D. D. Boos. On generalized score tests. The American Statistician, 46(4): 327–33, 1992.
V. J. Carey.
Gee: Generalized estimation equation solver. 2022. URL
https://CRAN.R-project.org/package=gee. R package version 4.13-23.
V. J. Carey and Y.-G. Wang. Working covariance model selection for generalized estimating equations.
Statistics in Medicine, 30(26): 3117–3124, 2011. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4300.
R. D. Cook. Assessment of local influence. Journal of the Royal Statistical Society. Series B (Methodological), 48(2): 133–169, 1986.
M. Davidian and D. M. Giltinan. Nonlinear models for repeated measurement data. CRC press, 1995.
G. M. Fitzmaurice, N. M. Laird and J. H. Ware. Applied longitudinal analysis. 2nd ed. John Wiley & Sons, 2011.
L. Fu, Y. Hao and Y.-G. Wang. Working correlation structure selection in generalized estimating equations. Computational Statistics, 33: 983–96, 2018.
M. Gosho. Criteria to select a working correlation structure in SAS.
Journal of Statistical Software, Code Snippets, 57(1): 1–10, 2014. URL
https://www.jstatsoft.org/index.php/jss/article/view/v057c01.
M. Gosho, C. Hamada and I. Yoshimura. Criterion for the selection of a working correlation structure in the generalized estimating equation approach for longitudinal balanced data. Communications in Statistics - Theory and Methods, 40(21): 3839–3856, 2011.
A. Gregoire, R. Kumar, B. Everitt and J. Studd. Transdermal oestrogen for treatment of severe postnatal depression. The Lancet, 347(9006): 930–933, 1996.
B. G. Hammill and J. S. Preisser. A SAS/IML software program for GEE and regression diagnostics. Computational Statistics & Data Analysis, 51(2): 1197–1212, 2006.
L. Y. Hin, V. J. Carey and Y.-G. Wang. Criteria for working-correlation-structure selection in GEE: Assessment via simulation.
The American Statistician, 61(4): 360–364, 2007. URL
http://www.jstor.org/stable/27643940.
L.-Y. Hin and Y.-G. Wang. Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine, 28(4): 642–658, 2009.
S. Højsgaard, U. Halekoh and J. Yan. The r package geepack for generalized estimating equations. Journal of Statistical Software, 15(2): 1–11, 2005.
G. James, D. Witten, T. Hastie and R. Tibshirani. An introduction to statistical learning: With applications in r. Springer, 2013.
K.-M. Jung. Local influence in generalized estimating equations. Scandinavian Journal of Statistics, 35(2): 286–294, 2008.
N. M. Laird. Missing data in longitudinal studies. Statistics in medicine, 7(1-2): 305–315, 1988.
K. Y. Liang and S. L. Zeger. Longitudinal data analysis using generalized linear models. Biometrika, 73: 13–22, 1986.
S. R. Lipsitz, N. M. Laird and D. P. Harrington. Using the jackknife to estimate the variance of regression estimators from repeated measures studies. Communications in Statistics - Theory and Methods, 19(3): 821–845, 1990.
S. Lipsitz and G. Fitzmaurice. Generalized estimating equations for longitudinal data analysis. In Longitudinal data analysis, 2008. CRC Press.
L. A. Mancl and T. A. DeRouen. A covariance estimator for GEE with improved small-sample properties.
Biometrics, 57(1): 126–134, 2001. DOI
doi: 10.1111/j.0006-341x.2001.00126.x.
P. McCullagh and J. A. Nelder.
Generalized linear models, second edition. Chapman & Hall, 1989. URL
http://books.google.com/books?id=h9kFH2\_FfBkC.
L. S. McDaniel, N. C. Henderson and P. J. Rathouz. Fast pure
R implementation of
GEE: Application of the
Matrix package.
The R Journal, 5: 181–187, 2013. URL
https://journal.r-project.org/archive/2013-1/mcdaniel-henderson-rathouz.pdf.
W. Pan. Akaike’s information criterion in generalized estimating equations.
Biometrics, 57(1): 120–125, 2001. URL
http://www.jstor.org/stable/2676849.
M. C. Pardo and R. Alonso. Working correlation structure selection in GEE analysis.
Statistical Papers, 60(5): 1447–1467, 2019. URL
https://doi.org/10.1007/s00362-017-0881-0.
J. Pinheiro and D. Bates.
Mixed-effects models in s and s-PLUS. Springer New York, 2000. URL
https://books.google.com.co/books?id=N3WeyHFbHLQC.
J. Pinheiro, D. Bates and R Core Team.
Nlme: Linear and nonlinear mixed effects models. 2022. URL
https://CRAN.R-project.org/package=nlme. R package version 3.1-160.
J. S. Preisser, K. K. Lohman and P. J. Rathouz. Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. Statistics in Medicine, 21: 3035–3054, 2002.
J. S. Preisser and B. F. Qaqish. Deletion diagnostics for generalised estimating equations. Biometrika, 83(3): 551–562, 1996.
J. M. Robins, A. Rotnitzky and L. P. Zhao. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association, 90: 122–129, 1995.
A. Rotnitzky and N. P. Jewell. Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data.
Biometrika, 77(3): 485–497, 1990. URL
http://www.jstor.org/stable/2336986.
R. W. M. Wedderburn. Quasi-likelihood functions, generalized linear models, and the gauss—newton method. Biometrika, 61(3): 439–447, 1974.
J. Xu, J. Zhang and L. Fu. Variable selection in generalized estimating equations via empirical likelihood and gaussian pseudo-likelihood. Communications in Statistics - Simulation and Computation, 48(4): 1239–1250, 2019.
J. Yan. Geepack: Yet another package for generalized estimating equations. R-News, 2/3: 12–14, 2002.
A. Zeileis and Y. Croissant. Extended model formulas in
R: Multiple parts and multiple responses.
Journal of Statistical Software, 34(1): 1–13, 2010. DOI
10.18637/jss.v034.i01.
X. Zhu and Z. Zhu. Comparison of criteria to select working correlation matrix in generalized estimating equations. Chinese Journal of applied probability and statistics, 5: 515–30, 2013.