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For the sake of readibility, we show again in Table 1 the general configuration used to run
all the benchmarks tested.

Table 1: Global options shared by all the benchmarked packages.

Initialisation methods Algorithms Criterion threshold Maximal iterations Number of observations

midrule hc, kmeans, small
EM,rebmix, quantiles,

random

EM R, Rmixmod, bgmm,
mclust, flexmix,

EMCluster, mixtools,
GMKMCharlie

10−6 1000 100, 200, 500, 1000, 2000,
5000, 10000
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Appendix A: In-depth statistical elements about parameters estimation in
GMMs

Application of the EM algorithm to GMMs

While solving Equation (10) to retrieve the MLE estimates in the M-step of the EM algorithm,
we have to enforce the non-negativity and sum-to-one constraint of the mixture models
(Equation (2)). This is enabled by the Lagrange multipliers tip, which consists in practice to
add the equality constraint over the parameters to estimate, here −λ(∑k

j=1 pj − 1), to the
function to be optimised (Walsh 1975).

The evaluation of the roots of the derivative of the auxiliary function (see Equation (10))
at the parameter pj with the additional unit simplex constraint (2) allows to readily compute
a MLE estimate of the ratios, valid for any finite mixture model (Equation (1)):

p̂j =
∑n

i=1 ηi(j)
n

(1)

Additionally, we restrained in both the univariate and multivariate settings to the fully
unconstrained parametrisation, in which each component follows its own parametric distri-
bution. The general derivative of the auxiliary function with respect to each component
parametric distribution ζ j, is given by Equation (2)1:

∂Q(θ|θ̂q−1)

∂ζ j
=

n

∑
i=1

ηi(j)
∂ log( fζ j(Xi|Si = j))

∂ζ j
(2)

Accordingly, if a closed form for the computation of the MLE in supervised cases is
known (and fortunately this is the case for both the univariate and multivariate Gaussian
distributions), the computation of the maximum of the auxiliary function can be readily
calculated.

Plug-in the corresponding parametric distribution in the auxiliary function (10) yields
the following formula for the univariate GMM (Equation (3)):

1It is equivalent to compute the MLE of a sample following distribution fζ j weighted by the vector of posterior
probabilities.
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Q(θ|θ̂q−1) =
n

∑
i=1

k

∑
j=1

ηi(j)

(
log(pj)− log(σj)−

(Xi − µj)
2

2σ2
j

)
+ K (3)

and Equation (4) for the multivariate GMM:

Q(θ|θ̂q−1) =
n

∑
i=1

k

∑
j=1

ηi(j)
[

log(pj)−
1
2

(
log(det(Σj)) + (xi − µj)

⊤Σ−1
j (xi − µj)

)]
+ K (4)

K is a constant with respective values of −nD log(2π)
2 and −n log(2π)

2 in the univariate and
multivariate setting.

In the univariate setting, the individual MLE mean µj, and variance, σj, estimates are
readily available (Equations (5) - (6)):

∂Q(θ|θ̂q−1)

∂µj
= 0 ⇔ µj =

∑n
i=1 ηi(j)Xi

∑n
i=1 ηi(j)

(5)

∂Q(θ|θ̂q−1)

∂σj
= 0 ⇔ σ2

j =
∑n

i=1 ηi(j)(xi − µj)
2

∑n
i=1 ηi(j)

(6)

Before finding the optimum of the auxiliary function in the multivariate setting, we
remind the interested reader of some relevant calculus formulas below:

Transpose matrix properties

a. det(pA) =
pG det(A)

b. det(A−1) = 1
det(A)

c.
(

A−1)⊤ = A−1a

awhen A is itself symmetric,
as by definition, A⊤ = A

Matrix calculus

Given a symmetric matrix A of full rank D and two vectors x and µ of size D, the
following derivative properties hold:

a. ∂x⊤Ax
∂A = xx⊤ b. ∂(x−µ)⊤A(x−µ)

∂µ =

−2A(x − µ)

c. ∂ log(det(A))
∂A−1 = −A a

aOther matrix calculus for-
mulas and notations are avail-
able on Matrix calculus and
demonstration details from The
Matrix Cookbook (Petersen and
Pedersen 2008).

Using the calculus formulas derived in the previous boxes, a closed form for the MLE
estimate of the mean, µj, and covariance, Σj, is readily computed (see Equations (7) - (8)):

∂Q(θ|θ̂q−1)

∂µj
=

n

∑
i=1

ηi(j)Σ−1
j (xi − µj) = 0 ⇔ µj =

∑n
i=1 ηi(j)xi

∑n
i=1 ηi(j)

(7)

∂Q(θ|θ̂q−1)

∂Σ−1
j

=
1
2

n

∑
i=1

ηi(j)
[
Σj − (xi − µj)(xi − µj)

⊤
]
= 0 ⇔ Σj =

∑n
i=1 ηi(j)(xi − µj)(xi − µj)

⊤

∑n
i=1 ηi(j)

(8)

Explicitly optimising the equations ((3)-(4)) yield the following MLE parameters in both
the univariate and multivariate settings (Table 2), as detailed in (Leytham 1984; Redner and
Walker 1984):
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Table 2: An overview of the practical implementation of the EM algorithm in GMMs.

Univariate GMM Multivariate GMM

E-step ηi(j) =
p̂q

j N (xi |µ̂
q
j ,σ̂q

j )

∑k
j=1 p̂q

j N (xi |µ̂
q
j ,σ̂q

j )
ηi(j) =

p̂q
j ND(xi |µ̂

q
j ,Σ̂q

j )

∑k
j=1 p̂q

j ND(xi |µ̂
q
j ,Σ̂q

j )

Ratios estimation p̂q+1
j = ∑n

i=1 ηi(j)
n p̂q+1

j = ∑n
i=1 ηi(j)

n

Mean estimation µ̂
q+1
j = ∑n

i=1 ηi(j)xi
∑n

i=1 ηi(j) µ̂
q+1
j = ∑n

i=1 ηi(j)xi
∑n

i=1 ηi(j)

(Co)Variance estimation
(

σ̂2
j

)q+1
=

∑n
i=1 ηi(j)

(
xi−µ̂

q+1
j

)2

∑n
i=1 ηi(j)

(
Σ̂2

j

)q+1
=

∑n
i=1 ηi(j)

(
xi−µ̂

q+1
j

)(
xi−µ̂

q+1
j

)⊤
∑n

i=1 ηi(j)

In both cases, obtaining the parameters of each component’s parametric distribution
turn to be equivalent to the computation of the mean and variance of a weighted sample,
which can be computed in R with stats::weighted.mean and stats::cov.wt functions2.
Importantly, the value of the mapping function only depends on the set of the observations
X, but does not depend on the parameter to estimate θ. Indeed, the statistic computed by
the EM algorithm is sufficient, which is one of its main advantages.

The complete code associated to our R implementation is implemented respectively
with enmix_univariate and enmix_bivariate for the univariate and multivariate setting,
available on GitHub at RGMMBench, as well as the programs used to generate the several
plots and tables of the article. We additionally made two choices not clearly set in the
literature:

• The algorithm stops when when the absolute difference between consecutive log-
likelihoods falls below a user-defined threshold epsilon, with a maximal number of
itmax iterations allowed to reach this convergence.

• In order to avoid numerical underflows resulting in inconsistent ratios, of type 0/0,
we rely on the fact that Gaussian distributions belong to the exponential family to
log-rescale our observations and compute efficiently the posterior probabilities in
the E-step of the EM algorithm. First, to avoid null values for highly unlikely obser-
vations, those far from the centroids, we use the log attribute of stats::dnorm and
mvtnorm::dmvnorm functions, see Equation (9):

ℓ(θ|x) = log(
k

∑
j=1

pj f ζ j(x))

= log
(
exp

[
log(pj) + log( f ζ j(x))

]) (9)

Second, we rewrite our sum of exponentials, the one enclosed into the log, to use the
Taylor’ series of log(1 + x), with |x| ≪ 1, see Equation (10):

log

(
k

∑
j=1

eaj

)
= log

exp(a′j)×

1 + ∑
j ̸=j′

exp

(
aj

aj′

)
= aj′ + log1p

∑
j ̸=j′

exp

(
aj

aj′

) , with j′ = arg max
∀j∈{1,...,k}

(eaj)

(10)

with log1p the R function dedicated for this Taylor’s development. The posterior proba-
bilities are then given by Equation (11):

2We assign “ML” to the argument method to get the biased but true MLE estimate of the covariance
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log (Pθ(S = j|X = x)) = log(pj) + log( fζ j)− ℓ(θ|x) (11)

• We stop the algorithm early when the estimates are trapped in the boundaries of the
parameter space, typically when the ratio of a component or its associated variance
tends to zero. This case rarely occurs in our simulations: once in univariate and never
in multivariate.

Parsimonious parametrisation of multivariate GMMs

Parsimonious parametrisation of GMMs models are provided by the following eigenvalue
factorisation of the covariance matrix (Equation (12)):

Σj = λjQjDjQ⊤
j (12)

with λj = det
(
Σj
) 1

D a scalar proportional to the total volume of the ellipsoid (or area in
bi-dimensional setting), Dj a diagonal matrix storing the eigenvalues normalised such that
|Dj| = 13 and Qj a MD(R) orthogonal matrix whose columns are D linearly independent
eigenvectors generating an orthonormal basis in RD while Q⊤

j is its corresponding transpose
matrix. The existence of the decomposition is guaranteed by the positive definiteness
constraint over the covariance matrix while the orthogonality of Qj results from its symmetry.
When the matrix to factorise is positive-definite and symmetric, we also refer to it as spectral
decomposition, a special case of eigendecomposition.

Each of these matrices can be constrained to be equal or variable across clusters, hence
this decomposition reveals 14 possible models with different geometric characteristics,
namely:

• two models with the spherical family, for which only λj is used to control the isotropic
(same radius in any dimension) volume of each component of the corresponding
distribution structure

• four models with the diagonal family, using λj with possibly distinct diagonal elements
and Dj to specify the shape of the density contours. In that context, Qj is henceforth a
permutation matrix, whose inputs are only zeros and an unique one per row.

• eight models with the general family, using additionally Qj to determine the orientation
of the main axes of the ellipsoids. Indeed, in the last two families described, this
matrix was equal to the identity, hence the axis of the ellipsoids were aligned with the
standard RD basis.

We detail the main characteristics of the 14 parametrisations (28 if we add for each model
the equiproportional hypothesis) in Table (3):

• The first column describes in general and understandable terms each parametrisation,
with I meaning invariant (alternatively, not used in the parametrisation), E means
equal and V variable while the second column matches the corresponding matrix
decomposition of the covariance matrix. These 14 models are all included in one
of the three super-families: spherical, diagonal and ellipsoidal listed before. As an
example, the model VEI has variable volumes λj in relation with the cluster, however
shares same general shape (as we can note on the Representations, all isodensities are
distributed along the x-axis) and invariant directions (in other words, the transition
matrix is the identity matrix, entailing that all scatter plots are aligned with the
Cartesian coordinate axes).

3Langrognet et al. (2021) enforces an additional but, in our opinion, superfluous constraint that the eigen values
are sorted by decreasing order
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Table 3: The 14 canonical parametrisations of the within-group covariance matrix Σj with the corre-
sponding geometric representations.

Model Notation Family M-step Number of parameters Representation

EII [λI] Spherical CF α + 1

VII [λj I] Spherical CF α + k

EEI [λD] Diagonal CF α + d

VEI [λj D] Diagonal IP α + d + k − 1

EVI [λDj ] Diagonal CF α + kd − k + 1

VVI [λj Dj ] Diagonal CF α + kd

EEE [λQDQ⊤ ] Ellipsoidal CF α + β

EVE [λQDjQ⊤ ] Ellipsoidal IP α + β

VEE [λjQDQ⊤ ] Ellipsoidal IP α + β + (k − 1)(d − 1)

VVE [λjQDjQ⊤ ] Ellipsoidal IP α + β + d(k − 1)

EEV [λQj DQ⊤
j ] Ellipsoidal CF α + kβ − d(k − 1)

VEV [λjQj DQ⊤
j ] Ellipsoidal IP α + kβ − (k − 1)(d − 1)

EVV [λQj DjQ⊤
j ] Ellipsoidal CF α + kβ − k + 1

VVV [λjQj DjQ⊤
j ] Ellipsoidal CF α + kβ
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• Varying the volume λj, given a fixed Q and D, amounts to an enlargement (when all
dimensions of a figure are changed in the same scale, also referred to as isotropic trans-
formation), varying the eigenvectors Qj, given a fixed volume λj and D is equivalent
to a rotation and finally varying the diagonal matrix Dj, given the other parameters of
Equation (12) are fixed, results in a distortion of the representation.

• CF means that the M-step is in closed form while IP entails that the M-step is iterative.

• The number of parameters enumerates the degrees of freedom, namely the number of
parameters to truly estimate once the sum-to-one constraint is enforced (Equation
(2)). In detail, k is the number of components of the GMM model, D its dimension,
α = kD + k − 1 is the number of parameters required to identify the mean vector of
each component (kD) and the ratios k − 1 and β = D(D+1)

2 the number of covariance
terms to estimate for a given component (D variance diagonal terms, the remaining
terms being the pairwise symmetric covariance terms between the features). Note that
the complexity of the covariance matrix in the fully unconstrained model (Model VVV)
grows linearly with the number of components while exploding in the order O(D)
with the number of dimensions. Meantime, the complexity of the parametrisation
with the homoscedastic spherical family (Model EII) is constant.

• Last column displays the 14 most common GMMs parametrisations, by plotting the
ellipses and centroids of a three components bivariate GMM parametrised by the
mean vector and covariance of each component. For any additional detail, we refer
the interested reader to mclust (Scrucca et al. 2016) and Rmixmod (Langrognet et al.
2021) vignettes for a general introduction to GMMs and to (Banfield and Raftery 1993;
Celeux and Govaert 1992; Browne and McNicholas 2014) for the closed formulas of
the models.

Parameters estimation in a high-dimensional context

However, while parsimonious representations can largely reduce the computational burden,
none of them in the general family is able to handle degenerate cases where the number of
features, D, exceeds the number of observations n. Likewise situations, when the number of
features is consequent, are referred to as high-dimensional, raising the well-known issue
of the “curse of the dimensionality”. Two distinct approaches have been developed in the
literature to handle these degenerate cases:

• The most naive approach aims to eliminate the least informative variables by applying
a strong Lasso-type penalty on the parameters to be estimated. We only came across
such an approach twice among the reviewed R packages, in the specific context of
regressions of mixtures (seeRobMixReg and fmerPack packages).

• The second category includes a larger diversity of methods, all inspired from the factor
analysis approach whose paradigm is to consider that all the D features used to describe
the observations can be spanned in a smaller subspace without lose of information.
Precisely, the factor analysis theory describes the variability among observed and
correlated variables by a substantial lower number of unobserved variables called
factors or latent variables. In practice, for a given component j, the diagonal matrix
storing the eigenvalues is decomposed into two-blocks. The first upper-right diagonal
block, assumed generally of dimension dj ≪ D, stores the largest dj eigenvalues and
model the variance of the actual data of component j while the lower-left diagonal
block, of dimension D − dj, stores an unique parameter that can be interpreted as
the variance of the residual error terms, constrained to be strictly inferior to the
lowest variability of the informative variables. The dimension dj can be considered
as the intrinsic dimension of the latent subspace of cluster j spanned by the first dj
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eigenvectors of Qj
4.

When the sub dimension dj is known, a closed version is generally available for the
M-step of the EM algorithm, however dj is itself an hyperparameter to estimate. Though,
(Bouveyron, Celeux, and Girard 2011) has shown that a classical Cattell’s scree-test could be
used to asymptotically estimate the intrinsic dimension of each cluster. Compared to the
previous approach, this method has a strong theoretical background and strong impact on
the running times performance.

Taking a concrete use case from the help documentation of the package HDclassif, it
enabled to cluster a dataset of 10 classes with 130 observations overall and described in a
1024-dimensional space (consider the famous machine-learning digit recognition problem).
Variants of these approaches have been developed in the following packages: HDclassif,
fabMix, EMMIXmfa and pgmm. We refer the interested reader to the educational vignette
of HDclassif: HDclassif and papers (Paul David McNicholas and Murphy 2008; P. D.
McNicholas et al. 2010; Paul D. McNicholas and Murphy 2010).

Historically, the first mention of a probabilistic framework with an application to di-
mension reduction in the context of finite mixture models goes back to Tipping and Bishop
(1999), based on principal component analysis. G. J. McLachlan, Peel, and Bean (2003) and
Mclachlan and Peel (2000) extend this original model by postulating that the distribution of
the data within any latent class could be described using the tools of the factor analysis field5

Finally, building on the parsimonious parametrisations already theorised for GMMs (see
previous section) , Paul David McNicholas and Murphy (2008), P. D. McNicholas et al. (2010)
and Bouveyron, Girard, and SCHMID (2007) proposed a variety of constraints, but this
time directly defined on the projected subspace. Since all methods based on factor analysis
provide a transition matrix, using the two or three most informative eigen values and their
associated eigen vectors in order to project the dataset on a smaller subspace provides a
simple visualisation tool for representing high dimensional datasets. However, this method
may is not suitable for unravelling the clustering structure. Instead, the GMMDR method,
first proposed by Scrucca (2010) and implemented in the MclustDR function, from mclust
package, aims at recovering the subspace that best captures the underlying latent clustering
structure (we notably expect invariance of the global overlap in the sampling space and
the corresponding projected subspace). More precisely, the main objective of the GMMDR
technique is to infer the global change-of-basis matrix Q that minimises the differences in the
a posteriori probabilities of assigning each observation i to a given cluster si, knowing the
value of the vector of observed covariates xi. Namely, we are looking for the orientation
matrix Q that maximally ensures the following objective (Eq. (13)):

Q̂ = arg max
Q

(Pθ(Si = j|X = xi) = Pθ(Si = j|XQ)) such that S ⊥ X|XQ (13)

This procedure itself derives from the sliced inverse regression algorithm (K.-C. Li 1991),
but instead of conditioning on the known response variable, GMMDR conditions on the
estimated MAP cluster assignments. Since the solution returned by the following optimiza-
tion problem is not unique, we generally constrain the projection matrix to be orthonormal
(any of the vectors forming the basis are pairwise orthogonal, and individually of norm 1).

Model selection

When comparing several models with several number of components or parametrisations,
the likelihood is uninformative as it can be arbitrarily minimised by increasing the complex-

4Starting from eigen-decomposition described in (Equation (12)), this approach is equivalent to consider only
the dj largest eigenvalues resulting from the decomposition and sets the others to null.

5Although principal component analysis and factor analysis are closely related, we can differentiate both
approaches by their differing objective: while PCA seeks to capture the overall variability of the dataset, factor
analysis focuses on describing the intra-variability between covariates. In practice, the differences between the two
approaches are minor, we can notably show that the output of PCA is one of the solutions suggested by standard
factor analysis.
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ity of the model or adding components. it is then necessary to penalise for complexity when
comparing them. The general form of the penalty metric, GIC (for generalised information
criteria), is given by Equation (14):

GIC(θ) = p(θ)︸︷︷︸
penalty term

− 2ℓ(X|θ)︸ ︷︷ ︸
log-likelihood of the model

(14)

Among them, we set apart scores focused on selecting selecting the right number of
parameters and components, namely the degrees of freedom (d.o.f.) of the model (3k −
1 parameters for the univariate unconstrained GMM), and those focusing on retrieving
readable clusters.

In the first category, the AIC (Akaike information criterion) (Schwarz 1978) is a minimax-
rate optimal (score that minimises the risk in the worst case) but inconsistent metric (Yang
2005) , proned to overestimate the true number of components. BIC (Bayesian Information
Criterion), and CAIC (consistent AIC), accounting for both the number of parameters and
the sample size, are consistent metrics. Finally, the MDL(Minimum Description Length)
criterion accounts for the number of parameters, sample size and number of components.
Its core objective differs from the others as it aims at reducing the amount of code to encode
both parameters and observations but is practically close to the BIC metric. A thorough
description of these scores, with their formulas and theoretical properties, can be found in
Fonseca (2008), Celeux, Fruewirth-Schnatter, and Robert (2018).

In the second category, the most commonly implemented is the ICL (integrated complete-
data likelihood), a BIC criterion with an additional entropy penalty (G. McLachlan and Peel
2000). As opposed to BIC, the entropy term reduces the number of components to a well-
separated and readable clustering. Hence, it tends to underestimate their true number when
components are overlapping. Alternative similar metrics are the CLC (Classification Likeli-
hood Criterion), AWE (Approximate Weight of Evidence) and NEC (Normalised Entropy
Criterion) metrics (Bacci, Pandolfi, and Pennoni 2012). The several metrics implemented by
the reviewed packages are listed in Table 2.

The Likelihood-ratio test (LRTS) can also be used to compare nested models, with additional
advantage to possibly derive a p-value yielding the probability that a complex model (with
more components) should preferentially be used over a simpler one. Traditionally, common
process is to add one component after the other, until hypothesis H0 can not be rejected
anymore. Under standard regularity conditions of Cramer’s theorem, Wilk’s theorem
states that the Likelihood Ratio distribution follows asymptotically a χ2 distribution, but
unfortunately these conditions are not met in mixture models (G. McLachlan and Peel 2000).
To counterbalance it, bootstrap inference (G. McLachlan and Peel 2000) is often used to
derive an empirical distribution of the Likelihood Ratio.

Derivation of confidence intervals in GMMs

Punctual estimation, with a single estimate θ̂ for a given n-sample, is not enough to eval-
uate the performance of a specific method, as drawing another n-sample using the same
parameters is likely to lead to a different distribution and estimation of θ̂. Instead, it can be
interesting to retrieve the distribution or at least the variability of the estimated parameters,
which can reveal useful to derive confidence intervals. However, obtaining the distribution
or even an asymptotic approximation of the distribution of the parameters is not feasible in
practice with mixture models (G. McLachlan and Peel 2000). Hence, most authors recom-
mend to use bootstrap methods for the generation of confidence intervals, as suggested in
(Efron and Tibshirani 1993; Basford et al. 1997).

Bootstrap distributions of the parameters are generally retrieved via empirical or para-
metric bootstrap, both available in the mclust package. In the empirical or non-parametric
bootstrap Jaki et al. (2018), we draw iteratively N samples of size n with replacement from
the original observed variable x1:n. In the parametric bootstrap, N simulations are built from
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the parameter estimated with the available observations of X, via the EM algorithm or any
method used for parameter estimation. In both cases, we obtain an empiric distribution of
the parameter estimate: θ̂1:N = (θ̂1, . . . , θ̂N). Sample mean and standard deviation (SD) of
this empirical distribution can be used to retrieve an asymptotic estimate of the variability
of the parameter estimate θ̂, the bias or the MSE of the parameter estimates. To get unbiased
estimates of the true standard deviation and mean of the estimates, it is of common practice

to compute the empirical covariance matrix of the sample cov[θ̂] =
∑N

j=1(θ̂j−E[θ̂])(θ̂j−E[θ̂])T

N−1 ,
the square roots of its diagonal terms corresponding to the empiric SDs. Symmetric 1 − α
asymptotic confidence intervals using the Central Limit Theorem (CLT) can then be simply
derived Equation (15):

E[θ̂t]±
1√
n

z1− α
2

√
var(θ̂t, ∀t ∈ {1, . . . , 3k} (15)

with z1− α
2

the 1 − α
2 quantile of the standard Gaussian distribution.

If computing the covariance matrix is not possible analytically, it can be approximated
by the expected Fisher Information Matrix Iexp(θ) (FIM), given by Equation (16):

[
Iexp(θ)

]
1≤i≤3k,1≤j≤3k = −E

[
∂2

∂θi∂θj
ℓ(θ|X)

]
(16)

Indeed, the Cramér-Rao theorem states that the diagonal elements of the inverse of the
FIM are upper bounded by the variability of the parameters: var(θ̂) ≥ 1

I(θ) . This implies

that the ratio between inverse of the FIM and the variance e(θ̂) = I(θ̂)−1

var(θ̂)
converges to 1,

using the asymptotic efficiency of the MLE estimate of GMMs.

Unfortunately, the computation of the expected FIM is still a hard task. Hence it is
generally replaced by the observed FIM, the negative of the Hessian matrix of the incomplete
log-likelihood function: Iobs(θ) = − ∂2

∂θi∂θj
ℓ(θ|X). Exact general formulas are provided for

the univariate case in Louis (1982) and for the multivariate case in Oakes (1999). Yet, it has
to be noted that the expected FIM generally outperforms the observed FIM in estimating the
covariance matrix of the MLE (X. Cao and Spall 2012).

However all these methods require to compute second derivatives of the log-likelihood
leading to some disadvantages from a computational point of view. More recently, L. Meng
(2016) and Delattre and Kuhn (2019) proposed an accelerated algorithm requiring only
computation of first order derivatives. A similar alternative is implemented in the mixsmsn
package (Prates, Lachos, and Cabral 2021): mixsmsn::im.smsn, in which the Hessian matrix
is approximated by the cross-product of the gradient of the log-likelihood Equation (17):

Iobs(θ) ≈ −∂ log(ℓ(θ|X))

∂θ

∂ log(ℓ(θ|X))

∂θ

T
(17)

according to an idea developed in paper Basford et al. (1997). For a more general
introduction to Gaussian mixtures, including other models and parametrisations in the
multivariate case, we refer the reader to the reference book Gaussian parsimonious clustering
models Celeux and Govaert (1992).

An analytic formula of the overlap for univariate Gaussian mixtures

From an analytic point of view, the overlap between k components of variable X is given by
Equation (18):

OVL(X) = 1 −
∫

R
max

j
(pj φζ j(x))dx (18)

The 1 in Equation (18) corresponds to the integration of probability fθ(X) distribution
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over its domain. The second part is the area under the curve of the component density
function maximised on R, with j the index of the component maximised at that point.
It should be noted that the definition used here for the overlap is closely related to the
definition of the false clustering rate (FCR) (Marandon et al. 2022).

Equation (18) simplifies for a two component mixture distribution to Equation (19):

OVL(X) =
∫

R
min

(
p1 φζ1(x), p2 φζ2 dx(x)

)
(19)

From a probabilistic point of view, we can rewrite Equation (19) as the overall probability
of assigning a wrong label to a given observation. With two components, this simply decom-
poses as the sum of the probability of mistakenly assigning an observation from component
2 to component 1 and the probability of assigning an observation from component 1 to
component 2 Equation (20):

OVL(1, 2) = OVL(1|2) + OVL(2|1)
= P (p1 φ(X, µ1, σ1) ≤ p2 φ(X, µ2, σ2)) + P (p2 φ(X, µ2, σ2) ≤ p1 φ(X, µ1, σ1))

=
∫

R
p1 φζ1(x)1p1 φζ1

≤p2 φζ2
dx +

∫
R

p2 φζ2(x)1p2 φζ2
≤p1 φζ1

dx

(20)

We illustrate the computation of the overlap in some hard-hitting cases below, showing
relation between the level of entropy and the individual standard deviations with the
overlap measured in Figure 1. Means of component 1 and 2 are 5.28 and 8.45. Panels A and
C correspond to balanced classes, while in panel B and D, class 1 is more abundant with a
frequency of 0.9. Finally, in panels A and B, the variance of component 1 is smaller than the
variance of component 2 with respective SDs of 1 and 3 and reciprocally for panels B and D.
Interestingly, in panel D, using the MAP as defined in Equation (21), all observations issued
from class 2 are wrongly assigned to class 1.

ηi(j) := Pθ(Si = j|Xi = xi) (21)

The red area corresponds to the probability of misclassifying component 1 as component
2, while the green area corresponds to the probability of misclassifying component 2 as
component 1. Total overlap is since the sum of red and green area, in Figure 1.

There are two intersection points, x1 and x2 , with µ1 < µ2 when solving equation
Equation (22):

p1 φ(x, µ1, σ1) = p2 φ(x, µ2, σ2) (22)

in following case: if σ2 > σ1, then we must have p1 > σ1
σ1+σ2

, else if σ2 < σ1, then
p1 < σ1

σ1+σ2
. In that case, they are given by following formula Equation (23):

(x1, x2) =

σ2
1 µ2 − σ2

2 µ1 ± σ1σ2

√
(µ1 − µ2)2 + 2(σ2

2 − σ2
1 )
[
log( p1

p2 ) + log( σ2
σ1
)
]

σ2
1 − σ2

2

 (23)

Again, sign of term A and order of the roots yield two several cases, depending whether
σ1 is greater or not than σ2. Both situations with unbalanced classes are illustrated in panel
B and D on Figure 1:

• When σ1 < σ2, then x2 < x1 and p1 φ(x, µ1, σ1) < p2 φ(x, µ2, σ2) on interval [x2, x1].
Hence, total overlap is given by Equation (24):
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Figure 1: Illustration of the overlaps between a two-components GMM. Density function of component
1 is given by the red line, its of component 2 by the green line, and total density function fθ(X) is
represented in blue. The total overlap is given by the sum of the green and red areas.

OVL(1, 2) = p1 (Φ(x2, µ1, σ1) + 1 − Φ(x1, µ1, σ1)) + p2 (Φ(x1, µ2, σ2)− Φ(x2, µ2, σ2)) (24)

• When σ1 > σ2, then x1 < x2 and p1 φ(x, µ1, σ1) < p2 φ(x, µ2, σ2) on interval [x1, x2].
Hence, total overlap is given by Equation (25):

OVL(1, 2) = p2 (Φ(x1, µ2, σ2) + 1 − Φ(x2, µ2, σ2)) + p1 (Φ(x2, µ1, σ1)− Φ(x1, µ1, σ1)) (25)

An interesting result is obtained with the homoscedascity and balanced classes’ assump-
tions of the k-means algorithm. There is only one intersection point in that case: xc =

µ1+µ2
2 ,

that is simply the centre of the segment bounded by the means of the two components. The
overlap is simply then OVL(1, 2) = 2Φ(− |µ1−µ2|

2σ ).

To our knowledge, no closed formula has been determined returning the overlap gen-
eralised to more than two components (combinatorial set of inequations to solve), in the
unconstrained multivariate setting (cubic equation to solve in bi-dimensional space). Indeed,
even restraining the study to the bivariate setting (the calculation of the OVL then amounts
to estimating the zone of intersection between two ellipses), the exact computation of the
OVL involves multiple integration and the algebraic resolution of a quartic equation. A first
step is provided by (Alberich-Carramiñana, Elizalde, and Thomas 2017), stating algebraic
conditions for the existence of an intersection region and computing where applicable a
closed formula of the OVL between two coplanar ellipses.

Accordingly, only stochastic approximations, relying on randomised algorithms, such as
the Monte-Carlo integration with a rejection technique (knowing that the total area under
the curve is normalised to one, we randomly simulate observations and the ratio of the
number of observations falling in the intersection area is then used as a proxy of the overlap),
are available so far (Maitra and Melnykov 2010; Pastore and Calcagnì 2019; Nowakowska,
Koronacki, and Lipovetsky 2014).
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Appendix B: Extensions of the EM algorithm to overcome its limitations

Two main alternatives were developed in parallel to the EM algorithm and are implemented
in some of the reviewed packages: the CEM and the SEM algorithm. However, they do not
have its theoretical properties, especially guarantee of the consistency of the algorithm.

The M-step of the classification EM (CEM) algorithm (Biernacki, Celeux, and Govaert 2000)
maximises a function where each observation was assigned to the maximum a posteriori
(MAP) estimate Equation (21). It generalises the well-known k-means algorithm making no
assumption of homoscedascity or equibalanced clusters. Its main drawback is to not take
into account uncertainty of the cluster assignment, inducing inconsistency of the algorithm
(G. McLachlan and Peel 2000). EM*, referred in Kurban, Jenne, and Dalkilic (2017) and
implemented in the DCEM package, is a faster implementation of the CEM algorithm, with
roughly a twice smaller complexity. To do so, only the posterior distributions associated to
the lower half of the most uncertainly assigned observations are re-computed in the E-step
of the EM-algorithm. This normally avoids to recompute data that is unlikely to change of
cluster attribution from an iteration to another. However, the higher speed of this algorithm
has not been theoretically proven, as the gain of running time per iteration of the algorithm
may be alleviated by a greater number of steps to reach the convergence.

The Stochastic EM (SEM) replaces the MAP value for S in the E-step of the CEM algorithm
by a random draw (or N of them in the N- variant of the algorithm) of the posterior
distribution Pθ(S|X). As this algorithm does not converge to a unique solution, but rather
oscillates around a local maximum, the estimation is usually performed by averaging the
late estimated values while ignoring the first estimates from the burn-in phase. A theoretical
description of these algorithms, with discussion on their convergence properties, is detailed
in Celeux and Govaert (1992). SEM algorithm has also a relatively faster convergence than
EM algorithm but it is more proned to be trapped in a local maximum or to remove a
component. Increasing the number of draws N may alleviate this issue, but at the extent of
computational performances.

A wide variety of fast algorithms derived from the EM algorithm have been developed.
cwEMM (component-wise EM algorithm), described in Celeux, Chrétien, and Forbes (2012),
is a variation of the EM algorithm aiming at speeding up its convergence. The M-step at
each iteration is only performed for one of the components θj = (pj, µj, σj), implying that
the parameters of a given component are estimated sequentially rather than simultaneously.
The theory behind relies on a Gauss-Seidel scheme and was first used by the SAGE algorithm.
However, the constraints on the proportions set in Equation (2) are only guaranteed if the
algorithm converges. Additionally, faster convergence is not theoretically proven for any
situation. A list of general acceleration methods for the EM algorithm, not specific to GMMs,
is available on turboEM (Bobb and Varadhan 2021).

Other EM-inspired algorithms focus on counterbalancing the main limitations of the EM
algorithm. The Variational Bayesian EM (VBEM) algorithm performs a Bayesian estimation
of the parameters. Indeed, the large space of all possible parameter estimates Θ can be
hard to explore and the usual initialisation methods are uninformative, not taking into
account expert recommendations. VBEM uses these prior assumptions on the parameters’
distribution P(θ) to optimise the posterior distribution P(θ|X), based on Bayes’ rule. Direct
determination of the Bayesian posterior law of the parameters is generally an intractable
problem, hence Variational Bayes only maximises an approximation of the true posterior, as-
suming that the parameters can be partitioned in independent distributions. This hypothesis
is known as mean-field approximation (Murphy 2012).

The minimum message length (MML) EM algorithm, implemented in the GMKMcharlie
package, is a completely unsupervised algorithm as it does not require any prior selection
of the number of components (Figueiredo and Jain 2002) , by dealing explicitly with the
possibility of discarding a component during the iteration. To do so, the selection criteria for
the number of components is directly included in the optimisation procedure. However,
its implementation is close from a Bayesian estimation of the parameters of the model,
setting a non-informative Dirichlet prior distribution on the ratios and the higher expected
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performances of the algorithm are not demonstrated on real use cases (Figueiredo and Jain
2002).

The Expectation/Conditional Maximisation (ECM) (MENG and Rubin 1993) belongs to
the super-family of GEM (general EM) algorithms, generally used when the maximisation
of the auxiliary function yields a non-closed form to solve. To do so, the ECM algorithm
replaces the intractable M-step of the EM algorithm by a number of computationally sim-
pler conditional maximization (CM) steps (instead of inferring all parameters at once, the
conditional step retrieves a set of optimal parameters, conditioned by the current value of
the others). ECM is for instance used with GMMs including an additional linear constraint
on the means of the components, as provided by the mixtools package. As documented in
Table 2, EMMIXmfa implements an extension of the ECM, termed alternating expectation–
conditional maximization (AECM) algorithm (X.-L. Meng and Van Dyk 1997), and which
can be used to reduce the computational burden of estimating the parameters of mixtures of
factor analysers. The AECM algorithm is an extension of the ECM algorithm that allows the
complete data used for estimation to differ on each CM-step (generally, in order to speed the
computation, by selecting a subset of the most leveraged observations). GEM algorithms
share the same asymptotic theoretical properties of the EM algorithm, especially the local
consistency of the estimates returned.

A small simulation to evaluate the impact of outliers

Classical methods used for the parameters’ estimation, especially the maximum likelihood
estimation (MLE), are sensitive to the presence of outliers. A naive solution consists in
assigning null weights to observations suspected to be outliers, so that they do not contribute
6. Trimming aberrant observations from the distribution is justified theoretically by the
principle of the spurious outlier model (Gallegos and Ritter 2005). However, this method is
quite stringent, requiring human expertise or the use of general outlier detection tools not
necessarily adapted to GMM estimation.

Two general approaches for dealing with outliers with a well-defined theoretical back-
ground are the outliers mixture modelling and the trimming approach. Outliers mixture modelling
integrate an additional component accounting for the outliers in the distribution. Notably,
the mclust (Fraley, Raftery, and Scrucca 2022) and otrimle (Coretto and Hennig 2021) pack-
ages use an improper uniform distribution to model the distribution of outliers. Unlike
mclust, the otrimle package does not require the user to set in advance the proportion of
outliers in the mixture (Coretto and Hennig 2016). As opposed, in the trimming approach,
outliers are first removed before the complete estimation of parameters. Such methods are
implemented in tclust (Iscar, Escudero, and Fritz 2022) and oclust (Clark and McNicholas
2019) packages.

tclust (Iscar, Escudero, and Fritz 2022) uses a robust constrained clustering method,
where the user has to set an upper threshold to the ratio between the highest and the lowest
variability among all components and a trimming ratio α. It extends the work of García-
Escudero et al. (2008), with released constraints on the Gaussian distribution. First, the
maximal degree of affinity, defined in Equation (26):

D(xi|θ) = max
j

(
pj φζ j(xi)

)
(26)

is computed for each observation xi, and corresponds for each point to the maximum
probability to observe it in the distribution, given parameter θ. Then, α observations the
least likely to be observed are trimmed for the estimation of the parameters. When we reach
convergence of the estimated parameter and there is no change in the outliers identification
from one iteration to another, the iterative algorithm stops. The use of constraints is an
additional feature that avoids building over-dispersed or unbalanced clusters, the highest

6The use of weighted distributions has more general applications. It can be used to deal with a component
distribution that does not fit exactly a Gaussian shape. For instance, to deal with heavy tail distributions, more
weight can be given to central components and less weight to the tails.
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constraint of a ratio of 1 yielding clusters with equal sizes. However, the identification
of an observation as aberrant is highly dependant on the variability constraint and the
determination of these two hyperparameters is complex and highly dependant on the
shape of the distribution. Additionally, a CEM algorithm is used to retrieve the parameters
and the proportion of outliers, for which the MLE, in contrast to the EM algorithm, is not
asymptotically consistent nor efficient.

Unlike tclust, oclust (Clark and McNicholas 2019) both retrieves the proportion of out-
liers and identifies them. To do so, it compares the complete log-likelihood of the mixture
ℓ(θ|X) with its value removing one observation ℓ(θ|X \ Xi), for all observations. Observa-
tions are iteratively removed, based on the assumption that the Kullback-Leibler divergence
between the original log-likelihood and the trimmed log-likelihood KL (ℓ(θ|X)||ℓ(θ|X \ Xi))
follows a Beta distribution. At each step, the observation that maximises the Kullback-Leibler
divergence at a statistically significant threshold is removed. The algorithm stops trimming
outliers, when this measure is not anymore statistically significant. However, the assumption
of a Beta distribution only holds asymptotically and with non-overlapping clusters.

To integrate the impact of outliers in the estimation, we simulated a two-components
GMM with well-separated and balanced clusters. The outliers distribution, corresponding
to the additional noise component, was retrieved by randomly selecting prop.outliers points
out of the total number of observations and drew their values from an uniform distribution
bounded by an interval five times as big as the 0.05 and 0.95 quantiles of fθ(X). All estimates
were obtained comparing the five reviewed initialisation methods, except with otrimle
which has its own hierarchical clustering initialisation method.

The slowest package is otrimle, most of the time being taken by the initialisation step
where proportion and identification of the outliers is performed. Running times of the other
packages are generally not impacted by the presence of outliers.

Most of the reviewed packages, except the bgmm package, are not impacted by the choice
of initialisation method. Additionally, the proportions are rather correctly estimated (related
to the choice of an uniform distribution to model outliers), but the reviewed packages tend
to overestimate the true variability of each component, with the worst results obtained with
rebmix initialisation. bgmm sets apart from the others by its reduced bias on the means
and standard deviations estimated, a feature left undocumented. However, increasing the
number of outliers (Figure 2, panel C) lead also to biased estimations for bgmm, while
otrimle, a dedicated package, is still able to correctly estimate the individual parameters of
the components’ distributions with a high proportion of outliers. Yet, analysing the code
used to implement the bgmm reveals that there is no dedicated feature to remove outliers
but rather a specific method used to deal with numerical underflow that artificially increases
the probability of observing outlying distributions (EM-implementation differences across
reviewed packages).

Appendix C: the meta-analysis workflow for the final selection of CRAN
and Bioconductor platforms

General workflow

Table 4 lists the terms used in the search, the number of packages returned by the search, the
number of packages excluded from review after the search, and the names of the packages
ultimately selected for review. Indeed, the CRAN and Bioconductor platforms are the two
most popular repositories for R packages, with a constraining review before publication.

Most packages we excluded from review did not focus on the GMM model, but on sup-
plying tools for visualising and asserting the quality of a given clustering. For instance, the
search term “cluster” returned many packages implementing other unsupervised clustering
methods, such as k-means, KNN or graph clustering, were specifically dedicated to specific
data, such as single cell analyses. The search term “mixture” returned either packages
dealing only with non-Gaussian components, such as fitmix with log-normal distributions
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Figure 2: A) Execution times for the nine reviewed packages using hierarchical clustering initialisation,
with on the left 2% of outliers in proportion and on the right, 4% of outliers. B) and C) Boxplots of the
estimated parameters with N = 200 repetitions, n = 2000 observations and respectively 2% and 4% of
outliers. The red dashed horizontal line corresponds to the true value of the parameters.
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or were dedicated to chemical mixture designs.

Table 4: Meta-analysis summary about the selection of packages implementing the estimation of
GMMs, on CRAN and Bioconductor.

Platforms Searched
terms

Number of
returned packages

Number of packages
implementing GMMs Packages implementing GMMs Packages kept

Bioconductor mixture 15 3 epigenomix, fmrs, semisup ∅
Bioconductor cluster 69 1 Melissa ∅

CRAN mixture 179 44

AdaptGauss, bgmm
bmixture, bpgmm, CAMAN, ClusterR, deepgmm

DPP, dppmix, EMCluster, EMMIXgene
EMMIXmfa, fabMix,

flexmix, fmerPack, GMKMcharlie, IMIX, ManlyMix
mclust, MGMM, mixAK, MixAll, mixdist, mixR

mixreg, mixsmsn, mixtools, mixture
MixtureInf, MMDvariance, nor1mix

pcensmix, pgmm, pmclust, polySegratioMM
rebmix, Rmixmod, RMixtComp

RobMixReg, RPMM, SAGMM, sensory, SMNCensReg

bgmm, EMCluster
flexmix, GMKMcharlie

mclust, mixtools, Rmixmod

CRAN cluster 418 16

ClusterR, clustMD, DCEM, EMCluster, HDclassif
ManlyMix, mclust, mixAK, MixAll
mixture, oclust, otrimle, pmclust, rebmix
Rmixmod, tclust

EMCluster
mclust, Rmixmod

At this stage, too many packages for a tractable benchmark remained. We hence perform
stricter selection of them, based on the following criteria:

• Some of the packages did not implement the unconstrained GMM (no constraint of
homoscedascity or equibalanced proportions). Hence, epigenomix (Klein and Schaefer
2022) , EMMIXgene (Andrew Thomas Jones 2020) , pcensmix (Fallah and Hinde 2017)
, mixAK (Komárek 2022) (homoscedastic components), mixture (Pocuca, Browne, and
McNicholas 2022) (multi-dimension only), AdaptGauss (Thrun, Hansen-Goos, and
Ultsch 2020) and MMDvariance (X. Li et al. 2018) add constraints on the number
of components, on the standard deviation of each component or on mean values of
each population, leaving no choice to the user to remove such assumptions. semisup
(Rauschenberger 2022) restrains on mixtures with two components, for which a part
of the observations are labelled. Additionally, it is designed for GWAS or differential
analyses. Other packages were designed to deal with high-dimensional data, pro-
jecting the data on a smaller subspace using a factor analysis model. Hence, these
packages can not learn a GMM for an univariate distribution, as we can not project on
a smaller space than the unidimensional space. This led to the exclusion of HDclassif,
fabMix (Papastamoulis 2020) , EMMIXmfa and pgmm (Paul D. McNicholas et al.
2022) packages. The sensory (Franczak, Browne, and McNicholas 2016) package both
imputes missing data and performs factor regression on a subspace up to 3 dimensions
at most, but requires the user to provide its own initial estimates. Alternatively, clust-
varsel (Dean, Raftery, and Scrucca 2020) discards the least informative variables, in an
attempt to find a locally optimal subset of variables that best discriminate clusters.

• We assume that our original data is continuous. However, some packages are dedicated
to deal with discrete data, for instance binned size distributions of medical patients.
This led to the exclusion of mixdist (Macdonald and Juan Du 2018).

• We restrained our review to packages that use the classic EM algorithm, using maxi-
mum likelihood estimation to retrieve the parameters of GMMs. For instance, some
packages offer a Bayesian estimation of the parameters of the model using MCMC
methods, such as bmixture Mohammadi (2021)], bpgmm (Lu, Li, and Love 2022),
DPP (Avila, May, and Ross-Ibarra 2018) , dppmix (Xu et al. 2020), BayesCR (Garay
et al. 2017) and Melissa (Kapourani 2022). polySegratioMM (Baker 2018) uses the
Bayesian framework JAGS’s interface in R. Alternatively, other algorithms focusing
on maximising the likelihood do exist, but rely on different statistical methods, such
as RPMM (Houseman et al. 2017) which implements a recursive algorithm, and
SAGMM (Andrew T. Jones and Nguyen 2019) offering a stochastic approximation.

We then removed the packages in which the MLE estimation of the unconstrained GMM
model was an ancillary task:
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• We removed the packages that focus on learning mixture of Gaussian regressions such
as fmrs (Shokoohi 2022) , mixreg (Turner 2021) or fmerPack (Y. Li and Chen 2021) , an
extension of the flexmix package with an additional feature selection using the lasso
method. nlsmsn (Prates, Lachos, and Garay 2021) implements regression of skewed
Gaussian mixtures, but in unidimensional space only. RobMixReg (S. Cao, Chang,
and Zhang 2020) performs robust regression of Gaussian mixtures using five several
methods: CTLERob, a component-wise adaptive trimming likelihood estimation;
mixbi, bi-square estimation; mixL, Laplacian distribution; mixt, t-distribution; TLE,
trimmed likelihood estimation, and flexmix which only performs flexmix regressions
with multiple random starts.

• Some packages were built to deal with highly specific tasks. RMixtComp (Kubicki,
Biernacki, and Grimonprez 2021) and clustMD (McParland and Gormley 2017) deal
with mixed data (continuous + discrete). The deepgmm (Viroli and McLachlan 2020)
package learns deep Gaussian mixture models, generalising the classical GMM with
multiple layers. IMIX (Wang 2022) focuses on clustering multi-omic data that is learnt
with the mclust package, and coseq (Rau 2022) implements RNA-Seq transcriptome
clustering using the Rmixmod package.

• Some extend the EM algorithm on Gaussian distributions and overcome its main
limitations. The MGMM (McCaw 2021) package deal with missing data, which is
not relevant in unique dimension. The mixsmsn package estimates skewed GMMs.
SMNCensReg (Garay, Massuia, and Lachos 2022) fit univariate right, left or interval
censored data. Some packages offer a robust implementation of the algorithm, auto-
matically trimming possible outliers. otrimle models the presence of outliers by an
extra component following an improper uniform distribution, while tclust and oclust
automatically removes possible outliers before the estimation step (A small simulation
to evaluate the impact of outliers).

• We also removed packages that were limited in their functionalities or complex to
install. Indeed, ClusterR (Mouselimis 2022) (k-means), rebmix (REBMIX), nor1mix
(univariate dimension only, wrong initialisation process), MixAll (Iovleff 2019) (ran-
dom and small EM) do not allow to perform the EM algorithm with its own initial
estimates. The function to provide its own initial estimates for the \pkg{DCEM]
package is only internal, and not supposed to be available for the common user. pm-
clust (W.-C. Chen and Ostrouchov 2021) depends on the availability of the OpenMPI
framework for its parallelised implementation of the EM algorithm.

• We also removed the mixR (Yu 2021) and CAMAN (Schlattmann, Hoehne, and Verba
2022) packages which have not been updated in the last two years or are still in beta
version.

The popularity of the selected packages varies largely, as illustrated in Figure 3. Among
them, mclust and flexmix are the most popular, followed by mixtools and Rmixmod
packages. We used the cranlogs (Csárdi 2019) package to retrieve the daily number of
downloads for each of the benchmarked packages, between the 30st of January, 2023 and the
30th of April, 2023.

Only the packages dedicated to high-dimensionality, listed in our first bullet point, are
relevant to benchmark their performance as a function of the number of dimensions. Indeed,
although some packages computing mixtures of regressions do implement features allowing
to handle high-dimensional datasets, such as RobMixReg and fmerPack, they all assume a
diagonal covariance structure, and accordingly independent covariates.

The two existing strategies are then limited to projection to a smaller subspace, usually
within the theoretical framework of factor analysis or to perform a feature selection strategy.
We quickly discarded fabMix, since it only retrieves the parameters of GMMs within
a Bayesian framework, while we focused on strategies retrieving the MLE via the EM
algorithm. The core function pgmmEM in the pgmm package unfortunately includes a seed
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Figure 3: Number of daily downloads (logarithmic scale) from the CRAN mirror from the 1st of
January to the 30th April 2022 for the seven R packages reviewed.

for the the algorithm’s initialisation that cannot be disabled. Such a feature is generally
not recommended for reproducibility, since by defining the seed internally in the function,
we were not able to independently generate new reproducible datasets in our benchmark
(instead, it is recommended to set the seed value once and for all at the beginning of the
virtual simulation). Additionally, while implementing the same AECM variant of the EM
algorithm as EMMIXmfa, as detailed in Appendix B: Extensions of the EM algorithm
to overcome its limitations, its convergence criteria differs from the other benchmarked
packages. Indeed, instead of considering a limiting number of iterations along with a prior
threshold, either absolute or relative, it examines only the difference between the current
value of the log-likelihood and a corresponding asymptotic estimate, based on the Aitken
acceleration (Lindsay 1995). In brief, the asymptotic value of the log-likelihood is the
limiting sum of a geometric series, whose common ratio, the so-called Aitken acceleration,
is the relative fraction of the log-likelihood gain of the current iteration. Therefore, the use
of a different termination criterion precludes any further fair comparison with the other
benchmarked packages, as there is no direct equivalence between the two methods.

Finally, clustvarsel is not really tailored for datasets with a large number of dimensions,
but rather for datasets with a small number of observations. Indeed, by performing a
sequential search in the model space in a forward-backward process (namely by adding
variables to the null model till we recover the full model, with all features), the algorithm
requires intensive computational resources (for instance, there are already 210 = 1024 models
to be tested in dimension 10). In addition, rather than employing a sequential and greedy
strategy, an independent and parallelisable feature selection procedure, through the model
space, would have sped up by several orders of magnitude the estimation. To that end, (J.
Chen and Chen 2008; He and Chen 2016) suggests a stochastic and greedy feature selection
strategy, using notably the eBIC criteria in order to have an equal chance to draw a model of
any dimension7. Such a strategy is commonly used in ensemble learning.

7Indeed, by simply uniformly sampling among the 2D models available, the probability of getting models
with D/2 features is much higher than drawing models at the boundaries, displaying either few or close to |D|
covariates.
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Practical details for the implementation of our benchmark

First, the number of observations (n = 200 and n = 500 respectively in the univariate and
bivariate setting) was chosen enough high to both lower the probability of generating a
sample without drawing any observation from one of the components in case of highly-
unbalanced clusters and decreases the margin of error related to the random sampling error.
Specifically, the probability of generating at least one simulation among the N generated
fo which less than two observations proceed from component j (the minimal number
of elements required to estimate both the mean and the variance of the corresponding
cluster), with a two-components mixture of n observations, is given by the following
formula (Equation (27)):

1 −
(

1 − (1 − pj)
n − n × (1 − pj)

n−1 × pj

)N
(27)

Interestingly, the probability of generating a sample among the N repetitions increases
exponentially as the level of imbalance increases. For instance, considering N = 100
repetitions, n = 200 observations per sample and proportion for the minor component
pj = 0.1, the probability of generating a degenerate simulation is insignificant: 1.63 × 10−6

while the risk considerably increases, keeping the same general simulation parameters
and setting minor proportion to pj = 0.05, with a probability of 0.04. We have focused on
one of the impacts of high dimensionality, namely that related to the homogenisation and
convergence of any distance norm and the increase in sparsity in relation with the number
of features added. We deliberately do not consider the case where the number of dimensions
exceeds the number of observations (namely, when D > n), since in this configuration, the
covariance matrix is no longer of full rank and invertible, implying that the corresponding
probability distribution does spans completely over a smaller subspace. However, with so
few observations, (n = 200 in scenarios identified as a), we reveal the impact in terms of the
quality of the estimation when the number of observations is closed to the number of free
parameters required to parametrise the full GMM model (with k = 2 clusters and D = 10
dimensions, k × D(D+1)

2 + kD + 1 = 131 are needed.).

Unless stated explicitly, we keep the default hyper-parameters and custom global options
provided by each package. For instance, the flexmix package has a default option, minprior,
set by default to 0.05 which removes any component present in the mixture with a ratio
below 0.05. Besides, we only implement the fully unconstrained model in both univariate
and multivariate settings, as it is the only parametrisation implemented in all the seven
packages and the most popular to perform classic GMM clustering, as no restrictive and
difficult-to-test assumptions are required.

Additionally, as stated in Parameters estimation in a high-dimensional context, the
intrinsic dimension dj for each cluster j is a hyperparameter, which is generally inferred
independently from the GMM estimation itself. While a variety of methods from the field of
factor analysis, enumerated in Factor criteria selection, have been developed to estimate the
intrinsic dimension, to our knowledge, only two of them have been implemented in CRAN
packages: the Cattell’s scree-test (Cattell 1966) or the dimension selection graph using one of
the penalty metric discussed in the appendix Model selection (Bergé, Bouveyron, and Girard
2012). However, while HDclassif natively implements a performance criterion method for
determining the dimension of the spanning space, performed under the hood by function
mixsmsn::hdcc, none of the other packages evaluated implemented a dimension selection
feature. Instead, we infer it for each of the packages dedicated to high-dimensionality with
HDclassif, using using the so-called model “AkjBkQkD”, for which the intrinsic dimension is
common to all components but the characteristics unique for each component Finally, we use
among all supplied parametrisations, the least constrained one. Namely, we used the model
“AkjBkQkDk” with HDclassif, in which not only the individual features of the covariance
matrix but also the spanning dimension are unique for each cluster, and function mcfa of the
EMMIXmfa package, in which the transition matrix is common to all components (referred to
as the orientation matrix in Appendix Parameters estimation in a high-dimensional context.
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If all the seven reviewed packages accept initial estimates provided by the user, both
the input and the output format differ between them, requiring an intensive processing to
standardise both the initial estimates input, and the output estimates. Notably, a well-known
issue with the mixture models is that they identifiable up to a permutation of the components
(alternatively, changing the index of the labels do not change the likelihood of the model).
Assigning one component of the mixture to a specific index is generally immaterial, as the
main objective is to return the estimates. However, when it comes to compare the estimated
parameters with the true estimates, we must associate unequivocally each component to
a specific index. To do so, we set a partial ordering, sorting the components by increasing
order of their mean components. Actually, if the ratio or the covariance estimates can be
equal for all the components, it is generally not the case for the centroids, as this would
result into a degenerate distribution. The consequence and some illustrations of the non-
identifiability of the mixture distributions are discussed in section Identifiability of finite
mixture models, in Dai and Mukherjea (2001) and in Book Robert and Casella (2010).

We detail below some additional functions we implement to both homogenise input and
output of the packages and ease the user’s task when comparing the performance of these
packages:

• The input observations, mean and covariance matrices have to be transposed com-
pared to the conventional format in packages bgmm, EMCluster, GMKMcharlie and
Rmixmod, namely D × k mean matrix and D2 × k covariance array (D2 matrix to store
each component variance).

• To save some storage, the EMCluster package reshapes the covariance matrix, ben-
efiting from its symmetry. Hence, instead of a three-dimensional array, EMCluster
expects a compressed k × D(D+1)

2 matrix, each line storing the upper triangular part of
the covariance. The memory gain is yet controversial, as decreasing only by a factor
two the total space required for the computation. To switch from one format to another,
we developed specifically two functions: trig_mat_to_array() and array_to_trig_mat() in
our GitHub package RGMMBench, partly inspiring from vec2sym function Handy R
functions.

• Instead of the covariance matrix, the mclust package requires the lower triangular
matrix resulting from its Cholesky decomposition. One of the main advantages of this
input, in addition to save storage space, is that it ensures that the covariance matrix is
indeed positive-definite, as the Cholesky factorisation is only defined if this condition
is respected Cholesky decomposition.

• flexmix starts by the M-step of the EM algorithm instead of the E-step. Hence, it
expects the posterior probabilities assigned to each cluster j for each observation i,
ηi(j) (Equation (21)), instead of the initial estimates. Both approaches are, however,
equivalent.

On the contrary, none of the packages we evaluated that were dedicated to high-
dimensional datasets allow the user to provide its own estimates. Thus, when any of
the benchmarked initialisation methods listed in Table 1, was internally available in the
package, we use it with the same hyperparameters described in main paper, section Initialisa-
tion of the EM algorithm. If not, we provide instead a vector containing the MAP assignments
inferred by the native initialisation method, in a process similar to that used used with
hierarchical clustering.

In addition to the plots displaying the bootstrap parameter estimations associated to
Scenarios in Tables 5, 10 and 15, we have computed summary statistics to compare the
performances of the reviewed packages:

• The bias measures the deviation between the sample mean value of the estimate and
the true parameter: Bias(θ̂) = E[θ̂]− θ.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://stats.stackexchange.com/questions/265898/why-is-a-normal-mixture-model-not-identifiable-and-why-does-it-matter
https://stats.stackexchange.com/questions/265898/why-is-a-normal-mixture-model-not-identifiable-and-why-does-it-matter
https://CRAN.R-project.org/package=EMCluster
https://rdrr.io/github/patr1ckm/patr1ckm/man/vec2sym.html
https://rdrr.io/github/patr1ckm/patr1ckm/man/vec2sym.html
https://en.wikipedia.org/wiki/Cholesky_decomposition


CONTRIBUTED RESEARCH ARTICLE 26

• The Mean Squared Error (MSE) summarises both the variability of the estimator and
its bias: MSE(θ̂) = E

[
(θ̂ − θ)2] = var(θ̂) + Bias(θ̂)2, where var(θ̂) is the empiric

variance of each estimator given by the diagonal terms of the empiric covariance
matrix.

• We enumerate the number of successes (either the package or the initial method
returns an error, or fails in returning a set of parameters enforcing standard constraints
of multivariate GMMs, namely the unit simplex constraint over the ratios, positive-
definite covariance matrices and in general no missing or infinite value).

• For each scenario, we measured independently the running times taken by the initiali-
sation step and by the estimation of the parameters by the EM algorithm. To do so,
the microbenchmark package (Mersmann 2021) was used for its higher accuracy and
flexibility for the computation of the running times in place of System.time.

The main differences across packages as well as performance results obtained across
packages in each univariate, bivariate and high-dimensional simulation scenario are thor-
oughly described in the next section.

Appendix D: comprehensive report from the univariate and multivariate
benchmark

Packages used to generate the reports and visualisations

To compute the summary metrics and generate the corresponding boxplots of the boot-
strapped parameters, we made extensive use of the facilities provided with the tidyverse
(Wickham et al. 2019) packages, including:

• tibble (Müller and Wickham 2023) to visually and uniformly store the many datasets
generated by our benchmark. We then used readr (Wickham, Hester, and Bryan 2023)
to save and import in a readable format the summary metrics associated with each
scenario and the tables listing the main functionalities implemented in the packages
studied, dplyr (Wickham, François, et al. 2023) to manipulate the data stored in the
tibbles and purrr (Wickham and Henry 2023) to manipulate the nested tibbles and
perform functional programming.

• ggplot2 (Wickham, Chang, et al. 2023; Wickham 2016) for data visualization, including
generating density graphs in the univariate and bivariate framework, and factorial
projection for the high-dimensional framework.

• stringr (Wickham 2022), for strings, and forcats (Wickham 2023), for factors, were
particularly useful for customising and ordering the packages in our graphical repre-
sentations, in order to highlight differences between them.

In addition to the array of packages within the tidyverse ecosystem, we utilized the
flextable (Gohel and Skintzos 2023) and kableExtra (Zhu 2021) packages to facilitate the
generation of summary reports in HTML and PDF formats.

Furthermore, we would like to express our gratitude for the contributions of knitr (Xie
2023, 2015), rmarkdown (Xie, Allaire, and Grolemund 2018; Allaire et al. 2023), and the
associated wrapper package rjtools(O’Hara-Wild et al. 2023), which greatly streamlined the
process of creating these HTML and PDF reports.

In a more specialised context, we harnessed the features offered by these packages:

• ComplexHeatmap (Gu, Eils, and Schlesner 2016; Gu 2022) to generate the heatmaps of
the correlation matrices. This was complemented by RColorBrewer (Neuwirth 2022)
for effective management of the R colour palette.
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• cowplot (Wilke 2020), grid (R Core Team 2023), and gridExtra (Auguie 2017) were
used for aggregating and merging multiple plots.

• ggtext (Wilke and Wiernik 2022), glue (Hester and Bryan 2022), and scales (Wickham
and Seidel 2022) were employed to enhance the clarity and readability of both x and y
ticks and labels.

EM-implementation differences across reviewed packages

Most of the distinct behaviours between the packages result from additional choices external
to the EM algorithm itself, aiming at partly overcoming its main limitations (Panel B, Figure
9). We detail below their differences ranked by decreasing order of their leverage effect on
the final estimate:

1. Most of the differences between the two classes of packages (Figure (2)) are related to
the either relative or absolute choice for the termination criterion of the EM algorithm.
Given an user-defined threshold, the absolute method early stops the estimation by com-
paring the difference between two consecutive log-likelihoods, |ℓ(θ̂q|X)− ℓ(θ̂q−1|X)|,

while the relative method examines the variation rate,
∣∣∣∣ ℓ(θ̂q |X)−ℓ(θ̂q−1|X)

ℓ(θ̂q−1|X)

∣∣∣∣.
2. Several methods can be used to deal with numerical underflow, mostly happening

with highly unlikely observations, distant from any centroid.

• The least elaborate feature is from Rmixmod, returning an error when either any
of the posterior probabilities or any of the estimated parameters goes below to
the precision threshold of the machine (2.22 × 10−16 for most OS).

• If the maximal value of any posterior probability is null, bgmm subtracts the
minimal logarithm posterior probability to any log-computed probability. This
method avoids numerical underflow by preventing computation of null ratios
but the correctness of the estimates is no longer enforced8.

• The remaining packages handled numeric underflow in a more convincing man-
ner as they guarantee to return the MLE estimate. The flexmix, GMKMcharlie
and EMCluster packages use the same log-rescaling tip detailed in (Application
of the EM algorithm to GMMs). The mixtools and mclust packages use a variant
of this trick, taking profit of the factorisation by the greatest element (Equation
(28), Equation 3 p.5 Benaglia et al. (2009)), but without exploiting the tip of
Taylor’s development over log(1 + x):

ηi(j) =
pj φζ j(x)

∑k
j=1 pj φζ j(x)

=

pj φζ j
(x)

pjmin
φζ jmin

(x)

1 +
∑j ̸=jmin

pj φζ j
(x)

pjmin
φζ jmin

(x)

(28)

In both cases, the computation of the smallest posterior probability, the most proned to
be assigned a null value, is avoided, avoiding inconsistent ratios of type 0/0.

• The previous two items deal with specific numeric limitations, but do not directly
address one of the main theoretical limitation of the EM algorithm, namely the risk
of falling into a suboptimal maximum, plateau or getting trapped on the boundary
space (occurs when the proportion of one of the component converges to zero). Some
packages specifically handle the case of a vanishing component during the EM opti-
mization: the mixtools package performs random re-initialisations in case one of the
computed variance goes below a user-defined threshold (default 10−8). flexmix and

8Additionally, bgmm does not update the estimated variances if any newly computed variance is below the
criterion stop. A remarkable side-effect of these features, as shown in Figure 2, is that the bgmm package is less
sensitive to the presence of outliers.
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GMKMcharlie deal explicitly with the removal of a component, by updating the corre-
sponding MLE parameters. flexmix removes any component whose associated weight
is by default below 0.05 (such a stringent limitation tends to an underestimation of the
true number of components in highly unbalanced mixtures)9, while GMKMcharlie
both implements a lower limit on the proportions of the components and an upper
threshold over the ratio of the maximum and minimal eigenvalue resulting from the
factorisation of the covariance matrix (Equation (12))10.

We enumerate below some additional features supplied by the packages:

• In addition to log rescaling, GMKMcharlie includes an additional argument, embed-
Noise, to avoid degenerate GMMs by adding a small constant to any diagonal term
(by default 10−6). Besides, instead of controlling whether there was a relative change
of the log-likelihood, the EM implementation of GMKMcharlie controls instead that
there was no significant relative difference in the estimated parameters in the ten
previous optimisations11. Finally, since GMKMcharlie has implemented a parallelised
version of the algorithm, it ensures using a a time limit that the algorithm indeed
terminates (by default, set to one hour).

• flexmix performs an unbiased estimate of the covariance matrix, instead of the corre-
sponding ML covariance estimate (divides by a factor n − 1 instead of the number of
observations n). Such a choice does not affect the results in our simulations, but may
have a stronger impact when fitting models to a small number of observations.

• Similarly to flexmix, the HDclassif package implements some constraints to preserve
numerical stability. The min.individuals attribute, like the minprior attribute of
flexmix function, discards any cluster having fewer observations12. However, unlike
flexmix, the algorithm stops instead of re parametrising the mixture problem with a
smaller number of components. Coupled with the Cattell’s scree-test, the noise.ctrl
attribute is the minimum threshold of a feature’s contribution to the overall variance,
computed as the corresponding normalised eigenvalue, in order to be included in
the mixture of factor analysers. This additional constraint ensures a parsimonious
dimension selection process, so that the number of selected intrinsic dimensions cannot
be greater than or equal to the order of the discarded eigenvalues.

9Indeed, at least one of the component was removed in 80% of our estimations in the unbalanced and overlapping
case (scenario U9 in 5) and in 20% of the simulations in the unbalanced and well-separated case (scenario U3 in 5).

10These options are set respectively to 0 and +∞ by default, thus they did not impact our simulations
11In our simulation, the behaviour of the GMKMcharlie did not differ significantly from the remaining packages

of the second class. However, the use of an Euclidean distance criterion may be problematic when parameters are
not on the same order of magnitude, requiring their prior normalisation

12by default, set to two, i.e. the minimum number of replications to derive an unbiased estimate of the empirical
variance of a sample
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Supplementary Figures and Tables in the univariate simulation

Table below (5) lists the complete set of parameters used to simulate the univariate Gaussian
mixture distribution in our benchmark:

Table 5: The 9 parameter configurations tested to generate the samples of the univariate experiment,
with k = 4 components.

ID Entropy OVL Proportions Means Correlations

U1 1.00 3.3e-05 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U2 1.00 5.7e-03 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U3 1.00 2.0e-02 0.25 / 0.25 / 0.25 / 0.25 0 / 4 / 8 / 12 2 / 2 / 2 / 2

U4 0.96 3.3e-05 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U5 0.96 5.8e-03 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U6 0.96 2.0e-02 0.2 / 0.4 / 0.2 / 0.2 0 / 4 / 8 / 12 2 / 2 / 2 / 2

U7 0.68 2.7e-05 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 0.3 / 0.3 / 0.3 / 0.3

U8 0.68 4.4e-03 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 1 / 1 / 1 / 1

U9 0.68 1.5e-02 0.1 / 0.7 / 0.1 / 0.1 0 / 4 / 8 / 12 2 / 2 / 2 / 2

Figure 4-Figure 8 each summarise the benchmarking results associated with one of the
scenarios listed in Table 5.

Summary tables 6- 9 display the average performance for each package of the benchmark
with each initialisation method. The best performing pair (lowest bias or MSE) is highlighted
in green, and the worst performing in red. The MSE and bias columns were derived by
summing respectively the estimated proportions, means and standard deviations associated
with the individual components.
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Table 6: MSE and Bias associated to scenario U1, in Table 5 (balanced and well-separated components)

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

kmeans 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

quantiles 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

random 0.0061 1.90000 0.19000 0.0290 0.5300 0.1100
EMCluster / GMKMcharlie

rebmix 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

hc 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

kmeans 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

quantiles 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

random 0.0064 1.80000 0.19000 0.0290 0.5300 0.1100
flexmix

rebmix 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

hc 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

kmeans 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

quantiles 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

random 0.0062 1.80000 0.19000 0.0290 0.5300 0.1100
mclust / bgmm

rebmix 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

hc 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

kmeans 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

quantiles 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

random 0.0064 1.90000 0.19000 0.0290 0.5300 0.1100
mixtools

rebmix 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

hc 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

kmeans 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

quantiles 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

random 0.0064 1.90000 0.19000 0.0290 0.5300 0.1100
Rmixmod / RGMMBench

rebmix 0.0004 0.00077 0.00037 0.0025 0.0068 0.0028

The panels indexed by the B letter, from Figure 4 to Figure 8, display the 0.05, 0.5 and
0.95 quantiles of the distribution of the operating times taken for parameter estimation, for
the scenarios listed in Table 5.

First, we note that the execution time grows asymptotically linearly with the number of
observations, confirming empirically the expected linear complexity of the EM algorithm.
The most important factor playing on the differences observed is related to the complexity
of the distribution, and especially the degree of overlap between the components:

• On the one hand hand, when components are well-separated (scenarios 1 and 3 in
Table 5), the estimation of the parameters is simple, leading to a reduced number of
iterations required to reach the convergence and shorter running times.

• On the other hand, the time taken by the slowest package for the estimation of the
parameters increases by a hundred factor with the most complex scenario (see scenario
U9, 5, illustrated in Figure 7), compared to the simplest scenario (see U1, 5, shown in
Figure 4). Indeed, the average running time for a complete run of the EM algorithm
increases from 0.215 seconds to 10.8 seconds.

To better understand the running times’ differences observed between the packages for a
given scenario, we perform a three-way anova, taking into account the choice of initialisation
method, the programming language and the class of packages13:

13To compare whether differences between mean running times or estimation performances differ across
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Figure 4: Benchmark summary plots of scenario U1 in Table 5 (balanced and well-separated compo-
nents), organised as such: The panel A displays the distribution of the global mixture distribution
fθ(X) (pink solid line) and of each of its constitutive components scaled by their respective proportions
(dotted lines). Running times are displayed in Panel B with the k-means initialisation. The number
of observations (x-axis) and the running time (y-axis) is in log(10) scale, implying that any linear
relationship between the running time and the number of observations is represented by a slope of 1.
The points represent median running time. The coloured bands represent the 5th and 95th percentiles
of the running time. In panel C are represented the boxplots associated with the distribution of the
estimates, with one box per pair of package and initialisation method. The median is displayed with
bold black line, the mean with a yellow cross and the 0.25 and 0.95 quantiles match the edges of the
rectangular band. Solid black lines extending past the box boundaries represent the 1.5 IQR, estimates
above these limits considered as outliers and omitted from the plot. Finally, the true value of the
parameter is represented as a dashed red line. The bold black writing in the upper right-hand corner
refers to the parameter whose distribution is shown in the corresponding facet. The first, second and
third rows are the distributions of the ratios, means and variances of each component, identified by
the column index.
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Figure 5: Benchmark summary plots of scenario U7 in Table 5 (unbalanced and well-separated
components), with same layout as in Figure 4.

Figure 6: Benchmark summary plots of scenario U3 in Table 5 (balanced and overlapping components),
with same layout as in Figure 4.
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Table 7: MSE and Bias associated to scenario U7, in Table 5 (unbalanced and well-separated compo-
nents)

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.02900 2.8000 0.45000 0.1000 0.840 0.250

kmeans 0.00730 0.7900 0.13000 0.0260 0.240 0.075

quantiles 0.16000 19.0000 3.20000 0.6400 6.100 1.800

random 0.17000 10.5000 1.40000 0.3600 3.100 0.780
EMCluster / GMKMcharlie

rebmix 0.00027 0.0015 0.00077 0.0025 0.014 0.014

hc 0.05500 2.8000 0.45000 0.1100 0.850 0.250

kmeans 0.00760 0.7800 0.13000 0.0260 0.240 0.075

quantiles 0.11000 19.0000 3.20000 0.5400 6.000 1.900

random 0.15000 8.4000 1.00000 0.3000 2.500 0.580
flexmix

rebmix 0.00027 0.0015 0.00076 0.0025 0.014 0.011

hc 0.03200 2.8000 0.45000 0.1000 0.850 0.250

kmeans 0.00740 0.7800 0.13000 0.0260 0.240 0.075

quantiles 0.14000 19.0000 3.20000 0.6000 6.000 1.900

random 0.18000 10.4000 1.40000 0.3600 3.100 0.800
mclust / bgmm

rebmix 0.00027 0.0015 0.00077 0.0025 0.014 0.014

hc 0.03200 2.8000 0.45000 0.1000 0.850 0.250

kmeans 0.00620 0.7600 0.13000 0.0170 0.230 0.079

quantiles 0.15000 19.0000 3.20000 0.5800 6.000 1.800

random 0.18000 10.3000 1.40000 0.3600 3.100 0.800
mixtools

rebmix 0.00027 0.0015 0.00077 0.0025 0.014 0.014

hc 0.02900 2.8000 0.45000 0.1000 0.850 0.250

kmeans 0.00540 0.7700 0.13000 0.0190 0.230 0.078

quantiles 0.14000 19.0000 3.20000 0.5900 6.000 1.800

random 0.17000 10.4000 1.40000 0.3600 3.100 0.800
Rmixmod / RGMMBench

rebmix 0.00027 0.0015 0.00077 0.0025 0.014 0.014

• With well-separated components (Scenarios U1 and U7 in Table 5), the class of packages
(namely the choice of the convergence criterion) has a negligible impact compared to
the choice of initialisation algorithm or the programming language. The effect sizes
associated to the programming language and the initialisation method are respectively
1.688 × 10−2 (p-value of 3 × 10−60) and 13 × 10−5 (p-value of 3 × 10−60), while the
choice of the termination criteria did not significantly impact the execution time, with
an effect size of 8.119 × 10−4( p-value of 0.35). Faster running times with packages
natively encoded in Fortran or C compared to those encoded in R only were expected,
as R is a high-level programming language known to be slower. Indeed, the flexmix
package is the slowest, preceded by our baseline R implementation. Additionally,
mclust, followed by mixtools, Rmixmod and bgmm are the fastest.

• On the other hand, with overlapping components (Scenarios U3 and U9 in Table
5), the package class and the programming language have a statistically significant
impact on the average running times (the effect sizes associated to the choice of the
termination criteria and the programming language are respectively 0.111 (numerical
null p-value) and 0.0852 (p-value of 8 × 10−307)) while the initialisation method has
no substantial impact (effect size of 2.967 × 10−4 and p-value of 0.32). In the context
of highly overlapping mixture, the fastest ones are mclust and GMKMcharlie, ben-
efiting from both using relative ratios and a fast programming language, while our

packages, we used the between-subjects Anova test rstatix::anova_test() to generate the p-values and
rstatix::partial_eta_squared() to compute the corresponding effect sizes.
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Table 8: MSE and Bias associated to scenario U3, in Table 5 (balanced and overlapping components)

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.0170 1.60 0.45 0.1950 1.320 0.93

kmeans 0.0054 0.81 0.18 0.0125 0.023 0.32

quantiles 0.0070 0.67 0.30 0.0930 0.590 0.56

random 0.0440 8.40 1.00 0.0710 0.330 0.63
EMCluster / GMKMcharlie

rebmix 0.0990 11.00 1.60 0.2000 1.600 0.78

hc 0.0260 2.60 0.94 0.1120 1.160 1.22

kmeans 0.0044 0.67 0.14 0.0036 0.091 0.27

quantiles 0.0054 0.57 0.27 0.0850 0.670 0.55

random 0.0420 8.20 1.10 0.0450 0.450 0.68
flexmix

rebmix 0.1210 14.30 2.70 0.2700 2.700 1.17

hc 0.0110 2.50 0.84 0.0330 1.160 1.10

kmeans 0.0068 0.86 0.24 0.0294 0.114 0.36

quantiles 0.0075 0.70 0.32 0.1110 0.720 0.63

random 0.0490 9.10 1.20 0.0800 0.320 0.68
mclust / bgmm

rebmix 0.1410 10.90 2.90 0.2900 1.800 1.47

hc 0.0320 2.40 0.80 0.0670 0.360 0.25

kmeans 0.0415 2.51 1.11 0.1000 0.664 0.74

quantiles 0.0383 2.40 1.00 0.1170 0.770 0.78

random 0.0660 9.40 1.80 0.0130 0.340 0.48
mixtools

rebmix 0.1090 9.60 2.50 0.2600 1.800 1.33

hc 0.0220 2.00 0.67 0.0490 0.370 0.25

kmeans 0.0318 2.31 0.85 0.0952 0.602 0.67

quantiles 0.0297 2.19 0.80 0.1210 0.770 0.76

random 0.0620 9.40 1.70 0.0160 0.310 0.50
Rmixmod / RGMMBench

rebmix 0.1140 10.30 2.60 0.2600 1.900 1.31

baseline implementation emnmix, preceded by Rmixmod and mixtools, are on average
a hundred times slower.
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Table 9: MSE and Bias associated to scenario U9, in Table 5 (unbalanced and overlapping components)

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.230 9.3 0.94 0.78 4.9 1.33

kmeans 0.094 5.1 0.57 0.50 3.4 0.89

quantiles 0.230 9.9 1.00 0.80 5.1 1.34

random 0.270 11.5 0.90 0.63 2.8 0.85
EMCluster / GMKMcharlie

rebmix 0.330 20.0 2.20 0.53 5.3 0.84

hc 0.170 10.5 0.88 0.64 5.2 1.14

kmeans 0.051 5.6 0.61 0.34 3.6 0.94

quantiles 0.210 11.3 1.20 0.75 5.6 1.53

random 0.180 9.5 0.77 0.43 2.7 0.86
flexmix

rebmix 0.110 10.0 1.70 0.15 2.3 1.48

hc 0.230 10.2 0.84 0.79 5.1 1.20

kmeans 0.107 5.5 0.62 0.53 3.6 0.96

quantiles 0.270 11.4 1.20 0.87 5.6 1.59

random 0.300 12.2 1.06 0.66 2.9 0.84
mclust / bgmm

rebmix 0.270 21.0 2.50 0.46 5.2 1.13

hc 0.200 9.7 1.19 0.64 3.4 0.69

kmeans 0.135 7.7 1.16 0.46 2.1 0.48

quantiles 0.280 11.2 1.60 0.74 4.2 0.72

random 0.350 15.7 1.62 0.65 2.1 0.64
mixtools

rebmix 0.240 22.0 2.70 0.47 5.1 1.18

hc 0.210 9.5 1.07 0.69 3.8 0.79

kmeans 0.113 6.5 0.90 0.46 2.4 0.43

quantiles 0.240 10.1 1.30 0.74 4.2 0.81

random 0.320 14.6 1.45 0.61 2.1 0.58
Rmixmod / RGMMBench

rebmix 0.250 22.0 2.70 0.49 5.2 1.18

Supplementary Figures and Tables in the bivariate simulation

Table below (10) lists the complete set of parameters used to simulate the multivariate
Gaussian mixture distribution in our benchmark:

Figures 11- 14 are associated to scenarios B11 - B15 of Table 10. Summary tables 11-
14 show the average performance for each combination of a benchmarked package and
initialisation method, with the same conventions as discussed in Supplementary Figures
and Tables in the univariate simulation.

First, we can directly observe that the OVL increases as the individual variance of each
component, the proximity of the centroids of the clusters and the level of imbalance is
increased. We demonstrate this statement formally in section An analytic formula of the
overlap for univariate Gaussian mixtures. Nonetheless, the influence of the correlation be-
tween the x and the y-axis (the off-diagonal term of the covariance matrix) is not immediate,
notably the assumption of independent features does not automatically entail a lower OVL
or simpler estimation.

From our experiments, we deduce that the highest OVL is obtained when the main axis
of the two respective components aligns with the line joining the two centroids. For instance,
in our scenario, the lowest OVL is obtained when the correlation term is positive for both
clusters (scenario 14, Table 10 and isodensity plot in panel A, Figure 13), whereas the highest
OVL is obtained with a negative correlation (scenario 11, Table 10and isodensity plot in
panel A, Figure 11). Recall that the slope joining the two centroids of the two components in
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Figure 7: Benchmark summary plots of scenario U9 in Table 5 (unbalanced and overlapping compo-
nents), with same layout as in Figure 4.

all our simulated distributions is indeed negative.
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Figure 8: Benchmark summary plots of scenarios U4 and U6 in Table 5 (small unbalance, with
additional overlap in scenario U6). Panel A and B display the univariate GMM distributions of
respectively scenarios U4 and U6, and Panel C and D the benchmarked distributions of respectively
scenarios U4 and U6, built as Panel C of Figure 4.
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Figure 9: Correlation heatmaps of the estimated parameters extended to the four initialisation methods
benchmarked, using the same configuration described in Figure (2), in the bivariate setting.
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Figure 10: Distribution of the running times taken by each initialisation algorithm enumerated in Table
1, across all scenarios listed in Table 5, sorted by increasing ID number in the lexicographical order.

In contrast to the univariate setting (Supplementary Figures and Tables in the univariate
simulation), the fastest packages are bgmm, EMCluster, flexmix, and Rmixmod, and the
slowest ones mclust, GMKMcharlie and mixtools, independently from the difficulty of the
simulation.

Finally, Figures 15, 16 and 17 represent in a synthetic way less interesting scenarios
benchmarked with to the left, the contour maps and to the right the corresponding Hellinger
boxplots, with one scenario being illustrated per row.
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Figure 11: Results of scenario B11 in Table 10 (unbalanced, overlapping and negative correlated
components), organised as such: The panel A displays the bivariate contour maps associated to the
two-components multivariate Gaussian distribution corresponding to the parametrisation described
by the scenario, warmer colours corresponding to regions of higher densities. The two centroids,
whose coordinates are given by the mean components’ elements, are represented with distinct shaped
and coloured point estimates. In both Panels A and B, the ellipsoids correspond to the 95% confi-
dence region associated to each component’s distribution. To generate them, we largely inspired
from the mixtools::ellipse() and website How to draw ellipses. To generate them, we retain for
each individual parameter its mean (similar results with the median) over the N = 100 sampling
experiments, restrained to the random initialisation method. The running times are displayed in Panel
C with the k-means initialisation. The number of observations (x-axis) and the running time (y-axis)
is in log(10) scale. The points represent median running time. The coloured bands represent the 5th

and 95th percentiles of the running time. The distributions of the Hellinger distances (a closed form
is only available for the Gaussian multivariate distribution, not the mixture) are computed for each
component, each initialisation method and each package with respect to the true Gaussian distribution
expected for each component. The more dissimilar are the distributions, the higher is the Hellinger
distance, knowing it is normalised between 0 and 1. We represent them using boxplot representations
in Panel D. In panel E we represent the boxplots associated with the distribution of the estimates, with
one box per pair of package and initialisation method. As the correlation is a symmetric operator, we
only represent the distribution of the lower part of the lower matrix. Each column is associated to
the parameters of a component. First row represents the distribution of the estimated ratios, second
and third respectively the distributions of the mean vector on the x-axis and on the y-axis, third and
four the distributions of the individual variances of each feature and finally the fifth row shows the
distribution of the correlation between dimension 1 and 2.
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Figure 12: Results of scenario B12 in Table 10 (unbalanced, overlapping and opposite correlated
components), with the same layout as Figure 11.
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Figure 13: Results of scenario B14 in Table 10 (unbalanced, overlapping and positive correlated
components), with the same layout as Figure 11.
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Figure 14: Results of scenario B15 in Table 10 (unbalanced, overlapping and uncorrelated components),
with the same layout as Figure 11.
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Figure 15: Benchmark summary plots of respectively scenarios B1, B2 and B5 in Table 10 featuring
balanced and overlapping clusters. Summary plots of B1, B2 and B5 are represented in this order on
each row, with the left column displaying the 95% confidence ellipsoidal regions associated to the
mean estimated parameters across each package and the right column the distribution of the Hellinger
distances.
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Table 10: The 20 parameter configurations tested to generate the samples of the bivariate experiment.

ID Entropy OVL Proportions Means Correlations

B1 1.00 0.15000 0.5 / 0.5 (0,2);(2,0) -0.8 / -0.8

B2 1.00 0.07300 0.5 / 0.5 (0,2);(2,0) -0.8 / 0.8

B3 1.00 0.07300 0.5 / 0.5 (0,2);(2,0) 0.8 / -0.8

B4 1.00 0.00078 0.5 / 0.5 (0,2);(2,0) 0.8 / 0.8

B5 1.00 0.07900 0.5 / 0.5 (0,2);(2,0) 0 / 0

B6 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) -0.8 / -0.8

B7 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) -0.8 / 0.8

B8 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0.8 / -0.8

B9 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0.8 / 0.8

B10 1.00 0.00000 0.5 / 0.5 (0,20);(20,0) 0 / 0

B11 0.47 0.06600 0.9 / 0.1 (0,2);(2,0) -0.8 / -0.8

B12 0.47 0.01600 0.9 / 0.1 (0,2);(2,0) -0.8 / 0.8

B13 0.47 0.05000 0.9 / 0.1 (0,2);(2,0) 0.8 / -0.8

B14 0.47 0.00045 0.9 / 0.1 (0,2);(2,0) 0.8 / 0.8

B15 0.47 0.03900 0.9 / 0.1 (0,2);(2,0) 0 / 0

B16 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) -0.8 / -0.8

B17 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) -0.8 / 0.8

B18 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0.8 / -0.8

B19 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0.8 / 0.8

B20 0.47 0.00000 0.9 / 0.1 (0,20);(20,0) 0 / 0

Supplementary Figures and Tables in the HD simulation

Table below (15) lists the complete set of parameters used to simulate Gaussian distributions
in the high dimensional benchmark:
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Figure 16: Benchmark summary plots of respectively scenarios B6, B7 and B10 in Table 10 featuring
balanced and well-separated clusters, with the same layout as Figure 15.
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Figure 17: Benchmark summary plots of respectively scenarios B16, B17 and B20 in Table 10 featuring
unbalanced and well-separated clusters, with the same layout as Figure 15.
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Figure 18: Correlation heatmaps of the estimated parameters in the bivariate setting extended to the
four initialisation methods benchmarked, with the most discriminating scenario B11, using the same
process described in Figure (2).
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Table 11: MSE and Bias associated to scenario B11, in Table 10 (unbalanced, overlapping and negative
correlated components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.230 3.90 1.8 0.550 2.30 1.200

kmeans 0.136 2.80 1.9 0.450 2.30 2.200

random 0.028 1.27 1.1 0.084 0.12 0.140EMCluster / GMKMcharlie

rebmix 0.071 2.20 1.4 0.170 0.66 0.111

hc 0.260 3.90 1.9 0.480 2.40 1.300

kmeans 0.077 2.80 1.9 0.270 2.40 2.300

random 0.028 0.96 1.0 0.064 0.77 0.720flexmix

rebmix 0.087 1.90 1.0 0.170 1.02 0.468

hc 0.230 3.90 1.8 0.550 2.30 1.200

kmeans 0.136 2.80 1.9 0.450 2.30 2.200

random 0.028 1.27 1.1 0.084 0.12 0.140mclust / bgmm

rebmix 0.071 2.20 1.4 0.170 0.66 0.111

hc 0.210 3.30 1.8 0.470 1.80 1.100

kmeans 0.131 2.60 1.8 0.380 1.80 1.800

random 0.051 1.61 1.1 0.129 0.20 0.180mixtools

rebmix 0.093 2.40 1.4 0.210 0.60 0.063

hc 0.210 3.30 1.8 0.470 1.80 1.100

kmeans 0.131 2.60 1.8 0.380 1.80 1.800

random 0.051 1.61 1.1 0.129 0.20 0.180Rmixmod / RGMMBench

rebmix 0.093 2.40 1.4 0.210 0.60 0.063
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Figure 19: Results of scenario HD4a) in Table 15 (unbalanced, overlapping and negative correlated
components), organised as such: The panel A displays the bivariate factorial projection of a random
sample drawn from the 10-dimensional multivariate Gaussian distribution parametrised by Table 15.
Each component is associated to a specific color, a centroid whose coordinates are given by the mean
components’ elements in the bivariate projected space and a 95% confidence ellipse. Arrows represent
the correlation circle of the dimensional variables. Both panels were displayed respectively using
functions factoextra::fviz_eig and factoextra::fviz_pca_biplot while the underlying compu-
tations proceed from the principal component analysis performed by ade4::dudi.pca preceded by
standard scaling of the sampling dataset. The panel B pictures the parallel distribution plots from a
random sampling of n = 100 observations, generated using GGally::ggparcoord, and representing the
coordinates of each simulated data point in 10 dimensions. The running times are displayed in Panel C
with the k-means initialisation. The number of observations (x-axis) and the running time (y-axis) is in
log(10) scale. The distributions of the Hellinger distances are computed for each component in Panel
D, each initialisation method and each package with respect to the true Gaussian distribution expected
for each component. In panel E we represent the boxplots associated with the distribution of some
of the estimates. Since it was impractical to represent all of the k + kD + k D×(D+1)

2 with k = 2 and
D = 10 parameters, we only represent the first component’s mean, two first components’ variances
and their covariance term.
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Figure 20: Results of scenario HD7a) in Table 15 (balanced and overlapping components, with full
covariance structure), with the same layout as Figure 19.
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Figure 21: We gathered on the same plot two multivariate benchmark scenarios, in which we consider
a strictly spherical structure of the covariance matrix: We represent in Panel A and B, respectively the
bivariate projection and parallel distribution plot, associated to scenario HD5a) in Table 15 (balanced
and overlapping components, with spherical covariance structure). In Panel C, we display the boxplots
associated to scenario HD5a), computing them similarly as in Panel E of Figure 19. In Panel D, we
display the boxplots associated to scenario HD6a) (unbalanced and overlapping components, with
spherical covariance structure).
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Figure 22: Overview of scenarios HD1 a) and b) and HD8 a) and b) in Table 15comparing the
performance of the algorithms in respectively the easiest and most complex scenario. The left-hand
column shows box plots of the estimated parameters from simulations with n = 200 observations on
the left and n = 2000 observations on the right.

Figure 23: Correlation heatmaps of the estimated parameters in the high dimensional (HD) setting
extended to the three initialisation methods benchmarked (respectively hc, k-means and rebmix) in
the most discriminating scenario HD8a), using the same process described in Figure (2).
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Table 12: MSE and Bias associated to scenario B12, in Table 10 (unbalanced, overlapping and opposite
correlated components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.00076 0.049 0.16 0.0063 0.056 0.131

kmeans 0.00076 0.049 0.16 0.0063 0.056 0.131

random 0.00075 0.049 0.16 0.0057 0.055 0.123EMCluster / GMKMcharlie

rebmix 0.00087 0.066 0.17 0.0070 0.063 0.190

hc 0.00144 0.049 0.16 0.0101 0.055 0.071

kmeans 0.00144 0.049 0.16 0.0101 0.055 0.071

random 0.00144 0.050 0.16 0.0099 0.054 0.067flexmix

rebmix 0.00145 0.048 0.16 0.0142 0.047 0.110

hc 0.00076 0.049 0.16 0.0063 0.056 0.131

kmeans 0.00076 0.049 0.16 0.0063 0.056 0.131

random 0.00075 0.049 0.16 0.0057 0.055 0.124mclust / bgmm

rebmix 0.00087 0.066 0.17 0.0070 0.063 0.190

hc 0.00075 0.050 0.16 0.0049 0.054 0.112

kmeans 0.00075 0.050 0.16 0.0049 0.054 0.112

random 0.00075 0.050 0.16 0.0049 0.054 0.112mixtools

rebmix 0.00086 0.066 0.17 0.0061 0.062 0.170

hc 0.00075 0.050 0.16 0.0049 0.054 0.112

kmeans 0.00075 0.050 0.16 0.0049 0.054 0.112

random 0.00075 0.050 0.16 0.0049 0.054 0.112Rmixmod / RGMMBench

rebmix 0.00086 0.066 0.17 0.0061 0.062 0.170
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Table 13: MSE and Bias associated to scenario B14, in Table 10 (unbalanced, overlapping and positive
correlated components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.00043 0.044 0.13 0.00081 0.044 0.060

kmeans 0.00043 0.044 0.13 0.00081 0.044 0.060

random 0.00043 0.044 0.13 0.00080 0.044 0.060EMCluster / GMKMcharlie

rebmix 0.00040 0.044 0.13 0.00120 0.047 0.053

hc 0.00043 0.044 0.13 0.00072 0.043 0.035

kmeans 0.00043 0.044 0.13 0.00072 0.043 0.035

random 0.00043 0.044 0.13 0.00072 0.044 0.035flexmix

rebmix 0.00040 0.044 0.14 0.00110 0.047 0.044

hc 0.00043 0.044 0.13 0.00081 0.044 0.060

kmeans 0.00043 0.044 0.13 0.00081 0.044 0.060

random 0.00043 0.044 0.13 0.00080 0.044 0.060mclust / bgmm

rebmix 0.00040 0.044 0.13 0.00120 0.047 0.053

hc 0.00043 0.044 0.13 0.00078 0.044 0.060

kmeans 0.00043 0.044 0.13 0.00078 0.044 0.060

random 0.00043 0.044 0.13 0.00078 0.044 0.060mixtools

rebmix 0.00040 0.044 0.13 0.00110 0.047 0.053

hc 0.00043 0.044 0.13 0.00078 0.044 0.060

kmeans 0.00043 0.044 0.13 0.00078 0.044 0.060

random 0.00043 0.044 0.13 0.00078 0.044 0.060Rmixmod / RGMMBench

rebmix 0.00040 0.044 0.13 0.00110 0.047 0.053
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Table 14: MSE and Bias associated to scenario B15, in Table 10 (unbalanced, overlapping and uncorre-
lated components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

hc 0.1110 2.30 1.30 0.280 1.40 0.90

kmeans 0.0500 1.50 1.30 0.200 1.05 1.06

random 0.0290 0.71 0.63 0.070 0.28 0.19EMCluster / GMKMcharlie

rebmix 0.0163 0.69 0.78 0.074 0.37 0.44

hc 0.1330 2.40 1.40 0.240 1.50 1.05

kmeans 0.0320 1.60 1.40 0.110 1.21 1.26

random 0.0370 0.71 0.64 0.048 0.35 0.29flexmix

rebmix 0.0058 0.70 0.84 0.028 0.49 0.62

hc 0.1110 2.30 1.30 0.280 1.40 0.90

kmeans 0.0500 1.50 1.30 0.200 1.05 1.06

random 0.0290 0.71 0.63 0.070 0.28 0.19mclust / bgmm

rebmix 0.0163 0.69 0.78 0.074 0.37 0.44

hc 0.0860 1.90 1.20 0.220 1.10 0.75

kmeans 0.0470 1.30 1.10 0.170 0.79 0.78

random 0.0230 0.67 0.66 0.065 0.24 0.19mixtools

rebmix 0.0158 0.69 0.77 0.068 0.30 0.37

hc 0.0860 1.90 1.20 0.220 1.10 0.75

kmeans 0.0470 1.30 1.10 0.170 0.79 0.78

random 0.0230 0.67 0.66 0.065 0.24 0.19Rmixmod / RGMMBench

rebmix 0.0158 0.69 0.77 0.068 0.30 0.37
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Table 15: The 16 parameter configurations tested to generate the samples in a high dimensional context.
The first digit of each ID index refers to an unique parameter configuration (identified by its level
of overlap, entropy and topological structure, either circular or ellipsoidal, of the covariance matrix,
while the lowercase letter depicts the number of observations, a) with n = 200 and b) with n = 2000.

ID OVL Number of
observations Proportions Spherical

HD1a 1e-04 200 0.5 / 0.5

HD1b 1e-04 2000 0.5 / 0.5

HD2a 1e-04 200 0.19 / 0.81

HD2b 1e-04 2000 0.19 / 0.81

HD3a 1e-04 200 0.5 / 0.5

HD3b 1e-04 2000 0.5 / 0.5

HD4a 1e-04 200 0.21 / 0.79

HD4b 1e-04 2000 0.21 / 0.79

HD5a 2e-01 200 0.5 / 0.5

HD5b 2e-01 2000 0.5 / 0.5

HD6a 2e-01 200 0.15 / 0.85

HD6b 2e-01 2000 0.15 / 0.85

HD7a 2e-01 200 0.5 / 0.5

HD7b 2e-01 2000 0.5 / 0.5

HD8a 2e-01 200 0.69 / 0.31

HD8b 2e-01 2000 0.69 / 0.31
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Table 16: MSE and Bias associated to scenario HD4a, in Table 15 (unbalanced, separated and ellipsoidal
components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

% Success

hc 0.0333 0.0212 0.0106 0.0020 0.056 0.097 100
kmeans 0.0333 0.0212 0.0106 0.0020 0.056 0.097 100mixtools / Rmixmod / RGMMBench
rebmix 0.3244 0.1980 0.0845 0.0720 0.395 0.535 98

hc 0.0333 0.0212 0.0106 0.0020 0.056 0.097 100
kmeans 0.0333 0.0212 0.0106 0.0020 0.056 0.097 100mclust / flexmix / GMKMcharlie
rebmix 0.2553 0.1444 0.0924 0.0470 0.364 0.596 85

hc 0.0337 0.0214 0.0107 0.0070 0.064 0.096 100
kmeans 0.0338 0.0216 0.0106 0.0074 0.064 0.096 100bgmm
rebmix 0.4818 0.1152 0.3442 0.0320 0.223 2.329 94

hc 0.0333 0.0212 0.0107 0.0023 0.056 0.096 100
kmeans 0.0334 0.0213 0.0106 0.0018 0.056 0.096 100EMCluster
rebmix 1.5983 1.0992 0.3794 0.3100 2.018 2.575 84

hc 8.4062 8.3936 0.0111 0.0020 10.426 0.149 100
kmeans 7.9407 7.9282 0.0111 0.0019 10.081 0.149 100HDclassif
rebmix 7.9803 7.9514 0.0273 0.0044 10.128 0.262 84

hc 4.0605 3.3317 0.3357 0.6500 5.757 2.772 95
kmeans 3.8790 3.2175 0.3372 0.5400 5.781 2.777 96EMMIXmfa
rebmix 4.0127 3.2715 0.3337 0.5700 5.680 2.757 80

Table 17: MSE and Bias associated to scenario HD7a, in Table 15 (balanced, overlapping and ellipsoidal
components).

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

% Success

hc 5.8544 2.2153 3.5586 0.0450 2.084 6.704 100
kmeans 5.4773 1.9490 3.4819 0.0086 2.323 6.861 100mixtools / Rmixmod / RGMMBench
rebmix 6.9243 2.5185 4.2898 0.0620 2.670 7.626 97

hc 6.0584 2.4737 3.5198 0.0180 2.565 7.624 100
kmeans 5.6388 2.1597 3.4549 0.0140 2.744 8.266 100mclust / flexmix / GMKMcharlie
rebmix 6.5397 2.4738 3.9661 0.0700 2.774 7.764 93

hc 9.5015 5.1348 4.1086 0.1000 3.720 10.310 100
kmeans 8.7930 4.7119 3.8693 0.1500 3.932 10.108 100bgmm
rebmix 10.3630 5.6474 4.4026 0.2700 3.798 10.049 97

hc 6.4022 2.8255 3.5124 0.0120 3.141 9.086 100
kmeans 6.4333 2.8740 3.5523 0.0110 4.210 11.007 100EMCluster
rebmix 6.5527 2.9643 3.4862 0.0580 3.051 9.253 93

hc 15.9010 11.5382 4.2950 0.1400 10.846 10.100 100
kmeans 15.3377 10.9441 4.3716 0.0087 10.990 10.771 100HDclassif
rebmix 16.1231 11.1103 4.9113 0.1600 10.761 10.513 93

hc 4.8606 1.6546 3.1856 0.0160 2.030 7.395 15
kmeans 4.4039 1.4129 2.9701 0.0260 1.734 6.236 21EMMIXmfa
rebmix 5.0984 2.0057 3.0689 0.0470 2.314 7.613 16

Table 18: MSE and Bias associated to scenarios HD5a) and HD6a), in Table 15 (overlapping and
spherical-distributed components). We delimite each scenario by doubled backslashes with respec-
tively balanced and unbalanced clusters.

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

% Success

hc 4.2772 // 19.5172 0.9198 // 1.9835 3.3027 // 17.4943 0.017 // 0.069 0.995 // 0.6 3.571 // 4.381 100 // 100
kmeans 3.9776 // 17.2212 0.8279 // 1.6336 3.1111 // 15.5684 0.072 // 0.069 0.841 // 0.82 3.023 // 5.034 100 // 100mixtools / Rmixmod / RGMMBench
rebmix 9.3136 // 25.8028 2.7793 // 4.2893 6.4009 // 21.3519 0.15 // 0.22 3.619 // 2.507 9.061 // 11.826 96 // 80

hc 2.9743 // 18.1175 0.5862 // 1.7729 2.3612 // 16.3168 0.024 // 0.057 0.449 // 0.514 2.127 // 4.412 100 // 100
kmeans 2.5629 // 15.2959 0.4642 // 1.5608 2.0855 // 13.7206 0.085 // 0.086 0.671 // 1.047 1.67 // 5.801 100 // 100mclust / flexmix / GMKMcharlie
rebmix 8.2907 // 23.7588 2.6468 // 4.1629 5.5421 // 19.4579 0.12 // 0.22 3.438 // 2.543 8.792 // 11.94 96 // 69

hc 2.4088 // 33.8392 0.7261 // 9.0609 1.6153 // 24.6796 0.12 // 0.038 0.652 // 1.986 1.98 // 10.77 100 // 100
kmeans 2.0912 // 28.5103 0.5899 // 7.5426 1.4577 // 20.8989 0.091 // 0.025 0.566 // 1.45 1.738 // 9.783 100 // 100bgmm
rebmix 4.6278 // 35.9294 1.9526 // 11.0184 2.5372 // 24.6276 0.048 // 0.22 0.632 // 2.023 2.96 // 12.729 98 // 86

hc 2.5152 // 17.7053 0.5087 // 2.1191 1.9849 // 15.5379 0.024 // 0.12 0.321 // 0.929 1.512 // 5.611 100 // 100
kmeans 1.793 // 12.8799 0.3527 // 1.6839 1.4344 // 11.155 0.062 // 0.24 0.593 // 2.177 2.547 // 9.595 100 // 100EMCluster
rebmix 6.9275 // 23.0817 2.7461 // 5.4713 4.0985 // 17.4511 0.044 // 0.32 3.177 // 3.836 8.535 // 15.437 96 // 70

hc 11.4938 // 49.4328 9.1746 // 12.2155 2.2913 // 36.5886 0.027 // 0.91 8.899 // 9.56 1.98 // 19.55 100 // 100
kmeans 11.1438 // 40.4749 9.0384 // 11.9946 2.0912 // 28.0385 0.096 // 0.7 9.059 // 9.024 1.682 // 16.35 100 // 100HDclassif
rebmix 14.6998 // 47.2364 8.7649 // 12.6715 5.8029 // 33.929 0.22 // 0.92 8.135 // 9.145 8.018 // 21.824 96 // 70

hc 5.6809 // 21.1181 3.7272 // 6.1206 1.7452 // 14.9126 0.41 // 0.019 5.772 // 3.645 4.299 // 12.812 96 // 45
kmeans 5.7063 // 21.3775 3.6759 // 6.589 1.79 // 14.5681 0.39 // 0.17 5.788 // 4.08 4.357 // 13.352 96 // 40EMMIXmfa
rebmix 5.8175 // 19.9703 3.8142 // 6.3202 1.7592 // 13.5389 0.35 // 0.033 5.819 // 4.402 4.349 // 13.812 93 // 34
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Table 19: Minimal example setting apart MSE and Bias whether it proceeds from diagonal or offset
terms of the covariance matrix, for scenarios HD5a) and HD6a), in Table 15 (overlapping and spherical-
distributed components). We delimite each scenario by doubled backslashes with respectively balanced
and unbalanced clusters.

Package Initialisation
Method

Global
MSE diag(Σ)

Global
MSE upper.tri(Σ)

Global
Bias diag(Σ)

Global
Bias upper.tri(Σ)

hc 1.1 // 5.9 2.2 // 12 0.9194 // 2.3003 2.651 // 2.081mixtools / Rmixmod / RGMMBench kmeans 0.99 // 5.6 2.1 // 10 0.8929 // 2.7422 2.13 // 2.292

hc 0.76 // 5.5 1.6 // 11 0.5698 // 2.418 1.557 // 1.994mclust / flexmix / GMKMcharlie kmeans 0.67 // 5.2 1.4 // 8.5 0.6909 // 3.4316 0.979 // 2.37

hc 0.67 // 11 0.94 // 14 0.7755 // 6.9204 1.205 // 3.849bgmm kmeans 0.58 // 9.1 0.88 // 12 0.6004 // 6.124 1.138 // 3.659

hc 0.62 // 6.1 1.4 // 9.5 0.4985 // 3.4685 1.013 // 2.143EMCluster kmeans 0.48 // 7.5 0.95 // 3.6 0.9269 // 7.6352 1.621 // 1.96

hc 0.72 // 26 1.6 // 11 0.5383 // 17.2225 1.441 // 2.328HDclassif kmeans 0.68 // 20 1.4 // 8.5 0.7156 // 13.7249 0.966 // 2.626

hc 1.6 // 10 0.13 // 4.6 3.7632 // 10.0798 0.536 // 2.733EMMIXmfa kmeans 1.6 // 11 0.17 // 3.9 3.7621 // 10.8057 0.594 // 2.546

Table 20: MSE and Bias associated to scenarios HD1a) and HD1b), in Table 15 (well-separated and
spherical-distributed components). We delimite by doubled backslashes for each entry of the summary
metrics table respectively the scores with n = 200 and n = 2000 observations.

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

% Success

hc 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0097 // 0.00071 0.053 // 0.018 0.139 // 0.04 100 // 100
kmeans 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0097 // 0.00071 0.053 // 0.018 0.139 // 0.04 100 // 100mixtools / Rmixmod / RGMMBench
rebmix 0.5611 // 0.0058 0.2364 // 0.0028 0.3035 // 0.0026 0.019 // 0.00071 0.372 // 0.018 0.915 // 0.04 98 // 100

hc 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0095 // 0.00071 0.053 // 0.018 0.14 // 0.04 100 // 100
kmeans 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0095 // 0.00071 0.053 // 0.018 0.14 // 0.04 100 // 100mclust / flexmix / GMKMcharlie
rebmix 0.3134 // 0.0058 0.1305 // 0.0029 0.1729 // 0.0026 0.0039 // 0.0022 0.2 // 0.02 0.537 // 0.044 88 // 81

hc 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0098 // 0.00071 0.053 // 0.018 0.139 // 0.041 100 // 100
kmeans 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0097 // 0.00071 0.053 // 0.018 0.139 // 0.04 100 // 100bgmm
rebmix 0.7437 // 0.1977 0.3409 // 0.0028 0.3895 // 0.1946 0.02 // 0.00034 0.308 // 0.017 1.602 // 0.926 97 // 99

hc 0.0577 // 0.0058 0.0289 // 0.0028 0.0264 // 0.0026 0.0093 // 0.00061 0.054 // 0.018 0.139 // 0.041 100 // 100
kmeans 0.0577 // 0.0058 0.0288 // 0.0028 0.0264 // 0.0026 0.0092 // 0.00039 0.054 // 0.017 0.139 // 0.04 100 // 100EMCluster
rebmix 0.6887 // 0.3391 0.2466 // 0.1276 0.4201 // 0.1969 0.019 // 0.048 0.519 // 0.289 1.721 // 0.875 87 // 81

hc 11.3787 // 11.3322 11.3499 // 11.3293 0.0264 // 0.0026 0.0094 // 0.00071 11.166 // 11.179 0.139 // 0.04 100 // 100
kmeans 11.3831 // 11.3301 11.3543 // 11.3271 0.0264 // 0.0026 0.0094 // 0.00068 11.162 // 11.181 0.139 // 0.04 100 // 100HDclassif
rebmix 11.5949 // 11.6085 11.5167 // 11.6055 0.072 // 0.0026 0.0024 // 0.0022 11.227 // 11.369 0.27 // 0.044 87 // 81

hc 5.9739 // 5.9149 4.0397 // 3.9727 1.8288 // 1.8228 0.32 // 0.47 6.999 // 7.042 4.25 // 4.296 100 // 100
kmeans 5.972 // 5.8863 4.0431 // 3.9596 1.8283 // 1.8259 0.33 // 0.43 6.997 // 7.051 4.255 // 4.34 100 // 100EMMIXmfa
rebmix 5.9835 // 5.9078 4.0477 // 3.9671 1.8257 // 1.8244 0.37 // 0.46 6.994 // 7.045 4.232 // 4.301 87 // 81

Table 21: MSE and Bias associated to scenarios HD8a) and HD8b), in Table 15 (overlapping components
with full covariance structure). We delimite by doubled backslashes for each entry of the summary
metrics table respectively the scores with n = 200 and n = 2000 observations.

Package Initialisation
Method

Global
MSE p

Global
MSE µ

Global
MSE σ

Global
Bias p

Global
Bias µ

Global
Bias σ

% Success

hc 18.6085 // 0.6735 3.566 // 0.0536 14.9495 // 0.6193 0.23 // 0.0017 3.327 // 0.107 14.475 // 0.649 100 // 100
kmeans 16.7452 // 0.6735 2.9065 // 0.0536 13.7662 // 0.6193 0.2 // 0.0016 2.819 // 0.107 12.552 // 0.649 100 // 100mixtools / Rmixmod / RGMMBench
rebmix 22.2986 // 0.6738 4.3127 // 0.0536 17.8418 // 0.6196 0.25 // 0.0021 3.768 // 0.108 16.249 // 0.648 95 // 100

hc 20.6916 // 0.728 4.5672 // 0.0696 16.0328 // 0.6557 0.28 // 0.064 4.381 // 0.459 18.656 // 2.07 100 // 100
kmeans 17.9622 // 0.7169 3.7547 // 0.0671 14.1405 // 0.6474 0.27 // 0.062 3.88 // 0.465 16.802 // 2.049 100 // 100mclust / flexmix / GMKMcharlie
rebmix 22.4636 // 0.7553 4.7502 // 0.0678 17.5784 // 0.6853 0.26 // 0.0054 4.165 // 0.158 17.735 // 0.725 94 // 98

hc 35.6085 // 13.8411 12.8826 // 3.6502 22.3428 // 10.0718 0.29 // 0.46 6.212 // 5.661 26.812 // 23.753 100 // 100
kmeans 33.8007 // 12.5545 11.7236 // 3.1419 21.7292 // 9.2934 0.28 // 0.47 6.348 // 5.654 26.546 // 23.141 100 // 100bgmm
rebmix 35.3167 // 13.106 12.2374 // 3.3747 22.6615 // 9.6213 0.37 // 0.42 6.007 // 5.273 26.287 // 23.02 96 // 100

hc 23.4472 // 16.4192 6.2451 // 4.9191 17.0777 // 11.3124 0.35 // 0.51 5.469 // 6.279 23.503 // 22.821 99 // 100
kmeans 21.0058 // 14.6852 5.9951 // 4.1684 14.9329 // 10.4293 0.38 // 0.42 5.604 // 6.592 24.628 // 24.706 100 // 100EMCluster
rebmix 23.0408 // 19.7372 6.4923 // 7 16.3824 // 12.5099 0.36 // 0.35 5.272 // 5.454 23.419 // 23.9 93 // 98

hc 36.5924 // 33.4077 16.108 // 14.4007 20.3809 // 18.8638 0.3 // 0.44 12.706 // 13.085 25.393 // 29.363 100 // 100
kmeans 34.7935 // 30.1935 15.4329 // 13.78 19.2529 // 16.2816 0.4 // 0.41 12.766 // 12.756 24.988 // 25.151 100 // 100HDclassif
rebmix 38.9707 // 24.0327 16.134 // 12.9266 22.6961 // 11.0138 0.25 // 0.21 12.811 // 12.275 25.79 // 15.996 95 // 98
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