Supplementary materials are available in addition to this article. It can be downloaded at
RJ-2024-029.zip
D. W. Andrews. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 817–858, 1991.
I. E. Auger and C. E. Lawrence. Algorithms for the optimal identification of segment neighborhoods. Bulletin of mathematical biology, 51(1): 39–54, 1989.
B. Eichinger and C. Kirch. A MOSUM procedure for the estimation of multiple random change points. Bernoulli, 24(1): 526–564, 2018.
N. A. James and D. S. Matteson. ecp: An R package for nonparametric multiple change point analysis of multivariate data. Journal of Statistical Software, 62(7): 1–25, 2014.
R. Killick, C. Beaulieu, S. Taylor and H. Hullait. Package “EnvCpt.” 2021.
R. Killick and I. A. Eckley. changepoint: An R package for changepoint analysis. Journal of Statistical Software, 58(3): 1–19, 2014.
R. Killick, P. Fearnhead and I. A. Eckley. Optimal detection of changepoints with a linear computational cost. Journal of the American Statistical Association, 107(500): 1590–1598, 2012.
C. Levy Leduc. Package r AR1seg (available on the CRAN). 2014.
X. Li and X. Zhang. Fastcpd: Fast change point detection in r. arXiv preprint arXiv:2404.05933, 2024.
A. Meier, C. Kirch and H. Cho. mosum: A package for moving sums in change-point analysis. Journal of Statistical Software, 97(8): 1–42, 2021.
L. C. Morey and A. Agresti. The measurement of classification agreement: An adjustment to the rand statistic for chance agreement. Educational and Psychological Measurement, 44(1): 33–37, 1984.
W. K. Newey and K. D. West. A simple, positive semi-definite, heteroskedasticity and autocorrelationconsistent covariance matrix. Econometrica, 55: 703–708, 1987.
G. J. Ross. Parametric and nonparametric sequential change detection in R: The cpm package. Journal of Statistical Software, 66(3): 1–20, 2015.
X. Shao. A self-normalized approach to confidence interval construction in time series. Journal of the Royal Statistical Society: Series B, 72(3): 343–366, 2010.
X. Shao. Self-normalization for time series: A review of recent developments. Journal of the American Statistical Association, 110: 1797–1817, 2015.
X. Shao and X. Zhang. Testing for change points in time series. Journal of the American Statistical Association, 105(491): 1228–1240, 2010.
S. Sun, Z. Zhao, F. Jiang and X. Shao.
SNSeg: Self-normalization(SN) based change-point estimation for time series. 2023. URL
https://CRAN.R-project.org/package=SNSeg. R package version 1.0.0.
G. Wang and C. Zou. Cpss: An package for change-point detection by sample-splitting methods. Journal of Quality Technology, 55: 61–74, 2023.
R. Wang, C. Zhu, S. Volgushev and X. Shao. Inference for change points in high-dimensional data via selfnormalization. The Annals of Statistics, 50(2): 781–806, 2022.
A. Zeileis, C. Kleiber, W. Krämer and K. Hornik. Testing and dating of structural changes in practice. Computational Statistics & Data Analysis, 44(1–2): 109–123, 2003.
A. Zeileis, F. Leisch, K. Hornik and C. Kleiber. Strucchange: An r package for testing for structural change in linear regression models. Journal of Statistical Software, 7(2): 1–38, 2002.
N. R. Zhang and D. O. Siegmund. A modified bayes information criterion with applications to the analysis of comparative genomic hybridization data. Biometrics, 63(1): 22–32, 2007.
Z. Zhao, F. Jiang and X. Shao. Segmenting time series via self-normalisation. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84(5): 1699–1725, 2022.
Z. Zhao, F. Jiang and X. Shao. Segmenting time series via self-normalization. arXiv preprint https://arxiv.org/pdf/2112.05331v1.pdf, 2021.
C. Zou, G. Wang and R. Li. Consistent selection of the number of change-points via sample-splitting. Annals of Statistics, 48(1): 413, 2020.