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Bayesian Model Selection with Latent
Group-Based Effects and Variances with
the R Package slgf
by Thomas A. Metzger and Christopher T. Franck

Abstract Linear modeling is ubiquitous, but performance can suffer when the model is misspecified.
We have recently demonstrated that latent groupings in the levels of categorical predictors can
complicate inference in a variety of fields including bioinformatics, agriculture, industry, engineering,
and medicine. Here we present the R package slgf which enables the user to easily implement our
recently-developed approach to detect group-based regression effects, latent interactions, and/or
heteroscedastic error variance through Bayesian model selection. We focus on the scenario in which
the levels of a categorical predictor exhibit two latent groups. We treat the detection of this grouping
structure as an unsupervised learning problem by searching the space of possible groupings of
factor levels. First we review the suspected latent grouping factor (SLGF) method. Next, using both
observational and experimental data, we illustrate the usage of slgf in the context of several common
linear model layouts: one-way analysis of variance (ANOVA), analysis of covariance (ANCOVA), a
two-way replicated layout, and a two-way unreplicated layout. We have selected data that reveal the
shortcomings of classical analyses to emphasize the advantage our method can provide when a latent
grouping structure is present.

1 Introduction

Linear models with categorical predictors (i.e., factors) are pervasive in the social, natural, and engi-
neering sciences, among other fields. Conventional approaches to fit these models may fail to account
for subtle latent structures, including latent regression effects, interactions, and heteroscedasticity
within the data. These latent structures are frequently governed by the levels of a factor. Several
examples of such datasets can be found in Franck et al. (2013), Franck and Osborne (2016), Kharrati-
Kopaei and Sadooghi-Alvandi (2007), and Metzger and Franck (2021). Our recent work (Metzger and
Franck, 2021) developed latent grouping factor-based methodology to detect latent structures using
Bayesian model selection. The current work provides an overview of the slgf package that enables
users to easily implement the suspected latent grouping factor (SLGF) methodology, and expands on
the previous work by allowing for more flexible model specification.

Consider Figure 1, which illustrates four relevant data sets analyzed in this paper. In each panel,
the levels of a user-specified factor are found to exhibit a latent grouping structure that partitions
the data into two groups with distinct regression effects (indicated by color-coding) and/or error
variances (filled and open geometry). With the slgf package, the user specifies the factor suspected of
governing this latent structure. The package protects the user against detecting spurious latent group-
ing structures since it can accommodate non-grouped candidate models. It can also accommodate
additional linear model terms of interest. The slgf package then assesses the plausibility of each model
and the corresponding structures via Bayesian model selection. An overview of slgf functionality for
these data follows and full details of each analysis (including candidate models) appear in Section
Using the slgf package. The slgf package focuses on assessing the plausibility of two-group structures
in linear models with categorical predictors using fractional Bayes factors. A discussion comparing
slgf and other R packages that address latent group models is in Section Conclusion.

The top left panel of Figure 1 represents a one-way analysis of variance (ANOVA) study where a
continuous measurement of olfactory function (vertical axis) is modeled as a function of age, where
age is a factor represented in five categories (horizontal axis) (O’Brien and Heft, 1995). We find the
highest posterior model probability (61%) for the model where levels 1, 2, and 3 of the SLGF age have
distinct mean effects and error variances from levels 4 and 5. We call this the smell data set.

The top right panel shows an analysis of covariance (ANCOVA), where the breaking strength
of a starch film (vertical axis) is measured as a function of the SLGF (starch type) and a continuous
measurement of film thickness (horizontal axis) (Furry, 1939). We find the highest posterior model
probability (59%) for the model where potato starch (unshaded gray squares) have a larger error
variance than the shaded points, and, the red points (canna and corn starch) have a distinct slope from
the gray points. We call this the textile data set.

The bottom left panel shows the example described by Meek and Ozgur (1991), where the torque
required to tighten a locknut (vertical axis) was measured as a function of a plating process and a
threading technique. The plating processes analyzed included treatments with cadmium and wax
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Figure 1: Smell data (O’Brien and Heft, 1995, top left), textile data (Furry, 1939, top right), locknut
data (Meek and Ozgur, 1991, bottom left), and bottles data (Ott and Snee, 1973, bottom right). Color
(red/gray) shows latent grouping structure (i.e., group-based regression effects) for smell, textile,
and bottles data, and fill (solid/open geometry) shows group-based variances for smell, textile, and
locknut data.
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(CW), heat treating (HT), and phosphate and oil (PO). The threading techniques studied include
bolt and mandrel, the types of fixture on which each locknut was affixed to conduct the test. We
find the highest posterior model probability (85%) for the model where bolt by HT and bolt by PO
measurements have a larger error variance than those from bolt by CW, mandrel by HT, mandrel by
PO, and mandrel by CW. We call this the locknut data.

Finally, in the bottom right panel, the data set of Ott and Snee (1973) represents an unreplicated
two-way layout where six machine nozzles were used to fill bottles on five occasions (horizontal
axis). The weight of each bottle (vertical axis) was measured, and we find the highest posterior model
probability for the structure where nozzle 5 is found to be out of alignment from the others (> 99%).
We call this the bottles data.

The slgf package implements a combinatoric approach that evaluates all possible assignments
of SLGF levels into two groups. We refer to each these assignments as schemes. For example, in the
smell data, the scheme that is visualized assigns age levels 1, 2, and 3 into one group and levels 4 and
5 into the other, denoted {1,2,3}{4,5}. More details on how schemes are established can be found in
Subsection Grouping schemes and model classes.

The user may specify an SLGF for regression effects, another SLGF for error variances, require
them to be the same, or specify no SLGF for one or both of these. For example, the smell data has age
as the SLGF for both. In Subsection Case study 2: textile data, we analyze a data set with distinct
regression and error variance SLGFs.

In this paper, we provide an overview of the slgf package that enables analysis of data sets like
those in Figure 1 via Bayesian model selection. In Section SLGF methodology, we briefly review the
SLGF methodology. In Section Using the slgf package, we illustrate the package functionality for the
four data sets illustrated in Figure 1. For each data set, we will demonstrate the relevant code and
package functionality along with a comparison between the results of a classical approach and our
approach. In Section Conclusion, we summarize the package and its functionality.

2 SLGF methodology

2.1 Model specification

For a thorough review of the SLGF model specification see Metzger and Franck (2021). First consider
the linear model

Y = 1Tα + Wν + Vτ + Uρ + ε, (1)

where 1T is an N × 1 vector of 1s, α is an intercept, ν represents the full SLGF effect with K degrees
of freedom, τ represents the regression effects that do not arise from latent groupings (i.e., all other
regression effects of interest), and the ρ terms indicate statistical interactions between SLGF and other
regression effects; W, V, and U partition the overall model matrix into model matrices corresponding
to the SLGF effects ρ, additional effects τ, and SLGF interactions, respectively; and finally ε represents

an N × 1 vector of errors where ε
iid∼ N(0, Σ) for Σ = σ2 I where I is an N × N identity matrix.

Because a central goal of the SLGF methodology is to compare models with and without latent
grouping structures, we next develop notation to indicate whether model terms in Equation (1) involve
groupings of factor levels or not. If a model contains a one degree of freedom group effect instead
of the full K degree of freedom SLGF effect, we denote the effect ν̃ instead, with corresponding W̃ to
ensure they remain conformable. Similarly, if the interaction ρ is with the group effect rather than
the full SLGF effect, we denote it ρ̃. When there are group-based error variances, we let ε̃ denote the
vector of heteroscedastic errors, where the elements of ε̃ are either N(0, σ2

1 ) or N(0, σ2
2 ) depending on

their membership in group 1 or 2, respectively.

For example, for the smell data in the top left panel of Figure 1, the most probable model can
be represented as Y = 1Tα + W̃ν̃ + ε̃, with a 1 degree of freedom group effect ν̃ (color-coding) and
heteroscedastic error term ε̃ (shading). This model (posterior model probability 0.65) was found
to be far more probable than the ordinary one way analysis of variance model Y = 1Tα + Wν + ε
(posterior model probability less than 0.0001), the model with a 4 degree of freedom mean effect ν
and homoscedastic errors ε. Similarly, the bottles data (bottom right panel) most probable model
is Y = 1Tα + Wν + Ũρ̃ + ε with a 4 degree of freedom nozzle effect ν, an 8 degree of freedom
group-by-nozzle interaction ρ̃, and homoscedastic errors ε.
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2.2 Grouping schemes and model classes

Recall schemes are the possible assignments of factor levels to two latent groups. While the schemes
shown in Figure 1 may seem visually obvious, the slgf package considers all possible such assignments
of factor levels into two groups. This (i) obviates the need for the user to specify specific schemes,
and (ii) apportions prior model probabilities commensurately with the actual number of models
corresponding to a SLGF to prevent detection of spurious latent grouping structure. Problems will
differ in the number of schemes under consideration. The package slgf automatically determines the
schemes once the set of candidate models has been established by the user. The minimum number
of levels that can comprise a grouping scheme can be adjusted by the user to lower the number of
candidate models or to avoid creating model effects with too few degrees of freedom to be estimated.
The user may specify the SLGF for regression effects and/or error variances, or neither. These SLGFs
may or may not be different factors. If they are the same, the user may require that the grouping
schemes must be equal or that they may be distinct. For example, in the textile data in the top right
panel of Figure 1, the SLGF is starch for both regression effects and error variances, but the user
should allow for distinct schemes since the variance scheme appears to be {potato}{canna,corn} and
the regression effect scheme appears to be {corn}{canna,potato}.

A model class describes the structure of the model including specification of effects related to the
hidden groups. Model classes may include, for example, the set of models with group-based regression
effects but no group-based variances; or, a single model with no group-based regression effects or
variances. For example, in the smell data represented in top left panel of Figure 1, we consider the
following 62 models comprising six model classes:

1. A single model with a 1 degree of freedom global mean effect and homoscedastic error variance;

2. A single model with a 4 degree of freedom mean effect and homoscedastic error variance;

3. 15 models (corresponding to the 15 possible grouping schemes) with a 1 degree of freedom
global mean effect and group-based heteroscedastic error variances;

4. 15 models with a 4 degree of freedom mean effect and group-based heteroscedastic error
variances;

5. 15 models with a 1 degree of freedom group-based mean effect and homoscedastic error variance;

6. 15 models with a 1 degree of freedom group-based mean effect and group-based error variances.

For our analysis, we specified that the regression effect and variance grouping schemes must be
equivalent, and that one level of the age factor could comprise a group. The user can relax these
specifications as desired.

2.3 Parameter priors

With slgf, the user can choose to implement noninformative priors on the regression effects (default),
or the Zellner-Siow mixture of g-priors on these effects. We first enumerate the noninformative priors.
Let β represent the full set of regression effects. For simplicity, we parametrize on the precision scale
where φ = 1

σ2 and the corresponding precision matrix φIn×n is denoted Φ. For a model mc
s where c

indexes class and s indexes grouping scheme, slgf imposes

P(β, φ|mc
s) ∝ φ (2)

for homoscedastic models, and
P(β, φ1, φ2|mc

s) ∝ φ1 · φ2 (3)

for heteroscedastic models.

Alternatively, in contexts with limited data, such as the two-way unreplicated bottles data in the
bottom right panel of Figure 1, we recommend employing the Zellner-Siow mixture of g-prior (Zellner
and Siow, 1980; Zellner, 1986; Liang et al., 2008), which reduces the minimal training sample size
necessary for the computation of the fractional Bayes factor (see Subsection Fractional Bayes factors
and posterior model probabilities for further detail). We have generally found that in cases where the
number of data points is close to the number of parameters in some of the larger candidate models
(e.g., case study 4, bottles data), the mixture of g-priors approach outperforms the noninformative
priors due to the drastic reduction in the required proportion of the data needed to implement the
fractional Bayes factor approach. For homoscedastic models, recall Φ = ϕI where I is an N × N
identity matrix. Let

P(α, φ|mc
s) ∝ φ (4)

and
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β−α|Φ, g, mc
s ∼ N(0, g(XTΦ−1X)−1). (5)

Next, for heteroscedastic models, first denote Φ̃ as a diagonal precision matrix where the ith diagonal
element is either φ1 or φ2, depending upon the grouping membership of the ith observation. Let

P(α, φ1, φ2|mc
s) ∝ φ1 · φ2 (6)

and

β−α|Φ̃, g, mc
s ∼ N(0, g(XTΦ̃−1X)−1); (7)

In both homoscedastic and heteroscedastic cases,

g ∼ InvGamma
(1

2
,

N
2
)
. (8)

Thus for homoscedastic models, the full prior on all parameters is the product of Equations (4), (5),
and (8). For heteroscedastic models, it is the product of Equations (6), (7), and (8).

2.4 Fractional Bayes factors and posterior model probabilities

Note that if we form a standard Bayes factor for models using improper priors on parameters, the
unspecified proportionality constants associated with the improper priors (Equations 2, 3, 4, and
6) would not cancel one another and the Bayes factor would be defined only up to an unspecified
constant. Thus we invoke a fractional Bayes factor approach (O’Hagan, 1995) to compute well-defined
posterior model probabilities for each model. More details follow.

The slgf package obtains posterior model probabilities through the use of fractional Bayes factors.
Briefly, a Bayes factor is defined as the ratio of two models’ integrated likelihoods. The integrated
likelihood is obtained by integrating parameters out of the joint distribution of data and parameters.
In some cases, this integration is analytic, but in others, it is undertaken with a Laplace approximation;
the corresponding simplified expressions and methods used to optimize them are described in detail
later in this section. In the SLGF context, let M represent the full set of models under consideration,
representing all classes and grouping schemes of interest. Denote θ as the full set of unknown
parameters associated with a model mc

s ∈ M and π(θ|mc
s) as the prior on these parameters given

model mc
s . The parameter vector θ depends on class and scheme of model mc

s . The integrated likelihood
is

P(Y |mc
s) =

∫
Θ

P(Y |θ, mc
s)π(θ|mc

s)dθ,

with Bayes factor comparing models mc
s and mc′

s′

BF =
P(Y |mc

s)

P(Y |mc′
s′ )

.

Since the priors used by the slgf package are improper, π(θ|mc
s) is defined only up to an unspecified

constant. Thus, BF is defined only up to a ratio of unspecified constants. To overcome this issue
and enable improper priors on parameters to be used in the course of Bayesian model selection, the
fractional Bayes factor (O’Hagan, 1995) was developed. A fractional Bayes factor is a ratio of two
fractional marginal model likelihoods, where a fractional marginal likelihood is defined as

qb(Y |mc
s) =

∫
P(Y |θ, mc

s)π(θ|mc
s)dθ∫

P(Y |θ, mc
s)bπ(θ|mc

s)dθ
. (9)

The qb(Y |mc
s) quantity in Equation (9) is the integrated likelihood based on the 1 − b fraction of

the data where the improper prior has been updated to become proper with b fraction of the data.
Thus all normalizing constants are specified. The fractional Bayes factor is thus

FBF =
qb(Y |mc

s)

qb(Y |mc′
s′ )

.

for some fractional exponent 0 < b < 1. Thus we must compute the integrals
∫

P(Y |θ, mc
s)π(θ|mc

s)dθ

and
∫

P(Y |θ, mc
s)

bπ(θ|mc
s)dθ, the numerator and denominator of Equation (9), respectively, for all

mc
s ∈ M. Although O’Hagan (1995) provides several recommendations for choice of b, slgf exclusively
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implements b = m0
N where m0 is the minimal training sample size required for the denominator of

Equation (9) to be proper for all models. If m0 is too small, then the denominator of Equation (9)
diverges. The user must specify m0; if their choice is too low, then slgf increases it until all relevant
integrals converge. For further details, see O’Hagan (1995), p. 101; for recommendations on choosing
m0 in practice, see Subsection Choice of m0.

Next we discuss the technical details on how these integrals are computed via Laplace approx-

imation. Specifically, we will describe how log
(

qb(Y |mc
s)
)

is computed in each case. In the case of

noninformative regression priors for homoscedastic models, β and σ2 are integrated analytically. Let
Ŷ represent the fitted values of mc

s and SSResid the residual sum of squares of this model. We obtain

log
(

qb(Y |mc
s)
)
=

(
− N(1 − b)

2

)
(log π + log(SSResid)) +

(
Nb − 1

2

)
log b + log

 Γ
(

N−P
2

)
Γ
(

Nb−P
2

)

(10)

In the case of noninformative regression priors for heteroscedastic models, both the numerator and
denominator integrals of Equation (9 )must be approximated with a Laplace approximation because
although β can be integrated analytically, σ2

1 and σ2
2 cannot be. The integrals are computed on the

log-scale for numeric stability. Equation (9) on the log-scale simplifies to:

log
(

qb(Y |mc
s)
)
=

N(b − 1)
2

log(2π) +
P + 1

2
log b +

1
2

log
( |H⋆

b |
|H⋆|

)
+ log

(
P(Y |θ⋆)π(θ⋆|mc

s)

P(Y |θ⋆b)bπ(θ⋆b |m
c
s)

)
(11)

where θ⋆ and H⋆ denote the mode and Hessian of P(Y |θ, mc
s)π(θ|mc

s), and θ⋆b and H⋆
b denote the mode

and Hessian of P(Y |θ, mc
s)

bπ(θ|mc
s). These modes and Hessians are computed with optim using the

Nelder-Mead algorithm.

In the Zellner-Siow mixture of g-prior case, α and β−α are integrated analytically. For homoscedas-
tic models, σ2 is as well, and only g is integrated with a Laplace approximation. Again marginal
model likelihoods are computed on the log-scale. The log of the mode of P(Y |g, mc

s)
bπ(θ|mc

s), denoted
g⋆b , is found by solving the closed-form equation (Nb−1−P)

2 log(1 + bg) + Nb−1
2 log(1 + bg(1 − R2))−

3
2 log g − N

2g := 0 with the base R function uniroot where R2 is the coefficient of determination for

mc
s . The Hessian is then evaluated at this solution g⋆b ; the closed-form Hessian of P(Y |g, mc

s)
bπ(θ|mc

s)

evaluated at g⋆ is given by H⋆
b = 1

2

(
((Nb−1)b2(1−R2)2

(1+bg⋆)(1−R2)2 − (Nb−P−1)b2

(1+bg⋆)2 + 3
g⋆2 − 2N

g⋆3

)
. For b = 1, this

expression describes the numerator of Equation (9); see Liang et al. (2008) for further mathematical
details. The Laplace approximation for Equation (9) on the log-scale then is given by:

log
(

qb(Y |mc
s)
)
= log

 Γ
(

N−1
2

)
Γ
(

Nb−1
2

)
+

Nb − 1
2

(log(SSTotal) + log π) +
1
2

log
( |H⋆

b |
|H⋆|

)
+

log

(
P(Y |θ⋆)π(θ⋆|mc

s)

P(Y |θ⋆b)bπ(θ⋆b |m
c
s)

)
.

(12)

For heteroscedastic models, a three-dimensional Laplace approximation is used to integrate σ2
1 , σ2

2 ,

and g. To obtain θ⋆b and θ⋆, we first transform γ1 = log
(

1
σ2

1

)
and γ2 = log

(
1
σ2

2

)
to stabilize the op-

timization. We optimize log P(Y |g, σ2
1 , σ2

2 )
bπ(σ2

1 , σ2
2 , g) = n1b

2 log γ1 +
n2b
2 γ2 − P

2 log g + 1
2 |XTΣ̃X| −

1
2 log | bg+1

bg XT(Σ̃−ZΣ̃)X|− b
2 YT

(
Σ̃ − ZΣ̃ − (Σ̃ − ZΣ̃)X

(
bg+1

bg XTΣ̃X − XT ZΣ̃X
)−1

XT(Σ̃ − ZΣ̃)

)
Y −

3
2 log(g)− N

2g + log(J) using the Nelder-Mead method from optim where ZΣ̃ = Σ̃Z(ZTΣ̃Z)−1ZTΣ̃,

Z = 1T , and log(J) = −(γ1 + γ2) represents the determinant of the log-precision transformation. For
b = 1 these equations yield integrand of the numerator of (9).

With the modes computed, the Hessians of log P(Y |g, σ2
1 , σ2

2 )
bπ(σ2

1 , σ2
2 , g) are calculated with the

function Hessian from the package numDeriv. Finally with the modes and Hessians computed, the
Laplace approximation for Equation (9) is given by:
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log
(

qb(Y |mc
s)
)
=

Nb − 1
2

log(2π) +
P + 1

2
log(b) +

1
2

log
( |H⋆

b |
|H⋆|

)
+ log

(
P(Y |θ⋆)π(θ⋆|mc

s)

P(Y |θ⋆b)bπ(θ⋆b |m
c
s)

)
.

(13)

For the sake of consistency, all models, even with fully tractable marginal model likelihoods, are
computed with a FBF. Once log-fractional marginal likelihoods have been computed for all models,
we subtract the maximum from this set so that the set of log-fractional marginal likelihoods has been
rescaled to have a maximum of 0. Each value is exponentiated to obtain a set of fractional marginal
likelihoods with maximum 1. This adjustment helps to avoid numerical underflow when computing
posterior model probabilities.

2.5 Choice of m0

The user must specify the argument m0, the minimal training sample size such that all marginal model
likelihoods are well-defined. If prior="flat", then we recommend that the user begins by letting m0
equal the dimension of the improper priors: that is, the number of coefficients in most complex model
under consideration plus the number of variances under consideration. If prior="zs", then m0 can
generally be much smaller (in practice, we have found that m0=2 performs well) as the prior on the
regression effects is proper. If the user’s choice is too low, then ms_slgf will incrementally increase it
by 1 until all marginal model probabilities are numerically stable. If m0 reaches n, corresponding to
100% of data used for training, ms_slgf will terminate and the user should specify a different set of
models.

2.6 Model priors

With this adjusted set of fractional marginal likelihoods, we next consider the priors for the model
space. The function ms_slgf imposes a uniform prior by model class, and for classes containing
multiple models, the prior on each class is uniformly divided among the models it contains. We finally
compute posterior model probabilities for each model:

P(m′|Y) = P(Y |m′)P(m′)

∑
M

P(Y |m)P(m)
. (14)

The prior probability placed on each model can be found in the models$ModPrior vector in output
from ms_slgf.

2.7 Parameter estimation

Our approach provides maximum a posteriori (MAP) estimates for all relevant quantities: β̂, σ̂2 = {σ̂2}
or σ̂2 = {σ̂2

1 , σ̂2
2} in the homoscedasitc and heteroscedastic cases respectively, and g in the Zellner-Siow

mixture of g-prior case.

Because the prior on β is either flat or centered at 0, the MAP estimator is simply the usual
maximum likelihood estimator:

β̂ = arg max
β

P(Y |X, β, Σ) (15)

so that β̂ = (XT X)−1XTY . The variance(s) and g were computed via the base R function optim during
the Laplace approximation stage. For computational efficiency, β is integrated out of P(Y |X, θ)P(θ)
and the variances are estimated on the log-scale, so we let λ̂ := {λ̂} in homoscedastic models or
{λ̂1, λ̂2} in heteroscedastic models. Then

λ̂ = arg max
λ

∫
P(Y |X, β, Σ)P(β)P(Σ)dβ (16)

or,
{λ̂, ĝ} = arg max

λ,g

∫
P(Y |X, β, Σ, g)P(α)P(β−α|Σ)P(g)dβ. (17)

Then, σ̂2 = exp{λ̂} for σ̂2 = {σ̂2} or σ̂2 = {σ̂2
1 , σ̂2

2}. The output values coefficients, variances,
and gs (only if prior="zs") are lists where each element contains the estimates for each model’s β̂, σ̂2,
and ĝ, respectively.
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3 Using the slgf package

The function ms_slgf() is the main function of slgf that implements the methodology we have
described. Each argument of ms_slgf() and its output will be illustrated in the case studies found
in Subsections Case study 1: smell data, Case study 2: textile data, Case study 3: locknut data, and
Case study 4: bottles data. The ms_slgf() function requires several inputs to compute and output
posterior model probabilities for all models, schemes, and model classes of interest. The user begins
with a data.frame containing a continuous response, at least one categorical predictor, and any other
covariates of interest. The data.frame cannot contain column names with the character string group,
because ms_slgf() will search for this string when fitting group-based models. The user must first
identify an SLGF for the fixed effects and/or the variance. The user indicates, via the arguments
response, slgf_beta, and slgf_Sigma, character strings corresponding to the response, the suspected
latent fixed effect grouping factor, and the suspected latent variance grouping factors, respectively.
If no latent regression effect structure or variance structure is to be considered, the user may specify
slgf_beta=NA, slgf_Sigma=NA, or both. We note that if the user does not specify any SLGFs, the
model selection is still undertaken through fractional Bayes factors as described previously. If the
user chooses the same categorical variable for both latent grouping factors, the argument same_scheme,
which defaults to FALSE, can indicate whether the grouping schemes for the regression effect and
variance structures must be equivalent.

Next the user determines the model classes they wish to evaluate. The argument usermodels is
a list where each element contains a string of R class formula or character. The user also specifies
which classes should also be considered in a heteroscedastic context via the argument het, which
is a vector of the same length as usermodels, containing an indicator 1 or 0 corresponding to each
model class specified in usermodels where 1 indicates the model will be considered with group-based
variances and 0 indicates it will not. Together the arguments usermodels and het indicate which fixed
effect structures are of interest, and which should be further considered for heteroscedasticity, thus
implicitly creating the full set of model classes considered.

Next the user chooses a prior to place on the regression effects. As described in Subsection
Parameter priors, prior="flat" (the default) implements the noninformative prior and prior="zs"
imposes the Zellner-Siow mixture of g-prior.

Finally the user must specify the minimum number of levels of the SLGF that can comprise a
group, via the arguments min_levels_beta and min_levels_Sigma, which default to 1. The number
of possible grouping schemes increases with the number of levels of the SLGF. To speed up the
computation, the user can increase these arguments and thus reduce the number of candidate models.
Because we partition into two groups, note these arguments may not exceed half the number of
levels of the SLGF. Additionally, when considering data with limited degrees of freedom, increasing
min_levels_beta and/or min_levels_Sigma may be necessary to ensure effects can be computed.

3.1 Case Study 1: smell data

First we revisit the smell data set analyzed by O’Brien and Heft (1995). They measured olfactory acuity
(denoted olf) on a continuous scale as a function of age (agecat), where age groups were divided
into five categorical levels. See Figure 2. We note that levels 4 and 5 of agecat appear to have larger
variance than levels 1, 2, and 3, but standard analysis of variance models assume homoscedasticity.
We first demonstrate how a classical analysis might misrepresent the data. A usual one-way ANOVA
analysis compares the null model, with a single mean, against the alternative model, with 4 degrees of
freedom for the mean effects, with homoscedastic error variance.

% remove smell null model
> smell$agecat <- as.factor(smell$agecat) # coerce agecat to a factor variable
> smell_null <- lm(olf~1, data=smell) # fit a null model with a single mean
> smell_full <- lm(olf~agecat, data=smell) # fit a full model with a 4 agecat effects
> print(smell_null)
Call:
lm(formula = olf ~ 1, data = smell)

Coefficients:
(Intercept)

1.234
> print(smell_full)
Call:
lm(formula = olf ~ agecat, data = smell)
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Figure 2: The smell data (O’Brien and Heft, 1995) is analyzed for group-based means and variances.
We find posterior model probability of 61% for the model with group-based means and variances with
scheme {1,2,3}{4,5}. We also find overall posterior probability of grouping scheme

.

Coefficients:
(Intercept) agecat2 agecat3 agecat4 agecat5

1.31689 0.02824 -0.01075 -0.11580 -0.25728
> anova(smell_null, smell_full) # compare the null and full models
Analysis of Variance Table

Model 1: olf ~ 1
Model 2: olf ~ agecat
Res.Df RSS Df Sum of Sq F Pr(>F)

1 179 7.7585
2 175 5.6197 4 2.1388 16.651 1.395e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> summary(smell_null)$sigma^2
0.04334349
> summary(smell_full)$sigma^2
0.03211259

This approach, which assumes all levels of agecat have equal error variance, favors the model
with a 4 degree of freedom agecat effect. Note we obtain maximum likelihood estimates for the
error variance of σ̂2

full = 0.03211. Based on Figure 2, we suspect this value may overestimate the
error variance for levels 1, 2, and 3, while underestimating that of levels 4 and 5. We also suspect
that the full model may be overly complex, as the means for levels 1, 2, and 3 appear to be plausibly
equivalent. That is, the apparent latent grouping scheme for both regression effects and error variances
is {1,2,3}{4,5}, or equivalently, {4,5}{1,2,3}.

Next, consider the slgf approach. We will consider the classes of models with group-based
means, group-based variances, and both group-based means and variances. We specify dataf=smell
and response="olf", along with slgf_beta="agecat" and slgf_Sigma="agecat" as the suspected
latent grouping factor for both regression effects and variances. We set the minimum number of
levels for a group to 1 with min_levels_beta=1 and min_levels_Sigma=1. Note that fewer grouping
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schemes would be considered if we let these arguments equal 2. For simplicity, since the mean
and variance grouping schemes both visually appear to be {1,2,3}{4,5}, we will restrict the schemes
to be equivalent with same_scheme=TRUE. Via the usermodels argument, we will consider the null
model class olf∼1, the full model class olf∼agecat, and the group-means model class olf∼group,
which will automatically consider all possible grouping schemes. Similarly, we will consider each of
these formulations with the class of both homoscedastic and group-based variances via the argument
het=c(1,1,1). With a relatively large amount of data, we will use the uninformative prior="flat".
Finally we specify a minimal training sample size of m0=9, although if we specify this value to be too
small, ms_slgf() will automatically increase it to the smallest value for which the relevant integrals
converge and/or the necessary optimizations can be performed. We run ms_slgf to obtain the posterior
model probabilties for all 62 models under consideration. We inspect the two most probable models,
with indices 62 and 32, which comprise over 99% of the posterior probability over the model space
considered:

> smell_out <- ms_slgf(dataf=smell, response="olf", lgf_beta="agecat",
min_levels_beta=1, lgf_Sigma="agecat",
min_levels_Sigma=1, same_scheme=TRUE,
usermodels=list("olf~1", "olf~agecat", "olf~group"),
het=c(1,1,1), prior="flat", m0=9)

> smell_out$models[c(1,2),c(1,2,3,5,7)]
Model Scheme.beta Scheme.Sigma FModProb Cumulative

62 olf~group {4,5}{1,2,3} {4,5}{1,2,3} 0.6054935 0.6054935
32 olf~agecat None {4,5}{1,2,3} 0.3878754 0.9933688

The most probable model, as suspected, is olf∼group, indicating group-based means where
Scheme.beta is {4,5}{1,2,3}. Note also Scheme.Sigma indicates group-based heteroscedasticity with
the same scheme. This model received posterior probability of approximately 61%. The next most
probable model also has group-based heteroscedasticity with scheme {4,5}{1,2,3}, but note the model
is olf∼agecat, containing the full model not with group-based mean effects, but rather 4 degrees of
freedom for the agecat effect. By inspecting smell_out$scheme_probabilities_Sigma, we see that
models with variance grouping scheme {4,5}{1,2,3} comprise over 99% of the posterior probability.
By contrast, the models with fixed effect grouping scheme {4,5}{1,2,3} (that is, the homoscedastic
and heteroscedastic versions) comprise 61% of the posterior probability. We find these posterior
probabilities intuitive, easy to interpret quantifications of uncertainty.

The output fields coefficients and variances contain lists with the coefficients and variance(s)
associated with each model. The output field model_fits contains the output from a linear model fit
to the model specification in question, containing the , and Note the most probable model has index
62, so we inspect the 62nd elements of the coefficient and variance lists smell_out$coefficients
and smell_out$variances, which contain the MAP estimates for each model’s regression effects and
variance(s), respectively. The group-based variance estimates are σ̂2

{4,5} = 0.0587 and σ̂2
{1,2,3} = 0.0121.

We contrast these variances against the estimate σ̂2
full = 0.032, which appears to have overestimated

the variance of levels 1, 2, and 3, while simultaneously underestimating that of levels 4 and 5.

> smell_out$coefficients[[62]]
(Intercept) group{4,5}
1.3252211 -0.1940328

> smell_out$variances[[62]]
{4,5} {1,2,3}

0.05868885 0.01211084

3.2 Case study 2: textile data

We reanalyze the breaking strength data set of Furry (1939), also investigated by Metzger and Franck
(2021), to illustrate the additional flexibility of slgf beyond the original work. The breaking strength of
a starch film strength (measured in grams) is analyzed according to the thickness of the film, denoted
film (measured in 10−4 inches), and the type of starch starch used to create the film (canna, corn, or
potato). As usual, we begin by plotting the data to ascertain whether there is a latent grouping factor
present. By inspection we note that the potato films, represented by squares in Figure 3, appear to
have a higher variability than the corn (filled red circles) and canna (filled gray triangles) films.

We first illustrate a typical ANCOVA approach, in which three parallel lines for each level of starch
are fit with a common error variance. This model leads to the fit shown in the center panel of Figure
3. Note only the film thickness effect is statistically significant according to a traditional hypothesis
testing approach with α = 0.05. The residual standard error of this model is σ̂2

ANCOVA = 27126.09.
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Figure 3: The breaking strength data set from Furry (1939) represents the breaking strength of starch
films depending on the thickness of a film coating and the type of starch used to make the film. The
left panel shows the data. The center panel shows an ANCOVA model. The right panel shows the
most probable model (P(m|Y) ≈ 66%) containing a latent group-based interaction between groups
{canna, potato}{corn} (gray points vs. red points) and film thickness, as well as distinct variances
between groups {canna, corn}{potato} (filled points vs. open points).

> textile_ancova <- lm(strength~film+starch, data=textile)
> summary(textile_ancova)

Call:
lm(formula = strength ~ film + starch, data = textile)

Residuals:
Min 1Q Median 3Q Max

-203.63 -99.45 -57.84 56.72 637.61

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 158.26 179.78 0.880 0.383360
film 62.50 17.06 3.664 0.000653 ***
starchcorn -83.67 86.10 -0.972 0.336351
starchpotato 70.36 67.78 1.038 0.304795

We contrast these findings against our methodology with slgf. The following arguments are
input: dataf=textile specifies the data frame; response="strength" specifies the column of textile
that contains the response variable; slgf_beta="starch" and slgf_Sigma="starch" indicate that the
categorical variable starch should be used as the latent grouping factor for both regression effects
and variances; same_scheme=FALSE indicates that the latent regression effect and variance group-
ing structures do not need to be partitioned by the same levels of starch; min_levels_beta=1 and
min_levels_Sigma=1 indicate that a latent group can contain only one level of starch; the user-
models argument indicates that we will consider main effects models strength∼film+starch and
strength∼film+starch+film*starch, and models with group-based regression effects including
strength∼film+group and strength∼film+group+film*group; the argument het=c(1,1,1,1) indi-
cates that each of these four model specifications will also be considered with group-based variances;
prior="flat" places a flat prior on the regression effects; and m0=8 specifies the minimal training
sample size.

> data(textile)
> out_textile <- ms_slgf(dataf = textile, response = "strength",

lgf_beta = "starch", lgf_Sigma = "starch",
same_scheme=FALSE, min_levels_beta=1, min_levels_Sigma=1,
usermodels = list("strength~film+starch", "strength~film*starch",

"strength~film+group", "strength~film*group"),
het=c(1,1,1,1), prior="flat", m0=8)

> out_textile$models[1:5,c(1,2,3,5)]
Model Scheme.beta Scheme.Sigma FModProb

31 strength~film*group {corn}{canna,potato} {potato}{canna,corn} 0.6596667376
8 strength~film*starch None {potato}{canna,corn} 0.3337588991
30 strength~film*group {canna}{corn,potato} {potato}{canna,corn} 0.0018692078
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28 strength~film*group {corn}{canna,potato} {corn}{canna,potato} 0.0010854755
7 strength~film*starch None {corn}{canna,potato} 0.0006831597

Refer to code and output above, where we provide the five most probable models. Note the three
most probable models all have the latent variance grouping scheme {potato}{canna, corn}; again over
99% of the posterior model probability is accounted for by this variance scheme. This visually agrees
with the plot, which shows that the potato starch films seem to have higher variability than the canna
and corn starch films. The regression effect structure is less clear: the most probable model selects
the film*group model, which contains main effects for film and group as well as their interaction,
with scheme {canna}{corn, potato}. We plot this model in the right panel of Figure 3 to illustrate its
plausibility. It does appear that the slope for corn is steeper than that of potato and canna, which can
be contracted into a single level to simplify the model. However, the error variance for potato appears
larger than that of canna and potato, as evidenced by the large spread of square potato points around
the gray line. Thus we assert that the most probable model under our methodology is reasonable
and appropriate. The group standard errors are σ2

{potato} = 57734.046 and σ2
{canna,corn} = 5791.713,

indicating the standard ANCOVA model underestimates the error variance of the potato observations,
and overestimates those of the canna and corn observations.

Finally we illustrate the output scheme_probabilities_beta and scheme_probabilities_Sigma,
which sum up the probabilities for all model specifications associated with each possible grouping
scheme. We see moderately high cumulative probability for models with regression grouping scheme
{corn}{canna,potato}, followed closely be models with no grouping scheme for regression effects:

> out_textile$scheme_probabilities_beta
Scheme.beta Cumulative

2 {corn}{canna,potato} 0.592860983
4 None 0.403632744
1 {canna}{corn,potato} 0.002502435
3 {potato}{canna,corn} 0.001003838

Intuitively, based on the wider spread of the square potato points in Figure 3, we see high cumulative
probability for the variance grouping scheme {potato}{canna,corn}:

> out_textile$scheme_probabilities_Sigma
Scheme.Sigma Cumulative

3 {potato}{canna,corn} 9.975853e-01
2 {corn}{canna,potato} 2.184257e-03
1 {canna}{corn,potato} 2.304323e-04
4 None 1.632320e-08

3.3 Case study 3: locknut data

We consider the two-way replicated layout of Meek and Ozgur (1991), where the torque (torque)
required to tighten a locknut was measured as a function of a plating process (plating) and a threading
method (fixture).

A two-way analysis with an interaction yields the following ANOVA table. The fixture and plating
main effects, along with fixture by plating interaction, are all statistically significant at level α = 0.005.
Additionally, we find σ̂2

Full = 36.58:

> anova(lm(Torque~Fixture+Plating+Fixture*Plating, data=locknut))
Analysis of Variance Table

Response: Torque
Df Sum Sq Mean Sq F value Pr(>F)

Fixture 1 821.4 821.40 22.4563 1.604e-05 ***
Plating 2 2290.6 1145.32 31.3118 9.363e-10 ***
Fixture:Plating 2 665.1 332.55 9.0916 0.0003952 ***
Residuals 54 1975.2 36.58

Upon inspection of Figure 4, we suspect that two latent characteristics are at play. First, based on
the non-parallel lines representing the plating effects, there may be a group-by-plating interaction,
so we will consider slgf_beta="Plating". Note since fixture has only two levels, it is not feasible to
consider group-based effects based on fixture since the one degree of freedom fixture effect would be
equivalent to a group effect.
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Figure 4: The most probable model (P(m|Y) ≈ 85%) contains a full fixture by plating interaction effect
with no grouping structure, and group-based variances based on the levels of this interaction with
scheme {bolt*CW, mandrel*CW, mandrel*HT, mandrel*PO}{bolt*HT, bolt*PO} (filled points vs. open
points).

Regarding the variance structure, the variance of the torque amount at levels PO and HT appears
higher, but only for the bolt fixture. This suggests that the levels of the interaction govern the variance
groups; that is, slgf_Sigma="Fixture*Plating". Since this specific variable header does not appear
in the locknut data set, we manually create a new variable with each interaction level by pasting
together the main effect variables:

locknut$Interaction <- paste0(locknut$Fixture, "*", locknut$Plating)

Thus we consider the following model specifications. Liang et al. (2008) (p. 420) note that the
Zellner-Siow mixture of g-prior provides a fully Bayesian, consistent model selection procedure for
small n along with relatively straightforward expressions for the marginal model probabilities. This
approach is implemented by the user with the argument prior="zs":

> data(locknut)
> locknut$Interaction <- paste0(locknut$Fixture, "*", locknut$Plating)
> out_locknut <- ms_slgf(dataf=locknut, response="Torque", same_scheme=FALSE,

lgf_beta="Plating", min_levels_beta=1,
lgf_Sigma="Interaction", min_levels_Sigma=1,
usermodels=list("Torque~Fixture+Plating+Fixture*Plating",

"Torque~Fixture+group+Fixture*group"),
het=c(1,1), prior="zs", m0=2)

This formulation favors the same main and interaction effects favors by the standard model.
However, slgf favors group-based variances with scheme {bolt*HT, bolt*PO}{bolt*CW, mandrel*CW,
mandrel*HT, mandrel*PO} with posterior probability of approximately 85%. This variance structure
was expected based on the relatively larger spread of the open points in Figure 4. As we have
noted previously, the group variance estimates show that the heteroscedastic model overestimates
the variance for some levels of fixture and plating, and underestimates it for others. Since model
‘13‘ was the model probable model, we print these variances, obtaining σ̂2

bolt*HT,bolt*PO ≈ 85.0 and
σ̂2

bolt*CW,mandrel*CW,mandrel*HT,mandrel*PO ≈ 11.6:

> out_locknut$variances[[13]]
{bolt*HT,bolt*PO} {bolt*CW,mandrel*CW,mandrel*HT,mandrel*PO}

85.00448 11.58652

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 188

3.4 Case study 4: bottles data

Finally, we consider the data of Ott and Snee (1973), where a machine with six heads (head) is designed
to fill bottles (weight). The weight of each bottle is measured once over five time points (time) as a
two-way unreplicated layout. A visual inspection of the data (Figure 5, left panel) indicates that one of
the filling heads is behaving distinctly than the other five. There appears to be an interaction between
head and time, but we lack the degrees of freedom to fit such a model. If we were to fit the standard
main effects model, we obtain the clearly inappropriate model fit in the center panel of Figure 5.

Since it appears that head {5} is out of calibration in some way as compared to heads {1,2,3,4,6},
we instead consider the group-based interaction model weight∼time+group:time where ‘head’ is the
regression effect SLGF. For this illustration, we consider only homoscedastic models. In this data-poor
context, we recommend the use of the Zellner-Siow mixture of g-prior by specifying prior="zs" in
the ms_slgf function. The minimal training sample size can be much lower, as this prior is proper. We
inspect the posterior model probabilities of the most probable model and the additive main effects
model:

> bottles_me <- lm(weight~time+heads, data=bottles)
> bottles2 <- data.frame(weight=bottles$weight, time=as.factor(bottles$time),

heads=as.factor(bottles$heads))
> bottles_out <- ms_slgf(dataf=bottles2, response="weight", lgf_beta="heads",

min_levels_beta=1, lgf_Sigma=NA, min_levels_Sigma=NA, same_scheme=FALSE,
usermodels=list("weight~time+group:time", "weight~time+heads"),
het=c(0,0), prior="zs", m0=2)

> bottles_out$models[1:2,c(1,2,4,5)]
Model Scheme.beta Log-Marginal FModProb

5 weight~time+group:time {5}{1,2,3,4,6} -103.168 0.9991932
32 weight~heads+time None -114.726 0.0002158313

The group-based approach overwhelmingly favors the model with a main effect for ‘time‘ along
with the group-based interaction ‘group:time‘ with scheme {5}{1,2,3,4,6}. We also note that the error
variance for the main effects model is σ̂2

ME = 130.1233, while the estimate for the group-based
interaction model is σ̂2

{5}{1,2,3,4,6} = 39.76, suggesting the main effects model seriously overestimates
the error variance and thus may lead to misleading inference on regression effects.

Figure 5: The bottles data set from Ott and Snee (1973) represents fill weights by six machine heads
over five time points. The left panel shows the data, with head 5 appearing to be out of calibration.
The center panel shows a main effects model, with a realistic fit for heads 1, 2, 3, 4, and 6, but not 5.
The right panel shows the most probable group-based interaction (P(m|Y) > 99.9%) with main effects
for time and a group-by-time interaction with scheme {5}{1,2,3,4,6}.

We note that there will be a linear dependency between the group-by-time interaction and the time
main effect for time 5. The NA values can be seen by inspecting the coefficients of the corresponding
model. These effects are not counted in the dimensionality of the model when computing qb(Y |m).

> bottles_out3$coefficients[[5]]
(Intercept) heads2 heads3 heads4

53.24 1.80 4.80 -6.80
heads5 heads6 group{1,2,3,4,6}:time1 group{5}:time1
-8.24 -1.00 14.00 -13.00

group{1,2,3,4,6}:time2 group{5}:time2 group{1,2,3,4,6}:time3 group{5}:time3
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-1.40 20.00 -8.20 4.00
group{1,2,3,4,6}:time4 group{5}:time4 group{1,2,3,4,6}:time5 group{5}:time5

27.40 -11.00 NA NA

4 Conclusion

This manuscript has provided an overview of the slgf package in R, which is available from the
Comprehensive R Archive Network. Source code can be found on Github at https://github.com/
metzger181osu/slgf. The slgf package allows the user to determine whether latent groupings of
categorical predictor’s levels provide a better characterization of the response variable compared
with ordinary linear models that do not account for the suspected latent groupings. This is accom-
plished through the suspected latent grouping factor methodology of Metzger and Franck (2021). The
methodology allows for formal comparisons between ordinary linear models and latent grouping
models, which protects the user from automatically selecting a spurious clustering structure that is
not well supported by the data. We illustrate the ability to detect the lack of a grouping structure in
the simulation studies of Metzger and Franck (2021).

The slgf package allows the user to (i) explore different grouping schemes for fixed effects and
error variances, and (ii) specify entirely separate latent grouping factors for fixed effects and variances.
We illustrate (i) in Case Study 2: Textile data, where the top model shows a different regression line
for corn compared to canna and potato, but the error variance for potato is different from canna and
corn (see Figure 3). To show (ii), we considered the locknut example of Subsection Case study 3:
locknut data, where we considered whether fixture (bolt, mandrel) exhibited a fixed effect latent
grouping structure, and whether interaction (bolt*CW, bolt*HT, bolt*PO, mandrel*CW, mandrel*HT,
mandrel*PO) exhibited a variance latent grouping structure. As described in Subsection Case study
3: locknut data, we found no latent grouping structure for fixed effects, but torque error variance
for bolt*HT and bolt*PO differ from the other interaction levels. The analysis supported no latent
grouping structure for plating.

The slgf package provides functionality to detect plausible underlying cluster structures among
levels of categorical predictors in linear models. This exercise in cluster detection is in some ways
similar to considering a finite mixture model. R packages already exist to fit finite mixture models
using the EM algorithm, such as mixtools (Benaglia et al., 2009). The flexmix package (Gruen and
Leisch, 2023) in particular is notable for its ability to fit mixture models to regression data (including
Gaussian, binomial, and Poisson models). Additionally, the package MultiLCIRT also considers latent
variables for the item response theory setting; see Bartolucci et al. (2014), who use BIC for model
selection rather than fractional Bayes factors.

In contrast to fitting finite mixture models for the purpose of parameter estimation and inference,
slgf assesses the plausibility of cluster structures for small to medium-sized data sets via model
selection. Additionally, slgf can avoid problems with convergence in the EM algorithm that may arise
in small-sample scenarios, particularly when the number of data points is relatively low and the model
being fit (e.g., a two component mixture model) is larger than the actual model generating the data
(e.g., a one component mixture model with no cluster structure).

By contrast, slgf circumvents convergence issues by considering all possible groupings of points
within the user-specified model classes, obtaining integrated likelihoods and posterior model prob-
abilities for each model, and quantifying overall probability of a cluster structure as the sum of all
posterior probabilities for models with two groups by the law of total probability. The slgf package
thus excels in smaller-data settings where assessing the plausibility of a cluster structure is the core
goal, and packages like flexmix will excel in cases where the main goal is to fit specified mixture
models and conduct inference on parameters.

In addition to the basic slgf demonstration shown in Case Study 1: Smell data, we illustrate slgf
functionality for mixtures of g-priors (Liang et al., 2008) and a two way unreplicated layout in Case
Study 4: Bottles data. Mixtures of g-priors have been shown to work well with fractional Bayes factor
methods to reduce the training fraction when sample size is small relative to the number of model
parameters (Metzger and Franck, 2021).

Finally, although the methodology described here and in Metzger and Franck (2021) exclusively
handles two latent groups, we call on any readers with a compelling data set that may exhibit more
than two latent groups to contact the authors so that we might explore a generalization of our method
to more than two groups.

We have provided an overview of functionality that we hope will enable scientists from diverse
fields to access the SLGF methodology of Metzger and Franck (2021) via the slgf package to detect
hidden groupings in the levels of categorical predictors that might impact outcomes of interest across
a wide range of human endeavors.
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