Supplementary materials are available in addition to this article. It can be downloaded at
RJ-2024-026.zip
G. Basulto-Elias, A. L. Carriquiry and K. et al. De Brabanter. Bivariate kernel deconvolution with panel data. Sankhya B, 83: 122–151, 2021.
A. W. Bowman. An alternative method of cross-validation for the smoothing of density estimates.
Biometrika, 71(2): 353–360, 1984. URL
http://www.jstor.org/stable/2336252 [online; last accessed July 5, 2024].
R. J. Carroll and L. A. Stefanski. Approximate quasi-likelihood estimation in models with surrogate predictors.
Journal of the American Statistical Association, 85(411): 652–663, 1990. URL
http://www.jstor.org/stable/2290000 [online; last accessed June 27, 2024].
Gilles. Celeux, Didier. Chauveau and Jean. Diebolt. Stochastic versions of the
EM algorithm: An experimental study in the mixture case.
Journal of Statistical Computation and Simulation, 55(4): 287–314, 1996. DOI
10.1080/00949659608811772.
A. Delaigle. Nonparametric kernel methods for curve estimation and measurement errors.
Proceedings of the International Astronomical Union, 10: 28–39, 2014. URL
https://api.semanticscholar.org/CorpusID:125933456.
T. Duong and M. Hazelton. Plug-in bandwidth matrices for bivariate kernel density estimation.
Journal of Nonparametric Statistics, 15(1): 17–30, 2003. DOI
10.1080/10485250306039.
T. Duong and M. L. Hazelton. Cross-validation bandwidth matrices for multivariate kernel density estimation.
Scandinavian Journal of Statistics, 32(3): 485–506, 2005. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9469.2005.00445.x.
K. Erfurth, M. Groß, U. Rendtel and T. Schmid. Kernel density smoothing of composite spatial data on administrative area level.
AStA Wirtschafts- und Sozialstatistisches Archiv, 16(1): 25–49, 2021. DOI
10.1007/s11943-021-00298-9.
F. Farokhi. Deconvoluting kernel density estimation and regression for locally differentially private data.
Scientific Reports, 10(1): 2020. DOI
10.1038/s41598-020-78323-0.
M. Groß, A.-K. Kreutzmann, U. Rendtel, T. Schmid and N. Tzavidis. Switching
Between
Different
Non-
Hierachical
Administrative
Areas via
Simulated
Geo-
Coordinates:
A Case
Study for
Student
Residents in
Berlin.
Journal of Official Statistics, 36(2): 297–314, 2020. DOI
10.2478/jos-2020-0016.
M. Groß and U. Rendtel. Kernel
Density
Estimation for
Heaped
Data.
Journal of Survey Statistics and Methodology, 4(3): 339–361, 2016. DOI
10.1093/jssam/smw011.
M. Groß, U. Rendtel, T. Schmid, S. Schmon and N. Tzavidis. Estimating the
Density of
Ethnic
Minorities and
Aged
People in
Berlin:
Multivariate
Kernel
Density
Estimation
Applied to
Sensitive
Georeferenced
Administrative
Data
Protected via
Measurement
Error.
Journal of the Royal Statistical Society Series A: Statistics in Society, 180(1): 161–183, 2016. DOI
10.1111/rssa.12179.
S. Hadam, T. Schmid and J. Simm. Kleinräumige
Prädiktion von
Bevölkerungszahlen basierend auf
Mobilfunkdaten aus
Deutschland. In
Schriftenreihe der ASI - arbeitsgemeinschaft sozialwissenschaftlicher institute, pages. 27–44 2020. Springer Fachmedien Wiesbaden. DOI
10.1007/978-3-658-31009-7_3.
W. Härdle. Applied nonparametric regression. Cambridge: Cambridge University Press, 1990.
NB. Heidenreich, A. Schindler and S. Sperlich. Bandwidth selection for kernel density estimation: A review of fully automatic selectors. AStA Advanced Statistical Analysis, 97: 403–433, 2014.
A. J. Izenman. Recent Developments in Nonparametric Density Estimation. Journal of the American Statistical Association, 86(413): 205–224, 1991.
M. C. Jones.
Simple boundary correction for kernel density estimation.
Statistics and Computing, 3(3): 135–146, 1993. DOI
10.1007/bf00147776.
U. Rendtel, A. Neudecker and L. Fuchs. Ein neues
Web-basiertes
Verfahren zur
Darstellung der
Corona-
Inzidenzen in
Raum und
Zeit.
AStA Wirtschafts- und Sozialstatistisches Archiv, 15(2): 93–106, 2021. DOI
10.1007/s11943-021-00288-x.
U. Rendtel and M. Ruhanen. Die
Konstruktion von
Dienstleistungskarten mit
Open
Data am
Beispiel des lokalen
Bedarfs an
Kinderbetreuung in
Berlin.
AStA Wirtschafts- und Sozialstatistisches Archiv, 12(3-4): 271–284, 2018. DOI
10.1007/s11943-018-0235-y.
B. W. Silverman. Density Estimation for Statistics and Data Analysis. London: Chapman & Hall, 1986.
K. A. B. Stephan R. Sain and D. W. Scott. Cross-validation of multivariate densities.
Journal of the American Statistical Association, 89(427): 807–817, 1994. DOI
10.1080/01621459.1994.10476814.
P. Walter, M. Groß, T. Schmid and K. Weimer. Iterative
Kernel
Density
Estimation
Applied to
Grouped
Data:
Estimating
Poverty and
Inequality
Indicators from the
German
Microcensus.
Journal of Official Statistics, 38: 599–635, 2022. DOI
10.2478/jos-2022-0027.
M. P. Wand and C. Jones. Multivariate plug-in bandwidth selection. Computational Statistics, 9(2): 97–116, 1994.