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SIMEXBoost: An R package for Analysis
of High-Dimensional Error-Prone Data
Based on Boosting Method
by Li-Pang Chen and Bangxu Qiu

Abstract Boosting is a powerful statistical learning method. Its key feature is the ability to derive a
strong learner from simple yet weak learners by iteratively updating the learning results. Moreover,
boosting algorithms have been employed to do variable selection and estimation for regression models.
However, measurement error usually appears in covariates. Ignoring measurement error can lead
to biased estimates and wrong inferences. To the best of our knowledge, few packages have been
developed to address measurement error and variable selection simultaneously by using boosting
algorithms. In this paper, we introduce an R package SIMEXBoost, which covers some widely used
regression models and applies the simulation and extrapolation method to deal with measurement
error effects. Moreover, the package SIMEXBoost enables us to do variable selection and estimation
for high-dimensional data under various regression models. To assess the performance and illustrate
the features of the package, we conduct numerical studies.

1 Introduction

In statistical analysis, regression models are important methods for characterizing the relationship
between response and the covariates. When the response follows exponential family distributions,
generalized linear models (GLM) are commonly used to link the response and the covariates. If
the response is taken as failure time and is incomplete due to censoring (e.g., Lawless, 2003), the
accelerated failure time model (AFT) might be one of useful strategies to characterize the survival
outcome in survival analysis. In recent years, complex modeling structures have been explored when
building GLM or survival models, including semi-parametric or mixed-effects structures. To address
these challenges, several statistical learning methods, including the boosting approaches (e.g., Hastie
et al., 2008), have been developed.

In the contemporary statistical analysis, researchers may frequently encounter high-dimensionality
in variables. In particular, high-dimensional data may contain many irrelevant covariates that may
affect analysis results. Therefore, it is crucial to do variable selection. In the development of statis-
tical methods, some useful strategies have been proposed, such as regularization approaches (e.g.,
Tibshirani, 1996; Zou, 2006; Zou and Hastie, 2005) or feature screening methods (e.g., Chen, 2021;
Chen, 2023b). In addition, Wolfson (2011) and Brown et al. (2017) proposed the boosting method to
do variable selection, which avoids having to deal with non-differentiable penalty functions. The
other important feature is measurement error in variables, which is ubiquitous in applications. More-
over, ignoring measurement error effects may affect the estimation results (e.g., Chen and Yi, 2021).
Therefore, it is necessary to correct for measurement error effects. A large body of methods has been
well established to address variable selection, correction of measurement error, or both. Recently,
Chen (2023c) developed the SIMEX method and the regression calibration method with the boosting
algorithm accommodated to handle variable selection and measurement error correction for GLMs.
Chen and Qiu (2023) considered the AFT model to fit time-to-event responses and proposed the SIMEX
method to address measurement error. Chen (2023d) derived the corrected estimating function based
on the logistic regression or probit models and applied the boosting method to do variable selection
for binary outcomes.

In applications, several commonly used packages associated with existing methods have been
developed for public use. A detailed list is summarized in Table 1. Specifically, with variable selection
and measurement error ignored, most packages related to boosting methods, including bst and
adabag, can handle classification with binary or multi-class responses. Some packages can deal with
different response families. For example, xgboost and lightgbm can deal with continuous responses;
gbm and gamboostLSS can be used to model survival data under the Cox model and the AFT
model, respectively; GMMBoost is useful for handling mixed-effects models. In the presence of high-
dimensional but precisely measured variables, glmnet and SIS are two popular packages for variable
selection or feature screening, respectively. On the contrary, if variables are subject to measurement
error, the two packages GLSME and mecor focus on linear models and aim to adjust for measurement
error effects in the response and/or covariates. Moreover, the simulation and extrapolation (SIMEX)
method (e.g., Chen and Yi, 2021; Carroll et al., 2006) has been a powerful strategy to correct for
measurement error effects, and has been widely used under several types of regression models in
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existing R packages, including simex for GLM, augSIMEX for GLM with error-prone continuous
and discrete variables, and simexaft for the AFT model. In addition to the R software, Chen (2023a)
developed a Python package BOOME to handle variable selection and measurement error for binary
outcomes.

Table 1: Comparisons among existing and proposed packages. This table summarizes three categories
of packages: (i) variable selection without measurement error correction (glmnet, SIS), (ii) measure-
ment error correction without variable selection (GLSME, mecor, augSIMEX, simex, simexaft), (iii)
statistical learning approaches that handle estimation without consideration of measurement error and
variable selection (bst, xgboost, gbm, adabag, lightgbm, GMMBoost, gamboostLSS). The proposed
package SIMEXBoost is included in these three categories. In the Usage heading, ‘LM’ denotes the
linear model; ‘Class’ is the classification; ‘Pois’ is the Poisson regression, ‘Cox’ is the Cox model; ‘AFT’
is the AFT model; ‘SL’ is statistical learning; ‘ME’ represents measurement error correction; ‘VS’ is
variable selection; and ‘Col’ represents collinearity.

Usage
Packages LM Class1 Pois Cox AFT SL2 ME VS Col
SIMEXBoost ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓
Qiu and Chen (2023)
glmnet ✓ ✓ ✓ ✓ × × × ✓ ✓
Friedman et al. (2023)
SIS ✓ ✓ ✓ ✓ × × × ✓ ×
Feng et al. (2020)
GLSME ✓ × × × × × ✓ × ×
Bartoszek (2019)
mecor ✓ × × × × × ✓ × ×
Nab (2021)
augSIMEX ✓ ✓ ✓ × × × ✓ × ×
Zhang and Yi (2020)
simex ✓ ✓ ✓ ✓ × × ✓ × ×
Lederer et al. (2019)
simexaft × × × × ✓ × ✓ × ×
Xiong et al. (2019)
bst × ✓ × × × ✓ × × ×
Wang and Hothorn (2023)
xgboost ✓ ✓ × × × ✓ × × ×
Chen et al. (2023)
gbm ✓ ✓ ✓ ✓ × ✓ × × ×
Greenwell et al. (2022)
adabag × ✓ × × × ✓ × × ×
Alfaro et al. (2023)
lightgbm ✓ ✓ × × × ✓ × × ×
Shi et al. (2023)
GMMBoost ✓ ✓ × × × ✓ × × ×
Groll (2020)
gamboostLSS ✓ × ✓ × ✓ ✓ × × ×
Hofner et al. (2023)
BOOME (in Python) × ✓ × × × ✓ ✓ ✓ ✓
Chen (2023a)

1 “Class” includes binary or multiclass classification, and the construction of logistic regression models.
2 “SL” contains several estimation methods based on machine learning approaches, such as tree and random forest. In addition, the
corresponding packages may handle complex structures, including semi-paramatric models, mixed-effects models, and generalized
additive models.

While many packages have been available to handle either variable selection or measurement
error correction, few packages deal with these two features simultaneously. To address those concerns,
we develop the R package SIMEXBoost (Qiu and Chen, 2023) by extending the method in Chen
(2023c) and Chen and Qiu (2023), which covers commonly used GLM and AFT models. Motivated
by the idea of the boosting algorithm (see e.g., Hastie et al., 2008, Section 16.2), SIMEXBoost aims to
use estimating functions to iteratively retain informative covariates and exclude unimportant ones,
yielding variable selection result. In addition, to deal with measurement error effects, the package
SIMEXBoost primarily employs the SIMEX method to efficiently correct for measurement error effects
for different types of regression models. There are several advantages of SIMEXBoost over the existing
packages. Specifically, as summarized in Table 1, while glmnet and SIS are able to handle variable
selection, they fail to deal with measurement error effects. In addition, the two packages GLSME
and mecor focus on linear models and aim to adjust for measurement error effects in the response
and/or covariates, but they cannot deal with variable selection. On the contrary, the contribution of
the package SIMEXBoost is able handle measurement error in variables, and do variable selection and
estimation simultaneously. Moreover, boosting iteration may reduce the possibility of falsely excluding
important covariates and enhance the accuracy of the estimator. Most importantly, SIMEXBoost is
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able to deal with collinearity of variables by using the L2-norm penalty function.

The remainder is organized as follows. In the second section, we introduce the data structure and
the corresponding regression models. In addition, the boosting algorithm is outlined. In the third
section, we introduce the measurement error model and extend the correction of measurement error
effects to the boosting algorithm. In the fourth section, we introduce functions and their arguments
in the R package SIMEXBoost. In the fifth section, we demonstrate the application of the R package
SIMEXBoost and conduct simulation studies to assess the performance of the boosting estimators.
Moreover, we also implement SIMEXBoost in a real dataset. A general discussion is presented
in the last section. The supporting information, including a real dataset, programming code, and
numerical results in csv files, are placed in the corresponding author’s GitHub, whose link is given by
https://github.com/lchen723/SIMEXBoost.git.

2 Notation, Models, and Boosting Procedure

2.1 Model

Let Y denote the response, and let X be the p-dimensional vector of covariates. Suppose that we have
a sample of n subjects and for i = 1, · · · , n, {Yi, Xi} has the same distribution as {Y, X}.

Let β be a p-dimensional vector of (unknown) parameters associated with the covariates X,
and write X⊤β as the linear predictor. In the framework of statistical learning, to characterize the
relationship between Y and X, a commonly used approach is to link Y and X⊤β through the convex
loss function L : S×R → R, where S is the support of Y. Let the risk function be defined as the

expectation of the loss function, i.e., R(β) ≜ E
{

L(Y, X⊤β)
}

. Under the finite sample size n, the

empirical version of R(β) is given by

1
n

n

∑
i=1

L(Yi, X⊤i β).

Our goal is to estimate β by minimizing the risk function, and the resulting estimator is given by

β̂ = argmin
β

{
1
n

n

∑
i=1

L(Yi, X⊤i β)

}
.

Equivalently, β̂ satisfies the estimating equation g(X, β) = 0, where g(X, β) is the estimating function

of β, defined as the first order derivative of 1
n

n
∑

i=1
L(Yi, X⊤i β) with respect to β.

2.2 Boosting Procedure

High-dimensionality and sparsity of β are crucial concerns, which reflect the idea that some covariates
are not informative with respect to Y. To address these issues and provide a reliable estimator of β,
we employ the boosting procedure to perform variable selection and estimation (e.g., Hastie et al.,
2008). This version of the boosting algorithm is motivated by Wolfson (2011) and Brown et al. (2017),
and is applied to handle GLM (Chen, 2023c) as well as AFT models (Chen and Qiu, 2023). An overall
procedure is presented in Algorithm 1 with three key steps. Specifically, Steps 1 and 2 in Algorithm 1
treat the estimating function evaluated at an iterated value as the signal, and use it to determine
informative indexes of covariates and parameters. Noting that there is a parameter τ in Step 2 that is
used to control the number of selected covariates in each iteration. In our numerical studies, τ = 0.9
seems to be a suitable choice and has a satisfactory performance.

After that, Step 3 in Algorithm 1 updates β using the informative indexes determined in Step 2
by the sign of signals with increment κ. This approach follows the steepest descent method (see e.g.,
Boyd and Vandenberghe, 2004, Section 9.4.2) and can be used to deal with the L1-norm for variable
selection. In addition, as discussed in Section 16.2.1 of Hastie et al. (2008), the value κ has the opposite
relationship with the number of iteration M that smaller κ requires larger M. In our consideration, we
specify κ = 0.05. Finally, repeating the iteration M times gives the desired estimator. With M time
iterations, we can obtain the final set JM containing informative covariates and the corresponding

β(M) =
(

β
(M)
1 , · · · , β

(M)
p

)⊤, accomplishing variable selection.
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Algorithm 1: Boost_VSE Algorithm

Let β(0) = 0 denote an initial value;
for iteration m with m = 0, 1, 2, · · · , M do

Step 1: calculate ∆(m−1) = g(X, β)
∣∣
β=β(m−1) ;

Step 2: determine Jm =
{

j :
∣∣∣∆(m−1)

j

∣∣∣ ≥ τ max
j′

∣∣∣∆(m−1)
j′

∣∣∣ } ;

Step 3: update β
(m)
j ← β

(m−1)
j + κ · sign(∆(m−1)

j ) for all j ∈ Jm, and define

β(m) =
(

β
(m)
1 , · · · , β

(m)
p

)⊤ ;

Finally, for the application of Algorithm 1, we consider some specific models and the corresponding
regression models listed below. With models specified, we can further determine the estimating
function g(X, β).

Linear regression models:
Given the dataset

{
{Yi, Xi} : i = 1, · · · , n

}
with Yi being a continuous and univariate random

variable, linear models are characterized as

Yi = X⊤i β + ϵi (1)

where ϵi is the noise term with E(ϵi) = 0 and var(ϵi) = σ2
ϵ . The estimating function is defined

as the first order derivative of the least squares function:

g(X, β) =
n

∑
i=1
−Xi(Yi − X⊤i β). (2)

Logistic regression models:
If Yi is a binary and univariate random variable, then Yi and Xi are usually characterized by a
logistic regression model:

πi =
exp

(
X⊤i β

)
1 + exp

(
X⊤i β

) , (3)

where πi ≜ P(Yi = 1|Xi). Following the idea in Agresti (2012), we can construct the likelihood
function based on (3). Therefore, the resulting estimating function is given by the first order
derivative of the likelihood function:

g(X, β) = −
n

∑
i=1

Xi

{
Yi −

exp
(
X⊤i β

)
1 + exp

(
X⊤i β

)} . (4)

Poisson regression models:
When Yi is a count and univariate random variable, one can adopt the Poisson regression model
to fit Yi and Xi:

log λi = X⊤i β (5)

where λi is the parameter of the Poisson distribution. Following the framework of generalized
linear models, the likelihood function based on (5) can be determined. Therefore, the first order
derivative of the likelihood function under (5) yields the corresponding estimating function,
which is given by

g(X, β) = −
n

∑
i=1

Xi

{
Yi − exp

(
X⊤i β

)}
. (6)

Accelerated failure time models:
In survival analysis, the response is known as the failure time, denoted T̃i > 0, and the acceler-
ated failure time (AFT) model is a commonly used model for characterizing the relationship
between the survival time and the covariates (e.g., Lawless, 2003). Specifically, the AFT model is
formulated as

log T̃i = X⊤i β + ηi, (7)

where ηi is the noise term of (7). In the framework of survival analysis, the main challenge is
that T̃i is usually incomplete due to how the observations are collected. In particular, in this
study, the failure time may suffer from length-biased and interval-censoring, which cause the data
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to be biased and incomplete.
Specifically, for the length-biased sampling, it is common to assume that the incidence

rate of the initial event is constant over calendar time, and the truncation time, denoted Ãi,
is uniformly distributed in [0, ξ], where ξ is the maximum support of T̃i (e.g., Chen and Qiu,
2023). For the length-biased data, we can observe (Ãi,T̃i) only if T̃i ≥ Ãi, and thus, we denote
(Ti, Ai) ≡ (T̃i, Ãi)

∣∣T̃i ≥ Ãi as the observed version of (T̃i,Ãi).
On the other hand, for the observed Ti, we may encounter the interval-censoring. Suppose

that Ti is not exactly observed but only determined at a sequence of examination times, denoted
as Ai = U0 < U1 < · · · < UN ≤ ξ for some constant N > 0. The failure time is then known
to lie in the interval (L, R), where Li = max{Uk : Uk < Ti, k = 0, · · · , N} and Ri = min{Uk :
Uk ≥ Ti, k = 1, · · · , N + 1} with UN+1 ≜ ∞. Moreover, if Ti occurs before the first examination
time, then (Li, Ri) ≜ (Ai, U1); if the failure has not occurred at the last examination time,
then (Li, Ri) ≜ (UN , ∞). Finally, let ∆i denote the indicator, where a value 1 indicates that
Ti is observed and zero otherwise. As a consequence, for a sample with size n, the length-
biased and interval-censored survival data is given by

{
{Ai, ∆i, Yi, Xi} : i = 1, · · · , n

}
with

Yi ≜ {∆iTi, (1− ∆i)Li, (1− ∆i)Ri}.
Based on the length-biased and interval-censored data, we can construct the estimating

function (e.g., Chen and Qiu, 2023)

g(X, β) =
n

∑
i=1

Xi

{
∆i

Yβ,i

exp(Yβ,i)
+ (1− ∆i)

∫ Ri,0
Li,0

u−1logudF0(u)

F0(Ri,0)− F0(Li,0)

}
, (8)

where Yβ,i = log Ti − X⊤i β, Ri,0 = Ri exp(−X⊤i β), Li,0 = Li exp(−X⊤i β), and F0 is the cumula-
tive distribution function of ηi.

3 A Modified Boosting Method with the Presence of Covariate Measure-
ment Error

3.1 Measurement Error Models

For i = 1, · · · , n, let X∗i denote the surrogate, or observed covariate, of Xi. Let ΣX∗ and ΣX be the
p× p covariance matrices of X∗i and Xi, respectively. In our development, we focus on the classical
measurement error model (e.g., Carroll et al., 2006, Chapter 1):

X∗i = Xi + ei, (9)

where ei is independent of {Xi, Yi} and ϵi in (1), ei follows a normal distribution with mean zero and
the covariance matrix Σe, say N(0, Σe). Noting that the covariance matrix Σe is usually unknown.
To determine it, we can either employ sensitivity analyses to reasonably specify values, or directly
estimate it if additional information, such as repeated measurements or validation sample is available
(see e.g., Chen and Yi, 2021). As a result, in the presence of measurement error, the observed dataset is
now given by

{
{Yi, X∗i } : i = 1, · · · , n

}
.

3.2 Boosting with Measurement Error Correction

In the presence of measurement error, it is known that directly using X∗i in the estimating procedure
without the correction of measurement error effects may incur biased estimate and wrong conclusion
(see e.g., Carroll et al., 2006). Therefore, even though Algorithm 1 is valid to estimate β for regression
models in the ‘Boosting Procedure’ subsection, it is insufficient in the presence of measurement error
effects.

To deal with measurement error in covariates, we extend Algorithm 1 by adopting the SIMEX
method to eliminate the impact of measurement error (e.g., Chen and Yi, 2021). The modified algorithm,
called SIMEXBoost, is summarized in Algorithm 2.

The idea of the SIMEX method is to first establish the trend of measurement error-induced biases
as a function of the variance of measurement error by artificially creating a sequence of surrogate
measurements, and then extrapolate this trend back to the case without measurement error. Specif-
ically, in Step 1 of Algorithm 2, we artificially create a sequence of error-contaminated surrogate
measurements by introducing different degrees of measurement error. After that, as shown in Step 2
of Algorithm 2, we apply those surrogate measurements to the boosting procedure, and use a new
function gSIM(β; b, ζ), which is defined as (2), (4), (6), or (8) with Xi replaced by Wi (b, ζ) defined in
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(10), to obtain biased estimates by running an estimation method developed for error-free settings.
Finally, Step 3 in Algorithm 2 traces the pattern of biased estimates against varying magnitudes of
measurement error and then does extrapolation based on linear or quadratic regression models.

Noting that there are several parameters in Algorithm 2. The parameters M, κ, and τ in Step 2 are
the same as those in Algorithm 1. On the other hand, Step 1 contains a value B and a sequence of Z
that are usually user-specified. Typically, Z is usually defined as K equal-width cutpoints in an interval
[0, 1] for some positive constant K. A value B is used to perform the Monte Carlo computation in (11)
and make the estimator more stable. A larger value of B may implicitly incur longer computational
time. Our numerical experiments show that B = 50 gives satisfactory performance.

Algorithm 2: SIMEXBoost Algorithm
Step 1: Generate the working data Wi(b, ζ) by

Wi (b, ζ) = X∗i +
√

ζei,b (10)

for b = 1, · · · , B and ζ ∈ Z , where ei,b ∼ N(0, Σe) independently.

Step 2: Boosting estimation.
Perform the following boosting procedure with M iterations.

for b = 1, · · · , B and ζ ∈ Z do
Let β(0)(b, ζ) = 0 denote an initial value;
for iteration m with m = 0, 1, 2, · · · , M do

Step 2.1: calculate ∆(m−1)(b, ζ) = gSIM(β; b, ζ)
∣∣
β=β(m−1) ;

Step 2.2: determine Jm(b, ζ) =
{

j :
∣∣∣∆(m−1)

j (b, ζ)
∣∣∣ ≥ τ max

j

∣∣∣∆(m−1)
j (b, ζ)

∣∣∣ } ;

Step 2.3: update β
(m)
j (b, ζ)← β

(m−1)
j (b, ζ) + κ · sign(∆(m−1)

j (b, ζ)) for all j ∈ Jm(b, ζ);

Write β(M)(b, ζ) =
(

β
(M)
1 (b, ζ), · · · , β

(M)
p (b, ζ)

)⊤
;

When β(M)(b, ζ) is obtained for b = 1, · · · , B and ζ ∈ Z , compute an average

β(M)(ζ) =
1
B

B

∑
b=1

β(M)(b, ζ) for ζ ∈ Z . (11)

Step 3: Extrapolation.

Fit a sequence
{(

ζ, β(M)(ζ)
)

: ζ ∈ Z
}

by a regression model, and the final value is given by
the extrapolated value at ζ = −1.

4 Description and Implementation of SIMEXBoost

We develop an R package, called SIMEXBoost, to implement the variable selection and estimation
with measurement error correction described in the preceding section. This package depends on
the MASS package only. The package SIMEXBoost contains three functions: ME_Data, Boost_VSE,
and SIMEXBoost. The function ME_Data aims to generate artificial data under specific models listed
in ‘Boosting Procedure’ subsection and error-prone covariates. The function Boost_VSE implements
the boosting procedure in Algorithm 1, and the function SIMEXBoost implements the error-eliminated
boosting procedure as displayed in Algorithm 2. We now describe the details of these three functions.

ME_Data

We use the following command to obtain the artificial data:

ME_Data(X,beta,type="normal",sigmae,pr0=0.5)

where the meaning of each argument is described as follows:

• X: An n× p matrix with components generated by random variables. It is provided by the user.

• beta: A p-dimensional vector of parameters, which is specified by the user.

• type: A regression model that is specified to generate the response. Some choices listed
in ‘Boosting Procedure’ subsection are provided in this argument. normal means the linear
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regression model (1) with the error term generated by the standard normal distribution; binary
means the logistic regression model (3); poisson means the Poisson regression model (5). In
addition, the accelerated failure time (AFT) model is considered to fit length-biased and interval-
censored survival data. Specifically, AFT-normal generates the length-biased and interval-
censored survival data under the AFT model (7) with the error term being normal distributions;
AFT-loggamma generates the length-biased and interval-censored survival data under the AFT
model with the error term being log-gamma distributions.

• sigmae: A p × p covariance matrix Σe in the measurement error model (9). Given Σe with
non-zero entries, by (9), one can generate the error-prone covariates X∗i . Moreover, if Σe is given
by the zero matrix, then ei is generated as zero values, yielding that X∗i is equal to Xi, and thus,
the resulting covariate is the original input given by users.

• pr0: A numerical value in an interval (0, 1). It is used to determine the censoring rate for the
length-biased and interval-censored data.

The function ME_Data returns a list of components:

• response: It gives the response generated by a specific regression model. type="normal" gives
a n-dimensional continuous vector; type="binary" gives a n-dimensional vector with binary
entries; type="poisson" gives a n-dimensional vector with entries being counting numbers.
In addition, type="AFT-normal" and type="AFT-loggamma" generates a n× 2 matrix of length-
biased and interval-censored responses, where the first column is the lower bound of an
interval-censored response and the second column is the upper bound of an interval-censored
response.

• ME_covariate: This output gives a n × p matrix of “error-prone” or “precisely measured”
covariates. Specifically, as discussed in an argument sigmae, if Σe is a non-zero covariance
matrix, then the result of ME_covariate is given by X∗i ; if Σe is a zero matrix, then the result of
ME_covariate is the original input, say Xi.

Boost_VSE

We use the following function to perform Algorithm 1:

Boost_VSE(Y,Xstar,type="normal",Iter=200,Lambda=0)

where the meaning of each argument is described as follows:

• Y: The response variable. If type is specified as normal, binary, or poisson, then Y should be
a n-dimensional vector; if type is given by AFT-normal or AFT-loggamma, then Y should be a
n× 2 matrix of interval-censored responses, where the first column is the lower bound of an
interval-censored response and the second column is the upper bound of an interval-censored
response.

• Xstar: This argument needs a n× p matrix of covariates. It can be error-prone or precisely
measured.

• type: This argument specifies the regression models as previously described in the function
ME_Data as well as their corresponding estimating functions given by (2), (4), (6), and (8).

• Iter: The number of iterations M for the boosting procedure in Algorithm 1.

• Lambda: A tuning parameter that aims to deal with the collinearity of covariates. Lambda=0
means that no L2-norm is involved, and it is the default value.

The function Boost_VSE returns a list of components:

• BetaHat: The vector of estimated coefficient obtained by Algorithm 1. In particular, if the
covariate Xstar is generated by ME_Data with the argument sigmae being the zero matrix, then
the resulting vector is the “ordinary” estimator based on the boosting procedure; if the covariate
Xstar is generated by ME_Data with the argument sigmae being a non-zero covariance matrix,
then we call the resulting vector as the naive estimator due to involvement of measurement error
effects without correction.

SIMEXBoost

Basically, some arguments in this function are the same as Boost_VSE, except for some slightly different
requirements and additional arguments that are related to the SIMEX method.

We use the following function to perform Algorithm 2:
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SIMEXBoost(Y,Xstar,zeta=c(0,0.25,0.5,0.75,1),B=500,type="normal",sigmae,
Iter=100, Lambda=0, Extrapolation="linear")

where the meanings of arguments Y, Xstar, type, Iter, and Lambda are the same as those in the function
Boost_VSE; additional arguments zeta, B, sigmae, and Extrapolation, which are used to implement
the SIMEX method to correct for measurement error effects, are described as follows:

• zeta: The user-specific sequence of values described as Z in Step 1 of Algorithm 2.

• B: The user-specific positive number of repetition described as B in Step 1 of Algorithm 2.

• sigmae: An p × p covariance matrix Σe in the measurement error model (9). In practical
applications, if auxiliary information is unavailable, sensitivity analyses can be adopted to
reasonably specify values of Σe. If additional information, such as repeated measurements or
validation samples, is available, one can directly estimate Σe.

• Extrapolation: A extrapolation function for the SIMEX method implemented to Step 3 of
Algorithm 2. In the framework of the SIMEX method, quadratic and linear functions are
common. Therefore, in this argument, we provide two choices of the extrapolation functions,
linear and quadratic.

The function SIMEXBoost returns a list of components:

• BetaHatCorrect: The resulting vector of corrected estimates obtained by Algorithm 2.

5 Numerical Studies and Demonstration of Programming Code

In this section, we demonstrate the usage of the functions in the package SIMEXBoost. There are two
parts in this section: we first illustrate simulation studies for linear regression, Poisson regression, and
AFT models. After that, we apply the package to analyze a real-world dataset with binary responses
based on a logistic regression model.

5.1 Simulation Studies

In this section, we use simulation studies to demonstrate applications of functions in the package
SIMEXBoost and assess the performance of the estimators derived by two functions Boost_VSE and
SIMEXBoost.

We consider the dimension of covariates p = 200 or 500, and let the sample size n = 400. Let the
true value β0 = (1, 1, 1, 0⊤p−3)

⊤, where 0q is a q-dimensional zero vector. The unobserved covariate Xi
is generated by the standard normal distribution, and it can be used to generate the response Yi based
on (1), (5), and (7). For the error-prone covariate X∗i , it can be generated by (9), where Σe is a diagonal
matrix with common entries σe being 0.1, 0.3, and 0.5.

Based on the artificial data
{
{Yi, X∗i } : i = 1, · · · , n

}
, we first use the function Boost_VSE to obtain

the estimator without measurement error correction, which is called the naive estimator. Next, we
apply the function SIMEXBoost to derive the corrected estimator. To assess the performance of variable
selection, we examine the specificity (Spe) and the sensitivity (Sen), where the specificity is defined as
the proportion of zero coefficients that are correctly estimated to be zero, and the sensitivity is defined
as the proportion of non-zero coefficients that are correctly estimated to be non-zero. In addition,
to evaluate the performance of estimation, we use the L1 and L2-norms to measure bias, which are
respectively defined as

∥∥β̂− β0
∥∥

1 =
p

∑
j=1

∣∣β̂ j − β0,j
∣∣ and

∥∥β̂− β0
∥∥

2 =

{ p

∑
j=1

(
β̂ j − β0,j

)2
}1/2

, (12)

where β̂ is the estimator, β̂ j and β0,j are the jth component in β̂ and β0, respectively.

We use two ‘for’ loops cover all combinations of p and σe (sigmae). For each p and sigmae, we
first adapt the function ME_Data to generate the simulated data, where Y and Xstar represent the
response and error-prone covariates, respectively. After that, to examine the naive estimator derived
by Algorithm 1, we use the function Boost_VSE to derive the naive estimator and denote it by naive.
To implement Algorithm 2, we adopt the function SIMEXBoost, where two components Z and B in
Step 1 of Algorithm 2 are specified as zeta=c(0,0.25,0.5,0.75,1) and B=50, respectively. For the
SIMEXBoost method, we also examine linear and quadratic extrapolation functions with the argument
Extrapolation="linear" or Extrapolation="quadratic", and denote two resulting estimators as
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correctL and correctQ, respectively. For the two functions Boost_VSE and SIMEXBoost, we set the
number of iterations Iter=50. To save the space in the limited text, we simply illustrate the model
(1) with the argument type="normal"; numerical results under other models can be reprocued by the
following code with type="normal" replaced by type="poisson" or type="AFT-normal".

Next, we assess the performance of naive, correctL, and correctQ. Given a true vector of pa-
rameter beta0, we compute L1 and L2-norms in (12) to examine the bias, and compute Spe and
Sen to examine variable selection. Under a given p and sigma, biases and variable selection results
are recorded by EST1, EST2, and EST3 for the estimators naive, correctL, and correctQ, respectively.
Finally, numerical results of three estimators naive, correctL, and correctQ under all settings are
summarized by NAIVE, SIMEXL, and SIMEXQ, respectively.

library(SIMEXBoost)
library(MASS)

NAIVE = NULL # naive method
SIMEXL = NULL # simex method with linear extrapolation function
SIMEXQ = NULL # simex method with quadratic extrapolation function

for (p in c(200, 500)) {
for (sigma in c(0.1, 0.3, 0.5)) {
set.seed(202270)
beta0 = c(1, 1, 1, rep(0, p - 3))

X = matrix(rnorm((p) * 400),
nrow = 400,
ncol = p,
byrow = TRUE)

Sig = diag(sigma ^ 3, dim(X)[2])

data = ME_Data(
X = X,
beta = beta0,
type = "normal",
sigmae = Sig

)
Y = data$response
Xstar = data$ME_covariate

naive = Boost_VSE(Y, Xstar, type = "normal", Iter = 50)$BetaHat

correctL = SIMEXBoost(
Y,
Xstar,
zeta = c(0, 0.25, 0.5, 0.75, 1),
B = 50,
type = "normal",
sigmae = Sig,
Iter = 50,
Lambda = 0,
Extrapolation = "linear"

)$BetaHatCorrect
correctL[which(abs(correctL) < 0.5)] = 0
correctQ = SIMEXBoost(
Y,
Xstar,
zeta = c(0, 0.25, 0.5, 0.75, 1),
B = 50,
type = "normal",
sigmae = Sig,
Iter = 50,
Lambda = 0,
Extrapolation = "quadratic"

)$BetaHatCorrect
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correctQ[which(abs(correctQ) < 0.5)] = 0

#############

Sen = which(beta0 != 0)
Spe0 = which(beta0 == 0)

## results for the naive estimator
naive = as.numeric(naive)
L1_norm = sum(abs(naive - beta0))
L2_norm = sqrt(sum((naive - beta0) ^ 2))
Spe = length(which(naive[Spe0] == 0)) / length(Spe0)
Sen = length(which(naive[Sen0] != 0)) / length(Sen0)

## results for the error-corrected estimator based on Extrapolation="linear"
L1_norm_l = sum(abs(correctL - beta0))
L2_norm_l = sqrt(sum((correctL - beta0) ^ 2))
Spe_l = length(which(correctL[Spe0] == 0)) / length(Spe0)
Sen_l = length(which(correctL[Sen0] != 0)) / length(Sen0)

## results for the error-corrected estimator based on Extrapolation="quadratic"
L1_norm_q = sum(abs(correctQ - beta0))
L2_norm_q = sqrt(sum((correctQ - beta0) ^ 2))
Spe_q = length(which(correctQ[Spe0] == 0)) / length(Spe0)
Sen_q = length(which(correctQ[Sen0] != 0)) / length(Sen0)

#############

NAIVE = rbind(NAIVE, c(L1_norm, L2_norm, Spe, Sen))
SIMEXL = rbind(SIMEXL, c(L1_norm_l, L2_norm_l, Spe_l, Sen_l))
SIMEXQ = rbind(SIMEXQ, c(L1_norm_q, L2_norm_q, Spe_q, Sen_q))

}
}

Numerical results under (1), (5), and (7) are placed in Tables 2-4, respectively. We observe that
the naive and corrected estimates are affected by the magnitudes of measurement error effects and
the dimension p. When values of p and sigma become large, the biases given by L1 and L2-norms are
increasing. For the comparison between the naive and corrected estimators, we can see that biases
produced by the naive estimator are significantly larger than those obtained by the corrected estimator.
In addition, for the variable selection result, the corrected estimator is able to correctly retain the infor-
mative covariates and exclude unimportant ones, except for some cases that one or two covariates may
be falsely included. On the contrary, we can observe from the naive method that values of Spe_naive
are always small while values of Sen_naive are equal to one. It indicates that the naive estimator
retains the truly important covariates, and meanwhile, includes a lot of unimportant ones, which
shows an evidence that the naive method fails to do variable selection. Finally, for the comparison
between two extrapolation functions, Extrapolation="linear" and Extrapolation="quadratic", we
observe that the specification of a linear extrapolation function has slightly better performance than
the case under a quadratic extrapolation function, especially when sigma is large.

While the proposed SIMEXBoost method can handle measurement error well, the main concern
is the computational time. According to the record of the system CPU time (in seconds) from the
R function proc.time() under the device ASUS DESKTOP-HJSD47S with the processor Intel(R)
Core(TM) i7-10700 CPU @ 2.90GHz, we find that, for each setting with fixed p and sigmae, the
proposed SIMEXBoost method requires 14.09 and 15.04 seconds under Extrapolation="linear" and
Extrapolation="quadratic" to derive the estimator for p = 200, respectively. Unsurprising, when
the dimension increases to p = 500, the computational times under Extrapolation="linear" and
Extrapolation="quadratic" are increasing to 17.70 and 19.68 seconds, respectively. On the other
hand, without measurement error correction under each setting, the naive method needs 12.98 and
15.71 seconds to derive the estimator for p = 200 and 500, yielding the slightly faster computational
time than the SIMEXBoost method. It might be due to the measurement error correction with the
involvement of Z and the number of repetitions B in Step 2 of Algorithm 2. As a result, we comment
that the SIMEXBoost method is able to address measurement error correction, but a slightly longer
computational time is the price that the users should pay for.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 15

Table 2: Simulation results for the model (1) with type="normal". “Naive” is the naive method
obtained by the function Boost_VSE. “SIMEXBoost-Linear” and “SIMEXBoost-Quadratic” refer to the
proposed method obtained by the function SIMEXBoost with the argument Extrapolation = "linear"
and Extrapolation = "quadratic", respectively. L1-norm and L2-norm are given by (12). Spe and
Sen are specificity and sensitivity, respectively.

p σe Methods L1-norm L2-norm Spe Sen
200 0.1 Naive 6.900 0.738 0.487 1.000

SIMEXBoost-Linear 0.116 0.099 1.000 1.000
SIMEXBoost-Quadratic 0.109 0.090 1.000 1.000

0.3 Naive 6.350 0.684 0.503 1.000
SIMEXBoost-Linear 0.101 0.072 1.000 1.000

SIMEXBoost-Quadratic 0.106 0.075 1.000 1.000
0.5 Naive 7.600 0.758 0.426 1.000

SIMEXBoost-Linear 0.257 0.182 1.000 1.000
SIMEXBoost-Quadratic 0.281 0.188 1.000 1.000

500 0.1 Naive 8.050 0.733 0.732 1.000
SIMEXBoost-Linear 0.054 0.051 1.000 1.000

SIMEXBoost-Quadratic 0.069 0.057 1.000 1.000
0.3 Naive 8.900 0.778 0.710 1.000

SIMEXBoost-Linear 0.300 0.187 1.000 1.000
SIMEXBoost-Quadratic 0.300 0.187 1.000 1.000

0.5 Naive 10.000 0.889 0.692 1.000
SIMEXBoost-Linear 0.600 0.354 1.000 1.000

SIMEXBoost-Quadratic 0.600 0.354 1.000 1.000

Table 3: Simulation results for the model (5) with type="poisson". “Naive” is the naive method
obtained by the function Boost_VSE. “SIMEXBoost-Linear” and “SIMEXBoost-Quadratic” refer to the
proposed method obtained by the function SIMEXBoost with the argument Extrapolation = "linear"
and Extrapolation = "quadratic", respectively. L1-norm and L2-norm are given by (12). Spe and
Sen are specificity and sensitivity, respectively.

p σe Methods L1-norm L2-norm Spe Sen
200 0.1 Naive 1.600 0.283 0.848 1.000

SIMEXBoost-Linear 0.208 0.126 1.000 1.000
SIMEXBoost-Quadratic 0.538 0.407 1.000 1.000

0.3 Naive 1.750 0.304 0.838 1.000
SIMEXBoost-Linear 0.178 0.129 1.000 1.000

SIMEXBoost-Quadratic 0.520 0.301 1.000 1.000
0.5 Naive 2.500 0.387 0.782 1.000

SIMEXBoost-Linear 0.366 0.230 1.000 1.000
SIMEXBoost-Quadratic 1.371 0.877 0.995 1.000

500 0.1 Naive 1.400 0.265 0.944 1.000
SIMEXBoost-Linear 0.096 0.087 1.000 1.000

SIMEXBoost-Quadratic 0.428 0.385 1.000 1.000
0.3 Naive 1.850 0.304 0.930 1.000

SIMEXBoost-Linear 0.354 0.236 1.000 1.000
SIMEXBoost-Quadratic 0.279 0.193 1.000 1.000

0.5 Naive 3.000 0.458 0.903 1.000
SIMEXBoost-Linear 0.554 0.393 1.000 1.000

SIMEXBoost-Quadratic 1.238 0.771 1.000 1.000

5.2 Real Data Example

In this section, we apply the package SIMEXBoost to analyze the Company Bankruptcy Prediction
data, which was from the Taiwan Economic Journal during a period 1999–2009, and it is now avail-
able on the Kaggle website (https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-
prediction). In this dataset, there are 6819 observations and 95 continuous covariates related to
customers’ banking records, such as assets, liability, income, and so on. In addition, the response is a
binary random variable, where the value 1 reflects that the company is bankrupt, and 0 otherwise. All
variables’ names and descriptions can be found on the Kaggle website. The main interest in this study
is to identify covariates that are informative to the bankruptcy status, and our goal is to apply (3) to
characterize the bankruptcy status and covariates.

In addition to detecting important covariates from the multivariate variables, as mentioned in Chen
(2023d), measurement error is ubiquitous in variables related to customers’ banking records. Hence,
one should take measurement error effects into account when doing variable selection. Following the
example of the simulation studies, we primarily consider two scenarios: first, without consideration of
measurement error, one can directly apply the function Boost_VSE to do variable selection. Second, if
we wish to implement the function SIMEXBoost and take measurement error correction into account,
the covariance matrix sigmae is needed. Since the dataset has no additional information to estimate Σe,
we may conduct sensitivity analyses, which enable us to characterize various degrees of measurement
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Table 4: Simulation results for the model (7) with type="AFT-normal". “Naive” is the naive method
obtained by the function Boost_VSE. “SIMEXBoost-Linear” and “SIMEXBoost-Quadratic” refer to the
proposed method obtained by the function SIMEXBoost with the argument Extrapolation = "linear"
and Extrapolation = "quadratic", respectively. L1-norm and L2-norm are given by (12). Spe and
Sen are specificity and sensitivity, respectively.

p σe Methods L1-norm L2-norm Spe Sen
200 0.1 Naive 0.875 0.603 1.000 1.000

SIMEXBoost-Linear 0.378 0.232 1.000 1.000
SIMEXBoost-Quadratic 0.411 0.258 1.000 1.000

0.3 Naive 1.450 1.078 1.000 0.667
SIMEXBoost-Linear 0.400 0.247 1.000 1.000

SIMEXBoost-Quadratic 0.877 0.605 1.000 1.000
0.5 Naive 4.700 2.801 1.000 0.667

SIMEXBoost-Linear 1.614 1.179 0.995 1.000
SIMEXBoost-Quadratic 2.958 2.204 0.995 1.000

500 0.1 Naive 2.750 1.521 0.998 0.333
SIMEXBoost-Linear 0.959 0.560 1.000 1.000

SIMEXBoost-Quadratic 2.710 2.288 0.998 1.000
0.3 Naive 8.425 5.398 1.000 0.667

SIMEXBoost-Linear 0.949 0.554 1.000 1.000
SIMEXBoost-Quadratic 0.820 0.518 1.000 1.000

0.5 Naive 4.350 2.743 1.000 0.333
SIMEXBoost-Linear 2.541 1.364 0.998 0.667

SIMEXBoost-Quadratic 4.003 2.604 0.998 1.000

error and examine the different magnitudes of measurement error effects (e.g., Chen and Yi, 2021;
Chen, 2023d). Specifically, we specify Σe as a diagonal matrix with common entries being R = 0.1, 0.3
and 0.5, and the extrapolation function is taken as linear or quadratic functions in Algorithm 2.

To show the implementation of data analysis, we demonstrate the programming code below. For
the convenience of data analysis, we export the full dataset as a csv file, which is available in https://
github.com/lchen723/SIMEXBoost.git. One can download the dataset ‘bankruptcy_data.csv’. Based
on the dataset, we denote Y and Xstar as the response and the observed covariates, respectively. For
the naive method without measurement error correction, we adopt the function Boost_VSE with 50
iterations. For the implementation of sensitivity analyses, we use a ‘for’ loop for different values of R.
For each R, we run SIMEXBoost with type="binary" and two extrapolation functions Extrapolation
= "linear" and Extrapolation = "quadratic".

library(MASS)
library(SIMEXBoost)
R = c(0.1, 0.3, 0.5)
data = read.table("bankruptcy_data.csv", sep = ",", head = T)
data = data[, -94]
Y = data[, 95]
Y = as.numeric(Y)
Xstar = t(as.matrix(data[, -95]))
Xstar = scale(Xstar)

p = dim(Xstar)[1]
n = dim(Xstar)[2]

set.seed(202270)
##naive
EST = NULL
naive = Boost_VSE(Y,

t(Xstar),
type = "binary",
Iter = 50,
Lambda = 0)$BetaHat

EST = cbind(EST, naive)
##linear
for (i in R) {
correctL = SIMEXBoost(
Y,
t(Xstar),
zeta = c(0, 0.25, 0.5, 0.75, 1),
B = 50,
type = "binary",
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sigmae = diag(i, p),
Iter = 50,
Lambda = 0,
Extrapolation = "linear"

)$BetaHatCorrect

EST = rbind(EST, t(correctL))
}
##Quadratic

for (i in R) {
correctQ = SIMEXBoost(
Y,
t(Xstar),
zeta = c(0, 0.25, 0.5, 0.75, 1),
B = 50,
type = "binary",
sigmae = diag(i, p),
Iter = 50,
Lambda = 0,
Extrapolation = "quadratic"

)$BetaHatCorrect

EST = rbind(EST, t(correctQ))
}
round(EST, 3)

Numerical results are summarized in Table 5, where the column “ID” is the indexes of selected
covariates, and the heading “EST” is the estimates of the coefficients. According to our analysis
results, we find that the covariate “Net Income to Stockholder’s Equity” (ID #90) is only one that
is commonly selected from Boost_VSE and SIMEXBoost under different values of R, which indicates
that the covariate #90 is an informative variable regardless of measurement error effects have been
corrected or not. For the corrected estimator with different R and extrapolation functions, we observe
that variables “Operating Profit Rate: Operating Income/Net Sales” (ID #6), “Pre-tax net Interest
Rate: Pre-Tax Income/Net Sales” (ID #7), “Continuous interest rate (after tax): Net Income-Exclude
Disposal Gain or Loss/Net Sales” (ID #10), and “Liability-Assets Flag” (ID #85) are selected, except for
the scenarios “Correct-L-0.3” and “Correct-L-0.5”. Moreover, different variables are selected under
different values of R. It might be due to the impact of different magnitudes of measurement error.
On the other hand, without measurement error correction, we observe from the naive estimator that
most selected variables are different from the proposed estimator, such as “Research and development
expense rate: (Research and Development Expenses)/Net Sales” (ID #12), “Tax rate (A): Effective Tax
Rate” (ID #15), “Per Share Net profit before tax (Yuan ¥): Pretax Income Per Share” (ID #23), “Total
Asset Growth Rate: Total Asset Growth” (ID #29), and “Cash Reinvestment %: Cash Reinvestment
Ratio” (ID #32), and those estimates are close to zero. It implies that noninformative variables are
possibly selected by the naive method if measurement error is not taken into account in analysis, and
it shows an impact of measurement error in data analysis.

Finally, we use the function proc.time() to record the system CPU time, and we find that the
function SIMEXBoost requires 3.84 and 3.50 seconds to run, under Extrapolation = "linear" and
Extrapolation = "quadratic" with a fixed R, respectively, while the function Boost_VSE needs 0.45
seconds to derive the estimates. Consistent with the finding in simulation studies, the SIMEXBoost
method requires slightly longer computational time than the naive method, which is caused by the
repetition of boosting procedure and SIMEX correction.

6 Discussion

The package SIMEXBoost provides a novel method for handling high-dimensional data subject to
measurement error in covariates. It covers widely used GLM and AFT models in survival analysis, and
provides a strategy to deal with variable selection and measurement error correction simultaneously.
Moreover, our package is able to handle the collinearity in the covariates. As evidence by longer
computational times in numerical studies, the function SIMEXBoost seems to be more computationally
demanding compared to the naive implementation, which is basically caused by settings of B andZ for
correction of measurement error. Typically, following the similar idea of the Monte Carlo simulation,
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Table 5: Variable selection and estimation for the Company Bankruptcy Prediction data based on the
model (3) and type="binary". “Naive” refers to the naive method based on Boost_VSE. “Correct-L-0.1”,
“Correct-L-0.3”, and “Correct-L-0.5” refer to the function SIMEXBoost with Extrapolation="linear"
and R = 0.1, 0.3 and 0.5, respectively. “Correct-Q-0.1”, “Correct-Q-0.3”, and “Correct-Q-0.5” refer to
the function SIMEXBoost with Extrapolation="quadratic" and R = 0.1, 0.3 and 0.5, respectively. The
label “−” indicates that the variables are not selected.

ID EST
Naive Correct-L-0.1 Correct-L-0.3 Correct-L-0.5 Correct-Q-0.1 Correct-Q-0.3 Correct-Q-0.5

6 − 0.400 − -0.383 3.025 1.781 2.296
7 − 0.474 − − 2.895 2.126 2.943
8 − 0.322 − -0.267 3.143 2.628 2.122
10 − 0.396 0.216 − 1.861 1.760 1.749
12 -0.050 − − − − − −
15 -0.050 − − − − − −
23 0.050 − − − − − −
25 − − − − -0.257 − −
29 -0.100 − − − − −
32 -0.050 − − − − −
37 − − -0.235 − 0.766 1.452 0.365
38 -0.150 − -0.307 − 1.604 1.679 0.404
43 0.050 − − − − − −
46 − -0.300 − − 0.257 − −
48 -0.050 − − − − − −
55 -0.050 − − − − − −
59 0.050 -0.300 − − -1.282 -1.285 −
64 -0.050 − − − − − −
65 − 0.306 0.300 − 0.916 1.261 −
68 -0.150 − − − − − −
74 -0.050 − − − − − −
77 -0.050 − − − − − −
84 0.050 − − − − − −
85 − -0.472 − 0.237 -6.365 -2.636 -2.956
86 -0.150 − − − − − −
87 − -0.300 − − -0.912 − −
90 -1.350 -1.518 -2.397 -2.433 1.613 -1.602 -3.668
94 0.200 0.240 − − -1.553 -1.532 -0.362

larger values of B and Z usually give the stable estimator but also incur longer computational time.
This is a common phenomenon in measurement error analysis and the SIMEX method (e.g., Yi, 2017).
In summary, users need to consider whether to take measurement error effects into account based on
their data and set arguments, such as B and Z , for the implementation based on their computational
resources.

The current state of the package allows for measurement error in continuous covariates and
parametric models for exponential family distributed responses or time-to-event outcomes. There are
still many possible extensions to the methods, such as consideration of measurement error in binary
covariates or measurement error in the response, variable selection for semi-parametric regression
models, including the Cox model in survival analysis or the partially linear single index model.

R Software

The R package SIMEXBoost is now available on the CRAN website (https://cran.r-project.org/
web/packages/SIMEXBoost/index.html).
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