Supplementary materials are available in addition to this article. It can be downloaded at
RJ-2023-086.zip
F. A. Archila.
: Maximum likelihood estimation for generalized linear mixed models. 2020. URL
https://CRAN.R-project.org/package=mcemGLM. R package version 1.1.1.
D. Bates, M. Mächler, B. Bolker and S. Walker. Fitting linear mixed-effects models using lme4.
Journal of Statistical Software, 67(1): 1–48, 2015. URL
https://doi.org/10.18637/jss.v067.i01.
B. M. Bolker, M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens and J.-S. S. White. Generalized linear mixed models: A practical guide for ecology and evolution.
Trends in ecology & evolution, 24(3): 127–135, 2009. URL
https://doi.org/10.1016/j.tree.2008.10.008.
H. D. Bondell, A. Krishna and S. K. Ghosh. Joint variable selection for fixed and random effects in linear mixed-effects models.
Biometrics, 66(4): 1069–1077, 2010. URL
https://doi.org/10.1111/j.1541-0420.2010.01391.x.
J. G. Booth and J. P. Hobert. Maximizing generalized linear mixed model likelihoods with an automated monte carlo EM algorithm.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(1): 265–285, 1999. URL
https://doi.org/10.1111/1467-9868.00176.
P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection.
Annals of Applied Statistics, 5(1): 232–253, 2011. URL
https://doi.org/10.1214/10-AOAS388.
P. Breheny and J. Huang. Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors.
Statistics and Computing, 25(2): 173–187, 2015. URL
https://doi.org/10.1007/s11222-013-9424-2.
B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li and A. Riddell. Stan: A probabilistic programming language.
Journal of Statistical Software, 76(1): 2017. URL
https://doi.org/10.18637/jss.v076.i01.
Z. Chen and D. B. Dunson. Random effects selection in linear mixed models.
Biometrics, 59(4): 762–769, 2003. URL
https://doi.org/10.1111/j.0006-341X.2003.00089.x.
C. Dean and J. D. Nielsen. Generalized linear mixed models: A review and some extensions.
Lifetime data analysis, 13: 497–512, 2007. URL
https://doi.org/10.1007/s10985-007-9065-x.
M. Delattre, M. Lavielle, M.-A. Poursat, et al. A note on BIC in mixed-effects models.
Electronic Journal of Statistics, 8(1): 456–475, 2014. URL
https://doi.org/10.1214/14-EJS890.
M. Donohue, R. Overholser, R. Xu and F. Vaida. Conditional akaike information under generalized linear and proportional hazards mixed models.
Biometrika, 98(3): 685–700, 2011. URL
https://doi.org/10.1093/biomet/asr023.
D. Eddelbuettel and R. François. : Seamless r and c++ integration.
Journal of Statistical Software, 40(8): 1–18, 2011. URL
http://www.jstatsoft.org/v40/i08/.
D. Eddelbuettel and C. Sanderson. : Accelerating r with high-performance c++ linear algebra.
Computational Statistics and Data Analysis, 71: 1054–1063, 2014. URL
https://doi.org/10.1016/j.csda.2013.02.005.
Y. Fan and R. Li. Variable selection in linear mixed effects models.
Annals of Statistics, 40(4): 2043, 2012. URL
https://doi.org/10.1214/12-AOS1028.
D. J. Feaster, S. Mikulich-Gilbertson and A. M. Brincks. Modeling site effects in the design and analysis of multi-site trials.
The American journal of drug and alcohol abuse, 37(5): 383–391, 2011. URL
https://doi.org/10.3109/00952990.2011.600386.
G. M. Fitzmaurice, N. M. Laird and J. H. Ware.
Applied longitudinal analysis. 2nd ed John Wiley & Sons, 2012. URL
https://doi.org/10.1002/9781119513469.
J. Friedman, T. Hastie and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent.
Journal of Statistical Software, 33(1): 1–22, 2010. URL
https://www.jstatsoft.org/v33/i01/.
R. I. Garcia, J. G. Ibrahim and H. Zhu. Variable selection for regression models with missing data.
Statistica Sinica, 20(1): 149, 2010. URL
https://pubmed.ncbi.nlm.nih.gov/20336190/.
G. H. Givens and J. A. Hoeting. Computational statistics. 2nd ed 2012. John Wiley & Sons. URL
https://doi.org/10.1111/j.1467-985X.2006.00430_5.x.
A. Groll.
glmmLasso: Variable selection for generalized linear mixed models by L1-penalized estimation. 2017. URL
https://CRAN.R-project.org/package=glmmLasso. R package version 1.5.1.
M. J. Gurka, L. J. Edwards and K. E. Muller. Avoiding bias in mixed model inference for fixed effects.
Statistics in Medicine, 30(22): 2696–2707, 2011. URL
https://doi.org/10.1002/sim.4293.
J. D. Hadfield. MCMC methods for multi-response generalized linear mixed models: The r package.
Journal of Statistical Software, 33(2): 1–22, 2010. URL
https://www.jstatsoft.org/v33/i02/.
M. D. Hoffman and A. Gelman. The no-u-turn sampler: Adaptively setting path lengths in hamiltonian monte carlo.
Journal of Machine Learning Research, 15(1): 1593–1623, 2014. URL
https://dl.acm.org/doi/abs/10.5555/2627435.2638586.
J. G. Ibrahim, H. Zhu, R. I. Garcia and R. Guo. Fixed and random effects selection in mixed effects models.
Biometrics, 67(2): 495–503, 2011. URL
https://doi.org/10.1111/j.1541-0420.2010.01463.x.
M. J. Kane, J. Emerson and S. Weston. Scalable strategies for computing with massive data.
Journal of Statistical Software, 55(14): 1–19, 2013. URL
http://www.jstatsoft.org/v55/i14/.
K. Kleinman, R. Lazarus and R. Platt. A generalized linear mixed models approach for detecting incident clusters of disease in small areas, with an application to biological terrorism.
American Journal of Epidemiology, 159(3): 217–224, 2004. URL
https://doi.org/10.1093/aje/kwh029.
I. H. Langford. Using a generalized linear mixed model to analyze dichotomous choice contingent valuation data.
Land Economics, 507–514, 1994. URL
https://doi.org/10.2307/3146644.
J. Lorah and A. Womack. Value of sample size for computation of the bayesian information criterion (BIC) in multilevel modeling.
Behavior Research Methods, 51(1): 440–450, 2019. URL
https://doi.org/10.3758/s13428-018-1188-3.
S. Ma, S. Ogino, P. Parsana, R. Nishihara, Z. Qian, J. Shen, K. Mima, Y. Masugi, Y. Cao, J. A. Nowak, et al. Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis.
Genome Biology, 19(1): 142, 2018. URL
https://doi.org/10.1186/s13059-018-1511-4.
I. Misztal. Reliable computing in estimation of variance components.
Journal of Animal Breeding and Genetics, 125(6): 363–370, 2008. URL
https://doi.org/10.1111/j.1439-0388.2008.00774.x.
R. A. Moffitt, R. Marayati, E. L. Flate, K. E. Volmar, S. G. H. Loeza, K. A. Hoadley, N. U. Rashid, L. A. Williams, S. C. Eaton, A. H. Chung, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma.
Nature Genetics, 47(10): 1168, 2015. URL
https://doi.org/10.1038/ng.3398.
A. Pajor. Estimating the marginal likelihood using the arithmetic mean identity.
Bayesian Analysis, 12(1): 261–287, 2017. URL
https://doi.org/10.1214/16-BA1001.
P. Patil and G. Parmigiani. Training replicable predictors in multiple studies.
Proceedings of the National Academy of Sciences, 115(11): 2578–2583, 2018. URL
https://doi.org/10.1073/pnas.1708283115.
J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar and R Core Team.
: Linear and nonlinear mixed effects models. 2021. URL
https://CRAN.R-project.org/package=nlme. R package version 3.1-152.
N. U. Rashid, Q. Li, J. J. Yeh and J. G. Ibrahim. Modeling between-study heterogeneity for improved replicability in gene signature selection and clinical prediction.
Journal of the American Statistical Association, 115(531): 1125–1138, 2020. URL
https://doi.org/10.1080/01621459.2019.1671197.
M. Riester, W. Wei, L. Waldron, A. C. Culhane, L. Trippa, E. Oliva, S. Kim, F. Michor, C. Huttenhower, G. Parmigiani, et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples.
JNCI: Journal of the National Cancer Institute, 106(5): 2014. URL
https://doi.org/10.1093/jnci/dju048.
G. O. Roberts and J. S. Rosenthal. Examples of adaptive MCMC.
Journal of Computational and Graphical Statistics, 18(2): 349–367, 2009. URL
https://doi.org/10.1002/wics.1307.
SAS Institute Inc.
SAS/STAT software, version 9.2. Cary, NC, 2008. URL
http://www.sas.com/.
A. W. Schmidt-Catran and M. Fairbrother. The random effects in multilevel models: Getting them wrong and getting them right.
European Sociological Review, 32(1): 23–38, 2016. URL
https://doi.org/10.1093/esr/jcv090.
Stan Development Team. : The r interface to stan. 2020. URL
http://mc-stan.org/. R package version 2.21.2.
M. Szyszkowicz. Use of generalized linear mixed models to examine the association between air pollution and health outcomes.
International Journal of Occupational Medicine and Environmental Health, 19(4): 224–227, 2006. URL
https://doi.org/10.2478/v10001-006-0032-7.
J. A. Thompson, K. L. Fielding, C. Davey, A. M. Aiken, J. R. Hargreaves and R. J. Hayes. Bias and inference from misspecified mixed-effect models in stepped wedge trial analysis.
Statistics in Medicine, 36(23): 3670–3682, 2017. URL
https://doi.org/10.1002/sim.7348.
J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. Shaw, B. A. Ozenberger, K. Ellrott, I. Shmulevich, C. Sander and J. M. Stuart. The cancer genome atlas pan-cancer analysis project.
Nature genetics, 45(10): 1113–1120, 2013. URL
https://doi.org/10.1038/ng.2764.
H. Wickham.
ggplot2: Elegant graphics for data analysis. Springer-Verlag New York, 2016. URL
https://ggplot2.tidyverse.org.