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BayesPPD: An R Package for Bayesian
Sample Size Determination Using the
Power and Normalized Power Prior for
Generalized Linear Models
by Yueqi Shen, Matthew A. Psioda and Joseph G. Ibrahim

Abstract The R package BayesPPD (Bayesian Power Prior Design) supports Bayesian power and
type I error calculation and model fitting after incorporating historical data with the power prior
and the normalized power prior for generalized linear models (GLM). The package accommodates
summary level data or subject level data with covariate information. It supports use of multiple
historical datasets as well as design without historical data. Supported distributions for responses
include normal, binary (Bernoulli/binomial), Poisson and exponential. The power parameter can
be fixed or modeled as random using a normalized power prior for each of these distributions.
In addition, the package supports the use of arbitrary sampling priors for computing Bayesian
power and type I error rates. In addition to describing the statistical methodology and functions
implemented in the package to enable sample size determination (SSD), we also demonstrate the
use of BayesPPD in two comprehensive case studies.

Introduction: BayesPPD

There has been increasing interest over the past few decades in incorporating historical data in
clinical trials, particularly on controls (Pocock, 1976; Neuenschwander et al., 2010; Viele et al.,
2014). Use of historical data can increase effective sample size, potentially leading to more accurate
point estimates and increased power (Neuenschwander et al., 2010; Viele et al., 2014). Bayesian
methods provide a natural mechanism for information borrowing through the use of informative
priors. Some popular informative priors for Bayesian clinical trial design include the power prior
(Chen and Ibrahim, 2000), the normalized power prior (Duan et al., 2006), the commensurate power
prior (Hobbs et al., 2011), and the robust meta-analytic-predictive prior (Schmidli et al., 2014).

Some advantages of the power prior include its easy construction, its natural way of incorporating
historical data, its intuitive interpretation, and its desirable theoretical properties (Ibrahim et al.,
2015). For example, Ibrahim et al. (2003) show that the power prior is an optimal class of informative
priors in the sense that it minimizes a convex sum of the Kullback–Leibler (KL) divergences between
two posterior densities, in which one density is based on no incorporation of historical data, and
the other density is based on pooling the historical and current data. Duan et al. (2006) propose
a modification of the power prior, the normalized power prior, which adds a normalizing constant
component when the power parameter is modeled as random. The normalizing constant poses
computational challenges in the presence of covariates, because it is analytically intractable except
in the case of the normal linear model (Carvalho and Ibrahim, 2021). We address this challenge by
utilizing the PWK estimator (Wang et al., 2018) to approximate the normalizing constant for use
with generalized linear models. We also develop a novel way of incorporating the approximation of
the normalizing constant into the Markov chain Monte Carlo (MCMC) algorithm.

There is a growing literature on Bayesian sample size determination, including the works of
Rahme and Joseph (1998), Simon (1999), Wang and Gelfand (2002), De Santis (2007), M’Lan et al.
(2006) and Joseph et al. (2008). We consider the simulation-based method developed in Chen et al.
(2011) and Psioda and Ibrahim (2019), which extends the the fitting and sampling priors of Wang
and Gelfand (2002) with a focus on controlling the type I error rate and calculating power. In
addition, our package supports the use of arbitrary sampling priors for computing Bayesian power
and type I error rates, and has specific features for GLMs that semi-automatically generate sampling
priors from historical data.

The R package BayesPPD (Bayesian Power Prior Design) (Shen et al., 2022) supports Bayesian
clinical trial design after incorporating historical data with the power prior and the normalized
power prior. BayesPPD has two categories of functions: functions for model fitting and functions for
Bayesian power and type I error rate estimation. The package accommodates summary level data
or subject level data with covariate information for normal, binary (Bernoulli/binomial), Poisson
and exponential models. It supports use of multiple historical datasets and design without historical
data.
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Several Bayesian clinical trial design packages are available on the Comprehensive R Archive
Network (CRAN), such as BDP2, ph2bayes and gsbDesign (Kopp-Schneider et al., 2018; Nagashima,
2018; Gerber and Gsponer, 2016). However, these packages do not accommodate the incorporation
of historical data and are limited to normal and binary endpoints. The RBesT package (Weber,
2021) accounts for historical data using the meta-analytic-predictive prior. Commercial software for
clinical trial design such as FACTS, East and ADDPLAN (LLC Consultants, 2014; Cytel Software
Corporation, 2014; Wassmer and Eisebitt, 2005) do not implement the power prior, to our knowledge.
The BayesCTDesign (Eggleston et al., 2019) package supports two-arm randomized Bayesian trial
design using historical control data with the power prior, but it does not allow covariates, nor does it
allow the power parameter to be treated as random. The NPP (Han et al., 2021) package implements
the normalized power prior for two group cases for Bernoulli, normal, multinomial and Poisson
models, as well as for the normal linear model. It does not support generalized linear models, nor
does it include functions for sample size determination. The bayesDP (Balcome et al., 2021) package
implements the power prior where the power parameter is determined by a discounting function
estimated based on a measure of prior-data conflict. Thus, this approach is not fully Bayesian, and
the package must be used in conjunction with the package bayesCT (Chandereng et al., 2020) for
trial design. While bayesDP supports two-arm trials for binomial, normal and survival models as well
as linear and logistic regression models, BayesPPD allows covariates for Bernoulli/binomial, normal,
Poisson and exponential models with several choices of link functions. The BayesPPD package is
a comprehensive resource that supports Bayesian analysis and design using the power prior and
normalized power prior.

Another advantage of BayesPPD is its computational speed. BayesPPD implements MCMC
algorithms with Rcpp (Eddelbuettel and Francois, 2011) without recourse to asymptotics. For most
sample sizes, functions for analysis take only a few seconds to run. Functions for design for two
group cases run in seconds for fixed a0, and generally run in less an hour for random a0, depending
on the desired level of precision (e.g., number of simulated datasets). In the presence of covariates,
functions for design are more computation-intensive; an approximation method based on asymptotic
theory has been implemented to help users obtain a rough estimate of the desired sample size before
fine-tuning using the MCMC-based method.

This article is organized as follows. We first describe the methods implemented by the package.
We then provide details on how to use BayesPPD for different data scenarios and model needs. We
also present two case studies with example code, one with covariates and one without. The article is
concluded with a brief discussion.

Theoretical framework

Basic formulation of the power prior

Let D denote data from the current study and D0 denote data from a historical study. Let θ denote
model parameters and L(θ|D) denote a general likelihood function associated with a given outcome
model, such as a linear model, generalized linear model (GLM), survival model, or random effects
model. Following Chen and Ibrahim (2000), the power prior is formulated as

π(θ|D0, a0) ∝ L(θ|D0)
a0π0(θ).

where 0 ≤ a0 ≤ 1 is a discounting parameter for the historical data likelihood, and π0(θ) is the
initial prior for θ. The parameter a0 allows researchers to control the influence of the historical data
on the posterior distribution. When a0 = 0, historical information is discarded and the power prior
becomes equivalent to the initial prior π0(θ). When a0 = 1, the power prior corresponds to the
posterior distribution of θ given the historical data and the initial prior. When a0 is treated as fixed,
sensitivity analysis can be performed to determine an appropriate a0 value. When a0 is treated as
random, priors such as the beta distribution can be specified. The choice of a0 is discussed in, for
example, Ibrahim et al. (2015) and Psioda and Ibrahim (2018).

The power prior can easily accommodate multiple historical datasets. Suppose there are K
historical datasets denoted by D0k for k = 1, · · · ,K and let D0 = (D01, · · · ,D0K ). The power
prior becomes

π(θ|D0, a0) ∝
K∏

k=1

L(θ|D0k)
a0kπ0(θ),

where a0 = (a01, · · · , a0K )′ and 0 ≤ a0k ≤ 1 for k = 1, · · · ,K.
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The normalized power prior

Modeling a0 as random allows one to represent uncertainty in how much the historical data should
be discounted. The simplest power prior that allows this is the joint power prior (Chen and Ibrahim,
2000) which is given by

π(θ, a0|D0) ∝ L(θ|D0)
a0π0(θ)π0(a0).

Neuenschwander et al. (2009) point out that this formulation is not ideal because the normalizing
constant,

c(a0) =

∫
L(θ|D0)

a0π0(θ)dθ,

for L(θ|D0)
a0π0(θ) is not incorporated and thus π0(a0) is not actually the marginal prior for a0.

In fact, Duan et al. (2006) point out that this formulation of the power prior does not obey the
likelihood principle. Duan et al. (2006) proposed a modification of the power prior, the normalized
power prior, which is given by

π(θ, a0|D0) = π(θ|D0, a0)π(a0) =
L(θ|D0)

a0π0(θ)

c(a0)
π0(a0),

where π0(a0) is the initial prior for a0. The normalized power prior specifies a conditional prior for
θ given a0 and a marginal prior for a0. The normalizing constant,

c(a0) =

∫
L(θ|D0)

a0π0(θ)dθ,

is often analytically intractable and requires Monte Carlo methods for estimation. When a0 is
modeled as random, the normalized power prior is implemented in BayesPPD using a beta initial
prior on a0, for which the user must specify values of the two shape parameters that define the beta
density. The package supports the inclusion of multiple historical datasets when a0 is modeled as
random.

The power prior for generalized linear models

The power prior can easily accommodate covariates. Let yi denote the response variable and xi

denote a p-dimensional vector of covariates for subject i = 1, · · · ,n. Denote β̃ = (β0,β), where β0 is
the intercept and β = (β1, · · · ,βp)

′ is a p-dimensional vector of regression coefficients. We assume
the GLM of yi|xi is given by

f(yi|xi, β̃, τ ) = exp{α−1
i (τ )(yig(β0 + x′

iβ) −ψ(g(β0 + x′
iβ))) + ϕ(yi, τ )},

where τ is a scale parameter and g is a monotone differentiable link function. In particular, BayesPPD
allows the distribution of yi|xi to be normal, Bernoulli, binomial, Poisson or exponential. Note that
for Bernoulli, binomial, Poisson and exponential regression models, τ is equal to 1.

Let D0k = {(y0ki,x0ki), i = 1, · · · ,n0k} denote the k-th historical dataset, where y0ki is the
response variable for historical subject i and x0ki is the p-dimensional vector of covariates for
historical subject i. By default, BayesPPD assumes the historical data consists of control group
subjects only. Therefore, the historical covariate matrix does not have the treatment indicator
variable, while the current covariate matrix does. The package also allows the historical data to be
used to inform the treatment effect parameter; then the historical and current covariate matrices
will both have the treatment indicator.

The GLM for y0ki|x0ki is

f(y0ki|x0ki, β̃, τ0k) = exp{α−1
0i (τ0k)(y0kig(β0 + x′

0kiβ) −ψ(g(β0 + x′
0kiβ))) + ϕ(y0ki, τ0k)},

where τ0k is the scale parameter for the k-th historical dataset. Note that the precision pa-
rameter is assumed to be unshared. The historical data likelihood for K historical datasets is
L(β̃, τ01, · · · , τ0K |D0) ∝

∏K
k=1

∏n0k

i=1 f(y0ki|x0ki, β̃, τ0k). The power prior for GLMs with fixed
a0 = (a01, · · · , a0K )′ is

π(β̃, τ01, · · · , τ0K |D0, a0) ∝
K∏

k=1

{
L(β̃, τ0k|D0k)

a0kπ0(τ0k)
}
π0(β̃).

When a0 is modeled as random, we assume τ01, · · · , τ0K = τ for computational simplicity. The
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normalized power prior for GLMs with a random a0 vector is given by

π(β̃, τ , a0|D0) =

∏K
k=1 L(β̃, τ |D0k)

a0kπ0(β̃)π0(τ )∫ ∞
0

∫
Rp

∏K
k=1 L(β̃, τ |D0k)a0kπ0(β̃)π0(τ )dβ̃dτ

π0(a0).

Estimating the normalizing constant for GLMs

The normalizing constant c(a0) in the normalized power prior for GLMs is analytically intractable
except for normal linear regression models. For other types of regression models, we approximate the
normalizing constant with the partition weighted kernel (PWK) estimator proposed by Wang et al.
(2018). The PWK estimator requires MCMC samples from the posterior distribution (based on a
discounted historical data likelihood with fixed a0 value), which we obtain using the slice sampler
(Neal, 2003), and the known kernel function for computing the normalizing constant. The authors
first impose a working parameter space, defined as the space where the kernel value is bounded away
from zero. As stated in Wang et al. (2018), the PWK estimator is constructed by first partitioning
the working parameter space and then estimating the marginal likelihood by a weighted average of
the kernel values evaluated at a MCMC sample for each partition, where the weights are assigned
locally using a representative kernel value in each partitioned subset. The PWK estimator has been
shown to have desirable properties, including being consistent and having finite variance (Wang
et al., 2018).

The function normalizing.constant in our package computes a vector of coefficients that defines
a function f(a0) that approximates the normalizing constant for GLMs with random a0. Suppose
there are K historical datasets. Basic usage of the normalizing.constant function entails the
following steps:

1. The user inputs a grid of M rows and K columns of potential values for a0.
2. For each row of a0 values in the grid, the function obtains M samples for β from the power

prior associated with the current values of a0 using the slice sampler. Note that τ is not
applicable here because the models implemented using the PWK estimator do not have scale
parameters.

3. For each of the M sets of posterior samples, the PWK algorithm (Wang et al., 2018) is used
to estimate the log of the normalizing constant d1, · · · , dM for the normalized power prior.

4. At this point, one has a dataset with outcomes d1, · · · , dM and predictors corresponding to
the rows of the a0 grid matrix. A polynomial regression is employed to estimate a function
d = f(a0) based on these quantities. The degree of the polynomial regression is determined
by the algorithm to ensure R2 > 0.99.

5. The normalizing.constant function returns the vector of coefficients from the polynomial
regression model, which the user must input into the analysis or design function for GLMs
with a0 modeled as random (glm.random.a0 and power.glm.random.a0).

In the Examples section below, we demonstrate computing the normalizing constant for one historical
dataset with three covariates. Due to computational intensity, the normalizing.constant function
has not been evaluated for accuracy for high dimensional β (e.g., dimension > 10) or high dimensional
a0 (e.g., dimension > 5).

Sample size determination

Hypotheses for two group models

Following Chen et al. (2011), for two group models (i.e., treatment and control group with no
covariates), denote the parameter for the treatment group by µt and the parameter for the control
group by µc. For example, for binomial models, µt and µc are the probability of having some
outcome (e.g., tumor response) for the treatment and control group, respectively. Let τc denote
the nuisance parameters for the control group in the model. For normal models, τc is a vector of
precision parameters. For K historical datasets D0 = (D01, · · · ,D0K )′ with fixed a0, we assume
each historical dataset D0k has a precision parameter τc0k. When a0 is modeled as random, the
historical and current datasets are assumed to have the same precision parameter, in which case τc

reduces to a scalar. The precision parameter of the treatment group is denoted by τt.
We consider the following power prior for (µc, τc) given multiple historical datasets D0

π(µc, τc|D0, a0) ∝
K∏

k=1

[L(µc|D0k, τc)
a0k ] π0(µc)π0(τc),
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where a0 = (a01, · · · , a0K )′, 0 ≤ a0k ≤ 1 for k = 1, · · · ,K, L(µc|D0k, τc) is the historical data
likelihood, and π0(µc) and π0(τc) are the initial priors. To model a0 as random, we consider the
normalized power prior

π(µc, τc, a0|D0) ∝
∏K

k=1 [L(µc|D0k, τc)
a0k ] π0(µc)π0(τc)

c(a0)
π0(a0),

where

c(a0) =

∫ ∞

0

∫ ∞

−∞

K∏
k=1

[L(µc|D0k, τc)
a0k ]π0(µc)π0(τc)dµcdτc.

For models other than the exponential model, the power / type I error calculation algorithm
assumes the null and alternative hypotheses are given by

H0 : µt − µc ≥ δ

and
H1 : µt − µc < δ,

where δ is a prespecified constant. To test hypotheses of the opposite direction, i.e., H0 : µt −µc ≤ δ
and H1 : µt − µc > δ, one can set the parameter nullspace.ineq to "<".

For positive continuous data assumed to follow exponential distribution, the hypotheses are
given by

H0 : µt/µc ≥ δ

and
H1 : µt/µc < δ,

where µt and µc are the hazards for the treatment and the control group, respectively.

Definition of Bayesian type I error rate and power

Let Θ0 and Θ1 denote the parameter spaces corresponding to H0 and H1. Let y(n) denote the
simulated current data associated with a sample size of n and let θ = (µt,µc, τc) denote the model
parameters. Let π(s)(θ) denote the sampling prior and let π(f )(θ) denote the fitting prior. The
sampling prior is used to generate the hypothetical data while the fitting prior is used to fit the
model after the data is generated. Let π(s)0 (θ) denote a sampling prior that only puts mass in the
null region, i.e., θ ⊂ Θ0. Let π(s)1 (θ) denote a sampling prior that only puts mass in the alternative
region, i.e., θ ⊂ Θ1. To determine Bayesian sample size, we estimate the quantity

β
(n)
sj = Es[I{P (µt − µc < δ|y(n),π(f )) ≥ γ}], (1)

where j = 0 or 1, corresponding to the expectation taken with respect to π(s)0 (θ) or π(s)1 (θ). The
constant γ > 0 is a prespecified posterior probability threshold for rejecting the null hypothesis
(e.g., 0.975). The probability is computed with respect to the posterior distribution given the
simulated data y(n) and the fitting prior π(f )(θ), and the expectation is taken with respect to the
marginal distribution of y(n) defined based on the sampling prior π(s)(θ). Then β(n)s0 corresponding
to π(s)(θ) = π

(s)
0 (θ) is the Bayesian type I error rate, while β(n)s1 corresponding to π(s)(θ) = π

(s)
1 (θ)

is the Bayesian power. Note that Bayesian type I error rate and power can be equivalently defined
as weighted averages of the quantities based on fixed values of θ with weights determined by the
sampling priors (Psioda and Ibrahim, 2018). For given α0 > 0 and α1 > 0, we can compute
nα0 = min{n : β(n)s0 ≤ α0} and nα1 = min{n : β(n)s1 ≥ 1 − α1}. Then, the sample size is taken to
be max{nα0 ,nα1 }. Common choices of α0 and α1 include α0 = 0.05 and α1 = 0.2. These choices
guarantee that the Bayesian type I error rate is at most 0.05 and the Bayesian power is at least 0.8.

Estimation of Bayesian type I error rate and power

In this section, we discuss the simulation-based procedure used to estimate the Bayesian type I
error rate and power. Let N denote the number of simulated trials. To compute β(n)sj , the following
algorithm is used for each simulated trial b:

• Step 1: Generate θ(b) ∼ π
(s)
j (θ).

• Step 2: Generate y(b) ∼ f(y(b)|θ(b)).
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• Step 3: Estimate the posterior distribution π(θ|y(b),D0, a0) and the posterior probability
P (µt − µc < δ|y(b),π(f ),D0, a0).

• Step 4: Compute the indicator r(b) = I{P (µt − µc < δ|y(b),π(f ),D0, a0) ≥ γ}.

Then the estimate of β(n)sj is 1
N

∑N
b=1 r

(b).

Specification for regression models

For regression models, we assume the first column of the covariate matrix is the treatment indicator,
and the corresponding parameter is β1, which, for example, corresponds to a difference in means
for the linear regression model and a log hazard ratio for the exponential regression model. The
hypotheses are given by

H0 : β1 ≥ δ

and
H1 : β1 < δ.

The definition of β(n)sj and the algorithm change accordingly.

Prior distributions

Two group cases

For two group models, continuous responses of the control group are assumed to follow N(µc, τ−1
c ).

Each historical dataset D0k is assumed to have a different precision parameter τc0k. The initial
prior for the µc is the uniform improper prior. The initial prior for τc is the Jeffery’s prior, τ−1

c , and
the initial prior for τc0k is τ−1

c0k. Posterior samples of µc, τc and τc0k’s (if historical data is given)
are obtained through Gibbs sampling. When a0 is modeled as random, the historical datasets are
assumed to have the same precision parameter τc as the current dataset for computational simplicity.
The initial prior for τc is the Jeffery’s prior, τ−1

c . Posterior samples of a0 are obtained through slice
sampling.

For binary, count or positive continuous data, a single response from the control group is assumed
to follow Bernoulli(µc), Poisson(µc) or exponential(rate=µc), respectively. A beta initial prior is
used for µc for Bernoulli data, and a gamma prior is used for Poisson and exponential data. The
user can specify the hyperparameters. When a0 is modeled as random, posterior samples of a0 are
obtained through slice sampling. The conditional posterior distributions of µc given a0 have closed
form solutions.

When computing the power or the type I error rate, treatment group data are simulated and
posterior samples of µt (and τt for normal data) are obtained using basic Bayesian models. The
priors used for µt are the same as the initial priors used for µc. For normal data, the prior for τt is
the Jeffery’s prior, τ−1

t .

GLM cases

For GLMs, a continuous response yi is assumed to follow N(β0 + x′
iβ, τ−1). Each historical dataset

D0k is assumed to have a different precision parameter τk. The initial prior for τ is the Jeffery’s
prior, τ−1, and the initial prior for τk is τ−1

k . Posterior samples of β0 and β are obtained through
Gibbs sampling. For all other types of data, a link function must be applied. Posterior samples of
β0 and β are obtained through slice sampling. When a0 is fixed, the initial prior for β0 and β is the
uniform improper prior. When a0 is modeled as random, the historical datasets are assumed to have
the same precision parameter τ as the current dataset. The initial prior for τ is the Jeffery’s prior,
τ−1. Independent normal priors with mean zero and a user-specified variance are used for β. Here
we use a proper initial prior for β to ensure the propriety of the normalized power prior. Posterior
samples of a0 are obtained through slice sampling. The normalizing constant of the normalized
power prior is estimated using the PWK estimator.
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Two groups,
fixed a0

Two groups,
random a0

GLM,
fixed a0*

GLM,
random a0

Bernoulli/
Binomial

Numerical
integration Slice Slice Slice & PWK

Normal Gibbs Gibbs & Slice Gibbs Gibbs & Slice

Poisson Numerical
integration Slice Slice Slice & PWK

Exponential Numerical
integration Slice Slice Slice & PWK

Table 1: Estimation method used for each model and data type. Each column contains a type
of model, and each row contains an outcome distribution. Gibbs sampling is used for normally
distributed outcomes. Slice sampling is used when a0 is modeled as random.
∗Approximation method is available for sample size determination for fast implementation.

Using BayesPPD

Package overview

The BayesPPD package accommodates summary level data or subject level data with covariate
information. It supports SSD for design applications with multiple historical datasets as well as
with no historical data. Functions with names containing "two.grp" assume that the input data are
sufficient statistics (e.g., sample mean) for independent and identically distributed treatment and
control group data. Simulated control group data are analyzed using the power or normalized power
prior and posterior samples of µc are returned. By default, functions with names containing "glm"
assume that the historical control data include a covariate matrix X0 and the current data include
the same set of covariates with an additional column (the first column) of treatment indicator. The
package assumes the historical data is composed of control group subjects only by default. If the
user wants to use the historical data to inform the treatment effect, one can set borrow.treat=TRUE
and include the treatment indicator in the historical covariate matrix. Simulated data are analyzed
using the power or normalized power prior and posterior samples of the regression coefficients
are returned. For each of two cases, the power parameter a0 can be fixed or modeled as random,
resulting in four model fitting functions, two.grp.fixed.a0, two.grp,random.a0, glm.fixed.a0
and glm.random.a0. For each of the four model fitting functions, a companion function prefixed
with "power" calculates power or type I error rate, given historical data and current data sample
size. Supported distributions of responses include normal, binary (Bernoulli/binomial), Poisson and
exponential. Since functions for sample size determination for GLMs are computationally intensive,
an approximation method based on asymptotic theory has been implemented for the model with
fixed a0.

Table 1 shows the sampling methods used for each model and data distribution. Gibbs sampling is
used for normally distributed data. Slice sampling (Neal, 2003) is used for all other data distributions,
and for obtaining posterior samples of a0 when a0 is considered random. For two group models with
fixed a0, numerical integration is performed using the RcppNumerical package (Qiu et al., 2019). For
GLMs with random a0, the PWK estimator (Wang et al., 2018) is used to estimate the normalizing
constant. The functions return S3 objects with summary methods implemented.

Two group cases

If one has current and/or historical control data for an application with no covariates and would like
to obtain posterior samples of µc (and τc for normal data), one uses the function two.grp.fixed.a0
or two.grp.random.a0. The user must specify the data.type ("Normal", "Bernoulli", "Poisson"
or "Exponential"), the sum of responses y.c, the sample size n.c and the sample variance v.c
(for normal data only) of the current control data. The optional historical argument is a matrix
where the columns contain the sufficient statistics and each row represents a historical dataset. For
two.grp.fixed.a0, historical must contain a column of a0 values, one a0 value for each historical
dataset. For non-normal data, the user can specify prior.mu.c.shape1 and prior.mu.c.shape2,
the hyperparameters of the initial prior for µc.

When a0 = (a01, · · · , a0K )′ is modeled as random, a beta prior is specified for a0 with hyper-
parameters prior.a0.shape1 and prior.a0.shape2. Posterior samples of a0 are obtained through
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slice sampling. The optional tuning parameters for the slice sampler include lower.limits and
upper.limits which control the upper and lower limits of the parameters being sampled, as well as
slice.widths which controls the width of each slice. The length of lower.limits, upper.limits
and slice.widths should be at least equal to the number of parameters, i.e., the dimension of a0.
Their default values are 0, 1 and 0.1, respectively, for each a0k.

For sample size determination, power.two.grp.fixed.a0 and power.two.grp.random.a0 com-
pute the power or the type I error rate given the sample sizes of the treatment and control groups
for the new study and other inputs. If a sampling prior with support in the null space is used,
the value returned is a Bayesian type I error rate. If a sampling prior with support in the alterna-
tive space is used, the value returned is a Bayesian power. The arguments samp.prior.mu.t and
samp.prior.mu.c contain vectors of samples for µt and µc, which are discrete approximations of
the sampling priors. For normal data, arguments samp.prior.var.t and samp.prior.var.c, which
contain samples for τ−1

t and τ−1
c , must also be provided. The argument delta specifies the constant

that defines the boundary of the null hypothesis. The default value is zero. The argument gamma
specifies the posterior probability threshold for rejecting the null hypothesis. The default value is
0.95.

GLM cases

If one has current and historical data for an application with covariates and would like to obtain
posterior samples of β (and τ for normal data), one uses the function glm.fixed.a0 or glm.random.a0.
It is recommended that the covariates be transformed or standardized so that the estimation of β
will be stable. The user must specify the data.type, the data.link (except for normal data), the
vector of responses y and the matrix of covariates x where the first column should be the treatment
indicator. Supported link functions include logit, probit, log, identity-positive, identity-probability
and complementary log-log. If the data is binary and all covariates are discrete, the user can collapse
the Bernoulli data into a binomial structure, which may result in a much faster slice sampler. In this
case, the user needs to provide n, a vector of integers specifying the number of subjects who have a
particular value of the covariate vector. The optional historical argument is a list of lists where
each list contains information about a historical dataset with named elements y0, x0 and a0 (only
for glm.fixed.a0). If borrow.treat=FALSE (the default), the historical covariate matrix x0 should
not have the treatment indicator. Apart from missing the treatment indicator, x0 should have the
same set of covariates in the same order as x. If borrow.treat=TRUE, x0 should have the same set of
covariates in the same order as x, where the first column of x0 must be the treatment indicator. For
non-normal data, slice sampling is used to obtain posterior samples of β, and the user can specify
the lower.limits, upper.limits and slice.widths of the sampler. The length of lower.limits,
upper.limits and slice.widths should be at least equal to the number of parameters, i.e., the
dimension of β. A matrix of posterior samples of β is returned, where the first column contains
posterior samples of the intercept and the second column contains posterior samples of β1, the
parameter for the treatment indicator.

When a0 is modeled as random for non-normal data, the user must first use the function
normalizing.constant to obtain the value of a0.coefficients, a vector of coefficients for a0 neces-
sary for estimating the normalizing constant for the normalized power prior. For the grid argument
of normalizing.constant, the user inputs a grid of M rows and K columns of potential values for
a0 for K historical datasets. For example, one can choose the vector v = c(0.1,0.25,0.5,0.75,1)
and use expand.grid(a0_1=v,a0_2=v,a0_3=v) when K = 3 to get a grid with M = 53 = 125 rows
and three columns. If there are more than three historical datasets, the dimension of v can be
reduced to limit the size of the grid. A large grid will increase runtime. If some of the coefficients
are not estimable in the polynomial regression, the algorithm will product the error message, "some
coefficients not defined because of singularities." To resolve the issue, the user can try increasing or
decreasing the number of rows in the grid. Other possible causes include insufficient sample size of
the historical data, insufficient number of iterations for the slice sampler, and near-zero grid values.

When a0 is modeled as random, slice sampling is used for a0 only for normal data, and the
length of lower.limits, upper.limits and slice.widths should be equal to the dimension of a0.
For all other data types, slice sampling is used for β and a0, and the length of those vectors should
be equal to the dimension of β plus the dimension of a0.

For sample size determination, power.glm.fixed.a0 and power.glm.random.a0 compute the
power or the type I error given the total sample size (data.size) for the new study and other
inputs. If historical datasets are provided, the algorithm samples with replacement from the
historical covariates to construct the simulated datasets. Otherwise, the algorithm samples with
replacement from x.samples. One of the arguments historical and x.samples must be provided.
The argument samp.prior.beta contains a matrix of samples for β, which is a discrete approximation
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of the sampling prior. For normal data, the argument samp.prior.var containing samples for τ−1

must also be provided. The average posterior means of the parameters are also returned.

Sampling priors

Our implementation in BayesPPD does not assume any particular distribution for the sampling
priors. The user specifies discrete approximations of the sampling priors by providing a vector or a
matrix of sample values and the algorithm samples with replacement from the vector or the matrix
as the first step of data generation. For two group cases, the user simply specifies samp.prior.mu.t
and samp.prior.mu.c which are vectors of samples for µt and µc. For normal data, arguments
samp.prior.var.t and samp.prior.var.c, which contain samples for τ−1

t and τ−1
c , must also be

provided. The second application example below demonstrates the use of point mass sampling priors
for binary data.

For GLM cases, the user specifies samp.prior.beta, a matrix of samples for β. For normal data,
the argument samp.prior.var containing samples for τ−1 must also be provided. For example,
suppose one wants to compute the power for the hypotheses

H0 : β1 ≥ 0

and
H1 : β1 < 0.

To approximate the sampling prior for β1, one can simply sample from a truncated normal distribution
with negative mean, so that the mass of the prior falls in the alternative space. Conversely, to
compute the type I error rate, one can sample from a truncated normal distribution with positive
mean, so that the mass of the prior falls in the null space. Next, to generate the sampling prior
for the other parameters (β0,β2, · · · ,βp), one can use the posterior samples given the historical
data as the discrete approximation to the sampling prior. The function glm.fixed.a0 generates
such posterior samples if the current argument is set to FALSE and a0k = 1 for k = 1, · · · ,K. The
second application example in this article illustrates this method for binary data with covariates.
Psioda and Ibrahim (2018) discusses sampling prior elicitation in detail.

Approximation for GLMs

Because running power.glm.fixed.a0 and power.glm.random.a0 is potentially time-consuming, an
approximation method based on asymptotic theory (Ibrahim et al., 2015) has been implemented for
the model with fixed a0. In order to attain the exact sample size needed for the desired power, the
user can start with the approximation to get a rough estimate of the sample size required, using
power.glm.fixed.a0 with approximate=TRUE. The second application example below illustrates the
use of the approximation method. For normal data, the closed form of the distribution of the MLE
of β is derived and used to compute power. For other types of data, the Newton-Raphson algorithm
is used. Only canonical links are allowed.

Examples

Design of a non-inferiority trial for medical devices

We first consider the non-inferiority design application of Chen et al. (2011) considering a model for
binary outcomes for treatment and control groups with no covariates. The goal of that application
was to design a trial to evaluate a new generation of drug-eluting stent (DES) (“test device”)
with the first generation of DES (“control device”). The primary endpoint is the 12-month Target
Lesion Failure (TLF), defined as any of ischemia-driven revascularization of the target lesion (TLR),
myocardial infarction (MI) (Q-wave and non-Q-wave) related to the target vessel, or (cardiac) death
related to the target vessel. Historical information can be borrowed from two previously conducted
trials involving the first generation of DES. Table 2 summarizes the historical data.

We will illustrate Bayesian SSD incorporating historical data using the power prior with fixed
a0 and the normalized power for a0 modeled as random. Let y(nt)

t = (yt1, · · · , ytnt ) and y(nc)
c =

(yc1, · · · , ycnc ) denote the responses from the current trial for the test device and the control device,
respectively. The total sample size is n = nt + nc. We assume the i-th observation from the test
group yti follows Bern(µt), and the i-th observation from the control group yci follows Bern(µc).
Note that the notation used in our package is different from the notation used in Chen et al. (2011),
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12-Month TLF
% TLF (# of failure/n0k)

Historical Trial 1 8.2% (44/535)
Historical Trial 2 10.9% (33/304)

Table 2: Summary of two historical trials involving the first generation of DES. The primary
endpoint is the 12-month Target Lesion Failure (TLF). The pooled proportion for the two historical
control datasets is 9.2%.

which assumes yti follows Bern(pt) and µt = log
(

pt

1−pt

)
. The hypotheses for non-inferiority testing

are
H0 : µt − µc ≥ δ

and
H1 : µt − µc < δ,

where δ is a prespecified non-inferiority margin. We set δ = 4.1%. We choose beta(10−4, 10−4) for
the initial prior for µc, which performs similarly to the uniform improper initial prior for log

(
µc

1−µc

)
used in Chen et al. (2011) in terms of operating characteristics. We compute the Bayesian power and
type I error defined in (1). Power is computed under the assumption that µt = µc and type I error
rate is computed under the assumption that µt = µc + δ. For sampling priors, a point mass prior at
µc = 9.2% is used for π(s)(µc) where 9.2% is the pooled proportion for the two historical control
datasets, and a point mass prior at µt = µc is used for π(s)(µt). For all computations, we use nt

nc
= 3,

N = 10, 000, and γ = 0.95, where N is the number of simulated trials and γ is a prespecified posterior
probability threshold for rejecting the null hypothesis. For this example, we consider nt = 750
and a01 = a02 = 0.3. Power can be calculated with following code in BayesPPD. The historical
matrix is defined where each row represents a historical dataset, and the three columns represent the
sum of responses, sample size and a0, respectively, of the historical control data. Since point mass
sampling priors are used for µt and µc, samp.prior.mu.t and samp.prior.mu.c are both scalars.
For Bernoulli outcomes, beta initial priors are used for µt and µc, with hyperparameters specified
by prior.mu.t.shape1, prior.mu.t.shape2, prior.mu.c.shape1 and prior.mu.c.shape2.

historical <- matrix(0, ncol=3, nrow=2)
historical[1,] <- c(44, 535, 0.3)
historical[2,] <- c(33, 304, 0.3)

set.seed(1)
power <- power.two.grp.fixed.a0(data.type="Bernoulli",

n.t=750, n.c=round(750/3), historical=historical,
samp.prior.mu.t=0.092, samp.prior.mu.c=0.092,
prior.mu.t.shape1=0.0001, prior.mu.t.shape2=0.0001,
prior.mu.c.shape1=0.0001,prior.mu.c.shape2=0.0001,
delta=0.041, N=10000)

power$power/type I error
[1] 0.8428

When a0 is random, the normalized power prior is used and the priors for a01 and a02 are
beta(1,1), as in Chen et al. (2011). We use the default settings for the upper limits, lower limits and
slice widths for a01 and a02. We run 20,000 iterations of the slice sampler. The same initial priors
and sampling priors are used as in the fixed a0 case. The code is shown below for nt = 750.

historical <- matrix(0, ncol=2, nrow=2)
historical[1,] <- c(44, 535)
historical[2,] <- c(33, 304)

set.seed(1)
power <- power.two.grp.random.a0(data.type="Bernoulli",

n.t=750, n.c=round(750/3),historical=historical,
samp.prior.mu.t=0.092, samp.prior.mu.c=0.092,
prior.mu.t.shape1=0.0001, prior.mu.t.shape2=0.0001,
prior.mu.c.shape1=0.0001,prior.mu.c.shape2=0.0001,
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Total sample size 1000 1080 1200 1280 1480
nt 750 810 900 960 1110
nc 250 270 300 320 370

Power
a0 = (0.3, 0.3) BayesPPD 0.843 0.858 0.889 0.898 0.924

Chen et al. (2011) 0.840 0.856 0.884 0.892 0.923
Random a0 BayesPPD 0.864 0.885 0.909 0.921 0.937

Chen et al. (2011) 0.843 0.878 0.897 0.902 0.914

Type I Error Rate
a0 = (0.3, 0.3) BayesPPD 0.030 0.027 0.032 0.030 0.032

Chen et al. (2011) 0.030 0.027 0.028 0.030 0.032
Random a0 BayesPPD 0.032 0.027 0.031 0.031 0.031

Chen et al. (2011) 0.038 0.031 0.029 0.036 0.039

Table 3: Power and type I error rate comparisons for Chen et al. (2011) and BayesPPD for a few
different sample sizes. We use N = 10, 000 simulated trials. Two models are considered, a power
prior with a0 fixed at 0.3 for both historical trials and the normalized power prior. We observe that
the results provided by BayesPPD closely match the results provided in Chen et al. (2011).

prior.a0.shape1=1,prior.a0.shape2=1,
delta=0.041, gamma=0.95,
nMC=20000, nBI=250, N=10000)

power$`power/type I error`
[1] 0.864

Table 3 compares power calculations from Chen et al. (2011) and BayesPPD for a few different
sample sizes. We observe that the results provided by BayesPPD closely match the results provided
in Chen et al. (2011).

Study of acquired immunodeficiency syndrome (AIDS)

Using data from two trials that study the effect of Zidovudine on AIDS, ACTG019 and ACTG036,
we will demonstrate how BayesPPD can be used for coefficient estimation as well as power and type
I error rate calculation for generalized linear models in designs that incorporate historical data.

Zidovudine (AZT) is an inhibitor of the replication of the human immunodeficiency virus (HIV).
The ACTG019 study was a double-blind placebo-controlled clinical trial comparing AZT with a
placebo in adults with asymptomatic HIV who had CD4 cell counts of fewer than 500 per cubic
millimeter. The results were published in Volberding et al. (1990). For this example, we use only
the control group data from ACTG019. The binary primary endpoint is death or development of
AIDS or AIDS-related complex (ARC). We consider four of the measured covariates used, CD4 cell
count (x01) (cell count per cubic millimetre of serum), age (x02), treatment (x03) and race (x04).
The covariates CD4 cell count and age are continuous, while the others are binary. The ACTG036
study was also a placebo-controlled clinical trial comparing AZT with a placebo in asymptomatic
patients with hereditary coagulation disorders and HIV infection. The results were published in
Merigen et al (1991). The endpoint and covariates used are the same as those in the ACTG019 trial.
Table 4 summarizes the endpoint and covariates for the two studies.

First, we standardize age for ease of interpretation and take the log of CD4 cell count count.

data(actg019)
data(actg036)
Y0 <- actg019$outcome
X0 <- actg019[,-1]
X0$age_std <- scale(X0$age)
X0$T4_log <- log(X0$T4count)
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ACTG019 ACTG036
(control group)

No. of patients 404 183
AZT treatment, n (%) NA 89 (48.6)
CD4 cell count, mean (SD) 332.5 (109.3) 297.7 (130.5)
Age, y; mean (SD) 34.5 (7.7) 30.4(11.2)
White race, n (%) 377 (93.3) 166 (90.7)
Death or ARC, n (%) 36 (8.9) 11 (6.0)

Table 4: Summary of the ACTG019 trial (control group) and the ACTG036 trial data. The binary
primary endpoint is death or development of ARC. The sample size of the ACTG019 trial is much
larger than the ACTG036 trial. The covariate and endpoint summaries are comparable for the two
datasets.

a0 = 0 a0 = 0.5 a0 = 1 a0 ∼ beta(1,1)

Intercept 9.14 [3.83; 16.34] 4.89 [1.24; 8.27] 3.95 [0.94; 6.98] 4.39 [1.41; 7.54]
AZT −0.15 [−1.80; 1.42] −0.95 [−2.16; 0.25] −1.00 [−2.12; 0.14] −0.96 [−2.14; 0.08]
Age (standardized) 0.32 [−0.42; 1.04] 0.36 [−0.01; 0.74] 0.38 [0.11; 0.68] 0.38 [0.06; 0.67]
Race 0.36 [−2.35; 3.23] 0.72 [−1.10; 2.75] 0.93 [−0.83; 3.05] 0.73 [−0.86; 2.44]
log(CD4) −2.42 [−3.61; −1.35] −1.48 [−2.04; −0.89] −1.32 [−1.78; −0.84] −1.37 [−1.91; −0.86]

Table 5: Posterior mean and 95% credible interval for β incorporating historical data for the four
priors, a0 fixed at 0, 0.5, and 1 and a0 modeled as random with a beta(1, 1) prior. There is evidence
suggesting a negative association between AZT and death but the evidence is not substantial by
common criteria (e.g., posterior probability > 0.95).

X0 <- as.matrix(X0[,c("age_std","race","T4_log")])

Y <- actg036$outcome
X <- actg036[,-1]
X$age_std <- scale(X$age)
X$T4_log <- log(X$T4count)
X <- as.matrix(X[,c("treat","age_std","race","T4_log")])

Suppose we are interested in analyzing the relationship between the outcome and the covariates
after incorporating historical information. The code below demonstrates the analysis based on a
power prior with a0 fixed at 0.5 and using only the ACTG019 study data as prior information.

set.seed(1)
historical <- list(list(y0=Y0, x0=X0, a0=0.5))
result <- glm.fixed.a0(data.type="Bernoulli", data.link="Logistic", y=Y, x=X,
+ historical=historical, nMC=10000, nBI=250)
colMeans(result$posterior.samples)
[1] 4.8931870 -0.9459501 0.3645510 0.7201122 -1.4784046

Table 5 displays the posterior mean and 95% credible interval for β for four different priors,
a0 fixed at 0, 0.5, and 1 and a0 modeled as random with a beta(1, 1) prior. There is evidence
suggesting a negative association between AZT and death but the evidence is not substantial by
common criteria (e.g., posterior probability > 0.95).

For this example we consider designing a new clinical trial that is similar to the historical trial,
ACTG019. We hope to acquire a range of sample sizes that can achieve powers around 0.8 to test
the hypotheses

H0 : β1 ≥ 0
and

H1 : β1 < 0
based on the chosen sampling priors. Here, β1 represents the treatment effect of AZT. First,
we generate the input for samp.prior.beta, a matrix of samples for β representing a discrete
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approximation of the sampling prior. For β1, we sample from a truncated normal distribution
with mean −0.5, which is our guess of the effect size of AZT. The distribution is truncated to
avoid extreme, implausible values for β1. For the other parameters, the sampling prior is fixed
at the posterior mean of the parameter given the historical data, which can be easily obtained
using glm.fixed.a0 with current=FALSE. We then combine the sampling prior for β1 and the other
parameters into a matrix, as follows:

library(truncnorm)
set.seed(1)
historical.sp <- list(list(y0=Y0, x0=X0, a0=1))
result <- glm.fixed.a0(data.type="Bernoulli", data.link="Logistic",

historical=historical.sp,
nMC=10000, nBI=250, current.data = FALSE)

beta.sp <- result$posterior.samples
nSP <- 10000
mat.sp <- matrix(rep(colMeans(beta.sp), each=nSP), nrow=nSP)
beta1.sp <- rtruncnorm(nSP, a=-2, b=-0.1, mean=-0.5)
samp.prior.beta <- cbind(mat.sp[,1], beta1.sp, mat.sp[,2:4])

Next, we use power.glm.fixed.a0 with approximate=TRUE to obtain a rough estimate of the
sample size required to achieve a power of 0.8. The code below experiments with sample sizes 800,
1000 and 1200. We observe that to reach a power of 0.8, the sample size should be approximately
800 when a0 is fixed at 0.5.

set.seed(1)
sample.sizes <- c(800,1000,1200)
historical <- list(list(y0=Y0, x0=X0, a0=0.5))
results <- NULL
for(i in 1:length(sample.sizes)){

result <- power.glm.fixed.a0(data.type="Bernoulli", data.size=sample.sizes[i],
historical=historical,
samp.prior.beta=samp.prior.beta,
delta=0, gamma=0.95, approximate=TRUE, N=10000)

results <- c(results, result$`power/type I error`)
}
results
[1] 0.8037 0.8177 0.8391

Finally, we calculate the exact power using the normalized power prior with a0 modeled
as random. The normalizing.constant function provides the value for a0.coefficients of
power.glm.random.a0. Since there is only one historical dataset, the grid is simply a matrix
with one column. The code below demonstrates the usage when sample size is 800. We run 25, 000
iterations of the slice sampler for each of the 10, 000 simulated datasets. The corresponding power
is 0.7936. Power curves for the four different priors for sample sizes ranging from 750 to 1200 are
plotted in Figure 1. The underlying estimated power values are displayed in Table 6 in the Appendix.

grid <- matrix(seq(0.05,1,by=0.1))
historical <- list(list(y0=Y0, x0=X0))
a0_coef <- normalizing.constant(grid=grid, historical=historical,

data.type="Bernoulli",data.link="Logistic")
result <- power.glm.random.a0(data.type="Bernoulli",data.link="Logistic",

data.size=800, historical=historical,
samp.prior.beta=samp.prior.beta,
a0.coefficients = a0_coef,
delta=0, nMC=25000, nBI=250, N=10000)

result$`power/type I error`
[1] 0.7936

Discussion

BayesPPD facilitates Bayesian sample size determination by providing a robust suite of functions for
power calculation and analysis using the power and normalized power priors for generalized linear
models. A major contribution of this package is the ability to handle covariates for Bernoulli, normal,
Poisson and exponential outcomes. Despite the use of MCMC algorithms for analysis and design
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Figure 1: Power curves for a range of sample sizes for the four priors with a0 fixed at 0 (blue line),
0.5 (green line), 1 (yellow line) and a0 modeled as random (pink line). The dots represent the power
for a particular sample size. LOESS curves have been fitted to the point estimates. We observe that
for fixed a0, the power is higher for higher values of a0, as more historical information is borrowed.
When a0 is modeled as random, the power curve is higher than the curve with a0 = 0.5 but lower
than the curve with a0 = 1.

simulations, BayesPPD is computationally efficient, with functions producing results in seconds for
many application settings.

A possible extension of the package is the accommodation for longitudinal and time-to-event
outcomes. Another potential feature is computing optimal hyperparameters for the beta prior on
a0 to ensure certain characteristics are met, such as the ability to adapt to prior-data conflict or
prior-data agreement. The method will be based on ongoing theoretical work by the authors.
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1 Additional tables

Sample size a0 = 0 a0 = 0.5 a0 = 1 Random a0
750 0.732 0.779 0.788 0.791
800 0.746 0.793 0.805 0.794
850 0.751 0.788 0.804 0.794
900 0.759 0.800 0.816 0.802
950 0.778 0.808 0.817 0.814
1000 0.786 0.807 0.823 0.826
1050 0.794 0.820 0.835 0.822
1100 0.799 0.821 0.834 0.833
1150 0.792 0.829 0.842 0.832
1200 0.800 0.831 0.850 0.841

Table 6: Power for the four priors of the AIDS study.
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