the above information, different R packages will take different ways to deal with these
predictions. We summarize these calculation differences behind these R packages in Table 3.

sample pair (S1, S2) (S3, S5) (S3, S6) (S3, S8) (S4, S5) (S5, S6) (S5, S8) (S6, S8)
Hmisc 0 NA NA NA 0 NA NA NA
survival 0 NA NA NA 0 NA NA NA
survcomp NA NA NA NA NA NA NA NA
SurvMetrics 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5

Table 3: Differences of C-index calculated by the Hmisc package, the survival package, the survcomp
package and the SurvMetrics package.

From the above, we can find that when ignoring part or all of the information from tied sample
pairs, the C-index values obtained from Hmisc and other two packages cannot reflect the predictive
powers of survival models in a true manner. In this case, one can turn to the Cindex() function in
SurvMetrics package for help.

BS

BS is another commonly used metric in survival analysis (Steyerberg et al., 2010; Chicco et al., 2021;
Imani et al., 2019; Pakbin et al., 2018), which measures the mean squared error between the observed
progression status and the predicted survival probability at time t∗. Thus, a lower BS usually indicates
a better prediction model. BS focuses on the residuals between the predicted survival probability and
the survival status at a fixed time point. If the study is concerned with the prediction probability of a
model at a fixed time point, BS can be chosen as the metric. For example, the 10-year average survival
probability of cancer patients.
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In the SurvMetrics R package we will take the most classical method to calculate the BS by
weighting the prediction residuals with inverse probability censoring weights (IPCW) proposed by
Graf et al. (1999):

BS(t∗) =
1
N

N

∑
i=1

[
(Ŝ(t∗|zi))

2

Ĝ(Xi)
· I(Xi < t∗, δi = 1) +

(1 − Ŝ(t∗|zi))
2

Ĝ(t∗)
· I(Xi ≥ t∗)

]
, (7)

where t∗ is the time point at which BS is to be calculated, N is the sample size, zi is the covariates
of instance i, Ŝ(·) is the survival function predicted by the model, Ĝ(·) denotes the weight for the
instance which is estimated by the KM(Kaplan–Meier) estimator of the censoring distribution.

According to the definition of BS, its value depends on the selection of t∗ provided by the user and
different choices of t∗ will always lead to different BS values (Chew et al., 2001; Li et al., 2021; Zhu
and Kosorok, 2012; Ji et al., 2020). In the Brier() function of our SurvMetrics R package, t∗ is set to
median survival time as default.

IBS

As we can see above, BS depends partly on the choices of a user-specified time point. It makes
the comparison between models somewhat difficult when we want to know an average prediction
performance over all prediction times. In practice, the integral of BS or IBS, which does not depend on
the selection of one time point, is more widely used when we are interested in the entire time interval
(Zhu and Kosorok, 2012; Periáñez et al., 2016; Bertens et al., 2017). IBS is more concerned with the
residuals at all observed time points. When the time of interest is no longer a specific time point, IBS
can provide more information than BS. For example, the probability of survival of a cancer patient for
each year after the disease.

The definition of IBS is straightforward:

IBS =
1

max
i

(Xi)

∫ max
i

(Xi)

0
BS(t)dt. (8)

But the calculation of IBS using sbrier() function from the ipred package does not always go
smoothly (Peters and Hothorn, 2021) . If a list of survfit objects is incorrectly specified, then the
package currently returns a particular error:

‘Error in switch(ptype,survfit = { : EXPR must be a length 1 vector} ’

In our experience, this kind of error is common, especially for the non-specialists (Peters and
Hothorn, 2021).

In the SurvMetrics package, we will make life easier for non-specialists. Users only need to input
survival time, survival status, the predicted survival probability matrix and the range of integration
to the IBS() function, and our program will take care of all the rest work and give a correct output.
Similar to BS, a smaller IBS value usually implies a more accurate survival model.

IAE and ISE

Another two evaluation metrics, namely, IAE and ISE are also occasionally used to compare the
difference between the estimated survival function Ŝ(·) and the true survival function S(·) in terms of
L1 and L2 paradigms, respectively. When the purpose of the model is to approximate the theoretical
distribution function, IAE and ISE can be selected as the metrics. HooraMoradian et al. (2017); Zou
et al. (2021). The IAE and ISE can be defined as:

IAE =
∫

t
|S(t)− Ŝ(t|X)|dt (9)

and
ISE =

∫
t
(S(t)− Ŝ(t|X))2dt, (10)

where X is the covariate of the training set.

Since the true survival functions are usually unknown beforehand, traditional IAE and ISE methods
are only applicable to simulation scenarios. Here, we propose to approximate S(t) using the non-
parametric KM estimator in the IAEISE() function and this makes IAE and ISE also suitable for real
data study. Similar to IBS, a smaller IAE and ISE values lead to a more accurate model.
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MAE

The last evaluation metric presented here is MAE (Schemper, 1992), which can be used to measure the
residuals of observed survival time versus predicted survival time, for example, to predict the time to
damage of the device. MAE is a better choice than BS if predicted survival time is a model’s output.
The definition of MAE is shown below:

MAE =
1
n

N

∑
i=1

(δi |Yi − Xi|) , (11)

where n is the event sample size.

MAE only estimates the average absolute error between the predicted survival time and the true
survival time in the uncensored samples and is rarely used in practice. For consistence, we also
provide this metric in the MAE() function. Similar to MSE, the lower the MAE, the higher the accuracy
of prediction.

3 Simulations and examples

In this section, we will use some simulated and real survival data sets to illustrate the effectiveness of
the metrics provided in the SurvMetrics package.

The performance of SurvMetrics on simulation data sets

First, Cox proportional hazard models will be fitted on three simulated scenarios which are very
similar to Settings 1–4 by Steingrimsson et al. (2019). Scenario1 satisfies the proportional hazards
assumption and others violate it.

Scenario1: This data set is created using N independent observations, where the covariate vector
(W1, ..., Wp) is multivariate normal with mean zero and a covariance matrix having elements (i, j) equal

to 0.9|i−j|. Survival times are simulated from an exponential distribution with mean µ = e0.1 ∑
p
i=[p/2]+1 Wi

(i.e., a proportional hazards model) and the censoring distribution is exponential with mean cmean
which is chosen to control the censoring rate. Here, [x] denotes the largest integer no more than x.

Scenario2: This data set is created using N independent observations where the covariates (W1, ..., Wp)
are multivariate normal with mean zero and a covariance matrix having elements (i, j) equal to

0.75|i−j|. Survival times are gamma distributed with shape parameter µ = 0.5 + 0.3|∑[3p/5]
i=[2p/5] Wi|

and scale parameter 2. Censoring times are uniform on [0, umax], and umax is chosen to control the
censoring rate. Here, the proportional hazards assumption is violated.

Scenario3: This data set is created using N independent observations where the covariates (W1, ..., Wp)

are multivariate normal with mean zero and a covariance matrix having elements (i, j) equal to 0.75|i−j|.

Survival times are simulated according to a log-normal distribution with mean µ = 0.1|∑[p/5]
i=1 Wi|+

0.1|∑p
i=[4p/5] Wi|. Censoring times are log-normal with mean µ + cstep and scale parameter one, where

cstep is chosen to control the censoring rate. Here, the underlying censoring distribution depends on
covariates and the proportional hazards assumption is also violated.

From Figure 3, one may see that the prediction performance of the Cox model keeps decreasing in
three scenarios as expected. However, the difference in terms of C-index and BS are not significant for
Scenario2 and Scenario3 while in terms of IBS, IAE and ISE, a sharp difference and a clear trend can be
observed.

As we know, C-index evaluates the model from a ranking perspective in a rough matter and BS
only considers a fixed time point. Both metrics may not distinguish models described above or in
other complex settings. In this case, evaluation metrics which consider model performance in a global
way, such as IBS, IAE, and ISE, may be useful alternatives. This also justifies why a package such
as SurvMetrics that can evaluate survival models from multiple perspectives is strongly needed in
practice.

An example of SurvMetrics

In this section, a kidney dataset from the survival R package is used to illustrate the usage of the
SurvMetrics package using popular survival models widely used in biostatics and biomedical study.
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Figure 3: This graphic shows the Cox model prediction accuracy based on three different scenarios via
5 evaluation metrics by the SurvMetrics package. The sample size is 300, the dimension is 25, and
control the censoring rate about 30%. The prediction performance of the Cox model keeps decreasing
in three scenarios, which satisfies the data generated methods. However, in some complex situations
where C-index and BS cannot distinguish models, IBS, IAE, and ISE, may be useful alternatives.

In the following, we first cut the kidney dataset into a training set and a testing set. Then, two
popular models, namely, Cox model and random survival forest model are constructed based on the
training set to show how different functions are used in SurvMetrics. Finally, we will show how
to evaluate the predictive performance of these two models on the testing set using the proposed
SurvMetrics R package. In the latest version of SurvMetrics, user has the choice to input only the
standard survival models and testing sets. Meanwhile, it is still useful to deal with predicted survival
probabilities from non-standard models. The following example will contain these two input forms.

The corresponding R code is provided here:

#1. data preparation
library(survival) # to fit a Cox model
library(randomForestSRC) # to fit an RSF model
library(SurvMetrics) # to get all the metrics
library(pec) # to make predictions based on Cox model
set.seed(1)
mydata <- kidney[, -1]
train_index <- sample(1:nrow(mydata), 0.7 * nrow(mydata))
train_data <- mydata[train_index, ]
test_data <- mydata[-train_index, ]

#2. fit the RSF model and Cox model to predict the testing set
#2.1 RSF model
fit_rsf <- rfsrc(Surv(time,status)~., data = train_data) #fit the RSF model
distime <- fit_rsf$time.interest #get the survival time of events
med_index <- median(1:length(distime)) #the index of median survival time of events
mat_rsf <- predict(fit_rsf, test_data)$survival #get the survival probability matrix
vec_rsf <- mat_rsf[ ,med_index] #median survival probability of all samples
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#2.2 Cox model
fit_cox <- coxph(Surv(time,status)~., data = train_data, x = TRUE) #fit the Cox model
mat_cox <- predictSurvProb(fit_cox, test_data, distime) #get the survival probability matrix
vec_cox <- mat_cox[ ,med_index]

#3. get all the metrics by SurvMetrics
#3.1 CI BS IBS IAE ISE based on RSF model: standard model input methods
Cindex_rsf <- Cindex(fit_rsf, test_data)
BS_rsf <- Brier(fit_rsf, test_data, distime[med_index])
IBS_rsf <- IBS(fit_rsf, test_data)
IAE_rsf <- IAEISE(fit_rsf, test_data)[1]
ISE_rsf <- IAEISE(fit_rsf, test_data)[2]

#CI BS IBS IAE ISE based on Cox model: standard model input methods
Cindex_cox <- Cindex(fit_cox, test_data)
BS_cox <- Brier(fit_cox, test_data, distime[med_index])
IBS_cox <- IBS(fit_cox, test_data)
IAE_cox <- IAEISE(fit_cox, test_data)[1]
ISE_cox <- IAEISE(fit_cox, test_data)[2]

#3.2 CI BS IBS IAE ISE based on RSF model: Non-standard model input methods
times <- test_data$time
status <- test_data$status
Cindex_rsf <- Cindex(Surv(times, status), vec_rsf)
BS_rsf <- Brier(Surv(times, status), vec_rsf, distime[med_index])
IBS_rsf <- IBS(Surv(times, status), mat_rsf, distime) # distime can be replaced by range(distime)
IAE_rsf <- IAEISE(Surv(times, status), mat_rsf, distime)[1]
ISE_rsf <- IAEISE(Surv(times, status), mat_rsf, distime)[2]

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox <- Cindex(Surv(times, status), vec_cox)
BS_cox <- Brier(Surv(times, status), vec_cox, distime[med_index])
IBS_cox <- IBS(Surv(times, status), mat_cox, distime)
IAE_cox <- IAEISE(Surv(times, status), mat_cox, distime)[1]
ISE_cox <- IAEISE(Surv(times, status), mat_cox, distime)[2]

models C-index BS IBS IAE ISE
Cox 0.751185 0.18133 0.08842 77.90947 19.65131
RSF 0.729858 0.221523 0.10920 105.6936 28.80941

Table 4: This table shows the prediction accuracy by using SurvMetrics package to compare the Cox
and RSF models based on the kidney data set from survival R package. In this case, the values of
C-index are close, and the values of IAE and ISE are far different. When using C-index alone is hard to
differentiate the predictive power of the two models, alternative measures provided in SurvMetrics
may help give a more accurate result.

The results presented in Table 4 and Figure 4 show that using C-index alone is hard to differentiate
the predictive power of the two models. In this case, alternative measures provided in the proposed
package may help if further evaluation is needed. This result is also consistent with the simulated
scenario mentioned above.

4 Summary

Assessing the predictive performance of survival models is complex due to the lack of standards
regarding the best criterion to use in survival analysis. The available metrics are scatter across different
R packages that use heterogeneous interfaces, which makes it difficult for the non-specialist to use or
compare the performance of various survival models.

In this paper, we try to fill the gap by providing an "all-in-one" R package called SurvMetrics
which provides a uniform interface to an extensive set of performance assessment and statistical
comparison methods. Practitioners can easily implement comparative studies and identify the best
model(s) using this package. In the current version of the SurvMetrics package, six evaluation metrics
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Figure 4: This graphic shows the prediction accuracy by using SurvMetrics package to compare the
Cox and RSF models based on the kidney data set from survival R package. In this case, using IBS,
IAE and ISE can give a more clear conclusion that Cox model performs better.

are present. Evaluation metrics used in more complicated settings such as time-dependent AUC for
joint modelling of longitudinal and survival data, and concordance index for competitive risks are
still being developed and will be added to the SurvMetrics package in the future. Meanwhile, we are
also working to provide a more user-friendly interface to facilitate both statistical and non-statistical
clinical research workers in evaluating survival models.
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