
CONTRIBUTED RESEARCH ARTICLE 237

Three-Way Correspondence Analysis in R
by Rosaria Lombardo, Michel van de Velden, and Eric J. Beh

Abstract Three-way correspondence analysis is a suitable multivariate method for visualising the
association in three-way categorical data, modelling the global dependence, or reducing dimensionality.
This paper provides a description of an R package for performing three-way correspondence analysis:
CA3variants. The functions in this package allow the analyst to perform several variations of this
analysis, depending on the research question being posed and/or the properties underlying the data.
Users can opt for the classical (symmetrical) approach or the non-symmetric variant - the latter is
particularly useful if one of the three categorical variables is treated as a response variable. In addition,
to perform the necessary three-way decompositions, a Tucker3 and a trivariate moment decomposition
(using orthogonal polynomials) can be utilized. The Tucker3 method of decomposition can be used
when one or more of the categorical variables is nominal while for ordinal variables the trivariate
moment decomposition can be used. The package also provides a function that can be used to choose
the model dimensionality.

1 Introduction

In many applications, one encounters problems where detecting and describing the association
between three categorical variables is of interest. For example, one may wish to analyse animal counts
stratified by species-by-site-by-time, treatment success stratified by cure-by-therapy-by-hospital,
customer satisfaction-by-service’s quality-by-country, or two interacting genes in expression under
the genotypes of another gene. One method specifically designed for analysing such data is three-way
correspondence analysis (Carlier and Kroonenberg, 1996). For this method of analysis, a three-way
contingency table is decomposed in such a way that the maximum amount of association is reflected
in a low-dimensional display. Depending on the underlying data, and the research questions being
asked, there are various ways to quantify and decompose the association in the table, generate a visual
display of the association and calculate the accompanying numerical summaries. Hence, several
variants of three-way correspondence analysis exist. Common among all the variants that we describe
below is the emphasis that is placed on data exploration through the visualization of the associations.

There exists a sizable body of literature that examines the various theoretical properties and
extensions of three-way correspondence analysis. For example, Kroonenberg (1989), Carlier and
Kroonenberg (1996), Kroonenberg (2008, Chap. 17), Beh and Lombardo (2014, Chap. 11) and Lombardo
et al. (2021) discuss a wide range of issues concerned with this technique. However, there also appears
to be only a few applications that use these techniques (Carlier and Kroonenberg, 1998; van Herk
and van de Velden, 2007; Lombardo et al., 2019). One reason for the lack of applications could be the
absence of R software packages to perform three-way correspondence analysis.

In this paper, we introduce CA3variants, a comprehensive R package that allows researchers to
apply variants of three-way correspondence analysis. In Section 2.2, we introduce the notation that
we adopt as well as two key measures of association - Pearson’s three-way phi-squared statistic and
Marcotorchino’s three-way index. These measures lie at the core of the three-way correspondence
analysis variants that we describe below. In Section 2.3 we present three methods for decomposing a
three-way contingency table, with a particular focus on the appropriateness of the different variants.
In Section 2.4 we show how the two association measures above, can be partitioned in bivariate and
trivariate association terms, and how can be used to define variants of three-way correspondence
analysis, and we consider specific issues concerned with the visualization and selection of the di-
mensionality of the three-way correspondence analysis solution. In Section 2.5, we briefly review the
software that is currently available for three-way analyses. In Section 2.6, we introduce our three-way
correspondence analysis package, CA3variants, and illustrate its features and application through
some illustrative examples. Some final comments are left for Section 2.7.

2 Measures of three-way association

Three-way correspondence analysis provides a numerical and graphical summary of how categories
and variables are related to one another. Rather than only considering the bivariate associations
between pairs of variables, three-way correspondence analysis also considers the trivariate associations
(Lombardo et al., 2021).

When performing three way correspondence analysis, the dependence structure of the three
categorical variables that are cross-classified to form a contingency table is analysed by considering
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an appropriate measure of association. This measure can then be partitioned to reveal more detail
about the nature of the association that exists between the variables. Two measures of association are
implemented in the CA3variants package: Pearson’s phi-squared statistic and Marcotorchino’s index.
Pearson’s three-way statistic is appropriate when studying deviations from three-way independence
and when the variables are symmetrically associated, while Marcotorchino’s three-way index is a
more suitable choice when the variables are not symmetrically associated. Depending on the choice
of the measure of association used, the appropriately scaled three-way table can be decomposed
into (low-dimensional) components for each of the variables. Before discussing these three-way
decomposition methods, we first introduce the notation used throughout this paper. We then provide
a brief description of Pearson’s phi-squared statistic and Marcotorchino’s index.

2.1 Notation

Suppose we have data from a sample of n subjects on three categorical variables. Such data can be
represented by a three-way contingency table consisting of I rows, J columns and K tubes, where each
cell value represents the count within an intersection of the levels of each of the three variables.

Denote N to be the contingency table of order I × J × K belonging to the space ℜI×J×K , subscripted
by i, j and k for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K, whose (i, j, k)th term is nijk, while
P is the table of joint relative frequencies of N whose (i, j, k)th term is pijk = nijk/n, such that

∑I
i=1 ∑J

j=1 ∑K
k=1 pijk = 1. Define pi•• = ∑J

j=1 ∑K
k=1 pijk, p•j• = ∑I

i=1 ∑K
k=1 pijk, p••k = ∑I

i=1 ∑J
j=1 pijk,

pij• = ∑K
k=1 pijk, pi•k = ∑J

j=1 pijk and p•jk = ∑I
i=1 pijk to be the univariate and bivariate marginal

relative frequencies of the three-way contingency table. In addition, define II to be the identity matrix
of order I × I in the space ℜI , and let DI , DJ , DK be the diagonal matrices containing the univariate
marginal relative frequencies in ℜI , ℜJ and ℜK whose general term is pi••, p•j• and p••k, respectively.

2.2 Pearson’s three-way statistic

When the association between the categorical variables of a three-way contingency table, N, is con-
sidered to be symmetric, we can analyse the strength of this association using Pearson’s three-way
phi-squared statistic

Φ2 =
I

∑
i=1

J

∑
j=1

K

∑
k=1

pi••p•j•p••k

(
pijk − pi••p•j•p••k

pi••p•j•p••k

)2

(1)

=
I

∑
i=1

J

∑
j=1

K

∑
k=1

pi••p•j•p••k

(
pijk

pi••p•j•p••k
− 1

)2

=
I

∑
i=1

J

∑
j=1

K

∑
k=1

pi••p•j•p••k

(
πPijk

)2
.

The symmetric nature of this measure implies that the three variables are all treated as predictor
variables. That is, none are deemed to be dependent on the outcome of any other variable being
studied. It can be shown that, under the independence assumption, Φ2 can be partitioned as

Φ2 =
I

∑
i=1

J

∑
j=1

pi••p•j•

(
pij• − pi••p•j•

pi••p•j•

)2

+
I

∑
i=1

K

∑
k=1

pi••p••k

(
pi•k − pi••p••k

pi••p••k

)2
(2)

+
J

∑
j=1

K

∑
k=1

p•j•p••k

(
p•jk − p•j•p••k

p•j•p••k

)2

+
I

∑
i=1

J

∑
j=1

K

∑
k=1

pi••p•j•p••k

(
pijk −α pijk

pi••p•j•p••k

)2

,

where

α p̂ijk = p̂ij• p̂••k + p̂i•k p̂•j• + p̂•jk p̂i•• − 2p̂i•• p̂•j• p̂••k . (3)

For further details see Carlier and Kroonenberg (1996) and Lombardo et al. (2020). Briefly, we get

Φ2 = Φ2
I J + Φ2

IK + Φ2
JK + Φ2

I JK . (4)

Observe that this partition also concerns Pearson’s chi-squared statistic, X2, (Lancaster, 1951; Lom-
bardo et al., 2020) obtained by multiplying each of the terms of phi-squared in equation (4) by the
sample size, n. Indeed, Pearson’s chi-squared statistic is well established for testing association
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between variables in contingency tables. Hence, deviations from three-way independence can be
orthogonally partitioned into three deviations from independence (for each of the two-way tables
formed by summing over each variable of the three-way contingency table) and a three-way associa-
tion term, as it will be shown in Section 2.6.1. This partition has been extensively discussed by Carlier
and Kroonenberg (1996) and more recently by Kroonenberg (2008, Chap. 17), Loisel and Takane (2016)
and Lombardo et al. (2020).

2.3 Marcotorchino’s three-way index

If the three categorical variables are non-symmetrically associated, or if one is interested in exploring
an non-symmetric association between the variables, a more appropriate measure is the three-way
Marcotorchino index. This index is defined by

τM =
∑I

i=1 ∑J
j=1 ∑K

k=1 p•j•p••k

(
pijk

p•j•p••k
− pi••

)2

1 − ∑I
i=1 p2

i••
. (5)

See, for example, Marcotorchino (1984a,b), Lombardo et al. (1996), Beh et al. (2007), Beh and
Lombardo (2014, Section 11.4.2) and Beh and Lombardo (2021b, Section 7.5). Since the denominator
of equation (5) is independent on the cell values of N, the numerator of the Marcotorchino index
suffices as a measure of association when performing three-way correspondence analysis. This
numerator measures the absolute increase in predictability of the response variable, given the predictor
variables (Marcotorchino, 1985; Lombardo et al., 1996). Like Pearson’s three-way phi-squared statistic,
Marcortorchino’s index is based on deviations from the three-way independence model. Without loss
of generality, assume that the row variable is considered to be dependent on the column and tube
variables. In doing so, the numerator of equation (5), which we shall simply refer to as Marcotorchino’s
τMnum statistic, is equal to

τMnum =
I

∑
i=1

J

∑
j=1

K

∑
k=1

p•j•p••k

(
pijk

p•j•p••k
− pi••

)2

(6)

=
I

∑
i=1

J

∑
j=1

K

∑
k=1

p•j•p••k

(
πMijk

)2
.

As in the symmetric case, an additive orthogonal partition of τMnum exists and is given by

τMnum =
I

∑
i=1

J

∑
j=1

p•j•

(
pij•
p•j•

− pi••

)2

+
I

∑
i=1

K

∑
k=1

p••k

(
pi•k
p••k

− pi••

)2

+
1
I

J

∑
j=1

K

∑
k=1

p•j•p••k

(
p•jk − p•j•p••k

p•j•p••k

)2

+
I

∑
i=1

J

∑
j=1

K

∑
k=1

p•j•p••k

(
pijk −α pijk

p•j•p••k

)2

, (7)

where

α pijk = p̂ij• p̂••k + p̂i•k p̂•j• +
p̂•jk

I
− p̂i•• p̂•j• p̂••k − p̂•j•

p̂••k
I

.

The partition of τMnum may be more simply expressed as

τMnum = τI J + τIK + τJK + τI JK . (8)

Hence, like Pearson’s three-way phi-squared statistic, τMnum (and hence the total predictability mea-
sure τM) is partitioned into four additive terms. The first three of these terms reflect the two-way
associations and the fourth term reflects the three-way association. The first two bivariate terms of
equation (8) are equal to the numerators of the Goodman-Kruskal indices (Goodman and Kruskal,
1954) between the response (row) variable and each of the two predictor (column and tube) variables,
respectively. These terms are also equal to the inertias of the marginal two-way tables in classical
two-way non-symmetric correspondence analysis (Lauro and D’Ambra, 1984; D’Ambra and Lauro,
1989; Kroonenberg and Lombardo, 1999; Takane and Jung, 2008). The third bivariate term of (8) is (up

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 240

to the constant 1/I) equal to Φ2
JK , which is Pearson’s phi-squared statistic for the J × K contingency

table formed by aggregating over the row categories. This term can be seen as a measure of the
symmetric association between the two predictor variables. Finally, the last term of equation (8) is
a measure of the trivariate association between the variables. Beh et al. (2007) showed that the test
statistic associated with Marcotorchino’s three way index is the generalization of the C-statistic (Light
and Margolin, 1971), referred to here as the CM-statistic, and is defined by

CM = (n − 1) (I − 1) τM ∼ χ2
α,d f . (9)

Therefore, for both Pearson’s three-way chi-squared statistic and Marcotorchino’s three-way τM
statistic, under the null hypothesis of complete independence, each term of the partition is a chi-
squared random variable. For further details see Light and Margolin (1971), Beh et al. (2007), Beh and
Lombardo (2014, Section 11.5.2) and Beh and Lombardo (2021b, Section 7.5.2).

3 Decomposing three-way tables

The choice of which measure of association to use should be made based on the data at hand and the
research question under investigation. Depending on the choice, an appropriately scaled matrix can be
constructed. Three-way correspondence analysis can then be performed and involves fitting a model
to the data. In particular, low-dimensional component matrices as well as a core matrix that links the
different components, are fitted to the data in such a way that the sum-of-squares of the deviations
between the low-dimensional approximation and the original table is as small as possible.

Several decomposition models have been proposed in the literature for three-way contingency
tables. In the CA3variants package three types of decomposition are implemented. They are the
Tucker3 model (Tucker, 1963; Kroonenberg, 1983, 2008; Kiers et al., 1992) for when all three variables
are nominal, the trivariate moment decomposition (Lombardo et al., 2016b, 2021) for when all three
variables are ordinal, and a hybrid decomposition for a mix of nominal and ordinal categorical variables
(Lombardo and Beh, 2017). In the following subsections, we briefly review these decomposition
methods and how they apply to the different variants of three-way correspondence analysis.

3.1 Tucker3 decomposition for three-way tables

For the Tucker3 decomposition, a three-way matrix X with elements xijk is decomposed such that

xijk =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqraipbjqckr + eijk ,

where P, Q and R (P ≤ I, Q ≤ J, R ≤ K) are the fixed number of the components corresponding to the
row, column and tube variables, respectively. The aip, bjp and ckp values are elements of the column
matrices A, B and C, respectively, and give component loadings for the row, column and tube variables,
while gpqr is an element of the P × Q × R core array. The term eijk is the error of approximation. By
“flattening” the three-way matrix X – for example, by concatenating the K tubes of X – we can write
the Tucker3 decomposition in matrix form by

Tucker3 (X) = AG
(

BT ⊗ CT
)
+ E , (10)

where X and G are, respectively, the I × JK matrix of (flattened) data values and the P × QR matrix of
core elements.

The solution to A, B, C and G is obtained by minimizing the sum-of-squares of the elements of
E (matrix of the errors of approximation) using an alternating least-squares algorithm. The general
framework of the algorithm that CA3variants uses is based on the Tuckals3 alternating least squares
algorithm discusssed by Kroonenberg and Leeuw (1980) and Kroonenberg (1983, 1994).

Symmetric three-way correspondence analysis

For symmetric three-way correspondence analysis, the elements of Pearson’s three-way phi-squared
statistic are decomposed using a Tucker3 decomposition. In particular, the Tucker3 decomposition is
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applied to the appropriately scaled three-way array ΠP with elements

πPijk =
pijk

pi••p•j•p••k
− 1 , (11)

where the component matrices, A, B and C are constrained to be orthonormal with respect to the
diagonal matrices of univariate marginal relative frequencies such that

ATDIA = IP , BTDJB = IQ , and CTDKC = IR . (12)

Note that the weighted sum-of-squares of the elements of πPijk is equal to Pearson’s three-way phi-
squared statistic; see equation (1). In other words, the symmetric variant of three-way correspondence
analysis amounts to minimizing the weighted squared differences between the standardized deviations
of independence in the three-way table with the approximated values using the Tucker3 model. That
is:

I

∑
i=1

J

∑
j=1

K

∑
k=1

pi••p•j•p••k

(
πPijk − π̂Pijk

)2
,

is minimized where, for some value of P, Q and R

π̂Pijk =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

gpqraipbjqckr .

The constraints of equation (12) are similar to the constraints used in the traditional approach to simple
(two-way) correspondence analysis. Consequently, symmetric three-way correspondence analysis can
be seen as a direct extension of the traditional two-way correspondence analysis approach. For more
details see, for example, Carlier and Kroonenberg (1996).

Non-symmetric three-way correspondence analysis

For non-symmetric three-way correspondence analysis, one variable needs to be selected as the
response variable. In the following discussion we choose, without loss of generality, the first (row)
variable to serve as the response variable. When performing non-symmetric three-way correspondence
analysis, we use the Tucker3 decomposition to decompose Marcotorchino’s three-way τMnum statistic
defined by equation (6). Let ΠM represents the three-way matrix with elements

πMijk =
pijk

p•j•p••k
− pi•• . (13)

Non-symmetric three-way correspondence analysis is then performed by applying the Tucker3
decomposition to ΠM where the components contained in the row, column and tube matrices A, B
and C, are constrained to be orthornormal with respect to the weight matrices II , DJ , DK . That is,

ATA = IP , BTDJB = IQ , and CTDKC = IR .

Note that, for the decomposition of ΠM, these constraints ensure that the weighted quadratic
norm of the low-dimensional approximation Π̂M, can be written as

∥Π̂M∥2 = τMnum =
P

∑
p=1

Q

∑
q=1

R

∑
r=1

g2
pqr .

3.2 Trivariate moment decomposition

Rather than considering component matrices as the Tucker3 decomposition does, the trivariate moment
decomposition is based on column matrices consisting of orthogonal polynomials. The decomposition
was first proposed by Beh (1998b, Chap. 7) and has since been described by, for example, Beh and Davy
(1998), Lombardo et al. (2016b) and Lombardo et al. (2021, eq. 10), as an alternative method of three-way
decomposition. It is particularly useful when a variable consists of ordered categories, either increasing
or decreasing. The decomposition can be applied to either ΠP or ΠM and allows the researcher to
incorporate the ordinality by replacing the Tucker3 components with the orthogonal polynomials
for the ordinal variable. These polynomials are typically generated using the three-term recurrence
formulae of Emerson (1968) who demonstrated their computational efficiency when compared with
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the Gram-Schmidt orthogonalization process. Refer to Beh (1997, 1998a,b) and Beh and Lombardo
(2021a) for a definition and properties of these polynomials when performing correspondence analysis.

To form the polynomial basis space we generate as many orthogonal polynomials as there are
ordered categories. The matrix of row, column and tube orthogonal polynomials is denoted by
A = {αiu}, (for i = 1, . . . , I and u = 0, . . . , I − 1), B = {β jv} (for j = 1, . . . , J and v = 0, . . . , J − 1)
and C = {γkw} (for k = 1, . . . , K and w = 0, . . . , K − 1), respectively. Like the Tucker3 components,
when a symmetric variant of three-way correspondence analysis is performed, the row polynomials
are orthogonal with respect to the marginal relative frequencies pi••, while the column and tube
polynomials are orthogonal with respect to p•j• and p••k, respectively. In general, the first polynomial
that is computed for each ordered variable of the three-way table represents the zeroth-order polynomial
and is equal to 1 when in its normalized state. The second polynomial is the first-order polynomial
and reflects the variation in the linearity of the categories. The third polynomial is the second-order
orthogonal polynomial and reflects the variation in the dispersion of the categories. Higher-order
polynomials represent higher-order moments of the ordered categories. These polynomials have been
used extensively in the correspondence analysis literature. For more information, see, for example,
Beh (1997, 1998a), Beh and Lombardo (2014, p. 94), Lombardo et al. (2016a) and Beh and Lombardo
(2021b, Chap. 4).

When using the trivariate moment decomposition for symmetric and non-symmetric three-way
correspondence analysis, the decomposition of the arrays ΠP and ΠM is defined by replacing the
matrices of components A, B and C (see equation (10)) with their orthogonal polynomial equivalents.
In particular, for the non-symmetric case and given the different row weights, we consider α∗

u = p1/2
i•• αu,

βv and γw such that

πMijk =
U

∑
u=0

V

∑
v=0

W

∑
w=0

z̃uvwα∗iuβ jvγkw . (14)

For the decomposition given by equation (14), the row polynomials are weighted such that ∑I
i=1 α∗2

iu =

1 while the column and tube polynomials are weighted so that ∑J
j=1 p•j•β2

jv = 1 and ∑K
k=1 p••kγ2

kw = 1,
respectively. Note that the indices u, v, w are from 0 to U, V and W (where U ≤ I − 1, V ≤ J − 1,
W ≤ K − 1), respectively, and correspond to the orders of the polynomials. The z̃uvw value in equation
(14) is analogous to the core element gpqr in the nominal case and is therefore referred to as the
polynomial core element and is defined by

z̃uvw =
I

∑
i=1

J

∑
j=1

K

∑
k=1

πMijk p•j•p••kα∗iuβ jvγkw ,

and is of order (u, v, w). Such a term has also been referred to as a generalized correlation. See, for
example, Rayner and Beh (2009), Beh and Lombardo (2014, Chap. 6) and Beh and Lombardo (2021b,
Chap. 5). Observe that, unlike the Tucker3 decomposition given by equation (10), the trivariate
moment decomposition has a closed form that justifies the absence of the error of approximation in
equation (14).

3.3 Hybrid decomposition for nominal and ordinal variables

The hybrid decomposition involves computing Tucker3 components for the nominal variables, and
orthogonal polynomials for the ordinal variables (Lombardo and Beh, 2017; Lombardo et al., 2021).
Generally for the analysis of three-way contingency tables, we distinguish the following two cases:
1) there are two ordinal variables and one nominal variable, and 2) there are two nominal variables
and only one ordinal variable. Suppose we consider the case where we have a three-way contingency
table in which the row and column variables are ordinal and the tube variable is nominal. Then the
hybrid decomposition, for case 1, involves calculating the polynomials for the row and column variables
and the Tucker3 components for the nominal tube variable. When the row variable is treated as a
response variable, three-way non-symmetric correspondence analysis can be performed using the
hybrid decomposition of πMijk such that

πMijk = π̂Mijk + eijk

=
U

∑
u=0

V

∑
v=0

R

∑
r=1

zuvrα∗iuβ jvckr + eijk . (15)
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Here α∗
u and βv are the uth order row and vth order column polynomials, respectively, while cr is the

rth tube (Tucker3) component. The value of zuvr in equation (15) is defined by

zuvr =
I

∑
i=1

J

∑
j=1

K

∑
k=1

πMijk p•j•p••kα∗iuβ jvckw ,

and is referred to as the hybrid core element of order (u, v, r). While the number of orthogonal
polynomials for the rows and columns should always be equal to the number of categories that
define the variable (see Section 2.3.2), the number of Tucker3 components for the tube variable can be
smaller (R ≤ K). A complete orthogonal decomposition is always used when all the three variables
are ordered, as it is for equation (14), but is seldom used in practice when the variables are not
all ordered. Like the Tucker3 decomposition (see equation (10)) and unlike the trivariate moment
decomposition (see equation (14)), the hybrid decomposition given by equation (15) includes the error
of approximation, eijk, because the decomposition no longer has a closed form solution because of the
presence of the Tucker3 components.

4 Three-way correspondence analysis variants

Combining the two measures of three-way association described in Section 2.2 with the three methods
for decomposing three-way tables outlined in Section 2.3 gives four variants of three-way correspon-
dence analysis:

• Symmetric three-way correspondence analysis: this analysis is based on the partition of Pear-
son’s three-way phi-squared statistic and the Tucker3 decomposition of ΠP. It executes three-
way correspondence analysis by treating all variables symmetrically and corresponds to the
analysis described by Carlier and Kroonenberg (1996).

• Non-symmetric three-way correspondence analysis: this corresponds to partitioning Marco-
torchino’s three-way statistic and applies a Tucker3 decomposition to ΠM. In this analysis, one
of the three variables is treated as a response variable and the other two are treated as predictor
variables (Lombardo et al., 1996).

• Ordered symmetric three-way correspondence analysis: for this analysis, either the trivariate
moment decomposition (if all variables are ordinal) or the hybrid decomposition (if one or
two of the three variables are ordinal) is applied to ΠP leading to the partition of Pearson’s
three-way phi-squared statistic (Lombardo et al., 2021).

• Ordered non-symmetric three-way correspondence analysis: this analysis is based on the
trivariate moment decomposition (if all variables are ordinal) or the hybrid decomposition (if
one or two of the three variables are ordinal) of ΠM and leads to the partition of Marcotorchino’s
three-way index. Hence, in this analysis one variable is treated as the response variable and the
other two are treated as predictor variables.

These four variants of three-way correspondence analysis are incorporated into the CA3variants
package.

4.1 Visualizing three-way correspondence analysis solutions

Like the traditional approach to two-way correspondence analysis, visualization in three-way corre-
spondence analysis is an important feature and helps to provide a descriptive analysis of the data. To
visually display the (symmetric or non-symmetric) association that exists among the variables we con-
sider the interactive biplot (Carlier and Kroonenberg, 1996), also called as nested biplot by Kroonenberg
(2008, p. 441). In the interactive biplot, the categories of one variable, referred to as a reference variable,
are jointly visualized with all pair-wise combinations of the categories of the other two variables.
Hence, depending on the choice of reference variable, we can distinguish three different interactive
coordinates: row-column, row-tube and column-tube interactive coordinates.

To see how this works, and why the resulting visualizations are indeed biplots, note that all four
three-way correspondence analysis variants described in Section 2.4 yield three sets of “coordinates”
(one for each variable), as well as an array of core elements that describe the strength of association
between these values. Differences between variants can be described in terms of the different measures
of association under consideration (i.e., Pearson’s three-way phi-squared statistic or Marcotorchino’s
index), the orthogonalization constraints adopted, or the type of decomposition (i.e., Tucker3, trivariate
moment decomposition or hybrid decomposition) used.

Recall that the general form of the Tucker3 decomposition is given by equation (10). As we
described above, this matrix formulation is based on a “flattened” version of the three-way matrices
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that involves the concatenation of the categories of a variable. In fact, the concatenation of a variable
that leads to the P × Q × R approximation can be seen in the following three ways

XJK,I = (B ⊗ C)G1AT

XIK,J = (A ⊗ C)G2BT (16)

XI J,K = (A ⊗ B)G3CT .

Note that these arrangements have no influence on the approximated values of X. The subscripted
and flattened G’s indicate that, although their elements are the same, the organization differs between
them. Each of the formulations in equation (16) constitutes a biplot. To show this, suppose we consider
the decomposition of XJK,I . Then the rows of (B ⊗ C)G1 are the principal coordinates of the pair-
wise combinations of columns and tubes categories of X. Hence, plotting these jointly with the row
standard coordinates contained in the rows of A provides the analyst with a biplot interpretation of
the association. For an extensive discussion of biplot interpretations in the context of correspondence
analysis see, for example, Greenacre (2010) and Gower et al. (2011, Chapters 7 and 8). For a more
general treatment of data visualizations in dimension reduction methods, see Gower et al. (2014).

For each approximation in equation (16), the interactive coordinates can be expressed in either their
standard or principal form (whose features are the same of those derived for biplots in the classical
approach to correspondence analysis) and so leads to two types of interactive biplots:

• For the first type of interactive biplot, we can factorize each equation in such a way that the
categories for the non-interactive variable are displayed using standard coordinates so that they
are orthonormal with respect to the appropriate metric. Therefore, observing the combination
of categories from the other two variables (which constitutes the “interactive” structure of the
categories) are defined using principal coordinates (Kroonenberg, 2008, p. 273). Algebraically,
this choice simply means that the interactive coordinates are a form of principal coordinates.
They are calculated from the Kronecker product of two component matrices (for example, B and
C) multiplied by the appropriate G matrix (for example, G1). When displaying the standard
coordinates of the non-interactive variable, the points are often displayed as a projection from
the origin to their position defined by their standard coordinate.

• For the second type of interactive biplot, the G matrix is applied to the non-interactive variable.
Hence, the categories for this variable are displayed in terms of their principal coordinates while
the coordinates corresponding to the combination of categories from the other two variables
(i.e., the interactive coordinates) are depicted as standard coordinates (Lombardo et al., 2021).

4.2 Selecting the number of components

The three-way decompositions described in Section 2.3 require a chosen number of components (P,
Q and R) for each of the variables of N. A common approach is to consider various solutions for
the components, resulting in different values of dimensionality (i.e., values of P, Q and R) and then
inspect their appropriateness using a goodness-of-fit (or a lack-of-fit) measure with respect to the
degrees-of-freedom of the approximation obtained from these solutions. By increasing the number of
components the model becomes more complex but the goodness-of-fit of the model improves. Hence,
by considering a goodness- (or lack-) of-fit measure for different model complexities, the trade-off
between model fit and model complexity can be assessed.

Unfortunately, there is no “best” way to determine the optimal trade-off between model fit and
model complexity. Often, the choice of what dimensionality to select is made by visually inspecting a
plot of the goodness-of-fit against the degrees-of-freedom of the model. One such plot is a scree-like
plot and selecting the desired dimensionality is made by using a variety of strategies including simply
looking for an “elbow”. One may also select the dimensionality by observing where the “elbow” lies
in the lower boundary of the convex hull (Kroonenberg and Oort, 2003; Murakami and Kroonenberg,
2003; Kroonenberg, 2008). Scree-like plots can also be considered by using a measure of goodness-
(or lack-) of-fit on the y-axis and the degrees of freedom (or the number of free parameters) on the
x-axis. In this case, the analyst selects a model on or close to the “elbow” near the upper boundary of
the convex hull (Timmerman and Kiers, 2000; Ceulemans and Kiers, 2006).

To aid in the visual detection of an “elbow” in the convex hull, Ceulemans and Kiers (2006)
introduce the st-criterion which looks at the smallest angle on the convex hull and allows one to choose
a model on the higher (lower) boundary of the convex hull, with the best balance of goodness-(or lack-)
of-fit and df (or free parameters). Given the goodness-fit-value, f , and the model complexity-value,
d f , the st criterion for a model of dimensionality l can be written as

st(l) =
(

f (l)− f (l − 1)
d f (l)− d f (l − 1)

)
/
(

f (l + 1)− f (l)
d f (l + 1)− d f (l)

)
. (17)
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The number of models to consider when constructing the convex hull depends on the choice of
dimensionality, l, made, since there are as many models available to consider as there are combinations
of the three dimensions.

In addition to evaluating the goodness-of-fit for the different models, it may also be insightful to
asses how stable models of certain dimensionalities are. This can be done by first applying re-sampling
procedures to the three-way tables and then considering the resulting convex hulls. Several ways to
facilitate such an assessment have been implemented in the CA3variants package. More details of the
relevant functions and options can be found in Section 2.6.

5 Related software

Currently, there are no packages available in R devoted to three-way correspondence analysis. How-
ever, the R packages PTAk (Leibovici, 2010), ThreeWay (Giordano et al., 2014), rTensor (Li et al., 2018),
multiway (Eilers, 2019), psych (Revelle, 2018), tensorA (Statnikov, 2018), mvoutlier (Zhou, 2019) and
irlba (Hoffman, 2017) can be used to perform several different three-way decompositions, including
the Tucker3 decomposition. An overview of the areas of data analysis that these packages cover is
summarised in Table 1.

A complete three-way methods program is also available in Pieter Kroonenberg’s Fortran package
3WayPack and includes functionality to perform a multi-way correspondence analysis; see http:
//three-mode.leidenuniv.nl/ of the The Three-Mode Company. Similarly, an extensive collection of
three-way methods and decomposition tools are available for MATLAB through the N-Way Toolbox
(Bro, 2020). However, while these packages can be used to calculate solutions for the three-way
correspondence analysis variants based on the Tucker3 decomposition, doing so requires some non-
trivial data preparation and output processing steps.

Table 1: R packages for three-way data analysis. CA3: symmetric three-way correspondence analysis;
NSCA3: non-symmetric three-way correspondence analysis; OCA3: ordered symmetric three-way
correspondence analysis; ONSCA3: ordered non-symmetric three-way correspondence analysis; PCA3:
three-way principal component analysis

Three-way Data Analysis

package CA3 NSCA3 OCA3 ONSCA3 PCA3

CA3variants x x x x
ThreeWay x

PTAk x x
rTensor x

multiway x
psych x

tensorA x
mvoutlier x

irlba x

The R package CA3variants provides a straightforward way to perform the different variants of
three-way correspondence analysis described above on a three-way contingency table. Moreover, in
addition to the Tucker3 variants of three-way correspondence analysis, the package also allows for the
application of trivariate moment decomposition and hybrid decomposition methods, suitable when
variable categories are ordered.

6 CA3variants: Package description and examples

In this section, we introduce the main functions, arguments and options available in the CA3variants
package. These functions are tunelocal() and CA3variants().

The tunelocal() function can be used to determine an appropriate number of dimensions in the
approximation of ΠP or ΠM, while the function CA3variants() can be used to perform all four meth-
ods described in Section 2.4. Some similarities and differences of these four methods are summarized
in Table 2.

The CA3variants() and tunelocal() functions return S3 objects from which the plot(), print()
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and summary() functions are available. Note that both functions require the input arguments Xdata,
ca3type, resp and norder. Respectively, these arguments specify the three-way data, the type of
analysis being performed (which can be chosen from those outlined in Section 2.4), the response
variable (in the case of a non-symmetric variant) and the number of ordinal variables (when an
ordered variant is performed). Xdata can be a three-way table, or an (n × 3) data matrix where the
rows represent the n observations/objects and the 3 columns correspond to three categorical variables,
i.e. the row, column and tube variables (the levels/categories of each variable are given by integer
numbers).

The tunelocal() function can help the user to choose an appropriate number of dimensions
for any variant of three-way correspondence analysis. A list detailing the fit of all of the models
considered can be obtained using print(tune.out); here tune.out is the output object produced
using the tunelocal() function. This function considers the decompositions of the original data for
all triplets of dimensions. The stability of the fit of the solutions for different dimensionalities can
also be assessed by adding arguments related to the implementation of three resampling schemes
(when ‘boots = TRUE’ and ‘nboots = 100’). The available schemes are a non-parametric bootstrap
resampling method or a parametric bootstrap method using one of two distributions (multinomial or
Poisson). The parametric bootstrap can be considered as a simple parametric bootstrap (‘boottype =
"bootpsimple"’ ) when the row, column and tube marginals are fixed to equal those of the original
three-way table. Alternatively, it can be performed using a stratified parametric bootstrap method
(‘boottype = "bootpstrat"’) where the row and column marginals are fixed for each tube (for
k = 1, ..., K) of the original three-way table.

Differently from tunelocal(), another important argument of CA3variants() is dims. The argu-
ment dims defines the dimensionality of the solution which can be driven by first using tunelocal().
The available variants for ca3type are:

• ca3type = "CA3" for symmetric three-way correspondence analysis. This option is appropriate
when all variables are assumed, or known, to be nominal and symmetrically associated. This is
also the default analysis that is performed.

• ca3type = "NSCA3" for non-symmetric three-way correspondence analysis. This option is
appropriate when one of the variables is defined as the response variable which can be chosen
by specifying resp = "row" (the default choice), resp = "column" or resp = "tube". All three
variables are treated as being nominal.

• ca3type = "OCA3" for three-way ordered symmetric correspondence analysis. This option is
appropriate when at least one of the three variables consists of ordered categories.

• ca3type = "ONSCA3" for three-way ordered non-symmetric correspondence analysis. This
option is appropriate when at least one of three variables consists of ordered categories and
one of the variables is defined as the response variable. The analyst can specify the response
variable in the same way that the response variable is defined for non-symmetric three-way
correspondence analysis (see ca3type = "NSCA3").

Method Variables Association Decomposition
method

ca3type = "CA3" nominal symmetric Tucker3
ca3type = "NSCA3" nominal non-symmetric Tucker3
ca3type = "OCA3" ordinal symmetric Trivariate moment
ca3type = "ONSCA3" ordinal non-symmetric Trivariate moment
ca3type = "OCA3" one or two variables

are ordinal
symmetric Hybrid

ca3type = "ONSCA3" one or two variables
are ordinal

non-symmetric Hybrid

Table 2: Similarities and differences of three-way correspondence analysis methods in CA3variants().

Finally, the package contains four example data sets that can be used to test and benchmark the
different methods, all with varying features and variable structures. They are: happy - a 4 × 6 × 4
contingency table with n = 40323 - (Davis, 1977), happyNL - a 4× 5× 4 contingency table with n = 1669 -
(from the European Social Survey of 2016, http://www.europeansocialsurvey.org/), museum - a 253× 3
data matrix with n = 253 - (from a 2019 survery promoted by the University “Luigi Vanvitelli”, Italy),
and ratrank - a 9 × 9 × 5 contingency table with n = 44568 - (van Herk and van de Velden, 2007).
In Section 2.6.2 we illustrate the package by performing a NSCA3 on the data set happyNL, while
Sections 2.6.1 and 2.6.3 consider two symmetric analyses of the ratrank data set (a nominal three-way
correspondence analysis and a hybrid three-way analysis).
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6.1 Three-way symmetric correspondence analysis: Ranking and rating data

The dataset ratrank is one of the four datasets included in the CA3variants package. It is a data array
of size 9 × 9 × 5 that is formed from the cross-classification of the Rating (row), Ranking (column), and
Country (tube) variables, and was analyzed by van Herk and van de Velden (2007).

Participants from five European countries were asked to rate and rank the same nine values taken
from the list of values (LOV) described by Kahle (1983). For each of these European countries, a
contingency table was constructed with counts of co-occurrences of rating numbers and rankings.
The ranking task required participants to provide a strict ranking of the items. In the rating task,
participants are asked to provide ratings (on a 9 point scale) to the same items. It gives the participants
the freedom to rank the items in any way they desire, however, it is also open to response tendencies.
Such tendencies can be referred to as response styles. For example, some individuals may be more
inclined to use extreme ratings (lowest or highest) where others only use middle ratings to express
their preferences. The observed correspondence between the ratings and rankings could then be
used to inspect response tendencies and, in this study, to relate such tendencies to nationalities. For
more details on the data and the theory underlying the response tendencies, we refer to the van
Herk and van de Velden (2007). Our objective here is to illustrate the application of the CA3variants
package by reproducing some of the results published in their paper. After downloading and installing
CA3variants from the Comprehensive R Archive Network (CRAN), we load the package:

library("CA3variants")

Dimensionality of the solution

We use the tunelocal() function to determine an appropriate triplet of dimensions:

tune.ca3.out <- tunelocal(ratrank, ca3type = "CA3")
print(tune.ca3.out)
plot(tune.ca3.out)

The function tunelocal() yields an object containing goodness-of-fit measures, model complexity
and, when boots = TRUE, the bootstrap samples used. However, using print(tune.ca3.out) we
show the following numerical results for the models on the boundary:

#> # Convex hull (upper bound)

#> # Selected model(s):
#> complexity fit
#> c(2, 2, 1) 1 17726.27

#> All models on upper bound:
#> complexity fit st
#> c(1, 6, 1) 0 14265.56 NA
#> c(2, 2, 1) 1 17726.27 16.097440
#> c(3, 3, 1) 4 18371.23 3.116993
#> c(3, 3, 2) 12 18923.00 1.233506
#> c(3, 4, 2) 17 19202.58 1.846595
#> c(3, 4, 3) 28 19535.67 1.650064
#> c(4, 4, 3) 39 19737.53 1.291062
#> c(4, 4, 4) 54 19950.73 1.538958
#> c(5, 5, 4) 88 20264.76 1.368834
#> c(6, 6, 4) 130 20548.15 1.497295
#> c(7, 7, 4) 180 20773.47 NA

The numerical and graphical output of tune.ca3.out show that an appropriate triplet of dimen-
sions is (2, 2, 1). Note that Figure 1 is generated when using plot(tune.ca3.out). While cluttered, as
the result of the large number of triplets that can be considered in the analysis of ratrank, Figure 1
also shows that an appropriate dimensionality of the solution is (2, 2, 1). Each point in Figure 1 corre-
sponds to a combination of dimensions. The y-axis gives the goodness-of-fit measure for each model
which we use as the criterion for choosing the most appropriate dimensionality for the solution. More
complex models that involve higher dimensionalities (or, equivalently, higher degrees of freedom)
have a better fit. The red line outlines the convex hull where models on this line are superior to higher
dimensional options with a similar fit. For example, in Figure 1, for the models that lie below the
red line there is typically an alternative, less complex, model that achieves the same fit. Alternatively,
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Figure 1: Model fit versus complexity for three-way nominal CA of the ratrank data.

there is also an equally complex model having a better fit. In three-way correspondence analysis, like
other dimension reduction methods, users can factor in subjective criteria (such as interpretability)
when selecting the dimensionality of a model. Here, in accordance with Ceulemans and Kiers (2006),
we follow the st criterion and select the model, marked green in Figure 1, with two dimensions for the
row (Rating) and column (Ranking) variables and one for tube (Country) variable.

Numerical summary of the association

By following the analysis described in van Herk and van de Velden (2007) we perform a symmetric
three-way correspondence analysis, the default method, on the ratrank data. Following the output of
the tunelocal function and in accordance with van Herk and van de Velden (2007), we specify two
dimensions for the row (Rating) and column (Ranking) categories, and a single dimension for the tube
(Country) categories. This can be achieved by:

ca3.out <- CA3variants(ratrank, dims = c(2, 2, 1))

The print() function returns several key measures of association that are included in this output.
These include the percentage of explained inertia along each dimension, the partition of Pearson’s
three-way chi-squared and phi-squared statistics into four terms (see equation (4)), the corresponding
degrees of freedom, the p-value, and the relative sizes of each term of the partition (allowing for
comparisons between chi-squared values from different, asymptotic chi-squared distributions):

print(ca3.out)

#> # Percentage contributions of the components to the total inertia for column-tube
biplots

#> p1 p2
#> 67.008 16.347

#> # Percentage contributions of the components to the total inertia for row-tube
biplots
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#> q1 q2
#> 67.008 16.347

#> # Percentage contributions of the components to the total inertia for row-column
biplots

#> r1
#> 83.355

#> # Index partition

#> Term-IJ Term-IK Term-JK Term-IJK Term-total
#> Chi-squared 18359.272 589.605 254.629 2062.404 21265.910
#> Phi-squared 0.412 0.013 0.006 0.046 0.477
#> % of Inertia 86.332 2.773 1.197 9.698 100.000
#> df 64.000 32.000 32.000 256.000 384.000
#> p-value 0.000 0.000 0.000 0.000 0.000
#> X2/df 286.864 18.425 7.957 8.056 55.380

This output shows that the Pearson chi-squared statistic of ratrank is 21265.91 and, with a p-value
that is less than 0.0001, there is a statistically significant association between at least two of the variables
of the data set. Further insight into the nature of the association can be obtained from the terms of the
partition of the overall chi-squared. The output shows that the most dominant source of association
exists between the Rating and Ranking variables (Term-IJ), and contributes to 18359.27, or 86.33%, of
the total association among the three variables. The association between the Rating-Country variables
(Term-IK) and Ranking-Country variables (Term-JK) accounts for relatively little in comparison (2.77%
and 1.20%, respectively), but are still statistically significant sources of association. The association
among all three variables (Term-IJK) contributes to the remainder (or nearly 10%) of the association
between the variables. Further information about the nature of the association can be obtained visually
by performing a correspondence analysis.

Visual summary of the association

To reproduce the results from van Herk and van de Velden (2007), we consider here the row-tube
(Rating - Country) interactive biplot, so that the interactive row-tube points are plotted using principal
coordinates. This biplot is given by Figure 2 and is produced from the command:

plot(ca3.out, biptype = "row-tube", addlines = F)

By default, the plot() function uses a straight line from the origin to each standard coordinate to
depict the non-interactive variable. However, with so many points in Figure 2, adding projection lines
for each of the nine Ranking categories leads to a cluttered plot. Hence, and in accordance with van
Herk and van de Velden (2007), we use addlines = F to remove the lines. Furthermore, to control the
size of the points and their labels, the plot() function uses two arguments size1 and size2 (for the
points and labels, respectively); by default size1 = 1 and size2 = 3.

Finally, to avoid any further clutter of points close to the origin, a scaling argument can be used
that helps to reveal important features of the association without impacting the approximation. The
default for this scaling argument, which was applied here, is set such that the average sum of squares
for the two sets of points is the same, and is thus in accordance with the recommendations given by
Gower et al. (2010) and van de Velden et al. (2017). This default can be overwritten by specifying a
value for the scaleplot argument in the plot() function. Note that, except for this scaling, the biplot
given by Figure 2 is identical to Figure 1 in van Herk and van de Velden (2007).

Figure 2 shows that the highest value rank (“rank9”) generally receives the highest possible rating
(“9”) across all five countires. However, for the second highest value rank (“rank8”) the ratings tend
to vary from 4 to 8, showing some heterogeneity in how “rank8” is perceived in terms of the Rating
categories. For the lowest valued rank (“rank1”), we see a clear association with the lowest rating (“1”).
However, this level of rating is also often linked to items that received a rank of “2”. Moreover, for the
items that receive a rank of “1” up to “7”, we see that individuals tend to assign to them a rating of
between “1” and “3” (inclusive). Finally, each of the ratings appear rather homogeneous across all
five countries. However, with ratings from Germany being consistently furthest from the origin, and
those from the United Kingdom being closest to the origin, these Country categories provide, relatively
speaking, the strongest and weakest (respectively), contribution to the association. See van Herk and
van de Velden (2007) for a more in-depth analysis and explanation of this analysis.
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6.2 Three-way non-symmetric correspondence analysis: Happiness data

Since 1977, the study of the relationship between happiness, household characteristics and education
using data obtained from social survey data has received a great deal of attention. For an analysis
of this data set, see, for example, Davis (1977), Clogg (1982), Beh and Davy (1998) and Kroonenberg
(2008, Chap.17). Davis’ data set Davis (1977) examines the association between happiness, number
of siblings and years of schooling completed of 1517 individuals and is included in CA3variants
as happy. Kroonenberg (2008, Chap.17) studied Davis’ data by performing a symmetric three-way
correspondence analysis.

Following on from those studies mentioned above, we analyze a three-way contingency table,
obtained from the 2016 European Social Survey (http://www.europeansocialsurvey.org/). It involves
a sample of 1669 respondents from the Netherlands and investigates the association between their
reported level of Happiness, the level of Education and the number of people in their Household. As an
illustration of one of the three-way variants implemented in the CA3variants package, we now turn
our attention to performing the non-symmetric variant of three-way correspondence analysis.

Defining the variables

To assess the level of Happiness of a respondent, people were asked to reply to the question:

“Taking all things together, how happy would you say you are?"

Responses were made on a scale from 1 (“extremely unhappy”) to 10 (“extremely happy”). After
observing the distribution of counts in the data, we re-coded these scales into the following four
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Figure 2: Interactive row-tube biplot for ratrank. The column points (Ranking categories) are depicted
using standard coordinates and are labeled as “rank1” to “rank9”. The interactive row-tube points
(Rating-Country categories) are depicted using principal coordinates and are labelled by the rating
number (1 to 9) followed by the first letter of the country: France (F), Germany (G), Italy (I), Spain (S)
and the United Kingdom (U).
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categories of Happiness: “low” (for ratings < 6), “middle” (for ratings between 6 − 7), “high” (for a
rating equal to 8), and “very-high” (for ratings > 8).

The Education variable is defined using four categories. These are “Less than lower secondary
education” (coded “ED1”), “Lower secondary education completed” (coded “ED2”), “Upper secondary
education completed” (coded “ED3”) and “Post-secondary and/or tertiary education completed”
(coded “ED45”).

Finally, for the Household variable, the respondents were asked to reply to the question:

“Including yourself, how many people - including children - live here regularly as members of this
household?"

The four categories from this question were defined as follows: a one person household is coded
“HS1”, a two person household is coded “HS2”, a three person household is coded “HS3”, a four
person household is coded “HS4”, a five person household is coded “HS5’ and a household containing
more than five people is coded “>HS5”.

The cross-classification of the Happiness, Education and Household variables forms a three-way
contingency table which has been included in the package with the object name happyNL.

For our analysis of this contingency table, we consider the non-symmetric three-way correspon-
dence analysis variant with the row variable (Happiness) treated as the response variable, and the
column (Education) and tube (Household) variables defined as the predictor variables.

Dimensionality of the solution

Before performing a three-way NSCA on happyNL we first need to determine the dimensionality of
the solution. This can be done by comparing the fit and complexity of models of different dimension-
ality using the tunelocal() function. For this example, we consider decompositions applied to 100
resampled data tables (using the parametric bootstrap; the default), and calculate, for each triplet of
dimensions, the mean goodness of fit over the bootstrap samples. Note that, by doing so, the overall
number of estimated models equals I × J × K × nboots = 80 × 100 = 8000. All resampled data tables
are collected in the object named ‘XG’ of the output of the tunelocal() function:

tune.nsca3.out <- tunelocal(happyNL, ca3type = "NSCA3", resp = "row", boots = T)
plot(tune.nsca3.out)

The resulting plot is given as Figure 3. Each point in this plot corresponds to a combination of
dimensions. The y-axis gives the goodness-of-fit measure for each model. More complex models,
that is those involving higher dimensionalities have a better fit. The red line denotes the convex
hull where models on this line are superior to higher dimensional options with a similar fit. For
example, in Figure 3, for the models which are below the red line there is an alternative, less complex,
model achieving the same (or similar) fit, or there is an equally complex model having a better fit. In
three-way correspondence analysis, as with other dimension reduction techniques, users can factor
in subjective criteria such as interpretability when selecting the dimensionality of a model. Here, in
accordance with Ceulemans and Kiers (2006), we follow the st criterion and select the model, marked
green in Figure 3, with two dimensions for the row (Education) column (Household) and tube (Happiness)
variables.

Using print(tune.nsca3.out) we obtain the numerical results (i.e. fit) for the models that lie
along the red line in Figure 3. The output from this command is:

#> # Note that when boots = T, the data samples generated
#> # are given in the object named 'XG'

#> # Results for choosing the optimal model dimension

#> # Convex hull (upper bound)

#> # Selected model(s):
#> complexity fit
#> c(2, 2, 2) 4 187.6015

#> # All models on upper bound:
#> complexity fit st
#> c(1, 1, 4) 0 111.6055 NA
#> c(1, 2, 2) 1 145.6444 2.433839
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Figure 3: Model fit versus complexity for three-way NSCA of the happiness bootstrapped data.

#> c(2, 2, 2) 4 187.6015 2.965930
#> c(2, 3, 3) 12 225.3251 1.766711
#> c(3, 3, 3) 20 246.6776 1.382302
#> c(3, 4, 3) 28 262.1246 1.246718
#> c(3, 4, 4) 39 279.1611 1.734889
#> c(3, 5, 4) 50 288.9810 1.190973
#> c(4, 5, 4) 69 303.2229 NA

Numerical summary of the association

The CA3variants() function can be used to perform a three-way non-symmetric correspondence
analysis on happyNL by specifying the arguments of the function so that they define the data table,
the dimensionality of the solution, the type of analysis and the response variable. Here, using the
suggested dimensions, the analysis is performed so that:

nsca3.out <- CA3variants(happyNL, ca3type = "NSCA3", resp = "row",
dims = c(2, 2, 2))

The numerical output from this analysis is obtained using print(nsca3.out):

print(nsca3.out)

#> # Percentage contributions of the components to the total inertia for pred biplots

#> p1 p2
#> 47.407 22.696

#> # Index partition

#> Term-IJ Term-IK Term-JK Term-IJK Term-total
#> Tau Numerator 0.014 0.005 0.008 0.006 0.032
#> Tau 0.021 0.007 0.012 0.008 0.047
#> % of Inertia 43.162 14.719 24.749 17.371 100.000
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#> CM-Statistic 102.583 34.981 58.819 41.285 237.669
#> df 12.000 9.000 12.000 36.000 69.000
#> p-value 0.000 0.000 0.000 0.251 0.000
#> CM-Statistic/df 8.549 3.887 4.902 1.147 3.444

By reducing the dimensionality of the solution to (2, 2, 2), the first set of values (p1 and p2) are the
percentages of the total association which is explained by the two axes of a biplot; we will speak more
on these two values shortly. The summary of values that follow Index partition gives the four terms
of the partition of the Marcotorchino index, its numerator and its associated test statistic, CM-statistic
(see Section 2.2.3). Note that the last column, labeled Term-total corresponds to the three-way index
being partitioned. Consequently, the seven rows of this output summarize the elements of each term
of this partition, including their p-value and their relative sizes (allowing for comparisons between
CM-statistic values from different, asymptotic chi-squared distributions).

The data set happyNL has a CM-statistic of 237.669. Its small p-value (< 0.0001, df = 69) confirms
that there is very strong evidence to conclude that the Household and Education variables are statistically
significant predictors of Happiness. By partitioning the CM-statistic associated with the Marcotorchino
index, we can examine the sources of non-symmetric association that exists in the three-way table. We
see that all the bivariate association terms are statistically significant, but not the trivariate association
term (p-value < 0.251, df = 36) which assesses the increase in predictability of Happiness given the
number of people in a Household and the highest level of Education of the participants.

Visual summary of the association

While the trivariate term from the partition of the CM-statistic is not statistically significant, we shall
nonetheless visually explore how people’s level of Happiness is influenced by the number of people in
their Household and their highest level of Education. This shall be done by generating an interactive
biplot with the interaction of each combination of categories of the predictor variables depicted
using principal coordinates and, therefore, setting biptype = "pred". Note that there is indeed an
“interaction” (via a symmetric association) between the two predictor variables since the Term-JK
p-value is less than < 0.0001. The categories of the response variable are depicted in the biplot using
standard coordinates when biptype = "pred".

Applying the plot() function to the CA3variants object can be used to generate different biplots.
A description of some of all available plotting arguments can be found in Table 3. However, when a
non-symmetric variant is applied to the CA3variants object, a suitable interactive biplot that portrays
the non-symmetric association can be obtained using the command:

plot(nsca3.out, biptype = "pred")

which produces the interactive biplot of Figure 4. Figure 4 displays straight lines from the origin to each
standard coordinate to depict the non-interactive variable for the four levels of the Happiness variable.
Such lines are convenient for visualizing how the interactive points relate to the non-interactive points.
This is because the proximity of the points from the origin reflect deviations from independence.

In Figure 4, we see that the first dimension accounts for 47% (rounded to the nearest integer) of
the association between the variables while the second dimension accounts for 23%. Thus, Figure 4
captures approximately 70% of the association between the three categorical variables (when treated
non-symmetrically) of happyNL. These two percentages are also included as p1 and p2, respectively,
from the numerical summaries included in print(nsca3.out). Since Figure 4 provides a good visual
summary of the non-symmetric association of the variables of happyNL, we now turn our attention to
describing the nature of this association. The left side of Figure 4 shows a group of points corresponding
to HS1 (a single person household) combined with all levels of education. It shows that respondents
tend to exhibit lower levels of happiness when they live alone, regardless of education level. Due
to the non-symmetric nature of the association we can also infer that for these single households,
the groups with lower levels of education (HS1ED1 and HS1ED2) lead (or help predict) a low, or
middle, level of happiness. For those with a higher education, Figure 4 also suggests that having
a higher level of education does not necessarily lead to (or help to predict) a very-high happiness
level. Furthermore, respondents in a two person household (HS2) tend to be very happy (HS2 is a
good predictor of very-high levels of happiness), especially for those with a lower level of education
(HS2ED1 and HS2ED2). The interactive biplot shows that those with higher levels of education in
a two person household are still more associated with a very-high level of happiness (HS2ED3 and
HS2ED45) but less than those with less of an education.

For the large households (HS4 and >HS5), we observe that the effect of education level on happiness
appears to be stronger. That is, for these larger households, respondents with a higher (ED45) or a
middle-high (ED3) level of education tend to be more happy (high and very-high) than people with a

The R Journal Vol. 15/2, June 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 254

Arguments Description
Xout The output of CA3variants().
biptype Specifies the type of interactive biplot being produced. When ca3type = "CA3" or

= "OCA3" there are six options: biptype = "row", "column", "tube", "row-column",
"row-tube" and "column-tube". Each option refers to what is depicted using prin-
cipal coordinates. For instance, "row" specifies that the row points are depicted
using principal coordinates and, consequently, the interactive column-tube points
are depicted using standard coordinates. When ca3type = "NSCA3" or "ONSCA3",
there are only two biplot options: biptype = "resp" or "pred". The option "resp"
specifies that the response categories are depicted using principal coordinates, while
the option "pred" indicates that the interactive predictor points are in principal
coordinates.

scaleplot A biplot scaling argument used to avoid spatial cluttering by pulling points away
from the origin. See the description of the “gamma scaling” in Gower et al. (2011,
Section 2.3.1). By default, scaleplot is the overall average of the sum-of-squares
of the two sets of coordinates (principal and standard ones), so that the average
sum-of-squares for the two sets of points is the same (van de Velden et al., 2017).

addlines Specifies whether the points in standard coordinates are represented using axes. By
default, addlines = TRUE.

Table 3: Summary of important plotting options available in plot.CA3variants(). For all options use
?plot.CA3variants
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Figure 4: Interactive biplot from the NSCA3 of happyNL with Happiness and Education the interactive
variables

lower level of education (ED1 and ED2). Respondents that live in large households and have a low
level of education (HS4ED2, HS4ED1, >HS5ED2 and >HS5ED1) are not highly happy individuals.
Indeed, these interative points are on the opposite side of Figure 4 to the high level of happiness.
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6.3 Ordered three-way correspondence analysis: Ranking and rating data

In the analysis of ratrank in Section 2.6.1 we treated the Ranking and Rating variables as nominal when
they are, in fact, ordinal variables. Using the CA3variants package we can incorporate this ordinality
in the decomposition. In particular, we perform the analysis by treating Country as a nominal variable
and Ranking and Rating as ordinal by using the hybrid decomposition described in Section 2.3.3.

Dimensionality of the solution

Before we construct a low-dimensional display of the association between the ordinal variables (Rating
and Ranking) and the nominal variable (Country), we determine the appropriate dimension of the
solution. The 9× 9× 5 data set ratrank has a 8× 8× 4 sized matrix of hybrid core elements that reflect
the trivariate sources of association between the three variables. Not all these sources are important
for describing the analysis, or are even practically relevant. In most practical cases the linear and
quadratic sources of association are sufficient and provide a meaningful description of the association.
We use the tunelocal() function to determine the appropriate number of hybrid core elements to
define the dimensionality of the solution. When using the tunelocal() function for analysing ordinal
variables, one needs to specify the number of them; this is done by setting the argument norder = 2.
The numerical and graphical summaries from using this function are obtained using the commands:

tune.oca3.out <- tunelocal(ratrank, ca3type = "OCA3", norder = 2)
print(tune.oca3.out)

The numerical and graphical output of a similar form to those seen in the previous examples. The
visual and numerical outputs (not given here) show that the highest order hybrid core element is of
order (2, 2, 1) (i.e. the quadratic-by-quadratic-by-first order component association) so that all terms,
up to the (2, 2, 1) term, together account for most of the association between the three variables.

Numerical summary of the association

We perform OCA3 on ratrank using the dimensionalities as suggested by the output of the tunelocal()
function. Hence, we confine our attention to sources of association no higher than the quadratic-by-
quadratic-by-first hybrid core so that:

oca3.out <- CA3variants(ratrank, ca3type = "OCA3", dims = c(2, 2, 1), norder = 2)

We note that from such an analysis, only four of the 256 hybrid core elements are required to
account for most of the association that exists between the variables. We can gain more insight into the
structure of the association by inspecting the core elements from the hybrid decomposition. When
using the function summary(), the elements of the core and squared core arrays (Lombardo et al., 2021),
respectively, can be obtained:

summary(oca3.out)

#> Core table
#> , , r1

#> q1 q2
#> p1 -0.527 -0.143
#> p2 0.198 -0.246

#> Squared core table
#> , , r1

#> q1 q2
#> p1 0.278 0.020
#> p2 0.039 0.061

#> Explained inertia (reduced dimensions)
#> [1] 0.398

#> Total inertia (complete dimensions)
#> [1] 0.477
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#> Proportion of explained inertia (when reducing dimensions)
#> [1] 0.834

Note that by confining the solution to include terms no higher than (2, 2, 1), the sum of squares of
these four squared core elements is 83.4% of the association that exists between the three variables of
the contingency table.

The four terms from this output are all adequately described using the linear and quadratic
polynomials for Rating and Ranking and just one Tucker3 component for Country, and are:

• the linear-by-linear polynomial component term (0.278) which describes the association be-
tween the ordered variables in terms of any differences that exist in the linearity of each ordered
set of categories that form the Rating and Ranking variables,

• the linear-by-quadratic polynomial component term (0.020) which describes the association
between the ordered variables in terms of any linear differences in the Rating variable and
dispersion differences in the Ranking variable,

• the quadratic-by-linear polynomial component (0.039) which describes the association between
the ordered variables in terms of any dispersion differences in the Rating variable and any linear
differences that exist in the Ranking variable, and

• the quadratic-by-quadratic polynomial component (0.061) which describes the association
between the ordered variables in terms of any dispersion differences that exist in the Rating and
Ranking variables.

Using the print() function we obtain the percentage contributions of the components to the total
inertia for different biplots, the overall decomposition information, as well as the partitionings of
the four terms of the Pearson three-way chi-squared statistic into their polynomial components. For
example, suppose we focus on the pair-wise association between the Rating and Ranking variables.
The partial output corresponding to the row and column (linear and non-linear) components of the
Chi2-IJ term can be shown:

print(oca3.out)
#> # ...
#> # Partition of the Term-IJ using polynomials

#> Term-IJ-poly %inertia df p-value
#> poly-row1 12701.275 69.182 8 0
#> poly-row2 3882.996 21.150 8 0
#> poly-row3 833.867 4.542 8 0
#> poly-row4 346.473 1.887 8 0
#> poly-row5 177.262 0.966 8 0
#> poly-row6 167.495 0.912 8 0
#> poly-row7 122.977 0.670 8 0
#> poly-row8 126.927 0.691 8 0
#> Chi2-IJ 18359.272 100.000 64 0
#> poly-col1 13819.761 75.274 8 0
#> poly-col2 3177.816 17.309 8 0
#> poly-col3 605.183 3.296 8 0
#> poly-col4 189.747 1.034 8 0
#> poly-col5 149.127 0.812 8 0
#> poly-col6 160.638 0.875 8 0
#> poly-col7 124.849 0.680 8 0
#> poly-col8 132.150 0.720 8 0
#> Chi2-IJ 18359.272 100.000 64 0
#> # ...

This output shows that all components are statistically significant (with p-values smaller than
0.0001). It also shows that the variation in the Rating variable (row variable) is dominated by the differ-
ence in the linearity of its categories - the linear component accounts for 100 × 12701.28/18359.27 =
69.18% of the variation in this variable. The linear component also accounts for the largest source of
variation in the Ranking variable (column variable), contributing to 100 × 13819.76/18359.27 = 75.27%
of the variables’ variation. Thus, if we were to confine our attention to just exploring further the
association between the Rating and Ranking variables by generating a visual summary of the asso-
ciation this can be done using the correspondence analysis approach introduced in Beh (1997) and
described by Beh and Lombardo (2014, Chap. 6) and Beh and Lombardo (2021b, Chap. 4). Since
both variables are dominated by differences in the linearity of their categories, such an analysis will
produce a correspondence plot that is dominated more by the first axis than any of the other axis in
the optimal plot.
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Figure 5: The row biplot from the classical three-way correspondence analysis of ratrank.

Visual summary of the association

Since the three-way association term is statistically significant (X2 = 21265.91, p-value < 0.0001), we
can examine the nature of this association term more closely. Visually summarizing this three-way
association can be done by considering the coordinate systems that generate the biplots described
in Section 2.4.1. Recall that in Section 2.6.1, we performed the classical approach to three-way
correspondence analysis and visualized the results using the row-tube (interactive) biplot. In doing so,
the Ranking-Country association – which is comparatively weak (contributing to 1.2% of the association)
but is statistically significant (p-value < 0.0001) – is depicted using standard coordinates while the
Rating categories are depicted using principal coordinates that are akin to XIK,J in (16).

To highlight differences between the classical and ordered three-way correspondence analysis, we
construct the row biplot of Figure 5 using the command:

plot(ca3.out, biptype = "row", addlines = F, scaleplot = 15)

note that ca3.out is the output from the classical analysis performed in Section 2.6.1. When Rating
and Ranking are treated as ordinal variables, Figure 6 gives the row biplot that can be obtained from
the command:

plot(oca3.out, biptype = "row", scaleplot = 15)

where the value for scaleplot = 15 was chosen by trial and error to ensure a reasonable separation of
the points in the biplot, without afffecting the approximation of the association between the variables.
While Figure 5 and Figure 6 both give parabolic configurations of the points, these configurations
are quite different since the former treats the variables as nominal and uses the components from a
Tucker3 decomposition while the latter is constructed using orthogonal polynomials for the ordered
row and column (Ratings and Rankings) variables and a Tucker3 component for the tube (Country)
variable. Observe that the parabolic shape of Rating in Figure 5 is more pronounced than the parabolic
configuration of Rating in Figure 6.

In addition to the visual differences between the two configurations of points, there are also some
features that make Figures 5 and 6 distinct. Indeed, the first axis of Figure 6 is constructed using the
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Figure 6: The row biplot from the ordered (hybrid) three-way correspondence analysis of ratrank.

linear orthogonal polynomial while the second axis is constructed using the quadratic orthogonal
polynomial. The linear and dispersion components contribute to 66% and 17%, respectively, of the
total inertia of the data; these percentages can be obtained from the output of the print(oca3.out)
command.

When considering all variables as nominal, as was done in our analysis in Section 2.6.1, the ratings
appear closely associated with the rankings across the five countries. However, treating the two
variables (Rating and Ranking) as ordinal provides additional information on some aspects of the
variable distribution (mean and variability). For example, Figure 6 shows that the configuration of the
Rating categories along the first (linear polynomial) axis is different to the configuration along the first
axis of Figure 5. This is because the variation of the Rating variabe is dominated more by differences
in the linearity of its categories than by its dispersion differences. This dominant linear component
affects the variable association and is captured by the configuration of points in Figure 6.

7 Conclusion

The CA3variants package described in this paper is, to the best of our knowledge, the only package
that allows practitioners and researchers to directly perform four variants of three-way correspondence
analysis, including the classical three-way correspondence analysis (Carlier and Kroonenberg, 1996),
the non-symmetric variant and the two ordered versions of three-way correspondence analysis
(Lombardo et al., 2021). Subsequent versions of the package may allow for additional flexibility by
providing the user more tools to numerically and visually explore the association structure between
categorical variables. These include, but are not confined to, the decomposition of the generalised
Cressie-Read family of divergence statistics (Pardo, 1996). Indeed, Pearson’s statistic is one of many
measures of symmetric association that can be considered. Alternatives include the Freeman-Tukey
statistic, log-likelihood ratio statistic, Neyman’s chi-squared statistic, and the Cressie-Read statistic,
which were originally developed to study two variables (Cressie and Read, 1984; Beh and Lombardo,
2023). These measures are all special cases of the Cressie-Read family of divergence statistics and have
been adapted for three-way and multi-way contingency tables (Pardo, 1996; Pardo and Pardo, 2003;
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Lombardo and Beh, 2022). Thus, this family of statistics may be incorporated into the CA3variants
package, thereby providing the user with greater flexibility for the choice of symmetric association
they wish to consider. Furthermore, next version of the package might consider the construction
of confidence regions that determine those categories (and interactions) that provide a statistically
significant contribution to the association between the variables (Beh, 2010; Ringrose, 1996, 2012).
Numerical summaries that accompany such regions, including p-values (Beh and Lombardo, 2015) can
certainly be incorporated and would provide similar functionality that is available in the CAvariants
package used for the correspondence analysis of two cross-classified categorical variables (Lombardo
and Beh, 2016).
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