Supplementary materials are available in addition to this article. It can be downloaded at
RJ-2023-060.zip
B. Aronson and K.-C. Yang.
Birankr: Ranking nodes in bipartite and weighted networks. 2020. URL
https://CRAN.R-project.org/package=birankr. R package version 1.0.1.
B. Aronson, K.-C. Yang, M. Odabas, Y.-Y. Ahn and B. L. Perry. Comparing measures of centrality in bipartite social networks: A study of drug seeking for opioid analgesics.
SocArXiv, 2020. DOI
10.31235/osf.io/hazvs.
Y. Bao and A. Datta. Simultaneously discovering and quantifying risk types from textual risk disclosures. Management Science, 60(6): 1371–1391, 2014.
K. Benoit and A. Matsuo.
Spacyr: Wrapper to the ’spaCy’ ’NLP’ library. 2020. URL
https://CRAN.R-project.org/package=spacyr. R package version 1.2.1.
D. M. Blei, A. Y. Ng and M. I. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, 3: 993–1022, 2003.
P. Bonacich. Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1): 113–120, 1972.
P. Bonacich. Some unique properties of eigenvector centrality. Social Networks, 29(4): 555–564, 2007.
J. M. Chambers.
S, R, and Data Science.
The R Journal, 12(1): 462–476, 2020. URL
https://doi.org/10.32614/RJ-2020-028.
A. P. Christensen and Y. N. Kenett. Semantic network analysis
(SemNA): A tutorial on preprocessing, estimating, and analyzing semantic networks.
PsyArXiv, 2019. DOI
10.31234/osf.io/eht87.
G. Csárdi.
Cranlogs: Download logs from the ’RStudio’ ’CRAN’ mirror. 2019. URL
https://CRAN.R-project.org/package=cranlogs. R package version 2.1.1.
G. Csárdi, T. Nepusz, et al. The igraph software package for complex network research. InterJournal, complex systems, 1695(5): 1–9, 2006.
J. Fox. Aspects of the Social Organization and Trajectory of the R Project. The R Journal, 1(2): 5–8, 2009.
J. Fox and A. Leanage. R and The Journal of Statistical Software. Journal of Statistical Software, 73(1): 1–13, 2016.
L. C. Freeman. Centrality in social networks conceptual clarification. Social networks, 1(3): 215–239, 1978.
R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5(10): 1–16, 2004.
D. M. German, B. Adams and A. E. Hassan. The evolution of the R software ecosystem. In 2013 17th european conference on software maintenance and reengineering, pages. 243–252 2013. IEEE.
B. Grün and K. Hornik.
topicmodels: An
R package for fitting topic models.
Journal of Statistical Software, 40(13): 1–30, 2011. DOI
10.18637/jss.v040.i13.
X. He, M. Gao, M.-Y. Kan and D. Wang. Birank: Towards ranking on bipartite graphs. IEEE Transactions on Knowledge and Data Engineering, 29(1): 57–71, 2016.
R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3): 299–314, 1996.
S. Jain and A. Sinha. Identification of influential users on twitter: A novel weighted correlated influence measure for covid-19. Chaos, Solitons & Fractals, 139: 110037, 2020.
I. Kosmidis.
Cranly: Package directives and collaboration networks in CRAN. 2019. URL
https://CRAN.R-project.org/package=cranly. R package version 0.5.4.
J. Lai, C. J. Lortie, R. A. Muenchen, J. Yang and K. Ma. Evaluating the popularity of R in ecology. Ecosphere, 10(1): e02567, 2019.
F. Morone and H. A. Makse. Influence maximization in complex networks through optimal percolation. Nature, 524(7563): 65–68, 2015.
R Core Team.
Writing r extensions. Vienna, Austria: R Foundation for Statistical Computing, 2021. URL
https://cran.r-project.org/doc/manuals/r-release/R-exts.html.
A. Salavaty, M. Ramialison and P. D. Currie. Integrated value of influence: An integrative method for the identification of the most influential nodes within networks. Patterns, 1(5): 100052, 2020.
J. Silge, J. C. Nash and S. Graves.
Navigating the R Package Universe.
The R Journal, 10(2): 558–563, 2018. URL
https://doi.org/10.32614/RJ-2018-058.
J. Silge and D. Robinson. Text mining with r: A tidy approach. O’Reilly Media, Inc., 2017.
S. Tippmann. Programming tools: Adventures with R. Nature News, 517(7532): 109, 2015.
Z. Wang, C. Du, J. Fan and Y. Xing. Ranking influential nodes in social networks based on node position and neighborhood. Neurocomputing, 260: 466–477, 2017.
H. Wickham. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2): 180–185, 2011.
A. Zeileis. CRAN task views. R News, 5(1): 39–40, 2005.
Z. Zhang and D. Zhang. What is Data Science? An Operational Definition based on Text Mining of Data Science Curricula. Journal of Behavioral Data Science, 1(1): 1–16, 2021.