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Chapter 1

Mathematical description of
process to estimate and
project contraceptive
method supply shares at
national and subnational
administration levels over
time using Bayesian
hierarchical penalised splines

1.1 Introduction

This document is a summary of the extensions made to the model described
in Comiskey et al., (2023) [4]. Described below are the statistical mod-
els used to estimate national and subnational contraceptive method supply
shares over time using Bayesian hierarchical penalised spline models with
multi-country and single-country datasets. These models are utilised in the
mcmsupply R package [5].

1.2 Terminology

Contraceptive method supply shares: The proportion of modern contracep-
tives supplied by the public, private commercial medical and private other
sectors over time.
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Multi-country national model : This model estimates the contraceptive method
supply shares at the national administration level over time for many coun-
tries simultaneously.

Single-country national model : This model estimates the contraceptive method
supply shares at the national administration level over time for a single coun-
try.

Multi-country subnational model : This model estimates the contraceptive
method supply shares at the subnational administration level over time for
many countries simultaneously.

Single-country subnational model : This model estimates the contraceptive
method supply shares at the subnational administration level over time for
a single country.

1.3 Overall set-up

The outcome of interest is the components of a compositional vector

ϕq,t,m = (ϕq,t,m,s=1, ϕq,t,m,s=2, ϕq,t,m,s=3)

where, ϕq,t,m,s is the proportion supplied by the public sector (s =1), the
private commercial medical sector (s=2) and the other private sector (s=3)
of modern contraceptive method m, at time t, in population q (national or
subnational).

We begin by defining a regression model for ϕq,t,m,1. The logit-transformed
proportion, logit(ϕq,t,m,1), is modelled through a latent variable ψq,t,m,1, with
a penalized basis-spline (P-spline) regression model:

logit (ϕq,t,m,1) = ψq,t,m,1 =
K∑
k=1

βq,m,1,kBq,k(t), (1.1)

where,
ψq,t,m,1 is the latent variable capturing the logit proportions of the public
sector (s=1) supply share of method m, at time t, in population q. Bq,k(t)
refers to the kth basis function evaluated in population q, at time t . βq,m,1,k

is the kth spline coefficient for the public sector supply (s=1) of method m
in population q.

Similarly, we model the latent variable, ψq,t,m,2, to capture the logit-
transformed ratio of the private commercial medical supply share to the
total private sector share. The model is specified as follows:
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logit

(
ϕq,t,m,2

1− ϕq,t,m,1

)
= ψq,t,m,2 =

K∑
k=1

βq,m,2,kBq,k(t), (1.2)

where, βq,m,2,k is the k
th spline coefficient for the ratio of private commer-

cial medical sector (s=2) to total private sector for method m in population
q.

The basis functions Bk(t) are constructed using cubic splines. The basis
are fitted over the years 1990 to 2025. We align the knot placement of the
basis splines with the most recent survey year in each country. As the most
recent survey year varies by country (in the case of national-level data) or
province (in the case of subnational data), the basis splines Bq,k(t) also vary
by location.

To estimate the spline coefficients, βq,m,s,k, we use a random walk model
of order 1 on spline coefficients such that the first-order differences, δq,m,s,
are penalized. This model choice is motivated by prior work that used
constant projections past the most recent data point [10]. The δq,m,s vector
is of length h where h=K-1, and K is the total number of knots used in the
set of basis functions. It is defined as,

δq,m,s = (βq,m,s,2 − βq,m,s,1, βq,m,s,3 − βm,s,2, ...., βm,s,K − βq,m,s,K−1).
(1.3)

We assume that in population q, for method m and sector s, the value
of spline coefficient at knot index k*, aligning with the year t*, the most
recent survey available, is αq,m,s. By doing this, we are assuming that the
αq,m,s parameter will act as the spline coefficient for the reference spline at
k*. We are then able to calculate the remaining spline coefficients from the
reference index (k*) using the estimated δq,m,s.

βq,m,s,k =


αq,m,s k = k∗,

βq,m,s,k+1 − δq,m,s,k k < k∗,
βq,m,s,k−1 + δq,m,s,k−1 k > k∗.

(1.4)

Where,
αq,m,s is the most recently observed supply share on the logit scale for sector
s , method m, in population q. This proxies as an intercept in the model.
k is the knot index along the set of basis splines Bq,k(t)
k∗ is the index of the knot that corresponds with t∗, the year index where
the most recent survey occurred in population q.
δq,m,s,k−1 is the first order difference between spline coefficients βq,m,s,K and
βq,m,s,K−1
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We assume a smooth transition between spline coefficients. Thus, we
centre our rates of change, δq,1:M,s,k , on 0, with a variance-covariance matrix,
Σδs , that captures the correlations that exist between the rates of change in
supply shares for each pair of methods.

δq,1:M,s,h | Σδs ∼MVN(0,Σδs), (1.5)

From the latent variable vector, ψq,t,m, it is possible to infer the com-
positional vector ϕq,t,m, such that,

ϕq,t,m,1 = logit−1 (ψq,t,m,1) ,

ϕq,t,m,2 = (1− ϕq,t,m,1) logit
−1 (ψq,t,m,2) ,

ϕq,t,m,3 = 1− (ϕq,t,m,1 + ϕq,t,m,2) .

(1.6)

At the national level, the likelihood of the logit-transformed observed data,
logit(Yi), the observed logit-transformed proportions of modern contracep-
tive method supplied by the public and commercial medical sectors (s=1 and
s=2) for method m, at time t in country c, are modelled using Multivariate
Normal distributions such that,

logit(Yi) | logit(ϕc[i],t[i],m[i],s=1:2) ∼MVN(logit(ϕc[i],t[i],m[i],s=1:2),ΣYi),
(1.7)

Where, logit(ϕc[i],t[i],m[i],s=1:2) is the vector of logit-transformed public
(s=1) and private commercial medical (s=2) supply proportions for the
country, time-point, method associated with observation i.
The variance-covariance matrix, ΣYi , utilizes the standard errors (SE) and
covariances calculated using the DHS survey microdata associated with the
logit-transformed observations, logit(Yi). Details of the delta-method trans-
formation can be found in the appendix (Chapter ??, section 4).

At the subnational level, the likelihood of the logit-transformed observed
data, logit(yi), the observed logit-transformed proportion of modern contra-
ceptive method supplied by the public and commercial medical sectors (s=1
or s=2) for method m, at time t are modelled using Normal distributions,
such that,

logit(yi) | logit(ϕq[i],t[i],m[i],s[i]) ∼ N(logit(ϕq[i],t[i],m[i],s[i]), SE
2
i ). (1.8)

Where,
logit(ϕq[i],t[i],m[i],s[i]) is the logit-transformed supply proportion for the pop-
ulation q, time t, method m, and sector s associated with observation i.
The variance, SE2

i , utilizes the standard error (SE) calculated using the DHS
survey microdata associated with logit-transformed observation yi. The vari-
ance is transformed onto the logit scale using the delta-method [3].
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1.4 Estimating parameters for national and sub-
national models using multi-country and single-
country datasets

Summaries of the national and subnational-level models can be found in
Figure 1.1 and Figure 1.2. A table of parameters and their interpretations
can be found in Table 1.1.

1.4.1 Modelling αq,m,s hierarchically with a multi-country dataset

In this approach, we take advantage of the geographic nature of the dataset.
We pool data to estimate precise intercepts at higher geographic levels that
then go on to inform more granular level intercepts, until we reach our
geographic level of interest (national or subnational), where less data is
present.

National-level model

At the national-level, the hierarchical distributions to capture the most re-
cently observed DHS level in country c, for method m, supplied by sector s,
are given by:

αcountry
c,m,s | θsubcon.r[c],m,s, σ

2
α,s ∼ N

(
θsubcon.r[c],m,s, σ

2
α,s

)
,

θsubcon.r,m,s | θworld
w,m,s, σ

2
θ,s ∼ N

(
θworld
w,m,s, σ

2
θ,s

)
,

θworld
w,m,s ∼ N

(
0, 102

)
,

σα,s ∼ Cauchy (0, 1)+ ,

σθ,s ∼ Cauchy (0, 1)+ .

(1.9)

Where, the geographic hierarchy begins at the world level θworld
w,m,s, which

informs the subcontinental intercepts, θsubcon.r,m,s , which in turn inform indi-

vidual country intercepts, αcountry
c,m,s . Vaguely informative Cauchy priors are

given to the standard deviation terms of the country- and subcontinental-
terms [6]. The standard deviation terms capture the cross-country (σα,s)
and cross-subcontinent (σθ,s) variation within the data.

Subnational-level model

At the subnational-level, we include an additional layer of geographic in-
tercepts to capture the most recently observed DHS level in subnational
province p, for method m,supplied by sector s. While, we use the same no-
tation to explain the hierarchical set up of this approach, the estimates of
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the country-level and above parameters will be different from the national-
level model to the subnational-level model. In the subnational instance, the
hierarchical distributions are given by:

αprov.
p,m,s | α

country
c[p],m,s , σ

2
αp,s ∼ N

(
αcountry
c[p],m,s , σ

2
αp,s

)
,

αcountry
c,m,s | θsubcon.r[c],m,s, σ

2
αc,s ∼ N

(
θsubcon.r[c],m,s, σ

2
αc,s

)
,

θsubcon.r,m,s | θworld
w,m,s, σ

2
θ,s ∼ N

(
θworld
w,m,s, σ

2
θ,s

)
,

θworld
w,m,s ∼ N

(
0, 102

)
,

σαp,s ∼ Cauchy (0, 1)+ ,

σαc,s ∼ Cauchy (0, 1)+ ,

σθs ∼ Cauchy (0, 1)+ .

(1.10)

In this instance, we mirror the geographic hierarchy of the national
model, and add an additional layer to reflect the province-level intercepts,
αprov.
p,m,s, of the subnational level model, and cross-provincial variation (σαp,s).

1.4.2 Modelling αq,m,s using informative priors with a single-
country dataset

In this approach, priors for higher-population level intercept parameters are
informed from the multi-country national- or subnational-level models (i.e.,
the models that used multi-country datasets).

National-level model

αcountry
c,m,s is the national-level intercept for country c, method m and sector

s, informed by the posterior median estimates of the subcontinental level
model interceptand the associated variance parameter estimated from the
multi-country national model, such that

αcountry
c,m,s | θ̂subcon.r[c],m,s, σ̂

2
αc,s ∼ N

(
θ̂subcon.r[c],m,s, σ̂αc,s

)
, (1.11)

where, θ̂subcon.r[c],m,s is the posterior median UNSD subcontinental population in-
tercept for region r, method m, sector s, associated with country c estimated
from the national-level multi-country model and σ̂2αc,s is the posterior me-
dian of the sector specific cross-country variation associated with the αc,m,s

intercept estimated from the national-level multi-country model.

Subnational-level model

αprov.
p,m,s is the subnational-level intercept for subnational province p, method

m, sector s, informed by the posterior median estimates of the country-level
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model interceptand the associated variance parameter estimated from the
multi-country subnational model, such that

αprov.
p,m,s | α̂country

c,m,s , σ̂2αp,s ∼ N
(
α̂country
c,m,s , σ̂2αp,s

)
, (1.12)

where, α̂country
c[p],m,s is the posterior median national-level population intercept

for country c, method m, sector s, associated with the subnational province
p, estimated from the subnational-level multi-country model and σ̂2αp,s is the
posterior median of the cross-province variation associated with the αp,m,s

intercept estimated from the subnational-level multi-country model.

1.4.3 Modelling Σδs using cross-method correlations with a
multi-country dataset

In this approach, we decompose the Σδs into its variance and correlation
matrices and estimate the components separately. This is a two-model run
approach which involves estimating the correlations using a model run with
correlations set to 0.

For both the national and subnational models, a multivariate normal
prior centred on 0 was assigned to the vector of length M of first-order
differences of the spline coefficients, δq,1:M,s,h, for population q (national or
subnational), using all methods supplied by sector s at first-order difference
h,

δq,1:M,s,h | Σδs ∼MVN(0,Σδs), (1.13)

where,

Σδs =


σ2δ1,s ρ̂1,2,Sσδ1,Sσδ2,s . . . . . . ρ̂1,M,Sσδ1,sσδM,S

ρ̂2,1,sσδ2,sσδ1,s σ2δ2,s . . . . . . ρ̂2,M,Sσδ2,sσδM,s

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
ρ̂M,1,sσδM,s

σδM,s
. . . . . . . . . σ2δM,s

 .
(1.14)

The correlation terms of the covariance matrix, ρi,j,s, were estimated using
a maximum a posteriori estimator for the correlation matrix as described in
Azose and Raftery, 2018 [1]. This approach involves fitting a model where
the covariance terms in σδj,s are set equal to zero. The national and sub-
national models deviate in terms of the geographic level that they estimate
these correlations at. For the national model, we estimate the correlations
based on country-level rates of change, δc,1:M,s,h, terms. This captures the
correlations across all countries. While in the subnational model, we esti-
mate the correlations using provincial-level rates of change, δp,1:M,s,h. In
this instance, the correlations captured are across the subnational provinces
of all countries.
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National-level model

In the national model, the deviation terms of the Σδs matrix are given vague
uniform priors,

σδm,s ∼ Uniform (0, 10) . (1.15)

The 0-covariance model estimates are used to estimate the correlation be-
tween methods across time and all countries at the national-level. Specifi-
cally, for sector s, the correlation between method i and method j is calcu-
lated as follows,

ρ̂i,j,s =

∑C
c=1

∑K−1
h=1 δ̃c,m[i],s,hδ̃c,m[j],s,h√∑C

c=1

∑K−1
h=1 δ̃

2
c,m[i],s,h

√∑C
c=1

∑K−1
h=1 δ̃

2
c,m[j],s,h

, (1.16)

Where, δ̃c,m[j],s,h are the estimated first order differences of the spline co-
efficients for country c, method m, sector s, at the h-th difference between
spline coefficients. They are given by the posterior medians of δc,m,s,h from
the zero-covariance run, after subsetting the period considered to periods
with data within a country. C represents the total number of countries
involved in the study. K is the number of knots in the basis functions. h
represents the number of differences (h=K-1) between the spline coefficients.

Subnational model

In the subnational model, the deviation terms of the Σδs matrix are given
vague Cauchy priors. This prior is suggested as a weakly informative prior
in the paper titled Prior distributions for variance parameters in hierarchical
models by Gelman, Bayesian Analysis (2006) [6].

σδm,s ∼ Cauchy (0, 1)+ . (1.17)

The 0-covariance model estimates are used to estimate the strength of the
correlations between methods across time and all provinces in all countries
at the subnational-level. Specifically, for sector s, the correlation between
method i and method j is calculated as follows,

ρ̂i,j,s =

∑P
p=1

∑K−1
h=1 δ̃p,m[i],s,hδ̃p,m[j],s,h√∑P

p=1

∑K−1
h=1 δ̃

2
p,m[i],s,h

√∑P
p=1

∑K−1
h=1 δ̃

2
p,m[j],s,h

, (1.18)

Where, δ̃p,m[j],s,h are the estimated first order differences of the spline coef-
ficients for province p, method m, sector s, at the h-th difference between
spline coefficients. They are given by the posterior medians of δp,m,s,h from
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the zero-covariance run, after subsetting the period considered to periods
with data within each province. P represents the total number of subna-
tional provinces across all countries involved in the study. K is the number
of knots in the basis functions. h represents the number of differences (h=K-
1) between the spline coefficients.

1.4.4 Modelling Σδs using informative priors with a single-
country dataset

For estimation of the method supply shares using a single-country national
or subnational dataset, we set Σδs as the median estimate of the MxM
variance-covariance matrix from the corresponding (national or subnational)

multi-country model, Σglobal
δs

and we estimate the first-order difference spline
coefficients using a Multivariate Normal prior centred on zero such that,

δ1:M,s,h | Σ̂global
δs

∼MVN(0, Σ̂global
δs

). (1.19)
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Figure 1.1: Schematic linking the multi-country and single-country national-level modelling approaches.
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Model Parameter Interpretation

ϕq,t,m,s

The proportion supplied by sector s, of modern contraceptive method m,
at time t, in population q
(national or subnational).

ψq,t,m,s The latent variable used to model ϕq,t,m,s on the logit scale

βq,m,s,k The kth spline coefficient for sector s, method m in population q

Bq,k(t) The set of basis functions for population q, evaluated at knot k for time t.

αpop.
q,m,s

The most recently observed supply share on the logit scale
for sector s , method m, in population q.
This proxies as an intercept in the model.

δq,m,s,k−1
The first order difference between spline coefficients

βq,m,s,K and βq,m,s,K−1

Σδs Variance-covariance matrix used in the MVN prior of δq,1:M,s,h

σX,s

Standard deviation terms relating to the intercept
parameter X for sector s.

X may be at the provincial-, country-, or subcontinental-level.

ρi,j,s
Correlation between the rates of change in supply shares

for method[i] and method[j] in sector s.

Table 1.1: A table of parameters names and their interpretations across
the national and subnational models. The indexing refers to sector s, of
modern contraceptive method m, at time t, in population q (national or
subnational).



Chapter 2

Validation of the
multi-country and
single-country subnational
models and the
single-country national
model

2.1 Data

2.1.1 National data source

In this study we consider countries involved in the FP2030 initiative. A
database of the public and private sector breakdown of modern contraceptive
supply with their associated standard errors at the national administration
level was created using data from the DHS [11]. Table 2.1 lists the thirty
countries used in the national level method supply share database. The
total number of surveys carried out and the year of the most recent survey
is listed for each country. A full description of the national level data can
be found in Comiskey et al., 2023 [4].

13
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UNSD intermediate
world regions

Country
Total Number
of Surveys

Recent Survey Year

Southern Asia Afghanistan 1 2015

Western Africa Benin 5 2017

Western Africa Burkina Faso 4 2010

Middle Africa Cameroon 5 2018

Middle Africa Congo 1 2005

Middle Africa Democratic Republic of Congo 2 2013

Western Africa Cote d’Ivoire 3 2011

Eastern Africa Ethiopia 5 2019

Western Africa Ghana 5 2014

Western Africa Guinea 4 2018

Southern Asia India 4 2005

Eastern Africa Kenya 5 2014

Western Africa Liberia 4 2019

Eastern Africa Madagascar 4 2008

Eastern Africa Malawi 5 2015

Western Africa Mali 5 2018

Eastern Africa Mozambique 3 2011

South-Eastern Asia Myanmar 1 2015

Southern Asia Nepal 5 2016

Western Africa Niger 4 2012

Western Africa Nigeria 5 2018

Southern Asia Pakistan 4 2017

South-Eastern Asia Philippines 6 2017

Eastern Africa Rwanda 6 2019

Western Africa Senegal 10 2019

Western Africa Sierra Leone 3 2019

Eastern Africa Tanzania 6 2015

Western Africa Togo 2 2013

Eastern Africa Uganda 5 2016

Eastern Africa Zimbabwe 5 2015

Table 2.1: Summary of DHS microdata used for the validation of the na-
tional level estimation. This table provides the United Nation Statistics Di-
vision (UNSD) intermediate world region names, country names, the number
of DHS surveys per country available and the year of the most recent DHS
survey available. Just over 46% of countries have data available after 2015.

2.1.2 Subnational data source

In this study we consider countries involved in the FP2030 initiative. A
database of administration-1 level Demographic and Health Survey (DHS)
data observations for the supply of modern contraceptive methods by the
public and private sectors and their associated standard errors was created
using the Integrated Public Use Microdata Series (IPUMS) project, IPUMS-
DHS [7]. Like the national-level study [4], the modern methods of contra-
ception considered in this study are female sterilisation, oral contraceptive
pills (OC pills), implants (including Implanon, Jadelle and Sino-implant),
intra-uterine devices (IUD, including Copper- T 380-A IUD and LNG-IUS),
and injectables (including Depo Provera (DMPA), Noristerat (NET-En),
Lunelle, Sayana Press and other injectables). The variables contained within
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the IPUMS-DHS database are consistent over time and space. IPUMS-DHS
uses integrated geography variables for a country across sample years to
address issues with subnational boundaries changing over time and enable
comparisons over time. Table 2.2 lists the 23 countries captured in this sub-
national database. The total number of administration level 1 (admin-1)
subnational regions, the number of DHS surveys each country has in the
database, and the year of the most recent survey in the database is listed
for each country. Just under half of the countries included have survey data
available after 2015, highlighting the need for annual up-to-date estimates
of the contraceptive supply shares.

Country
Number of admin-1 level
subnational provinces

Number of IPUMS-DHS
surveys

Recent survey year

Benin 6 4 2017

Burkina Faso 13 4 2010

Cameroon 3 3 2004

Congo Democratic Republic 5 2 2013

Cote d’Ivoire 15 3 2011

Ethiopia 10 4 2016

Ghana 8 5 2014

Guinea 3 4 2018

India 27 4 2015

Kenya 8 5 2014

Liberia 5 2 2013

Madagascar 6 4 2008

Malawi 3 5 2016

Mali 4 5 2018

Mozambique 11 3 2011

Nepal 5 5 2016

Niger 6 4 2012

Pakistan 6 4 2017

Rwanda 7 6 2014

Senegal 4 9 2017

Tanzania 6 6 2015

Uganda 4 4 2016

Zimbabwe 10 5 2015

Table 2.2: Summary information regarding the countries considered for sub-
national modelling. The name, number of subnational administration level
1 (admin-1) regions, the total number of DHS surveys present in the data,
and the year of the most recent DHS survey in the data for each country
are listed.

2.1.3 Calculating the variance-covariance matrices of the DHS
national level supply share observations using DHS mi-
crodata

Using the ‘svymean’ function from the ‘survey’ package in R [9], the propor-
tions of each method supplied the public and privates sectors for the specific
surveys in the countries listed above were calculated along with their asso-
ciated variance-covariance matrices. The ‘survey’ package uses the Taylor
series linearisation method to approximate the standard error of the calcu-
lated proportions [2] [8]
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2.1.4 Standard error calculation

Using the ‘survey’ package in R, the national-level method supply shares
and their associated variance-covariance matrices were calculated using the
‘svymean’ function. The subnational-level method supply share databases
use the ‘svyciprop’ function to calculate the standard errors associated with
each observation [9]. Using DHS design factors, we impute calculated stan-
dard errors when the calculated standard error is 0. A full description of
how the standard errors are calculated and the imputation technique used
to estimate standard errors can be found in the supplementary material of
Comiskey et al., (2023).

Measure
Range

(% over all methods)
Median SE size

(% over all methods)
Largest mean SE

(method, %)
Smallest mean SE

(method, %)

Result 0.015 , 18.19 2.23 IUD 4.10 Injectables 2.03

Table 2.3: Summary table for the calculated standard errors of the data
observations.

From Table 2.3, the calculated national-level standard errors range from
0.015 to 18.19 percentage points. The median standard error size across
all method is 2.23 percentage points. On average, they tend to be largest
for IUDs where the mean standard error size is approximately 4 percentage
points and smallest in injectables where the mean standard error size is ap-
proximately 2 percentage points.

Measure
Range

(% over all methods)
Median SE size

(% over all methods)
Largest mean SE

(method, %)
Smallest mean SE

(method, %)

Result 0.0 , 22.0 3.84 OC pills 5.3 Implants 3.6

Table 2.4: Summary table for the calculated standard errors of the subna-
tional IPUMS-DHS data observations.

From Table 2.4, the calculated subnational-level standard errors range
from 0 to 22 percentage points. The median standard error size across all
method is 3.8 percentage points approximately. On average, they tend to be
largest for OC pills where the mean standard error size is approximately 5
percentage points and smallest in implants where the mean standard error
size is approximately 4 percentage points. The calculated standard errors
of the subnational IPUMS-DHS data are larger than those calculated using
the DHS national-level data (Table 2.3) . At the national level, the median
standard error (across all methods) is 2.23%. This is almost half the size
of the subnational median. Similarly, at the national-level IUDs have the
largest mean standard error (4.10%). This is almost 1% smaller than the
5.3% observed for OC pills at the subnational level.
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2.2 Out-of-sample validation results

2.2.1 Errors and coverage

We calculate sector specific error terms, ej,s, to describe the difference be-
tween the observed data point j in sector s, yj,s, and the median estimate
from the posterior predictive distribution, yj,s such that,

ej,s = yj,s − ŷj,s. (2.1)

We evaluated the results of the validation using different measures of
accuracy and prediction interval calibration. To evaluate the accuracy of our
model, we considered the root mean square error (RMSE) for each sector’s
set of estimates.

Let,

RMSEs =

√∑Ns
j=1 e

2
j,s

Ns
, (2.2)

where, Ns is the number of observations in the sector s. ej,s is the error
for observation j in sector s which is described above. The RMSE can be
interpreted as the average error observed across all countries, time points
and methods in the test set.

We also evaluated the mean error (eq. 3.6) and the median absolute
errors (eq. 3.7). The mean error is the average difference between the ob-
served proportion and true proportion estimated by the model and is an
effective measurement of bias within the model. When the mean error is
positive, this indicates systematic under-prediction by the model and con-
versely, a negative mean error indicates that the model is over-estimating
the observed data. Median absolute error is the 50th percentile of absolute
differences between the observed proportion and true proportion estimated
by the model. Median absolute error captures the overall variation within
the model estimates.

Mean errors =

∑Ns
j=1 ej,s

Ns
, (2.3)

Median absolute errors = Median(|es|), (2.4)

where, es is is a vector of length Ns, containing the complete set of errors
estimates for all observations belonging to sector s.

Coverage assumes that if our model is correctly calibrated, then for each
sector the model should be able to capture the test set of out-of-sample
observations with 95% accuracy, where the remaining 5% of incorrectly es-
timated observations are approximately evenly distributed above and below
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the estimated 95% prediction interval. To examine the bias of our models
estimates, we examined the location of the incorrectly estimated test set
observations. We consider the proportion of test observations located above
and below the estimated prediction intervals. By examining the breakdown
of locations, we are evaluating the tendency of the model to under- or over-
estimate the test set. If a higher proportion of observations are located
below the prediction intervals, this indicates that the model is tending to
over-estimate the test set. Similarly, if a higher proportion of the incorrectly
estimated observations are located above the prediction intervals, the model
is tending to under-estimate the test set.

2.2.2 Multi-country national model with cross-method cor-
relations

The validation results (out-of-sample validation results and a comparison of
the model-based estimates to the direct estimates) with a discussion of these
results for the multi-country national model with cross-method correlations
can be found in the supplementary materials associated with Comiskey et
al., (2023).

2.2.3 Multi-country subnational model with cross-method
correlations

Sector

95%
coverage

(%)

Root mean
square error
(RMSE)

(%)

Proportion of
incorrectly estimated
observations located
above and below

the prediction interval
(PI) boundary

(%)

95%
PI width

(%)

Mean
error
(%)

Median absolute
error
(%)

Commercial
medical

95.3 15.5
Above 2.84

68.4 -2.32 7.25
Below 1.90

Other 98.1 6.13
Above 1.18

33.3 -0.17 1.0
Below 0.71

Public 97.2 15.4
Above 0.71

72.2 2.49 7.08
Below 2.13

Table 2.5: Out-of-sample validation results for the test set using multi-
country subnational model with cross-method correlations. Coverage is the
proportion of the test set observations that are captured within the 95%
prediction interval (PI) produced by the model. RMSE is root mean square
error. The 95% PI width reflects the median PI width for each observation
estimated by the model.

The multi-country subnational model has been evaluated using various out-
of-sample model validation measures to gauge its effectiveness at estimating
the method supply shares at a subnational level, while also considering the
prediction intervals it uses to produce these estimates. It is performing
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reasonably well considering the complex nature of the data. It has an overall
coverage of approximately 97%. The results for the out-of-sample validation
are found in Table 2.5. The target coverage is 95%. The model is reasonably
well calibrated to the data with the public sector having 97% coverage and
the commercial medical sector having 95% coverage. The private other
sector has 98% coverage of the test set. The public and private other sectors
have coverage of that test set that is slightly higher than expected. The
private commercial medical is showing optimal coverage at 95%. The root
mean square error (RMSE) for the private commercial medical sector and
the public sector are both at approximately 15 percentage points. The
private other sector has an RMSE of approximately 6 percentage points.
We also considered where the incorrectly estimated test set observations
lie with respect to the prediction interval bounds to assess the bias of the
model. In theory, if the model is unbiased and well calibrated then we would
expect an equal proportion of incorrectly estimated observations above and
below the prediction interval boundaries. Both the commercial medical and
other sector has a higher proportion of observations above the prediction
interval boundary. This would imply that the model tends to under-estimate
the observations in these sectors. In the public sector, there is a higher
proportion of incorrectly estimated test set observations below the prediction
interval. This implies that for this sector, the model tends to over-estimate
the public sector. The median width of the 95% prediction intervals is
largest in the public sector at 72 percentage points. The private other sector
has the smallest median 95% prediction interval width at 33 percentage
points. The mean error for the private commercial medical is approximately
-2 percentage points. The mean error for the public sector is the absolute
largest of all three sectors at approximately 2.5 percentage points. The
private other sector has a mean error of less than 1 percentage point. The
median absolute error of the private commercial medical sector is the largest
at approximately 7 percentage points while the median absolute error of the
private other sector was the smallest at approximately 1 percentage point.

2.2.4 Comparison of the model-based estimates to the direct
estimates

In Figure 2.1, we consider the observed standard errors calculated using the
DHS microdata versus the corresponding standard deviations of the model-
based estimates for the proportions. From this figure, we can see that in
the commercial medical and public sectors, the estimated standard devia-
tion terms are smaller than the observed standard error terms calculated
using the DHS microdata. For both sectors, we can see that most of the
observations have standard errors up to 15 percentage points approximately.
These same observations when estimated within the model have correspond-
ing standard deviations of approximately up to 10 percentage points. The
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use of this model results in a considerable reduction in the uncertainty of
these observations. The observed SEs of approximately 3 percentage points
correspond to the observations where the standard errors were imputed. The
outlier observation at 25 percentage points in both the commercial medical
and public sector corresponds to IUDs in Maputo City, Mozambique. IUDs
in Maputo only has one observation in 1997, whereas the other methods
have more recent survey observations to inform model estimates. The lack
of data for IUDs in this instance causes the model estimates to have larger
uncertainty.

Commercial_medical Other Public
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Figure 2.1: A scatter plot across the three sectors comparing the standard
error of the direct estimates to the model-based estimates at the subnational
level.

In Figure 2.2, we consider the sample size with respect to the ratio of
observed to estimated proportions, both of which are on the log scale for
clarity. From this figure we see that as the sample size increases, the ratio
of observed to estimated data point tends towards 1 after approximately
log(5), which corresponds approximately to a sample size of 148. Therefore,
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the model’s ability to capture the observed data point increases as the sample
size associated with each observation increases. This aligns with the same
property that is seen in many small area estimation models.
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Figure 2.2: A scatterplot of the estimates with log of the sample size on the
x-axis and the log ratio of direct to model-based estimates on the y-axis.

2.2.5 Model comparison

Multi-country subnational model with 0-covariance

For the subnational multi-country model, we used a 0-covariance model to
validate the use of the cross-method correlations within the estimation of
δq,1:M,s,h, the first-order differences between spline coefficients. This ap-
proach is similar to that described in Comiskey et al., (2023). In this in-
stance, the off-diagonal elements of Σδs are set to 0. The variance-covariance
matrix Σδs informs the multi-variate normal prior of δq,1:M,s,h.

As before, we describe the first-order differences between spline coef-
ficients, δq,1:M,s,h, using a Multi-variate Normal prior centred on 0 with
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variance-covariance matrix Σδs .

δq,1:M,s,h | Σδs ∼MVN(0,Σδs), (2.5)

such that, Σδs is a diagonal matrix with 0 on the off-diagonal elements;

Σδs =


σ2δ1,s 0 . . . . . . 0

0 σ2δ2,s . . . . . . 0

0 . . . . . . . . . 0
. . . . . . . . . . . . . . .
0 . . . . . . . . . σ2δM,s

 . (2.6)

Having 0-covariance between the variance terms of Σδs implies that the
rates of change in method supplies act independently of one another. We
compare the validation results for this simpler 0-covariance model with the
model using cross-method correlations to investigate the impact of including
cross-method correlations in the model estimation process.

Sector

95%
coverage

(%)

Root mean
square error
(RMSE)

(%)

Proportion of
incorrectly estimated
observations located
above and below

the prediction interval
(PI) boundary

(%)

95%
PI width

(%)

Mean
error
(%)

Median absolute
error
(%)

Commercial
medical

96.4 17.4
Above 2.37

68.9 -3.02 7.35
Below 1.18

Other 98.1 6.77
Above 1.42

33.4 0.768 0.976
Below 0.474

Public 97.9 14.8
Above 0.474

72.8 2.30 7.21
Below 1.66

Table 2.6: Out-of-sample validation results for the test set using multi-
country subnational 0-covariance model. Coverage is the proportion of the
test set observations that are captured within the 95% prediction interval
(PI) produced by the model. The MAE is the median absolute error. RMSE
is root mean square error

The coverage of the 0-covariance model (Table 2.6) is higher than that of
the cross-method correlation model (Table 2.5). The 0-covariance model has
98% coverage in both the public and private other sectors. The commercial
medical sector has 96% coverage (Table 2.6). The coverage of the model
with cross-method correlations is Commercial medical = 95%, Other = 98%,
Public = 97% (Table 2.5).

To evaluate the bias and variance produced by the 0-covariance and
cross-method correlation models, we consider the mean errors, median ab-
solute errors (MAE) and root mean square errors (RMSE). Across all three
sectors, the RMSE of the 0-covariance model is larger than the cross-method
correlation model. The private commercial medical sector has the largest
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RMSE with an average error of approximately 17 percentage points(Table
2.6). The RMSE of the private commercial medical sector in the cross-
method correlation model is approximately 2 percentage points smaller at 15
percentage points (Table 2.5). In both models, the private other sector has
the smallest RMSE. In the 0-covariance model, it is approximately 7 percent-
age points whereas in the cross-method correlation model it is approximately
6 percentage points. Overall, the cross-method correlation model performs
better in this model validation measure than the 0-covariance model. In
both models the mean error on the private commercial medical sector is
negative (-3.02 percentage points in the 0-covariance model and -2.32 per-
centage points in the cross-method correlation model) and the mean error
of the private other and public sectors are positive. This implies that both
models over-predict the test set of the commercial medical sector and under-
predict the remaining two sectors. The median absolute errors (MAE) of
both models are very similar. Both the 0-covariance and cross-method corre-
lation models see the largest MAE in the private commercial medical sector
(7.35 percentage points in the 0-covariance model and 7.25 percentage points
in the cross-method correlation model). In both models, the private other
sector has an MAE of less than 1 percentage point (0.1 percentage points
in the 0-covariance model and 0.1 percentage points in the cross-method
correlation model).

When considering the median prediction interval widths, we see that the
cross-method correlation model has slightly smaller sized prediction interval
widths as compared to the 0-covariance model for the commercial medical
and public sectors (68 percentage points and 72 percentage points Table
2.5; 69 percentage points and 73 percentage points Table 2.6). The median
prediction interval width of the private other sector is the same in both
models at 33 percentage points.

Lastly, when considering the location of the incorrectly estimated test set
observations, the cross-method correlation model and 0-covariance models
both tend to over-estimate the public sector (as there is higher proportion of
incorrectly estimated observations below the prediction interval) and under-
estimate the private commercial medical and private other sectors (as there
is higher proportion of incorrectly estimated observations above the predic-
tion interval) (Table 2.5) (Table 2.6).

Overall, the multi-country subnational model with cross-method corre-
lations is the most suitable model to describe this complex data. It captures
the complex shape and relationships without over-fitting it or missing the
shape. It incorporates information regarding the correlations between the
rates of change across the contraceptive methods. The coverage, RMSE and
median 95% prediction intervals widths produced by the cross-method cor-
relation model are similar but slightly better than those of the 0-covariance
model. The strength of the full model is seen in the absence of data for a par-
ticular contraceptive method, where model estimates can still be informed
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by the behaviour of related methods to produce realistic estimates.

2.3 Single-country national and subnational model
validation

We validate the single country models indirectly using the multi-country
model estimates. The idea here is that, by comparing the median estimates
of the single-country model to the validated multi-country model estimates
when can get a gauge of the reliability of our single-country model estimates.
If the single-country model estimates align with the multi-country model
estimates, then they too are validated.

2.4 Single-country national model validation

In Figure 2.3, it is clear that the single-country national model median
estimates align approximately with the multi-country national median esti-
mates. Therefore, we can conclude that the single-country national model
estimates are as valid and reliable as those estimated by the multi-country
national model.
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Figure 2.3: A scatterplot comparing the median estimates of each country,
method, sector, and time point estimated by the single-country model (x-
axis) and the multi-country model (y-axis). Each panel represents a different
method and each colour represents a country. The diagonal line capture the
1:1 agreement between the two modelling approaches.

2.5 Single-country subnational model validation

In Figure 2.4, we can see that when comparing the single-country estimates
to the multi-country estimates, the majority of observations fall inside the
±5% boundary. This means that the estimates and projections produced
by both models have a difference of up to ±5%. There are few observations
in IUDs that are outliers to this. These belong to Mozambique, where there
is only one survey in 1997 taken in the City of Maputo. Therefore, we can
conclude that the single-country subnational model median estimates are
as valid and reliable as those estimated by the multi-country subnational
model.
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Figure 2.4: A scatterplot comparing the median estimates of each coun-
try, method, sector, and time point estimated by the single-country sub-
national model (x-axis) and the multi-country subnational model (y-axis).
Each panel represents a different method and each colour represents a coun-
try. The outer dashed lines represent the +5% and -5% from complete
agreement between the two models. The diagonal solid line capture the 1:1
agreement between the two modelling approaches.
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