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APPENDIX FOR

GCPBayes: An R package for studying
Cross-Phenotype Genetic Associations
with Group-level Bayesian Meta-Analysis
by T. Baghfalaki, P.E. Sugier, Y. Asgari, T. Truong, and B. Liquet

Appendix A: Material and methods

Let β̂k, k = 1, · · · , K be a m-dimensional vector of the regression coefficients for the kth study
and Σ̂k be its estimated covariance matrix. Also, let β̂k|βk, Σ̂k ∼ Nm(βk, Σ̂k), k = 1, · · · , K.
Therefore, the summary statistics for each group is β̂k and Σ̂k, k = 1, · · · , K.
We consider three different priors for βk: continuous spike (CS), Dirac spike (DS) and hierar-
chical spike (HS). As mentioned before, the CS and DS are designed to detect pleiotropic
effect at group level, but HS is designed to detect pleiotropy at both group and variable level.
In the following, these methodologies are described briefly. For more details, see Baghfalaki
et al. (2021).

Continuous spike

The hierarchical set-up of CS prior, by considering summary statistics as the input of the
method, is given by:

βk|ξk, σ2, τ2 ind∼ (1 − ξk)Nm(0, σ2Im) + ξk Nm(0, τ2Im), τ2 > σ2 > 0, k = 1, · · · , K, m ≥ 1,

ξk|κ
ind∼ Ber(κ),

κ|a1, a2 ∼ Beta(a1, a2),
τ2|c1, c2 ∼ IΓ(c1, c2),

(A.1)

where σ2 is a fixed value and the latent variable ξk is considered for taking into account the
association of studies. If ξk = 0, then βk ∼ Nm(0, σ2Im). Otherwise, βk ∼ Nm(0, τ2Im) and
its components can be considered as non-zero values for large values of τ2. The notation
IΓ(c1, c2) denotes an inverse gamma distribution with parameters c1 and c2. Note that the
value of σ2 should be small (e.g. 10−3 or 10−4).

Dirac spike

The hierarchical set-up of DS prior is given by:

βk|σ2, κ
ind∼ (1 − κ)δ0(βk) + κNm(0, σ2Im), k = 1, · · · , K, , m ≥ 1,

κ|a1, a2 ∼ Beta(a1, a2),
σ2|d1, d2 ∼ IΓ(d1, d2),

(A.2)

where δ0(βk) denotes a point mass at 0 ∈ Rm, such that δ0(βk) = 1 if βk = 0 and δ0(βk) = 0
if at least one of the m components of βk is non-zero, that is βk ̸= 0.

Hierarchical spike

For considering a prior with ability to have shrinkage effects at both the group-level and the
variable-level, we cannot apply the prior distribution on βk directly; instead, a reparameter-
ization of βk is considered as βk = V1/2

k bk, V1/2
k = diag(τk1, · · · , τkm). In order to define a

prior with these properties, two spike and slab priors are considered in a hierarchical setup,
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one of them for bk and the other one for τkj, j = 1, · · · , m, leading to a HS prior. The HS
prior is as follows:

βk = V1/2
k bk, V1/2

k = diag(τk1, · · · , τkm), k = 1, · · · , K, m > 1,

bk|κ
ind∼ (1 − κ)δ0(bk) + κNm(0, σ2Im),

τkj|κ∗, s2 ind∼ (1 − κ∗)δ0(τkj) + κ∗N+(0, s2), j = 1, 2, · · · , m,
κ|a1, a2 ∼ Beta(a1, a2),
κ∗|c1, c2 ∼ Beta(c1, c2),
σ2|d1, d2 ∼ IΓ(d1, d2),
s2|e1, e2 ∼ IΓ(e1, e2),

(A.3)

where N+(0, s2) denotes a univariate truncated normal distribution at zero with mean 0 and
variance s2. The value of e1 is set to be 1. The value of e2 is estimated using the Monte Carlo
EM algorithm (MCEM) which leads to an empirical Bayes Gibbs sampler, such that, for the
tth EM update, we have e(t)2 = 1

E
e(t−1)
2

( 1
s2 |β̂k ,Σ̂k , k=1,··· ,K)

.

Appendix B: Simulated examples

Summary statistics level data for K=5
We consider the summary level data for one group with m = 10 variables for K = 5 studies.
The regression coefficients are simulated using a distributional assumption as follow:

β̂k ∼ Nm(βk, Σk), k = 1, 2, ..., K, (B.4)

where Σk = SRS such that S = diag(s) is a scale diagonal matrix with the main diagonal
entry a standard error vector s. We assume that s = s1m and s = 0.05. Also, R is a
compound-symmetry correlation matrix with non-diagonal components ρ with ρ = 0.25.
We consider 30% intra-group sparsity using the form of the βk as follows:

βk = (β, · · · , β︸ ︷︷ ︸
7

, 0, 0, 0)′, k = 1, 2, (B.5)

β3 = β1, (B.6)

βk = 0, k = 4, 5, (B.7)

where β is the magnitude of the effects value getting the value 0.4 and −0.4 with equal
probability.
For this purpose, the following R commands can be considered:

> K <- 5
> m <- 10
> set.seed(12345)
> sign <- rbinom(m, 1, 0.5)
> sign[sign == 0] <- -1
> betat <- c(rep(0.4, m * 0.7), rep(0, m * 0.3))
> BETA <- matrix(0, K, m)
> betat <- betat * sign
> BETA[1, ] <- BETA[3, ] <- betat
> BETA[2, ] <- -betat
> corr <- 0.25
> S <- diag(0.05, m)
> R <- matrix(corr, m, m) + (1 - corr) * diag(m)
> Sigmat <- S %*% R %*% S
> simSIGMA <- list()
> simBeta <- list()
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> for (tab in 1:K) {
+ simBeta[[tab]] <- mvtnorm::rmvnorm(1, BETA[tab, ], Sigmat)
+ simSIGMA[[tab]] <- Sigmat
+ }
> snpnames <- sprintf("SNP%s", seq(1:m))
> genename <- "simulated_example"

This data is embeded in the GCPBayes package and a user could extract it by the following
commands and run any of the GCPBayes methods on it:

> library(GCPBayes)
> data(Simulated_summary)
> genename <- Simulated_summary$genename
> snpnames <- Simulated_summary$snpnames
> Betah <- Simulated_summary$simBeta
> Sigmah <- Simulated_summary$simSIGMA

Individual level data for K=3
We consider the individual level data for continuous phynotypes of one group with m = 30
variables for K = 3 studies such that the sample sizes of the studies are n1 = 1200, n2 = 1000
and n3 = 2000. For nk × m (k=1,2,3) genotypes matrix X, we follow the approach of
Stanislas et al. (2017) and Broc et al. (2021). The approach is a simple strategy to control
the minor allele frequency (MAF) of each SNP which are coded as minor allele counting
{0, 1, 2}. Also, there is a group structure such that the SNPs of a groups are from the same
linkage disequilibrium block. Each line of the genotype matrix X is a random sample
from a multivariate random vector with mean 0 and covariance matrix S. We consider a
exchangeable structure (s = 0.6). In order to have genotype data, each SNP is randomly
assigned an MAF probability (we call it MAFj, j = 1, · · · , P). A value of MAFj = 0.25 is
assigned to all SNPs. The Hardy-Weinberg equation are then applied to discretize Xij to
0, 1 and 2. In practice, Xij is set to 0 if Xij < Quartile(X i, (1 − MAFj)

2), Xij is set to 2 if
Xij > Quartile(X i, MAF2

j ) and Xij is set to 1 otherwise, where Quartile(X, p) denote to pth

quantile of variable X. We consider the following regression model for study k, k = 1, 2, 3,

Yk = Xkβk + εk, k = 1, 2, 3,

where εk ∼ N(0, I), k = 1, 2, 3, and

β1 = (0, · · · , 0︸ ︷︷ ︸
m−2

,−0.5, 0.5)′,

β2 = (0.5, 0, · · · , 0︸ ︷︷ ︸
m−2

, 0.5)′,

β3 = (0, · · · , 0︸ ︷︷ ︸
m−3

, 0.5, 0, 0)′.

For this purpose, the following R commands can be considered for the first study, the R
commands for other studies are the same:

> library(mvtnorm)
> set.seed(12345)
> n <- 1200
> m <- 30
> rho <- 0.6
> Sigma <- diag(1 - rho, m) + matrix(rho, m, m)
> Xs <- rmvnorm(n, rep(0, m), Sigma)
> MAF <- 0.25
> q1 <- (1 - MAF)^2
> q2 <- (1 - MAF)^2 + 2 * (1 - MAF) * MAF
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> Q1 <- quantile(Xs, q1)
> Q2 <- quantile(Xs, q2)
> X1 <- matrix(1, n, m)
> X1[Xs > Q2] <- 2
> X1[Xs < Q1] <- 0
> Beta <- c(rep(0, m - 2), -0.5, .5)
> Y1 <- c()
> for (i in 1:n) {
+ Y1[i] <- rnorm(1, X1[i, ] %*% Beta, 1)
+ }
> colnames(X1) <- sprintf("SNP%s", seq(1:m))
> Study1 <- cbind(Y1, X1)

This data is embeded in the GCPBayes package and a user could extract it by the following
commands and run any of the GCPBayes methods on it:

> library(GCPBayes)
> data(Simulated_individual)
> Study1 <- Simulated_individual$Study1
> Study2 <- Simulated_individual$Study2
> Study3 <- Simulated_individual$Study3

Survival outcomes and gene expression data for K=2
We consider individual level data for survival outcomes of one group with m = 10 variables
for K = 2 studies such that the sample sizes of the studies are n1 = 500 and n2 = 600. The
gene expression data are generated the same as Bair et al. (2006) and Van Wieringen et al.
(2009). Thus, the gene expression data for each study is distributed as:

log(Xij) =


3 + εij i ≤ n

2 , j ≤ 5,
4 + εij i > n

2 , j ≤ 5,
3.5 + εij j > 5,

where i = 1, · · · , nk, j = 1, · · · , m, the εij are drawn from a standard normal distribution.
The survival and censoring times are exponentially distributed and 30% is considered
censoring rate. Also, the signals are considered as follows:

β1 = (0.5, 0.25, 0, · · · , 0︸ ︷︷ ︸
m−2

)′,

β2 = (0, 0.25, 0.25, 0, · · · , 0︸ ︷︷ ︸
m−3

)′.

For this purpose, the following R commands can be considered for the first study, the R
commands for the other study is the same:

> library(survival)
> library(BhGLM)
> set.seed(12345)
> n <- 500
> m <- 10
> X <- matrix(0, n, m)
> for (i in 1:n) {
+ for (j in 1:m) {
+ if (i <= n / 2 & j <= m / 2) (X[i, j] <- exp(3 + rnorm(1)))
+ if (i > n / 2 & j <= m / 2) (X[i, j] <- exp(4 + rnorm(1)))
+ if (j > m / 2) (X[i, j] <- exp(3.5 + rnorm(1)))
+ }
+ }
> B <- c(-0.5, -0.25, rep(0, m - 2))
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> lambda <- exp(-X %*% B)
> Y <- rexp(n, rate = lambda)
> C <- quantile(Y, .7)
> Y[Y > C] <- C
> delta <- rep(0, n)
> delta[Y == C] <- 1
> T <- Surv(Y, delta)
> colnames(X) <- sprintf("Gene%s", seq(1:m))
> Study1 <- list(T = T, X = X)

This data is embeded in the GCPBayes package and a user could extract it by the following
commands and run any of the GCPBayes methods on it:

> data(Simulated_individual_survival)
> Study1 <- Simulated_individual_survival$Study1
> Study2 <- Simulated_individual_survival$Study2

Also, the summary statistics data could be computed by the following commands:

> Fit1=BhGLM::bcoxph(Study1$T ~ Study1$X)
> Betah1 <- Fit1$coefficients
> Sigmah1 <- Fit1$var
> Fit2=BhGLM::bcoxph(Study2$T ~ Study2$X)
> Betah2 <- Fit2$coefficients
> Sigmah2 <- Fit2$var
> Betah <- list(Betah1,Betah2)
> Sigmah <- list(Sigmah1,Sigmah2)
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