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Editorial
by Dianne Cook

On behalf of the R Foundation and the Editorial board, I am pleased to present Volume 13
Issue 2 of the R Journal. This is the biggest issue ever!

First, some news from the Editorial board. A big thank you to Mike Kane, who has
finished his term. As Editor-in-Chief in 2020, Mike expanded operations to include Associate
Editors in the reviewing process. The R Journal now has a team of 20 Associate Editors. This
has helped to manage the increasing number of submissions. We welcome new Associate
Editors, Przemek Biecek, Chris Brunsdon, Mine Çetinkaya-Rundel, Kieran Healy, Adam
Loy, Priyanga Dilini Talagala and Emi Tanaka, who have joined since the July 2021 issue.
We also thank Taylor Arnold, who has stepped down, for his assistance over the past 18
months.

Catherine Hurley takes over as Editor-in-Chief for 2022, having joined the editorial team
in 2020. She has substantial expertise in publishing research and editorial experience. One
of the changes that she will oversee is publishing the R Journal four times a year. The benefit
of this is that your articles will make a more timely appearance in an issue, and for us it will
mean building slightly slimmer volumes. The issues will now be dated March, June, October
and December, with articles that are accepted up to the publish month being included in the
issue.

With the current issue we are migrating to the new web site. That is, the current dev
https://journal.r-project.org/dev/ will replace https://journal.r-project.org/. The
current web site style is quite plain, and we would be very keen to get some feedback or
help on the page design from users familiar with css. (Note that, the old site will remain as
a legacy site.) This new site hosts articles in the new html format, if they have been written
using Rmarkdown, as well as pdf. Please think about using the new Rmarkdown template
for your article. It is quite pleasant to read, enables interactive graphics in the article, and
the ability to add alt-text to your paper allows for screen readers to provide verbal de-
scriptions of your figures for blind researchers. Also, there are simplified instructions for
preparing an article to make it easier for you prepare your article for submission.

A few reminders about submissions. The journal operates purely through volunteer
labour by researchers like yourself. We do what we can manage to get your paper in shape
for publication, but ultimately what appears on the web is your responsibility.

• If you follow author instructions carefully, this will streamline the editorial board’s
handling of your article.

• Check that the references in your paper have all components, title, journal, volume,
issue, pages, and the DOI.

• Check that the files you are about to submit do actually compile to the desirable output,
every time prior to submitting your zip. Currently, there are easily a third of articles
submitted that don’t actually compile, and another third build with errors. This is
time consuming to deal with when it comes time to build an issue.

• Check that your code is well-structured and runs in a timely fashion. A small example
may be all that is necessary, in order to effectively communicate your work. Places to
learn more about coding style are Jenny Bryan’s Code Smells and Feels, and Hadley
Wickham’s Advanced R, and their collaborative book R Packages. Also, the discussion
article and commentaries, in this issue, have excellent suggestions about developing
your coding practices.

• All of the submitted files should be smallish. We use GitHub for journal operations,
and files larger that 50Mb create complications for uploading. If you have a large data
file, store it with one of the growing number of services for large files, such as figshare,
dryad or zenodo. Provide links to these files in your example code, or in a section in
the article listing supplementary material.

• When your zip file is downloaded into our paper handling system, a list of supple-
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mentary files is automatically generated from what you report in the submission form,
ideally. This list needs to be comma-delimited. When your paper is published this
list of files is zip’d into a supplementaries.zip which is distributed on the issue web
site. Journals do differ in what is distributed as supplementary. For the R Journal we
would expect the list of files to include are .R file (R code) or .Rmd, any data files, and
possibly an Appendix pdf or html if you want to communicate additional details like
proofs or coding intricacies than were not possible to include in the paper.

• Choose at least one keyword from the list provided on the submission form, because
these correspond to CRAN Task Views and helps connect your paper with other R
developments. You can also type in keywords of your choosing as well.

The R Journal enjoys an increasing rank among statistics publications. It is a great outlet
to publish your work. Statistical computing has a huge impact on the practice of statistics,
and R Journal articles are a wonderful way to communicate your work in this area to a large
audience. With the recent operational changes we are equipped to process a larger number
of submissions. So make an impact, send us your work!

Lastly, there is a lot of work happening behind the scenes. Mitchell O’Hara-Wild contin-
ues to develop infrastructure. H. Sherry Zhang has spearheaded the changes to the rjtools
package to help you, the authors, write your article in the style needed for the R Journal.
The articles in this issue have been painstakingly copy edited by Dewi Amaliah. Funding
from the R Consortium’s has been instrumental in making all of these activities possible,
and you can read more about it in the blog post here.

In this issue

News from the R Core, CRAN, Bioconductor, the R Foundation, and the foRwards Taskforce
can be read in this issue.

This issue features 42 contributed research articles covering these topics, on a huge range
of topics. There is also a special feature which is the discussion article “Software Engineering
and R Programming: A Call for Research” by Melina Vidoni, and commentaries from Will
Landau, Maëlle Salmon, Karthik Ram and Simon Urbanek.

Happy reading, and trying out the code!

Dianne Cook
Monash University

https://journal.r-project.org
r-journal@r-project.org
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Software Engineering and R Programming:
A Call for Research
by Melina Vidoni

Abstract Although R programming has been a part of research since its origins in the 1990s, few
studies address scientific software development from a Software Engineering (SE) perspective. The
past few years have seen unparalleled growth in the R community, and it is time to push the boundaries
of SE research and R programming forwards. This paper discusses relevant studies that close this
gap Additionally, it proposes a set of good practices derived from those findings aiming to act as a
call-to-arms for both the R and RSE (Research SE) community to explore specific, interdisciplinary
paths of research.

Introduction

R is a multi-paradigm statistical programming language, based on the S statistical language (Morandat
et al., 2012), developed in the 1990s by Ross Ihaka and Robert Gentleman at the University of Auckland,
New Zealand. It is maintained by the R Development Core Team (Thieme, 2018). Though CRAN
(Comprehensive Archive Network) was created for users to suggest improvements and report bugs,
nowadays, is the official venue to submit user-generated R packages (Ihaka, 2017). R has gained
popularity for work related to statistical analysis and mathematical modelling and has been one of
the fastest-growing programming languages (Muenchen, 2017). In July 2020, R ranked 8th in the
TIOBE index, which measures of popularity of programming languages; as a comparison, one year
before (July 2019), TIOBE ranked R in the 20th position (TIOBE, 2020). According to (Korkmaz et al.,
2018), “this has led to the development and distribution of over 10,000 packages, each with a specific purpose".
Furthermore, it has a vibrant end-user programming community, where the majority of contributors
and core members are “not software engineers by trade, but statisticians and scientists", with diverse
technical backgrounds and application areas (German et al., 2013).

R programming has become an essential part of computational science–the "application of computer
science and Software Engineering (SE) principles to solving scientific problems" (Hasselbring et al.,
2019). As a result, there are numerous papers discussing R packages explicitly developed to close a
particular gap or assist in the analysis of data of a myriad of disciplines. Regardless of the language
used, the development of software to assist in research ventures in a myriad of disciplines, has been
termed as ‘research SE’ (RSE) (Cohen et al., 2021). Overall, RSE has several differences with traditional
software development, such as the lifecycles used, the software goals and life-expectancy, and the
requirements elicitation. This type of software is often “constructed for a particular project, and rarely
maintained beyond this, leading to rapid decay, and frequent ’reinvention of the wheel" (Rosado de
Souza et al., 2019).

However, both RSE and SE for R programming remain under-explored, with little SE-specific
knowledge being tailored to these two areas. This poses several problems, given that in computational
science, research software is a central asset for research. Moreover, although most RSE-ers (the
academics writing software for research) come from the research community, a small number arrive
from a professional programming background (Cohen et al., 2021; Pinto et al., 2018). Previous research
showed R programmers do not consider themselves as developers (Pinto et al., 2018) and that few
of them are aware of the intricacies of the language (Morandat et al., 2012). This poses a problem
since the lack of formal programming training can lead to lower quality software (Hasselbring et al.,
2019), as well as less-robust software (Vidoni, 2021a). This is problematic since ensuring sustainable
development focused on code quality and maintenance is essential for the evolution of research in a
myriad of computational science disciplines, as faulty and low-quality software can potentially affect
research results (Cohen et al., 2018).

As a result, this paper aims to provide insights into three core areas:

• Related works that tackle both RSE and R programming, discussing their goals, motivations,
relevancy, and findings. This list was curated through an unstructured review and is, by no
means, complete or exhaustive.

• Organising the findings from those manuscripts into a list of good practices for developers. This
is posed as a baseline, aiming to be improved with time, application, and experience.

• A call-to-arms for RSE and R communities, to explore interdisciplinary paths of research,
covering not only empirical SE topics but also further developing the tools available to R
programmers.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859
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The rest of this paper is organised as follows. Section 2.2 presents the related works, introducing
them one by one. Section 2.3 outlines the proposed best practices, and Section 2.4 concludes this work
with a call-to-action for the community.

Related Works

This Section discusses relevant works organised in four sub-areas related to software development:
coding in R, testing packages, reviewing them, and developers’ experiences.

Area: Coding in R

Code quality is often related to technical debt. Technical Debt (TD) is a metaphor used to reflect the
implied cost of additional rework caused by choosing an easy solution in the present, instead of using
a better approach that would take longer (Samarthyam et al., 2017).

Claes et al. (2015) mined software repositories (MSR) to evaluate the maintainability of R packages
published in CRAN. They focused on function clones, which is the practice of duplicating functions
from other packages to reduce the number of dependencies; this is often done by copying the code
of an external function directly into the package under development or by re-exporting the function
under an alias. Code clones are harmful because they lead to redundancy due to code duplication and
are a code smell (i.e., a practice that reduces code quality, making maintenance more difficult).

The authors identified that cloning, in CRAN packages only, is often caused by several reasons.
These are: coexisting package versions (with some packages lines being cloned in the order of the
hundreds and thousands), forked packages, packages that are cloned more than others, utility packages
(i.e., those that bundle functions from other packages to simply importing), popular packages (with
functions cloned more often than in other packages), and popular functions (specific functions being
cloned by a large number of packages).

Moreover, they analysed the cloning trend for packages published in CRAN. They determined
that the ratio of packages impacted by cloning appears to be stable but, overall, it represents over
quarter-million code lines in CRAN. Quoting the authors, “those lines are included in packages representing
around 50% of all code lines in CRAN.” (Claes et al., 2015). Related to this, Korkmaz et al. (2019) found
that the more dependencies a package has, the less likely it is to have a higher impact. Likewise, other
studies have demonstrated that scantily updated packages that depend on others that are frequently
updated are prone to have more errors caused by incompatible dependencies (Plakidas et al., 2017);
thus, leading developers to clone functions rather than importing.

Code quality is also reflected by the comments developers write in their code. The notion of
Self-Admitted Technical Debt (SATD) indicates the case where programmers are aware that the current
implementation is not optimal and write comments alerting of the problems of the solution Potdar and
Shihab (2014). Vidoni (2021b) conducted a three-part mixed-methods study to understand SATD in R
programming, mining over 500 packages publicly available in GitHub and enquiring their developers
through an anonymous online survey. Overall, this study uncovered that:

• Slightly more than 1/10th of the comments are actually “commenting out” (i.e., nullifying)
functions and large portions of the code. This is a code smell named dead code, which represents
functions or pieces of unused code that are never called or reached. It clogs the files, effectively
reducing the readability Alves et al. (2016).

• About 3% of the source code comments are SATD, and 40% of those discuss code debt. Moreover,
about 5% of this sample discussed algorithm debt, defined as “sub-optimal implementations of
algorithm logic in deep learning frameworks. Algorithm debt can pull down the performance of a system”
Liu et al. (2020).

• In the survey, developers declared adding SATD as "self reminders" or to "schedule future
work", but also responded that they rarely address the SATD they encounter, even if it was
added by themselves. This trend is aligned with what happens in traditional object-oriented
(OO) software development.

This work extended previous findings obtained exclusively for OO, identifying specific debt
instances as developers perceive them. However, a limitation of the findings is that the dataset was
manually generated. For the moment, there is no tool or package providing support to detect SATD
comments in R programming automatically.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859
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Area: Testing R Packages

Vidoni (2021a) conducted a mixed-methods MSR (Mining Software Repositories) that combined mining
GitHub repositories with a developers survey to study testing technical debt (TTD) in R programming–
the test dimension of TD.

Overall, this study determined that R packages testing has poor quality, specifically caused by
the situations summarised in Table 1. A finding is with regards to the type of tests being carried
out. When designing test cases, good practices indicate that developers should test common cases (the
"traditional" or "more used" path of an algorithm or function) as well as edge cases (values that require
special handling, hence assessing boundary conditions of an algorithm or function) (Daka and Fraser,
2014). Nonetheless, this study found that almost 4/5 of the tests are common cases, and a vast majority
of alternative paths (e.g., accessible after a condition) are not being assessed.

Moreover, this study also determined that available tools for testing are limited regarding their
documentation and the examples provided (as indicated by survey respondents). This includes the
usability of the provided assertions (given that most developers use custom-defined cases) and the
lack of tools to automate the initialisation of data for testing, which often causes the test suits to fail
due to problems in the suite itself.

Smell Definition (Samarthyam et al., 2017) Reason (Vidoni, 2021a)

Inadequate
Unit Tests

The test suite is not ideal to ensure quality testing. Many relevant lines remain untested. Alternative
paths (i.e., those accessible after a condition) are
mostly untested. There is a large variability in the
coverage of packages from the same area (e.g., bio-
statistics). Developers focus on common cases only,
leading to incomplete testing.

Obscure Unit
Tests

When unit tests are obscure, it becomes difficult to
understand the unit test code and the production
code for which the tests are written.

Multiple asserts have unclear messages. Multiple
asserts are mixed in the same test function. Exces-
sive use of user-defined asserts instead of relying
on the available tools.

Improper As-
serts

Wrong or non-optimal usage of asserts leads to poor
testing and debugging.

Testing concentrated on common cases. Excessive
use of custom asserts. Developers still uncover bugs
in their code even when the tests are passing.

Inexperienced
Testers

Testers, and their domain knowledge, are the main
strength of exploratory testing. Therefore, low
tester fitness and non-uniform test accuracy over
the whole system accumulate residual defects.

Survey participants are reportedly highly-
experienced, yet their most common challenge was
lack of testing knowledge and poor documentation
of tools.

Limited Test
Execution

Executing or running only a subset of tests to reduce
the time required. It is a shortcut increasing the
possibility of residual defects.

A large number of mined packages (about 35%) only
used manual testing, with no automated suite (e.g.,
testthat). The survey responses confirmed this
proportion.

Improper Test
Design

Since the execution of all combination of test cases
is an effort-intensive process, testers often run only
known, less problematic tests (i.e., those less prone
to make the system fail). This increases the risk of
residual defects.

The study found a lack of support for automatically
testing plots. The mined packages used testthat
functions to generate a plot that was later (manu-
ally) inspected by a human to evaluate readability,
suitability, and other subjective values. Survey re-
sults confirmed developers struggle with plots as-
sessment.

Table 1: Problems found by Vidoni (2021a) regarding unit testing of R packages.

Křikava and Vitek (2018) conducted an MSR to inspect R packages’ source code, making available
a tool that automatically generates unit tests. In particular, they identified several challenges regarding
testing caused by the language itself, namely its extreme dynamism, coerciveness, and lack of types,
which difficult the efficacy of traditional test extraction techniques.

In particular, the authors worked with execution traces, “the sequence of operations performed by a
program for a given set of input values” (Křikava and Vitek, 2018), to provide genthat, a package to
optimise the unit testing of a target package (Krikava, 2018). genthat records the execution traces of a
target package, allowing the extraction of unit test functions; however, this is limited to the public
interface or the internal implementation of the target package. Overall, its process requires installation,
extraction, tracing, checking and minimisation.

Both genthat and the study performed by these authors are highly valuable to the community
since the minimisation phase of the package checks the unit tests and discards those failing, and records
to coverage, eliminating redundant test cases. Albeit this is not a solution to the lack of edge cases
detected in another study (Vidoni, 2021a), this genthat assists developers and can potentially reduce
the workload required to obtain a baseline test suite. However, this work’s main limitation is its
emphasis on the coverage measure, which is not an accurate reflection of the tests’ quality.
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Finally, Russell et al. (2019) focused on the maintainability quality of R packages caused by their
testing and performance. The authors conducted an MSR of 13500 CRAN packages, demonstrating that
"reproducible and replicable software tests are frequently not available". This is also aligned with
the findings of other authors mentioned in this Section. They concluded with recommendations to
improve the long-term maintenance of a package in terms of testing and optimisation, reviewed in
Section 2.3.

Area: Reviewing Packages

The increased relevance of software in data science, statistics and research increased the need for
reproducible, quality-coded software (Howison and Herbsleb, 2011). Several community-led organ-
isations were created to organize and review packages - among them, rOpenSci (Ram et al., 2019;
rOpenSci et al., 2021) and BioConductor (Gentleman et al., 2004). In particular, rOpenSci has established
a thorough peer-review process for R packages based on the intersection of academic peer-reviews
and software reviews.

As a result, Codabux et al. (2021) studied rOpenSci open peer-review process. They extracted
completed and accepted packages reviews, broke down individual comments, and performed a card
sorting approach to determine which types of TD were most commonly discussed.

One of their main contributions is a taxonomy of TD extending the current definitions to R
programming. It also groups debt types by perspective, representing ‘who is the most affected by a type
of debt". They also provided examples of rOpenSci’s peer-review comments referring to a specific
debt. This taxonomy is summarised in Table 2, also including recapped definitions.

Perspective TD Type Reason

User
Usability In the context of R, test debt encompasses anything related to usability, interfaces, visualisa-

tion and so on.
Documentation For R, this is anything related to roxygen2 (or alternatives such as the Latex or Markdown

generation), readme files, vignettes and even pkgdown websites.
Requirements Refers to trade-offs made concerning what requirements the development team needs to

implement or how to implement them.

Developer

Test In the context of R, test debt encompasses anything related to coverage, unit testing, and
test automation.

Defect Refers to known defects, usually identified by testing activities or by the user and reported
on bug tracking systems.

Design For R, this debt is related to any OO feature, including visibility, internal functions, the triple-
colon operator, placement of functions in files and folders, use of roxygen2 for imports,
returns of objects, and so on.

Code In the context of R, examples of code debt are anything related to renaming classes and
functions, < − vs. =, parameters and arguments in functions, FALSE/TRUE vs. F/T, print
vs warning/message.

CRAN
Build In the context of R, examples of build debt are anything related to Travis, Codecov.io,

GitHub Actions, CI, AppVeyor, CRAN, CMD checks, devtools::check.
Versioning Refers to problems in source code versioning, such as unnecessary code forks.

Architecture for example, violation of modularity, which can affect architectural requirements (e.g.,
performance, robustness).

Table 2: Taxonomy of TD types and perspectives for R packages, proposed by Codabux et al. (2021).

Additionally, they uncovered that almost one-third of the debt discussed is documentation debt–
related to how well packages are being documented. This was followed by code debt, providing a
different distribution than the one obtained by Vidoni (2021b). This difference is caused by rOpenSci
reviewers focusing on documentation (e.g., comments written by reviewers’ account for most of the
documentation debt), while developers’ comments concentrate their attention in code debt. The entire
classification process is detailed in the original study Codabux et al. (2021).

Area: Developers’ Experiences

Developers’ perspectives on their work are fundamental to understand how they develop software.
However, scientific software developers have a different point of view than ‘traditional’ programmers
(Howison and Herbsleb, 2011).

Pinto et al. (2018) used an online questionnaire to survey over 1500 R developers, with results
enriched with metadata extracted from GitHub profiles (provided by the respondents in their answers).
Overall, they found that scientific developers are primarily self-taught but still consider peer-learning
a second valuable source. Interestingly, the participants did not perceive themselves as programmers,
but rather as a member of any other discipline. This also aligns with findings provided by other works
(German et al., 2013; Morandat et al., 2012). Though the latter is understandable, such perception may
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pose a risk to the development of quality software as developers may be inclined to feel ‘justified’ not
to follow good coding practices Pinto et al. (2018).

Additionally, this study found that scientific developers work alone or in small teams (up to five
people). Interestingly enough, they found that people spend a significant amount of time focused
on coding and testing and performed an ad-hoc elicitation of requirements, mostly ‘deciding by
themselves’ on what to work next, rather than following any development lifecycle.

When enquiring about commonly-faced challenges, the participants of this study considered the
following: cross-platform compatibility, poor documentation (which is a central topic for reviewers
(Codabux et al., 2021)), interruptions while coding, lack of time (also mentioned by developers in
another study (Vidoni, 2021b)), scope bloat, lack of user feedback (also related to validation, instead of
verification testing), and lack of formal reward system (e.g., the work is not credited in the scientific
community (Howison and Herbsleb, 2011)).

Area Main Problem Recommended Practice

Lifecycles The lack of proper requirement elicitation and
development organisation was identified as a
critical problem for developers (Wiese et al.,
2020; Pinto et al., 2018), who often resort to
writing comments in the source to remind them-
selves of tasks they later do not address (Vidoni,
2021b).

There are extremely lightweight agile lifecy-
cles (e.g., Extreme Programming, Crystal Clear,
Kanban) that can be adapted for a single devel-
oper or small groups. Using these can provide
a project management framework that can also
organise a research project that depends on cre-
ating scientific software.

Teaching Most scientific developers do not perceive
themselves as programmers and are self-taught
(Pinto et al., 2018). This hinders their back-
ground knowledge and the tools they have
available to detect TD and other problems, po-
tentially leading to low-quality code (German
et al., 2013).

Since graduate school is considered fundamen-
tal for these developers (Pinto et al., 2018), pro-
viding a solid foundation of SE-oriented R pro-
gramming for candidates whose research relies
heavily on software can prove beneficial. The
topics to be taught should be carefully selected
to keep them practical and relevant yet still
valuable for the candidates.

Coding

Some problems discussed where functions
clones, incorrect imports, non-semantic or
meaningful names, improper visibilitiy or file
distribution of functions, among others.

Avoid duplicating (i.e., copy-pasting or re-
exporting) functions from other packages, and
instead use proper selective import, such as
roxygen2’s @importFrom or similar Latex docu-
mentation styles.
Avoid leaving unused functions or pieces of
code that are ‘commented out’ to be nullified.
Proper use of version control enables develop-
ers to remove the segments of code and revisit
them through previous commits.
Code comments are meant to be meaningful
and should not be used as a planning tool. Com-
ments indicating problems or errors should be
addressed (either when found, if the problem
is small or planning for a specific time to do it
if the problem is significant).
Names should be semantic and meaningful,
maintaining consistency in the whole project.
Though there is no pre-established convention
for R, previous works provide an overview
(Baath, 2012), as well as packages, such as the
tidyverse’s style guide.

Testing Current tests leave many relevant paths unex-
plored, often ignoring the testing of edge cases
and damaging the robustness of the code pack-
aged (Vidoni, 2021a; Russell et al., 2019)

All alternative paths should be tested (e.g.,
those limited by conditionals). Exceptional
cases should be tested; e.g., evaluating that a
function throws an exception or error when it
should, and evaluating other cases such as (but
not limited to), nulls, NAs, NaNs, warnings, large
numbers, empty strings, empty variables (e.g.,
character(0), among others.
Other specific testing cases, including perfor-
mance evaluation and profiling, discussed and
exemplified by Russell et al. (2019).

Table 3: Recommendations of best practices, according to the issues found in previous work and good
practices established in the SE community.
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This study (Pinto et al., 2018) was followed up to create a taxonomy of problems commonly
faced by scientific developers (Wiese et al., 2020). They worked with over 2100 qualitatively-reported
problems and grouped them into three axes; given the size of their taxonomy, only the larger groups
are summarised below:

• Technical Problems: represent almost two-thirds of the problems faced. They are related to
software design and construction, software testing and debugging, software maintenance and
evolution, software requirements and management, software build and release engineering,
software tooling’ and others (e.g., licensing, CRAN-related, user interfaces).

• Social-Related Problems: they represent a quarter of the problems faced by developers. The
main groups are: publicity, lack of support, lack of time, emotional and communication and
collaboration.

• Scientific-Related Problems: are the smaller category related to the science supporting or moti-
vating the development. The main groups are: scope, background, reproducibility and data
handling, with the latter being the most important.

These two works provide valuable insight into scientific software developers. Like other works
mentioned in this article, albeit there are similarities with traditional software development (both in
terms of programming paradigms and goals), the differences are notable enough to warrant further
specialised investigations.

Towards Best Practices

Based on well-known practices for traditional software development (Sommerville, 2015), this Section
outlines a proposal of best practices for R developers. These are meant to target the weaknesses found
by the previous studies discussed in Section 2.2. This list aims to provide a baseline, aiming that
(through future research works) they can be improved and further tailored to the needs of scientific
software development and the R community in itself.

The practices discussed span from overarching (e.g., related to processes) to specific activities.
They are summarised in Table 3.

Call to Action

Scientific software and R programming became ubiquitous to numerous disciplines, providing essen-
tial analysis tools that could not be completed otherwise. Albeit R developers are reportedly struggling
in several areas, academic literature centred on the development of scientific software is scarce. As a
result, this Section provides two calls to actions: one for R users and another for RSE academics.

Research Software Engineering Call: SE for data science and scientific software development is
crucial for advancing research outcomes. As a result, interdisciplinary works are increasingly needed
to approach specific areas. Some suggested topics to kickstart this research are as follows:

• Lifecycles and methodologies for project management. Current methodologies focus on the demands
of projects with clear stakeholders and in teams of traditional developers. As suggested in
Section 2.3, many agile methodologies are suitable for smaller teams or even uni-personal devel-
opments. Studying this and evaluating its application in practice can prove highly valuable.

• Specific debts in scientific software. Previous studies highlighted the existence of specific types
of debt that are not often present in traditional software development (e.g., algorithm and
reproducibility) (Liu et al., 2020) and are therefore not part of currently accepted taxonomies
(Alves et al., 2016; Potdar and Shihab, 2014). Thus, exploring these specific problems can help
detect uncovered problems, providing viable paths of actions and frameworks for programmers.

• Distinct testing approaches. R programming is an inherently different paradigm, and current
guidance for testing has been developed for the OO paradigm. As a result, more studies are
needed to tackle specific issues that may arise, such as how to test visualisations or scripts
(Vidoni, 2021a), and how to move beyond coverage by providing tests that are optimal yet
meaningful Křikava and Vitek (2018).

R Community Call: The following suggestions are centred on the abilities of the R community:

• Several packages remain under-developed, reportedly providing incomplete tools. This happens
not only in terms of functionalities provided but also on their documentation and examples. For
instance, developers disclosed that lack of specific examples was a major barrier when properly
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testing (Vidoni, 2021a). Extending the examples available in current packages can be achieved
through community calls, leveraging community groups’ reach, such as R-Ladies and RUGs (R
User Groups). Note that this suggestion is not related to package development guides but to a
community-sourced improvement of the documentation of existing packages.

• Additionally, incorporating courses in graduate school curricula that focus on “SE for Data
Science” would be beneficial for the students, as reported in other works (Pinto et al., 2018; Wiese
et al., 2020). However, this can only be achieved through interdisciplinary work that merges
specific areas of interest with RSE academics and educators alike. Once more, streamlined
versions of these workshops could be replicated in different community groups.

There is a wide range of possibilities and areas to work, all derived from diversifying R program-
ming and RSE. This paper highlighted meaningful work in this area and proposed a call-to-action to
further this area of research and work. However, these ideas need to be repeatedly evaluated and
refined to be valuable to R users.
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Packages Mentioned

The following packages were mentioned in this article:

• covr, for package coverage evaluation. Mentioned by Křikava and Vitek (2018) and Codabux
et al. (2021). Available at: https://cran.r-project.org/web/packages/covr/index.html.

• genthat, developed by Křikava and Vitek (2018), to optimise testing suits. Available at https:
//github.com/PRL-PRG/genthat.

• pkgdown for package documentation. Mentioned by Codabux et al. (2021) as part of documen-
tation debt. Available at: https://cran.r-project.org/web/packages/pkgdown/index.html.

• roxygen2, for package documentation. Recommended in Section 2.3, and mentioned as exam-
ples of design and documentation debt by Codabux et al. (2021). Available at https://cran.r-
project.org/web/packages/roxygen2/index.html.

• testthat, most used testing tool, according to findings by Vidoni (2021a). Mentioned when
discussing testing debt by Codabux et al. (2021). Available at https://cran.r-project.org/web/
packages/testthat/index.html.

• tidyverse, bundling a large number of packages and providing a style guile. Mentioned in
Section 2.3. Available at: https://cran.r-project.org/web/packages/tidyverse/index.html.

Bibliography

N. S. Alves, T. S. Mendes, M. G. de Mendonça, R. O. Spínola, F. Shull, and C. Seaman. Identification and
management of technical debt: A systematic mapping study. Information and Software Technology, 70:100–121,
2016. ISSN 0950-5849. doi: https://doi.org/10.1016/j.infsof.2015.10.008. [p7, 11]

R. Baath. The state of naming conventions in r. The R Journal, 4:74–75, 12 2012. doi: 10.32614/RJ-2012-018. [p10]

M. Claes, T. Mens, N. Tabout, and P. Grosjean. An empirical study of identical function clones in CRAN. In 2015 IEEE
9th International Workshop on Software Clones (IWSC), pages 19–25, Mar. 2015. doi: 10.1109/IWSC.2015.7069885.
[p7]

Z. Codabux, M. Vidoni, and F. Fard. Technical Debt in the Peer-Review Documentation of R Packages: a rOpenSci
Case Study. In 2021 International Conference on Mining Software Repositories, pages 1–11, Madrid, Spain, 2021.
IEEE. doi: https://arxiv.org/abs/2103.09340. [p9, 10, 12]

J. Cohen, D. S. Katz, M. Barker, R. Haines, and N. Chue Hong. Building a sustainable structure for research software
engineering activities. In 2018 IEEE 14th International Conference on e-Science (e-Science), pages 31–32, 2018. doi:
10.1109/eScience.2018.00015. [p6]

J. Cohen, D. S. Katz, M. Barker, N. Chue Hong, R. Haines, and C. Jay. The four pillars of research software
engineering. IEEE Software, 38(1):97–105, 2021. doi: 10.1109/MS.2020.2973362. [p6]

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=covr
https://cran.r-project.org/web/packages/covr/index.html
https://CRAN.R-project.org/package=genthat
https://github.com/PRL-PRG/genthat
https://github.com/PRL-PRG/genthat
https://CRAN.R-project.org/package=pkgdown
https://cran.r-project.org/web/packages/pkgdown/index.html
https://CRAN.R-project.org/package=roxygen2
https://cran.r-project.org/web/packages/roxygen2/index.html
https://cran.r-project.org/web/packages/roxygen2/index.html
https://CRAN.R-project.org/package=testthat
https://cran.r-project.org/web/packages/testthat/index.html
https://cran.r-project.org/web/packages/testthat/index.html
https://CRAN.R-project.org/package=tidyverse
https://cran.r-project.org/web/packages/tidyverse/index.html


DISCUSSION ARTICLE 13

E. Daka and G. Fraser. A survey on unit testing practices and problems. In 2014 IEEE 25th International Symposium
on Software Reliability Engineering, pages 201–211, 2014. [p8]

R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry,
K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini, G. Sawitzki,
C. Smith, G. Smyth, L. Tierney, J. Y. Yang, and J. Zhang. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biology, 5(10):R80, Sep 2004. ISSN 1474-760X. doi: 10.1186/gb-
2004-5-10-r80. URL https://doi.org/10.1186/gb-2004-5-10-r80. [p9]

D. M. German, B. Adams, and A. E. Hassan. The Evolution of the R Software Ecosystem. In 2013 17th European
Conference on Software Maintenance and Reengineering, pages 243–252, Mar. 2013. doi: 10.1109/CSMR.2013.33.
ISSN: 1534-5351. [p6, 9, 10]

W. Hasselbring, L. Carr, S. Hettrick, H. Packer, and T. Tiropanis. Fair and open computer science research software,
2019. [p6]

J. Howison and J. D. Herbsleb. Scientific software production: Incentives and collaboration. In Proceedings of
the ACM 2011 Conference on Computer Supported Cooperative Work, CSCW ’11, page 513–522, New York, NY,
USA, 2011. Association for Computing Machinery. ISBN 9781450305563. doi: 10.1145/1958824.1958904. URL
https://doi.org/10.1145/1958824.1958904. [p9, 10]

R. Ihaka. The r project: A brief history and thoughts about the future, 2017. URL https://www.stat.auckland.ac.
nz/~{}ihaka/downloads/Massey.pdf. [p6]

G. Korkmaz, C. Kelling, C. Robbins, and S. A. Keller. Modeling the Impact of R Packages Using Dependency and
Contributor Networks. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), pages 511–514, Aug. 2018. doi: 10.1109/ASONAM.2018.8508255. ISSN: 2473-991X. [p6]

G. Korkmaz, C. Kelling, C. Robbins, and S. Keller. Modeling the impact of Python and R packages using
dependency and contributor networks. Social Network Analysis and Mining, 10(1):7, Dec. 2019. ISSN 1869-5469.
doi: 10.1007/s13278-019-0619-1. URL https://doi.org/10.1007/s13278-019-0619-1. [p7]

F. Krikava. fikovnik/ISSTA18-artifact: ISSTA’18 Artifact release, July 2018. URL https://doi.org/10.5281/zenodo.
1306437. [p8]
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We Need Trustworthy R Packages
by William Michael Landau

Abstract There is a need for rigorous software engineering in R packages, and there is a need for
new research to bridge scientific computing with more traditional computing. Automated tools,
interdisciplinary graduate courses, code reviews, and a welcoming developer community will continue
to democratize best practices. Democratized software engineering will improve the quality, correctness,
and integrity of scientific software, and by extension, the disciplines that rely on it.

Commentary

Most contributors to R (R Core Team, 2021) do not see themselves as software engineers. In a
way, this is part of the success of the language. As Dr. Vidoni explains, R developers are usually
statisticians, economists, geneticists, ecologists, psychologists, sociologists, archaeologists, and other
quantitative scientists who collectively pool a staggering diversity of academic knowledge into a
cohesive repository of interoperable software packages. This rich ecosystem attracts a diverse user
base and spurs popularity on a global scale.

But quality software still requires software engineering: specification, design, implementation,
version control, testing, profiling, benchmarking, and documentation to produce packages worthy of
trust. And because of its explosive adoption in recent decades, R needs trustworthy packages now
more than ever. In the life sciences, for example, researchers increasingly use R to design, simulate,
and analyze clinical trials (The R Foundation for Statistical Computing (2021), Nicholls et al. (2021),
Gans et al. (2021), Wassmer and Pahlke (2021)). The resulting claims about safety and efficacy influence
the medical treatments of millions of patients.

Fortunately, software engineering has begun to spread among self-described non-engineers. Work-
flow packages such as testthat (Wickham, 2011) and covr (Hester, 2020) identify essential but accessible
practices and adapt them to an R-focused audience. On top of the popular packages that the article
cites, newer specialized ones are under active development. One such example is autotest (Padgham,
2021), which automatically generates testing specifications that help developers identify uncommon
boundary cases in statistical packages. Another is valtools (Hughes et al., 2021), a validation frame-
work in which package developers declare formal requirements and explicitly map each requirement
to one or more unit tests. valtools, part of the Pharmaceutical Users Software Exchange (PHUSE,
Tinazzi et al. (2008)), was created to help R developers in the life sciences meet the requirements of
regulatory authorities such as the United States Food and Drug Administration.

Still, key engineering issues remain underexplored for R, many of which fall outside the scope of
the article. For example, what are the best ways to translate the logic of an algorithm into a collection
of concise pure functions with sufficient encapsulation? Under what circumstances is it beneficial
to clone an external function? (Claes et al. (2015) argue that cloning is not always harmful.) When
is it appropriate to use ordinary functions, generic function object-oriented programming, e.g. S3
(Chambers, 2014), or more traditional message-passing OOP, e.g. R6 (Chang, 2020)? Which design
patterns are available for OOP and functional programming, how do they apply to R specifically,
and which problems can they solve in real-life statistical modeling packages? When an anti-pattern
is identified and classified, how can a technical debt taxonomy offer tailored recommendations for
refactoring? How exactly does a package author write a specification to communicate the package’s
architecture and design principles to other developers? How do developers find optimal tradeoffs
among automation, coverage, and computation time in unit testing?

As Dr. Vidoni points out, additional research may help translate long-established aspects of tradi-
tional software development to the world of R, and graduate courses may help instill this knowledge
in new generations of quantitative scientists. Courses could borrow heavily from traditional computer
science, especially the long history of object-oriented programming and functional programming. And
just a little bit of exposure to a language like Haskell (Marlow, 2010), C++ (Stroustrup, 2013), Java
(Gosling et al., 2015), or Python (Rossum, 1995) can help foster a well-rounded perspective. Even if
students abandon these languages later on, they will retain pertinent concepts that R programmers
seldom consciously utilize: for example, how immutable bindings serve as helpful guardrails in
functional programming.

Code review, which the R community underutilizes, also aligns with the article’s call to action.
Reviews typically happen during a formal gatekeeping process, such as acceptance into CRAN (CRAN
Volunteers, 2021), Bioconductor (Huber et al., 2015), or rOpenSci (Ram et al., 2019), or within small
teams in order to expedite specific deliverables. There is usually a clear extrinsic need and a clearly
identified expected extrinsic outcome. Pedagogical retrospectives are far less common, especially
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across different organizations, but they can be eye-opening experiences that substantially improve the
awareness and capabilities of the mentees.

New social technologies could increase the frequency and effectiveness of code reviews and raise
the collective software engineering skill level. For example, conferences in R, Statistics, and related
fields could organize code review workshops, where mentees bring their own projects and experienced
mentors provide in-person one-on-one feedback. In fact, entire R conferences could be dedicated to
code review. Precedents include the Tidyverse Developer Day (Wickham et al., 2020) and the rOpenSci
Unconference (rOpenSci, 2018), in which participants spend the majority of their time collaboratively
working on code.

It is also possible to systematize an ongoing community-driven code review process for packages
in public repositories. A fit-for-purpose public online forum could carry out ad hoc code reviews, and
much like Stack Overflow, support a reward and reputation system for both mentors and mentees. A
working group, possibly funded by the R Consortium (R Consortium, 2021) or similar, could kickstart
the forum by selecting packages from CRAN, GitHub, etc. and inviting the authors to participate.

In summary, there is a need for rigorous software engineering in R packages, and there is a
need for new research to bridge scientific computing with more traditional computing. Automated
tools, interdisciplinary graduate courses, code reviews, and a welcoming developer community will
continue to democratize best practices. Democratized software engineering will improve the quality,
correctness, and integrity of scientific software, and by extension, the disciplines that rely on it.
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The R Developer Community Does Have a
Strong Software Engineering Culture
by Maëlle Salmon and Karthik Ram

Abstract There is a strong software engineering culture in the R developer community. We recommend
creating, updating and vetting packages as well as keeping up with community standards. We invite
contributions to the rOpenSci project, where participants can gain experience that will shape their
work and that of their peers.

Introduction

The R programming language was originally created for statisticians, by statisticians, but evolved over
time to attract a “massive pool of talent that was previously untapped” (Hadley Wickham in Thieme
(2018)). Despite the fact that most R users are academic researchers and business data analysts without
a background in software engineering, we are witnessing a rapid rise in software engineering within
the community. In this comment we spotlight recent progress in tooling, dissemination and support,
including specific efforts led by the rOpenSci project. We hope that readers will take advantage of and
participate in the tools and practices we describe.

The modern R package developer toolbox: user-friendlier, more comprehensive

The basic infrastructure for creating, building, installing, and checking packages has been in place
since the early days of the R language. During this time (1998-2011), the barriers to entry were very
high and access to support and Q&A for beginners were extremely limited. With the introduction of
the devtools (Wickham et al., 2021b) package in 2011, the process of creating and updating packages
became substantially easier. Documentation also became simpler to maintain. The roxygen2 (Wickham
et al., 2021a) package allowed developers to keep documentation in sync with changes in code, similar
to the doxygen approach that was embraced in more mature languages. Combined with the rise
in popularity of StackOverflow and the growth of rstats blogs, the number of packages on the
Comprehensive R Archive Network (CRAN) skyrocketed from 400 new packages in 2010 to 1000 new
packages by 2014. As of this writing, there are nearly 19k packages on CRAN.

For novices without substantial software engineer experience, the early testing frameworks were
also difficult to use. With the release of testthat (Wickham, 2011), testing also became smoother. There
are now several actively maintained testing frameworks such as tinytest (van der Loo, 2020); as well
as testthat-compatible specialized tooling for testing database interactions (dittodb (Keane and Vargas,
2020)), web resources (vcr (Chamberlain, 2021)), httptest (Richardson, 2021), and webfakes (Csárdi,
2021) which enables the use of an embedded C/C++ web server for testing HTTP clients like httr2
(Wickham, 2021)).

The testthat package has recently been improved with snapshot tests that make it possible to test
plot outputs. The rOpenSci project has released autotest (Padgham, 2021), a package that supports
automatic mutation testing.

Beyond checking for compliance with R CMD CHECK, several other packages such as good-
practice (Csárdi and Frick, 2018), riskmetric (R Validation Hub et al., 2021), rOpenSci’s pkgcheck
(Padgham and Salmon, 2021) check packages against a large list of actionable, community recom-
mended best practices for software development. Collectively these tools allow domain researchers to
release software packages that meet high standards for software engineering.

The development and testing ecosystem of R is rich and has sometimes borrowed successful
implementations from other languages (e.g. the vcr R package is a port, i.e. translation to R, of the vcr
Ruby gem; testthat snapshot tests were inspired by JS Jest1).

Emergence of a welcoming community

As underlined in Thieme (2018), community is the strong suit of the R language. Many organizations
and venues offer dedicated support for package developers. Examples include Q&A on the r-package-
devel mailing list2, and the package development category of the RStudio community forum3, and

1https://www.tidyverse.org/blog/2020/10/testthat-3-0-0/#snapshot-testing
2https://stat.ethz.ch/mailman/listinfo/r-package-devel
3https://community.rstudio.com/c/package-development/11
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the rstats section of StackOverflow4. Traditionally, R package developers have been mostly male
and white. Although the status quo remains similar, efforts from groups such as R-Ladies5 meetups,
Minorities in R (Scott and Smalls-Perkins, 2020), and the package development modules offered by
Forwards for underrepresented groups6 have made considerable inroads towards improving diversity.
These efforts have worked hard to put the spotlight on developers beyond the “usual suspects”.

rOpenSci community and software review

The rOpenSci organization (Boettiger et al., 2015) is an attractive venue for developers & supporters
of scientific R software. One of our most successful and continuing initiatives is our Software Peer
Review system (Ram et al., 2019), a combination of academic peer-review and code review from
industry. About 150 packages have been reviewed by volunteers to date, creating better packages as
well as a growing knowledgebase in our development guide (rOpenSci et al., 2021) while also building
a living community of practice.
Our model has been the fundamental inspiration for projects such as the Journal of Open Source
Software (Smith et al., 2018), and PyOpenSci [Wasser and Holdgraf (2019)](Trizna et al., 2021). We
are continuously improving our system and reducing cognitive overload on editors and reviewers by
automating repetitive tasks. Most recently we have expanded our offerings to peer review of packages
that implement statistical methods (Statistical Software Peer Review) (Padgham et al., 2021).
Beside software review, rOpenSci community is a safe, welcoming and informative place for package
developers, with Q&A happening on our public forum and semi-open Slack workspace. (Butland and
LaZerte, 2020)

Creation and dissemination of resources for R programmers

The aforementioned tools, venues and organizations benefit from and support crucial dissemination
efforts.
Publishing technical know-how is crucial for progress of the R community. R news has been circulating
on Twitter7, R Weekly8 and R-Bloggers9. Some sources have been more specifically aimed at R package
developers of various experience and interests. While “Writing R Extensions” 10 is the official &
exhaustive reference on writing R packages, it is a reference rather than a learning resource: many
R package developers, if not learning by example, get introduced to R package development via
introductory blog posts or tutorials, and the R packages book by Hadley Wickham and Jenny Bryan
[Wickham (2015)](Wickham and Bryan) that accompany the devtools suite of packages is freely
available online and strives to improving the R package development experience. The rOpenSci guide
“rOpenSci Packages: Development, Maintenance, and Peer Review” (rOpenSci et al., 2021) contains our
community-contributed guidance on how to develop packages and review them. It features opinionated
requirements such as the use of roxygen2 (Wickham et al., 2021a) for package documentation; criteria
helping make an informed decision on gray area topics such as limiting dependencies; advice on widely
accepted and emerging tools. As it is a living document also used as reference for editorial decisions, we
maintain a changelog11, and summarize each release in a blog post12. rOpenSci also hosts a book on a
specialized topic, HTTP testing in R13, that presents both principles for testing packages that interact
with web resources, as well as relevant packages. Beside these examples of long-form documentation,
knowledge around R software engineering is shared through blogs and talks. In the R blogging world,
the rOpenSci blog posts14, technical notes15 and a section of our monthly newsletter16 feature some
topics relevant to package developers, as do some of the posts on the Tidyverse blog17. The blog of the
R-hub project18 contains information on package development topics, in particular about common
problems such as sharing data via R packages or understanding CRAN checks. Expert programmers

4https://stackoverflow.com/questions/tagged/r?tab=Newest
5http://rladies.org/
6https://buzzrbeeline.blog/2021/02/09/r-forwards-package-development-modules-for-women-and-

other-underrepresented-groups/
7https://www.t4rstats.com/
8https://rweekly.org/
9https://www.r-bloggers.com/

10https://cran.r-project.org/doc/manuals/R-exts.html
11https://devguide.ropensci.org/booknews.html
12https://ropensci.org/tags/dev-guide/
13https://books.ropensci.org/http-testing/
14https://ropensci.org/blog/
15https://ropensci.org/technotes/
16https://ropensci.org/news/
17https://www.tidyverse.org/categories/programming/
18https://blog.r-hub.io/post/
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have been sharing their R specific wisdom as well as software engineering lessons learned from other
languages (e.g. Jenny Bryan’s useR! Keynote address “code feels, code smells”19).

Conclusion

In summary, we observe that there is already a strong software engineering culture in the R developer
community. By surfacing the rich suite of resources to new developers we can but only hope the future
will bring success to all aforementioned initiatives. We recommend creating, updating and vetting
packages with the tools we mentioned as well as keeping up with community standards with the
venues we mentioned in the previous section. We invite contributions to the rOpenSci project, where
participants can gain experience that will shape their work and that of their peers. Thanks to these
efforts, we hope the R community will continue to be a thriving place of application for software
engineering, by diverse practitioners from many different paths.
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The R Quest: from Users to Developers
by Simon Urbanek

Abstract R is not a programming language, and this produces the inherent dichotomy between
analytics and software engineering. With the emergence of data science, the opportunity exists to
bridge this gap, especially through teaching practices.

1 Genesis: How did we get here?

The article “Software Engineering and R Programming: A Call to Action” summarizes the dichotomy
between analytics and software engineering in the R ecosystem, provides examples where this leads
to problems and proposes what we as R users can do to bridge the gap.

Data Analytic Language

The fundamental basis of the dichotomy is inherent in the evolution of S and R: they are not program-
ming languages, but they ended up being mistaken for such. S was designed to be a data analytic
language: to turn ideas into software quickly and faithfully, often used in “non-programming” style
(Chambers, 1998). Its original goal was to enable the statisticians to apply code which was written in
programming languages (at the time mostly FORTRAN) to analyze data quickly and interactively - for
some suitable definition of “interactive” at the time (Becker, 1994). The success of S and then R can be
traced to the ability to perform data analysis by applying existing tools to data in creative ways. A data
analysis is a quest - at every step we learn more about the data which informs our decision about next
steps. Whether it is an exploratory data analysis leveraging graphics or computing statistics or fitting
models - the final goal is typically not known ahead of time, it is obtained by an iterative process of
applying tools that we as analysts think may lead us further (Tukey, 1977). It is important to note that
this is exactly the opposite of software engineering where there is a well-defined goal: a specification
or desired outcome, which simply needs to be expressed in a way understandable to the computer.

Freedom for All

The second important design aspect rooted in the creativity required is the freedom the language
provides. Given that the language can be computed upon means that a given expression may have
different meaning depending on how the called function decides to treat it and such deviations are
not entirely uncommon, typically referred to as non-standard evaluation. Probably the best example is
the sub-language defined by the data.table package (Dowle and Srinivasan, 2021) featuring the :=
operator which is parsed, but not even used by the R language.

Analogously, there is no specific, prescribed object system, but rather one is free to implement any
idea desirable, as witnessed by the fact that there are more than a handful of object system definitions
available in R and contributed packages. This freedom is what makes R great for experimentation
with new ideas or concepts, but very hard to treat as a programming language.

We have a language that is built on the idea of applying tools and which allows freedom to express
new ideas so the last important step is how to define new tools. R add-on packages (R Core Team, 2021)
are the vehicle by which new tools can be defined and distributed to R users. Note that true to design
goals, packages are not limited to R code but rather can also include code written in programming
languages such as C, C++ or Fortran. That in turn makes it possible to write packages that expand the
scope of tools to other languages such as Java with RJava (Urbanek, 2021) or Python with reticulate
(Ushey et al., 2022) simply by creating an R package which defines the interface.

Sharing Packages

But this is also where we are entering the realm of software engineering. Now we are in the business
of defining the tools as opposed to just using the tools. It also means that the tools have to worry
about programming interfaces, defining behavior and all those pesky things we as statisticians don’t
want to worry about. Although we originally started as R users, the moment we want to share any
re-usable piece of code with others we are becoming developers. Since no developer would mistake R
for a programming language, it is analysts with background in various fields which use statistics one
way or another that are more likely to use R. However, as we become more comfortable with R, we
start using it as a programming language, not just analytic language, often because it is simply more
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convenient than having to learn a programming language. This explains the empirical evidence (Pinto
et al., 2018) of R package authors not being trained software engineers, but often scientists from other
fields and any consequences thereof.

However, as R packages started to emerge, it became clear that a loosely coupled structure is not
enough and have to introduce software engineering concepts such as documentation and testing. R
includes tools for automated checking for packages to be able to provide at least some basic guarantees.
Packages provide examples which are supposed to be illustrative, but soon were used to perform
limited testing. R itself is using the same package structure and it was clear early that a test suite is
important and so was introduced. Consequently, the same facilities were available to packages, but
only very few were using it. There are, however, no built-in tools for creating test suites. In core R
those are hand-curated by experienced developers, but that does not scale to package space.

Over 18,000 packages are now present in the Comprehensive R Archive Network (CRAN), a
repository which has arguably played major role in the success of R (Hornik and Leisch, 2002). This is
not only a valuable resource for users, but today this rich collection of contributed R code in being
used as an automated test-suite for R. This is no coincidence, the importance of software engineering
concepts has been identified by the CRAN team long time ago and the tools in R have been enhanced
for that purpose (Hornik, 2016). CRAN has been an invaluable asset for the development of R based
on examples and limited tests alone. It allows us the R Core Team to test changes in R against code
that was written by ingenious people that do not necessarily follow documentation, but instead write
code that seems to work - possibly in ways not intended in the first place. Consequently, improving
the quality and coverage of tests in packages has not only positive impact on the individual package,
but on the quality of the entire CRAN ecosystem and R itself.

CRAN performs reverse-dependency checks where packages are not allowed to break dependent
package which is an important software engineering concept. One can see CRAN as performing
continuous integration and continuous testing if we consider all submitted packages as one big project.
This is not universally liked among package authors, though. Some find it too tedious to be responsible
for software in the way a software engineer would be - a concern which is also highlighted by the
article.

Steal and Borrow

One perhaps surprising finding of the article was the analysis of code fragment re-use (Claes et al.,
2015). A quite recent example how dangerous such practice is was a piece of badly written JavaScript
code from Stack Overflow (StackOverflow) which was copied so often that it made it into the popular
Unity game engine, effectively forcing browsers to lie about macOS versions (Chromium Bugs) just
to not break millions of released products. R code fragments are less likely to have such world-wide
impact, but can be equally frustrating. The historically relatively high cost of loading other packages
was an incentive to simply copy fragments instead, but the performance impact has been diminishing
with advancements in the R implementation. Still, I believe the exact reasons for fragment re-use
deserve further examination and may reveal other, more benign motives.

Every Project Needs a Conductor

Another good example of introducing software engineering principles into the R world successfully is
the Bioconductor project (Gentleman et al., 2004). The authors realized early that the project is too big
for it to allow organic growth and have strongly encouraged the use of the S4 class system to build a
class hierarchy specific to the tasks common to the Bioconductor packages. This enabled optimizations
of implementation as a core part of the system as opposed to individual approaches in each package.
Bioconductor was also encouraging unit tests and has maintained a build and reporting system similar
to that of CRAN, in the early days even pioneering functionality that was later added to core R.

The Gospel of Data Science

I believe the Call to Action is a very timely contribution. Many R users start as statisticians or data
analysts in some domain since that is the main strength of R. Consequently, a lot of R code is never
publicly visible. Code written for data analyses is not software development and is not published as
software. So any global statistics about R code have to be taken with that in mind. When considering R
packages we are talking only about a fraction of the code written in R. However, building new tools is
an important part of the R ecosystem and it has to be made clear that it is different from data analysis
and thus requires different skills and tools.
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The main realization here is that at some point an R user may become an R developer, crossing the
line from analysis into software engineering. And we are often unprepared for that, in part because
of our diverse background. When I asked my junior colleagues at the Labs what they find most
challenging yet valuable, the top item was learning software engineering skills on the job. We were
lucky to have both the authors of S as well as the authors of Unix on the same floor, so we were able
to bridge the gap, but generally our schools don’t prepare for that. That’s why I believe we must
teach statistical computing together with software engineering skills such as re-usability and testing
concepts. The current popularity of data science which bridges both worlds is a good excuse to make
it actually happen in practice.
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Rejoinder: Software Engineering and R
Programming
by Melina Vidoni

Abstract It is a pleasure to take part in such fruitful discussion about the relationship between Software
Engineering and R programming, and what could be gain by allowing each to look more closely at the
other. Several discussants make valuable arguments that ought to be further discussed.

The Roles

It is worth arguing about the difference between research software engineers and software engineer-
ing researchers. While the former can be anyone developing scientific software for computation/data
sciences (regardless of their technical background or "home" discipline), the latter are academics
investigating software engineering in different domains.

Software engineering researchers aim to produce research that is translatable and usable by practition-
ers, and when investigating R programming (or any other type of scientific software) the "practitioners"
are research software engineers. This distinction is relevant as one cannot work without the other. In
other words, software engineering researchers ought to study research software engineers such like they
study, e.g., a web developer, with the goal of uncovering their "pain points" and propose a solution to
it. Likewise, research software engineers depend on software engineering researchers and expect them to
produce the new knowledge they need.

However, what a research software engineer will vary by the programming language they use, and
what they aim to achieve with it. In terms of R programming, as one discussant pointed, there can be
a difference between an "R user" (which uses R to perform data analysis) and an "R developer" (which
besides using the language, also develops it by creating publicly shared packages). However, to this
extent, research has used both terms interchangeably, which leads to a possible avenue of work in
terms of "human aspects of R programming".

The Software

This is where the next link appears–the tools and packages mentioned in the commentaries were
developed with the intention of translating/migrating knowledge acquired/produced by software
engineering researchers to the domain of R programming, and to be used by research software engineers.
For example, the package covr streamlines the process of calculating the unit testing coverage of
a package, and the original papers presenting such measures can be tracked down to the late "80s
(Frankl and Weyuker, 1988; DeMillo, 1987). Albeit it is known coverage as a measure evolved and
changed over time (and continues to do so), it is an excellent example of the outcome produced by
software engineering researchers that successfully translated their findings to "practitioners" (in this case,
research software engineers).

Therefore, a package is part of the "translation" of the knowledge acquired through software
engineering research, into an accessible, usable framework. However, the tool itself is not enough–
without the "environment" changing, growing, and learning, the tool may not be used to its full
potential. Note that "environment" is used to refer (widely and loosely) to a person’s programming
habits, acceptance to change, past experiences (e.g., time/effort spent in solving a bug, or domains
worked on), and even the people around them (e.g., doing/not doing something because of what
others do/do not do) that influence their vision, attitude and expectations regarding programming.

Moreover tools and packages are not finite, static elements–because they are software, they evolve.
And when the requirements of a community change, so must do so the tools. This act as a reminder
to not assign a "silver bullet" status to a tool meant to solve a particular, static problem, when it
has been known that software (and thus the practices to develop it) evolve, and may even become
unmanageable, never to be fully solved (Brooks, 1987).

The Goal

Another related aspect is that "scientific software" has broader, different goals than "traditional"
(namely, non-scientific) software development–it has been argued that "scientific software develop-
ment" is concerned with knowledge acquisition rather than software production (Kelly, 2015); e.g. a
"tool" can be an RMarkdown document that allows performing an analysis (hence, using the language).
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Related to this, "scientific software" uses diverse paradigms, such as literate programming (which has
been considered a programming paradigm for a few decades (Cordes and Brown, 1991)) and scripting
(which in turn, continues to elicit mixed stances from software engineering researchers (Loui, 2008)) with
goals different to "traditional software".

Thus, what "software engineering practices" mean for "scientific software" remains ambiguous, and
some authors have argued that the "gap" between software engineering and scientific programming
threatens the production of reliable scientific results (Storer, 2017). The following are some example
questions meant to illustrate how these other aspects of "scientific software" may still be related to
software engineering practices:

Could text in a literate programming file be considered documentation? Is scripting subjected to
code-smell practices like incorrect naming or code reuse? Does self-admitted technical debt exists in
literate/scripting programming? What is the usability of a literate programming document? Should
analytical scripts be meant for reuse?

The original article was intended to highlight some of the efforts made by software engineering
researchers to bridge this gap of software engineering knowledge for "scientific programming". Nonethe-
less, software engineering researchers have perhaps focused more strongly on R packages because of their
similarities to their current research (namely, "traditional software" development), thus making the
translation of knowledge slightly more straightforward. Approaching other aspects, paradigms, tools
and process of "scientific software" development still remains a gap on research that should be further
studied.

The Community

The community is the next link in this chain–they motivate software engineering researchers" investiga-
tions, are the subjects, and the beneficiaries. Yet many times, they can also be the cause of their own
"pain points". For example, research has shown that although StackOverflow is nowadays a staple
for any programmer, many solutions derived from it can be outright insecure (Rahman et al., 2019;
Fischer et al., 2017; Acar et al., 2016), have poor quality and code smells (Zhang et al., 2018; Meldrum
et al., 2020), be outdated (Zhang, 2020; Zerouali et al., 2021), or have low performance (Toro, 2021),
among others. This is but a facet of the concept of "there is no silver bullet" (Brooks, 1987), and the
only way of solving such situation (partially, and temporarily) is to look at it from multiple points of
views. This action is what the original paper aimed to highlight.

Final words

In the end, the differences between software engineering researchers and research software engineers are
blurry, and the translation of concepts from "traditional software" development/research to "scientific
software" development/research may not be as straightforward as both groups of stakeholders
consider. However, for the R community to continue evolving, both can (and should) work together
and learn from the other.
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g2f as a Novel Tool to Find and Fill Gaps
in Metabolic Networks
by Daniel Osorio, Kelly Botero, Andrés Pinzón Velasco, Nicolás Mendoza-Mejía, Felipe Rojas-
Rodríguez, George Barreto and Janneth González

Abstract During the building of a genome-scale metabolic model, there are several dead-end metabo-
lites and substrates which cannot be imported, produced, nor used by any reaction incorporated in
the network. The presence of these dead-end metabolites can block out the net flux of the objective
function when it is evaluated through Flux Balance Analysis (FBA), and when it is not blocked, bias
in the biological conclusions increase. In this aspect, the refinement to restore the connectivity of
the network can be carried out manually or using computational algorithms. The g2f package was
designed as a tool to find the gaps from dead-end metabolites and fill them from the stoichiometric
reactions of a reference, filtering candidate reactions using a weighting function. Additionally, this
algorithm allows downloading all the sets of gene-associated stoichiometric reactions for a specific
organism from the KEGG database. Our package is compatible with both 4.0.0 and 3.6.0 R versions.

Introduction

Genome-scale metabolic models (GEMs) are multi-compartment metabolic reconstructions that specify
the set of chemical reactions catalyzed by an organism (usually hundreds to thousands) covering
the metabolic biochemical molecular function of a complete genome (Szappanos et al., 2011). The
main goal of these reconstructions is to relate the genome of a given organism with its physiology,
incorporating every metabolic transformation that this organism can perform (Agren et al., 2013; Chen
et al., 2012). The GEMs are converted into computational models for the simulation of a species-
specific metabolism in order to gain insight into the complex interactions that give rise to the metabolic
capabilities (Alper et al., 2005; Fong et al., 2005; Cook and Nielsen, 2017). The predictive accuracy of a
model depends on the comprehensiveness and biochemical fidelity of the reconstruction (Thiele et al.,
2014).

The GEM construction process can be divided into two fundamental stages: (1) The generation of
a draft of the reconstructed network. Here, the reactions associated with the enzymes that participate
in the metabolism of a particular organism are downloaded from specialized databases such as KEGG,
MetaCyc, or ModelSEED (Pham et al., 2019; van Steijn et al., 2019). (2) A refinement of the network is
done manually or through the use of computational algorithms (Pham et al., 2019; van Steijn et al.,
2019). Similar steps are performed during the construction of a tissue-specific metabolic reconstruction,
defined as the subset of reactions included in a genome-scale metabolic reconstruction that are highly
associated with the metabolism of a specific tissue (Palsson, 2009; Schultz and Qutub, 2016; van Steijn
et al., 2019). These are constructed from the measured gene expression or proteomic data allowing
researchers to characterize and predict the metabolic behavior of tissue under any physiological
conditions Ataman et al. (2017). It is important to highlight that a drawback of this approach arises
from the fact that only the reactions associated with specific enzymes or genes can be mapped from
the measured data. Therefore, the spontaneous and non-facilitated-transport reactions are missing in
the first stages (Schultz and Qutub, 2016).

If all relevant exchange reactions are available, a high-quality model is expected to be able to carry
flux in all its reactions (Agren et al., 2013); thus, a refinement stage in the reconstruction is required
to restore the connectivity of the network. In this aspect, the gaps in the draft reconstruction are
identified, and candidate reactions to fill the gaps are found using literature and metabolic databases
(Satish Kumar et al., 2007; Thiele and Palsson, 2010). The network gaps can be associated with dead-
end metabolites, which cannot be imported nor produced by any of the reactions in the network, or
metabolites that are not used as substrates or released by any of the reactions. The presence of this
type of metabolites can be problematic when the metabolic network is transformed into a steady-
state metabolic model; mainly because flux through the network is blocked due to the incomplete
connectivity with the rest of the network. Therefore, it is not possible to accurately optimize the
metabolic flux distribution under an objective function, increasing the bias in the biological conclusions
obtained from the reconstruction (Satish Kumar et al., 2007).

A manual refinement can be performed as an iterative process to assemble a higher confidence
compendium of organism-specific metabolic reactions on a draft metabolic reconstruction (Bateman,
2010; Heavner and Price, 2015; Howe et al., 2008). Since the network reconstructions typically involve
thousands of metabolic reactions, the model refinement can be a very complex task, which not only
requires plenty of time and intensive use of available literature, databases, and experimental data
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(Heavner and Price, 2015; Lakshmanan et al., 2014) but also can lead to the introduction of new errors
and to overlook old ones (Agren et al., 2013; Machado et al., 2018). These metabolic network gap
refinement can also be performed using several algorithms developed for open.source environments,
such as Python and GAMS, or in a closed-source environment such as MATLAB (Wang and Marci,
2018). Commonly implemented algorithms are mainly based on optimization procedures to fill the
gaps that allow the production of a specific metabolite or give flux for a single biological objective
function. Other algorithms modify the directionality of reactions or add new reactions to the model
without associated evidence (Table 1)

Algorithm Implementation (Open source)
Package Environment Package Environment

"SMILEY" COBRApy Python Yes Yes
"gapFind" and "gapFill" - GAMS - Yes
"growMatch" COBRApy Python Yes Yes
"fastgapfill" openCOBRA MATLAB Yes No

Table 1: Description and comparison of the methods used for gap find and filling. The available
algorithms are presented under the different environments.

Table 1 listed the four most used algorithms for gap filling across three environments. SMILEY,
developed by Reed et al. (2006), identifies the minimum number of reactions required to allow
the model a specific metabolite production through an optimization function. Reactions to fill the
gaps are identified from a universal database of stoichiometric reactions, and the process is carried
out one metabolite per time (user-defined). Alternatively, "gapFind" and "gapFill" in GAMS were
developed by Satish Kumar et al. (2007) and identified the metabolites (’gapFind’) in the metabolic
network reconstruction, which cannot be produced under any uptake conditions in both single and
multicompartment. Subsequently, ’gapFill’ identify the reactions from a customized multi-organism
database that restores the connectivity of these metabolites to the original network using optimization-
based procedures. In the process, the procedure makes several intra-model modifications such as: (1)
modify the directionality of the reactions in the model, (2) add fake external transport mechanisms,
and (3) add fake intracellular transport reactions in multicompartment models. "growMatch" was
developed by Kumar and Maranas (2009), and it identifies the minimum number of reactions required
to allow the model flux to a selected objective function through an optimization algorithm. Reactions
to fill the gaps are identified from a universal database of stoichiometric reactions. The process is
carried out with one objective function per time (user-defined). Finally, developed by Thiele et al.
(2014), the ’fastGapFill’ algorithm identifies the blocked reactions through an optimization procedure.
It searches candidate reactions to fill the gaps in a universal database of stoichiometric reactions
through the ’fastCore’ algorithm. This second algorithm computes a compact flux consistent model
and uses it to filter and determine the reactions to be added. In the filling process, fake transport
reactions between compartments are added.

In this aspect, and with the aim of offering an open-source tool that improves the refinement of
drafts network reconstructions and the depuration of metabolic models under the R environment,
we introduce the g2f R package. This tool includes five functions to identify and fill gaps, calculate
the additional cost of a reaction, and depurate metabolic networks of blocked reactions (no activated
under any scenario). The implemented gapFill algorithm in g2f identifies the dead-end metabolites and
traces them in a universal database of stoichiometric reactions used as a reference to select candidate
reactions to be added. Selected reactions are then filtered by the function additionCost considering
metabolites present in the original reconstruction to minimize the number of new metabolites to be
added. The function calculates the cost of adding a reaction by dividing the amount of non-included
metabolites in the reference metabolic network over the total number of metabolites involved in the
reaction. The latter is done to minimize the number of false-positive metabolites that could increase
the number of new gaps in the model. Also, blockedReactions search for blocked reactions, so gapFill
can fill blocked paths in the network. Finally, getReactionsList extracts the reactions from the model
in the form of a list of strings, so it can be easily compared with the list of reactions obtained from
getReference, which downloads specific stoichiometric matrices from KEGG in order to reconstruct
specific organism models.

Installation and Functions

The g2f package is available for download and installation from the Comprehensive R Archive
Networks (CRAN, Hornik (2012)). This package is compatible with R 3.6.0 and 4.0.0 versions. To get
the latest stable version of g2f, install it directly from GitHub:
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Workflow
Input: A sybil metabolic model.
1. with getReference: Reference reactions list is retrieved from KEGG database.
2. with blockedReactions: Check if there is any dead-end metabolite, the results
serve as a guide to the user.
3. with getReactionsList: List of reactions is extracted from input metabolic
model.
4. with additionCost: The addition cost for the reference reactions list can be
calculated to do a manual check.
5. with gapFill: Find dead-end metabolites and fill the gaps with reactions
from the reference list, which are below the addition cost treshold defined.

Loop user defined times (default = 5)
5.1. Searches dead-end reactants and products.
5.2. Calculates the additional cost of the reference reactions.
5.3. Filters reference reactions with a cost above the threshold.
5.4. Selects the filtered reactions that have any orphan reactant or product.
5.5. Fills the gaps in the model with the selected reactions.

Output: List of the added reactions with their additional costs

Table 2: Workflow of g2f packet

# Install 'devtools' R Package
R> install.packages('devtools')

# Install 'g2f' package
R> setRepositories(ind=1:2)
R> devtools::install_github('gibbslab/g2f')
R> library('g2f')

g2f includes 5 functions in order to identify gaps (metabolites not produced or not consumed
in any reaction) and fill the gaps from a reference metabolic reconstruction. Briefly, the gap-filling
reconstruction is based on the stoichiometric reaction matrix either from a specific model or by the
complete set of gene-associated stoichiometric reactions for a specific organism from the KEGG
database using a weighting function. Table 3 summarizes the functions contained in the g2f R package.

Function Description
blockedReactions Identifies blocked reactions in a metabolic network.
additionCost Calculates the cost of addition of a stoichiometric reaction.
getReactionsList Extract the reaction list from a model.
getReference Download all stoichiometric reactions from the KEGG database.
gapFill Find and fill gaps in a metabolic network.

Table 3: Descriptions of g2f available functions.

Downloading reference data from KEGG database

The KEGG database is a resource, widely used as a reference in genomics, metagenomics, metabolomics,
and other studies. Moreover, KEGG has been used for modeling and simulation in systems biology,
specifically in GEMs (Kanehisa, 2006; Kanehisa et al., 2016; Martín-Jiménez et al., 2017). Currently, the
database includes complete genomes, biological pathways, and the associated stoichiometric reactions
for 542 eukaryotes, 5979 bacteria, and 334 archaea. The g2f’s getReference function downloads all the
gene-associated KeggOrthology (KO) stoichiometric reactions from KEGG and their correspondent
E.C. numbers for a customized organism, through the use of KEGG organism ID. Based on the KOs
associated with the reactions, their respective gene-protein-reaction is constructed as follows: all genes
associated with a given KO are linked by an AND operator. After that, when a reaction has more than
one associated KO, previously linked genes are now joined by an OR operator. As an example, to
download all the stoichiometric reactions (1492) associated with Escherichia coli, just type:

R> e.coli <- getReference(organism = "eco")

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 31

Identify blocked reactions

To identify the blocked reactions included in a metabolic model, the blockedReactions function sets
each one of the reactions included in the model (one at the time) as the objective function and optimizes
the system through Flux Balance Analysis (FBA). Reactions that are not participating in any possible
solution during all evaluations are returned as a blocked reaction.

As an example, we identify the blocked reactions in the E. coli core metabolic model included in
the sybil package (Gelius-Dietrich et al., 2013).

R> data("Ec_core")
R> blockedReactions(Ec_core)

|==============================================================| 100%
[1] "EX_fru(e)" "EX_fum(e)" "EX_mal_L(e)" "FUMt2_2" "MALt2_2"

Calculating the additional cost

Adding new reactions in order to fill gaps can be an easy path to increase the number of dead-end
metabolites (Hosseini and Marashi, 2017). Therefore, as a strategy to reduce the possible addition of
new dead-end metabolites into the system, the additionCost function calculates the cost of adding
new metabolites based on metabolites that constitute the new reaction and those that compose the
stoichiometric reactions already present in the metabolic reconstruction (Equation 1). Values of the
function represent a weight ranging between 0 and 1.

additionCost =
n(metabolites(newReaction)) /∈ (metabolites(reactionList))

n(metabolites(newReaction)
(1)

As an example, we select a sample of reactions from the downloaded reference for E. coli and
calculate the additional cost for the remaining reactions (6 first values are shown).

R> reactionList <- sample(e.coli$reaction,10)
R> head(

+ additionCost(reaction = e.coli$reaction,
+ reference = reactionList)
+ )

[1] 1.0000000 1.0000000 1.0000000 0.8000000 0.8333333 1.0000000

To understand the results of the additionCost, we present two examples for the glutamine
synthetase reaction in the glutamate metabolism of E. coli core model.

[c]: ATP + Glu-L + Nh4 --> ADP + Gln-L + h + pi

The reaction takes as input Adenosine triphosphate (ATP), L-Glutamate (Glu-L), and Ammonium
(Nh4) and produces Adenosine diphosphate (ADP), L-Glutamine (Gln-L), H+ (h), and inorganic
Phosphate (pi) in the cytoplasm. We are going to assume that this reaction is going to be added to the
model and that the number of metabolites to be added change between two conditions. In the first
case, the reaction would be evaluated by additionCost, but one of the seven metabolites is not present
on the list of reactions of the complete model. In the second situation, four of the seven metabolites
are not present in the metabolite list of the model. By dividing the number of metabolites to be added
by the total number of metabolites in the reaction, additionCost produces 0.14 and 0.57 as resulting
values for the two conditions respectively. In this sense, if we pick a threshold of 0.2 for the gapfill
the first case would allow the reaction to be added but not the second condition. By using a threshold
of 0.2 is possible to set a medium point for the reaction addition. Where higher values are more
permissive and lower values are more restrictive.

"Gap find and fill" performing, input and syntaxis

To identify network gaps in a metabolic model and fill them from a reference network, the gapFill
function performs several steps: (1) The dead-end metabolites are identified from the stoichiometric
matrix, (2) the candidate reactions are to be added by comparing the metabolites against the metabolite
list of the model, (3) the additional cost of each candidate reaction is calculated, (4) the candidate
reactions with an additional cost lower or equal to the user-defined limit are added to the reaction list.
Finally, the process returns to step 1 until no more original-gaps can be filled under the user-defined
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limit. The function returns a set of candidate stoichiometric reactions to fill the original-gaps included
in the metabolic network.

As an example, we show how to fill dead-end metabolites included in the previously selected
sample using all downloaded stoichiometric reactions from the KEGG database for E. coli as the
reference.

R> reactionsAdded <- gapFill(reactionList = reactionList,
+ reference = e.coli$reaction,
+ limit = 1/4
+ )

48% gaps filled in the last iteration
26% gaps filled in the last iteration
13% gaps filled in the last iteration
13% gaps filled in the last iteration
4% gaps filled in the last iteration

R> head(reactionsAdded)
addCost react
1 0.00 L-Glutamine + D-Fructose 6-phosphate <=> L-Glutamate + D-Glucosamine

6-phosphate
2 0.25 ATP + Pyruvate <=> ADP + Phosphoenolpyruvate
3 0.00 ATP + AMP <=> 2 ADP
4 0.25 ATP + dTDP <=> ADP + dTTP
5 0.00 ATP + 5-Fluorouridine diphosphate <=> ADP + 5-Fluorouridine triphosphate
6 0.25 ATP + UDP <=> ADP + UTP

The output is a data frame with the reactions that were found to fill the gaps in the model, with
the corresponding additionCost calculated for each one.

Compatibility

In order to provide compatibility, g2f implements getReactionsList a function that helps to extract
the reactions of a sybil model as a list of strings, each string being a reaction, which is the input format
of gapFill accepts.

In the examples before, we used a reduced version for the reference organism of E.coli from
KEGG. Now we will use a converted model to SBML using KEGG2SBML (Moutselos et al., 2009) from
(Akiya Jouraku and Kitano, 2008), which will be converted into sybil with the help of the sybilSBLM
package, and then the reactions list will be extracted to use them with the gapFill function. Note that
we have done this because the name of the reaction metabolites in the model should be the same as
the ones used in KEGG, and the E.coli core metabolic model included in the sybil package does not
meet this requirement.

# Install and import sybilSBML package
R> install.packages('sybilSBML')
R> library('sybilSBML')

# Read the SBML and convert it to sybil
R> mod <- readSBMLmod("eco/eco00730.xml", bndCond = FALSE)

# Extract the model's reactions
R> react <- getReactionsList(mod)

# Fill the gaps
R> reactionsAdded <- gapFill(reactionList = react$react,

reference = e.coli$reaction,
limit = 1/4

)

20% gaps filled in the last iteration
0% gaps filled in the last iteration
0% gaps filled in the last iteration
0% gaps filled in the last iteration
0% gaps filled in the last iteration
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addCost react
1 0 ATP + ADP <=> ADP + ATP
2 0 ATP + H2O <=> ADP + Orthophosphate

g2f performance

We tested the performance of g2f against the most used platforms for gap-filling in the metabolic
networks using a computer with i7 8750h 2.2GHz processor and 12Gb DDR4 Ram. We compared the
performance of R package g2f, Python cobrapy gapfill function, and Matlab COBRA fastgapfilling
function (Table 4). The benchmark was performed for each gap-filling algorithm by deleting 10 random
reactions across the E. coli core model (Orth et al., 2010).

Platform Limit TicToc (sec) Solution

R: g2f – "gapfill"

0.1 2.83

Feasible0.15 2.76
0.2 2.73
0.25 6.91

Python: Cobrapy – "gapfill" - 1.369 Unfeasible

Matlab: COBRA – "fastgapfill" [Cplex solver]

0.1 7.858

Feasible0.15 8.836
0.2 9.001
0.25 5.695

Table 4: Performance of g2f compared with other gap-filling algorithms. The limit is associated with
the threshold for the limit of gap-filling. TicToc was the methodological approach used to measure the
performance time. The solution is the capacity of the model to run a FBA after the gap fill function
was run. A single iteration of the gap-filling algorithm Cobrapy-"gapfill" was unable to generate a

suitable FBA.

Considering the computational performance and flux recovery across the network (FBA solution),
g2f arises as a suitable method for Genome-scale metabolic network reconstructions gap filling using
curated models as reference.

Application

A wide variety of open-source, paid software, and webtools have been developed to fill the gaps
in automated or manual metabolic reconstructions (Karp et al., 2018; Machado et al., 2018; Prigent
et al., 2017). Performing a gap-filling accurately is a challenging task considering the possibility of
overestimating reaction addition or excluding metabolites from the filling by inquorate thresholds (Pan
and Reed, 2018). g2f offers an R based open-source alternative capable of integrating with systems
biology packages such as sybil (Gelius-Dietrich et al., 2013) or minVal (Osorio et al., 2017) as well as
big projects such as Recon3D (Brunk et al., 2018) or the Human Metabolic Atlas (Pornputtapong et al.,
2015). Finally, considering that the majority of metabolic models are derived from annotated genomes
where not all the enzymes are known, g2f offers the possibility to optimize the topology of public
available metabolic models or automated metabolic reconstructions.

Conclusions

We developed g2f, a novel R package to, find dead-end metabolites in a genome-scale metabolic
reconstruction and fill the reaction gaps with metabolites available in a stoichiometric matrix from a
reference model. Additionally, g2f filters the candidate reactions using a weighting function and a
user-defined limit. We depicted the functions included in the package using the E. coli reference model
downloaded from the KEGG database, and the core metabolic model included in the sybil package.
Finally, the performance of g2f was compared with other gap-filling algorithms (Cobrapy – gapfill
and Matlab:COBRA – fastgapfill), showing an adequate feasibility and performance speed.
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Summary

Dead-end metabolites are a major drawback in genome-scale metabolic reconstruction and analysis.
Since there is a lack of available tools to solve this situation in the R environment, hereby, we introduce
the g2f package to find and fill dead-end metabolites in a given reconstruction based on a reference
template. Our method allows users to filter candidate reactions using a weighting function and a
user-defined limit. We show step by step the functionality of each procedure included in the package
using a reference model downloaded from the KEGG database for Escherichia coli and the core
metabolic model included in the sybil package.
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lg: An R package for Local Gaussian
Approximations
by Håkon Otneim

Abstract The package lg for the R programming language provides implementations of recent
methodological advances on applications of the local Gaussian correlation. This includes the estimation
of the local Gaussian correlation itself, multivariate density estimation, conditional density estimation,
various tests for independence and conditional independence, as well as a graphical module for
creating dependence maps. This paper describes the lg package, its principles, and its practical use.

Introduction

Tjøstheim and Hufthammer (2013) propose the local Gaussian correlation (LGC) as a new measure of
statistical dependence between two stochastic variables X1 and X2, which has the following important
property yet unrivaled in the literature: It can separate between positive and negative nonlinear
dependence while still reducing to the ordinary Pearson correlation coefficient if X1 and X2 are jointly
normally distributed. The R-package localgauss (Berentsen et al., 2014) provides two important
functions in this context; one that calculates the sample LGC based on observed values of (X1, X2),
and one that uses the estimated LGC to perform a local test of independence between X1 and X2 as
described in detail by Berentsen and Tjøstheim (2014).

We have lately seen a number of new applications of the LGC that the localgauss package does
not support, however. Støve et al. (2014) use the LGC to test for financial contagion across markets
during crises. Otneim and Tjøstheim (2017) present a procedure for estimating multivariate density
functions via the LGC, which Otneim and Tjøstheim (2018) modify in order to compute estimates of
conditional density functions. Lacal and Tjøstheim (2017) present a test for serial independence within
a time series, which Lacal and Tjøstheim (2018) extend in order to include a test for cross-correlation
between two time series. Finally, Otneim and Tjøstheim (2021) develop the local Gaussian partial
correlation (LGPC) as a measure of conditional dependence and a corresponding test for conditional
independence.

This paper describes the lg package (Otneim, 2019), which provides a unified framework to
implement all these methods, as well as a tool for visualizing the LGC and LGPC as dependence maps.
Jordanger and Tjøstheim (2020) use the LGC in spectral analysis of time series, but those methods
have their own computational ecosystem in the localgaussSpec package (Jordanger, 2018).

In Section 2.2, we provide a brief introduction to the LGC as well as the methods and applications
referred to above. In Section 2.3, we describe the core function in the lg package and move on to
demonstrate the implementation of various applications in Section 2.4. We conclude this paper in
Section 2.5 by demonstrating the graphical capabilities of the lg package.

Statistical background

Consider a random vector X having the unknown probability density function fX (x). It is a standard
task to estimate fX based on a random sample X1, . . . , Xn, and the statistical literature provides an
abundance of methods to accomplish this. One may, for example, make the assumption that the
unknown density function has a particular parametric form, fX ∈ Fθ , where Fθ = { f (x; θ), θ ∈ Θ} is a
family of probability density functions indexed by some parameter θ, and where Θ is the parameter
space. Under this assumption, we will typically produce an estimate of the parameter θ, written θ̂,
using the maximum likelihood method. The estimated probability density function is then given as

f̂X (x) = f
(

x; θ̂
)

.

A different approach is to estimate fX (·) without any prior parametric assumptions. The classical
method for nonparametric density estimation is the kernel estimator

f̂X (x) =
1

nb

n

∑
i=1

K
(

Xi − x
b

)
,

where K is a symmetric density function (the kernel) and b is a tuning parameter (the bandwidth)
that controls the smoothness of the estimate f̂X (·). See Silverman (1986) for an introduction to this
topic. There is also a massive statistical literature on density estimation containing extensions and
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Figure 1: Two dependence maps

improvements to the classical methods to be used in various practical situations.

Hjort and Jones (1996) provide one such idea. They consider a parametric family Fθ , but instead
of searching for a single parameter value θ0 for which fX (x) = f (x; θ0) (or approximately so), they
rather assert that different members of Fθ may approximate fX locally in different parts of its domain.
In other words, they seek to estimate a parameter function θ0 (x) for which fX (x) = f (x; θ0 (x)) (or
approximately so), and do this by maximizing a local likelihood function in each point x:

θ̂ (x) = arg max
θ∈Θ

Ln (θ, x)

= arg max
θ∈Θ

1
nb

n

∑
i=1

K
(

Xi − x
b

)
log f (Xi; θ)−

∫ 1
b

K
(

y − x
b

)
f (y; θ) dy, (1)

where, again, K is a symmetric density function and b is a bandwidth parameter that controls the
smoothness of the estimate. The second term in the local likelihood function is a penalty that ensures

that the estimated density f̂X (x) = f
(

x; θ̂ (x)
)

converges correctly to the true density function fX (x)
as the sample size n increases to infinity and the bandwidth b decreases towards zero. See Hjort and
Jones (1996) for a detailed discussion about this construction.

Tjøstheim and Hufthammer (2013) consider the bivariate case X = (X1, X2) and take Fθ to be the
family of bivariate normal distributions consisting of densities on the form

f (x; θ) = ψ (x1, x2; µ1, µ2, σ1, σ2, ρ)

=
1

2πσ1σ2
√

1 − ρ2

× exp

{
− 1

2(1 − ρ2)

(
(x1 − µ1)

2

σ2
1

− 2ρ
(x1 − µ1) (x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

)}
, (2)

where θ = (µ1, µ2, σ1, σ2, ρ) is the vector of parameters. Using a sample {X1i, X2i}, i = 1, . . . , n, they
estimate θ locally in the point x by maximizing the local likelihood function (1), producing

θ̂ (x) = (µ̂1 (x) , µ̂2 (x) , σ̂1 (x) , σ̂2 (x) , ρ̂ (x)) ,

and take special interest in the estimated correlation function ρ̂ (x) (i.e., the LGC) because it serves as
an attractive local measure of statistical dependence between X1 and X2. They show that the LGC
reveals many types of nonlinear statistical dependence that are not captured by the ordinary (global)
Pearson correlation coefficient. Furthermore, the LGC distinguishes between positive and negative
dependence and reduces to the Pearson ρ if X1 and X2 are jointly normal. We refer to Tjøstheim and
Hufthammer (2013) for a detailed treatment of the theoretical foundations of the LGC as well as several
examples and rather present two simple illustrations at this point in order to demonstrate the concept.

In Figure 1, we have plotted the estimated LGC for two bivariate data sets on a grid; 1000 simulated
observations from a binormal distribution having correlation equal to 0.5, and the daily return on
the CAC40 and FTSE100 stock indices on 1000 consecutive trading days starting on May 5th 2014
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(Datastream, 2018). In the first panel, we see that the estimated local correlation coincides with the
global correlation, except for the estimation error which is comparable to the uncertainty observed
in other nonparametric estimation methods such as the kernel density estimator (see, for instance,
Otneim and Tjøstheim (2017) for a formal asymptotic analysis of relevant convergence rates). In the
second panel, we see clearly that the local correlation, and thus the dependence, is stronger in the
lower left and upper right regions of the distribution than in the central parts. The phenomenon of
local dependence is well known in the financial literature, and using the LGC it can be measured,
interpreted, and visualized in a natural way. The interpretation of this particular figure is that extreme
observations on the two stock indices are more strongly dependent than the less extreme observations.

One may obtain these particular estimates from the older localgauss package (as well as the lg
package, of course), but the plotting routine that was used to produce these figures is included in the
lg package and will be described in more detail in Section 2.5.

Taking the LGC as a measure of dependence opens up a number of possibilities to construct
statistical tests. Berentsen and Tjøstheim (2014) show that ρ (x) ≡ 0 implies that X1 and X2 are
independent. They show further that independence between X1 and X2 implies ρ (x) ≡ 0 if the
population values of the local mean and standard deviation functions satisfy the following conditions:
µi (x1, x2) = µi (xi) and σi (x1, x2) = σi (xi) for i = 1, 2. Equivalence between independence and
ρ (x) ≡ 0 holds in general if the observations have been suitably transformed according to a procedure
presented later in this section. It follows then that departures from ρ̂ (x) ≡ 0 may be taken as evidence
against the hypothesis that X1 and X2 are statistically independent. Berentsen and Tjøstheim (2014)
formalize this notion by testing whether ρ (x) ≡ 0 for all x ∈ S ⊂ R2 using the test statistic

Tn,b =
∫

S
h (ρ̂ (x)) dFn(x) (3)

for some non-negative function h, for example h (x) = x2 or h (x) = |x|. Critical values may be ob-
tained by permutations of the data under the null hypothesis, and we demonstrate the implementation
of this test using the lg package in Section 2.4.2.

Consider next the stationary time series {Xt}. The autocorrelation function (ACF) ρk = ρ (Xt, Xt−k)
is a well known concept for describing the serial dependence in the time series, but the ACF is, again,
only capable to completely capture linear serial dependence. Lacal and Tjøstheim (2017) seek to
remedy this by rather calculating the local correlation between Xt and Xt−k. This leads to a test
for serial independence in a natural way. In fact, this work is mainly a theoretical exercise in order
to accommodate time series dependence. Testing for independence between Xt and Xt−k using
observations {Xt, Xt−k}T

t=k+1 leads to the same test statistic (3) and bootstrap procedure as the test for
independence between X1 and X2 that we described above.

Lacal and Tjøstheim (2018) extend this problem to test for serial cross-dependence between two
time series {Xt, Yt} by measuring the LGC between Xt and Yt−k. Departures from ρ̂ (x, y) ≡ 0 are,
again, taken as evidence against independence, and the test statistic (3) provides an aggregate measure
of this discrepancy in the specified region S. In this case, however, we can not obtain replicates of
the test statistic under the null hypothesis by simple permutations of the data. Lacal and Tjøstheim
(2018) suggest two block bootstrap procedures instead to this end, using fixed and random block sizes,
respectively. The tests for serial dependence and serial cross-dependence are both implemented in the
lg package, as we demonstrate in Section 2.4.2.

We find another application of the local Gaussian approximation in work by Støve et al. (2014),
who measure and test for financial contagion. They define contagion as "a significant increase in
cross-market linkages after a shock to one country" (Forbes and Rigobon, 2002, p. 2223) and employ the
LGC to quantify this potential linkage. The authors estimate the LGC on a grid {x1, x2}k, k = 1, . . . , K
along the diagonal D = {(x1, x2) : x1 = x2} before and after some critical event in the financial markets,
denoted as the crisis (C) and the non-crisis (NC) periods, respectively. They compare the two estimates
using the following test statistic,

TD
n,b =

K

∑
k=1

{ρ̂C (xk, xk)− ρ̂NC (xk, xk)}w (xk, xk) ,

where w (·, ·) is a weight function that serve the same purpose as the integration area S in (3). In
this case, Støve et al. (2014) show that a standard bootstrap will suffice in order to produce approxi-
mate replicates of TD

n,b under the null hypothesis of no financial contagion, and we demonstrate the
implementation of this test using the lg package in Section 2.4.3.

Although the original work by Hjort and Jones (1996) provide a general framework for local
likelihood density estimation using any p-variate parametric family as the local family, it is evident
that the method may struggle in multivariate applications much in the same way as the kernel
density estimator does. This is a consequence of the curse of dimensionality, the effect of which is
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sought remedied by an algorithm provided by Otneim and Tjøstheim (2017). The idea is to fit the
p-variate normal distribution ψ (µ, Σ) locally, where µ is the vector of p expectations, and Σ is the
p × p covariance matrix (to which the correlation matrix R corresponds), but under the following
structural simplifications:

µi (x) = µi
(

x1, . . . , xp
) def
= µi (xi) (4)

σi (x) = σi
(

x1, . . . , xp
) def
= σi (xi) (5)

ρij (x) = ρij
(

x1, . . . , xp
) def
= ρij

(
xi, xj

)
. (6)

Otneim and Tjøstheim (2017) estimate the local parameters above by first obtaining univariate marginal
locally Gaussian fits (eqs. 4 and 5), and then pairwise bivariate locally Gaussian fits (eq. 6). In the

second step, the estimates µ̂i (xi), µ̂j

(
xj

)
, σ̂i (xi), and σ̂j

(
xj

)
are kept fixed in the estimation of the

pairwise local correlation. They argue further that the following transformation technique will produce
better density estimates in many situations. The motivation for introducing the simplifications defined
in equations 4-6 can be compared to the practical advantages of estimating additive regression models,

where E (Y) = f
(

x1, . . . , xp
) def
= f1 (x1) + · · ·+ fp

(
xp
)
.

Denote by Fi (xi), i = 1, . . . , p the marginal distribution functions of the stochastic vector X, and
by F̂i (xi) = n−1 ∑n

i=1 1 (Xi ≤ xi) their empirical counterparts. They then estimate the density fZ (z)
of the vector Z =

{
Φ−1 (Fi (Xi))

}
i=1,...,p. In practice it is approximated by

Ẑ =
{

Φ−1
(

F̂i (Xi)
)}

i=1,...,p
, (7)

and where Ψ (·) is the univariate standard normal cdf. In that case, they simplify the estimation
problem even further and fix

µi (zi)
def
= 0 and σi (zi)

def
= 1, i = 1, . . . , p, (8)

so that the only parameter functions left to estimate are the pairwise local Gaussian correlations

R (z) =
{

ρij

(
zi, zj

)}
i<j

. We use the notation Z, zi, and zj to signify that the estimation is performed

on the (approximate) standard normal scale or z-scale for short. We can then estimate the joint density
fZ (z) of Z as

f̂Z (z) = ψ
(

z; µ (z) = 0, σ (z) = 1, R = R̂ (z)
)

, (9)

where µ (z) = {µi (z)} and σ (z) = {σi (z)} for i = 1, . . . , p, and then substitute fZ for f̂Z in the
following relation obtained by Otneim and Tjøstheim (2017) in order to estimate the unknown density
fX :

f (x) = fZ
(
Φ−1 (F1 (x1)) , . . . , Φ−1 (Fp

(
xp
)) )

×
p

∏
i=1

fi (xi)

ϕ
(
Φ−1 (Fi (xi))

) , (10)

where ϕ (·) is the standard normal pdf. This estimator is implemented the lg package as demonstrated
in Section 2.4.1.

One particular feature enjoyed by the jointly normally distributed vector X is that for any parti-

tioning X =
(

X(1), X(2)
)

, the conditional distribution of X(1)|X(2) = x(2) is also normal. In fact, if

X ∼ N (µ, Σ), and µ and Σ is partitioned according to
(

X(1), X(2)
)

as

µ =

(
µ1
µ2

)
and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
,

then X(1)|X(2) = x(2) ∼ N (µ∗, Σ∗), where

µ∗ = µ1 + Σ12Σ−1
22

(
x(2) − µ2

)
(11)

Σ∗ = Σ11 − Σ12Σ−1
22 Σ21, (12)

see e.g. Johnson and Wichern (2007, chapter 4). Otneim and Tjøstheim (2018) demonstrate that this
property may be translated into a corresponding local argument without modification. That is, if the
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joint density fX (·) can be written on a locally Gaussian form

fX (x) = ψ (x, µ (x) , Σ (x)) ,

then the conditional density of X(1)|X(2) = x(2) can also be written on the same locally Gaussian form
with local parameters given by equations (11) and (12), except that all quantities are x-dependent.
If we use the transformation technique described above together with simplification (8), the local
versions of equations (11) and (12) simplify to

µ∗ (z) = R12 (z) R22 (z)
−1 z(2), (13)

Σ∗ (z) = R11 (z)− R12 (z) R22 (z)
−1 R21 (z) , (14)

where we, again, switch to z-notation in order to make it clear that these quantities are estimated
on the standard normal z-scale. An estimator f̂X(1) |X(2) (·|·) of the conditional density fX(1) |X(2) (·|·)
follows immediately from an expression corresponding to (10), and the lg package provides functions
for implementing this estimator in R. We describe the implementation of this functionality in Section
2.4.1.

Finally, we refer to Otneim and Tjøstheim (2021) who take the local version of the conditional
covariance matrix (12) (or (14) in the transformed case) as a measure for conditional dependence,
and thus as an instrument to test for conditional independence. Consider the stochastic vector

X =
(

X(1), X(2), X(3)
)

, where X(1) and X(2) are scalars and X(3) may be a vector. X(1) is conditionally

independent from X(2) given X(3), written X(1) ⊥ X(2) | X(3), if the stochastic variables X(1) | X(3) and
X(2) | X(3) are independent, or, equivalently, if the joint conditional density of X(1) and X(2) given X(3)

can be written as the product

fX(1) ,X(2) |X(3)

(
x(1), x(2)|x(3)

)
= fX(1) |X(3)

(
x(1)|x(3)

)
× fX(2) |X(3)

(
x(2)|x(3)

)
. (15)

In this case, denote by α (z) the off-diagonal element in the 2 × 2 local correlation matrix R∗ (z) (which
derives directly from Σ∗ (z) as given in (14)). If X has a local Gaussian distribution, the conditional
independence (15) is equivalent to α (z) ≡ 0, and Otneim and Tjøstheim (2021) take departures from
this relation as evidence against the hypothesis of conditional independence between X(1) and X(2)

given X(3). The natural way to quantify this is the test functional

TCI
n,b =

∫
h (α̂ (z)) dFn(z). (16)

Otneim and Tjøstheim (2021) describe a bootstrap procedure for generating replicates of TCI
n,b under

the null hypothesis. In Section 2.4.4, we demonstrate how the lg package may be used to extract
estimates of the local partial correlation and perform tests for conditional independence according to
this scheme.

The first step: Creating the lg-object

The local Gaussian correlation may be used to perform a number of statistical analyses, as is evident
from the preceding section. The practitioner must first, however, make three quite specific modeling
choices; namely (i) to choose an estimation method, i.e., the level of simplification in multivariate
applications, (ii) to determine whether the data should be transformed towards marginal standard
normality before estimating the LGC, and (iii) to choose a set of bandwidths or at least a method for
calculating bandwidths. The architecture of the lg package requires the user to make these choices
before endeavoring further into specific applications by imposing a strict, two-step procedure:

1. Create an lg-object.

2. Apply relevant analysis functions to the lg-object.

In the following, we assume that one has a data set x loaded into the R workspace, which must be
an n × p matrix (one column per variable, one row per observation), possibly including NAs which
will be excluded from the analysis, or a data frame having the same dimensions. The fundamental
syntax for creating an lg-object is lg_object <-lg_main(x), and we will, in this section, explain how
the modeling decisions (i)-(iii) can be encoded into the lg-object by using appropriate arguments in
this function.
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Selecting the estimation method

Given a data set x having n rows and p ≥ 2 columns, the user must choose between four distinct
estimation methods and specify this choice by using the argument est_method to the lg_main()-
function. We look at the built-in bivariate data set faithful, which records the waiting time between
eruptions and the duration of the eruption for the Old Faithful geyser in the Yellowstone National
Park, USA (see the help file in R for more details: ?faithful), and load the lg package in order to
demonstrate the implementation:

R> x <- faithful
R> library(lg)

1. A full locally Gaussian fit for bivariate data. If p = 2, we may fit the bivariate normal ψ (x, θ)
locally to f (x), and by a "full local fit", we mean that we jointly estimate the five parameters

θ (x) =
(
µ1 (x1, x2) , µ2 (x1, x2) , σ1 (x1, x2) , σ2 (x1, x2) , ρ (x1, x2)

)
by optimizing the local likelihood function (1) in the grid point x = (x1, x2). To use this estimation
method in the subsequent analysis, specify est_method = "5par" in the call to lg_main():

R> lg_object <- lg_main(x, est_method = "5par")

The resulting lg_object is a list of class lg, and we may confirm that the assignment has been carried
out correctly by inspecting its est_method-element:

R> lg_object$est_method

[1] "5par"

Note that the full locally Gaussian fit for raw data is not available if the number of variables p is
greater than 2. The lg_main()-function will check for this and print out an error message if p > 2 and
est_method = "5par".

2. A simplified locally Gaussian fit for multivariate data. As described in the preceding section,
we may construct a simplified estimation procedure for calculating the LGC in two steps, which in
principle works for any number of dimensions (including p = 2):

1. Calculate µi (xi) and σi (xi), i = 1, . . . , p by fitting the univariate normal distribution locally to
each marginal density fi (xi) of f (x).

2. Keep µ̂i (x) and σ̂i (xi), i = 1, . . . , p from step 1 fixed when estimating ρij

(
xi, xj

)
, 1 ≤ i < j ≤ p

by fitting the bivariate normal distribution to each pair of variables Xi and Xj.

To use this method, create the lg-object by running the following line:

R> lg_object2 <- lg_main(x, est_method = "5par_marginals_fixed")

3. A simplified locally Gaussian fit for marginally standard normal data. This estimation
method is applicable for marginally standard normal data, or data that have been transformed to
approximate marginal standard normality by, e.g., the transformation (7). In that case, we fix the
marginal expectation functions and standard deviation functions to the constant values 0 and 1,
respectively, and estimate only the pairwise local Gaussian correlations as in (9). To use this estimation
method, create the lg-object by running

R> lg_object3 <- lg_main(x, est_method = "1par")

Note that the function call above will issue a warning if the option for transforming the data to
marginal standard normality is not at the same time set to TRUE, see the next sub-section on data
transformation for details.

4. A full locally Gaussian fit for trivariate data. If the number of variables p is equal to 3, and we
choose to transform the data to marginal standard normality (see the next sub-section), the transformed
density fZ (·) in (9) may be estimated by jointly estimating the three local correlations ρ12 (z1, z2, z3),
ρ13 (z1, z2, z3), and ρ23 (z1, z2, z3). This estimation method was introduced recently by Otneim and
Tjøstheim (2021) in order to increase power of their conditional independence test, but it can be used
in any application described in this paper that consider trivariate data. To use this estimation method,
create the lg-object by running

R> lg_object4 <- lg_main(x, est_method = "trivariate")

This command will throw an error if the data set x does not have exactly three columns.
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(a) The original data.
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(b) The same data transformed to marginal standard
normality.

Figure 2: The same data on different scales.

Data transformation

Next, the user must determine if the local Gaussian correlation should be estimated directly on the
raw data or on the marginally normal pseudo observations (7). This is carried out by using the logical
transform_to_marginal_normality-argument in lg_main, for example:

R> lg_object <- lg_main(x, transform_to_marginal_normality = TRUE)

The resulting lg_object now includes the element transform_to_marginal_normality set accord-
ing to the input, and if this is TRUE, it also includes the transformed_data and a function trans_new()
that may be used later to apply the same transformation to, e.g., grid points. If the transformation
option is set to FALSE, the transformed_data element contains the input data x, and trans_new() is
nothing more than the identity mapping for points in Rp. See Figure 2 for two plots that demonstrate
the effect of the data transformation on the example data.

Bandwidth selection

Finally, the user must specify a set of bandwidths or a method for calculating them. Given that the
different estimation methods described in Section 2.3.1 require different sets of bandwidths (i.e, joint,
marginal, and/or pairwise), the easiest approach for the user is to leave the selection and formatting
of the bandwidths to the lg_main()-function.

The bandwidth plays a slightly different role in local likelihood estimation than elsewhere in the
nonparametric literature. It controls the level of localization and thus only indirectly the smoothness of
the estimates. Indeed, suppose we concentrate on the univariate case for the moment and assume
that the (single) bandwidth b is small. In that case, we see from the local likelihood function (1) that
only the very few observations closest to a fixed grid point x0 will have significant weight when
determining the local parameter estimates θ̂0 (x) at that point. Moving on to another nearby point, x1
may then lead to a fairly different estimate θ̂ (x1) because the set of observations having weight in this
point is very different. This may, again, lead to rougher parameter estimates θ̂ (x) and in turn also to

rougher density estimates f
(

x, θ̂ (x)
)

.

If the bandwidth b grows large, on the other hand, all observations receive similar weights, and
furthermore: the local likelihood function (1) becomes approximately proportional to the ordinary
(global) likelihood function Ln (θ) = ∑n

i=1 log f (Xi; θ). In other words, the local parameter estimates
θ̂ (x) are smoothed towards the constant maximum likelihood estimates θ̂ML, and the estimated density

f
(

x; θ̂ (x)
)

towards the maximum likelihood estimate f
(

x; θ̂ML

)
. This means that the bandwidth

may be chosen to reflect the goodness-of-fit of f (x; θ) to the true density f (x).
In the multivariate applications referred to in this paper, the bandwidth b in (1) is a diagonal

matrix, and 1/b is naturally taken to represent its inverse.

We have in practice seen two automatic bandwidth selectors employed in the applications referred
to in Section 2.2: a cross-validation procedure that is fairly slow to compute but accurate with respect
to density estimation, and a plug-in bandwidth that is much quicker to calculate but less accurate with
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respect to density estimation. We use the argument bw_method to the lg_main()-function in order to
choose between the two.

1. Choosing bandwidths by cross-validation. The functional

CV (b) = − 1
n

n

∑
i=1

log f
(

Xi; θ̂(−i) (Xi)
)

,

where θ̂(−i) (x) is the parameter estimate obtained after deleting observation Xi from the data, is

proportional to a quantity that estimates the Kullback-Leibler distance between f
(
·, θ̂ (·)

)
and the

true density f (·); see Berentsen and Tjøstheim (2014). The cross-validated bandwidth bCV is hence
given by

bCV = arg min
b

CV (b) .

If we, for example, wish to use the simplified estimation procedure on the transformed data, we need
bandwidths for the marginal estimates of the local means and standard deviations, as well as a 2 × 2
diagonal bandwidth matrix for each pair of variables. This is accomplished by the following call to
lg_main():

R> # Create the lg-object with bandwidths chosen by cross-validation
R> lg_object <- lg_main(x,
R+ est_method = "5par_marginals_fixed",
R+ transform_to_marginal_normality = TRUE,
R+ bw_method = "cv")

The lg_object now contains the necessary bandwidths for this configuration, as can be seen by
inspecting the contents of its bw-element:

R> # Print out the bandwidths
R> lg_object$bw

$marginal
[1] 0.9989327 0.9875333

$marginal_convergence
[1] 0 0

$joint
x1 x2 bw1 bw2 convergence
1 1 2 0.2946889 0.331971 0

This is itself a list, containing the crucial elements marginal for the p marginal bandwidths, and joint
that contains the p(p − 1)/2 bandwidth matrices, one for each pair of variables (which in this bivariate
example just one variable pair, (x1, x2)). The convergence flags stem from the built-in R functions
optim() and optimize() that we use to obtain the minimizer of CV (·), and 0 indicates successful
convergence.

2. Using plug-in bandwidths. Obtaining cross-validated bandwidths is unfortunately fairly slow
on a standard computer. For sample sizes in the 500-1000 range, the process may take several minutes,
which is unfeasible when embarking on analyses that require, e.g., resampling. We have, therefore,
implemented a quick plug-in bandwidth selector as well that may suffice in many practical situations,
especially at the initial or exploratory stage.

Otneim and Tjøstheim (2017) show that the simplified version of the local Gaussian fit have
the same convergence rates as the corresponding nonparametric kernel density estimator for which
Silverman (1986) derives the plug-in formula b = 1.08 · sd (x) · n−1/5. By specifying bw_method =
"plugin", the lg_main()-function will select the bandwidths correspondingly, except that the exponent
changes to −1/6 for joint bandwidths, and the proportionality constant is by default set to 1.75. The
latter number is the result of regressing bCV on n−1/6 in a large simulation experiment covering
various data generating processes (Otneim, 2016). We see the effect of switching to plug-in bandwidths
in the code below:

R> # Make the lg-object with plugin bandwidths
R> lg_object <- lg_main(x,
R+ est_method = "5par_marginals_fixed",
R+ transform_to_marginal_normality = TRUE,
R+ bw_method = "plugin")
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Argument Explanation Default value

x The data, an n × p matrix or data frame
bw_method Method for calculating the bandwidths "plugin"

est_method Estimation method "1par"

transform_to_

marginal_normality Transform the data TRUE

bw The bandwidths to use if already calculated NULL

plugin_constant_

marginal Prop. const. in plugin formula for marg. bw. 1.75
plugin_exponent_

marginal Exponent in plugin formula for marg. bw. −1/5
plugin_constant_

joint Prop. const. in plugin formula for joint bw. 1.75
plugin_exponent_

joint Exponent in plugin formula for joint bw. −1/6
tol_marginal Abs. tolerance when optimizing CV (b), marg. 10−3

tol_joint Abs. tolerance when optimizing CV (b), joint 10−3

Table 1: Arguments to the initialization function lg_main()

R> # Print out the bandwidths
R> lg_object$bw

$marginal
[1] 0.5703274 0.5703274

$marginal_convergence
[1] NA NA

$joint
x1 x2 bw1 bw2 convergence

1 1 2 0.6875061 0.6875061 NA

Summary of the initialization function

In the sub-section above, we present the three most important arguments to lg_main(). Each of them
allows the user to configure one of the three crucial modeling choices. Let us complete this treatment
by covering some possibilities to make further adjustments to those choices.

1. The user may supply the bandwidths directly to lg_main() by passing them to the bw-argument.
They have to be in the correct format, though, which is a list containing the vector $marginal if
est_method = "5par_marginals_fixed", and always a data frame $joint specifying all variable
pairs in the x1 and x2 columns and the corresponding bandwidths in the bw1 and bw2 columns.
The function bw_simple() will assist in creating bandwidth objects.

2. If bw_method = "plugin" the user may change the proportionality constant and exponent in the
plugin formula for the joint and, if applicable, the marginal bandwidths. See Table 1 for the
necessary argument names.

3. If bw_method = "cv", the user may change the numerical tolerance in the optimization of CV (b).
See Table 1 for the necessary argument names.

Statistical inference using the lg package

We proceed in this section to demonstrate how to implement each of the tasks that we discussed
in Section 2.2. The general pattern is to pass the lg-object to one of the estimation or test functions
provided in the lg package. We will look at some financial data in the examples: the monthly returns on
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Figure 3: Local correlations and density estimates calculated using the dlg()-function.

the S&P500, FTSE100, DAX30, and TOPIX stock indices from January 1985 to March 2018 (Datastream,
2018).

Density estimation

We start by introducing a basic function for estimating the LGC on a grid as described by Otneim and
Tjøstheim (2017), and thus also a probability density estimate. We create a grid, x0, having the same
number of columns as the data in the code below. Note that we use the pipe operator %>% from the
magrittr package (Bache and Wickham, 2014) as well as functions from the dplyr package (Wickham
et al., 2018) for easy manipulation of data frames. We then pass the grid and the lg-object containing
our modeling choices to the dlg()-function in order to do the estimation.

R> # Create an lg-object
R> lg_object <- lg_main(x = stock_data %>% select(-Date),
R+ est_method = "1par",
R+ bw_method = "plugin",
R+ transform_to_marginal_normality = TRUE)
R>
R> # Construct a grid diagonally through the data.
R> grid_size <- 100
R> x0 <- stock_data %>%
R+ select(-Date) %>%
R+ apply(2, function(y) seq(from = -7,
R+ to = 7,
R+ length.out = grid_size))
R>
R> # Estimate the local Gaussian correlation on the grid
R> density_object <- dlg(lg_object, grid = x0)

The last line of code creates a list containing a number of elements. The two most important are
$loc_cor, which is a matrix of local correlations having one row per grid point and one column per
pair of variables (the columns correspond to the rows in density_object$pairs), and $f_est, which is
a vector containing the estimate f̂X (x) of the joint density fX (x) in the grid points specified in x0. The
estimated local correlations for this example is plotted in Figure 3a, and the corresponding density
estimate is plotted (along the diagonal x1 = x2 = x3 = x4 = x) in Figure 3b.

The list density_object contains the estimated standard deviations of the local correlations in
$loc_cor_sd, as well as lower and upper confidence bands $loc_cor_lower and $loc_cor_upper at
the 95% level. We refer to Table 2 for a complete overview of the arguments to dlg().

Note that the configuration transform_to_marginal_normality = TRUE and est_method = 5par
in the bivariate case coincides with the situation considered by Tjøstheim and Hufthammer (2013).
In that case, dlg() serves as a wrapper for the function localgauss() in the localgauss-package
(Berentsen et al., 2014).

Obtaining the estimate of a conditional density using the Otneim and Tjøstheim (2018) algorithm
described in Section 2.2 is very similar. However, one must take particular care of the ordering of the
variables in the data set. The estimation function, clg(), will always assume that the free variables
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Argument Explanation Default value

lg_object The lg-object created by lg_main()

grid The evaluation points for the LGC NULL

level Level for confidence bands 0.95
normalization The estimated density does not integrate to one by
_points construction. dlg() will generate the given number

of normal variables, having the same moments as
the data, approximate

∫
f̂X (x) dx by a Monte Carlo

integral, and then normalize the density estimate
accordingly

NULL

bootstrap Calculate bootstrapped confidence intervals instead
of asymptotic expressions FALSE

B Number of bootstrap replicates 500

Table 2: Arguments to the dlg()-function

come first and the conditioning variables last. Let us illustrate this in the following code chunk by
estimating the joint conditional density of S&P500 and FTSE100, given that DAX30 = TOPIX = 0.

R> # We must make sure that the free variables come first
R> returns1 <- stock_data %>% select(SP500, FTSE100, DAX30, TOPIX)
R>
R> # Create the lg-object
R> lg_object <- lg_main(returns1,
R+ est_method = "1par",
R+ bw_method = "plugin",
R+ transform_to_marginal_normality = TRUE)
R>
R> # Create a grid
R> x0 <- returns1 %>%
R+ select(SP500, FTSE100) %>%
R+ apply(2, function(y) seq(from = -7,
R+ to = 7,
R+ length.out = grid_size))
R>
R> # Calculate the conditional density
R> cond_density <- clg(lg_object, grid = x0, cond = c(0, 0))

The key argument in the call to clg() above is cond = c(0, 0). This means that the last two
variables are conditioning variables (and hence, that the first 4 − 2 = 2 variables are free). The value
of the conditioning variables are fixed at DAX30 = 0 and TOPIX = 0, respectively. This also means that
the number of columns in the grid x0 plus the number of elements in cond must equal the number of
variables p in the data set, and the call to clg() will result in an error message if this requirement is
not fulfilled. The clg()-function takes mostly the same arguments as dlg() listed in Table 2, and the
conditional density estimate in our example is available in the vector cond_density$f_est.

Tests for independence

Three independence tests based on the LGC have appeared in the literature thus far:

1. A test for independence between the stochastic variables X1 and X2 based on iid data, cf.
Berentsen and Tjøstheim (2014).

2. A test for serial independence between Xt and Xt−k within a time series {Xt}, cf. Lacal and
Tjøstheim (2017).

3. A test for serial cross-dependence between Xt and Yt−k for two time series {Xt} and {Yt}, cf.
Lacal and Tjøstheim (2018).
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Argument Explanation Default value

lg_object The lg-object created by lg_main()

h The function h(·) in (3) function(x) x^2

S The integration area S in (3). Must function(x)

be a logical function on potential as.logical(rep(1,

grid points in R2 nrow(x)))

bootstrap The bootstrap method, must
_type be either "plain", "block" or "stationary" "plain"

block Block length for the block bootstrap,
_length mean block length for the stationary

bootstrap. Calculated by np::b.star()

(Hayfield and Racine, 2008) if not provided NULL

n_rep Number of bootstrap replicates 1000

Table 3: Arguments to the ind_test()-function

As we noted in Section 2.2, their practical implementations are very similar, and the lg package
provides the function ind_test() to perform the tests. Let us first consider the i.i.d. case, and generate
500 observations test_x from the well known parabola model X2 = X2

1 + ε, where both X1 and ε are
independent and standard normal. In this case, X1 and X2 are uncorrelated but obviously strongly
dependent. Berentsen and Tjøstheim (2014) considers mainly the full bivariate fit to the raw data,
which we easily encode into the lg-object as before. The implementation of the test using 100 bootstrap
replicates is shown below.

R> # Make the lg-object
R> lg_object <- lg_main(test_x,
R+ est_method = "5par",
R+ transform_to_marginal_normality = TRUE)
R> # Perform the independence test
R> test_result <- ind_test(lg_object, n_rep = 100)
R> # Print out the p-value of the test
R> test_result$p_value

[1] 0

This may take a few minutes to run on a desktop computer due to bootstrapping. The small p-value
indicates that we reject the null hypothesis of independence between X1 and X2 in the parabola model
defined above. We can further specify the function h and the integration area S in the test statistic (3);
see Table 3 for details.

The only difference when testing for serial independence within a time series {Xt} is to create a
two-column data set consisting of Xt and Xt−k. For example, if we wish to perform this test for k = 1
for one of the variables in the stock-exchange series, create the matrix of observations as below, and
proceed exactly as in the i.i.d. case.

R> returns2 <- stock_data %>% select(SP500) %>%
R+ mutate(sp500_lagged = lag(SP500))

Finally, the only thing that we must alter in order to perform the third test for serial cross-
dependence is the bootstrap method. In the applications above, it suffices to use the standard bootstrap,
where we resample with replacement from the data. This is implemented in the ind_test()-function
by setting the bootstrap_type-argument to "plain", which is the default option. When testing for
serial cross-dependence, we need to use a block-bootstrap procedure, and Lacal and Tjøstheim (2018)
consider two options here: The block bootstrap with either fixed (Kunsch, 1989) or random (Politis
and Romano, 1994) block sizes. This choice is specified by choosing bootstrap_type = "block" or
bootstrap_type = "stationary", respectively, in the call to ind_test(). Lacal and Tjøstheim (2018)
do not report significant differences in test performance using the different bootstrap types.
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Argument Explanation Default value

lg_object_nc The lg-object covering the non-crisis period
lg_object_c The lg-object covering the crisis period
grid_range Range of diagonal for measuring the LGC (5%, 95%) quantiles
grid_length The number of grid points to use 30
n_rep Number of bootstrap replicates 1000
weight Weight function function(y)

rep(1,nrow(y))

Table 4: Arguments to the cont_test()-function

Test for financial contagion

Assume that we observe two financial time series {Xt} and {Yt} at times t = 1, . . . , T, and that
some crisis occurs at time T∗ < T. As described in Section 2.2, Støve et al. (2014) measure the local
correlation between {Xt} and {Yt} before and after T∗, and take significant differences between these
measurements as evidence against the null hypothesis of no linkage, or contagion, between the time
series. In order to implement this test using the lg package, one must create two lg-objects: one for
the observations covering the non-crisis period and one covering the crisis period. We do not enter a
discussion here how to empirically identify such time periods; this is a job that must be done by the
practitioner before performing the statistical test.

Let us illustrate the implementation of this test by looking at the same financial returns data that
we have used in preceding sections. However, this time we will, in the spirit of Støve et al. (2014),
concentrate on GARCH(1,1)-filtrated daily returns on the S&P500 and FTSE100 indices from 2 January 1985
to 29 April 1987 in order to test for financial contagion between the US and UK stock markets following
the global stock market crash of 19 October 1987 (“Black Monday”). Assume that these observations
are loaded into the R workspace as the n1 × 2 data frame x_nc containing the observations covering the
n1 = 728 days preceding the crisis and the n2 × 2 data frame x_c containing the observations covering
the n2 = 140 consecutive trading days starting on Black Monday (see the online code supplement for
details concerning the GARCH-filtration and data processing). In the code below, we construct one
lg-object for each of these data frames with configuration matching the setup used by Støve et al. (2014)
and perform the test by means of the cont_test()-function.

This function returns a list containing the estimated p-value as well as other useful statistics,
including the empirical local correlations measured in the two time periods. See Table 4 for details
concerning other arguments that may be passed to this function.

R> # Create the two lg-objects
R> lg_object_nc <- lg_main(x_nc,
R+ est_method = "5par",
R+ transform_to_marginal_normality = FALSE)
R>
R> lg_object_c <- lg_main(x_c,
R+ est_method = "5par",
R+ transform_to_marginal_normality = FALSE)
R>
R> # Run the test with a limited number of bootstrap replicates for
R> # demonstration purposes.
R> result <- cont_test(lg_object_nc, lg_object_c, n_rep = 100)
R>
R> # Print out the p-value
R> result$p_value

[1] 0.01

The small p-value means that we reject the null-hypothesis of no financial contagion between the
time series after the crisis.
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Partial local correlation

Consider the work finally by Otneim and Tjøstheim (2021), who take the off-diagonal element in
the local correlation matrix corresponding to the local conditional covariance matrix (12) or (14) as
a local measure of conditional dependence between two stochastic variables X(1) and X(2) given
the stochastic vector X(3). Furthermore, in the case with data having been transformed to marginal
standard normality, they take the statistic

TCI
n,b =

∫
h (α̂ (z)) dFn (z) (17)

as a measure of global conditional dependence. The lg package provides two key functions in this
framework. The first, partial_cor(), calculates the local partial correlations as well as their estimated

standard deviations on a specified grid in the
(

x(1), x(2), x(3)
)

-space, and is essentially a wrapper
function for the clg()-function presented in Section 2.4.1. See Table 5 for details. The second function,
ci_test(), performs a test for conditional independence between the first two variables in a data set
given the remaining variables using the test statistic (17) and a special bootstrap procedure (described
briefly below) for approximating the null distribution.

It is well known in the econometrics literature that conditional independence tests are instrumental
in the empirical detection of Granger causality (Granger, 1980). For example, if we continue to
concentrate on the monthly stock returns data that we have already loaded into memory, we may test
whether

H0 : RFTSE100,t ⊥ RSP500,t−1 | RFTSE100,t−1 (18)

in the period starting in January 2009, the converse of which is a sufficient, but not necessary, condition
for RSP500,t Granger causing RFTSE100,t. We perform the test by running the code below, where x is a
data frame having the following columns strictly ordered as RFTSE100,t, RSP500,t−1, and RFTSE100,t−1
(see the online supplement for the pre-processing of data).

The critical values of this test are calculated using the bootstrap under the null hypothesis by

independently resampling replicates from the conditional density estimates f̂X(1) |X(3)

(
x(1)|x(3)

)
and

f̂
X(2)|X(3)

(
x(2)|x(3)

)
, as obtained by the clg()-function, using an approximated accept-reject algorithm.

In order to avoid excessive optimization of the local likelihood function (1), we estimate f
X(1)|X(3)

and f
X(2)|X(3) on the univariate regular grids x(1)0 and x(2)0 , respectively (while keeping x(3) fixed at

the observed values of X(3)), and produce interpolating functions f̃X(1) |X(3) and f̃X(2) |X(3) using cubic

splines. It is much less computationally intensive to generate replicates from f̃ than directly from f̂ .

We refer to the documentation of the lg package for details on how to finely tune the behavior of
the bootstrapping algorithm by altering the arguments of the ci_test()-function and limiting our
treatment to describing the arguments most suitable for modifications by the user in Table 6.

R> # Create the lg-object
R> lg_object <- lg_main(returns4)
R>
R> # Perform the test
R> test_result <- ci_test(lg_object, n_rep = 100)
R>
R> # Print out result
R> test_result$p_value

[1] 0.51

The conditional independence test does not provide evidence against the null-hypothesis (18).

Graphics

We conclude this article by describing the corplot() function for drawing dependence maps such
as those displayed in Figure 1. Berentsen et al. (2014) report on such capabilities in the localgauss
package, but the possibility of creating dependence maps was unfortunately removed from localgauss
in the latest version 0.4.0 due to incompatibilities with the ggplot2 (Wickham, 2016) plotting engine.
We make up for this loss by providing corplot(), a function that plots the estimated local correlations
as provided by dlg(), or the estimated local partial correlations as provided by partial_cor().

The plotting function is highly customizable and provides a number of options covering most
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basic graphical options. Users well versed in the ggplot2 package may also modify the graphical
object returned by corplot() in the standard way by adding layers as demonstrated in the example
below.

In the first example, we generate a set of bivariate normally distributed data using the mvtnorm
package (Genz et al., 2018) and estimate the local Gaussian correlation on a regular grid using the
dlg()-function. Passing the resulting dlg_object to corplot() without further arguments results in
Figure 4.

R> # Make a regular grid in the domain of the distribution
R> grid <- expand.grid(seq(-3, 3, length.out = 7),
R+ seq(-3, 3, length.out = 7))
R>
R> x <- mvtnorm::rmvnorm(500, sigma = matrix(c(1, rho, rho, 1), 2))
R> lg_object <- lg_main(x,
R+ est_method = "5par",
R+ transform_to_marginal_normality = FALSE,
R+ plugin_constant_joint = 4)
R> dlg_object <- dlg(lg_object, grid = grid)
R>
R> # Make a dependence map using default setup
R> corplot(dlg_object)

We may tweak the appearance of our dependence map by passing further arguments to corplot().
Some of the options are demonstrated in the code chunk below, in which we, for example, superimpose
the observations (by setting plot_obs = TRUE) and preventing the estimated local correlations from
being plotted in areas without data. The latter option is available through the argument plot_thres,
which works by calculating a bivariate kernel density estimate f̃ (x1, x2) for the pair of variables in
question and only allowing ρ̂ (x1, x2) to be plotted if f̃ (x1, x2) / max f̃ (·) > plot_thres. Adding
layers to a dependence map using the ordinary ggplot2 syntax works as well, which we demonstrate
in Figure 5 by changing the ggplot2 theme.

The plotting function works in the same way when plotting the local partial correlations returned
by partial_cor(), and the arguments of corplot() are summarized in Table 7.

R> corplot(dlg_object1,
R+ plot_obs = TRUE,
R+ plot_thres = 0.01,
R+ plot_labels = FALSE,
R+ alpha_point = 0.3,
R+ main = "",
R+ xlab = "",
R+ ylab = "") +
R+ theme_classic()

Conclusion

The statistical literature has seen a number of applications of local Gaussian approximations in the
last decade, covering several topics in dependence modeling and inference, as well as the estimation
of multivariate density and conditional density functions. In this paper, we demonstrate the imple-
mentation of these methods in the R programming language using the lg package, as well as the
graphical representation of the estimated local Gaussian correlation. The package is complete in the
sense that all major methods that have been published within this framework is now easily accessible
to the practitioner. The package is also designed with a modular infrastructure that allows future
methodological developments using local Gaussian approximations to be easily added to the package.
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Argument Explanation Default value

lg_object The lg-object created by lg_main()

grid The evaluation points for the LGPC, must be a
data frame or matrix having 2 columns NULL

cond Vector with fixed values for X(3) NULL

level Significance level for approximated confidence bands 0.95

Table 5: Arguments to the partial_cor()-function

Argument Explanation Default value

lg_object The lg-object created by lg_main()

h The function h(·) in (16) function(x) x^2

n_rep Number of bootstrap replicates 500

Table 6: Arguments to the ci_test()-function

Argument Explanation Default value

dlg_object The object created by dlg() or partial_cor()
pair Which pair to plot if more than two variables 1
gaussian_scale Logical. Plot on the marginal st. normal scale? FALSE

plot_colormap Logical. Plot the colormap? TRUE

plot_obs Logical. Superimpose observations? FALSE

plot_labels Logical. Plot labels on dependence map? TRUE

plot_legend Logical. Add legend? FALSE

plot_thres Threshold for plotting the estimated LGC 0
alpha_tile Transparency of color tiles 0.8
alpha_point Transparency of points 0.8
low_color Color representing ρ̂ = −1 "blue"

high_color Color representing ρ̂ = +1 "red"

break_int Break interval for color coding 0.2
label_size Size of labels in plot 3
font_family Font family for labels "sans"

point_size Size of points, if plotted NULL

xlim, ylim Axis limits NULL

xlab, ylab Axis labels NULL

rholab Title of legend NULL

main, subtitle Title and subtitle of plot NULL

Table 7: Arguments to the corplot()-function
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Figure 4: Dependence map produced by corplot() using the default configuration
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Figure 5: Dependence map produced by tweaking the arguments of corplot()
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Estimating Social Influence Effects in
Networks Using A Latent Space Adjusted
Approach in R
by Ran Xu

Abstract Social influence effects have been extensively studied in various empirical network research.
However, many challenges remain in estimating social influence effects in networks, as influence
effects are often entangled with other factors, such as homophily in the selection process and the
common social-environmental factors that individuals are embedded in. Methods currently available
either do not solve these problems or require stringent assumptions. Recent works by Xu (2018) and
others have shown that a latent space adjusted approach based on the latent space model has the
potential to disentangle the influence effects from other processes, and the simulation evidence has
shown that this approach outperforms other state-of-the-art approaches in terms of recovering the
true social influence effect when there is an unobserved trait co-determining influence and selection.
In this paper, I will further illustrate how the latent space adjusted approach can account for bias in
the estimation of social influence effects and how this approach can be easily implemented in R.

Introduction

Social influence effects, sometimes referred to as spillover or contagion effects, have long been central
to the field of social science (Asch, 1972; Erbring and Young, 1979; Bandura, 1986). It is defined as the
propensity for the behavior of an individual to vary along with the prevalence of that behavior in some
reference group (Manski, 1993), such as one’s social contacts. With the availability of social network
data, social influence effects have received much attention and have been widely used to study various
phenomena such as the spread of health behavior (e.g., obesity and smoking) (Christakis and Fowler,
2007, 2008), psychological states (Cacioppo et al., 2008; German et al., 2012), professional practices
(Frank et al., 2004) and information diffusion (Valente, 1995, 1996).

However, many challenges remain in estimating social influence effects, especially from observa-
tional network data, because it is difficult to separate the effect of social influences from other processes
that operate simultaneously. That is, when we observe that people in close relationships or interactions
tend to be similar in their behaviors or states, it is difficult to identify the underlying mechanisms that
generate these patterns. One mechanism could be influence or contagion (Friedkin and Johnsen, 1999;
Friedkin, 2001; Oetting and Donnermeyer, 1998), whereby individuals assimilate the behavior of their
network partners. Another mechanism could be selection – in particular, homophily (Mcpherson and
Smith-Lovin, 1987; Mcpherson et al., 2001), in which individuals seek to interact with similar others.
Furthermore, there could be some common social-environmental factors – individuals with previous
similarities select themselves into the same social settings (e.g., hospital or alcoholics anonymous (AA)
support group), and actual network formation just reflects the opportunities of meeting in this social
setting (Feld, 1981, 1982; Kalmijn and Flap, 2001)1.

Entanglement among these different mechanisms unavoidably induces bias when we estimate so-
cial influence effects (Shalizi and Thomas, 2011). Various statistical methods and recent advancements
in the field of social network analysis have attempted to reduce the bias in estimating social influence
effects, such as instrumental variable (IV) methods (Bramoulle et al., 2009), propensity score methods
(Aral et al., 2009), and stochastic actor-oriented models (SAOM) (Snijders et al., 2010). Although each
potentially leverages extra information in the data to reduce bias, none can claim to eliminate all
sources of bias.

Recent works by Xu (2018) and others (Shalizi and McFowland III, 2018) have shown that a
latent space adjusted approach based on the latent space model (Hoff et al., 2002) has the potential
to disentangle the social influence effects from other processes operating at the same time, and
simulation evidence has shown that this approach outperforms some other state-of-the-art methods
(e.g., instrumental variable method, structural equation model) in terms of recovering the true social
influence effects. In this paper, I will illustrate how the latent space adjusted approach can account for

1There are also structural constraints such as transitivity and preferential attachment which could cause people
to become friends. However, these mechanisms in themselves do not entangle with influence (e.g., one can befriend
another having high popularity but different behavior). In these cases, another mechanism must be present to
induce similarities between these friends (e.g., selection of common friends based on similarity in attributes), and
thus the entanglement goes back to the original three mechanisms, namely influence, selection based on homophily,
and social-environmental factors.
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bias in the estimation of social influence effects and demonstrate how it can be easily incorporated
with various models in R to estimate social influence effects. In the following sections, I will first
explain the challenges in estimating social influence effects and how they can be framed as an omitted
variable bias problem. Then I will formally introduce the latent space adjusted approach and explain
how it can account for bias in the estimation of social influence effects. Finally, I will demonstrate how
this approach can be easily implemented in R and how it can be incorporated with various models to
estimate social influence effects, including a dynamic linear-in-mean influence model and a stochastic
actor-oriented model (SAOM).

Identification of Social Influence as An Omitted Variable Bias Problem

Similarities of behavior, state, and characteristics of two individuals in a network relationship can
be caused by three primary mechanisms: influence, homophilous selection, or common social-
environmental factors (Vanderweele and An, 2013). While it is possible to rule out some mechanisms
through random treatment assignment or networks in experiments, entanglement among these differ-
ent mechanisms makes it difficult to correctly estimate social influence effects from observational data
(Xu, 2020). The challenges in estimation caused by entanglement among social influence effects and
common social-environmental factors can be easily framed as an omitted variable bias problem (e.g.,
ignoring the group or environment individuals belong to when estimating the social influence model).
What is less obvious is that entanglement between the influence and the homophilous selection can
also be framed as an omitted variable bias problem. As pointed out by Steglich et al. (2010), one
of the important concerns of SAOM is the "possibility that there may be non-observed variables
co-determining the probabilities of change in network and/or behavior". Shalizi and Thomas (2011)
have shown that when there is an unobserved trait that co-determines both behavior and network
choice, social influence effects are generally unidentifiable as social influence and homophily (selection)
are generically confounded through this unobserved trait.

To give an example, assuming that adolescent i’s alcohol use at time t, alcoholit, is the outcome of
interest, and it is a function of his/her previous alcohol use, alcoholit−1, his/her friend j’s previous
alcohol use, alcoholjt−1 (i.e., social influence), and an unobserved tendency for substance-abuse (arrow
D in Figure 1). At the same time, there is a homophilous selection based on this unobserved substance-
abuse tendency in the network – individuals with similar levels of substance-abuse tendency are more
likely to be friends (arrow A in Figure 1). As a result, person j’s alcohol use, which is a function of
person j’s substance-abuse tendency (arrow Bj), will be correlated with person i’s substance-abuse
tendency through homophilous selection (arrow C in Figure 1). However, as the substance-abuse
tendency is unobserved, this violates the key assumption of most estimation methods (i.e., the omitted
variable should not correlate with the independent variables) such that the estimates of the social
influence effects will be biased and inconsistent.

Figure 1: Demonstration of the omitted variable bias.

Latent Space Adjusted Approach

Xu (2018) recently proposed a latent space adjusted approach, and simulation evidence has shown that
it has the potential to correctly identify social influence effects when there is an unobserved variable
that co-determines the influence and the selection process. Specifically, the behavioral (influence)
model can be represented as
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Yi = f (Zij, Yj, Xi, ci) (1)

where the behavior of person i, Yi, is a function of the behaviors of his/her network partners
j, Yj, the network relations between i and j, Zij, person i’s observed characteristics Xi as well as a
time-invariant unobserved trait ci.2 For example, adolescent i’s alcohol use at time t, Yit, can be a
function of his/her previous alcohol use, Yit−1, his/her close friends’ previous alcohol use Yjt−1,
his/her own cigarette use, Xit, and a time-invariant unobserved tendency for substance abuse ci.

The selection model can be represented as

P(Zij = 1) = g(Xij, D(ci, cj)) (2)

where the probability that person i and person j has a network relation is a function of the
individual and dyadic level observed variables Xij, and a distance function of the unobserved trait c
between i and j, such that i and j are more likely to have a network relation when they are close to each
other in terms of c. For example, the probability that adolescent i and j are friends at time t Zijt can
be a function of the absolute value of the differences between their cigarette use at time t |Xit − Xjt|
(observed homophily) and the absolute value of the differences between their unobserved tendencies
for substance abuse |ci − cj| (latent homophily), where i and j are more likely to become friends when
they are similar to each other in terms of the cigarette use (X) or the tendency for substance abuse (c).

Ideally, if there is any information about this unobserved trait c from the selection process in (2),
it can be leveraged and used in the estimation of the behavioral model in (1), and in principle this
will reduce the bias when estimating the social influence effects. However, the estimations of most
selection models are based on the observed variables and thus do not attend to those factors that are
unobserved. Xu (2018) extended this idea and built on the theoretical logic of latent space models
(Hoff et al., 2002). Latent space models assume that each individual has a "latent position" that lies in
an unobserved n-dimensional social space, and the probability of interaction between any two actors
depends on the latent positions of these two actors. Specifically, the model takes a logistic form and
can be specified as

logodds(Zij = 1∥ci, cj, xij, α, β) = α + β′xij − |ci − cj| (3)

Here, Zij indicates whether there is a network relation from i to j, xij is a vector of the observed
covariates (at the dyadic level or node level), c indicates the latent social position of i and j, and
|ci − cj| represents the Euclidean distance between i and j’s latent positions (it could also be replaced
by other distance functions). When i and j are closer to each other in terms of the latent position c, they
will have a higher probability of having a network relation. And these latent positions can represent
determinants of the network relations that have not been accounted for by the observed variables
in the selection process. The parameters α and β are estimated using either Maximum-Likelihood
Estimation (MLE) or Markov Chain Monte Carlo (MCMC) methods, and the latent positions c can be
estimated by Minimum Kullback-Leibler (MKL) estimates (Shortreed et al., 2006).

It is not difficult to see that the latent space model in (3) is very similar to the selection process
in (2), except that c represents the latent position in the latent space model, while c represents the
individual’s unobserved trait in (2).3 For any pair of i and j, a smaller distance between the latent
social positions or the unobserved traits will result in a higher likelihood of having network relations.
Therefore, when two individuals are close to each other in terms of the unobserved traits, they are
more likely to have a network relation, and they should also be close to each other in terms of the
latent positions (and vice versa).

Furthermore, if these latent positions from the latent space model are estimated accurately enough,
the estimates of these latent positions can be used as the proxies for the unobserved traits that
determine the homophily in the selection process. In fact, for two one dimensional variables X and Y,
if the distance correlation (e.g., correlation between |Xi − Xj| and |Yi − Yj|) is 1, then Y can be written
as a linear function of X: Y = a + bX (Szekely et al., 2007), which means the correlation between the
two variables are either 1 or -1. Thus, the estimated latent positions from the latent space model
can be used as the proxies (Wooldridge, 2011) for the unobserved traits that co-determine influence
and selection, and including the latent positions as additional covariates in the behavioral model
will reduce the bias in the estimation of social influence effects. For example, to model adolescents’
social influences on their alcohol use, we can first use a latent space model to model the friendship
network of adolescents and acquire the estimated "latent positions" for each individual, and then use

2Here Y, X, Z are assumed to be time-variant and c is assumed to be time-invariant, but the assumption can be
relaxed.

3Here I only choose one-dimensional latent social positions to mimic the unobserved trait that drives the
homophily in the selection process. The arguments can easily be extended to multi-dimensional latent positions.
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these estimates as the proxies for the unobserved substance-abuse tendencies in the behavioral model,
and thus achieve a better estimation of the true social influence effects. If the social network data is
longitudinal, estimated latent positions from each time point can be included as separate covariates in
the behavioral model to better approximate the unobserved trait.

Shalizi and McFowland III (2018) have shown that if the network grows according to a continuous
latent space model, the latent positions can be consistently estimated. Controlling for these latent
positions allows for unbiased and consistent estimation of the social-influence effects in additive
influence models. Simulation evidence from Xu (2018) has shown that when there is a time-invariant
unobserved variable that co-determines selection and influence, the estimated latent positions can
be good proxies for the unobserved variable, and the latent space adjusted approach outperforms
other methods that are commonly used to deal with the unobserved variables, including a structural
equation based estimator (implemented using lavaan package in R (Rosseel and Jorgensen, 2019))
and an instrumental variable estimator (implemented using plm package in R (Croissant et al., 2021)),
in producing the smallest bias and standard error of the social influence effect using a dynamic
linear-in-mean influence model. The results are robust to the inclusion of additional covariates,
structural properties (e.g., transitivity) in networks, different scaling of the latent space model, or even
misspecifications (Xu, 2018).

Finally, there are a couple of things to note: (1) for the estimated latent positions to better ap-
proximate the unobserved traits, we need to control for other mechanisms that are likely to drive
the selection process in the latent space model, such as homophily based on the observed variables,
transitivity, alter, and ego effects. (2) In principle this method can apply to any functional form of the
behavioral/influence model (e.g., stochastic actor-oriented models), as essentially this approach just
adds additional covariates as the proxies for the unobserved traits. (3) As the scales and the actual
positions of the estimated latent positions are essentially arbitrary (Hoff et al., 2002), the actual values
of the latent positions might be very different from the actual values of the unobserved traits that
co-determine influence and selection. However, as long as the estimated latent positions are highly
correlated with the unobserved traits (i.e., actors who are close to each other on the latent positions
are also close to each other in terms of the unobserved traits), the social influence effects can still
be consistently estimated. (4) This approach works in scenarios where there are unobserved traits
that co-determine influence and selection (homophily).4 It does not improve the estimation of social
influence effects when the unobserved traits are only present in one process but not the other.

An Empirical Example in R

In this section, I present an empirical example illustrating how to implement the latent space adjusted
approach to estimate the social influence effect using R 3.5.2. The data comes from the social network
data collected in the Teenage Friends and Lifestyle Study data set (Michell, 2000; Pearson and West,
2003). Friendship network data and substance use were recorded for a cohort of 50 female pupils in a
school in the West of Scotland. The panel data were recorded over three years, starting in 1995, when
the pupils were aged 13, and ending in 1997. The friendship networks were formed by allowing the
pupils to name up to twelve best friends. Pupils were also asked about substance use and adolescent
behavior associated with, for instance, lifestyle, sporting behavior, tobacco, alcohol, and cannabis
consumption. The question on sporting activity asked if the pupil regularly took part in any sport, or
went training for sport, out of school (e.g., football, gymnastics, skating, mountain biking). The school
was representative of others in the region in terms of social class composition (Pearson and West,
2003). The key variables used in this example were measured three times from 1995-1997 and included
pupils’ friendship networks (binary variable representing each possible directed pair, 1 if nominated
and 0 otherwise), smoking (measured on a 1-3 scale), drug use (measured on a 1-4 scale), alcohol use
(measured on a 1-5 scale) and sport activity (measured on a 1-2 scale). The dataset is available here.

First, I install and load all the packages needed in R. latentnet is the package that is used to estimate
the latent space model (Krivitsky and Handcock, 2020). And statnet is the package to manipulate and
create the network object (Handcock et al., 2019).

> library(latentnet)
> library(RSiena)
> library(sna)
> library(statnet)

The network data comes with the RSiena package (Ripley et al., 2018). I load the attribute data
into the current session and create network objects over 3 time points:

4In principle this approach could also account for unobserved social-environmental factors that drive influence
and selection.
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##Load girls' attributes on smoking, drug use, sport and alcohol use
> s50s<-read.table("s50-smoke.dat",header=FALSE)
> s50d<-read.table("s50-drugs.dat",header=FALSE)
> s50sp<-read.table("s50-sport.dat",header=FALSE)
> s50a<-read.table("s50-alcohol.dat", header=FALSE)

## Create network object with attributes for each time point
> g1<-network(s501,directed=TRUE)
> g1%v%"a" <- s50a[,1]
> g1%v%"s" <- s50s[,1]
> g1%v%"sp" <- s50sp[,1]
> g1%v%"d" <- s50d[,1]

> g2<-network(s502,directed=TRUE)
> g2%v%"a" <- s50a[,2]
> g2%v%"s" <- s50s[,2]
> g2%v%"sp" <- s50sp[,2]
> g2%v%"d" <- s50d[,2]

> g3<-network(s503,directed=TRUE)
> g3%v%"a" <- s50a[,3]
> g3%v%"s" <- s50s[,3]
> g3%v%"sp" <- s50sp[,3]
> g3%v%"d" <- s50d[,3]

We can plot each network and observe how they have changed over time. Figure 2 shows how
these girls’ friendship networks have changed from 1995 to 1997. The network graphs show that there
have been considerable network changes over time, and distinct components/clusters have emerged
over time.

Figure 2: Girls’ friendship network from 1995 to 1997.

My primary research question is whether these girls influence each other’s alcohol use. Here I
demonstrate how to estimate the social influence effect by incorporating the latent space adjusted
approach with a dynamic linear-in-mean model (Friedkin and Johnsen, 1990) using the "lm" function
and a stochastic actor-oriented model using RSiena package (Snijders et al., 2010; Ripley et al., 2018)
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in R. I start by estimating the latent space models using the "ergmm" function to extract the estimated
latent positions. Specifically, I estimate two latent space models based on networks in 1995 and 1996
with one dimensional latent space, while controlling for homophily based on observed variables such
as alcohol, smoking, drug use and sport:

> m1<-ergmm(g1 ~ euclidean(d = 1)+absdiff("a")+absdiff("s")+absdiff("sp")+absdiff("d"),
+ control=ergmm.control(sample.size=5000,burnin=20000,interval=10,Z.delta=5))
> m2<-ergmm(g2 ~ euclidean(d = 1)+absdiff("a")+absdiff("s")+absdiff("sp")+absdiff("d"),
+ control=ergmm.control(sample.size=5000,burnin=20000,interval=10,Z.delta=5))

Once the latent space models are estimated, I can extract the latent positions and add them as
additional covariates when estimating the behavioral/influence model. First I estimate a dynamic
linear-in-mean influence model, which can be represented as (Friedkin and Johnsen, 1990):

Yit = β0 + β1Yit−1 + β2
∑ Zijt−1Yjt−1

∑ Zijt−1
+ β3Xit + eit, (4)

where Yit is the behavior of i at time t, Yit−1 is the previous behavior of i, Zijt−1 is a dummy

variable indicating if there is a link from i to j at time t − 1, i.e., 1 if yes and 0 otherwise, and ∑ Zijt−1Yjt−1

∑ Zijt−1

is the average behaviors at time t − 1 among the network neighbors of i, and β2 represents the social
influence effect. Xit represents other concurrent variables of i that might affect the behavioral outcome
Y. To estimate the dynamic linear-in-mean influence model, I first need to construct the dataset used
by this model:

## create the average alcohol use of each person's friends
> E<-matrix(0,50,3)
for (i in 1:50)
{
if (sum(s501[i,])!=0)
E[i,1]<-(s501[i,]%*%s50a[,1])/sum(s501[i,])
if (sum(s502[i,])!=0)
E[i,2]<-(s502[i,]%*%s50a[,2])/sum(s502[i,])
if (sum(s503[i,])!=0)
E[i,3]<-(s503[i,]%*%s50a[,3])/sum(s503[i,])
}

## create the dataset to estimate the dynamic linear-in-mean influence model
> alcohol<-c(s50a[,3],s50a[,2])
> lag_alc<-c(s50a[,2],s50a[,1])
> expo<-c(E[,2],E[,1])
> drug<-c(s50d[,3],s50d[,2])
> smoke<-c(s50s[,3],s50s[,2])
> sport<-c(s50sp[,3],s50sp[,2])
> latent_pos2<-rep(m2$mkl$Z,2)
> latent_pos1<-rep(m1$mkl$Z,2)
> infl<-data.frame(cbind(alcohol,lag_alc,expo,drug,smoke,sport,
+ latent_pos1,latent_pos2,rep(c(1:50),2),rep(c(1:2),each=50)))
> head(infl)

alcohol lag_alc expo drug smoke sport latent_pos1 latent_pos2 V9 V10
1 3 1 4.333333 1 1 1 -5.997364 -8.472008 1 1
2 2 2 4.000000 3 3 1 -7.324663 -2.941830 2 1
3 3 3 2.500000 1 1 1 6.734962 9.064313 3 1
4 2 3 3.000000 1 1 1 6.734962 9.197778 4 1
5 4 3 3.500000 3 1 2 1.945568 7.413702 5 1
6 4 4 5.000000 1 3 2 18.585402 1.648355 6 1

We can also look at the correlations between the estimated latent positions and the observed variables:

> cor(infl[,1:8])

alcohol lag_alc expo drug smoke sport latent_pos1 latent_pos2
alcohol 1.0000 0.699 0.458 0.455 0.386 -0.092 -0.387 -0.317
lag_alc 0.6992 1.000 0.461 0.455 0.465 -0.165 -0.403 -0.364
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expo 0.4585 0.461 1.000 0.348 0.416 -0.221 -0.550 -0.241
drug 0.4553 0.455 0.348 1.000 0.592 -0.382 -0.283 -0.453
smoke 0.3863 0.465 0.416 0.592 1.000 -0.224 -0.340 -0.463
sport -0.0922 -0.165 -0.221 -0.382 -0.224 1.000 0.145 0.162
latent_pos1 -0.3872 -0.403 -0.550 -0.283 -0.340 0.145 1.000 0.150
latent_pos2 -0.3173 -0.364 -0.241 -0.453 -0.463 0.162 0.150 1.000

From the correlation table, strong network autocorrelations are observed – one’s alcohol use
alcohol, previous alcohol use lag_alc, and friends’ alcohol use expo are all highly correlated with
each other. Furthermore, the estimated latent positions in 1995 and 1996 latent_pos1 and latent_pos2
have sizable correlations with both girls’ alcohol use and their friends’ alcohol use. As the calculations
of the latent positions are already conditioned on homophily based on the observed variables such as
alcohol, drug, smoking, and sport, the results suggest that there might be some unobserved variables
(e.g., an unobserved tendency for substance abuse) that drive both girls’ alcohol use and choice of
friends.

To estimate the dynamic linear-in-mean influence model, I first estimate an influence model with
the latent positions as the additional covariates and then estimate another model without the latent
positions:

> summary(lm(alcohol~lag_alc+expo+smoke+sport+drug+latent_pos1+latent_pos2,data=infl))

Call:
lm(formula = alcohol ~ lag_alc + expo + smoke + sport + drug +

latent_pos1 + latent_pos2, data = infl)

Residuals:
Min 1Q Median 3Q Max

-2.2031 -0.5060 0.1155 0.5177 1.6341

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.625653 0.453098 1.381 0.1707
lag_alc 0.525024 0.084136 6.240 1.32e-08 ***
expo 0.128865 0.083382 1.545 0.1257
smoke -0.071843 0.120567 -0.596 0.5527
sport 0.235112 0.168289 1.397 0.1658
drug 0.251790 0.122337 2.058 0.0424 *
latent_pos1 -0.007709 0.011007 -0.700 0.4854
latent_pos2 -0.004525 0.014706 -0.308 0.7590
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7715 on 92 degrees of freedom
Multiple R-squared: 0.5426, Adjusted R-squared: 0.5078
F-statistic: 15.59 on 7 and 92 DF, p-value: 2.541e-13

> summary(lm(alcohol~lag_alc+expo+smoke+sport+drug,data=infl))

Call:
lm(formula = alcohol ~ lag_alc + expo + smoke + sport + drug,

data = infl)

Residuals:
Min 1Q Median 3Q Max

-2.2382 -0.4876 0.0384 0.4935 1.6371

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.47833 0.40080 1.193 0.2357
lag_alc 0.53760 0.08160 6.588 2.54e-09 ***
expo 0.15298 0.07516 2.035 0.0446 *
smoke -0.05760 0.11602 -0.496 0.6207
sport 0.23565 0.16698 1.411 0.1615
drug 0.26057 0.11873 2.195 0.0307 *
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.7655 on 94 degrees of freedom
Multiple R-squared: 0.5398, Adjusted R-squared: 0.5154
F-statistic: 22.06 on 5 and 94 DF, p-value: 1.473e-14

Results show that if I only include previous alcohol use and other observed covariates, the social
influence effect on alcohol use is significant (coef=.152, se=.075, p=.045) – that is, if these girls’ friends
use more alcohol, they will also use more alcohol. However, when I include the latent positions as the
additional covariates in the model, the social influence effect (coef=.129, se=.083, p=.126) is no longer
significant.5 These results suggest that there are likely to be unobserved variables that drive both girls’
alcohol use and choice of friends (e.g. unobserved substance-abuse tendency), and ignoring them
will lead to 18% overestimation of the social influence effect in this case, which can lead to erroneous
statistical inferences.

Next, I estimate a Stochastic Actor-Oriented Model (SAOM) using RSiena to test if there is any
social influence effect on girls’ alcohol use. SAOM is a class of simulation-based statistical models that
can model behavioral and network change simultaneously. In the simulation process, SAOM assumes
the underlying time is continuous and that actors control their behavior and outgoing ties. At a given
moment, one probabilistically selected actor has the opportunity to change one outgoing tie or small
step in his or her behavior. The change follows a Markov process in which small changes in networks
and behavior are accumulated in each micro-step, and large differences can then be observed between
initial and final networks (Snijders et al., 2010). For statistical inference, the parameter values of the
simulation algorithms are selected such that the simulated and observed data resemble each other
most closely, and the parameters can be estimated by matching key statistics of the simulated and
observed networks via the method of moments, generalized method of moments, or likelihood-based
methods (Steglich et al., 2010). SAOM is appealing as it intuitively incorporates both the influence
and network-selection process from an individual-level perspective, such that the network-selection
effects are adjusted for in the estimation of influence effects. However, estimates from SAOMs are
still likely to be biased when unobserved variables are co-determining the probabilities of change in
network and/or behavior (Steglich et al., 2010) and thus may benefit from the latent space adjusted
approach in these scenarios.

I start by constructing a dataset that can be used by SAOM models for estimation:

## create data structure that can be used to estimate SAOM
> friend.data.w1 <- s501
> friend.data.w2 <- s502
> friend.data.w3 <- s503
> drink <- s50a
> smoke <- s50s
> drug <- s50d
> sport <- s50sp
> friendship <- sienaDependent( array( c( friend.data.w1, friend.data.w2,
+ friend.data.w3 ),
+ dim = c( 50, 50, 3 ) )
> drinkingbeh <- sienaDependent( drink, type = "behavior" )
> smokingbeh <- varCovar( as.matrix(smoke))
> drugbeh <- varCovar( as.matrix(drug))
> sportbeh <- varCovar( as.matrix(sport))
> lat1<-coCovar(as.vector(m1$mkl$Z)) ## latent position from 1995
> lat2<-coCovar(as.vector(m2$mkl$Z)) ## latent position from 1996
> myCoEvolutionData <- sienaDataCreate( friendship, drinkingbeh,
+ smokingbeh,drugbeh,sportbeh,lat1,lat2 )

To specify the SAOM model, the following codes can be used. Specifically, in the selection part
of the model, I include structural effects such as reciprocity, transitivity, popularity, geometrically
weighted degree, and homophily based on alcohol, drug use, smoking, sport, and the latent positions.
In the behavioral part of the model, I model girls’ alcohol use as a function of the linear and quadratic
shapes, average similarity effect (i.e., social influence effect), the observed covariates such as drug use,
smoking, sport, as well as the latent positions as the additional covariates:

5Latent space model uses a MCMC estimation and thus the results will be slightly different each time. It is
suggested to estimate latent space model with longer burn-in, larger sample size, and over multiple times to acquire
the final estimates (e.g., using mean or mode of the estimates).
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> myCoEvolutionEff2 <- getEffects( myCoEvolutionData )
>
> effectsDocumentation(myCoEvolutionEff2)
>
## specify predictors to model selection/network in SAOM
> myCoEvolutionEff2 <- includeEffects( myCoEvolutionEff2, transTrip,
+ cycle3,gwespFF,inPop,outPop)
> myCoEvolutionEff2 <- includeEffects( myCoEvolutionEff2, simX,
+ interaction1 = "smokingbeh" )
> myCoEvolutionEff2 <- includeEffects( myCoEvolutionEff2, simX,
+ interaction1 = "drugbeh" )
> myCoEvolutionEff2 <- includeEffects( myCoEvolutionEff2, simX,
+ interaction1 = "sportbeh" )
> myCoEvolutionEff2 <- includeEffects(myCoEvolutionEff2, simX,
+ interaction1 = "drinkingbeh" )
> myCoEvolutionEff2 <- includeEffects(myCoEvolutionEff2, simX,
+ interaction1 = "lat1" )
> myCoEvolutionEff2 <- includeEffects(myCoEvolutionEff2, simX,
+ interaction1 = "lat2" )

## specify predictors to model behavior (alcohol use) in SAOM
> myCoEvolutionEff2 <- includeEffects( myCoEvolutionEff2,
+ name = "drinkingbeh",
+ avSim,
+ interaction1 = "friendship" )
> myCoEvolutionEff2 <- includeEffects( myCoEvolutionEff2,
+ name = "drinkingbeh", effFrom,
+ interaction1 = "smokingbeh")
> myCoEvolutionEff2 <- includeEffects( myCoEvolutionEff2,
+ name = "drinkingbeh", effFrom,
+ interaction1 = "drugbeh")
> myCoEvolutionEff2 <- includeEffects( myCoEvolutionEff2,
+ name = "drinkingbeh", effFrom,
+ interaction1 = "sportbeh")
> myCoEvolutionEff2 <- includeEffects( myCoEvolutionEff2,
+ name = "drinkingbeh", effFrom,
+ interaction1 = "lat1")
> myCoEvolutionEff2 <- includeEffects( myCoEvolutionEff2,
+ name = "drinkingbeh", effFrom,
+ interaction1 = "lat2")

To estimate the SAOM model, I type:

> betterCoEvAlgorithm <- sienaAlgorithmCreate( projname = 's50CoEv_3',
+ diagonalize = 0.2, doubleAveraging = 0)
>
>
> (ans2 <- siena07( betterCoEvAlgorithm, data = myCoEvolutionData,
+ effects = myCoEvolutionEff2))

Estimates, standard errors and convergence t-ratios

Estimate Standard Convergence
Error t-ratio

Network Dynamics
1. rate constant friendship rate (period 1) 6.7804 ( 1.9520 ) -0.0247
2. rate constant friendship rate (period 2) 5.5804 ( 1.5074 ) -0.0446
3. eval outdegree (density) -3.8226 ( 0.4710 ) -0.0268
4. eval reciprocity 2.2901 ( 0.4352 ) -0.0036
5. eval transitive triplets -1.1221 ( 0.9042 ) -0.0228
6. eval 3-cycles 1.1517 ( 0.5529 ) -0.0201
7. eval GWESP I -> K -> J (69) 2.7667 ( 1.8913 ) -0.0204
8. eval indegree - popularity 0.1178 ( 0.1121 ) -0.0313
9. eval outdegree - popularity -0.5368 ( 0.1570 ) -0.0286

10. eval lat1 similarity 0.6507 ( 0.5186 ) -0.0439
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11. eval lat2 similarity 7.7015 ( 1.3888 ) -0.0198
12. eval drinkingbeh similarity 0.6110 ( 0.6676 ) 0.0086
13. eval smokingbeh similarity 0.0755 ( 0.2577 ) 0.0176
14. eval drugbeh similarity 0.8831 ( 0.5177 ) -0.0197
15. eval sportbeh similarity 0.2044 ( 0.1843 ) 0.0627

Behavior Dynamics
16. rate rate drinkingbeh (period 1) 1.2506 ( 0.3943 ) 0.0629
17. rate rate drinkingbeh (period 2) 1.7510 ( 0.5416 ) 0.0174
18. eval drinkingbeh linear shape 0.3880 ( 0.1903 ) -0.0095
19. eval drinkingbeh quadratic shape -0.1304 ( 0.1459 ) -0.0447
20. eval drinkingbeh average similarity 3.0265 ( 2.2662 ) 0.0059
21. eval drinkingbeh: effect from lat1 -0.0240 ( 0.0235 ) 0.0612
22. eval drinkingbeh: effect from lat2 -0.0169 ( 0.0324 ) 0.0166
23. eval drinkingbeh: effect from smokingbeh -0.3243 ( 0.3157 ) -0.0706
24. eval drinkingbeh: effect from drugbeh 0.0538 ( 0.2728 ) -0.0154
25. eval drinkingbeh: effect from sportbeh 0.3266 ( 0.3720 ) 0.0066

Overall maximum convergence ratio: 0.1721

Total of 3944 iteration steps.

Results show that there is strong homophily based on the latent positions in the selection process.
Furthermore, the estimate for average similarity (i.e., social influence effect) effect is 3.03, and the
standard error is 2.27. Next, I compare it with a SAOM model that excludes the latent positions in
both selection and behavioral models. Results are shown below:

Estimates, standard errors and convergence t-ratios

Estimate Standard Convergence
Error t-ratio

Network Dynamics
1. rate constant friendship rate (period 1) 5.6744 ( 1.4262 ) 0.0123
2. rate constant friendship rate (period 2) 4.4861 ( 0.9524 ) -0.0206
3. eval outdegree (density) -2.3732 ( 0.2822 ) 0.0193
4. eval reciprocity 3.0429 ( 0.4632 ) 0.0205
5. eval transitive triplets -1.4128 ( 0.8951 ) 0.0193
6. eval 3-cycles 1.7027 ( 0.5465 ) 0.0205
7. eval GWESP I -> K -> J (69) 3.6722 ( 1.7601 ) 0.0104
8. eval indegree - popularity 0.0872 ( 0.1019 ) -0.0118
9. eval outdegree - popularity -0.6361 ( 0.1700 ) 0.0215

10. eval drinkingbeh similarity 1.2178 ( 0.7357 ) 0.0277
11. eval smokingbeh similarity -0.0006 ( 0.2812 ) -0.0166
12. eval drugbeh similarity 0.9889 ( 0.4224 ) -0.0231
13. eval sportbeh similarity 0.1628 ( 0.1859 ) -0.0149

Behavior Dynamics
14. rate rate drinkingbeh (period 1) 1.2869 ( 0.3117 ) 0.0219
15. rate rate drinkingbeh (period 2) 1.7214 ( 0.4520 ) 0.0173
16. eval drinkingbeh linear shape 0.3975 ( 0.1840 ) -0.0159
17. eval drinkingbeh quadratic shape -0.0542 ( 0.1209 ) 0.0014
18. eval drinkingbeh average similarity 4.0685 ( 2.0968 ) 0.0147
19. eval drinkingbeh: effect from smokingbeh -0.2452 ( 0.3031 ) 0.0476
20. eval drinkingbeh: effect from drugbeh 0.0836 ( 0.2829 ) 0.0277
21. eval drinkingbeh: effect from sportbeh 0.3029 ( 0.3710 ) -0.0065

Overall maximum convergence ratio: 0.1545

Total of 3743 iteration steps.

The estimate for the social influence effect is now 4.07, with a standard error of 2.10. As a result,
ignoring the latent position will likely lead to 34% overestimation of the social influence effect in this
case using the SAOM models.
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Discussion and Conclusion

Social influence effects are generally difficult to identify, as influence processes are often entangled
with other processes such as selection and social-environmental factors. Here I have shown that this
entanglement/difficulty can essentially be framed as an omitted variable bias problem, and a latent
space adjusted approach holds promise to correctly identify social influence effects in this case. And I
have demonstrated how to use the latent space adjusted approach to estimate various social influence
models with existing packages in R. Results show that models that ignore the unobserved variables
that drive both influence and selection are likely to overestimate the true social influence effect, while
the latent space adjusted approach holds promise to correct that bias and serves as a more conservative
test of the true social influence effect.

Although the latent space adjusted approach proposed in this paper is flexible enough to be
incorporated with any functional form of the behavioral/influence model, and holds much promise
as an alternative approach to identify the social influence effect, several limitations also come with
this approach: (1) As previously mentioned, the latent space adjusted approach requires that the
same unobserved traits occur in both the influence and the selection process. It can not account for
the unobserved traits that are only present in one of the processes but not the other. (2) The choice
of the dimensions for the latent positions in the latent space model is not clear. Although I have
chosen one-dimensional latent positions in all of the simulations and empirical examples, this does
not need to be the case and there is no clear rule deciding how many dimensions users should use.
(3) The computation of latent positions is very time-consuming, and the computation time increases
significantly with the increase of data or the number of dimensions of the latent positions.

Nevertheless, the latent space adjusted approach proposed here provides a useful and more
plausible estimate of the true social influence effect, especially when the entanglement between
influence and selection is of concern. This paper contributes to the literature by further illustrating
how the latent space adjusted approach may account for bias in the estimation of the social influence
effect, as well as how this approach can be easily implemented in R.
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survidm: An R package for Inference and
Prediction in an Illness-Death Model
by Gustavo Soutinho, Marta Sestelo and Luís Meira-Machado

Abstract Multi-state models are a useful way of describing a process in which an individual moves
through a number of finite states in continuous time. The illness-death model plays a central role in
the theory and practice of these models, describing the dynamics of healthy subjects who may move to
an intermediate "diseased" state before entering into a terminal absorbing state. In these models, one
important goal is the modeling of transition rates which is usually done by studying the relationship
between covariates and disease evolution. However, biomedical researchers are also interested in
reporting other interpretable results in a simple and summarized manner. These include estimates
of predictive probabilities, such as the transition probabilities, occupation probabilities, cumulative
incidence functions, and the sojourn time distributions. The development of survidm package has
been motivated by recent contribution that provides answers to all these topics. An illustration of the
software usage is included using real data.

Introduction

Multi-state models are very useful for describing complex event history data with multiple endpoints.
These models may be considered a generalization of survival analysis where survival is the ultimate
outcome of interest but where information is available about intermediate events which individuals
may experience during the study period. For instance, in most biomedical applications, besides the
’healthy’ initial state and the absorbing ’dead’ state, one may observe intermediate (transient) states
based on health conditions (e.g., diseased), disease stages (e.g., stages of cancer or HIV infection),
clinical symptoms (e.g., bleeding episodes), biological markers (e.g., CD4 T-lymphocyte cell counts;
serum immunoglobulin levels), or they can represent a non-fatal complication in the course of the
illness (e.g., cancer recurrence, transplantation, etc.). Graphically, these models may be illustrated
using diagrams with boxes representing the states and with arrows between the states representing
the possible transitions. The complexity of the multi-state model greatly depends on the number of
states and also on the possible transitions. The illness-death model is probably the most popular one in
the medical literature. The irreversible version of this model (Figure 1) describes the pathway from an
initial state to an absorbing state either directly or through an intermediate state. Many event-history
data sets from biomedical studies with multiple endpoints can be reduced to this generic structure.
There exists extensive literature on multi-state models. Main contributions include books by Andersen
et al. (1993) and Hougaard (2000) (Chapter 5 and 6). Recent reviews on this topic may be found in the
papers by Putter et al. (2007), Meira-Machado et al. (2009), and Meira-Machado and Sestelo (2019).

Figure 1: Progressive illness-death model.

One important goal in multi-state modeling is to relate the individual characteristics with the
intensity rates through a covariate vector, but biomedical researchers are also interested in reporting
interpretable results in a simple and summarized manner. These include estimates of predictive
probabilities, such as the transition probabilities, occupation probabilities, cumulative incidence
functions, and the sojourn time distributions. The development of survidm R package has been
motivated by several recent contributions that account for these problems; in particular the newly
developed methods based on subsampling (see Meira-Machado and Sestelo (2019) for further details).
The current version of the package provides seven different approaches to estimate the transition
probabilities, two methods for the sojourn distributions and two approaches for the cumulative
incidence functions. In addition, these probabilities can also be estimated conditionally on covariate
measures. The package also allows the user to perform multi-state regression where the estimation of
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the covariate effects is achieved using Cox regression in which different effects of the covariates are
assumed for different transitions.

Several researchers have recently developed software for multi-state survival analysis. A com-
prehensive list of the available packages in the Comprehensive R Archive Network (CRAN) can
be seen in the CRAN task view ’Survival Analysis’ (Allignol and Latouche, 2018). In R, several
packages provide functions for estimating the transition probabilities (e.g., the package p3state.msm
(Meira-Machado and Roca-Pardiñas, 2011), TPmsm (Araújo et al., 2014), etm (Allignol et al., 2011),
mstate (de Wreede et al., 2011), and TP.idm (Balboa and de Uña-Álvarez, 2018)), but none implements
all the methods addressed by survidm which includes all newly developed methods based on the
subsampling approach (see de Uña-Álvarez and Meira-Machado (2015) and references therein). In
addition, not all allow the users to obtain estimates of the transition probabilities conditional to
covariates. The cmprsk and the timereg R packages can be used to estimate the cumulative incidence
functions in a competing risks model. The package survival (via survfit and coxph functions) can
also be used for competing risks data. The msSurv can be used to estimate the state occupation
probabilities and the sojourn distributions for multi-state models subject to right-censoring (possibly
state-dependent) and left-truncation. The package also provides matrices of transition probabilities
between any two states. However, none of the available software provides an encompassing package
which can be used to estimate all these quantities. Finally, the use of different packages for estimating
these quantities separately is rather difficult because each of the current programs requests its own
data structure. This paper introduces survidm (available from the Comprehensive R Archive Net-
work at https://cran.r-project.org/web/packages/survidm/), a software application for R which
performs inference in a progressive illness-death model. It describes the capabilities of the program
for estimating semiparametric regression models and for implementing nonparametric estimators for
all quantities mentioned above.

The remainder of this paper is organized as follows. The following section provides a brief
introduction to the methodological background. Then, a detailed description of the package is
presented, and its usage is illustrated through the analysis of a real data set. Finally, the last section
contains the main conclusions of this work.

Methodology background

The mathematical background underlying the survidm package is briefly introduced in this section.
A more detailed introduction can be found in Meira-Machado and Sestelo (2019). The present
contribution builds on this article by offering guidelines for using the software to implement the
proposed methods.

Notation

A multi-state model is a model for a time-continuous stochastic process (Y(t), t ≥ 0) which at any
time occupies one of a few possible states. In this paper, we consider the progressive illness-death
model depicted in Figure 1, and we assume that states are numbered as 0 − healthy, 1 − illness, and
2 − death. We also assume that all subjects enter the study in State 0 and that they may either visit
State 1 at some time point; or not, going directly to the absorbing state (State 2).

This model is characterized by the joint distribution of (Z, T), where Z denotes the sojourn time in
the initial State 0, and T is the total survival time of the process. As usual with survival data, individuals
are generally followed over a certain period of time, providing right-censored observations which
are modeled by considering a censoring variable C, which we assume to be independent of of (Z, T).
Due to censoring, rather than (Z, T), we observe Z̃ = min(Z, C), T̃ = min(T, C), ∆1 = I(Z ≤ C),
and ∆ = I(T ≤ C) for the respective censoring indicators of Z and T. Finally, the available data is
(Z̃i, T̃i, ∆1i, ∆i), 1 ≤ i ≤ n, i.i.d. copies of (Z̃, T̃, ∆1, ∆).

Regression models for transitions intensities

One important goal in multi-state modeling is to study the relationships between the different predic-
tors and the outcome. To relate the individual characteristics to the intensity rates, several models
have been used in the literature. A common simplifying strategy is to decouple the whole process into
various survival models by fitting separate intensities to all permitted transitions using semiparametric
Cox proportional hazard regression models (Cox, 1972), while making appropriate adjustments to the
risk set. The most common models are characterized through one of the two model assumptions that
can be made about the dependence of the transition intensities and time. The transition intensities
may be modeled using separated Cox models assuming the process to be Markovian (also known as
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the clock forward modeling approach), which states that past and future are independent given the
present state. They can also be modeled using a semi-Markov model in which the future of the process
does not depend on the current time but rather on the duration in the current state. Semi-Markov
models are also called ’clock reset’ models because each time the patient enters a new state, the time is
reset to 0. The package survidm is restricted to these two semiparametric multi-state models, but other
models are possible for the analysis of multi-state survival data. For example, time-homogeneous
markov models and model with piecewise constant intensities are implemented in the msm R package
(Jackson, 2011). Aalen additive model (Aalen et al., 2001) and accelerated failure time models (Wei,
1992) are another class of regression models that can be an alternative to the Cox proportional hazards
model.

Transition probabilities

For two states h, j and two time points s < t, the so-called transition probabilities phj(s, t) = P(Y(t) =
j|Y(s) = h) are introduced. In the progressive illness-death model, there are five different transition
probabilities to estimate: p00(s, t), p01(s, t), p02(s, t), p11(s, t), and p12(s, t). Since p00(s, t) + p01(s, t) +
p02(s, t) = 1 and p11(s, t) + p12(s, t) = 1, in practice, one only needs to estimate three of these
quantities. The state occupation probabilities are defined as pj(t) = P(Y(t) = j). If we assume that all
subjects are in State 0 at time t = 0, then pj(t) = p0j(0, t) and, therefore, the occupation probabilities
can be seen as a particular case of the transition probabilities. Estimating these quantities is interesting
since they allow for long-term predictions of the process.

The standard nonparametric method to estimate a transition probability matrix is the time-honored
Aalen-Johansen (AJ) estimator (Aalen and Johansen, 1978). This estimator benefits from the assumption
of Markovianity on the underlying stochastic process extending the time-honored Kaplan-Meier
estimator (Kaplan and Meier, 1958) to Markov chains. Explicit formulae of the Aalen-Johansen
estimator for the illness-death model are available (Borgan, 1988).

Moreira et al. (2013) propose a modification of the Aalen-Johansen estimator in the illness-death
model based on a preliminary smoothing (also known as presmoothing, Dikta (1998); Cao et al. (2005))
of the censoring probability for the total time (respectively, of the sojourn time in State 0), given
the available information. The presmoothed Aalen-Johansen (PAJ) estimator proposed by Moreira
et al. (2013) is obtained by replacing the censoring indicators (in the transition probabilities p00(s, t)
and p11(s, t)) by an estimator of a binary (logistic) regression function. The authors verified through
simulations that the use of presmoothing can lead to improved estimators with less variability.

The Markov assumption may be violated in practice. For example, for the progressive illness-
death model, the arrival time to the intermediate state of the process often influences the subsequent
transition hazard, leading to non-Markov structures. If the Markov property is violated, then the
consistency of the time-honored Aalen-Johansen estimator and of its presmoothed versions can not be
ensured in general. Exceptions to this are the estimators for p00(s, t) or for the so-called occupation
probabilities, p0j(0, t) (Datta and Satten, 2001).

Estimators for the transition probabilities in the progressive illness-death model, which do not
rely on the Markov assumption, were introduced for the first time by Meira-Machado et al. (2006).
The proposed estimators were defined in terms of multivariate Kaplan-Meier integrals with respect
to the marginal distributions of Z and T. These authors showed the practical superiority of their
estimators relative to the Aalen-Johansen in situations in which the Markov condition is strongly
violated. However, their proposal has the drawback of requiring that the support of the censoring
distribution contains the support of the lifetime distribution. Otherwise, they only report valid
estimators for truncated transition probabilities. To avoid this issue, corrected estimators (labeled in
this paper as LIDA, the acronym of Lifetime Data Analysis, the journal in which this estimator was
published for the first time) were proposed by de Uña-Álvarez and Meira-Machado (2015) for p01(s, t)
and p11(s, t).

The paper by de Uña-Álvarez and Meira-Machado (2015) also introduces estimators based on
subsampling. The idea behind subsampling, also referred to as landmarking (Van Houwelingen,
2007), is to consider the subset of individuals observed in State h by time s. To be specific, given the
time point s, to estimate p0j(s, t) for j = 0, 1, 2, the landmark analysis is restricted to the individuals
observed in State 0 at time s. Whereas, to estimate p1j(s, t), j = 1, 2, the landmark analysis proceeds
from the sample restricted to the individuals observed in State 1 at time s. The procedure is then
based on (differences between) Kaplan-Meier estimators derived from these subsets of the data. These
estimators are termed LM in the present paper as well as in the survidm package.

In some cases, subsampling leads to small sample sizes which may result in estimators with high
variability. To avoid this problem, a valid approach is to consider a modification of the landmark
estimator based on presmoothing (Meira-Machado, 2016). The presmoothed landmark estimators
(PLM) are a good alternative in these situations since they give mass to all the event times, including
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the censored observations.

Subsampling was later used by Putter and Spitoni (2018) to derive a landmark Aalen-Johansen
estimator (LMAJ) of the transition probabilities. The idea behind the proposed estimator is to use the
Aalen-Johansen estimator of the state occupation probabilities derived from those subsets (consisting
of subjects occupying a given state at a particular time) for which consistency have already been
proved in multi-state models that are not necessarily Markov (Datta and Satten, 2001). In this latter
approach, the application of presmoothed estimators (PLMAJ) is possible too.

Also of interest is the estimation of the transition probabilities given a covariate (or a vector of
covariates) that is observed for an individual before the individual makes a particular transition of
interest. One standard method, particularly well-suited to the setting with multiple covariates, is to
consider estimators based on a Cox’s regression model (Cox, 1972) fitted marginally to each transition
with the corresponding baseline hazard function estimated by the Breslow’s method (Breslow, 1972).
One alternative and flexible nonparametric approach is to consider local smoothing by means of
kernel weights based on local constant (Nadaraya-Watson) regression. Right censoring is handled by
applying inverse probability of censoring weighting. This is a fully nonparametric approach which
provides flexible effects of the continuous covariates (Meira-Machado et al., 2015; Rodríguez-Álvarez
et al., 2016; Meira-Machado and Sestelo, 2019). The two possible approaches are implemented in the
survidm package and labeled as breslow and IPCW, respectively.

Cumulative incidence functions

Another quantity of interest in multi-state modeling is the cause-specific cumulative incidence function,
as defined by Kalbfleisch and Prentice (1980). In the illness-death model, two cumulative incidence
functions are of particular interest: the cumulative incidence of the illness and the cumulative incidence
of dying without the disease. These quantity represents the probability of an individual being or
having been diseased at time t. One possible estimator for the cause-specific cumulative incidence
function in a competing risks setting can be performed using the estimator proposed by Geskus
(2011). This estimator based on the subdistribution hazard is obtained by applying the Nelson-Aalen
estimator and the product-limit estimator of the disease-free survival. This estimator can also be
expressed in terms of the Kaplan-Meier weights of the distribution of Z, the sojourn time in State 0,
as introduced in the paper by Meira-Machado and Sestelo (2019). A modification of this estimator
based on presmoothing can be introduced to reduce its variability. Both methods are implemented
in the survidm package. Estimation methods for the cumulative incidence function conditionally on
covariate measures based on local constant (Nadaraya-Watson) regression are also implemented in the
package.

Sojourn distributions

The estimation of the marginal distributions in multi-state modeling is an interesting topic too. In the
context of the illness-death model, if the independence assumption between the censoring variable C
and the vector of times (Z, T) is assumed, the marginal distribution of the sojourn time in State 0, Z,
can be consistently estimated by the Kaplan-Meier estimator based on the (Z̃i, ∆1i)’s. Similarly, the
distribution of the total time may be consistently estimated by the Kaplan-Meier estimator based on
the (T̃i, ∆i)’s. However, the estimation of the marginal distribution of the sojourn time in State 1 is not
such a simple issue. Nonparametric estimates for this marginal distribution allowing for state and
path-dependent censoring were proposed by Satten and Datta (2002).

survidm in practice

This section introduces an overview of how the package is structured.

This software enables both numerical and graphical outputs to be displayed for all methods
described in the previous section. This software is intended to be used with the R statistical program
(R Core Team, 2019). Our package is composed of 17 functions that allow users to obtain estimates for
all proposed methods. Details on the usage of the functions (described in Table 1) can be obtained
with the corresponding help pages.

It should be noted that to implement the methods described in the methodology section, one needs
the following variables of data: time1, event1, Stime, and event. Covariates can also be included.
The variable time1 represents the sojourn time in State 0 and Stime the total time, whereas event1
and event are the respective censoring indicators. This means that event1 will take the value 1 if the
subject leaves State 0 and 0 otherwise; event takes value 1 if the subject reaches State 2 and 0 otherwise.
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Function Description

survIDM Create a survIDM object.
coxidm Fits proportional hazards regression models for each transition.
tprob Estimation of the transition probabilities.
CIF Estimation of the cumulative incidence functions.
sojourn Nonparametric estimation of the sojourn distribution in the interme-

diate state.
autoplot.survIDM Visualization of survIDM objects with ggplot2 and plotly graphics.
plot.survIDM Plot for an object of class survIDM.
print.survIDM Print for an object of class survIDM.
summary.survIDM Summary for an object of class survIDM.
nevents Counts the number of observed transitions in the multi-state model.
markov.test Performs a test for the Markov assumption.
KM Computes the Kaplan-Meier product-limit of survival.
PKM Computes the presmoothed Kaplan-Meier product-limit of survival.
Beran Computes the conditional survival probability of the response, given

the covariate under random censoring.
KMW Returns a vector with the Kaplan-Meier weights.
PKMW Returns a vector with the presmoothed Kaplan-Meier weights.
LLW Returns a vector with the local linear weights.
NWW Returns a vector with the Nadaraya-Watson weights.

Table 1: Summary of functions in the survidm package.

For illustration, we apply the proposed methods to data from a large clinical trial on Duke’s
stage III patients affected by colon cancer that underwent a curative surgery for colorectal cancer
(Moertel et al., 1990). This data set is freely available as part of the R survival package. The data is
also available as part of the R package survidm. Besides the two event times (disease-free survival
time and death time) and the corresponding indicator statuses, a vector of covariates including rx
(treatment: Obs(ervation), Lev(amisole), Lev(amisole)+5FU), sex (1 - male), age (years), nodes (number
of lymph nodes with detectable cancer), surge (time from surgery to registration: 0 = short, 1 = long),
adhere (adherence to nearby organs) are also available. The covariate ‘recurrence’ is the only time-
dependent covariate, while the other covariates included are fixed. Recurrence can be considered as
an intermediate transient state and modeled using the progressive illness-death model with transient
states ‘alive and disease-free’ and ‘alive with recurrence’, and the absorbing state ‘dead’. In the
following, we will demonstrate the package capabilities using this data. Below is an excerpt of the
data.frame with one row per individual. Individuals were chosen in order to represent all possible
combinations of movements among the three states.

> library("survidm")
> data(colonIDM)
> colonIDM[c(1:2,16,21),1:7]

time1 event1 Stime event rx sex age
1 968 1 1521 1 Lev+5FU 1 43
2 3087 0 3087 0 Lev+5FU 1 63
16 1323 1 3214 0 Obs 1 68
21 2789 1 2789 1 Obs 1 64

Individual represented in the first line experienced a recurrence of the tumor and have died. In
such cases, event1 = 1 and time1 = Stime indicate that the individual observed a direct transition
from State 0 to State 1 (with event1 = 1). Individual represented in line 2 remain alive and without
recurrence at the end of follow-up (event1 = 0 and event = 0). Individual represented in line 16 of the
original data set, with event1 = 1 and event = 0, corresponds to an individual with an observed
recurrence that remains alive at the end of the follow-up. Note that in this case, the disease-free
survival time is equal to the death time (time1 = Stime). Finally, individual represented in line 21 of
the original data set has died without observing a recurrence. We note that event1 = 1 and event = 0
correspond to individuals with an observed recurrence that remain alive at the end of the follow-up.

Of the total of 929 patients, 468 developed a recurrence, and among these 414 died, 38 patients
died without developing a recurrence. A summary of the data with the number of the undergoing
transitions can be obtained through the nevents function. The colums of the data set must include
at least the four columns named time1, event1, Stime, and event according to the requirements of
the survIDM function presented in the help file. Parameter state.names enables to change the default
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values of states, ‘healthy’, ‘illness’, and ‘death’.

> nevents(with(colonIDM, survIDM(time1, event1, Stime, event)),
state.names = c("healthy", "recurrence", "death"))

healthy recurrence death
healthy 423 468 38
recurrence 0 54 414
death 0 0 452

Regression models for transitions intensities

To relate the individual characteristics to the intensity rates, semiparametric multi-state regression
models are used. Specifically, separated Cox models assuming the process to be Markovian (i.e., the
transition intensities only depend on the history of the process through the current state) or using a
semi-Markov model in which the future of the process does not depend on the current time but rather
on the duration in the current state. Therefore, practical interest to determine whether the Markov
property holds within a particular data set to determine whether a Markov model or a semi-Markov
model is more appropriate.

The Markov assumption

The Markov assumption may be checked, among others, by including covariates depending on the
history. For the progressive illness-death model, the Markov assumption is only relevant for mortality
transition after recurrence. We can examine whether the time spent in the initial state "Alive and
disease-free" (i.e., the past) is important in the transition from the recurrence state to death (i.e., the
future). For doing that, let Z be the time spent in State 0 and t the current time. Fitting a model
α12(t; Z) = α12,0(t)exp{βZ}, we now need to test the null hypothesis, H0 : β = 0, against the general
alternative, H1 : β ̸= 0. This would assess the assumption that the transition rate from the disease
state into death is unaffected by the time spent in the previous state.

> library(survival)
> fit <- coxph(Surv(time1, Stime, event) ~ time1, data = colonIDM,

subset=c(time1 < Stime))
> fit

coef exp(coef) se(coef) z p
time1 -0.0002475 0.9997526 0.0001737 -1.424 0.154

Likelihood ratio test=2.04 on 1 df, p=0.1533
n= 468, number of events= 414

Following this procedure, we verified that the effect of time spent in State 0 reported a p-value
of 0.154 (regression coefficient: - 0.0002475), revealing no evidence against the Markov model for the
colon data. Results from this test can also be obtained through the function markov.test, which has
an output fairly similar to those obtained from coxph function.

> mk <- markov.test(survIDM(time1, event1, Stime, event) ~ 1, data = colonIDM)
> mk

Since there is no evidence on the lack of Markovianity, a multi-state Markov regression model
based on the Cox model can be fitted through the following input command:

> fit.cmm <- coxidm(survIDM(time1, event1, Stime, event) ~ rx + sex + age +
nodes + surg + adhere, data = colonIDM)

> summary(fit.cmm)

Cox Markov Model: transition 0 -> 1

coef exp(coef) lower 0.95 upper 0.95 Pr(>|z|)
rxLev -0.061251858 0.9405863 0.7596976 1.1645457 5.740592e-01
rxLev+5FU -0.515170844 0.5973985 0.4713678 0.7571264 2.031682e-05
sex -0.149177218 0.8614164 0.7160077 1.0363552 1.137849e-01
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age -0.004669254 0.9953416 0.9876802 1.0030625 2.362711e-01
nodes 0.083943790 1.0875678 1.0686993 1.1067694 5.418662e-21
surg 0.251798521 1.2863368 1.0509673 1.5744186 1.460249e-02
adhere 0.296839791 1.3455997 1.0551768 1.7159575 1.671466e-02

Cox Markov Model: transition 0 -> 2

coef exp(coef) lower 0.95 upper 0.95 Pr(>|z|)
rxLev -0.29152482 0.7471235 0.3271685 1.706135 4.889711e-01
rxLev+5FU -0.11211853 0.8939383 0.4220165 1.893589 7.697006e-01
sex 0.39293182 1.4813174 0.7641923 2.871399 2.445966e-01
age 0.08422764 1.0878765 1.0476871 1.129608 1.157046e-05
nodes 0.07538428 1.0782984 0.9895116 1.175052 8.552937e-02
surg 0.41564547 1.5153485 0.7703441 2.980851 2.285509e-01
adhere 0.05435239 1.0558566 0.4377875 2.546517 9.036879e-01

Cox Markov Model: transition 1 -> 2

coef exp(coef) lower 0.95 upper 0.95 Pr(>|z|)
rxLev 0.068953592 1.071386 0.8533466 1.345138 5.525534e-01
rxLev+5FU 0.327043851 1.386862 1.0741245 1.790656 1.212756e-02
sex 0.214094887 1.238740 1.0138220 1.513557 3.623833e-02
age 0.009342474 1.009386 1.0014760 1.017359 1.994502e-02
nodes 0.046061552 1.047139 1.0249376 1.069821 2.522475e-05
surg -0.012258877 0.987816 0.7944594 1.228232 9.121722e-01
adhere 0.137708158 1.147641 0.8851963 1.487895 2.985854e-01

The transition intensities characterize the hazard for movement from one state to another, revealing
how the different covariates affect the various permitted transitions. The results obtained indicate that
none of the covariates were found to have a strong effect on all three transitions. Save for covariates age
and sex, all the remaining predictors were considered important for recurrence transition. Interestingly,
age displayed a strong linear effect on mortality transition without recurrence, whereas all the other
covariates failed to show relevant association on this transition. Finally, save for covariates surg
and adhere, all the remaining predictors were considered important for the mortality transition after
recurrence. The coxidm function also returns the analysis of the deviance for each Cox model. In this
case, only an overall p-value is presented for categorical variables. To obtain the outputs, we have to
indicate type=‘anova’ in summary function.

> summary(fit.cmm,type = 'anova')

Cox Markov Model: transition 0 -> 1

loglik Chisq Df Pr(>|Chi|)
NULL -2954.2
rx -2941.8 24.6964 2 4.338e-06 ***
sex -2941.0 1.6402 1 0.20030
age -2939.8 2.3435 1 0.12581
nodes -2909.0 61.6050 1 4.198e-15 ***
surg -2906.2 5.7134 1 0.01684 *
adhere -2903.5 5.3740 1 0.02044 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Cox Markov Model: transition 0 -> 2

loglik Chisq Df Pr(>|Chi|)
NULL -231.79
rx -231.54 0.4938 2 0.7812
sex -231.04 1.0065 1 0.3158
age -219.26 23.5445 1 1.221e-06 ***

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 77

nodes -218.04 2.4536 1 0.1173
surg -217.35 1.3830 1 0.2396
adhere -217.34 0.0145 1 0.9043
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Cox Markov Model: transition 1 -> 2

loglik Chisq Df Pr(>|Chi|)
NULL -1897.5
rx -1895.0 4.8864 2 0.0868804 .
sex -1892.8 4.3995 1 0.0359501 *
age -1890.8 4.0650 1 0.0437799 *
nodes -1883.4 14.7205 1 0.0001247 ***
surg -1883.4 0.0090 1 0.9242629
adhere -1882.9 1.0505 1 0.3054007
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The effect of the continuous covariates on the log hazards is often assumed to have a linear
functional form in all intensities. To introduce flexibility into the Cox Markov model, several smoothing
methods may be applied, but P-splines (Eilers and Marx, 1996) are being most frequently considered
in this context. Results showed a strong nonlinear effect for nodes (checked through a formal test)
when using a Cox model on the recurrence transition. Figure 2 returns a centered set of predictions on
a log hazard scale. The average predicted value is zero with a mean value of nodes as the reference
(see the vignette ’Splines, plots, and interactions’ in (Therneau, 2021)). The main curve depicts the
smooth curve for nodes on a log hazard scale, indicating that the risk of recurrence increases rapidly
until about 6 nodes. The apparent decrease after 23 nodes is not significant due to the wide confidence
intervals.

> library(ggplot2)
> library(plotly)

> fit2.cmm <- coxidm(survIDM(time1, event1, Stime, event) ~ rx + sex + age +
pspline(nodes) + surg + adhere, data = colonIDM)

> d<-data.frame(x=fit2.cmm$term01$nodes$x, y=fit2.cmm$term01$nodes$y,
y1=fit2.cmm$term01$nodes$y-1.96*fit2.cmm$term01$nodes$se,
y2=fit2.cmm$term01$nodes$y+1.96*fit2.cmm$term01$nodes$se)

> nonlinear<-ggplot(d, aes(x,y))+theme(axis.text=element_text(size=13))+
theme_bw()+labs(x = "nodes") +
labs(y = "Partial for pspline(nodes)")+
geom_ribbon(aes(ymin=y1,ymax=y2),fill='gray92',alpha=0.9)+
geom_line(aes(x,y))+
geom_line(color=1,size=1)

> ggplotly(nonlinear)

The proportional hazards assumption can be tested formally using the summary function. The
output can be obtained putting type='ph' in summary function.

> summary(fit2.cmm, type = 'ph')

Cox Markov Model: transition 0 -> 1
Test the Proportional Hazards Assumption

chisq df p
rx 4.12e-01 2.00 0.81
sex 2.10e+00 1.00 0.15
age 9.37e-04 1.00 0.98
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Figure 2: Predicted values of the smooth log hazard based on penalized splines (black line) with
pointwise 95% confidence intervals obtained from the partial residuals for nodes (recurrence intensity),
using the colon cancer data.

pspline(nodes) 7.60e+00 3.95 0.10
surg 1.97e+00 1.00 0.16
adhere 6.13e-01 1.00 0.43
GLOBAL 1.30e+01 9.94 0.22

Cox Markov Model: transition 0 -> 2
Test the Proportional Hazards Assumption

chisq df p
rx 1.6292 2.00 0.44
sex 0.0668 1.00 0.80
age 0.8396 1.00 0.36
pspline(nodes) 0.7859 4.00 0.94
surg 0.4955 1.00 0.48
adhere 2.3606 1.00 0.12
GLOBAL 6.1424 9.99 0.80

Cox Markov Model: transition 1 -> 2
Test the Proportional Hazards Assumption

chisq df p
rx 5.03913 1.99 0.08
sex 0.02204 1.00 0.88
age 0.73628 1.00 0.39
pspline(nodes) 4.25500 4.09 0.39
surg 2.02427 1.00 0.15
adhere 0.00177 1.00 0.97
GLOBAL 13.19170 10.08 0.22

A semi-Markov model could be obtained by including the argument semiMarkov = TRUE in the

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 79

coxidm function.

Occupation probabilities and transition probabilities

The occupation probabilities and the transition probabilities are key quantities of interest in multi-state
models. They offer interpretable results in a simple and summarized manner.

Estimates and plots of the transition probabilities for all methods introduced in Section 2.2 can be
obtained using the tprob function. The default method is the Aalen-Johansen estimator (AJ) which
assumes the process to be Markovian. The presmoothed version of the Aalen-Johansen estimator
(PAJ) also assumes the process to be Markovian while the remaining methods (LIDA, LM, PLM, LMAJ, and
PLMAJ) are free of the Markov condition.

When one is confident of the Markov assumption, the Aalen-Johansen is preferred over the non-
Markovian estimators since it reports a smaller variance in estimation. Estimates and plot for the
Aalen-Johansen method can be obtained through the following input commands:

> tpAJ <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
method = "AJ", conf = TRUE, data = colonIDM)

> summary(tpAJ, times=365*2:6)

Estimation of pij(s=365,t)

t 00 01 02 11 12
730 0.7966309 0.1300071 0.0733620 0.4686360 0.5313640

1095 0.7192603 0.1224599 0.1582799 0.2533822 0.7466178
1460 0.6805333 0.0884287 0.2310380 0.1335300 0.8664700
1825 0.6444157 0.0859123 0.2696720 0.0932851 0.9067149
2190 0.6131533 0.0774912 0.3093556 0.0632835 0.9367165

2.5%

t 00 01 02 11 12
730 0.7673408 0.1093487 0.0589350 0.4105298 0.4728114

1095 0.6867036 0.1026150 0.1354061 0.2105314 0.7011204
1460 0.6468259 0.0714743 0.2030840 0.1047501 0.8346547
1825 0.6098804 0.0688614 0.2396632 0.0708282 0.8813846
2190 0.5780541 0.0612090 0.2777007 0.0464018 0.9172849

97.5%

t 00 01 02 11 12
730 0.8270390 0.1545683 0.0913208 0.5349666 0.5971676

1095 0.7533604 0.1461425 0.1850177 0.3049547 0.7950677
1460 0.7159973 0.1094050 0.2628397 0.1702170 0.8994981
1825 0.6809066 0.1071852 0.3034384 0.1228620 0.9327733
2190 0.6503836 0.0981045 0.3446188 0.0863070 0.9565597

> autoplot(tpAJ)

Besides being consistent regardless the Markov condition, the landmark non-Markov estimators
(LM, PLM, LMAJ, and PLMAJ) can be preferable in many situations due to their greater accuracy (smaller
bias). When comparing the original nonparametric landmark estimator (LM) and the Aalen-Johansen
estimator, some discrepancies are observed for t = 730 and t = 1095 (2 and 3 years, respectively).
In addition to the aforementioned discrepancy between the two estimates, the plots for the two
methods (Figure 3) also show that the confidence bands are narrower in the case of the Aalen-Johansen,
revealing less variability for this method.

> tpLM <- tprob(survIDM(time1, event1, Stime, event) ~ 1, s = 365,
method = "LM", conf = TRUE, data = colonIDM)

> summary(tpLM, times=365*2:6)

Estimation of pij(s=365,t)
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Figure 3: Transition probability estimates using the AJ (left hand side) and LM (right hand side) method,
using the colon cancer data.

t 00 01 02 11 12
730 0.7966309 0.14750103 0.0558681 0.38815789 0.6118421

1095 0.7192603 0.14320925 0.1375305 0.15789474 0.8421053
1460 0.6805333 0.09446864 0.2249981 0.10526316 0.8947368
1825 0.6444157 0.08583643 0.2697479 0.09210526 0.9078947
2190 0.6131533 0.07465238 0.3121944 0.06432749 0.9356725

2.5%

t 00 01 02 11 12
730 0.7673274 0.12294665 0.0411836 0.31792669 0.5390734

1095 0.6866872 0.12033558 0.1142137 0.10937624 0.7860868
1460 0.6468058 0.07447488 0.1960521 0.06621973 0.8472552
1825 0.6098421 0.06804756 0.2387239 0.05591405 0.8630680
2190 0.5777125 0.05742370 0.2791810 0.03480413 0.8969820

97.5%

t 00 01 02 11 12
730 0.8270534 0.17695930 0.07578852 0.4739034 0.6944337

1095 0.7533784 0.17043081 0.16560740 0.2279357 0.9021157
1460 0.7160195 0.11982998 0.25821767 0.1673268 0.9448794
1825 0.6809493 0.10827565 0.30480372 0.1517218 0.9550498
2190 0.6507682 0.09705015 0.34911161 0.1188947 0.9760319

> autoplot(tpLM)

Since the landmark estimators of the transition probabilities are free of the Markov assumption,
they can also be used to introduce such tests (at least in the scope of the illness-death model) by
measuring their discrepancy to Markovian estimators. The function markov.test performs a local
graphical test for the Markov condition. This graphical test is based on a PP-plot which compares the
estimations reported by the Aalen-Johansen transition probabilities to their non-Markov counterparts.
The corresponding plot for a local test of Markovianity (s = 365) can be obtained through the following
input command:

> mk <- markov.test(survIDM(time1, event1, Stime, event) ~ 1, s = 365, data = colonIDM)
> autoplot(mk)

The plot shown in Figure 4 compares the Aalen-Johansen estimator and the landmark non-
Markovian estimator for p01(s, t), p02(s, t), and p12(s, t), for s = 365. Existing deviations of the plots
with respect to the straight line y = x reveals some evidence on the lack of Markovianity of the
underlying process beyond one year after surgery. For further illustration, this figure jointly displays
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Figure 4: Graphical test for the Markov condition, s = 365. The second row shows the landmark
(Markov-free) estimator with 95% pointwise confidence limits (black line) and Aalen-Johansen estima-
tor (red line) for the transition probability p12(365, t), using the colon cancer data.

the landmark non-Markovian estimator and the Aalen-Johansen estimator for p12(s = 365, t). In this
plot, the differences between both estimators are clearly seen. Thus, in principle, the application of the
Aalen-Johansen method is not recommended here due to possible biases.

The variability of the nonparametric landmark estimator (LM) may be successfully reduced us-
ing presmoothing ideas (Dikta, 1998; Cao et al., 2005). The presmoothed landmark estimator is
implemented in the same function through the method PLM. The same ideas can be used to reduce
the variability of the Markovian Aalen-Johansen estimator and the (non-Markov) Landmark Aalen-
Johansen estimator through methods PAJ and PLMAJ, respectively.

The package survidm also allows for the computation of the above quantities conditional on
covariates that are observed for an individual before the individual makes a particular transition of
interest. For continuous covariates, one possible and flexible nonparametric approach is to consider
local smoothing by means of kernel weights based on local constant (Nadaraya-Watson: NW) regression.
This estimator is implemented in our package through function tprob using the method = IPCW. Below
are the input commands to obtain the estimates of the transition probabilities at time s = 365 for an
individual of 48 years old. For the bandwidth in the estimator, we use dpik function, which is available
from the R KernSmooth package. This is the data-based bandwidth selector of Wand and Jones (1997).
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Figure 5: Conditional transition probabilities given that the subject is alive and disease-free at s = 365
days for a 48-years-old patient, using the colon cancer data.

> tpIPCW.age <- tprob(survIDM(time1, event1, Stime, event) ~ age, s = 365,
method = "IPCW", z.value = 48, conf = FALSE, data = colonIDM,
bw = "dpik", window = "gaussian", method.weights = "NW")

> summary(tpIPCW.age, time=365*2:6)

Estimation of pij(s=365,t)

t 00 01 02 11 12
730 0.7662208 0.1921290 0.04165012 0.28946129 0.7105387

1095 0.7308496 0.1688189 0.10033149 0.12631010 0.8736899
1460 0.6980293 0.1088373 0.19313342 0.05905711 0.9409429
1825 0.6310625 0.1186104 0.25032706 0.05903929 0.9409607
2190 0.6157095 0.1051797 0.27911080 0.04035816 0.9596418

> autoplot(tpIPCW.age)

The curves depicted in Figure 5, which are purely nonparametric, enable flexible modeling of the
data providing flexible and robust effects of the covariate that can be used at least as a preliminary
attempt, providing insights on the data being analyzed. Such methods can be used to capture
nonstandard data features that may not be detected through parametric or semiparametric proposals.
A general problem in multivariate nonparametric regression estimation is the so-called curse of
dimensionality. In higher dimensions, the observations are sparsely distributed even for large sample
sizes. Consequently, estimators based on local averaging (like those based on kernel smoothing)
perform unsatisfactorily in this situation.

An alternative method is to consider estimators based on Cox’s regression model (Cox, 1972) fitted
marginally to each transition with the corresponding baseline hazard function estimated by Breslow’s
method (Breslow, 1972). The following input commands illustrate the use of the tprob function in this
context:

> tp.breslow.age <- tprob(survIDM(time1, event1, Stime, event) ~ age, s = 365,
method = "breslow", z.value = 48, conf = FALSE, data = colonIDM)

> summary(tp.breslow.age, time=365*2:6)
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Estimation of pij(s=365,t)

t 00 01 02 11 12
730 0.7970855 0.15020199 0.05271253 0.37528949 0.6247105

1095 0.7198657 0.14999685 0.13013746 0.14814634 0.8518537
1460 0.6826444 0.10384005 0.21351550 0.09843946 0.9015605
1825 0.6451532 0.09850122 0.25634562 0.08617378 0.9138262
2190 0.6139465 0.08891388 0.29713961 0.06066618 0.9393338

Note that if the argument z.value is missing, then the tprob function computes the predicted
conditional transition probabilities at the average values of the covariate. The Breslow method (based
on the Cox regression model) is particularly well-suited to the setting with multiple covariates:

> tp.breslow <- tprob(survIDM(time1, event1, Stime, event) ~ rx + age + nodes, s = 365,
method = "breslow", z.value = c('Obs', 50, 10), conf = FALSE,
data = colonIDM)

> summary(tp.breslow, time=365*2:6)

Estimation of pij(s=365,t)

t 00 01 02 11 12
730 0.6423398 0.24905912 0.1086010 0.30017412 0.6998259

1095 0.5222992 0.21890332 0.2587975 0.09465150 0.9053485
1460 0.4680828 0.12787851 0.4040387 0.05433167 0.9456683
1825 0.4181094 0.10712224 0.4747684 0.04519157 0.9548084
2190 0.3762996 0.08424903 0.5394514 0.02685212 0.9731479

Cumulative Incidence Function

Another quantity of interest in multi-state modeling is the cause-specific cumulative incidence of the
illness (recurrence). Function CIF can be used to obtain the nonparametric estimator of Geskus (2011)
(default method), which is equivalent to the classical Aalen-Johansen estimator. The corresponding
presmoothed version (Meira-Machado and Sestelo, 2018) is also implemented through the argument
presmooth = TRUE:

> cif <- CIF(survIDM(time1, event1, Stime, event) ~ 1, data = colonIDM, conf = TRUE)
> summary(cif, time=365*1:6)

Estimation of CIF(t)
t CIF

365 0.2378902
730 0.3844412

1095 0.4372663
1460 0.4620841
1825 0.4859813
2190 0.5032043

2.5%

t CIF
365 0.2088267
730 0.3509039

1095 0.4038141
1460 0.4296740
1825 0.4540347
2190 0.4697608

97.5%

t CIF
365 0.2616792
730 0.4103338

1095 0.4666664
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Figure 6: Cumulative incidence function in the recurrence state with 95% bootstrap confidence bands,
using the colon cancer data.

1460 0.4900876
1825 0.5161684
2190 0.5319749

> autoplot(cif, ylim=c(0, 0.6), confcol = 2)

Figure 6 depicts the estimates of cumulative incidence function for the recurrent state together
with a 95% pointwise confidence bands based on simple bootstrap that resamples each datum with
probability 1/n. From this plot, it can be seen that individuals have a probability of recurrence higher
than 50%. This cumulative probability is about 43% at three years after surgery.

Figure 7 depicts the estimates of the (conditional) cumulative incidence function for patients
with 1 and 9 lymph nodes with detectable cancer. Curves depicted in this figure, which are purely
nonparametric, indicate that patients with 9 lymph nodes with detectable cancer have a considerably
higher probability of recurrence. The corresponding input commands are shown below:

> cif.1.nodes <- CIF(survIDM(time1, event1, Stime, event) ~ nodes, data = colonIDM,
conf = FALSE, z.value = 1)

> cif.9.nodes <- CIF(survIDM(time1, event1, Stime, event) ~ nodes, data = colonIDM,
conf = FALSE, z.value = 9)

> d<-as.data.frame(cbind(rep(cif.1.nodes$est[,1],2),c(cif.1.nodes$est[,2],
cif.9.nodes$est[,2]), c(rep("1 nodes", length(cif.1.nodes$est[,1])),
rep("9 nodes", length(cif.1.nodes$est[,2])))))

> names(d)<-c('time','cif','type')

> cif<-ggplot(d, aes(x=as.numeric(time), y=as.numeric(cif),group=factor(type),
color=factor(type)))+theme_bw()+labs(x = 'Time (days)',
y = 'CIF(t|nodes)')

> cif+geom_step(size=1)+ theme(legend.title=element_blank())
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Figure 7: Conditional cumulative incidence function for the colon cancer data for nodes = 1 and nodes
= 9, using the colon cancer data.

Sojourn distribution

Another interesting quantity is the sojourn time in each state. Estimates for the distribution function
of the sojourn time in the recurrence state can be obtained using the estimator by Satten and Datta
(2002) through function sojourn.

> soj <- sojourn(survIDM(time1, event1, Stime, event) ~ 1,
data = colonIDM, method = "Satten-Datta", conf = FALSE)

> summary(soj, time=365*1:6)

Estimation of sojourn(t)

t sojourn
365 0.4852424
730 0.7723636

1095 0.8755021
1460 0.8983714
1825 0.9102335
2190 0.9220849

The estimates for the distribution function of the sojourn time in the recurrence state, corresponding
to the time between entry in recurrence and death, reveal that the distribution function increases to a
value near 49% and 78% for a time of one and two years, respectively, revealing a high risk of death
shortly after relapse.

The methods for implementing some of the proposed methods can be computationally demanding.
In particular, the use of bootstrap resampling techniques is time-consuming process because it is
necessary to estimate the model a great number of times. In such cases, we recommend the use
of parallelization (cluster = TRUE). This should considerably increase performance on multi-core/
multi-threading machines.
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Conclusions

There has been several recent contributions for the inference in the context of multi-state models.
Many of these contributions were made for the illness-death model. One important and perhaps
undervalued aspect of multi-state models is the possibility to apply them to obtain predictions of the
clinical prognosis. This is usually achieved using estimates of the transition probabilities and survival
estimates. However, there are several other quantities that could also be used in the analysis of these
data, such as the state occupation probabilities, the sojourn time distributions, and the cumulative
incidence functions. To provide the biomedical researchers with an easy-to-use tool for obtaining
predictive estimates for all these quantities, we develop an R package called survidm. This package
can be used to implement several nonparametric and semiparametric estimators for the transition
probabilities. In addition, estimators have also implemented that account for the influence of covariates.
Bootstrap confidence bands are provided for all methods. The software can also be used to perform
multi-state regression (using type-specific Cox models).

One limitation of the survidm R package is that it can only be used in the progressive illness-death
model. However, this turns out to be an advantage for those users that only wish to analyze data from
a progressive illness-death model. For such cases, the survidm package is ideal since it is user-friendly
(as illustrated in the real data analysis as well as in the help files of the main functions tprob, sojourn,
and CIF) with a strong resemblance to the well-known and widely used survival package.
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Multiple Imputation and Synthetic Data
Generation with NPBayesImputeCat
by Jingchen Hu, Olanrewaju Akande and Quanli Wang

Abstract In many contexts, missing data and disclosure control are ubiquitous and challenging
issues. In particular, at statistical agencies, the respondent-level data they collect from surveys and
censuses can suffer from high rates of missingness. Furthermore, agencies are obliged to protect
respondents’ privacy when publishing the collected data for public use. The NPBayesImputeCat R
package, introduced in this paper, provides routines to i) create multiple imputations for missing data
and ii) create synthetic data for statistical disclosure control, for multivariate categorical data, with or
without structural zeros. We describe the Dirichlet process mixture of products of the multinomial
distributions model used in the package and illustrate various uses of the package using data samples
from the American Community Survey (ACS). We also compare results of the missing data imputation
to the mice R package and those of the synthetic data generation to the synthpop R package.

Introduction and background

Multiple imputation for missing data

Missing data problems arise in many statistical analyses. To impute missing values, multiple imputa-
tion, first proposed by Rubin (1987), has been widely adopted. This approach estimates predictive
models based on the observed data, fills in missing values with draws from the predictive models,
and produces multiple imputed and completed datasets. Data analysts then apply standard statistical
analyses (e.g., regression analysis) on each imputed dataset and use appropriate combining rules to
obtain valid point estimates and variance estimates (Rubin, 1987).

As a brief review of the multiple imputation combining rules for missing data, let q be the
completed data estimator of some estimand of interest Q, and let u be the estimator of the variance
of q. For l = 1, . . . , m, let q(l) and u(l) be the values of q and u in the lth completed dataset. The
multiple imputation estimate of Q is equal to q̄m = ∑m

l=1 q(l)/m, and the estimated variance associated
with q̄m is equal to Tm = (1 + 1/m)bm + ūm , where bm = ∑m

l=1(q
(l) − q̄m)2/(m − 1) and ūm =

∑m
l=1 u(l)/m. Inferences for Q are based on (q̄m − Q) ∼ tv(0, Tm), where tv is a t-distribution with

v = (m − 1)(1 + ūm/[(1 + 1/m)bm])2 degrees of freedom.

Multiple imputation by chained equations (MICE, Buuren and Groothuis-Oudshoorn (2011)) re-
mains the most popular method for generating multiple completed datasets after multiple imputation.
Under MICE, one specifies univariate conditional models separately for each variable, usually using
generalized linear models (GLMs) or classification and regression trees (CART Breiman et al. (1984);
Burgette and Reiter (2010)), and then iteratively samples plausible predicted values from the sequence
of conditional models . For implementing MICE in R, most analysts use the mice package. For an
in-depth review of the MICE algorithm, see Buuren and Groothuis-Oudshoorn (2011). For more details
and reviews, see Rubin (1996), Harel and Zhou (2007), Reiter and Raghunathan (2007).

Synthetic data for statistical disclosure control

Statistical agencies regularly collect information from surveys and censuses and make such information
publicly available for various purposes, including research and policymaking. In numerous coun-
tries around the world, statistical agencies are legally obliged to protect respondents’ privacy when
making this information available to the public. Statistical disclosure control (SDC) is the collection
of techniques applied to confidential data before public release for privacy protection. Popular SDC
techniques for tabular data include cell suppression and adding noise, and popular SDC techniques
for respondent-level data (also known as microdata) include swapping, adding noise, and aggregation.
Hundepool et al. (2012) provide a comprehensive review of SDC techniques and applications.

The multiple imputation methodology has been generalized to SDC. One approach to facilitating
microdata release is to provide synthetic data. First proposed by Little (1993) and Rubin (1993),
the synthetic data approach estimates predictive models based on the original, confidential data,
simulates synthetic values with draws from the predictive models, and produces multiple synthetic
datasets. Data analysts then apply standard statistical analyses (e.g., regression analysis) on each
synthetic dataset and use appropriate combining rules (different from those in multiple imputation)
to obtain valid point estimates and variance estimates (Reiter and Raghunathan, 2007; Drechsler,
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2011). Moreover, synthetic data comes in two flavors: fully synthetic data (Rubin, 1993), where every
variable is deemed sensitive and therefore synthesized, and partially synthetic data (Little, 1993),
where only a subset of variables is deemed sensitive and synthesized, while the remaining variables
are un-synthesized. Statistical agencies can choose between these two approaches depending on their
protection goals, and subsequent analyses also differ.

When dealing with fully synthetic data, q̄m estimates Q as in the multiple imputation setting,
but the estimated variance associated with q̄m becomes Tf = (1 + 1/m)bm − ūm , where bm and
ūm are defined as in previous section on multiple imputation. Inferences for Q are now based on
(q̄m − Q) ∼ tv(0, Tf ), where the degrees of freedom is v f = (m − 1)(1 − mūm/((m + 1)bm))2.

For partially synthetic data, q̄m still estimates Q but the estimated variance associated with q̄m is
Tp = bm/m + ūm , where bm and ūm are defined as in the multiple imputation setting. Inferences for Q
are based on (q̄m − Q) ∼ tv(0, Tp), where the degrees of freedom is vp = (m − 1)(1 + ūm/[bm/m])2.

For synthetic data with R, synthpop provides synthetic data generated by drawing from con-
ditional distributions fitted to the confidential data. The conditional distributions are estimated by
models chosen by the user, whose choices include parametric or CART models. For more details and
reviews of synthetic data for statistical disclosure control, see Drechsler (2011).

Structural zeros

An important feature of survey data is the existence of structural zeros, which are combinations of
variables with probability zero. For example, in the combinations of variables of vital signs, there
should not exist a deceased patient with a pulse. For the household surveys, in the combinations of
variables of relationship and age, there should not exist a household where a son is older than his bio-
logical father. As another example, if a dataset contains information of a record’s age and educational
attainment in the form of categorical variables, there can be no record having the combination of being
younger than 5 and having a doctorate degree.

In survey data with many variables, cross-tabulations of variables could result in sparse tables,
containing non-structural zeros (combinations that are possible but happen not to exist in the particular
dataset) and structural zeros (combinations that are simply impossible). To deal with structural
zeros, many advanced statistical models are designed to assign zero probability for every impossible
combination, which is a challenging task.

What NPBayesImputeCat does

The NPBayesImputeCat package specializes in estimating and performing multiple imputation and
synthetic data generation for multivariate categorical data. Unlike mice and synthpop, both of
which specify conditional models, the NPBayesImputeCat implements the Dirichlet process mixture
of products of multinomial distributions (DPMPM), which specifies a joint latent class model on
multivariate categorical variables. It uses Dirichlet process (DP) priors to allow effective clustering
of the observations. Therefore, the NPBayesImputeCat package adds to the tools of imputation
and synthesis, where a joint model might be more suitable than a series of conditional models for
multivariate categorical data.

NPBayesImputeCat also allows imputation with structural zeros. It, therefore, helps fill an
important gap in missing data imputation techniques, as currently available R packages do not
facilitate imputation with structural zeros, and users might have to post-process, such as rejection
sampling to delete generated but impossible cases.

For multiple imputation, the NPBayesImputeCat package allows data with and without structural
zeros. For synthetic data, currently, the package only allows data without structural zeros.

The structure of this paper

The rest of the paper is organized as follows. We first introduce the joint latent class models for
multivariate categorical data that the NPBayesImputeCat package applies, that is, the DPMPM model.
In addition, we review applications of multiple imputation and synthetic data generation using the
DPMPM in the literature. Next, we introduce the sample datasets from the American Community
Survey (ACS) to be used in the demonstration, and provide illustrations for both multiple imputation
and synthetic data generation using the NPBayesImputeCat package while comparing to other
existing R packages. The paper concludes with a summary and discussion.
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The DPMPM model

Proposed by Dunson and Xing (2009), the DPMPM is a Bayesian latent class model developed
for multivariate categorical data. To allow for effective clustering of the observations based on all
categorical variables, DP priors are specified for the mixture probabilities and multinomial probability
vectors of the categorical data. The DPMPM has been shown to capture the complex dependencies
in multivariate categorical data while being computationally efficient. In addition, it empowers the
data to select the number of latent classes to be used in the model estimation. The model has also been
extended to account for structural zeros in categorical data (Manrique-Vallier and Reiter, 2014a).

The NPBayesImputeCat package includes two versions of the DPMPM: i) DPMPM without
structural zeros, and ii) DPMPM with structural zeros. In this section, we introduce the details of both
versions and review previous work on using the DPMPM for multiple imputation and synthetic data.

DPMPM without structural zeros

Our review of the DPMPM without structural zeros closely follows the review in Hu and Hoshino
(2018). Consider a sample X consisting of n records, where each ith record, with i = 1, . . . , n, has
p unordered categorical variables. The basic assumption of the DPMPM is that every record Xi =
(Xi1, · · · , Xip) belongs to one of K underlying unobserved/latent classes. Given the latent class
assignment zi of record i, as in Equation (2), each variable Xij independently follows a multinomial
distribution, as in Equation (1), where dj is the number of categories of variable j, and j = 1, . . . , p.

Xij | zi, θ
ind∼ Multinomial(θ(j)

zi1
, . . . , θ

(j)
zidj

; 1) ∀i, j (1)

zi | π ∼ Multinomial(π1, . . . , πK ; 1) ∀i (2)

The marginal probability Pr(Xi1 = xi1, · · · , Xip = xip | π, θ) can be expressed as averaging over
the latent classes:

Pr(Xi1 = xi1, · · · , Xip = xip | π, θ) =
K

∑
k=1

πk

p

∏
j=1

θ
(j)
kxij

. (3)

As pointed out in Si and Reiter (2013), Hu et al. (2014), Akande et al. (2017), such averaging over latent
classes results in dependence among the variables. Equation (3) will also help illustrate the DPMPM
with structural zeros in the next section.

The DPMPM clusters records with similar characteristics based on all p variables. Relationships
among all the variables are induced by integrating out the latent class assignment zi. To empower
the DPMPM to pick the effective number of occupied latent classes, the truncated stick-breaking
representation (Sethuraman, 1994) of the DP prior is used as in Equation (4) through Equation (7),

πk = Vk ∏
l<k

(1 − Vl) for k = 1, . . . , K, (4)

Vk
iid∼ Beta(1, α) for k = 1, . . . , K − 1, VK = 1, (5)

α ∼ Gamma(aα, bα), (6)

θ
(j)
k = (θ

(j)
k1 , . . . , θ

(j)
kdj

) ∼ Dirichlet(a(j)
1 , . . . , a(j)

dj
) for j = 1, . . . , p, k = 1, . . . , K. (7)

and a blocked Gibbs sampler is implemented for the Markov chain Monte Carlo (MCMC) sampling
procedure (Ishwaran and James, 2001; Si and Reiter, 2013; Hu et al., 2014; Akande et al., 2017; Manrique-
Vallier and Hu, 2018; Drechsler and Hu, 2021; Hu and Savitsky, 2018).

When used as an imputation engine, missing values are handled within the Gibbs sampler. As
described in Akande et al. (2017), at one MCMC iteration l, one samples a value of the latent class
indicator zi using Equation (2), given a draw of the parameters and observed data. In this iteration l,
given the sampled zi, one samples missing values using independent draws from Equation (1). This
process is repeated for every missing value in the dataset in iteration l, obtaining one imputed dataset.

When used as a data synthesizer, the fully observed confidential dataset is used for model es-
timation through MCMC, and sensitive variable values are synthesized as an extra step at chosen
MCMC iteration. For example, at MCMC iteration l, one samples a value of the latent class indicator
zi using Equation (2). Given the sampled zi, one samples synthetic values of sensitive variables using
independent draws from Equation (1). This process is repeated for every record that has sensitive
values to be synthesized, obtaining one synthetic dataset.
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DPMPM with structural zeros

When structural zeros are present, we need to modify the likelihood to enforce zero probability for
impossible combinations. That is, we need to truncate the support of the DPMPM. Following the
general description in Manrique-Vallier and Reiter (2014a) and Manrique-Vallier and Hu (2018), let C
represent all combinations of individuals, including impossible combinations; let MCZ ̸⊆ C be the set
of impossible combinations to be excluded. We restrict X to the set C \MCZ , with Pr(X ∈ MCZ) = 0.
The marginal probability in the DPMPM without structural zeros in Equation (3) then becomes

Pr(Xi = xi | π, θ,MCZ) ∝ I(Xi /∈ MCZ)
K

∑
k=1

πk

p

∏
j=1

θ
(j)
kxij

. (8)

Let X ∗ be the sample that only contains possible combinations, we have the joint likelihood as

p(X ∗ | π, θ,MCZ) ∝
n

∏
i=1

I(Xi /∈ MCZ)
K

∑
k=1

πk

p

∏
j=1

θ
(j)
kxij

. (9)

To get the Gibbs sampler to work, we follow the general data augmentation technique proposed by
Manrique-Vallier and Reiter (2014a) and assume the existence of an observed sample X 0 of unknown
size Nmis, generated from the DPMPM without structural zeros (i.e., the unrestricted DPMPM). X 0

only contains records that fall into MCZ .

The same set of DP priors in Equation (4) through Equation (7) is used in the DPMPM with
structural zeros. In the Gibbs sampler, we keep the generated X 0 and combine it with X ∗ when
estimating the model parameters. For computational expedience, we set the upper bound of the
number of observations, Nmis, that can be generated in X 0, to be fixed at a large Nmax at every
iteration. When used as either an imputation engine or a data synthesizer, missing values or synthetic
data are generated from the truncated likelihood Equation (9).

Applications of DPMPM for multiple imputation

The DPMPM has been adapted as a multiple imputation engine to deal with missing values in
categorical data. Some imputation applications have focused on the DPMPM without structural zeros,
while others have dealt with the DPMPM with structural zeros.

Among the work on multiple imputation using the DPMPM without structural zeros, Si and Reiter
(2013) applied the DPMPM imputation model to impute missing background data (categorical) in the
2007 Trends in International Mathematics and Science Study (TIMSS). The 2007 TIMSS data contains
80 background variables on 90,505 students. Among the 80 categorical background variables, 68 have
less than 10% missing values, 6 variables have between 10% and 30% missing values, and 1 variable
has more than 75% missing values.

Akande et al. (2017) designed simulation studies using data from the American Community
Survey (ACS) and compared the DPMPM imputation engine to two other widely used multiple
imputation engines: i) chained equations using generalized linear models, and ii) chained equations
using classification and regression trees (CART). From a population of 671,153 housing units and 35
categorical variables collected and cleaned from the 2012 ACS data, Akande et al. (2017) performed
repeated sampling and empirically compared the three multiple imputation models.

Among the work on multiple imputation using the DPMPM with structural zeros, Manrique-
Vallier and Reiter (2014b) followed the data augmentation approach Manrique-Vallier and Reiter
(2014a), and imputed missing data of repeated samples from the 5% public use microdata sample from
the 2000 United States Census for the state of New York, a population of 953,076 individuals and 10
categorical variables, with the number of levels ranging from 2 to 11.

Finally, Murray (2018) provides an excellent review of practical and theoretical findings of multiple
imputation research and highlights the DPMPM imputation engine as a recent development.

Applications of DPMPM for synthetic data

The DPMPM has also been used as a synthetic data generator to the public release of useful and
private micro-level categorical data. Some work focused on the DPMPM without structural zeros,
while others dealt with synthetic data problems using the DPMPM with structural zeros.

Among the work on synthetic data generation using the DPMPM without structural zeros, Hu
et al. (2014) used the DPMPM to generate fully synthetic data for a subset of 10,000 individuals
and 14 categorical variables from the 2012 ACS public use microdata sample for the state of North
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Carolina. Drechsler and Hu (2021) generated partially synthetic data for large-scale administrative
data containing detailed geographic information in Germany. Hu and Savitsky (2018) also used the
DPMPM to generate partially synthetic data for the Consumer Expenditure Surveys (CE) at the U.S.
Bureau of Labor Statistics (BLS), disseminating detailed county-level geographic information.

Among the work on synthetic data generation using the DPMPM with structural zeros, Manrique-
Vallier and Hu (2018) proposed a data augmentation approach and generated fully synthetic data of
repeated samples from the 5% public use microdata from the 2000 United States Census for the state
of California, a population of 1,690,642 records measured in 17 categorical variables, with the number
of levels ranging from 2 to 11.

Two ACS samples for illustrations

Before presenting detailed step-by-step illustrations to use the NPBayesImputeCat package for
multiple imputation and data synthesis applications, we introduce two samples from the 2016 1-year
American Community Surveys (ACS), which will both be used for our illustrations.

ACS sample 1, ‘ss16pusa_sample_zeros’, contains structural zeros. It will be used to illustrate how
to perform multiple imputation and data synthesis tasks when structural zeros are present. ACS
sample 2, ‘ss16pusa_sample_nozeros’, is a subset of ACS sample 1 and contains no structural zeros. It
will be used to illustrate how to perform multiple imputation and data synthesis tasks when structural
zeros are not present.

ACS sample 1, with structural zeros

Variable Description # Category details
AGEP Age 7 16; 17; [18, 24]; [25, 35]; [36, 50]; [51, 70]; (70, )
MAR Marital status 5 Married; Widowed; Divorced; Separated; Never married.
SCHL Education attainment 9 Up to K0; Some K12, no diploma; High school diploma or

GED; Some college, no degree; Associate’s degree; Bache-
lor’s degree; Master’s degree; Professional degree; Doc-
torate degree.

SEX Sex 2 Male; Female
WKL When last worked 3 Within the last 12 months; 1-5 years ago; Over 5 years ago

or never worked.

Table 1: Variables used in ACS sample 1. The four table columns provide information on: variable
name, simple description of the variable, the number of categories, and the details of the categories.

ACS sample 1 is a random sample of n = 1, 000 observations on p = 5 variables. See Table 1 for
the data dictionary. The sample is saved as ‘ss16pusa_sample_zeros’, and it contains structural zeros: 8
combinations, all related to AGEP and SCHL variables, listed in Table 2. These 8 cases are derived
from the original 2016 1-year ACS data (as the population).

# Description
1 AGEP = 16 & SCHL = Bachelor’s degree.
2 AGEP = 16 & SCHL = Doctorate degree.
3 AGEP = 16 & SCHL = Master’s degree.
4 AGEP = 16 & SCHL = Professional degree.
5 AGEP = 17 & SCHL = Bachelor’s degree.
6 AGEP = 17 & SCHL = Doctorate degree.
7 AGEP = 17 & SCHL = Master’s degree.
8 AGEP = 17 & SCHL = Professional degree.

Table 2: 8 cases of structural zeros in the ACS sample. The table columns include the index of each
structural zeros case and simple description of the case itself.

ACS sample 2, without structural zeros

To obtain a sample without structural zeros, we take a subset of ACS sample 1, where n = 1, 000 and
p = 3, dropping variables AGEP and SCHL to eliminate any structural zeros. This ACS sample 2 is
saved as ‘ss16pusa_sample_nozeros’. See Table 3 for the data dictionary.
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Variable Description # Category details
MAR Marital status 5 Married; Widowed; Divorced; Separated; Never married.
SEX Sex 2 Male; Female
WKL When last worked 3 Within the last 12 months; 1-5 years ago; Over 5 years ago

or never worked.

Table 3: Variables used in ACS sample 2. The four table columns provide information on: variable
name, simple description of the variable, the number of categories, and the details of the categories.

Missing data applications

To illustrate the applications of the NPBayesImputeCat package to missing data, we introduce
30% missingness for each variable in the ACS sample 1 and ACS sample 2 datasets, under the
missing completely at random (MCAR) mechanism. The corresponding datasets (data containing
missing values) to ACS sample 1 and ACS sample 2 are saved as ‘ss16pusa_sample_zeros_miss’ and
‘ss16pusa_sample_nozeros_miss’, respectively. The DPMPM imputation engine is designed to perform
multiple imputations of categorical data that are missing at random (MAR)–and thus also data that
are missing completely at random (MCAR).

Multiple imputation for data without structural zeros

We begin with the imputation of the missing values in the ACS sample 2 with 30% missingness,
‘ss16pusa_sample_nozeros_miss’, where no structural zeros are present. In the next section, we demon-
strate how to impute missing values for ACS sample 1 with 30% missingness,
‘ss16pusa_sample_zeros_miss’, where structural zeros are present.

For each sample, we also compare the performance of the DPMPM engine to the most popular
multiple imputation method, MICE. We implement the latter using the mice package in R. A brief
review of mice is included at the beginning of the paper.

Load the sample data

First, we load the sample data, the ACS sample 2 with 30% missingness, and make sure that all
variables are unordered factors.

data("ss16pusa_sample_nozeros_miss")
X <- ss16pusa_sample_nozeros_miss
p <- ncol(X)
for (j in 1:p){
X[,j] <- as.factor(X[,j])

}

Initialize the DPMPM imputation engine

We use the DPMPM_nozeros_imp function to implement the DPMPM imputation engine without struc-
tural zeros. We first review the process for creating and initializing the DPMPM model using the
CreateModel function to enable analysts to tune the number of mixture components through initial
runs, before generating imputations using DPMPM_nozeros_imp. CreateModel is a wrapper function
for creating an object of type “Lcm”. Lcm was implemented as an Rcpp module to expose the C++
implementation for our algorithm. Users can learn more about the Lcm class by typing ?`Lcm', which
will bring up the R documentation for this class, including all methods and properties.

CreateModel takes 7 arguments as input:

1. X, the original data with missing values.

2. MCZ, the data frame containing the structural zeros definitions - use NULL when structural zeros
are not present.

3. K, the maximum number of mixture components (i.e., the maximum number of latent classes in
the DPMPM imputation engine).

4. Nmax, an upper truncation limit for the augmented sample size, that is, the maximum number of
observations allowable in the augmented X 0 - use 0 when structural zeros are not present.

5. aalpha, the hyper parameter aα in stick-breaking prior distribution in Equation (6).
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6. balpha, the hyper parameter bα in stick-breaking prior distribution in Equation (6).

7. seed, the seed value.

As a quick demonstration, we let K= 30, aalpha= balpha= 0.25, and seed= 456. The code below
creates and initializes the DPMPM imputation engine without structural zeros for the data stored in X.

model <- CreateModel(X = X,
MCZ = NULL,
K = 30,
Nmax = 0,
aalpha = 0.25,
balpha = 0.25,
seed = 456)

Next, we run the model object for a set of user-specified numbers of burn-ins, MCMC iterations, and
thinning. For example, to run the MCMC sampler for 5 iterations post 2 burn-ins, thin every 1 iteration,
and print the output at each iteration, run the following code.

> model$Run(burnin = 2,
iter = 5,
thinning = 1,
silent = FALSE)

Initializing...
Run model without structural zeros.
iter = 0 kstar = 30 alpha = 1 Nmis = 0
iter = 0 kstar = 30 alpha = 7.81552 Nmis = 0
iter = 1 kstar = 30 alpha = 6.6941 Nmis = 0
iter = 2 kstar = 30 alpha = 4.60622 Nmis = 0
iter = 3 kstar = 30 alpha = 5.67409 Nmis = 0

Here, we show the first few lines of the output. The output prints out the iteration index as iter,
the value of occupied mixture components or latent classes as kstar, posterior estimates of α (the
concentration parameter in stick-breaking prior distribution in Equation (6)) as alpha, and the size of
the augmented sample as Nmis. In our demonstration, Nmis is always 0 as the size of the augmented
sample is 0 when there are no structural zeros.

It is important to keep track of the value of kstar as the NPBayesImputeCat package uses the
truncated stick-breaking representation of the DP prior (Sethuraman, 1994). If the value of kstar is
always K, the maximum number of mixture components, we should re-run the DPMPM model by
specifying a larger value of K to allow a large enough number of mixture components to cluster the
observations. For additional details on setting K, see Hu et al. (2014) and Akande et al. (2017).

The above initial run seems to suggest that the estimation uses almost all latent classes (kstar is
close or is 30, which is what the maximum number of latent classes K set to). It is therefore prudent to
increase the value of K when executing the CreateModel command, for example:

> model <- CreateModel(X = X,
MCZ = NULL,
K = 80,
Nmax = 0,
aalpha = 0.25,
balpha = 0.25,
seed = 456)

> model$Run(burnin = 2,
iter = 5,
thinning = 1,
silent = FALSE)

Initializing...
Run model without structural zeros.
iter = 0 kstar = 80 alpha = 1 Nmis = 0
iter = 0 kstar = 78 alpha = 16.4979 Nmis = 0
iter = 1 kstar = 77 alpha = 17.281 Nmis = 0
iter = 2 kstar = 75 alpha = 24.4488 Nmis = 0
iter = 3 kstar = 79 alpha = 26.1196 Nmis = 0

Again, we only show the first few lines of the output. This time, setting K equal to 80 seems sufficiently
large. Users should keep track of the value of kstar for the entire run and adjust K accordingly.
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To diagnose convergence of parameters in the Gibbs sampler, one can use the EnableTracer option
before running the sampler to track certain parameters. Examples of keeping posterior samples of
alpha and kstar to access convergence are included in the accompanying R file.

Generate the imputed datasets

After setting K based on the initial runs, we now run the DPMPM imputation engine without structural
zeros to create m imputed datasets. The function DPMPM_nozeros_imp takes 10 arguments as input:

1. X, the original data with missing values.

2. nrun, the number of MCMC iterations.

3. burn, the number of burn-in.

4. thin, the number of thinning.

5. K, the maximum number of mixture components (i.e., the maximum number of latent classes in
the DPMPM imputation engine)

6. aalpha, the hyper parameter aα in stick-breaking prior distribution in Equation (6).

7. balpha, the hyper parameter bα in stick-breaking prior distribution in Equation (6).

8. m, the number of imputations.

9. seed, the seed value.

10. silent, default to TRUE. Set this parameter to FALSE if more iteration info are to be printed.

The output of DPMPM_nozeros_imp is a list containing:

1. impdata, the list of m imputed datasets.

2. origdata, the original data X.

3. alpha, the saved posterior draws of α, which can be used to check MCMC convergence.

4. kstar, the saved numbers of occupied mixture components, which can be used to check MCMC
convergence and track whether the upper bound K is set large enough.

To run the DPMPM_nozeros_imp function to impute missing data for ACS sample 2 with 30% missing-
ness, we run the code below. For this demonstration, we set nrun to 10000, burn to 5000, thin to 50, K
to 80, both aalpha and balpha 0.25, and m to 10. Finally, we set the seed to 211.

m <- 10
Imp_DPMPM <- DPMPM_nozeros_imp(X = X,

nrun = 10000,
burn = 5000,
thin = 50,
K = 80,
aalpha = 0.25,
balpha = 0.25,
m = m,
seed = 211,
silent = TRUE)

The printed output from each iteration are omitted here. For a quick diagnostic check on whether the
upper bound K is set large enough, we can use the kstar_MCMCdiag function which takes the following
input arguments:

1. kstar, the vector output of kstar from running the DPMPM model.

2. nrun, the number of MCMC iterations used in running the DPMPM model.

3. burn, the number of burn-in iterations used in running the DPMPM model.

4. thin, the number of thinning used in running the DPMPM model.

Its output a list of two MCMC diagnostics figures:

1. Traceplot, the traceplot of kstar post burn-in and thinning.

2. Autocorrplot, the autocorrelation plot of kstar post burn-in and thinning.

We first load the bayesplot package before using the kstar_MCMCdiag function.
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Figure 1: Traceplot of the thinned kstar values after burn-in. It shows little stickiness (only a 100
samples). The mean of kstar is 7.5, with range from 2.5 to 15. This suggests that setting K = 80 should
be sufficient, and we could consider setting a smaller K for an even faster computation time.
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Figure 2: Autocorrelation plot of the thinned kstar values after burn-in. It shows a sharp drop in
autocorrelation after lag 1, indicating no convergence issues after performing such MCMC diagnostics.

library(bayesplot)
kstar_MCMCdiag(kstar = Imp_DPMPM$kstar,

nrun = 10000,
burn = 5000,
thin = 50)

Figure 1 shows the traceplot of kstar value after burn-in and thinning. It indicates no convergence
issues of the MCMC chain. Moreover, it suggests choosing a smaller K value if we want to achieve an
even faster computation time. Figure 2 presents its autocorrelation function plot, which also indicates
no convergence issues.

To access the imputed datasets one at a time, we do the following.

impdata1 <- Imp_DPMPM$impdata[[1]] #for the first imputed dataset

Analysts then can compute sample estimates for estimands of interest in each imputed dataset and
combine them using the combining rules.

Before demonstrating how to do so, we first use the mice package to also generate imputations for
the same dataset. We do so to facilitate comparisons between results based on the DPMPM model and
MICE. The following code runs the MICE algorithm on the same data using the default options in
MICE for all the arguments, except m, which is set to 10 to be consistent with the implementations of
the DPMPM engine. The code also reshapes the output of the MICE algorithm so that we are able to
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use some of the utility functions in NPBayesImputeCat on the imputed datasets. For more details on
the implementations of mice, see Buuren and Groothuis-Oudshoorn (2011).

library(mice)
m <- 10
Imp_MICE <- mice(data = X,

m = m,
defaultMethod = c("norm", "logreg", "polyreg", "polr"),
print = F,
seed = 342)

#Reshape the list of imputed datasets
Imp_MICE_reshape <- NULL
Imp_MICE_reshape$impdata <- lapply(1:m,function(x) x <- X)
col_names <- names(Imp_MICE$imp)
for (l in 1:m){
for(j in col_names){
na_index_j <- which(is.na((Imp_MICE_reshape$impdata[[l]])[,j])==TRUE)
Imp_MICE_reshape$impdata[[l]][na_index_j,j] <- Imp_MICE$imp[[j]][[l]]

}
}

With the Imp_DPMPM, Imp_MICE, and Imp_MICE_reshape objects, we now demonstrate how to assess the
quality of the imputations for the two methods and also use the combining rules for valid inferences
from multiple imputed datasets.

Assess quality of the imputations

A very common way to assess the quality of the imputations is to compare the estimated distributions
in the observed and imputed datasets. We can compare the marginal distributions of any of the
variables in the observed and imputed datasets using the marginal_compare_all_imp function. The
function takes 3 arguments as input:

1. obsdata, the observed data.

2. impdata, the list of m imputed datasets.

3. vars, the variable of interest.

The output is a list containing:

1. Plot, a barplot showing the marginal probability (as a percentage) of each level of the variable
in the observed and imputed datasets.

2. Comparison, the table of the marginal probabilities (as a percentage) used to make the barplot.

As an example, we can compare the marginal probability of each level of the variable WKL in the
observed and imputed datasets for both MICE and the DPMPM engine by using the following code.
We load the tidyverse library for making these plots.

library(tidyverse)
marginal_compare_all_imp(obsdata = X,

impdata = Imp_DPMPM$impdata,
vars = "WKL")

marginal_compare_all_imp(obsdata = X,
impdata = Imp_MICE_reshape$impdata,
vars = "WKL")

The code creates the plots in Figures 3 and 4. For the most part in Figures 3 and 4, both DPMPM and
MICE result in point estimates from the imputed datasets that are very close to the observed data,
which are to be expected under MCAR. There are no major noticeable differences between the two
methods. The code can be applied in a similar manner to other variables, MAR and SEX, shown in the
accompanying R file.

Using the multiple imputation combining rules

We now demonstrate how to use the combining rules to obtain single point estimates and correspond-
ing 95% confidence intervals for estimands of interest from all the imputed datasets. First, we compute
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Figure 3: Marginal distribution of WKL from the observed data and each imputed dataset using
DPMPM. Barplots of the observed (yellow) and the 10 imputed (grey) are shown for the three levels of
WKL. There is some variability across the imputed datasets. Overall, they resemble the observed well.
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Figure 4: Marginal distribution of WKL from the observed data and each imputed dataset using MICE.
Barplots of the observed (yellow) and the 10 imputed (grey) are shown for the three levels of WKL.
There is some variability across the imputed datasets. Overall, they resemble the observed well.

the point estimates and corresponding standard errors for marginal and joint probabilities from each
imputed dataset using the compute_probs function. The function takes 2 arguments as input:

1. InputData, the list of m imputed datasets.

2. varlist, a list of variable names (or combination of names) of interest.

The output is a list of the marginal and/or joint probabilities in each imputed dataset. Next, we use
the pool_estimated_probs function to pool the estimates from all the imputed datasets using the
combining rules. The function takes 2 arguments as input:

1. ComputeProbsResults, the output from the compute_probs function.

2. method, the combining rules to use, where the options are "imputation", "synthesis_full",
"synthesis_partial".

The output is a list of tables containing the results after applying the combining rules. For example,
suppose we are interested in estimating probabilities corresponding to (i) the marginal distribution of
MAR, (ii) the marginal distribution of SEX, and (iii) the joint distribution of MAR and WKL, we can
use the following code.

varlist <- list(c("MAR"),c("SEX"),c("MAR","WKL")) #probabilities to evaluate
prob_ex1_DPMPM <- compute_probs(InputData = Imp_DPMPM$impdata,

varlist = varlist)
pooledprob_ex1_DPMPM <- pool_estimated_probs(ComputeProbsResults = prob_ex1_DPMPM,

method = "imputation")

prob_ex1_MICE <- compute_probs(InputData = Imp_MICE_reshape$impdata,
varlist = varlist)

pooledprob_ex1_MICE <- pool_estimated_probs(ComputeProbsResults = prob_ex1_MICE,
method = "imputation")
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When dealing with missing data imputation, the method must be set to "imputation". The first element
of pooledprob_ex1_DPMPM for MAR is shown below, whereas the remaining output is omitted for
brevity.

MAR Estimate Std.Error Df Statistic CI_Lower CI_Upper
1 Divorced 0.1083 0.011865562 9.000000 9.127254 0.08145823 0.13514177
2 Married 0.5125 0.020191254 9.000001 25.382277 0.46682421 0.55817579
3 Never married or age<15 0.2953 0.018326210 9.000000 16.113534 0.25384323 0.33675677
4 Separated 0.0204 0.005678460 9.000000 3.592523 0.00755443 0.03324557
5 Widowed 0.0635 0.008683588 9.000000 7.312645 0.04385636 0.08314364

Each row represents the different levels of the corresponding variable(s). From left to right, the
columns give the variable names and levels, the overall point estimates averaged across all imputed
datasets, and the corresponding standard errors, degrees of freedom, test statistics, and confidence
intervals. Similarly, for pooledprob_ex1_MICE, we have

MAR Estimate Std.Error Df Statistic CI_Lower CI_Upper
1 Divorced 0.1055 0.011501682 9 9.172571 0.079481387 0.13151861
2 Married 0.5204 0.017156032 9 30.333355 0.481590360 0.55920964
3 Never married or age<15 0.2912 0.015438579 9 18.861839 0.256275507 0.32612449
4 Separated 0.0175 0.005031389 9 3.478165 0.006118207 0.02888179
5 Widowed 0.0654 0.009065137 9 7.214452 0.044893235 0.08590676

As the output shows, the results from both MICE and DPMPM are once again similar when looking
at marginal probabilities of MAR, and both are indeed close to the results from the original sample
without any missing data (which are excluded for brevity).

The NPBayesImputeCat package also includes similar functions, fit_GLMs and pool_fitted_GLMs,
for fitting generalized linear models (GLMs) to each imputed datasets and pooling the results across
all the datasets. The fit_GLMs function takes 2 arguments as input:

1. InputData, the list of m imputed datasets.

2. exp, the GLM expression for the model of interest (for nnet which must be loaded first).

The output is a list containing the estimated parameters from the GLM model fitted to each imputed
dataset. The pool_fitted_GLMs pools the GLM estimates from all the imputed datasets using the
combining rules. The function takes 2 arguments as input:

1. GLMResults, the output from the fit_GLMs function.

2. method, the combining rules to use, where the options are "imputation", "synthesis_full",
"synthesis_partial".

For example, to fit a multinomial logistic model of MAR on SEX, we can use the following code.

library(nnet)
model_ex1_DPMPM <- fit_GLMs(InputData = Imp_DPMPM$impdata,

exp = multinom(formula = MAR~SEX))
pool_fitted_GLMs(GLMResults = model_ex1_DPMPM,

method = "imputation")

The second line yields the following output, with the numbers rounded up to 4 decimal places.

Levels Parameter Estimate Std.Error Df Statistic CI_Lower CI_Upper
1 Married (Intercept) 1.5431 0.1783 9.0033 8.6536 1.1398 1.9465
2 Married SEXMale 0.0282 0.2597 9.0150 0.1085 -0.5591 0.6155
3 Never married or age<15 (Intercept) 0.8719 0.1849 9.0034 4.7145 0.4536 1.2902
4 Never married or age<15 SEXMale 0.2626 0.2632 9.0139 0.9976 -0.3327 0.8578
5 Separated (Intercept) -1.6225 0.4380 9.1346 -3.7044 -2.6111 -0.6339
6 Separated SEXMale -0.2124 0.7787 10.3909 -0.2728 -1.9386 1.5138
7 Widowed (Intercept) -0.0666 0.2174 9.0059 -0.3062 -0.5584 0.4252
8 Widowed SEXMale -1.5906 0.4781 9.1614 -3.3265 -2.6693 -0.5118

The fit_GLMs and pool_fitted_GLMs functions perform a similar role to the with and pool func-
tions in the mice package. To fit the same model under MICE, we use the following code.

model_ex1_MICE <- with(data = Imp_MICE,
exp = multinom(formula = MAR~SEX))

summary(pool(model_ex1_MICE))
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The second line yields the following output, with the numbers rounded up to 4 decimal places.

y.level term estimate std.error statistic df p.value
1 Married (Intercept) 1.6828 0.1835 9.1720 78.1913 0.0000
2 Married SEXMale -0.1735 0.2745 -0.6321 53.7652 0.5300
3 Never married or age<15 (Intercept) 0.8643 0.1962 4.4051 95.0509 0.0000
4 Never married or age<15 SEXMale 0.2828 0.2980 0.9491 48.8560 0.3473
5 Separated (Intercept) -1.5754 0.6032 -2.6117 19.3114 0.0170
6 Separated SEXMale -0.7507 1.0821 -0.6937 17.6531 0.4969
7 Widowed (Intercept) 0.1187 0.2481 0.4783 49.8076 0.6345
8 Widowed SEXMale -2.2404 0.6741 -3.3235 32.0590 0.0022

The results are mostly similar, although we note that for most of the estimands, the standard errors are
larger for MICE than the DPMPM engine. However, we also note that this illustration is based on data
containing only n = 1000 observations and 30% missing data, so that differences in point estimates are
not particularly surprising. Additional examples of fitting GLM models to the imputed datasets are
shown in the accompanying R file.

Multiple imputation for data with structural zeros

We now illustrate how to impute missing values for ACS sample 1 with 30% missingness, using
NPBayesImputeCat, where there are structural zeros are present. Recall that the data is stored in the
file, ‘ss16pusa_sample_zeros_miss’. The general procedure is very similar to the one in the previous
section, where structural zeros are not present. However, we need to specify additional inputs to
account for the structural zeros when generating the imputed datasets. Once the imputed datasets
have been created, the utility functions used to compute sample estimates and pool them using
the combining rules are exactly the same as before. First, we begin by creating MCZ, the data frame
containing the structural zeros definition.

Create a file to store structural zeros cases

Previously, when there are no structural zeros, MCZ is set to NULL . Here, when there are structural zeros
cases in the application, one should write the MCZ data frame following two general rules:

1. Variables in MCZ must be factors with the same levels as the original data.

2. Placeholder components are represented with NAs.

The script below is a sample script to store the structural zeros definition shown in Table 2.

AGEP <- c(16, 16, 16, 16, 17, 17, 17, 17)
SCHL <- c("Bachelor's degree", "Doctorate degree", "Master's degree",

"Professional degree", "Bachelor's degree", "Doctorate degree",
"Master's degree", "Professional degree")

MAR <- rep(NA, 8)
SEX <- rep(NA, 8)
WKL <- rep(NA, 8)
MCZ <- as.data.frame(cbind(AGEP, MAR, SCHL, SEX, WKL))

First, we create a vector of AGEP consisting of 4 replicates of value 16 and 4 replicates of value 17
and a vector of SCHL consisting of the degree types which induce structural zeros cases with AGEP.
Second, we create vectors of MAR, SEX, and WKL. Each is a vector of length 8, with each element
being NA. These are placeholder components, and since the structural zeros cases do not involve these
three variables, all elements are NAs. Third, we need to create a data frame using as.data.frame and
cbind. It is necessary to input the variables in the same order as in the original data (the order of
variables in Table 1). We save the data frame MCZ for later use.

Load the sample

Now, we load the sample data and make sure that all variables are unordered factors.

data("ss16pusa_sample_zeros_miss")
X <- ss16pusa_sample_zeros_miss
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p <- ncol(X)
for (j in 1:p){
X[,j] <- as.factor(X[,j])
MCZ[,j] <- factor(MCZ[,j], levels = levels(X[,j]))

}

Generate the imputed datasets

Initializing the DPMPM engine follows the exact same approach as before. The only difference is that
we can now supply the two arguments specific to structural zeros, that is, MCZ and Nmax. That is, to
initialize, we can run the following code.

model <- CreateModel(X = X,
MCZ = MCZ,
K = 30,
Nmax = 20000,
aalpha = 0.25,
balpha = 0.25,
seed = 521)

As before, we select K based on initial runs. We now also do the same for Nmax. If the value of either
always hits the set values, we should re-run the model by specifying larger values to allow for a
large enough number of mixture components and augmented observations to cluster the observations
appropriately. As before, we can also save and track posterior samples of the parameters in the sampler
using the EnableTracer option. Sample scripts are included in the accompanying R file.

After setting K and Nmax, we can now run the DPMPM imputation engine with structural zeros to
create m imputed datasets. The function DPMPM_zeros_imp takes 12 arguments as input:

1. X, the original data with missing values.

2. MCZ, data frame containing the structural zeros definition.

3. Nmax, an upper truncation limit for the augmented sample size.

4. nrun, the number of MCMC iterations.

5. burn, the number of burn-in.

6. thin, the number of thinning.

7. K, the maximum number of mixture components (i.e., the maximum number of latent classes in
the DPMPM imputation engine)

8. aalpha, the hyper parameter aα in stick-breaking prior distribution in Equation (6).

9. balpha, the hyper parameter bα in stick-breaking prior distribution in Equation (6).

10. m, the number of imputations.

11. seed, the seed value.

12. silent, default to TRUE. Set this parameter to FALSE if more iteration info are to be printed.

The output of DPMPM_zeros_imp is similar to the output of DPMPM_nozeros_imp, except that now it also
includes Nmis, the saved posterior draws of the augmented sample size, which can be used to check
MCMC convergence.

To run the DPMPM_zeros_imp function to impute missing data for ACS sample 1 with 30% miss-
ingness, we run the code below. For this demonstration, we set Nmax to 200000, nrun to 10000, burn to
5000, thin to 50, K to 80, both aalpha and balpha 0.25, and m to 10. Finally, we set the seed to 653.

m <- 10
Imp_DPMPM <- DPMPM_zeros_imp(X = X,

MCZ = MCZ,
Nmax = 200000,
nrun = 10000,
burn = 5000,
thin = 50,
K = 80,
aalpha = 0.25,
balpha = 0.25,
m = m,
seed = 653,
silent = TRUE)
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As before, it is straightforward to run MCMC diagnostics on the tracked elements of Imp_DPMPM. Also,
Imp_DPMPM contains the list of the imputed datasets. Analysts then can compute sample estimates for
estimands of interest in each imputed dataset and assess their quality or also combine them using the
combining rules by using all the same functions as before. That is, using marginal_compare_all_imp,
compute_probs, pool_estimated_probs, fit_GLMs, and pool_fitted_GLMs. Examples are included in
the accompanying R file.

Currently, there are no direct options in the mice package to incorporate structural zeros. Therefore,
we do not explore comparisons with the MICE engine for data containing structural zeros.

Synthetic data applications

Without loss of generality, suppose we want to generate partially synthetic datasets for the ACS sample
2 (‘ss16pusa_sample_nozeros’), where no structural zeros are present. NPBayesImputeCat includes
functionality to generate fully synthetic data as well, but we exclude its illustration for brevity. The
NPBayesImputeCat package currently does not accommodate data synthesis with structural zeros.

We also implement a popular synthetic data generation method, CART (using the synthpop
package in R), to ACS sample 2 and compare the results (Reiter, 2005) to DPMPM.

Load the sample data

First, we load the sample data, the ACS sample 2, and make sure that all variables are set as factors.

data(ss16pusa_sample_nozeros)
X <- ss16pusa_sample_nozeros
p <- ncol(X)
for (j in 1:p){
X[,j] <- as.factor(X[,j])

}

Generate the synthetic datasets

Initializing the DPMPM synthesizer follows the exact same approach as before for the missing data
imputation applications. We run the following code.

model <- CreateModel(X = X,
MCZ = NULL,
K = 80,
Nmax = 0,
aalpha = 0.25,
balpha = 0.25,
seed = 973)

After setting K based on the initial runs, we now run the DPMPM synthesizer without structural
zeros to create m synthetic datasets. The function DPMPM_nozeros_syn takes 12 arguments as input:

1. X, the original data with missing values.

2. dj, the vector recording the number of categories of the variables.

3. nrun, the total number of MCMC iterations.

4. burn, the number of burn-ins.

5. thin, the number of thinnings.

6. K, the maximum number of mixture components.

7. aalpha, the hyper parameter aα in stick-breaking prior distribution in Equation (6).

8. balpha, the hyper parameter bα in stick-breaking prior distribution in Equation (6).

9. m, the number of synthetic datasets.

10. vars, the names of the variables to be synthesized.

11. seed, the seed value.

12. silent, default to TRUE. Set this parameter to FALSE if more iteration info are to be printed.
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The output of DPMPM_nozeros_syn is a list containing:

1. syndata, the list of m synthetic datasets.

2. origdata, the original data X.

3. alpha, the saved draws of α, which can be used to check MCMC convergence.

4. kstar, the saved numbers of occupied mixture components, which can be used to check MCMC
convergence and track whether the upper bound K is set large enough.

To run the DPMPM_nozeros_syn function to generate synthetic data for ACS sample 2, we run the
code below. For this demonstration, we create partially synthetic data where marital status (MAR)
and when last worked (WKL) are synthesized, and we set nrun to 10000, burn to 5000, thin to 50, K to
80, both aalpha and balpha to 0.25, and seed to 837. Recall that dj stores the vector of levels of the
variables, which are 5 for MAR, 2 for SEX, and 3 for WKL.

dj <- c(5, 2, 3)
m <- 5
Syn_DPMPM <- DPMPM_nozeros_syn(X = X,

dj = dj,
nrun = 10000,
burn = 5000,
thin = 50,
K = 80,
aalpha = 0.25,
balpha = 0.25,
m = 5,
vars = c("MAR", "WKL"),
seed = 837,
silent = TRUE)

MCMC diagnostics can be run based on the tracked elements of Syn_DPMPM. To access the synthetic
datasets one at a time, we do the following.

syndata3 <- Syn_DPMPM$syndata[[3]] #for the third synthetic dataset

Analysts then can compute sample estimates for estimands of interest in each synthetic dataset and
combine them using the combining rules. For comparison, we use the synthpop package to generate
synthetic data for the same dataset with CART synthesizer. The default synthesizer for synthpop is
CART, and the visit.sequence input argument allows the users to indicate which variables to be
synthesized. To match with what we have done with the NPBayesImputeCat, we set MAR and WKL
for visit.sequence to generate partially synthetic data.

library(synthpop)
m <- 5
Syn_CART <- syn(data = X,

m = 5,
seed = 123,
visit.sequence = c("MAR", "WKL"))

Next, we demonstrate how to access the utility of the synthetic datasets from the two methods and
also use the combining rules.

Assess utility of the synthetic datasets

Similar to what we have introduced for assessing the quality of the imputations, for synthesis, we
compare the marginal distributions of any of the variables in the observed and imputed datasets,
using the marginal_compare_all_syn function. The function takes 3 arguments as input:

1. obsdata, the observed data.

2. syndata, the list of m synthetic datasets.

3. vars, the variable of interest.

The output is a list containing:

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=synthpop
https://CRAN.R-project.org/package=synthpop
https://CRAN.R-project.org/package=NPBayesImputeCat


CONTRIBUTED RESEARCH ARTICLES 106

1. Plot, a barplot showing the marginal probability (as a percentage) of each level of the variable
in the observed and synthetic datasets.

2. Comparison, the table of the marginal probabilities (as a percentage) used to make the barplot.

The following code compares the marginal probability of each level of MAR.

marginal_compare_all_syn(obsdata = X,
syndata = Syn_DPMPM$syndata,
vars = "MAR")

marginal_compare_all_syn(obsdata = X,
syndata = Syn_CART$syn,
vars = "MAR")

The code creates the plots in Figures 5 and 6.
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Figure 5: Marginal distribution of MAR from the observed data and each synthetic dataset using
DPMPM. Barplots of the original (yellow) and the 5 synthetic (grey) are shown for the five levels of
MAR. There is some variability across the synthetic datasets. Overall, they resemble the original well.
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Figure 6: Marginal distribution of MAR from the observed data and each synthetic dataset using
CART. Barplots of the original (yellow) and the 5 synthetic (grey) are shown for the five levels of MAR.
There is some variability across the synthetic datasets. Overall, they resemble the original well.

For the most part in Figures 5 and 6, both DPMPM and CART result in point estimates from the
synthetic datasets that are very close to the observed data. There are no major noticeable differences
between the two methods. The code can be applied in a similar manner to other variables, and
examples are included in the accompanying R file.
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Using the synthetic data combining rules

We now demonstrate how to use the combining rules to obtain single point estimates and corre-
sponding 95% confidence intervals for estimands of interest from all the synthetic datasets. Similar to
what we have done with the multiple imputation combining rules previously, we use the same set of
functions: compute_probs and pool_estimated_prob.

For example, suppose we are interested in estimating probabilities corresponding to (i) the marginal
distribution of MAR, (ii) the marginal distribution of SEX, (iii) the marginal distribution of WKL, and
(iv) the joint distribution of MAR and WKL, we can use the following code:

varlist <- list(c("MAR"), c("SEX"), c("WKL"), c("MAR","WKL")) #probabilities to evaluate
prob_ex1_DPMPM <- compute_probs(InputData = Syn_DPMPM$syndata,

varlist = varlist)
pooledprob_ex1_DPMPM <- pool_estimated_probs(ComputeProbsResults = prob_ex1_DPMPM,

method = "synthesis_partial")

prob_ex1_CART <- compute_probs(InputData = Syn_CART$syn,
varlist = varlist)

pooledprob_ex1_CART <- pool_estimated_probs(ComputeProbsResults = prob_ex1_CART,
method = "synthesis_partial")

As noted before, when dealing with partially synthetic data, the method must be set to “synthe-
sis_partial”. We only include the first element of pooledprob_ex1_DPMPM for MAR for brevity.

MAR Estimate Std.Error Df Statistic CI_Lower CI_Upper
1 Divorced 0.1072 0.010406613 293.63208 10.301142 0.086718995 0.12768100
2 Married 0.5112 0.016738961 338.91020 30.539531 0.478274660 0.54412534
3 Never married or age<15 0.2944 0.016234667 88.41528 18.134034 0.262139123 0.32666088
4 Separated 0.0158 0.004718411 43.64386 3.348585 0.006288476 0.02531152
5 Widowed 0.0714 0.008826970 178.61153 8.088846 0.053981434 0.08881857

Each row represents the different levels of the corresponding variable(s). From left to right, the
columns give the variable names and levels, the overall point estimates averaged across all imputed
datasets, and the corresponding standard errors, degrees of freedom, test statistics, and confidence
intervals. Similarly, for pooledprob_ex1_CART, we have

MAR Estimate Std.Error Df Statistic CI_Lower CI_Upper
1 Divorced 0.1104 0.011044293 104.5372 9.996113 0.088500078 0.13229992
2 Married 0.5244 0.017530887 111.6932 29.912919 0.489663753 0.55913625
3 Never married or age<15 0.2842 0.015588823 149.5745 18.231011 0.253397249 0.31500275
4 Separated 0.0138 0.004054405 134.0083 3.403705 0.005781098 0.02181890
5 Widowed 0.0672 0.008348413 392.0400 8.049434 0.050786740 0.08361326

As the output shows, the results from both CART and DPMPM are once again similar when
looking at marginal probabilities of MAR, and both are indeed close to the results from the original
sample (excluded for brevity).

Lastly, we demonstrate the use of fit_GLMs and pool_fitted_GLMs for fitting generalized linear
models (GLMs) to each synthetic datasets and pooling the results across all the datasets. For example,
to fit a logistic model of SEX given MAR and WKL, we can use the following code.

model_ex1_DPMPM <- fit_GLMs(InputData = Syn_DPMPM$syndata,
exp = glm(formula = SEX~WKL+MAR,

family = binomial))
pool_fitted_GLMs(GLMResults = model_ex1_DPMPM,

method = "synthesis_partial")

The second line yields the following output, with the numbers rounded up to 4 decimal places.

Estimate Std.Error Df Statistic CI_Lower CI_Upper
(Intercept) -0.5954 0.3548 44.1182 -1.6781 -1.3105 0.1196
WKLOver 5 years ago or never worked 0.0946 0.2823 179.2380 0.3351 -0.4625 0.6517
WKLWithin the last 12 months 0.3629 0.3042 33.3456 1.1929 -0.2558 0.9816
MARMarried 0.3517 0.2581 48.6246 1.3625 -0.1671 0.8706
MARNever married or age<15 0.4293 0.2560 119.8199 1.6771 -0.0775 0.9360
MARSeparated 0.0710 0.6589 545.7313 0.1078 -1.2232 1.3652
MARWidowed -1.0156 0.3864 543.1589 -2.6285 -1.7746 -0.2566
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We use the following code to fit the same model under CART.

model_ex1_CART <- fit_GLMs(InputData = Syn_CART$syn,
exp = glm(formula = as.factor(SEX)~WKL+MAR,

family = binomial))
pool_fitted_GLMs(GLMResults = model_ex1_CART,

method = "synthesis_partial")

The second line yields the following output, with the numbers rounded up to 4 decimal places.

Estimate Std.Error Df Statistic CI_Lower CI_Upper
(Intercept) -0.0292 0.3155 103.8094 -0.0927 -0.6549 0.5964
WKLOver 5 years ago or never worked -0.0610 0.2941 56.6928 -0.2074 -0.6499 0.5279
WKLWithin the last 12 months -0.1309 0.2602 125.4832 -0.5032 -0.6460 0.3841
MARMarried 0.0316 0.2151 3096.9978 0.1471 -0.3902 0.4534
MARNever married or age<15 0.0230 0.2401 319.0640 0.0956 -0.4495 0.4954
MARSeparated 0.3378 0.6530 187.2752 0.5172 -0.9505 1.6260
MARWidowed 0.1148 0.3365 477.2065 0.3412 -0.5464 0.7760

The output of fitting this GLM to the original sample is used as the benchmark for our utility
evaluation.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.5937 0.2897 -2.050 0.040395 *
WKLOver 5 years ago or never worked 0.2859 0.2539 1.126 0.260163
WKLWithin the last 12 months 0.5054 0.2358 2.144 0.032065 *
MARMarried 0.1380 0.2129 0.649 0.516647
MARNever married or age<15 0.3994 0.2273 1.757 0.078965 .
MARSeparated -0.3538 0.5463 -0.648 0.517183
MARWidowed -1.3673 0.3867 -3.536 0.000406 ***

The utility results are different between DPMPM and CART, and we note that for most of the
estimands, the DPMPM produces more accurate estimation than the CART when compared to the
results from the original sample. These indicate that for this particular sample, a joint model fitted by
the DPMPM does a better job preserving relationships among variables compared to a series of the
conditional models fitted by the CART. Additional examples of fitting GLM models to the synthetic
datasets are shown in the accompanying R file.

Concluding remarks

In this paper, we have presented the DPMPM models for multivariate categorical data and illustrations
of using the NPBayesImputeCat package for multiple imputation and synthetic data applications.
Users can take the output and extract imputed and synthetic datasets, then conduct statistical analyses
of their choice and use the appropriate combining rules to obtain valid estimates. Interested readers
can refer to the package documentation for additional features.

While the NPBayesImputeCat package has been developed primarily for multiple imputation and
synthetic data purposes, users can also use it for DPMPM model estimation. For example, following
the illustrations for synthetic data, a data analyst is able to obtain parameter draws of several key
parameters from the MCMC chain: i) the DP concentration parameter α, ii) the mixture probability

vectors {πk}, and iii) the Multinomial probability vectors {θ
(j)
k }. The analyst can then further conduct

analyses of the clustering of the observations in the MCMC chain and other questions of interest.

Users can report bugs at our GitHub repo: https://github.com/monika76five/NPBayesImputeCat.
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msae: An R Package of Multivariate
Fay-Herriot Models for Small Area
Estimation
by Novia Permatasari and Azka Ubaidillah

Abstract The paper introduces an R Package of multivariate Fay-Herriot models for small area
estimation named msae. This package implements four types of Fay-Herriot models, including
univariate Fay-Herriot model (model 0), multivariate Fay-Herriot model (model 1), autoregressive
multivariate Fay-Herriot model (model 2), and heteroskedastic autoregressive multivariate Fay-Herriot
model (model 3). It also contains some datasets generated based on multivariate Fay-Herriot models.
We describe and implement functions through various practical examples. Multivariate Fay-Herriot
models produce a more efficient parameter estimation than direct estimation and univariate model.

Introduction

Survey sampling is a data collection method by observing several units of observation to obtain
information from the entire population. Compared to other data collection methods, survey sampling
has advantages in cost, time, and human resources. Survey sampling is designed for a certain size
of the domain, commonly a large area. However, data demand for small areas is increasing and has
become high issue (Ghosh and Rao, 1994). The inadequate sample size causes a large standard error of
parameter estimates. This problem is overcome by indirect estimation, namely Small Area Estimation
(SAE).

Rao and Molina (2015) said that SAE increases the effectiveness of sample size using the strength of
neighboring areas and information on other variables that are related to the variable of interest. There
are some estimation methods in SAE, namely Best Linear Unbiased Predictors (BLUP), Empirical Best
Linear Unbiased Predictors (EBLUP), Hierarchical Bayes (HB), and Empirical Bayes (EB). The most
common SAE estimator is the EBLUP (Krieg et al., 2015). EBLUP has advantages over EB and HB
methods. It is a development of the BLUP method that minimizes the MSE among other unbiased
linear estimators (Ghosh and Rao, 1994). Area level of EBLUP application for the continuous response
variable, called Fay-Herriot model, was firstly employed for estimating log per-capita income (PCI) in
small places in the US (Rao and Molina, 2015).

The Fay-Herriot model has extended into a multivariate Fay-Herriot model, which is a model
with several correlated response variables. Datta et al. (1991) firstly applied the multivariate model to
estimate the median income of four-person families in the US states. Benavent and Morales (2016)
developed multivariate Fay-Herriot models with the EBLUP method and introduced four estimation
models based on the estimated variance matrix structure. Ubaidillah et al. (2019) also implemented
the multivariate Fay-Herriot model and indicated that the multivariate Fay-Herriot model produces a
more efficient parameter estimation than the univariate model.

On the Comprehensive R Archive Network (CRAN), there are several packages implementing
small area estimation. Some of them are included in the Small Area Estimation subsection of The
CRAN Task View: Official Statistics & Survey Methodology (Templ, 2014), including sae (Molina and
Marhuenda, 2018), rsae (Schoch, 2014), nlme (Pinheiro et al., 2020), hbsae (Boonstra, 2012), JoSAE
(Breidenbach, 2018), and BayesSAE (Chengchun Shi Developer, 2018). Other popular SAE packages
not included in that subsection are mme (Lopez-Vizcaino et al., 2019) and saery (Lefler et al., 2014).

In this paper, we introduce our R package of multivariate Fay-Herriot models for small area
estimation, named msae. This package and its details are available on CRAN at http://CRAN.R-
project.org/package=msae. Functions in this package implement four Fay-Herriot Models, namely
Model 0, Model 1, Model 2, and Model 3, as proposed by Benavent and Morales (2016).

The paper is structured as follows. First, we explain multivariate Fay-Herriot models in Section
2.2. Then, we describe msae package and illustrate the use of this package for SAE estimation by
employing simulation studies and applying it to a real dataset in the next Sections 2.3 and 2.4. Finally,
we provide a conclusion in Section 2.8.
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Multivariate Fay-Herriot model

The multivariate Fay-Herriot model is an extension of the Fay-Herriot model, which utilizes some
correlated responses. Fay-Herriot is a combination of two model components. The first component is
called the sampling model, and the second component is called the linking model.

Suppose we want to estimate characteristics of R variables in D areas, µd = (µ1d, . . . , µRd)
T , with

d = 1, . . . , D. Let yd = (y1d, . . . , yRd)
T , be a direct estimator of µd. The first component, i.e., sampling

model is
yd = µd + ed, ed ∼ N(0, Ved ), d = 1, . . . , D

, where ed is sampling error with a covariance matrix, Ved , that is assumed to be known. In the
second component, we assume that µd is linearly related with pd area-specific auxiliary variables
Xd = (X1, . . . , Xpd )

T as follows:

µd = Xdβd + ud, ud ∼ N(0, Vud ), d = 1, . . . , D

, where ud is area random effects, and βd is a vector of regression coefficient corresponding with Xd.
This second component is called the linking model. The combination of the two components forms a
multivariate linear mixed model as follows:

yd = Xdβd + ud + ed, ed ∼ N(0, Ved ), d = 1, . . . , D

, where u and e are independent.

Benavent and Morales (2016) proposed Fay-Herriot models using four different variance matrices,
Model 0, Model 1, Model 2, and Model 3. Model 0 is a univariate Fay-Herriot Model, of which the
sampling error and the random effect of target variables are independent. Sampling error and random
effect variance matrix are written as follows:

Vud = diaga≤r≤R(σ
2
ur)

Ved = diaga≤r≤R(σ
2
edr)

,
where d = 1, . . . , D

.

Model 1, Model 2, and Model 3 are multivariate Fay-Herriot models, of which the variance
matrices are no longer diagonal matrices. Model 1 is a multivariate form of Model 0, where the
random effect variance of Model 1 is still a diagonal matrix. Model 2 is called the autoregressive
multivariate Fay-Herriot model (AR(1)), in which the random variance matrix is written as follows :

Vud = σ2
urΩd(ρ)

Ωd(ρ) =
1

1 − ρ2


1 ρ · · · ρR−1

ρ 1 ρR−2

...
. . .

...
ρR−1 ρR−2 · · · 1


Model 3 is called heteroskedastic autoregressive multivariate Fay-Herriot model (HAR(1)), which the
element of random error is written as follows:

udr = ρudr−1 + adr

ud0 ∼ N(0, σ2
u0) and adr ∼ N(0, σ2

r )

, where σ2
u0 = 1, adr, and ud0 are independent. The element of random variance matrix is written as

follow:

σdrii =
i

∑
k=1

ρ2kσ2
i−k

σdrij =
|i−j|

∑
k=0

ρ2k+|i−j|σ2
|i−j|−k

.
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BLUP and EBLUP

The best linear unbiased prediction (BLUP) of µ is

µ̂ = Xβ̂ + ZTV̂uZΩ−1(y − Xβ̂)

, where β̂ = (XTΩ−1X)−1XTΩ−1y is the best linear unbiased estimator (BLUE) of β with the covari-
ance matrix cov(β̂) = (XTΩ−1X)−1. BLUP estimator depends on the random effect variance that
is usually unknown. Using Restricted Maximum Likelihood (REML), we estimate and substitute
random effect variance estimator for obtaining the multivariate EBLUB estimator. The estimation
formula with EBLUP is written as follows:

µ̂ = Xβ̂ + ZTV̂uZΩ̂−1(y − Xβ̂)

Ω̂ = ZTV̂uZ + Ve

, where β̂ = (XTΩ̂−1X)−1XTΩ̂−1y is the best linear unbiased estimator (BLUE) of β with the covari-
ance matrix cov(β̂) = (XTΩ̂−1X)−1.

MSE

Benavent and Morales (2016) also proposed MSE estimation for the multivariate Fay-Herriot models
as follows:

mse(µ̂) = g1i(σ̂
2
u) + g2i(σ̂

2
u) + g3i(σ̂

2
u)

, where each component can be described as follows:

g1i(σ̂
2
u) = ΓVe

,
g2i(σ̂

2
u) = (1 − Γ)X(XTΩ−1X)−1XT(I − Γ)T

,
g3i(σ̂

3
u) ≈ ΣΣcov(σ̂2

uk, σ̂2
ul)Γ(k)ΩΓT

(k), k, l = 1, 2, . . . , q

, where Γ = ZTV̂uZ, Γ(k) =
δΓ
δσ2

u
, and cov(σ̂2

uk, σ̂2
ul) is the inverse of the Fisher information matrix in the

estimation of REML.

Overview of R package msae

The R Package msae implements multivariate Fay-Herriot models for small area estimation. Here are
some functions and the descriptions at a glance:

• eblupUFH: This function gives the EBLUP and MSE based on the univariate Fay-Herriot model
(Model 0).

• eblupMFH1: This function gives the EBLUP and MSE based on the multivariate Fay-Herriot
model (Model 1).

• eblupMFH2: This function gives the EBLUP and MSE based on the autoregressive multivariate
Fay-Herriot model (Model 2).

• eblupMFH3: This function gives the EBLUP and MSE based on the heteroskedastic autoregressive
multivariate Fay-Herriot model (Model 3).

Those functions return a list of five elements:

• eblup is a data frame of EBLUPs for each variable.

• MSE is a data frame of the estimated MSEs of the EBLUPs.

• randomEffect is a data frame of random effect estimators.

• Rmatrix is a block diagonal matrix composed of sampling variances.

• fit is a list containing the following objects:

– method shows the type of fitting method.

– convergence shows the convergence of the Fisher Scoring algorithm.

– estcoef shows estimated model coefficients and their significance.

– refvar shows the estimated random effect variance.
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– refvarTest (only for eblupMFH3) shows homogeneity of random effect variance test based
on Model 3.

– rho (only for eblupMFH2 and eblupMFH3) shows the estimated ρ of random effect variance
and their parameter test.

– informationFisher is a matrix of information Fisher.

This package also provides datasets generated for each multivariate model. The datasets are
generated based on Model 1, Model 2, and Model 3 following steps:

1. Generate sampling error e and auxiliary variables « X1, X2 ». Set the parameter as follows:

• For sampling error e in Model 1, we set ed ∼ N3(0, Ved), where Ved = (σdij)i,j=1,2,3 with
σe11 ∼ InvGamma(11, 1), σe22 ∼ InvGamma(11, 2), σe33 ∼ InvGamma(11, 3), and ρe =
0.5. We generate different MSE of direct estimates for each area.

• For sampling error e in Model 2 and Model 3, we set e ∼ N3(0, Ve), where Ve = (σij)i,j=1,2,3
with σe11 = 0.1, σe22 = 0.2, σe33 = 0.3, and ρe = 0.5. It is shown that all the areas have the
same MSE of direct estimates.

• For auxiliary variables « X1 X2 », we set X1 ∼ N(5, 0.1) and X2 ∼ N(10, 0.2)

2. Generate random effect u, where u ∼ N3(0, Vu). For each dataset, parameter for generating
random effect u are as follows:

• For Model 1, σu11 = 0.2, σu22 = 0.4, and σu33 = 1.2

• For Model 2, σu = 0.4, and ρu = 0.8

• For Model 3, σu11 = 0.2, σu22 = 0.4, σu33 = 1.2, and ρu = 0.8

3. Set β1 = 5 and β2 = 10 to calculate direct estimation « Y1, Y2, and Y3 », where Yi = Xβ + ui +
ei.

4. Auxiliary variables « X1 and X2 », direct estimates « Y1, Y2, and Y3 », and sampling variance-
covariance « v1, v2, v3, v12, v13, and v23 » are combined into a data frame called datasae1 for
Model 1, datasae2 for Model 2, and datasae3 for Model 3.

Example 1. The multivariate Fay-Herriot model (Model 1)

datasae1, which is generated based on Model 1, contains 50 observations on the following 11 variables:
3 dependent variables « Y1, Y2, and Y3 », 2 auxiliary variables « X1 and X2 », and 6 variance-covariance
of direct estimation « v1, v2, v3, v12, v13, and v23 ». The procedures for generating such datasets are
provided in the previous section. The following R commands are run to obtain EBLUPs of the
univariate Fay-Herriot model (Model 0) and the multivariate Fay-Herriot model (Model 1), plot the
EBLUPs of the univariate and multivarate model, and plot the MSEs of EBLUPs in the univariate and
multivarate model:

data('datasae1')

# model specifications
Fo <- list(f1=Y1~X1+X2,

f2=Y2~X1+X2,
f3=Y3~X1+X2)

vardir <- c("v1", "v2", "v3", "v12", "v13", "v23")

# EBLUP based on Model 0 and Model 1
u <- eblupUFH(Fo, vardir, data=datasae1) # Model 0
m1 <- eblupMFH1(Fo, vardir, data=datasae1) #Model 1

# Figure 1: EBLUPs under Model 0 and Model 1
par(mfrow=c(1,3))

plot(u$eblup$Y1, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "Y1",
cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")

points(m1$eblup$Y1, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)
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plot(u$eblup$Y2, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "Y2",
cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")

points(m1$eblup$Y2, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)
plot(u$eblup$Y3, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "Y3",

cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")
points(m1$eblup$Y3, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)

# Figure 2: MSE of Model 0 and Model 1
par(mfrow=c(1,3))

plot(u$MSE$Y1, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "MSE of Y1",
cex.axis = 1.5, cex.lab = 1.5, xaxt = "n", ylim=c(0.038,0.12))

points(m1$MSE$Y1, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)
plot(u$MSE$Y2, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "MSE of Y2",

cex.axis = 1.5, cex.lab = 1.5, xaxt = "n", ylim=c(0.05,0.28))
points(m1$MSE$Y2, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)
plot(u$MSE$Y3, type = "o", col = "blue", pch = 15, xlab = "area", ylab = "MSE of Y3",

cex.axis = 1.5, cex.lab = 1.5, xaxt = "n", ylim=c(0.1,0.42))
points(m1$MSE$Y3, type = "o", col = "red", pch = 18)
axis(1, at=1:50, labels = 1:50)
legend("topleft",legend=c("Model 0","Model 1"),ncol=2 , col=c("blue","red"),

pch=c(15,18), inset=c(0.617,-0.1), xpd=TRUE)

Figure 1 illustrates the EBLUPs based on Model 0 (univariate model) and Model 1 (multivariate
model) for all variables of interest. Figure 2 shows the MSEs of Model 1 compared with the MSEs
of Model 0. It can be seen that the estimates of both methods show a similar pattern. Meanwhile,
EBLUPs based on Model 1 has a lower MSE than Model 0. From this example, we can conclude that
the multivariate Fay-Herriot model (Model 1) is more efficient than the univariate Fay-Herriot model
(Model 0).

Figure 1: EBLUPs under Model 0 and Model 1.

Example 2. The autoregressive multivariate Fay-Herriot model (Model 2)

datasae2, which was generated based on Model 2, contains 50 observations on the following 11
variables: 3 dependent variables « Y1, Y2 and Y3 », 2 auxiliary variables « X1 and X2 », and 6 variance-
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Figure 2: MSE of EBLUPs under Model 0 and Model 1.

covariance of direct estimation « v1, v2, v3, v12, v13, and v23 ». We compare the effectiveness of the
univariate model (Model 0) and autoregressive multivariate Fay-Herriot Model (Model 2) by their
MSE. We use eblupMFH2() to estimate parameters based on Model 2. Then, we plot the EBLUP and
MSE of these methods to compare them.

data('datasae2')

# model specifications
Fo <- list(f1=Y1~X1+X2,

f2=Y2~X1+X2,
f3=Y3~X1+X2)

vardir <- c("v1", "v2", "v3", "v12", "v13", "v23")

# EBLUP based on Model 0 and Model 2
u <- eblupUFH(Fo, vardir, data=datasae2) # Model 0
m2 <- eblupMFH2(Fo, vardir, data=datasae2) # Model 2

The EBLUPs based on Model 0 (univariate model) and Model 1 (autoregressive multivariate
model) are shown in Figure 3. As it can be seen, both methods show an almost similar result. However,
EBLUPs based on Model 2 has a lower MSE than the EBLUPs based on Model 0, as shown in Figure 4.
In this example, the autoregressive multivariate Fay-Herriot model (Model 2) seems to be more
efficient than the univariate Fay-Herriot model (Model 0).

Figure 3: EBLUPs under Model 0 and Model 2.

Example 3. Heteroskedastic autoregressive multivariate Fay-Herriot model
(Model 3)

datasae3, which was generated based on Model 3, is structured the same as datasae1 and datasae2.
We compare the effectiveness of the univariate model (Model 0) and heteroskedastic autoregressive
multivariate Fay-Herriot Model (Model 3) by their MSE. We use eblupMFH3() to estimate parameters
based on Model 3. Then, we plot the EBLUP and MSE of these methods to compare them.

data('datasae3')
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Figure 4: MSE of EBLUPs under Model 0 and Model 2.

# model specifications
Fo <- list(f1=Y1~X1+X2,

f2=Y2~X1+X2,
f3=Y3~X1+X2)

vardir <- c("v1", "v2", "v3", "v12", "v13", "v23")

# EBLUP based on Model 0 and Model 3
u <- eblupUFH(Fo, vardir, data=datasae3) # Model 0
m3 <- eblupMFH3(Fo, vardir, data=datasae3) # Model 3

Figure 5 shows EBLUPs based on Model 3 compared to Model 0. The MSEs of both methods are
shown in Figure 6. It can be seen that the multivariate EBLUPs will follow the pattern of univariate
EBLUPs with smaller MSE values. It can be concluded that the heteroskedastic autoregressive
multivariate Fay-Herriot model (Model 3) is more efficient than the univariate model (Model 0).

Figure 5: EBLUPs under Model 0 and Model 3.

Figure 6: MSE of EBLUPs under Model 0 and Model 3.
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Real data example: Poverty index

In this section, we use incomedata dataset, which is provided in library sae. The dataset contains
unit-level data on income and other related variables in Spain. We will demonstrate how to estimate
the EBLUP of Foster-Greer-Thorbecke (FGT) poverty index for each province using the multivariate
Fay-Herriot Models. The index consists of three indicators, i.e., poverty proportion (p0), poverty gap
(p1), and poverty severity (p2).

library(sae)
data("incomedata")

Firstly, we obtain area-level data by calculating poverty indicators for each unit and aggregating
it by province based on Benavent and Morales (2016). We use poverty line z=6557.143 (Molina and
Marhuenda, 2015). These following R commands are run to obtain p0, p1, and p2 as variables of
interest.

library(tidyverse)

pov.line <- rep(6557.143, dim(incomedata)[1]) # poverty line

# calculate unit indictators
incomedata$y <- (pov.line - incomedata$income)/pov.line
incomedata = incomedata %>% mutate(poverty = ifelse(incomedata$y > 0, TRUE, FALSE),

y0 = ifelse(incomedata$y > 0, incomedata$y^0, 0),
y1 = ifelse(incomedata$y > 0, incomedata$y^1, 0),
y2 = ifelse(incomedata$y > 0, incomedata$y^2, 0))

# estimated domain size
est.Nd <- aggregate(incomedata$weight, list(incomedata$prov), sum)[,2]

## estimate P0 P1 dan P2
prov.est = incomedata %>% group_by(prov) %>%
summarise(p0.prov = sum(weight*y0),

p1.prov = sum(weight*y1),
p2.prov = sum(weight*y2)) %>%

mutate(p0.prov = p0.prov / est.Nd,
p1.prov = p1.prov / est.Nd,
p2.prov = p2.prov / est.Nd)

incomedata <- incomedata %>% left_join(prov.est, by = c("prov" = "prov"))

We also need variance and covariance of variables of interest to estimate using the multivariate
Fay-Herriot model. The following R commands are run to obtain variance and covariance of direct
estimation based on Benavent and Morales (2016).

# estimate direct estimation variance-covariance
prov.variance = incomedata %>%
mutate(v11 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y0-p0.prov)*(y0-p0.prov), 0),
v12 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y0-p0.prov)*(y1-p1.prov), 0),
v13 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y0-p0.prov)*(y2-p2.prov), 0),
v22 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y1-p1.prov)*(y1-p1.prov), 0),
v23 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y1-p1.prov)*(y2-p2.prov), 0),
v33 = ifelse(incomedata$poverty,

(weight*(weight-1))*(y2-p2.prov)*(y2-p2.prov), 0)) %>%
group_by(prov) %>%
summarise_at(c("v11","v12", "v13", 'v22',"v23","v33"), sum) %>%
mutate_at(c("v11","v12", "v13", 'v22',"v23","v33"),

function(x){x/est.Nd^2})

We use six explanatory variables selected by stepwise method, i.e., an indicator of age group 50-64
(age4), an indicator of age group >=65 (age5), an indicator of education level 1 (educ1), an indicator
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of education level 2 (educ2), an indicator of education level 3 (educ3), and an indicator of Spanish
nationality (nat1). The model specifications are written as follow:

formula <- list(f1=p0.prov~age4+age5+educ1+educ2+educ3+nat1,
f2=p1.prov~age4+age5+educ1+educ2+educ3+nat1,
f3=p2.prov~age4+age5+educ1+educ2+educ3+nat1)

vardir <- c("v11", "v22", "v33", "v12", "v13", "v23")

Next, we select the most suitable multivariate Fay-Herriot model using variance homogeneity test
and random effect ρ parameter test. In the variance homogeneity test, we test H0 : σ̂2

ui = σ̂2
uj ; i, j =

1, 2, 3 using model 3. We obtain a non-convergent model, the p-values are 0.98674 and 0.98996. It
shows that the difference between variance of random effects is statistically not significant. After that,
we test H0 : ρ = 0 using model 2. We get the t-statistics value of 19.26 with p-value of 0.00. It shows
that there is a correlation between random effects. These results indicate the model that fits the data is
Model 2.

The following codes are run to obtain the EBLUPs (under Model 2), to plot the direct estimates and
the EBLUPs, and to plot the MSEs of direct estimates and the MSEs of EBLUPs ordered by sample size:

# EBLUP based on Model 2
eblup.pov <- eblupMFH2(formula, vardir, data=prov.data)

# Dataframe of Result
result_eblup = data.frame(prov = prov.data$prov,

est.Nd = est.Nd,
p0 = prov.data$p0.prov, p0.eblup = eblup.pov$eblup$p0.prov,
p1 = prov.data$p1.prov, p1.eblup = eblup.pov$eblup$p1.prov,
p2 = prov.data$p2.prov, p2.eblup = eblup.pov$eblup$p2.prov,
v11 = prov.data$v11, p0.mse = eblup.pov$MSE$p0.prov,
v22 = prov.data$v22, p1.mse = eblup.pov$MSE$p1.prov,
v33 = prov.data$v33, p2.mse = eblup.pov$MSE$p2.prov)

result_eblup = result_eblup %>% arrange(est.Nd)
result_eblup$prov = as.factor(result_eblup$prov)
result_eblup$id = 1:nrow(result_eblup)

# Figure 7: Direct estimates estimates and EBLUPs (under Model 2) ordered by sample size.
par(mfrow=c(1,3))

plot(result_eblup$id, result_eblup$p0, type = "o", col = "blue", pch = 15, xlab = "area",
ylab = "p0", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")

points(result_eblup$p0.eblup, type = "o", col = "red", pch = 18)
axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))
plot(result_eblup$id, result_eblup$p1, type = "o", col = "blue", pch = 15, xlab = "area",

ylab = "p1", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")
points(result_eblup$p1.eblup, type = "o", col = "red", pch = 18)
axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))
plot(result_eblup$id, result_eblup$p2, type = "o", col = "blue", pch = 15, xlab = "area",

ylab = "p2", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")
points(result_eblup$p2.eblup, type = "o", col = "red", pch = 18)
axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))

# Figure 8: MSE of Direct estimates and MSE of EBLUPs (under Model 2) ordered by sample size.
par(mfrow=c(1,3))

plot(result_eblup$id, result_eblup$v11, type = "o", col = "blue", pch = 15, xlab = "area",
ylab = "p0", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")

points(result_eblup$p0.mse, type = "o", col = "red", pch = 18)
axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))
plot(result_eblup$id, result_eblup$v22, type = "o", col = "blue", pch = 15, xlab = "area",

ylab = "p1", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")
points(result_eblup$p1.mse, type = "o", col = "red", pch = 18)
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axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))
plot(result_eblup$id, result_eblup$v33, type = "o", col = "blue", pch = 15, xlab = "area",

ylab = "p2", cex.axis = 1.5, cex.lab = 1.5, xaxt = "n")
points(result_eblup$p2.mse, type = "o", col = "red", pch = 18)
axis(1, at=result_eblup$id, labels = result_eblup$prov)
legend("topright",legend=c("Direct estimates","Model 2"),col=c("blue","red"), pch=c(15,18))

Variable of Interest Statistic Direct Estimation Model 2

p0 Min 0.05244 0.04601
Quartil 1 0.17296 0.18947
Median 0.21850 0.21937
Mean 0.22659 0.22020
Quartil 3 0.27753 0.25468
Max 0.43588 0.35011
Standard Deviation 0.08173 0.056597

p1 Min 0.01891 0.02551
Quartil 1 0.05336 0.05969
Median 0.06810 0.06866
Mean 0.07567 0.07407
Quartil 3 0.09208 0.08866
Max 0.15973 0.14023
Standard Deviation 0.03227 0.02506

p2 Min 0.005449 0.008481
Quartil 1 0.025819 0.026867
Median 0.032344 0.033600
Mean 0.039042 0.038179
Quartil 3 0.051379 0.049755
Max 0.099308 0.087194
Standard Deviation 0.02083 0.017137

Table 1: Statistics of direct estimation and Model 2

We will compare EBLUPs based on Model 2 with the direct estimates. Both of the estimation results
can be seen in Table 1. On the median value, the result of estimated poverty indicators are relatively
similar, ranging from 0.218-0.219 for p0, 0.0681-0.0687 for p1, and 0.0323-0.0336 for p2. Model 2 has a
lower range and smaller standard deviation than the direct estimation. It means that, in general, the
multivariate Fay-Herriot model has lower variability of small area estimates than direct estimation.

Figure 7: Direct estimates and EBLUPs (under Model 2) of p0, p1, and p2 ordered by sample size.

The results of direct estimates and EBLUPs under Model 2 ordered by sample size are shown in
Figure 7. The patterns of small area estimates for both methods are almost the same for all areas. The
MSEs of the direct estimates and the EBLUP estimates ordered by sample size are shown in Figure 8.
These plots show that the multivariate Fay-Herriot model has lower MSE than the direct estimation.
Thus, we can conclude that the multivariate Fay-Herriot model is more efficient than direct estimation.
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Figure 8: MSE of direct estimates and MSE of EBLUPs (under Model 2) of p0, p1, and p2 ordered by
sample size.

Conclusion

This paper introduces the first R package of multivariate Fay-Herriot model for small area estimation
named msae. The package is available on Comprehensive R Archive Network (CRAN) at http:
//CRAN.R-project.org/package=msae. This package contains a number of functions for estimating
the EBLUP and MSE of EBLUP of each Fay-Herriot Model. This package accommodates the univariate
Fay-Herriot model (model 0), multivariate Fay-Herriot model (model 1), autoregressive multivariate
Fay-Herriot model (model 2), and heteroskedastic autoregressive multivariate Fay-Herriot model
(model 3). The functions are described and implemented using three examples of datasets provided
in msae package and a real dataset provided in sae package, incomedata. By these examples, we
show that the multivariate Fay-herriot models produce more efficient parameter estimates than direct
estimation and univariate model.

Bibliography

R. Benavent and D. Morales. Multivariate fay–herriot models for small area estimation. Computational
Statistics and Data Analysis, page 372–390, 2016. URL https://doi.org/10.1016/j.csda.2015.07.
013. [p111, 112, 113, 118]

H. J. Boonstra. hbsae: Hierarchical Bayesian Small Area Estimation, 2012. URL https://CRAN.R-project.
org/package=hbsae. R package version 1.0. [p111]

J. Breidenbach. JoSAE: Unit-Level and Area-Level Small Area Estimation, 2018. URL https://CRAN.R-
project.org/package=JoSAE. R package version 0.3.0. [p111]

Chengchun Shi Developer. BayesSAE: Bayesian Analysis of Small Area Estimation, 2018. URL https:
//CRAN.R-project.org/package=BayesSAE. R package version 1.0-2. [p111]

G. S. Datta, R. E. Fay, and M. Ghosh. Hierarchical and empirical multivariate bayes analysis in small
area estimation. In Proc. of the Bureau of the Census Annual Research Conference, pages 63–79. Bureau
of the Census, Washington D.C., 1991. [p111]

M. Ghosh and J. N. K. Rao. Small area estimation: An appraisal. Statistical Science, pages 55–93, 1994.
[p111]

S. Krieg, H. J. Boonstra, and M. Smeets. Small area estimation with zero-inflated data - a simulation
study. Statistics Netherland, pages 1–45, 2015. [p111]

M. D. E. Lefler, D. M. Gonzalez, and A. P. Martin. saery: Small Area Estimation for Rao and Yu Model,
2014. URL https://CRAN.R-project.org/package=saery. R package version 1.0. [p111]

E. Lopez-Vizcaino, M. Lombardia, and D. Morales. mme: Multinomial Mixed Effects Models, 2019. URL
https://CRAN.R-project.org/package=mme. R package version 0.1-6. [p111]

I. Molina and Y. Marhuenda. sae: An r package for small area estimation. The R Journal, pages 81–98,
2015. URL https://doi.org/10.32614/RJ-2015-007. [p118]

I. Molina and Y. Marhuenda. sae: Small Area Estimation, 2018. URL https://CRAN.R-project.org/
package=sae. R package version 1.2. [p111]

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

http://CRAN.R-project.org/package=msae
http://CRAN.R-project.org/package=msae
https://doi.org/10.1016/j.csda.2015.07.013
https://doi.org/10.1016/j.csda.2015.07.013
https://CRAN.R-project.org/package=hbsae
https://CRAN.R-project.org/package=hbsae
https://CRAN.R-project.org/package=JoSAE
https://CRAN.R-project.org/package=JoSAE
https://CRAN.R-project.org/package=BayesSAE
https://CRAN.R-project.org/package=BayesSAE
https://CRAN.R-project.org/package=saery
https://CRAN.R-project.org/package=mme
https://doi.org/10.32614/RJ-2015-007
https://CRAN.R-project.org/package=sae
https://CRAN.R-project.org/package=sae


CONTRIBUTED RESEARCH ARTICLES 122

J. Pinheiro, D. Bates, and R-core. nlme: Linear and Nonlinear Mixed Effects Models, 2020. URL https:
//CRAN.R-project.org/package=nlme. R package version 3.1-145. [p111]

J. N. K. Rao and I. Molina. Small Area Estimation 2nd Edition. John Wiley and Sons Inc., Hoboken, New
Jersey, 2015. [p111]

T. Schoch. rsae: Robust Small Area Estimation, 2014. URL https://CRAN.R-project.org/package=rsae.
R package version 0.1-5. [p111]

M. Templ. CRAN Task View: Official Statistics & Survey Methodology, 2014. URL https://CRAN.R-
project.org/view=OfficialStatistics. Version 2014-08-18. [p111]

A. Ubaidillah, K. A. Notodiputro, A. Kurnia, and I. W. Mangku. Multivariate fay-herriot models
for small area estimation with application to household consumption per capita expenditure in
indonesia. Journal of Applied Statistics, pages 2845–2861, 2019. URL https://doi.org/10.1080/
02664763.2019.1615420. [p111]

Novia Permatasari
Politeknik Statistika STIS
East Jakarta
Indonesia
16.9335@stis.ac.id

Azka Ubaidillah
Politeknik Statistika STIS
East Jakarta
Indonesia
azka@stis.ac.id

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=rsae
https://CRAN.R-project.org/view=OfficialStatistics
https://CRAN.R-project.org/view=OfficialStatistics
https://doi.org/10.1080/02664763.2019.1615420
https://doi.org/10.1080/02664763.2019.1615420
mailto:16.9335@stis.ac.id
mailto:azka@stis.ac.id


CONTRIBUTED RESEARCH ARTICLES 123

cat.dt: An R package for fast construction
of accurate Computerized Adaptive Tests
using Decision Trees
by Javier Rodríguez-Cuadrado, Juan C. Laria and David Delgado-Gómez

Abstract This article introduces the cat.dt package for the creation of Computerized Adaptive Tests
(CATs). Unlike existing packages, the cat.dt package represents the CAT in a Decision Tree (DT)
structure. This allows building the test before its administration, ensuring that the creation time of the
test is independent of the number of participants. Moreover, to accelerate the construction of the tree,
the package controls its growth by joining nodes with similar estimations or distributions of the ability
level and uses techniques such as message passing and pre-calculations. The constructed tree, as well
as the estimation procedure, can be visualized using the graphical tools included in the package. An
experiment designed to evaluate its performance shows that the cat.dt package drastically reduces
computational time in the creation of CATs without compromising accuracy.

Introduction

Nowadays, there is an increasing interest in the development and application of Computerized
Adaptive Tests (CATs). For instance, they are applied in several areas such as psychology (Ma et al.,
2017; Mizumoto et al., 2019), education (He and Min, 2017; Wu et al., 2017), or medicine (Michel et al.,
2018; Fox et al., 2019). The reason behind their popularity is that CATs can estimate the ability level of
a psychological variable of interest in an examinee with greater accuracy than the classical tests by
administering a smaller number of items (Weiss, 2004). Besides, the existence of certain mechanisms,
such as item exposure control (Georgiadou et al., 2007) limits the leaking of items between participants.

Concisely, CATs are tailored tests. Every item administered to the examinee is chosen from an item
bank by employing a selection criterion that considers: i) the answers given by the participant to the
items previously administered; ii) the characteristics of such items, and iii) the probabilities provided
by a model that relates the responses to each item with its characteristics. The most commonly used
criterion is Maximum Fisher Information (MFI) (Zhou and Reckase, 2014; Li et al., 2020), which selects
the item that provides the highest information for the current estimate of the ability level. However,
this criterion presents several drawbacks. These include item selection bias, large estimation errors
at the beginning of the test, high item exposure rates, and content imbalance problems (Ueno, 2013;
ZhuoKang and Liu, 2012). Various alternatives have been proposed as attempts for addressing these
problems. Among them stand out Minimum Expected Posterior Variance (MEPV) (Van der Linden
and Pashley, 2009), Kullback-Leibler Information (Chang and Ying, 1996), and Maximum Likelihood
Weighted Information (Veerkamp and Berger, 1997). Although these selection techniques largely solve
the aforementioned problems, their high computational cost complicates their practical use.

Decision Trees (DTs) have been proposed to reduce the computational cost in the creation of CATs.
Yan et al. (2004) used regression trees to predict the participants' total score. A remarkable feature
of this work is the merge of nodes to maintain a sufficient sample size to perform the partitions.
Afterward, Ueno and Songmuang (2010) developed an item selection criterion based on mutual
information in regression trees. However, unlike CATs based on Item Response Theory (IRT), these
works predict the total score of the participant rather than estimate their ability level, which makes it
difficult to compare the performance of a participant in two different tests aimed at measuring the same
construct. Recently, Delgado-Gómez et al. (2019) mathematically proved the equivalence between
IRT-based CATs and DTs when the MEPV item selection criterion is used, proposing the Tree-CAT
method, which integrates both methodologies. In their method, each node of the tree contains an item,
emerging from it as many branches as the number of the item’s possible responses. The examinees
progress through the tree according to the responses they provide until reaching the last node, where
their final estimate corresponds to the found ability level. The disadvantage of this method is that it
requires a high-performance cluster to create the tree. In this regard, the Merged Tree-CAT method
(Rodríguez-Cuadrado et al., 2020) extends and improves Tree-CAT, accelerating tree construction by
joining nodes with similar estimates or ability level distributions.

Currently, there are several packages oriented to the creation of CATs in R. Among them, we can
find catR (Magis et al., 2012; Magis and Barrada, 2017), mirtCAT (Chalmers, 2016), and catIrt (Nydick,
2014). The drawback of these packages is that they create a separate CAT for each examinee, reducing
their efficiency. For example, if two individuals provided the same response to the first item, the
computations for estimation and selection of the next item would be performed twice, even though the
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result would be the same. Therefore, the shortage of memory in these packages considerably increases
computational time, which makes the practical application of CATs difficult, or even impossible, when
the item selection criterion is one of the most computationally demanding.

This article describes the cat.dt package in which the Merged Tree-CAT method (Rodríguez-
Cuadrado et al., 2020) is implemented. Unlike the existing packages, cat.dt creates the CAT before
it is administered to the examinees and stores it in a DT structure. This allows that each time the
participant responds to an item, the estimation of their ability level and the selection of the next item
to be administered is immediate since it is pre-computed. This differs from the existing packages,
in which both calculations are performed during the test administration, making it difficult or even
impossible to use computationally expensive item selection criteria such as the MEPV. In this way, the
cat.dt package manages to quickly create CATs on a standard personal computer as well as provides
accurate estimates of the ability level of each examinee.

The rest of the article is structured as follows. Firstly, it introduces the elements of IRT and CATs
used by the Merged Tree-CAT. Next, the functions contained in the package are detailed, and an
example of its use is provided. Then, the performance of the cat.dt package is compared to that of the
catR package. Finally, the article discusses the benefits of the package.

IRT and CATs

The IRT, on which CATs are based, assumes that a participant’s response to an item depends on the
ability level of the individual and the characteristics of that item (Richardson, 1936; Lawley, 1943;
Tucker, 1946). This relationship is obtained through probabilistic models in which the probability
Pik(θ, πi) that an examinee gives the response k = 1, . . . , Ki to an item i depends on their ability level θ
and the parameters of the item πi.

For polytomous items, the most widespread model for ordered responses is the Graded Response
Model (GRM) developed by Samejima (1969):

P∗
ik(θ, πi) =

eαi(θ−βik)

1 + eαi(θ−βik)
, (1)

where αi is the discrimination parameter, βik are the difficulty (or location) parameters of each
response k, and P∗

ik(θ, πi) the probability of giving the response k or greater. Therefore Pik(θ, πi) =
P∗

ik(θ, πi)− P∗
ik+1(θ, πi), being P∗

i1(θ, πi) = 1, . . . , P∗
iKi+1(θ, πi) = 0.

When there is not a particular order in the responses, the most generic model is the Nominal
Response Model (NRM), defined by Bock (1972):

Pik(θ, πi) =
eρikθ+γik

∑Ki
r=1 eρirθ+γir

, (2)

being ρik and γik the slope and intercept parameters, respectively, for item i and response k.

These probabilistic models are used in the CATs to obtain the estimate of the ability level of the
examinee based on their responses. Of all the existing estimation methods, the Expected a Posteriori
(EAP) technique is widely used given the simplicity of its calculation and the minimum Mean Squared
Error (MSE) of its estimations (Bock and Mislevy, 1982). When the responses Ri1 , . . . , RiM of the
examinee to the items ii, . . . , iM are the possible responses k1, . . . , kM of those items, the estimate θ̂ of
the ability level is given by:

θ̂ =
∫ ∞

−∞
θ f (θ | Ri1 = k1, . . . , RiM = kM)dθ, (3)

being f (θ | Ri1 = k1, . . . , RiM = kM) the posterior density function given the responses according to
Bayes’ theorem:

f (θ | Ri1 = k1, . . . , RiM = kM) =
Pi1k1

(θ, πi1 ) · · · PiMkM (θ, πiM ) f (θ)∫ ∞
−∞ Pi1k1

(θ, πi1 ) · · · PiMkM (θ, πiM ) f (θ)dθ
, (4)

where f (θ) is the prior density function of the examinee’s ability level.

Each time an examinee responds to an item, this ability level estimation is used by the CAT to
choose the next item. Among the existing item selection methods, MFI is the most popular. This
criterion consists of choosing the item i∗ that maximizes the Fisher information function Fi(θ) evaluated
at the current estimate θ̂ of the ability level. This function is given by (Magis, 2015):
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Fi(θ) =
Ki

∑
k=1

P′
ik(θ, πi)

2

Pik(θ, πi)
− P′′

ik(θ, πi) (5)

Another criterion to highlight is the MEPV because it has been shown to be equivalent to mini-
mizing the MSE of the estimates of the ability level (Delgado-Gómez et al., 2019). In this case, given
the posterior density function f (θ | Xi1 = k1, . . . , XiM = kM) obtained from the responses to the items
i1, . . . , iM, the MEPV criterion chooses the item i∗ that minimizes the function:

Ei =
∫ ∞

−∞

(
Ki

∑
k=1

(
θ − θ̂i

M+1,k

)2
Pik(θ, πi)

)
f (θ | Ri1 = k1, . . . , RiM = kM)dθ, (6)

being θ̂i
M+1,k the ability level estimation if the examinee’s response RM+1 is the possible response k of

item i.
In summary, CATs are constructed as follows. Starting from a prior density f (θ) and a prior

estimate θ0, the first item to be administered to the examinee is selected according to an established
criterion. Once a response is given, their ability level is estimated, from which the next item to
administer is selected. This process is repeated until a stopping criterion is reached (for example, a
predetermined number of items to be administered per participant), being the final estimation of the
examinee the one obtained after their last response.

The aforementioned process is structured by the Merged Tree-CAT method in a DT as follows
(Rodríguez-Cuadrado et al., 2020). As in the Tree-CAT method, each tree node has an assigned item
and an associated estimate based on the responses given to the items assigned to the parent nodes. The
novelty of the Merged Tree-CAT method consists of limiting the growth of the tree by joining nodes
with similar estimates, accelerating its construction with the least loss of precision in the estimates.
Once constructed, the examinee progresses through the tree according to their answers until reaching
the last node, where the final estimate of their ability level is found. In addition, the Merged Tree-CAT
method incorporates item exposure control by establishing an exposure rate that limits the percentage
of participants that are administered with each item, which increases the safety of the test.

The cat.dt package implements the Merged Tree-CAT method. As it will be explained in the
following section, each of the items that form the test is chosen using the MFI or MEPV criterion,
employing the estimate obtained by the EAP method according to the GRM or NRM model.

The cat.dt package

This section starts by describing the cat.dt package architecture and its main function CAT_DT. This
is followed by a practical example on how to use this package to create CATs structured in DTs, to
visualize them, and to obtain estimates of the ability level of participants. Finally, we detail some of
the computational features taken into account in the building of the package to increase its efficiency.

The cat.dt package can be installed from CRAN (install.packages(“cat.dt”)) or from the devel-
opment version’s GitHub repository https://github.com/jlaria/cat.dt. 1

cat.dt structure

The cat.dt package consists of the functions shown in Figure 1, which also displays the dependency
relationships between them.

The most relevant functions are the following:

• CAT_DT: Creates the CAT structured in a DT.

• create_level_1: Creates the nodes that conform to the first level of the DT.

• create_levels: Creates the nodes that conform to the levels of the DT (except for the first level).

• join_node: Joins nodes from the same tree level with similar estimations or distributions of the
ability level.

• CAT_ability_est : Estimates the ability level of a participant after each response and computes
a Bayesian credible interval of the final estimation.

1This package imports the dependencies Matrix, Rglpk, and ggplot2 for matrix treatment, linear programming,
and visualization, respectively.
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Figure 1: Function dependencies.

The CAT_DT function

The input parameters of the main function CAT_DT are introduced in Table 1.

The tree growth is controlled by the parameters limit, inters, and p. The limit parameter is the
maximum number N of nodes per level. When this number is exceeded in the construction of the tree,
those nodes whose estimates of the ability level are at a distance less than a threshold (λL − λU)/N
are joined, being λL and λU the lower and upper bounds of an interval with probability p according to
the prior density function of the ability level. Finally, inters is the minimum value that must exceed
the intersection between the density functions of two nodes to join when the maximum number N of
nodes per level has not been reached. This intersection is obtained using the methodology defined in
Cha (2007).

Finally, the CAT_DT function returns a list with the input parameters introduced by the user and
the elements described in Table 2.

cat.dt usage example

Firstly, it is shown how to build a CAT using the main function CAT_DT. To do this, the item bank
from the data frame itemBank included in the package is used. Given the nature of these items, the
probabilistic model used is the GRM. Also, the item selection criterion adopted is the MEPV, the
exposure rate is set at 0.3, the length of the test at 10 items, and the prior distribution of the ability
level at an N(0, 1), leaving the rest of the parameters at their default values. The function call is made
as follows:

example_cat <- CAT_DT(bank = itemBank, model = "GRM", crit = "MEPV", C = 0.3,
stop = c(10,0), limit = 200, inters = 0.98, p = 0.9, dens = dnorm, 0, 1)

Among the values returned by this function, the list nodes contains all the nodes that conform the
DT in which the CAT is structured. These nodes are grouped by levels. As an example, if we access
the first node of the third level,

example_cat$nodes[[3]][[1]]

we obtain
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bank

Item bank. It must be a data frame in which each row represents an item and each
column one of its parameters. If the model is GRM, the first column must be the
discrimination parameter and the remaining columns are the difficulty (or location)
parameters (Samejima, 1969). If the model is NRM, the odd columns must be the slope
parameters and the even columns the intercept parameters. (Bock, 1972).

model CAT probabilistic model. Options: “GRM” (default) and “NRM”.

crit
Item selection criterion. Options: “MEPV” for the Minimum Expected Posterior Variance
(default) or “MFI” for the Maximum Fisher Information.

C
Expected fraction C of participants administered with each item (exposure rate). It can
be a vector with as many elements as items in the bank or a positive number if all the
items have the same rate. Default: C = 0.3.

stop

Vector of two components that represent the CAT stopping criteria. The first component
represents the maximum level L of the DT and the second represents the threshold for
the Standard Error (SE) of the ability level (Bock and Mislevy, 1982) (if 0, this second
criterion is not applied). Default: stop = c(6,0).

limit
Maximum number N of nodes per level (max. N = 10000). This is the main parameter
that controls the tree growth. It must be a natural number. Default: limit = 200.

inters
Minimum intersection of the density functions of two nodes to be joined. It must be
a number between 0 and 1. If the user wants to avoid using this criteria, inters = 0
should be specified. Default: inters = 0.98.

p
Prior probability of the interval whose limits determine a threshold for the distance
between estimations of nodes to join. Default: p = 0.9.

dens Prior density function of the ability level. It must be an R function: dnorm, dunif, etc.

... Parameters to dens.

Table 1: Main function parameters.

$`ID`
[1] 30001

$item
[1] 22

$item_prev
[1] 18 11

$est
[1] -1.10257

$SE
[1] 0.8071584

$ID_sons
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nodes

List with a maximum of L + 1 elements (levels). Each level contains a list of the nodes
of the corresponding level. Note that the first level will contain more than one root node
if C < 1. In this case, each examinee would start the test for one of them at random. The
nodes of the additional level L + 1 only include the estimation and distribution of the
ability level given the responses to the items of the final level L. Note that the nodes
list can have less than L + 1 elements if the SE stopping criterion is satisfied for all the
nodes from a previous level.

C_left Residual exposure rate of each item after the CAT construction.

predict

Function that returns the estimated ability level of an examinee after each response and
a Bayesian credible interval of the final estimation given their responses to the items
from the item bank. These responses must be entered by the user as a numeric vector
input. In addition, it returns a vector with the items that have been administered to the
examinee. This is the function CAT_ability_est of the package.

predict_group
Function that returns a list whose elements are the returned values of the
function predict for every examinee from the group. This is the function
CAT_ability_est_group of the package.

Table 2: Main function output.

ID_son Response Probability
1 40001 1 1
2 40002 2 1
3 40003 3 1

$D
[1] 0.03331851

$as_val
[1] 0.5396903

This list contains, among others, information about: i) ID, the node identifier; ii) item, the item
assigned to the node; iii) item_prev, the items previously administered to the examinee that reaches
the node; iv) est, the estimation of the ability level after their responses to these items, v) SE, the SE
associated to that estimation. Finally, the data frame ID_sons contains the ID of each child node, the
response that leads to it, and the probability of, given that response, accessing that child node.

A description of the tree can be obtained using the R function summary. This function provides: i)
The number of levels; ii) The number of nodes per level; iii) The probabilistic model used; iv) The item
selection criterion used; v) The residual exposure rate of every item and vi) The percentage of items
used to build the test. In order to summarize the tree, we enter

summary(example_cat)

to obtain

----------------------------------------------------------------------
Number of tree levels: 10

Number of nodes in level 1 : 4
Number of nodes in level 2 : 14
Number of nodes in level 3 : 39
Number of nodes in level 4 : 99
Number of nodes in level 5 : 101
Number of nodes in level 6 : 124
Number of nodes in level 7 : 141
Number of nodes in level 8 : 158
Number of nodes in level 9 : 165
Number of nodes in level 10 : 177
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----------------------------------------------------------------------
Psychometric probabilistic model: GRM
Item selection criterion: MEPV
----------------------------------------------------------------------
Item exposure:
item 1 : 0.000 item 2 : 0.0768 item 3 : 0.000 item 4 : 0.1704
item 5 : 0.1532 item 6 : 0.000 item 7 : 0.300 item 8 : 0.000
item 9 : 0.000 item 10 : 0.000 item 11 : 0.300 item 12 : 0.000
item 13 : 0.000 item 14 : 0.000 item 15 : 0.2508 item 16 : 0.000
item 17 : 0.000 item 18 : 0.300 item 19 : 0.2113 item 20 : 0.255
item 21 : 0.2314 item 22 : 0.2565 item 23 : 0.000 item 24 : 0.000
item 25 : 0.0532 item 26 : 0.000 item 27 : 0.000 item 28 : 0.000
item 29 : 0.000 item 30 : 0.0855 item 31 : 0.300 item 32 : 0.000
item 33 : 0.0107 item 34 : 0.000 item 35 : 0.000 item 36 : 0.0127
item 37 : 0.000 item 38 : 0.000 item 39 : 0.2467 item 40 : 0.0902
item 41 : 0.000 item 42 : 0.000 item 43 : 0.2611 item 44 : 0.300
item 45 : 0.000 item 46 : 0.000 item 47 : 0.300 item 48 : 0.0885
item 49 : 0.000 item 50 : 0.300 item 51 : 0.1192 item 52 : 0.000
item 53 : 0.0166 item 54 : 0.000 item 55 : 0.300 item 56 : 0.300
item 57 : 0.000 item 58 : 0.000 item 59 : 0.2233 item 60 : 0.000
item 61 : 0.300 item 62 : 0.000 item 63 : 0.2583 item 64 : 0.0839
item 65 : 0.000 item 66 : 0.0367 item 67 : 0.000 item 68 : 0.300
item 69 : 0.300 item 70 : 0.300 item 71 : 0.1213 item 72 : 0.000
item 73 : 0.1803 item 74 : 0.000 item 75 : 0.000 item 76 : 0.000
item 77 : 0.000 item 78 : 0.000 item 79 : 0.0153 item 80 : 0.000
item 81 : 0.000 item 82 : 0.000 item 83 : 0.300 item 84 : 0.000
item 85 : 0.2125 item 86 : 0.1251 item 87 : 0.1741 item 88 : 0.000
item 89 : 0.0253 item 90 : 0.300 item 91 : 0.000 item 92 : 0.300
item 93 : 0.2539 item 94 : 0.300 item 95 : 0.300 item 96 : 0.300
item 97 : 0.000 item 98 : 0.000 item 99 : 0.000 item 100 : 0.000

Percentage of items used: 49 %
----------------------------------------------------------------------

In addition, the tree created can be visualized by means of the function plot_tree. This function
takes as input arguments: i) The tree created; ii) The number of levels to plot, iii) The index of the root
node to start the test. For example, by introducing

plot_tree(example_cat, levels = 3, tree = 3)

we obtain the following plot

Figure 2: Tree visualization.

Once the CAT has been created, the ability level of an examinee is estimated using the predict
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function. The cat.dt package includes as an example the matrix itemRes, which contains the responses
of 30 examinees to the 100 items of the bank itemBank. For instance, to calculate the estimate of the
fifth examinee (a seed is needed to obtain the same result due to probabilistic node access) we use

set.seed(0)
predict(example_cat, itemRes[5, ])

We obtain

$`estimation`
[1] 0.7649071 0.3114948 0.4320018 0.6780359 0.4762673 0.7993720 0.7504451 0.5928716
[9] 0.7041479 0.6217778

$llow
[1] -0.325

$lupp
[1] 1.565

$items
[1] 70 83 95 55 4 39 7 51 96 73

$graphics

This output list contains: i) The vector estimation, which includes the estimated ability level after
each response; ii) The lower llow and upper lupp bounds of a Bayesian credible interval at 95% of
the final estimation of the examinee’s ability level; iii) The vector items, which contains the items that
have been administered to the examinee in the CAT, iv) The object graphics, which represents the
evolution of the ability level estimation automatically as shown in 3.
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Figure 3: Evolution of the ability level estimation.

This plot represents the estimation of the ability level after responding to each administered
item. For example, giving response 3 to item 70 results in an estimate of approximately θ̂ = 0.76.
Then, after giving response 1 to item 83, the estimate decreases to approximately θ̂ = 0.31, and
so on. Note that the value of the response influences whether the estimate decreases or increases.
Alternatively to the predict function, it can be entered CAT_ability_est(example_cat,itemRes[5,])
or example_cat$predict(itemRes[5,]).

Finally, these results can be obtained for a whole group of examinees also by calling the function
predict. In this case, this function returns a list whose elements are the outputs as if it was called for
every examinee. Once it is stored in a variable in the following way,

est_group <- predict(example_cat, itemRes)
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the estimation information is available for every examinee. For instance, to know the items adminis-
tered to the second examinee, the following must be introduced:

est_group[[2]]$items

Obtaining:

[1] 61 92 95 55 50 59 85 63 19 69

Alternatively to the predict function, it can be introduced example_cat$predict_group(itemRes) or
CAT_ability_est_group(example_cat,itemRes).

A similar example can be found in the tutorial vignette included in the package.

Computational features

Before ending this section, we detail the computational features that accelerate the construction of the
tree and reduce memory space.

• Message passing: The calculation of the posterior density function (equation 4) is necessary to
obtain the estimation of the ability level (equation 3), the selection of the next item according to
the MEPV criterion (equation 6), and the Bayesian credible interval of the final estimation. Such
calculation would involve the multiplication of M terms for each node of the corresponding
level. However, since the multiplication of the first M − 1 terms is done to obtain the density
function of the parent node, this information is stored by the cat.dt package and passed to the
child node, in which only the last term is multiplied.

• Joining nodes: the cat.dt package joins those nodes whose estimations and/or posterior density
functions meet the similarity criteria determined by the parameters limit, inters, and p. These
unions control tree growth, which significantly accelerates tree creation and reduces the amount
of memory space without losing precision in the estimations.

• Riemann integration and probability pre-calculation: The integrals required in the equations
3, 4, and 6 are approximated numerically by Riemann integration. To do this, a set of ability
levels {θ0, . . . , θ4000} is considered, where θj = −10 + j/200, covering the interval (−10, 10).
The Riemann integration in equation 6 requires the previous calculation of Pik(θj, πi) for each
item i, possible answer k, and ability level θj. Because of this, these probabilities are calculated
and stored before the creation of the tree and then used in equations 4, 5, and 6. This avoids
repeating unnecessary calculations and accelerates the creation of the CAT.

Performance assessment

In this section, the performance of the cat.dt package is compared to that of the catR package. Ability
level estimates and computational times of both packages have been studied for nine different sim-
ulation scenarios. In each scenario, a CAT is constructed from an item bank (composed of 100, 200,
or 500 items), which is administered to a group of examinees (1000, 2000, or 5000 examinees). The
database for each scenario can be found online 2 in the format [number of items]_items_[number of
examinees]_examinees.RData.

Similar to the example of the previous section, the probabilistic model used is GRM, the criteria
for selecting items is MEPV, the length of the test is ten items per participant (the SE threshold is set
at 0), and the prior distribution of the ability level is N(0, 1). However, unlike the aforementioned
example, there is no item exposure control (C = 1) since the implementation differs in both packages:
the cat.dt package builds the CAT before administration and the catR package during administration.

All the simulations for both packages were run in an HP Z230 Tower Workstation with an Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz, with 32 GB of RAM, running Debian GNU/Linux 10, R 3.5.2.

Figure 4 illustrates the MSE of the ability level estimates after each response of the examinees,
obtained by both packages in each scenario. It is observed that the estimates after each response are
equally accurate, indicating that the performance of both packages is very similar.

On the other hand, Table 3 displays the time employed by each package in the computations for
the creation of the CAT and the evaluation of those examined in each scenario. It can be seen that
the cat.dt package is barely affected by the number of examinees since the CAT is created before it is
administered to the participants. However, the catR package creates a CAT for each examinee, so the
computational time is proportional to the number of participants. This causes catR package to take
several days in total for the creation and administration of the CAT, whereas package cat.dt takes a
few minutes, being this difference larger the higher the number of examinees.

2https://github.com/jlaria/cat.dt-performance-assessment
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Figure 4: MSE of ability trait estimates.

100 items 200 items 500 items

cat.dt catR cat.dt catR cat.dt catR

ex
am

. 1000 93.94 s 40.23 h 263.04 s 81.04 h 608.71 s 206.61 h
2000 160.67 s 78.55 h 314.88 s 162.22 h 635.54 s 413.82 h
5000 160.14 s 196.98 h 264.50 s 406.79 h 675.42 s 1033.65 h

Table 3: CAT creation and evaluation times.

Summary

This article has introduced the cat.dt package oriented to the creation of CATs structured in DTs, their
visualization, and the estimation of the ability levels of the examinees. Unlike the existing packages,
the cat.dt package creates the test before being administered to the examinees, so its performance is
independent of the number of participants. For this reason, it is ideal for application to large groups,
taking a few minutes to create and administer the test. Besides, it has been shown that the cat.dt
package obtains ability level estimates as accurate as those obtained by the catR package, which is
widely used in the field of CATs.
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A GUIded tour of Bayesian regression
by Andrés Ramírez–Hassan and Mateo Graciano-Londoño

Abstract This paper presents a Graphical User Interface (GUI) to carry out a Bayesian regression
analysis in a very friendly environment without any programming skills (drag and drop). This paper
is designed for teaching and applied purposes at an introductory level. Our GUI is based on an
interactive web application using shiny and libraries from R. We carry out some applications to
highlight the potential of our GUI for applied researchers and practitioners. In addition, the Help
option in the main tap panel has an extended version of this paper, where we present the basic theory
underlying all regression models that we developed in our GUI and more applications associated with
each model.

Introduction

The main objective of this paper is to present an open source teaching Graphical User Interface (GUI)
to implement Bayesian regression analysis using cross-sectional and longitudinal data.1 We present a
tutorial for implementing these models in our GUI and some applications. The Help option in the
main tap panel exhibits an extended version of this paper where users can find more applications and
the basic theoretical foundations of each model in our GUI. Therefore, practitioners and researchers
can apply Bayesian regression analysis to understand its theoretical foundation without requiring
programming skills. The latter seems to be a significant impediment to increasing the use of the
Bayesian framework (Woodward, 2005; Karabatsos, 2016).

Table 1 shows the available graphical user interfaces for carrying out Bayesian regression analysis.
shinystan (Stan Development Team, 2017) is a very flexible open source program, but users are
required to have some programming skills. BugsXLA (Woodward, 2005) is open source but less
flexible. However, users do not need to have programming skills. Bayesian regression: Nonparametric
and parametric models (Karabatsos, 2016) is a very flexible and friendly GUI that is based on MATLAB
Compiler for a 64-bit Windows computer. Its focus is on Bayesian nonparametric regressions, and
it can be thought of for users who have mastered basic parametric models, such as the ones that we
show in our GUI. On the other hand, MATLAB toolkit, Stata, and BayES are not open source.

We developed our GUI based on an interactive web application using shiny (Chang, 2018) and
some libraries in R (R Core Team, 2018). The specific libraries and commands that are used in our
GUI can be seen in Table 2. It has nine univariate models, four multivariate, three hierarchical
longitudinal, Bayesian bootstrap, and six Bayesian model averaging frameworks. In addition, it gives
basic summaries and diagnostics of the posterior chains, as well as the posterior chains themselves, and
different plots, such as trace, autocorrelation, and densities. In terms of its flexibility and possibilities,
our GUI lies between ShinyStan and BugsXLA: users are not required to have any programming
skills, but it is not as advanced as Karabatsos (2016)’s software. However, our GUI can be run in any
operating system. Our GUI, which we call BEsmarter,2 is freely available at https://github.com/
besmarter/BSTApp. Thus, users have access to all our code and datasets.

After this brief introduction, we present our GUI and how to use it in Section Using BEsmarter.
Section Applications presents some empirical examples to illustrate the potential use of our GUI.
Lastly, Section Concluding remarks presents some conclusions and future developments.

Using BEsmarter

Simulated and applied datasets are in the folders DataSim (see Table 3 for details) and DataApp (see
Table 4 for details), respectively. The former folder also includes the files that were used to simulate
different processes so that the population parameters are available, and as a consequence, these files
can be used as a pedagogical tool to show some statistical properties of the inferential frameworks
available in our GUI. The latter folder contains the datasets used in our applications in Section
Applications. Users should use these datasets as templates as a guide to the structure of their own
datasets. Simply type shiny::runGitHub("besmarter/BSTApp", launch.browser=T) in the R package

1We used instrumental variables to identify causal effects when there are endogeneity issues in linear regression.
This is a very common approach among econometricians in this situation. Otherwise, all regression approaches
presented here are well known by statisticians.

2Bayesian econometrics: Simulations, models and applications to research, teaching, and encoding with
responsibility.
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console or any R code editor to run our GUI.3

After this, users can see a new window where a presentation of our research team is displayed. In
addition, the top panel in Figure 1 shows the class of models that can be estimated in our GUI.

Figure 1: BEsmarter GUI

The selection indicates univariate models in that the radio button on the left hand side shows the
specific models inside this generic class. In particular, users can see that the normal model is selected
from inside the class of univariate models. See Figure 2.

Figure 2: Univariate models: Specification

Then, the right-hand side panel displays a widget to upload the input dataset, which should
be a csv file with headers in the first row. Users should also select the kind of separator used in
the input file: comma, semicolon, or tab (use the folders DataSim and DataApp for the input file
templates). Once users upload the dataset, they can see a data preview. Range sliders help to set the
number of iterations of the MCMC and the amount of burn-in, and the thinning parameter can be
selected as well (see online paper in Help tab for technical details). After this, users should specify
the equation. This can be done with the formula builder, where users can select the dependent
and the independent variables, and then click on the "Build formula" tab. Users can see in the
"Main Equation" space the formula expressed in the format used by R (see Main equation box in
Figure 2, y ∼ x1 + x2 + x3). Users can modify this if necessary, for instance, including higher order
or interaction terms. Other transformations are also allowed. This is done directly in the "Main
Equation" space, taking into account that these extra terms should follow formula command structure
(see https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/formula). Note that
the class of univariate models includes the intercept by default, except ordered probit, where the
specification has to do this explicitly. That is, ordered probit models do not admit an intercept for
identification issues. Hence, users should write down specifically this fact (y ∼ x1 + x2 + x3 − 1).
Finally, users should define the hyperparameters of the prior. For instance, in the normal-inverse
gamma model, these are the mean, covariance, shape, and scale (see Figure 3). However, users should
take into account that our GUI has "non-informative” hyperparameters by default in all our modeling
frameworks, so the last part is not a requirement.

3We strongly recommend to type this directly, rather than copy and paste. This is due to an issue with the
quotation mark.
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Figure 3: Univariate models: Results

After this specification process, users should click the Go! button to initiate the estimation. Our
GUI displays the summary statistics and convergence diagnostics after this process is finished (see
Figure 3). There are also widgets to download posterior chains (csv file) and graphs (pdf and eps files).
Note that the order of the coefficients in the results (summary, posterior chains, and graphs) is first for
the location parameters and then for the scale parameters.

Multinomial models (probit and logit) require a dataset file to have the dependent variable in
the first column, then alternative specific regressors (for instance, alternatives’ prices), and finally,
non-alternative regressors (for instance, income). The formula builder specifies the dependent variable
and independent variables that are alternative specific and non-alternative specific. The specification
also requires defining the base category, number of alternatives (this is also required in ordered probit),
number of alternative specific regressors, and number of non-alternative regressors (see Figure 4).
Multinomial logit also allows defining a tuning parameter, the number of degrees of freedom, in this
case, for the Metropolis–Hastings algorithm (see online paper in Help tab for technical details). This is
a feature in our GUI when the estimation of the models is based on the Metropolis–Hastings algorithm.
The order of the coefficients in the results of these models is, first, the intercepts (ctel appearing in the
summary display, l-th alternative), then the non-alternative specific regressors (NASjl appearing in
the summary display, l-th alternative and j-th non-alternative regressor), and lastly, the coefficients
for the alternative specific regressors (ASj appearing in the summary display, j-th alternative specific
regressor). Note that the non-alternative specific regressors associated with the base category are equal
to zero (they do not appear in the results). In addition, some coefficients of the main diagonal of the
covariance matrix are constant due to identification issues in multinomial and multivariate probit
models.

Figure 4: Univariate models: Multinomial

In the case of the negative binomial model, users should set a dispersion parameter (α, see the
negative binomial model). User should also set the censorship points and quantiles in the Tobit and
quantile models, respectively.

Figure 5 displays the multivariate regression setting. In this case, the input file should have first
the dependent variables and then the regressors. If there are intercepts in each equation, there should
be a column of 1’s after the dependent variables in the input file. The user also has to set the number
of dependent variables, the number of regressors, if necessary include the intercept, and the values of
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the hyperparameters (see Figure 5).

Figure 5: Multivariate models: Simple multivariate

The input file in seemingly unrelated regressions should have first the dependent variables and
then the regressors by equation, including the intercept in each equation if necessary (column of 1’s).
Users should define the number of dependent variables (equations) and the number of total regressors.
That is, the sum of all regressors associated with the equation (if necessary include intercepts, each
intercept is an additional regressor), and the number of regressors by equation (if necessary include
the intercept). Users can also set the values of the hyperparameters if there is prior information.

The results of the simple multivariate and seemingly unrelated regressions show first the posterior
location parameters by equation and then the posterior covariance matrix.

In the instrumental variable setting, users should specify the main equation and the instrumental
equation. This setting includes intercepts by default. The first variable on the right-hand side in the
main equation has to be the variable with endogeneity issues. In the instrumental equation box, the
dependent variable is the variable with endogeneity issues as a function of the instruments. Users
can also specify the values of the hyperparameters if they have prior information. The input file
should have the dependent variable, the endogenous regressor, the instruments, and the exogenous
regressors. The results first list the posterior estimates of the endogenous regressor, then the location
parameters of the auxiliary regression (instrumental equation), and the location parameters of the
exogenous regressors. Last is the posterior covariance matrix.

Figure 6: Multivariate models: Multivariate probit

The multivariate probit model requires an input dataset ordered by unit. For instance, three
choices imply repeating each unit three times. The first column has to be the identification of each
unit; users should use ordered integers, then the dependent variable, just one vector, composed of 0’s
and 1’s, then the regressors, which should include a column of 1’s for the intercepts. Users should set
the number of units, the number of regressors, and the number of choices (see Figure 6). The results
first display the posterior location parameters by equation, and then the posterior covariance matrix.

The input files for hierarchical longitudinal models should have first the dependent variable,
then the regressors, and a cross-sectional identifier (i = 1, 2, . . . , m). It is not a requirement to have a
balanced dataset: ni can be different for each i. Users should specify the fixed part equation and the
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random part equation, both in R format. In case of only requiring random intercepts, do not introduce
anything in the latter part (see Figure 7). Users should also type the name of the cross-sectional
identifier variable. The results displayed and the posterior graphs are associated with the fixed effects
and covariance matrix. However, users can download the posterior chains of all posterior estimates:
fixed and random effects and covariance matrix.

Figure 7: Hierarchical longitudinal models: Specification

Bayesian bootstrap only requires uploading a dataset, specifying the number of iterations of the
MCMC, the resampling size, and the equation (see Figure 8). The input file has the same structure as
the file used in the univariate normal model.

Figure 8: Bayesian bootstrap: Specification

Bayesian model averaging based on a Gaussian distribution can be carried out using the Bayesian
Information Criterion (BIC) approximation, Markov chain Monte Carlo model composition (MC3), or
instrumental variables (see Figure 9). The former two approaches require an input dataset where the
first column is the dependent variable and then the potentially important regressors. Users should
set the bandwidth model selection parameter (OR) and the number of iterations for BIC and MC3,
respectively. The results include the posterior inclusion probability (p! = 0), the expected value
(EV), and the standard deviation (SD) of the coefficients associated with each regressor. The BIC
framework also displays the most relevant models, including the number of regressors, the coefficient
of determination (R2), the BIC, and the posterior model probability. Users can download two csv files:
Best models and Descriptive statistics coefficients. The former is a 0-1 matrix such that the columns are the
regressors and the rows are the models; a 1 indicates the presence of a specific regressor in a specific
model, 0 otherwise. Note that the last column of this file is the posterior model probability for each
model (row). The latter file shows the posterior inclusion probabilities, expected values, and standard
deviations associated with each regressor, taking into account the BMA procedure based on the best
models.

Bayesian model averaging with endogeneity issues requires two input files. The first one has the
dependent variable in the first column. The next columns are the regressors with endogeneity issues
and then the exogenous regressors. The user should include a column of 1’s if an intercept is required.
The second input file has all the instruments. Users should also introduce the number of regressors
with endogeneity issues (see Figure 10).

The results include the posterior inclusion probabilities and the expected values for each regressor.
The user can find the results of the main equation and the auxiliary equations. Users can download csv
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Figure 9: Bayesian model averaging: Specification and results

Figure 10: Bayesian model averaging: Instrumental variable specification

files of BMA results for both the second stage (main equation) and the first stage (auxiliary equations).
In addition, users can download the posterior chains of the location parameters of the main equation,
βl , l = 1, 2, . . . , dim {β}, the location parameters of the auxiliary equations, γj,i, j = 1, 2, . . . , dim {βs},
where dim {βs} is the number of regressors with endogeneity issues, i = 1, 2, . . . , dim {γ}, where
dim {γ} is the number of regressors in the auxiliary regressors (exogenous regressors + instruments),
and the elements of the covariance matrix σj,k (see online paper in Help tab for technical details).

Bayesian model averaging based on BIC approximation for non-linear models, logit, gamma,
and Poisson requires an input dataset. The first column is the dependent variable and the other
columns are the potentially relevant regressors. Users should specify the bandwidth model selection
parameters, which are also referred to as Occam’s window parameters (OR and OL). Our GUI displays
the PIP (p! = 0), the expected value of the posterior coefficients (EV), and the standard deviation (SD).
In addition, users can see the results associated with the models with the highest posterior model
probabilities and download csv files with the results of specifications of the best model, and descriptive
statistics of the posterior coefficients from the BMA procedure. These files are similar to the results of
the BIC approximation of the Gaussian model.

User should also note that sometimes our GUI shuts down. In our experience, this is due to
computational issues using the implicit commands that we call when estimating some models, for
instance, computationally singular systems, missing values where TRUE/FALSE needed, L-BFGS-B
needs finite values of “fn”, NA/NaN/Inf values, or Error in backsolve. Sometimes these issues can be
solved by adjusting the dataset, for instance, avoiding high levels of multicollinearity. In addition,
users can identify these problems by checking the console of their rstudio cloud sections, where the
specific folder/file where the issue happened is specified. In any case, we would appreciate your
feedback to improve and enhance our GUI.
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Applications

The main purpose of this section is to illustrate the potential of our GUI to carry out some applications.
We encourage users to replicate these applications as we do not display in figures most of the results
due to space limitations.4 In addition, there are technical aspects that are covered in the online paper
in Help tab of our GUI.

Univariate models

Continuous response: The market value of soccer players in Europe

We use the dataset 1ValueFootballPlayers.csv, which was provided by Serna Rodríguez et al. (2018),
to find the determinants of high-performance soccer players in the five most important national
leagues in Europe.

The specification to enter in the main equation box is

log(Value) ∼ Perf + Perf2 + Age + Age2 + NatTeam + Goals + Goals2 + Exp + Exp2 + Assists,

where Value is the market value in Euros (2017), Perf is a measure of performance, Age is the players’
age in years, NatTem is an indicator variable that takes the value of 1 if the player has been on the
national team, Goals is the number of goals scored by the player during his career, Exp is his experience
in years, and Assists is the number of assists made by the player in the 2015–2016 season. All variables
followed by a 2 are squared variables.

We initially assume that there are no censorship problems, the effect of the regressors are the same
through the support of the dependent variable, and the dependent variable obeys normal distribution.
So, we ran a normal-inverse gamma model using 30,000 MCMC iterations plus a burn-in equal to
5,000 and a thinning parameter equal to 1 using the default hyperparameters.

The results suggest that age, squared age, national team, goals, experience, and squared experience
are relevant regressors. For instance, we found that the 2.5% and 97.5% percentiles of the posterior
estimate associated with the variable Goals are 4.57e-03 and 1.82e-02. These values can be used to find
the 95% symmetric credible interval. This means that there is a 0.95 probability that the population
parameter lies in (4.57e-03, 1.82e-02), which would suggest that this variable is relevant to explain the
market value of a soccer player.5 We also found that the effect of having been on the national team
has a 95% credible interval equal to (0.58, 1.04) with a median equal to 0.81. That is, an increase of the
market value of the player of 124.8% (exp(0.81)− 1) compared with a player that has not ever been
on a national team. The posterior distribution of this variable can be seen in Figure 11. This graph is
automatically generated by our GUI and can be downloaded in the zip file named Posterior Graphs.csv.
However, we should take into account that the national team is the sixth variable. Remember that by
default, the intercept is the first variable.

A good advantage of the Bayesian framework is that we can easily calculate the posterior distri-
bution of functions of the parameter estimates,for instance, the age that maximizes the market value

of a soccer player, OptAge = − βAge
2βAge2

. We can estimate this using the posterior chains that can be
downloaded from our GUI. This is in the file named Posterior chains.csv. We have that the mean value
is equal to 24.31 years, and the 95% symmetric credible interval is (23.28, 25.36).

We can also see some convergence diagnostics from this application. In particular, the Geweke
(1992) test indicates that there is no statistically significant difference at 5% between the first 10%
of the posterior chains and the last 50% of the posterior chains. This is due to the fact that the
absolute values of all the statistical tests are less than 1.96 (the value that defines the critical region in a
normal distribution for a bilateral test at the 5% significance level). The Raftery and Lewis (1992) tests
indicate dependence factors very close to 1 in all cases, and as a consequence ,lower than 5, which
means a low level of autocorrelation of the posterior draws. Lastly, all the posterior chains passed
the Heidelberger and Welch (1983) test, indicating that it seems that the posterior draws come from
stationary distributions.

Let’s assume that we only have the market value of soccer players whose value is greater than
e1,000,000, which means that approximately 21.5% of our sample is censored. Estimating a normal-
inverse gamma model without taking into account the censoring issue would mean inconsistent
parameter estimates. For instance, we estimated a normal-inverse gamma model having a dependent

4Take into account that as inference in Bayesian models is based on simulation methods, results do not coincide
100%.

5Users should take into account that formal inference (hypothesis tests) in a Bayesian framework are based on
Bayes factors.
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Figure 11: Posterior distribution: National team

variable log(ValueCens), which is the censored dependent variable, using the same setting as the
baseline framework. We found that age, squared age, national team, goals, and experience are
potentially relevant variables for predicting the market value, but this exercise suggests that squared
experience is not relevant, a variable that was relevant in our previous estimation without censoring
issues. Therefore, we estimated a Tobit model where log(ValueCens) is the dependent variable, which
is left-censored at log(1, 000, 000) ≈ 13.82, with the same MCMC setting and hyperparameters as the
baseline estimation. All convergence diagnostics seem good, and we got the same potentially relevant
variables as in the baseline estimation, except for squared experience.

Now let us check if the marginal effects of the regressors are not constant over the support of the
dependent variable. For instance, we want to check if the marginal effect of goals varies with the
market value of the soccer player. So, we can estimate a Bayesian quantile regression. In particular,
we estimated models at the 0.1, 0.5 (median), and 0.9 quantiles. We found that age, squared age, and
national team are potentially relevant regressors to explain these quantiles. For instance, the age that
maximizes the market value is approximately 24.5 years in all these three quantiles. However, goals
are only relevant when we estimated the median model, which in general has better convergence
diagnostics and narrower credible intervals. Observe that experience is not relevant in quantile
regressions, whereas this variable is relevant in mean regressions.

Lastly, we carried out a Bayesian bootstrap, which means that we did not assume any particular
distribution for the dependent variable. In particular, we set 20,000 iterations with a resample size
equal to 1,000. We used the same specification as in the normal-inverse gamma model.

The results show the posterior mean estimates, the highest posterior density credible intervals
at 95%, and some percentiles that can be used to obtain the 95% symmetric credible interval. It
seems that age, squared age, national team, goals, experience, and squared experience are statistically
significant variables to explain the market value of a soccer player. Observe that these variables were
also relevant in the normal-inverse gamma model. For instance, the highest density and symmetric
credible intervals for the national team are the same (0.61, 1.08). This is also similar to the 95% credible
interval using the normal-inverse gamma model. All convergence statistics seem good, which suggests
that the posterior draws come from stationary distributions.

Binary response: Determinants of hospitalization in Medellín

We use the dataset named 2HealthMed.csv, which was provided by Ramírez Hassan et al. (2013).
Our dependent variable is a binary indicator with a value equal to 1 if an individual was hospitalized
in 2007, and 0 otherwise.
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The equation to enter in the main equation box is

Hosp ∼ SHI + Female + Age + Age2 + Est2 + Est3 + Fair + Good + Excellent,

where SHI is a binary variable equal to 1 if the individual is in a subsidized health care program and
0 otherwise, Female is an indicator of gender, Age in years, Age2 is squared age, Est2 and Est3 are
indicators of socio-economic status, the reference is Est1, which is the lowest, and self perception of
health status where bad is the reference.

We ran this application using a logit model with 30,000 MCMC iterations plus a burn-in equal to
10,000, a thinning parameter equal to 5, and a tuning parameter for the Metropolis–Hastings algorithm
equal to 1.01. This implies an effective sample size equal to 6,000. Our results indicate that female
and health status are relevant variables for hospitalization as their 95% credible intervals do not
cross 0. Women have a higher probability of being hospitalized than do men, and people with bad
self-perception of health conditions also have a higher probability of being hospitalized. Observe
that we can use the posterior chains, which can be downloaded from our GUI, to obtain the posterior
distributions of the marginal effects without extra computational burden.

We also carried out this application using the probit model with the baseline setting of the logit
model. We got the same results regarding potentially relevant predictors.6 However, the probit
model does not require a tuning parameter in its MCMC algorithm, which in turn generates fewer
autocorrelated chains.

Multivariate models

Continuous responses: The effect of institutions on per capita GDP

To illustrate the potential of our GUI to estimate multivariate models, we used the dataset provided
by Acemoglu et al. (2001), who analyzed the effect of property rights on economic growth.

First of all, we used the dataset 5Institutions.csv to estimate the following set of equations:

log(pcGDP95i) = π0 + π1 log(Morti) + π2Africa + π3Asia + π4Other + e1i, (1)

PAERi = γ0 + γ1 log(Morti) + e2i, (2)

where pcGDP95, PAER, and Mort are the per capita GDP in 1995, the average index of protection
against expropriation between 1985 and 1995, and the settler mortality rate during the time of colo-
nization. Africa, Asia, and Other are dummies for continents, with America as the baseline group.

As there are different sets of regressors in each equation, and we suspect there is a correlation
between the stochastic errors of these two equations, we should estimate a seemingly unrelated
regressions (SUR) model.

We should take into account that there are two equations: the first one has five regressors, including
the intercept, and the second equation has two regressors (intercept plus the mortality rate). We used
default values for the hyperparameters. This implies “vague” prior information, and hence an
“objective” Bayesian approach.

We set 10,000 MCMC iterations plus 1,000 burn-in iterations and a thinning parameter equal
to 1. It seems that this setting gives posterior chains that converge to stationary distributions. All
stationary tests do not reject the null hypothesis of “stationarity,” and the mixing properties look good
(dependence factors close to 1, autocorrelation, and trace plots seem to indicate no autocorrelation).

The most important parameters are the effect of the mortality rate on gross domestic product and
property rights. Their 95% credible intervals are (-0.67, -0.29) and (-0.85, -0.35), respectively (second
and seventh parameters). This suggests that the settler mortality rate during the time of colonization
is negatively associated with economic growth and property rights. In addition, the 95% credible
interval of the covariance between the stochastic errors of these two equations is (0.33, 0.88), which
suggests that there is statistically significant evidence of a correlation between the equations.

The previous set of equations can be considered as a restricted reduced form system, where the
coefficients of the continents are set equal to 0 in the property rights equation. We can think in the
following system of structural equations as producing the previous, but unrestricted, reduced form
system,

6Remember that in this model our GUI displays the posterior results according to the order in the equation.
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log(pcGDP95i) = β0 + β1PAERi + β2Africa + β3Asia + β4Other + u1i, (3)

PAERi = α0 + α1 log(pcGDP95i) + α2 log(Morti) + u2i. (4)

We used the file 4Institutions.csv, which has the structure to estimate multivariate Bayesian regres-
sions using our GUI, to identify the causal effect of property rights on per capita GDP. In particular,
we use the same MCMC and hyperparameters setting as in the previous exercise to obtain the pos-
terior estimates of the reduced system without imposing zero restrictions on the effect of continents
on property rights. The structural parameter β1 is equal to π1/γ1.7 We used the posterior draws
automatically generated by our GUI to obtain the posterior chain of this structural parameter, which
are the causal effects that Acemoglu et al. (2001) wanted to identify. The 95% credible interval is (0.56,
2.93), the posterior mean value is 1.12, and the median value is 0.98. If we estimate a multivariate
system without taking into account the dummy variables associated with the continents, the causal
effect has a 95% credible interval (0.68, 1.43) with posterior mean and median values equal to 0.94
and 0.97, respectively. Observe that the length of the second interval is shorter than the first. This is
because the dummy variables of the continents are not statistically relevant for the property rights
equation. As a consequence, the former estimation is less efficient.

Observe that we also obtain the posterior draws of the covariance matrix of these two reduced form
equations from our GUI. All the convergence diagnostics indicate that the posterior draws (location
and scale parameters) seem to come from stationary distributions.

Another way to identify the causal effect of property rights on per capita GDP is using instrumental
variables. Therefore, we used the file 6Institutions.csv to estimate Equation 3 using the mortality rate
as an instrument for property rights. The equation to enter in the main equation box is

logpcGDP95 ∼ PAER + Africa + Asia + Other,

and the equation to enter in the instrumental equation box is

PAER ∼ logMort.

We used 20,000 MCMC iterations plus a burn-in equal to 5,000 and a thinning parameter equal to
5. So, the effective length of the posterior draws is 4,000. Using the default hyperparameters, the 95%
credible interval of the coefficient associated with the endogenous variable, which is the first to be
displayed in our descriptive and diagnostic statistics, is (0.55, 1.21), and the mean value is equal to
0.82. So, this is the effect of property rights on per capita GDP. Our GUI display next the posterior
results associated with the instrumental equation, there we obtained a 95% credible interval equal to
(-0.83, -0.35) for the effect of the mortality rate on the property rights. This suggests that the instrument
is not weak. Then, we obtained the posterior results for the exogenous regressors in the main equation,
which suggests that Africa and Asia dummies variables have negative effects on per capita GDP.
Finally, we got the posterior estimates for the covariance matrix, which suggest that there is a negative
covariance between the GDP equation and PAER equation, the 95% credible interval is (-1.50, -0.26).

All posterior draws seem to come from stationary distributions. However, there are high levels of
autocorrelation in some posterior chains, as suggested by the dependence factors and posterior plots.

Hierarchical longitudinal models

Normal model: The relation between productivity and public investment

We used the dataset named 8PublicCap.csv used by Ramírez Hassan (2017) to analyze the relation
between public investment and gross state product in the setting of a spatial panel dataset consisting
of 48 US states from 1970 to 1986. In particular, the specification to type into the main equation box of
fixed effects is

log(gsp) ∼ log(pcap) + log(pc) + log(emp) + unemp,

where gsp in the gross state product, pcap is public capital, and pc is private capital all in US$, emp is
employment (people), and unemp is the unemployment rate in percentage.

7Substituting Equation 4 into Equation 3, and comparing it with Equation 1 yields π1 = β1α2
1−β1α1

. Solving for the
PAER as a function of the exogenous regressors in the structural system, and comparing it with Equation 2 yields
γ1 = α2

1−β1α1
. Observe one needs independent equations (β1α1 ̸= 1) and the exclusion restriction (α2 ̸= 0).
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We left the main equation box of random effects empty as we assumed that the unobserved
heterogeneity is not associated with any particular regressors. This means that we control for the
unobserved heterogeneity using just the constant terms. The variable which identifies the units is id.

We ran this application using 10,000 MCMC iterations plus a burn-in equal to 5,000 iterations and
a thinning parameter equal to 1. We also used the default values for the hyperparameters of the prior
distributions. It seems that all posterior draws come from stationary distributions as suggested by the
diagnostics and posterior plots.

The 95% symmetric credible intervals for public capital, private capital, employment, and unem-
ployment, are (-2.54e-02, -2.06e-02), (2.92e-01, 2.96e-01), (7.62e-01, 7.67e-01), and (-5.47e-03, -5.31e-03),
respectively. The posterior mean elasticity estimate of public capital to gsp is -0.023. That is, an
increase of 1% in public capital means a 0.023% decrease in gross state product. The posterior mean
estimates of private capital and employment elasticities are 0.294 and 0.765, respectively. In addition,
a 1% increase in the unemployment rate means a decrease of 0.54% in gsp. It seems that all these
variables are statistically relevant. In addition, the posterior mean estimates of the variance associated
with the unobserved heterogeneity and stochastic errors are 1.06e-01 and 1.45e-03. We obtained the
posterior chain of the proportion of the variance associated with the unobserved heterogeneity (see
Figure 12). The 95% symmetric credible interval is (0.98, 0.99) for this proportion. That is, unobserved
heterogeneity is very important to explain the total variability.
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Figure 12: Posterior distribution: Proportion of variance associated with unobserved heterogeneity

Bayesian model averaging

Continuous response: Determinants of export diversification

We used the dataset provided by Jetter and Ramírez Hassan (2015) to analyze the determinants of
export diversification. The dataset named 10ExportDiversificationHHI.csv contains information about
36 potential determinants of export diversification measured using the Herfindahl–Hirschman Index
(avghhi) for 104 countries (see Jetter and Ramírez Hassan (2015) for details). This setting implies 68.7
billion models (236).

We implemented three Bayesian Model Average (BMA) strategies: Bayesian Information Criterion
approximation (BIC), Markov chain Monte Carlo model composition (MC3), and instrumental variable
(IVBMA). The former takes into account possible endogeneity between export diversification and
gross domestic product.

Regarding BMA using the BIC approximation, we set 50 (default value) for OR. This parameter
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defines the number of best models to take into account in our BMA strategy. We obtained a table where
we can see the posterior inclusion probability (PIP), expected value, standard deviation, and posterior
mean estimates associated with the best models for each variable. The best models are defined using
posterior model probabilities, which appear at the bottom of the table, where we also see the number
of variables associated with each model as well as the coefficients of determination and BIC values.
Our GUI also produces two csv files. The first one is Best Models.csv, where we have by row the best
models and the variables by columns, a 1 indicates the presence of the specific variable in the model’s
specification, and a 0 its absence. The last column in this file is the posterior model probability. The
second one is Descriptive Statistics.csv, where we see the posterior inclusion probability, expected value,
and standard deviation of each variable.

Following Kass and Raftery (1995)’s suggestions, we found that there is very strong evidence that
being a former colony of Portugal, the total net primary enrollment and the total natural resources
rents as a percentage of GDP are determinants of export diversification. Their expected values are 0.15,
-0.006 and 0.008, respectively, which means that there are negative effects of having been a colony of
Portugal and of having natural resources on export diversification. Recall that higher values of HHI
indicate less diversification.

We also ran this application using the MC3 strategy with 10,000 MCMC iterations. We got results
similar to those with the BIC approximation.

We estimated an instrumental variable BMA to take into account possible endogeneity between
export diversification and GDP using 20,000 MCMC iterations plus a burn-in equal to 5,000, where
there is one endogenous variable (GDP). In particular, we used the files 11ExportDiversificationHHI.csv
and 12ExportDiversificationHHIInstr.csv. The first file has the dependent variable in the first column
(avhhhi) followed by the endogenous variable (avglgdpcap), the constant term (a column of 1’s), and
exogenous regressors. The second file has the instrumental variables, which are geographical, cultural,
and colonial factors.

Our GUI first displays the outcomes of the second stage equation (main equation) and then the first
stage equation (instrumental equation). We can download three csv files: BMA Results First Stage.csv,
BMA Results Second Stage.csv, and Posterior chains.csv. The first two files have the same structure:
posterior inclusion probabilities and expected values. We can see from these files that educational
levels and governance performance are the most important variables to foster gross domestic product
(PIP=100), primary enrollment fosters export diversification (PIP=79.5), whereas natural resources
discourage it (PIP=97.1). The latter file has the posterior draws where the name beta is associated
with the variables in the main equation (second stage), and gamma is associated with the instrumental
variable equation (first stage). Lastly, we have the posterior draws of the covariance matrix of the
stochastic errors in the first and second-stage equations. We have a 95% symmetric credible interval
equal to (-0.014, 0.024), suggesting that there are no endogeneity issues.

Concluding remarks

The Bayesian statistical framework has become very popular among scientists since the computational
revolution in the 1990s. In particular, computationally burdensome procedures such as Markov chain
Monte Carlo algorithms can be easily implemented nowadays. However, most of the open source
software to apply these procedures requires programming skills. This may be one reason why the
Bayesian framework is not very popular among applied researchers and practitioners. In this paper,
we introduced a graphical user interface to implement Bayesian regression analysis under different
frameworks, explaining the basic theory so that users can understand the basic principles of Bayesian
statistics and apply them easily. Our objective has been to increase the popularity of the Bayesian
statistical framework among applied researchers and practitioners.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 147

Name Language Models Open source
ShinyStan R+Stan MCMC Implementation∗ Yes

Bayesian regression: NP&P MATLAB Compiler

Bayesian infinite-mixture regression

Yes

Bayesian normal regression
Hierarchical linear regression
Binary regression
Ordered regression
Censoring regression
Quantile regression
Survival regression
Density estimation
Variable selection (spike-and-slab)

BugsXLA OpenBUGS + Excel

Normal linear models

Yes

GLM: Binomial
GLM: Poisson
GLM: Survival
GLM: Multivariate categorical data
Normal linear mixed
Generalized linear mixed
Bayesian variable selection
Robust models

MATLAB toolkit: E&E+ MATLAB

Linear Regression

No

Regression with non-spherical errors
Regime switch regression
Regression with restricted parameters
Seemingly unrelated regression (SUR)
Vector AutoRegression (VAR)
Instrumental variable
Probit and logit
Tobit Model
Panel Data Analysis
Stochastic search variable selection
Highest posterior density (HPD) region
Marginal likelihood of linear regression

Stata Stata MCMC implementation∗ No

BayES C++

Simple linear model

No

Random-effects
Random-coefficients
Stochastic frontiers
Inefficiency-effects
Random-effects stochastic frontiers
Dynamic stochastic frontier
Probit and logit
Random-effects probit and logit
Multinomial probit and logit
Ordered probit and logit
Poisson and negative-binomial
Type I Tobit
Type II Tobit
Seemingly unrelated regressions (SUR)
Vector Autoregressive (VAR)

∗User should define prior and likelihood.
+Toolkit on econometrics and economics teaching.

Table 1: Graphical user interfaces to perform Bayesian regression analysis.
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Univariate models
Model Library Command Reference

Normal MCMCpack MCMCregress Martin et al. (2018)
Logit MCMCpack MCMClogit Martin et al. (2018)
Probit bayesm rbprobitGibbs Rossi (2017)
Multinomial(Mixed) Probit bayesm rmnpGibbs Rossi (2017)
Multinomial(Mixed) Logit bayesm rmnlIndepMetrop Rossi (2017)
Ordered Probit bayesm rordprobitGibbs Rossi (2017)
Negative Binomial(Poisson) bayesm rnegbinRw Rossi (2017)
Tobit MCMCpack MCMCtobit Martin et al. (2018)
Quantile MCMCpack MCMCquantreg Martin et al. (2018)

Multivariate models
Model Library Command Reference

Multivariate bayesm rmultireg Rossi (2017)
Seemingly Unrelated Regression bayesm rsurGibbs Rossi (2017)
Instrumental Variable bayesm rivGibbs Rossi (2017)
Bivariate Probit bayesm rmvpGibbs Rossi (2017)

Hierarchical longitudinal models
Model Library Command Reference

Normal MCMCpack MCMChregress Martin et al. (2018)
Logit MCMCpack MCMChlogit Martin et al. (2018)
Poisson MCMCpack MCMChpoisson Martin et al. (2018)

Bayesian Bootstrap
Model Library Command Reference

Bayesian bootstrap bayesboot bayesboot Baath (2018)
Bayesian model averaging

Model Library Command Reference
Normal (BIC) BMA bic.glm Raftery et al. (2012)
Normal (MC3) BMA MC3.REG Raftery et al. (2012)
Normal (instrumental variables) ivbma ivbma Lenkoski et al. (2013)
Logit (BIC) BMA bic.glm Raftery et al. (2012)
Gamma (BIC) BMA bic.glm Raftery et al. (2012)
Poisson (BIC) BMA bic.glm Raftery et al. (2012)

Diagnostics
Diagnostic Library Command Reference

Trace plot coda traceplot Plummer et al. (2016)
Autocorrelation plot coda autocorr.plot Plummer et al. (2016)
Geweke test coda geweke.diag Plummer et al. (2016)
Raftery & Lewis test coda raftery.diag Plummer et al. (2016)
Heidelberger & Welch test coda heidel.diag Plummer et al. (2016)

Table 2: Libraries and commands in BEsmarter GUI.
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Univariate models
Model Data set file Data set simulation

Normal 11SimNormalmodel.csv 11SimNormal.R
Logit 12SimLogitmodel.csv 12SimLogit
Probit 13SimProbitmodel.csv 13SimProbit.R
Multinomial(Mixed) Probit 14SimMultProbmodel.csv 14SimMultinomialProbit.R
Multinomial(Mixed) Logit 15SimMultLogitmodel.csv 15SimMultinomialLogit.R
Ordered Probit 16SimOrderedProbitmodel.csv 16SimOrderedProbit.R
Negative Binomial(Poisson) 17SimNegBinmodel.csv 17SimNegBin.R
Tobit 18SimTobitmodel.csv 18SimTobit.R
Quantile 19SimQuantilemodel.csv 19SimQuantile.R

Multivariate models
Model Data set file Data set simulation

Multivariate 21SimMultivariate.csv 21SimMultReg.R
Seemingly Unrelated Regression 22SimSUR.csv 22SimSUR.R
Instrumental Variable 23SimIV.csv 23SimIV.R
Bivariate Probit 24SimMultProbit.csv 24SimMultProbit.R

Hierarchical longitudinal models
Model Data set file Data set simulation

Normal 31SimLogitudinalNormal.csv 31SimLogitudinalNormal.R
Logit 32SimLogitudinalLogit.csv 32SimLogitudinalLogit.R
Poisson 33SimLogitudinalPoisson.csv 33SimLogitudinalPoisson.R

Bayesian Bootstrap
Model Data set file Data set simulation

Bayesian bootstrap 41SimBootstrapmodel.csv 41SimBootstrapmodel.R
Bayesian model averaging

Model Data set file Data set simulation
Normal (BIC) 511SimNormalBMA.csv 511SimNormalBMA.R
Normal (MC3) 512SimNormalBMA.csv 512SimNormalBMA.R

Normal (instrumental variables) 513SimNormalBMAivYXW.csv 513SimNormalBMAiv.R513SimNormalBMAivZ.csv
Logit (BIC) 52SimLogitBMA.csv 52SimLogitBMA.R
Gamma (BIC) 53SimGammaBMA.csv 53SimGammaBMA.R
Poisson (BIC) 53SimPoissonBMA.csv 53SimPoissonBMA.R

Table 3: Data sets templates in folder DataSim.
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Univariate models
Model Data set file Dependent variable

Normal 1ValueFootballPlayers.csv log(Value)
Logit 2HealthMed.csv Hosp
Probit 2HealthMed.csv Hosp
Multinomial(Mixed) Probit Fishing.csv mode
Multinomial(Mixed) Logit Fishing.csv mode
Ordered Probit 2HealthMed.csv MedVisPrevOr
Negative Binomial(Poisson) 2HealthMed.csv MedVisPrev
Tobit 1ValueFootballPlayers.csv log(ValueCens)
Quantile 1ValueFootballPlayers.csv log(Value)

Multivariate models
Model Data set file Dependent variable

Multivariate 4Institutions.csv logpcGDP95 and PAER
Seemingly Unrelated Regression 5Institutions.csv logpcGDP95 and PAER
Instrumental Variable 6Institutions.csv logpcGDP95 and PAER
Bivariate Probit 7HealthMed.csv y = [Hosp SHI]′

Hierarchical longitudinal models
Model Data set file Dependent variable

Normal 8PublicCap.csv log(gsp)
Logit 9VisitDoc.csv DocVis
Poisson 9VisitDoc.csv DocNum

Bayesian Bootstrap
Model Data set file Dependent variable

Bayesian bootstrap 1ValueFootballPlayers.csv log(Value)
Bayesian model averaging

Model Data set file Dependent variable
Normal (BIC) 10ExportDiversificationHHI.csv avghhi
Normal (MC3) 10ExportDiversificationHHI.csv avghhi

Normal (instrumental variables) 11ExportDiversificationHHI.csv avghhi and avglgdpcap12ExportDiversificationHHIInstr.csv
Logit (BIC) 13InternetMed.csv internet
Gamma (BIC) 14ValueFootballPlayers.csv Ln market value
Poisson (BIC) 15Fertile2.csv ceb

Table 4: Real data sets in folder DataApp.
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StratigrapheR: Concepts for Litholog
Generation in R
by Sébastien Wouters, Anne-Christine Da Silva, Frédéric Boulvain and Xavier Devleeschouwer

Abstract The StratigrapheR package proposes new concepts for the generation of lithological logs,
or lithologs, in R. The generation of lithologs in a scripting environment opens new opportunities
for the processing and analysis of stratified geological data. Among the new concepts presented:
new plotting and data processing methodologies, new general R functions, and computer-oriented
data conventions are provided. The package structure allows for these new concepts to be further
improved, which can be done independently by any R user. The current limitations of the package are
highlighted, along with the limitations in R for geological data processing, to help identify the best
paths for improvements.

1 Introduction

StratigrapheR is a package implemented in the open-source programming environment R. Stratig-
rapheR endeavors to explore new concepts to process stratified geological data. These concepts are
provided to answer a major difficulty posed by such data; namely a large amount of field observations
of varied nature, sometimes localized and small-scale, can carry information on large-scale processes.
Visualizing the relevant observations all at once is therefore difficult. The usual answer to this problem
in successions of stratified rocks is to report observations in a schematic form: the lithological log, or
litholog (e.g., Fig. 1). The litholog is an essential tool in sedimentology and stratigraphy and proves to
be equally invaluable in other fields such as volcanology, igneous petrology, or paleontology. Ideally,
any data contained in a litholog should be available in a reproducible form. Therefore, the challenge
at hand is what we would call "from art to useful data"; how can we best extract and/or process the
information contained in a litholog, designed to be as visually informative as possible (see again Fig. 1).
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Figure 1: Example of a computer-drawn litholog of calcareous rocks, modified from Humblet and
Boulvain (2000) using vector graphics software (e.g., Inkscape, CorelDRAW, or Adobe Illustrator).
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Lithologs can be hand-drawn, computer-drawn, or generated via ad hoc software tools. Drawn
figures can have unlimited precision and personalization. They are, however, time-consuming to
produce and ill-adapted for the extraction of data for further numerical analysis. Moreover, any
modification to drawn lithologs has to be performed manually. Ad hoc software tools such as the
open-source SedLog program (Zervas et al., 2009) or the SDAR R package (Ortiz et al., 2019) propose a
solution to such short-comings by generating lithologs from geological data provided in a text format.
The most common text format is the American Standard Code for Information Interchange -ASCII-.
ASCII is used for the SedLog data format and for the Log ASCII Standard -LAS- (Heslop et al., 1999).
The latter (LAS) is the data format used by the SDAR package.

A major advantage of ad hoc software tools is that any change in the data can automatically lead to
an update in the display of the litholog. However, ad hoc software tools only permit a certain amount
of personalization. The graphical output of ad hoc software tools, which can be obtained in vector
graphics format (e.g., in the Scalable Vector Graphics [SVG] format), has to be post-processed in vector
graphics software to add elements that are not supported by the data format. In SedLog, for instance,
to add plots next to the litholog (i.e., to visualize quantified analytical values and their relation to the
lithological features) the plots need to be generated separately and then added manually along the
litholog in vector graphics software. SedLog does permit a certain amount of personalization, but only
for the lithological symbology, by giving the user the option of adding self-made symbology (e.g., to
show the position of paleontological or sedimentological features). In the SDAR package, the only
data automatically displayable are Gamma Ray spectrometry values, and the symbology (for lithology,
fossils, etc.) cannot be personalized.

Generally speaking, the graphical style of the lithologs generated by ad hoc software tools is
difficult to personalize entirely. To do so, each functionality has to be modular, which is better done in
a scripting language such as R. Yet, the SDAR package, although coded in R, is not modular. All the
plotting is made using a single function. Any personalization feature would need to be explicitly coded
into that function, which would be a never-ending task. Moreover, ad hoc software tools are difficult
to update and improve. Adding new functionalities or maintaining the software for compatibility with
new operating systems, for example, usually falls on the shoulders of the developers of that software.

The StratigrapheR package is presented here as a new mean to generate lithologs. It provides a
complementary approach to the existing methodologies and circumvents the aforementioned problems.
StratigrapheR is designed not around a specific data format but on general tools able to deal with
different formats. This opens a way of processing the geological data through a scripting language
which has a large potential to evolve. StratigrapheR shows that symbiosis between automation and
personalization is achievable for litholog generation. As it stands, the package does not meet the "from
art to useful data" challenge entirely. However, it is a proof of concept showing that, despite the artistic
nature of lithologs, they can be based on usable digital data, or that conversely, usable data can be
extracted from drawn lithologs.

StratigrapheR is coded in R, which disposes of automated package checks (Wickham, 2015) and is
itself updated regularly. This is one mechanism against the inevitable obsolescence of the functionali-
ties. Similarly, as the StratigrapheR package is structured in distinct basic functions, implementing
new functionalities (or updating existing ones) can be done more easily by any user. Furthermore,
the processing of geological data, whether to generate lithologs or for any other procedure (among
others plotting proxies, applying moving averages on these proxies, or performing spectral analysis),
can directly be performed in R (see, for instance, the paleotree package for paleontology (Bapst,
2012), the IsoplotR package for geochronology (Vermeesch, 2018), or the hht (Bowman and Lees,
2013), astrochron (Meyers, 2014), biwavelet (Gouhier et al., 2019) and DecomposeR (Wouters, 2020)
packages for spectral analysis). This means that the entire data treatment and visualization could be
performed in a single scripting environment: R.

The main concepts for the use of StratigrapheR are presented in this paper. The current limitations
of StratigrapheR and R for the processing of geological data are also highlighted to give an idea of
the obstacles that the future developers will need to overcome to make R a better tool for geological
data processing. Throughout the paper, examples are provided on how to make lithologs and how
to process geological data. They can be run in R (you can download R here); the current version of
StratigrapheR (1.2.3) works only on R 4.0 or higher versions. A GitHub repository is available at
https://github.com/sewouter/StratigrapheR, where outside users can suggest improvements and
provide feedback. The free RStudio interface is advised to use StratigrapheR in the R environment.
The StratigrapheR package can be installed by typing:

install.packages("StratigrapheR")

To be used, the StratigrapheR package has to be loaded each time R or RStudio are opened, via
the following code:

library(StratigrapheR)
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2 Data importation and processing

Data of any form can easily be imported using basic R functions, such as read.table() or readLines()
for text files. Excel files can be downloaded using, for instance, the read.xlsx() function from the
xlsx package (Dragulescu and Arendt, 2020). We advise putting any tabular data into data frame form
(i.e., a table), which can be done via the data.frame() function.

As stratigraphic data can be found in an interval form (e.g., a specific strata between 25 and 30 m
in a record, or the Jurassic between ca. 200 and ca. 145 million years ago), a formal scheme to deal
with such data is provided: the ’lim’ object (named after the xlim and ylim parameters that define the
boundaries of plots in common R graphical functions) and a suite of functions that are associated to lim
objects. The idea is to set a logical data format for intervals and to be able to manipulate these intervals
in R. The lim objects are made via the as.lim() function by providing boundaries in the form of the
l and r arguments, which respectively stand for left and right boundaries. The actual order of the
boundaries is irrelevant to avoid unnecessary data cleaning (which is the reason why ’left’ and ’right’
were chosen as a convention rather than ’up’ and ’down’). Each interval can be identified using the id
argument. Providing the upper and lower boundaries allows taking gaps into account in lithologs,
contrary to simply providing the thickness of layers (also called beds). Whether the boundaries are
included in the interval can be determined via the b argument, which defines the boundary rules. This
is an abstract feature, especially for geology purposes, because it is usually of negligible importance
whether the infinitesimal position of a boundary is included in a given interval. However, taking this
into account is critical to explicitly describe the behavior of intervals. This can be used, for instance, to
assign an interval to a sample located at the common boundary between two intervals that do not
overlap otherwise. By providing a boundary rule, it can be explicitly assigned to only one of the two
intervals, none of them, or both of them. The boundary rule is expressed by characters, and can be
set to "[]" (or "closed") to include both boundary points, "][" (or "()", and "open") to exclude both
boundary points, "[[" (or "[)", "right-open" and "left-closed") to include only the left boundary
point, and "]]" (or "(]", "left-open",and "right-closed") to include only the right boundary point.
The left element (e.g., the [ of "[]") stands for the left boundary (not necessarily the lowest one), while
the right element (e.g., the ] of "[]") stands for the right boundary (not necessarily the highest one).
We illustrate how to visualize intervals with the following code (note: graphics generated by code in
the article are shown directly after the code that generates them):

interval <- as.lim(l = c(0,1,2), r = c(0.5,2,2.5), # Make a lim object
id = c("Int. 1","Int.2","Int.3"))

interval # print what is in the lim object
#> $l
#> [1] 0 1 2
#> $r
#> [1] 0.5 2.0 2.5
#> $id
#> [1] "Int. 1" "Int.2" "Int.3"
#> $b
#> [1] "[]" "[]" "[]"

# Visualization of the lim object
plot.new()
plot.window(ylim = c(-0.5, 2.5), xlim = c(0, 2.5))
axis(3, pos = 1.5, las = 1)

infobar(ymin = 0, ymax = 1, xmin = interval$l, xmax = interval$r,
labels = c(interval$id), srt = 0)

0.0 0.5 1.0 1.5 2.0 2.5

Int. 1 Int.2 Int.3
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Functions are provided to characterize the relationships of intervals with each other: are.lim.nonunique()
checks whether the intervals are of non-zero thickness (e.g., unlike [1,1]), are.lim.nonadjacent()
checks if the intervals do not share any adjacent boundaries, and are.lim.distinct() checks whether
the intervals are not overlapping. The simp.lim() function is provided to merge adjacent and/or
overlapping intervals having identical IDs. The flip.lim() function is provided to find the com-
plementary intervals of a set of intervals (i.e., the gaps). The mid.lim() function provides a way to
define intervals in between data points. If all different intervals are strictly non-overlapping for all
values (for instance, the intervals [0,20[ and [20, 100] are non-overlapping and therefore 20 is uniquely
represented by the second interval), the in.lim() function can be used to find which values belong to
which respective intervals. Typically, such functions can be used to craft stratigraphic intervals (such
as magnetochrons or stages) and determine the beds or samples that are in or outside them.

3 General plotting considerations

The first challenge when plotting a litholog is its size: a litholog needs to be detailed at a small scale
(typically at the centimeter scale for high precision) while spanning the entirety of a record (up to
hundreds of meters). This makes lithologs sometimes quite extended. This is problematic considering
that the classical R graphic window is not adapted to visualize anything exceeding the size of the
computer screen. To remedy this problem, the pdfDisplay() function is here introduced, which draws
plots directly in a PDF (Portable Document File) document and opens it in the computer’s default PDF
reader. This PDF document can have any size desired by the user, and therefore, allows visualizing all
the details of a very long litholog. This is illustrated by the code here below, which draws a vertically
standing stickman. Depending on the screen, this vertical stickman could be difficult to visualize
without pdfDisplay().

To avoid having to close the PDF reader at each change of the plot (as most PDF readers do not
permit changes to the PDF file while it is displayed), each new PDF can be named differently: each
new document version will have its name be followed by ’_(i)’, where i is the version number (e.g.,
test_(1).pdf, test_(2).pdf, etc.). This practice is here referred as tracking the version number. It is
noteworthy to cite the free Sumatra PDF software, which is available for Windows operating systems,
and lets PDF files be modified while still displaying them without the trick of having to change the file
name. In that case, the tracking of the version numbers can be canceled by setting the track parameter
to FALSE. PDF files generated by pdfDisplay() can easily be imported into vector graphics software.
The pdfDisplay() function also allows for the direct generation of an SVG file. pdfDisplay() is a
wrapper of the more basic pdf() function (i.e., its code is based on the pdf() function); other PDF
generating functions could be used interchangeably.

To make plots starting from an empty background, we advise using the plot.new() and plot.window()
functions, which are of lower level (i.e., more basic) than the plot() function. They are used to create a
completely empty plotting environment in which to add the litholog. To add axes, the axis() function
is a versatile tool, which can be replaced by the minorAxis() function provided in StratigrapheR to
add minor axis ticks. The minorAxis() function is itself a wrapper of the axis() function.

graphical_function <- function() # Graphical function needed by pdfDisplay
{

opar <- par()$mar # Save initial graphical parameters
par(mar = c(0,3,0,1)) # Change the margins of the plot

plot.new() # Open a new plot
plot.window(xlim = c(-0.2, 1.2), ylim = c(-5, 1)) # Define plot coordinates
minorAxis(2, at.maj = seq(-5, 1, 0.5), n = 5, las = 1) # Add axis
points(c(0.25, 0.75), c(0.75, 0.75), pch = 19)
polygon(c(0.1, 0.25, 0.75, 0.9, 0.75, 0.25, NA,

0, 0.25, 0.75, 1, 0.75, 0.25),
c(0.5, 0.25, 0.25, 0.5, 0.4, 0.4, NA,
0.5, 0, 0, 0.5, 1, 1), lwd = 2)

lines(x = c(0.5, 0.5, NA, 0, 0.2, 0.5, 0.8, 1, NA,
0, 0.2, 0.5, 0.9, 1.2),

y = c(-0.25, -3, NA, -5, -4, -3, -4, -5, NA,
-2.5, -1.5, -1, -0.75, 0.25), lwd = 2)

par(mar = opar) # Restore initial graphical parameters
}

pdfDisplay(graphical_function(),"graphical_function", width = 3.5, height = 10)
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Adding every element of the lithologs symbology uses a very basic data format for polylines and
polygons, which are respectively drawn using the multigons() and multilines() functions. These
novel functions allow precise control of graphical parameters when drawing multiple polygons and
polylines. These functions require an identification argument i, similar for each point of a single
polygon or polyline, and the x and y coordinates of each point. The following code shows the use of
the multigons() and multilines() functions:

i <- c(rep("A1",6), rep("A2",6), rep("A3",6)) # Polygon IDs
x <- c(1,2,3,3,2,1,2,3,4,4,3,2,3,4,5,5,4,3) # x coordinates
y <- c(1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6) # y coordinates

plot.new()
plot.window(xlim = c(0,6), ylim = c(0,7))

multigons(i, x, y,
front = "A2", # This gets the polygon A2 in front of all others
density = c(NA, 5, 10), # Shading line density
scol = "grey20", # Shading line color; one value means all polygons

# are subject to this graphical parameter
col = c("black", "grey80", "white"), # Background color
lwd = 2, # Width of border lines
slty = 2, slwd = 1) # Shading lines type and width
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i <- c(rep("A1",6), rep("A2",6), rep("A3",6)) # Lines IDs
x <- c(1,2,3,3,2,1,4,5,6,6,5,4,7,8,9,9,8,7) # x coordinates
y <- c(1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6) # y coordinates

plot.new()
plot.window(xlim = c(0,10), ylim = c(0,7))

multilines(i, x, y,
j = c("A3", "A1", "A2"), # j controls the order of the graphical

# parameters applied to each named line:
lty = c(1,2,3), lwd = 2, # e.g., lty = 1 (solid line) is applied

# to "A3", the line at the right
type = c("l", "o", "o"),
pch = c(NA,21,24), cex = 1, bg = "black")

●

●

●

●

●

●

The pointsvg() function is provided in StratigrapheR to import groups of polygons and polylines
drawn in vector graphics software, under specific conditions: firstly, the drawing needs to be in
SVG format; secondly, the pointsvg() function is only able to identify objects of class "line", "rect",
"polygon", and "polyline" in the SVG file. The reason for this is that only these types of objects
are simple lines, and polygons made of nodes linked together by straight lines. This means that
pointsvg() is not able to recognize all the objects present in an SVG file. Furthermore, pointsvg()
only identifies the coordinates of each objects, regroups them into separate polygons and polyline
objects, and in which order to plot them. All other graphical parameters, such as color or line thickness,
are not taken into account. These parameters have to be specified in the drawing functions. Objects
obtained using pointsvg() on SVG files can be added using the framesvg() or centresvg() functions,
which respectively add the object within a given frame or center the object on a given point.

svg.file.directory <- tempfile(fileext = ".svg") # Creates temporary file
writeLines(example.ammonite.svg, svg.file.directory) # Writes svg in the file

ammonite.drawing <- pointsvg(file = svg.file.directory) # Read svg

plot.new()
plot.window(xlim = c(-2, 5), ylim = c(-2, 2))
axis(1)
axis(2, las = 2)

centresvg(ammonite.drawing, # Object
x = c(3,0), y = 0, # Coordinates for centering
xfac = 2, yfac = 2, # Dimension stretching factors
col = c("grey","white")) # Graphical parameters
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−2

−1

0

1

2
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It should be noted that repetitions of the same SVG object can be generated by a single call of
the framesvg() or centersvg() functions. This facilitates the automation of the litholog generation.
Modifications of the SVG objects can also be accomplished using the changesvg() function, which
enables, among other things, to change the order of plotting of the polylines and polygons, remove
some of them, or invert the figure in x and/or y. The framesvg() or centersvg() can also output the
drawing with modified coordinates, which can be plotted using placesvg() (see, for instance, the
code of the last example).

4 Generating lithologs

The data to make lithologs can be provided in the form shown in Table 1.

id l r h colour litho

B1 0 1 3 grey S
B2 1 3 4 grey L
B3 3 4 5 black C
B4 4 9 4 white L
B5 9 11 4 white L
... ... ... ... ... ...

Table 1: Example of a data frame (bed.example in StratigrapheR) providing information for each bed:
id identifies each bed, l and r provide the boundaries, h the hardness, and the color is provided along
with a code for lithology (S for shale, L for limestone, C for chert). The only strict convention is that l, r,
and h need to be numerical values.

From such data, basic lithologs made of rectangles can be generated as a simple basis. They are the
starting point for making more complicated lithologs in StratigrapheR. The coordinates of the points
making up the rectangles can be computed through the litholog() function, which only needs the
position of the boundaries of the beds, their ’hardness’, and an ID. Text can be added to each bed using
the bedtext() function, which can be used to include the ID or the name of the bed (e.g., id in Table 1).

The output of the litholog() function can be provided to multigons() to draw the log. A
symbology for different types of rocks (or any other information that the symbology is meant to
provide) can be set up using the color fill and the shading. Providing a given symbology for each
polygon is performed by joining the table containing the information about each bed to a table
attributing symbology to rock type. We advise the use of the left_join() function in the dplyr
package (Wickham et al., 2020) for this procedure.

basic.log <- litholog(l = bed.example$l, # This creates a data table of
r = bed.example$r, # rectangles coordinates for a
h = bed.example$h, # basic litholog
i = bed.example$id)

legend <- data.frame(litho = c("S", "L", "C"), # This creates a
col = c("grey30", "grey90", "white"), # data table for
density = c(30, 0,10), # the symbology
angle = c(180, 0, 45), stringsAsFactors = FALSE)

View(legend)

# left_join in the dplyr package merges the symbology with the table of beds:
bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")

View(bed.legend)
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plot.new()
plot.window(xlim = c(0,6), ylim = c(-1,77))
minorAxis(2, at.maj = seq(0, 75, 5), n = 5)

# Plotting of the polygons making the litholog,
# with corresponding symbology:
multigons(basic.log$i, x = basic.log$xy, y = basic.log$dt,

col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

# Writing the name of beds, only in beds thick enough
bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,

x = 0.5, # x position where to center the text
ymin = 3) # text is not added in beds thinner than ymin
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To add more complicated beds, the user can add SVG drawings instead of drawing the rectangles
through multigons(), as shown earlier. This is, however, a time-consuming procedure as each bed
has to be imported separately. The weldlog() function can be used to automate the personalization of
bed boundaries. It needs to be provided as a polyline, either from R itself (e.g., a sinusoid) or from an
SVG file.

# Code repeated from earlier examples ----
basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)
legend <- data.frame(litho = c("S", "L", "C"), density = c(30, 0,10),

col = c("grey30", "grey90", "white"),
angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")
# ----

# Generation of the boundaries, either sinusoidal or from drawings ---
s1 <- sinpoint(5,0,0.5,nwave = 1.5)
s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)
s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)

# Visualizing the s3 boundary, i.e., the liquefaction sedimentary feature ----
plot(s3$x, s3$y, cex.axis = 1.2, lwd = 2,

type = "l", ylab = "", xlab = "", bty = "n", las = 1)
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0.0

0.5

1.0

1.5
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# Welding the boundaries to the basic litholog ----
final.log <- weldlog(log = basic.log,

dt = boundary.example$dt, # Position of the boundaries
# to be changed

seg = list(s1 = s1, s2 = s2, s3 = s3), # list of segments
j = c("s1","s1","s1","s3", # Attributing the segments to

"s2","s2","s1"), # the respective bed boundaries
# to be changed

warn = F)

# Visualizing the resulting litholog (similarly to earlier code) ----
plot.new()
plot.window(xlim = c(0,6), ylim = c(-1,77))
minorAxis(2, at.maj = seq(0, 75, 5), n = 5, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,
col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,
x = 0.75, ymin = 3)
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We see that the thickness of beds can vary. Therefore, a bed boundary can actually vary within a
given interval. This raises the question of how to document the position of the bed boundaries in data
tables that would only have 2 values for the boundaries (lower and upper) rather than 4 (upper and
lower interval of variation for the lower boundary, and upper and lower interval of variation for the
upper boundary) or even more (detailing the exact form of the boundaries). We propose a convention
for the data tables to be used for the generation of lithologs: the positions of the bed boundaries that
are defined in the quantified data have to match in a litholog with the positions of the boundaries
of the beds on the axis side of the litholog (usually the left side for single logs). The axis side of the
litholog is ideal: it follows a straight vertical line, by an implicit convention followed by the large
majority of geologists.

Extra stratigraphic or lithological information, such as geomagnetic chrons, rock color, etc., can
be added using the infobar() function. Any information that can be conveyed by text, such as the
positions of samples, can be added using the axis() or text() functions.

# Code repeated from earlier examples ----
basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)
legend <- data.frame(litho = c("S", "L", "C"), density = c(30, 0,10),

col = c("grey30", "grey90", "white"),
angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")
s1 <- sinpoint(5,0,0.5,nwave = 1.5)
s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)
s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)
final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),
j = c("s1","s1","s1","s3","s2","s2","s1"), warn = F)
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# Visualizing the resulting litholog (similarly to earlier code) ----
plot.new()
plot.window(xlim = c(-1.5,8), ylim = c(-1,81))
minorAxis(2, at.maj = seq(0, 75, 5), n = 5, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,
col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,
x = 0.5, ymin = 2)

# Making a data table for the symbology of magnetochrons
legend.chron <- data.frame(polarity = c("N", "R"),

bg.col = c("black", "white"),
text.col = c("white", "black"),
stringsAsFactors = FALSE)

# Merging symbology with a data table of chrons
chron.legend <- dplyr::left_join(chron.example, legend.chron, by = "polarity")

# Plotting the chrons with the given symbology
infobar(-1.5, -1, chron.legend$l, chron.legend$r,

labels = chron.legend$polarity,
m = list(col = chron.legend$bg.col),
t = list(col = chron.legend$text.col),
srt = 0)

# Adding color information
colour <- bed.example$colour
colour[colour == "darkgrey"] <- "grey20"
colour[colour == "brown"] <- "tan4"

# Plotting the color next to the litholog
infobar(-0.25, -0.75, bed.example$l, bed.example$r,

m = list(col = colour))

text(-0.5, 79, "Colour", srt = 90)
text(-1.25, 79, "Magnetochrons", srt = 90)

axis(4, at = proxy.example$dt, labels = proxy.example$name,
pos = 6, lwd = 0, lwd.ticks = 1, las = 1)
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Other plots can be drawn along the litholog. Great care should be taken to ensure that the depth
axis is identical in all plots. To ensure that, two components have to be taken into account: the
ylim argument of plot.window() or plot() (for vertical logs, otherwise the xlim argument), and the
graphical parameters defined by the par() function, especially the yaxs (for vertical logs, otherwise
xaxs) and the mar arguments. The ylim argument controls the range of the axis, but the exact range
will depend on the yaxs argument. Indeed, the default setting of yaxs is "r", which stands for regular,
and means that the data range defined by ylim is extended by 4 percent at each end. Such extension
can be unwanted in very long lithologs. Alternatively, the yaxs argument can be set as "i", which
stands for ’internal’, and prevents the extension of the range defined by ylim. The mar argument
controls the margin size of the plotting zone. To add plots along the litholog, a simple way is to use
the mfrow argument in the par() function to define several plotting areas, which will be used by the
successively called plots.
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# Code repeated from earlier examples ----
basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)
legend <- data.frame(litho = c("S", "L", "C"),

col = c("grey30", "grey90", "white"),
density = c(30, 0,10),
angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")
s1 <- sinpoint(5,0,0.5,nwave = 1.5)
s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)
s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)
final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),
j = c("s1","s1","s1","s3","s2","s2","s1"), warn = F)

# ----

opar <- par() # Save initial graphical parameters (IGP)
par(mfrow = c(1,2), # Set two vertical plots along each other

yaxs = "r", # Default setting, adds 4% more range for y
mar = c(5.1, 4.1, 4.1, 0.1)) # Change settings for margins

# Visualizing the resulting litholog (similarly to earlier code) ----
plot.new()
plot.window(xlim = c(0,6), ylim = c(-1,77))
minorAxis(2, at.maj = seq(0, 75, 5), n = 5, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,
col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,
x = 0.75, ymin = 3)

# Visualizing quantified values along the litholog ----

par(mar = c(5.1, 0.1, 4.1, 4.1)) # Change settings for margins of 2nd plot

plot.new()
plot.window(xlim = c(-2*10^-8,8*10^-8), ylim = c(-1,77)) # ylim similar to

# litholog

minorAxis(4, at.maj = seq(0, 75, 5), n = 5, las = 1) # Repetition of the axis to
# check both sides are matching

lines(proxy.example$ms, proxy.example$dt, type = "o", pch = 19)
axis(1)
title(xlab = "Magnetic Susceptibility")

par(mar = opar$mar, mfrow = opar$mfrow, yaxs = opar$yaxs) # Restore IGP

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 166

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

B4

B8

B13

B17

B22

B26

B31

B35

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

●
●

●

−2e−08 2e−08 6e−08

Magnetic Susceptibility

A legend plot can be generated using the nlegend() function. The basic idea is to make a subplot
for each symbol (using the par() function, for instance), in which the nlegend() function calls a new
plot leaving free space for the symbol (included in [-1, 1], both for x and y coordinates), and adds the
text description. This scheme improves automation, e.g., by simplifying the symbol generation of rock
types in a function as shown in the code below:

legend <- data.frame(litho = c("S", "L", "C"), # Symbology
col = c("grey30", "grey90", "white"), # data table
density = c(30, 0,10), angle = c(180, 0, 45),
stringsAsFactors = FALSE)

f <- function(legend_row) # To simplify coding, we design here a function
# plotting rectangles with the desired symbology

{
multigons(i = rep(1, 4), c(-1,-1,1,1), c(-1,1,1,-1),

col = legend$col[legend_row],
density = legend$density[legend_row],
angle = legend$angle[legend_row])

}

opar <- par() # Save initial graphical parameters
par(mar = c(0,0,0,0), mfrow = c(5,1)) # Make 5 plot windows

nlegend(t = "Shale", cex = 2) # The cex parameter controls the size of the text
f(1) # 1 stands for the first row of the symbology data table
nlegend(t = "Limestone", cex = 2)
f(2)
nlegend(t = "Chert", cex = 2)
f(3)

nlegend(t = "Ammonite", cex = 2)
centresvg(example.ammonite, 0,0,xfac = 0.5)
nlegend(t = "Belemnite", cex = 2)
centresvg(example.belemnite, 0,0,xfac = 0.5)

par(mar = opar$mar, mfrow = opar$mfrow) # Restore initial graphical parameters
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As lithologs can be longer than a single printable page, it is sometimes necessary to split them into
separate plots to be displayed on successive pages of a text document. This can be done by grouping
all the drawing functions used to generate the litholog into a single function, with ylim as an argument.
This function can be iterated with successive ylim intervals.

Functions that generate several plots will generate the corresponding pages in the PDF generated
by pdfDisplay(). All the pages have to be of the same dimensions. To integrate these successive
litholog figures into a larger document that would include all the litholog parts, the associated legend,
a text description of the section, etc., LaTeX can be used. A \foreach loop in LaTeX can then be applied
to import all the pages using the \includegraphics function.

# Code repeated from earlier examples ----
basic.log <- litholog(l = bed.example$l, r = bed.example$r,

h = bed.example$h, i = bed.example$id)
legend <- data.frame(litho = c("S", "L", "C"),

col = c("grey30", "grey90", "white"),
density = c(30, 0,10),
angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")
s1 <- sinpoint(5,0,0.5,nwave = 1.5)
s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)
s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)
final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),
j = c("s1","s1","s1","s3","s2","s2","s1"), warn = F)

legend.chron <- data.frame(polarity = c("N", "R"),
bg.col = c("black", "white"),
text.col = c("white", "black"),
stringsAsFactors = FALSE)

chron.legend <- dplyr::left_join(chron.example,legend.chron, by = "polarity")
colour <- bed.example$colour
colour[colour == "darkgrey"] <- "grey20"
colour[colour == "brown"] <- "tan4"
# ----

# Function that will draw a litholog, with personalized coordinates control
log.function <- function(xlim = c(-2.5,7), ylim = c(-1,77))
{

plot.new()
plot.window(xlim = xlim, ylim = ylim)
minorAxis(2, at.maj = seq(0, 75, 5), n = 5, pos = -1.75, las = 1)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,
col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)
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bedtext(labels = bed.example$id, l = bed.example$l, r = bed.example$r,
x = 1, edge = TRUE, ymin = 2)

centresvg(example.ammonite, 6,
fossil.example$dt[fossil.example$type == "ammonite"],
xfac = 0.5)

centresvg(example.belemnite, 6,
fossil.example$dt[fossil.example$type == "belemnite"],
xfac = 0.5)

infobar(-1.5, -1, chron.legend$l, chron.legend$r,
labels = chron.legend$id, m = list(col = chron.legend$bg.col),
t = list(col = chron.legend$text.col))

infobar(-0.25, -0.75, bed.example$l, bed.example$r,
m = list(col = colour))

}

# In this gr() function, log.function() is repeated, which plots the
# desired parts of the litholog

gr <- function()
{

opar <- par() # Save initial graphical parameters
par(mar = c(1,2,1,2), yaxs = "i")
ylim <- c(0,40) # Initial range to be plotted

for(i in 1:0) log.function(ylim = ylim + 40*i) # Iteration of the plotting
# The drawing range's length is iteratively added to the range already drawn

par(mar = opar$mar, yaxs = opar$yaxs) # Restore initial graphical parameters
}

# Integration of gr() in pdfDisplay to make PDFs
pdfDisplay(gr(), name = "divided log", width = 3, height = 5)
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# The code can be adapted to divide the plot differently,
# and to add other plots along the litholog

gr2 <- function()
{

opar <- par() # Save initial graphical parameters (IGP)

low <- c(-5, 25, 55) # Another way of defining the dimensions
high <- c( 25, 55, 85) # of succesive plotting windows

for(i in 3:1){ # Inverted order to have them in stratigraphic order

par(mfrow = c(1,2), yaxs = "i") # Plot in two columns, same yaxs for both
par(mar = c(5,2,1,0)) # Define margins for first plot (left)

log.function(ylim = c(low[i], high[i]))

par(mar = c(5,0,1,1)) # Second plot (right): change only the vertical
# margins (2nd and 4th)

plot.new()
plot.window(xlim = c(-2*10^-8,8*10^-8), ylim = c(low[i], high[i]))
lines(proxy.example$ms, proxy.example$dt, type = "o", pch = 19)
axis(1)
title(xlab = "Magnetic Susceptibility")

}

par(mar = opar$mar, yaxs = opar$yaxs, mfrow = opar$mfrow) # Restore IGP
}

pdfDisplay(gr2(), name = "divide in 3", wi = 5, he = 7)
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The preceding examples illustrate some of the capabilities of the StratigrapheR package. However,
an important question remains unanswered: have we overcome the "from art to useful data" challenge?
We will illustrate our answer by importing the computer-drawn litholog from Fig. 1. We will also
take the opportunity to show how StratigrapheR can help in the comparison and correlation of
sections. For that purpose, we plot two lithologs in front of each other and visually link them using the
ylink() function. ylink() currently only works in single window plots, i.e., having a coherent x and
y coordinate system. Therefore, we need to change the coordinate system of one of the two lithologs.

Prior to importing it into R using pointsvg(), all the lines and polygons in the litholog in Fig. 1 are
sparsely interpolated, and all the curves are converted into straight lines. To have perfect positioning
in x and y coordinates, the initial drawing is surrounded by a rectangle having known coordinates.
Afterward, the figure is saved as an SVG file. All this takes less than a minute with vector graphics
software (here using CorelDRAW). The sparse interpolation means that the figures will be angular
(take, for instance, the initially elliptical lens containing brachiopods at 34.5 m, when imported by
the code here below, it becomes clearly polygonal). If smoother curves are desired, the amount
of interpolated points can be increased. When the figure is imported by pointsvg(), the rectangle
defines the borders of the figure, which by default are set at [-1, 1] in x and y. These coordinates are
changed using framesvg() by providing the initial coordinates of the rectangle as xmin, xmax, ymin,
and ymax. Having served its purpose as a reference in x and y, the rectangle can be removed directly in
framesvg() using the forget argument.

svg.file.directory <- tempfile(fileext = ".svg") # Creates temporary file
writeLines(example.HB2000.svg, svg.file.directory) # Writes svg in the file

# Log: 1 Humblet and Boulvain 2000 ----

a <- pointsvg(svg.file.directory) # Import the svg
out <- framesvg(a,

xmin = 0, xmax = 5, # Initial coordinates of the
ymin = 27, ymax = 36, # rectangle (see SVG file)
output = T, # This allows to output the changed coordinates
forget = "P287") # 'forget' removes the rectangle added in the

# svg to serve as a referential in x and y
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# Log 2: Code repeated from earlier examples ----

basic.log <- litholog(l = bed.example$l, r = bed.example$r,
h = bed.example$h, i = bed.example$id)

legend <- data.frame(litho = c("S", "L", "C"),
col = c("grey30", "grey90", "white"),
density = c(30, 0,10),
angle = c(180, 0, 45), stringsAsFactors = FALSE)

bed.legend <- dplyr::left_join(bed.example,legend, by = "litho")
s1 <- sinpoint(5,0,0.5,nwave = 1.5)
s2 <- sinpoint(5,0,1,nwave = 3, phase = 0)
s3 <- framesvg(example.liquefaction, 1, 4, 0, 2, plot = FALSE, output = TRUE)
final.log <- weldlog(log = basic.log, dt = boundary.example$dt,

seg = list(s1 = s1, s2 = s2, s3 = s3),
j = c("s1","s1","s1","s3","s2","s2","s1"), warn = F)

# Plotting two logs in front of each other ----

plot.out <- out # Save a version of the svg object
tie.points <- data.frame(l = c(20,35,54,66), # Define points to correlate

r.raw = c(29.8,31,32.5,33.25)) # the two sections in
# their own depth scales

plot.out$x <- 15 - out$x # Change the coordinates for
plot.out$y <- 10*(out$y - 27.5) # second litholog (imported
axs2 <- 10*(28:35 - 27.5) # from Fig. 1), to plot it t
tie.points$r <- 10*(tie.points$r.raw - 27.5) # in front of the first litholog

g <- function()
{

opar <- par() # Save initial graphical parameters
par(mar = c(1,4,1,4))
plot.new()
plot.window(xlim = c(0,15), ylim = c(0,75))
minorAxis(2, at.maj = seq(0,75, 5), n = 5, las = 1, cex.axis = 1.2)
minorAxis(4, at.maj = axs2, labels = 28:35, n = 10, las = 1, cex.axis = 1.2)

multigons(final.log$i, x = final.log$xy, y = final.log$dt,
col = bed.legend$col,
density = bed.legend$density,
angle = bed.legend$angle)

placesvg(plot.out, col = "white") # Adding the drawn plot

ylink(tie.points$l, tie.points$r, 6, 9, ratio = 0.5, # Correlation between
l = list(lty = c(1,2,2,1), lwd = 2)) # the two plots

par(mar = opar$mar) # Restore initial graphical parameters

}

pdfDisplay(g(), "Log Correlation")
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The most obvious discrepancy between the original computer-drawn version (Fig. 1) and the one
imported in R is the lack of color in the latter. We could have identified all the gray polygons one by
one and provided them with a color symbology, but such a tedious task would go against the motto of
simplifying data management. This highlights that at the moment, the conversion of lithologs "from
art to useful data" is not as straightforward as it could be, yet it is not too far out of our reach.

5 New R functions for geological and general purpose

StratigrapheR was designed in a modular way: low-level general-purpose functions were imple-
mented to simplify the development of higher-level functions. The package also hosts a couple of
functions that are not specifically related to lithologs but could be of great use, especially to geologists,
and to other developers. We present a few of these functions in this chapter to promote the use of
modular and general-purpose functions and to help other developers making their own functions.

• divisor(): finds the greatest common rational divisor (GCRD) of a set of values, typically depth,
height, or time in time series. This function is important as it allows to transform floating-point
values into integers (within the precision range allowed by floating-point arithmetic) by dividing
them by the GCRD. We highlight its high potential to automate data processing, especially
to interpolate the irregularly-sampled depth, height, or time values that are omnipresent in
geology (interpolation by the GCRD preserves the original values). This function is somewhat
empirical and would benefit from improvements (among others to reduce the computing time,
typically in the case where the GCRD is significantly smaller than the input values), but this
would require expertise in mathematics and informatics that the authors do not have. We hope
that open-source developers will respond to this challenge.

• every_nth(): leaves or removes values at position indexes of multiples of a given amount (n).
This is typically useful to discriminate major and minor ticks of a personalized axis.

• in.window(): this function can serve as a base for windowing (typically to perform a moving
average). It gives a matrix of all the points included in each successive window (in depth, height,
or time). We illustrate this with irregularly sampled data points.

window <- in.window(irreg.example$dt, # Depth values
w = 30, # Size of the window
xout = seq(0, 600, 20), # Center position of windows
xy = irreg.example$xy) # Intensity values (or other)
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mov.mean <- rowMeans(window$xy, na.rm = TRUE) # Average of the intensity
# values in windows

presence <- matrix(as.integer(!is.na(window$xy)), # Discriminate between NA
ncol = ncol(window$xy)) # values and intensity values

amount <- rowSums(presence) # to determine the amount of
# real values in each window
# (example of window calculation)

opar <- par() # Save initial graphical parameters
par(mfrow = c(2,1), mar = c(0,4,0,0))
plot(irreg.example$dt, irreg.example$xy, type = "o", pch = 19,

xlim = c(0,600), xlab = "dt", ylab = "xy and moving average", axes = F)
lines(window$xout, mov.mean, col = "red", lwd = 2)
axis(2, las = 1)

par(mar = c(5,4,0,0))
plot(window$xout, amount, pch = 19, xlim = c(0,600), ylim = c(0,25),

xlab = "dt", ylab = "amount of points in the windows", axes = F)
axis(1)
axis(2, las = 1)

par(mar = opar$mar, mfrow = opar$mfrow) # Restore initial graphical parameters
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• nset(): finds the position of a given amount of values (n) having a common identification code,
selecting either the n first or the n last ones, or signaling that they are not available (NA). This is
useful to homogenize replicate measurement values.

id <- c("samp1", "samp1", "samp2", "samp3", "samp3", "samp3")
meas <- c( 0.45, 0.55, 5.0, 100, 110, 120)

new_sequence <- nset(id, 2, warn = F)

new_sequence
#> [,1] [,2]
#> samp1 1 2
#> samp2 3 NA
#> samp3 4 5
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clean_meas <- matrix(meas[new_sequence], ncol = 2)

row.names(clean_meas) <- unique(id)

clean_meas
#> [,1] [,2]
#> samp1 0.45 0.55
#> samp2 5.00 NA
#> samp3 100.00 110.00

• seq_mult(): gives a sequence of numbers that are reordered by a given divisor of the length of
the sequence (e.g., seq_mult(10,5) gives the sequence 1, 6, 2, 7, 3, 8, 4, 9, 5, 10). This is useful to
reorder and manipulate repetitive sequences (e.g., changing 1, 2, 3, 4, 5, 1, 2, 3, 4, 5 into 1, 1, 2, 2,
3, 3, 4, 4, 5, 5 and back).

6 Present limitations and prospects for the future

StratigrapheR, for the moment, uses the base graphics in R. This is a choice that was made in the
initial development phase of the package, as the base graphics (also called traditional graphics) are
easy to learn for R beginners and are relatively robust, compared to their alternative; the grid graphics
(Murrell, 2012). The grid graphics are the basis for the lattice (Sarkar, 2008) and ggplot2 (Wickham,
2016) graphical packages. Grid graphics allow more sophistication than the base graphics, but at the
price of a more complicated implementation (Murrell, 2012). However, grid graphics would make
the entire litholog generation process more efficient, especially by using the concept of grob (which
stands for GRaphical OBject). Grobs are R objects that save all the information of a plot, which can
then be modified without needing to alter or rewrite the code made to generate the grobs. This would
avoid any unnecessary repetition of code. Revisiting the examples in the article, you will see that the
code needed for litholog generation does require writing the entire plotting functions at each plot
generation or inserting them into a function. On the other hand, elements of a plot made in grid
graphics can be expressed via grobs and can be reassembled to generate a modified version of the
plot without explicitly making a function or repeating the code. This would further simplify drawing
different parts of the same plot on several pages: if a litholog was expressed as a grob, only a few lines
of codes would be needed to generate successive versions of the plot, and make them fit on different
pages. For all these reasons, grobs would prove to be a key feature for future litholog generation into
R. This would especially be useful to integrate lithologs in plots made by other packages, something
which was not explored in this article: in the current implementation of StratigrapheR (i.e., without
grobs), this would be more complicated than it could be (although it should still be possible). We hope
to explore this aspect in the subsequent developments of the StratigrapheR package.

More generally, the difficulty of importing SVG objects into R should be discussed. With pointsvg(),
only polyline and polygon objects can be imported; their color, line type, or line thickness are not
taken into account. However, this is justified by the fundamental incompatibility between SVG and R
graphics, whether from base graphics or grid graphics: SVG files display a wide variety of graphical
parameters that are inexistent in R. Other authors have attempted to allow the complete importation
of vector graphics into R (e.g., grImport (Murrell, 2009), or the vectoR package available from GitHub).
These works are remarkable but require a lot more effort to use compared to pointsvg(). This comes
from the fact that the only task allocated to pointsvg() is to provide coordinates of polygons and
polylines. Afterward, the graphical parameters can be dealt with in R. Therefore we argue that this
limitation is not by any means a flaw that will impede the use of StratigrapheR or R to deal with
geological data. Furthermore, in order to work with pointsvg(), one only needs to simplify SVG
objects into polygons and polylines. This procedure can be done quite easily in vector graphics
software but could also be automated either in R or using SVG-related software and libraries.

Pattern fillings, often used to represent lithologies in traditional lithologs, are currently difficult
to plot in R. Indeed, carbonates are often represented with a brick pattern, shales with horizontal
layering, and conglomerates by a pattern of polygons to represent heterogeneous pieces. Not all of
these pattern fillings are easily implementable in R at the moment, as the only user-friendly pattern is
the shading (parallel lines). Rectangular pattern blocs could be generated in SVG form, imported in R
using the pointsvg() function, and repeated to fill polygons.

Another useful feature that has not been implemented in StratigrapheR yet is a way to display
’hardness’ variations within the lithological beds. The side opposite to the axis could indeed exhibit
continuous variations, which would represent continuous changes in hardness, changes in topographi-
cal relief of beds in the field (which is a good indicator of hardness), but also variations of grain size or
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lithology. These are parameters that are critical to quantify and formalize. We therefore advocate for
a community effort to come up with standards for the quantification of the hardness, topographical
relief, grain size, and lithology. The way to quantify these parameters should allow to express them
in discrete values along the stratigraphical depth or height. These discrete values will make up the
points of the polygons symbolizing the beds, on the ’hardness’-varying side of the litholog.

The importation of the PDF documents generated by pdfDisplay() back into R, to make documents
including the lithologs and providing supporting information (maps, legends, descriptions, etc.),
could, in theory, be implemented using the R Markdown scheme (see Xie et al. (2018), Xie et al.
(2020) and Allaire et al. (2021) that document the rmarkdown package). In practice, however, the
include_graphics() function in knitr (Xie, 2020), which is used to import PDF files in R Markdown,
does not allow the selection of specific pages. This means that, for the moment, R Markdown is not
well-suited for such a task. Nonetheless, this can be done using LaTeX.

StratigrapheR, for the moment, does not provide a library of geological features symbology, to
avoid favoring specific standards of symbology that are not the norm for all geoscientists. However,
we encourage the creation of different geological data formats and of their related symbology. One
idea would be to have a repository for different geological symbols, grouping different versions of
symbols standing for identical geological features and enabling easy download (and upload of new
formats).

Finally, the definitive answer to the "from art to usable data" challenge would be to enable the
importation into R of lithologs made by other software. This would be easily applicable with ad hoc
software tools for which all the geological information is available in a text file. It would furthermore
be conceptually possible to import computer-drawn lithologs into Geographical Information System
(GIS) software such as the open-source QGIS, treat the polygons and polylines making up the litholog
as spatial data, and to couple them with geological meta-data (i.e., by manually selecting these objects
and providing them with identification, lithological information, etc.). This could be further facilitated
by using algorithms developed for Optical Character Recognition (OCR, typically used to convert
handwritten or printed text) and apply them to geological symbols. The combination of polygons,
polylines, meta-data, and symbology could subsequently be used as a basis for a general-purpose
litholog data format, which could then be imported in R and allow direct figure generation. With
this idea, one could make software facilitating the conversion of one geological data format (e.g.,
hand-drawn lithologs) into this general format and then back to another format (e.g., the LAS format).
The final step of this would be to improve and streamline the exchange and publication of geological
data.

7 Summary

StratigrapheR explores new concepts to deal with geological data. It can serve as a strong basis for
the generation of lithologs, especially facilitating the workflow when repetitive features are present.
The importation of quantified data and the generation of lithologs can be refined to very simple
and reproducible steps. Complex drawings can also be included. Modifying the lithologs can be
automated, as the geological data can be reprocessed in R or corrected in the files used to generate the
lithologs: this means that the visual output can be efficiently updated.

For the future, litholog generation in R has a strong potential to be improved: anyone willing to
code in R can put a personal spin on our current work. Ultimately, all types and formats of lithologs
could be imported, treated, converted, and exported efficiently, using R as a focal point for geological
data processing.
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dad: an R Package for Visualisation,
Classification and Discrimination of
Multivariate Groups Modelled by their
Densities
by Rachid Boumaza, Pierre Santagostini, Smail Yousfi and Sabine Demotes-Mainard

Abstract Multidimensional scaling (MDS), hierarchical cluster analysis (HCA), and discriminant
analysis (DA) are classical techniques which deal with data made of n individuals and p variables.
When the individuals are divided into T groups, the R package dad associates with each group a
multivariate probability density function and then carries out these techniques on the densities, which
are estimated by the data under consideration. These techniques are based on distance measures
between densities: chi-square, Hellinger, Jeffreys, Jensen-Shannon, and Lp for discrete densities,
Hellinger , Jeffreys, L2, and 2-Wasserstein for Gaussian densities, and L2 for numeric non-Gaussian
densities estimated by the Gaussian kernel method. Practical methods help the user to give meaning
to the outputs in the context of MDS and HCA and to look for an optimal prediction in the context of
DA based on the one-leave-out misclassification ratio. Some functions for data management or basic
statistics calculations on groups are annexed.

Introduction

Techniques such as multidimensional scaling, hierarchical cluster analysis, and discriminant analysis
are often used for multivariate data analysis to visualize, organize observations into groups, and
model class structure, respectively. These techniques deal with data of the “individuals × variables”
type (Mardia et al., 1979; Krzanowski, 1988), commonly stored in objects of class data frame. These
techniques are available in the R packages stats, MASS (Venables and Ripley, 2002), ade4 (Dray et al.,
2007), FactoMineR (Lê et al., 2008), cluster (Maechler et al., 2019).

In the case where the individuals are organized into occasions or groups, the analyst could be in-
terested in taking into account this data organization by associating with each occasion a mathematical
object and performing multivariate techniques on these objects. In the dad package (Boumaza et al.,
2021), devoted to such data, the objects are probability density functions. These densities are either all
continuous (numeric data with Lebesgue measure as reference measure) or all discrete (categorical
data with counting measure as reference measure) and are subjected to the following analyses:

• Multidimensional scaling (MDS) of probability density functions aims to visualize a set of
densities (or occasions) so that the distances between the densities are preserved as well as
possible;

• Hierarchical cluster analysis (HCA) of probability density functions is used to divide a set of
densities (or occasions) into clusters so that the densities of the same cluster are as similar as
possible and are dissimilar from those of the other clusters;

• Discriminant analysis (DA) of probability density functions deals with the same kind of data,
knowing a partition of the densities (or occasions) into classes. Its first objective is to learn
how the a priori classes can be explained by the distances between these densities. Then, if the
training step is judged satisfactory according to a criterion named misclassification ratio, its
second objective is to classify a new density whose class is unknown (Boumaza, 2004).

These three multivariate techniques constitute the core of this work. Theoretically, the dad package
handles probability density functions and considers multi-group data as samples allowing their
estimation. The densities could be considered as functional data processed by packages like fda
(Ramsay et al., 2020), fda.usc (Febrero-Bande and de la Fuente, 2012), or fdadensity (Petersen et al.,
2019), or as compositional data processed by packages like compositions (Tsagris and Athineou,
2020), Compositional (van den Boogaart et al., 2020), or robCompositions (Filzmoser et al., 2018).
The differences or similarities with these approaches are the subjects of part of the discussion of the
manuscript (Discussion and concluding remarks Section).

These three multivariate techniques are essentially based on distance indices between probability
density functions. Literature abounds with such indices: as an example, the encyclopedia of distances
of Deza and Deza (2013, p. 235–245) lists some forty. The dad package proposes to calculate ten of them
among the most common by considering the case of discrete densities and that of continuous densities.
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The results returned by the three previous multivariate techniques depend on the distance index used.
This is illustrated by simple examples in the context of HCA (Appendix A) or DA (Appendix B), and
criteria of distance choice are proposed in the Practical advice Section.

Thus, for each distance index, the dad package implements:

• its calculation for two densities whose type and parameters are known,

• its estimation for two densities for which there are two samples which allow the estimation of
their parameters,

• the generalization of each previous calculation for T (T > 2) densities taken two by two, the
result of which is a symmetric matrix.

In order to avoid unnecessary redundancies in the entry of data characterizing the groups as these
characteristics are the same for all the individuals of the same group, we considered it useful to
organize the data in a list of data frames (object of class folderh). Also, in order to calculate some
statistics (means, covariance matrices...) per group or distances between each pair of groups, we
considered it useful to store the individuals of each group in one data frame and these data frames in
a list (object of class folder). Appendix C details the rationale for introducing these object classes. The
functions of the package dad implementing the three main techniques (MDS, HCA, DA) apply to such
objects. The functions of data management or elementary calculation (means, variance or correlation
matrices, moments) applying to these objects could have been made invisible in the package without
affecting the presentation of the main techniques. However, to facilitate the work of the analyst
interested in processing multi-group data or in experimenting with other multivariate techniques on
such data, we have kept them visible. Some of them are presented in Appendix C and Appendix D.

So, the presentation of the dad package will begin with a description of the data considered in
the previous techniques (Multi-group data: examples and organization Section). We will then present
functions for the calculation of the distance or divergence measures between discrete densities and
between Gaussian densities. The special case of non-Gaussian densities estimated with the Gaussian
kernel method is also considered (Distance / divergence between densities Section). Then, we will present
the functions implementing the three techniques introduced above for the processing of multi-group
data: multidimensional scaling (MDS of densities Section), hierarchical cluster analysis (HCA of densities
Section), and discriminant analysis (DA of densities Section). Finally, we will give some practical advice
(Practical advice Section) and briefly highlight some similarities with functions of other R packages
(Discussion and concluding remarks Section). A summary and appendices complete this presentation.

Multi-group data: examples and organization

For MDS and HCA, the data X (Table 1a) of interest have three kinds of objects: occasions × individuals
× variables. The occasions define a partition of the individuals on which the variables are measured.
If T denotes the number of occasions, for each t in {1, . . . , T}, the rows of the table Xt correspond to nt
observations xt1 , . . . , xtnt of Xt a random vector with p components.

For DA, the data of interest are similar to the previous ones with the difference that we have
two categories of occasions. The first category consisting of T occasions is partitioned into K subsets
deriving from a factor G defined on occasions (Table 2). The second category consists of occasions,
numbered T + 1, . . . for which we have data of type X but not the value of G.

Datasets

The data of the following examples are available in the dad package as lists of data frames or arrays,
and are loaded by means of the usual data function.

1. Archaeological data: the data are stored in castles.dated, a list of two data frames whose
description is detailed in the subsection Introductory example of Appendix C. The data frame
castles.dated$stones in which for each of T = 68 Alsatian castles (occasions), p = 4 numerical
characteristics are measured on a batch of stones (individuals) used to build the castle. The
objective is to:

• visualize the castles by points in a space of reduced dimension so that the castles having
stones of similar dimensions are close to each other and those having stones of very
different dimensions are distant;

• highlight which characteristics of the stones are at the origin of these small or large
distances.
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Occasion Variables Group
1 . . . p p + 1

x11 1

1
... X1

...
x1n1 1

...
...

...
...

xt1 t

t
... Xt

...

xtnt t

...
...

...
...

xT1 T

T
... XT

...

xTnT T

(a) Data frame

Variables
1 . . . p

X1
. . .

Xt

. . .

XT

(b) Data folder

Table 1: For each occasion t = 1, . . . , T, the same p variables are observed for nt individuals. The data
frame (a) consists of (p + 1) columns, the last one is a factor designating the occasion. The data folder
(b) consists of T data frames each one having the same p column names.

The 68 castles are dated from the period 1140-1650, which is divided into six intervals, numbered
1 to 6, separated by the following cutoff points: 1175, 1210, 1245, 1280, 1350. The building periods
are available in the data frame castles.dated$periods. The first objective is to analyse the
relations between these periods and the previous visualization of the castles. The second
objective is to predict the building period of 67 non-dated castles the data of which are in the
data frame castles.nondated$stones.
This archaeological example (Rudrauf and Boumaza, 2001) was at the origin of the multi-group
techniques presented in this work. It illustrates well the MDS and DA techniques even if, as we
will see when processing the data, from the archeology point of view, the results are not very
satisfactory and have only an indicative value.

2. Agronomic data: the data are stored in the folderh object varietyleaves consisting of two
data frames variety and leaves, and a key rose that is the column name common to the two
data frames which connects them. The first data frame varietyleaves$leaves is made up of
581 rows (leaves of T = 31 rosebushes) and 5 columns corresponding to the number of the
rosebush to which the leaf belongs and p = 4 numerical characteristics: number of its leaflets,
length of its rachis, then the length, and width of its main leaflet. The second data frame
varietyleaves$variety is made up of T rows and two columns: the number of the rosebush
and its variety. There are K = 6 varieties (Table 3). This example will illustrate the DA technique.
The objective of which is to predict the variety of one plant from measures of several leaves of
the plant.

3. Sensory data: the data frame roses in which each of T = 10 photographs of rosebushes
(occasions) was evaluated 3 times, by 14 assessors, for p = 16 numerical characteristics, giving
a table with 16 columns and 42 rows per rosebush, for a total of 420 rows. In this case, an
individual is a couple (assessor, evaluation session). The objective is to visualize the roses and
then create clusters of roses that are as similar as possible. A part of these data will illustrate the
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Occasion G
1 1
...

...
T1 1
T1 + 1 2
...

...
T1 + T2 2

...
T1 + . . . + TK−1 + 1 K
...

...
T = T1 + . . . + TK−1 + TK K
T + 1 Not available
...

...

Table 2: Each occasion t (t = 1, . . . , T) matches a table with nt rows and p columns (see Table 1). The
variable G defined on the occasions takes values {1, . . . , K}. For each k = 1, . . . , K, the value k is taken
Tk times. The G values of the occasions T + 1, . . . are not available and have to be predicted.

techniques MDS and HCA.

4. Surveys – census data over years – : from each census conducted in France (INSEE, 2018)
during T = 7 different years (1968, 1975, 1982, 1990, 2010, and 2015), we extract the population
of active individuals aged 25 to 54 and p = 2 categorical variables: diploma (4 levels) and
socio-professional group (6 levels). From the initial data collected by INSEE, we build a list of
T = 7 arrays of dimension (4, 6), which is stored in dspg object. The objective is to visualize the
years and to highlight, when they exist, the temporal evolutions of the frequencies. The MDS
technique seems suitable to achieve this objective.

5. Surveys – census data 2015 by department – : from the census of the year 2015 (INSEE, 2018), we
consider the same kind of data and organize them in a list of T = 96 arrays, which correspond
to the 96 departments of metropolitan France. This list is available in the dspgd2015 object. As
for the sensory data, the objective is to visualize the departments and then create clusters of
departments that are as similar as possible. In order to give meaning to the clusters, a common
and advisable practice is to couple the techniques HCA and MDS.

In the last two examples, the densities are discrete and are given only for illustration. Their detailed
presentation is in the dad vignette mds-discrete-distributions.

Data management

The previously collected data can be organized into:

• A single data frame (Table 1a), by vertically concatenating the T tables Xt, with p columns and
appending a factor column designating the occasion, or

• A list of T data frames (Table 1b), each having p columns, as an object from an S3 class named
folder (see Appendix C).

Variety Number Number Number of leaves
of plants of leaves per plant

Canary 6 65 = 8 + 14 + 11 + 16 + 8 + 8
Electron 3 42 = 9 + 8 + 25
Lili Marleen 6 65 = 15 + 10 + 5 + 7 + 15 + 13
Pussta 6 200 = 35 + 47 + 29 + 20 + 37 + 32
Starina 5 105 = 18 + 17 + 19 + 33 + 18
White Meillandina 5 104 = 23 + 19 + 16 + 22 + 24

Table 3: Numbers of plants and leaves per variety and number of leaves per plant.
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To carry out discriminant analysis, the training step requires an a priori division of the occasions
into clusters, that is, a factor G with K levels defined from the occasion set (Table 2). The predicting step
is to assign a level for each occasion whose value of the factor G is not available. The data, therefore,
consist of two data frames linked by a hierarchical relationship “1 to N”. Each row of the data frame in
Table 2 is, thus, matched to several rows of the data frame in Table 1a. The list of these two data frames
is an object of S3 class folderh (hierarchical folder) built by the function folderh (see Appendix C).

Notice that in the presentation of the data tables, we arranged them so that the individuals (rows
of Table 1a) of the same occasion are neighbors and so that the occasions (rows of Table 2) of the same
class are neighbors. However, in the dad package, such a layout is obviously not necessary. Only the
factors Group (Table 1a) and G (Table 2) must be given.

Distance/divergence between densities

In the first subsection, we present the indices which operate on discrete densities. In the second
subsection, we consider the indices which operate on Gaussian densities and have an analytical
expression depending on the parameters of the densities: means, variances, and covariances. Therefore,
these indices can easily be estimated from the parameter estimates. In the third subsection, we present
an index based on the estimation of densities on Rp by the Gaussian kernel method. This index offers
the advantage of being easily calculable even for non-Gaussian continuous densities.

The main techniques of the dad package depend on the distance index used (Appendix A and B).
A brief practical guidance on the choice of distance index is provided in Practical advice Section.

Calculation of distances/divergences between discrete densities

Name Expression

Symmetric chi-square ∑
x
(p1(x)− p2(x))2/(p1(x) + p2(x))

Hellinger
(

2 ∑
x
(
√

p1(x)−
√

p2(x) )2
) 1

2

Jeffreys ∑
x
(p1(x)− p2(x)) ln(p1(x)/p2(x))

Jensen-Shannon ∑
x
( p1(x) ln(2p1(x)/(p1(x) + p2(x)))

+ p2(x) ln(2p2(x)/(p1(x) + p2(x))) )

Lp
(

∑
x
|p1(x)− p2(x)|p

) 1
p

Table 4: Distance indices between two discrete densities p1 and p2 on the same finite support the
states of which are denoted x in the formulas. The sums of the formulas are taken over all the
states of the support (Deza and Deza, 2013). The corresponding dad functions are: ddchisqsympar,
ddhellingerpar, ddjeffreyspar, ddjensenpar, and ddlppar.

Table 4 lists the expressions of distance indices of two discrete densities and the dad functions
associated with them. The set of the states of these densities can be either the set of the levels of one
categorical variable or the Cartesian product of the q sets of the levels of q categorical variables as in
the following example with q = 2.

> x1 <- data.frame(x = factor(c("A", "A", "A", "B", "B", "B")),
+ y = factor(c("a", "a", "a", "b", "b", "b")))
> x2 <- data.frame(x = factor(c("A", "A", "A", "B", "B")),
+ y = factor(c("a", "a", "b", "a", "b")))
> p1 <- table(x1)/nrow(x1)
> p1

y
x a b
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A 0.5 0.0
B 0.0 0.5

> p2 <- table(x2)/nrow(x2)
> p2

y
x a b

A 0.4 0.2
B 0.2 0.2

The L1 distance and Jeffreys divergence between the densities p1 and p2 are computed as follows.

> ddlppar(p1, p2)
[1] 0.8
> ddjeffreyspar(p1, p2)
[1] Inf

The Jensen-Shannon index is equal to the entropy or average quantity of information of the
distribution (p1 + p2)/2, from which we subtract the sum of the entropies of p1 and p2. The other
indices are based on the sum of the differences, possibly weighted, between p1 and p2 in each state x,
unlike the Jensen-Shannon index, which is somewhat more global. These indices are compared in the
subsection Simulated discrete data of Appendix B.

Calculation of distances/divergences between Gaussian densities

Table 5 lists the parametric expressions of distance indices of multivariate densities and the dad
functions associated with them. For the univariate case, the expressions are easily deduced.

Name Expression

Hellinger (a)
(

2 − 2
p
2 +1 det(ΣV)

1
4 det(Σ + V)−

1
2 exp(− 1

4∥µ − m∥2
(Σ+V)−1)

) 1
2

Jeffreys(b) 2−1 ∥µ − m∥2
Σ−1+V−1 + 2−1 tr((Σ − V)(V−1 − Σ−1))

L2 (c)
(
(2π)−

p
2 det(2Σ)−

1
2 + (2π)−

p
2 det(2V)−

1
2

−2 (2π)−
p
2 det(Σ + V)−

1
2 exp(− 1

2∥µ − m∥2
(Σ+V)−1)

) 1
2

L2N (d)
(

2 − 2
p
2 +1 det(ΣV)

1
4 det(Σ + V)−

1
2 exp(− 1

2∥µ − m∥2
(Σ+V)−1)

) 1
2

2-Wasserstein (e)
(
∥µ − m∥2

Ip
+ tr(Σ + V − 2(V

1
2 ΣV

1
2 )

1
2 )
) 1

2

Table 5: Distance indices between the multivariate Gaussian densities f ≡ N(µ, Σ) and g ≡ N(m, V).
(a) The corresponding dad function is hellingerpar. It is the L2 distance between the square roots
of the densities f and g. (b) The Jeffreys divergence is the symmetrized Kullback-Leibler divergence.
Its corresponding function is jeffreyspar. (c) The corresponding function of the L2 distance is
distl2dpar. (d) L2N, named also normalized L2 distance, stands for the L2 distance between f /∥ f ∥L2

and g/∥g∥L2 and its value is almost similar to the Hellinger distance. Its corresponding function
is distl2dnormpar. (e) Ip stands for the identity matrix of order p. The corresponding function is
wassersteinpar.

For example, the Jeffreys divergence is respectively carried out with the jeffreyspar or jeffreys
functions depending on whether the calculations are respectively based on parameters or samples.

> m1 <- c(1,1)
> v1 <- matrix(c(4,1,1,9),ncol = 2)
> m2 <- c(0,1)
> v2 <- matrix(c(1,0,0,1),ncol = 2)
> jeffreyspar(m1,v1,m2,v2)
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[1] 5.314286

> library(MASS)
> set.seed(100)
> x1 <- mvrnorm(40, m1, v1)
> x2 <- mvrnorm(30, m2, v2)
> jeffreys(x1, x2)

[1] 6.780999

All these indices are based on a combination of the difference between the means µ and m and the
dissimilarity between the covariance matrices Σ and V. In the case of equal means, the distance index
between Gaussian densities reduces to a dissimilarity between covariance matrices. If the covariance
matrices are equal, all these indices reduce to an index of the distance between these means, this index
being dependent on the common variance matrix, with the exception of the Wasserstein index, which
uses the identity matrix. These indices are also compared in the subsection Simulated Gaussian data of
Appendix B.

Calculation of L2 distances between continuous non-Gaussian densities estimated by the
kernel method

Except for the L2 distances, the extension of the other distance indices of Table 5 to any estimated
densities still requires a lot of work. Indeed, we experimented with calculating distance indices using
numerical integration methods but computation times were so long in the multidimensional case
that we did not implement them in the dad package. The solution we recommend is to estimate the
densities by the Gaussian kernel method and use the L2 distances.

• Density estimation with the Gaussian kernel method. The probability densities ft are esti-
mated by the Gaussian kernel method:

f̂t(z) =
1

nt|ht|1/2
1

(2π)p/2

nt

∑
i=1

exp(−1
2
(z − xti)

⊤h−1
t (z − xti)), (1)

where ht is the non-singular bandwidth matrix and |ht| its determinant. This matrix may be
provided by the user, or calculated directly according to the AMISE criterion, with reference to
the normal distribution (Wand and Jones, 1995), that is:

ht = htV̂1/2
t , (2)

with:

ht =
( 4

nt(p + 2)

) 1
p+4

. (3)

• Calculation of L2 distances between estimated non-Gaussian densities. The calculation of the
inner product is carried out with the l2d function using a sample per density: x1 and x2; the
result derives from the estimation (1) of the densities, the bilinearity of the inner product, and a
formula of integral calculus (Wand and Jones, 1995, p. 101). Then, the L2-distance is directly
deduced. This calculation is carried out with the distl2d function.

> set.seed(40)
> x1 <- c(rnorm(5, mean = 0, sd = 1), rnorm(5, mean = 1, sd = 2))
> x2 <- c(rnorm(10, mean = 2, sd = 3), rnorm(5, mean = 0, sd = 2))
> distl2d(x1, x2, method = "kern")

[1] 0.2562896

The normalized L2 distance between densities is also possible. Although it has the disadvantage of
being time-consuming, it has some similarities to Hellinger’s distance, and in the Gaussian case, the
two distances have almost the same expression (Table 5).

MDS of densities

Since the function of dad package implementing multidimensional scaling of probability density
functions is a direct application of the function cmdscale of R, it is briefly recalled in the case of
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continuous densities. The mathematical aspects of this method have been dealt with in several works
(Delicado (2011) as MDS; Boumaza (1998), Kneip and Utikal (2001), and Yousfi et al. (2015) as functional
PCA). In this section, we will privilege the presentation in MDS form, which offers greater flexibility in
the choice of the distance between densities, while taking inspiration from the method of interpretation
of the results of PCA developed in Boumaza et al. (2015) in order to interpret the scores resulting from
MDS.

Brief presentation of the method

Given T densities and (δts)1≤t,s≤T the distances/divergences between each pair of them, the MDS
technique looks for a representation of the densities by T points in a low dimensional space such
that the distances between these points are as similar as possible to the (δts) (Cox and Cox, 2001). In
R, this multidimensional positioning technique is performed by the cmdscale function, whose main
argument is the symmetric matrix of distances and the main output is the matrix of coordinates.

If the densities are assumed to be Gaussian, we can use the Hellinger distance, the Jeffreys
divergence, the 2-Wasserstein distance, or the L2 distance (Table 5). If they are not expected to be
Gaussian, they are estimated using the Gaussian kernel method, and the only available distance for the
moment is the L2-distance (Calculation of L2 distances between continuous non-Gaussian densities estimated
by the kernel method Section).

The dad package includes functions for all the calculations required to implement such a method
and to interpret its outputs:

• The fmdsd function which performs multidimensional scaling and generates scores;

• The plot function which generates graphics representing the densities on the factorial axes;

• The interpret function which returns other aids to interpretation based on the moments of the
variables.

The fmdsd function

MDS of densities can be carried using the fmdsd function, which applies to an object of the class
folder (Table 1b). The future or to a data frame and a grouping variable (Table 1a). It is built on the
cmdscale function of R. In addition to the add argument of cmdscale, the fmdsd function has three sets
of optional arguments. The first, consisting of gaussiand, windowh, and distance, controls the method
used to estimate the densities and their distances (Distance/divergence between densities Section). The
second consists of the arguments data.scaled, data.centered, controls some data transformations,
and the logical argument common.variance, which, when set to TRUE, considers that all the occasions
have the same covariance matrix. These three arguments are discussed in Appendix E. The third set
consists of optional arguments which control the function outputs.

Interpretation of fmdsd outputs

The fmdsd function returns an object of S3 class fmdsd, consisting of a list of 11 elements, including
the scores, also called principal coordinates, and the moments of the variables per occasion. The
outputs are displayed with the print function, and graphical representations on the principal planes
are generated with the plot function.

The interpretation of outputs is based on the relationships between the principal scores and the
moments of the densities, in particular their means, variances, covariances, and correlations. These
relationships are quantified by correlation coefficients and are represented graphically by plotting the
scores against the moments. These interpretation tools are provided by the interpret function, which
has two optional arguments: nscores indicating the indices of the column scores to be interpreted and
moment whose default value is "mean".

Example

The following example is treated in detail in Boumaza et al. (2015), using PCA of densities. The data
consist of T = 10 rose bushes assessed three times, by a jury of 14 assessors, for p = 3 attributes:
top-sided shape (Sha), foliage thickness (Den), and plant symmetry (Sym). Here, we present the results
obtained with the MDS technique. This presentation is limited to the major steps in the calculation
and the visualization of the results generated by the fmdsd, print, plot, and interpret functions.
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> data("roses")
> rosesf <- as.folder(roses[,c("Sha", "Den", "Sym", "rose")], groups = "rose")
> resultmds <- fmdsd(rosesf, gaussiand = FALSE, distance = "l2")

The function fmdsd displays the barplot of the inertia explained by the first nine principal coordinates
(Figure 1).

> names(resultmds)

[1] "call" "group" "variables" "d" "inertia" "scores"
[7] "means" "variances" "correlations" "skewness" "kurtosis"

By default, the print function applied to resultmds only displays the names of the variables, the
inertia, and the principal coordinates.

> print(resultmds)

group variable: rose
variables: Sha Den Sym
---------------------------------------------------------------
inertia
eigenvalue inertia

1 0.02977 25.3
2 0.02261 19.2
3 0.02028 17.2
4 0.01439 12.2
5 0.00980 8.3
6 0.00930 7.9
7 0.00566 4.8
8 0.00344 2.9
9 0.00262 2.2
---------------------------------------------------------------
coordinates
rose PC.1 PC.2 PC.3

A A 0.055191062 0.022167510 0.02655143
B B -0.004963751 -0.023764758 0.07033084
C C 0.019611171 -0.122241048 -0.06566866
D D -0.091777346 0.041132410 -0.04995275
E E -0.013763431 0.019828288 -0.01341398
F F 0.016470141 -0.024307858 0.07144865
G G -0.088949736 0.005722199 0.01223686
H H -0.025102407 -0.006365474 0.01382440
I I 0.068203593 0.043999532 -0.02735366
J J 0.065080705 0.043829197 -0.03800313

> plot(resultmds)

The output is shown in Figure 2.

> interpret(resultmds)

Pearson correlations between scores and moments
PC.1 PC.2 PC.3

mean.Sha -0.65 0.29 0.69
mean.Den 0.83 -0.42 0.08
mean.Sym -0.01 0.94 -0.04
Spearman correlations between scores and moments

PC.1 PC.2 PC.3
mean.Sha -0.65 -0.26 0.65
mean.Den 0.78 -0.30 0.02
mean.Sym 0.16 0.92 -0.35

The returned plots of the interpret function are not shown. From the correlations between the
principal coordinates (PC) and the means of the variables, we deduce that:
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• The higher PC1, the higher "Den", and the lower "Sha" tends to be;

• The higher PC2, the higher "Sym";

• The higher PC3, the higher "Sha" tends to be.

1 2 3 4 5 6 7 8 9

Inertia
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Figure 1: MDS of densities on sensory data (part of the roses data frame): inertia explained by the
first ten principal coordinates.
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Figure 2: MDS of densities on sensory data (part of roses data frame): the first three principal
coordinates.

Thus, from this interpretation of the PCs, we can describe the classes of rose bushes that can be
constituted in view of their proximities vs. distances visualized in Figure 2. For example, the roses
of the class {A, I, J} have thick foliage compared to those of the class {D, G}, the rose bush C is very
asymmetrical compared to the other rose bushes, the rose bushes of the class {B, F} have a top sided
shape.

In order to obtain the correlations between the scores and the standard deviations, we set the
optional argument moment to "sd" as in the following example. The other possible values of this
argument include "var" (variances), "skewness", "cor" (correlations for multivariate densities).

> interpret(resultmds, moment = "sd")

Pearson correlations between scores and moments
PC.1 PC.2 PC.3

sd.Sha 0.67 0.21 -0.49
sd.Den -0.01 0.77 0.11
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sd.Sym -0.13 -0.44 0.76
Spearman correlations between scores and moments

PC.1 PC.2 PC.3
sd.Sha 0.50 0.45 -0.58
sd.Den 0.15 0.64 -0.08
sd.Sym -0.26 -0.76 0.75

Some of the correlations between the PCs and the standard deviations of the variables seem high.
Reminding that the PCs are related to means, these correlations are therefore clues of links between
standard deviations and means of the variables. We, therefore, represent roses using their means
and standard deviations (Figure 3). We highlight that the standard deviations/variances used to
assess discordance between assessors tend to be smaller when the products subjected to evaluation
on a nine-level scale were awarded marks at the ends of the scale. This result which is actually quite
intuitive, obtained by the use of MDS on probability density functions, would have been difficult to
demonstrate if the means and standard deviations/variances had been analyzed separately.
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Figure 3: MDS of densities on sensory data (part of roses data frame): relationships between means
and standard deviations of the variables.

HCA of densities

As for MDS, the fhclustd function of the dad package implementing hierarchical cluster analysis of
probability density functions is a direct application of hclust, the corresponding function of R. So it is
briefly recalled, and we put the emphasis on the interest of coupling the implementation of MDS with
HCA in order to interpret more easily the clusters resulting from HCA.
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Brief description of the method and of its outputs

HCA deals with the same kind of data as the MDS technique, namely: T probability density functions
and (δts)1≤t,s≤T the distances/divergences between each pair of them. Its purpose is to build a series
of nested partitions that can be visualized by means of a dendrogram (Figure 4). An agglomerative
building algorithm starts with a partition consisting of T clusters (one density per cluster) then “it
repeats merging the closest pair of clusters according to some similarity criteria until all the data (densities in
our context) are in one cluster” (Gan et al., 2007). The criteria are built on dissimilarities between sets of
densities, which themselves derive from (δts)1≤t,s≤T obtained as follows:

> resulthca <- fhclustd(rosesf, gaussiand = FALSE, distance = "l2")
> round(resulthca$distances, digits = 2)

A B C D E F G H I
B 0.14
C 0.19 0.18
D 0.19 0.18 0.21
E 0.14 0.14 0.18 0.14
F 0.14 0.09 0.18 0.18 0.15
G 0.19 0.15 0.20 0.16 0.17 0.17
H 0.15 0.12 0.17 0.16 0.12 0.14 0.14
I 0.12 0.15 0.18 0.18 0.14 0.15 0.18 0.15
J 0.15 0.16 0.19 0.19 0.15 0.16 0.19 0.15 0.08

The dendrogram (Figure 4 ) is obtained by the following instruction:

plot(resulthca, xlab = "Roses", sub = " ", hang = -1)
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Figure 4: HCA of densities on sensory data (part of roses data frame). The y-axis indicates the distance
at which the clusters are merged: the lower this distance is, the more the rosebushes of the clusters are
similar.

HCA and MDS on the same densities

By cutting the dendrogram (Figure 4 ), a partition of the set of the T roses is deduced. For example,
in four clusters: {D, G}, {C}, {I, J}, and {E, H, A, B, F}. This partition is quite similar to the one
we could visually make on the basis of Figure 2. This is easy to understand since Figure 4 is only an
approximate visualization of the dissimilarities (δts)1≤t,s≤T that served both in MDS and in HCA.

In the Interpretation of fmdsd outputs section, we described the method used to give meaning to the
principal coordinates based on the moments of the variables, from which we deduced the meaning of
the clusters of roses constituted using the scores of MDS.
This illustrates the process we propose to follow in practice:

• Carry out HCA and deduce a partition in HCA-clusters;
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• Carry out MDS and constitute MDS-classes;

• Specify the characteristics of the MDS-classes according to the moments of the variables;

• Describe HCA-clusters which are similar to MDS-classes;

• Describe the other HCA-clusters by using, when possible, the MDS-scores of the groups making
up these clusters.

DA of densities

With the notations introduced at the beginning of the section Multi-group data: examples and organization,
the aim of discriminant analysis of densities (Boumaza, 2004) is to predict the value of G (Table 2) for
the occasion T + 1 represented by the density fT+1, knowing nT+1 observations of the random vector
XT+1, which are stored in XT+1 (Table 1).

For each k = 1, . . . , K, we denote by gk, the density representing the class k of G. The predicted
value is:

k̂ = arg min
1≤k≤K

D( fT+1, gk), (4)

where D is a distance index between densities (Distance/divergence between densities section). The data
corresponding to the density gk are those corresponding to the Tk densities ft belonging to the class k
of G. In Appendix F, we specify the possible procedures for calculating the densities gk and highlight
the link between DA of densities and the linear discriminant analysis (MASS) in the homoscedastic
Gaussian case.

The dad package performs all the calculations required to obtain the predicted value through
the fdiscd.predict function whose first two arguments, x and class.var, control the input data. It
includes the arguments distance and crit, which respectively set the distance and the densities gk
(Appendix F). It also includes the arguments gaussiand and windowh, which control the method of
density estimation. The fdiscd.predict function returns an object of S3 class fdiscd.predict, which
is a list consisting of prior and predicted values corresponding to each ft, a confusion matrix, the
distances (dtk) between the ft’s and the gk’s, and proximities. These are calculated from the inverse of
the distances in such a way that their sum is 1, but they are not probabilities and are useful for a quick
comparison of the distances.

In addition, the package calculates the misclassification ratio for the occasions for which the prior
class of G is known through the fdiscd.misclass function. This ratio is computed by using the leave-
one-out method on the T occasions, and the lower it is, the better the prediction of the variable G by
the data X. This function is based on arguments almost identical to those used by the fdiscd.predict
function. It also generates similar outputs, grouped into an object of the S3 class fdiscd.misclass.
However, these two functions differ in the method used to calculate the distances (dtk): if ft belongs to
the k-th class of G, the data corresponding to ft are not included in the data used to estimate gk. This
function is useful for empirical investigations in order to identify the optimal values of the arguments
minimizing the misclassification ratio. These values are then used by the fdiscd.predict function for
prediction of the G class of an occasion of unknown class.

First example: Castles / Stones

Let us consider the archaeological data (Section Multi-group data: examples and organization, Example 1).
For the sake of clarity, we combine the six classes to yield three final classes, 1140-1175, 1175-1280, and
1280-1550, numbered 1 to 3.

> data("castles.dated")
> levels(castles.dated$periods$period) <- c("1", "2", "2", "2", "3", "3")
> castlesfh <- folderh(castles.dated$periods, "castle", castles.dated$stones)

The fdiscd.misclass function is used to calculate the misclassification ratios (global and per class).

> fdiscd.misclass(castlesfh, class.var = "period", distance = "l2")

misallocation ratio: 0.3382353
predicted.class

prior.class 1 2 3 total misalloc
1 10 3 0 13 0.231
2 5 24 8 37 0.351
3 0 7 11 18 0.389
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total 15 34 19 68
---------------------------------------------------------------
castle prior.class predicted.class misclassed

1 1 1 FALSE
2 1 1 FALSE
3 1 2 TRUE

...

131 2 2 FALSE
133 3 2 TRUE
135 2 3 TRUE
136 2 1 TRUE

In order to empirically calibrate the different arguments of the function, the previous operation is
repeated, choosing other values for the arguments. If the gaussiand argument is set to TRUE, the
smallest global misclassification ratio is 34% (Table 6) and is obtained for crit = 1, the default value
for this argument, and for distance = "l2" or "hellinger".

Estimating the densities by the Gaussian kernel method by setting gaussiand = FALSE, with the
bandwidth defined by (2) and (3), increased the global misclassification ratio to 40%. If we consider
the same proportionality coefficient h in the formula (2), that is

ht = h V̂1/2
t , (5)

by setting the argument windowh of the function fdiscd.misclass, we empirically obtain a value of h
that minimizes the misclassification ratio. For this purpose, we calculate the misclassification ratio for
different values of windowh (Table 7). Note that an optimal empirical value is about windowh = 0.6,
with a misclassification ratio of 32%. One of the best empirical parametrizations of the fdiscd.predict
function would be gaussiand = FALSE, windowh = 0.6, and crit = 1.

crit 1 2 3
Ratio 0.34 0.56 0.40

Table 6: Castles/Stones. Misclassification ratio assuming densities to be Gaussian and parametrically
estimated, depending on the value of the crit argument used to select the type of gk density (Ap-
pendix F).

windowh 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ratio 0.56 0.44 0.38 0.38 0.37 0.32 0.32 0.35 0.34

Table 7: Castles/Stones. Misclassification ratio for densities estimated by the Gaussian kernel method,
depending on the value of the windowh argument, the proportionality coefficient setting the bandwidth.

The misclassification ratios are disappointing. Thus, the method was used only as an indication to
date the castles and its results were cross-checked with other established facts from other historical
sources (Rudrauf and Boumaza, 2001).

Second example: Rosebushes/Leaves

Let us consider the agronomic data (Section Multi-group data: examples and organization, Example 2).
We consider only the continuous variables characterizing the leaves, that is, leaving out the discrete
variable “number of leaflets”. As in the first example, we carry out discriminant analysis by applying
the fdiscd.misclass function for different parameter values. Table 8 gives the classification error rates
for the three criteria and some values of the proportionality parameter. One of the best combinations
of parameter values would, therefore, be crit = 3 and windowh = 0.2. The error rate is 0.032, which is
clearly better than the result obtained with the archaeological data of the first example. If the same
method is applied to all variables, including “number of leaflets”, the error percentage is zero for crit
= 3 and windowh = 0.3.

In these two previous examples, it should be noted that the search for an optimum value of the
parameter windowh has the disadvantage of being carried out by trial and error and is a time-consuming
procedure.
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windowh crit = 1 crit = 2 crit = 3
0.1 0.742 0.806 0.129
0.2 0.452 0.677 0.032
0.3 0.226 0.452 0.097
0.4 0.129 0.226 0.097
0.5 0.097 0.129 0.161
0.6 0.097 0.129 0.161
0.7 0.065 0.129 0.194
0.8 0.065 0.097 0.226
0.9 0.065 0.097 0.226

Table 8: Rosebushes/Leaves. Misclassification ratio for the three criteria and different values of the
proportionality parameter windowh, the densities being estimated by the Gaussian kernel method.

Practical advice

Data management

The functions folder and as.folder play a central role in the creation of objects handled by the func-
tions fmdsd (MDS on continuous data), mdsdd (MDS on discrete data), fhclustd (HCA on continuous
data), and hclustdd (HCA on discrete data). The functions folderh and as.folderh play the same
role in DA context: fdiscd.misclass and fdiscd.predict in the continuous case, or discdd.misclass
and discdd.predict in the discrete case.

It is advisable for the user to know how to use them, especially as their handling is quick and easy
(Appendix C).

Computation times

The computation times of the functions of dad depend mainly on the computation time of the distances
between groups in MDS and HCA contexts or between groups and classes in the DA context. The
longest times are achieved when the densities are estimated by the kernel method (Calculation of
L2 distances between continuous non-Gaussian densities estimated by the kernel method section). When
applying the function matdisl2 with the option method = "kern" on the archeological data (Example 1
of Appendix G), the computation time is approximately five times greater than when method =
"gaussiand".

Among the main functions of dad, the most time-consuming one is undoubtedly fdiscd.misclass
when its gaussiand argument is set to FALSE. That is, the densities are non parametrically estimated.
For example, applying this function to archaeological data with gaussiand = TRUE takes less than
one second while it takes approximately 30-40 seconds with gaussiand = FALSE (Example 2 of
Appendix G). Thus, we recommend doing tests on small datasets when working on non-Gaussian
continuous data.

Choice of distance

The choice of a distance index depends above all on the modeling hypotheses: discrete or continuous
data. If they are discrete dad proposes five indices (Table 4). If they are continuous, it proposes five
indices in the Gaussian case (Table 5) and only one for non-Gaussian data, which is the L2 distance
combined with the estimation of the densities by the Gaussian kernel method.

The distance indices of discrete or Gaussian densities are compared on particular examples in the
context of HCA (Appendix A) or DA (Appendix B). It is shown that depending on the technique used
and the criterion for measuring the quality of the results, a distance index can be better than another
for a set of data and worse for another set. Thus, in the discrete or Gaussian cases, if there is no a priori
choice of distance index, we suggest an empirical approach. As the computation times are reasonable,
we perform the desired analysis by experimenting with each of the distance indices, then choose the
distance index according to one of the two criteria given by dad.

For DA, it is the misclassification ratio obtained by the one-leave-out procedure by using the func-
tion fdiscd.misclass. We should choose the distance index which gives the lowest misclassification
ratio.

For MDS, it is the interpretation of principal coordinates in terms of marginal distributions (discrete
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densities) or moments (continuous densities) using the function interpret. We should choose the
distance index which gives the highest correlations between principal coordinates and marginal
distributions or moments. For HCA, we combine it with the MDS method (HCA and MDS on the same
densities subsection) and, therefore, we refer to the above to choose the distance index.

Discussion and concluding remarks

The classic statistical methods as multidimensional scaling (MDS), hierarchical clustering analysis
(HCA), and discriminant analysis (DA) operate on data which are rows of a data frame. They
are available in the R packages stats, MASS (Venables and Ripley, 2002), ade4 (Dray et al., 2007),
FactoMineR (Lê et al., 2008), cluster (Maechler et al., 2019). The dad package presented in the
manuscript generalizes them to data that are organized into groups or occasions. The graphics
produced by MDS, the clusters constituted by HCA, or the predicted class provided by DA, concern
the occasions and not the individuals who constitute them.

These methods are multivariate data analysis, but they can also be seen as functional data analysis
since they operate on multivariate functions estimated from multivariate data. They are theoretically
similar to some functional statistical methods implemented in fda.usc, fda, and fdadensity packages.
The main difference is in the type of data processed. The functional statistical methods deal with
functions of only one or two variables, while the main functions of dad can deal with more.

These methods can also be seen as compositional data analysis. Indeed, compositional dataset
provides portions of the total (Aitchison, 1986) and the R packages compositions, Compositional, and
robCompositions are devoted to such data by implementing many descriptive or graphical techniques
and models. Regarding the packages Compositional and robCompositions, their modeling approach
is far enough from our approach to be addressed in this discussion, while the package compositions
presents similarities with our work which we detail in Appendix H. In the case of a univariate
discrete density, the differences concern the method of interpreting the graphical outputs provided by
princomp of compositions and mdsdd of dad even if we get fairly similar graphics (see the example of
Appendix H). In the multivariate case, dad takes into account marginal distributions of orders 1 and 2
(or more), while in the current version of compositions, only marginal distributions of order 1 are
taken into account.

The most recent version of the dad package implements functions which operate on discrete
data. It also extends the three previous methods to a mixture of numerical and categorical data
by transforming the numerical data into categorical data. It is done by dividing the range of each
numerical variable into intervals using the function cut.folder, an extension of the function cut to
several variables of a folder.

In addition, the last versions of functions implementing MDS and HCA apply to data stored in a
data frame and not only to data stored in a folder.

The following development work is also planned:

• Automation of the empirical search for the proposed proportionality coefficient in the for-
mula (5), considered optimal (in at least some ways) in the context of discriminant analysis;

• Automation of the empirical search for a similar coefficient suitable for use in multidimensional
scaling as proposed by Yousfi et al. (2015) in principal component analysis context.

Summary

When we work on multidimensional multi-group data and are interested in the groups and not in
the individuals who make up these groups, we want to have statistical methods and computer tools
making it possible to describe these groups. The dad package is devoted to this.

It mainly provides elaborate functions which implement multivariate techniques such as multidi-
mensional scaling, hierarchical classification analysis, or discriminant analysis on such groups. Moreover, in
order to help users in reading the outputs of these techniques, dad provides functions for interpreting
the results.

It provides datasets which illustrate such data and easy-to-use functions which allow to (i) manage
multi-group data by associating a data frame with each group, (ii) compute the distances between
groups based on the mathematical concept of probability distribution/density, and (iii) secondarily
compute elementary statistics by group as for example frequency distributions and moments.

It defines new data structures called folders (folder, folderh, foldermtg) and provides specific
tools to manage them, such as selecting or deleting columns from a folder, converting numeric
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columns of a folder to factors. The most noticeable among them allows to easily import into R plant
architectures encoded in mtg files and, thus, have R packages available to analyze the imported data.
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Appendix A: HCA and distance index

We compare three distance indices in the HCA context with a small, simple example originating from
an exchange with an anonymous reviewer of a previous version of the manuscript by comparing the
L1 and L2 distances and the symmetrized divergence of Kullback-Leibler. In his review, he made a
severe criticism of the L2 distance, which was the unique distance proposed in the first versions of the
dad package: “Let f a uniform density in the interval [0, 1], and g also uniform in [0, 0.90]. Clearly, from the
point of view of g, it is impossible to reach values in the interval (0.90, 1] and so, these two densities are not
neighbors.” Indeed, the L1 and L2 distances and the symmetrized Kullback-Leibler divergence (KL)
are:

L1( f , g) = 0.20, L2( f , g) = 0.33, KL( f , g) = ∞,

so KL( f , g) reflects this impossibility of reaching all the values of f from g, unlike L1 and L2, which
consider them to be relatively close to each other.

However, if we add the other two densities v and w, uniform on [0, 0.10] and [0, 0.11], and if our
objective is to obtain either a partition of f , g, v, and w in 2 classes, or an approximate representation
on a plane of these 4 densities, the choice of L1 or L2 is more informative than KL (Table 9) because
with the first two distances, we would easily group f and g on one side and v and w on the other
side, whereas with KL all distances are infinite. Our belief is that the choice of a distance between

L1 L2 KL
f g v w f g v w f g v w

f 0 0.20 1.80 1.78 f 0 0.33 3.00 2.84 f 0 ∞ ∞ ∞
g 0 1.78 1.76 g 0 2.98 2.82 g 0 ∞ ∞
v 0 0.18 v 0 0.95 v 0 ∞
w 0 w 0 w 0

Table 9: L1, L2, and symmetrized Kullback-Leibler distance/divergence between the uniform proba-
bility densities f = U([0, 1]), g = U([0, 0.9]), v = U([0, 0.10]), and w = U([0, 0.11]).

groups cannot be made in the absolute. It is better to specify a criterion for choosing the distance,
which makes sense in the context of the method used, such as percentage of inertia explained in MDS
(Delicado (2011)), or in the context of the data analysed. In the Practical advice section, we suggest two
other criteria.

Appendix B: DA and distance index

In the two examples of DA of densities section, the data were not considered plausibly Gaussian and
the distance used is the L2 distance, the only distance computable in dad which is suitable for this
type of data. In this appendix, we are interested in other types of data and in the misclassification
ratios according to the distance index used (Distance/divergence between densities section).

Simulated discrete data

Let p1 = P(λ1) and p2 = P(λ2) be two Poisson distributions with respective parameter λ1 = 1 and
λ2 = 2 and S1 and S2 respective simulated samples of size 30. We simulate a sample S of size 10
according to the distribution p1, we calculate the dissimilarities d1 and d2 between this sample and
each of the samples S1 and S2, then we compare d1 and d2. We would expect d1 to be less than d2 since
the samples S and S1 are from the same population. Thus, if d1 > d2 we consider that the sample S is
misclassified. We repeat the previous scenario 1000 times and then calculate the misclassification ratio.
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The results obtained for the same 1000 samples and each of the distance indices of Table 4 are in
column (a) of Table 10. Then we proceed in the same way with 1000 samples of the distribution p2; the
misclassification ratios are in column (b). We notice that for the Jeffreys divergence, the number of

Distance index (a) (b)
Misclassification ratio Misclassification ratio
of 1000 samples from p1 of 1000 samples from p2

Symmetric chi-square 0.073 0.183
Hellinger 0.064 0.188
Jeffreys 0.049 (600∗) 0.139 (643∗)
Jensen-Shannon 0.139 0.269
Lp 0.079 0.172

(*) number of samples S at infinite distance from samples S1 or S2 .

Table 10: Poisson distributions. Misclassification ratios of 1000 samples from p1 = P1 (a) or from
p2 = P2 (b). The instructions for R allowing the calculation of the ratios corresponding to the
symmetric chi-square index are given in the last subsection. The other ratios are obtained by means of
the corresponding distance while keeping the same simulation seed.

samples S at infinite distances from S1 or S2 is very large, which makes it inefficient at discriminating
between samples.
We carried out several simulations as in the previous procedure to compare the distances. We did not
find any stability in the order of distances according to the misclassification ratios.

Simulated Gaussian data

As for the discrete case, these distance indices are compared in a simplified context of discriminant
analysis using the same procedure. Let p1 and p2 be the two Gaussian distributions N(0, 1) and
N(1, 4). The results are given in Table 11. We notice that for the samples from N(0, 1) (a), the distance

Distance index (a) (b)
Misclassification ratio Misclassification ratio
for 1000 samples from p1 for 1000 samples from p2

Hellinger 0.020 0.051
Jeffreys 0.018 0.043
L2 0.034 0.040
L2N 0.026 0.111
2-Wasserstein 0.007 0.169

Table 11: Gaussian distributions. Misclassification ratios of 1000 samples from p1 = N(0, 1) (a) or
from p2 = N(1, 4) (b). The R instructions are similar to those of Poisson samples. It suffices to change
the function rpoi to rnorm with the appropriate parameters. In these simulations, the seed is set to 123.

giving the best rate is the Wasserstein distance. On the other hand, it is the worst for the samples from
N(1, 4) (b).

We carried out several simulations and the conclusion is word for word the same as that of the
discrete case with the Poisson distributions.

These results lead us to suggest choosing a distance index based on the minimum misclassification
ratio in the subsection Choice of distance of Practical advice Section.

Computation of the misclassification ratios of Table 10 or 11

The following R instructions are used to compute the misclassification ratios in DA context with
samples from Poisson distributions according to the symmetric chi-square distance index of Table 10.
The instructions for computing the other ratios of Table 10 and the ratios of Table 11 are given in
supplementary material.

> n <- 30
> ne <- 10
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> nrep <- 1000
> l1 <- 1
> l2 <- 2
> #
> nmisclass1 <- 0
> set.seed(135)
> e1 <- rpois(n, lambda = l1)
> e2 <- rpois(n, lambda = l2)
> for(index in (1:nrep))
+ { x <- rpois(ne, lambda = l1)
+ d1 <- ddchisqsym(x,e1)
+ d2 <- ddchisqsym(x,e2)
+ if(d1 > d2) nmisclass1 <- nmisclass1 + 1
+ }
> misclassratio1 <- nmisclass1 / nrep
> print(misclassratio1)

[1] 0.073

> nmisclass2 <- 0
> set.seed(135)
> e1 <- rpois(n, lambda = l1)
> e2 <- rpois(n, lambda = l2)
> for(index in (1:nrep))
+ { x <- rpois(ne, lambda = l2)
+ d1 <- ddchisqsym(x,e1)
+ d2 <- ddchisqsym(x,e2)
+ if (d1 < d2) nmisclass2 <- nmisclass2 + 1
+ }
> misclassratio2 <- nmisclass2 / nrep
> print(misclassratio2)

[1] 0.183

Appendix C: some useful functions on data folders

The dad package uses objects of class folder or folderh. These objects are lists of data frames having
particular formats.

Introductory example

Let us consider the archaeological data introduced in Multi-group data: examples and organization section.
The data that Jean Michel Rudrauf (Rudrauf and Boumaza, 2001) submitted to us was in the form of a
paper binder, each sheet of which corresponds to a castle (Figure 5). So for each castle we have:

• a name,

• an identification number,

• a building period (sometimes even a year) if it is known,

• the p = 4 measurements of a sample of stones.

A most natural and least redundant way for entering such data is to create:

• one data frame per castle. This data frame with p columns is named by the identification number
of the castle and contains the measurements of the stones. Its number of rows corresponds to
the number of stones whose all measurements are available.

• a data frame whose rows are the castles and whose columns correspond to the name, the
identifier and the building period.

From there, we choose to suggest suitable data structures for multi-group data and propose manage-
ment and calculation tools adapted to these data structures. This is exemplified below.

The archaeological data are stored in the list castles.dated of two data frames. The data
frame castles.dated$periods consists of T=68 rows (castles) and 2 columns: castle, the castle
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Figure 5: The data patiently collected by Jean Michel Rudrauf corresponds to the castle of Fleckenstein.
Its number identification is 102. It was built around 1470 i.e. in the sixth period. The measurements are
H: height, L: width, l: edging and b: boss. There are 10 stones whose measurements are complete:
7 stones belong to the staircase tower (Tour d’escalier) and 3 stones belong to a wall located near the
entrance of the castle (Pierres dans mur près pont d’entrée). The corner stones designated by the symbol
(a) in column H, are excluded from the study.

identifier, and period, the building period which is a factor with 6 levels. The second data frame
castles.dated$stones consists of 1262 rows (stones) and 5 columns: 4 numeric characteristics of the
stones (height, width, edging, and boss) and 1 factor castle with 68 levels, which gives the identifier
of the castel to which belongs each stone. The implementation of DA requires carrying out calculations
not only on all the stones of each castle but also on all the stones of all the castles of each period. To
do this, we can store the stones in a data frame made up of 6 columns obtained by adding a column
period to the file castles.dated$stones. Thus, all the stones of a castle have the same period value.
In order to avoid this redundancy in data entry and management, we propose to store the two files
castles.dated$stones and castles.dated$periods as well as the key castle which relates them, in
a folderh that is a list of two data frames related by a key. The procedure for doing this is given in the
paragraph First example: Castles/Stones of DA of densities section.

Now consider only the castles.dated$stones file. To implement both DA and MDS, it is necessary
first to calculate and store the vectors of means and the covariance matrices of the p=4 numeric variables
for each castle, then to use the results in the calculation of the distances between each pair of castles.
The calculations of means and covariances by castle can be carried out directly from the five-column
data frame castles.dated$stones using, for example, the following R functions: colMeans, var, and
by. In order to facilitate the extraction of data relating to a particular castle and control the data
entry, or to check pieces of the computer program, we organize the data in a folder that is a list of T
four-column data frames (one data frame per castle), and we extend the mean and var functions so
that they apply to such a data structure and return results as lists. So if x is the name of the folder,
x[[t]] is the data frame which contains the data of the castle t, mean(x)[[t]] is its vector of means
and var(x)[[t]] is its covariance matrix. We find that by doing so, it is also easier to remember the
names and contents of these objects when writing computer programs.
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Objects of class folder

Such objects, lists of data frames which have the same column names, are created by the folder
function, from two (or more) data frames, say x1 and x2, as follows: folder(x1,x2).

Optional argument cols.select defines the way in which the columns of the two data frames are
selected: common columns only (cols.select = "intersect") or all the columns (cols.select =
"union"). For the "union" option, if the data frames do not have exactly the same column names they
are complemented by NA’s.

The functions mean.folder (or simply mean), skewness.folder, and kurtosis.folder applied to
the object x of the class folder, respectively return the list of the vectors of means, skewnesses, and
kurtosises of the numeric columns of the elements of x. The functions var.folder and cor.folder
return the list of the covariance and correlation matrices. If the data frames of x contain non-numeric
columns, these functions exclude these columns from the computation. If they contain only one
numeric column, these functions return lists of numbers. Note that map(x,colMeans), map(x,cor),
and map(x,var) return the same values as before, except in the presence of a factor column whose
levels are numbers: map(x,colMeans) and map(x,cor) return an error while map(x,var) integrates the
factor column in the covariance matrices.

Hence, in folder objects, the observed variables are the same on every occasion, unlike individuals
which can be different from one occasion to the next. The particular case where individuals are the
same on every occasion, corresponds to data defined as three-way data by Kiers (2000) in his essay on
standardization of terminology for multiway analysis. In this particular case, it would be better to
store the data in an object of class array.

Objects of class folderh

Such objects are hierarchical lists of data frames in which two successive data frames from the list are
related by means of a key. We complete the presentation of the introductory example by a case with
more than two data frames. For three data frames, say df1, df2, and df3, there are two keys: the first,
say key1, describes the “1 to N” relationship between df1 and df2, and the second, say key2, describes
the “1 to N” relationship between df2 and df3. The arguments of the folderh function are introduced
in the following order: df1, key1, df2, key2, df3, and so on, if there are more than three data frames.
An example of such object is given in Appendix D.

The function as.data.frame applied to such a hierarchical folder, say fh, whose constituent
elements are listed above, has two main arguments: key (the name of a key of fh) and elt (the name
of a data frame of fh) with the precision that the value of elt is located after the value of key in the list
of arguments defining fh. In the case of two adjacent names, that is key = key1 and elt = df2 or key
= key2 and elt = df3, as.data.frame returns a data frame similar to any viewpoint to that returned
by the merge function. If key = key1 and elt = df3, the data frame returned by the as.data.frame
function, say dfr, has the same rows as df3. The columns of dfr are those of the data frames df3
and df1, and those corresponding to all the keys located between key1 and df3 in the list defining fh,
noticing that the key columns are the first columns of dfr.

Appendix D: Import plant architectures encoded in mtg files

The result of this import procedure consists of an object of class folderh and uses an intermediate
object of class foldermtg. Let us first specify what an mtg file is.

The topological structure of a plant is defined from its decomposition into elementary components
and the connections between them (Godin and Caraglio, 1998). In Figure 6, the plant is composed
of 2 axes (one principal axis, A1, coming from the root and bearing one secondary axis, A2) and each
axis is composed of internodes and peduncles: the principal axis is composed of seven internodes
I1, ..., I7 and one peduncle F1 and the secondary axis is composed of three internodes I8, I9 and
I10. Among the computer file types used to store the topology of a plant, we are interested in mtg
(multiscale tree graph) files which can be opened with a spreadsheet as LibreOffice-Calc, or Excel
(Pradal and Cokelaer, 2010). Breaking a plant into axes and breaking each axis into internodes create
two “1 to N” relationships which can be stored in an object of class folderh. This hierarchical folder,
say fh, is a list of three data frames P (set of 1 plant), A (set of 2 axes), and I (set of 10 internodes), and
two keys P and A. It is the result of the following three R instructions which successively imports an
mtg file into R, creates an object of the S3 class foldermtg, and then creates fh.

> mtgfile <- system.file("extdata/plant2.mtg", package = "dad")
> x2 <- read.mtg(mtgfile)
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> fh <- as.folderh(x2, classes = c("P", "A", "I"))
> print(fh)

$P
P Variety

v01 v01 Starina

$A
P A Length

v02 v01 v02 30
v07 v01 v07 12

$I
A I Leaflet

v03 v02 v03 3
v04 v02 v04 3
v05 v02 v05 5
v06 v02 v06 5
v08 v07 v08 5
v09 v07 v09 5
v10 v07 v10 7
v11 v02 v11 7
v12 v02 v12 5
v13 v02 v13 3

attr(,"class")
[1] "folderh"
attr(,"keys")
"P" "A"

Figure 6: Decomposition of a plant
(P) into axes (A), internodes (I), and
peduncles (F).

Biological component File code
/P1 v01
∧/A1 v02
∧/I1 v03
∧<I2 v04
∧<I3 v05
∧<I4 v06

+A2 v07
∧/I8 v08
∧<I9 v09
∧<I10 v10

∧<I5 v11
∧<I6 v12
∧<I7 v13
∧<F1 v14

Table 12: The first two columns correspond to the plant topol-
ogy stored in an mtg file. The third column corresponds to the
code of each component: the plant (P) is encrypted v01, etc.

An object of class foldermtg is a list of data frames. It is only an intermediary to which the only
function of R which can be applied to it is as.folderh. This, therefore, makes it possible to retrieve a
hierarchical folder which consists of data frames, one data frame per type of biological components,
on which one can operate statistical calculations by means of R functions.

Appendix E: Particular cases of the fmdsd function

We assume that the densities associated with the occasions are Gaussian. For particular values of the
arguments data.centered, data.scaled, and common.variance, the outputs of the fmdsd function are
similar to those returned by other functions.
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common.variance = TRUE

The Gaussian densities are assumed with the same covariance matrix which is estimated using all
data. Thus, the distances between the densities are reduced to the differences between their mean
vectors (Table 5). The Euclidian distances between mean vectors computed by the R function dist are
equal to that computed by the 2-Wasserstein distance between densities. In this case, the R function
cmdscale applied on the mean vectors returns exactly the outputs of the fmdsd function.

data.centered = TRUE

The Gaussian densities are assumed with zero mean vectors. Consequently, the distances between
the densities are reduced to the differences between their covariance matrices (Table 5). With the 2-
Wasserstein distance, the distances between the densities are reduced to the Hilbert-Schmidt distances
between the square root of the covariance matrices while the dual STATIS method (Lavit et al., 1994)
uses Hilbert-Schmidt distances between the covariance matrices. In R, the calculations can partly
be performed with the DSTATIS function of the multigroup package (Eslami et al., 2013, 2020) or the
statis function of the ade4 package (Dray et al., 2007) after some transformation. However, the
outputs of these two functions are completely different from those of the fmdsd function (MDS of
densities Section): fmdsd focuses on the visualization of the occasions, while the other functions focus
more on the visualization of variables or individuals.

data.scaled = TRUE

With the two previous special cases, we have shown that MDS on densities is a way to take into
account globally the means, variances, and covariances of the occasions and, therefore, a form of
generalization of separate analyses either on averages or on variances and covariances. The optional
argument data.scaled is useful when the analyst is interested to focus only on the relationships
between variables.

Appendix F: DA of densities and classic DA

Densities associated to the classes of the factor G defined on the occasions

In the functions fdiscd.misclass and fdiscd.predict, for each k = 1, . . . , K, the density gk represent-
ing the class k of G is estimated using a procedure selected by means of the argument crit. Recalling
that the class k contains Tk densities ft, the three procedures are defined as follows.

1. All samples related to the Tk occasions of class k are pooled and constitute a single sample,
which is then used to estimate gk.

2. If f̂t estimates ft, then gk is estimated by the mean value of the Tk densities pertaining to the
class k: (1/Tk)∑ f̂t.

3. The mean value of the previous Tk densities is calculated by weighting each f̂t by the size of its
corresponding sample: (1/ ∑ nt) ∑ nt f̂t.

The last two procedures are only available if the argument distance is set to "l2". If there is only
one occasion per class that is Tk = 1, ∀k, the three procedures are the same. In this case, the data are
those of the training step of classic DA. However, in the prediction step, we have to assign a group of
individuals not individually but taken as a whole.

Homoscedatic Gaussian case

We assume that:

• the densities ft (t = 1, . . . , T) are Gaussian with the same covariance matrix V. We denote ft by
N(mt, V);

• there is one density ft per class of G. So, there are K = T classes, and the density of the class k is
denoted by fk.

• the density fT+1 is Gaussian N(mT+1, V)

We have to predict the class value of fT+1 using the rule 4 and one of the distances from Table 5. For
distance = "wasserstein", we calculate the distances between the mean vectors ∥mT+1 − mk∥Ip (k =
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1, . . . , T), and for the other distances we calculate the distances ∥mT+1 − mk∥V−1 (k = 1, . . . , T).
In the homoscedastic Gaussian case, this makes DA of densities appear as a form of extension of linear
discriminant analysis where the group of individuals to be predicted is summarized by the mean
vector of the group.

Appendix G: Some computation times

All the following calculations are carried out using a laptop computer equipped with an i5 processor
on the archaeological data. The stone characteristics are stored in the data frame x.df. Then, we create
the corresponding folder x.folder.

> data(castles.dated)
> x.df <- castles.dated$stones
> x.folder <- as.folder(x.df, groups = "castle")

Example 1: Comparison of distance indices in the continuous case

The computation times of the inter-group distances are of the same magnitude when the densities are
supposed Gaussian and parametrically estimated. Computations with the L2 distance take about one
second.

> system.time(matdistl2d(x.folder, method = "gaussiand"))

user system elapsed
1.13 0.06 1.36

When the densities are estimated by the kernel method, the computation time is multiplied by about 5.

> system.time(matdistl2d(x.folder, method = "kern"))

user system elapsed
6.38 0.14 6.53

Example 2: Computation time of the function fdiscd.misclass

We build the hierarchical folder x.fh corresponding to the archeological data. We first apply the
function fdiscd.misclass with the option gaussiand = TRUE then with the option gaussiand =
FALSE.

> x.fh <- folderh(castles.dated$periods, "castle", castles.dated$stones)
> system.time(fdiscd.misclass(x.fh, class.var = "period", distance = "l2", gaussiand = TRUE))

user system elapsed
0.16 0.02 0.17

> system.time(fdiscd.misclass(xfh, class.var = "period", distance = "l2", gaussiand = FALSE))

user system elapsed
38.13 0.17 38.64

Appendix H: MDS on compositional data and compositional data analysis

The discrete densities considered in dad are compositional data as they are made up of positive
numbers whose sums are one. It is possible to apply to them the techniques developed in the package
compositions after an adapted data formatting work. The opposite, i.e., applying dad techniques to
compositional data, is partly true as in the following example illustrating the functions princomp.acomp
of compositions and mdsdd of dad on the same data.
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Figure 7: Compositional data. (a) The two first principal components of princomp.acomp applied on
sa.lognormals data. (b) The two first principal coordinates of mdsdd on the same data. The signs of
the scores are chosen so that the comparison of the two graphs is easier.
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Figure 8: Plots of the scores of the figure 7a and those of the figure 7b. The correlation between comp1
and -PC.1 is 0.98 and between comp2 and -PC.2 is 0.93.

Data loading

The simulated data sa.lognormals of compositions are stored in a matrix 60 × 3 whose columns are
the amounts of Cu, Zn, and Pb present in 60 samples. They are loaded as follows.

> library(compositions)
> data(SimulatedAmounts)
> print(sa.lognormals)

Cu Zn Pb
[1,] 8.8043262 35.1671810 45.895025
...
[60,] 3.9854998 6.1301909 40.579417

These initial data are transformed so that each row is of sum 1 by means of the acomp function.

> acomp(sa.lognormals) -> x1
> print(x1)
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Figure 9: MDS of compositional data considered as discrete densities. Plotting PC.1 against the relative
amounts of Cu, Zn, and Pb.
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Cu Zn Pb
[1,] 0.097971136 0.391326782 0.51070208
...
[60,] 0.078617049 0.120922730 0.80046022
attr(,"class")
[1] acomp

The rows of the object x1 of class acomp (relative amounts of Cu, Zn, and Pb present in 60 samples) are
transformed into tables or arrays. These tables or arrays then are organized in a list to be subjected to
mdsdd. The three levels of the unique categorical variable are denoted dd.Cu, dd.Zn, and dd.Pb.

> x <- as.data.frame(x1)
> nomscol <- colnames(x)
> x2 <- list()
> for(i in 1:60) {x2[[i]] <- as.table(as.numeric(x[i,]));
+ dimnames(x2[[i]]) <- list("dd" = nomscol)}
> names(x2) <- rownames(x)

Outputs of princomp and mdsdd

By applying the princomp.acomp (or simply princomp) function to x1, we obtain the visualization of
the data in a biplot (Fig. 7a).

The mdsdd function (MDS of discrete densities) is applied to x2 which are the rows of x1 considered
as discrete densities. We choose to present the results for the distance argument set to hellinger.
These results are quite similar to those obtained with other distances as chisqsym, jeffreys, or jensen.

r2 = mdsdd(x2, distance = "hellinger")

It provides the figure 7b.

The two figures are almost equivalent: by plotting the coordinates comp1 and comp2 against PC.1
and PC.2 of the two previous graphics we get the figure 8.

Interpretation of the scores

For the interpretation of the axes, the two packages provide quite different tools. With compositions,
the biplot makes it possible to visualize the links between the variables Cu, Zn, and Pb and their
links with the principal components. With dad, the interpretation is done by crossing the scores and
the initial data. The interpretation is based on the strength of the links between the PCs and the
probabilities of occurence of each level. In the compositional data example, almost a single axis would
suffice to explain the general trend: the first principal coordinate PC.1 explains 90% of the inertia.

> interpret(r2, nscore = 1)

Pearson correlations between scores and probability distributions of each variable
...
Spearman correlations between scores and probability distributions of each variable

PC.1
dd.Cu 0.90
dd.Zn 0.96
dd.Pb -1.00

The graphical output is shown in Figure 9. The relative amounts are highly correlated with PC.1,
showing that a low relative amount of the dd.Pb level corresponds to a high relative amount of
the levels dd.Cu or dd.Zn. It is the result suggested by the biplot (Fig. 7a) returned by the function
princomp.acomp of the package compositions.
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NGSSEML: Non-Gaussian State Space
with Exact Marginal Likelihood
by Thiago R. Santos, Glaura C. Franco, Dani Gamerman

Abstract The number of packages/software for Gaussian State Space models has increased over recent
decades. However, there are very few codes available for non-Gaussian State Space (NGSS) models
due to analytical intractability that prevents exact calculations. One of the few tractable exceptions is
the family of NGSS with exact marginal likelihood, named NGSSEML. In this work, we present the
wide range of data formats and distributions handled by NGSSEML and a package in the R language
to perform classical and Bayesian inference for them. Special functions for filtering, forecasting, and
smoothing procedures and the exact calculation of the marginal likelihood function are provided. The
methods implemented in the package are illustrated for count and volatility time series and some
reliability/survival models, showing that the codes are easy to handle. Therefore, the NGSSEML
family emerges as a simple and interesting option/alternative for modeling non-Gaussian time-varying
structures commonly encountered in time series and reliability/survival studies.

Keywords: Bayesian, classical inference, reliability, smoothing, time series, software R

Introduction

Standard statistical software and packages in the State Space Model (SSM) context mainly implement
Gaussian models, which are well developed in the literature. For example, the R-packages StructTS
(Ripley, 2002), dlm (Petris, 2010), dlmodeler (Szymanski, 2014), SSsimple (Zes, 2019), and MARSS
(Holmes et al., 2013) are a sample of them. The last introduces multivariate autoregressive state-space
modeling or multivariate Gaussian state-space models. In spite of that, there is an increasing demand
for methods or models to handle non-Gaussian and non-linear time series that can be applied to
real data. In the SSM class, a general structure called Dynamic Generalized Linear Models (DGLM),
proposed by West et al. (1985), attracted a great deal of interest due to its flexibility, allowing the
observation distribution to belong to the exponential family. The book by Durbin and Koopman (2012)
also analyzed non-Gaussian time series using importance sampling in SSM.

Many other researchers have devoted themselves, over the last decades, to auxiliary procedures to
handle non-Gaussian State Space under the Bayesian approach (see, for example, Andrieu and Doucet
(2002); Carvalho et al. (2010), among others). Some attempts to code NGSS include the sspir (Dethlefsen
and Lundbye-Christensen, 2006), pomp (King et al., 2016), KFAS (Helske, 2016), bssm (Helske and
Vihola, 2021), and dynamichazard (Christoffersen et al., 2021) packages in the R environment (Team,
2021) and SsfPack (Koopman et al., 1999) in the Ox software (Doornik, 1997). The SsfPack is the most
consolidated package with several updated versions.

Nevertheless, even for simple structures in this class of models, the analytical tractability is easily
lost, and, hence, approximations are required in order to perform inferential procedures. Thus, all
packages mentioned above use intensive computational methods for making inferences for the model
parameters, like sequential Monte Carlo methods or particle filters, importance sampling, particle
Markov chain Monte Carlo (MCMC), etc.

In spite of this increasing number of models and packages to handle non-Gaussian SSM, a common
feature shared by all of them is the need to use approximations to perform inferential procedures
even in very simple cases. Gamerman et al. (2013) identified a subset of NGSS that allows for exact
and analytical calculation of the marginal likelihood and the predictive and filtering distributions,
called NGSSEML. This family unified several different models previously existing in the literature
and included more cases. These exact computations are extremely easy to code and can be performed
effortlessly and in a simple way. Applications to real data are presented, and the codes are made
available by the authors in Ox language. Also, NGSSEML includes the works of Aktekin et al. (2013,
2018), de Pinho et al. (2016) for modeling count and volatility data, respectively, and was later extended
by Santos et al. (2017) to include models commonly used in reliability and survival contexts.

Thus, in the face of the absence of consolidated software and packages to handle NGSSEML, the
objective of this work is to unify the range of models encompassed and to introduce the R-package
NGSSEML. The package illustrates how the NGSS models can be easily employed in non-Gaussian time
series and reliability analysis using R under the Bayesian and classical perspectives. It also provides
codes in the R environment for mainly formulating and specifying the NGSS models considered in
Gamerman et al. (2013) and Santos et al. (2017). The main advantage of this package, which is designed
for the specific class of NGSSEML, is that the models are implemented in a simple and flexible way.
All other softwares listed above deal with state space models where the marginal likelihood can not
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be exactly obtained. The NGSSEML approach has the advantage of not needing to approximate the
likelihood as others do, achieving that via an alternative evolution. This exact specification enables a
computational gain, making the NGSSEML package an attractive option to handle non-Gaussian state
space. Our approach to inference is to use (virtually) exact methods. Intensive computational methods
are only required when the dimension of the unknown static parameter vector is high. In this case,
the Adaptive Rejection Metropolis Sampling (ARMS) algorithm is used to approximate the marginal
posterior of the static parameters (Petris, 2010). Applications to count data, volatility time series, and
reliability models, such as the piecewise exponential model (PEM) and Weibull and Gamma software
reliability models are presented.

The paper is organized as follows. The NGSSEML family is presented in Section 2, as well as the
inferential and smoothing procedures for the latent states. Section 3 introduces the package functions.
Section 4 shows illustrative examples of time series and reliability data. Finally, Section 5 presents the
main conclusions and final remarks.

The model

Gamerman et al. (2013) introduced a rich class of non-Gaussian state space models with exact marginal
likelihood, called here NGSSEML, based on the seminal work of Smith and Miller (1986). Inference
free from approximations can be performed in the NGSSEML, and this is its main advantage compared
with other NGSS procedures, such as the DGLM. Due to the model formulation, some components,
such as seasonality and the effect of external covariates, are introduced as fixed effects.

A time series {yt}
n
t=1 belongs to this class of models if its probability (density) function can be

written as:

p(yt|µt,µt−1, . . . ,µ1, Yt−1,θ) =p(yt|µt, Yt−1,θ)

=a(yt,θ)µ
b(yt,θ)
t exp (−µtc(yt,θ)) , (1)

for yt ∈ S(θ) ⊂ ℜ and p(yt|µt,θ) = 0, otherwise. Functions a(·), b(·), c(·), and S(·) are such that
p(yt|µt,θ) ≥ 0 and, therefore, µt > 0, for all t > 0. µt is the state at time t and Yt = {Y0, y1, . . . , yt}

represents previously available information. It is also assumed that θ varies in the q-dimensional
parameter space Θ.

The state µt in Equation (1) is defined as µt = λtg(xt, β), where β are the regression coefficients
(one of the components of θ), xt is a covariate vector, and λt is the latent variable related to the dynamic
level. The usual specification for the link function g is the logarithmic function given the positive
nature of µt, but other link functions dictated by the application may also be used. Given λt, the
dynamic level λt+1 evolves according to the system equation

w
λt+1

λt
| λt, Yt,θ ∼ Beta (wat, (1−w)at) , (2)

where at are values obtained in a sequential procedure and 0 < w < 1. The parameter w is responsible
for increasing the variance over time and plays a similar role to that of discount factors in the DGLM
(West and Harrison, 1997). Finally, the initial prior distribution is given by λ0|Y0 ∼ Gamma(a0, b0).
Thus, the full model specification is completed.

There is a wide range of distributions that belong to this class of models. It includes many
commonly known discrete and continuous distributions such as Poisson, Gamma, and Normal (with
static mean) but also includes many other distributions that are not so common and some reliability
models. Table 1 provides the form of functions a, b, c, and S for some usual distributions in this family.

This family provides a collection of distributions for modeling a variety of real-time series and
reliability data that are of practical importance, including software reliability. A detailed explanation
and some illustrations can be found in de Pinho et al. (2016) and Santos et al. (2017).

Hereafter, following Theorem 1 in Gamerman et al. (2013), sequential inference for the NGSSEML
will be presented as a basic result that includes the one-step-ahead predicted distributions and the
filtering distribution of the latent states {λt}t=1:n. If the model is defined as in (1) and (2), the following
results can be obtained:

• One-step-ahead predicted (forecast) distribution of the states

λt|Yt−1, θ ∼ Gamma(wat−1, wbt−1), (3)

where 0 < w < 1.
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Models θ a(yt,θ) b(yt,θ) c(yt, θ)

Poisson w, β (yt!)−1 yt 1
Gamma w,χ, β yχ−1

t /Γ(χ) χ yt
Weibull w, ν, β ν(yt)ν−1 1 (yt)ν

Time Normal w,µ, β (2π)−1/2 1/2 (yt − µ)2/2
Series Laplace w,µ, β 1

√
2

1
√

2
∣∣∣yt − µ

∣∣∣
Power Exponential (GED*) w, ν,µ, β ν

2
ν+1
ν Γ(1/ν)

1/ν (yt−µ)ν

2

Generalized Gamma w, ν,χ, β νyνχ−1
t /Γ(χ) χ yνt

PEM⋆ w 1
N∑

j=1
χi j

N∑
j=1

(ti j − ti−1)

Relia- PH⋆ w, β exp

 ∑
j∈Rt

χi jx′jβ

 N∑
j=1
χi j

N∑
j=1

(ti j − ti−1) exp(x′i jβ)

bility Weibull SR* w, ν, β νyν−1
t exp(−νxtβ) 1 yνt exp(−νxtβ)

Gamma SR* w,α, β (yt)
α−1

Γ(α) exp(αxtβ)
α yt exp(−xtβ)

Note: ⋆PEM: Piecewise Exponential Model; PH: Proportional Hazards model; GED: Generalized Error
Distribution; SR: Software Reliability.

Table 1: Special cases of the NGSSEML.

• Filtering distribution of the states

λt =
(
µt[g(x

′

tβ)]
−1
)
|Yt, θ ∼ Gamma(at, bt), (4)

where at = wat−1 + b(yt, θ) and bt = wbt−1 + c(yt, θ)g(xt, β).

• One-step-ahead predictive density function of the observations

p(yt|Yt−1,θ) =
Γ (b(yt,θ) + wat−1) a(yt,θ)[wbt−1 (g(xt, β))

−1]wat−1

Γ(at−1)[c(yt,θ) + wbt−1(g(xt, β))−1]b(yt,θ)+wat−1
, yt ∈ S(θ), (5)

∀t ≤ n where Γ(·) is the gamma function. The distribution of µt = λtg(xt, β) can be easily obtained
from the predictive and filtering distributions.

The analytical form of the predictive density function in (5) allows the exact computation of the
marginal likelihood function

L(θ) = L(θ; Yn) =
n∏

t=1

(p(yt|Yt−1,θ)) . (6)

Thus, classical and Bayesian inference for the model parameters are easily performed.

Classical inference for the static parameter vector θ can be performed through the maximum
likelihood estimator (MLE) obtained by maximizing the marginal likelihood function with respect
to θ. In general, since the MLE does not possess a closed-form expression, numerical maximization
methods (such as the BFGS (Shanno, 1970)) are required to maximize the likelihood function.

Bayesian inference for the static parameters can be performed combining the marginal likelihood
function and a prior of the static parameters, p(θ), thus obtaining the marginal posterior

p(θ|Yn) ∝ L(θ)p(θ). (7)

When the posterior distribution does not have a closed-form, computational methods can be used,
such as the Markov chain Monte Carlo (MCMC), Adaptive Rejection Metropolis Sampling (ARMS)
(Petris, 2010), or numerical integration/quadrature (Santos et al., 2017). In the latter, an inexpensive
grid of points can be utilized due to the low dimensionality of θ in many special models and examples
presented in this work. Table 2 shows the prior distributions for the static parameters used in each
model of Table 1.

Regarding the latent state, λ = {λt}t=1:n, inference can be made using its predictive and filtering
distributions as well as smoothing procedures with θ set as a fixed value, e.g., its respective MLE
(Brockwell and Davis, 1996), sampled from its posterior distribution via MCMC output or directly. The
latter approach is explained in the sequel. In order to obtain a sample of the latent state, the smoothing
procedure, described in Theorem 2 of Gamerman et al. (2013), is required. It states that the distribution
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Models θ Prior (p(θ))

Time Poisson w, β w ∼ Beta(aw, bw),
Series β ∼ Normalq(mbeta, Vbeta)

Gamma w,χ, β w ∼ Beta(aw, bw),
χ ∼ Gamma(aχ, bχ),

β ∼ Normalq(mbeta, Vbeta)
Weibull w, ν, β w ∼ Beta(aw, bw),

ν ∼ Gamma(aν, bν),
β ∼ Normalq(mbeta, Vbeta)

Normal w,µ, β w ∼ Beta(aw, bw),
µ ∼ Normal(m, v),

β ∼ Normalq(mbeta, Vbeta)
Laplace w,µ, β w ∼ Beta(aw, bw),

µ ∼ Normal(m, v),
β ∼ Normalq(mbeta, Vbeta)

Power Exponential (GED) w, ν,µ, β w ∼ Beta(aw, bw),
ν ∼ Gamma(aν, bν),
µ ∼ Normal(m, v),

β ∼ Normalq(mbeta, Vbeta)
Generalized Gamma w, ν,χ, β w ∼ Beta(aw, bw),

ν ∼ Gamma(aν, bν),
χ ∼ Gamma(aχ, bχ),

β ∼ Normalq(mbeta, Vbeta)

Relia- PEM⋆ w w ∼ Beta(aw, bw)
bility

PH⋆ w, β w ∼ Beta(aw, bw),
w, β β ∼ Normalq(mbeta, Vbeta)

Weibull SR w, ν, β w ∼ Beta(aw, bw),
ν ∼ Gamma(aν, bν)

β ∼ Normalq(mbeta, Vbeta)
Gamma SR w,α, β w ∼ Beta(aw, bw),

α ∼ Gamma(aα, bα)
β ∼ Normalq((mbeta, Vbeta)

Note: ⋆PEM: Piecewise Exponential Model; PH: Proportional Hazards model; GED: Generalized Error
Distribution; SR: Software Reliability.

Table 2: Prior for the static parameters of the NGSSEML.

of (λ|θ, Yn) is given by

p(λ|θ, Yn) = p(λn|θ, Yn)
n−1∏
t=1

p (λt|λt+1, θ, Yt) ,

where

λt −wλt+1|λt+1, θ, Yt ∼ Gamma ((1−w)at, bt) ,∀t ≥ 0. (8)

In an analogous way, the marginal distribution of (λ|Yn) is expressed as

p(λ|Yn) =

∫
p(λ|θ, Yn)p(θ|Yn)dθ. (9)

Once a sample θ(1), . . . , θ(M) is available, samples from the states are obtained retrospectively from the
distribution of the states using the result in (8). More details can be found in Gamerman et al. (2013). A
sample λ(1), . . . , λ(M) of the marginal distribution in (9) is obtained in the following manner: i) sample
θ(1), . . . , θ(M) from its marginal posterior p(θ|Yn). ii) sample λ( j) from p(λ|θ( j), Yn), j = 1, . . . , M. If the
dimensionality of the static parameters θ is low, the numerical calculation of p(θ|Yn) using quadrature
is indistinguishable from the exact calculation. If θ is discrete, it is an exact result. Thus, the numerical
calculation of the marginal posterior distribution p(λ|Yn) is a suitable approximation, whose quality
depends on the approximation of p(θ|Yn) and, hence, the dimensionality of θ and its nature.

Gamerman et al. (2013) used the Pearson and deviance residuals for model diagnostics and AIC,
BIC, and DIC for model comparison in this family. It should be noted that, if MCMC methods are
used, convergence checks using graphs like trace plot, autocorrelogram, etc., and tests like the Geweke
and Gelman-Rubin tests are necessary.
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Specification of the state space objects

The package NGSSEML can be downloaded and installed from GitHub or CRAN website and is
then activated in R by library("NGSSEML"). Assuming that the data are available in the current
environment, the NGSSEML can be set up using the formulas and family arguments presented in the
next subsections.

Estimation of the static parameters

This subsection presents the estimation of the static parameters θ under classical and Bayesian
approaches. The classical procedure uses the BFGS algorithm, implemented in the “optim” function of
the R package, to obtain the MLE. The Bayesian procedure uses numerical integration/quadrature
with an inexpensive grid of points. The functions ‘ngssm.mle’ and ’ngssm.bayes’ perform the classical
and Bayesian inferences, respectively, shown in the previous section and utilize the function ’LikeF’
(the marginal likelihood function) in Eq. (6), internally.

Basically, the functions of NGSSEML work with a very simple specification of a few arguments.
We need to specify the formula, data (data frame) arguments, and model, as well as the function ’lm’
for linear regression. For piecewise exponential models in reliability analysis, we cannot forget to
include the breaks and events arguments.

The function ’ngssm.mle’ performs the marginal likelihood estimation of the static parameters of
the model using Eq. (6), and can be executed by the following command:

> ngssm.mle(formula, data, na.action="na.omit", pz = NULL, nBreaks = NULL,
+ model = "Poisson", StaPar = NULL, amp = FALSE, a0 = 0.01, b0 = 0.01,
+ ci = 0.95, LabelParTheta = NULL, verbose = TRUE, method = "BFGS",
+ hessian = TRUE, control = list(maxit = 30000, temp = 2000,
+ trace = FALSE, REPORT = 500))

The output of the model fit presents the maximum likelihood estimators, standard errors, Z
statistics, and asymptotic confidence intervals of the model parameters. Furthermore, it allows
the user to change the control settings, choose the optimizing algorithm, and set arguments as the
hyperparameters a0 and b0, the confidence level, etc.

The function ’ngssm.bayes’ performs the Bayesian estimation of the static parameters of the model
using the marginal posterior in Eq. (7), and can be run by the following command:

> ngssm.bayes(formula, data, na.action = "na.omit", pz = NULL, nBreaks = NULL,
+ model = "Poisson", StaPar = NULL, amp = FALSE, a0 = 0.01, b0 = 0.01, prw = c(1, 1),
+ prnu = NULL, prchi = NULL, prmu = NULL, prbetamu = NULL, prbetasigma = NULL,
+ lower = NULL, upper = NULL, ci = 0.95, pointss = 10, nsamplex = 1000, mcmc = NULL,
+ postplot = FALSE, contourplot = FALSE, LabelParTheta = NULL, verbose = TRUE)

The model fit’s output provides the Bayesian estimators, posterior mean and median, standard
error, and percentile credibility intervals for NGSSEML parameters, and the posterior samples of the
static parameters of the NGSSEML using multinomial sampling. The main functions of the model
fit provide an object class “ngssm”, associated with print, summary, and extract further information.
Besides, the user can choose the number of grid points (the argument pointss) of the quadrature and
samples (the argument nsamplex) and set the hyperparameters of prior distributions (the arguments
a0,b0,prw,prnu,prchi,prmu,prbetamu,prbetasigma), the credibility level, etc. If mcmc=TRUE or the
number of points in the grid is very high, the ARMS algorithm is executed instead of the quadrature
method. Samples of the posterior distribution of the latent states using the smoothing procedure are
calculated as described in Eq. (9).

Estimation of latent states

The filtering, smoothing, and plot functions for the NGSSEML are shown in this subsection. For these
functions, the static parameters are estimated with the whole data.

The function ’FilteringF’ computes the shape and scale parameters of the one-step-ahead forecast
and filtering distributions of the latent states using the filters in Eq. 3 and 4, respectively, for several
models. It can be called by the command below.

> FilteringF(formula, data, na.action = "na.omit", pz = NULL, nBreaks = NULL,
+ model = "Poisson", StaPar = NULL, a0 = 0.01, b0 = 0.01, amp = FALSE,
+ distl = "PRED", splot = FALSE)
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The output presents the shape and scale parameters of the one-step-ahead forecast and filtering
distributions of the latent states. Furthermore, it allows the user to modify the arguments of the
function as the hyperparameters a0 and b0, etc.

The function ’SmoothingF’ provides an exact sample of the smoothing distribution of the latent
states in Eq. (9), and its command is

> SmoothingF(formula, data, na.action = "na.omit", pz = NULL, nBreaks = NULL,
+ model = "Poisson", StaPar = NULL, Type = "Cond", a0 = 0.01, b0 = 0.01,
+ amp = FALSE, samples = 1, ci = 0.95, splot = FALSE)

The function provides an object with an exact sample of the joint distribution of the states. The user
can choose the arguments as the hyperparameters a0 and b0, type of the distribution of the latent
states - margin/conditional on the static parameters, the confidence/credibility level, etc. If the number
of samples is greater than 1, some summaries of the state samples are returned. If the argument
splot=TRUE, a graph with the states’ smoothed estimates is shown.

The function ’PlotF’ builds graphs with smoothed/filtered estimates of the latent states and can be
run by the following command:

> PlotF(formula, data, na.action = "na.omit", pz = NULL, nBreaks = NULL,
+ plotYt = TRUE, axisxdate = NULL, transf = 1, model = "Poisson", posts,
+ Proc = "Smooth", Type = "Marg", distl = "PRED", a0 = 0.01, b0 = 0.01,
+ ci = 0.95, startdate = NULL, enddate = NULL, Freq = NULL, ...)

The function returns a graph with smoothed or filtered estimates of the latent states. The user can
change the arguments as the hyperparameters a0 and b0, the type of the distribution of the latent
states - margin/conditional on the static parameters, the procedure between smoothing and filtering,
the confidence/credibility level, etc. Other options related to graph edition, such as color, type line,
labels, can be inserted into the function ’PlotF’ using the argument ellipsis (...). To save space in this
manuscript, they are not shown. We will try to provide more details in the examples.

Examples

In this section, we present four examples to illustrate the use of the proposed package for count,
volatility, lifetime, and software reliability data. The count time series is the poliomyelitis data in the
USA. The volatility series refers to the return data set from the Petrobras stock market. The lifetime
data set (GTE) are the daily failure times of 125 telecommunication systems. The “SYS1” data set
are times between 136 successive computer software failures. All examples are widely used in the
literature of their respective areas. We present parameter estimation, the goodness of fit for the adjusted
models and predictions. For the poliomyelitis data, we also provide comparisons with other softwares
available in the literature.

As previously explained, this software is designed for the specific class of non-Gaussian state
space models with exact marginal likelihood. The NGSSEML may seem analytically more complex in
comparison with other procedures, which present in general simpler equations. Nevertheless, although
simplest in form, these procedures frequently need more calculations and heavier computational effort
to produce similar results to our method. Based on an alternative evolution, our approach requires
less approximation, and thus, inference for static parameters is almost indistinguishable from the
(unobtainable) exact form. Readers interested in the advantages and comparisons of the NGSSEML
against alternatives should refer to Gamerman et al. (2013) and Santos et al. (2017).

Count data

A Poisson NGSSEML model is used to fit the monthly data of the number of poliomyelitis cases in the
USA, shown in Figure 1, from 1970/01 to 1983/12 (168 observations). The polio data is a well-known
example in the count time series literature and was first analyzed by Zeger (1988). The objective is to
explain the number of poliomyelitis cases through covariates and make predictions. The covariates
are the deterministic trend centered at 73, annual cosine and sine, and semiannual cosine and sine.
The intercept is inserted in the model as a dynamic level. The confidence and credibility levels for the
intervals are fixed at 0.95. The state initial condition is λ0|Y0 ∼ Gamma(a0, b0), where a0 = 0.3 and
b0 = 0.1 that can be specified in the functions ’ngssm.mle’ and ’ngssm.bayes’ by the arguments a0
and b0. The static parameter vector in this example is θ = (w, β1, β2, β2, β3, β4, β5), so it is necessary to
specify a joint probability density for it, that is, a joint prior p(θ). Assuming that the static parameters
are independent and based on the priors available for the package in Table 2, the marginal priors
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for its components are w ∼ Beta(1, 1) and β j ∼ N(0, 10), for j = 1, . . . , 4. Parameter w controls the
information loss over time, while parameters β are regression coefficients associated with the covariates
for capturing trend and seasonal patterns of the count time series. The prior hyperparameters are
chosen to set vague priors for the model parameters.

The MLE for the static parameters of the NGSSM in the poliomyelitis data can be obtained using
the BFGS algorithm (default: method = "BFGS") implemented in the optim function, which is the
default of ’ngssm.mle’ function. It is necessary to specify data1 = data.frame(Ytm,Xtm) in the
argument data, the formula Ytm ∼ CosAnnual + SinAnnual + CosSemiAnnual + SinSemiAnnual,
and the model model = "Poisson". The arguments StaPar = c(0.79,-0.11,-0.49,0.18,-0.38),
a0 = 0.01, b0 = 0.01, and ci = 0.95 are optional. The name of the variables in the argument must
coincide with the name in the data. The model fit is stored in the fit object. The code for classical
inference is given below. We should note that a graph with the filtered estimates of the latent states is
returned when the ’FilteringF’ function is called.

> library(NGSSEML)
> data(Polio_data)
> Xtm = Polio_data[, 3:7]
> Xtm[,1] = (1:168-73)/168
> Ytm = Polio_data$y
> Ztm=NULL
## CosAnnual, SinAnnual, CosSemiAnnual, SinSemiAnnual
## LabelParTheta = c("w", "Beta1", "Beta2", "Beta3", "Beta4")
StaPar = c(0.79, -0.11, -0.49, 0.18, -0.38)
> a0 = 0.2
> b0 = 0.1
> ci = 0.95
> data1=data.frame(Ytm,Xtm)
## Fit
> fit = ngssm.mle(Ytm ~ CosAnnual + SinAnnual + CosSemiAnnual + SinSemiAnnual,
+ data = data1, model = model, pz = NULL, StaPar = StaPar,
+ a0 = a0, b0 = b0, ci = ci)
> esttheta = as.numeric(fit[,1])
> filt = FilteringF(Ytm ~ Trend + CosAnnual + SinAnnual + CosSemiAnnual
+ SinSemiAnnual, data = data1, StaPar = esttheta,
+ model = "Poisson", a0 = a0, b0 = b0,
+ distl = "FILTER", splot = TRUE)
> filtest = (filt[1,]/filt[2,])

The results are presented in Table 3, showing the MLE’s and their respective 95% confidence
intervals for w and β′s. Bayesian estimation can be performed using quadrature rules with a grid
of 6 points (pointss = 6), providing a sample of 2,000 draws (nsamplex = 2000) of the marginal
posterior distribution of the static parameters. This can be performed without the use of intensive
computational methods to approximate the posterior distribution as, is usually the case in other
non-Gaussian state-space models. We should set the arguments in the function as the data frame
data1, the formula Ytm ∼ CosAnnual + SinAnnual + CosSemiAnnual + SinSemiAnnual, and the
model model = "Poisson". The marginal priors are: w ∼ U(0, 1) ≡ Beta(1, 1), and β j ∼ N(0, 10), for
j = 1, . . . , 4, specified in the function ’ngssm.bayes’ by the following arguments prw = c(1,1) (two
shape parameters of a Beta distribution), prbetamu = rep(0,4), and prbetasigma = diag(10,4,4)
(two parameters of a multivariate Normal distribution). If postplot = TRUE and contourplot =
TRUE, the graph of the marginal posterior and the contour plot are provided. If verbose = TRUE, the
estimation results are shown; otherwise, they are omitted. The code is presented below.

> library(NGSSEML)
> data(Polio_data)
> Xtm=Polio_data[,3:7]
> Xtm[,1] = (1:168-73)/168
> Ytm = Polio_data$y
> Ztm = NULL
## CosAnnual, SinAnnual, CosSemiAnnual, SinSemiAnnual
## LabelParTheta=c("w", "Beta1", "Beta2", "Beta3", "Beta4")
> StaPar = c(0.79, -0.11, -0.49, 0.18, -0.38)
> a0 = 0.2
> b0 = 0.1
## points
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> pointss = 6
## posterior sample
> nsamplex = 2000
## Cred. level
> ci = 0.95
> data1 = data.frame(Ytm, Xtm)
## Bayesian fit
> fitbayes = ngssm.bayes(Ytm ~ CosAnnual + SinAnnual +
CosSemiAnnual + SinSemiAnnual,
+ data = data1, model = "Poisson", pz = NULL, StaPar = StaPar, a0 = a0, b0 = b0,
+ prw = c(1, 1), prbetamu = rep(0, 4), prbetasigma = diag(10, 4, 4), ci = ci,
+ pointss = pointss, nsamplex = nsamplex, postplot = TRUE, contourplot = TRUE,
+ verbose = TRUE)

The results of the Bayesian inference are also presented in Table 3, showing the posterior mean and
the credibility intervals. The coefficient regression related to the determinist trend is not significant
at the 5% significance level, so we decide to remove it from the model. Analyzing Table 3, we can
see that both for β2 and β4 associated with the trigonometric annual and semiannual sine covariates,
respectively, are negative and seem to be significant under both approaches at the same significance
level. We keep the cosine covariates to preserve the trigonometric representation of seasonality. The
magnitude and significance of the regression coefficients are similar to those obtained by other works
in the count time series literature (Davis and Wu, 2009). Furthermore, the classical estimates are close
to the Bayesian estimates. If the ARMS algorithm is used, we need to make a convergence check using
graphs like trace plot, autocorrelogram, etc., and tests like the Geweke and Gelman-Rubin tests in the
R-package coda.

The R codes for the smoothing function below are used to build the graphs presented in Figure 1,
for the Polio data with the smoothed estimates for the observations and mean under the Bayesian
approach. The first three arguments of the function ’PlotF’ refer to the Bayesian model obtained with
’ngssm.bayes’. The commands posts = posts, axisxdate = x, Proc = "Smooth", Type = "Marg",
startdate = "1970/01/01", enddate = "1983/12/31", and Freq = "months" indicate, respectively,
the sample of the marginal posterior of the static parameters, the vector of monthly dates, the smoothed
distribution for the states, the chosen distribution for the latent states, the start and end dates, and the
frequency of the observations. The last arguments refer to the type of lines, colors, and legends in the
graph. We can see that the smoothed mean trajectory in Figure 1 follows well the behavior of the time
series.

> posts = fitbayes$samplepost
> x = seq(as.Date("1970/01/01"), as.Date("1983/12/31"), "months")
> PlotF(Ytm ~ CosAnnual + SinAnnual + CosSemiAnnual + SinSemiAnnual,
+ data = data1, model = "Poisson", axisxdate = x, Proc = "Smooth", Type = "Marg",
+ posts = posts, startdate = "1970/01/01", enddate = "1983/12/31",
+ Freq = "months", type = 'l', col = c("black", "blue","lightgrey"), xlab = "Months",
+ ylab = "The number of poliomyelitis cases", xlim = NULL, ylim = c(0, 15),
+ Lty = c(1, 2, 1), lwd = c(2, 2, 2), cex = 0.68)

θ MLE 95% Conf. Int. Posterior Mean 95% Cred. Int.

w 0.793 [0.711; 0.874] 0.783 [0.713; 0.843]
β1 -0.116 [-0.324; 0.092] -0.117 [-0.314; 0.015]
β2 -0.488 [-0.717; -0.259] -0.491 [-0.707; -0.344]
β3 0.175 [-0.024; 0.374] 0.176 [-0.014; 0.301]
β4 -0.385 [-0.577; -0.193] -0.387 [-0.568; -0.265]

Table 3: Point and interval (level 95%) estimation for the Poisson model fitted to the polio count data.

Figure 2 shows the standardized Pearson residuals and its autocorrelogram for model diagnostic.
The residuals are not correlated and distributed between -2 to 2, except the points indicated in the
graph (a) that coincide with the largest values of the series in Figure 1. Further investigation of these
points could be performed, and the inclusion of interventions may improve the model fit. The R code
for the diagnostic analysis in this example is

> esttheta = as.numeric(fit[,1]); n = length(Ytm)
> filt = FilteringF(Ytm ~ CosAnnual + SinAnnual + CosSemiAnnual + SinSemiAnnual,
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Figure 1: The polio data: The full line represents the polio monthly time series in the USA from 1970/01
to 1983/12 (168 observations). The dashed line and the grey area indicate the smoothed means and
their respective 95% percentile credibility intervals using the smoothing procedure and the quadrature
method.

+ data = data1, StaPar = esttheta, model = "Poisson", distl = "FILTER",
+ splot = TRUE)
> filtest = (filt[1,]/filt[2,])
> pred = FilteringF(Ytm ~CosAnnual + SinAnnual + CosSemiAnnual + SinSemiAnnual,
+ data = data1, StaPar = esttheta, model = "Poisson", a0 = a0, b0 = b0,
+ distl = "PRED")
> predonestepahead = (pred[1,]/pred[2,])
> residuals = (Ytm-predonestepahead)/sqrt(predonestepahead)
> summary(residuals)
> residuals = scale(residuals[1:n])
> par(mfrow = c(1, 2))
> x = seq(as.Date("1970/01/01"), as.Date("1983/12/31"), "months")
> plot(x[1:n], residuals, xlab = "Months", ylab = "Standardized Pearson residuals")
> points(x[7], residuals[7], col = "red", lwd = c(2))
> points(x[35], residuals[35], col = "red", lwd = c(2))
> points(x[74], residuals[74] ,col = "red", lwd = c(2))
> points(x[113], residuals[113], col = "red", lwd = c(2))
> title("(a)")
> acf(residuals, ci = 0.99, main = "(b)")

For comparison purposes, Table 4 displays some statistics for evaluating the in-sample performance of
the fitted model using the KFAS, sspir and our software. The statistics are the square root of the mean
square error SMSE = 1

n
∑n

i=1(yi − ŷi)
2, the mean absolute error MAE = 1

n
∑n

i=1 |yi − ŷi|, and the mean
absolute percentage error, MAPE = 1

n
∑n

i=1 |(yi − ŷi)/yi|, where ŷi, i = 1, . . . , n, are the fitted values.
The Poisson model with the logarithmic link function, level component, and covariates is specified
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Figure 2: Polio data. (a) The full line represents the standardized Pearson residuals. The marked
points are the largest values of the residuals; (b) The autocorrelogram of the standardized Pearson
residuals. The marked points indicate the highest residual values.

for the three packages, as described in this subsection. The static parameters were fixed at the MLE
and posterior mean for our package and the MLE for the other packages to get the smoothed/filtered
mean. The results are similar for the KFAS and sspir packages, which use the maximum likelihood
estimation via importance sampling methods. Our package provided the predicted values (the filtered
estimates) using the classical and Bayesian approaches described in this paper and presented the best
results for the SMSE, MAE, and MAPE. Convergence of the maximization algorithm is fast and stable
because the likelihood is a well-behaved and exact function. The joint likelihood function (6) of our
Poisson model is a product of the negative binomial distributions given by Eq. (5).

SMSE MAE MAPE

KFAS* 1.776 1.179 0.638

NGSSEML* 1.280 0.890 0.468

NGSSEML** 1.264 0.880 0.462

sspir* 1.788 1.202 0.648
Note: *MLE; **The posterior mean.

Table 4: In sample SMSE, MAE, and MAPE for the Poisson model using the KFAS, NGSSEML, and
sspir packages.

Volatility data

The second example refers to the daily return data from Petrobras stock market from 2000/01/06 to
2008/29/01 (1999 observations), which can be obtained on the website finance.yahoo.com/. The return
at time t is defined as yt = ln

(
Pt

Pt−1

)
, where Pt is the daily closing spot price. Data collection irregularity

due to holidays and weekends will be ignored. Figure 3 presents the time series plot of yt. A distinctive
feature of financial series is that they usually present non-constant variance or volatility. Thus, this
series can be modeled using distributions with a heavy tail, such as GED, which does not belong to the
exponential family. The aim is to estimate the daily volatility of Petrobras return time series.
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Figure 3: Petrobras return data: This time series is the Petrobras asset’s daily return data in the
Brazilian stock market from 2000/01/06 to 2008/29/01 (1999 observations).

The maximum likelihood estimation for the Petrobras return data is performed using the R code
below with the following arguments in the function ’ngssm.mle’: Ytm∼1, data = data.frame(Ytm),
and model = "GED". The state initial condition is λ0|Y0 ∼ Gamma(a0, b0), where a0 = b0 = 0.01 (the
default values) that can be specified in the functions ’ngssm.mle’ and ’ngssm.bayes’ by the arguments
a0 and b0.

> library(NGSSEML)
> data(Return_data)
> plot(Return_data[,2], Return_data[,1], type = 'l', xlab = "Days",
+ ylab = "Returns")
> Ytm = Return_data$Rt
> Xt = NULL
> Zt = NULL
> model = "GED"
## LabelParTheta = c("w", "nu")
> StaPar = c(0.9, 1)
> a0 = 0.01
> b0 = 0.01
> ci = 0.95
> fit = ngssm.mle(Ytm ~ 1, data=data.frame(Ytm), model = model, a0 = a0, b0 = b0,
+ ci = ci, verbose = FALSE)

Bayesian estimation for the Petrobras return data is obtained via quadrature with 15 points
(argument pointss=15) and a sample of 1000 draws (nsamplex=1000) of the marginal posterior
distribution. The state initial condition is λ0|Y0 ∼ Gamma(0.01, 0.01). Analogously to the previous
example, the first arguments, which refer to the marginal prior distribution (see Table 2) for the
static parameter vector θ = (w, ν) are w ∼ U(0, 1) ≡ Beta(1, 1) and ν ∼ Gamma(0.01, 0.01), which
can be specified by the arguments prw = c(1,1) (two shape parameters of a Beta distribution) and
prmu=rep(0.01,0.01) (two parameters of a Gamma distribution with the mean equals to one). The
difference here is that model = "GED". Again, the prior hyperparameters are chosen to set vague
priors for the model parameters. A summary of the estimates was contained in the objects fitbayes
(Bayesian fit). The code is presented below.

> library(NGSSEML)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



Contributed Research Articles 219

θ MLE 95%Conf. Int. Posterior Mean 95% Cred. Int.

w 0.949 [0.931; 0.966] 0.947 [0.928; 0.962]
ν 1.601 [1.458; 1.745] 1.606 [1.467; 1.743]

Table 5: Point and interval estimation for the GED model fitted to the Petrobras series.

> data(Return_data)
> Ytm = Return_data$Rt
> Date = Return_data$Date
> Xtm = NULL
> Ztm = NULL
## LabelParTheta = c("W", "nu")
> StaPar =c (0.9,1)
> a0 = 0.01
> b0 = 0.01
## points
> pointss = 15
## posterior sample size
> nsamplex = 1000
## Cred. level
> ci = 0.95
## Bayesian fit
> fitbayes = ngssm.bayes(Ytm ~ 1, data = data.frame(Ytm), model = "GED", pz = NULL,
+ StaPar = StaPar, a0 = a0, b0 = b0, prw = c(1, 1), prnu = c(0.01, 0.01), ci = ci,
+ pointss = pointss, nsamplex = nsamplex, postplot = TRUE, contourplot = TRUE,
+ verbose =TRUE)

Table 5 presents the point and the interval estimates for the GED model fitted to the Petrobras return
data under the classical and Bayesian approaches obtained by the above codes. Figure 4 shows the
marginal posterior distributions and contour plot of the joint posterior distribution of the parameters
w and ν, respectively, with postplot = TRUE and contourplot = TRUE in the code of the Bayesian
approach. Parameter w controls the information loss over time, while r is the shape parameter of the
GED model and controls its tails. If ν < 2, the GED is a heavy-tailed distribution. It is the case of the
Petrobras return data, as expected, since the estimate for ν is around 1.6 and the upper limit of the 95%
intervals for ν is smaller than 2.

To illustrate the usage of the ’PlotF’ function in this example, a detailed description of its arguments
is given. The first three entries in the ’PlotF’ function refer to the data and model used. As there are
no explanatory variables to be inserted in the volatility, pz = NULL. A date vector for the x-axis was
specified in the axisxdate argument. The time series was not inserted in the plot, thus plotYt =
FALSE. A transformation of −0.5 was applied to the estimates of the latent states to get the volatility.
The chosen distribution for the latent states was conditional on the static parameters and marginal
(Type = "Marg"). A sample of the static parameters was set as posts = fitbayes$samplepost, and
the latent states distribution was the smoothed (Proc = "Smooth"). The started date was set as
'2000-06-01' and the enddate as '2008-01-29'. The frequency of data is daily (Freq = "days").
The remaining arguments refer to type of lines, colors, and legends in the graph. We can see that the
peaks in Figure 5 correspond to periods of crisis known in the literature and are pointed out by the
model.

## Smoothing
> set.seed(1000)
> posts = fitbayes$samplepost
> PlotF(Ytm ~ 1, data = data.frame(Ytm), model = "GED", pz = NULL,
+ axisxdate = Return_data$Date, plotYt = FALSE, transf = -0.5, Proc = "Smooth",
+ Type = "Marg", posts = posts, startdate = '2000-06-01', enddate = '2008-01-29',
+ Freq = "days", typeline = 'l', col = c("black", "blue", "lightgrey"),
+ xlab = "Days", ylab = expression(paste(hat(sigma)[t])), xlim = NULL,
+ ylim = c(0.02,0.10), lty = c(1, 2, 1), lwd = c(2, 2, 2), cex = 0.68)
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Figure 4: Petrobras return data: The marginal posterior distribution of the parameters w and ν and
their respective contour plot, obtained by the quadratures.

Lifetime data

The third example refers to the daily failure times of 125 telecommunication systems installed by the
GTE corporation in a pre-specified time period (Kim and Proschan, 1991). Seventeen failures were
observed out of the 125 observations. The purpose is to estimate the failure rate for the GTE data.

We specify the formula Ytm ∼ Event in the first argument of ’ngssm.mle’ function. The data must
contain columns with the times and events. We should also define the model (model = "PEM") and
obtain the breaks (one per interval) using the function ’GridP’ with the times, events, and nT = NULL
(the number of one interval per failure). The breaks are automatically inserted into the functions
’ngssm.mle’ and ’ngssm.bayes’ with nBreaks = NULL. The maximum likelihood estimation for the
GTE data is performed using the R code below.

> library(NGSSEML)
> data(gte_data)
## Times
> Ytm = gte_data$V1
> Xtm = NULL
> Ztm = NULL
> amp = FALSE
## Event: failure, 1
> Event = gte_data$V2
> Break=NGSSEML:::GridP(Ytm, Event, nT = NULL)
## LabelParTheta = c("w")
> StaPar = c(0.73)
> a0 = 0.01
> b0 = 0.01
> ci = 0.95
> fit = ngssm.mle(Ytm ~ Event, data = data.frame(Ytm,Event), model = "PEM",
+ nBreaks = NULL, amp = amp, a0 = a0, b0 = b0, ci = ci, verbose = FALSE)

Bayesian estimation for the GTE data is built using quadrature with a grid of 50 points
(pointss = 50) and a sample of 1000 draws (nsamplex = 1000). The state initial condition is
λ0|Y0 ∼ Gamma(a0, b0), where a0 = b0 = 0.01 are specified in the functions by the arguments a0 and
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Figure 5: Petrobras return data: The dashed and dotted lines represent the smoothed estimate and the
one-step-ahead prediction of the stochastic volatility (σ̂t = λ̂

1/ν̂
t ), obtained by the fit of the GED model

under the Bayesian approach. The grey area indicates the 95% percetile credibility interval.

b0, and the prior is w ∼ U(0, 1) ≡ Beta(1, 1). Both priors are specified in the function ’ngssm.bayes’ in
a similar manner of the previous examples to get vague priors. The formula Ytm ∼ Event contains
the times and events, and the breaks are automatically inserted with nBreaks = NULL. The R code is
below.

> library(NGSSEML)
> data(gte_data)
## Times
> Ytm = gte_data$V1
## Event: failure, 1
> Event = gte_data$V2
> Break = NGSSEML:::GridP(Ytm, Event, nT = NULL)
> Xtm = NULL
> Ztm = NULL
> amp = FALSE
## LabelParTheta = c("w")
> StaPar = c(0.5)
> lower = c(0.01)
> upper = c(0.99)
> a0 = 0.01
> b0 = 0.01
## points
> pointss = 50
## Number of samples from the posterior
> nsamplex = 1000
## Bayesian fit
> fitbayes = ngssm.bayes(Ytm ~ Event, data = data.frame(Ytm,Event), model = "PEM",
+ StaPar = StaPar, amp = amp, a0 = a0, b0 = b0, prw = c(1,1), pointss = pointss,
+ nsamplex = nsamplex, postplot = TRUE, contourplot = FALSE, verbose = TRUE)

Table 6 presents the point and the interval estimates for the PEM fitted to the GTE data under the
classical and Bayesian approaches. Parameter w controls the information loss over time in the same
manner as the previous application. If pz = TRUE, w becomes wi for each interval, weighted by the
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interval width. These estimates are stored in the objects “fit” (classical fit) and “fitbayes” (Bayesian fit)
of the previous codes.

The code below is used to build Figure 6, which shows the smoothed failure rate estimates
under the Bayesian approach, with a 95% credibility interval (the grey area). As already mentioned,
the first three entries in the ’PlotF’ function refer to the data and model used. The date for the
x-axis was specified in axisxdate = Break[1:17]. Once more, the chosen distribution for the latent
states was conditional on the static parameters and marginal (Type = "Marg"), and the latent states
distribution was the smoothed (Proc = "Smooth"). A sample of the static parameters was built as
posts=fitbayes$samplepost. The remaining arguments refer to type of lines, colors, and legends in the
graph. We can note that the failure rate is decreasing, as expected.

> posts = fitbayes$samplepost
> set.seed(1000)
> PlotF(Ytm ~ Event, data = data.frame(Ytm, Event), axisxdate = Break[1:17],
+ model = "PEM", Proc = "Smooth", Type = "Marg", posts = posts, typeline = 's',
+ col = c("black", "blue", "lightgrey"), xlab = "Time to Failure (Days)",
+ ylab = "Failure rate", xlim = c(0, 139), ylim = c(0, 0.008), lty = c(1, 2, 1),
+ lwd = c(2, 2, 2), cex = 0.68)

θ MLE 95%Conf. Int. Posterior Mean 95% Cred. Int.

w 0.773 [0.518; 1.000] 0.752 [0.503; 0.956]

Table 6: Point and interval (level 95%) estimation for the PEM fitted to the GTE data.
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Figure 6: The full line indicates the smoothed estimate of the failure rate for the GTE data, and the
grey area is its respective 95% credibility intervals, obtained by the quadratures.

Software reliability data

The Weibull software reliability model is used here for modeling the times between 136 successive
computer software failures of “SYS1” data (Chang and Liu, 2009) and for estimating the mean time. A
very small constant is added to failure times in order to avoid the case of a zero value in the likelihood
function, but the value of the constant did not change the estimation results.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



Contributed Research Articles 223

The state initial condition is λ0|Y0 ∼ Gamma(0.01, 0.01) in a similar way to the previous examples.
The arguments of the ’ngssm.mle’ that should be set are the formula Ytm∼Xtm, data.frame(Ytm,Xtm),
andmodel = "SRWeibull". An initial static parameter vector is optional (StaPar = c(0.9,0.7,0.01)).
The maximum likelihood estimation for the “SYS1” data is performed using the R code below.

> library(NGSSEML)
> data(sys1_data)
> Ytm = sys1_data[,1]+0.00001
> Xtm = sys1_data[,2]
> Zt = NULL
> model = "SRWeibull"
## LabelParTheta = c("w", "alpha", "Beta1")
> StaPar = c(0.9, 0.7, 0.01)
> fit = ngssm.mle(Ytm ~ Xtm, data = data.frame(Ytm,Xtm), model = model,
+ StaPar = StaPar)

Bayesian estimation for the “SYS1” data is obtained via quadrature rules with a grid of 15 points
(pointss=15) and a sample of 1000 draws of the marginal posterior distribution (nsamplex=1000).
As in the chassical fit, the following arguments have to be inserted in the ’ngssm.bayes’ function:
Ytm∼Xtm, data = data.frame(Ytm,Xtm), and model = "SRWeibull". An initial static parameter
vector is optional (StaPar = c(0.98,0.75,0.02). The marginal priors for the static parameter vector
θ = (w, ν, β1) are w ∼ Beta(1, 1), ν ∼ Gamma(0.01, 0.01) and β1 ∼ N(0, 100) (vague priors) that are
stated in the code via the arguments prw = c(1,1), prnu = c(0.1,0.1), prbetamu = c(0), and
prbetasigma = diag(100,1,1), respectively.

> library(NGSSEML)
> data(sys1_data)
> Ytm = sys1_data[,1]+0.00001
> Xtm = sys1_data[,2]
> model = "SRWeibull"
## LabelParTheta = c("w", "nu", "Beta")
> StaPar = c(0.98,0.75,0.02)
## points
> pointss = 15
## Bayesian Fit:
> fitbayes = ngssm.bayes(Ytm ~ Xtm, data = data.frame(Ytm,Xtm), model = model,
+ pz = NULL, StaPar = StaPar, prw = c(1, 1), prnu = c(0.1, 0.1), prbetamu = c(0),
+ prbetasigma = diag(100, 1, 1), pointss = pointss, nsamplex = 1000, postplot = TRUE,
+ contourplot = TRUE, verbose = TRUE)

Table 7 presents the point and interval estimates for the Weibull SR model fitted to the “SYS1” data
under the classical and Bayesian approaches. The estimate of parameter w is high (larger than 0.9),
which means that the information loss over time is small. Besides, we have strong evidence from the
data in favor of positive values for the regression coefficient β1 and values lower than 1 for the shape
parameter ν (i.e., decreasing failure rates).

θ MLE 95% Conf. Int. Posterior Mean 95% Cred. Int.

w 0.999 [0.996; 1.000] 0.969 [0.895; 0.994]
ν 0.753 [0.648; 0.857] 0.754 [0.655; 0.856]
β1 0.023 [0.018; 0.029] 0.023 [0.015; 0.031]

Table 7: Point and interval (level 95%) estimation for the Weibull SR model fitted to the “SYS1” data.

The commands postplot = TRUE and contourplot = TRUE in the code of the Bayesian approach
provide Figure 7 that shows the marginal posterior distributions and contour plot of the joint posterior
distribution of the parameters w, ν, and β1, respectively. Parameter w controls the information loss
over time, while ν is the shape parameter of the Weibull SR model. The estimate of ν is lower than one,
which means strong evidence in favor of decreasing failure rates. Analyzing the marginal posterior of
β1, we can observe that the number of previous failures seems to be relevant to the model.

The arguments posts = posts, Proc = "Smooth", Type = "Marg", transf = 1/4, and model =
"SRWeibull" establish a sample of the marginal posterior of the static parameters, the smoothed
distribution for the states, integrating the static parameters out, a transformation of the fourth root
in the series, and the Weibull SR model are included in the code below to build Figure 8. Figure 8
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provides transformed smoothed estimates for the mean of the data under the Weibull SR model. A
transformation to reduce the scale of the data was necessary in order to obtain a better visualization of
the graph. The fourth root was a suitable transformation in this case. As can be seen in Figure 8, the
estimates follow well the behavior of the data.

> library(NGSSEML)
## Smoothing
> posts = fitbayes$samplepost
> set.seed(1000)
> PlotF(Ytm ~ Xtm, data = data.frame(Ytm, Xtm), plotYt = TRUE, transf = 1/4,
+ model = "SRWeibull", Proc = "Smooth", Type = "Marg", posts = posts, typeline = 'l',
+ col = c("black", "blue", "lightgrey"), xlab = "Number of Failures",
+ ylab = "Transformed Times", xlim = c(0, 139), ylim = c(-2, 10), lty = c(1, 2, 1),
+ lwd = c(1, 2, 1), cex = 0.68)
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Figure 7: The full and dashed lines indicate, respectively, the fourth root of the series and its smoothed
mean, obtained by the fit of the Weibull SR under the Bayesian perspective. The grey area indicates
the 95% credibility intervals, obtained by the quadratures.

Conclusion

The package demonstrates how non-Gaussian state-space models (with exact marginal likelihood)
can suitably be applied and employed in non-Gaussian time series and reliability analysis using R.
The main contribution of the R-package NGSSEML is to provide an easy and fast code for classical
and Bayesian estimations in non-Gaussian state space models with the exact marginal likelihood in
the R programming language. Four important examples were presented for modeling time series
and reliability data. The main advantages of the employed methodology are its analytical and
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Figure 8: The full and dashed lines indicate, respectively, the fourth root of the series of the times
between successive failures and the fourth root of the smoothed mean of the data, obtained by the fit
of the SRWeibull under the Bayesian perspective using the quadratures. The grey area indicates the
95% credibility intervals.

computational simplicity, fast routines, and the ability to accommodate different types of distributions,
even those which do not belong to the exponential family, combined with exact inference. Both
classical and Bayesian approaches may be performed since the exact marginal likelihood for the static
parameters is available. The package also provides R codes or functions for the prediction, filtering,
and smoothing procedures of the latent states. Also, it is a platform where frequently used models,
like the Normal and Poisson, can be included, as well as other volatility and reliability models, like the
GED and Generalized Gamma.

Future work aims to increase the number of distributions (special cases) that can be specified for
the observations in the package (mainly for time series data), to include dynamic linear models with
the mean and variance varying over time that can conditionally be written in the NGSSEML form
(Gamerman et al., 2013; Rego and dos Santos, 2020), and to introduce models for modeling multivariate
time series data (Aktekin et al., 2018, 2020).
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BayesSenMC: an R package for Bayesian
Sensitivity Analysis of Misclassification
by Jinhui Yang, Lifeng Lin and Haitao Chu

Abstract In case–control studies, the odds ratio is commonly used to summarize the association be-
tween a binary exposure and a dichotomous outcome. However, exposure misclassification frequently
appears in case–control studies due to inaccurate data reporting, which can produce bias in measures
of association. In this article, we implement a Bayesian sensitivity analysis of misclassification to
provide a full posterior inference on the corrected odds ratio under both non-differential and differen-
tial misclassification. We present an R (R Core Team, 2018) package BayesSenMC, which provides
user-friendly functions for its implementation. The usage is illustrated by a real data analysis on the
association between bipolar disorder and rheumatoid arthritis.

Introduction

Many epidemiological studies are concerned with assessing the risk of an outcome between exposed
and non-exposed subjects. For example, in a case–control study, researchers first identify subjects who
have the disease of interest (the case group) and subjects who do not (the control group), and then
ascertain the exposure status of the subjects in each group. The odds ratio is typically used to assess
the association between the exposure and disease in the case–control study; it describes the ratio of the
exposure odds in the case group to that in the control group.

However, misclassification of exposure, disease outcome, or covariates appears frequently in obser-
vational studies of epidemiological or medical research (Rothman et al., 2008; Brakenhoff et al., 2018).
In a case–control study, misclassification is often due to inaccurate reporting of the exposure status
(e.g., self-reported data). This can consequently lead to biased estimation of exposure probabilities
and odds ratio. To adjust for such biases, we can correct the odds ratio using the observed data from
the case–control study and the sensitivity and specificity of correctly classifying exposure status from
external data. Here, the sensitivity is the proportion of exposed subjects that are correctly classified
as exposed (i.e., true positive), and the specificity is the proportion of non-exposed subjects that are
correctly classified as non-exposed (i.e., true negative).

Quantitative assessment of misclassification bias is necessary to estimate uncertainty in study
results. There are many statistical methods for misclassification correction; nearly all of them use
prior information that maps observed measurements to true values (Greenland, 2005). These methods
include regression calibration and multiple imputation (Rosner et al., 1989; Spiegelman et al., 2001;
Cole et al., 2006), in which the mapping is based on a validation study. Also, sensitivity analysis
can be used to evaluate the effects of uncertainties in measurement on the observed results of the
study (Greenland, 1996; Lash and Flink, 2003; Chu et al., 2006), in which the mapping from observed
to true measurements may be based on prior information or expert opinion about the accuracy of
the measurement. However, when such information or opinion is lacking, researchers may over-
or under-adjust for misclassification with an inaccurate guess, which may, in turn, produce a poor
estimate (Gustafson et al., 2006).

Moreover, despite the ubiquity of measurement error, these methods remain rarely used due to
the complexity of statistical approaches, especially the complexity of prior specifications as well as
the lack of software packages (Lash and Flink, 2003). For example, in a random sample survey of 57
epidemiological studies (Jurek et al., 2006), only one study used quantitative corrections. Sensitivity
analysis is simple but limited insofar as it does not provide formal interval estimates that combine
uncertainty due to random error with misclassification. Several authors have addressed this deficiency
by using probabilistic (Monte Carlo) sensitivity analyses (Greenland, 2005). For example, Fox et al.
(2005) proposed a probabilistic sensitivity analysis of misclassified binary variables based on multiple
imputation; they provided SAS code and Excel macro for this approach. Such methods can be viewed
as means of summarizing the bias over sensitivity analyses using a prior distribution about the bias
parameters (Greenland, 2005). Many of them have been implemented in the R package episensr
(Haine, 2021). Specifically, episensr allows for specifications of prior distributions for sensitivity and
specificity, such as uniform and logit normal, as well as sequential bias modeling that can be applied
to more than one type of bias, such as for both misclassification and selection biases.

Other methods employ a Bayesian implementation of the probabilistic bias analysis or perform
an outright Bayesian analysis (Greenland, 2005; Chu et al., 2006; MacLehose and Gustafson, 2012;
Gustafson et al., 2006). The Bayesian analysis is substantially different from conventional probabilistic
sensitivity analysis and much more flexible for incorporating different types of priors. However, it is
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often computationally expensive and more difficult to conduct by general users without a statistical
background. Gustafson et al. (2006) accounted for the prior uncertainties of sensitivity and specificity
in the evaluation of the results of a case–control study. MacLehose and Gustafson (2012) compared a
Bayesian approach with probabilistic bias analysis based on a case–control study of congenital defects,
concluding that the two approaches are mostly similar if using similar prior data admissibility as well
as uniform priors on exposure probabilities.

This article focuses on an R package correcting for exposure misclassification in a case–control
study. Extending from the Bayesian approach introduced by Gustafson et al. (2006), we implement
the methods outlined in Chu et al. (2006), which account for the correlation between the sensitivity
and specificity in the model specification. The methods can be applied to both non-differential and
differential misclassification; that is, the degree of misclassification can be the same across the case
and control groups or distinctly different. Furthermore, we use the generalized linear mixed bivariate
effects model introduced by Chu et al. (2010) to jointly model the sensitivity and specificity that may
be informed by an external meta-analysis on the diagnostic accuracy of the exposure factor.

This article introduces the implementation of the methods for misclassification via our R package
BayesSenMC (Bayesian sensitivity analysis by Monte Carlo sampling). The package is mainly
implemented in Stan, an imperative probabilistic programming language, which uses Hamiltonian
Monte Carlo (HMC), a form of efficient Markov Chain Monte Carlo (MCMC) sampling.

An illustrative example

This section presents an illustrative case–control study on the association between bipolar disorder
and rheumatoid arthritis, originally investigated by Farhi et al. (2016); this example will also be used
to demonstrate the implementation of the methods for misclassification. The exposure is bipolar
disorder, and the disease outcome is rheumatoid arthritis, which is a chronic autoimmune disorder
that primarily affects joints and occurs in nearly 1% of the population in developed countries (McInnes
and Schett, 2017). Table 1 presents the data.

Bipolar Disorder

Rheumatoid arthritis Exposed Unexposed Total

Case 66 11,716 11,782
Control 243 57,730 57,973

Table 1: Counts of the case–control study of the association between bipolar disorder and rheumatoid
arthritis.

The unadjusted odds ratio is 1.34 with the 95% confidence interval (CI) (1.02, 1.76), indicating a
significant association between rheumatoid arthritis and bipolar disorder. Of note, Farhi et al. (2016)
acknowledged the limitation that “lack of validation of the diagnosis of bipolar disorder in the subjects
cannot be completely excluded.” For example, bipolar disorder can be classified as type I, type II, etc.;
it is especially difficult to diagnose bipolar disorder type II (Phillips and Kupfer, 2013).

Assuming certain fixed values or prior distributions of sensitivity and specificity, we can use the
method by Chu et al. (2006) to correct the odds ratio accounting for the exposure misclassification.
The sensitivity and specificity can be either some fixed values or random variables following some
prior distributions.

The prior distributions can be estimated from external evidence using a meta-analysis, e.g., using
the bivariate generalized linear mixed model approach proposed by Chu et al. (2010). The following
section presents the details of these methods. This article uses the meta-analysis performed by
Carvalho et al. (2015) to obtain the prior distributions of the sensitivity and specificity of classifying
the exposure status of bipolar disorder. The meta-analysis contains three subgroups of screening
detection instruments: bipolar spectrum diagnostic scale (8 studies with sensitivity between 0.52 and
0.90 and specificity between 0.51 and 0.97), hypomania checklist (17 studies with sensitivity between
0.69 and 1.00 and specificity between 0.36 and 0.98), and mood disorder questionnaire (30 studies with
sensitivity between 0.00 and 0.91 and specificity between 0.47 and 1.00). The dataset from the Clalit
Health Services (the largest Health Maintenance Organization in Israel) used in Farhi et al. (2016) does
not specify the exact screening detection instrument for identifying the bipolar disorder. Therefore, we
will use all three subgroups’ data (55 studies in total) in Carvalho et al. (2015) for our analysis on the
sensitivity and specificity. A subset of the meta-analysis data is shown in Table 2.

According to their definitions, the study-specific sensitivity and specificity can be estimated as
(the number of true positives) / (the number of true positives plus the number of false negatives) and

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 230

Study True False True False
ID positive negative negative positive

1 81 9 444 427
2 12 3 44 19
3 74 26 97 3
4 52 16 23 4
5 228 113 18 4
...

...
...

...
...

55 63 6 32 13

Table 2: The meta-analysis on diagnosis accuracy of bipolar disorder performed by Carvalho et al.
(2015).

(the number of true negatives) / (the number of true negatives plus the number of false positives). For
example, study 1 gives the sensitivity 81/(81 + 9) = 0.90 and the specificity 444/(444 + 427) ≈ 0.51.
The generalized linear mixed-effects model will be used to synthesize all 55 studies to estimate the
overall sensitivity and specificity.

Methods

In this section, we introduce the specific models and methods to deal with misclassification.

Bayesian approach to correcting misclassification bias

Consider a case–control study, and we are interested in the odds ratio from this study. Table 3 presents
the notation of the observed data. The odds ratio is estimated as

ÔR =
ad
bc

.

When the odds ratio is larger or smaller than 1, the exposure happens more or less likely in the case
group, suggesting an association between the disease status and the exposure status. On the other
hand, the odds ratio close to 1 suggests that the disease and the exposure are less likely associated.

Group Exposed Unexposed Total

Case a b N1
Control c d N0

Table 3: Observed counts of a case–control study.

Assume that the observed exposure probability is Pk, the true exposure probability is πk, the
sensitivity is Sek, and the specificity is Spk for group k (k = 1 for the case group and 0 for the control
group) in the case–control study. Then, we can represent the observed exposure probability in terms
of the true exposure probability, the sensitivity, and the specificity:

Pk = P(observed E in group k)
= P(observed E | true E in group k)P(true E in group k)

+ P(observed E | true E in group k)P(true E in group k)
= Sekπk + (1 − Spk)(1 − πk),

(1)

where E denotes exposure and E denotes non-exposure. This yields

πk = (PK + Spk − 1)/(Sek + Spk − 1).

Consequently, the misclassification-corrected odds ratio can be calculated as

ORc =
π1/(1 − π1)

π0/(1 − π0)
=

(P1 + Sp1 − 1)(Se0 − P0)

(P0 + Sp0 − 1)(Se1 − P1)
. (2)
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Based on Equation (1), we can specify the following Bayesian hierarchical model to estimate the
corrected odds ratio of the case–control study, with a and c being the observed counts from Table 3:

Likelihood: a ∼ Bin(N1, P1) and c ∼ Bin(N0, P0);

Link: Pk = Sekπk + (1 − Spk)(1 − πk), k = 0, 1;

LORc = logit(π1)− logit(π0) and ORc = exp(LORc);

Prior: logit(π0) ∼ N(0, 102) and LORc ∼ N(0, 22);

Sek, Spk ∼ f (·).

(3)

Here, we assume weakly-informative priors for the true exposure probabilities π0 and π1, which
give a 95% CI of the true odds ratio between e−2×1.96 (≈ 0.02) and e2×1.96 (≈ 50.40), and a binomial
distribution for the number of observed exposure in case and control studies. Thus, the Bayesian
inference can be formulated as a posterior distribution of π0, π1, and the corrected odds ratio.

Additionally, the function f (·) denotes the joint prior for the sensitivity and specificity (for either
non-differential or different misclassification). In practice, the sensitivity and specificity are not
available from the case–control study, and they may be estimated as certain fixed values by subjective
experts’ opinions.

Alternatively, we may consider incorporating evidence-based prior information from existing
studies on the diagnostic accuracy of the exposure status (e.g., the data in Table 2). This allows us to
account for uncertainties in the sensitivity and specificity and potential correlation between them. The
next subsection presents methods to obtain the prior information for the sensitivity and specificity
from a meta-analysis.

Estimating prior distributions on the sensitivity and specificity from a meta-analysis

This section briefly discusses the generalized linear mixed-effects model (GLMM) to estimate priors on
the sensitivity and specificity. Suppose that a meta-analysis on the diagnostic accuracy of the exposure
status is available as external data to inform the priors of sensitivity and specificity that are needed
to correct the odds ratio in the case–control study. Denote the number of independent studies in the
meta-analysis by m, and let ni11, ni00, ni01, and ni10 be the number of true positives, true negatives,
false positives, and false negatives, respectively, in study i (i = 1, . . . , m). Consequently, there are
ni11 + ni10 truly exposed subjects and ni00 + ni01 truly unexposed subjects.

Assuming that ni11 and ni00 follow binomial distributions given the number of exposed and
unexposed subjects, respectively, the bivariate GLMM can be specified as (Chu et al., 2010; Ma et al.,
2016):

ni11 ∼ Bin(ni11 + ni10, Sei) and ni00 ∼ Bin(ni00 + ni01, Spi), i = 1, . . . , m;

g
(

Sei − SeL

SeU − SeL

)
= u + µi and g

(
Spi − SpL

SpU − SpL

)
= v + νi;[

µi
νi

]
∼ N

([
0
0

]
,
[

σ2
µ ρσµσν

ρσµσν σ2
ν

])
,

(4)

where u and v are the fixed effects implying the overall sensitivity and specificity in all m studies,
and µi and νi are the study-specific random effects. Also, σ2

µ and σ2
ν describe the heterogeneity of

the underlying sensitivity and specificity across studies, and ρ models the correlation between the
sensitivity and specificity. We denote the estimated fixed effects by û and v̂, the estimated variances as
σ̂2

µ and σ̂2
ν , and the estimated correlation coefficient as ρ̂.

The lower and upper bounds SeL, SeU , SpL, and SpU provide constraints on sensitivity and
specificity, which are chosen to exclude all improbable values. A smaller difference between SeL and
SeU (or between SpL and SpU) indicates higher confidence in the diagnostic accuracy of the exposure
status. When there is no confidence for the range, we can set SeL = SpL = 0 and SeU = SpU = 1.
Alternatively, setting SeL = SpL = 0.5 indicates that the diagnosis of exposure is better than chance.
For simplicity of implementation, we only allow the same lower and upper bounds for Se and for
Sp in our package BayesSenMC. In addition, g(·) is the link function (e.g., the logit, probit, and
complementary log-log). The logit link, logit(t) = log t

1−t , is commonly used in practice, and our
package BayesSenMC adopts this link.

Recall that the Bayesian hierarchical model for estimating the corrected odds ratio in the case–
control study in Equation (3) specifies a joint prior f (·) for the sensitivity and specificity. We consider
six specifications for this prior as follows:

(i) Crude (uncorrected) odds ratio: no misclassification. The specification of the prior is equivalent
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to setting Se0 = Se1 = Sp0 = Sp1 = 1. Consequently, P1 = π1 and P0 = π0.

(ii) Corrected OR: misclassification of the exposure status exists, and the sensitivity and specificity
for both cases and controls are assumed to be fixed values. These fixed values can be directly
plugged in the Bayesian model in Equation (3).

(iii) Logit-prior corrected OR: non-differential misclassification of the exposure status exists (Se0 =
Se1 = Se and Sp0 = Sp1 = Sp), and the uncertainties of the sensitivity and specificity are
considered independently by using normal priors on the logit scale. The evidence of the priors
comes from the diagnostic meta-analysis performed in the GLMM in Equation (4). Specifically,
we can assign

logit
(

Se − SeL

SeU − SeL

)
∼ N(û, σ̂2

µ) and logit
(

Sp − SpL

SpU − SpL

)
∼ N(v̂, σ̂2

ν )

as the priors in the Bayesian hierarchical model for the case–control study in Equation (3).

(iv) Fixed-correlation corrected OR: non-differential misclassification of the exposure status exists
(Se0 = Se1 = Se and Sp0 = Sp1 = Sp), and the sensitivity and specificity have a joint normal
prior on the logit scale to account for their correlation. In practice, the sensitivity is very likely
correlated with the specificity when dichotomizing a continuous measurement (Chu and Cole,
2006). Specifically, we use the following bivariate joint prior logit

(
Se−SeL

SeU−SeL

)
logit

(
Sp−SpL

SpU−SpL

) ∼ N
([

û
v̂

]
,
[

σ̂2
µ ρ̂σ̂µσ̂ν

ρ̂σ̂µσ̂ν σ̂2
ν

])
.

Compared with the previous prior specification with independent sensitivity and specificity,
the correlation coefficient ρ̂ is additionally considered here. It is also estimated from the GLMM
in Equation (4).

(v) Random-correlation corrected OR: in addition to the above bivariate joint prior for the non-
differential sensitivity and specificity, we can also consider modeling the uncertainties in
the estimated correlation coefficient. We consider applying Fisher’s z-transformation to the
correlation coefficient in the GLMM. Specifically, instead of directly estimating the correlation
coefficient ρ in Equation (4), we reparameterize ρ =

exp(2z)−1
exp(2z)+1 and obtain the point estimate of z

from the GLMM and its standard error, denoted by ẑ and sz, respectively. These estimates can
be subsequently used as the priors for the sensitivity and specificity in the case–control study: logit

(
Se−SeL

SeU−SeL

)
logit

(
Sp−SpL

SpU−SpL

) ∼ N
([

û
v̂

]
,
[

σ̂2
µ ρσ̂µσ̂ν

ρσ̂µσ̂ν σ̂2
ν

])
;

ρ =
exp(2z)− 1
exp(2z) + 1

;

z ∼ N(ẑ, s2
z).

(vi) Differential corrected OR: finally, we consider the differential misclassification of the exposure
status, i.e., Se0 ̸= Se1 and Sp0 ̸= Sp1. All above choices of priors can be similarly applied to the
four-variate set {Se0, Sp0, Se1, Sp1}. For simplicity, we consider a joint prior similar to that in
(iv). However, the prior applies to cases and controls separately, and it does not account for the
uncertainties in the correlation coefficient as in (v). That is, logit

(
Sek−SeL

SeU−SeL

)
logit

(
Spk−SpL

SpU−SpL

) ∼ N
([

û
v̂

]
,
[

σ̂2
µ ρ̂σ̂µσ̂ν

ρ̂σ̂µσ̂ν σ̂2
ν

])
, k = 0, 1.

Because of the complexity of the Bayesian model in Equation (3) with the above various choices of
priors for the sensitivity and specificity, we will use Markov chain Monte Carlo (MCMC) sampling to
produce the posterior distribution and thus estimate the misclassification-bias-corrected odds ratio in
the case–control study and its credible interval.

Implementation in R

The aforementioned methods can be implemented in the R package BayesSenMC. The function
nlmeNDiff fits a non-differential GLMM and returns a lme4 (Bates et al., 2021) object, for which
commands such as summary can be used to extract useful statistics from the model; see methods(class
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= "merMod") for more details. Users can also call the paramEst function to get a list of specific parameter
estimates of the fit that can be directly inputted into the model functions of BayesSenMC for Bayesian
inferences. In addition, the link function used in nlmeNDiff can be modified by specifying lower and
upper, which then changes the lower and upper bounds of Sek and Spk (k = 1 for cases and 0 for
controls).

The package BayesSenMC includes six model functions and one graphing function called plotOR.
The model functions return an S4 object of type stanfit, an instance of rstan (Stan Development
Team, 2020), which is an interface of Stan (Carpenter et al., 2017) in R. Users can call methods such
as print or extract to get detailed information about the posterior samples. The MCMC procedures
are implemented with a default of two chains, each with 1000 iterations of burn-in period and 2000
iterations to estimate the posterior parameters. They are fit using stan, and the default Monte Carlo
algorithm is the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo (Hoffman and Gelman,
2014; Betancourt, 2017). Any additional arguments to the model function call will be passed into
stan. The returned object can then be inputted into plotOR to visualize the posterior distribution
of the adjusted odds ratio, as well as the probability density lines of odds ratio in the cases of no
misclassification and constant Se/Sp as comparisons to the posterior distribution. It takes optional
argument passed into geom_histogram, and returns a ggplot2 (Wickham et al., 2021) object that can be
further customized.

The latest version of BayesSenMC is available from CRAN. The package can be directly installed
via the R prompt:

R> install.packages("BayesSenMC")
R> library("BayesSenMC")

Example in R

In this section, we use the data in Table 1 as well as Table 2 of meta-analysis data on the diagnosis accu-
racy of bipolar disorder to demonstrate the capabilities of BayesSenMC. The analyses are conducted
using R version 4.1.0 (2021-05-18).

We first fit the meta-analysis data using the GLMM procedure implemented in our package,
assuming non-differential misclassification. Given the range of Se and Sp of the bipolar disorder
meta-analysis data, we must only assume SeL = SpL = 0 and SeU = SpU = 1 for the GLMM to
compute real-value results. However, with more information about the type of diagnoses in Farhi et al.
(2016), one can find more informative constraints on Se and Sp to fit a more precise model.

R> data(bd_meta)
R> my.mod <- nlmeNDiff(bd_meta, lower = 0)
R> my.mod

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [glmerMod]

Family: binomial ( logit(0, 1) )
Formula: cbind(Y, N - Y) ~ ((0 + Se + Sp) | sid) + Se

Data: dat_final
AIC BIC logLik deviance df.resid

851.6825 865.1849 -420.8412 841.6825 105
Random effects:
Groups Name Std.Dev. Corr
sid Se 0.7116

Sp 0.8935 -0.38
Number of obs: 110, groups: sid, 55
Fixed Effects:
(Intercept) Se

1.12626 -0.05746

The indicator variable Se has a value of 1 for Se estimates and 0 for Sp estimates. The random
effects are grouped within each study, numbered after sid.

The fit reports the Akaike information criterion (AIC), which can be used to compare across
models. The logit means of Se and Sp are given by the fixed effects, 1.069 and 1.126, which translate to
a sensitivity of 0.744 and a specificity of 0.755. The values, larger than 0.5, suggest that overall, the
diagnostic accuracy for bipolar disorder given our meta-data is better than random, albeit nowhere
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near perfect. The standard deviations of logit Se and Sp are given by the random effects, as well as the
correlation. All of the mentioned parameter estimates can be returned in a list by calling paramEst.

We then plug the parameter estimates to get the posterior distributions for the corrected odds
ratio given different priors of Se and Sp. We run all 6 different models with the case–control study
observations in Farhi et al. (2016), shown in Table 1. The model specifications are shown in the previous
subsection.

R> params <- paramEst(my.mod)
R> m.1 <- crudeOR(a = 66, N1 = 11782, c = 243, N0 = 57973, chains = 3, iter = 10000)
R> m.2 <- correctedOR(a = 66, N1 = 11782, c = 243, N0 = 57973, prior_list = params,
+ chains = 3, iter = 10000)
R> m.3 <- logitOR(a = 66, N1 = 11782, c = 243, N0 = 57973, prior_list = params,
+ chains = 3, iter = 10000)
R> m.4 <- fixedCorrOR(a = 66, N1 = 11782, c = 243, N0 = 57973, prior_list = params,
+ chains = 3, iter = 10000)
R> m.5 <- randCorrOR(a = 66, N1 = 11782, c = 243, N0 = 57973, prior_list = params,
+ chains = 3, iter = 10000)
R> m.6 <- diffOR(a = 66, N1 = 11782, c = 243, N0 = 57973, mu = c(1.069, 1.069, 1.126, 1.126),
+ s.lg.se0 = 0.712, s.lg.se1 = 0.712, s.lg.sp0 = 0.893, s.lg.sp1 = 0.893,
+ corr.sesp0 = -0.377, corr.sesp1 = -0.377, corr.group = 0, chains = 3,
+ iter = 10000, traceplot = TRUE)

# get summary of model output
R> m.1

Figure 1: Traceplot of 3 Markov chains with 10,000 iterations for randomly correlated logit bivariate
model.

Each model above is implemented with 3 Markov chains, and each chain consists of 5000 burn-in
samples and 10,000 iterations to estimate the parameters (Figure 1). The posterior mean, median and
95% confidence limits of the adjusted odds ratio are as below: 1.35 (1.34, 1.01, 1.74), 5.63 (0.85, 0.02,
36.10), 8.61 (1.93, 0.03, 62.27), 9.33 (1.95, 0.03, 62.62), 9.05 (2.00, 0.03, 64.33), 5.23 (0.82, 0.02, 32.64). To
obtain and analyze the model output, one can simply call the model variable (e.g., m.1). The summary
displays the parameters for the model as well as the mean and confidence limits of the adjusted odds
ratio (i.e., ORadj). One can also specify traceplot = TRUE to display a plot of sampled corrected log
odds ratio values over iterations, such as in the above diffOR method call.

The above example demonstrates the significance of sensitivity and specificity in a case–control
study. We can examine that by the ratio of upper to lower 95% posterior interval: 1.74/1.01 = 1.72,
36.10/0.02 = 1805, 62.27/0.03 = 2075.67, 62.62/0.03 = 2087.33, 64.33/0.03 = 2144.33, and 32.64/0.02 =
1632. The greatest jump happens when we assume misclassification in the case–control study, and
it only differs slightly with more uncertainties in the model. The increase is especially significant in
Farhi et al. (2016) because the estimated mean Se and Sp are around only 0.75, as seen from the GLMM.
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In the future, we will consider adding other specifications of priors for sensitivity and specificity to
our package, such as beta priors.

R> library("ggplot2")
R> g1 <- plotOR(m.1, a = 66, N1 = 11782, c = 243, N0 = 57973, se = 0.744,
+ sp = 0.755, x.max = 3, y.max = 5, binwidth = 0.1) + ggtitle("(i)")
#...... please see supplementary R script for rest of code ......

Figure 2: Visualization of posterior distributions of odds ratio for all models. (i) crude (uncorrected)
odds ratio with no misclassification; (ii) corrected OR with constant misclassification (Se = 0.744 and
Sp = 0.755); (iii) corrected OR with logit bivariate normal misclassification; (iv) corrected OR that
extends from (iii) but with constant correlation between Se and Sp; (v) corrected OR that extends from
(iii) but with Fisher’s z-transformed correlation; (vi) corrected OR with differential misclassification.
The dotted and solid lines are the probability density lines of crude OR (i) and corrected OR with no
misclassification (ii), respectively, assuming log-normality on odds ratio.

We also implement a graphing function, plotOR, which takes the input of a model built with one
of the above methods, the observations of the same case–control study, and the estimated Se and
Sp from the GLMM. The method visualizes the posterior distribution of that model and plots the
probability density line of the adjusted odds ratio given no misclassification (crude OR) and constant
misclassification as specified by Se and Sp (corrected OR). This makes it easy for users to compare
the current posterior distribution (especially for models with more uncertainty) with more certain
models to visualize the effect of misclassification in a case–control study. In addition, the lines serve
as references when comparing across models. The plots and relevant codes are shown in Figure 2.
Users can also choose to extract the data from the rstan objects by calling functions such as extract,
as.data.frame, etc.

According to the plot, we observe a drastic change to the posterior distribution after taking non-
perfect Se and Sp into account. Then, we observe slightly more uniform distributions as there is more
uncertainty in the model. What is also worth noting is that in part (ii) of the plot, the posterior density
and MCMC sampling do not share the same shape, even though both assume non-perfect constant Se
and Sp. This may be a result of low Se and Sp values, which may affect the log-normality assumption
in the MCMC posterior samples.

We now show the effects of the number of iterations and chains on the computing speed of our
models. All models have been pre-compiled, which reduces the computing time significantly. For
example, randCorrOR, which is presumably one of the most complex and time-consuming models to
compute, takes about 1.32 seconds to run 3 chains with 5000 warm-up periods and 10,000 iterations
each. In comparison, it takes about 0.20 seconds to compute 2 chains with 1000 warm-up periods and
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2000 iterations each. In practice, a larger number of MCMC chains and iterations leads to more stable
and accurate results and thus is recommended. Furthermore, we find that models, such as provided
by randCorrOR, have smaller target posterior distribution regions in a Markov chain, thus rendering
it easy for the algorithm to miss the true distribution and result in “divergent transitions,” which
may return biased estimates. Increasing the value of adapt_delta parameter up to 1 in the control
argument of the methods can effectively make rstan take smaller steps to approach the target.

Conclusion

In this article, we introduce and implement the methods for making posterior inferences on the
corrected odds ratio by modeling the uncertainty on both differential and non-differential misclassifi-
cation through appropriate prior distributions. The specific implementation is publicly available using
the R package BayesSenMC. The process can be divided into two parts. First, one can use the GLMM
model with a binomial-logit link to estimate prior information on Se and Sp via a meta-analysis on the
misclassification of exposure status. Second, the estimates can be plugged into the modeling functions
to provide inferences for the odds ratio. The models can also be visualized side-by-side for better
comparisons. The validity of the analyses depends highly on the relevance of meta-analysis, in which
irrelevant studies may skew the prior estimates of Se and Sp significantly, and consequentially, the
corrected odds ratio. In addition, our models assume normal and independent priors on true exposure
probabilities, which may be limited in some cases (Chu et al., 2006).
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PAsso: an R Package for Assessing Partial
Association between Ordinal Variables
by Shaobo Li, Xiaorui Zhu, Yuejie Chen, Dungang Liu

Abstract Partial association, the dependency between variables after adjusting for a set of covariates,
is an important statistical notion for scientific research. However, if the variables of interest are
ordered categorical data, the development of statistical methods and software for assessing their
partial association is limited. Following the framework established by Liu et al. (2021), we develop an
R package PAsso for assessing Partial Associations between ordinal variables. The package provides
various functions that allow users to perform a wide spectrum of assessments, including quantification,
visualization, and hypothesis testing. In this paper, we discuss the implementation of PAsso in detail
and demonstrate its utility through an analysis of the 2016 American National Election Study.

Introduction

Partial association analysis plays an important role in scientific research. It uncovers the dependency
between variables after adjusting for a set of covariates, which are often considered as potential
confounding factors. For continuous data, a conventional approach to assessing partial association
consists of two steps: (1) regress each variable on the same set of covariates using linear regression,
and (2) inspect the association between the residuals from each regression model. However, it remains
challenging when the data of interest are recorded in ordinal scales. One of the challenges is that the
regression models for ordinal data, such as the cumulative link models (McCullagh, 1980), do not
have well-defined residuals that maintain the same properties as those from linear regression. Simply
treating ordinal data as continuous and applying the conventional approach may lead to misleading
results (Agresti, 2010). To this end, Liu et al. (2021) proposed to use the surrogate residuals (Liu and
Zhang, 2018), a type of residual developed for ordinal regression, to assess partial associations between
ordinal data. They developed a unified framework allowing quantification, hypothesis testing, and
visualization of partial association. Their proposed methods can capture linear, monotonic, and
non-monotonic associations. To make their methods readily and widely applicable in practice, we
develop the R package PAsso (Partial Association). The goal of this paper is to introduce this package
in both implementation and utility.

Consider a pair of ordinal variables Y1 = {1, ..., J1} and Y2 = {1, ..., J2}, where the recorded values
represent labels of ordered categories. Let {X1, ..., Xp} be a set of covariates to be adjusted for. We
consider such a bivariate scenario in this paper unless indicated otherwise. To assess the partial
association between Y1 and Y2, Liu et al. (2021) proposed to assess the association between their
corresponding surrogate residuals (Liu and Zhang, 2018). It mimics the conventional approach as if Y1
and Y2 were continuous variables. Specifically, they first apply ordinal regression models, such as the
cumulative link model, to Y1 and Y2 separately, and derive corresponding surrogate residuals R1 and
R2. Then, assessing the partial association between Y1 and Y2 is equivalent to assessing the association
between R1 and R2. The validity of this approach is supported by the key result in Liu et al. (2021),
which shows that the independence between the surrogate residuals R1 and R2 is a sufficient and
necessary condition for the partial independence between the ordinal variables Y1 and Y2. We provide
a more detailed review of their framework subsequently in this paper.

The R package PAsso provides three types of association measures discussed in Liu et al. (2021).
They are Pearson-correlation-based measure ϕρ, Kendall-tau-based measure ϕτ , and a copula-based
measure, Schweizer-Wolff’s sigma-based ϕσ. Specifically,

ϕρ = ρ(R1, R2) = Cov(R1, R2)
/√

Var(R1)Var(R2); (1)

ϕτ = τ(R1, R2) = Pr{(R1 − R∗
1)(R2 − R∗

2) > 0} − Pr{(R1 − R∗
1)(R2 − R∗

2) < 0}; (2)

ϕσ = 12
∫∫

[0,1]2
|C(u, v)− uv|dudv, where C(u, v) = Pr{G1(R1) ≤ u, G2(R2) ≤ v}. (3)

These measures are proposed in order to capture linear, monotonic, and non-monotonic relationships,
respectively. For the purpose of comparison, the package also computes the Pearson correlation
coefficient, Kendall’s tau coefficient (Kendall, 1938), and Schweizer-Wolff’s sigma (Schweizer and
Wolff, 1981) for marginal associations between Y1 and Y2. This is convenient and useful as the marginal
association is often firstly examined and set to be compared with the partial association. Furthermore,
the package allows analyses for multiple variables beyond the bivariate case so that it delivers an
association matrix as one of the key outputs.
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In addition, bootstrap-based standard errors and p-values are reported in order to test partial
independence, i.e., H0 : ϕ = 0, where ϕ is a general notation for the measure of partial association,
including ϕρ, ϕτ , and ϕσ as defined in (1)-(3). The package also provides additional flexibility to
users who may wish to test whether the partial dependence is negligible at a certain threshold δ, i.e.,
H0 : |ϕ| ≤ δ instead of H0 : ϕ = 0. Besides quantitative analysis outcomes, the package provides
graphical tools, including partial regression plots and 3-D probability-to-probability plots (P-P plot).
These graphical tools visualize the shape and strength of partial association, enabling further analysis
that may help to gain extra insights. It is worth noting that the package PAsso also provides model
diagnostic tools (Liu and Zhang, 2018), which is similar to those in the R package sure (Greenwell
et al., 2018).

Although the focus of this paper is on ordinal data, the package PAsso can also deal with binary
data. In fact, the binary outcome is a special case of ordered categorical data with two categories.
The commonly used regression models are binary probit or logit model, for which the definition
of surrogate residual remains the same. In the rest of this paper, we first review the framework
established by Liu et al. (2021). Then, we provide an overview of the package PAsso, following which
we demonstrate its utility with a real data analysis of the 2016 American National Election Study
(ANES).

Review of Liu et al. (2021)’s methodology

To assess the partial association between ordinal variables, Liu et al. (2021)’s framework uses the
surrogate residual (Liu and Zhang, 2018) as a key tool. Consider the cumulative link model

G−1(P(Y ≤ j)) = αj − Xβ, j = 1, 2, ..., J, (4)

where the intercepts satisfy −∞ = α0 < α1 < α2 < · · · < αJ = +∞, and G−1(·) is a pre-specified link
function. For example, G−1(u) = Φ−1(u) results in the ordered probit model, and G−1(u) = log( u

1−u )
results in the ordered logit model, also known as proportional odds model. Model (4) can be thought
of as arising from a latent variable model

Z = f (X, β) + ϵ, (5)

where ϵ ∼ G(·), and Z is the latent continuous variable such that Y = j if Z ∈ (αj−1, αj]. Given the
observed category of Y, Liu and Zhang (2018) defined a surrogate variable S as

S|(Y = j) ∼ Z|(αj−1 < Z ≤ αj). (6)

On the continuous scale of S, Liu and Zhang (2018) defined the surrogate residual R as R = S− E(S|X).
The statistical properties of the surrogate residual R are similar to the classical residuals defined for
linear regression models. The notion also applies to other general ordinal regression models. We refer
readers to Liu and Zhang (2018) for more details of the surrogate residuals.

To assess the partial association between ordinal variables Y1 and Y2, Liu et al. (2021) proposed
to assess the association between their corresponding surrogate residuals R1 and R2 from ordinal
regression models. This approach mimics the conventional way of assessing the partial association
between continuous variables and has been justified by their key result. Specifically, conditional on a
set of covariates X = {X1, ..., Xp}, Y1 and Y2 are independent if and only if their surrogate residuals
R1 and R2 are independent. That is,

(Y1 ⊥⊥ Y2) | X ⇔ R1 ⊥⊥ R2 | X.

Based on this result, Liu et al. (2021) developed a new framework for assessing ordinal-ordinal
partial association. The framework includes a set of new methods to quantify, visualize and test the
association.

As for quantification, Liu et al. (2021) justified the advantages of using their proposed measure
ϕ. First, the measure ϕ reflects the association between ordinal variables rather than that between
latent continuous variables. It does not constrain itself to probit models but broadly applies to
models with non-probit link functions. Its variants (1), (2), and (3) can capture linear, monotonic, and
general associations. These features make the association measure ϕ fundamentally different from the
polychoric correlation (Tallis, 1962), a classical association measure that describes the linear association
between the latent normal variables. Moreover, their association measures do not require an upfront
specification of a joint distribution of Y1 and Y2. Instead, their framework only requires the marginal
model for each Y to be correctly specified. It thus achieved the so-called “division of labor,” where the
efforts of specifying marginal models and association structure are divided. This property has been
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seen in the development of generalized estimating equations (GEEs) and copula models. It enables
us to compute the correlation matrix for a high-dimensional set of ordinal variables with affordable
computational cost.

To reduce the variability caused by the simulation of the surrogate variable S in (6), Liu et al. (2021)
suggested using the average

ϕ̂(M) =
1
M

M

∑
m=1

ϕ̂(m), (7)

where ϕ̂(m) is calculated based on the mth draw of the surrogate residuals (R(m)
1 , R(m)

2 ) for m = 1, ..., M,
and all draws are independent. Specifically, after fitting the two marginal regression models, we draw

M independent sets of surrogate residuals for each model, i.e., (R(1)
1 , ..., R(M)

1 ) and (R(1)
2 , ..., R(M)

2 ).

Then ϕ̂(m) is obtained based on (R(m)
1 , R(m)

2 ), the mth draw of surrogate residuals. They numerically
found that M = 30 is sufficient to stabilize the variance.

Liu et al. (2021) showed how to use (7) to make inferences, such as calculating standard errors,
confidence intervals, and p-values. They established a bootstrap scheme to approximate the empirical
distribution of ϕ̂(M) in (7). Specifically, it generates B bootstrap samples from the original data

and obtains a set of bootstrap estimates {ϕ̂
(M)
1 , ϕ̂

(M)
2 , ..., ϕ̂

(M)
B }. Denote the empirical distribution of

{ϕ̂
(M)
1 , ϕ̂

(M)
2 , ..., ϕ̂

(M)
B } by F̂B(ϕ). This distribution approximates the distribution of ϕ̂(M). Therefore,

the standard deviation of the bootstrap distribution F̂B(ϕ) is an estimate of standard error of ϕ̂(M).
The interval (F̂−1

B (α/2), F̂−1
B (1 − α/2)) can be used as a 100(1 − α)% confidence interval. For the

hypothesis testing of partial independence, i.e., H0 : ϕ = 0, the p-value is calculated as

2 × min(F̂B(0), 1 − F̂B(0)).

For example, F̂B(0) is computed as I(ϕ̂
(M)
b ≤ 0)/B, where I(x) is the indicator function that takes

value 1 if x is true and 0 otherwise. Furthermore, this approach allows testing the hypothesis whether
the partial association is smaller than a threshold δ, i.e., H0 : |ϕ| < δ. In this case, the p-value is
calculated as 2 × min(F̂B(δ), 1 − F̂B(−δ)). A useful application is to test the hypothesis of a negligible
association, where δ usually takes a small value that can be determined by domain expert based on
specific questions.

In addition to quantitative analysis, Liu et al. (2021) developed graphical tools to visualize the
shape of the partial association. One of the most intuitive plots is the partial regression plot, which is
a scatter plot between the surrogate residuals R1 and R2. Such a partial regression plot reflects the
relationship between Y1 and Y2 after adjusting for X. Another graphical tool is a 3-D probability-
to-probability (P-P) plot. It is developed based on Theorem 2 and Corollary 2 in Liu et al. (2021).
Specifically, if R1 and R2 are independent, then

C(u, v) = uv, (8)

where C(u, v) is a copula function for the joint distribution of the surrogate residuals R1 and R2, i.e.,
C(u, v) = Pr(R1 ≤ G−1

1 (u), R2 ≤ G−1
2 (v)) where G1 and G2 are the assumed link functions in the

model (4). The 3-D P-P plot draws C(u, v)− uv against (u, v), where the deviation C(u, v)− uv reflects
the degree of dependence between R1 and R2, hence the partial dependence between Y1 and Y2.

In addition to the cumulative link model (4), Liu et al. (2021)’s framework applies to general
ordinal regression models such as the adjacent-category logit and stereotype models. In the following
sections, we introduce the PAsso package and discuss how to use it to implement Liu et al. (2021)’s
framework with sample code and examples.

Partial association analysis with R package PAsso

An overview

Among the exported functions from the PAsso package, PAsso(), test(), and plot() are the three
main functions for estimating, testing, and visualizing partial associations. In practice, users should
first apply the function PAsso(), which generates a PAsso object. The components in this object include
estimates of partial and marginal associations, fitted regression models for each variable, and other
components to be used for relevant analysis. The generated PAsso object plays an instrumental role,
as it is a necessary input for other functions in the package. This design provides convenience as the
details of data, regression models, and type of association measures need only to be specified once in
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the function PAsso(), and they will be passed to other functions once the PAsso object is called.

In addition to the main functions, the PAsso package also provides several other functions that
can further assist the analysis of partial association. Specifically, the function plot3D() produces the
copula-based 3-D P-P plot, which helps to visualize the strength of a general partial association. The
function residuals() can extract the surrogate residuals from a PAsso object or a model object. The
function diagnostic.plot() generates residual-based model diagnostic plots to help validate the
model specifications.

We provide in Figure 1 a flow chart to illustrate how to use the PAsso package for assessing partial
association under a bivariate setting. On the far left, the grey block contains elements to input: the
data and the models. By calling the function PAsso(), we generate a PAsso object as shown in the
orange block in the center. This PAsso object can yield results for estimation, testing, and visualization
(the three orange blocks on the far right). The PAsso object can also give us residuals, which can be
used for model diagnostics (blue blocks). In fact, the model diagnostic plots are byproducts of the
package. To make it more convenient, we provide the function diagnostic.plot() that can be directly
applied to the PAsso object.

Figure 1: Illustration of functions in the PAsso package for partial association analysis.

Figure 1 clearly shows that the PAsso object plays a central role in the entire analysis, where all
the other functions take it as an input. Therefore, understanding the PAsso() function and specifying
appropriate inputs are important, which ensures valid results produced by other functions in the
subsequent analysis. Next, we describe the detailed implementation and the key inputs of the function
PAsso(), as well as other functions in the package.

Implementation of main functions

PAsso() for estimation

To apply the function PAsso(), users need to specify the data frame, the names of Y variables (e.g.,
Y1 and Y2) and covariates, and the type of association measure. Other inputs, including the type of
model and residual method, have default values. The first step performed by PAsso() is to estimate
the regression model for each Y variable. Based on the data type, by default, the function PAsso()
applies the cumulative probit model as in (4) (polr() from MASS (Venables and Ripley, 2002)) if Y is
ordinal and the binary probit model (glm() from stats) if Y is binary. Users can also specify other link
functions supported by polr() and glm().

Once the regression models for Y1 and Y2 are estimated, the surrogate residuals, R1 and R2,
can be obtained by using the function residuals() in the package. Here, the function residuals()
calls the fitted model based on which the surrogate residuals are computed. The implementation of
residuals() is similar to the resids() function from package sure. Then, by applying the specified
measure to the surrogate residuals, one can obtain the estimated partial association defined in (7). In
the current package version, the three types of association measures, (1), (2), and (3), are implemented
with cor() from the stats package, cor.fk() from the pcaPP package (Filzmoser et al., 2018), and
wolfCOP() from the copBasic package (Asquith, 2020), respectively.

It is worth mentioning that the function PAsso() provides additional flexibility by allowing
pre-fitted model objects to be the inputs. It permits users to use specific models based on domain
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knowledge and experiences. Similarly, the pre-fitted model objects can also be the inputs for the
functions residuals() and diagnostic.plot(). The supported models and corresponding R functions
along with the packages (rms (Harrell Jr, 2019), ordinal (Christensen, 2019), VGAM (Yee et al., 2010))
are listed in Table 1.

stats MASS rms ordinal VGAM

Response Model glm polr lrm orm clm vglm vgam

Ordered probit ✓ ✓ ✓ ✓ ✓
Ordinal Ordered logit (proportional odds) ✓ ✓ ✓ ✓ ✓

Proportional hazard (clog-log) ✓ ✓ ✓ ✓ ✓
Adjacent-category logit ✓ ✓

Logit ✓ ✓ ✓ ✓
Binary Probit ✓ ✓ ✓

Complementary log-log ✓ ✓ ✓

Table 1: Models and packages supported by PAsso.

test() for hypothesis testing

To carry out more detailed inferences on the estimated partial association, one can apply the function
test(), which is implemented based on a bootstrap scheme discussed earlier. To be specific, it first
generates bootstrap samples based on the original data and then repeats the calculations performed in
the PAsso() function for each bootstrap sample. As a result, the bootstrap distribution of ϕ̂(M) defined
in (7) can be obtained.

The components from test() include standard errors, confidence intervals, and p-values for the
partial independence test. To apply test(), in addition to the key input PAsso object, the user can
specify the number of bootstrap samples, the type of null hypothesis, and whether or not parallel
computing should be employed. If the Schweizer-Wolff-sigma-based measure ϕσ is used, the compu-
tational cost of test() may be high. This is because the estimation of ϕσ based on the current version
of the package copBasic is slow due to the double integration in the formula (3).

plot() and plot3D() for visualization

There are two types of plots being covered in the PAsso package: the pairwise partial regression plot
and the 3-D P-P plot. The pairwise partial regression plot can be obtained by applying the function
plot(). It is implemented based on the function ggpairs() in the package GGally (Schloerke et al.,
2020), which is a nice extension of the widely used graphical tool ggplot2 (Wickham, 2016). For users
who are familiar with GGally, the produced figure can be fully customized using the arguments for
the function ggpairs().

The 3-D P-P plot is obtained by using the function plot3D(). This function is implemented based
on the plotly (Sievert, 2020) package, which offers interactive graphs. It plots C(u, v)− uv against u
and v as discussed in (8). The height of the surface reflects the degree of partial dependence between
Y1 and Y2.

Table 2 summarizes the main input and output of the functions in the PAsso package. Users
should refer to the package vignette for detailed arguments and output values.

Analysis of the 2016 American National Election Study (ANES)

We demonstrate the utility of the PAsso package with a real data example, a sample of the survey
data from the 2016 American National Election Studies (the data of Time Series study). The American
National Election Studies (ANES) is a joint project between the University of Michigan and Stanford
University since 1948 (DeBell, 2010), aiming to provide researchers, policymakers, and citizens with
high-quality survey data pertinent to political science. The original data include over a thousand
survey questions for pre- and post-election surveys based on the same population (4,271 respondents).
For our analysis, we select eight survey questions in the pre-election study and remove the respondents
who have missing values on any of these eight variables. Here, we assume that the missing values are
missing completely at random. As a result, our sample consists of 2,188 respondents. Table 3 describes
the variables in our sample.

To demonstrate the utility of the PAsso package, we conduct an illustrative analysis, which focuses
on the four variables: voter’s party identification (PID), his/her own left-right placement (selfLR)
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Function name Functionality Input Output
PAsso() Estimation • dataframe to be analyzed;

• names of the Y variables;
• names of the covariates;
• association measure;
• other inputs such as
marginal model specifications
have default values (see the
package vignette).

• partial and marginal
association matrix;
• summary of model
coefficient estimates for
each marginal model;
• results also include
surrogate residuals and
detailed model summaries.

test() Testing • the PAsso object;
• number of bootstrap
samples;
• type of null hypothesis.

• Partial association
matrix;
• standard errors;
• p-values;
• confidence intervals.

plot() Visualization • the PAsso object;
• other arguments follow the
GGally (see the package
vignette).

• Pairwise partial
regression plot.

plot3D() Visualization • the PAsso object;
• two variable names;
• other arguments follow the
plotly (see the package
vignette).

• 3-D P-P plot based on
Copula.

residuals() Residuals • the PAsso object or a single
model object;
• number of draws;
• residual method.

• surrogate residuals.

diagnostic.plot() Diagnostics • the PAsso object or a single
model object.

• model diagnostic plots.

Table 2: Summary of inputs and outputs of the functions in PAsso.

Variable Explanation

age respondent’s age

education respondent’s highest level of education. We create another variable
’edu.year’, which recodes the original education to a continuous scale as the
approximate number of years of education. (This conversion is for
convenience in model fitting.)

income respondent’s annual income in categories, e.g., $40k-$60k. We create
another variable ’income.num’, which recodes original income to
continuous scale (the median of the recorded range).

PID respondent’s party identification with 7 ordinal levels from strong democrat
(=1) to strong republication (=7).

selfLR respondent’s self-placement about own left-right placement in 7 ordinal
levels from extremely liberal (=1) to extremely conservative (=7).

TrumpLR respondent’s opinion about Donald Trump’s left-right placement in 7
ordinal levels (same scale as selfLR).

ClinLR respondent’s opinion about Hilary Clinton’s left-right placement in 7
ordinal levels (same scale as selfLR).

PreVote respondent’s voting preference between Donald Trump and Hilary Clinton.

Table 3: Variable description for the selected sample of the 2016 ANES data.

and the left-right placement for Donald Trump (TrumpLR) and Hilary Clinton (ClinLR). These four
variables of interest have the same ordinal scale, and they all represent respondents’ political views
for themselves as well as for the two presidential candidates. We attempt to answer the following
question. Are these four variables still correlated after adjusting for their age, education, and income?
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In what follows, we use the PAsso package to answer this question step-by-step from three aspects:
estimation, hypothesis testing, and graphical visualization.

Estimation

First, we use the function PAsso() to obtain the estimates of the association measures in (1)-(3). We
specify the names of these four variables as responses and the covariate names as the adjustments. If
the Kendall-tau-based measure (2) is desired, we can specify the option method="kendall", as in the
sample code below.

library(PAsso)
data(ANES2016) # load the dataset
set.seed(2020) # for reproducibility
phi <- PAsso(responses = c("PID", "selfLR", "TrumpLR", "ClinLR"),

adjustments = c("age", "edu.year", "income.num"),
data = ANES2016,
method = "kendall")

print(phi, digits = 3)

#> --------------------------------------------
#> The partial correlation coefficient matrix:
#> PID selfLR TrumpLR ClinLR
#> PID 1.000 0.516 -0.061 -0.323
#> selfLR 1.000 -0.103 -0.294
#> TrumpLR 1.000 -0.072
#> ClinLR 1.000

As shown above, the default output is pairwise correlations in a matrix form. The PAsso object
contains other hidden components, including the marginal association matrix, details of each regres-
sion model, and all draws of the surrogate residuals. For users’ convenience, we also make the generic
function summary() available for the PAsso object.

summary(phi, digits = 4)

#> --------------------------------------------
#> The partial correlation coefficient matrix:
#>
#> PID selfLR TrumpLR ClinLR
#> PID 1.0000 0.5161 -0.0610 -0.3232
#> selfLR 1.0000 -0.1034 -0.2938
#> TrumpLR 1.0000 -0.0715
#> ClinLR 1.0000
#> --------------------------------------------
#> The marginal correlation coefficient matrix:
#>
#> PID selfLR TrumpLR ClinLR
#> PID 1.0000 0.6331 -0.0956 -0.4081
#> selfLR 1.0000 -0.1592 -0.3724
#> TrumpLR 1.0000 -0.0721
#> ClinLR 1.0000
#>
#> --------------------------------------------
#> --------------------------------------------
#>
#> The coefficients of fitted models are:
#>
#> PID selfLR TrumpLR ClinLR
#> age 0.0048*** 0.0098*** -0.0056*** -0.0069***
#> Std. Error 0.0013 0.0013 0.0013 0.0013
#> ---
#> edu.year -0.0459*** -0.0737*** 0.0540*** -0.0127
#> Std. Error 0.0098 0.0095 0.0096 0.0097
#> ---
#> income.num 0.0009* 0.0004 0.0005 -0.0009*
#> Std. Error 0.0004 0.0004 0.0004 0.0004
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#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The function summary() gives the partial and marginal association in two separate matrices
and summary of coefficient estimates of each regression model. The comparison between the two
association matrices shows the extent to which the strength of association has been weakened due
to the adjusted covariates. Clearly, the associations between all pairs of the four variables have been
weakened by as much as 36% (PID vs. TrumpLR) and as less as 0.8% (TrumpLR vs. ClinLR). The last
table is the model summary table, where each column displays the coefficient estimates and their
standard errors for each regression model, and the column names are the names of response variables
(e.g., PID, selfLR, TrumpLR, and ClinLR). The stars represent the range of p-values as noted at the
bottom of the model summary table. For instance, '***' indicates that the corresponding p-value is
between 0 and 0.001.

Hypothesis testing

Next, we use the function test() to obtain the p-values and bootstrap standard errors of the partial
associations. This function is directly applied to the PAsso object. The number of bootstrap replicates
can be specified with the argument bootstrap_rep, whose default value is 300. In general, we
recommend the minimum number of bootstrap replicates to be 1000 in order to carry out more
accurate p-values. To speed up the computational time, we can further adopt parallel computing by
specifying parallel=TRUE. However, this option requires users to pre-set the number of cores and the
cluster, as demonstrated below.

library(doParallel) # load packages for parallel computing
library(progress)
numCores <- detectCores() # Number of CPU cores. Do Not be too aggressive!
# Set up parallel backend (multicore for unix and snow for windows)
cl <- if (.Platform$OS.type == "unix") numCores else makeCluster(numCores)
registerDoParallel(cl)
test(phi, bootstrap_rep = 1000, H0 = 0, parallel = TRUE)

# The partial association analysis:
#
# PID selfLR TrumpLR ClinLR
# PID 1.0000 0.5161 -0.0610 -0.3232
# S.E. 0.0094 0.0134 0.0102
# Pr 0.001*** 0.001*** 0.001***
# ---
# selfLR 1.0000 -0.1034 -0.2938
# S.E. 0.0129 0.0108
# Pr 0.001*** 0.001***
# ---
# TrumpLR 1.0000 -0.0715
# S.E. 0.0154
# Pr 0.001***
# ---
# ClinLR 1.0000
# S.E.
# Pr
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The obtained p-values indicate that the partial associations between each pair of variables are
statistically significant. We can also test for negligible dependence with a certain threshold δ. In
this case, the null hypothesis is H0 : |ϕ| ≤ δ. The value of δ can be specified using the argument
H0. The default value of H0 is 0, representing H0 : ϕ = 0. The example below illustrates a negligible
dependence test with threshold δ = 0.05.

test(phi, bootstrap_rep = 1000, H0 = 0.05, parallel = TRUE)

# The partial association analysis:
#
# PID selfLR TrumpLR ClinLR
# PID 1.0000 0.5161 -0.0610 -0.3232
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# S.E. 0.0093 0.0135 0.0104
# Pr 0.001*** 0.450 0.001***
# ---
# selfLR 1.0000 -0.1034 -0.2938
# S.E. 0.0133 0.0109
# Pr 0.001*** 0.001***
# ---
# TrumpLR 1.0000 -0.0715
# S.E. 0.0153
# Pr 0.128
# ---
# ClinLR 1.0000
# S.E.
# Pr
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

From the output, we can see that the partial associations between PID and TrumpLR, and TrumpLR
and ClinLR are not significant. This result implies that the partial dependencies can be negligible
under the threshold δ = 0.05.

Visualization

To further understand how these variables are associated after the adjustment, we utilize graphical
tools for quick visualization. First, we apply the function plot() to the PAsso object phi. It produces
the pairwise partial regression plot.

plot(phi, color = "red", alpha = 0.1) # alpha specifies opacity
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Figure 2: Pairwise partial regression plot for PID, selfLR, TrumpLR, and ClinLR.

Figure 2 contains the partial regression plots displayed on the upper triangle, the estimated partial
associations shown on the lower triangle, and the density plots of the surrogate residuals on the
diagonal line. The partial regression plot between each pair of variables is essentially the scatter plot
of the corresponding pair of surrogate residuals. The fitted smooth curve on top of each scatter plot is
through the local weighted smoothing splines (LOWESS) that are available in the GGally package.

An interesting finding from Figure 2 is that the weakest partial association (between PID and
TrumpLR) shown previously may not necessarily be weak because a quadratic relationship is clearly
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shown. To confirm this relationship, it is worth drawing the 3-D P-P plot, which can indicate the
strength of a non-monotonic relationship. This can be done by applying the function plot3D() on the
PAsso object and specifying the pair of variables of interest.

plot3D(phi, y1 = "PID", y2 = "TrumpLR")

Figure 3: 3D probability-to-probability plot based on a bivariate copula.

From Figure 3, the surface reaches both positive and negative sides (vertical axis). This is consistent
with the quadratic pattern displayed in the partial regression plot in Figure 2. Furthermore, the altitude
of the surface on both sides is moderate, indicating that the strength of the partial association between
PID and TrumpLR may not be negligible. Additionally, the function plot3D() also provides an option
to convert the 3-D plot to a contour plot by specifying type = "contour". The following line of code
creates Figure 4, showing the contour plot corresponding to Figure 3.

plot3D(phi, y1 = "PID", y2 = "TrumpLR", type = "contour")

Figure 4: Colored contour plot based on a bivariate copula.

As mentioned earlier, the function PAsso() allows users to use pre-fitted regression models as
inputs. Below, we provide a sample code for this alternative use of PAsso().

library(MASS)
# convert numeric response to factor
Yname <- c("PID", "selfLR", "TrumpLR", "ClinLR")
ANES2016[Yname] <- lapply(ANES2016[Yname], factor)
# fit each model separately
fit.PID <- polr(PID ~ age + edu.year + income.num, data = ANES2016, method = "probit")
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fit.selfLR <- polr(selfLR ~ age + edu.year + income.num, data = ANES2016, method = "probit")
fit.TrumpLR <- polr(TrumpLR ~ age + edu.year + income.num, data = ANES2016, method = "probit")
fit.ClinLR <- polr(ClinLR ~ age + edu.year + income.num, data = ANES2016, method = "probit")
# assess partial association
set.seed(2020)
phi1 <- PAsso(fitted.models = list(fit.PID, fit.selfLR, fit.TrumpLR, fit.ClinLR),

method = "kendall")
print(phi1, digits = 3)

#> --------------------------------------------
#> The partial correlation coefficient matrix:
#> PID selfLR TrumpLR ClinLR
#> PID 1.000 0.516 -0.061 -0.323
#> selfLR 1.000 -0.103 -0.294
#> TrumpLR 1.000 -0.072
#> ClinLR 1.000

The above output is exactly the same as the other way we showed earlier. Such flexibility allows
user to specify different models and link functions for different response variables based on domain
expertise and convention, while it does not affect other functions used in the following analyses. Each
of these model objects (fit.PID, fit.selfLR, fit.TrumpLR, and fit.ClinLR) can also be the input for
the functions residuals() and diagnostic.plot().

Model diagnostics

In addition to assessing partial association, the package also provides the function diagnostic.plot()
for model diagnostics. The output of this function contains three types of diagnostic plots: (1) residual
Q-Q plot; (2) residual vs. fitted value; and (3) residual vs. covariates. We can specify one of these
types of the plot by using the argument output. Since there are at least two regression models being
estimated, the function diagnostic.plot() allows the user to specify a particular model (using the
argument model_id) for which the diagnostic plots are produced. We provide two examples below to
illustrate the two different outputs.

# residual vs. fitted value (the linear predictor) for all models
diagnostic.plot(phi, output = "fitted")
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Figure 5: Model diagnostic plot (Residual vs. fitted) for all four models.
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# residual Q-Q plot for the second model (selfLR)
diagnostic.plot(phi, output = "qq", model_id = 2)
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Figure 6: Model diagnostic plot (Residual Q-Q plot) for the second model.

Figure 5 shows the scatter plot between surrogate residuals and the fitted values (the linear
predictor in the model (5)) for all four models. Figure 6 shows the Q-Q plot for the second model whose
response variable is “selfLR.” Neither of the two figures provides evidence of model misspecification
or inadequate fitting.

Adjacent-category logit model

Finally, we show an example where the adjacent-category logit model is employed for the covariates
adjustment. In addition, we also include a binary variable, “PreVote”, in order to demonstrate the
utility of PAsso for different types of data. The variable “PreVote” takes two values: Hilary Clinton
and Donald Trump. For convenience, we recode “PreVote” to numeric values 0 (Hilary Clinton) and 1
(Donald Trump), and the binary logit model is used. For the demonstration purpose, we only show
the estimation results from PAsso().

ANES2016$PID <- as.numeric(ANES2016$PID)
phi2 <- PAsso(responses = c("PreVote.num", "PID", "selfLR", "TrumpLR", "ClinLR"),

adjustments = c("age", "edu.year", "income.num"),
data = ANES2016,
method = "kendall",
model = c("logit", "acat", "acat", "acat", "acat"))

summary(phi2, digits = 3)

#> --------------------------------------------
#> The partial correlation coefficient matrix:
#>
#> PreVote.num PID selfLR TrumpLR ClinLR
#> PreVote.num 1.000 0.445 0.390 -0.091 -0.300
#> PID 1.000 0.516 -0.062 -0.319
#> selfLR 1.000 -0.105 -0.293
#> TrumpLR 1.000 -0.071
#> ClinLR 1.000
#> --------------------------------------------
#> The marginal correlation coefficient matrix:
#>
#> PreVote.num PID selfLR TrumpLR ClinLR
#> PreVote.num 1.000 0.706 0.637 -0.182 -0.494
#> PID 1.000 0.633 -0.096 -0.408
#> selfLR 1.000 -0.159 -0.372
#> TrumpLR 1.000 -0.072
#> ClinLR 1.000
#>
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#> --------------------------------------------
#> --------------------------------------------
#>
#> The coefficients of fitted models are:
#>
#> PreVote.num PID selfLR TrumpLR ClinLR
#> age 0.015*** -0.002*** -0.006*** 0.002** 0.004***
#> Std. Error 0.003 0.001 0.001 0.001 0.001
#> ---
#> edu.year -0.129*** 0.020*** 0.045*** -0.036*** 0.022**
#> Std. Error 0.019 0.004 0.006 0.006 0.007
#> ---
#> income.num 0.001 0.000** 0.000 -0.001** 0.001**
#> Std. Error 0.001 0.000 0.000 0.000 0.000
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The same elements as for the cumulative link model are printed: the estimated partial and marginal
associations and the coefficient estimates of the five models. As specified in the argument model, the
binary logit model is used for PreVote, and the adjacent-category logit model (“acat”) is used for the
other four variables. From the output, we found that the strength of association between “PreVote”
and “PID” reduces from 0.706 to 0.444 (≈ 37%) after adjusting for the three covariates. This result is
qualitatively consistent with that in Liu et al. (2021), which has conducted the same analysis based on
the 1996 ANES data.

Summary

We have developed the R package PAsso (Zhu et al., 2021) for assessing the partial association between
ordinal variables. The development follows the statistical framework established by Liu et al. (2021).
The package provides several functions, allowing estimation, hypothesis testing, and visualization of
partial associations. By using this single package, users can quickly obtain a full picture of the partial
associations between multiple variables.
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bcmixed: A Package for Median Inference
on Longitudinal Data with the Box–Cox
Transformation
by Kazushi Maruo, Ryota Ishii, Yusuke Yamaguchi, Masahiko Gosho

Abstract This article illustrates the use of the bcmixed package and focuses on the two main functions:
bcmarg and bcmmrm. The bcmarg function provides inference results for a marginal model of a mixed ef-
fect model using the Box–Cox transformation. The bcmmrm function provides model median inferences
based on the mixed effect models for repeated measures analysis using the Box–Cox transformation for
longitudinal randomized clinical trials. Using the bcmmrm function, analysis results with high power
and high interpretability for treatment effects can be obtained for longitudinal randomized clinical
trials with skewed outcomes. Further, the bcmixed package provides summarizing and visualization
tools, which would be helpful to write clinical trial reports.

Introduction

Longitudinal data are often observed in medical or biological research. One of the most popular
statistical models for studying longitudinal continuous outcomes is the linear mixed effect model.
Several packages are available from CRAN that allow for the implementation of linear mixed effects
models (e.g., nlme (Pinheiro et al., 2021), glme (Sam Weerahandi et al., 2021), lme4 (Bates et al., 2015),
CLME (Jelsema and Peddada, 2016), PLmixed (Rockwood and Jeon, 2019), MCMCglmm (Hadfield,
2010)).The linear mixed effect models assume that longitudinal outcomes follow a multivariate normal
distribution. However, the distribution of the outcome is often right skewed in the medical and
biological fields. Therefore, evaluating fixed effects based on the normal distribution theory may
result in inefficient inferences such as power loss for some statistical tests. In addition, although a
model-based mean for a certain level of the categorical exploratory variables is often estimated when
applying the linear mixed effect model (e.g., the model-based mean for each treatment group of the
last visit in a randomized clinical trial), the mean may be inadequate as a representative value for the
skewed data.

The Box–Cox transformation (Box and Cox, 1964) is often applied to skewed longitudinal data
(Lipsitz et al., 2000) to reduce the skewness of a skewed outcome and apply existing statistical models
based on a normal distribution. However, it is difficult to directly interpret the model mean estimated
on the scale after applying some transformations to the outcome variable.

For the sake of the interpretability of the analysis results, Maruo et al. (2015) propose a model
median inference method on the original scale based on the Box–Cox transformation in the context
of randomized clinical trials. Maruo et al. (2017) extend this method to the framework of mixed
effects models for repeated measures (MMRM) analysis (Mallinckrodt et al., 2001) in the context of
longitudinal randomized clinical trials.

The bcmixed package (Maruo et al., 2020) contains functions to estimate model medians for
longitudinal data proposed by Maruo et al. (2017), as well as a sample data set that is used in Maruo
et al. (2017). In this package, the parameter estimation is conducted partially using the gls function
in the nlme package. This paper illustrates the usage of the package with the sample data in several
contexts.

The remainder of this manuscript is organized as follows: In section Methods, we describe the
methods proposed by Maruo et al. (2017). Then, we illustrate the usage of the bcmixed package
with the example data in section Illustrations. Finally, our contributions are summarized in section
Summary and discussion.

Methods

We briefly introduce the method proposed by in Maruo et al. (2017). The detailed expressions can be
found in Maruo et al. (2017).
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Parameter inference for the Box–Cox model

Let the outcome be a continuous and positive value. The outcomes are measured over time for
each subject i = 1, . . . , n, and the number of planned measurement occasions is T (occasion index:
t = 1, . . . , T). The outcome vector for the ith subject is denoted by yi = (yi1, . . . , yini )

T , where ni is
the number of measurements for the ith subject. We have ni ≤ T because of missingness. Then, we
consider applying the following model (Lipsitz et al., 2000; Box and Cox, 1964):

zi = Xiβ + Wibi + ϵi, (1)

where zi is the Box–Cox transformed outcome vector such that the jth element (j = 1, . . . , ni) is denoted
by

zij =

{
(yλ

ij − 1)/λ, λ ̸= 0,
log yij, λ = 0,

and λ is the transformation parameter. The parameter β is the p-dimensional vector of the fixed effect,
bi is the q-dimensional vector of random effects distributed as MVNq(0q, D), ϵi is the ni-dimensional
vector of random errors distributed independently as MVNni (0ni , Σi), and Xi and Wi are ni × p and
ni × q design matrices relating the fixed and random effects, respectively. The random variables
bi and ϵi are independent. From Formula (1), it is derived that zi|λ ∼ MVNni (Xiβ, Vi), where
Vi = WiDWT

i + Σi. In this paper, we consider situations where researchers have little interest in
random effects and are interested in assessing fixed effects. In such cases, a simple formulation of
the linear mixed effect model (1) can be implemented wherein the random effects are not explicitly
modeled, but are rather included as part of the covariance matrix Vi. We focus on such a “marginal”
mean model. The covariance parameter vector in V = Vi for ni = T (i.e., subjects with no missing
values) is denoted as α = (α1, . . . , αm)T . The dimension of α, that is m, depends on T and the specified
covariance structure.

Let the model parameter vector be θ = (λ, βT , αT)T . The maximum likelihood estimate of
θ is obtained through maximizing the profile likelihood for λ (Lipsitz et al., 2000; Maruo et al.,
2017). The model-based and robust variance estimators of the maximum likelihood estimator θ̂

are given by V(M)
θ = {−Ĥ}−1 and V(R)

θ = {−Ĥ}−1 Ĵ{−Ĥ}−1, respectively, where H = ∂2

∂θ∂θT l(θ),

J = ∑n
i=1

{
∂

∂θ li(θ)
}{

∂
∂θ li(θ)

}T
, l(θ) is the likelihood function for n subjects, and li(θ) is the likelihood

function for the ith subject. The matrices Ĥ and Ĵ are obtained from the matrices H and J by replacing
θ by θ̂, respectively. A robust variance estimator is an asymptotically valid estimator even when the
model (1) is mis-specified (Cox, 1961).

Model median inference

We now focus on the continuous and positive outcomes of a certain disease, and consider a situation in
which the efficacy of some treatments (group index: g = 1, ..., G) is compared based on a randomized,
parallel group clinical trial, where the total number of subjects is n. The explanatory variable matrix, Xi,
and the fixed effect parameter, β in model (1) are denoted in detail as follows. Now, Xi is given by the
ni × (GT +C) matrix that contains the intercept, G− 1 group variables, T − 1 occasion variables, group-
by-occasion interaction variables, and C covariates, where the categorical covariates are converted
into dummy variables. The fixed effect parameter vector is given by β = (β I , βT

g , βT
t , βT

gt, βT
c )

T , where
β I , βg = (βg(1), . . . , βg(G−1))

T , βt = (βt(1), . . . , βt(T−1))
T , βgt = (βgt(1,1), βgt(1,2), . . . , βgt(G−1,T−1))

T ,
and βc = (βc(1), . . . , βc(C))

T are the intercept, group, occasion, group-by-occasion, and covariate
parameter vectors, respectively. Although group G and occasion T is set to be at the reference level,
we set βg(G) = βt(T) = βgt(G,t) = βgt(g,T) = 0 for the sake of description (g = 1, . . . , G, t = 1, . . . , T).

Under these settings, the model median, ξ(g,t), for the treatment group g at the occasion t on the
original scale is given by

ξ(g,t) =
{

λ
(

β I + βg(g) + βt(t) + βgt(g,t) + xT
c̄ βc

)
+ 1

}1/λ
,

where xc̄ is the vector of the mean of each covariate for all subjects. The model median is the inverse
Box–Cox transformation of the model means on the Box–Cox transformed scale. The model median
can be easily interpreted because it is the estimator of the median on the original scale.

Using the delta method, the variance estimator of the maximum likelihood estimator for the

model median, ξ̂(g,t), is given by V(·)
ξ(g,t) = ∆T

ξ(g,t)V
(·)
θ ∆ξ(g,t), where ∆ξ(g,t) =

∂
∂θ ξ(g,t)

∣∣∣
θ=θ̂

. If we use

V(·)
θ = V(M)

θ , we obtain the model-based variance estimator, V(M)
ξ(g,t). On the other hand, the robust
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variance estimator, V(R)
xi(g,t), is obtained if we use V(·)

θ = V(R)
θ .

Thus, the model median difference between groups g1 and g2 at occasion t is given by δ(g1;g2,t) =
ξ(g1,t) − ξ(g2,t) and the variance estimators of the maximum likelihood estimator of the model median

difference, δ̂(g1;g2,t), is given by Vδ(g1;g2,t) = (∆(g1,t) − ∆(g2,t))
TV(·)

θ (∆(g1,t) − ∆(g2,t)). The model-based
and robust variance estimators are obtained in the same way as the model median estimator. Using
the asymptotic normality of the maximum likelihood estimator, the 100(1 − α)% confidence interval

of δ(g1;g2,t) is obtained as δ̂(g1;g2,t) ± Φ−1(1 − α/2)
√

V(·)
δ(g1;g2,t), where Φ−1(·) is the quantile function

of the standard normal distribution. The Wald-type test for the null hypothesis, δ(g1;g2,t) = 0, is

performed with the test statistic t = δ̂(g1;g2,t)/
√

V(·)
δ(g1;g2,t).

The performances of the above-mentioned inference procedures may be low for a small sample
because these are based on the asymptotic properties of the maximum likelihood estimation. Therefore,
Maruo et al. (2017) applied the following empirical small sample adjustment for the inferences of the
model median differences by referring to the study in Schluchter and Elashoff (1990).

They provide an adjusted standard error (SE) for the median difference as
√

M/(M − p)V(·)
δ(g1;g2,t)

for the compound symmetry (CS) or the first-order auto regression (AR(1)) structure and
√

n∗/(n∗ − T)

×
√

V(·)
δ(g1;g2,t) for the unstructured (UN) structure. Further, we approximate the null distribution by

the t distribution where the degrees of freedom for the CS or the AR(1) structure and the UN structure
are (n − G)(T − 1)− m and n∗ − T, respectively.

Although Maruo et al. (2017) and Maruo et al. (2020) focus only on the three covariance structures,
these three options are sufficient in the applied settings because the MMRM analysis is often applied in
the following steps. The UN structure is used, and the CS or AR(1) structure with the robust variance
estimation is used when the parameter estimation process is not properly converged (e.g., see Gosho
et al. (2017)).

Illustrations

In this section, we describe the bcmixed package that provides the analysis results based on the
mixed effect models with the Box–Cox transformation. The package bcmixed is available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=bcmixed. The
package bcmixed can be installed and loaded using the following code.

R> install.packages("bcmixed")
R> library(bcmixed)
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Figure 1: Longitudinal box-whisker plot of outcome variable (cd4) for each treatment group in the
aidscd4 dataset.
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In particular, the following main functions are demonstrated in this article:

bcmarg : Inference on the marginal model of the mixed effect model with the Box–Cox transformation.

bcmmrm : Inference on the model median for longitudinal data in randomized clinical trials.

Example data

First, we illustrate a real example for the acquired immune deficiency syndrome (AIDS) clinical
trial data, which is stored as the data frame aidscd4 in the bcmixed package. The data are from a
randomized, double-blind study of AIDS patients with advanced immune suppression (cluster of
differentiation 4 (CD4) cells count of less than or equal to 50 cells/mm3) (Henry et al., 1998; Fitzmaurice
et al., 2011). Patients in the AIDS clinical trial group study 193A were randomized to dual or triple
combinations of human immunodeficiency virus-1 reverse transcriptase inhibitors. In particular, the
patients were randomized to one of four daily regimens. The original data can be downloaded from
https://content.sph.harvard.edu/fitzmaur/ala/ (Datasets->AIDS Clinical Trial Group (ACTG)
Study 193A). As for the more detailed data handling process, see Maruo et al. (2017). The data frame
aidscd4 contains seven variables (Table 1).

Variable Description

id A patient identifier; in total there are 1177 patients.
weekc A visit variable (weeks 8, 16, 24, 32).
treatment Allocated treatment regimens;

1 = zidovudine alternating monthly with 400mg didanosine,
2 = zidovudine plus 2.25mg of zalcitabine,
3 = zidovudine plus 400mg of didanosine, and
4 = zidovudine plus 400mg of didanosine plus 400mg of nevirapine.

age Patients’ age (years).
sex Patients’ sex (1 = male, 0 = female).
cd4.bl A baseline value of CD4 cells count + 1.
cd4 A CD4 cells count + 1.

Table 1: Variable definition of AIDS clinical trial data

Figure 1 shows the longitudinal box-whisker plot of the values of CD4 plus 1 for each group
plotted using ggplot2 package (Wickham, 2016). The distribution shapes of the measurements were
heavily skewed.

bcmarg function

This function provides the inference results for the marginal model of the mixed effect model with the
Box–Cox transformation described in Section Parameter inference for the Box–Cox model.

Usage: The bcmarg function is called using the following syntax.

bcmarg(formula, data, time = NULL, id = NULL, structure = "UN",
lmdint = c(-3, 3))

Arguments: The bcmarg function takes arguments tabulated in Table 2.

Argument Description

formula A two-sided linear formula object describing the model, with the response
on the left of a ~ operator and the terms, separated by + operators, on the right.

data A data frame containing the variables used in the model.
time A time variable name for repeated measurements. The default is NULL.
id A subject id variable name for repeated measurements. The default is NULL.
structure Specify the covariance structure from c("UN","CS","AR(1)"). The default is "UN".
lmdint A vector containing the end points of the interval to be searched for a

transformation parameter. The default is c(-3,3).
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Table 2: Auguments of bcmarg function

If time and id are not specified, an ordinary linear model with the Box–Cox transformation is
applied.

Value: The bcmarg function returns an object of class "bcmarg". The objects of this class have
methods for generic functions coef, logLik, vcov, fitted, print, and summary. The object includes the
components for the marginal model parameter inference (Table 3).

Component Description

lambda A numeric value of the estimate of the transformation parameter.
beta A vector with the estimates of the regression parameters.
alpha A vector with the estimates of the covariance parameters.
V A variance-covariance matrix for any subject with no missing values.
betainf A matrix containing the inference results for beta under the assumption

that lambda is known.
Vtheta.mod A model-based variance-covariance matrix for MLE of the vector of all

parameters: c(lambda,beta,alpha).
Vtheta.rob A robust variance-covariance matrix for MLE of the vector of all parameters.
logLik A numeric value of the maximized likelihood.
adj.prm A vector with parameters used for the empirical small sample adjustment in

bcmmrm: c(number of subjects, number of completed subjects, number of
outcome observations, number of missing observations).

glsObject An object of "gls" (or "lm" when time and id are not specified) containing
results of gls (or lm) function on the transformed scale.

Table 3: Values of bcmarg function

In bcmarg function, lambda is estimated with the optimize function by maximizing the profile
likelihood function for λ. If an error occurs in the optimize function, problems may be solved by
changing the search area for λ, lmdint.

Example code: We applied a marginal model to the aidscd4 data, where the fixed effects were the
treatment, visit, treatment-visit interaction, and the Box–Cox transformed baseline, where the visit
was treated as a nominal variable. The covariance structure was set as unstructured (default setting).
This model is frequently used for MMRM analysis. A sample code is as follows. The bct.v function
returns the Box–Cox transformed vector.

R> data("aidscd4")
R> aidscd4$cd4.bl.tr <- bct.v(aidscd4$cd4.bl)$transformed
R> res1 <- bcmarg(formula = cd4 ~ as.factor(treatment) * as.factor(weekc) +
+ cd4.bl.tr, data = aidscd4, time = weekc, id = id)

The summarized analysis results on the transformed scale are obtained by applying the summary
function to the "bcmarg" object as follows.

R> summary(res1)

Box-Cox transformed mixed model analysis
Formula: cd4 ~ as.factor(treatment) * as.factor(weekc) + cd4.bl.tr
Time: weekc
ID: id
Covariance structure: "UN"
Data: aidscd4
Log-likelihood: -13322.96
Estimated transformation parameter: 0.154

Coefficients on the transformed scale:
Value Std.Error t-value p-value

(Intercept) 1.0849 0.1249 8.684 0.000
as.factor(treatment)2 0.2454 0.1214 2.022 0.043
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as.factor(treatment)3 0.4203 0.1212 3.468 0.001
as.factor(treatment)4 0.7649 0.1199 6.377 0.000
as.factor(weekc)16 -0.2043 0.0843 -2.424 0.015
as.factor(weekc)24 -0.4498 0.0899 -5.004 0.000
as.factor(weekc)32 -0.6750 0.0988 -6.835 0.000
cd4.bl.tr 0.5782 0.0200 28.922 0.000
as.factor(treatment)2:as.factor(weekc)16 -0.1183 0.1185 -0.998 0.318
as.factor(treatment)3:as.factor(weekc)16 -0.0560 0.1180 -0.475 0.635
as.factor(treatment)4:as.factor(weekc)16 0.0675 0.1175 0.574 0.566
as.factor(treatment)2:as.factor(weekc)24 -0.1863 0.1264 -1.474 0.141
as.factor(treatment)3:as.factor(weekc)24 -0.0243 0.1264 -0.193 0.847
as.factor(treatment)4:as.factor(weekc)24 0.0870 0.1263 0.689 0.491
as.factor(treatment)2:as.factor(weekc)32 -0.0852 0.1414 -0.603 0.547
as.factor(treatment)3:as.factor(weekc)32 -0.0893 0.1400 -0.638 0.524
as.factor(treatment)4:as.factor(weekc)32 0.1414 0.1381 1.024 0.306

Covariance parameters on the transformed scale:
UN(1,1) UN(1,2) UN(1,3) UN(1,4) UN(2,2) UN(2,3) UN(2,4) UN(3,3) UN(3,4) UN(4,4)
1.798 1.156 1.105 0.927 1.957 1.346 1.298 1.903 1.452 2.009

Correlations on the transformed scale:
8 16 24 32

8 1.000 0.616 0.598 0.488
16 0.616 1.000 0.697 0.655
24 0.598 0.697 1.000 0.743
32 0.488 0.655 0.743 1.000

The results of coefficients on the transformed scale are obtained with the gls function in the nlme
package. The transformation parameter was estimated as 0.154, which suggested that the shape of
the residual distribution was close to a multivariate log-normal distribution. All main effects were
significant; however, treatment-by-week interaction was not significant at a level of 0.05. Note that
inference results for beta under the assumption that the transformation parameter is known are
provided. Although statistical tests would be asymptotically valid (e.g., see Doksum and Wong (1983)),
standard errors might be underestimated (e.g., see Bickel and Doksum (1981)).

bcmmrm function

This function provides the results for the model median inferences for longitudinal randomized clinical
trial data described in Section Model median inference. The parameter inference is conducted by
calling the bcmarg function in the bcmmrm function.

Usage: The bcmmrm function is called using the following syntax.

bcmmrm(outcome, group, data, time = NULL, id = NULL, covv = NULL,
cfactor = NULL, structure = "UN", lmdint = c(-3, 3), glabel = NULL,
tlabel = NULL)

Argument: The bcmmrm function takes arguments tablated in Table 4.

Argument Description

outcome A name of positive outcome (dependent) variable included in data.
group A name of treatment group variable included in data.
data A data frame that may include outcome, group, time, id, and specified covariate

variables.
time A name of time variable for repeated measurements included in data.

The default is NULL.
id A name of subject id variable for repeated measurements included in data.

The default is NULL.
covv A character vector with names of covariate variables included in data.

The default is NULL.
cfactor An integer vector including nominal variable indicators for covariate variables.

Nominal variable: 1, continuous variable: 0. The default is NULL.
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structure Specify the covariance structure from c("UN","CS","AR(1)"). The default is "UN".
conf.level A numeric value of the confidence level for the confidence intervals.

The default is 0.95.
lmdint A vector containing end points of the interval to be searched for a transformation

parameter. The default is c(-3,3).
glabel A vector of length number of treatment groups containing the labels of group

variable. The default is NULL and the levels of group variable in data are used.
tlabel A vector of length number of repeated measures containing the labels of time

variable. The default is NULL and the levels of time variable in data are used.

Table 4: Auguments of bcmmrm function

If time and id are not specified, inference results reduce to the results for the context of linear
regression model provided by Maruo et al. (2015).

Value: The bcmmrm function returns an object of class "bcmmrm" representing the results of model
median inference based on the Box–Cox transformed MMRM analysis. Generic functions boxplot,
coef, logLik, vcov, fitted, plot, print, and summary have methods to demonstrate the results of the
fit. Components tablated in Table 5 must be included in a legitimate "bcmmrm" object.

Component Description

call A list containing an image of the bcmmrm call that produced the object.
median.mod, Lists including inference results for the model medians for all groups.
median.rob, Levels of the list are time points, where the correspondence table is given
median.mod.adj, as time.tbl$code. mod: model-based inference, rob: robust inference,
median.rob.adj adj: with empirical small sample adjustment.
meddif.mod, Lists including inference results for the for the model median differences
meddif.rob, between all pairs of groups (group1 - group0). The levels of the list are
meddif.mod.adj, time points, where the correspondence table is given as time.tbl$code.
meddif.rob.adj mod: model-based inference, rob: robust inference,

adj: with empirical small sample adjustment.
lambda A numeric value of estimates of the transformation parameter.
R A correlation matrix for transformed outcomes.
betainf Inference results for beta under the assumption that lambda is known.
time.tbl A data frame of a correspondence table for the time points.

This object is used when applying the above generic functions.
group.tbl A data frame of a correspondence table for treatment groups.

This object is used when applying the above generic functions.
inf.marg A "bcmarg" object with results of the bcmarg function called in the

bcmmrm function.
outdata A data frame where the transformed outcome (ytr), the fitted values

on the transformed scale (ytr.fitted), and the residuals on
the transformed scale (res.tr) are added to input data.

conf.level A numeric value of the specified confidence level.

Table 5: Values of bcmmrm function

lambda, R, betainf, and inf.marg are obtained from the results of the bcmarg function that is called
in the bcmmrm function.

Sample code: We applied the MMRM analysis with the Box–Cox transformation described in Section
bcmarg function to the aidscd4 data, where the Box–Cox transformed baseline and sex were included
as the covariates. The example code is as follows.

R> data("aidscd4")
R> aidscd4$cd4.bl.tr <- bct.v(aidscd4$cd4.bl)$transformed
R> res2 <- bcmmrm(outcome = cd4, group = treatment, data = aidscd4, time = weekc,
+ id = id, covv = c("cd4.bl.tr", "sex"), cfactor = c(0, 1),
+ glabel = c("Zid/Did", "Zid+Zal", "Zid+Did", "Zid+Did+Nev")

The transformed baseline and sex are continuous and categorical variables, respectively, and therefore,
cfactor was set as c(0,1).
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The print function only provides information about model detail, the estimated transformation
parameter, the maximized log-likelihood, and the model median estimate for each time point and
group as follows.

R> print(res2)

Model median estimation based on MMRM with Box-Cox transformation
Outcome: cd4
Group: treatment
Time: weekc
ID: id
Covariate(s): c("cd4.bl.tr", "sex")
Covariance structure: "UN"
Data: aidscd4
Estimated transformation parameter: 0.154
Log-likelihood: -13322.36

Model median estimates (row: group, col: time):
treatment | weekc 8 16 24 32

1 Zid/Did 18.9 16.5 14.1 12.1
2 Zid+Zal 22.0 17.9 14.6 13.5
3 Zid+Did 24.5 20.9 18.2 15.1
4 Zid+Did+Nev 30.1 27.8 24.2 21.8

The summary function provides more detailed analysis results as follows.

R> summary(res2)

Model median inference based on MMRM with the Box-Cox transformation

Data and variable information:
Outcome: cd4
Group: treatment
Time: weekc
ID: id
Covariate(s): c("cd4.bl.tr", "sex")
Data: aidscd4

Analysis information:
Covariance structure: "UN"
Robust inference: TRUE
Empirical small sample adjustment: TRUE
Confidence level: 0.95

Analysis results:
Estimated transformation parameter: 0.154

Model median inferences for weekc = 8

treatment median SE lower.CL upper.CL
1 Zid/Did 18.9 0.862 17.2 20.6
2 Zid+Zal 22.0 1.124 19.8 24.2
3 Zid+Did 24.5 1.465 21.6 27.4
4 Zid+Did+Nev 30.1 1.597 27.0 33.3

(...Omitted for weeks 16 and 24...)

Model median inferences for weekc = 32

treatment median SE lower.CL upper.CL
1 Zid/Did 12.1 0.662 10.8 13.4
2 Zid+Zal 13.5 0.813 11.9 15.1
3 Zid+Did 15.1 1.019 13.1 17.1
4 Zid+Did+Nev 21.8 1.376 19.1 24.5
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Inferences of model median difference between groups
( treatment 1 - treatment 0 ) for weekc = 8

treatment 1 treatment 0 delta SE lower.CL upper.CL t.value p.value
1 Zid+Zal Zid/Did 3.12 1.40 0.363 5.87 2.22 0.027
2 Zid+Did Zid/Did 5.64 1.69 2.325 8.96 3.34 0.001
3 Zid+Did+Nev Zid/Did 11.25 1.80 7.711 14.80 6.24 0.000
4 Zid+Did Zid+Zal 2.53 1.83 -1.059 6.12 1.39 0.167
5 Zid+Did+Nev Zid+Zal 8.14 1.93 4.349 11.93 4.22 0.000
6 Zid+Did+Nev Zid+Did 5.61 2.16 1.372 9.85 2.60 0.010

(...Omitted for weeks 16 and 24...)

Inferences of model median difference between groups
( treatment 1 - treatment 0 ) for weekc = 32

treatment 1 treatment 0 delta SE lower.CL upper.CL t.value p.value
1 Zid+Zal Zid/Did 1.35 1.04 -0.692 3.40 1.30 0.194
2 Zid+Did Zid/Did 3.00 1.20 0.633 5.37 2.49 0.013
3 Zid+Did+Nev Zid/Did 9.70 1.52 6.705 12.69 6.37 0.000
4 Zid+Did Zid+Zal 1.65 1.30 -0.907 4.20 1.27 0.206
5 Zid+Did+Nev Zid+Zal 8.34 1.60 5.206 11.48 5.23 0.000
6 Zid+Did+Nev Zid+Did 6.70 1.71 3.338 10.06 3.92 0.000

Significant differences were detected for the following pairs Zid+Did vs. Zid/Did, Zid+Did+Nev
vs. Zid/Did, Zid+Did+Nev vs. Zid+Zal, and Zid+Did+Nev vs. Zid+Did at week 32.

The summary function provides the results using the robust variance and the small sample ad-
justment in the default settings. If users want to summarize results using the model variance and
not using the small sample adjustment, specify summary(bcmmrmObject,robust = F,ssadjust = F).
Further details of the summary function for the "bcmmrm" object can be obtained with ?summary.bcmmrm.

The inference results for the median differences at week 32 (fourth visit) can also be called as
follows although the levels of the group variable in the data frame are used without formatting.

R> res2$meddif.rob.adj[[4]]

group1 group0 delta SE lower.CL upper.CL t.value p.value
1 2 1 1.354438 1.041338 -0.6922404 3.401117 1.300672 1.940595e-01
2 3 1 3.000942 1.204919 0.6327547 5.369129 2.490575 1.312570e-02
3 4 1 9.697631 1.522831 6.7046091 12.690653 6.368159 4.869820e-10
4 3 2 1.646503 1.299231 -0.9070469 4.200054 1.267291 2.057293e-01
5 4 2 8.343192 1.596236 5.2058987 11.480486 5.226792 2.682862e-07
6 4 3 6.696689 1.709027 3.3377114 10.055667 3.918421 1.034880e-04

The "bcmmrm" object can be plotted with the plot function as follows (Figure 2).

R> plot(res2, xlab = "Week", ylab = "CD4+1")

The plot function provides a longitudinal plot in the default settings. However, a plot at a specified
time point can be drawn with the following code (Figure 3):

R> plot(res2, timepoint = 32, xlab = "Treatment", ylab = "CD4+1", col = 1:4)

Further, the plot function provides the results using the robust variance and the small sample
adjustment in the default setting. Many other options such as main and legend can be used in the plot
function. Further details can be obtained with ?plot.bcmmrm.

A diagnosis of a model fitting can be conducted with the boxplot function, which provides a
box-whisker plot of the Box–Cox transformed residuals for each group. A sample code is provided as
follows (Figure 4):

R> boxplot(res2)

The shape of the transformed residual for each group is not skewed and the median and mean
are close to each other, which suggests that the median would not be biased at week 32. The boxplot
function provides the results at the last time points in the default settings. A box-whisker plot at
another time point can be obtained by specifying boxplot(bcmmrmObject,timepoint = xx).
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Summary and discussion

We demonstrated the use of the bcmixed package. The bcmarg function provides the analysis results
for a marginal model of a mixed effect model with the Box–Cox transformation. The results for the
statistical test of the bcmarg function are meaningful. However, it is difficult to interpret coefficients
(β) on the transformed scale.

The bcmmrm function provides the model median inferences based on the MMRM with the Box–Cox
transformation for longitudinal randomized clinical trials. Using this function, treatment effects can
be interpreted as median differences between treatment groups at specified time points. Maruo et al.
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Figure 2: Longitudinal plot of model median for each group, created by applying plot function to
bcmmrm object.
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Figure 3: Plot of model median for each group at week 32, created by applying plot function to
bcmmrm object with timepoint option.
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(2017) also show that this method controls the type I error of the statistical test for the model median
difference, and it has moderate or high performance for power compared with the existing methods
(ordinary MMRM, MMRM for the log-transformed outcome, etc.) from their simulation studies (the
simulation program is provided in https://github.com/kzkzmr/Maruo_2017_StatMed_Simulation
with penalized power results proposed by Cavus et al. (2019)). Thus, bcmmrm function analysis results
with high power and high interpretability for longitudinal randomized clinical trials with skewed
outcomes. Further, the bcmmrm function provides summarizing and visualization tools, which would
be helpful to write clinical trial reports.

Although the bcmixed package can be used for data other than that of randomized clinical trials,
the performances of these methods have not been evaluated well yet. Therefore, users should use them
carefully. Although a model fitting can be diagnosed with the boxplot function, more model diagnosis
tools may be implemented in the future. Users might apply the MissMech package(Jamshidian
et al., 2014, 2015), which diagnoses multivariate normality and heteroscedasticity, to the transformed
residuals stored in "bcmarg" object. Note that the MissMech package assumes missing mechanisms are
missing completely at random (MCAR), and statistical tests for model fittings may lead to significant
results for a medium-to-large sample even when the models fit the data adequately.
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diproperm: An R Package for the
DiProPerm Test
by Andrew G. Allmon, J.S. Marron, and Michael G. Hudgens

Abstract High-dimensional low sample size (HDLSS) data sets frequently emerge in many biomedical
applications. The direction-projection-permutation (DiProPerm) test is a two-sample hypothesis test
for comparing two high-dimensional distributions. The DiProPerm test is exact, i.e., the type I error
is guaranteed to be controlled at the nominal level for any sample size, and thus is applicable in
the HDLSS setting. This paper discusses the key components of the DiProPerm test, introduces the
diproperm R package, and demonstrates the package on a real-world data set.

Introduction

Advancements in modern technology and computer software have dramatically increased the demand
and feasibility to collect high-dimensional data sets. Such data introduce analytical challenges which
require the creation of new and adaptation of existing statistical methods. One such challenge is that
we may observe many more covariates (features) p than the number of observations N, especially
in small sample size studies. These data structures are known as high-dimensional, low sample size
(HDLSS) data sets, or “small N, big p.”

HDLSS data frequently occur in many health-related fields. For example, in genomic studies, a
single microarray experiment can produce tens of thousands of gene expressions compared to the
few samples studied, often being less than a hundred (Alag, 2019). In medical imaging studies, a
single region of interest for analysis in an MRI or CT-scan image often contains thousands of features
compared to the small number of samples studied (Limkin et al., 2017). In the pre-clinical evaluation
of vaccines and other experimental therapeutic agents, the number of biomarkers measured (e.g.,
immune responses) may be much greater than the number of samples studied (e.g., mice, rabbits, or
non-human primates) (Kimball et al., 2018).

One common task in the HDLSS setting entails comparing the distribution of covariates between
two groups (classes). For example, in pre-clinical studies of vaccines, investigators may wish to
compare the distribution of biomarkers between animals who survive to a certain time point and
animals who do not survive. In the example presented below, the distribution of p = 112 covariates is
compared between edible and poisonous mushrooms. The covariate distributions may be compared
between two samples using the direction-projection-permutation (DiProPerm) test (Wei et al., 2016).
This test is well-suited for the HDLSS setting because the test is exact, i.e., the type I error is guaranteed
to be controlled at the nominal level for any sample size. Below we discuss the key components of the
DiProPerm test, introduce the diproperm R package, and demonstrate the use of the package on a
real-world data set.

DiProPerm Test

To compare the distribution of covariates between two groups, the DiProPerm tests use one-dimensional
projections of the data based on a binary linear classifier to construct a univariate test statistic and
then permutes class labels to determine the sampling distribution of the test statistic under the null.
The details of the DiProPerm test are as follows.

Let X1, . . . , Xn ∼ F1 and Y1, . . . , Ym ∼ F2 be independent random samples of p dimensional
random vectors from multivariate distributions F1 and F2 where p may be larger than m and n. The
DiProPerm test evaluates the hypotheses

H0 : F1 = F2 versus H1 : F1 ̸= F2

The test entails three steps:

1. Direction: find the normal vector to the separating hyperplane between two samples after
training a binary linear classifier

2. Projection: project data on to the normal vector and calculate a univariate two-sample statistic

3. Permutation: conduct a permutation test using the univariate statistic as follows:

(a) Permute class membership after pooling samples
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(b) Re-train binary classifier and find the normal vector to the separating hyperplane

(c) Recalculate the univariate two sample statistic

(d) Repeat a-c multiple times (say 1000) to determine the sampling distribution of the test
statistic under the null H0

(e) Compute p-value by comparing the observed statistic to the sampling distribution

Different binary linear classifiers may be used in the first step of DiProPerm. Linear discriminant
analysis (LDA), particularly after conducting principal component analysis (PCA), is one possible
classifier for the direction step. However, using LDA with PCA in the HDLSS setting has some
disadvantages, including lack of interpretability, sensitivity to outliers, and tendency to find spurious
linear combinations due to a phenomenon known as data piling (Aoshima et al., 2018; Marron
et al., 2007). Data piling occurs if data are projected onto some projection direction, and many of the
projections are the same or piled on one another. The support vector machine (SVM) is another popular
classifier (Hastie et al., 2001). The SVM finds the hyperplane that maximizes the minimum distance
between data points and the separating hyperplane. However, the SVM can also suffer from data
piling in the HDLSS setting. To overcome data piling, the distance weighted discrimination (DWD)
classifier was developed (Marron et al., 2007). The DWD classifier finds the separating hyperplane
minimizing the average inverse distance between data points and the hyperplane. The DWD performs
well in HDLSS settings with good separation and is more robust to data piling.

In the second step of DiProPerm, a univariate statistic is calculated using the projected values onto
the normal vector to the separating hyperplane from the first step. Suppose x1, . . . , xn and y1, . . . , ym
are the projected values from samples X1, . . . , Xn and Y1, . . . , Ym, respectively. One common choice
for the univariate test statistic for DiProPerm includes the difference of means statistic, |x̄ − ȳ|. Other
two-sample univariate statistics such as the two-sample t-statistic or difference in medians are also
possible for use with the DiProPerm.

The last step of DiProPerm entails determining the distribution of the test statistic under the
null. In this step, the two samples are pooled, class labels are permuted, then a univariate statistic is
calculated. Repeat this process multiple times (say 1000) to determine the sampling distribution of the
test statistic under the null H0. P-values are then calculated by the proportion of statistics higher than
the original value.

When the DiProPerm test is implemented using the DWD classifier, it is common practice to look
at the loadings of the DWD classifier (An et al., 2016; Nelson et al., 2019). The DWD loadings represent
the relative contribution of each variable to the class difference. A higher absolute value of a variable’s
loading indicates a greater contribution for that variable to the class difference. The loadings vector
is a unit vector; thus, the individual loadings range from -1 to 1, and the sum of the squares of the
loadings equals one. The loadings direction vector points from the negative to positive class. Thus,
positive entries correspond to variables that tend to be larger for the positive class. Combining the
use of the DiProPerm and evaluation of the DWD loadings in applications can provide insights into
high-dimensional data and be used to generate rational hypotheses for future research.

The DiProPerm test has been used in several areas of biomedical research, including osteoarthritis
and neuroscience (An et al., 2016; Bendich et al., 2016; Nelson et al., 2019). However, currently, there
does not exist an R package that implements DiProPerm. Therefore we developed diproperm, a
free, publicly available R software package to analyze data from two high-dimensional distributions
(Allmon et al., 2020). Functions in the diproperm package allow users to conduct the DiProPerm test
and create corresponding diagnostic plots. Loadings for the binary linear classifier are also available
for display in order from highest to lowest relative to their contribution toward the separation of the
two distributions.

Package Overview

The diproperm package is comprised of three functions:

• DiProPerm(): Conducts the DiProPerm test

• plotdpp(): Plots diagnostics from the DiProPerm test

• loadings(): Returns the variable indices with the highest loadings in the binary classification.
The absolute values of the loading values indicate a variable’s relative contribution toward the
separation between the two classes. The loadings vector is a unit vector, thus, the sum of its
squares must be equal to one and range from -1 to 1. Also, the loadings direction vector points
from the negative to positive class. Thus, positive entries correspond to variables that are larger
for the positive class.
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The diproperm package can be installed from CRAN using the code in the ’Example’ section
below. Additionally, the development version of the package can be installed from GitHub ("all-
mondrew/diproperm").

Example

The example below creates a Gaussian data set containing 100 samples, 2 features, clustered around 2
centers with a standard deviation of 2. The class labels are then re-classified to -1 and 1 to match the
input requirements of DiProPerm(). The DiProPerm test is then conducted using the DWD classifier,
the mean difference univariate statistic, and 1000 permutations. The results from DiProPerm() are
then displayed with plotdpp(). Last, the top five indices of the highest absolute loadings are listed.

install.packages("diproperm")
remotes::install_github("elbamos/clusteringdatasets")
library(diproperm)
library(clusteringdatasets)

cluster.data <- make_blobs(n_samples = 100, n_features = 2, centers = 2, cluster_std = 2)

X <- cluster.data[[1]]
y <- cluster.data[[2]]
y[y==2] <- -1

dpp <- DiProPerm(X,y,B=1000,classifier = "dwd",univ.stat = "md")

plotdpp(dpp)

loadings(dpp,loadnum = 5)

Description

The main function to be called first by the user is DiProPerm(), which takes in an n × p data matrix
and a vector of n binary class labels both provided by the user. Factor variables for the data matrix
must be coded as 0/1 dummy variables, and the class labels for the vector of binary class labels must
be coded as -1 and 1. By default, the DiProPerm() uses the DWD classifier, the mean difference as the
univariate statistics, and 1000 balanced permutations. The permutations are balanced in the sense that
after relabeling, the new -1 group contains n/2 members from the original -1 group and n/2 members
not from the original -1 group. Users can also implement an unbalanced, randomized permutation
design if desired. DiProPerm() implements DWD from the genDWD function in the DWDLargeR
package (Lam et al., 2018a,b). The penalty parameter, C, in the genDWD function is calculated using
the penaltyParameter function in DWDLargeR. DWDLargeR has several parameters which are
set to recommended default values. More details on the algorithm used to compute genDWD and
penaltyParameter can be found in Lam et al. (2018b). Other options included in DiProPerm() for the
binary linear classifier are the mean difference direction “md” and support vector machine “svm”.
DiProPerm() uses parallel processing to delegate computation to the number of cores on the user’s
computer for increased efficiency. DiProPerm() returns a list of the observed data matrix, vector of
observed class labels, observed test statistic, projection scores used to compute the observed test
statistic, the loadings of the binary classification, the z-score, cutoff value for an α level of significance,
the p-value for the DiProPerm test, a list of each permutation’s projection scores and permuted class
labels, and a vector of permuted test statistics the size of the number of permutations used.

After calling DiProPerm(), the function plotdpp() can be used to create a panel plot for assessing
the diagnostics of the DiProPerm test. plotdpp() takes in a DiProPerm list and the user may specify
which diagnostics they would like to display. By default, plotdpp() displays a facet plot with the
observed score distribution, the projection score distribution of the permutation with the smallest
test statistic value, the projection score distribution of the permutation with the largest test statistic
value, and the test statistic permutation distribution. For the permutation distribution plot, the z-
score, cutoff value, observed test statistic and p-value are displayed on the graph. Larger individual
graphs may be displayed by using the plots option in plotdpp(). Additional graphs include the
projection score distributions for the first and second permutations. The diagnostic plots show the
user the characteristics of their data and facilitate the visual assessment of the separation of the two
high-dimensional distributions being tested.

Lastly, after calling the DiProPerm(), the user may call the loadings() function. The loadings()
function returns the variable indices in the data matrix which have the highest absolute loadings in the
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binary classification. Because the loadings vector is a unit vector, the sum of the squares of loadings is
constrained to equal to one, with each loading between -1 to 1. The loadings direction vector points
from the negative to the positive class. Thus, positive entries correspond to variables that tend to
be larger for the positive class. Higher absolute loading values indicate a greater contribution for a
particular variable toward the separation between the two classes. By default, loadings() returns the
indices for all variables sorted by their absolute loading value. Therefore, the top variable index is the
variable which contributes the most toward the separation of the two classes, and the last variable is
the one which contributes the least. The user may also change the number of loadings displayed.

Application

To illustrate the use of the diproperm package, consider the mushrooms data set, which is freely
available from the UCI Machine Learning Repository (Dua and Graff, 2019) and within diproperm.
This data set includes various characterizations of 23 species of gilled mushrooms in the Agaricus and
Lepiota families. Each mushroom species is labeled as either definitely edible or poisonous/unknown.
There are n = 8124 mushrooms in total, and p = 112 binary covariates coded as 0/1 corresponding to
22 categorical attributes. Below, we demonstrate the diproperm package functionality using data from
the first n = 50 mushrooms in the data set.

Step 1: Load and clean the data

install.packages("diproperm")
library(diproperm)
data(mushrooms)

The above code installs the diproperm package and loads the mushroom data into R. Now, let us
check the structure of the data to make sure it is compatible with DiProPerm().

dim(mushrooms$X)
[1] 112 8124

table(mushrooms$y)
-1 1
4208 3916

The vector of class labels must be -1 or 1 for DiProPerm(), which is the case for this data. However, the
data set is in p × n format. For DiProPerm(), the dataset must be in n × p format. This can be done
using the transpose function from the Matrix package in R (Bates and Maechler, 2019). After taking
the transpose, we subset the data and vector of class labels to the first 50 observations and store the
results.

X <- Matrix::t(mushrooms$X)
X <- X[1:50,]
y <- mushrooms$y[1:50]

Step 2: Conduct DiProPerm

Now, that the data is in the proper format the call to DiProPerm() is as follows:

dpp <- DiProPerm(X=X,y=y,B=1000)

Algorithm stopped with error 2.35e-08
sample size = 50, feature dimension = 112
positve sample = 12, negative sample = 38
number of iterations = 51
time taken = 0.10

Characteristics of the DWD algorithm used to find the solution for the observed data are displayed by
DiProPerm(). The algorithm took 51 iterations and 0.10 seconds to converge to the tolerance threshold
with a zero percent classification error on the training data set. The runtime for 1000 permutations was
less than 3 minutes on a four-core machine but would be faster on a machine with more cores. The
dpp object stores the output list from DiProPerm() described in the package. Storing the information
allows us to plot the diagnostics in the next step.
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Step 3: Plot diagnostics

plotdpp(dpp)

Figure 1: The diagnostic plot from plotdpp() for the mushrooms data set. The top graph is the
observed projection score distribution of the two classes, the two middle graphs are the projection
score distributions of the permutation with the smallest and largest test statistic value, and the bottom
graph is the test statistic permutation distribution with the observed statistic value marked by the red
dotted line.

Figure 1 displays the default diagnostics for a DiProPerm list. From the observed projection score
distribution, one can see clear separation between the two classes. Also, from the projected score
distributions of the permutations, which yield the smallest and largest test statistic, we see the score
distributions overlap well, so there is some visual justification that the distributions in the observed
plot are truly different. Lastly, the bottom plot shows the sampling distribution under the null is
located around 0.4 while the observed test statistic is greater than 2. Each individual plot can also be
output by the following set of commands:

plotdpp(dpp,plots="obs")
plotdpp(dpp,plots="min")
plotdpp(dpp,plots="max")
plotdpp(dpp,plots="permdist")

The permutation p-value in Figure 1 suggests that the two high-dimensional distributions of mush-
room attributes are indeed different between the two classes. Also displayed is a z-score, calculated by
fitting a Gaussian distribution to the test statistic permutation distribution. The mushroom data z-score
12.9 indicates the observed test statistic is approximately 13 standard deviations from the expected
value of the test statistic under the null. Finally, the cutoff value 0.697 is displayed, corresponding to
the critical value for a hypothesis test at the 0.05 significance level.

Step 4: Examine loadings

In order to assess which variables contributed most toward the separation in step 3, we can print the
top five contributors with the code
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loadings(dpp,loadnum = 5)

index sorted_loadings
29 0.5395016
37 0.3170037
36 -0.2481763
111 0.2228389
20 -0.2087244

The top five contributors toward the separation seen in the observed distribution in Figure 1 are
indices 29, 37, 36, 111, and 20. These indices correspond to a pungent odor, narrow gill size, broad gill
size, urban habitat, and yellow cap color, respectively. For these data, y = 1 corresponds to poisonous
and y = −1 to edible; thus, loadings with positive entries, such as pungent odor, are indicative of
poisonous mushrooms. These results are similar to previous analyses, which have also found odor, gill
size, habitat, and cap color predictive of mushroom edibility (Pinky et al., 2019; Wibowo et al., 2018).

Summary

DiProPerm is an exact test for comparing two high-dimensional distributions. The diproperm package
allows the user to visually assess and conduct a DiProPerm test to determine if there is a differ-
ence between the high-dimensional distributions of two classes and, if so, evaluate the key features
contributing to the separation between the classes.
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A Unifying Framework for Parallel and
Distributed Processing in R using Futures
by Henrik Bengtsson

Abstract A future is a programming construct designed for concurrent and asynchronous evaluation
of code, making it particularly useful for parallel processing. The future package implements the
Future API for programming with futures in R. This minimal API provides sufficient constructs for
implementing parallel versions of well-established, high-level map-reduce APIs. The future ecosystem
supports exception handling, output and condition relaying, parallel random number generation, and
automatic identification of globals lowering the threshold to parallelize code. The Future API bridges
parallel frontends with parallel backends, following the philosophy that end-users are the ones who
choose the parallel backend while the developer focuses on what to parallelize. A variety of backends
exist, and third-party contributions meeting the specifications, which ensure that the same code works
on all backends, are automatically supported. The future framework solves several problems not
addressed by other parallel frameworks in R.

1 Introduction

Parallel processing can be used to speed up computationally intensive tasks. As the size of these tasks
and access to more CPU cores tend to grow over time, so does the demand for parallel-processing
solutions. In R, there exist several frameworks for running code in parallel, many dating back more
than a decade (Schmidberger et al., 2009). R gained built-in support via the parallel package in version
2.14.0 (2011), which to date probably provides the most, either directly or indirectly, commonly used
solutions. For an overview of current parallel techniques available to R developers, see Eddelbuettel
(2021) and the High-Performance and Parallel Computing with R CRAN Task View.

The options for parallelizing computations in R can be grouped broadly into those that can be
used to parallelize R code, such as what the parallel package provides, and those that are used to
parallelize native code, such as C, C++, and Fortran, and are often not specific to R itself. For example,
multi-threaded processing is an efficient parallelization technique which operates at the core of the
operating system and the CPU and allows for updating shared memory in parallel and more, which
is not available at the R level. In contrast, parallelization at the R level takes place at a higher level
with a coarser type of parallelization, which we refer to as multi-process parallelization. In addition
to parallel computations, there are also efforts in R for working with parallel data structures, e.g.,
sparklyr (Luraschi et al., 2021) and the Programming with Big Data in R (pbdR) project (Schmidt
et al., 2017). By pre-distributing data and storing them on, or near, parallel workers, the overhead
from passing data on-the-fly in parallel processing can be decreased, resulting in an overall faster
processing time but also lower and more fine-tuned memory requirements. This article proposes a
solution for parallelizing computations at the R level.

The future package (Bengtsson, 2021b) aims to provide a unifying, generic, minimal application
protocol interface (API) to facilitate the most common types of parallel processing in R, especially the
manager-worker strategy where an R process delegates tasks to other R processes. It builds upon the
concepts of futures (Hewitt and Baker, 1977) and promises (Friedman and Wise, 1978; Hibbard, 1976) -
concepts that are well suited for a functional language such as R. To better understand how it fits in
among and relates to existing parallelization solutions in R1, let us revisit the two most well-known
solutions - packages parallel and foreach.

The parallel package has a set of functions for calling functions and expressions in parallel across
one or more concurrent R processes. The most well-known functions for this are mclapply() and
parLapply(), which mimic the behavior of the map-reduce2 function lapply() in the base package.
Below is an example showing them calling a “slow” function on each element in a vector using two
parallel workers. First, to do this through sequentially processing, we can use lapply():

xs <- 1:10
y <- lapply(xs, function(x) {
slow_fcn(x)

})

1Although the concept of futures could also apply to C, C++, and Fortran parallelization, the future framework
targets parallelization at the R level and does not provide an implementation for native code.

2We use the term “map-reduce” as it is used in functional programming. The MapReduce method by Dean and
Ghemawat (2004) was inspired by this term but they are not equivalent.
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To do the same in parallel using two forked parallel processes, we can use:

library(parallel)
xs <- 1:10
y <- mclapply(xs, function(x) {
slow_fcn(x)

}, mc.cores = 2)

Alternatively, to run it in parallel using two R parallel processes running in the background, we can do:

library(parallel)
workers <- makeCluster(2)
clusterExport(workers, "slow_fcn")
xs <- 1:10
y <- parLapply(workers, xs, function(x) {
slow_fcn(x)

})

These functions, which originate from legacy packages multicore (2009-2014, Urbanek (2014)) and
snow (since 2003, Tierney et al. (2021)), are designed for specific parallelization frameworks. The
mclapply() set of functions relies on process forking by the operating system, which makes them
particularly easy to use. This is because each worker automatically inherits the setup and all of the
content of the main R process’ workspace, making it straightforward to replace a sequential lapply()
call with a parallel mclapply() call. This has made it popular among Linux and macOS developers. On
MS Windows, where R does not support forked processing, mclapply() falls back to using lapply()
internally.

The parLapply() set of functions, which all operating systems support, rely on a cluster of R
background workers for parallelization. It works by the main R process and the workers exchanging
tasks and results over a communication channel. The default and most commonly used type of
cluster is SOCK, which MS Windows also supports, and it communicates via socket connections. Like
most other cluster types, SOCK clusters require developers to manually identify and export packages
and global objects to the workers by calling clusterEvalQ() and clusterExport(), before calling
parLapply(), which increases the barrier to use them.

Mixed responsibilities of developers or end-users

Using either the mclapply() or the parLapply() approach works well when developers and end-users
can agree on which framework to use. Unfortunately, this is not always possible, e.g., R package
developers rarely know who the end-users are and what compute resources they have. Regardless,
developers who wish to support parallel processing still face the problem of deciding which parallel
framework to target, a decision that often has to be done early in the development cycle. This means
deciding on what type of parallelism to support, e.g., forked processing via mclapply() or SOCK clusters
via parLapply(). This decision is critical because it limits the end-user’s options, and any change,
later on, might be expensive because of, for instance, having to rewrite and retest part of the codebase.
A developer who wishes to support multiple parallel backends has to implement support for each
of them individually and provide the end-user with a mechanism to choose between them. This
approach often results in unwieldy, hard-to-maintain code of conditional statements with low test
coverage, e.g.,

if (parallel == "fork") {
...

} else if (parallel == "SOCK") {
...

} else if (parallel == "MPI") {
...

} else {
...

}

There is no established standard for doing this, which results in different packages providing different
mechanisms for controlling the parallelization method, if at all.

Functions like parLapply() partly address the problem of supporting multiple parallelization
frameworks because they support various types of parallel cluster backends referred to as “snow”
clusters (short for Simple Network of Workstations and from their origin in the snow package), e.g.,
workers <- makeCluster(4,type = "FORK") sets up a cluster that parallelizes using forked processing,
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and workers <- makeCluster(4,type = "MPI") sets up a cluster that parallelizes via a Message Passing
Interface (MPI) framework. If a developer uses parLapply(), they could write their code such that the
end-user can specify what type of snow cluster to use, e.g., by respecting what the end-user set via
setDefaultCluster(workers). This provides the end-user with more, although in practice limited,
options on how and where to execute code in parallel. Unfortunately, it is rather common that the
cluster type is hard-coded inside packages giving end-users little to no control over the parallelization
mechanism, other than possibly the number of cores to use.

Map-reduce parallelization with more control for the end-user

Possibly inspired by the snow-style clusters, the foreach package (Microsoft and Weston, 2020; Kane
et al., 2013), first released in 2009, addresses the above problem of having to decide on the parallel
design early on by letting the end-user - not the developer - “register” what type of parallel backend
(“foreach adaptor”) to use when calling foreach(). For example, with doMC (Revolution Analytics
and Weston, 2020), one can register a multicore cluster, and with doParallel (Microsoft Corporation
and Weston, 2020), one can register any type of “snow” cluster as in:

library(foreach)
library(doParallel)
workers <- parallel::makeCluster(2)
registerDoParallel(workers)

xs <- 1:10
y <- foreach(x = xs) %dopar% {
slow_fcn(x)

}

We note that the specification of what type of parallel framework and number of cores to use is
separated from the foreach() map-reduce construct itself. This gives more control to the end-user on
how and where to parallelize, leaving the developer to focus on what to parallelize, which is a design
pattern of great value with important implications on how to design, write, and maintain parallel
code. The large uptake of foreach since it was first released supports this. As of November 2021,
foreach is among the top-1.0% most downloaded packages on CRAN, and there are 867 packages on
CRAN and Bioconductor that directly depend on it. Another advantage of the separation between
the map-reduce frontend API and parallel backend (foreach adaptors) is that new types of parallel
backends can be introduced without the need to make updates to the foreach package. This has led to
third-party developers have contributed additional foreach adaptors, e.g., doMPI (Weston, 2017) and
doRedis (Lewis, 2020).

Unfortunately, there is no exact specification on what a foreach adaptor should support and how
it should act in certain situations, which has resulted in adaptors behaving slightly differently. At
their face value, these differences appear innocent but may cause different outcomes of the same code.
In the best case, these differences result in run-time errors, and in the worst case, different results.
An example of the former is the difference between doMC on Unix-like systems and doParallel on
Windows. Analogously to mclapply(), when using doMC, globals and packages are automatically
taken care of by the process forking. In contrast, when using doParallel with “snow” clusters, globals
and packages need to be identified and explicitly exported, via additional arguments .export and
.packages to foreach(), to the parallel workers running in the background. Thus, a developer that
only uses doMC might forget to test their code with doParallel, where it may fail. Having said this, the
foreach package does provide a rudimentary mechanism for automatically identifying and exporting
global variables. However, it has some limitations, that, in practice, require the developer to explicitly
specify globals to make sure their code works with more backends. Some adaptors provide additional
options of their own that are specified as arguments to foreach(). If the developer specifies such
options, the foreach() call might not work with other adaptors.

To develop foreach() code invariant to the parallel backend chosen requires a good understanding
of how the foreach framework works and plenty of testing. This lack of strict behavior is unfortunate
and might have grown out of a strategy of wanting to keep things flexible. On the upside, steps
have recently3 been taken toward making the behavior more consistent across foreach backends,
suggesting that it is possible to remove several of these weaknesses through a process of deprecating
and removing unwanted side effects over several release cycles in close collaboration with package
developers currently relying on such backend-specific properties.

3See the foreach issue tracker at https://github.com/RevolutionAnalytics/foreach.
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2 The future framework

The future package defines and implements the Future API - a minimal, unifying, low-level API for
parallel processing, and more. Contrary to the aforementioned solutions, this package does not offer a
parallel map-reduce API per se. Instead, it focuses on providing efficient and simple-to-use atomic
building blocks that allow us to implement such higher-level functions elsewhere.

Three atomic constructs that unify common parallel design patterns

The Future API comprises three fundamental constructs:

• f <- future(expr) : evaluates an expression via a future (non-blocking, if possible)

• v <- value(f) : the value of the future expression expr (blocking until resolved)

• r <- resolved(f) : TRUE if future is resolved, otherwise FALSE (non-blocking)

To help understand what a future is, let us start with R’s assignment construct:

v <- expr

Although it is effectively a single operator, there are two steps in an assignment: first (i) R evaluates
the expression on the right-hand side (RHS), and then (ii) it assigns the resulting value to the variable
on the left-hand side (LHS). We can think of the Future API as giving us full access to these two steps
by rewriting the assignment construct as:

f <- future(expr)
v <- value(f)

Contrary to the regular assignment construct where the evaluation of the expression and the assign-
ment of its value are tightly coupled, the future construct allows us to decouple these steps, which
is an essential property of futures and necessary when doing parallel processing4. Especially, the
decoupling allows us to perform other tasks in-between the step that evaluates the expression and the
step that assigns its value to the target variable. Here is an example that creates a future that calculates
slow_fcn(x) with x being 1, then reassigns a different value to x, and finally gets the value of the
future expression:

x <- 1
f <- future({
slow_fcn(x)

})
x <- 2
v <- value(f)

By definition, a future consists of an R expression and any required objects as they were when the
future was created. Above, the recorded objects are the function slow_fcn() and the variable x with
value 1. This is why the value of the future is unaffected by x getting reassigned a new value after the
future is created but before the value is collected.

We have yet to explain how futures are resolved, that is, how the future expression is evaluated.
This is the part where futures naturally extend themselves to asynchronous and parallel processing.
How a future is resolved depends on what future backend is set. If not specified, the default is to
resolve futures sequentially, which corresponds to setting:

plan(sequential)

Before we continue, it should be emphasized that the Future API is designed so that a program using
it gives the same results no matter how and where the futures are resolved, may it be sequentially on
the local machine or in parallel on a remote cluster. As a consequence, the future ecosystem is designed to
separate the responsibilities of the developer from those of the end-user. This allows the developer to focus on
the code to be parallelized while the end-user focuses on how to parallelize. It is the end-user who
decides on the plan(). For example, if they specify:

plan(multisession)

4We can find this future-value pattern in several implementations for parallel processing, including the ones we
use in R. The mcparallel()-mccollect() pair of functions in parallel is one example. This is why the future-value
abstraction can be mapped onto many of our existing parallel frameworks in a unified way.
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before calling the above future code, futures will be resolved in parallel via a SOCK cluster on the
local machine similar to what we used above in the parLapply() example. If the end-user instead
specifies plan(multicore), futures will be resolved in parallel in the background via forked R processes
using the same framework as mclapply(). Importantly, regardless of what future plan is used, and
regardless of whether or not we assigned a new value to x after creating the future, the result is always
the same. Since we, as developers, do not know what backend end-users will use, we also cannot
know when a future is resolved. This is why we say that “a future evaluates its expression at some
point in the future”. What we do know is that value() returns the value of the future only when it is
resolved, and if it is not resolved, then value() waits until it is.

Next, let us look at how blocking works by using an example where we create three futures to be
resolved by two parallel workers:

library(future)
plan(multisession, workers = 2)

xs <- 1:10

f1 <- future({
slow_fcn(xs[1])

})

f2 <- future({
slow_fcn(xs[2])

})

f3 <- future({
slow_fcn(xs[3])

})

Here, the first two futures are created in a non-blocking way because there are two workers available to
resolve them. However, when we attempt to create a third future, there are no more workers available.
This causes future() to block until one of the workers is available, that is, until either one or both of
the two futures have been resolved. If three or more workers are set up, then the third future() call
would not block. On the other hand, if plan(sequential) is set, then each future() blocks until the
previously created future has been resolved. Finally, to retrieve the values of the three futures, we do:

v1 <- value(f1)
v2 <- value(f2)
v3 <- value(f3)

Although it is common to call value() on the futures in the order we created them, we can collect the
values in any order, which is something we will return to later.

Continuing, we can generalize the above to calculate slow_fcn() on each of the elements in xs via
futures. For this, we can use a regular for-loop to create each of the length(xs) futures:

xs <- 1:10
fs <- list()
for (i in seq_along(xs)) {
fs[[i]] <- future(slow_fcn(xs[i]))

}

Note how we here have effectively created a parallel for-loop, where plan() controls the amount of
parallelization. To collect the values of these futures, we can use5:

vs <- lapply(fs, value)

Alternatively, to using a for-loop, we can parallelize using lapply():

xs <- 1:10
fs <- lapply(xs, function(x) {
future(slow_fcn(x))

})

This is illustrated in Figure 1, where four background workers created by plan(multisession,workers
= 4) is used to resolve the futures. The same idea also applies to other types of map-reduce functions.

5Here, vs <- lapply(fs, value) is used for clarification but we could also have used vs <- value(fs) because
value() is a generic function with implementation also for lists and other types of containers.
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Figure 1: An illustration of parallel processing using futures via four R processes running in the
background. Base R lapply() is used to call slow_fcn() ten times - once per element in xs. By calling
it via future(), each call is distributed out to one of four workers. If all workers are busy, the next
future, in turn, will wait for a worker to become available. The results of all futures are collected at the
end. Any output, warnings, and errors produced on the workers are relayed as-is back on the main
R session. The four workers were created using plan(multisession, workers = 4). If switching to
plan(sequential), then all futures are resolved sequentially in the main R process. Only core Future
API functions from the future package were used. Less verbose, map-reduce alternatives are available
in the high-level future packages such as future.apply, furrr, and doFuture.

This shows how powerful the Future API is; by combining base R with the two constructs future()
and value(), we have created rudimentary6 alternatives to mclapply(), parLapply(), and foreach().
Indeed, we could reimplemented these parallel and foreach functions using the Future API .

The resolved() function queries, in a non-blocking way, whether or not a future is resolved.
Among other things, this can be used to collect the value of a subset of resolved futures as soon as
possible without risking to block from collecting the value of a non-resolved future, which allows
additional futures to launch sooner, if they exist. This strategy also helps lower the overall latency that
comes from the overhead of collecting values from futures - values that may contain large objects and
are collected from remote machines over a network with limited bandwidth. As explained further
below, collecting the value of futures as soon as possible will also lower the latency of the relay of
output and conditions (e.g., warnings and errors) captured by each future while they evaluate the
future expressions.

In summary, the three constructs of the Future API provide the necessary and sufficient functionality
for evaluating R expressions in parallel, which in turn may be used to construct higher-level map-
reduce functions for parallel processing. Additional core features of futures that are useful, or even
essential, for parallel processing are presented next.

Exception handling

To make it as simple as possible to use futures, they are designed to mimic the behavior of the
corresponding code that does not use futures. An important part of this design aim is how exception
handling is done. Any error produced while resolving a future, that is, evaluating its expression, is
captured and relayed as-is in the main R process each time value() is called. This mimics the behavior
of how errors are produced when not using futures. This is illustrated by the following two code
examples – with futures:

6These solutions process each element in a separate future, which is suboptimal if the overhead of creating a
future is relatively large compared to the evaluation time. This overhead can be mitigated by processing elements
in chunks, something that requires more complex code than what is shown in these examples.
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x <- "24"
f <- future(log(x))
v <- value(f)
# Error in log(x) : non-numeric argument to mathematical function

and without futures:

x <- "24"
v <- log(x)
# Error in log(x) : non-numeric argument to mathematical function

As a result, standard mechanisms for condition handling also apply to errors relayed by futures. For
example, to assign a missing value to v whenever there is an error, we can use:

v <- tryCatch({
value(f)

}, error = function(e) {
NA_real_

})

Errors due to extraordinary circumstances, such as terminated R workers and failed communica-
tion, are of a different kind than the above evaluation errors. Because of this, they are signaled as errors
of class FutureError so they can be handled specifically, e.g., by restarting R workers or relaunching
the failed future elsewhere (Section ‘Future work’).

Relaying of standard output and conditions (e.g., messages and warnings)

Futures capture the standard output (stdout ) and then relay it in the main R process each time value()
is called. Analogously, all conditions are captured and relayed as-is in the main R process each time
value() is called. Common conditions relayed this way are messages and warnings as generated by
message() and warning(). The relaying of errors was discussed in the previous section. Relaying of
standard output and conditions respects the order they were captured, except that all of the standard
output is relayed before conditions are relayed in the order they were signaled. For example,

x <- c(1:10, NA)
f <- future({
cat("Hello world\n")
y <- sum(x, na.rm = TRUE)
message("The sum of 'x' is ", y)
if (anyNA(x)) warning("Missing values were omitted", call. = FALSE)
cat("Bye bye\n")
y

})
v <- value(f)
# Hello world
# Bye bye
# The sum of 'x' is 55
# Warning message:
# Missing values were omitted

Standard techniques can be used to capture the relayed standard output, e.g.,

stdout <- capture.output({
v <- value(f)

})
# The sum of 'x' is 55
# Warning message:
# Missing values were omitted

stdout
# [1] "Hello world" "Bye bye"

Similarly, withCallingHandlers() and globalCallingHandlers() can be used to capture and handle
the different classes of conditions being relayed. Note that all of the above works the same way
regardless of what future backend is used, including when futures are resolved on a remote machine.

Relaying of standard output, messages, warnings, and errors simplifies any troubleshooting. For
example, existing verbose output helps narrow down the location of errors and warnings, which may
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reveal unexpected missing values or vector recycling. Commonly used poor-man debugging, where
temporary debug messages are injected into the code, is also possible because of this built-in relay
mechanism. Imagine a logging framework that leverages R’s condition framework to signal different
levels of log events and then captures and reports, e.g., to the terminal or to file. It will work out of the
box when parallelizing with futures.

Conditions of class immediateCondition are treated specially by the future framework. They are
by design allowed to be relayed as soon as possible, and not only when value() is called. For instance,
they may be relayed when calling resolved(), or even sooner, depending on the future backend
used. Because of this, immediateCondition conditions are relayed without respecting the order of
other types of conditions captured. This makes them suitable for signaling, for instance, progress
updates. Thus, such progress conditions can be used to update a progress bar in the terminal or in a
Shiny application while originating from futures being resolve on remote machines. See the progressr
package (Bengtsson, 2021h) for an implementation of this. Note, however, that this type of near-live
relaying of immediateConditions only works for backends that have the means to communicate these
conditions from the worker back to the main R session, while the worker still processes the future.
When non-supporting backends are used, these conditions are relayed together with other captured
conditions at the very end when the future has been resolved.

Comment: Contrary to the standard output, due to limitations in R7, it is not possible to capture
the standard error reliably. Because of this, any output to the standard error is silently ignored,
e.g., cat("some output", file = stderr()). However, although output from message() is sent to the
standard error, it is indeed outputted in the main R processes because it is the message conditions that
are captured and relayed, not the standard error.

Globals and packages

The future framework is designed to make it as simple as possible to implement parallel code. Another
example of this is the automatic identification of globals - short for global variables and functions -
that are required for a future expression to be resolved successfully. For example, in:

f <- future({
slow_fcn(x)

})

the globals of the future expression are slow_fcn() and x. By default, future() will attempt to identify,
locate, and record these globals internally via static code inspection, such that they are available when
the future is resolved. If one of these globals is part of a package namespace, that is also recorded.
Because of this, developers rarely need to worry about globals when programming with futures.
However, occasionally, the future expression is such that it is not possible to infer all the globals. For
example, the following produces an error:

plan(multisession)
k <- 42
f <- future({
get("k")

})
v <- value(f)
# Error in get("k") : object 'k' not found

This is because code inspection cannot infer that k is a needed variable. In such cases, one can guide
the future framework to identify this missing global by explicitly mentioning it at the top of the future
expression, e.g.,

f <- future({
k
get("k")

})

Alternatively, one can specify it via argument globals when creating the future, e.g.,

f <- future({
get("k")

}, globals = "k")

See help("future", package = "future") for all options available to control which globals to use and
how to ignore false positives.

7See https://github.com/HenrikBengtsson/Wishlist-for-R/issues/55
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Internally, the future framework uses globals (Bengtsson, 2020), and indirectly codetools (Tierney,
2020), to identify globals by walking the abstract syntax tree (AST) of the future expression in order.
It uses an optimistic search strategy to allow for some false-positive globals to minimize the number
of false-negative globals. Contrary to false positives, false negatives cause futures to produce errors
similar to the one above.

Proper parallel random number generation

The ability to produce high-quality random numbers is essential for the validity of many statistical
analyses, e.g., bootstrap, permutation tests, and simulation studies. R has functions at its core for
drawing random numbers from common distributions. This R functionality is also available to C
and Fortran native code. All draw from the same internal pseudo-random number generator (RNG).
Different kinds of RNGs are available, with Mersenne-Twister (Matsumoto and Nishimura, 1998)
being the default. Like most other RNGs, the Mersenne-Twister RNG is not designed for concurrent
processing - if used in parallel, one risks producing random numbers that are correlated. Instead, for
parallel processing, the multiple-recursive generator L’Ecuyer-CMRG by L’Ecuyer (1999), implemented
in the parallel package, can be used to set up multiple RNG streams. The future ecosystem has built-in
support for L’Ecuyer-CMRG at its core to make it as easy as possible to produce statistically sound
and reproducible random numbers regardless of how and where futures are resolved, e.g.,

f <- future(rnorm(3), seed = TRUE)
value(f)
# [1] -0.02648871 -1.73240257 0.78139056

Above, seed = TRUE is used to specify that parallel RNG streams should be used. When used, the result
will be fully reproducible regardless of future backend specified and the number of workers available.
Because seed = TRUE can introduce significant overhead, the default is seed = FALSE. However, since it
is computationally cheap to detect when a future expression produced random numbers, the future
framework will generate an informative warning when this is used by mistake to help lower the risk
of producing statistically questionable results. It is possible to disable this check or to escalate the
warning to an error via an R option. All higher-level parallelization APIs that build upon futures must
adhere to this parallel-RNG design, e.g., future.apply and furrr.

Future assignment construct

As an alternative for using future() and value(), the future package provides a future-assignment
operator , %<-%, for convenience. It is designed to mimic the regular assignment operator, <-, in R:

v <- expr

By replacing the above with:

v %<-% expr

the RHS expression expr will be evaluated using a future whose value is assigned to the LHS variable
v as a promise8. Because the LHS is a promise, the value of the future will not be assigned to it until we
attempt to access the promise. As soon as we try to use v, say,

y <- sqrt(v)

the associated promise will call value() on the underlying future, while possibly blocking, and at
the end assign the collected result to v9. From there on, v is a regular value. As an illustration, our
introductory example with three futures can be written as10:

xs <- 1:10
v1 %<-% slow_fcn(xs[1])
v2 %<-% slow_fcn(xs[2])
v3 %<-% slow_fcn(xs[3])

and with, say, plan(multisession), these statements will be processed in parallel.

Special infix operators are available to specify arguments that otherwise would be passed to the
future() function. For example, to set seed = TRUE, we can use:

8The type of promises that R supports should not be mistaken for the type of promises as defined by the
promises (Cheng, 2021) package, which, together with futures, is used for asynchronous processing in Shiny
applications.

9The internal call to value() will also cause any captured standard output and conditions to be relayed.
10I have dropped the curly brackets on the RHS to make the example tidier. Just like with regular assignment,

there is nothing preventing us from using composite expressions also with future assignments.
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v %<-% rnorm(3) %seed% TRUE

See help("%<-%", package = "future") for other infix operators.

Regular R assignments can often be replaced by future assignments as-is. However, because future
assignments rely on promises, and promises can only be assigned to environments, including the
working environment, they cannot be used to assign to, for instance, lists. As a workaround, one can
use a list environment instead of a list . They are implemented in the listenv package (Bengtsson, 2019).
A list environment is technically an environment that emulates most properties of a list, including
indexing as in:

xs <- 1:10
vs <- listenv::listenv()
for (i in seq_along(xs)) {
vs[[i]] %<-% slow_fcn(xs[i])

}
vs <- as.list(vs)

Nested parallelism and protection against it

A problem with parallel processing in software stacks like the R package hierarchy is the risk of
overloading the CPU cores due to nested parallelism. For instance, assume that package PkgA calls
PkgB::estimate() in parallel using all N cores on the current machine. Initially, the estimate()
function was implemented to run sequentially, but, in a recent PkgB release, it was updated to
parallelize internally using all N cores. Without built-in protection, this update now risks running N2

parallel workers when PkgA is used, possibly without the awareness of either maintainer.

The future package has built-in protection against nested parallelism. This works by configuring
each worker to run in sequential mode unless nested parallelism is explicitly configured. This is
achieved by setting options and environment variables that are known to control parallelism in R, e.g.,
options(mc.cores = 1). Because of this, if PkgA and PkgB parallelize using the future framework,
the nested parallelism above will run with a total of N cores, not N2 cores. This will also be true for
non-future code that respects such settings, e.g., when PkgB uses parallel::mclapply() with the
default mc.cores argument.

Nested parallelism can be configured by the end-user via plan(). For example, to use two workers
for the first layer of parallelization and three for the second, use:

plan(list(
tweak(multisession, workers = 2),
tweak(multisession, workers = 3)

))

This will run at most 2 × 3 = 6 tasks in parallel on the local machine. Any nested parallelism beyond
these two layers will be processed in sequential mode. That is, plan(sequential) is implicit if not spec-
ified. When argument workers is not specified, it defaults to parallelly::availableCores(), which
respect a large number of environment variables and R options specifying the number of cores. Because
of this, and due to the built-in protection against nested parallelism, using plan(list(multisession,
multisession)) effectively equals using plan(list(multisession, sequential)).

A more common scenario of nested parallelism is when we submit tasks to a job scheduler on
a compute cluster where each job is allowed to run on multiple cores allotted by the scheduler. As
clarified later, this may be configured as:

plan(list(
future.batchtools::batchtools_sge,
multisession

))

where the default workers = availableCores() assures that the number of multisession workers
used respects what the scheduler assigns to each job.

Future backends

In addition to implementing the Future API , the future package also implements a set of future
backends that are based on the parallel package. If no backend is specified, the default is:

plan(sequential)
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which makes all futures to be resolved sequentially in the current R session. To resolve futures in
parallel on a SOCK cluster on the local machine, use one of:

plan(multisession) ## defaults to workers = availableCores()
plan(multisession, workers = 4)

Similarly, to resolving futures in parallel on the local machine via forked processing, use one of:

plan(multicore) ## defaults to workers = availableCores()
plan(multicore, workers = 4)

To resolve futures via any type of “snow” cluster, use the cluster backend. For example, to use a
traditional SOCK cluster or an MPI cluster, use either of:

workers <- parallel::makeCluster(4)
plan(cluster, workers = workers)

workers <- parallel::makeCluster(4, type = "MPI")
plan(cluster, workers = workers)

To use a SOCK cluster with two remote workers, use:

plan(cluster, workers = c("n1.remote.org", "n2.remote.org"))

which is short for:

workers <- parallelly::makeClusterPSOCK(c("n1.remote.org", "n2.remote.org"))
plan(cluster, workers = workers)

This works as long as there is password-less SSH access to these remote machines and they have
R installed. Contrary to parallel::makePSOCKcluster(), parallelly::makeClusterPSOCK() uses
reverse-tunneling techniques, which avoids having to configure inward-facing port-forwarding in
firewalls, something that requires administrative rights.

Third-party future backends

Besides these built-in future backends, other R packages available on CRAN implement additional
backends. As long as these backends conform to the Future API specifications, as discussed in
Section ’Validation’, they can be used as alternatives to the built-in backends. For example, the
future.callr package (Bengtsson, 2021e) implements a future backend that resolves futures in parallel
on the local machine via R processes11, orchestrated by the callr (Csárdi and Chang, 2021) package,
e.g.,

plan(future.callr::callr) ## defaults to workers = availableCores()
plan(future.callr::callr, workers = 4)

Another example is future.batchtools (Bengtsson, 2021d), which implements several types of backends
on top of the batchtools (Lang et al., 2017) package. Most notably, it provides backends that resolve
futures distributed on high-performance compute (HPC) environments by submitting the futures as
jobs to a job scheduler, e.g., Slurm, SGE, and Torque/PBS:

plan(future.batchtools::batchtools_slurm)
plan(future.batchtools::batchtools_sge)
plan(future.batchtools::batchtools_torque)

Yet another example is the googleComputeEngineR package (Edmondson, 2019), which provides
a “snow” cluster type that supports12 resolving futures in the cloud on the Google Compute Engine
platform.

11The callr backend performs similarly to the PSOCK-based multisession backend. However, in contrast to the
latter, it does not rely on socket connections, which on MS Windows may require administrative rights on the
machine’s firewall in order to allow the R process to communicate on certain ports. Moreover, on machines with a
large number of cores, PSOCK clusters are limited to 125 parallel workers because that is the maximum number of
connections R can have open simultaneously.

12It also supports using parLapply() functions.
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3 Implementation

The future framework is platform-independent and works on all platforms, including Linux, Solaris,
macOS, and MS Windows. It is backward compatible with older versions of R back to R 3.1.2 (October
2014). The core packages future, parallelly (Bengtsson, 2021g), globals, and listenv are implemented
in plain R (without native code) to maximize cross-platform operability and to keep installation simple.
They are available on CRAN (since 2015). The parallelly package implements enhancements to the
parallel package originally part of the future package. The digest package (Eddelbuettel et al., 2021)
is used to produce universally unique identifiers (UUIDs). Development is done toward a public Git
repository hosted at https://github.com/HenrikBengtsson/future.

Validation

Since correctness and reproducibility is essential to all data processing, validation is a top priority and
part of the design and implementation throughout the future ecosystem. Several types of testing are
performed.

First, all the essential core packages part of the future framework, future, parallelly, globals, and
listenv, implement a rich set of package tests. These are validated regularly across the wide range of
operating systems (Linux, Solaris, macOS, and MS Windows) and R versions available on CRAN, on
continuous integration (CI) services (GitHub Actions, Travis CI, and AppVeyor CI), and on R-hub.

Second, for each new release, these packages undergo full reverse-package dependency checks
using revdepcheck (Csárdi and Wickham, 2021). As of November 2021, the future package is tested
against 210 direct reverse-package dependencies available on CRAN and Bioconductor. These checks
are performed on Linux with both the default settings and when forcing tests to use multisession
workers (SOCK clusters), which further validates that globals and packages are identified correctly.

Third, a suite of Future API conformance tests available in the future.tests package (Bengtsson,
2021f) validates the correctness of all future backends. Any new future backend developed must pass
these tests on complying with the Future API . By conforming to this API, the end-user can trust that
the backend will produce the same correct and reproducible results as any other backend, including the
ones that the developer has tested on. Also, by making it the responsibility of the backend developer
to assert that their new future backend conforms to the Future API , we relieve other developers from
having to test that their future-based software works on all backends. It would be a daunting task for
a developer to validate the correctness of their software with all existing backends. Even if they would
achieve that, there may be additional third-party future backends that they are not aware of, that they
do not have the possibility to test with, or that yet have not been developed.

Fourth, since foreach is used by a large number of essential CRAN packages, it provides an
excellent opportunity for supplementary validation. Specifically, we dynamically tweak the examples
of foreach and popular CRAN packages caret, glmnet, NMF, plyr, and TSP to use the doFuture
adaptor (Bengtsson, 2021a). This allows us to run these examples with a variety of future backends to
validate that the examples produce no run-time errors, which indirectly validates the backends as well
as the Future API . In the past, these types of tests helped to identify and resolve corner cases where
automatic identification of global variables would fail. As a side note, several of these foreach-based
examples fail when using a parallel foreach adaptor because they do not properly export globals or
declare package dependencies. The exception is when using the sequential doSEQ adaptor (default),
fork-based ones such as doMC, or the generic doFuture, which supports any future backend and relies
on the future framework for handling globals and packages13.

Lastly, analogously to the above reverse-dependency checks of each new release, CRAN and
Bioconductor continuously run checks on all these direct, but also indirect, reverse dependencies,
which further increases the validation of the Future API and the future ecosystem at large.

Known limitations

When saving an R object to file or sending it to a parallel worker, R uses a built-in technique called
serialization , which allows a complex object structure to be sent as a stream of bytes to its destination,
so it later can be reconstructed via unserialization . The ability to serialize objects is fundamental to all
parallel processing, the exception being shared-memory strategies such as forked parallel processing.
For example, this is how future expressions and variables are sent to parallel workers and how results
are returned.

13There is a plan to update foreach to use the exact same static-code-analysis method as the future package use
for identifying globals. As the maintainer of the future framework, I collaborate with the maintainer of the foreach
package to implement this.
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However, some types of objects are by design bound to the R session where they are created and
cannot be used as-is in other R processes. One example is R connections, e.g.,

con <- file("/path/to/file", open = "wb")
str(con)
# 'file' int 3
# - attr(*, "conn_id")=<externalptr>

Any attempt to use a connection in another R process, for instance, by saving it to file, restarting R,
and loading it back in, or by sending it to a parallel worker, will at best produce a run-time error, and
in the worst case, produce invalid results or, for instance, write to the wrong file. These constraints
apply to all types of parallelization frameworks in R, including the future framework.

There are other types of objects that cannot be transferred as-is to external processes, many from
popular third-party packages, e.g., database connections of the DBI package, XML documents of the
xml2 package, STAN models of the stan package, and many more14. An indicator of this is when an R
object has an external pointer , which is used for referencing an internal low-level object. This suggests
that the object is bound to the current process and its lifespan. Unfortunately, it is not a sufficient
indicator because some objects with external pointers can be exported, e.g., data.table objects. This
makes it complicated to automate the detection of non-exportable objects and protect against using
them in parallel processing. The current best practice is to be aware of these types of objects and to
document new ones when discovered, which often happens when there is an unexpected run-time
error. To help troubleshooting, it is possible to configure the future package to scan for and warn
about globals with external pointers whenever used in a future.

Finally, it is theoretically possible to restructure some of the “non-exportable” object types such
that they can be used in parallel processing. This is discussed further in the ‘Future work’ section.

Overhead

With parallel processing comes overhead. Typically, sources of added processing time are from
spawning new parallel processes, sending instructions and globals to the workers, querying workers
for results, and receiving results (Figure 1). Because of this, there is always a trade-off between
sequential and parallel processing, and on how many parallel workers can be used before the total
overhead dominates the benefits. Whether or not parallelization is beneficial, and for which parallel
backends, depends on what is being parallelized.

As with other parallel solutions, in the future framework, overhead differs between parallel
backends. Certain parallel backends, such as forked processing (“multicore”), are better suited for
low-latency requirements, whereas others, such as distributed processing (“cluster” and “batchtools”),
are better suited for large-throughput requirements. For example, many fast operations applied to a
single large data frame should probably be parallelized on the local computer with forked processing,
if supported, rather than being distributed on a compute cluster running in the cloud. In contrast,
processing hundreds of data files may be completed sooner if distributed out to multiple computers
(with access to the same file system), for instance, via a job scheduler, rather than being processed in
parallel on the local machine.

Besides the overhead added by the parallel backend, each future, regardless of backend, has a
baseline overhead. Specifically, there is a small overhead from the static-code inspection used to
identify global variables, from exception handling needed to capture and relay errors, and from
capturing and relaying standard output and conditions. Except for the error-handling overhead, these
can all be avoided via certain future() arguments, e.g., by manually specifying globals needed and
by disabling the relaying of output and conditions.

R has several profiling tools that can help identify bottlenecks and overhead in computational
expensive tasks, e.g., system.time() of the base package, microbenchmark (Mersmann, 2021),
bench (Hester, 2020), Rprof() of the utils package, proffer (Landau, 2021a), and profvis (Chang
et al., 2020). These tools can also identify the different sources of overhead in the parallelization
framework itself, including the ones in the future ecosystem. It is on the roadmap to make futures
collect and report on some of these benchmarks automatically in order to help developers optimize
their code and for end-users to choose a proper backend.

14See future package vignette ‘Non-exportable object’ for more examples.
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4 Results

The Future API is designed to unify parallel processing in R at the lowest possible level. It provides
a standard for building richer, higher-level parallel frontends without having to worry about and
reimplement common, critical tasks such as identifying global variables and packages, parallel RNG,
and relaying of output and conditions - cumbersome tasks that are often essential to parallel processing.

Another advantage of the future framework is that new future backends do not have to implement
their versions of these tasks, which not only lowers the threshold for implementing new backends, but
also results in a consistent behavior throughout the future ecosystem, something none of the other
parallel solutions provide. This benefits the developer because they can focus on what to parallelize
rather than how and where. It also benefits the end-user, who will have more alternatives to how and
where parallelization will take place. For instance, the developer might have local parallelization in
mind during the development phase due to their work-environment constraints, whereas the end-user
might be interested in parallelizing out to a cloud computing service. One may say that code using
futures scales far without the developer’s attention. Moreover, code using futures for parallelization
will be able to take advantage of new backends that may be developed several years from now.

Directly related to the separation of code and backends, end-users and developers no longer need
to rely on other package maintainers to update their code to take advantage of any new types of
computational resources; updates that otherwise require adding another argument and conditional
statement. One example of this was future.batchtools’ predecessor, future.BatchJobs (legacy, CRAN,
archived), which was straightforward to implement on top of BatchJobs (Bischl et al., 2015) as soon as
the Future API was available. With zero modifications, code that previously only parallelized on the
local computer could suddenly parallelize across thousands of cores on high-performance compute
(HPC) clusters via the job scheduler. All it took was to change the plan().

Because the future ecosystem is at its core designed to give consistent results across all sequential
and parallel backends, it is straightforward to update, or port, an existing, sequential, map-reduce
framework such that it can run in parallel. Not having to worry about low-level parallelization code,
which otherwise risks blurring the objectives, lowers the threshold for designing and implementing
new parallel map-reduce APIs. There are several examples of how fairly straightforward it is to
implement higher-level parallel APIs on top of the Future API . The future.apply package (Bengts-
son, 2021c), implements futurized variants of R’s apply functions found in the base package, e.g.,
future_apply() and future_lapply() are plug-in replacements for apply() and lapply(). The
furrr package (Vaughan and Dancho, 2021) implements futurized variants of the different map-
reduce functions found in the purrr package (Henry and Wickham, 2020), e.g., future_map() is as
plug-in replacement for map(). The doFuture package implements a generic foreach adaptor for
y <- foreach(...) %dopar% { ... } that we can use with any future backend. Because the BiocParal-
lel (Morgan et al., 2021) package, part of the Bioconductor Project, supports foreach as its backend,
its functions such as bplapply() and bpvec() can also parallelize using any type of future backend via
doFuture.

By lowering the barrier for implementing futurized variants of popular map-reduce APIs, develop-
ers and end-users are allowed to stay with their favorite coding style while still taking full advantage
of the future framework.

The Future API also addresses the lock-in-versus-portability problem mentioned in the introduc-
tion; the risk that package developers on Unix-like systems would only support multicore paralleliza-
tion methods because “mclapply() just works” is significantly lower using futures. Similarly, the
most common way to parallelize code is to use multiple cores on the local machine. Because it is less
common to have access to multiple machines, this often prevents developers from considering any
other types of parallelization, with the risk of locking in end-users with other types of resources to
only use a single machine. Hence, the chance for a package to support multi-host parallelization,
including in the cloud and HPC environments, increases when using futures.

The burden on package developers to test and validate their parallel code is significant when using
traditional parallelization frameworks, especially when attempting to support multiple variants. In
contrast, when using futures, the cost of developing, testing, and maintaining parallel code is lower
- often not much more than maintaining sequential code. This is possible because of the simplicity
of the Future API and the fact that the orchestration of futures is predominantly done by the future
package. Therefore, by implementing rigorous tests for the future framework and the different backend
packages, the need for performing complementary tests in packages that make use of futures is much
smaller. Tests for future backend packages, as well as the Future API , are provided by the future.tests
package, which lowers the risk for a backend not being sufficiently tested.

The built-in protection against nested parallelism by mistake, and the agility of system settings of
availableCores(), makes parallel code that uses futures to play nicely on multi-tenant systems. It
respects all known R options and environment variables that specify, or otherwise limit the number
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of parallel workers allowed. See help("availableCores", package = "parallelly") for details. In
contrast, it is, unfortunately, very common to find parallel code that uses parallel::detectCores()
as the default number of workers in other parallel frameworks. Defaulting to using all available cores
this way often wreak havoc on multi-tenant compute systems by overusing already consumed CPU
resources, sometimes bringing the system to a halt due to too much context switching and memory
use. Unfortunately, this often results in a negative performance on also other users’ processes, and
system administrators have to spend time tracking down the root cause of such poorly performing
compute hosts.

Use of the future framework on CRAN and Bioconductor

The future package was released on CRAN in 2015. The uptake has grown steadily ever since. As of
November 2021, future is among the top-1.1% most downloaded package on CRAN15, and there are
210 packages on CRAN and Bioconductor that directly depend on it. For map-reduce parallelization
packages future.apply (top-1.3% most downloaded) and furrr (top-1.8%), the corresponding number
of packages are 87 and 58, respectively.

Besides supporting these traditional parallelization methods, the future framework is also used
as an infrastructure elsewhere. For example, the workflow package targets (Landau, 2021b), and its
predecessor drake (Landau, 2018), implements “a pipeline toolkit for reproducible computation at
scale”. They work by defining make-like targets and dependencies that can be resolved in parallel
using any type of future backend. Another prominent example is the shiny package (Chang et al.,
2021), which implements support for asynchronous processing in Shiny applications via futures.
Asynchronous processing helps to avoid long-running tasks from blocking the user interface. Similarly,
the plumber package (Schloerke and Allen, 2021), which automatically generates and serves HTTP
API from R functions, uses futures to serve asynchronous web APIs and process tasks in parallel.

Other uses of futures

In Hewitt and Baker (1977), the authors propose the (EITHER ...) construct that “evaluates the
expressions in parallel and return the value of ’the first one that finishes’.” A corresponding R
construct could be future_either(...) that evaluates R expressions concurrently via futures and
returns the value of the first resolved one ignoring the others, e.g.,

y <- future_either(
sort.int(x, method = "shell"),
sort.int(x, method = "quick"),
sort.int(x, method = "radix")

)

We may also use futures in cases that do not require parallel processing per se. Indeed, the
Future API strives to make no assumptions about futures being resolved via parallel or distributed
processing. One example is where a particular expression can only be resolved in a legacy version of
R, on another operating system than where the main R session runs, or in an environment that meet
specific requirements, e.g., large amounts of memory, fast local disks, or access to a certain genomic
database. Another example of a resource-specific backend is the civis package (Miller and Ingersoll,
2020), which uses futures to provide an R client for the commercial Civis Platform.

We can also use futures to evaluate non-trustworthy R expressions in a sandboxed R environment
that is, for instance, locked down in a virtual machine, or in a Linux container, such as Singular-
ity (Kurtzer et al., 2017) or Docker (Merkel, 2014), without access to the host machine and its file
system and network.

5 Future work

Although they are not part of the core future framework, future-based map-reduce packages fu-
ture.apply, furrr, doFuture, and the like, play an essential role in how developers and end-users
interact with futures. A key feature of these packages is “load balancing”, which helps reduce the
overall overhead that comes from setting up futures and spawning them on parallel workers and
collecting their results. They achieve this by partitioning the elements to iterated over into equally
sized chunks, typically so that there is one chunk per worker, which in turn results in one future per

15The ranks are robust estimates based on the average median weekly download counts from the RStudio CRAN
mirror during four weeks.
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chunk and hence one future per worker. In contrast, without load balancing, each element is processed
by one future resulting in more overhead, especially when there are many elements to iterate over.
Each of these packages has its own implementation of load balancing, despite often using exactly the
same algorithm. If there is an improvement or a bug fix to one, the maintainers of the others need to
update their code too. The same is true for how they orchestrate globals and parallel RNG. To improve
on this situation and to further harmonize the behavior of futures in these packages, a new helper
package future.mapreduce that implements these common tasks will be introduced, relieving these
packages from those tasks. This will also have the advantage of making it even easier to implement
other types of map-reduce APIs on top of futures.

Having said this, in a longer perspective, it might be possible to remove the need for these future-
based map-reduce APIs, which essentially are thin wrappers ported from their counterpart map-reduce
APIs. This would require internal refactoring of the core future framework, but it can likely be done
while preserving full backward compatibility with the current Future API . For clarification, consider
the following lapply() construct that evaluates slow_fcn(x) for ten elements, each resolved via a
unique lazy future:

xs <- 1:10
fs <- lapply(xs, function(x) future({
slow_fcn(x)

}, lazy = TRUE))

A lazy future defers the evaluation of its expression until we use resolved() to query if it is resolved
or until we use value() to collect its value16. Since neither has been called above, these futures are
still dormant, regardless of future backend used. Next, assume that there are two parallel workers
and imagine that we have a function merge() to merge futures. This would allow us to partition ten
futures into only two futures, one per worker, and then collect their values:

f1 <- merge(fs[1:5])
f2 <- merge(fs[6:10])
vs <- c(value(f1), value(f2))

We can simplify this further by encapsulating the above in the S3 method value() for lists:

vs <- value(fs)

We can mitigate the verbosity in the setup of futures with a helper function or syntax sugar. More
importantly, this would make it possible to use futures in map-reduce APIs without the need for
a counterpart parallel implementation. It would also lower the threshold further for adding a thin
layer of support for futures within existing map-reduce APIs, especially since the design of the future
framework keeps the added maintenance burden to a minimum.

A frequently requested feature is to support suspending running futures, particularly when their
runtimes are large. For example, above future_either() function could benefit from a suspend()
function to terminate futures no longer needed. Since not all backends may support this, extra
care needs to be taken when introducing this feature to the future framework. A related feature
request is the possibility to restart a future that failed due to, for instance, a crashed worker or a
partial power failure on a compute cluster, e.g., restart(f). Combined with R’s condition handling
framework, higher-level APIs can then take on the role of retrying to resolve failed futures, e.g.,
retry({ ... }, times = 3, on = "FutureError").

Implementing support for suspending and restarting futures will indirectly add support for
serializing futures themselves, which is only partially supported in the current implementation. Being
able to serialize futures opens up further possibilities such as saving futures to be processed at a
later time, in another context, or transferring them to a job queue that, in turn, distributes them to
appropriate compute resources.

The problem of not being able to export all types of objects as-is in parallel processing can be
a blocker. It turns out that for a subset of these, we could use marshaling to encode them before
serializing them such that a working clone can be reconstructed after unserializing and unmarshaling .
As an example, a read-only file connection can be marshaled by recording its filename and file position
so that the parallel worker could open its own read-only connection for the same file at the same
position. Marshaling is a rarely used concept in R, possibly because there is no standard convention
for package developers to rely on. Ideally, such a mechanism would allow package developers to
register custom marshal() and unmarshal() methods for their data types, making them automatically
applicable in parallelization without prior knowledge of what objects being transferred.

16Although a lazy future defers the evaluation to a later time, contrary to R’s lazy evaluation and promises , a
future records all dependent variables (“globals”) when it is created, which means it will resolve to the same value
even if those globals change after the future was created and before it was resolved. This also means that lazy and
eager futures give the same value.
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Other than setting the backend via plan(), it is not possible to direct a particular future to a specific
backend type based on the needs of the future. To support this, we have to add options to declare
what resources are needed to resolve particular future. For instance,

f <- future({ ... }, resources = c("r:3.2.*", "mount:/data", "!fork"))

could be one way to specify that this future has to be resolved with R 3.2 on a machine with a /data
mount point and that forked parallel processing must not be used. Some resources may be implicit
based on exported globals, e.g., a specific file required when exporting a file connection via marshaling.

All the above is on the roadmap for the future framework.

6 Summary

The future package is a lightweight R package that provides an alternative approach for parallel
processing in R. It implements the Future API , which comprises three basic functions, from which
richer, higher-level APIs for parallel processing can be constructed. Several of these higher-level
APIs mimic counterpart map-reduce APIs closely, allowing developers to stay with their favorite
coding style for their parallel needs. The future framework is designed so that the developer does
not have to worry about common, critical tasks such as exporting globals to workers, using proper
parallel RNG, and taking care of output, messages, warnings, and errors. This design lowers the
barriers to reimplement existing algorithms and methods in parallel while avoiding increasing the
maintenance burden. When using futures, the end-user controls which parallel backend is used, while
the developer controls what to parallelize. This is possible because all future backends have been
validated to conform to the Future API specifications, ensuring that futures produce the same results
regardless of how and where they are processed.
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MatchThem:: Matching and Weighting
after Multiple Imputation
by Farhad Pishgar, Noah Greifer, Clémence Leyrat and Elizabeth Stuart

Abstract Balancing the distributions of the confounders across the exposure levels in an observational
study through matching or weighting is an accepted method to control for confounding due to these
variables when estimating the association between an exposure and outcome and reducing the degree
of dependence on certain modeling assumptions. Despite the increasing popularity in practice, these
procedures cannot be immediately applied to datasets with missing values. Multiple imputation of
the missing data is a popular approach to account for missing values while preserving the number of
units in the dataset and accounting for the uncertainty in the missing values. However, to the best
of our knowledge, there is no comprehensive matching and weighting software that can be easily
implemented with multiply imputed datasets. In this paper, we review this problem and suggest
a framework to map out the matching and weighting of multiply imputed datasets to 5 actions as
well as the best practices to assess balance in these datasets after matching and weighting. We also
illustrate these approaches using a companion package for R, MatchThem.

1. Introduction

Researchers often seek to estimate the effect of a treatment, exposure, or policy on an outcome but may
be unable to randomly assign participants into the groups to be compared. The inability to randomize
can lead to differences between the distributions of participant characteristics between exposure
groups (known as covariate imbalance), which is the source of confounding bias in a naïve estimate
of the exposure effect. When enough confounders—causes of exposure status and the outcome
of interest—have been observed, one strategy for reducing this bias is to equate the confounder
distributions across the exposure groups by matching or weighting units prior to estimating the
exposure effect. Ideally, after matching or weighting, the exposure groups will be balanced , and a
simple or covariate-adjusted estimate of the difference in average outcomes between the exposure
groups will be unbiased for the true exposure effect (Stuart, 2010). Matching and weighting can also
enhance the robustness to misspecification of any outcome models used to estimate the exposure effect
(Ho et al., 2007).

Despite increasing popularity in practice, matching and weighting methods cannot be immediately
applied to datasets with missing values. There are several solutions to address the problem of
missing data in causal effect estimation, but a standard and relatively easy-to-use strategy is multiple
imputation of the missing data, which preserves the number of units in the dataset while accounting
for some of the uncertainty in the missing values (Cham and West, 2016). Multiple imputation involves
filling in the missing data points using estimates of their values, repeating the process multiple times
with randomness incorporated into each prediction to arrive at a set of multiple complete datasets
containing the imputed values. The difficulty of analyzing multiply imputed data is that any analysis
must be carried out within each imputed dataset, and the results pooled together using specific
combining rules to arrive at a single set of estimates. Because matching and weighting are iterative,
multi-step procedures, it is not straightforward to implement an analysis using these methods without
extensive programming.

The MatchThem R package, which we introduce here, offers an analysis pipeline for estimating ex-
posure effects using matching and weighting with multiply imputed data. The functions MatchThem
offers blend seamlessly with functions used in other R packages for matching, weighting, and the
generation and analysis of multiply imputed data. The aims of the present paper are to briefly review
the issues around matching and weighting with multiply imputed data (section 2), to describe the
structure and functionality of MatchThem (section 3), to describe the steps involved in implement-
ing the best practices for these procedures (section 4), and to demonstrate the typical use of the
MatchThem R package (section 5).

1.1. Notation

Let i = 1, 2, 3, ..., n index the n units in a dataset, in which the causal effects of a binary exposure
indicator (z) on an outcome (y) in the presence of a set of potential confounders (X = {x1, x2, x3, ...})
are to be estimated (such that zi = 0 indicates that unit i is assigned to the control group and zi = 1
indicates that the unit i is assigned to the treated group) (Figure 1).

The typical context in which matching and weighting are used is one where data have been
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collected from an observational study in which the exposure is not randomized, yielding systematic
differences between exposed and unexposed units on a set of measured potential confounders (often
referred to as covariates). The situation we consider here is one in which the values of some of the
covariates or the outcome are missing for some units in the observed dataset (we do not consider
situations in which the exposure status is missing as the methods described herein may not apply to
such scenarios). In order to account for the missingness in the covariates and outcome, the missing
values are multiply imputed, creating m complete datasets. Though we briefly explain the procedure
of multiple imputation in section 2, here, we focus on the procedures following imputation; see (White
et al., 2011) and (Azur et al., 2011) for accessible introductions to multiple imputation for medical
researchers.

Figure 1: The Research Question. A. The notations used in this paper. B. The research question used
as an example in this paper.

1.2. Software requirements

The MatchThem package works with the R statistical software and programming language and can
be installed in R (with version ⩾ 3.6.0) running on different platforms. MatchThem can be installed
from the Comprehensive R Archive Network by executing the following commands in the R software
console (the MatchThem package depends on the MatchIt (Ho et al., 2011) and WeightIt (Greifer,
2020a) packages; these lines will install those packages too):

install.packages("MatchThem")
library(MatchThem)

2. Matching, weighting, and missing data

2.1. Matching

Matching and weighting are methods to equate the distributions of the covariates between exposure
groups (Stuart, 2010). Matching does so by duplicating, selecting, or dropping units from the dataset in
such a way that the resulting exposure groups have similar covariate distributions. Typically, matching
relies on a distance measure constructed from the covariates to pair similar units between exposure
groups, which then form the resulting matched sample; a popular distance measure is the propensity
score difference, the propensity score being the predicted probability of being in the exposed group
given the covariates. Propensity scores can be used in a variety of matching algorithms (Ho et al., 2011;
Williamson et al., 2012), though other distance measures can be used as well (as there have been some
recent concerns about the use of propensity scores for matching (King and Nielsen, 2019)). Matching
produces a set of matching weights (often 1 for those retained and 0 for those dropped) and matched
pair membership, which can be incorporated into a regression of the outcome on the exposure to
estimate the exposure effect in the matched sample. If the balance is achieved across the exposure
groups in the matched sample, then bias in the exposure effect estimate will be reduced.

Matching is implemented in a number of R packages, but the MatchIt package provides ac-
cess to a variety of matching methods for complete (i.e., non-missing) data. The MatchIt function
matchit() performs the requested form of matching on the supplied dataset, returning an object from
which matching weights and matched pair membership can be extracted for use in effect estimation.
MatchThem interfaces with MatchIt to extend matchit() for use with multiply imputed data.

2.2. Weighting

Weighting is another way to achieve balance and reduce bias in the estimate of an exposure effect.
Weights for each unit can be estimated so that the distributions of the covariates are the same across
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the exposure groups in the weighted samples. The weights then function like survey weights and can
be used in a weighted regression of the outcome on the exposure to estimate the exposure effect. A
common way of estimating weights is to use a function of the estimated propensity score, a procedure
known as inverse probability weighting (IPW), though there have been some developments that bypass
estimating the propensity score to estimate the weights directly (Hainmueller, 2012; Zubizarreta, 2015).

The R package WeightIt implements a variety of weighting methods and functions similarly
to MatchIt. The WeightIt’s function, weightit(), performs the requested form of weighting and
returns an object containing the estimated weights. MatchThem interfaces with WeightIt to extend
weightit() for use with multiply imputed data.

2.3. Assessing covariate balance

After matching or weighting, one must assess the degree to which the balancing method was successful
at achieving covariate balance in the exposure groups. This involves using numerical and graphical
criteria to compare the distributions of covariates across the groups (Austin, 2009). If the balance is not
achieved, the matching or weighting specification should be changed, and the procedure performed
again until a satisfactory balance is found. The cobalt package provides tools for assessing balance
after matching and weighting and has tools for summarizing balance in multiply imputed data.
MatchThem interfaces with cobalt to facilitate balance checking as part of a complete analysis pipeline.
We refer readers to the cobalt documentation for further explanation of cobalt’s capabilities in order
to maintain focus on the structure and functionality of MatchThem, but we will include the use of
cobalt in the demonstration of the analysis pipeline in section 5.

2.4. Missing data

A major obstacle for most matching and weighting procedures is that they cannot be performed in a
straightforward way for units with missing values in the covariates because these procedures either
search control and treat groups for units with similar covariate values or rely on the predictions from
a model with the covariates as the predictors (i.e., the propensity scores), which cannot be computed
in the presence of missing data.

Complete-case analysis, i.e., excluding units with missing values in the potential confounders
or outcome, is a simple and naïve approach for handling missing data. However, the complete-
case analysis may not be a valid option in all instances; the assumption of missingness completely-
at-random, described below, is required to justify complete-case analysis and is often violated in
observational data. In addition, it is possible that dropping units with any missing values may yield a
dataset with few remaining units (Pigott, 2001). Another approach is to replace the missing values
with an arbitrary constant and include indicators for missingness as additional covariates in X, though
this can also allow bias to remain (Knol et al., 2010). The preferred method to address the problem
of missing data that preserves the number of units in the dataset and often yields unbiased effect
estimates is to impute the missing values using multiple imputation (Leyrat et al., 2019).

Multiple imputation refers to the procedure of substituting the missing values with a set of
plausible values that reflect the uncertainty in predicting the true unobserved values, which results in
m imputed (filled-in) datasets (Sterne et al., 2009). Multiple imputation is justified when the mechanism
behind the missingness is ignorable, i.e., given the observed data, units with missing data represent a
random subset of the dataset (‘missing-completely-at-random’ in Rubin’s language (Rubin, 1987)) or
when the probability that a value is missing relies on values of other observed variables, but not on the
missing value itself or unobserved factors (‘missing-at-random’ in Rubin’s language (Rubin, 1987)).

Several multiple imputation methods are described in the literature, and multiple statistical
packages can be used to generate multiply imputed data. The general framework of these methods is
the same: impute the missing values to produce m datasets, analyze the imputed datasets separately,
and pool the results obtained in each imputed dataset using standard combining rules to arrive at
a single estimate for the sample (Sterne et al., 2009; Rubin, 1987). A popular method of multiple
imputation is multiple imputation with chained equations (MICE), which involves iteratively fitting
models to predict the missing values and is implemented in the mice R package. The mice package
contains the functions mice() to impute the missing values, with() to run a supplied analysis model
on each imputed dataset, and pool() to pool the results of the models to arrive at a single set of
coefficient estimates and standard errors, facilitating the creation and analysis of multiply imputed
data in a single analysis pipeline requiring minimal programming. We refer the reader to the mice
documentation for further details (van Buuren and Groothuis-Oudshoorn, 2011).
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2.5. Matching and weighting multiply imputed datasets

Given the limitations of conducting a complete-case analysis, multiply imputing missing data before
matching or weighting has become a popular alternative for use with missing data. There has been
some research examining the performance and optimal use of matching and weighting with multiply
imputed data, with a focus on the correct sequence of actions involved. There are two main approaches
that have been identified:

1. The within approach: In this approach, matching or weighting is performed within each
imputed dataset, using the observed and imputed covariate values, and the exposure effects
estimated in each of the m matched or weighted datasets are pooled together (Leyrat et al.,
2019).

2. The across approach: In this approach, propensity scores are averaged across the imputed
datasets, and, using this averaged measure, matching or weighting is performed in the imputed
datasets. Finally, the estimated exposure effects obtained from analyzing the matched or
weighted datasets are pooled together (Mitra and Reiter, 2016).

The across approach has been demonstrated to have inferior statistical performance as compared
to the within approach in many common scenarios (Leyrat et al., 2019; de Vries and Groenwold, 2016),
though early research favored its use (Mitra and Reiter, 2016). In particular, the across approach seems
most effective when the outcomes are not used to impute the missing covariate values (de Vries and
Groenwold, 2016). Although some recommend avoiding the inclusion of the outcome variable during
or prior to matching and weighting with propensity scores (Rubin, 2001), statistical evidence favors
the use of the outcome variable in multiple imputation of covariates (Leyrat et al., 2019). In addition,
the across approach is not compatible with matching and weighting methods that do not involve
propensity scores, such as coarsened exact matching (de Vries and Groenwold, 2016), Mahalanobis
distance matching, and entropy balancing (Hainmueller, 2012). Both approaches are implemented
in MatchThem to facilitate comparison between them, though the within approach is the default in
MatchThem functions and is the approach we recommend.

It should be noted that the across approach described by Mitra and Reiter (2016) differs slightly
from that described here; in their procedure, the averaged propensity scores are used to estimate the
causal effect in a single dataset consisting of just the observed exposure and outcome values, which are
assumed to be non-missing. The procedure described here is in the spirit of the original method but
allows for the presence of imputed outcomes and the use of imputed covariates in the effect estimation.
When there is no missingness in the outcome and covariates are not used in the effect estimation, the
two versions of this approach coincide.

3. Package contents and structure

MatchThem provides functions and S3 classes to facilitate the use of matching and weighting with
multiply imputed data and the estimation of exposure effects and their uncertainty (i.e., standard
errors), which requires special care when done with matched or weighted multiply imputed data. In
particular, MatchThem extends the functionality of MatchIt and WeightIt for matching and weighting
to multiply imputed data and the functionality of mice for the analysis of multiply imputed data to
matched and weighted data. MatchThem provides wrappers for functions in these packages to create
a smooth workflow requiring minimal programming. Table 1 contains a summary of the functions
and classes contained in MatchThem.

The MatchThem functions matchthem() and weightthem() are wrappers for MatchIt::matchit()
and WeightIt::weightit() that apply them to each imputed dataset, supplied in the form of a
"mids" object, the output of a call to mice::mice(), which contains the multiply imputed datasets
(matchthem() and weightthem() are also compatible with "amelia" objects from the Amelia package,
but they are first transformed into "mids" objects before matching or weighting is performed on them).
matchthem() and weightthem() apply the corresponding functions to the imputed datasets using
the requested approach, storing the outputs along with the original imputed data in a "mimids" or
"wimids" object, which extend mice’s "mids" class to additionally contain the matching and weighting
output. The "mimids" and "wimids" classes have a number of methods that extend mice’s functions
for analyzing "mids" objects; in particular, MatchThem offers complete(), with(), and pool(), which
function similarly to their equivalents in mice. MatchThem also contains methods for cbind(),
print(), summary(), and plot() with "mimids" and "wimids" objects. We describe the syntax of these
functions below.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=Amelia


CONTRIBUTED RESEARCH ARTICLES 296

Function Input Output Extends Description

matchthem() mids
object

mimids object MatchIt::matchit() Performs the re-
quested form of
matching on the
imputed datasets.

weightthem() mids
object

wimids object WeightIt::weightit() Performs the re-
quested form of
weighting on the
imputed datasets.

complete() mimids
or wimids
object

data.frame1 mice::complete() Extracts one or
more imputed
datasets from
the supplied in-
put along with
the outputs of
the matching or
weighting proce-
dure.

with() mimids
or wimids
object

mimira object mice::with() Runs the supplied
analysis model
on each imputed
dataset, incorpo-
rating the outputs
of the matching or
weighting proce-
dure.

pool() mimira
object

mimipo object2 mice::pool() Pools the coeffi-
cients and standard
errors estimated
across the imputed
datasets to a single
set of coefficient
and standard error
estimates.

Table 1: Primary Functions in MatchThem. 1. complete() can also produce outputs in other forms. 2.
mimipo objects can be further analyzed by functions in mice as if they had come from mice::pool().
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3.1. matchthem()

The syntax for matchthem() is as follows:

matchthem(formula, datasets,
approach = "within",
method = "nearest",
distance = "logit",
distance.options = list(),
discard = "none",
reestimate = FALSE, ...)

The formula argument corresponds to the model formula, which relates the exposure (on the
left-hand side) to the covariates. The datasets argument corresponds to the "mids" or "amelia"
object containing the multiply imputed datasets. The approach argument, with options "within"
and "across", corresponds to the approach used. The method argument corresponds to the method
of matching used, which, as of now, can be one of the nearest neighbor matching ("nearest"), opti-
mal full matching ("full"), propensity score subclassification ("subclass"), optimal pair matching
("optimal"), exact matching ("exact"), coarsened exact matching ("cem"), and genetic matching
("genetic"). The distance argument corresponds to the method used to define the distances between
units; it can be "mahalanobis" for Mahalanobis distance matching or a method of estimating propen-
sity scores (the default, "glm", estimates propensity scores using logistic regression). Note that only
the methods that involve propensity scores are allowed with the across approach; as of now, these
include "nearest", "full", "subclass", "optimal", and "genetic", and only when propensity scores
are requested. The other arguments, including those supplied to ..., control other aspects of the
matching procedure and are, along with formula, method, and distance, passed directly to matchit().

3.2. weightthem()

The syntax for weightthem() is as follows:

weightthem(formula, datasets,
approach = "within",
method = "ps", ...)

The formula, datasets, and approach arguments have the same meaning as those for matchthem().
The method argument controls the weighting method used, which, as of now, can be one of logistic
regression propensity score weighting ("ps"), covariate balancing propensity score weighting ("cbps")
and its nonparametric variety ("npcbps"), generalized boosted modeling propensity score weighting
("gbm"), entropy balancing ("ebal"), SuperLearner propensity score weighting ("super"), optimization-
based weighting ("optweight"), energy balancing ("energy"), and Bayesian additive regression tree
propensity score weighting ("bart"). Note that only methods that involve propensity scores can be
used with the across approach; as of now, these include "ps", "cbps", "gbm", "super", and "bart".
Arguments supplied to ... are passed to weightit() to control details of the weight estimation.

3.3. complete()

The syntax for complete.mimids() is as follows (the syntax for complete.wimids() is identical):

complete.mimids(data, action = 1,
include = FALSE, mild = FALSE, all = TRUE, ...)

complete.wimids(data, action = 1,
include = FALSE, mild = FALSE, all = TRUE, ...)

complete() extracts the multiply imputed and matched or weighted datasets from a "mimids"
or "wimids" object, yielding a "data.frame" containing the imputed data and the outputs of the
matching or weighting function. These additional outputs include the estimated weights (which are
produced with both matching and weighting), matched pair membership, and estimated propensity
scores (if used). This function extends complete.mids() from the mice package. The data argument
corresponds to a "mimids" or "wimids" object, the output of a call to matchthem() or weightthem().
The action argument controls the format of the output; it can be supplied as a number to extract a
single dataset corresponding to that imputation number or a string, such as "long", to produce an
object (of one of several types) containing all of the imputed datasets; the mild argument provides
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another way to control output. The all argument controls whether all units should be included in
the output or just units with a weight greater than zero (i.e., units that have not been discarded or
that were left unmatched). Though the datasets produced by complete() can be analyzed separately
and the estimates manually combined using the appropriate combining rules, the with() and pool()
methods facilitate proper analysis of the matched or weighted imputed data.

3.4. with()

The syntax for with.mimids() and with.wimids() are as follows:

with.mimids(data, expr, cluster, ...)

with.wimids(data, expr, ...)

The with() method for "mimids" and "wimids" objects extends the with() method for "mids"
objects provided in mice. It works by extracting the imputed datasets one-by-one along with the
matching or weighting outputs and applies the modeling function supplied to expr (e.g., a call to
glm(), survey::svyglm(), or survival::coxph() with the outcome model formula included) to each
of the datasets. No data argument needs to be supplied to the modeling function because the imputed
datasets are automatically supplied by with(). with() automatically incorporates the estimated
weights in the estimation function when possible. The output of a call to with is a "mimira" object,
which contains the outputs of the models run on each imputed dataset and extends the corresponding
"mira" class from mice.

In general, for generalized linear outcome models, the svyglm() function in the survey package
should be used as it correctly accounts for the weights and produces approximately correct standard
errors, whereas the standard errors resulting from a normal call to glm() will be inaccurate. with()
automatically constructs and supplies the svydesign object containing the data and weights, so neither
need to be supplied. When matching is used, and a modeling function from the survey package
is supplied, information about pair membership is also supplied to appropriately account for the
clustering in the standard error estimation as recommended by (Austin, 2011) (this functionality can
be controlled using the cluster argument).

3.5. pool()

The syntax for pool() is as follows:

pool(object, dfcom = NULL)

pool() takes in a "mimira" object (supplied to the object argument) to pool the models and
provide a single set of coefficient estimates and information required to compute their standard
errors. The dfcom argument controls the degrees of freedom used for the tests of the coefficients and
confidence intervals, which typically is close to the number of units in the original dataset. Because
matching and weighting can yield datasets with different numbers of units remaining, the default is to
use the smallest degrees of freedom from the supplied models if possible; otherwise, a large value is
used to approximate a z-test. MatchThem re-exports pool() as a generic with methods for "mira"
objects (the output of mice::with.mids()) and "mimira" objects as mice::pool() is not a generic.
The output of MatchThem::pool.mimira() is a "mimipo" object, which can be used with the methods
available in mice for "mipo" objects (e.g., summary() and print()).

3.6. Methods for "mimids" and "wimids" objects

MatchThem also contains methods for cbind(), print(), summary(), and plot() with "mimids" and
"wimids" objects. cbind() allows one to add variables from an external dataset, not included in the
original "mids" object, that one might wish to be involved in the effect estimation model, such as an
outcome not involved in the imputation or a variable collected after the multiple imputation occurred.
The print(), summary(), and plot() methods simply apply the corresponding function to the matchit
or weightit objects contained within the "mimids" or "wimids" object. The MatchIt and WeightIt
documentation details their functionality. An additional argument, n, determines to which imputed
dataset the function should be applied (e.g., print.mimids(x,n = 1) prints the output of the call to
matchit() used on the first imputed dataset).
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4. Suggested workflow

The suggested workflow for pre-processing imputed datasets with matching or weighting and then
analyzing them to estimate exposure effects using MatchThem is as follows (Figure 2):

1. Imputing the Missing Data in the Dataset: Data are imputed using functions in mice or Amelia.
Data imputed using another package can be coerced to a "mids" object by the mice function
as.mids() for use with MatchThem functions (van Buuren and Groothuis-Oudshoorn, 2011;
Honaker et al., 2011).

2. Matching or Weighting the Imputed Datasets: Matching or weighting are performed using
matchthem() or weightthem(), respectively, on the imputed datasets. The functions perform the
matching or weighting within each imputed dataset using the specified approach.

3. Assessing Balance on the Matched or Weighted Datasets: Functions in the cobalt R package
can be used to assess the balance to ensure that the resulting bias is small across imputed
datasets. The bal.tab() and love.plot() functions in the cobalt package can be used directly
on the output of matchthem() and weightthem() (Greifer, 2020b). If the balance is not achieved,
step 2 should be repeated with different approaches or methods until it is.

4. Analyzing the Matched or Weighted Datasets: Using with() function from MatchThem
package, causal effects and their standard errors are estimated in each of the matched or
weighted imputed datasets. Robust standard errors should be used with weighting and most
matching methods and are available through integration with the survey package (Lumley,
2004).

5. Pooling the Causal Effect Estimates: The pool() function from the package is used to pool the
obtained causal effect estimates and standard errors from each dataset using Rubin’s rules.

5. Example

In this section, we review the suggested workflow for matching and weighting multiply imputed
datasets, using an example. The research question in this context is whether osteoporosis at baseline is
associated with increased odds of developing knee osteoarthritis in the follow-up or not (Figure 1).
We will use the osteoarthritis dataset (included in the MatchThem package):

library(MatchThem)
data('osteoarthritis')

The osteoarthritis dataset contains data on 7 characteristics (age: AGE, gender: SEX, body mass
index: BMI, racial background: RAC, smoking status: SMK, osteoporosis at baseline: OSP, and knee
osteoarthritis in the follow-up: KOA) of 2,585 individuals. The dataset contains missing data in BMI,
RAC, SMK, and KOA variables. We assume the missing values are missing at random, justifying the use of
multiple imputation.

summary(osteoarthritis)

5.1. Imputing the missing data in the dataset

We use the mice package to impute the missing data in the osteoarthritis dataset. See the mice
package reference manual for more details about this step (van Buuren and Groothuis-Oudshoorn,
2011). We use 5 imputations for illustration, though more imputations are always better.

library(mice)
imputed.datasets <- mice(osteoarthritis, m = 5)

The code above produces the 5 imputed datasets and saves them in the imputed.datasets object
(of class "mids"). This object will be supplied to MatchThem functions to perform matching and
weighting in the imputed datasets.

5.2. Matching and weighting the imputed datasets

5.2.1. Matching the imputed datasets

In this example, we use matchthem() to match the multiply imputed datasets, imputed.datasets,
using the "within" matching approach with nearest neighbor matching on the propensity score,
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Figure 2: Suggested Workflow for Matching and Weighting Multiply Imputed Datasets
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a caliper of 5% of the standard deviation of the propensity score, and 2:1 unexposed-to-exposed
matching ratio for matching. The syntax is the same as it is for MatchIt::matchit(), except that the
imputed.datasets is supplied to the datasets argument (whereas matchit() takes a "data.frame"
for its data argument) and an argument to approach is supplied to select the approach to be used.

matched.datasets <- matchthem(OSP ~ AGE + SEX + BMI + RAC + SMK,
datasets = imputed.datasets,
approach = 'within',
method = 'nearest',
caliper = 0.05,
ratio = 2)

# Matching Observations | dataset: #1 #2 #3 #4 #5

After the matching is performed in the 5 imputed datasets, the output will be saved in the
matched.datasets object (of "mimids" class). The "mimids" object contains the original imputed data
and the output of the calls to matchit() applied to each imputed dataset.

5.2.2. Weighting the imputed datasets

Here, we use weightthem() to weight the imputed datasets, imputed.datasets, using the "across"
weighting approach with logistic regression propensity score weighting targeting the average treatment
effect in the matched sample (ATM) estimand (which mimics the target population resulting from
matching with a caliper (Li and Greene, 2013)). The syntax is the same as it is for WeightIt::weightit()
except that the imputed.datasets is supplied to the datasets argument (whereas weightit() takes a
"data.frame" for its data argument) and an argument to approach is supplied to select the approach
to be used.

weighted.datasets <- weightthem(OSP ~ AGE + SEX + BMI + RAC + SMK,
datasets = imputed.datasets,
approach = 'across',
method = 'ps',
estimand = 'ATM')

# Estimating distances | dataset: #1 #2 #3 #4 #5
# Estimating weights | dataset: #1 #2 #3 #4 #5

The weighted.datasets object (of "wimids" class) contains the original imputed data and the
output of the calls to weightit() applied to each imputed dataset.

5.3. Assessing balance on the matched and weighted datasets

Functions in the cobalt package are compatible with "mimids" and "wimids" objects, and the degree
to which balance was achieved in the matched and weighted datasets of these objects can be assessed
using the cobalt functions bal.tab(), bal.plot(), and love.plot(). Here, we illustrate the use of
bal.tab() to compute absolute standardized mean differences (ASMDs) and Kolmogorov-Smirnov
(KS) statistics for each covariate. The code below produces the largest ASMD and KS statistic after
matching for each covariate across all the imputed datasets, indicating the worst balance across the
datasets (Greifer, 2020b).

library(cobalt)
bal.tab(matched.datasets, stats = c('m', 'ks'),

imp.fun = 'max')

# Balance summary across all imputations
# Type Max.Diff.Adj Max.KS.Adj
# distance Distance 0.0107 0.0300
# AGE Contin. 0.0296 0.0450
# SEX_2 Binary 0.0021 0.0021
# BMI Contin. 0.0333 0.0557
# RAC_0 Binary 0.0021 0.0021
# RAC_1 Binary 0.0118 0.0118
# RAC_2 Binary 0.0139 0.0139
# RAC_3 Binary 0.0021 0.0021
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# SMK Binary 0.0128 0.0128

# Average sample sizes across imputations
# Control Treated
# All 2106. 479.
# Matched (ESS) 738.17 467.2
# Matched (Unweighted) 810.2 467.2
# Unmatched 1295.8 11.8

This information shows that the covariates are well-balanced in the osteoporosis negative and
positive groups after matching as the largest ASMD and KS statistics for all covariates across the
imputed datasets are close to zero. The sample size information below indicates that some units were
left unmatched and dropped from the sample. The displayed values are averaged across the imputed
datasets.

We can produce the same balance table for the weighted datasets:

bal.tab(weighted.datasets, stats = c('m', 'ks'),
imp.fun = 'max')

# Balance summary across all imputations
# Type Max.Diff.Adj Max.KS.Adj
# prop.score Distance 0.0040 0.0433
# AGE Contin. 0.0209 0.0376
# SEX_2 Binary 0.0002 0.0002
# BMI Contin. 0.0070 0.0466
# RAC_0 Binary 0.0002 0.0002
# RAC_1 Binary 0.0019 0.0019
# RAC_2 Binary 0.0027 0.0027
# RAC_3 Binary 0.0006 0.0006
# SMK Binary 0.0138 0.0138

# Average effective sample sizes across imputations
# Control Treated
# Unadjusted 2106. 479.
# Adjusted 954.44 478.3

As with the matched datasets, the covariates are well balanced in the weighted datasets as
demonstrated by the low values of the largest ASMD and KS statistics across the datasets. For more
information on the available options for assessing balance with multiply imputed data, we refer the
reader to the cobalt documentation (Greifer, 2020b).

5.4. Analyzing the matched and weighted datasets

The exposure effect within each imputed dataset can be estimated using with(), which applies the
supplied outcome model to each of the matched or weighted datasets and stores the output in a
"mimira" object. We illustrate the use of with() below to estimate the difference in the log odds of
knee osteoarthritis between osteoporosis groups in the matched imputed datasets:

library(survey)
matched.models <- with(matched.datasets,

svyglm(KOA ~ OSP, family = quasibinomial()),
cluster = TRUE)

The models fit in each matched dataset are saved in the matched.models object (of "mimira" class).
We can run the same code with the weighted imputed datasets:

weighted.models <- with(weighted.datasets,
svyglm(KOA ~ OSP, family = quasibinomial()))

Results are saved in the weighted.models object (of "mimira" class, note that in the calls to
svyglm(), no svydesign() or weights arguments need to be specified as these are automatically
supplied by with())
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5.5. Pooling the causal effect estimates

In order to arrive at a single set of coefficient and standard error estimates from the imputed datasets,
we must pool the estimated models using pool(). We demonstrate this below on the matched.models
object containing the models we fit above.

matched.results <- pool(matched.models)

The output of the pool() is saved in the matched.results object, which is of "mimipo" class. We
can run summary() to arrive at a final set of estimates for the matched data:

summary(matched.results, conf.int = TRUE)

# term estimate std.error statistic df p.value 2.5 % 97.5 %
# 1 (Intercept) -0.2045680 0.08781317 -2.3295816 47.88960 0.024092 -0.38114 -0.027997
# 2 OSP1 -0.1255041 0.14138543 -0.8876733 53.09776 0.378720 -0.40908 0.158067

The displayed results show that there is not sufficient evidence of an association between osteo-
porosis and knee osteoarthritis development in the follow-up in this sample (beta = -0.13 [-0.41 – 0.16],
odds ratio = 0.88 [0.66 – 1.17]).

We can run pool() and then summary() on the model fits in the weighted datasets to arrive at a
similar table of results:

weighted.results <- pool(weighted.models)
summary(weighted.results, conf.int = TRUE)

# term estimate std.error statistic df p.value 2.5 % 97.5 %
# 1 (Intercept) -0.1602278 0.06932782 -2.311162 225.930 0.02172525 -0.29684 -0.023616
# 2 OSP1 -0.1817342 0.13059573 -1.391579 63.768 0.16888557 -0.44265 0.079179

Again, there is no evidence for an association between osteoporosis and knee osteoarthritis
development in this sample.

6. Summary

Matching and weighting are popular methods used to balance the distributions of potential con-
founders across the exposure levels in an observational study. However, these procedures cannot
be immediately applied to datasets with missing values. Multiple imputation of the missing data
can be an effective approach to account for missing values while preserving the number of units in
the dataset and accounting for the uncertainty in the imputation of the missing values. In this paper,
we described the functionality of MatchThem, which interfaces with MatchIt, WeightIt, and mice
to provide a smooth, straightforward workflow for estimating exposure effects in multiply imputed
data using matching or weighting. MatchThem contains functions and classes that encourage the
use of best practices in analyzing matched or weighted multiply imputed data without requiring
extensive programming by the user. Given the ubiquity of missing data in observational studies,
we hope MatchThem will facilitate smart choices and reliable analyses by researchers attempting to
estimate causal effects from observational data.
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EMSS: New EM-type algorithms for the
Heckman selection model in R
by Kexuan Yang, Sang Kyu Lee, Jun Zhao and Hyoung-Moon Kim

Abstract When investigators observe non-random samples from populations, sample selectivity
problems may occur. The Heckman selection model is widely used to deal with selectivity problems.
Based on the EM algorithm, Zhao et al. (2020) developed three algorithms, namely, ECM, ECM(NR),
and ECME(NR), which also have the EM algorithm’s main advantages: stability and ease of imple-
mentation. This paper provides the implementation of these three new EM-type algorithms in the
package EMSS and illustrates the usage of the package on several simulated and real data examples.
The comparison between the maximum likelihood estimation method (MLE) and three new EM-type
algorithms in robustness issues is further discussed.

Introduction

The problem arising from the sampling mechanism where an investigator extracts a sample non-
randomly, and then this sample cannot represent the population is usually referred to as a sample
selection problem. Methods relying on a distributional assumption are widely used to deal with this
selection problem. A classical sample selection model under the assumption of bivariate normality is
introduced in Heckman (1974), and it is commonly called the Heckman selection model. Heckman
(1979) further developed two estimation procedures for the above Heckman selection model: the
maximum likelihood estimation method (MLE) and the two-step method.

The application of these two methods in the Heckman selection model is first described in the R
package sampleSelection by Toomet and Henningsen (2008). For the observations where outlying ones
are considered in the Heckman selection model, Zhelonkin et al. (2016) found that the unboundedness
of the influence functions in the two-step method leads to an arbitrary bias. Zhelonkin et al. (2016)
developed a robust two-stage method that performs more robustly than the two-step method, and the
ssmrob package is available for robust estimation and inference for the selection model.

Little and Rubin (2002, pp. 322-323) applied an EM algorithm, which is numerically stable and
easily implemented, to estimate the parameters of the Heckman selection model. However, it is limited
to the cases in which the two vectors of the observed characteristics in the Heckman selection model
are the same. Zhao et al. (2020) extended three new EM-type algorithms: expectation-conditional max-
imization (ECM), expectation-conditional maximization with Newton-Raphson method (ECM(NR)),
and Expectation/Conditional Maximization Either (ECME) to more general cases. They also have the
main advantages of the EM algorithm, namely stability and ease of implementation. However, section
6 in Zhao et al. (2020) suggests that the ECME algorithms require much more time than other two
EM-type algorithms in the same real data analysis. In addition, there is still no R package available
for these EM-type algorithms. Meng and Rubin (1993), Liu and Rubin (1994), and McLachlan and
Krishnan (2008) are helpful to understand the procedures of the ECM and ECME algorithms.

This study developed the ECME algorithm by first applying the Newton–Raphson method to
reduce the estimation time. Then, it is proposed to describe these new EM-type algorithms in R. In the
next section, the Heckman selection model is described in brief, followed by new algorithms, namely
ECM, ECM(NR), and ECME. Next, the usage of the EMSS package is presented through simulation
and real data examples. Then, the robustness issue is further discussed for the MLE method and the
new EM-type algorithms. Under the conditions where the robustness issue arises from the initial
values, the EMSS package is preferable to the sampleSelection. Because of the unreasonable results in
the MLE or the two-step method, the “NA" might occur in the standard errors in the sampleSelection.
However, the standard errors can be calculated effectively in the EMSS package in almost all cases.
Finally, we provide a summary of this study.

The EMSS package is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=EMSS and the GitHub at https://github.com/SangkyuStat/EMSS. R
code for the examples demonstrated herein has been provided as supplementary material. The
supplementary code has been tested with EMSS version 1.1.1, and results presented herein have been
produced with this version.
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Model and algorithms

Heckman selection model

Suppose that the regression model of the outcome variable of interest is

Yi1 = x⊤i β + ϵi, i = 1, . . . , N.

Due to selection mechanism,

Yi2 = w⊤
i γ + ηi, i = 1, . . . , N,

we observe only N1 out of N observations yi1 for which yi2 > 0 such that

ui = I(yi2 > 0).

xi ∈ Rp and wi ∈ Rq are observed characteristics. In addition, vectors β ∈ Rp, γ ∈ Rq are unknown
parameters. Assume that the error terms ϵi and ηi follow bivariate normality as in Heckman (1974),
that is, (

ϵi
ηi

)
i.i.d.∼ N2

[(
0
0

)
,
(

σ2 ρσ
ρσ 1

)]
,

where “i.i.d.” means independent and identically distributed, then (Yi1, Yi2) also follow bivariate
normal distribution.

EM-type algorithms

ECM and ECM(NR) algorithms

The ECM algorithm is discussed first. In the Heckman selection model, it is assumed that we observe
the first N1 out of N yi1 observations. The observed data are yobs = (y11, · · · , yN1,1)

⊤, and the missing
data are ymis = ((yN1+1,1, · · · , yN,1), y⊤

2 )⊤. Applying the invariance property of MLEs, the parameter
θ = {β, γ, σ, ρ} can be transformed to θ∗ = {β, γ, ψ∗, ρ∗} with ψ = σ2(1 − ρ2), ψ∗ = log(ψ), ρ∗ = ρσ
and

σ2 = exp(ψ∗) + (ρ∗)2 and ρ =
ρ∗√

exp(ψ∗) + (ρ∗)2
.

The complete data log-likelihood is

lc(θ∗|y) = −N log(2π)− N
2

log(ψ)− 1
2ψ

{
N

∑
i=1

(yi1 − x⊤i β)2

}

− 1
2

(
1 +

(ρ∗)2

ψ

){ N

∑
i=1

(yi2 − w⊤
i γ)2

}
+

ρ∗

ψ

{
N

∑
i=1

(yi1 − x⊤i β)(yi2 − w⊤
i γ)

}
.

The corresponding Q-function, which is the conditional expectation of the above complete-data log-
likelihood lc(θ∗|y) with respect to the conditional distribution of ymis given yobs at the k-th iteration,
is obtained as

Q
(

θ∗|θ̂∗(k)
)
= E

[
lc(θ∗|y)|θ̂

∗(k)]
= −N log(2π)− N

2
log(ψ)

− 1
2ψ

{
N1

∑
i=1

(yi1 − x⊤i β)2 +
N

∑
i=N1+1

(ν̂
(k)
1m − 2α̂

(k)
1mx⊤i β + β⊤xix

⊤
i β)

}

− 1
2

(
1 +

(ρ∗)2

ψ

){ N1

∑
i=1

(ν̂
(k)
2o − 2α̂

(k)
2o w⊤

i γ + γ⊤wiw
⊤
i γ)

+
N

∑
i=N1+1

(ν̂
(k)
2m − 2α̂

(k)
2mw⊤

i γ + γ⊤wiw
⊤
i γ)

}

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 308

+
ρ∗

ψ

{
N1

∑
i=1

(yi1α̂
(k)
2o − yi1w⊤

i γ − α̂
(k)
2o x⊤i β + β⊤xiw

⊤
i γ)

N

∑
i=N1+1

(α̂
(k)
12m − α̂

(k)
1mw⊤

i γ − α̂
(k)
2mx⊤i β + β⊤xiw

⊤
i γ)

}
,

where specific vectors are provided in the Appendix.

The ECM(NR) algorithm is developed based on the former ECM algorithm to accelerate the
convergence process. The only difference is ψ̂∗(k+1) in the CM-steps (Conditional Maximization-steps
) is first updated using the Newton–Raphson method, and ψ̂(k+1) is then obtained. The specific
expressions can be obtained in Zhao et al. (2020). For a better understanding of the ECM algorithm,
Meng and Rubin (1993) and McLachlan and Krishnan (2008) can be referred to.

ECME algorithm

In this section, the ECME algorithm is briefly introduced and further developed to save running time.
Liu and Rubin (1994) and McLachlan and Krishnan (2008) can be referred to in understanding the
ECME algorithm in detail.

Assume that the complete data is (z, yobs, u), where z = (z1, · · · , zN1 )
⊤ is missing data, yobs =

(y11, · · · , yN1,1)
⊤, and u = (u1, · · · , uN)⊤. The related parameters θ = {β, γ, σ, ρ} are transformed to

θ∗ = {β, γ, ψ∗, ρ∗} like those in ECM algorithm. The complete data log-likelihood function can be
written as

lc(θ∗; z, yobs, u) = −1
2

N

∑
i=1

ui log(2πψ)−
N

∑
i=1

ui

(
yi1 − x⊤i β − ρσzi

)2

2ψ

− 1
2

N

∑
i=1

ui log(2π)− 1
2

N

∑
i=1

uiz2
i +

N

∑
i=1

(1 − ui) log
(

Φ(−w⊤
i γ)

)
,

and the following is the Q-function (which is the conditional expectation of the complete-data log-
likelihood lc(θ∗; z, yobs, u) with respect to the conditional distribution of z given yobs and u) calculated
at the k-th iteration of the E-step:

Q(θ∗|θ̂∗(k)) = E
[
lc(θ∗|z, yobs, u)|θ̂∗(k)

]
= −1

2

N

∑
i=1

ui log(2πψ)

− 1
2ψ

N

∑
i=1

{
ui(yi1 − x⊤i β)2 − 2ui(yi1 − x⊤i β)ρ∗α̂

(k)
i + ui(ρ

∗)2δ̂
(k)
i

}
− 1

2

N

∑
i=1

ui log(2π)− 1
2

N

∑
i=1

ui δ̂
(k)
i +

N

∑
i=1

(1 − ui) log(Φ(−w⊤
i γ)),

where

α̂
(k)
i = E[Zi|θ̂∗

(k)
, yi1, Ui = 1] and

δ̂
(k)
i = E[Z2

i |θ̂
∗(k) , yi1, Ui = 1],

with the conditional distribution

Zi|θ̂∗
(k)

, yi1, Ui = 1 ∼ TN(−w⊤
i γ̂(k) ,∞)

(
ρ̂(k)

σ̂(k)

(
yi1 − x⊤i β̂

(k)
)

, 1 − ρ̂2(k)
)

,

where the stochastic representation of the density function for yi1|ui = 1 is considered. The ECME
algorithm is time-consuming because calculating γ̂(k+1) requires a significant amount of time. The
Newton-Raphson method is applied to reduce the computing time. In the CM-step, the γ̂(k) is updated
by

γ̂(k+1) = γ̂(k) −
[

∂2

∂γ∂γ⊤ log L
(

θ∗|θ̂∗(k)
)]−1

∂

∂γ
log L

(
θ∗|θ̂∗(k)

)
,

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 309

where

∂

∂γ
log L

(
θ∗|θ̂∗(k)

)
=

N

∑
i=1

ui
ϕ(A)

Φ(A)

σ̂(k+1)√
exp

(
ψ̂∗(k+1)

)wi +
N

∑
i=1

(ui − 1)
ϕ
(
−w⊤

i γ(k+1)
)

Φ
(
−w⊤

i γ(k+1)
)wi,

and

∂2 log L
(

θ∗|θ̂∗(k)
)

∂γ∂γ⊤ = −
N

∑
i=1

uiσ̂
(k+1)2

exp
(

ψ̂∗(k+1)
) [A

ϕ(A)

Φ(A)
+

(
ϕ(A)

Φ(A)

)2
]

wiw
⊤
i

+
N

∑
i=1

(1 − ui)

w⊤
i γϕ

(
−w⊤

i γ(k+1)
)

Φ
(
−w⊤

i γ(k+1)
) −

 ϕ
(
−w⊤

i γ(k+1)
)

Φ
(
−w⊤

i γ(k+1)
)
2wiw

⊤
i ,

with

A =
σ̂(k+1)w⊤

i γ̂(k) + ρ̂(k+1)
(

yi1 − x⊤i β̂
(k+1)

)
√

exp
(

ψ̂∗(k+1)
) .

Implementation in EMSS

The package EMSS is constructed to describe the three EM-type algorithms. In EMSS, the main func-
tion for the estimation of the Heckman selection model is EMSS. A formula for the response equation
whose argument is response and a formula for the selection equation with argument selection are
required. With the default estimation method ECM (“ECM"), the user can also choose the method
“ECMnr" for the ECM(NR) method or “EMCE" for the ECME method. The argument initial.param can
be used to set the initial values. If the initial values are not provided by the user, EMSS conducts
the estimation of the consistent initial values offered by the two-step method through the package
sampleSelection.

The result of EMSS is a list of class ‘EMSS’, and several methods for the objects of this class are also
provided by the package EMSS. Command print prints the estimation results. Command summary
calculates and prints the summarized results. coef extracts the estimated coefficients, and vcov extracts
the variance-covariance matrix. confint can be used to calculate the confidence intervals of all the
parameters by applying the following equation.[

ˆpara + Zα × stdrr ˆpara + Z1−α × stdrr
]

,

where ˆpara is the estimated value of a parameter, stdrr is the corresponding standard error value, and
Zα and Z1−α are the quantile values of standard normal distribution at α and 1 − α, respectively, with
α = (1 − level)/2, where “level" is the confidence level. The default confidence level (level) is 0.95
(95%), and it can be changed to any value between 0 and 1.

Using EMSS

This section illustrates the usage of EMSS using a simulation example and application to a real data set.
An example using random numbers is given first, with exclusion restriction where the two observed
characters X and W are not the same.

set.seed(0)
library( mvtnorm )
N<-1000
errps<-rmvnorm(N,c(0,0),matrix(c(1,0.5,0.5,1),2,2) )
w<-runif(N)
y2<-w+errps[,1]>0
x<-runif(N)
y1<-(x+errps[,2])*(w>0)

The package mvtnorm is used to create bivariate normal disturbances with a correlation of 0.5. The
observed character for selection, w, is generated by uniform distribution, and the selection outcome
y2 is then generated using the probit generating process. Through a similar process, the explanatory
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variable x and the outcome variable of interest y1 are generated. Note that the two observed characters,
w and x, are independent and thus fulfill the exclusion restriction. Hence, the parameters β and γ
are set equally as (0, 1)⊤ and must be estimated. The estimated results in the ECM algorithm are as
follows.

summary(EMSS(response=y1~x,selection=y2~w))

Call:
EMSS(response = y1 ~ x, selection = y2 ~ w)

Q-Value: -2637.487

Response equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) -0.2904 0.1258 -2.309 2.096e-02 *
x 1.2319 0.1311 9.398 5.548e-21 ***

Selection equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) 0.1010 0.07628 1.324 1.855e-01
w 0.7569 0.13243 5.716 1.093e-08 ***
---

Sigma:
Estimate Std. Error Z Value Pr(>|Z|)

sigma 1.124 0.07167 15.69 1.797e-55 ***

Rho:
Estimate Std. Error Z Value Pr(>|Z|)

rho 0.6858 0.1214 5.65 1.603e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated results for the parameters are reasonably precise.

The following real data example is an example in Cameron and Trivedi (2009, Section 16.6.5, p. 546)
regarding ambulatory expenditures from the 2001 Medical Expenditure Panel Survey. The data consist
of 3328 observations with 526 corresponding to zero expenditures and is available in MEPS2001 of the R
package ssmrob. To estimate an individual’s medical expenditures, the outcome (response) variable of
interest, log ambulatory expenditures (lnambx), is modeled by individual’s age (age), gender (female),
education attainment in years (educ), ethnicity (blhisp), number of chronic diseases (totchr), and
insurance status (ins). The selection variable, ambulatory expenditures, which is described by dambexp
is modeled by all the former regressors and the income variable (income). The model is estimated
using the ECM(NR) method.

library(ssmrob)
data(MEPS2001))
outcomeEq<-lnambx ~ age+female+educ+blhisp+totchr+ins
selectEq<-dambexp ~ age+female+educ+blhisp+totchr+ins+income
summary(EMSS(response=outcomeEq, selection=selectEq,

data=MEPS2001,method="ECMnr"))

Call:
EMSS(response = outcomeEq, selection = selectEq, data = MEPS2001,
method = "ECMnr")

Q-Value: -10213.94

Response equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) 5.04406 0.22813 22.111 2.493e-108 ***
age 0.21197 0.02301 9.213 3.160e-20 ***
femaleTRUE 0.34814 0.06011 5.791 6.984e-09 ***
educ 0.01872 0.01055 1.774 7.599e-02 .
blhispTRUE -0.21857 0.05967 -3.663 2.492e-04 ***
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totchr 0.53992 0.03933 13.727 6.996e-43 ***
insTRUE -0.02999 0.05109 -0.587 5.572e-01

Selection equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) -0.676054 0.194029 -3.484 4.934e-04 ***
age 0.087936 0.027421 3.207 1.342e-03 **
femaleTRUE 0.662665 0.060938 10.874 1.528e-27 ***
educ 0.061948 0.012029 5.150 2.609e-07 ***
blhispTRUE -0.363938 0.061873 -5.882 4.054e-09 ***
totchr 0.796951 0.071131 11.204 3.895e-29 ***
insTRUE 0.170137 0.062871 2.706 6.807e-03 **
income 0.002708 0.001317 2.056 3.975e-02 *
---

Sigma:
Estimate Std. Error Z Value Pr(>|Z|)

sigma 1.271 0.01838 69.16 0 ***

Rho:
Estimate Std. Error Z Value Pr(>|Z|)

rho -0.1306 0.1471 -0.888 0.3746
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

All coefficients and standard errors are completely identical to the results reported in Cameron and
Trivedi (2009, Section 16.6.5, p. 546).

The confidence interval of this example can be calculated using the following codes.

confint(EMSS(response=outcomeEq, selection=selectEq,
data=MEPS2001,method="ECMnr"))

To compare the computing times of the original ECME algorithm and the developed one for which
the Newton-Raphson method is applied, the real data example in Section 6, Zhao et al. (2020), is
analyzed again. The developed ECME algorithm is used as follows.

library(sampleSelection)
data(Mroz87)
selectEq <- lfp ~ age + I(age^2)+ faminc + kids5 + educ
outcomeEq <- wage ~ exper + I(exper^2) + educ + city
EMSS(response = outcomeEq, selection = selectEq, data = Mroz87,

method = "ECME")

The results are similar to those of the ECM and ECM(NR) algorithm in table 8 of Zhao et al. (2020),
which are slightly better than those in the original ECME algorithm.

The EMSS package and R codes were executed on a computer with an Intel(R) Core (TM) i7-4790M
CPU at 3.60 GHz, running MS-Windows 10. The ECME algorithm developed herein takes 22.67 s while
the original one takes 14.63 min. The computing time of the ECME algorithm is thus significantly
reduced than before.

Robustness issues

Zhao et al. (2020) concluded that a robustness issue arises from the initial values in the MLE method
but not in the three EM-type algorithms. Here, we aim to discuss this robustness issue further. For the
simulated example in Section Using EMSS, the MLE method is also applied to estimate the data set
using the command selection() in R package sampleSelection (Henningsen et al., 2019). The initial
values are found to influence the estimated values of parameters in the MLE method. For example, if
the initial value of σ is set to 5, that of ρ is set to 0.8, and those of other parameters are set to 0s, the
results of the MLE method are given as follows.

summary(selection(y2~w,y1~x,start=c(rep(0,4), 5,0.8) ),method="ml")

--------------------------------------------
Tobit 2 model (sample selection model)
Maximum Likelihood estimation
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Newton-Raphson maximization, 3 iterations
Return code 3: Last step could not find a value above the current.
Boundary of parameter space?
Consider switching to a more robust optimization method temporarily.
Log-Likelihood: -2214.037
1000 observations (318 censored and 682 observed)
6 free parameters (df = 994)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.05991 0.03482 1.721 0.0856 .
w 0.03362 0.05204 0.646 0.5185
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02336 0.05811 -0.402 0.688
x -0.01041 0.22132 -0.047 0.963
Error terms:

Estimate Std. Error t value Pr(>|t|)
sigma 5.0000 NA NA NA
rho 0.9652 NA NA NA
--------------------------------------------
Warning messages:
1: In sqrt(diag(vc)) : NaNs produced
2: In sqrt(diag(vc)) : NaNs produced
3: In sqrt(diag(vcov(object, part = "full"))) : NaNs produced

The p-values of the estimated parameters (except σ and ρ) suggest that the estimated results are not
significant. The occurrence of “NA" resulting from the variance-covariance matrix further implies
that the estimated results in the MLE method are not reasonable. The previous section, Using EMSS,
presents the results from the ECM algorithm where the initial values are set by default based on
the results from the two-step method. With the different initial value sets in this section, the ECM,
ECM(NR), and ECME algorithms perform stably, and their results are the same as the ones of the
ECM algorithm shown in the Using EMSS section to eight decimal places. If the simulated annealing
maximizer is applied to select the initial values for the MLE methods, the estimated results are similar
to those in the three EM-type algorithms.

To avoid the occasion of the robustness issue in the MLE method, the former scenario is regenerated
1000 times with the degree of censoring corresponding to approximately 30%. Considering the same
initial value set as the former, the boxplots in Figures 1 and 2 suggest that the three EM-type algorithms
perform similarly and even much better than the MLE algorithm.

In Cameron and Trivedi (2005), the data set RanHIE, which is available in package sampleSelection,
based on the “RAND Health Insurance Experiment” is used to analyze how the patient’s use of health
services is affected by the types of randomly assigned health insurance. An example based on the
analysis in Cameron and Trivedi (2005, p. 553) is provided to further discuss this situation.

The outcome variable y1 is lnmeddol, which measures the log of an individual’s medical expenses,
and the selection variable y2 is binexp, which indicates whether the medical expenses are positive.
The observed character X consists of the log of the coinsurance rate plus 1 (logc=log(coins+1)), the
dummy for the individual deductible plan (idp), the log of participation incentive payment (lpi), the
number of chronic diseases (disea), the log of family size (lfam), education of household head in years
(educdec), age of individual in years (xage), quadratic polynomial in the age of individual in years,
and a dummy variable for female individuals (female). The observed character W consists of logc,
physical limitations (phslm), disea, quadratic polynomial in disea, lfam, educdec, xage, and female.
A partial sample where the study year (year) is equal to 2 and the education information is given is
selected for the estimation with sample size N = 5, 574.

Fix the initial values of all parameters except σ and ρ at 0 and consider three different initial
values sets for σ and ρ. If the initial values of σ range from 0.1 to 0.65, then the estimated values of all
parameters in the MLE method are the corresponding initial values regardless of the initial values of ρ.
The estimated results in the ECM algorithm are stable as follows.

data(RandHIE)
subsample<-RandHIE$year==2&!is.na(RandHIE$educdec)
outcomeEq<-lnmeddol~logc+physlm+disea+I(disea^2)+lfam+educdec+xage+female
selectEq<-binexp~logc+idp+lpi+disea+lfam+educdec+xage+I(xage^2)+female
summary(EMSS(response=outcomeEq,selection=selectEq,

initial.para=c(rep(0,19),0.2,0.5), data=RandHIE[subsample,]))
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Figure 1: Boxplots of the bias in the estimation for the 1000 regeneration of the simulated example in
the section Using EMSS.
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Figure 2: Boxplots of the MSE in the estimation for the 1000 regeneration of the simulated example in
the section Using EMSS.
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Call:
EMSS(response = outcomeEq, selection = selectEq,
data = RandHIE[subsample, ])

Q-Value: -16195.75

Response equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) 2.4841461 0.168714 14.7240 4.523e-49 ***
logc -0.1199851 0.011946 -10.0440 9.762e-24 ***
physlm 0.2952680 0.068552 4.3072 1.653e-05 ***
disea 0.0415756 0.008574 4.8490 1.241e-06 ***
I(disea^2) -0.0001355 0.000250 -0.5421 5.878e-01
lfam -0.1828111 0.048101 -3.8006 1.443e-04 ***
educdec 0.0350172 0.008674 4.0368 5.418e-05 ***
xage 0.0203750 0.001588 12.8310 1.100e-37 ***
female 0.3123718 0.048632 6.4231 1.335e-10 ***

Selection equation:
Estimate Std. Error Z Value Pr(>|Z|)

(Intercept) -0.0807292 1.240e-01 -0.651 5.150e-01
logc -0.1138537 1.078e-02 -10.562 4.470e-26 ***
idp -0.0632783 3.994e-02 -1.584 1.131e-01
lpi 0.0320468 7.301e-03 4.389 1.136e-05 ***
disea 0.0283038 3.329e-03 8.503 1.841e-17 ***
lfam -0.0666747 3.799e-02 -1.755 7.922e-02 .
educdec 0.0516196 6.923e-03 7.456 8.928e-14 ***
xage -0.0051879 4.066e-03 -1.276 2.020e-01
I(xage^2) 0.0001979 6.907e-05 2.865 4.164e-03 **
female 0.2098103 3.829e-02 5.479 4.281e-08 ***
---

Sigma:
Estimate Std. Error Z Value Pr(>|Z|)

sigma 1.604 0.02888 55.56 0 ***

Rho:
Estimate Std. Error Z Value Pr(>|Z|)

rho 0.745 0.0323 23.07 9.724e-118 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the second initial value set, the initial value of ρ is 0.5, and that of σ is within [0.66, 7.9]. The
three new EM-type algorithms perform similarly to the ECM algorithm in the first initial value set.
The estimated results in the MLE method are stable like those in the ECM algorithm.

In the third initial value set, the initial values of σ are larger than 7.9, and the three new EM-type
algorithms still perform stably, similar to the former. However, the estimated values of each parameter
in the MLE method are not stable. For example,

summary(selection(selectEq,outcomeEq,start=c(rep(0,19),8.8,0.5),
data=RandHIE[subsample,],method="ml" ))

--------------------------------------------
Tobit 2 model (sample selection model)
Maximum Likelihood estimation
Newton-Raphson maximization, 3 iterations
Return code 3: Last step could not find a value above the current.
Boundary of parameter space?
Consider switching to a more robust optimization method temporarily.
Log-Likelihood: -15707.81
5574 observations (1293 censored and 4281 observed)
21 free parameters (df = 5553)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.155e-03 1.029e-01 0.021 0.9833
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logc 5.082e-03 8.366e-03 0.607 0.5436
idp 1.106e-03 2.536e-02 0.044 0.9652
lpi 6.242e-04 4.436e-03 0.141 0.8881
disea -4.776e-03 2.504e-03 -1.907 0.0565 .
lfam 4.923e-03 3.258e-02 0.151 0.8799
educdec -1.921e-03 5.710e-03 -0.336 0.7366
xage -2.601e-03 2.440e-03 -1.066 0.2866
I(xage^2) -1.355e-05 3.918e-05 -0.346 0.7294
female -2.802e-03 3.258e-02 -0.086 0.9315
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0056280 0.8243005 -0.007 0.99455
logc -0.0120012 0.0616586 -0.195 0.84568
physlm 0.0001365 0.2694167 0.001 0.99960
disea -0.0359361 0.0349727 -1.028 0.30421
I(disea^2) 0.0001022 0.0009454 0.108 0.91390
lfam -0.0086017 0.2567682 -0.033 0.97328
educdec -0.0622248 0.0449205 -1.385 0.16604
xage -0.0286630 0.0081770 -3.505 0.00046 ***
female -0.0023083 0.2580752 -0.009 0.99286
Error terms:

Estimate Std. Error t value Pr(>|t|)
sigma 8.8015 NA NA NA
rho 0.9186 NA NA NA
--------------------------------------------
Warning messages:
1: In sqrt(diag(vc)) : NaNs produced
2: In sqrt(diag(vc)) : NaNs produced
3: In sqrt(diag(vcov(object, part = "full"))) : NaNs produced

The warning messages, the p-value of each parameter, and the “NA" in the standard errors of parame-
ters σ, and ρ suggest that the estimated results of the MLE method are not reasonable.

By summarizing the above three initial value sets with setting the initial values of σ at {0.1, 0.3, . . . , 10},
Figure 3 presents the histograms of the estimated coefficients for the variables physlm, female, and
the estimated values of the parameter σ in all four algorithms. The histograms illustrate that the
horizontal axis value in the three EM-type algorithms are the same all the time, which further suggests
that three EM-type algorithms do not affect by the initial values, and they perform similarly. However,
the histograms of the MLE method imply that the MLE method is not stable.

This suggests that the three EM-type algorithms are more robust than the MLE method. However,
the computing times of the above three examples using the ECME algorithm are relatively longer than
those of ECM and ECM(NR). It is found that the computing time of the ECME algorithm is affected by
the sample size. For instance, under different sample sizes, Table 1 presents the running time of the
ECM, ECM(NR), and ECME algorithms for the simulated example shown in the section using EMSS
with 10-times regeneration. As the sample size increases, the ECME algorithm costs much more time
than the ECM and ECM(NR) algorithms.

Sample sizes n 200 300 500 800 1000

ECM 2.5415 3.1542 4.4769 6.1861 7.8049
ECM(NR) 2.5232 3.0921 4.4393 6.0212 7.6943
ECME 7.7486 16.9576 26.7005 119.0904 159.1983

Table 1: Running time (seconds) of the simulated example in the section Using EMSS with 10-times
regeneration.

If the sample size of the former RandHIE data example decreases to 1, 000 randomly with the same
outcome and selection models, MLE presents results similar to the three EM-type algorithms only
when the initial values of σ ranges from 0.71 to 7.0 (the values may change since the sample size is
randomly reduced to 1, 000). The three EM-type algorithms still present stable results that are similar
to each other. Furthermore, the EMCE algorithm takes a similar computing time with the ECM and
ECM(NR). So it will be better to use ECM or ECM(NR) algorithms for the large-size samples.

To achieve more robust estimation, the simulated annealing maximizer for 10,000 iterations is
applied to offer better initial values for the MLE method. Note that the selected value for “parscale" in
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Figure 3: Some estimated values in the four algorithms for the RanHIE data.
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SANN is 0.001, which was satisfactory for this data set. The estimated results of the parameters are
the same as those in the MLE method in the second initial value set. The calculated log-likelihood
value is -10331.12, which is greater than -15707.81 in the third initial value set.

Discussion

The ECME algorithm is developed through the application of the Newton-Raphson method to reduce
the computing time. The implementation of three new EM-type algorithms, namely ECM, ECM(NR),
and ECME, are described in package EMSS. The application of the package EMSS is conducted using
simulated and real data sets. The examples for which initial values are considered in detail further
confirm that the three new EM-type algorithms are more robust than the MLE method. The EMSS
package is preferable to the sampleSelection when the robustness issue arising from the initial values
is involved. The standard errors might not be calculated appropriately in the MLE or the two-step
method in the sampleSelection because of the unreasonable results, but they can always be calculated
effectively using the EMSS package.
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Appendix

Some vectors in the Q-function of ECM and ECM(NR) algorithms at the k-th iteration are presented
herewith. For missing yi1,

i) α̂
(k)
1m = E(Yi1|Yi2 ≤ 0) = µ̂

(k)
i1 − ρ̂∗

(k)
λ(−µ̂

(k)
i2 ), where µ̂

(k)
i1 = x⊤i β̂

(k)
and µ̂

(k)
i2 = w⊤

i γ̂(k);

ii) α̂
(k)
2m = E(Yi2|Yi2 ≤ 0) = µ̂

(k)
i2 − λ(−µ̂

(k)
i2 );

iii) ν̂
(k)
1m = E(Y2

i1|Yi2 ≤ 0) = µ̂
2(k)
i1 + σ̂2(k) − ρ̂∗

(k)
λ(−µ̂

(k)
i2 )(2µ̂

(k)
i1 − ρ̂∗

(k)
µ̂
(k)
i2 );

iv) ν̂
(k)
2m = E(Y2

i2|Yi2 ≤ 0) = 1 + µ̂
2(k)
i2 − µ̂

(k)
i2 λ(−µ̂

(k)
i2 );

v) α̂
(k)
12m = E(Yi1Yi2|Yi2 ≤ 0) = µ̂

(k)
i1 (µ̂

(k)
i2 − λ(−µ̂

(k)
i2 )) + ρ̂∗

(k),

and for observed yi1,

vi) α̂
(k)
2o = E(Yi2|Yi1, Yi2 > 0) = µ̂

(k)
i2.1 +

√
1 − ρ̂2(k) λ

 µ̂
(k)
i2.1√

1 − ρ̂2(k)

;

ν̂
(k)
2o = E(Y2

i2|Yi1, Yi2 > 0) = 1 − ρ̂2(k) + µ̂
2(k)
i2.1 + µ̂

(k)
i2.1

√
1 − ρ̂2(k)λ

 µ̂
(k)
i2.1√

1 − ρ̂2(k)

 , where µ̂
(k)
i2.1 =

w⊤
i γ(k) +

ρ̂(k)

σ̂(k)
(yi1 − x⊤i β(k)).
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Analysis of Corneal Data in R with the
rPACI Package
by Darío Ramos-López and Ana D. Maldonado

Abstract In ophthalmology, the early detection of keratoconus is still a crucial problem. Placido
disk corneal topographers are essential in clinical practice, and many indices for diagnosing corneal
irregularities exist. The main goal of this work is to present the R package rPACI, providing several
functions to handle and analyze corneal data. This package implements primary indices of corneal
irregularity (based on geometrical properties) and compound indices built from the primary ones,
either using a generalized linear model or as a Bayesian classifier using a hybrid Bayesian network
and performing approximate inference. rPACI aims to make the analysis of corneal data accessible for
practitioners and researchers in the field. Moreover, a shiny app was developed to use rPACI in any
web browser in a truly user-friendly graphical interface without installing R or writing any R code. It
is openly deployed at https://admaldonado.shinyapps.io/rPACI/.

Introduction

One of the major problems in the field of ophthalmology is the early detection of keratoconus (Martínez-
Abad and Piñero, 2017; Accardo and Pensiero, 2002; Rabinowitz, 1998). Keratoconus is a serious disease
that deforms and weakens the cornea (the outer part of the eye). There are several grades of this disease
(Alió and Shabayek, 2006), with the most advanced stages being easy to detect. However, early or
subclinical keratoconus cases are much more difficult to identify (de-Sanctis et al., 2008; Maguire and
Bourne, 1989). Diagnosing keratoconus is crucial before undergoing any kind of refractive eye surgery
(Llorente et al., 2004), in which vision is corrected by modifying the corneal curvature, normally with
lasers. Failure to detect early keratoconus in these circumstances can result in an ectasia (Randleman
et al., 2003), which in the most severe cases can lead to blindness or corneal transplantation.

For the measurement and analysis of the cornea, the main clinical tool is the corneal topography
(Fan et al., 2018; Piñero, 2015; Read et al., 2009; Rowsey et al., 1981). Depending on the employed
technology, they can be basically classified into two types: Scheimpflug camera devices (Read et al.,
2009) or Placido disk devices (Alkhaldi et al., 2009; Samapunphong and Azar, 1998; Rand et al., 1997),
although some devices combine these two technologies (Fan et al., 2018; Piñero, 2015). As a result
of the measurement, topographers internally compute and provide altimetric (elevation), curvature,
or diopters data of the anterior or posterior sides of the cornea. Currently, most of the topographers
available in clinics worldwide are Placido disk topographers as the Scheimpflug technology is newer
and more expensive. Thus, it is not so well established in small or medium-sized clinics nor in
countries with a more limited health care system.

Many indices or metrics using corneal topography have been proposed for the early detection of
keratoconus (Alió, 2016; Prakash et al., 2012). Some of the most widely used indices are KPI (Maeda
et al., 1994) and KISA (Rabinowitz and Rasheed, 1999). In recent years, work is continuing to find
more reliable indices for detecting keratoconus (Alió, 2016; Ramos-López et al., 2011; Castro-Luna
et al., 2020; Bühren et al., 2010), with a special focus on the early stages of this clinical condition
(Ramos-López et al., 2013; Issarti et al., 2019). However, the early detection of keratoconus is still an
open research problem, and new approaches have been proposed (Issarti et al., 2020; Yousefi et al.,
2018; Ortiz-Toquero et al., 2020).

In ophthalmological practice, however, the reference indices are normally only those included in
the topographer by default, computed internally in a black-box scheme from the raw measurements. It
can be difficult for a practitioner to calculate other indices that are not directly provided by the device,
either for comparison, to complement a diagnosis, or for research purposes. Therefore, this article aims
to present and explain the R package rPACI (Placido Analysis of Corneal Irregularity, Ramos-López
and Maldonado (2021)) and its use cases. This package was developed to facilitate the calculation and
interpretation of several indices for detecting corneal irregularities, and especially keratoconus (the
indices introduced in Castro-Luna et al. (2020); Ramos-López et al. (2011, 2013)). These indices proved
to be effective in detecting keratoconus and early keratoconus (see those references for more details).

The main goal of rPACI (Ramos-López and Maldonado, 2021) is that these indices can be easily
computed by an ophthalmologist, an optometrist, or any practitioner in general. To this end, several
intuitive and easy-to-use functions are provided, including those that can read the data of a Placido
disk topography from a file, analyze the data read and calculate the indices, return the results in a
manageable format, and represent them graphically so that they are easily interpreted. To the best of
the authors’ knowledge, there are neither other similar R packages nor other pieces of non-commercial
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software sharing this goal.

As some practitioners may have difficulties in using the R syntax, we provide, in addition to the
package itself, a user-friendly intuitive web application for rPACI, built using shiny (Chang et al.,
2020). This graphical user interface is available to use from any web browser, and it allows the user to
readily use the functionality of rPACI without installing R or any of its packages.

Placido corneal topography and supported file formats

The majority of topographers used in clinical practice to measure corneal topography rely on the
Placido disk technology (either alone or in combination with others, such as the Scheimpflug camera)
(Piñero, 2015; Samapunphong and Azar, 1998; Fan et al., 2018). In such a topographer, an illuminated
pattern of concentric rings or mires (which is the actual Placido disk) is projected into the corneal
surface, and its reflection on the anterior surface of the cornea is captured by a camera situated at
the center of the system. The picture is then digitized along with a certain number of radii at equally
spaced angles (Samapunphong and Azar, 1998; Espinosa et al., 2013).

Many manufacturers produce corneal topographers that employ the Placido disk technology. Some
devices are often referred to as aberrometers or tomographers (as they also include other technologies
than the Placido disk) or even keratometers or corneal analyzers. Some of these manufacturers are:
CSO (Firenze, Italy), Gaush (Beijing, China), Medmont (Victoria, Australia), Nidek (Aichi, Japan),
Optikon (Roma, Italy), Topcon (Tokyo, Japan), Zeiss (Oberkochen, Germany), and Ziemer (Port,
Switzerland). This list has been elaborated with publicly available information or reported in scientific
papers. The authors do not have any commercial or financial interest in the manufacturers reported
here or in any other related companies. The rPACI package includes a vignette entitled “Corneal
topographers and data formats”, where additional information about topographers and manufacturers
is provided.

There are two basic magnitudes in the Placido corneal measurement: the number of rings or mires
in the actual Placido disk NR and the number of angles (or points per ring) NA in the digitization
process. These may vary from a device to another. Typical values of NR in commercial topographers
are 20, 22, or 24, even though some topographers have as few as 10 or as many as 33. With respect to
NA, the most common values used by commercial topographers are 256 and 360, although some of
them use other values.

The plain coordinates (x and y) of these points are the primary raw information measured by
the Placido corneal topographers. Afterward, they usually post-process the data to obtain a third
coordinate (z), yielding altimetric (elevation) or curvature data, and provide color maps and other
easy-to-interpret metrics and indices to the practitioner. In some topographers, the raw measurements
can be exported in a structured text file.

rPACI can read corneal topography files in two different formats by now. It will possibly be
expanded in the future, allowing other formats. Both are structured plain text files. The first supported
file format is basically the one employed by CSO topographers, but with some more flexibility. The
second supported file format has the structure used internally by rPACI. These two formats are
described in the next two subsections.

CSO file format

This file format is the one in which some CSO topographers (EyeTop2005, Sirius, Antares, or Osiris-T),
export the raw data measurements. The corneal topography file should have the following 3-block
structure:

• An optional header with metadata: patient data, optical measurements, date of exploration, etc.
Its size depends on the device. For CSO topographers, the header typically has 24 lines. The
rPACI’s reading function for these files is able to identify the header block and skip it.

• A list of size NR × NA with the ρ coordinate (distance to the origin in polar coordinates, measured
in mm) of the digitized points, at equally spaced angles (θ, the argument in polar coordinates).
The θ coordinate is inferred from the position (assuming a uniform distribution), as it is not
explicitly given in the data file.

• A list of size NR × NA with the z coordinate, which can be altitude (elevation) or curvature,
depending on the topographer and the exportation settings. These data are post-processed by
the device using different algorithms, not directly measured, and the z values are not used in
rPACI.

In the best scenario (which is not very common in the clinical practice), the NR rings are fully
available, having NA points each, giving a total of NR × NA data points. However, many points
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are often missing, especially those corresponding to outermost rings (as they could not be digitized
properly). Missing data are generally codified in the file with a specific key number (such as “-1” or
“-1000”). Thus, these values do not correspond to real measured points and should be removed or
substituted by NAs when reading the data file.

rPACI file format

This file format has been developed to directly manage the datasets handled by rPACI, allowing
to save and read data easily. A corneal topography file with this format should have the following
2-block structure:

• An optional header of any length (its size is automatically detected and it may be missing). If
the file was saved from a dataset generated by simulation, the header contains the simulation
parameters.

• The data block, which consists of three separated columns (x and y coordinates of each point (in
mm) and its ring index), with N × NA lines (a line per data point), with N being the number of
rings or mires and NA being the number of points in each ring. The last column (ring index) will
consist only of positive integer values, whereas the two coordinates can be any real numbers.

Since files with this format have been exported by rPACI, their data will consist only of full rings
(either if the dataset was read from another format or generated by simulation). Thus, these files
should not have any missing data.

Placido indices of corneal irregularity

Several indices of corneal irregularity can be calculated from the raw measurements of a Placido disk
corneal topographer (Ramos-López et al., 2011, 2013). Many other similar indices exist (Alió, 2016;
Prakash et al., 2012; Maeda et al., 1994; Rabinowitz and Rasheed, 1999; Issarti et al., 2019; Bühren et al.,
2010), but they cannot be computed using just the raw data of a Placido topographer, as they require
information about both surfaces of the cornea, or other parameters, besides altimetry, pachymetry, or
curvature data.

The Placido indices based on the raw ring images have demonstrated their ability in diagnosing
clinical diseases such as keratoconus and subclinical keratoconus, showing high accuracy (Ramos-
López et al., 2011, 2013; Castro-Luna et al., 2020). For the readers’ convenience, a brief summary of
those indices is reported below (more details and derivations can be found in those references).

The indices available in the rPACI package make use only of the plain coordinates of the points
(either ρ and θ in polar coordinates or x and y in Cartesian coordinates), as that is the raw information
measured by a Placido corneal topographer. The post-processed data in z, if any, are discarded. Also,
incomplete rings (which are normally in the periphery) are not considered for the calculation of the
indices, and only the innermost, complete rings are used. Incomplete rings could be used too, but they
are usually highly affected by noise and measurement errors, and their use could distort the results.
Hence, after reading the data file (in any format), one has N × NA 2D points Pj, j = 1, . . . , N × NA,
where N denotes the number of innermost complete rings (N ≤ NR), given in Cartesian coordinates
by (xj, yj) or in polar coordinates by (ρj, θj).

If the data file was in CSO format, the values ρj are read from the file, and θj values are computed
as θj = (2π/NA)j mod 2π (assuming these angles or arguments θj are equally spaced along each
ring). Thus, if Rk is the k-th ring (1 ≤ k ≤ N), then

Pj = (ρj, θj) ∈ Mk ⇔ j ∈ Jk := {nk, nk + 1, ..., nk + (NA − 1)}, nk = 1 + NA(k − 1).

The Cartesian coordinates (xj, yj) of point Pj can be readily computed using the variable change
xj = ρj cos(θj), yj = ρj sin(θj). Figure 1 shows an example of the digitized points, both in polar and
Cartesian coordinates, as given by a CSO commercial corneal topographer.

If the data file was in rPACI format, then the Cartesian coordinates (xj, yj) of full rings are directly
read, with the same structure explained above, but without the need of applying the variable change.

The Placido irregularity indices computed by rPACI can be split into two categories: primary and
combined indices. The primary indices measure certain geometrical properties of the data distribution.
Based on them, other combined or compound indices are computed.
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Figure 1: Corneal topography data given by a commercial Placido topographer, in polar coordinates
(left) and Cartesian coordinates (right).

Primary indices

With the notation introduced before, the primary information for computing the Placido irregularity
indices are the Cartesian coordinates of points belonging to full rings (no missing data):
Pj = (xj, yj) ∈ Rk, k ∈ {1, . . . , N}, j ∈ Jk.

The first step to calculate the indices is to compute the best-fitting circle (with center Ck and
(average) radius AR(k)) for each ring. This is done by least-squares fitting of a general circle equation
to the Cartesian coordinates of data points in ring k, and then the geometrical parameters (center and
radius) are computed from the coefficients (see Ramos-López et al. (2011) for more details). Similarly,
one can find also best-fitting ellipses (with centers C̃k and axis ratio ck) for each ring. Additionally, a
best-fitting line can be adjusted to the coordinates of the centers Ck with slope m.

With these quantities, four indices labeled as PIn (from “Placido Irregularity indices”) and SL
(from “SLope” index) can be defined:

PI1 =
1
N

max
1≤n,m≤N

∥Cn − Cm∥

corresponds to the diameter of the set of centers Ck (normalized by the total number of rings N), where
∥ · ∥ is the standard Euclidean norm in R2.

PI2 =
1

N − 1 ∑
1≤n≤N−1

∥Cn+1 − Cn∥

corresponds to the total length of the path connecting consecutive centers.

PI3 =

√
1
N ∑

1≤k≤N
(ck − c)2, where c =

1
N ∑

1≤k≤N
ck

measures the variability of the axis ratios or eccentricities of the individual rings.

SL = |m|

is the absolute value of the slope of the best-fitting line to the coordinates of the centers Ck.

In order to obtain indices with values in the same range (more easily comparable and to prevent
scale problems when combining them), a normalization of each primary index was performed (Ramos-
López et al., 2011, 2013). After the normalization, the indices will be in general in the range [0, 150], and
values outside that interval are truncated. Values near zero correspond to normal corneas, whereas
large values (above 70, approximately) correspond to irregular corneas. See additional details on
the mathematical definition of these indices and their normalization, including the normalization
coefficients, in (Ramos-López et al., 2011, 2013).

Building compound indices

The primary Placido indices described above, PI1, PI2, PI3, SL, and AR(k), show sensitivity to
detecting various irregularities in the cornea, such as keratoconus. However, a single index does
not reach sufficient accuracy in the task, and compound indices have been proposed and tested
(Ramos-López et al., 2013; Castro-Luna et al., 2020) to improve the performance and precision of the
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Figure 2: Structure of the Bayesian network used to compute the naïve Bayes index NBI.

individual indices. These compound indices showed a significant improvement in accuracy when
predicting keratoconus. A brief description of them is given as follows (see the mentioned references
for more details):

The GLPI index (from Generalized Linear Placido Index) (Ramos-López et al., 2013) is a general-
ized linear model computed from the primary indices in the following way:

GLPI = 100Φ ((−224.90 + 1.69PI1 + 1.28PI3 + 1.89AR(4) + 0.19SL) /20) ,

where Φ stands for the cumulative distribution function of the standard normal distribution. This
corresponds to a generalized linear regression model with probit (Φ−1) link function. Therefore, GLPI
has values between 0 and 100.

The compound index NBI (from Naïve Bayes Index) (Castro-Luna et al., 2020) is a Bayesian
classifier. More precisely, it is a Bayesian network with the naïve Bayes structure depicted in Figure 2.
This Bayesian network is a conditional linear Gaussian (CLG) network, with its root node (KC) being a
discrete binary variable and the rest of the nodes being continuous. The parameters of the model were
reported in Castro-Luna et al. (2020). This model can be used for predicting whether a specific cornea
(whose values of the primary indices are known) is a normal cornea or a keratoconic cornea. Moreover,
the probability of being one type or another can be computed as well, either using exact inference or
approximate inference with algorithms such as evidence weighting, likelihood weighting, or more
generally, importance sampling (Fung and Chang, 1990; Cheng and Druzdzel, 2000; Ramos-López
et al., 2018). Even though the exact inference is feasible, in this case, the approximate inference is easier
to implement and to generalize to more complex network structures.

In a nutshell, these algorithms consist of simulating a large number of samples from the network
according to the evidence (i.e., variable values that are known a priori) and averaging their likelihoods
to estimate the probability of each state of the target variable (in this case, KC).

More formally, if Y is the class variable with m states (KC in this model, with 2 states), and X is the
vector of explanatory variables (PI1, PI2, PI3, SL, AR(1), and AR(4) in this model), then the posterior
probability distribution over Y can be calculated with

p(Y = yj | X) =
p(X, Y = yj)

p (X)
=

p(Y = yj) ∏n
i=1 p

(
Xi |Y = yj

)
∑m

j=1 p(Y = yj)∏n
i=1 p

(
Xi |Y = yj

) , j = 1, . . . , m.

The quantities above can be estimated by drawing, according to the evidence, S independent samples(
y(s), x(s)

)S

s=1
=

(
y(s), x(s)1 , . . . , x(s)n

)S

s=1
from the Bayesian network and computing:

p̂(X, Y = yj) =
S

∑
s=1

1yj

(
y(s)

)
p
(

Y = y(s)
) n

∏
i=1

p
(

Xi = x(s)i |Y = y(s)
)

,

p̂(X) =
S

∑
s=1

p
(

Y = y(s)
) n

∏
i=1

p
(

Xi = x(s)i |Y = y(s)
)

,

where 1yj

(
y(s)

)
denotes the indicator function for yj (i.e., its values are 1 if yj = y(s), and 0 otherwise).

Note that in the first expression we are adding up only the terms corresponding to Y = yj, whereas in
the second one, terms corresponding to all samples are summed up. Thus, the probability of the class
Y to take the value yj can be estimated as:

p̂(Y = yj | X) =
∑S

s=1 1yj

(
y(s)

)
p
(

Y = y(s)
)

∏n
i=1 p

(
Xi = x(s)i |Y = y(s)

)
∑S

s=1 p
(

Y = y(s)
)

∏n
i=1 p

(
Xi = x(s)i |Y = y(s)

) .
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The posterior probability estimation p̂(Y = yj | X) can be computed efficiently with several approaches
(Ramos-López et al., 2018). The R package bnlearn (Scutari, 2010; Scutari and Ness, 2019) includes an
implementation of the likelihood weighting algorithm, which is used by rPACI for computing the
index NBI.

The rPACI package

This section is intended to illustrate the usage of the R package rPACI (Ramos-López and Maldonado,
2021), which implements easy-to-use functions to read corneal topographic data and to compute the
corneal irregularity indices as defined in Ramos-López et al. (2011, 2013); Castro-Luna et al. (2020)
(also described in the previous section). To the best of the authors’ knowledge, there are no other R
packages related to the analysis of the corneal data, other indices for detecting keratoconus or other
corneal diseases, or any other related topics.

The rPACI package includes several useful functions to analyze the corneal data of a patient and
11 example data sets, with seven of them being real measurements from a CSO topographer, and the
remaining are simulated data sets. Among them, six are in CSO file format, whereas the other five are
in rPACI file format. One can install and load the package as follows:

install.packages("rPACI", dependencies = TRUE)
library("rPACI")

Reading and writing data

The rPACI package is able to read corneal topography files in the two formats described before: CSO
format and rPACI format. The package contains three functions to read data: readCSO(), readrPACI()
and readFile(). The two former ones read data in CSO and rPACI formats, respectively, while the
latter one is a wrapper function able to read both formats. In general, readFile() is the reading
function recommended by default, as it is able to read any supported file format. These three reading
functions produce a "data.frame" in the rPACI format, i.e., a data frame with three columns (x and y
coordinates of each point and its ring index) and a row per data point. On the other hand, the package
contains a function to save corneal topography data sets in the format used by rPACI: writerPACI().

External files with a corneal topography in the format exported by some Placido disk topographers,
especially those from CSO, can be loaded using the function readCSO(), which takes six arguments:
filepath, the path of the file to be read; ringsTotal, the total number of rings available in the
measurement (including incomplete rings or missing data; by default, 24); pointsPerRings, the
number of points per ring that are digitized in the measurement (by default, 256); ringsToUse, the
effective number of innermost rings to use (by default, 15); onlyCompleteRings, a logical value
indicating whether to use rings with complete data only or not (by default, TRUE); and NAvalues, a
numerical value or vector indicating the value(s) encoding NAs (missing data) in the file (by default,
c(-1,-1000)).

On the other hand, external files with a corneal topography in the format exported by rPACI
can be loaded using the readrPACI() function. This function has two arguments: filepath, the path
to the file; and sep, the character used as column separator in the file. Finally, the general wrapper
function readFile() internally determines the format of the specified file and applies either readCSO()
or readrPACI() if possible, or else it throws an error (if none can be applied, which occurs when the
file format does not fit any of these two available formats). The readFile() function takes the file path
as a mandatory argument (filepath) and, optionally, any of the arguments available for the other
two reading functions. In the following example, readFile() is used the read a sample file with the
corneal topography of a normal eye (included in the package as ‘N01.txt’):

dataset_N = readFile(system.file("extdata","N01.txt", package="rPACI"))

In order to save a corneal topography data set to disk, the writerPACI() function can be used.
This function takes three arguments: dataset, a data.frame containing the corneal topography points
in rPACI format; filename, a character string naming a file (including the extension); and sep, the field
separator string (by default, ’,’). The file is saved in a structured plain text file following the rPACI
format. If the data set to be saved is simulated using the simulateData() function (see more details
on this function below), the exported file would include the parameters used for the simulation in
its header. The following example exports the previously loaded object, dataset_N, in a text file with
comma-separated values:

writerPACI(dataset_N, filename = "newData.txt", sep = ",")
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Corneal analyses

The rPACI package includes functions to perform three different analyses: 1) analyze a single eye; 2)
analyze a single eye based on repeated measures over time; and 3) analyze multiple eyes simultane-
ously. All analyses compute the Placido irregularity indices of the given data sets and return a table
with the numerical results and a plot, which differs depending on the type of analysis performed.

To compute the Placido irregularity indices of a single eye, the computePlacidoIndices() can be
used, which takes the object returned by readFile() (or, alternatively, readCSO() or readrPACI()) and
two other arguments: truncateIndicesAt150, a logical value (by default, TRUE) indicating whether the
primary indices should be truncated at 150 (so they are in the range 0-150) or not; and useMaxRings, a
positive integer (by default 15) to specify the maximum number of innermost rings to use (as long as
there are enough in the data set). Note that this function requires a minimum of five complete rings to
work; otherwise, it will throw an error.

results_N = computePlacidoIndices(dataset_N)

> results_N
Diagnose NBI GLPI PI_1 PI_2 PI_3 SL AR_1 AR_2 AR_3 AR_4 AR_5

Normal cornea 0 0 13 20 18 36 43 22 25 21 23

The object returned by computePlacidoIndices() is of class "data.frame" and contains 12 columns
and one row (because we are analyzing only one eye). Note that the results have been rounded to
integers here for a better display. The first column of the returned "data.frame" is the diagnosis,
based on the GLPI index, which can be either ‘Irregular cornea’ (GLPI≥70), ‘Suspect cornea’ (30 ≤
GLPI <70), or ‘Normal cornea’ (GLPI <30). The next column is the Naïve Bayes Index (NBI), which
ranges between 0 and 100 and can be interpreted as the probability of suffering from keratoconus. The
remaining columns correspond to the other indices (see definitions in the previous sections).

The Placido irregularity indices can be plotted using function plotSingleCornea(), which takes
three arguments: dataset, a "data.frame" containing the corneal topography data, i.e., the object
returned by a reader function, for instance, readFile(); PlacidoIndices, a "data.frame" containing
the computed Placido indices, i.e., the object returned by computePlacidoIndices(); and, optionally,
filename, a character vector to be displayed on the plot (for instance, the filename of the corneal
topography data set).

plotSingleCornea(dataset_N, results_N, filename = "N01.txt")

The result of this function can be seen in Figure 3. The left-hand side of the figure shows the input
data, whereas the right-hand side shows two charts: the GLPI index plot, which visually indicates the
value taken by this index on a colored scale of possible values, and the PI indices distribution, which
shows the distribution of the PI1, PI2, PI3 and SL indices in a boxplot placed on a scale of possible
values. The color of the charts indicates whether the indices fall within the normal cornea region (green
color), suspicious cornea region (orange color), or irregular cornea region (red color). In the example
shown in Figure 3, we can clearly see that the eye is diagnosed as normal.

Figure 3: Results of the analysis of a normal cornea based on a single measurement.

Alternatively to using the readFile(), computePlacidoIndices() and plotSingleCornea() func-
tions, the wrapper function analyzeFile() can be used instead, which takes 2 arguments: path, which
is a character element indicating the location of the corneal topography file, and drawplot, which is a
logical argument indicating whether the results should be plotted or not.
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res_N = analyzeFile(system.file("extdata","N01.txt", package="rPACI"),
drawplot=TRUE)

This function returns a "data.frame" containing the same information as the object returned by
computePlacidoIndices() and, optionally, the plot returned by plotSingleCornea() if the argument
drawplot is TRUE. An analogous function to analyzeFile(), called analyzeDataset(), can be used if
the corneal topography data is already loaded in memory.

In order to examine the evolution of a patient’s eye over time, the function analyzeEvolution()
can be used. This function takes two arguments: data, which can be either 1) the path to a folder that
contains corneal topography files, in any format supported by rPACI, or 2) a "list" containing prop-
erly formatted data (loaded from a file using the function readFile() (or readCSO() or readrPACI()),
simulated using simulateData() or by other ways as long as it meets the data set requirements). If
data is a path to a folder, the second argument, fileExtension, must be specified, and all the files
(with the given extension) in that folder will be assumed to be corneal topography files of a patient’s
eye and, therefore, will be loaded.

Moreover, it is assumed that the files are arranged chronologically, i.e., the filenames should follow
some date format (for instance, ‘YYYY-MM-DD.txt’). On the other hand, if the data are stored in a
list, it is assumed that the temporal order corresponds with the index of each data set in the list. The
next example analyzes a patient’s cornea at three different moments (the data sets are included in the
package) :

analyzeEvolution(data = system.file("extdata/evolution/", package="rPACI"),
fileExtension = 'txt')

Diagnose NBI GLPI PI_1 PI_2 PI_3 SL AR_1 AR_2 AR_3 AR_4 AR_5 Time
1 Normal cornea 100 29 126 100 0 9 0 0 0 0 0 1
2 Suspect cornea 100 44 126 100 0 50 0 0 0 0 0 2
3 Irregular cornea 100 98 150 138 0 60 0 0 0 0 0 3

The analyzeEvolution() function returns a "data.frame" containing 13 columns and as many
rows as files analyzed. Note that the results have been rounded to integers for a better display.
The first 12 columns correspond to the diagnosis and the indices as in the object returned by
computePlacidoIndices(). The last column corresponds to the time step at which the measures
were taken. Moreover, two temporal plots are returned (Figure 4). The left-hand side plot shows the
GLPI index, represented by a red line, and the boxplots of the primary indices PI1, PI2, PI3, and SL
over time. The right-hand side plot shows the times series of these five indices, GLPI, PI1, PI2, PI3,
and SL, individually. Finally, both plots present a colored background, corresponding with the final
diagnosis of the patient.

In this example shown in Figure 4, the results indicate that the patient’s cornea was normal at time
1, suspected at time 2, and irregular at time 3.

Figure 4: Results of the analysis of a cornea based on repeated measurements.

So far, analyzeFile(), analyzeDataset(), and analyzeEvolution() are intended to analyze a
single cornea based on single or repeated measurements. In order to analyze multiple corneas
simultaneously, the function analyzeFolder() can be used. This function takes 4 arguments: path, to
indicate the location of the folder containing the files; fileExtension, which indicates the extension of
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the files, is set to ’txt’ by default; individualPlots, which is an optional logical argument indicating
whether the plot for each file should be displayed or not; and summaryPlot, which is an optional logical
argument indicating whether a summary plot of all files analyzed should be displayed or not.

resultsAll = analyzeFolder(system.file("extdata", package="rPACI"),
individualPlots = FALSE, summaryPlot = T)

> resultsAll

Diagnose NBI GLPI PI_1 PI_2 PI_3 SL AR_1 AR_2 AR_3 AR_4 AR_5 Filename
3 Irregular cornea 100 100 150 150 150 142 119 72 83 73 76 K01.txt
5 Irregular cornea 100 100 128 101 119 98 57 56 47 59 51 K03.txt
4 Irregular cornea 100 100 94 85 93 4 0 0 0 0 0 K02.txt
8 Suspect cornea 0 32 43 53 68 26 39 26 31 27 30 S01.txt
7 Normal cornea 0 0 8 21 50 35 57 33 38 34 36 N02.txt
1 Normal cornea 0 0 13 20 18 36 43 22 25 21 23 ds1.txt
6 Normal cornea 0 0 13 20 18 36 43 22 25 21 23 N01.txt
2 Normal cornea 0 0 0 0 0 13 0 0 0 0 0 ds2.txt

This function returns a "data.frame" containing 13 columns and as many rows as files analyzed.
Again, the results have been rounded to integers for a better display. The first 12 columns correspond
to the diagnosis and the indices, as in the object returned by computePlacidoIndices(). The last
column corresponds to the file name so that a specific patient can be easily found. To see the diagnosis
for each analyzed file, the first and last columns can be selected:

resultsAll[,c(13,1)]

Filename Diagnose
3 K01.txt Irregular cornea
5 K03.txt Irregular cornea
4 K02.txt Irregular cornea
8 S01.txt Suspect cornea
7 N02.txt Normal cornea
1 ds1.txt Normal cornea
6 N01.txt Normal cornea
2 ds2.txt Normal cornea

Note that the rows are sorted from ‘Irregular’ to ‘Normal cornea’. If the argument summaryPlot()
is TRUE, then a barplot is depicted, as shown in Figure 8 (plotted using the Shiny interface, see next
section). This barplot shows the absolute frequency of each possible value of diagnosis. In this
example, three eyes are diagnosed as irregular, one as suspect, and four as normal. This is an easy
and straightforward way to check if any patient potentially suffers. from keratoconus.

Simulating corneal topographies

rPACI includes the function simulateData() that permits to simulate corneal topography data. This
function has a large number of geometrical parameters that allow to generate a wide variety of
corneal topographies of different clinical conditions. It produces a data set in the rPACI format, i.e., a
data.frame with three columns (x and y coordinates of each point and its ring index) and a row per
data point, according to the function parameters (by default, 15 × 256 = 3840 rows or data points,
without missing data).

The arguments of simulateData() are: rings, the total number of rings or mires in the sample
(by default, 15); pointsPerRing, the number of points to be sampled in each ring (by default, 256);
diameter, the diameter of the simulated dataset in mm (typically around 8-12 mm; by default, 12 mm);
ringRadiiPerturbation, adds a stochastical perturbation of the mires radii distribution, typically
between 0 (no perturbation) and 1 (high perturbation) (by default, 0); maximumMireDisplacement the
total mires displacement, drift or off-centering in mm, should be a reasonable number according
to the diameter (by default, 0); mireDisplacementAngle, the direction of mires drift given as an
angle in degrees, with 0 meaning positive x direction (by default, 0); mireDisplacementPerturbation
adds a stochastical perturbation to the mires drift, typically between 0 (no perturbation) and 1
(high perturbation) (by default, 0); ellipticAxesRatio, the ratio or quotient between the major and
minor axes of each elliptic ring, a ratio of 1 means a perfect circle (no eccentricity) (by default, 1);
ellipticRotation direction or orientation of the elliptic mires given as an angle in degrees, with 0
meaning positive x direction (by default, 0); overallNoise, includes random, white noise of a certain
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magnitude in the Cartesian coordinates of the sampled points; the noise magnitude is relative to the
diameter and the number of rings; 0 means no noise and 1 large noise (by default, 0); and finally seed,
a seed, included for repeatability when using random perturbations.

For instance, the following piece of code simulates and depicts a corneal topography with N =
15 rings, NA = 128 points per ring, with a diameter of 8 mm, and introducing a relatively large
perturbation in the distribution of radii with ringRadiiPerturbation = 0.7. The results are plotted
in Figure 5 (left).

dataset = simulateData(rings = 15, pointsPerRing = 128, diameter = 8,
ringRadiiPerturbation = 0.7)

plot(dataset$x,dataset$y,pch=20,cex=0.5,asp=1)

A highly distorted corneal topography can be generated by using the parameters related to
ellipticity and mire displacement. For example, the piece of code below simulates and plots a fairly
irregular corneal topography, which includes mires drift of 2mm in the direction −30◦, with non-
uniform displacements, and elliptic rings with axes ratio of 1.2 and orientated at 45◦. The resulting
data set is depicted in Figure 5 (right).

dataset = simulateData(maximumMireDisplacement = 2, mireDisplacementAngle = -30,
mireDisplacementPerturbation = 1.2, ellipticAxesRatio= 1.2,
ellipticRotation = 45)

Figure 5: Simulated corneal topographies using simulateData with different parameters: (left) rings
with non-uniform radii distribution; (right) adding mires drift and ellipticity.

More examples of using the simulateData() function can be found in the rPACI vignette “Simu-
lating corneal datasets”.

A Shiny interface to rPACI

The package presented in the previous section requires a basic knowledge of the R language. However,
many practitioners might find this a serious obstacle to overcome. For this reason, a shiny interface to
rPACI has been deployed. Shiny is an R package used to develop interactive web applications so that
users do not need to interact with R code nor to install any software. The rPACI app can be found at
https://admaldonado.shinyapps.io/rPACI/.

This app provides a GUI (Graphical User Interface) organized in different tabs, allowing to perform
the three types of analyses above described, as well as to simulate corneal topographies. Moreover,
the web app contains a ’Home’ tab, to welcome users and offer a guided tour through the app; a ’Help’
tab, which summarizes the app features; and an ’About’ tab, which includes information about the
package developers. Links to the rPACI vignettes, CRAN, and GitHub repositories are also available
in the shiny app.

Depending on the number of corneas to analyze at a time (i.e., one or more), the user can select the
‘Analyze one patient’ or ‘Analyze multiple patients’ tab. If the first option is chosen, a sub-menu
appears, where the user can select between ‘Single measurement’ and ‘Repeated measurements’. The
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former choice analyzes a cornea based on a single measurement, whereas the latter analyzes a cornea
based on repeated measurements over time to see its evolution. These three sections allow the users to
read external files (in any format supported by rPACI) and also have the option to use demo data to
check out how the app works.

The ‘Single measurement’ menu (accessed through the ‘Analyze one patient’ tab) contains a
browser button, which allows loading one file only, and a check-box to use the available demo data
sets. If the check-box is checked, a drop-down menu appears, which allows selecting a particular demo
data set. This menu contains six different demo data sets, which are, in fact, real measurements. Three
of them correspond to keratoconic corneas (filenames starting with ‘K’), one of them to suspicious
keratoconic cornea (filenames starting with ‘S’), and two of them to normal corneas (filenames starting
with N). When a file is selected, the app returns a plot depicted by plotSingleCornea() and a table
containing the Placido indices. Figure 6 shows a screenshot of the app when the demo file ‘K01.txt’ is
selected.

Figure 6: Screenshot of the rPACI shiny app, performing a single measurement corneal analysis. The
demo data set K01.txt is chosen.

The ‘Repeated measurements’ menu (accessed through the ‘Analyze one patient’ tab) contains a
browser button that allows loading several files, whose names account for the chronological order,
and a check-box to use the available demo data sets. If the check-box is ticked, the app uses a set of
three simulated corneal topographies that model a patient’s cornea at three different moments. This
menu returns a plot depicted by analyzeEvolution() and a table containing the Placido indices of
each data set. Figure 7 shows a screenshot of the app when the demo data is selected.

Figure 7: Screenshot of the rPACI shiny app, performing a repeated measurements corneal analysis.
The available demo data is chosen for illustrative purposes.

The ‘Analyze multiple patients’ tab contains a browser button that allows loading several files,
a check-box to use the available demo data sets, and two mutually exclusive radio buttons to chose
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the display of the results. If the check-box is marked, the analysis is performed on six available demo
data sets. The radio buttons allow visualizing either the aggregated results (displaying a barplot of the
diagnosis values) or the individual plots of each file, in which case a drop-down menu that allows
selecting a specific case appears. Moreover, this menu returns a table containing the Placido indices of
the selected files. Note that the table is interactive, as the rows can be sorted according to a specific
column, and the number of entries to display can be changed. Figure 8 shows a screenshot of the app
when the demo data is selected.

Figure 8: Screenshot of the rPACI shiny app, performing an analysis on multiple corneas simultane-
ously. The available demo data is chosen for illustrative purposes.

Finally, the ‘Simulation’ tab allows simulating a corneal topography data set, specifying up to
ten different parameters. The simulated data set can be downloaded using the button designed
for that purpose, and the parameters can be reset to the default values. If the simulated data set is
downloaded, the file is saved as a ’.txt’ file in rPACI format, containing a header with the chosen
simulation parameters. This file can later be loaded into the app to perform any kind of analysis.
Figure 9 shows a screenshot of the app performing a corneal topography simulation.

Figure 9: Screenshot of the ’Simulation’ tab in the rPACI shiny app.
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Summary

Diagnose of corneal diseases, especially keratoconus, is still an important research and clinical problem.
Most of the corneal topographers in clinics are Placido disk devices, and several keratoconus indices
for these devices exist. In this paper, we have presented the R package rPACI, whose aim is to provide
practitioners or researchers in the field of ophthalmology with several easy-to-use functions to handle
corneal data as provided by a Placido disk corneal topographer. This package includes several indices
for detecting keratoconus or other irregularities available in the literature, which proved to be useful
and accurate in the diagnosis.

As the main goal is to facilitate the users the computation and use of the indices, the R package
rPACI was designed to be as easy to use as possible and provide results (data tables and graphics)
that are effortless to interpret. Additionally, a shiny web app was developed and openly deployed
(https://admaldonado.shinyapps.io/rPACI/) so that rPACI can be used in any web browser, in a
truly user-friendly graphical interface, without the need of installing R or rPACI or writing any R
code.

In the future, we hope other indices may be included in this package or in other new R packages,
facilitating even further their use, improvement, or validation by practitioners or researchers in the
topic and contributing to new advances in the field. Also, we would like this package and its shiny
GUI to serve as an inspiration for other researchers in the field of healthcare to make their research
results more accessible to clinicians and other researchers.
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MAINT.Data: Modelling and Analysing
Interval Data in R
by A. Pedro Duarte Silva, Paula Brito, Peter Filzmoser and José G. Dias

Abstract We present the CRAN R package MAINT.Data for the modelling and analysis of multivariate
interval data, i.e., where units are described by variables whose values are intervals of IR, representing
intrinsic variability. Parametric inference methodologies based on probabilistic models for interval
variables have been developed, where each interval is represented by its midpoint and log-range, for
which multivariate Normal and Skew-Normal distributions are assumed. The intrinsic nature of the
interval variables leads to special structures of the variance-covariance matrix, which are represented
by four different possible configurations. MAINT.Data implements the proposed methodologies
in the S4 object system, introducing a specific data class for representing interval data. It includes
functions and methods for modelling and analysing interval data, in particular maximum likelihood
estimation, statistical tests for the different configurations, (M)ANOVA and Discriminant Analysis.
For the Gaussian model, Model-based Clustering, robust estimation, outlier detection and Robust
Discriminant Analysis are also available.

Introduction

In classical statistics and multivariate data analysis, the basic units under analysis are single individuals,
described by numerical and/or categorical variables, each individual taking one single value for each
variable. For instance, a specific football player may be described by his age, height, weight, goals
marked, nationality; a specific passenger by his/her gender, age, destination, weight of luggage, etc.
Data are organised in a data-array, where each cell (i, j) contains the value of variable j for individual i.

It is however often the case that the data under analysis are not single observations, but rather
sets of values, either related to groups of units gathered on the basis of some common properties,
or observed repeatedly over time or under different specific conditions. The classical framework is
then somehow restricted to take into account variability inherent to such data. This is the case when
we are interested in describing football teams and not each specific player, or flights and not each
particular passenger. The same issue often arises in official statistics analysis. Whether it is for the
analysis’ purposes, or for confidentiality reasons, individual data – here usually called “microdata”
– is gathered into more general data arrays, related to parishes, counties, socio-economical groups,
etc. – the so-called “macro-data”. Internal variability should also be considered when the focus of the
analysis lies in concepts (i.e., all elements sharing a given set of defining properties) rather than in a
single specimen – whether it is a plant species (and not the specific plant I hold in my hand), a model
of car (and not the particular one I am driving), etc. Another pertinent case arises when we are facing
huge amounts of data, recorded in very large databases, and elements of interest are not the individual
records but some second-level entities. For instance, in a database of a hypermarket purchases, we
are surely more interested in describing the behaviour of some client (or some pre-defined class or
group of clients) rather than each purchase by itself. The analysis requires then that the purchase data
for each person (or group) be somehow aggregated to obtain the information of interest; here again
the observed variability for each client or within each group is of utmost importance, and cannot be
retained by summary statistics.

Symbolic Data Analysis (see e.g. Diday and Noirhomme-Fraiture (2008), Brito (2014)) provides a
framework where the variability observed may effectively be considered in the data representation,
and methods are developed that take that into account. To describe groups of individuals or concepts,
new variable types may now assume other forms of realisations, which allow taking intrinsic variability
into account. They may take the form of finite sets, intervals or distributions. In recent years, different
approaches have been investigated and many methods proposed for the analysis of such symbolic
data, and for the design of a symbolic counterpart of statistical multivariate data analysis methods.
Most existing methods for the analysis of such data rely however on non-parametric descriptive
approaches. Among these, interval data is by far the most investigated data type and for which more
methods have been developed.

In Brito and Duarte Silva (2012), parametric inference methodologies based on probabilistic models
for interval variables are developed where each interval is represented by its midpoint and log-range,
for which multivariate Normal and Skew-Normal (Azzalini and Dalla Valle, 1996) distributions are
assumed. The intrinsic nature of the interval variables leads to special structures of the variance-
covariance matrix, which are represented by different possible configurations.

It should be noticed that we are modelling interval-valued variables, i.e. variables whose observed
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values are intervals, and not single-valued real variables. For this reason, they should not be confused
with real-valued variables whose values are restricted to some intervals. Data structures for this latter
type are available in some R packages such as survreg (Hubeaux and Rufibach, 2015) or crch (Messner
et al., 2019), but they obviously do not apply in our context.

In this paper, we present the package MAINT.Data (Duarte Silva and Brito, 2021), which imple-
ments the proposed methodologies in R (R Core Team, 2021). MAINT.Data is built using S4 classes
and methods, introducing a specific data class for representing interval data. Functions for aggregating
microdata into interval data objects are also provided. MAINT.Data includes functions and methods
for modelling and analysing interval data, in particular maximum likelihood estimation and statistical
tests for the different considered configurations. Methods for (M)ANOVA (Brito and Duarte Silva,
2012) and Discriminant Analysis (Duarte Silva and Brito, 2015) of this data class are also provided.
For the Gaussian model, Model-based Clustering (Brito et al., 2015), robust estimation and outlier
detection (Duarte Silva et al., 2018) are implemented; corresponding methods for Robust Discriminant
Analysis are also available.

Multivariate analysis of interval-valued data has been addressed from different perspectives,
as Clustering (see, e.g., De Carvalho et al. (2006); De Carvalho and Lechevallier (2009)), Principal
Component Analysis (PCA) (see, e.g. Douzal-Chouakria et al. (2011); Le-Rademacher and Billard
(2012)), Discriminant Analysis (Duarte Silva and Brito, 2015; Ramos-Guajardo and Grzegorzewski,
2016), Regression Analysis (Dias and Brito, 2017; Lima Neto and De Carvalho, 2008, 2010, 2011),
etc. For a survey the reader may refer to Brito (2014). Those are mostly non-parametric exploratory
methodologies; recent approaches based on parametric models have also been proposed in Brito and
Duarte Silva (2012), Le-Rademacher and Billard (2011), and Lima Neto and De Carvalho (2011).

Many of the methods mentioned above for analysing interval-valued data may be found in R
packages, namely symbolicDA (Dudek et al., 2019), (general multivariate data analysis/machine
learning approaches, e.g. PCA, Discriminant Analysis, Multidimensional Scaling, Clustering), RSDA
(Rodriguez, 2021) (mainly classification and linear models), iRegression (Lima Neto et al., 2016)
(Regression) and GPCSIV (Brahim and Makosso-Kallyth, 2013) (PCA). We note that most of these
packages implement non-parametric methods, an exception being iRegression which comprehends
regression based on the parametric approach proposed in Lima Neto and De Carvalho (2011). To
the best of our knowledge, no other implementations of parametric approaches for the (multivariate)
analysis of interval-valued data are publicly available.

The remainder of the paper is organised as follows. In the next section, we introduce interval
data array and fix notation. Section Models and estimation presents the proposed models and
the estimation of corresponding parameters. Section Multivariate analysis develops multivariate
analysis methods based on those models. Section Package discusses the main structure and technical
implementation of the MAINT.Data package. In Section Applications, two applications illustrate the
use of the package and its functionalities. Finally, Section Summary concludes the paper, pointing out
perspectives for future developments.

Interval data

Let S = {s1, . . . , sn} be the set of n units under analysis. An interval variable is defined by an
application

Y : S → T such that si → Y(si) = [li, ui]

where T is the set of intervals of an underlying set O ⊆ IR. Let I be an n × p matrix containing the
values of p interval variables on S. Each si ∈ S is then represented by a p-dimensional vector of
intervals, Ii = (Ii1, . . . , Iip), i = 1, . . . , n, with Iij = [lij, uij], with uij ≥ lij, j = 1, . . . , p (see Table 1).
The models considered in MAINT.Data assume all intervals are non-degenerate, i.e., uij > lij, j =
1, . . . , p, i = 1, . . . , n.

The value of an interval variable Yj for each si ∈ S is defined by the lower and upper bounds lij
and uij of Iij = Yj(si), here assumed to be strictly different (i.e. degenerate intervals are not considered
in this framework). For modelling purposes, however, an alternative parametrisation that consists

in representing Yj(si) by the MidPoint cij =
lij + uij

2
and Log-Range r∗ij = ln(uij − lij) of Iij is often

adopted.

We note that the interval-valued data considered here do not represent uncertainty, but rather
intrinsic variability. Such interval data may occur directly, or result from the aggregation of microdata.
“Native” interval data are common e.g. in Botany and Zoology, one example being the length of the
stem of a given plant species, which of course varies from specimen to specimen. The aggregation of
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Y1 . . . Yj . . . Yp

s1 [l11, u11] . . . [l1j, u1j] . . . [l1p, u1p]
. . . . . . . . . . . .
si [li1, ui1] . . . [lij, uij] . . . [lip, uip]
. . . . . . . . . . . .
sn [ln1, un1] . . . [lnj, unj] . . . [lnp, unp]

Table 1: Matrix I of interval data

microdata from potentially large databases also provides interval data, when individual numerical
records are combined at the required level of granularity leading to a range of values representing the
underlying variability. An example of such a case is the aggregation of the values of single purchases
say, in the Bakery and Dairy section of a supermarket, for each client, during a year – we then obtain,
for each client and for each supermarket section, an interval representing the variability of purchase
values. Such aggregations are usually based on observed minima and maxima, but specific quantiles
may also be considered for this purpose.

Models and estimation

Models specification

In Brito and Duarte Silva (2012), parametric models for interval data, relying on multivariate Normal
or Skew-Normal distributions for the MidPoints and Log-Ranges of the interval-valued variables have
been proposed.

The Gaussian model consists in assuming a joint multivariate Normal distribution N(µ, Σ) for the

MidPoints C and the logs of the Ranges R∗, with µ =
[
µt

C µt
R∗

]t and Σ =

(
ΣCC ΣCR∗

ΣR∗C ΣR∗R∗

)
where

µC and µR∗ are p-dimensional column vectors of the mean values of, respectively, the MidPoints and
Log-Ranges, and ΣCC , ΣCR∗ , ΣR∗C and ΣR∗R∗ are p × p matrices with their variances and covariances.
This model has the advantage of allowing for a straightforward application of classical multivariate
methods.

Given that the MidPoint Cij and the Log-Range R∗
ij of the value of an interval variable Yj(si) are

related to the same variable, they should, therefore, be considered together and their relation taken into
account by appropriate configurations of the global covariance matrix. Intermediate parametrisations
between the non-restricted and the non-correlation setup considered for real-valued data are, therefore,
relevant for the specific case of interval data.

The most general formulation allows for non-zero correlations among all MidPoints and Log-
Ranges (configuration 1); in another setup, interval variables Yj are independent, but for each variable,
the MidPoint may be correlated with its Log-Range (configuration 2); a third situation allows for
MidPoints (respectively, Log-Ranges) of different variables to be correlated, but no correlation between
MidPoints and Log-Ranges is allowed (configuration 3); finally, all MidPoints and Log-Ranges may be
uncorrelated, both among themselves and between each other (configuration 4). Table 2 summarizes
the different considered configurations. We note that from the normality assumption it follows that,
in this particular framework, imposing non-correlations with Log-Ranges is equivalent to imposing
non-correlations with Ranges.

Configuration Characterization Σ

C1 Not restricted Not restricted

C2 Yj’s not correlated ΣCC, ΣCR∗ = ΣR∗C,
ΣR∗R∗ all diagonal

C3 C’s not-correlated with R∗’s ΣCR∗ = ΣR∗C = 0
C4 All C’s and R∗’s are not-correlated Σ diagonal

Table 2: Different cases for the variance-covariance matrix.

It should be remarked that for configurations C2, C3 and C4, Σ can be written as a block diagonal
matrix, after a possible rearrangement of rows and columns.
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In Brito and Duarte Silva (2012) another configuration has been considered, where MidPoints
(respectively, Log-Ranges) of different variables may be correlated, the MidPoint of each variable may
be correlated with its Log-Range, but no correlation between Midpoints and Log-Ranges of different
variables is allowed. However, this case seems less natural, and leads to computational difficulties,
since Σ can no longer be written as a block diagonal matrix, and, therefore, it has not been used in
subsequent studies.

The Gaussian model has many advantages, which explains its generalized use in multivariate
data analysis; in particular, it allows for a direct modelling of the covariance structure between the
variables. Nevertheless, it does present some limitations, namely the fact that it imposes a symmetrical
distribution on the MidPoints and a specific relation between mean, variance and skewness for the
Ranges. A more general model that overcomes these limitations may be obtained by considering
the family of Skew-Normal distributions (see, for instance, Azzalini (1985); Azzalini and Dalla Valle
(1996)). The Skew-Normal generalizes the Gaussian distribution by introducing an additional shape
parameter, while trying to preserve some of its mathematical properties.

The density of a q-dimensional Skew-Normal distribution is given by

f (x; α, ξ, Ω) = 2ϕq(x − ξ; Ω)Φ(αtω−1(x − ξ)), x ∈ IRq (1)

where now ξ and α are q-dimensional vectors, Ω is a symmetric q × q positive-definite matrix, ω is
a diagonal matrix formed by the square-roots of the diagonal elements of Ω, ϕq is the density of a
Nq(0, Ω) and Φ is the distribution function of a standard Gaussian variable.

Notice that the Skew-Normal model encompasses mixed models with marginal Normal random
variables, for which the corresponding shape parameter is null.

The mean vector, variance-covariance matrix, and skewness coefficients of a q-dimensional Skew-
Normal distribution are given by (see Azzalini (2005))

µ = E(X) = ξ + ωµZ (2)

Σ = Var(X) = Ω − ωµZµt
Zω (3)

γ1,ℓ =
E[(Xℓ − E(Xℓ))

3]

Var(Xℓ)3/2 =
4 − π

2

µ3
Z;ℓ

(1 − µ2
Z;ℓ)

3/2
, ℓ = 1, . . . , q (4)

where µZ is a vector of expected values for standard Skew-Normal variables, which are defined by

µZ =

√
2
π

ω−1Ωω−1α√
1 + αtω−1Ωω−1α

As an alternative to the Gaussian model, it may be considered that (C, R∗) follows jointly a 2p-
multivariate Skew-Normal distribution, for which the different alternative configurations of the Σ ma-
trix may be assumed. Given (3), a null covariance Σ(j, j′) implies that Ω(j, j′) = Ω(j, j)

1
2 µZj Ω(j′, j′)

1
2 µZj′

or, equivalently, Ω(j, j) =
2
π

1
1 + αtω−1Ωω−1α

Ωt
jω

−1ααtω−1Ωj′ where Ωj denotes the jth column

of Ω. This defines non-linear relations between the parameters in Ω and α.

Maximum likelihood estimation

As discussed in the previous subsection, Brito and Duarte Silva (2012) consider as possible models
for interval-valued data, eight possible combinations of two multivariate distributions (Gaussian or
Skew-Normal) with four covariance configurations. Given an observed data set, the choice among
these models may be based on their maximised likelihood using usual information criteria such as the
Bayesian Information Criterion (BIC) (Schwarz, 1978), the Akaike Information Criterion (AIC) (Akaike,
1974), or pairwise likelihood ratio tests. In this subsection we will present the details of the respective
maximum likelihood estimation.

Gaussian model

Let Xi =
[
Ci

t, R∗
i

t
]t

be the 2p-dimensional column vector comprising all the MidPoints and Log-

Ranges for unit si, X̄ be sample mean of the Xi’s and E =
n

∑
i=1

(Xi − X̄)(Xi − X̄)t . For all configurations,

the log-likelihood can be written as
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ln L(µ, Σ) = l = −np ln(2π)− n
2

ln det Σ − 1
2

Tr(EΣ−1)− n
2
(X̄ − µ)

t
Σ−1 (X̄ − µ) (5)

Under the unrestricted configuration C1, the maximum likelihood estimators of µ and Σ are

obviously the classical ones, µ̂ = X̄ and Σ̂ =
1
n

E. In the restricted configurations C2 to C4, the
maximum of (5) can be obtained by separately maximising with respect to each block of Σ, and the
estimators are obtained from the non-restricted estimators simply replacing the null parameters in Σ

by zeros (see Brito and Duarte Silva (2012)).

Skew-Normal model

Azzalini and Capitanio (see, e.g., Azzalini and Capitanio (1999); Azzalini (2005)) have obtained the
log-likelihood of a q-dimensional Skew-Normal distribution as

ln L(ξ, Ω, α) = l = constant − 1
2

n ln det Ω − n
2

Tr(Ω−1V) + ∑
i

ζ0(α
tω−1(Xi − ξ)) (6)

where V = n−1 ∑i(Xi − ξ)(Xi − ξ)t and ζ0(v) = ln(2Φ(v)). The maximisation of (6) is performed in
two steps by defining a new parameter, η = αtω−1, and separating the maximisation on ξ and η from
the maximisation on Ω given ξ, which has the analytical solution Ω = V .

The optimal likelihood solution for the Skew-Normal model with restricted configurations may
not be obtained by simply replacing corresponding entries in the appropriate matrices, because of the
non-linear relations between the parameters in Ω and α. For the Skew-Normal model with restricted
configurations, we rely on a centred parametrisation (Valle and Azzalini, 2008), which employs directly
the parameters µ, Σ and γ1 given by (2), (3) and (4), respectively. The log-likelihood is maximised
with respect to µ, γ1 and the free elements in Σ. This optimisation must be done numerically; see
Subsection Implementation of Section Package for the details of the implementation adopted in
package MAINT.Data.

Robust estimation and outlier detection

Multivariate datasets often include data units that deviate from the main pattern, usually called
outliers, which may strongly influence the maximum likelihood estimators, leading to the need of
alternative (robust) estimators. In the context of interval-valued data this problem has been addressed
in Duarte Silva et al. (2018).

There is an extensive literature on robust estimation of location and scatter parameters. Trimmed
likelihood estimators (Hadi and Luceño, 1997) are based on a sample subset, keeping only the h units
that contribute most to the likelihood function. For multivariate Gaussian data, this approach is
equivalent to the well-known Minimum Covariance Determinant (MCD) method (Rousseeuw, 1984,
1985) which consists in using the sample subset that minimises the determinant of the covariance
matrix estimate (Hadi and Luceño, 1997). Since finding the true MCD is an NP-hard problem, when n
is not small, a good approximation based on a computationally fast algorithm is usually employed
(Rousseeuw and Van Driessen, 1999).

Outlier detection usually relies on Mahalanobis distances, flagging units as outliers if their dis-
tances from an appropriate estimate of the multivariate mean m is above a chosen quantile of an appro-
priate distribution. (Squared) Mahalanobis distances are defined as D2

m,C(i) = (Xi − m)tC−1(Xi −
m) where C is an estimate of the covariance matrix. Traditionally, a Chi-square approximation is used
for the distribution of MCD-robust squared Mahalanobis distances; however, Cerioli (2010) proposed
finite sample approximations with better properties for small and even moderately large sample sizes.

Moreover, more efficient one-step re-weighted MCD estimators are often used (Hubert et al.,
2008). These are obtained by giving null weight only to the units for which the raw squared robust
Mahalanobis distance exceeds a high threshold value, e.g., the 97.5% quantile of the classical Chi-
square or, alternatively, of the scaled-F approximation (Hardin and Rocke, 2005). Furthermore, the
resulting covariance estimators are usually multiplied by consistency and bias correction factors (see
Pison et al. (2002)).

In practice, one needs to specify the number h of data points to be initially used. Two common
choices are to fix this number around 50%n maximising the breakdown point, or around 75%n for
larger efficiency (Hubert et al., 2008). Recently, in the context of interval data outlier identification,
Duarte Silva et al. (2018) proposed a two-step approach where the outlier detection procedure is first
run to get an estimate of the outlier proportion and in a second step the procedure is repeated fixing
the trimming parameter at the value obtained in the first step.
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The trimmed Maximum Likelihood approach described above has been adapted to the problem
of robust parameter estimation for the Gaussian models proposed for interval-valued data. For all
considered covariance configurations, the trimmed log-likelihood can be written as

ln TL(µ, Σ) = − h
2

(
2p ln(2π) + ln det Σ + Tr(Σ̃Σ−1) + (µ̃ − µ)t Σ−1 (µ̃ − µ)

)
(7)

where h is the number of observations kept in the trimmed sample, and

µ̃ = 1
h

h

∑
i=1

Xi, Σ̃ =
1
h

h

∑
i=1

(Xi − µ̃)(Xi − µ̃)t are the trimmed mean and trimmed sample covariance,

respectively.

In the case of a restricted covariance matrix, the block diagonal structure always implies that
trimmed likelihood maximisation is equivalent to the minimisation of the determinant of the restricted
trimmed sample covariance matrix.

The one-step re-weighted bias-corrected estimators are given by

µ̂1 =

n

∑
i=1

wiXi

h1
(8)

Σ̂1 =

lh1
c1

n

∑
i=1

wi(Xi − µ̂1)(Xi − µ̂1)
t

h1
(9)

h1 =
n

∑
i=1

wi wi =

{
1, if lhc Dµ̃,Σ̃(i) ≤

√
Q0.975

0, otherwise

where Q0.975 is the 97.5% quantile of the D2
µ̃,Σ̃ distribution. In MAINT.Data this distribution is

approximated by a Chi-square distribution with 2p degrees of freedom or by a (scaled) F distribution
as proposed by Hardin and Rocke (2005).

In expression (9), lh and lh1
are consistency correction factors, whereas c and c1 are finite-sample

bias-correction factors - for more details see Duarte Silva et al. (2018).

These estimates may then be used for outlier detection in an interval-valued dataset. For that
purpose, the robust squared Mahalanobis distance for unit i, based on µ̂1 and Σ̂1, is compared with the
chosen upper quantile of either the χ2

2p distribution or using the approximations (see Cerioli (2010)):

D2
µ̂1,Σ̂1

∼ (h1 − 1)2

h1
Beta

(
p,

h1 − 2p − 1
2

)
, i f wi = 1 (10)

D2
µ̂1,Σ̂1

∼ h1 + 1
h1

(h1 − 1)2p
h1 − 2p

F (2p, h1 − 2p) , i f wi = 0 (11)

Multivariate analysis

Analysis of Variance

The models presented above for interval-valued variables allow addressing (M)ANOVA problems
with interval data - see Brito and Duarte Silva (2012). Since each interval-valued variable Yj is modelled

by
[
Cij, R∗

ij

]
, an analysis of variance of Yj is accomplished by a two-dimensional MANOVA.

Assume a one-way design, with a single factor with k levels, and let nℓ be the number of units in

group ℓ. Let Xij =
[
Cij, R∗

ij

]t
be the 2-dimensional column vector with the MidPoint and Log-Range of

variable Yj for unit si, and let µ•jℓ be the population means of the Xj’s in group ℓ. In this case, the null
hypothesis states that all µ•jℓ are equal across groups. In all cases, for both models and all covariance
configurations, we follow a likelihood ratio approach.

In the Gaussian model, the usual likelihood ratio statistic λ can be computed in a straightforward
manner. Under the unrestricted case C1, this statistic is obviously equal to the classical one; in the
restricted covariance cases, its value may be obtained replacing the null entries corresponding to each
configuration in the sum of squares and cross-products MANOVA matrices (see e.g. Huberty and
Olejnik (2006) for the definition of those matrices). For the Skew-Normal model, given there is no
closed form for the maximum likelihood estimates, the value of λ must be obtained by numerical
optimisation (see Subsection Implementation of Section Package).
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As usual, under the null hypothesis, −2 ln λ, follows asymptotically a Chi-square distribution. For
small samples a permutation test may be used to approximate the distribution of this test statistic.

A simultaneous analysis of all the Y’s interval-valued variables may be accomplished by a 2p-
dimensional MANOVA, following the same procedure.

Discriminant Analysis

The classical decision theoretic approach to Discriminant Analysis assumes that a given vector of
attributes follows some known distribution and derives an optimal classification rule that minimises
either the misclassification probability or the expected value of the misclassification cost. Parametric
discriminant analysis of interval-value data based on the models above has been investigated in
Duarte Silva and Brito (2015).

In a problem with k groups, Γℓ, ℓ = 1, . . . , k, denote the a priori group membership probabilities by
πℓ and the within group probability or density function by fℓ(x), where x are attribute vectors. Under
the assumption that misclassification cost are equal across groups, the optimal rule assigns a unit
to the group Γℓ for which πℓ fℓ(x) is maximal (see, e.g. McLachlan (1992)); in practice the unknown
parameters in these rules must be estimated from observations with known group membership.

When fℓ(.) is a Gaussian density, and the covariance matrices are equal across groups, the approach
described above leads to a linear classification rule, whereas when covariance matrices differ from
group to group, a quadratic classification rule is obtained.

Consider the Gaussian model for interval data. For each covariance configuration, an estimate
of the optimum classification rule can be obtained by direct generalisation of the classical linear and
quadratic discriminant classification rules, leading to group assignments defined by, respectively,

Γ = argmax
ℓ

(µ̂t
ℓΣ̂−1x − 1

2
µ̂t
ℓΣ̂−1µ̂ℓ + ln π̂ℓ) (12)

Γ = argmax
ℓ

(−1
2

xtΣ̂−1
ℓ x + µ̂t

ℓΣ̂−1
ℓ x + ln π̂ℓ −

1
2
(ln det Σ̂ℓ + µ̂t

ℓΣ̂−1
ℓ µ̂ℓ)) (13)

where µ̂ℓ, Σ̂, Σ̂ℓ and π̂ℓ are appropriate estimates of µℓ, Σ, Σℓ and πℓ for the corresponding cases.

In MAINT.Data, all mean and covariance estimates in (12) and (13) may be obtained by either
classical maximum likelihood or the robust trimmed maximum likelihood approach (see Section
Robust estimation and outlier detection).

We note that for the restricted configurations C2, C3 and C4, Σ̂ and Σ̂ℓ are obtained from the
corresponding unrestricted estimates replacing all the null covariances by zeros.

For the Skew-Normal case, we consider a Location Model in which the groups differ only in terms
of the location parameter ξ, and a General Model, where the groups differ in terms of all parameters.
The corresponding classification rules are, respectively,

Γ = argmax
ℓ

(ξ̂t
ℓ Ω̂−1x − 1

2
ξ̂t
ℓ Ω̂−1ξ̂ℓ + ln π̂ℓ + ζ0(α̂

tω̂−1(x − ξ̂ℓ))) (14)

Γ = argmax
ℓ

(−1
2

xtΩ̂−1
ℓ x + ξ̂t

ℓ Ω̂−1
ℓ x + ln π̂ℓ − (15)

1
2
(ln det Ω̂ℓ + ξ̂t

ℓ Ω̂−1
ℓ ξ̂ℓ) + ζ0(α̂

t
ℓ ω̂−1

ℓ (x − ξ̂ℓ)))

where ξ̂ℓ, Ω̂, Ω̂ℓ, α̂ and α̂ℓ are estimates of location, scale, association and shape parameters (see
Azzalini and Capitanio (1999)), ω̂ and ω̂ℓ are the square-roots of the diagonal elements of the matrices
Ω̂ and Ω̂ℓ, respectively, and ζ0(v) = ln(2Φ(v)). In MAINT.Data these are all maximum likelihood
estimates.

Model-based Clustering

Model-based Clustering considers the data as arising from a distribution that is a mixture of two or
more components (Banfield and Raftery, 1993; Fraley and Raftery, 2002; McLachlan and Peel, 2000).
Each component, that can be thought as a cluster, is characterised by a conditional density/mass
function and has an associated probability or “weight”. When the conditional probability is specified
as the multivariate Gaussian density, the probability model for clustering will be a finite mixture of
multivariate Normals (known as the Gaussian mixture model).
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The problem consists in estimating the model parameters for each component, as well as the
membership (posterior) probabilities of each unit. To this purpose, the Expectation-Maximisation (EM)
algorithm (Dempster et al., 1977) is commonly used. The method alternates between an expectation
(E) step, which computes the expectation of the log-likelihood at the current parameter estimates, and
a maximisation (M) step, which estimates parameters maximising the expected log-likelihood found
in the E step.

Model-based Clustering of interval data has been addressed in Brito et al. (2015), by considering
the Gaussian parametrisation described above (see Section Models and estimation). For that purpose,
the EM algorithm has been adapted to the likelihood maximisation in our models, for the different
covariance configurations.

The finite mixture model with k components for 2p-dimensional data vector x is defined by

f (x;φ) =
k

∑
ℓ=1

τℓ fℓ(x; θℓ) (16)

where all τℓ > 0 and τ1 + . . . + τk = 1; θℓ denotes parameters of the conditional distribution of
component ℓ.

Here the conditional distribution is given by N(µℓ, Σℓ); maximum likelihood parameter estimation
involves the maximisation of the log-likelihood function:

ln L(φ; x) =
n

∑
i=1

ln f (xi;φ) (17)

where φ = (τ1, . . . , τk, θ1, . . . , θk).

In Model-based clustering of interval data, Xi =
[
Ct

i , R∗
i

t
]t

is defined as the 2p-dimensional vector
comprising all the MidPoints and Log-Ranges for si, and the “complete” data are considered to be
(xi, zi), where zi = (zi1, . . . , zik) is assumed as the “missing” data, with ziℓ = 1 if si ∈ component ℓ
and ziℓ = 0 otherwise. In the unrestricted case, the M-step formulas for Σ̂, Σ̂ℓ are the classical ones;
for the restricted configurations Σ̂ and Σ̂ℓ, ℓ = 1, . . . , k are obtained maximising the likelihood for each
block separately (see Brito and Duarte Silva (2012)).

For the selection of the appropriate model and the number of components k, we use the Bayesian
Information Criterion (BIC).

Package

Design

MAINT.Data is built around S4 classes and methods, the most important being the IData class and
classes derived from the virtual IdtE (IData Estimates) classes. Further specialised classes used
to store the results of various multivariate analysis (e.g. Model-based Clustering, MANOVA and
Discriminant Analysis) are also available. Figure 1 shows common interactions between different
objects of MAINT.Data classes.

We note that in addition to the flow shown in Figure 1, objects containing the results of Discriminant
Analysis of Interval Data may also be obtained from appropriate objects of class IdtMANOVA, or directly
from the combination of objects of class IData with a grouping factor.

Class Idata, which is used to store datasets of interval-valued variables, is the central class in
the MAINT.Data package. Its design aims at replicating the functionalities of classical data frames
as smoothly as possible. As seen in Figure 1, objects of class IData may be created in one of two
alternative ways: (i) directly from data frames containing either lower and upper bounds or MidPoints
and Log-Ranges, using the creator function IData; (ii) by aggregation of a data frame of the microdata
by a given aggregating factor and criterion (e.g. min-max or a given pair of quantiles), using the
function AgrMcDt.

The creator function IData takes five arguments as input. The first one, named Data refers to a
data frame or matrix containing either the lower and upper bounds or the MidPoints and Log-Ranges
of the observed intervals, where each row corresponds to a different unit. Then, Seq is a string which
describes the sequence of the data for each unit, namely, lower and upper bounds variable by variable
(“LbUb_VarbVar”, default), MidPoints and Log-Ranges variable by variable (“MidPLogR_VarbVar”), all
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1

IData
object

Data
Frame

Grouping
factor

IdtSngDE
object

IdtMxE
object

Idtlda
object

Idtqda

object

IdtMclust
object

IdtSNda
object

IdtMANOVA
object

Aggregating
factor

Figure 1: Typical flow of a MAINT.Data application.

lower bounds followed by all upper bounds (“AllLb_AllUb”), or all MidPoints followed by all Log-
Ranges (“AllMidP_AllLogR”). The third and fourth arguments, named VarNames and ObsNames, allow
the user to specify the variables’ and units’ names, respectively. Finally, the last argument NbMicroUnits
provides the number of micro observations corresponding to each unit, when available. A typical call
of this function would be ExampleIdt <-IData(dataDF,VarNames=c(``Var1'',``Var2'')) (no names
for the units, number of micro observations corresponding to each unit not available).

Function AgrMcDt has three arguments. The first one, MicDtDF indicates a data frame with the
microdata. The second argument, agrby refers to a factor with the categories according to which the
microdata should be aggregated. The last argument agrcrt specifies whether aggregation is done with
the minimum and maximum observed values, or else based on user-defined quantiles. An example is
shown in Section Applications.

A UML diagram of class Idata is shown in Figure 2. As seen here, class Idata implements
specialised versions of standard R methods such as summary, print, nrow and ncol, rownames and
colnames, rbind, cbind and plot. Special care has been taken in the development of indexing operators
and of a specialised cbind method, so that they work as smoothly as with data frames, but treating
each column of Idata as one interval-valued variable.

The remaining Idata methods perform parameter estimation and/or multivariate analysis leading
to objects of class IdtE (parameter estimation), IdtMANOVA (Multivariate Analysis of Variance), Idtda
(Discriminant Analysis), or IdtMclust (Model-based Clustering). All these methods include a Covcase
argument used to specify the covariance configurations assumed, which by default compares the BIC
of the results for all four configurations, and select the one with the lowest BIC value.

The IdtE class is an abstract (virtual) class used to store parameter estimates of the models assumed
for interval-valued variables. As shown in Figure 3 there are currently eight such specialisations,
depending on the model assumed and type of estimation performed. The names of these classes
always start with the letters Idt followed by Sng or Mx (estimates of parameters of a single or several
distributions), ND, SND or NandSND (Gaussian, SkewNormal or both Gaussian and SkewNormal
distributions), and end with E or RE (Maximum Likelihood or Robust estimates).

As shown in Figure 4 the same reasoning applies to classes derived from the virtual class IdtMANOVA.
However, in this case, only Maximum Likelihood estimation has been considered and the specialisa-
tions distinguish classical MANOVA (class IdtClMANOVA), heterocedastic MANOVA based on Gaussian
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Idata

MidP: data.frame
LogR: data.frame
Obsnames: character
Varnames: character
Nobs: numeric
NIVar: numeric
NbMicroUnits: integer

summary(): void
show(): void
ncol(): numeric
colnames(): character
plot(): void
…
mle(): IDataE
fasttle(): IDataSngNDRE
fulltle(): IDataSngNDRE
MANOVA(): IdtMANOVA
RobMxtDEst(): IdtMxNDRE
lda(): Idtlda
qda(): Idtqda
snda(): IdtSNlocda
snda(): IdtSNgenda
Idtmclust(): IdtMclust

Figure 2: IData class.

IdtE
Modelnames: character
ModelType: character
ModelConfig: numeric
NIVar: numeric
SelCriteria: character

logLiks: numeric

BICs: numeric

AICs: numeric

BestModel: numeric

SngD: logical

BestModel(): numeric
show(): void
testModcol(): numeric

IdtSngNDE
…
…

IdtSngSNDE
…
…

IdtSngNDRE
…
…

IdtMxNDE
…
…

IdtMxNDRE
…
…

IdtMxSNDE
…
…

IdtSngSNandSNDE
…
…

IdtMxSNandSNDE
…
…

Figure 3: IdtE classes.
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IdtMANOVA
NIVar: numeric
grouping: factor

H0res: IdtDE

H1res: IdtDE

QuiSq: numeric

df: numeric

pvalue: numeric

H0logLik: numeric

H1logLik: numeric

show(): void

H0res(): IdtDE

H1res(): IdtDE

…

IdtClMANOVA
…
…

IdtLocSNMANOVA
…
…

IdtHetNMANOVA
…
…

IdtLocNSNMANOVA
…
…

IdtGenSNMANOVA
…
…

IdtGenNSNMANOVA
…
…

Figure 4: IdtMANOVA classes.

distributions (IdtHetNMANOVA), Skew-Normal based MANOVA assuming that groups may differ only
in location (IdtLocNMANOVA) or on all parameters (IdtGenNMANOVA), and analyses that consider both
Gaussian and SkewNormal assumptions (IdtLocNSNMANOVA and IdtGenNSNMANOVA).

Maximum likelihood estimation is performed by the mle method, which has six arguments. The
first one, Idt refers to an IData object representing interval-valued units. The second argument, Model
indicates the joint distribution assumed for the MidPoint and LogRanges; alternatives are “Normal”
for Gaussian (default), “SKNormal” for Skew-Normal and “NrmandSKN” for both Gaussian and
Skew-Normal distributions. The next argument, CovCase indicates the configurations of the variance-
covariance matrix to be used (default: 1:4). The fourth argument, SelCrit indicates the model selection
criterion, BIC (default) or AIC. The argument kmax specifies a tolerance criterion to identify singular
correlation matrices. Finally, OptCntrl provides a list of optional control parameters to be passed to the
optimization routine.

Robust estimation is usually performed by the fasttle method. Note that for small datasets, the
fulltle method may be used, whose arguments are common to fasttle. The first three arguments of
fasttle are the same as for the mle method. Arguments alpha and getalpha specify how the trimming
proportion is chosen. Other important arguments are the following: use.correction indicates whether to
use finite sample correction factors, default is TRUE. rawMD2Dist provides the assumed reference
distribution of the raw MCD squared distances used to find the cutoffs defining the observations kept
in one-step reweighted MCD estimates; alternatives are “ChiSq” for the usual Chi-square (default),
“HardRockeAsF” and “HardRockeAdjF”, respectively asymptotic and adjusted scaled F distributions
proposed by Hardin and Rocke (2005). MD2Dist - assumed reference distribution used to find
cutoffs defining the observations assumed as outliers; alternatives are “ChiS” and “CerioliBetaF”,
respectivelly for the usual Chi-square, and the Beta and F distributions proposed by Cerioli (2010).
reweighted indicates whether a (Re)weighted estimate of the covariance matrix should be used in the
computation of the trimmed likelihood or just a “raw” covariance estimate; default is TRUE. Argument
outlin specifies the type of outliers to be considered, alternatives are “MidPandLogR” if outliers may
be present in both MidPoints and LogRanges, “MidP” if outliers are only present in MidPoints, or
“LogR” if outliers are only present in LogRanges.

Method MANOVA applies multivariate analysis of variance. The arguments Idt, Model, CovCase,
SelCrit, k2max and OptCritl are identical to the corresponding ones of method mle. Argument grouping
indicates the factor whose levels are the different groups. MxT indicates the type of mixing distri-
butions to be considered: “Hom” (homoscedastic) or “Het” (heteroscedastic) for Gaussian models,
“Loc” (location model) or “Gen” (general model) for Skew-Normal models (see Section Discriminant
Analysis above). CVtol provides a tolerance value to identify almost constant variables within groups.

To perform discriminant analysis, three methods may be applied, namely, lda (linear discriminant
analysis), qda (quadratic discriminant analysis) and snda (skew-normal based discriminant analysis).
In all these methods, the first argument x denotes an IData object representing the interval-valued
units, or else an object of class IdtMANOVA. Arguments grouping, CVtol, CovCase, SelCrit and k2max are
identical to the corresponding ones of method MANOVA. The argument prior is used to specify the prior
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probabilities of group membership, by default they are fixed at the training set corresponding pro-
portions. In method snda, argument MxT indicates the type of mixing distributions to be considered:
“Loc” (location model, default) or “Gen” (general model).

Method Idtmclust performs model-based clustering based on finite mixtures of Gaussian distri-
butions. Arguments Idt, CovCase, and SelCrit are identical to the corresponding ones in the previous
methods. The argument G provides the number of clusters (segments) of the mixture, by default it is
set as 1:9. MxT indicates the type of mixing distributions to be considered, “Hom” (homoscedastic,
default), “Het” (heteroscedastic), or “HomandHet” (both). Finally, the argument control provides a list
of control parameters for the EM algorithm.

Implementation

The implementation of the Idata class, as well as maximum likelihood estimation and multivariate
methods based on the Gaussian distribution, is relatively straightforward. As shown in Figure 2, the
internal structure of the Idata class consists of two data frames, containing MidPoints and Log-Ranges,
respectively, a couple of auxiliary constants and vector strings, and the integer vector NbMicroUnits
which stores the number of microunits aggregated to form each interval-valued unit, when known.
Therefore, Idata objects require roughly twice the memory space used by traditional data frames.
The Idata slots may be retrieved by the accessor methods MidPoints, LogRanges, rownames, colnames,
nrow, and ncol.

The structure of the classes derived from the virtual IdtE class (see Figure 3) depends on the
type of model specified and estimation performed. In addition to the common slots of the IdtE class,
these classes include vector and/or matrix slots with estimates that are constant across all covariance
configurations, and a list slot named ConvConfCases in which each component contains estimates
obtained under the assumption of a particular configuration. We note that, although the estimates
corresponding to one single configuration are displayed and used in further analysis, all estimates
resulting from the configurations specified by the argument CovCase are stored, and available to the
user. The same logic applies to analyses that consider more than one model, with the results for all
models being stored, but only one displayed by summary and print methods.

The maximum likelihood estimation and multivariate analysis based on the Gaussian distribution
do not entail any particular difficulties, usually involving well known formulae and the replacement
of some values by zero according to the covariance configuration assumed. Covariance matrices of
Gaussian estimators are also computed in a straightforward manner and passed, if so requested, to
the appropriate stdEr and vcov methods.

Maximum likelihood estimation of Skew-Normal parameters requires the numerical optimisation
of the non-convex function (6). As this function often has many different local optima, MAINT.Data
adopts a repeated local search strategy, calling a given local optimiser from different starting points.
This is implemented in the auxiliary function RepLOptim that works as described below.

First, a local optimiser is called from an initial starting point leading to a local optimum. Then, this
optimum is modified by a random perturbation, and the modified optimum is used as the starting
point of a new call to the local optimiser. This process is repeated until several (default: 50) consecutive
calls to the optimiser fail to improve the current best solution, or a limit (default: 250) on the total
number of local optima, is reached. This limit, the maximum number of non-improving consecutive
local optimisations, and several other control options, are set by default to reasonable values, but
can be modified by the components of a list supplied as the value of the argument control. The same
applies to methods (such as mle or MANOVA or snda) that internally call RepLOptim, using in this case a
list supplied to their Optcontrol argument.

The default local optimiser of RepLOptim is the nlminb PORT function (Gay, 1990). However, in
the case of maximum likelihood estimation of Skew-Normal parameters with unrestricted covariance
configuration (C1), MAINT.Data overrides this default with the msn.mle function of Azzalini’s sn
package (Azzalini, 2021). For the remaining configurations, the local optimisation relies on a quasi-
Newton optimiser (by default nlminb) using the analytical gradient of the centred Skew-Normal
parametrisation derived by Valle and Azzalini (2008). In order to improve computational efficiency,
the computation of the log-likelihood (6) and of its gradient was coded in C++, taking advantage
of the numerical functions and classes provided in the Rcpp (Eddelbuettel and François, 2011) and
RcppArmadillo (François et al., 2021) packages. We note that global optimality cannot be ensured and
even with this strategy sometimes MAINT.Data identifies different local optima in different runs.

Once the optimisation of the log-likelihood (6) is completed, MAINT.Data approximates the
covariance of the estimators using the evaluation of the expected Fisher information matrix imple-
mented in the sn package. This approximation may fail if either the expected information matrix is
ill-conditioned or the parameter estimates fall on the frontier of their domain. In such cases, posterior
calls to the stdEr or vcov methods will result in appropriate warning messages.
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The robust estimation of Gaussian model parameters by the trimmed maximum likelihood princi-
ple is implemented in the fulltle and fasttle methods. Method fulltle makes a full combinatorial
search for the Trimmed Maximum Likelihood estimates, and should only be used when the number of
units is relatively small (say, not much larger than 40). Method fasttle adapts the fast algorithm of
Rousseeuw and Driessen (Rousseeuw and Van Driessen, 1999). Both methods were coded in C++,
using functions and classes from Rcpp and RcppArmadillo. Furthermore, the methods RobMxtDESt,
Roblda and Robqda call fasttle or fulltle in order to get robust estimates in different groups that
may be used for robust discriminant analysis.

The interface of the MAINT.Data robust methods and classes is partially based on the framework
developed in the popular rrcov package (Todorov and Filzmoser, 2009). In particular, the control
options for the estimation algorithm used in the fasttle, RobMxtDESt, Roblda and Robqda methods can
be provided by an argument of class RobEstControl which inherits and extends the class CovControl
of the package rrcov. This way, algorithmic options may be specified in a uniform and familiar manner.
The additional slots of class RobEstControl specify new options, such as indicators of the distributions
assumed for the robust Mahalanobis distances, the nature of the outliers (only in MidPoints, only in
Log-Ranges or (default) both in MidPoints and Log-Ranges), whether a two-step procedure should
be used to find trimming parameters, and other choices that are available in MAINT.Data but not in
rrcov.

The MANOVA methods available in MAINT.Data are always based on the maximum likelihood
principle. By default, the Chi-square distribution is used for the test statistic. However, for small
samples, a permutation test has been implemented in the auxiliary function MANOVAPermTest (see
Seber (2009)).

The design and interface of class IdtMclust is modelled after class Mclust of the mclust package
(Scrucca et al., 2016). As a result, the IdtMclust print and summary methods with their default
argument values, display only a very general description of the clustering results. A characterization
of the obtained clusters, and the partition itself, may be inspected by changing the summary arguments
parameters, and classification from FALSE to TRUE. A difference between the mclust and IdtMclust
classes lies in that in the former case detailed clustering results can only be retrieved directly from
the Mclust slots while IdtMclust provides accessor methods such as parameters, pro, mean, var, cor
and classification to retrieve these results. The EM algorithm used in IdtMclust is implemented in
C++, using facilities of the Rcpp and RcppArmadillo packages.

Application I: flights dataset

To illustrate the modelling and methods presented above, we use the flights dataset from the R data
package nycflights13, available at CRAN, which contains on-time data for all flights that departed
New York city in 2013. The original microdata consists of 336776 flights characterized by nineteen
variables.

From this data, we created a data frame named FlightsDF, after removing all rows with missing
data, and with six columns corresponding to the following descriptive variables at microdata level:
Month, Carrier (16 different carriers), Departure delay (min), Arrival delay (min), Air time(min), and
Distance (miles).

We consider as units of interest classes formed by crossing Month with Carrier, leading to 185
units (note that not all the 192 possible combinations are present in the microdata). Therefore, we
created a factor, named FlightsUnits, defining the class each individual case belongs to.

The command

R> FlightsIdt <- AgrMcDt(FlightsDF,FlightsUnits)

creates an interval data object FlightsIdt, where the values of the numerical variables Departure delay
(DD), Arrival delay (AD), Air time (AT) and Distance (DT) are aggregated in the form of intervals for
each unit. Leaving the aggregation argument agrcrt at its “minmax” default, the lower and upper
bounds of the obtained intervals are the minimum and maximum values observed in the microdata,
respectively.

However, we prefer to use the robust aggregation alternative, by filtering out the 5% lowest and
highest values for each variable; in this case the aggregation argument specifies the chosen pair of
quantiles:

R> FlightsIdt <- AgrMcDt(FlightsDF,FlightsUnits,agrcrt=c(0.05,0.95))

We note that the 43 units for which, for any variable, the lower and the upper bound are equal
(degenerate interval) are eliminated, so that the final interval dataset has 142 units.
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Table 3 shows a few rows of the resulting interval data table. The full interval dataset is available
on MAINT.Data.

Departure Arrival Air time Distancedelay delay
Jan-9E [−10, 120] [−32, 116] [31, 176] [94, 1029]
Jan-AA [−9, 65] [−31, 59] [115, 354] [733, 2475]
· · · · · · · · · · · · · · ·

Dec-YV [−10.9, 68.2] [−33.5, 66] [39.4, 102.8] [96, 544]

Table 3: Flights interval data - partial view.

Figure 5 illustrates the two alternative outputs - (a)-crosses, (b)-rectangles - of the method plot,
resulting respectively from the commands

R> plot(FlightsIdt[,"distance"],FlightsIdt[,"arr_delay"],
cex.main=3, cex.lab=1.9, cex.axis=2)

R> plot(FlightsIdt[,"distance"],FlightsIdt[,"arr_delay"],type="rectangles",
cex.main=3, cex.lab=1.9, cex.axis=2)

showing the intervals corresponding to the 142 units in two different forms for variables Distance and
Arrival delay.

We note that the graphical arguments of traditional R plots are also available in MAINT.Data
plot methods. In this example, the default graphical settings were adequate for online display, but
resulted in too small axis and legends, when the resulting graphs were exported to an external text file.
Therefore, we used the cex.main, cex.lab, and cex.axis traditional R plot arguments, to improve
their readability. This particular example worked well on a PC under Linux, but since graphical
characteristics are machine and operation system dependent, other argument values may be required
in different computer environments.

Figure 6 plots the MidPoints versus the Log-Ranges for variable Arrival delay, resulting from the
command

R> plot(MidPoints(FlightsIdt)[,"arr_delay.MidP"],
LogRanges(FlightsIdt)[,"arr_delay.LogR"],
xlab="Mid Points",ylab="Log Ranges",
main="Mid Points vs. Log Ranges for Arrival delays",
cex.main=2, cex.lab=1.5, cex.axis=1.5)

We observe a strong positive correlation between the MidPoints and the Log-Ranges of the Arrival
delay, which is not uncommon for interval-valued variables.
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Figure 5: Interval representation of the 142 flights units – Distance versus Arrival delay.

Modelling of flights interval data

The following statistical analyses of the data will be directed towards the methods proposed earlier.
Accordingly, a first analysis relates to statistically characterize the input variables and possible rela-
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Figure 6: Midpoints VS Log-Ranges of variable Arrival delay for the 142 flights units.

tionships between them. Then the interest is in possible outliers in the interval data. Are there specific
carrier/month combinations which are atypical for the observed features? The identified outliers
will be excluded from the data for the subsequent analyses, which could be affected by data outliers.
The data are split into two groups, the mainline carriers and the regional carriers. Do these groups
differ for the considered variables (MANOVA)? Is it possible to distinguish the observations of the two
groups from each other (discriminant analysis)? Are there even more subgroups in the multivariate
data, and how can those be characterized (cluster analysis)?

We start by adjusting the Gaussian and Skew-Normal models for all four considered covariance
configurations using the commands

R> Flightsmle <-mle(FlightsIdt,Model="NrmandSKN")
R> summary(Flightsmle)

which produce the output

Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2
-2278.626 -3249.162 -2547.369 -3564.026 -2207.444 -3183.179
SNModCovC3 SNModCovC4
-2491.175 -3498.258
Bayesian (Schwartz) Information Criteria:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2
4775.309 6597.440 5233.501 7207.346 4672.591 6505.121
SNModCovC3 SNModCovC4
5160.760 7115.455
Selected model:
[1] "SNModCovC1"

We recall that for the Skew-Normal model only local optima are identified, so that in different runs
slightly different solutions may be obtained.

Among the eight models × configurations, the BIC recommends the Skew-Normal model with
covariance configuration C1. The likelihood ratio tests between pairs of models may be performed by
command testMod(Flightsmle). In this case, for any reasonable significance level, these tests suggest
also the Skew-Normal model with covariance configuration C1.

The estimates of mean, standard deviation and skewness coefficient vectors and the variance-
covariance matrix may be extracted by the usual coef() method. Alternatively, the standard methods
mean(), sd(), var() and cor() may also be used. Furthermore, standard errors and variances and
covariances of the estimates may be obtained, as usual, by the methods stdEr() and vcov().

The estimates for mean values, standard deviations and skewness coefficients are:
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C R∗

DD AD AT DT DD AD AT DT

µ̂t = ( 38.14 27.98 179.70 1244.63 4.45 4.72 4.89 6.84 )

σ̂t = ( 19.30 20.68 61.89 476.72 0.42 0.32 0.59 0.66 )

γ̂t = ( 0.000 −0.001 0.271 0.247 0.000 0.000 −0.046 −0.064 )

The estimate of the correlation matrix is :

R̂ =



C R∗

DD AD AT DT DD AD AT DT

C

DD 1.00 0.96 −0.32 −0.30 0.96 0.96 −0.32 −0.31
AD 1.00 −0.40 −0.39 0.92 0.92 −0.33 −0.33
AT 1.00 0.99 −0.37 −0.27 0.47 0.43
DT 1.00 −0.35 −0.24 0.49 0.45

R∗

DD 1.00 0.97 −0.31 −0.29
AD 1.00 −0.25 −0.23
AT 1.00 0.99
DT 1.00



We observe that MidPoints are positively correlated with the corresponding Log-Ranges, with
strong correlations for the delay variables and moderate correlations for Distance and Air Time. The
MidPoints of Departure delay and Arrival delay on the one hand, and Air time and Distance, on
the other hand, have, as expected, strong correlations; the corresponding Log-Ranges also present
high correlations. The observed correlation values explain the choice of the unrestricted covariance
configuration C1.

Robust estimation results are obtained by the commands:

R> Flightstle <-fasttle(FlightsIdt)
R> summary(Flightstle)

which produce the output

Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4
-1416.930 -2069.002 -1720.921 -2490.111
Bayesian (Schwartz) Information Criteria:
NModCovC1 NModCovC2 NModCovC3 NModCovC4
3040.279 4231.831 3573.200 5055.283
Selected model:
[1] "NModCovC1"

The estimates for mean values and standard deviations are now:

C R∗

DD AD AT DT DD AD AT DT

µ̂t = ( 35.99 26.51 159.09 1096.43 4.454 4.70 5.22 7.23 )

σ̂t = ( 18.02 19.65 58.82 459.60 0.42 0.32 0.56 0.59 )

To identify outliers, we employ the default options for the robust methods and functions im-
plemented in MAINT.Data, namely a cut-off based on the Chi-square distribution, and a trimming
parameter based on a two step procedure using 75% of the sample in the first step.

The following command allows obtaining the list of units identified as outliers:

R> Flights_Otl <- getIdtOutl(FlightsIdt,Flightstle)
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R> print(Flights_Otl)

which returns

Jan-FL Jan-VX Feb-FL Feb-VX Mar-FL Mar-VX Apr-FL Apr-VX Apr-YV
6 10 17 21 28 32 39 43 45
May-FL May-VX Jun-9E Jun-FL Jun-VX Jun-WN Jun-YV Jul-9E Jul-FL
51 55 58 63 67 68 69 70 75
Jul-VX Aug-FL Aug-VX Aug-YV Sep-VX Sep-YV Oct-FL Oct-VX Nov-FL
79 87 91 93 103 105 111 115 123
Nov-OO Nov-VX Nov-YV Dec-FL Dec-VX
125 128 130 136 140

From this list it is visible that FL (AirTran Airways) is an outlier for almost all months. When
inspecting the aggregated data, it can be seen that the upper bound of the Distance is clearly lower
than for the other airlines, and consequently also the upper bound of Air time. The contrary happens
for airline VX (Virgin America), which is an outlier for all months. Note, however, that outlyingness
can also be caused by a different multivariate behaviour of an observation.

Figure 7 shows the values of robust Mahalanobis distances (to the mean) for all 142 units, the
horizontal line indicates the 97.5% quantile of the respective Chi-square distribution; it is obtained by
the command

R> plot(Flights_Otl, cex.main=2, cex.lab=1.5, cex.axis=0.3)
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Figure 7: Values of robust Mahalanobis distances (to the mean) for the 142 flights units.

MANOVA

We now consider a partition of the 110 regular (i.e. not flagged as outliers) flights units into two groups
according to whether the airline is a mainline or a regional one; the 5 regional airlines are Endeavor
Air Inc. (9E), ExpressJet Airlines Inc. (EV), Envoy Air (MQ), SkyWest Airlines Inc. (OO), and Mesa
Airlines Inc. (YV).

MANOVA analysis was performed for all flights units, considering this two group decomposition.
We compared both a Gaussian and a Skew-Normal model, with all four covariance configurations
(default), with a homoscedastic setup (default), and using the BIC (default) as comparison criterion.
For that purpose we used the commands

R> out1<-Flights_Otl@outliers
R> carr <- substring(rownames(FlightsIdt[-out1,]),5,6)
R> carr_class <- factor(ifelse(carr=="9E"|carr=="EV"|carr=="MQ"|
carr=="OO"|carr=="YV","REG","MAIN"))
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R> MANOVAres <- MANOVA(FlightsIdt[-out1,],carr_class,Model="NrmandSKN")
R> summary(MANOVAres)

leading to the output

Null Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-1437.000 -2094.997 -1743.016 -2521.166 -1397.125 -2060.841 -1735.816 -2444.528
Full Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-1318.227 -1874.335 -1566.672 -2184.943 -1259.869 -1821.942 -1536.026 -2085.836
Full Model Bayesian (Schwartz) Information Criteria:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
2880.879 3880.282 3302.561 4482.697 2801.767 3813.102 3278.874 4322.088
Selected Model:
[1] "SNModCovC1"

Chi-squared statistic: 274.5117
degrees of freedom: 8
p-value: 1.082712e-54

The Skew-Normal model with variance-covariance configuration C1 is selected (on the
basis of BIC values) as the best model in this case, results indicate that the two carrier groups
are indeed different for the considered variables.

These results were to be expected given that regional carriers tend to fly short distances
and therefore with shorter air times, than mainlines.

We then proceeded to investigate whether the two carrier groups are different when it
comes to each of the delay variables, using the commands

R> MANOVA_Dep_delay_res <- MANOVA(FlightsIdt[-out1,"dep_delay"],carr_class,Model="NrmandSKN")
R> summary(MANOVA_Dep_delay_res)
R> MANOVA_Arr_delay_res <- MANOVA(FlightsIdt[-out1,"arr_delay"],carr_class,Model="NrmandSKN")
R> summary(MANOVA_Arr_delay_res)

that produced the outputs

Null Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-313.5688 NA NA -492.4602 -287.8342 NA NA -473.1451
Full Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-296.6978 NA NA -469.0213 -272.3174 NA NA -449.6624
Full Model Bayesian (Schwartz) Information Criteria:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
626.2990 NA NA 966.2455 586.9391 NA NA 936.9286
Selected Model:
[1] "SNModCovC1"

Chi-squared statistic: 31.03359
degrees of freedom: 2
p-value: 1.824489e-07

Null Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-366.8737 NA NA -473.4313 -360.3910 NA NA -457.5188
Full Model Log likelihoods:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
-357.0406 NA NA -456.5808 -351.1153 NA NA -441.4999
Full Model Bayesian (Schwartz) Information Criteria:
NModCovC1 NModCovC2 NModCovC3 NModCovC4 SNModCovC1 SNModCovC2 SNModCovC3 SNModCovC4
746.9845 NA NA 941.3644 744.5350 NA NA 920.6036
Selected Model:
[1] "SNModCovC1"

Chi-squared statistic: 18.55139
degrees of freedom: 2
p-value: 9.367357e-05

The results show that the two carrier groups present different patterns for both departure
and arrival delays.
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Discriminant Analysis

We consider again the 110 regular flights units grouped in two carrier classes, as in Section
Analysis of Variance.

The function DACrossVal estimates error rates by c-fold cross-validation or by leave-one-
out. Its main arguments are: (i) the data object, (ii) the grouping factor, (iii) a function with
the training algorithm (e.g. lda, qda, snda, see Subsection Design of Section Package), (iv)
the number of cross-validation folds (default: 10), (v) the number of replications (default: 20),
(vi) a boolean flag indicating whether the folds should be stratified according to the original
class proportions (default), or randomly generated from the whole training sample, ignoring
class membership, and (vii) a boolean flag (false by default) stating if the leave-one-out
method should be used instead of c-fold cross-validation.

Different discriminant methods were compared by leave-one-out cross-validation: Linear
and Quadratic Discriminant Analysis for the Gaussian model, and both the Location and the
General models of Skew-Normal discriminant analysis. In each case the variance-covariance
configuration (see Table 2) was chosen by minimising the value of BIC. The global errors,
which are also provided, are computed as a weighted average of the estimated class specific
errors.

The code below computes and displays these estimates.

R> DACrossVal(FlightsIdt[-out1,],carr_class,TrainAlg=lda,loo=TRUE)
R> DACrossVal(FlightsIdt[-out1,],carr_class,TrainAlg=qda,loo=TRUE)
R> DACrossVal(FlightsIdt[-out1,],carr_class,TrainAlg=snda,loo=TRUE)
R> DACrossVal(FlightsIdt[-out1,],carr_class,TrainAlg=snda,Mxt="Gen",loo=TRUE)

We note that while the first two commands are executed quite fast (a few seconds), the last
two (for the Skew-Normal model) typically need several hours, given that a computationally
heavy Skew-Normal estimation is repeated many times.

These commands lead to the output below. Note that when snda is used without any
additional arguments, the default location model is assumed.

Error rate estimates of algorithm lda
MAIN REG Global
0.013888889 0.000000000 0.009090909

Error rate estimates of algorithm qda
MAIN REG Global
0.00000000 0.05263158 0.01818182

Error rate estimates of algorithm snda
MAIN REG Global
0.08333333 0.07894737 0.08181818

Error rate estimates of algorithm snda with argument Mxt=Gen
MAIN REG Global
0.05555556 0.18421053 0.10000000

These results suggest that lda performs better than the other alternatives in the problem
at hand. The predicted classes using the lda method may be obtained, as usual, by the
commands

R> ldares <- lda(FlightsIdt[-out1,],carr_class)
R> ldapred <- predict(ldares,FlightsIdt[-out1,])
R> print(ldapred$class)

We observed that all but one units are correctly classified, namely carrier FL in September,
the only FL unit which was not flagged as an outlier.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 355

Clustering the Flights units

Model-based Clustering described in Section Model-based Clustering was applied to the
Flights dataset, without the identified outliers, to identify up to 16 components. This is
accomplished by the command:

R> mclust_res <- Idtmclust(FlightsIdt[-out1,],1:16,Mxt="HomandHet")

where again, by default, the recommended solution is selected by the BIC. The corresponding
values may be graphically compared using the command

R> plotInfCrt(mclust_res, cex.lab=1.5, outlegsize=10, outlegdisp=0.25)

which provided the graphic in Figure 8 and the output below. A homocedastic nine compo-
nent model has been selected with an unrestricted covariance configuration C1.
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Figure 8: BIC values for different models and number of components.

Best BIC values:
HomG9C1 HomG10C1 HomG11C1 HomG15C1 HomG16C1
BIC 2555.407 2602.228 2653.101 2674.13 2692.822
BIC diff 0 46.82063 97.69343 118.7225 137.4153

The value returned by Idtmclust is an object of class IdtMclust with the same structure,
and similar methods, of the corresponding Mclust class of package mclust (Scrucca et al.,
2016). In particular, the classification results may be inspected by the command:

R> summary(mclust_res,classification=TRUE)

which returns

----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------
Homoscedastic C1 model with 9 components
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log.likelihood NObs BIC
-1005.076 110 2555.407

Clustering table:
CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9
12 12 14 12 10 12 24 9 5

Classification:
Jan-9E Jan-AA Jan-B6 Jan-DL Jan-EV Jan-MQ Jan-UA Jan-US Jan-WN Feb-9E
"CP5" "CP2" "CP7" "CP4" "CP5" "CP6" "CP7" "CP3" "CP3" "CP1"
Feb-AA Feb-B6 Feb-DL Feb-EV Feb-MQ Feb-UA Feb-US Feb-WN Mar-9E Mar-AA
"CP2" "CP7" "CP4" "CP5" "CP6" "CP7" "CP3" "CP3" "CP1" "CP2"
Mar-B6 Mar-DL Mar-EV Mar-MQ Mar-UA Mar-US Mar-WN Apr-9E Apr-AA Apr-B6
"CP7" "CP4" "CP5" "CP6" "CP7" "CP3" "CP8" "CP1" "CP2" "CP7"
Apr-DL Apr-EV Apr-MQ Apr-UA Apr-US Apr-WN May-9E May-AA May-B6 May-DL
"CP4" "CP5" "CP6" "CP7" "CP3" "CP8" "CP5" "CP2" "CP7" "CP4"
May-EV May-MQ May-UA May-US May-WN May-YV Jun-AA Jun-B6 Jun-DL Jun-EV
"CP1" "CP6" "CP7" "CP3" "CP8" "CP9" "CP2" "CP7" "CP4" "CP5"
Jun-MQ Jun-UA Jun-US Jul-AA Jul-B6 Jul-DL Jul-EV Jul-MQ Jul-UA Jul-US
"CP6" "CP7" "CP3" "CP2" "CP7" "CP4" "CP5" "CP6" "CP7" "CP3"
Jul-WN Jul-YV Aug-9E Aug-AA Aug-B6 Aug-DL Aug-EV Aug-MQ Aug-UA Aug-US
"CP8" "CP9" "CP1" "CP2" "CP7" "CP4" "CP1" "CP6" "CP7" "CP3"
Aug-WN Sep-9E Sep-AA Sep-B6 Sep-DL Sep-EV Sep-FL Sep-MQ Sep-UA Sep-US
"CP8" "CP1" "CP2" "CP7" "CP4" "CP1" "CP9" "CP6" "CP7" "CP3"
Sep-WN Oct-9E Oct-AA Oct-B6 Oct-DL Oct-EV Oct-MQ Oct-UA Oct-US Oct-WN
"CP8" "CP1" "CP2" "CP7" "CP4" "CP1" "CP6" "CP7" "CP3" "CP8"
Oct-YV Nov-9E Nov-AA Nov-B6 Nov-DL Nov-EV Nov-MQ Nov-UA Nov-US Nov-WN
"CP9" "CP1" "CP2" "CP7" "CP4" "CP1" "CP6" "CP7" "CP3" "CP8"
Dec-9E Dec-AA Dec-B6 Dec-DL Dec-EV Dec-MQ Dec-UA Dec-US Dec-WN Dec-YV
"CP5" "CP2" "CP7" "CP4" "CP5" "CP6" "CP7" "CP3" "CP8" "CP9"

We observe that units corresponding to the same carrier tend to cluster together, for
instance, component 2 gather all AA units, component 4 gathers DL units and component 6
the MQ units.

In order to have a better description of the obtained partition, we then print the corre-
sponding mixing probabilities and the component-wise mean vectors.

R> print(pro(mclust_res), digits=3)
R> print(mean(mclust_res),digits=3)

obtaining

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9
0.10684 0.10909 0.12727 0.10752 0.09316 0.10909 0.21976 0.08182 0.04545

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9
dep_delay.MidP 40.26 31.02 21.06 27.39 59.83 35.15 34.85 43.51 44.85
arr_delay.MidP 25.84 18.28 15.44 16.45 51.08 31.89 25.00 32.63 34.63
air_time.MidP 99.13 223.40 163.22 208.73 101.86 98.97 193.37 171.20 72.08
distance.MidP 640.43 1604.00 1163.86 1481.65 632.53 616.50 1360.07 1165.50 411.80
dep_delay.LogR 4.59 4.35 4.07 4.19 4.92 4.48 4.41 4.55 4.68
arr_delay.LogR 4.76 4.68 4.42 4.59 5.05 4.71 4.69 4.80 4.80
air_time.LogR 4.83 5.47 5.55 5.56 4.86 4.63 5.71 4.91 3.97
distance.LogR 6.86 7.46 7.58 7.59 6.81 6.69 7.75 6.81 5.85

These mean vectors can be compared by a parallel coordinate plot, using the pcoordplot
method as follows

R> pcoordplot( mclust_res, cex.main=2, cex.lab=2,
legendpar=list(cex.main=2.5, cex.lab=2.5) )

which produces the graph shown in Figure 9.
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Figure 9: Parallel coordinate plot of best clustering solution, with nine components.

We observe that component 5 is mainly characterised by the largest delays both at
departures and arrivals, also displaying their highest variability. Component 3, on the
other hand, presents the lowest delays, with lowest variability, and concerns long flights.
Component 9 corresponds to the shortest flights, with also low variability of distance and
airtime. Components 4 and 7 present similar patterns in the distance and airtime variables,
although component 4 displays slightly larger midpoints while component 7 has a higher
variability; in terms of delays, we observe in component 7 higher values together with a
more important variability.

From Figure 8 we observe that the best heterocedastic model corresponds to configuration
C2 and identifies six components.

The corresponding mean vectors may again be displayed by a parallel coordinate plot,
using the pcoordplot method, now indicating the solution of interest:

R> pcoordplot(mclust_res, model="HetG6C2", cex.main=2, cex.lab=2,
legendpar=list(cex.main=2.5, cex.lab=2.5) )

leading to the graph shown in Figure 10.

Application II: diamonds dataset

This second example explores the diamonds dataset (from the R package tidyverse available
at CRAN). The original microdata consists of 53940 diamonds characterised by ten variables.
Descriptive variables are: carat (weight of the diamond), x (length in mm), y (width in mm),
and z (depth in mm). All rows with missing data or null values in at least one of these
variables were removed. Because the distribution of these variables is positive skewed, they
were log-transformed (natural logarithm).

The units of analysis were defined by the variables: cut (quality of the cut: Fair, Good,
Very Good, Premium, Ideal), color (diamond color, with seven levels: J (worst) to D (best)), and
clarity (measurement of how clear the diamond is, with eight levels: I1 (worst), SI2, SI1, VS2,
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Figure 10: Parallel coordinate plot of best heterocedastic solution, with six components.

VS1, VVS2, VVS1, IF (best)), totalising 271 units (out of the 280, four were not present in the
data, and five were degenerated). The variable DiamondsUnits defines these combinations.

The commands

R> library(tidyverse)

R> valid_diamonds <- diamonds %>%
R> filter(carat !=0, x != 0, y != 0, z != 0) %>%
R> drop_na() %>% mutate(logcarat = log(carat),

logx = log(x),
logy = log(y),
logz = log(z))

R> DiamondsUnits <- factor( paste(
valid_diamonds$cut,valid_diamonds$color,valid_diamonds$clarity, sep="-"

) )

R> DiamondsIdt <- AgrMcDt(valid_diamonds[,c("logcarat","logx","logy","logz")],
agrby=DiamondsUnits)

do the initial data processing and create the interval data object DiamondsIdt using the
default option (min-max). In the application we do not filter out potential outliers as we
want to use the finite mixture model to detect them. Indeed, outliers can be seen as an
unstructured component of the mixture model (Aitkin and Wilson, 1980).

From the estimation of mixtures from one to eight components, we have

R> Diamd_mclust_res <- Idtmclust(DiamondsIdt,1:8,Mxt="HomandHet")
R> plotInfCrt(Diamd_mclust_res, cex.lab=1.5, outlegsize=10, outlegdisp=0.25)

Best BIC values:
HetG3C3 HetG4C3 HetG3C1 HetG5C3 HetG6C3

BIC -7818.702 -7789.946 -7752.533 -7702.916 -7637.323
BIC diff 0 28.75589 66.16948 115.7865 181.3797

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 359

1
1 1

1

1 1 1 1

1 2 3 4 5 6 7 8

20
00

40
00

60
00

80
00

Number of Components

m
in

us
 B

IC

2

2
2

2

2
2 2

2

3 3 3

3

3 3
3 3

4

4

4

4

4
4 4

4

1

1

1
1

1
1

1 1

2

2

2

2
2 2

2 2

3

3

3 3 3 3 3 3

4

4

4

4
4

4
4 4

HomC1

HomC2

HomC3

HomC4

HetC1

HetC2

HetC3

HetC4

Figure 11: BIC values for different models and number of components.

Selection based on BIC recommends configuration 3 with three components (see Figure
11). Thus, the best solution is a heteroscedastic solution in which centers are not correlated
with ranges.

R> summary(Diamd_mclust_res)
----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------
Heteroscedastic C3 model with 3 components
log.likelihood NObs BIC

4150.242 271 -7818.702

Clustering table:
CP1 CP2 CP3
11 176 84

R> print(pro(Diamd_mclust_res), digits=3)
CP1 CP2 CP3

0.0407 0.6328 0.3265

We conclude that the size of CP1 is 0.0407 and contains eleven observations (hard
classification), i.e., it is an outlier or niche group. Whenever a population/sample is well
represented by the Normal distribution, a single component (or point of support) is enough
to model its density. Often, however, distributions tend to have skewness and kurtosis that
are far from the multivariate Normal distribution. In that case, Gaussian mixture models
(GMM) have been used to estimate densities as an alternative to nonparametric or semi-
parametric Kernels (Scott, 2015). Indeed, this application of finite mixtures is more general
than model-based clustering as the latter tends to be specific to the correspondence between
modes and clusters or groups. In this example, the departure from normality (skewness and
kurtosis) is modeled using two additional components.

R> plot(MidPoints(DiamondsIdt)[,"logz.MidP"],
LogRanges(DiamondsIdt) [,"logz.LogR"],
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xlab="Mid Points",ylab="Log Ranges",
main="Mid Points vs. Log Ranges for logdepth in mm",
col = ifelse(Diamd_mclust_res@classification == 'CP1',1,

ifelse(mclust_res@classification == 'CP2',2,7)),
pch = 19, cex.lab=1.5)
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Figure 12: Representation of classified units (logdepth).

Figure 12 obtained from the code above illustrates the approximation of the density of
the data by the finite mixture. The core group is well defined by the multivariate normal
distribution. As the result of skewness, a second group is added. And then, finally, the
heavy (multidimensional) “tail” is given by the outlier component (black dots) with its large
estimated variances and co-variances.

Summary

The MAINT.Data R package implements models and methods for the analysis of interval-
valued data, relying on multivariate Normal or Skew-Normal distributions for the MidPoints
and Log-Ranges of the interval-valued variables. Implemented in the S4 framework, it intro-
duces a data class for representing interval data and functions and methods for parametric
modelling and analysis.

The available tools for interval variable management include interval-data versions
of most of the standard R methods such as print and summary, index and subseting,
and plot. Moreover, functions for aggregating microdata into interval data objects are also
provided. The multivariate methodologies available include maximum likelihood estimation
and statistical tests for the different configurations, (M)ANOVA, parametric Discriminant
Analysis, and Model-based Clustering. Moreover, outlier detection and estimation based on
robust techniques are provided; discriminant parametric methods based on robust estimates
are implemented accordingly.

MAINT.Data, currently in its 2.6.1 version, offers an integrated solution for the man-
agement and parametric analysis of interval-valued data, from aggregation to modelling,
analysis and visualisation, extending the R “programming with data” paradigm to new and
complex data types.
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Robust and Efficient Optimization Using a
Marquardt-Levenberg Algorithm with R
Package marqLevAlg
by Viviane Philipps, Boris P. Hejblum, Mélanie Prague, Daniel Commenges and Cécile Proust-Lima

Abstract Implementations in R of classical general-purpose algorithms for local optimization generally
have two major limitations which cause difficulties in applications to complex problems: too loose
convergence criteria and too long calculation time. By relying on a Marquardt-Levenberg algorithm
(MLA), a Newton-like method particularly robust for solving local optimization problems, we provide
with marqLevAlg package an efficient and general-purpose local optimizer which (i) prevents con-
vergence to saddle points by using a stringent convergence criterion based on the relative distance
to minimum/maximum in addition to the stability of the parameters and of the objective function;
and (ii) reduces the computation time in complex settings by allowing parallel calculations at each
iteration. We demonstrate through a variety of cases from the literature that our implementation reli-
ably and consistently reaches the optimum (even when other optimizers fail) and also largely reduces
computational time in complex settings through the example of maximum likelihood estimation of
different sophisticated statistical models.

Introduction

Optimization is an essential task in many computational problems. In statistical modeling, for instance,
in the absence of analytical solutions, maximum likelihood estimators are often retrieved using iterative
optimization algorithms, which locally solve the problem from given starting values.

Steepest descent algorithms are among the most famous general local optimization algorithms.
They generally consist in updating parameters according to the steepest gradient (gradient descent)
possibly scaled by the Hessian in the Newton (Newton-Raphson) algorithm or an approximation of
the Hessian based on the gradients in the quasi-Newton algorithms (e.g., Broyden-Fletcher-Goldfarb-
Shanno - BFGS). Newton-like algorithms have been shown to provide good convergence properties (Joe
and Nash, 2003) and were demonstrated in particular to behave better than Expectation-Maximization
(EM) algorithms in several contexts of Maximum Likelihood Estimation, such as the random-effect
models (Lindstrom and Bates, 1988) or the latent class models (Proust and Jacqmin-Gadda, 2005).
Among Newton methods, the Marquardt-Levenberg algorithm, initially proposed by Levenberg
(Levenberg, 1944), then Marquardt (Marquardt, 1963), combines BFGS and gradient descent methods
to provide a more robust optimization algorithm. Like other Newton methods, the Marquardt-
Levenberg algorithm is designed to find a local optimum of the objective function from given initial
values. When dealing with multimodal objective functions, it can thus converge to local optimum and
needs to be combined with a grid search to retrieve the global optimum.

The R software includes multiple solutions for local and global optimization tasks (see CRAN
task View on Optimization (Theussl et al., 2014)). In particular, the optim function in base R offers
different algorithms for general-purpose optimization, and so does optimx, a more recent package
extending optim (Nash and Varadhan, 2011). Numerous additional packages are available for different
contexts, from nonlinear least square problems (including some exploiting Marquardt-Levenberg
idea like minpack.lm (Elzhov et al., 2016) and nlmrt (Nash, 2016)) to stochastic optimization and
algorithms based on the simplex approach. However, R software could benefit from a general-purpose
R implementation of the Marquardt-Levenberg algorithm.

We present here an R implementation of the Marquardt-Levenberg algorithm in the package mar-
qLevAlg, which relies on a stringent convergence criterion based on the first and second derivatives to
avoid loosely convergence (Prague et al., 2012) and includes (from version 2.0.1) parallel computations
within each iteration to speed up convergence. This implementation is particularly dedicated to
complex settings, that is, when a large number of parameters are optimized, and/or the computation
of the objective function is time-consuming. The parallel computations speed up the procedure, and
the stringent convergence criterion prevents false convergences on the flat regions of the objective
function obtained with convergence criteria based on the function stability.

Section 2 and 3 describe the algorithm and the implementation, respectively. Then Section 4
provides an example of a call with the estimation of a linear mixed model. A benchmark of the
package is reported in Section 5 with the performances of parallel implementation. Performances
of Marquardt-Levenberg algorithm implementation are also challenged in Section 6 using a variety
of simple and complex examples from the literature and compared with other optimizers. Finally,
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Section 7 concludes.

Methodology

The Marquardt-Levenberg algorithm

The Marquardt-Levenberg algorithm (MLA) can be used for any problem where a function F (θ)
has to be minimized (or equivalently, function L(θ)= - F (θ) has to be maximized) according to a
set of m unconstrained parameters θ as long as the second derivatives of F (θ) exist. In statistical
applications, for instance, the objective function is the deviance to be minimized or the log-likelihood
to be maximized.

Our improved MLA iteratively updates the vector θ(k) from a starting point θ(0) until convergence
using the following formula at iteration k + 1:

θ(k+1) = θ(k) − δk

(
H̃(F (θ(k)))

)−1
∇(F (θ(k))),

where θ(k) is the set of parameters at iteration k, ∇(F (θ(k))) is the gradient of the objective function at
iteration k, and H̃(F (θ(k))) is the Hessian matrix H(F (θ(k))) where the diagonal terms are replaced by
H̃(F (θ(k)))ii = H(F (θ(k)))ii + λk[(1 − ηk)|H(F (θ(k)))ii|+ ηktr(H(F (θ(k))))]. In the original MLA,
the Hessian matrix is inflated by a scaled identity matrix. Following Fletcher (1971), we consider
refined inflation based on the curvature. The diagonal inflation of our improved MLA makes it an
intermediate between the steepest descent method and the Newton method. The parameters δk, λk,
and ηk are scalars specifically determined at each iteration k. Parameter δk is fixed to 1 unless the
objective function is not reduced, in which case a line search determines the locally optimal step length.
Parameters λk and ηk are internally modified in order to ensure that (i) H̃(F (θ(k))) be definite-positive
at each iteration k, and (ii) H̃(F (θ(k))) approaches H(F (θ(k))) when θ(k) approaches θ̂.

When the problem encounters a unique solution, the minimum is reached whatever the chosen
initial values.

Stringent convergence criteria

As in any iterative algorithm, the convergence of MLA is achieved when convergence criteria are
fulfilled. In marqLevAlg package, convergence is defined according to three criteria:

• parameters stability: ∑m
j=1

(
θ
(k+1)
j − θ

(k)
j

)2
< ϵa;

• objective function stability: |F (k+1) −F (k)| < ϵb;

• relative distance to minimum/maximum (RDM):
∇(F (θ(k)))(H(F (θ(k))))

−1∇(F (θ(k)))
m < ϵd.

The original Marquardt-Levenberg algorithm (Marquardt, 1963) and its implementations (Elzhov
et al., 2016; Nash, 2016) consider the two first criteria (as well as a third one based on the angle between
the objective function and its gradient). Yet, these criteria, which are also used in many other iterative
algorithms, do not ensure convergence towards an actual optimum. They only ensure the convergence
towards a saddle point. We thus chose to complement the parameter and objective function stability
by the relative distance to minimum/maximum. As it requires the Hessian matrix to be invertible, it
prevents any convergence to a saddle point and is thus essential to ensure that an optimum is truly
reached. When the Hessian is not invertible, RDM is set to 1+ϵd, and convergence criteria cannot be
fulfilled.

Although it constitutes a relevant convergence criterion in any optimization context, RDM was
initially designed for log-likelihood maximization problems, that is, cases where F (θ)= - L(θ) with L
the log-likelihood. In that context, RDM can be interpreted as the ratio between the numerical error
and the statistical error (Commenges et al., 2006, Prague et al. (2013)).

The three thresholds ϵa, ϵb, and ϵd can be adjusted, but values around 0.0001 are usually sufficient to
guarantee a correct convergence. In some complex log-likelihood maximization problems, for instance,
Prague et al. (2013) showed that the RDM convergence properties remain acceptable, providing ϵd is
below 0.1 (although the lower, the better).
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Derivatives calculation

MLA update relies on first (∇(F (θ(k)))) and second (H(F (θ(k)))) derivatives of the objective function
F (θ(k)) at each iteration k. The gradient and the Hessian may sometimes be calculated analytically,
but numerical approximation can become necessary in a general framework. In marqLevAlg package,
in the absence of analytical gradient computation, the first derivatives are computed by central finite
differences. In the absence of analytical Hessian, the second derivatives are computed using forward
finite differences. The step of finite difference for each derivative depends on the value of the involved
parameter. It is set to max(10−7, 10−4|θj|) for parameter j.

When both the gradient and the Hessian are to be numerically computed, numerous evaluations
of F are required at each iteration:

• 2 × m evaluations of F for the numerical approximation of the gradient function;

•
m × (m + 1)

2
evaluations of F for the numerical approximation of the Hessian matrix.

The number of derivatives thus grows quadratically with the number m of parameters, and
calculations are per se independent as done for different vectors of parameters θ.

When the gradient is analytically calculated, only the second derivatives have to be approximated,
requiring 2 × m independent calls to the gradient function. In that case, the complexity thus linearly
increases with m.

In both cases, and especially when each calculation of derivative is long and/or m is large, parallel
computations of independent F evaluations become particularly relevant to speed up the estimation
process.

Special case of a log-likelihood maximization

When the optimization problem is the maximization of the log-likelihood L(θ) of a statistical model
according to parameters θ, the Hessian matrix of the F (θ) = −L(θ) calculated at the optimum θ̂,

H(F (θ̂)) = − ∂2L(θ)
∂θ2

∣∣∣∣
θ=θ̂

, provides an estimator of the Fisher Information matrix. The inverse of

H(F (θ̂)) computed in the package thus provides an estimator of the variance-covariance matrix of
the optimized vector of parameters θ̂.

Implementation

marqLevAlg function

The call of the marqLevAlg function, or its shorcut mla, is the following :

marqLevAlg(b, m = FALSE, fn, gr = NULL, hess = NULL, maxiter = 500,
epsa = 0.0001, epsb = 0.0001, epsd = 0.0001, digits = 8,
print.info = FALSE, blinding = TRUE, multipleTry = 25, nproc = 1,
clustertype = NULL, file = "", .packages = NULL, minimize = TRUE, ...)

Argument b is the set of initial parameters; alternatively, its length m can be entered. fn is the
function to optimize; it should take the parameter vector as the first argument, and additional
arguments are passed in . . . . Optional gr and hess refer to the functions implementing the analytical
calculations of the gradient and the Hessian matrix, respectively. maxiter is the maximum number of
iterations. Arguments epsa, epsb, and epsd are the thresholds for the three convergence criteria defined
in Section 2.2.2. print.info specifies if details on each iteration should be printed; such information
can be reported in a file if argument file is specified, and digits indicates the number of decimals in
the eventually reported information during optimization. blinding is an option allowing the algorithm
to go on even when the fn function returns NA, which is then replaced by the arbitrary value of
500,000 (for minimization) and -500,000 (for maximization). Similarly, if an infinite value is found for
the chosen initial values, the multipleTry option will internally reshape b (up to multipleTry times)
until a finite value is got, and the algorithm can be correctly initialized. The parallel framework is first
stated by the nproc argument, which gives the number of cores, and by the clustertype argument
(see the next section). In the case where the fn function depends on R packages, these should be given
as a character vector in the .packages argument. Finally, the minimize argument offers the possibility
to minimize or maximize the objective function fn; a maximization problem is implemented as the
minimization of the opposite function (-fn).
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Implementation of parallel computations

In the absence of analytical gradient calculation, derivatives are computed in the deriva subfunction
with two loops, one for the first derivatives and one for the second derivatives. Both loops are
parallelized. The parallelized loops are at most over m ∗ (m + 1)/2 elements for m parameters to
estimate, which suggests that the performance could theoretically be improved with up to m ∗ (m +
1)/2 cores.

When the gradient is calculated analytically, the deriva subfunction is replaced by the deriva_grad
subfunction. It is parallelized in the same way, but with the parallelization being executed over m
elements, the performance should be bounded at m cores.

In all cases, parallelization is achieved using the doParallel and foreach packages. The snow and
multicore options of the doParallel backend are kept, making the parallel option of marqLevAlg
package available on all systems. The user specifies the type of parallel environment among FORK,
SOCK, or MPI in argument clustertype and the number of cores in nproc. For instance, clustertype
= "FORK",nproc = 6 will use FORK technology and 6 cores.

Example

We illustrate how to use marqLevAlg function with the maximum likelihood estimation in a linear
mixed model (Laird and Ware, 1982). Function loglikLMM available in the package implements the
log-likelihood of a linear mixed model for a dependent outcome vector ordered by subject (argument
Y) explained according to a matrix of covariates (argument X) entered in the same order as Y with a
Gaussian individual-specific random intercept and Gaussian independent errors:

loglikLMM(b, Y, X, ni)

Argument b specifies the vector of parameters with first the regression parameters (length given
by the number of columns in X) and then the standard deviations of the random intercept and the
independent error. Finally, argument ni specifies the number of repeated measures for each subject.

We consider the dataset dataEx (available in the package) in which variable Y is repeatedly
observed at time t for 500 subjects along with a binary variable X1 and a continuous variable X3.
For the illustration, we specify a linear trajectory over time adjusted for X1, X3, and the interaction
between X1 and time t. The vector of parameters to estimate corresponds to the intercept, 4 regression
parameters, and the 2 standard deviations.

We first define the quantities to include as an argument in loglikLMM function:

> Y <- dataEx$Y
> X <- as.matrix(cbind(1, dataEx[, c("t", "X1", "X3")],
+ dataEx$t * dataEx$X1))
> ni <- as.numeric(table(dataEx$i))

The vector of initial parameters to specify in marqLevAlg call is created with the trivial values of 0
for the fixed effects and 1 for the variance components.

> binit <- c(0, 0, 0, 0, 0, 1, 1)

The maximum likelihood estimation of the linear mixed model in sequential mode is then run
using a simple call to marqLevAlg function for a maximization (with argument minimize = FALSE):

> estim <- marqLevAlg(b = binit, fn = loglikLMM, minimize = FALSE,
+ X = X, Y = Y, ni = ni)
> estim

Robust marqLevAlg algorithm

marqLevAlg(b = binit, fn = loglikLMM, minimize = FALSE, X = X,
Y = Y, ni = ni)

Iteration process:
Number of parameters: 7
Number of iterations: 18
Optimized objective function: -6836.754
Convergence criteria satisfied
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Convergence criteria: parameters stability= 3.2e-07
: objective function stability= 4.35e-06
: Matrix inversion for RDM successful
: relative distance to maximum(RDM)= 0

Final parameter values:
50.115 0.106 2.437 2.949 -0.376 -5.618 3.015

The printed output estim shows that the algorithm converged in 18 iterations with convergence
criteria of 3.2e-07, 4.35e-06, and 0 for parameters stability, objective function stability, and RDM,
respectively. The output also displays the list of coefficient values at the optimum. All this information
can also be recovered in the estim object, where item b contains the estimated coefficients.

As mentioned in Section 2.2.4, in log-likelihood maximization problems, the inverse of the Hessian
given by the program provides an estimate of the variance-covariance matrix of the coefficients at
the optimum. The upper triangular matrix of the inverse Hessian is thus systematically computed in
object v. When appropriate, the summary function can output this information with option loglik =
TRUE. With this option, the summary also includes the square root of these variances (i.e., the standards
errors), the corresponding Wald statistic, the associated p-value, and the 95% confidence interval
boundaries for each parameter:

> summary(estim, loglik = TRUE)

Robust marqLevAlg algorithm

marqLevAlg(b = binit, fn = loglikLMM, minimize = FALSE, X = X,
Y = Y, ni = ni)

Iteration process:
Number of parameters: 7
Number of iterations: 18
Optimized objective function: -6836.754
Convergence criteria satisfied

Convergence criteria: parameters stability= 3.2e-07
: objective function stability= 4.35e-06
: Matrix inversion for RDM successful
: relative distance to maximum(RDM)= 0

Final parameter values:
coef SE.coef Wald P.value binf bsup

50.115 0.426 13839.36027 0e+00 49.280 50.950
0.106 0.026 16.02319 6e-05 0.054 0.157
2.437 0.550 19.64792 1e-05 1.360 3.515
2.949 0.032 8416.33202 0e+00 2.886 3.012

-0.376 0.037 104.82702 0e+00 -0.449 -0.304
-5.618 0.189 883.19775 0e+00 -5.989 -5.248
3.015 0.049 3860.64370 0e+00 2.919 3.110

The exact same model can also be estimated in a parallel mode using FORK implementation of
parallelism (here with two cores):

> estim2 <- marqLevAlg(b = binit, fn = loglikLMM, minimize = FALSE,
+ nproc = 2, clustertype = "FORK",
+ X = X, Y = Y, ni = ni)

It can also be estimated by using analytical gradients (provided in gradient function gradLMM with
the same arguments as loglikLMM):

> estim3 <- marqLevAlg(b = binit, fn = loglikLMM, gr = gradLMM,
+ minimize = FALSE, X = X, Y = Y, ni = ni)

In all three situations, the program converges to the same maximum as shown in Table 1 for the
estimation process and Table 2 for the parameter estimates. The iteration process is identical when
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using either the sequential or the parallel code (number of iterations, final convergence criteria, etc.).
It necessarily differs slightly when using the analytical gradient, as the computation steps are not
identical (e.g., here it converges in 15 iterations rather than 18), but all the final results are identical.

Object estim Object estim2 Object estim3

Number of cores 1 2 1
Analytical gradient no no yes
Objective Function -6836.754 -6836.754 -6836.754
Number of iterations 18 18 15
Parameter Stability 3.174428e-07 3.174428e-07 6.633702e-09
Likelihood stability 4.352822e-06 4.352822e-06 9.159612e-08
RDM 1.651774e-12 1.651774e-12 2.935418e-17

Table 1: Summary of the estimation process of a linear mixed model using ’marqLevAlg’ function
run either in sequential mode with numerical gradient calculation (object estim), parallel mode with
numerical gradient calculation (object estim2), or sequential mode with analytical gradient calculation
(object estim3).

Object estim Object estim2 Object estim3

Coef SE Coef SE Coef SE

Parameter 1 50.1153 0.4260 50.1153 0.4260 50.1153 0.4260
Parameter 2 0.1055 0.0264 0.1055 0.0264 0.1055 0.0264
Parameter 3 2.4372 0.5498 2.4372 0.5498 2.4372 0.5498
Parameter 4 2.9489 0.0321 2.9489 0.0321 2.9489 0.0321
Parameter 5 -0.3764 0.0368 -0.3764 0.0368 -0.3764 0.0368
Parameter 6 -5.6183 0.1891 -5.6183 0.1891 5.6183 0.1891
Parameter 7 3.0145 0.0485 3.0145 0.0485 3.0145 0.0485

Table 2: Estimates (Coef) and standard error (SE) of the parameters of a linear mixed model fitted
using ’marqLevAlg’ function run either in sequential mode with numerical gradient calculation (object
estim), parallel mode with numerical gradient calculation (object estim2), or sequential mode with
analytical gradient calculation (object estim3).

Benchmark

We aimed at evaluating and comparing the performances of the parallelization in some time-consuming
examples. We focused on three examples of sophisticated models from the mixed models area,
estimated by maximum likelihood. These examples rely on packages using three different languages,
thus illustrating the behavior of marqLevAlg package with a program exclusively written in R (JM,
Rizopoulos (2010)) and programs, including Rcpp (CInLPN, Taddé et al. (2019)) and Fortran90 (lcmm,
Proust-Lima et al. (2017)) languages, widely used in complex situations.

We first describe the generated dataset on which the benchmark has been realized. We then
introduce each statistical model and associated program. Finally, we detail the results obtained with
the three programs. Each time, the model has been estimated sequentially and with a varying number
of cores in order to provide the program speed-up. We used a Linux cluster with 32 cores machines
and 100 replicates to assess the variability. Codes and datasets used in this section are available at
https://github.com/VivianePhilipps/marqLevAlgPaper.

Simulated dataset

We generated a dataset of 20,000 subjects having repeated measurements of a marker Ycens (measured
at times t) up to a right-censored time of event tsurv with the indicator that the event occurred event.
The data were generated according to a 4 latent class joint model (Proust-Lima et al., 2014). This model
assumes that the population is divided into 4 latent classes, each class having a specific trajectory of
the marker defined according to a linear mixed model with specific parameters, and specific risk of
event defined according to a parametric proportional hazard model with specific parameters too. The
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class-specific linear mixed model included a basis of natural cubic splines with 3 equidistant knots
taken at times 5, 10 and 15, associated with fixed and correlated random effects. The proportional
hazard model included a class-specific Weibull risk adjusted on 3 covariates: one binary (Bernoulli
with 50% probability) and two continous variables (standard Gaussian and Gaussian with mean 45
and standard deviation 8). The proportion of individuals in each class is about 22%, 17%, 34%, and
27% in the sample.

Below are given the five first rows of the three first subjects:

i class X1 X2 X3 t Ycens tsurv event
1 1 2 0 0.6472205 43.42920 0 61.10632 20.000000 0
2 1 2 0 0.6472205 43.42920 1 60.76988 20.000000 0
3 1 2 0 0.6472205 43.42920 2 58.72617 20.000000 0
4 1 2 0 0.6472205 43.42920 3 56.76015 20.000000 0
5 1 2 0 0.6472205 43.42920 4 54.04558 20.000000 0
22 2 1 0 0.3954846 43.46060 0 37.95302 3.763148 1
23 2 1 0 0.3954846 43.46060 1 34.48660 3.763148 1
24 2 1 0 0.3954846 43.46060 2 31.39679 3.763148 1
25 2 1 0 0.3954846 43.46060 3 27.81427 3.763148 1
26 2 1 0 0.3954846 43.46060 4 NA 3.763148 1
43 3 3 0 1.0660837 42.08057 0 51.60877 15.396958 1
44 3 3 0 1.0660837 42.08057 1 53.80671 15.396958 1
45 3 3 0 1.0660837 42.08057 2 51.11840 15.396958 1
46 3 3 0 1.0660837 42.08057 3 50.64331 15.396958 1
47 3 3 0 1.0660837 42.08057 4 50.87873 15.396958 1

Statistical models

Joint shared random effect model for a longitudinal marker and a time to event: package
JM

The maximum likelihood estimation of joint shared random effect models has been made available
in R with the JM package (Rizopoulos, 2010). The implemented optimization functions are optim
and nlminb. We added the marqLevALg function for the purpose of this example. We considered a
subsample of the simulated dataset, consisting of 5,000 randomly selected subjects.

The joint shared random effect model is divided into two submodels jointly estimated:

• a linear mixed submodel for the repeated marker Y measured at different times tij (j = 1, ..., ni):

Yi(tij) = Ỹi(tij) + εij

= Xi(tij)β + Zi(tij)ui + εij,

where, in our example, Xi(t) contained the intercept, the class indicator, the 3 simulated covariates, a
basis of natural cubic splines on time t (with 2 internal knots at times 5 and 15), and the interactions
between the splines and the time-invariant covariates, resulting in 20 fixed effects. Zi(t) contained
the intercept and the same basis of natural cubic splines on time t, and was associated with ui, the
4-vector of correlated Gaussian random effects. εij was the independent Gaussian error.

• a survival submodel for the right censored time-to-event:

αi(t) = α0(t) exp(Xsiγ + ηỸi(t)),

where, in our example, the vector Xsi, containing the 3 simulated covariates, was associated with the
vector of parameters γ; the current underlying level of the marker Ỹi(t) was associated with parameter
η and the baseline hazard α0(t) was defined using a basis of B-splines with 1 interior knot.

The length of the total vector of parameters θ to estimate was 40 (20 fixed effects and 11 variance
component parameters in the longitudinal submodel and 9 parameters in the survival submodel).

One particularity of this model is that the log-likelihood does not have a closed-form. It involves
an integral over the random effects (here, of dimension 4), which is numerically computed using an
adaptive Gauss-Hermite quadrature with 3 integration points for this example.

As package JM includes an analytical computation of the gradient, we ran two estimations: one
with the analytical gradient and one with the numerical approximation to compare the speed up and
execution times.
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Latent class linear mixed model: package lcmm

The second example is a latent class linear mixed model, as implemented in the hlme function of the
lcmm R package. The function uses a previous implementation of the Marquardt algorithm coded in
Fortran90 and in sequential mode. For the purpose of this example, we extracted the log-likelihood
computation programmed in Fortran90 to be used with marqLevAlg package.

The latent class linear mixed model consists of two submodels estimated jointly:

• a multinomial logistic regression for the latent class membership (ci):

P(ci = g) =
exp(Wiζg)

∑G
l=1 exp(Wiζl)

, with g = 1, ..., G,

where ζG = 0 for identifiability, and Wi contained an intercept and the 3 covariates.

• a linear mixed model specific to each latent class g for the repeated outcome Y measured at
times tij (j = 1, ..., ni):

Yi(tij|ci = g) = Xi(tij)βg + Zi(tij)uig + εij,

where, in this example, Xi(t) and Zi(t) contained an intercept, time t, and quadratic time. The vector
uig of correlated Gaussian random effects had a proportional variance across latent classes, and εij
were independent Gaussian errors.

The log-likelihood of this model has a closed-form, but it involves the logarithm of a sum over
latent classes, which can become computationally demanding. We estimated the model on the total
sample of 20,000 subjects with 1, 2, 3, and 4 latent classes, which corresponded to 10, 18, 26, and 34
parameters to estimate, respectively.

Multivariate latent process mixed model: package CInLPN

The last example is provided by the CInLPN package, which relies on the Rcpp language. The function
fits a multivariate linear mixed model combined with a system of difference equations in order to
retrieve temporal influences between several repeated markers (Taddé et al., 2019). We used the data
example provided in the package where three continuous markers L_1, L_2, L_3 were repeatedly
measured over time. The model related each marker k (k = 1, 2, 3) measured at observation times tijk
(j = 1, ..., T) to its underlying level Λik(tijk) as follows:

Lik(tijk) = η0k + η1kΛik(tijk) + ϵijk,

where ϵijk are independent Gaussian errors and (η0, η1) parameters to estimate. Simultaneously, the
structural model defines the initial state at time 0 (Λik(0)) and the change over time at subsequent
times t with δ is a discretization step:

Λik(0) = β0k + uik

Λik(t + δ)− Λik(t)
δ

= γ0k + vik +
K

∑
l=1

aklΛil(t),

where uik and vik are Gaussian random effects.

Again, the log-likelihood of this model that depends on 27 parameters has a closed-form, but it
may involve complex calculations.

Results

All the models have been estimated with 1, 2, 3, 4, 6, 8, 10, 15, 20, 25, and 30 cores. To fairly compare
the execution times, we ensured that changing the number of cores did not affect the final estimation
point or the number of iterations needed to converge. The mean of the speed up over the 100 replicates
is reported in Table 3 and plotted in Figure 1.

The joint shared random effect model (JM) converged in 16 iterations after 4279 seconds in sequen-
tial mode when using the analytical gradient. Running the algorithm in parallel on 2 cores made
the execution 1.85 times shorter. Computational time was gradually reduced with a number of cores

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=lcmm
https://CRAN.R-project.org/package=marqLevAlg


CONTRIBUTED RESEARCH ARTICLES 373

JM hlme CInLPN

analytic numeric G=1 G=2 G=3 G=4

Number of parameters 40 40 10 18 26 34 27
Number of iterations 16 16 30 30 30 30 13
Number of elements in foreach loop 40 860 65 189 377 629 405
Sequential time (seconds) 4279 14737 680 3703 10402 22421 272
Speed up with 2 cores 1.85 1.93 1.78 1.93 1.94 1.96 1.89
Speed up with 3 cores 2.40 2.80 2.35 2.81 2.88 2.92 2.75
Speed up with 4 cores 2.97 3.57 2.90 3.58 3.80 3.87 3.56
Speed up with 6 cores 3.66 4.90 3.49 5.01 5.44 5.66 4.95
Speed up with 8 cores 4.15 5.84 3.71 5.84 6.90 7.26 5.96
Speed up with 10 cores 4.23 6.69 3.98 6.70 8.14 8.96 6.89
Speed up with 15 cores 4.32 7.24 3.59 7.29 10.78 12.25 8.14
Speed up with 20 cores 4.28 7.61 3.11 7.71 12.00 15.23 8.36
Speed up with 25 cores 3.76 7.29 2.60 7.37 12.30 16.84 8.11
Speed up with 30 cores 3.41 6.82 2.47 6.82 13.33 17.89 7.83

Table 3: Estimation process characteristics for the 3 different programs (JM, hlme, and CInLPN).
Analytic and Numeric refer to the analytical and numerical computations of the gradient in JM; G
refers to the number of latent classes.
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Figure 1: Speed up performances for the 3 different programs (JM, hlme, and CInLPN). Analytic and
Numeric refer to the analytical and numerical computations of the gradient in JM. The number of
parameters was 40 for JM; 10, 18, 26, 34 for hlme with 1, 2, 3, 4 classes, respectively; 27 for CInLPN.

between 2 and 10 to reach a maximal speed up slightly above 4. With 15, 20, 25, or 30 cores, the
performances were no more improved, the speed up showing even a slight reduction, probably due to
the overhead. In contrast, when the program involved numerical computations of the gradient, the
parallelization reduced the computation time by a factor of almost 8 at maximum. The better speed-up
performances with a numerical gradient calculation were expected since the parallel loops iterate over
more elements.

The second example, the latent class mixed model estimation (hlme), showed an improvement of
the performances as the complexity of the models increased. The simple linear mixed model (one
class model), like the joint models with analytical gradient, reached a maximum speed-up of 4 with 10
cores. The two-class mixed model with 18 parameters showed a maximum speed up of 7.71 with 20
cores. Finally, the 3 and 4-class mixed models reached speed-ups of 13.33 and 17.89 with 30 cores and
might still be improved with larger resources.

The running time of the third program (CInLPN) was also progressively reduced with the increas-
ing number of cores reaching the maximal speed-up of 8.36 for 20 cores.

In these 7 examples, the speed up systematically reached almost 2 with 2 cores, and it remained
interesting with 3 or 4 cores, although some variations in the speed-up performances began to be
observed according to the complexity of the objective function computations. This highlights the
benefit of the parallel implementation of MLA, even on personal computers. As the number of
cores continued to increase, the speed-up performances varied a lot. Among our examples, the most
promising situation was the one of the latent class mixed model (with a program in Fortran90) where
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the speed-up was up to 15 for 20 cores with the 4 class model.

Comparison with other optimization algorithms

Other Marquardt-Levenberg implementations

The Marquardt-Levenberg algorithm has been previously implemented in the context of nonlinear
least squares problems in minpack.lm and nlmrt. We ran the examples provided in these two packages
with marqLevAlg and compared the algorithms in terms of the final solution (that is, the residual sum-
of-squares) and runtime. Results are shown in the supplementary material. Our implementation
reached exactly the same value as the two others but performed slower in these simple examples.

We also compared the sensitivity to initial values of marqLevAlg with minpack.lm using a simple
example from minpack.lm. We ran the two implementations of MLA on 100 simulated datasets, each
one from 100 different starting points (see supplementary material). On the 10000 runs, marqLevAlg
converged in 51.55% of the cases whereas the minpack.lm converged in 65.98% of the cases. However,
1660 estimations that converged according to nls.lm criteria were far from the effective optimum. This
reduced the proportion of satisfying convergences with minpack.lm to 49.38% (so similar rate as
marqLevAlg) but more importantly illustrated the convergence to saddle points when using classical
convergence criteria. In contrast, all the convergences with marqLevAlg were closed to the effective
solution thanks to its stringent RDM convergence criterion.

Examples from the literature

We tested our algorithm on 35 optimization problems designed by More et al. (1981) to test uncon-
strained optimization software and compared the marqLevAlg performances with those of several
other optimizers, namely Nelder-Mead, BFGS, conjugate gradients (CG) implemented in the optim
function, L-BFGS-B algorithm from optimParallel, and nlminb. Each problem consists of a function
to optimize from given starting points. The results are presented in supplementary material in terms
of bias between the real solution and the final value of the objective function. Our implementation of
MLA converged in almost all the cases (31 out of 35), and provided almost no bias. Except for nlminb,
which showed similar very good performances, the other algorithms converged at least once very far
from the effective objective value. In addition, Nelder-Mead and CG algorithms converged only in
approximately half of the cases.

Example of complex optimization problem: Maximum Likelihood Estimation of a Joint
model for longitudinal and time-to-event data

Our implementation is particularly dedicated to complex problems involving many parameters and/or
complex objective function calculation. We illustrate here its performances and compare them with
other algorithms for the likelihood maximization of a joint model for longitudinal and time-to-event
data, as an example of complex objective function optimization.

The JM package (Rizopoulos (2010)), dedicated to the maximum likelihood estimation of joint mod-
els, includes several optimization algorithms, namely the BFGS of optim function and an expectation-
maximization (EM) technique internally implemented. It thus offers a nice framework to compare the
reliability of MLA to find the maximum likelihood in a complex setting with the reliability of other
optimization algorithms. We used in this comparison the prothro dataset described in the JM package
and elsewhere (Skrondal and Rabe-Hesketh, 2004, Andersen et al. (1993)). It consists of a randomized
trial in which 488 subjects were split into two treatment arms (prednisone versus placebo). Repeated
measures of prothrombin ratio were collected over time as well as time to death. The longitudinal
part of the joint model included a linear trajectory with time in the study, an indicator of the first
measurement and their interaction with the treatment group. Correlated individual random effects
on the intercept and the slope with time were also included. The survival part was a proportional
hazard model adjusted for the treatment group as well as the dynamics of the longitudinal outcome
either through the current value of the marker or its slope or both. The baseline risk function was
approximated by B-splines with one internal knot. The total number of parameters to estimate was 17
or 18 (10 for the longitudinal submodel and 7 for the survival submodel, given that only the curent
value of the marker or its slope or 8 for the survival model when both the current level and the slope
were considered). The marker initially ranged from 6 to 176 (mean=79.0, sd=27.3).

To investigate the consistency of the results to different dimensions of the marker, we also consid-
ered cases where the marker was rescaled by a factor 0.1 or 10. In these cases, the log-likelihood was
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rescaled a posteriori to the original dimension of the marker to make the comparisons possible. The
starting point was systematically set at the default initial value of the jointModel function, which is
the estimation point obtained from the separated linear mixed model and proportional hazard model.

In addition to EM and BFGS included in JM package, we also compared the MLA performances with
those of the parallel implementation of the L-BFGS-B algorithm provided by the optimParallel pack-
age. Codes and dataset used in this section are available at https://github.com/VivianePhilipps/
marqLevAlgPaper.

MLA and L-BFGS-B ran on 3 cores. MLA converged when the three criteria defined in section 2.2.2
were satisfied with tolerance 0.0001, 0.0001, and 0.0001 for the parameters, the likelihood, and the RDM,
respectively. BFGS and L-BFGS-B converged when the convergence criterion on the log-likelihood was
satisfied with the square root of the tolerance of the machine (≈ 10−8). The EM algorithm converged
when stability on the parameters or on the log-likelihood was satisfied with tolerance 0.0001 and
around 10−8 (i.e., the square root of the tolerance of the machine), respectively.

Nature of Algorithm Scaling Rescaled log- Variation of Variation of Number of Time in
dependency factor likelihood value (%) slope (%) iterations seconds

value BFGS 1 -13958.55 -3.73 120 27.39
value BFGS 0.1 -13957.91 -0.01 490 116.33
value BFGS 10 -13961.54 -9.28 91 18.16
value LBFGSB 1 -13958.41 -3.56 289 79.07
value LBFGSB 0.1 -13957.69 -0.11 244 67.53
value LBFGSB 10 error
value EM 1 -13957.91 -0.29 66 72.44
value EM 0.1 -13957.72 0.14 104 106.70
value EM 10 -13957.94 -0.59 62 67.80
value MLA 1 -13957.69 -0.00 7 34.37
value MLA 0.1 -13957.69 -0.00 6 29.48
value MLA 10 -13957.69 -0.00 17 75.48
slope BFGS 1 -13961.41 -1.85 251 52.76
slope BFGS 0.1 -13961.23 -1.37 391 87.61
slope BFGS 10 -13980.90 -13.98 444 80.16
slope LBFGSB 1 -13960.69 -0.15 266 60.29
slope LBFGSB 0.1 -13960.70 -0.27 206 47.87
slope LBFGSB 10 -13962.56 -2.87 823 182.20
slope EM 1 -13960.69 0.17 170 161.64
slope EM 0.1 -13960.69 0.02 208 196.68
slope EM 10 -13960.70 0.08 156 159.58
slope MLA 1 -13960.69 -0.00 11 48.00
slope MLA 0.1 -13960.69 -0.00 11 48.10
slope MLA 10 -13960.69 0.00 14 61.61
both BFGS 1 -13951.60 15.97 -28.17 164 37.83
both BFGS 0.1 -13949.82 2.66 -4.63 502 132.84
both BFGS 10 -13965.25 40.31 -95.26 52 10.48
both LBFGSB 1 -13950.04 -1.67 7.10 800 177.61
both LBFGSB 0.1 -13949.42 -0.01 0.38 411 93.31
both LBFGSB 10 -13985.72 67.33 -147.30 18 7.75
both EM 1 -13949.82 4.10 -7.22 159 186.69
both EM 0.1 -13949.44 1.68 -3.66 156 152.89
both EM 10 -13950.46 10.67 -16.31 142 220.07
both MLA 1 -13949.42 -0.00 -0.00 10 49.91
both MLA 0.1 -13949.42 -0.00 0.00 10 51.63
both MLA 10 -13949.42 -0.00 0.00 24 121.69

Table 4: Comparison of the convergence obtained by MLA, BFGS, LBFGSB, and EM algorithms for the
estimation of a joint model for prothrobin repeated marker (scaled by 1, 0.1, or 10) and time to death
when considering a dependency on the current level of prothrobin (’value’), the current slope (’slope’),
or both (’both’). All the models converged correctly according to the algorithm outputs. We report
the final log-likelihood rescaled to scaling factor 1 (for comparison), the percentage of variation of the
association parameters (’value’ and ’slope’ columns) compared to the one obtained with the overall
maximum likelihood with scaling 1, the number of iterations and the running time in seconds.

Table 4 compares the convergence obtained using the four optimization methods when consid-
ering a pseudo-adaptive Gauss-Hermite quadrature with 15 points. All the algorithms converged
correctly according to the programs except one with L-BFGS-B, which gave an error (non-finite value)
during optimization. Although the model for a given association structure is exactly the same, some
differences were observed in the final maximum log-likelihood (computed in the original scale of
prothrombin ratio). The final log-likelihood obtained by MLA was always the same, whatever the
outcome’s scaling, showing its consistency. It was also higher than the one obtained using the three
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other algorithms, showing that BFGS, L-BFGS-B, and, to a lesser extent, EM did not systematically
converge toward the effective maximum. The difference could go up to 20 points of log-likelihood for
BFGS in the example with the current slope of the marker as the association structure. The convergence
also differed according to outcome’s scaling with BFGS/L-BFGS-B and slightly with EM, even though,
in general, the EM algorithm seemed relatively stable in this example. The less stringent convergence
of BFGS/L-BFGS-B and, to a lesser extent, of EM had also consequences on the parameters estimates
as roughly illustrated in Table 4 with the percentage of variation in the association parameters of
prothrombin dynamics estimated in the survival model (either the current value or the current slope)
in comparison with the estimate obtained using MLA which gives the overall maximum likelihood.
The better performances of MLA were not at the expense of the number of iterations since MLA
converged in at most 22 iterations, whereas several hundreds of iterations could be required for EM or
BFGS. Note, however, that one iteration of MLA is much more computationally demanding.

Finally, for BFGS, the problem of convergence was even more apparent when the outcome was
scaled by a factor 10. Indeed, the optimal log-likelihood of the model assuming a bivariate association
structure (on the current level and the current slope) was worse than the optimal log-likelihood of its
nested model, which assumes an association structure only on the current level (i.e., constraining the
parameter for the current slope to 0). We faced the same situation with the L-BFGS-B algorithm when
comparing the log-likelihoods with a bivariate association and with an association through the current
slope only.

Concluding remarks

We proposed in this paper a general-purpose optimization algorithm based on a robust Marquardt-
Levenberg algorithm. The program, written in R and Fortran90, is available in marqLevAlg R package.
It provides a very nice alternative to other optimization packages available in R software such as
optim, roptim (Pan, 2020), or optimx (Nash and Varadhan, 2011) for addressing complex optimization
problems. In particular, as shown in our examples, notably the estimation of joint models, it is more
reliable than classical alternatives (in particular EM, BFGS, and L-BFGS-B). This is due to the very
good convergence properties of the Marquardt-Levenberg algorithm associated with very stringent
convergence criteria based on the first and second derivatives of the objective function, which avoids
spurious convergence at saddle points (Commenges et al., 2006).

The Marquardt-Levenberg algorithm is known for its very computationally intensive iterations
due to the computation of the first and second derivatives. However, compared to other algorithms,
it converges in a very small number of iterations (usually less than 30 iterations). This may not
make MLA competitive in terms of running time in simple and rapid settings. However, the parallel
computations of the derivatives can largely speed up the program and make it very competitive with
alternatives in terms of running time in complex settings.

We chose in our implementation to rely on the RDM criterion, which is a very stringent convergence
criterion. As it is based on the inverse of the Hessian matrix, it may cause non-convergence issues
when some parameters are at the border of the parameter space (for instance, 0 for a parameter
constrained to be positive). In that case, we recommend fixing the parameter at the border of the
parameter space and running the optimization again on the rest of the parameters. In cases where the
stabilities of the log-likelihood and of the parameters are considered sufficient to ensure satisfactory
convergence, the program outputs might be interpreted despite a lack of convergence according to the
RDM, as is done for other algorithms that only converge according to the parameter and/or objective
function stability.

As with any other optimization algorithm based on the steepest descent, MLA is a local optimizer.
It does not ensure the convergence of multimodal objective functions toward the global optimum. In
such a context, we recommend the use of a grid search which consists in running the algorithm from
a grid of (random) initial values and retaining the best result as the final solution. We illustrate in
supplementary material how this technique succeeds in finding the global minimum with the Wild
function of the optim help page.

marqLevAlg is not the first optimizer to exploit parallel computations. Other R optimizers include
a parallel mode, in particular stochastic optimization packages like DEoptim (Mullen et al., 2011), GA
(Scrucca, 2017), rgenoud (Mebane, Jr. and Sekhon, 2011), or hydroPSO (Zambrano-Bigiarini and Rojas,
2020). We compared these packages, the local optimizer of optimParallel, and marqLevAlg for the
estimation of the linear mixed model described in Section 2.4. For this specific problem marqLevAlg
was the fastest, followed by optimParallel (results shown in supplementary files).

With its parallel implementation of derivative calculations combined with very good convergence
properties of MLA, marqLevAlg package provides a promising solution for the estimation of complex
statistical models in R. We have chosen for the moment to parallelize the derivatives, which is
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very useful for optimization problems involving many parameters. However, we could also easily
parallelize the computation of the objective function when the latter is decomposed into independent
sub-computations, as is the log-likelihood computed independently on the statistical units. This
alternative is currently under development.
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DRHotNet: An R package for detecting
differential risk hotspots on a linear
network
by Álvaro Briz-Redón, Francisco Martínez-Ruiz and Francisco Montes

Abstract One of the most common applications of spatial data analysis is detecting zones, at a certain
scale, where a point-referenced event under study is especially concentrated. The detection of such
zones, which are usually referred to as hotspots, is essential in certain fields such as criminology,
epidemiology, or traffic safety. Traditionally, hotspot detection procedures have been developed over
areal units of analysis. Although working at this spatial scale can be suitable enough for many research
or practical purposes, detecting hotspots at a more accurate level (for instance, at the road segment
level) may be more convenient sometimes. Furthermore, it is typical that hotspot detection procedures
are entirely focused on the determination of zones where an event is (overall) highly concentrated. It
is less common, by far, that such procedures focus on detecting zones where a specific type of event is
overrepresented in comparison with the other types observed, which have been denoted as differential
risk hotspots. The R package DRHotNet provides several functionalities to facilitate the detection of
differential risk hotspots within a linear network. In this paper, DRHotNet is depicted, and its usage
in the R console is shown through a detailed analysis of a crime dataset.

Introduction

Hotspot detection consists of finding zones across space where a certain event is highly concentrated.
There exists a wide variety of methods in the literature that allow researchers to identify hotspots
at a certain level of accuracy or spatial aggregation. Some of them have been massively used in the
last decades, including certain local indicators of spatial association such as LISA (Anselin, 1995)
or the Getis-Ord statistic (Getis and Ord, 1992), and the spatial scan statistic (Kulldorff, 1997). The
first two of these methods are implemented in the R package spdep (Bivand et al., 2013), whereas
the scan statistic is implemented in DCluster (Gómez-Rubio et al., 2005) (although other R packages
also provide an implementation of these methods). Furthermore, many new R packages focused
on hotspot detection have been released in the last few years. Most of them are model-based and
oriented to disease mapping studies that are carried out over administrative (areal) units (Allévius,
2018; Gómez-Rubio et al., 2019; Meyer et al., 2017).

However, the analysis of certain types of events requires detecting hotspots at a level of spatial
accuracy greater than that provided by administrative or regular areal units. Indeed, many research
studies of the fields of criminology (Andresen et al., 2017; Weisburd, 2015) and traffic safety (Briz-
Redón et al., 2019b; Nie et al., 2015; Xie and Yan, 2013) that have been published in recent years were
entirely carried out on road network structures rather than on administrative units. More specifically,
some quantitative criminologists have estimated that around 60% of the total variability in crime
incidence occurs at the street segment level (Schnell et al., 2017; Steenbeek and Weisburd, 2016). A fact
that shows the essentiality of using road segments instead of areal structures to properly capture the
spatial concentration of certain events.

Fortunately, road network structures were introduced in the context of spatial statistics some years
ago, providing the basis for analyzing events lying on such structures, which are usually referred to as
linear networks. Indeed, a planar linear network, L, is defined as a finite collection of line segments,
L = ∪n

i=1li, in which each segment contains the points li = [ui, vi] = {tui + (1 − t)vi : t ∈ [0, 1]}
(Ang et al., 2012; Baddeley et al., 2015, 2017). Following graph theory nomenclature, these segments
are sometimes referred to as the edges of the linear network, whereas the points that determine the
extremes of such segments are known as the vertices of the network.

Hence, a point process X on L is a finite point process in the plane (Diggle, 2013) such that all
points of X lie on the network L, whereas a collection of events that is observed on L is known as a
point pattern, x, on L (Ang et al., 2012; Baddeley et al., 2015, 2017). In particular, when every event
of a point pattern has one or several attributes, the point pattern is referred to as a marked point
pattern. Each of the attributes, which can be in the form of either a numerical or a categorical variable,
is known as a mark of the pattern. The intensity function of a process on L, denoted by λ(x), satisfies
that the number n(X ∩ B) of points of X falling in B ⊂ L has expectation E[n(X ∩ B)] =

∫
B λ(u)d1u,

where d1u denotes integration with respect to arc length (McSwiggan et al., 2017). Thus, given a point
pattern, a typical objective is to estimate the intensity function of the process from which the locations
of the events are assumed to be drawn, either through parametric or nonparametric techniques (Diggle,
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2013).

The investigation of spatial patterns lying on linear networks has gained attention in the last
few years. The design of new and more accurate/efficient kernel density estimators (McSwiggan
et al., 2017; Moradi et al., 2018, 2019; Rakshit et al., 2019b), the introduction of graph-related intensity
measures (Eckardt and Mateu, 2018), the construction of local indicators of spatial association (Eckardt
and Mateu, 2021), or the estimation of relative risks (McSwiggan et al., 2019) are some topics that have
recently started to be developed for linear networks.

Besides the theoretical advances, it is worth noting that using linear networks for carrying out a
spatial or spatio-temporal analysis entails certain technical difficulties. In this regard, the R package
spatstat.linnet of the spatstat family (Baddeley et al., 2015) provides multiple specific functions that
allow R users to carry out statistical analyses on linear networks. Furthermore, efforts are constantly
being made to reduce the computational cost of adapting certain classical spatial techniques to the
singular case of linear networks (Rakshit et al., 2019a).

Despite the existing necessity of analyzing point-referenced data coming from certain fields of
research at the street level, there are not many software tools fully designed for hotspot detection on
road networks. One relevant contribution in this regard is the KDE+ software (Bíl et al., 2016), but
this is not integrated into R. The package DRHotNet is specifically prepared for allowing R users
to detect differential risk hotspots (zones where a type of event is overrepresented) along a linear
network. While the function relrisk.lpp from spatstat.linnet also allows R users to compute the
spatially-varying probability of a type of event located in a linear network, DRHotNet provides a full
procedure to detect, with high accuracy, the segments of a network where the probability of occurrence
of a given type of event is considerably higher and optimize hotspot detection in terms of a prediction
accuracy index widely used in criminology and other fields. There is no other R package currently
providing this functionality.

A procedure for detecting differential risk hotspots

The procedure for differential risk hotspot detection available in DRHotNet was introduced by Briz-
Redón et al. (2019a), who also show an application of the method considering a traffic accident dataset.
Overall, hotspot detection methods can be classified into partition-, hierarchy- and density-based
methods (Deng et al., 2019). The one implemented in DRHotNet belongs to the last of these three
groups.

Hence, the following subsections describe each of the steps that are carried out by the DRHotNet
package. The specification and exemplification of the functions required for each of them are given in
the following sections.

Estimating a relative probability surface

The first step consists in using kernel density estimation to infer the relative probability of occurrence
for a certain type of event along a linear network. Given a marked point pattern x = {x1, ..., xn},
where a binary mark yi indicates if xi corresponds, or not, to the type of event of interest, the following
expression is used to estimate this relative probability (Kelsall and Diggle, 1998):

ph(x) =
λ
{xi :yi=1}
h (x)

λ
{x1,...,xn}
h (x)

, (1)

where λ
{xi :yi=1}
h (x) is an estimate of the intensity of the pattern formed by the events of interest

(those that satisfy yi = 1) at location x, and λ
{x1,...,xn}
h (x) is an estimate of the intensity of the com-

plete pattern at x. Both estimates are nonparametric and depend on a bandwidth parameter, h.

Specifically, in DRHotNet package, λ
{xi :yi=1}
h (x) and λ

{x1,...,xn}
h (x) are computed according to the

network-constrained equal-split continuous kernel density estimation provided by McSwiggan et al.
(2017). This version of kernel density is implemented in the function density.lpp of spatstat.linnet,
which computes kernel density values rapidly by solving the classical heat equation defined on the
linear network, as shown by McSwiggan et al. (2017). Despite the great performance of this approach,
the computational cost of this version of kernel smoothing increases quadratically with h, so choosing
very high values of h can become too time-consuming.

Therefore, Equation 1 allows establishing a relative probability surface (referring to the type of
event represented by yi = 1) on the linear network. To this end, given a location, x, of the linear
network, the events which mainly contribute to the estimation of ph(x) are those situated within a
linear radius (following the linear network structure) of h meters from x. Thus, increasing the value of
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h leads to smoother representations of the probability surface, whereas smaller values of the bandwidth
parameter produce the opposite effect. On the choice of an optimal bandwidth parameter, the method
described by McSwiggan et al. (2019) could be followed, which modifies previous proposals made for
planar patterns (Kelsall and Diggle, 1995a,b).

Estimating a relative probability surface implies, in practice, estimating a relative probability value
at the middle points of the segments forming the road network. In this regard, it is necessary to split
the original road network structure into shorter line segments called lixels (Xie and Yan, 2008), which
are analogous to pixels for a planar surface. This step provides accuracy and homogeneity to the
process of hotspot formation. Then, the segments satisfying certain conditions (details are provided in
the next section) are selected and joined together forming the differential risk hotspots.

Determining differential risk hotspots

Once a relative probability surface has been estimated along the linear network, it is time to detect
differential risk hotspots. The procedure for their detection relies on two parameters k and n. Parameter
k is used together with the standard deviation of all the relative probabilities estimated to define a
threshold that needs to be exceeded to consider a segment as a candidate to be part of a differential
risk hotspot. Then, parameter n is employed to select the segments, from those satisfying the threshold
condition, with n or more events at a distance lower than h. More precisely, a segment, i, of the linear
network is considered to be part of a differential risk hotspot if:

p̂i > mean({ p̂j}S
j=1) + k · SD({ p̂j}S

j=1)

#{x ∈ {x1, ..., xn} : dL(x, mi) < h} ≥ n,

where p̂i is the relative probability of occurrence for the type of event of interest estimated at the
middle point of segment i, mean and SD denote, respectively, the mean and the standard deviation of
a finite set of numbers, S is the number of segments of the linear network, # denotes the cardinality of
a finite set, mi is the middle point of segment i, and dL(x, mi) represents the shortest-path distance
(distance along the network) between x and mi.

The segments that fulfill the two conditions indicated above are then joined, forming differential
risk hotspots. More precisely, two segments satisfying the aforementioned conditions belong to
the same differential risk hotspot if they are neighbors. Given two segments of a linear network, a
neighboring relationship exists between them if they share a vertex of the network, which is equivalent
to the queen criterion used for defining polygon neighborhoods (Lloyd, 2010). This relationship
between segments is referred to as a first-order one. Similarly, higher-order neighboring relationships
are defined recursively (for instance, for a second-order relationship): i and j are second-order
neighbors if one neighbor of i and one neighbor of j are first-order neighbors.

Note that choosing a higher value of either k or n implies being stricter in terms of determining
differential risk segments. If the choice is too strict, segments that meet both conditions may not be
found. One criterion for finding suitable values of k and n is to perform a sensitivity analysis on
k and n (consisting of testing a set of plausible values for k and n) and choosing a combination of
both parameters that maximizes a measure that reflects the ability of the procedure to capture the
overrepresentation of the event of interest along the network. These issues are clarified in subsequent
sections.

Measuring differential risk hotspots importance and significance

The prediction accuracy index

Given a collection of hotspots in a planar surface, Chainey et al. (2008) defined the prediction accuracy
index (PAI) as follows:

PAI =
Hit rate

Area percentage
=

n/N
a/A

, (2)

where n is the total number of events that lie on the hotspots, N is the total number of events observed,
a is the area formed by all the hotspots together, and A is the total area of the surface. Hence, a higher
value of PAI is desirable in terms of hotspot detection as it represents a higher concentration of the
events in relation to the size of the space they cover. This formula can be easily adapted to the case of
linear networks using segment lengths in the place of areas.

In the context of detecting hotspots where the relative probability of one type of event is particularly
high, the PAI needs to be modified. A type-specific version of the PAI (denoted by PAIt) was proposed
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in Briz-Redón et al. (2019a) (for linear networks):

PAIt =
nt/Nt
ℓ/L

, (3)

where nt is the number of events of the type of interest that lie on the hotspots, Nt is the total number
of events of that type that are observed, ℓ is the length of all the hotspots together, and L is the total
length of the network. The interpretation of the PAIt is analogous to the one for the PAI. That is, a
higher PAIt value indicates a higher proportion of the type of interest compared to the proportion of
road network length. Some researchers have recently explored the possibility of using the number of
segments (in total and within the hotspots) instead of segment length (Drawve and Wooditch, 2019) in
the denominator of this formula, but we opted for segment length proportions.

It is also worth noting that the PAIt can be computed for the whole set of differential risk hotspots
detected, as indicated above, or for each differential risk hotspot individually. The first option is
useful for comparing the level of spatial concentration that two or more types of events show along
the network or for assessing the efficiency of different hotspot detection procedures. The second
option is suitable for determining which differential risk hotspot maximizes the quotient between the
proportion of the type and the proportion of road length spanned, which may represent the importance
of the hotspot.

Estimating a p-value

Finally, assigning a statistical significance value to each differential risk hotspot is necessary to avoid
the possibility of focusing on certain microzones of the network that do not deserve such attention.
Thus, a Monte Carlo approach was used to estimate an empirical p-value for each differential risk
hotspot yielded by the previous step of the procedure. This approach is similar in spirit to the one
proposed by Bíl et al. (2013), which is applied in the KDE+ software mentioned before.

Getting back to previous notation, if {x1, ..., xn} is a marked point pattern, and yi a binary mark
that indicates if xi corresponds, or not, to the type of event under analysis, the Monte Carlo approach
implemented consists in generating K simulated datasets where the locations are left fixed and the
marks permutated. Concretely, this means to keep the locations {x1, ..., xn} and to obtain a new
collection of marks defined by yk

i = yρ(i), where k indicates the iteration number (k = 1, ..., K), and ρ
is a permutation of the first n natural numbers. For each simulation, the average relative probability
presented by each differential risk hotspot (computed as the weighted average per segment length of
the relative probabilities estimated at the middle points of the segments composing the hotspot) is
obtained and denoted by ŝk (k = 1, ..., K). Therefore, if r̂ represents such average relative probability
for a hotspot, considering the original dataset, the rank of r̂ within the ordered vector formed by the
ŝk’s and r̂ allows estimating an empirical p-value for the corresponding hotspot:

p = 1 − #{k ∈ {1, ..., K} : ŝk ≤ r̂}
K + 1

Dealing with linear networks in R

Classes and functions

Linear networks can be represented in R by the class SpatialLines of package sp (Pebesma and
Bivand, 2005; Bivand et al., 2013) or by simple features with packages sf (Pebesma, 2018) and sfnet-
works (van der Meer et al., 2021). However, the class linnet from the spatstat.linnet package is
optimal for doing spatial analysis and modeling on linear networks.

There are several functions in R that facilitate the conversion between SpatialLines and linnet
objects. Specifically, as.linnet.SpatialLines from the maptools (Bivand and Lewin-Koh, 2017)
R package converts SpatialLines into linnet objects, whereas the double application (in this
order) of the as.psp and as.SpatialLines.psp functions of the spatstat.geom and maptools
packages, respectively, enable the conversion from a linnet object into a SpatialLines one.

Other useful functions available in spatstat.linnet for the use of linear networks are, for example,
connected.linnet (computes the connected components of a linear network), diameter.linnet
(computes the diameter and bounding radius of a linear network), insertVertices (inserts new
vertices in a linear network), and thinNetwork (removes vertices or segments from a linear network).
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Preprocessing the linear network

Although not strictly necessary, preprocessing the linear network is convenient to facilitate the subse-
quent statistical analysis. The SpNetPrep package (Briz-Redón, 2019) can be used for this purpose.
The manual edition of the network, the addition of directionality, and the curation of a point pattern
lying on a network can be performed through a Shiny-based application implemented in this package
if the linear network represents a road network (which is the most common scenario and the one
we assume for the example shown in this paper). Furthermore, SpNetPrep contains a function,
SimplifyLinearNetwork, that allows users to reduce the network’s complexity by merging some
pairs of edges of the network that meet certain conditions on their length and angle. In this regard,
another option is to use the gSimplify function of rgeos (Bivand and Rundel, 2020), which provides
an implementation of the Douglas-Peuker algorithm for curve simplification (Douglas and Peucker,
1973).

Creating a point pattern on a linear network

Function lpp of package spatstat.linnet can be used to create an R object that represents a point
pattern lying on a linear network. The lpp function only requires the coordinates of the events and a
linnet object corresponding to a linear network. For instance, the following commands can be typed
to create a point pattern of 100 points over the simplenet network provided by spatstat.data, which
lies within the [0, 1]× [0, 1] window:

> x <- runif(100, 0, 1)
> y <- runif(100, 0, 1)
> simplenet.lpp <- lpp(data.frame(x, y), simplenet)

Marks can be attached to the points forming the pattern by introducing several more columns next
to the x and y coordinates. For example, one can introduce a continuous random mark following a
standard normal distribution or a categorical random mark.

> random_cont_mark <- rnorm(100, 0, 1)
> random_cat_mark <- letters[round(runif(100, 0, 5))+1]
> simplenet.lpp <- lpp(data.frame(x, y, random_cont_mark, random_cat_mark),

simplenet)

In order to fit the objective of computing a relative probability for one type of event, categorical
marks are required. However, recoding a continuous mark into several categories to facilitate the
estimation of a specific relative risk is one possible alternative.

Using DRHotNet

This section shows the complete use of the DRHotNet package with a dataset of crime events recorded
in Chicago (Illinois, US). The reader should note that some of the outputs may vary slightly due to
possible changes over time in some of the packages used. First of all, the following R libraries have to
be loaded to reproduce the example:

> library(DRHotNet)
> library(lubridate)
> library(maptools)
> library(raster)
> library(rgeos)
> library(sp)
> library(spatstat.core)
> library(spatstat.linnet)
> library(spdep)
> library(SpNetPrep)
> library(tigris)

Downloading and preparing the linear network

The examples provided in this section fully employ open data available for Chicago. First, geographic
data from Chicago was downloaded from the United States Census Bureau through package tigris
(Walker, 2016). Specifically, census tracts and the road network of the state of Massachusetts were
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loaded into the R console. The function intersect from the package raster (Hijmans, 2019) can be
used.

0 m 500 m 1000 m

Figure 1: Road network (in gray) corresponding to the Near West Side Community Area of Chicago.
Census tracts of the area are overlayed in black.

> cook.tracts <- tracts(state = "Illinois", county = "031", class = "sp")
> class(cook.tracts)
[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"
> cook.network <- roads(state = "Illinois", county = "031", year = 2011,

class = "sp")
> class(cook.network)
[1] "SpatialLinesDataFrame"
attr(,"package")
[1] "sp"

The objects cook.tracts and cook.network are composed of 1319 polygons and 86227 lines,
respectively (as of the end of June 2021). Now, both spatial objects are intersected to construct a smaller
road network that corresponds to the Near West Side Community Area of Chicago.

> names.tracts <- as.character(cook.tracts@data[,"NAME"])
> select.tracts <- c("8378","2804","8330","2801","2808","2809","8380",

"8381","8331","2819","2827","2828","8382","8329",
"2831","2832","8333","8419","8429","2838")

> cook.tracts.select <- cook.tracts[which(names.tracts%in%select.tracts),]
> chicago.SpLines <- intersect(cook.network, cook.tracts.select)
> length(chicago.SpLines)
[1] 1357

Object chicago.SpLine (SpatialLinesDataFrame) has 1357 lines. Then, this object’s coordi-
nates are converted into UTM (Chicago’s UTM zone is 16):

> chicago.SpLines <- spTransform(chicago.SpLines,
"+proj=utm +zone=16 ellps=WGS84")

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=raster


CONTRIBUTED RESEARCH ARTICLE 386

Now the corresponding linnet object is created:

> chicago.linnet <- as.linnet(chicago.SpLines)
> chicago.linnet
Linear network with 10602 vertices and 11910 lines
Enclosing window:

rectangle = [442564.6, 447320] x [4634170, 4637660] units

It is worth noting how the transformation of the network into a linnet object increases dra-
matically the number of line segments (from 1357 to 11910). This is a consequence of the fact that
SpatialLines objects can handle curvilinear segments, made of multiple line segments, as a single
line. However, linnet objects follow the definition of the linear network provided in the Introduction
section, which excludes this possibility.

It is required that the network is fully connected to allow the computation of a distance between
any pair of points. This can be checked with the function connected.

> table(connected(chicago.linnet, what = "labels"))

1 2 3 4 5 6 7 8 9
10575 5 2 2 2 5 2 2 7

This output indicates that there is a connected component of 10575 vertices and other eight com-
ponents with only a few vertices. The use of connected with the option what = "components"
enables us to extract the larger connected component for the analysis, discarding the others.

> chicago.linnet.components <- connected(chicago.linnet,
what = "components")

> chicago.linnet.components[[1]]
Linear network with 10575 vertices and 11891 lines
Enclosing window:
rectangle = [442564.6, 447320] x [4634170, 4637660]
units
> chicago.linnet <- chicago.linnet.components[[1]]

At this point, it is worth considering the possibility of reducing the network’s complexity. The
function SimplifyLinearNetwork of SpNetPrep can be used for this purpose. A reasonable
choice of the parameters is Angle = 20 and Length = 50 (Briz-Redón, 2019). This choice of the
parameters means that a pair of segments meeting at a second-degree vertex are merged into one
single segment if the angle they form (measured from 0◦ to 90◦) is lower than 20◦ and if the length
of each of them is lower than 50 m. Hence, the network’s complexity is reduced (in terms of the
number of segments and lines) while its geometry is preserved. The following lines of code execute
SimplifyLinearNetwork and redefine chicago.SpLine according to the structure of the final
linnet object.

> chicago.linnet <- SimplifyLinearNetwork(chicago.linnet,
Angle = 20, Length = 50)

> chicago.linnet
Linear network with 3026 vertices and 4339 lines
Enclosing window:
rectangle = [442564.6, 447320] x [4634170, 4637660] units
> chicago.SpLines <- as.SpatialLines.psp(as.psp(chicago.linnet))

Thus, the final road network from Chicago that we use for the analysis has 4339 lines and 3026
vertices. An example of how SimplifyLinearNetwork reduces the network’s complexity is shown
in Figure 2, which corresponds to a squared zone of Chicago’s network with a diameter of 600 m.

Downloading and preparing crime data

Point-referenced crime datasets corresponding to several cities from the United States of America
can be downloaded through the R package crimedata (Ashby, 2019). Concretely, crimedata currently
provides (as of June 2021) crime open data recorded in Austin, Boston, Chicago, Detroit, Fort Worth,
Kansas City, Los Angeles, Louisville, Mesa, New York, San Francisco, Tucson, and Virginia Beach.
Therefore, the function get_crime_data from this package can be used for downloading a dataset
of crime events recorded in Chicago in the period 2007-2018.
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(a) (b)

Figure 2: Extracting a part of the road network structure analyzed from Chicago. Original structure
extracted (left), made of 285 lines and 272 vertices, and simplified version of it (right) with 122 lines
and 109 vertices.

> chicago.crimes <- get_crime_data(years = 2007:2018, cities = "Chicago")
> dim(chicago.crimes)
[1] 39206 12

The year, month, and hour of occurrence of each crime can be extracted with the corresponding
functions of the package lubridate (Grolemund and Wickham, 2011).

> chicago.crimes$year <- year(chicago.crimes$date_single)
> chicago.crimes$month <- month(chicago.crimes$date_single)
> chicago.crimes$hour <- hour(chicago.crimes$date_single)

Then, a marked point pattern lying on chicago.linnet can be created with function lpp
to provide the framework required by the DRHotNet package. A data.frame is passed to lpp
including the coordinates of the events (in UTM), the type of event according to the receiver of
the offense (offense_against), and the year, month, and hour of occurrence that have been just
computed.

> chicago.crimes.coord <- data.frame(x = chicago.crimes$longitude,
y = chicago.crimes$latitude)

> coordinates(chicago.crimes.coord) <-~ x + y
> lonlat_proj <- "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"
> utm_proj <- "+proj=utm +zone=16 ellps=WGS84"
> proj4string(chicago.crimes.coord) <- lonlat_proj
> chicago.crimes.coord <- spTransform(chicago.crimes.coord, utm_proj)
> X.chicago <- lpp(data.frame(x = chicago.crimes.coord@coords[,1],

y = chicago.crimes.coord@coords[,2],
offense_against = chicago.crimes$offense_against,
year = chicago.crimes$year,
month = chicago.crimes$month,
hour = chicago.crimes$hour),
chicago.linnet)

Warning message:
38006 points were rejected as lying outside the specified window

A total of 38006 points are rejected because they lie outside the road network. Hence, a marked
point pattern of 1200 crimes that lie on chicago.linnet remains for the analysis. The four marks
are categorical, presenting the following values and absolute frequencies:

> table(X.chicago$data$offense_against)
other persons property society
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86 257 749 108
> table(X.chicago$data$year)
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
126 131 97 111 100 110 87 84 76 93 92 93
> table(X.chicago$data$month)
1 2 3 4 5 6 7 8 9 10 11 12

103 71 101 92 110 100 128 102 111 109 95 78
> table(X.chicago$data$hour)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
45 34 29 25 19 14 18 41 53 51 48 54 71 71 69 71 60 72
18 19 20 21 22 23
64 67 60 52 62 50

Hence, DRHotNet functionalities are now applicable to X.chicago. In the main example shown,
the relative occurrence of crimes against persons along the road network included in X.chicago
is analyzed. To this end, the functions of the package are used following the steps that have been
established for the differential risk hotspot detection methodology previously described.

Estimating a relative probability surface

The function relpnet of DRHotNet has to be used at first to estimate a relative probability surface
over the linear network. As it has been explained, this implies estimating a relative probability in the
middle point of each segment of the network.

> rel_probs_persons <- relpnet(X = X.chicago,
lixel_length = 50,
h = 250,
mark = "offense_against",
category_mark = "persons")

The available parameter finespacing is by default set to FALSE in order to reduce the com-
putational cost (as FALSE is the default value, it can be omitted in the specification of the function).
If finespacing is set to TRUE, more accurate kernel density estimates are obtained at short seg-
ments, but the computational cost can become prohibitive. The interested reader can consult the
documentation of the densityHeat function of spatstat.linnet to know precisely how this parameter
works.

In this example, an upper bound of 50 m is chosen for the lixel length. This means that segments
shorter than 50 m are not split, whereas those longer than 50 m are split into several shorter lixels of
no more than 50 m lengths. This operation is performed internally by relpnet with the function
lixellate from spatstat.linnet. The bandwidth parameter, h, is set to 250 m. The mark and
category_mark parameters are used to specify the type of event that is under analysis.

The exploration of the object rel_probs_persons with function str allows the user to check
that the choice of a 50 m threshold for the lixel length produces 8617 segments along the network.
Thus, a relative probability is estimated in the middle point of each of these segments, which can be
accessed by typing $probs:

> str(rel_probs_persons)
List of 5
$ probs : num [1:8617] 0.129 0.138 0.202 0.492 0.662 ...
$ lixel_length : num 50
$ h : num 250
$ mark : chr "offense_against"
$ category_mark: chr "persons"

The function plotrelp can then be used to obtain a map of the relative probability surface like
the one shown in Figure 3b. Figure 3 also contains the relative probability surfaces corresponding to
the choices of h = 125 (Figure 3a), h = 500 (Figure 3c) and h = 1000 (Figure 3d). In this particular case,
using an Intel(R) Core(TM) i7-6700HQ processor, it takes approximately 1 second to execute relpnet
if h = 125, and 8 seconds if h = 1000.

Figure 1 allows us to observe that the choice of a larger value for h smooths the relative probability
surface, which in the case of h = 500 or h = 1000 leads to the configuration of a small number of clearly
distinguishable zones of the network in terms of the relative probability of offenses against persons.
Indeed, whereas the use of h = 125 allows the user to obtain quite extreme relative probability values
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Relative probabilities ’persons’ (offense_against),

lixel_length = 50, h = 125

[0, 0.03] ]0.03, 0.11] ]0.11, 0.22] ]0.22, 0.38] ]0.38, 1]

(a)

Relative probabilities ’persons’ (offense_against),

lixel_length = 50, h = 250

[0, 0.11] ]0.11, 0.17] ]0.17, 0.24] ]0.24, 0.33] ]0.33, 0.91]

(b)

Relative probabilities ’persons’ (offense_against),

lixel_length = 50, h = 500

[0, 0.14] ]0.14, 0.19] ]0.19, 0.24] ]0.24, 0.3] ]0.3, 0.52]

(c)

Relative probabilities ’persons’ (offense_against),

lixel_length = 50, h = 1000

[0.1, 0.15] ]0.15, 0.22] ]0.22, 0.24] ]0.24, 0.27] ]0.27, 0.33]

(d)

Figure 3: Outputs from the function plotrelp for the following choices of h: 125 (a), 250 (b), 500 (c)
and 1000 (d).

at some segments of the network (the relative probability estimates cover the [0,1] interval), choosing
h = 1000 causes that all the relative probabilities lie in the interval [0.10, 0.33].

In view of Figure 3, we consider that h = 250 is a reasonable choice (although some procedures
for bandwidth selection could be explored for taking this decision). Therefore, this selection of the
bandwidth parameter is maintained to display now how the drhot function of the package works.

Detecting differential risk hotspots

The function drhot needs four parameters to be specified: X (a point pattern on a linear network),
rel_probs (an object like the one obtained in the previous step), k, and n. Parameters k and n control
the differential risk hotspot procedure, as it has been explained before. For example, we can try with k
= 1 and n = 30:

> hotspots_persons <- drhot(X = X.chicago,
rel_probs = rel_probs_persons,
k = 1, n = 30)

The output of the function drhot presents the following structure:

> str(hotspots_persons)
List of 8
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$ DRHotspots :List of 5
..$ : num [1:42] 248 249 502 503 576 ...
..$ : num 2971
..$ : num 7551

$ k : num 1
$ n : num 30
$ lixel_length : num 50
$ h : num 250
$ mark : chr "offense_against"
$ category_mark: chr "persons"
$ PAI_t : num 12.1

The first component of hotspots_persons contains the differential risk hotspots that have been
detected for the values of k and n provided to drhot. In this case, three differential risk hotspots are
found, which are formed by 42, 1, and 1 road segments, respectively. The object hotspots_persons
also contains the values of the parameters involved in the computation of the hotspots and a final
component that includes the global PAIt for the set, which is 12.10 in this example.

The function drsummary can be used to provide a summary of each of the differential risk hotspots
determined by drhot:

> summary_persons <- drsummary(X = X.chicago,
rel_prob = rel_probs_persons,
hotspots = hotspots_persons)

The output of drsummary includes a count of the number of events located within each differential
risk hotspot and how many of these correspond to the category “persons”:

> summary_persons[,c("Events type (ctr)", "All events (ctr)",
"Prop. (ctr)")]

Events type (ctr) All events (ctr) Prop. (ctr)
1 16 35 0.46
2 0 0 NaN
3 0 0 NaN

The summary also contains the length (in meters) of each differential risk hotspot and the PAIt
that corresponds to each of them:

> summary_persons[,c("Length in m (ctr)", "PAI_t (ctr)")]
Length in m (ctr) PAI_t (ctr)

1 1532.51 12.59
2 42.99 0.00
3 25.22 0.00

Furthermore, the output of drsummary also provides the same statistics for an extension of each
of the hotspots. The reason to include this information is that if there are not many events available in
the dataset (as it happens in this example), the method can determine differential risk hotspots where
very few events, if any, have taken place. Indeed, in the output of drsummary shown above, there are
two hotspots including zero events. The fact of employing kernel density estimation to infer a relative
probability surface makes it more convenient to think of each differential risk hotspot as the union of a
center or core (what drhot returns, the hotspot itself) and an extension of it. Hence, by considering
an extension of the differential risk hotspot, one can better appreciate the zone of the network that has
been accounted for in the estimation of the relative probability values corresponding to the segments
of the hotspot.

By default, the extension computed by drsummary coincides with a neighbourhood of the seg-
ments forming each differential risk hotspot of order o = h

Lixel length (rounded to the nearest integer),
although a different order can be specified through the parameter order_extension. In this exam-
ple, we have o = 250

50 = 5, which is used by drsummary if no other order is indicated:

> summary_persons[,c("Events type (ext)", "All events (ext)",
"Prop. (ext)")]

Events type (ext) All events (ext) Prop. (ext)
1 22 57 0.39
2 11 26 0.42
3 10 24 0.42
> summary_persons[,c("Length in m (ext)", "PAI_t (ext)")]
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Length in m (ext) PAI_t (ext)
1 6283.36 4.22
2 1700.86 7.80
3 1189.04 10.14

It can be observed that all extensions of the differential risk hotspots include a reasonable number
of events and that the corresponding proportions of offenses against persons are clearly above the
global proportion for the dataset, which is 257/1200 = 21.42.

Assessing the statistical significance of the hotspots

Following the choice of k = 1 and n = 30, it only remains to estimate a p-value for each differential
risk hotspot detected. This can be done by calling the function drsummary again and specifying
compute_p_value = T. A total of 20 iterations are selected for performing the Monte Carlo simula-
tion process:

> summary_persons <- drsummary(X = X.chicago,
rel_prob = rel_probs_persons,
hotspots = hotspots_persons,
compute_p_value = T,
n_it = 200)

> summary_persons$`p-value`
[1] 0.000 0.000 0.000

Therefore, the five differential risk hotspots detected with k = 1 and n = 30 are statistically
significant (p < 0.05). It is worth noting, however, that the usual significance level of 0.05 should be
reduced (corrected) if many differential risk hotspots are detected to avoid the presence of multiple
comparison problems.

Choosing k and n

Remember that a higher value of either k or n represents using a more stringent criterion regarding
hotspot detection. This is illustrated through the four maps available in Figure 4, which can be
generated with the function plothot of DRHotNet. For instance, as in the following example for the
object hotspots created previously (which corresponds to Figure 4d):

> plothot(X = X.chicago, hotspots = hotspots_persons)

Indeed, Figure 4 shows the differential risk hotspots that drhot detects for the choices of k =
0.5 and n = 20 (Figure 4a), k = 1.5 and n = 20 (Figure 4b), k = 1 and n = 10 (Figure 4c), and
k = 1 and n = 30 (Figure 4d). Two of these combinations of conditions on k and n are implicitly
represented by the other two. Consequently, the differential risk hotspots shown in Figure 4b are
contained in Figure 4a, and those in Figure 4d are contained in Figure 4c. The choice of k = 1 and n
= 30 leads to the highest global PAIt among the four combinations of parameters indicated with the
value of 12.1 mentioned before. In this regard, we recommend performing a sensitivity analysis on the
values of k and n to decide which combination is more convenient. The sensitivity analysis carried out
by Briz-Redón et al. (2019a) yielded that a choice around k = 1.5 and n = 45 was optimal in terms of
the PAIt for the traffic accident dataset that was investigated. However, each dataset should require a
specific analysis.

Thus, a sensitivity analysis on k and n can be carried out with the function drsens. The user has
to provide a point pattern (X), an object containing the relative probabilities of a type of event along
the network (rel_probs) and a set of values for k and n (ks and ns, respectively):

> sensitivity_analysis <- drsens(X = X.chicago,
rel_prob = rel_probs_persons,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_analysis
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 3.34 5.07 6.75 12.35 12.05
k = 0.5 4.47 6.52 7.92 12.82 12.05
k = 1 5.15 8.62 8.92 10.93 12.05
k = 1.5 5.94 9.12 10.89 10.88 13.70
k = 2 2.16 10.06 NA NA NA
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k = 2.5 NA NA NA NA NA
k = 3 NA NA NA NA NA

The output from drsens is a matrix that contains the PAIt values that correspond to each combi-
nation of k and n indicated by ks and ns. A NA value represents that no differential risk hotspots can
be found for such a combination of parameters. According to this matrix, the highest PAIt value is
achieved for k = 1.5 and n = 30.

Therefore, one can choose the values of k and n that maximize the PAIt (considering the parameters
provided in ks and ns) to determine the final set of differential risk hotspots. However, this criteria
may sometimes lead to detecting a very low number of differential risks hotspots and hence to miss
zones of the network that may also deserve some attention. Hence, a more conservative approach
could be considering several combinations of k and n that yield some of the highest values of PAIt
and explore each set of differential risk hotspots associated. Then, one could investigate the output
of drsummary for each combination of parameters (including the computation of p-values) to better
decide which zones of the network are relevant for the type of event of interest.

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, h = 250,

k = 0.5, n = 20

DRHotspot (center) DRHotspot (extension), order = 5

(a)

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, h = 250,

k = 1.5, n = 20

DRHotspot (center) DRHotspot (extension), order = 5

(b)

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, h = 250,

k = 1, n = 10

DRHotspot (center) DRHotspot (extension), order = 5

(c)

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, h = 250,

k = 1, n = 30

DRHotspot (center) DRHotspot (extension), order = 5

(d)

Figure 4: Outputs from the function plothot for the following choices of k and n: k = 0.5 and n = 20
(a), k = 1.5 and n = 20 (b), k = 1 and n = 10 (c), and k = 1 and n = 30 (d).

Other applications of the methodology

This final section shows the results that are obtained for other type of events for comparative purposes.
First, the marks X.chicago are recoded into binary outcomes as follows:
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> year_after_2012 <- ifelse(X.chicago$data$year>2012, "Yes", "No")
> month_winter <- ifelse(X.chicago$data$month%in%c(12,1,2), "Yes", "No")
> hour_21_3 <- ifelse(X.chicago$data$hour%in%c(21:23,0:3), "Yes", "No")
> marks(X.chicago) <- data.frame(as.data.frame(marks(X.chicago)),

year_after_2012 = year_after_2012,
month_winter = month_winter,
hour_21_3 = hour_21_3)

The relative probability surfaces have to be computed. We used the same values for lixel.length
and h than in the previous examples.

> rel_probs_after_2012 <- relpnet(X = X.chicago,
lixel_length = 50,
h = 250,
mark = "year_after_2012",
category_mark = "Yes")

> rel_probs_winter <- relpnet(X = X.chicago,
lixel_length = 50,
h = 250,
mark = "month_winter",
category_mark = "Yes")

> rel_probs_21_3 <- relpnet(X = X.chicago,
lixel_length = 50,
h = 250,
mark = "hour_21_3",
category_mark = "Yes")

The corresponding sensitivity analyses are carried out:

> sensitivity_after_2012 <- drsens(X = X.chicago,
rel_prob = rel_probs_after_2012,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_after_2012
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 2.47 3.35 4.59 6.36 10.96
k = 0.5 3.08 4.28 7.11 14.00 15.09
k = 1 2.84 4.38 8.33 25.76 29.98
k = 1.5 2.65 4.63 7.03 0.00 0.00
k = 2 2.24 0.00 NA NA NA
k = 2.5 NA NA NA NA NA
k = 3 NA NA NA NA NA
> sensitivity_winter <- drsens(X = X.chicago,

rel_prob = rel_probs_winter,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_winter
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 2.75 3.63 4.81 5.17 4.86
k = 0.5 2.83 3.60 4.41 8.35 0.00
k = 1 3.62 3.86 0.00 0.00 NA
k = 1.5 7.59 8.56 0.00 NA NA
k = 2 NA NA NA NA NA
k = 2.5 NA NA NA NA NA
k = 3 NA NA NA NA NA
> sensitivity_21_3 <- drsens(X = X.chicago,

rel_prob = rel_probs_21_3,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_21_3
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 2.86 4.55 5.41 6.75 7.78
k = 0.5 3.50 5.21 6.02 7.11 7.34
k = 1 4.17 5.90 4.84 0.00 0.00
k = 1.5 4.78 6.92 5.52 NA NA
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k = 2 5.14 5.64 3.00 NA NA
k = 2.5 4.59 1.75 0.00 NA NA
k = 3 NA NA NA NA NA

The highest PAIt values for year_after_2012, month_winter, and hour_21_3 are 29.98, 8.56,
and 7.78, respectively. The differential risk hotspots that are obtained for the combination of k and n
that lead to these PAIt values can be visualized with plothot (Figure 5):

> hotspots_after_2012 <- drhot(X = X.chicago,
rel_prob = rel_probs_after_2012,
k = 1,
n = 30)

> plothot(X = X.chicago, hotspots_after_2012)

> hotspots_winter <- drhot(X = X.chicago,
rel_prob = rel_probs_winter,
k = 1.5,
n = 15)

> plothot(X = X.chicago, hotspots_winter)

> hotspots_21_3 <- drhot(X = X.chicago,
rel_prob = rel_probs_21_3,
k = 0,
n = 30)

> plothot(X = X.chicago, hotspots_21_3)

Differential risk hotspots ’Yes’ (year_after_2012),

lixel_length = 50, h = 250,

k = 1, n = 30

DRHotspot (center) DRHotspot (extension), order = 5

(a)

Differential risk hotspots ’Yes’ (month_winter),

lixel_length = 50, h = 250,

k = 1.5, n = 15

DRHotspot (center) DRHotspot (extension), order = 5

(b)

Differential risk hotspots ’Yes’ (hour_21_3),

lixel_length = 50, h = 250,

k = 0, n = 30

DRHotspot (center) DRHotspot (extension), order = 5

(c)

Figure 5: Outputs from the function plothot for the marks year_after_2012, month_winter,
and hour_21_3 and the categorical value Yes for the three, considering the combinations of k and n
that maximize the PAIt (for the values of k and n tested).

Summary

The R package DRHotNet for detecting differential risk hotspots on linear networks has been described.
The use of linear networks in the context of hotspot detection is becoming more important over the
years, particularly in the fields of criminology and traffic safety. In addition, it is also of great
interest sometimes to detect zones of a linear network where a certain type of event is especially
overrepresented. Hence, DRHotNet consists of an easy-to-use tool implemented in R to accurately
locate the microzones of a linear network where the incidence of a type of event is considerably higher
than in the rest of it.
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tramME: Mixed-Effects Transformation
Models Using Template Model Builder
by Bálint Tamási and Torsten Hothorn

Abstract Linear transformation models constitute a general family of parametric regression models
for discrete and continuous responses. To accommodate correlated responses, the model is extended
by incorporating mixed effects. This article presents the R package tramME, which builds on existing
implementations of transformation models (mlt and tram packages) as well as Laplace approximation
and automatic differentiation (using the TMB package), to calculate estimates and perform likelihood
inference in mixed-effects transformation models. The resulting framework can be readily applied to a
wide range of regression problems with grouped data structures.

Introduction

Datasets with grouped observations are abundant in the applied statistical practice. Clustering,
hierarchical designs, longitudinal studies, or repeated measurements can all lead to grouped data
structures. The common property of these datasets is that observations within groups, defined by one
or more grouping factors, cannot be treated as independent. In order to draw a valid inference, the
statistical model has to address the issue of correlated observations. Mixed-effects models represent
one of the main approaches dealing with this type of regression problem. In this approach, the
observations are assumed to be independent conditionally on a set of random effects that aim to
capture unmodeled group-level heterogeneity. The reader is referred, for example, to the textbook
by Demidenko (2013) for an exposition and examples of the usage of mixed-effects models. Several
R packages exist that implement mixed-effects models for specific types of regression problems. The
two most notable examples are nlme by Pinheiro et al. (2021) and lme4 by Bates et al. (2015) for linear,
non-linear, and generalized linear mixed-effects models, respectively.

Linear transformation models aim to directly specify the conditional distribution function of
an outcome variable in a regression setting. Hothorn (2020) proposed a fully parametric approach
using a flexible monotone increasing transformation function that is estimated from the data. The
resulting general model family can be applied to a wide range of problems with at least ordered
discrete outcome variables. In fact, many of the popular regression models can be expressed as special
cases of the linear transformation model framework. Most recently, Tian et al. (2020) reviewed the
approach followed in this study and compared it to an alternative semiparametric formulation using
extensive simulations. By introducing random effects in the linear transformation model, it becomes
applicable in a very diverse set of regression problems where the observations are correlated due to
repeated measurements or grouped designs.

The structure of this article is as follows: After a brief, and somewhat technical, introduction of
the methodology and the implementation in Section 2.2, Section 2.3 demonstrates, through a series of
examples, how the package tramME (Tamási and Hothorn, 2021) can be applied to estimate regression
models with various response types and data structures. Finally, Section 2.4 discusses a few issues
concerning the implementation of our model.

Mixed-effects transformation models

The model class in the R package tramME is an extension of the transformation model approach
described by Hothorn et al. (2018) and implemented in the R packages mlt and tram by Hothorn
(2020) and Hothorn and Barbanti (2021), respectively. These resources provide an introduction to fully
parameterized transformation models for independent observations.

Formally, we are interested in models that parameterize the conditional distribution function
directly,

P (Y ≤ y | x, u, γ) = FZ

(
h(y; ϑ)− x⊤β − u⊤γ

)
γ ∼ Nq(0, Σ), (1)

where FZ denotes a pre-specified error distribution function (or inverse-link function), which is
monotone increasing and maps from the real numbers to the closed interval [0, 1]. Typically, FZ is set
to the CDF of a simple continuous distribution, hence the name “error distribution”. The baseline
transformation function is h(y; ϑ), which is also a monotonic increasing function parameterized with
the vector ϑ. For the fixed and random effects design matrices, respectively, x⊤ and u⊤ are suitable row
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vectors. The vector β contains the fixed effects, while γ comprises of the stacked (possibly multiple)
random effects. The distribution of the random effects is assumed to be multivariate Gaussian with
zero mean and covariance matrix Σ, which typically has a sparse block structure.

As Table 1 shows, specific choices of the error distribution and the baseline transformation function
lead to different types of regression models. In the R package tramME, seven main model types
are distinguished, mainly based on the class of their outcome variable. Moreover, the functions
SurvregME() and PolrME() allow to specify multiple error distributions or baseline transformations
and hence increasing the number of available model types.

Function Name FZ h(y; ϑ)

LmME() Mixed-effects normal linear
regression

Standard Gaussian Linear basis

BoxCoxME() Non-normal (Box-Cox-type)
linear mixed-effects regression

Standard Gaussian Bernstein basis

ColrME() Mixed-effects continuous
outcome logistic regression

Standard logistic Bernstein basis

CoxphME() Mixed-effects parametric Cox
regression

Minimum extreme value Bernstein basis

SurvregME() Mixed-effects parametric
survival models

Multiple options Multiple options

PolrME() Mixed-effects regression models
for ordinal outcomes

Multiple options Discrete basis

LehmannME() Mixed-effects
Lehmann-alternative linear
regression

Maximum extreme value Bernstein basis

Table 1: Model types implemented in the tramME package. FZ denotes the error distribution and the
column h(y; ϑ) lists the basis functions the baseline transformation function utilizes.

As the table indicates, some of the models specify their transformation functions as general smooth
functions, approximated with the use of polynomials in Bernstein form. The function h(y; ϑ) has to be
monotonic increasing so that the conditional distribution function is also increasing. When using a set
of order p polynomials in Bernstein form for the approximation of a general function, this restriction
conveniently translates to the parameter restriction ϑi ≤ ϑi+1 for all i = 0, . . . , p − 1.

The observations are assumed to be conditionally independent, and hence the likelihood has the form

L (ϑ, β, Σ) =
∫

Rq
L(ϑ, β, Σ, γ) dγ

=
∫

Rq

n

∏
i=1

Li(ϑ, β | γ)ϕ(γ; Σ) dγ, (2)

where L(ϑ, β, Σ, γ) is the joint likelihood function, given the all observations, and Li(ϑ, β | γ) denotes
the individual conditional likelihood contributions. ϕ(γ; Σ) stands for the probability density function
of the multivariate normal distribution with zero mean vector and covariance matrix Σ. This latter
function can be factorized further according to the covariance structure of the random effects.

One of the main advantages of working directly with the distribution function of the outcome
is that it is simple to introduce (random) censoring and truncation in the estimation procedure. The
conditional likelihood contributions under different types of censoring can be written as

Li(ϑ, β | γ) =



fZ(h(y; ϑ)− x⊤β − u⊤γ)h′(y; ϑ) y ∈ Ξ “exact continuous”

1 − FZ(h(
¯
y; ϑ)− x⊤β − u⊤γ) y ∈ (

¯
y, ∞) ∩ Ξ “right-censored”

FZ(h(ȳ; ϑ)− x⊤β − u⊤γ) y ∈ (−∞, ȳ] ∩ Ξ “left-censored”

FZ(h(ȳ; ϑ)− x⊤β − u⊤γ)

− FZ(h(
¯
y; ϑ)− x⊤β − u⊤γ)

y ∈ (
¯
y, ȳ] ∩ Ξ “interval-censored”,
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where fZ() is the density function of the error distribution, h′(y; ϑ) is the first derivative of the baseline
transformation function with respect to y, and Ξ denotes the sample space of Y.

The multidimensional integral in Equation (2), in general, does not have an analytical solution, but
its value can be approximated using numerical methods. The package tramME applies the Laplace
approximation to this problem, which relies on the quadratic Taylor expansion of the corresponding
joint log-likelihood function.

The maximization of the logarithm of the likelihood function with respect to ϑ, β, and Σ, under a set
of suitable constraints on ϑ to make h(y; ϑ) monotone increasing, results in the maximum likelihood
estimates of the model parameters. Standard likelihood theory, utilizing the ability to evaluate
the log-likelihood function, the score function, and the Hessian, provides a basis for asymptotic
inference in this family of models; see Hothorn et al. (2018) for more details on likelihood inference in
transformation models.

The maximum likelihood estimation in tramME is done using the TMB package by Kristensen
et al. (2016). The Template Model Builder (TMB) allows the user to define and estimate general,
non-linear mixed-effects models. It was built on well-tested and high-performance C++ libraries,
which results in a flexible yet efficient framework for estimating mixed models with possibly complex
random effects structures; see, for example, Brooks et al. (2017) for performance comparisons in the
context of the package glmmTMB. In tramME, TMB is used to evaluate the integral in Equation (2),
using Laplace’s method, and to calculate the derivatives of the log-likelihood function using automatic
(or algorithmic) differentiation.

Applications

In this section, several applications of the transformation mixed models are presented, and wherever
it is possible, also compared to other existing implementations. The examples shown here are by no
means intended as complete analyses. They demonstrate how mixed-effects transformation models
can be used in a broad range of regression problems and showcase the most important features
implemented in the package tramME.

In each application, a simple version of a transformation mixed model is compared to the same
model implemented by a benchmark package first. In a second step, extensions to more complex mod-
els not available other packages are fitted using package tramME. The R code illustrates similarities
and differences in the user interfaces. The two model outputs allow a direct comparison of the model-
agnostic implementation in tramME to the model-specific implementation in the benchmark package.
The package tramME is, however, not intended as a replacement for well-tested implementations
of important special cases of mixed models, such as linear mixed models in lme4, but as a tool for
extending these implementations to more complex model variants.

Normal linear mixed model

As a first example, we model the average reaction times to a specific task from a sleep deprivation
study described in Belenky et al. (2003). Figure 1 presents the reaction times against days of sleep
deprivation for each of the 18 participants.

In this first example, we model the distribution of the average reaction time using random
intercepts and random slopes for the effects of days of sleep deprivation.

P (Reaction ≤ y | Days, αi, βi) = Φ (ϑ1 + ϑ2y − βDays− γ1i − γ2iDays) (3)(
γ1i
γ2i

)
∼ N2

{(
0
0

)
,
(

τ2
1 τ12

τ12 τ2
2

)}
Note that when the transformation function is assumed to be linear in the outcome variable, i.e.,
h(y) = ϑ1 + ϑ2y, we arrive at a re-parameterized version of the normal linear mixed effects-model, and
hence the results from tramME::LmME() are directly comparable to estimates using other mixed-effects
regression packages such as lme4. Estimating the normal linear model with the tramME:

R> library("tramME")
R> sleep_lmME <- LmME(Reaction ~ Days + (Days | Subject), data = sleepstudy)
R> logLik(sleep_lmME)

'log Lik.' -876 (df=6)

To make the results from lme4 comparable to the previous results, we set REML = FALSE, as the
transformation mixed model implementation only supports the maximum likelihood estimation of

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=TMB
https://CRAN.R-project.org/package=glmmTMB
https://CRAN.R-project.org/package=lme4


CONTRIBUTED RESEARCH ARTICLES 401

Subject = 351 Subject = 352 Subject = 369 Subject = 370 Subject = 371 Subject = 372

Subject = 333 Subject = 334 Subject = 335 Subject = 337 Subject = 349 Subject = 350

Subject = 308 Subject = 309 Subject = 310 Subject = 330 Subject = 331 Subject = 332

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

200

300

400

200

300

400

200

300

400

Days of sleep deprivation

A
ve

ra
ge

 r
ea

ct
io

n 
tim

e 
(m

s)

Figure 1: Sleep deprivation study: Average reaction times to a specific task of 18 participants after
several days of sleep deprivation reported by Belenky et al. (2003).

the normal linear model specification.

R> library("lme4")
R> sleep_lmer <- lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy,
+ REML = FALSE)
R> logLik(sleep_lmer)

'log Lik.' -876 (df=6)

The as.lm = TRUE option of various methods in tramME facilitates the comparisons between the
transformation model parameterization and the results of a linear mixed model parameterization.
Coefficient estimates and their standard errors from the transformation model approach are

R> cbind(coef = coef(sleep_lmME, as.lm = TRUE),
+ se = sqrt(diag(vcov(sleep_lmME, as.lm = TRUE, pargroup = "fixef"))))

coef se
(Intercept) 251.4 6.63
Days 10.5 1.50

while the results from lmer are

R> summary(sleep_lmer)$coefficients

Estimate Std. Error t value
(Intercept) 251.4 6.63 37.91
Days 10.5 1.50 6.97

Similarly, the standard deviations and correlations of the random effects and the standard deviations
of the error terms are essentially the same

R> VarCorr(sleep_lmME, as.lm = TRUE) ## random effects

Grouping factor: Subject (18 levels)
Standard deviation:
(Intercept) Days

23.80 5.72

Correlations:
(Intercept)

Days 0.0813
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R> sigma(sleep_lmME) ## residual SD

[1] 25.6

R> VarCorr(sleep_lmer)

Groups Name Std.Dev. Corr
Subject (Intercept) 23.78

Days 5.72 0.08
Residual 25.59

With the predict method of tramME, we can evaluate the fitted conditional distribution of the
outcome on a scale specified by the user. Additionally, by setting type = "quantile", we can calculate
the quantiles of the conditional distribution of the response.

R> ## Update to specify the support
R> sleep_lmME1b <- update(sleep_lmME, support = c(150, 520))
R> ## Set up grid to calculate conditional quantiles
R> nd <- expand.grid(Days = seq(min(sleepstudy$Days), max(sleepstudy$Days),
+ length.out = 200),
+ Subject = unique(sleepstudy$Subject))
R> ## The quantiles we want to calculate
R> pr <- c(0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975)
R> ## Specify the random effects values as predicted by the model
R> re <- ranef(sleep_lmME1b)
R> ## Calculate conditional quantiles
R> pred <- predict(sleep_lmME1b, newdata = nd, prob = pr, ranef = re,
+ type = "quantile")

Note that in the code above, we first update the model and explicitly set the support of the outcome
distribution. It is often helpful to define the support when we want to calculate the quantiles of the
outcome distribution because in certain extreme cases, the calculated values may lie outside of the
default support and, in these cases, predict.tramME (just as predict.mlt) will return censored values.

Because we are interested in conditional quantiles, we have to specify the values of the random
effects on which we want to condition for each subject. In the example above, we simply set the
predicted random effects values for the subjects of the sleepstudy dataset. Although it is relatively
common in practice, one should be careful with using plug-in estimators of non-linear functions of
the random effects (i.e., estimating these functions by evaluating at the point estimates of the random
effects) as they can contain substantial bias (Thorson and Kristensen, 2016). To demonstrate how
mixed-effects transformation models relax certain assumptions of the normal linear reference model
and to showcase the functionality implemented in the tramME package, occasionally, we will rely on
these estimators nevertheless.

Figure 2 presents the quantiles of the conditional distribution of reaction time from the model
defined in Equation (3). The random intercepts and slopes capture separate time trends for each
subject in the study. In the normal linear mixed model (estimated with LmME), the conditional quantiles
are parallel lines. We will revisit this example when we relax certain assumptions of this initial model
in Section 2.3.2.

tramME implements a version of score residuals that are defined as the score contributions of the
individual observations with respect to an additional constant term that is fixed at zero.

P (Y ≤ y | x, u, γ) = FZ

(
h(y; ϑ)− x⊤β − u⊤γ − α0

)
γ ∼ Nq(0, Σ)

ri =
∂ℓi(ϑ, β, Σ, α0)

∂α0

∣∣∣∣
α0=0,

(4)

where ℓi(ϑ, β, Σ, α0) is the marginal log-likelihood contribution of observation i. It is straightforward
to show that, in the case of the normal linear model, this is equal to the response residuals divided by
the MLE of the error standard deviation. As previously, the comparison with the parameterization
used by lme4 is made easy by using the option as.lm = TRUE.

R> resid_lmME <- resid(sleep_lmME, as.lm = TRUE)
R> resid_lmer <- resid(sleep_lmer)
R> all.equal(resid_lmME, resid_lmer)

[1] "Mean relative difference: 8.04e-06"

Using the linear predictor of the mixed-effects transformation model, (x⊤ β̂ + u⊤γ̂) calculated as
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Figure 2: Quantiles of the conditional distribution of the outcome fitted to the sleepstudy data with
the normal linear mixed-effects model (LmME).

R> lp <- predict(sleep_lmME, type = "lp")

we can construct plots for checking the residuals (Figure 3).

As the results of this section show, the transformation model approach implemented by LmME()
leads to the same results as the maximum likelihood estimation of the traditional linear mixed
model parameterization. The advantage of using the package tramME over other well-established
implementations is that it can also be applied when classical model assumptions are not met. For
the sleep deprivation experiments, the data analyst might wonder if assuming normal reaction times
is appropriate and if clocking of reaction times was indeed as accurate as suggested by the data
(milliseconds with four digits). The former issue requires a relaxation of the conditional normality
assumption and the latter incorporation of interval-censoring in the likelihood. We will start with
model estimation in the presence of interval-censored reaction times, which is outside the scope of
lme4.

Let us assume that the measurement device used in the sleep deprivation study is only able to
measure reaction times larger than 200 ms and only in 50 ms step sizes. If we want to take this reduced
accuracy in the measurements into account, we have to deal with interval-censored observations as
ignoring the censored nature of the outcomes could lead to biased parameter estimates.

With the following code, we create the interval-censored outcome vector using the Surv function
of the survival package by Therneau (2021).

R> library("survival")
R> ub <- ceiling(sleepstudy$Reaction / 50) * 50
R> lb <- floor(sleepstudy$Reaction / 50) * 50
R> lb[ub == 200] <- 0
R> sleepstudy$Reaction_ic <- Surv(lb, ub, type = "interval2")
R> head(sleepstudy$Reaction_ic)

[1] [200, 250] [250, 300] [250, 300] [300, 350] [350, 400] [400, 450]

Using the interval-censored outcomes in the LmME(), function call will maximize the correct likelihood
function.

R> sleep_lmME2 <- LmME(Reaction_ic ~ Days + (Days | Subject), data = sleepstudy)
R> logLik(sleep_lmME2)
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Figure 3: Residual plots of the normal linear mixed-effects transformation model fitted to the
sleepstudy data. Left: Residuals plotted against the linear predictor. Right: QQ plot of the residuals
against Gaussian quantiles.

'log Lik.' -201 (df=6)

The value of the log-likelihood is different because we are now calculating log-probabilities instead of
log-densities of a continuous distribution. However, despite the decreased precision of the measure-
ments, the parameter estimates are similar to what we got with the exactly observed outcomes.

R> cbind(coef = coef(sleep_lmME2, as.lm = TRUE),
+ se = sqrt(diag(vcov(sleep_lmME2, as.lm = TRUE, pargroup = "fixef"))))

coef se
(Intercept) 251.4 6.83
Days 10.5 1.62

R> sigma(sleep_lmME2)

[1] 28

R> VarCorr(sleep_lmME2, as.lm = TRUE)

Grouping factor: Subject (18 levels)
Standard deviation:
(Intercept) Days

22.30 5.94

Correlations:
(Intercept)

Days 0.0536

The small estimated value of the correlation coefficient between the random slope and intercept
suggests that a model with independent random effects might be more appropriate. To estimate such
a model, we can use the same notation as in lme4

R> sleep_lmME3 <- LmME(Reaction_ic ~ Days + (Days || Subject), data = sleepstudy)
R> logLik(sleep_lmME3)

'log Lik.' -201 (df=5)

Comparing the two models using a likelihood ratio test, we see no evidence against the more parsimo-
nious model (sleep_lmME3).

R> anova(sleep_lmME2, sleep_lmME3)

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 405

Model comparison

Model 1: Reaction_ic ~ Days + (Days | Subject)
Model 2: Reaction_ic ~ Days + (Days || Subject)

npar logLik AIC BIC Chisq Chisq df Pr(>Chisq)
Model 2 5 -200 411 427
Model 1 6 -200 413 432 0.02 1 0.89

Note that the standard likelihood ratio tests provided by anova are very conservative for model
comparisons that involve setting some of the random effects variances to zero due to the non-standard
asymptotics of tests on the boundary of the parameter space (Self and Liang, 1987).

Box-Cox-type mixed-effects models

Substituting the linear baseline transformation function, h(y) = ϑ1 + ϑ2y, with a general, monotonic
increasing smooth function, we can relax the conditional normality assumption of the model discussed
in Section 2.3.1. The transformation model approach proposed by Hothorn et al. (2018) uses Bernstein
bases to approximate this general increasing function in a fully parametric manner, i.e., h(y) =
aBs,K+1(y)⊤ϑ. The resulting model can be regarded as a version of the Box-Cox regression (Box and
Cox, 1964), where the transformation of the response is estimated simultaneously with the model
parameters. It should be pointed out that, although its approach is similar in spirit, tramME does
not use the Box-Cox power transformation to approximate h(y). For an implementation utilizing the
original Box-Cox transform in the context of mixed-effects models, see the R package boxcoxmix by
Almohaimeed and Einbeck (2020).

A more flexible version of the model described in (3) will take the form

P (Reaction ≤ y | Days, αi, βi) = Φ
(

a(y)⊤ϑ − βDays− γ1i − γ2iDays
)

(5)(
γ1i
γ2i

)
∼ N2

{(
0
0

)
,
(

τ2
1 τ12

τ12 τ2
2

)}
.

The Box-Cox-type transformation mixed model can be estimated using the BoxCoxME() function of the
tramME package. For this specific application, we set the order of the polynomials in Bernstein form
to 10.

R> sleep_bc <- BoxCoxME(Reaction ~ Days + (Days | Subject), data = sleepstudy,
+ order = 10)
R> logLik(sleep_bc)

'log Lik.' -858 (df=15)

Note that the log-likelihood of this model is higher than that of the normal linear model because we
are now approximating the baseline transformation function flexibly at the expense of a larger number
of parameters.

The conditional quantiles calculated – using the same set of function calls, and with the same
caveats, as in the analogous case of LmME – from the model defined by Equation (5) are shown in
Figure 4. Comparing these results to Figure 2 reveals departures from conditional normality in the
response distributions: At different lengths of sleep deprivation, the conditional distribution of the
participants’ reaction times is not a shifted normal distribution anymore, but it also changes its spread
and shape.

The conditional distributions of the outcome can be further inspected visually with the plot
method of tramME, which is designed to plot these distributions on a scale specified by the user. The
left-hand side plot in Figure 5 compares the conditional densities of subjects 308 and 309 at various
sleep deprivation lengths. Clearly, subject 308 is hardly affected by sleep deprivation because the mean
and variance of the distribution of reaction time for this subject increase only marginally with days
of sleep deprivation. In contrast, subject 309 showed longer mean reaction times and an increased
variability of reaction times with increasing duration of sleep deprivation. The variance effect is
not detectable from a classical normal linear mixed model but can be observed after a data-driven
response transformation to normality. In the right panel of Figure 5, the conditional distribution of a
hypothetical reference subject with zero random effects values is depicted. It should be noted that the
latter is, in general, not equal to the marginal distribution of the outcome, which can be calculated
by integrating the conditional distributions over the vector of random effects. We will return to this
question at the end of this section.

The plots in Figure 5 can be generated with the commands
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Figure 4: Quantiles of the conditional distribution of the outcome fitted to the sleepstudy data with
the non-normal (Box-Cox-type) linear mixed-effects transformation model (BoxCoxME) defined in
Equation (5).
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Figure 5: Conditional densities of the outcome from a non-normal (Box-Cox-type) mixed-effects linear
transformation model (BoxCoxME) fitted to the sleepstudy data. Left: The conditional densities of
subject 308 and 309 at various lengths of sleep deprivation (0-9 days). Right: The conditional densities
of a reference subject (with random effects equal to zero) at various lengths of sleep deprivation (0-9
days).
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R> ## -- Compare two subjects (308 and 309)
R> nd <- subset(sleepstudy, subset = Subject %in% c(308, 309))
R> plot(sleep_bc1b, newdata = nd, type = "density", K = 200)
R> ## -- The reference subject (at the mean of the random effect vector)
R> ## (we only need an arbitrary subject)
R> nd <- subset(sleepstudy, subset = Subject == 308)
R> ## NOTE: we explicitly set the random effects vector to 0
R> plot(sleep_bc1b, newdata = nd, ranef = "zero", type = "density", K = 200)

(and with some additional formatting steps that are omitted for the sake of brevity but can be found in
the accompanying material).

In line with the methodology presented by Hothorn et al. (2018) and Hothorn (2020), we can
define more complex mixed-effects transformation models by interacting the covariates with the basis
expansion of the outcome. In the resulting extended model, the fixed effects are dependent on the
level of the outcome. For the sleepstudy example, this model can be written as

P (Reaction ≤ y | Days, αi, βi) = Φ
(

a(y)⊤ϑ − β(y)Days− γ1i − γ2iDays
)

(6)(
γ1i
γ2i

)
∼ N2

{(
0
0

)
,
(

τ2
1 τ12

τ12 τ2
2

)}
,

which is often referred to as “distribution regression” (Chernozhukov et al., 2013).

The model in Equation 6 can be defined in tramME using the | operator on the left-hand side of
the model formula.

R> sleep_bc2 <- BoxCoxME(Reaction | Days ~ 1 + (Days | Subject), data = sleepstudy,
+ order = 10, support = c(150, 520))
R> logLik(sleep_bc2)

'log Lik.' -853 (df=25)

Plotting the conditional quantiles calculated from the resulting model in Figure 6 and comparing
it with Figures 2 and 4 demonstrates the increased flexibility of the specification.
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Figure 6: Quantiles of the conditional distribution of the outcome fitted to the sleepstudy data with
the non-normal (Box-Cox-type) distributional mixed-effects transformation model (BoxCoxME) defined
in Equation (6).
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In many cases, the goal of the analysis is to estimate the marginal distribution of the outcomes,
i.e., integrating out the random effects from the conditional model (1). In the general formulation,
there is no analytical solution for the integral, but we can use numerical methods to approximate the
marginal distributions at various values of the outcome. The following code utilizes the simulate and
predict methods implemented in the tramME package to get Monte Carlo estimates of the outcome
distribution implied by the model (5).

R> ndraws <- 1000 ## number of MC draws
R> ## Set up the grid on which we evaluate the marginal distribution
R> nd <- expand.grid(
+ Reaction = seq(min(sleepstudy$Reaction), max(sleepstudy$Reaction),
+ length.out = 100),
+ Days = 0:9,
+ Subject = 1)
R> ## Sample from the distribution of the random effects
R> re <- simulate(sleep_bc, newdata = nd, nsim = ndraws, what = "ranef", seed = 100)
R> ## Evaluate the conditional distribution at each draw
R> ## (done in parallel to speed up computations)
R> cp <- parallel::mclapply(re, function(x) {
+ predict(sleep_bc, newdata = nd, ranef = x, type = "distribution")
+ }, mc.cores = 8)
R> cp <- array(unlist(cp), dim = c(100, 10, ndraws))
R> ## Integral: take the average over these
R> mp_bc <- apply(cp, c(1, 2), mean)

Figure 7 compares the conditional distributions obtained by integrating over the vector of random
effects in models (3) and (5).
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Figure 7: Comparison of the marginal distributions implied by the normal linear (LmME) and the
Box-Cox-type (BoxCoxME) mixed-effects models fitted to the sleep deprivation study dataset. The
empirical cumulative distribution functions (ECDF) are also plotted, conditionally on the days of sleep
deprivation.

Mixed-effects continuous outcome logistic regression

The increased flexibility of the Box-Cox-type model, i.e., using a general baseline transformation
function instead of a linear one, comes with the price that the coefficient estimates will not be easily
interpretable as expected changes in the mean in the conditional model. Switching to the standard
logistic error distribution provides a solution to this problem, as the parameter estimates in the
resulting model can be interpreted as log-odds ratios. This continuous outcome logistic regression model
was used by Lohse et al. (2017) to analyze body mass index (BMI) distributions.
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Manuguerra and Heller (2010) proposed a mixed-effects logistic regression model for bounded,
continuous measurements of pain levels in a randomized, double-blind, placebo-controlled trial of
low-level laser therapy for subjects with chronic neck pain presented by Chow et al. (2006). The levels
of pain, measured on a visual analog scale, and normalized between 0 and 1, are plotted in Figure 8
for each subject at the different follow-up times.
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Figure 8: Neck pain dataset: Trajectories of pain levels measured on a visual analog scale (VAS) in the
active treatment and placebo-controlled groups reported in Chow et al. (2006).

The mixed-effects model suggested by Manuguerra and Heller (2010) parameterizes the log-odds
of experiencing smaller pain levels as a linear function of fixed and random effects and the baseline
transformation. With the treatment group indicator, laser, and time denoting the follow-up times,

log
[

P (pain ≤ y | laser, time, αi)

P (pain > y | laser, time, αi)

]
= h(y) + βActive + β7w + β12w + β7w, Active + β12w, Active + αi

αi ∼ N (0, τ2),

where h(y) is an increasing function of the outcome. Rearranging the terms in the model above reveals
that this indeed is a mixed-effects transformation model, with the distribution function of the standard
logistic distribution (“expit” function) as FZ,

P (pain ≤ y | laser, time, αi) = expit
(
h(y) + βActive + β7w + β12w

+ β7w,Active + β12w, Active + αi
) (7)

αi ∼ N (0, τ2).

The ColrME() function of the tramME package estimates mixed-effects continuous outcome logistic
regression models using polynomials in Bernstein form to approximate h(y). Applying this model to
the neck_pain dataset:

R> neck_tr <- ColrME(vas ~ laser * time + (1 | id), data = neck_pain,
+ bounds = c(0, 1), support = c(0, 1))

Notice that we explicitly set the bounds and the support of the outcome variable to [0, 1] because the
pain levels are measured on a bounded scale.

The ordinalCont package by Manuguerra et al. (2020) implements an alternative formulation of the
model (7) based on the method described in Manuguerra et al. (2017). In their approach, the baseline
transformation is parameterized using B-splines and the estimation is carried out in a penalized
likelihood framework.

R> library("ordinalCont")
R> neck_ocm <- ocm(vas ~ laser * time + (1 | id), data = neck_pain, scale = c(0, 1))

Figure 9 compares the results of the mixed-effects transformation model approach to the estimates
obtained using the ordinalCont package. Because the two models are not exactly the same, we see
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some differences in the parameter estimates as well as in the fitted baseline transformation functions,
but the two model fits are reasonably close to each other.
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Figure 9: Left: Baseline transformations in continuous outcome logistic regressions estimated with
the tramME and ordinalCont packages on the neck_pain dataset. The solid lines denote the point
estimates, and the areas indicate the 95% point-wise confidence intervals. Right: Coefficient estimates
from tramME and ordinalCont packages and their 95% Wald confidence intervals.

The odds ratio estimates of the model fitted by ColrME(),

R> exp(coef(neck_tr))

laser1 time2 time3 laser1:time2 laser1:time3
0.0961 0.5200 0.8125 140.2076 42.4076

as well as the results from the ordinalCont package, suggest that there is an imbalance in the sample
at baseline, i.e., the odds of experiencing less pain in the active treatment group is only about 10%
that of in the control group for any pain levels. Based on the estimates, the treatment has a strong
significant effect, especially at the seven-week follow-up, but seems to level off after 12 weeks.

If we want to compare the marginal distributions in the treatment and control groups directly, we
have to average over the distribution of the random effects. Because we only have a random intercept
in this example, we have to evaluate a one-dimensional integral. We could use the same Monte Carlo
method as we did in Section 2.3.2, or we can apply the adaptive quadrature method implemented in
the stats package of R. The example below uses this approach to demonstrate the multiple options the
user has in dealing with such problems.

R> ## A function to evaluate the joint cdf of the response and the random effects:
R> ## Takes a vector of random effect and covariates values, evaluates the conditional
R> ## distribution at these values and multiplies it with the pdf of the random effects
R> jointCDF <- function(re, nd, mod) {
+ nd <- nd[rep(1, length(re)), ]
+ nd$id <- seq(nrow(nd)) ## to take vector-valued REs
+ pr <- predict(mod, newdata = nd, ranef = re, type = "distribution") *
+ dnorm(re, 0, sd = sqrt(varcov(mod)[[1]][1, 1]))
+ c(pr)
+ }
R> ## Marginalize the joint cdf by integrating out the random effects
R> ## using adaptive quadrature
R> marginalCDF <- function(nd, mod) {
+ nd$cdf <- integrate(jointCDF, lower = -Inf, upper = Inf, nd = nd, mod = mod)$value
+ nd
+ }
R> ## Set up the grid on which we evaluate the marginal distribution
R> nd <- expand.grid(vas = seq(0, 1, length.out = 100),
+ time = unique(neck_pain$time),
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+ laser = unique(neck_pain$laser))
R> ## Calls marginalCDF on each row of nd
R> ## (done in parallel to speed up computations)
R> mp_colr <- parallel::mclapply(split(nd, seq(nrow(nd))),
+ marginalCDF, mod = neck_tr, mc.cores = 8)
R> mp_colr <- do.call("rbind", mp_colr)

Figure 10 compares the marginal distributions at different time points and confirms our previous
conclusions on baseline imbalance and treatment effect dynamics.
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Figure 10: Comparison of marginal distributions, calculated from a mixed-effects continuous outcome
logistic regression model in the treatment (Active) and control (Placebo) groups at baseline and the
two follow-up times. The step functions represent the empirical cumulative distribution functions of
the specific groups.

Mixed-effects transformation models for time-to-event outcomes

Mixed models for right-censored data are important in survival analysis and we consider the example
dataset eortc in the coxme package by Therneau (2020). This simulated dataset emulates the structure
of the outcomes of a breast cancer trial by the European Organization for Research and Treatment of
Cancer, and consists of 2323, possibly right-censored, data points from 37 enrolling centers. We define
a proportional hazards mixed-effects model with random center (i = 1, . . . , 37) and treatment (trt)
effects (nested within centers and indexed by j = 0, 1).

P
(

Y ≤ y | trt, γ1i, γ2j(i)

)
= 1 − exp

(
− exp

(
h(y) + βtrt + γ1i + γ2j(i)

))
(8)

γ1i ∼ N (0, τ2
1 ), γ2j(i) ∼ N (0, τ2

2 )

This model corresponds to a mixed-effects transformation model with the minimum extreme value
distribution as the error distribution. Treating the baseline transformation as a general smooth function,
approximated using polynomials in Bernstein form, we get the fully parametric version of the Cox
proportional hazards model with normally distributed random effects.

We can fit this model with the CoxphME() function of tramME.

R> data("eortc", package = "coxme")
R> eortc$trt <- factor(eortc$trt, levels = c(0, 1))
R> eortc_cp <- CoxphME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc,
+ log_first = TRUE, order = 10)

The nested random effects structure is defined with the / operator. The log_first = TRUE option casts
the outcome variable to the log-scale before defining the Bernstein bases, which usually improves the
model fit when dealing with skewed conditional distributions, while we explicitly set the order of
the polynomials in Bernstein form with order = 10. The confidence interval for the treatment effect
(transformed to the hazard ratio scale) suggests evidence for the effectiveness of the treatment,

R> exp(confint(eortc_cp, parm = "trt1", estimate = TRUE))
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lwr upr est
trt1 1.8 2.51 2.12

while the profile intervals of the random effects standard deviations indicate similar magnitude of
center-level and treatment-level (within center) variabilities.

R> exp(confint(eortc_cp, pargroup = "ranef", type = "profile", estimate = TRUE,
+ ncpus = 2, parallel = "multicore"))

lwr upr est
trt:center|(Intercept) 0.0841 0.338 0.208
center|(Intercept) 0.0796 0.384 0.254

The transformation model framework by Hothorn (2020) allows for stratification, i.e., specify-
ing separate transformation functions for different groups defined by a stratification factor. Time-
dependent effects for the covariates can be introduced in the same way as in distribution regression
to relax the proportionality assumption of the Cox model. To check the appropriateness of the pro-
portional hazards assumption between treatment and control groups visually, we re-estimate the
model stratifying for the treatment indicator, i.e., fitting transformation functions for the treatment
and control groups separately, and inspect whether these two functions, which are the log-cumulative
hazards when the error distribution is the minimum extreme value distribution, are parallel.

R> eortc_cp2 <- CoxphME(Surv(y, uncens) | 0 + trt ~ 0 + (1 | center/trt), data = eortc,
+ log_first = TRUE, order = 10)
R> tr <- trafo(eortc_cp2, confidence = "interval")

Figure 11 plots the stratified transformation functions against log-time. The two curves are very close
to parallel, which indicates that the treatment effect is constant over time, i.e., the proportionality
assumption is appropriate in the original model specification.
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Figure 11: Comparison of baseline transformation functions in treatment and control groups, estimated
using a stratified parametric mixed-effects Cox proportional hazards model on the eortc dataset.

In addition to proportionality, Figure 11 reveals another important aspect of the data generating
process. The fact that the baseline log-cumulative hazards are linear in log-time suggests that the
conditional distributions are close to the Weibull distribution, i.e., we can substitute the general
baseline transformation function with h(y) = ϑ1 + ϑ2 log(y). Flipping the signs of the fixed and
random effects terms of (8) and substituting the log-linear function to the baseline transformation, we
get the model

P
(

Y ≤ y | trt, γ1i, γ2j(i)

)
= 1 − exp

(
− exp

(
ϑ1 + ϑ2 log(y)− βtrt − γ1i − γ2j(i)

))
γ1i ∼ N (0, τ2

1 ), γ2j(i) ∼ N (0, τ2
2 ).

The SurvregME() function of the tramME package implements a variety of parametric mixed-
effects models that represent specific choices of the error distribution and the baseline transformation
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function in the general formulation of Equation (1). There are several other R packages available for
estimating parametric survival models with mixed effects, such as parfm by Munda et al. (2012) and
frailtypack by Rondeau et al. (2012). However, they typically do not allow for nested random-effects
structures when assuming (log-)normally distributed frailty terms.

Fitting a mixed-effects Weibull model to the eortc dataset:

R> eortc_w <- SurvregME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc,
+ dist = "weibull")

Comparing the parameter estimates of the Cox proportional hazards model to those from the
mixed-effects Weibull model,

R> ## --- CoxphME
R> c(coef = coef(eortc_cp), se = sqrt(diag(vcov(eortc_cp, pargroup = "shift"))))

coef.trt1 se.trt1
0.7535 0.0852

R> VarCorr(eortc_cp)

Grouping factor: trt:center (74 levels)
Standard deviation:
(Intercept)

0.208

Grouping factor: center (37 levels)
Standard deviation:
(Intercept)

0.254

R> ## --- SurvregME
R> c(coef = -coef(eortc_w), se = sqrt(diag(vcov(eortc_w, pargroup = "shift"))))

coef.trt1 se.trt1
0.7531 0.0851

R> VarCorr(eortc_w)

Grouping factor: trt:center (74 levels)
Standard deviation:
(Intercept)

0.208

Grouping factor: center (37 levels)
Standard deviation:
(Intercept)

0.255

as well as their log-likelihood values

R> c(logLik(eortc_cp), logLik(eortc_w))

[1] -13027 -13032

confirms our suspicion that the dataset was indeed simulated from a conditional Weibull model.

Finally, we can compare the results from tramME to parameters estimated with the R package
coxme.

R> library("coxme")
R> eortc_cm <- coxme(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc)
R> summary(eortc_cm)

Cox mixed-effects model fit by maximum likelihood
Data: eortc
events, n = 1463, 2323
Iterations= 10 54
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NULL Integrated Fitted
Log-likelihood -10639 -10518 -10464

Chisq df p AIC BIC
Integrated loglik 242 3.0 0 236 220.4
Penalized loglik 349 39.3 0 270 62.6

Model: Surv(y, uncens) ~ trt + (1 | center/trt)
Fixed coefficients

coef exp(coef) se(coef) z p
trt1 0.742 2.1 0.0827 8.97 0

Random effects
Group Variable Std Dev Variance
center/trt (Intercept) 0.2045 0.0418
center (Intercept) 0.2627 0.0690

This package follows a different approach to estimate a mixed-effects Cox model by leaving the baseline
hazards unspecified and maximizing the integrated partial likelihood. As a result, the parameter
estimates are slightly different from the ones we got using the CoxphME() function, but the results are
comparable, and the conclusions are identical, nevertheless.

Mixed-effects transformation models for discrete ordinal outcomes

Our last example demonstrates how the mixed-effects transformation framework can be used in
modeling correlated discrete ordinal outcomes. As an example, we take the soup tasting dataset by
Christensen et al. (2011). The dataset contains 1847 observations from 185 respondents in a soup
tasting experiment. The subjects were familiarized with a reference product prior to the experiment
and, during the experiment, were asked to distinguish between samples from the reference product
and test product using a six-level ordinal scale indicating their level of confidence. The scale ranges
from “reference, sure” (sureness = 1) to “not reference, sure” (sureness = 6). Figure 12 presents the
proportions of response categories for the test and reference samples for respondent groups defined
by how often they consume soup.
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Figure 12: Data from the soup tasting study reported by Christensen et al. (2011): Proportions of
responses of sureness levels (six levels, ranging from “reference, sure” to “not reference, sure”) after
tasting test and reference products. The data points are grouped by how often the respondents
consume soup (more than once a week, one to four times a month, less than once a month).

Let us assume that we are interested in comparing the distributions of sureness ratings for reference
products and test products while taking the repeated nature of the design into account. Moreover, in
doing so, we also want to control for how often the respondents usually consume soup (denoted by
the covariate freq). With k = 1 . . . 5, indicating the sureness levels except the last one, i = 1 . . . , 185
indexing the respondents, and j = 0, 1 indexing the reference and test products (covariate prod),
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respectively, the regression model we estimate can be written as

P
(
sureness ≤ k | prod, freq, γ1i, γ2j(i)

)
= Φ

(
ϑk − βtest − β1-4/month − β<1/month

− γ1i − γ2j(i)
) (9)

γ1i ∼ N (0, τ2
1 ), γ2j(i) ∼ N (0, τ2

2 ).

The PolrME() function of the tramME package estimates models for ordered discrete outcomes.
Depending on the choice of the error distribution, the user can fit proportional odds (logistic dis-
tribution), ordinal probit (standard normal distribution), proportional hazards (minimum extreme
value distribution), or cumulative maximum extreme value models. In our example, we set method =
'probit' to estimate the probit model,

R> soup_pr <- PolrME(SURENESS ~ PROD + SOUPFREQ + (1 | RESP/PROD),
+ data = soup, method = "probit")
R> logLik(soup_pr)

'log Lik.' -2666 (df=10)

The R package ordinal by Christensen (2019) also implements mixed-effects regression models for
ordered discrete outcomes. As a cross-check, we can re-estimate the same model with the function
clmm(),

R> library("ordinal")
R> soup_or <- clmm(SURENESS ~ PROD + SOUPFREQ + (1 | RESP/PROD), data = soup,
+ link = "probit")
R> logLik(soup_or)

'log Lik.' -2666 (df=10)

Based on the likelihood values and the parameter estimates,

R> max(abs(coef(soup_or) - coef(soup_pr, with_baseline = TRUE)))

[1] 1.76e-05

the results are essentially the same.

We can introduce non-proportional effects in the transformation model framework by stratifying
on a covariate. In our example, we might want to extend the model to allow for different effect sizes of
the soup consumption frequency covariate, depending on the level of the outcome variable. Rewriting
model (9),

P
(
sureness ≤ k | prod, freq, γ1i, γ2j(i)

)
= Φ

(
ϑk − βtest − β1-4/month,k − β<1/month,k − γ1i − γ2j(i)

)
γ1i ∼ N (0, τ2

1 ), γ2j(i) ∼ N (0, τ2
2 ),

and estimating it with tramME by stratifying for the soup frequency factor

R> soup_pr2 <- PolrME(SURENESS | SOUPFREQ ~ PROD + (1 | RESP/PROD),
+ data = soup, method = "probit")
R> logLik(soup_pr2)

'log Lik.' -2655 (df=18)

The likelihood ratio test comparing the two specifications suggests some evidence that the extended,
partially proportional model fits the data better.

R> anova(soup_pr, soup_pr2)

Model comparison

Model 1: SURENESS ~ PROD + SOUPFREQ + (1 | RESP/PROD)
Model 2: SURENESS | SOUPFREQ ~ PROD + (1 | RESP/PROD)

npar logLik AIC BIC Chisq Chisq df Pr(>Chisq)
Model 1 10 -2666 5352 5408
Model 2 18 -2655 5347 5446 21.9 8 0.0051 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Discussion

Building the implementation of mixed-effects transformation models on the package TMB leads
to significant efficiency gains in the computationally intensive steps of the maximum likelihood
estimation. This computational efficiency is partly due to the use of Laplace approximation to
integrate over the vector of random effects. However, several sources point out that Laplace’s method
can lead to biased estimates in some distributional settings. Pinheiro and Chao (2006) provide detailed
numerical comparisons of the Laplacian approximation to adaptive Gaussian quadrature algorithms
in the context of multilevel generalized models. Joe (2008) evaluates the method in the case of
discrete outcome mixed-effects models and concludes that the inaccuracy increases with the amount
of discreteness of the response variable and decreases as the cluster sizes increase.

It is worth mentioning that the conditional approach of modeling the distribution of the response,
which is the basis of the transformation models implemented in the tramME package, is not the
only way one could approach the problem of correlated outcomes in regression settings. The main
alternative to a conditional (mixed-effects) modeling approach is a marginal model that parameterizes
the marginal distribution of the outcome and treats the covariance structure as nuisance parameters.
Generalized estimating equations (GEE, Hardin and Hilbe, 2013) models represent prominent ex-
amples of such an approach. Proponents of marginal models point out that, in a conditional model,
the fixed effects parameter estimates cannot be interpreted as population averages, which is usually
of primary interest in a regression analysis. Lindsey and Lambert (1998) emphasize that marginal
parameter estimates from longitudinal studies can only be interpreted as population averages when
the participants are representative to their populations, which is usually not the case. Moreover,
they argue that defining models based on marginal distributions very often leads to complicated
and implausible conditional distributions, whereas conditional models can more easily express phys-
iologically plausible mechanisms on the level of the individual. Lee and Nelder (2004) argue that
conditional models are more fundamental as they allow for both marginal and conditional inferences,
which is not true in the case of marginal models. As we demonstrated in Sections 2.3.2 and 2.3.3, the
marginal distributions implied by the conditional transformation model can be easily approximated
using numerical techniques.

The tramME package, introduced in this article, extends the available options for modeling
grouped data structures with mixed-effects regressions in several ways: Through its dense code
base, tramME provides a unified and efficient estimation framework for a broad range of regression
models. Examples in Section 2.3 demonstrate that using this single package, several very specific
regression problems can be addressed. Relying only on a limited number of packages, in turn,
decreases the likelihood of errors in the statistical analysis. As the examples show, the modular
structure of our approach naturally leads to extensions of existing models (such as accounting for
censoring or introducing nested or crossed random effects structures) that would otherwise require a
lot of effort to re-implement from scratch. Moreover, the underlying theory of linear transformation
models provides a flexible basis for the implementation of the package and for its future extensions.
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miRecSurv Package:
Prentice-Williams-Peterson Models with
Multiple Imputation of Unknown Number
of Previous Episodes
by David Moriña, Gilma Hernández-Herrera and Albert Navarro

Abstract Left censoring can occur with relative frequency when analyzing recurrent events in epi-
demiological studies, especially observational ones. Concretely, the inclusion of individuals that
were already at risk before the effective initiation in a cohort study may cause the unawareness of
prior episodes that have already been experienced, and this will easily lead to biased and inefficient
estimates. The miRecSurv package is based on the use of models with specific baseline hazard, with
multiple imputation of the number of prior episodes when unknown by means of the COMPoisson
distribution, a very flexible count distribution that can handle over, sub, and equidispersion, with a
stratified model depending on whether the individual had or had not previously been at risk, and the
use of a frailty term. The usage of the package is illustrated by means of a real data example based on
an occupational cohort study and a simulation study.

Introduction

It is not unusual in cohort epidemiological studies that part (or all) of the participants have experienced
the event under study at least once before the beginning of the follow-up. This situation is particularly
common in the case of observational designs. Under these circumstances, the prior history and prior
time at risk of these individuals can be unknown or estimated on the basis of self recall questionnaires,
which could lead to modeling issues when the baseline hazard of suffering the event is time-dependent.
If the event of interest can only occur once, and it occurred for an individual before the start of the
follow-up, the result for this individual is fixed regardless of the duration of the follow-up. Therefore
we are in the well-known and well-studied situation of left censoring of a binary variable, for which
specific modeling techniques are available. On the other hand, if the event of interest can be suffered
several times by the same individual (it is recurrent), and the number of events suffered by the
individuals in the cohort before the beginning of the follow-up is unknown, we face a left censoring
situation with a discrete censored variable that can define different baseline hazards depending on the
episode an individual is at risk of.

This paper introduces the miRecSurv, useful when the prior history is unknown for all, or some,
of the individuals included in a cohort and the outcome of interest is a recurrent event with event
dependence. Specifically, we suppose that we know the moment from where all individuals are at
risk, but the number of episodes experienced by the individuals in this time is unknown. This is a
realistic situation in practice; for example, it is very probable that in a workforce cohort, we know
when a worker started to work (thus, to be at risk of having a sick leave) and, however, and especially
for people with ample trajectory, that we do not know whether or not in effect they have already had
sick leaves (and in this case, how many). Another situation that might deal with this issue is a study
of cohorts with an outcome of incidence of infection from human papillomavirus on adult women. It
would be relatively simple to know how long they have been at risk (beginning of active sexual life) or
to make a reasonable assumption. However, we will not be able to know the number of infections
since most of the time, when they occur, they are asymptomatic (Fernández-Fontelo et al., 2016).

Methods

Theoretical approach

Our proposal starts from the assumption that even though the previous history of all or some of
the individuals is unknown, we do know which of these were at risk prior to the beginning of the
follow-up and starting when. Further, that is based fundamentally on three considerations: 1) impute
k, the number of previous episodes for those subjects at risk before the beginning of the follow-up;
2) treat the subpopulation of subjects “Previously at risk” separately from those “Not previously
at risk”, and 3) use a frailty term basically to capture the error that will be made when imputing k.
Concretely, in the two formulations, “Counting process” (Eq. 1) and “Gap time” (Eq. 2), the ones we
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call “Specific Hazard Frailty Model Imputed”, in its versions - Counting Process (SHFMI.CP) and Gap
Time (SHFMI.GT):

λikr(t) = νiλ0kr(t)e
Xi β (1)

λikr(t) = νiλ0kr(t − tk−1)e
Xi β, (2)

where k will be the number of previous episodes of individual i in case they are known or their
imputed value in case they are not known; r indicates the subpopulation the individual belongs to:
“Previously at risk” or “Not previously at risk”. In both cases, information corresponding to the time
to risk prior to t = 0 for each individual is included in Xiβ, which will be zero for all those that start
to be at risk as of the beginning of the follow-up and a value different than zero for those that were
previously at risk. In practice, this proposal means that we stratify by the interaction between having
been at risk or not before the beginning of the follow-up and the number of previous episodes.

Therefore, the use of the term individual random error νi intends to capture the error that will be
made when imputing and the effect of any variable that having a potential effect, would not have been
considered in the analysis. Stratifying by the number of prior episodes intends to safeguard the event
dependence. Doing it as an interaction with the fact that it is an individual previously at risk, or not,
separates the two subpopulations to not mix times that are not comparable, on the same scale. More
details on the proposed methodology can be found in Hernández-Herrera et al. (2021).

The imputation of the number of previous events in individuals at risk before the beginning of the
follow-up is done through the COMPoisson generalized distribution (using the log link function), that
allows adjusting a regression model using the Conway-Maxwell Poisson (COMPoisson) distribution
(Shmueli et al., 2005) considering the dispersion of the data (sub, equi, or overdispersion). This
imputation is carried out through multiple imputation calculating its parameters directly from the
observed data in two phases: Firstly, a generalized linear model (GLM) is fitted using the number of
episodes observed during the follow-up as the response variable and the covariates selected by the
user as explanatory, based on the COMPoisson distribution. Imputed values are randomly sampled
from this distribution with the parameters obtained in the previous step, including random noise
generated from a normal distribution. In order to produce a proper estimation of uncertainty, the
described methodology is included in a multiple imputation framework, according to the well known
Rubin’s rules (Rubin, 1987) and based on the following steps in a Bayesian context:

1. Fit the COMPoisson count data model and find the posterior mean and variance β̂ and V(β̂) of
model parameters β.

2. Draw new parameters β∗ from N(β̂, V(β̂)).

3. Compute predicted scores p using the parameters obtained in the previous step.

4. Draw imputations from the COMPoisson distribution and scores obtained in the previous step.

The COMPoisson random number generation is based on the rcom function included in the
archived package compoisson (Dunn, 2012). The overperformance of the COMPoisson distribution in
this context compared to alternative discrete distributions (Poisson, negative binomial, Hermite and
zero-inflated versions) is discussed in Hernández-Herrera et al. (2020) by means of a comprehensive
simulation study.

The miRecSurv package

The main function of the miRecSurv is recEvFit, which allows the user to fit recurrent events survival
models. A call to this function might be

recEvFit(formula, data, id, prevEp, riskBef, oldInd,
frailty=FALSE, m=5, seed=NA, ...)

The description of these arguments can be summarized as follows:

• formula: a formula object, with the response on the left of a ∼ operator and the terms on the
right. The response must be a survival object as returned by the Surv function.

• data: a data.frame in which to interpret the variables named in the formula.

• id: subject identifier.

• prevEp: known previous episodes.

• riskBef: indicator for new individual in the cohort (riskBef=FALSE) or subject who was at risk
before the start of follow-up (riskBef=TRUE).
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• oldInd: time an individual has been at risk prior to the follow-up. This time can be positive or
negative (time origin as the start of follow-up).

• frailty: should the model include a frailty term. Defaults to FALSE.

• m: number of multiple imputations. The default is m=5.

• seed: an integer that is used as argument by the set.seed function for offsetting the random
number generator. Default is to leave the random number generator alone.

• ...: extra arguments to pass to coxph.

The output of this function is a list with seven elements:

• fit: a list with all the coxph objects fitted for each imputed dataset.

• coeff: a list with the vectors of coefficients from the models fitted to each imputed dataset.

• loglik: a list with the loglikelihood for each model fitted.

• vcov: a list with the variance-covariance matrices for the parameters fitted for each of the
imputed datasets.

• AIC: a list with the AIC of each of the models fitted.

• CMP: summary tables of the fitted COMPoisson models used for imputing missing values.

• data.impute: the original dataset with the multiple imputed variables as final columns.

In order to facilitate the interpretation, a pooled summary table is available via summary method,
formatted in a very similar way to the summary tables of very well-known functions as coxph, as can
be seen in the next section. As in some cases the multiple imputation process might be computationally
expensive and take some time, the function recEvFit provides the user with a progress bar.

Examples

Simulation study

To illustrate our proposal, we use simulated data generated with the parameters estimated in a
worker cohort, where the outcome is the occurrence of sick leave due to any cause. Table 1 shows the
characteristics of each episode in this population, estimated in a cohort study described in Navarro
et al. (2012). The maximum number of episodes that a subject may suffer was not fixed, although the
baseline hazard was considered constant when k ≥ 4. X1, X2, and X3 are covariates that represent
the exposure, with Xi ∼ Bernoulli(0.5), i = 1, 2, 3, and β1 = 0.25, β2 = 0.5, and β3 = 0.75 being their
parameters that represent effects of different magnitudes, set independently of the episode k to which
the worker is exposed. All the simulations were conducted using the R package survsim (Moriña and
Navarro, 2014), and all the code to reproduce these analyses is available as supplementary material.

Episode Distribution β0 Ancillary

1 Log-logistic 7.974 0.836

2 Weibull 7.109 0.758

3 Log-normal 5.853 1.989

4 Log-normal 5.495 2.204

Table 1: Characteristics of the simulated population.

To illustrate the usage of the miRecSurv package, the results corresponding to a sample from the
first scenario can be obtained by means of

library(survsim)
library(miRecSurv)
d.ev <- c('llogistic','weibull','weibull','weibull')
b0.ev <- c(5.843, 5.944, 5.782, 5.469)
a.ev <- c(0.700, 0.797, 0.822, 0.858)
d.cens <- c('weibull','weibull','weibull','weibull')
b0.cens <- c(7.398, 7.061, 6.947, 6.657)
a.cens <- c(1.178, 1.246, 1.207, 1.422)
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set.seed(1234)
sample1 <- rec.ev.sim(n=1500, foltime=1095,

dist.ev=d.ev, anc.ev=a.ev, beta0.ev=b0.ev,
dist.cens=d.cens, anc.cens=a.cens, beta0.cens=b0.cens,
beta=list(c(-.25,-.25,-.25,-.25), c(-.5,-.5,-.5,-.5), c(-.75,-.75,-.75,-.75)),
x=list(c("bern", .5), c("bern", .5), c("bern", .5)),
priskb=.1, max.old=5475)

sample1$old2 <- -sample1$old
sample1$old2[is.na(sample1$old)] <- 0

### Shared frailty
ag_s1 <- coxph(Surv(start2,stop2,status)~as.factor(x)+as.factor(x.1)+as.factor(x.2)+old2+

strata(as.factor(risk.bef))+frailty(nid), data=sample1)

### Counting process
shfmi.cp_s1 <- recEvFit(Surv(start2, stop2, status)~x+x.1+x.2, data=sample1,

id="nid", prevEp = "obs.episode",
riskBef = "risk.bef", oldInd = "old", frailty=TRUE, m=5, seed=1234)

### Gap time
shfmi.gt_s1 <- recEvFit(Surv(stop2-start2, status)~x+x.1+x.2, data=sample1,

id="nid", prevEp = "obs.episode",
riskBef = "risk.bef", oldInd = "old", frailty=TRUE, m=5, seed=1234)

The generated cohort, including the estimated number of previous events (multiple imputed), can be
obtained as

head(shfmi.cp_s1$data.impute)
nid real.episode obs.episode time status start stop time2 start2

1 1 1 1 119.673502 1 0.0000 119.6735 119.673502 124.5052
2 1 2 2 389.637244 1 119.6735 509.3107 389.637244 244.1787
3 1 3 3 244.130315 1 509.3107 753.4411 244.130315 633.8160
4 1 4 4 144.476145 0 753.4411 897.9172 144.476145 877.9463
5 2 1 1 107.943850 1 0.0000 107.9438 107.943850 681.4178
6 2 2 2 6.472291 1 107.9438 114.4161 6.472291 789.3617

stop2 old risk.bef long z x x.1 x.2 EprevCOMPoissDef1 EprevCOMPoissDef2
1 244.1787 0 FALSE NA 1 1 0 0 0 0
2 633.8160 0 FALSE NA 1 1 0 0 1 1
3 877.9463 0 FALSE NA 1 1 0 0 2 2
4 1022.4224 0 FALSE NA 1 1 0 0 3 3
5 789.3617 0 FALSE NA 1 1 1 0 0 0
6 795.8340 0 FALSE NA 1 1 1 0 1 1
EprevCOMPoissDef3 EprevCOMPoissDef4 EprevCOMPoissDef5

1 0 0 0
2 1 1 1
3 2 2 2
4 3 3 3
5 0 0 0
6 1 1 1

The pooled coefficients table can be obtained as

summary(shfmi.cp_s1)
Call:
recEvFit(formula = Surv(start2, stop2, status) ~ x + x.1 + x.2,

data = sample1, id = "nid", prevEp = "obs.episode", riskBef = "risk.bef",
oldInd = "old", frailty = TRUE, m = 5, seed = 1234)

Coefficients:
coef exp(coef) se(coef) Chisq Pr(>|z|)

x 2.766059e-01 1.3186465 0.3161915 76.49190798 1.401017e-17
x.1 4.337341e-01 1.5430085 0.3010033 174.86750236 2.970463e-39
x.2 7.489812e-01 2.1148444 0.5144217 436.60796033 8.875830e-95
old -2.584687e-05 0.9999742 0.4976880 0.03005029 7.830972e-01
frailty NA NA NA 77.64460457 6.481409e-02
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AIC: 34867.6

COM-Poisson regression model for imputing missing values
Estimate SE z.value Pr(>|z|)

(Intercept) -6.3611 0.0348 -182.5394 0.000e+00
x 0.2356 0.0240 9.8376 7.755e-23
x.1 0.3563 0.0258 13.7869 3.054e-43
x.2 0.6446 0.0305 21.1139 5.927e-99
S:(Intercept) -0.5029 0.0315 -15.9637 2.288e-57

Simulated data include four scenarios of n = 1500 subjects, with a maximum follow-up time of 3
years and a maximum time at risk prior to the beginning of the cohort of 15 years. The first scenario
has a 10% of subjects at risk prior to the beginning of the cohort (i.e., we do not know the number of
previous episodes in 10% of the subjects), whilst the second, third, and fourth samples have 25%, 50%,
and 100%, respectively. Samples based on these settings were generated 100 times and the estimates
were averaged across simulations for each sample.

To compare the results obtained, we also estimate the shared frailty model (Eq 3). This model
has a common hazard baseline (i.e., does not consider the event dependence) and incorporates an
individual frailty term.

λikr(t) = νiλ0(t)eXi β (3)

Results of fitting the described models in scenario 1 are summarized in the Table 2:

Model β̂1 SE(β̂1) β̂2 SE(β̂2) β̂3 SE(β̂3)

Shared Frailty 0.292 0.043 0.558 0.043 0.843 0.043

SHFMI.CP 0.244 0.034 0.470 0.036 0.706 0.039

SHFMI.GT 0.218 0.030 0.419 0.031 0.632 0.034

Table 2: Average estimates obtained on scenario 1 (10% of subjects at risk prior to the beginning of the
cohort).

Below are presented the results for the second scenario, Table 3:

Model β̂1 SE(β̂1) β̂2 SE(β̂2) β̂3 SE(β̂3)

Shared Frailty 0.287 0.039 0.554 0.039 0.832 0.040

SHFMI.CP 0.242 0.032 0.472 0.035 0.703 0.040

SHFMI.GT 0.217 0.028 0.425 0.030 0.633 0.034

Table 3: Average estimates obtained on scenario 2 (25% of subjects at risk prior to the beginning of the
cohort).

Results for scenario 3, Table 4:

Model β̂1 SE(β̂1) β̂2 SE(β̂2) β̂3 SE(β̂3)

Shared Frailty 0.277 0.033 0.542 0.034 0.818 0.035

SHFMI.CP 0.243 0.030 0.474 0.036 0.710 0.042

SHFMI.GT 0.217 0.025 0.421 0.029 0.632 0.033

Table 4: Average estimates obtained on scenario 3 (50% of subjects at risk prior to the beginning of the
cohort).

Finally, Table 5 shows the estimates when 100% of the subjects are at risk prior to the beginning of
the follow-up:

The average relative bias of the estimates produced by each method is shown in Figure 1. It can be
seen that the estimates produced by the miRecSurv are less biased than those based on the common
baseline hazard model.
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Model β̂1 SE(β̂1) β̂2 SE(β̂2) β̂3 SE(β̂3)

Shared Frailty 0.262 0.026 0.527 0.027 0.797 0.029

SHFMI.CP 0.248 0.029 0.495 0.040 0.742 0.053

SHFMI.GT 0.208 0.022 0.416 0.027 0.626 0.034

Table 5: Average estimates obtained on scenario 4 (100% of subjects at risk prior to the beginning of
the cohort).

Figure 1: Average relative bias of the estimates produced by method (Shared Frailty, SHFMI.CP,
SHFMI.GT) in each scenario (extreme left: 10% of subjects at risk prior to the beginning of the cohort;
left: 25%; right: 50%; extreme right: 100%).

Example

The real example corresponds to a selected sample of the HC-UFMG cohort (Reis et al., 2008), which
involves workers of a public hospital in Belo Horizonte, Brazil. Specifically, we selected all workers
present on January 1st, 2004 (n = 512) and all of them whose contract with the hospital was signed
from that date until the end of the follow-up, December 31st, 2007 (n = 884). The outcome of interest
was the occurrence of sick leave for any diagnosis, with three covariates: contract (civil servant; non
civil servant), type of work (healthcare professionals; non-healthcare) and sex (female; male). The
incidence rate was 11.7 sick leaves per 100 worker-months, and the median of follow-up per worker
was 24.3 months. Figure 2 represents a random subsample of 30 workers from this cohort, and it
can be seen that some of the workers were at risk of suffering the event of interest before the start of
the follow-up, and these episodes cannot be seen and must be estimated. Time 0 is the start of the
follow-up of each worker, being January 1st, 2004 for all those who were contracted in the hospital
before that date, or the starting date of their contract among those who were contracted later.

To analyze the association of sex, type of contract, and the kind of job developed by these workers
over the risk of suffering sick leaves, the package miRecSurv can be used in the following way.

mod1 <- recEvFit(Surv(start, stop, status)~Male+Non.civil.servant+
Non.healthcare, data=example,

id="nid", prevEp="num", riskBef="prev2", oldInd="days_prev",
frailty=TRUE, m=5, seed=1234)

summary(mod1)
Call:
recEvFit(formula = Surv(start, stop, status) ~ Male + Non.civil.servant +

Non.healthcare, data = example, id = "nid", prevEp = "num",
riskBef = "prev2", oldInd = "days_prev", frailty = TRUE,
m = 5, seed = 1234)

Coefficients:
coef exp(coef) se(coef) Chisq Pr(>|z|)

Male -0.2966733104 0.7432868 0.2033092 24.386339 3.999350e-07
Non.civil.servant -0.1788549829 0.8362272 0.1320313 9.221709 2.391622e-03
Non.healthcare -0.1315412853 0.8767431 0.1318741 5.568327 1.703076e-02
days_prev -0.0002383671 0.9997617 0.2027526 6.457974 7.089736e-03
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Figure 2: Evolution in time of a subsample of 30 workers from the HC-UFMG cohort. The vertical line
represents the start of follow-up.

frailty NA NA NA 1157.231797 5.664063e-35

AIC: 29699

COM-Poisson regression model for imputing missing values
Estimate SE z.value Pr(>|z|)

(Intercept) -6.7602 0.0407 -166.0266 0.000e+00
Male -0.1665 0.0261 -6.3766 1.810e-10
Non.civil.servant -0.0132 0.0246 -0.5354 5.924e-01
Non.healthcare -0.0917 0.0246 -3.7297 1.917e-04
S:(Intercept) -1.4043 0.0709 -19.8059 2.646e-87

According to these results, it can be seen that all three considered explanatory variables are
significantly associated with the risk of suffering sick leaves (see Coefficients table), although the type
of contract is not significant on the model used to impute the number of episodes suffered before the
start of the follow-up.

Conclusion

Left censoring, when analyzing recurrent events, is a situation that can occur with a certain frequency
in cohort studies. For example, it will occur in every cohort that follows subjects that were already at
risk of experiencing the outcome of interest before the beginning of the follow-up. If the recurrent
event presents event dependence, not knowing the number of episodes that each individual has had
prior to the effective initiation of the follow-up, and analyzing this through “classical” methods, is an
important problem, as it will lead to biased and inefficient estimates.

The presented proposal seems to work reasonably well, outperforming the alternative to a common
hazard model. It is important to carry out a comprehensive study to evaluate the performance of the
presented proposal. It is also worth noticing that although in this particular example, the average
relative biases produced by the shared frailty model are relatively low, this is not always the case, as
can be seen in a simulation study like Navarro et al. (2017).

Unavailability of the number of previous episodes that an individual has had should not be a
justification for the use of models with a common baseline hazard which on the large majority of
occasions show a higher bias and less coverage than specific baseline hazard models, as shown by the
results of this work.
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An R package for Non-Normal
Multivariate Distributions: Simulation
and Probability Calculations from
Multivariate Lomax (Pareto Type II) and
Other Related Distributions
by Zhixin Lun and Ravindra Khattree

Abstract Convenient and easy-to-use programs are readily available in R to simulate data from
and probability calculations for several common multivariate distributions such as normal and t.
However, functions for doing so from other less common multivariate distributions, especially those
which are asymmetric, are not as readily available, either in R or otherwise. We introduce the
R package NonNorMvtDist to generate random numbers from multivariate Lomax distribution,
which constitutes a very flexible family of skewed multivariate distributions. Further, by applying
certain useful properties of multivariate Lomax distribution, multivariate cases of generalized Lomax,
Mardia’s Pareto of Type I, Logistic, Burr, Cook-Johnson’s uniform, F, and inverted beta can be
also considered, and random numbers from these distributions can be generated. Methods for the
probability and the equicoordinate quantile calculations for all these distributions are then provided.
This work substantially enriches the existing R toolbox for nonnormal or nonsymmetric multivariate
probability distributions.

Introduction

A k-dimensional multivariate Lomax (Pareto Type II) probability distribution was first introduced by
(Nayak, 1987) as a joint distribution of k skewed nonnegative random variables X1, · · · , Xk with joint
probability density function given by

f (x1, . . . , xk) =

[
∏k

i=1 θi

]
a(a + 1) · · · (a + k − 1)(

1 + ∑k
i=1 θixi

)a+k , xi > 0, a, θi > 0, i = 1, . . . , k. (1)

We will denote above density function by MLk(a; θ1, . . . , θk). Prior to Nayak (1987), the bivariate
case of multivariate Lomax distribution was studied by Lindley and Singpurwalla (1986). Nayak
(1987) indicated that the k-dimensional multivariate Lomax distribution could be obtained by mix-
ing k independent univariate exponential distributions with different failure rates with the mixing
parameter η that has a gamma distribution with certain shape parameter a and the scale parameter
1. This fact readily provides an approach to simulate the multidimensional random vectors from
the multivariate Lomax distribution. The multivariate Lomax distribution is also transformable to
many other useful multivariate distributions, and therefore, simulations from these distributions
are also easily accomplished. Similarly, with appropriate transformations or reparameterizations (or
otherwise directly from the probability density function (pd f )), we can also accomplish the cumulative
probability calculations as well as the calculation of equicoordinate quantiles. The objective of this
work is to formalize all of the above and to provide a ready-to-use R package titled NonNorMvtDist
for practitioners to efficiently execute the same. See Lun and Khattree (2020).

The objective of our work is to enrich the existing R packages for supporting simulation and
computations for nonnormal continuous multivariate distributions. To the best of our knowledge and
also from the list of packages for multivariate distributions in CRAN (https://cran.r-project.org/
web/views/Distributions.html), there is no package that provides both simulation and probability
computations for multivariate Pareto distribution. In our package, we provide functions for doing
so to both Lomax (Pareto type II) and Mardia’s Pareto type I distributions. For multivariate logistic
distribution, package VGAM (Yee, 2019) implements the bivariate logistic distribution while we
support p-variate logistic distribution for p > 2. Moreover, multivariate Burr, F, and inverted beta
distributions had not been implemented in R until we included them in the package NonNorMvtDist.

This paper is organized as follows. In Section Multivariate Lomax and related distributions,
we provide simulation algorithms for generating data from k-dimensional multivariate Lomax and
generalized Lomax (to be defined later) distributions. Through transformations, the tasks of random
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numbers generation from Mardia’s multivariate Pareto Type I, Logistic, Burr, Cook-Johnson’s uniform,
and F are achieved. Based on the remarks from Balakrishnan and Lai (2009), we then extend Nayak’s
work to simulate data from the multivariate inverted beta distribution. In Section Probability compu-
tations, we discuss numerical computations of cumulative distribution functions of equicoordinate
quantiles and survival functions for the above distributions. In Section Illustrations of simulations and
probability calculations, we illustrate the use of respective functions as implemented in R for each
of the above distributions for the bivariate (k = 2) case. In Section Computation times, we provide a
run-time study to assess the computation times for functions as the dimension of data increases. In
Section Maximum likelihood estimation of parameters, we implement maximum likelihood estimation
of parameters for these distributions. In Section Two applications, we give two applications of package
NonNorMvtDist, namely, (i) data generation from certain nonelliptical symmetric multivariate distri-
butions with univariate normal marginals and (ii) computation of critical values of the multivariate
F distribution. Section Concluding remarks includes some concluding remarks, pointing out other
applications.

Multivariate Lomax and related distributions

Multivariate Lomax distribution can be derived as the probability distribution of a k-component
system where k independent exponential random variables have a common environment or mixing
parameter following a gamma distribution with shape parameter a and scale parameter b. Let the
corresponding random vector be X = (X1, · · · , Xk)

′. The probability density function of X is given by
(1), and the joint survival function of X is

S(x1, . . . , xk) =

(
1 +

k

∑
i=1

θixi

)−a

, xi > 0, a > 0, θi > 0, i = 1, . . . , k. (2)

Specifically, the pivotal result that we use is given by the following theorem (see Nayak (1987)),

Theorem 2.1: Conditioned on fixed mixing parameter η, representing the environment effect, let
X1, · · · , Xk be independent exponentially distributed random variables with failure rates ηλ1, · · · , ηλk,
respectively. Let the environment effect η be distributed as a Gamma random variate with probability
density

g(η) = ba exp(−ηb)ηa−1/Γ(a), η > 0, a, b > 0.

Then, the unconditional joint density of X1, · · · , Xk is given by (1), where θi = λi/b, i = 1, · · · , k.
Clearly, without loss of generality, b can be taken as 1, in which case θi = λi, i = 1, · · · , k.

In view of the above result, we implement the simulation from k-dimensional multivariate Lomax
distribution by adopting the following algorithm.

Algorithm-MLk(a; θ1, . . . , θk):

1. Generate a random number η from Gamma(a, 1) distribution;

2. With η as generated in Step 1, generate k-independent random variables Xi, i = 1, . . . , k,
each from exponential distribution with parameter ηθi, i = 1, . . . , k, respectively. Let X =
(X1, X2, · · · , Xk)

′;

3. To obtain a random sample of size n, repeat the Steps 1 and 2 n times.

Nayak (1987) also generalized this distribution by mixing conditionally independent Xi having
the Gamma(li, ηθi) distribution, with mixing variable η ∼ Gamma(a, 1), i = 1, . . . , k. This is termed
as generalized multivariate Lomax distribution denoted by GML(a; θ1, . . . , θk, l1, . . . , lk) and has the
probability density function

f (x1, · · · , xk) =

[
∏k

i=1 θli
i

]
Γ
(

∑k
i=1 li + a

)
∏k

i=1 xli−1
i

Γ(a)
[
∏k

i=1 Γ(li)
] (

1 + ∑k
i=1 θixi

)∑k
i=1 li+a

, xi > 0, a, θi, li > 0, i = 1, · · · , k (3)

Accordingly, we perform the corresponding simulation by implementing the suitable changes in the
above algorithm. The algorithm is given below.

Algorithm-GML(a; θ1, . . . , θk, l1, . . . , lk):

1. Generate a random number η from Gamma(a, 1) distribution;
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2. With η as generated in Step 1, generate k-independent Xi, each following Gamma(li, ηθi),
i = 1, . . . , k, respectively;

3. To obtain a random sample of size n, repeat the Steps 1 and 2 n times.

Both algorithms are easily implemented using R stats (R Core Team, 2019) functions rexp() and
rgamma(), respectively, for generating univariate exponential and gamma random variates. In the
following, we describe approaches to generate other distributions related to multivariate Lomax and
generalized multivariate Lomax distributions.

Nayak (1987) has also discussed the inter-relationships between many other multivariate dis-
tributions and generalized multivariate Lomax distribution. In view of these inter-relationships,
the above algorithm can accordingly be amended to simulate data from these distributions - a task
which can be quite difficult to accomplish directly. These inter-relationships are described in Table
1. For convenience, we assume X = (X1, · · · , Xk)

′ ∼ MLk(a; θ1, · · · , θk) and T = (T1, · · · , Tk)
′ ∼

GMLk(a; θ1, · · · , θk; l1, · · · , lk).

Multivariate Transformation/ Probability Density Function
Distribution Parameter Substitutions

Lomax li = 1, f (x1, . . . , xk) =
[∏k

i=1 θi ]a(a+1)···(a+k−1)

(1+∑k
i=1 θi xi)

a+k

i = 1, · · · , k xi > 0, a > 0, θi > 0

li = 1,

Mardia’s Yi = Xi + 1/θi , f (y1, · · · , yk) =
[∏k

i=1 θi ]a(a+1)···(a+k−1)

(∑k
i=1 θiyi−k+1)

a+k ,

Pareto Type I i = 1, · · · , k yi > 1/θi > 0, a > 0, θi > 0

li = 1 and a = 1,

Logistic Wi = µi − σi ln(θiXi), f (w1, · · · , wk) =
k! exp

(
−∑k

i=1
wi−µi

σi

)
∏k

i=1 σi

(
1+∑k

i=1 exp (− wi−µi
σi

)
)1+k ,

i = 1, · · · , k −∞ < wi , µi < ∞, σi > 0

li = 1,

Burr Bi = (θiXi/di)
1/ci , f (b1, · · · , bk) =

[∏k
i=1 cidi ]a(a+1)···(a+k−1)

[
∏k

i=1 b
ci−1
i

]
(

1+∑k
i=1 dib

ci
i

)a+k ,

i = 1, · · · , k bi > 0, a > 0, ci > 0, di > 0

li = 1,

Cook-Johnson’s Vi = (1 + θiXi)
−a, f (v1, · · · , vk) =

Γ(a+k)
Γ(a)ak ∏k

i=1 v(−1/a)−1
i

[
∑k

i=1 v−1/a
i − k + 1

]−(a+k)
,

uniform i = 1, · · · , k 0 < vi ≤ 1, a > 0

F

with degrees of freedom θi = li/a, f (t1, · · · , tk) =

[
∏k

i=1(li/a)li
]
Γ(∑k

i=1 li+a)∏k
i=1 t

li−1
i

Γ(a)[∏k
i=1 Γ(li)]

(
1+∑k

i=1
li
a ti

)∑k
i=1 li+a

,

(2a, 2l1, . . . , 2lk) i = 1, · · · , k ti > 0, a > 0, li > 0

Inverted Beta θi = 1, f (t1, · · · , tk) =
Γ(∑k

i=1 li+a)∏k
i=1 t

li−1
i

Γ(a)[∏k
i=1 Γ(li)](1+∑k

i=1 ti)
∑k

i=1 li+a
,

i = 1, · · · , k ti > 0, a > 0, li > 0

Table 1: Multivariate distributions related to GMLk(a; θ1, · · · , θk; l1, · · · , lk).

The multivariate F distribution can also be obtained by considering

Ti =
Si/(2li)
S0/(2a)

, i = 1, . . . , k, (4)

where S0, S1, . . . , Sk are independent Chi-square variables with 2a, 2l1, . . . , 2lk degrees of freedom
respectively; see Johnson and Kotz (1972). It is the joint distribution of the ratios of mean squares under
certain linear hypotheses on treatments as discussed in Krishnaiah (1965) in the context of simultaneous
ANOVA and MANOVA tests where S0 is a residual sum of squares and Si’s are various effect sums
of squares. The density given in Table 1 is a special case of generalized multivariate F distribution
defined by Krishnaiah (1965) when Si’s, i = 1, · · · , k, are all independent. This fact is useful in that
the Tables given by Armitage and Krishnaiah (1964) make use of this in constructing the statistical
tables for certain linear hypotheses. We use these tables to confirm our calculation as done by our R
programs. The multivariate Inverted Beta distribution also called the multivariate inverted Dirichlet
distribution, is essentially a special case of multivariate F distribution when l1 = l2 = · · · = lk = a.
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Figure 1 pictorially summarizes the relationships between (generalized) Lomax and other distribu-
tions.

Generalized Lomax
(a, θ, l)

Lomax
(a, θ)

Mardia’s Pareto Type I
(a, θ)

Logistic
(µ, σ)

Burr
(a, d, c)

Cook-Johnson’s Uniform (a)
(Clayton copula)

F
(2a, 2l)

Inverted Beta
(a, l)

li = 1 Xi + 1/θi

µi − σi ln(θiXi)

(θiXi/di)
1/ci

(1 + θiXi)
−a

θi = li/a

θi = 1

Figure 1: Relationships among (generalized) multivariate Lomax and other distributions. Solid lines
represent transformations and dashed dot lines represent reparameterization (parameter substitutions).

Probability computations

Here, we give details of computations of cumulative probability distribution function (cd f ), survival
function, equicoordinate quantile function for each distribution introduced in Section Multivariate
Lomax and related distributions. Depending on the situation, the calculation may sometimes be
simpler for joint cd f or joint survival function.

Distributions transformable from Lomax distribution

The multivariate Lomax distribution has an explicit closed-form expression for the joint survival
function given by (2). The survival or cumulative distribution function of other related distributions
can be obtained either directly or through appropriate transformations. We summarize these explicit
expressions of cumulative distribution function F(·) and survival function S(·) in Table 2.

For the cumulative distribution functions or survival functions with no closed-form expressions,
we rely on the following useful formulas (Joe, 1997):

S(x) = 1 + ∑
C∈C

(−1)|C|FC(xj, j ∈ C), (5)

F(x) = 1 + ∑
C∈C

(−1)|C|SC(xj, j ∈ C), (6)

where FC(xj, j ∈ C) (SC(xj, j ∈ C)) is the joint cd f (joint survival function) of xj where the subscripts
belong to the set C, which is a subset of {1, 2, · · · , k}. Clearly, C ∈ C where C is the powerset of
{1, 2, · · · , k}. Also, |C| represents the cardinality of C.

The equation

P[xi ≤ qi, i = 1, · · · , k] =
∫ q1

0
· · ·

∫ qk

0
f (x1, · · · , xk)dxk · · · dx1 = p
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Multivariate
Distribution

Cumulative Distribution Function Survival Function

Lomax No closed form S(x1, · · · , xk) =
(

1 + ∑k
i=1 θixi

)−a

xi > 0, a, θi > 0

Mardia’s Pareto
Type I

No closed form S(y1, · · · , yk) =
(

∑k
i=1 θiyi − k + 1

)−a

yi > 0, a, θi > 0

Logistic F(w1, · · · , wk) =
[
1 + ∑k

i=1 exp(− wi−µi
σi

)
]−1

No closed form
−∞ < wi , µi < ∞, σi > 0

Burr No closed form S(b1, · · · , bk) =
(

1 + ∑k
i=1 dib

ci
i

)−a

bi > 0, a, di , ci > 0

Cook-Johnson’s
Uniform

F(v1, · · · , vk) =
[
∑k

i=1 v−1/a
i − k + 1

]−a
No closed form

0 < vi ≤ 1, a > 0

Table 2: Cumulative distribution functions and survival functions of multivariate Lomax and related
distributions.

for a given p does not have a unique solution (q1, · · · , qk). We thus provide the quantile computations
only for the equicoordinate quantile, obtained by solving the following equation for q,

P[Xi ≤ q, i = 1, · · · , k] =
∫ q

0
· · ·

∫ q

0
f (x1, · · · , xk)dxk · · · dx1 = p, (7)

where 0 < p < 1 is a (given) cumulative probability. We make use of the R stats function uniroot(),
which is used for finding one dimensional root.

Distributions related to generalized multivariate Lomax distribution

For generalized multivariate Lomax distribution and its related distributions, explicit expressions
of the cumulative distribution function and survival function are not available. Thus, we obtain the
cumulative probabilities through multiple integral in (8) below over the unit cube [0, 1]k by using the
adaptive multivariate integration function hcubature() in package cubature (Narasimhan et al., 2018).

F(x1, . . . , xk) =
∫ x1

0
· · ·

∫ xk

0
f (t1, · · · , tk)dtk · · · dt1,

=
k

∏
i=1

xi

∫ 1

0
· · ·

∫ 1

0
f (u1x1, · · · , ukxk)duk · · · du1, (ui = ti/xi, i = 1, · · · , k). (8)

The following result is used for the computation of the cumulative distribution function for the
generalized Lomax distribution.

Property 3.1: Let T1, · · · , Tk be k continuous random variables that jointly follow the
GMLk(a; θ1, · · · , θk,l1, · · · , lk) distribution as given in (3). Then, the cumulative distribution function
of T1, · · · , Tk can be computed as

F(x1, · · · , xk) = P(T1 ≤ x1, · · · , Tk ≤ xk) = P(U1 ≤ 1, · · · , Uk ≤ 1),

where U1, · · · , Uk jointly follow GMLk(a; θ1x1, · · · , θkxk, l1, · · · , lk) distribution.

Proof of the above is straightforward by making the substitutions ui = ti/xi, i = 1, · · · , k.

Through parameter substitutions, the cumulative distribution functions of multivariate F and the
inverted beta distribution can be found. These are summarized in Table 3.

For the above method, the run-time consumption rapidly increases as k becomes large. Thus as an
alternative, we also provide the option of computation of cumulative distribution function via Monte
Carlo method. The corresponding algorithm is
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Distribution Parameter Cumulative Distribution Function
Substitutions

Multivariate F
with degrees of freedom θi = li/a, F(x1, · · · , xk) = P(U1 ≤ 1, · · · , Uk ≤ 1),
(2a, 2l1, . . . , 2lk) i = 1, · · · , k (U1, · · · , Uk) follows GMLk(a; x1l1/a, · · · , xk lk/a, l1, · · · , lk)

Multivariate θi = 1, F(x1, · · · , xk) = P(U1 ≤ 1, · · · , Uk ≤ 1),
Inverted Beta i = 1, · · · , k (U1, · · · , Uk) follows GMLk(a; x1, · · · , xk , l1, · · · , lk)

Table 3: Cumulative distribution functions of related multivariate distributions to generalized multi-
variate Lomax.

Algorithm - CDF Computation using Monte Carlo Method:

1. Generate N random vectors t(i) = (t(i)1 , · · · , t(i)k )′, i = 1, · · · , N from the desired distribution;

2. Compute

P̂(T1 ≤ x1, · · · , Tk ≤ xk) =
1
N

N

∑
i=1

I(t(i) ≤ x),

where x = (x1, · · · , xk)
′ and I(·) is the zero-one indicator function corresponding to the

conditions specified.

Step 1 above is readily carried out by the random numbers generation as described in Section Multi-
variate Lomax and related distributions using the package NonNorMvtDist. Since cd f is computable
using adaptive multivariate integration over unit cube [0, 1]k or via the Monte Carlo method, it fol-
lows that the survival function can also be calculated (by using (6)). The equicoordinate quantile is
computed by using (7).

We also add in our package the calculations of joint probability density function - Being self-
explanatory with all pd f s available in closed form, it needs no further elaboration. The corresponding
function is dmv*().

Illustrations of simulations and probability calculations

We will illustrate here the functions and corresponding arguments for NonNorMvtDist. The calling
sequences include probability density calculation (dmv*), cumulative distribution calculation (pmv*),
equicoordinate quantile calculation (qmv*), random numbers generation (rmv*), and survival function
calculation (smv*) for each of the multivariate distributions introduced in Section Multivariate Lomax
and related distributions. For each distribution, we consider the bivariate case (k = 2). This choice
enables us to also succinctly and graphically present the probability density plots. The detailed descrip-
tion of the calling sequence for each of the several cases has been moved into a digital complement of
this paper.

For example, for the bivariate Lomax distribution (k = 2) with parameters a = 5, θ = (0.5, 1), the
calling sequences for various functions are

dmvlomax(x, parm1 = 5, parm2 = (0.5,1))
pmvlomax(q, parm1 = 5, parm2 = (0.5,1))
qmvlomax(p, parm1 = 5, parm2 = (0.5,1))
rmvlomax(n, parm1 = 5, parm2 = (0.5,1))
smvlomax(q, parm1 = 5, parm2 = (0.5,1))

It may be mentioned that our approach may be more efficient than the NORTA method (Ghosh
and Henderson, 2002) for simulation in that NORTA always first requires simulation from multivariate
normal, which are then transformed to multivariate uniform. Only often this step, one could subse-
quently transform the simulated data to the desired distribution. Consequently, for large dimensions,
the approach requires more computing power and time (in fact, to simulate data from the normal
distribution, many programs themselves first require random number generations from uniform
distributions, from which normal random numbers are obtained).
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3D bivariate density plot

For each bivariate distribution, we provide the density surface plots along with contours using
the function persp3D() from the package plot3D (Soetaert, 2017). To illustrate, we define function
dplot2(), and we pass appropriate density functions to the density function argument dfun to create
the density surfaces. These are summarized in the digital complement along with corresponding
resulting plots. For the Lomax distribution with parameters indicated previously, the statements will
be

library(plot3D)

dplot2 <- function(dfun, x1, x2, zlim) {
zmat <- matrix(0, nrow = length(x1), ncol = length(x2))
for (i in 1:length(x1)) {

for (j in 1:length(x2)) {
zmat[i, j] = dfun(x = c(x1[i], x2[j]))

}
}
persp3D(z = zmat, x = x1, y = x2, theta = -60, phi = 10, ticktype = "detailed",

zlim = zlim, contour = list(nlevels = 30, col = "red"),
facets = FALSE, image = list(col = "white", side = "zmin"),
xlab = "X1", ylab="X2", zlab = "Density", expand = 0.5, d = 2)

}

dplot2(dfun = function(x) dmvlomax(x, parm1 = 5, parm2 = c(0.5, 1)), x1 = seq(0, 4, 0.1),
x2 = seq(0, 4, 0.1), zlim = c(-5, 13))

The plot that results is shown in Figure 2.

Figure 2: Density surface of bivariate Lomax distribution with parameters a = 5, θ = (0.5, 1).

Random number generation

The following code illustrates the use of the function rmvlomax*() with a bivariate sample of size
n = 2. Sampling is done by setting set.seed(2019) in advance. The digital complement explicitly
provides the code as well as output for all of the probability distributions discussed here. In the output,
each row represents a bivariate observation.

• Bivariate Lomax: a = 5, θ1 = 0.5, θ2 = 1

> set.seed(2019)
> rmvlomax(n = 2, parm1 = 5, parm2 = c(0.5, 1))

[,1] [,2]
[1,] 1.0174406 0.7076480
[2,] 0.3686253 0.7826978
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CDF, survival function and equicoordinate quantile

The applications of cd f pmv*(), survival function smv*(), and equicoordinate quantile function qmv*()
are straightforward and follow the same pattern earlier. See the digital complement for computation
details. In the following, we give code as well as output only for Lomax distribution (a = 5, θ1 = 0.5,
θ2 = 1) for specified coordinates (x1, x2) and for the cumulative probability p = 0.5.

• Bivariate Lomax: a = 5, θ1 = 0.5, θ2 = 1; quantiles: (x1, x2) = (1, 0.5).

> pmvlomax(q = c(1, 0.5), parm1 = 5, parm2 = c(0.5, 1))
[1] 0.7678755
> smvlomax(q = c(1, 0.5), parm1 = 5, parm2 = c(0.5, 1))
[1] 0.03125
> qmvlomax(p = 0.5, parm1 = 5, parm2 = c(0.5, 1))
[1] 0.3928917

Computation times

We assess the run-times for the computation of probability (pmv*), equicoordinate quantile function
(qmv*) for multivariate Lomax, and generalized multivariate Lomax distributions for reference. The
survival function (smv*) of multivariate Lomax distribution has a closed-form expression, and hence
the assessment of computation time is omitted. We have used the computer with Intel Core i5-8250U
CPU and 8.00 GB RAM. The results for p-variate Lomax distribution are summarized in Table 4. As
we can see, the run-times for pmvlomax() are quit short, even for the dimension p = 20. However,
qmvlomax() requires a considerable longer time when p ≥ 17, which seems to double for every extra
dimension added to the size of the random vector. The computation times in Table 4 can also be used
as a reference for the distributions related to multivariate Lomax, which are in Table 2 since we apply
the same approach for probability computations there as well.

p pmvlomax() qmvlomax() p pmvlomax() qmvlomax()

1 0.01695895 0.03702188 11 0.04889703 0.7992568
2 0.01795197 0.02293706 12 0.09025002 1.879766
3 0.01794696 0.02789807 13 0.1545889 3.087925
4 0.01795197 0.03290296 14 0.245369 5.950396
5 0.01976085 0.04189205 15 0.4657819 11.37162
6 0.01995182 0.06582808 16 0.853502 22.04591
7 0.02094102 0.098768 17 1.708418 45.51909
8 0.02197218 0.146611 18 2.803703 90.70764
9 0.02396512 0.2393882 19 5.453189 181.55772
10 0.04587412 0.4296861 20 10.40903 351.58896

Table 4: Runtimes (in seconds) for functions pmvlomax() and qmvlomax() as functions of p.

The results for generalized p-variate Lomax distribution are summarized in Tables 5 and 6. Both
functions pmvglomax() and smvglomax() require relatively much longer time when p > 4, and
qmvglomax() takes longer when p > 2. Based on the run-time consumption, we recommend al-
gorithm MC for larger dimensions (e.g., when p > 5). Similarly, this run-time study can also be used as
a reference for the related distributions (to generalized Lomax distribution) as listed in Table 3 since
we apply the same method for computations.

pmvglomax() smvglomax()
p numerical MC numerical MC

1 0.03395414 4.600386 0.03084397 3.977374
2 0.02397585 6.536522 0.05378199 5.510087
3 0.101758 8.396577 0.208086 7.229721
4 0.9758801 10.64278 2.13447 8.741386
5 16.43411 19.30024 40.11997 9.762063
6 305.50092 19.57221 1344.1908 11.63218

Table 5: Runtimes (in seconds) for functions pmvglomax() and smvglomax() by using algorithms
numerical and MC as functions of p.
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qmvglomax()
p numerical MC

1 0.4144461 12.5594
2 6.383504 18.97528
3 96.86238 27.23917
4 2929.5018 30.62036

Table 6: Runtimes (in seconds) for function qmvglomax() by using algorithms numerical and MC as
functions of p.

Maximum likelihood estimation of parameters

We also include the maximum likelihood estimation to estimate the parameters for various Lomax
related distributions (except for the bivariate F distribution). Although many of the density functions
in Section Multivariate Lomax and related distributions have complicated forms, maximum likelihood
estimation can be easily accomplished by using the built-in optimization functions in R stats. The
log-likelihood function for a given sample x1, . . . , xn is given by

L(θ|x1, . . . , xn) = log

 n

∏
j=1

f (xj1, . . . , xjk|θ)


=

n

∑
j=1

log
[

f (xj1, . . . , xjk|θ)
]

, θ ∈ Θ, (9)

where n is the sample size, θ is a vector of parameters to be estimated, and xj = (xj1, . . . , xjk)
′ is

the jth observation for the random vector X = (X1, . . . , Xk)
′, respectively. The maximizer θ̂ of the

log-likelihood function given in (9), namely,

θ̂ = arg max
θ∈Θ

L(θ|x1, . . . , xn),

is obtained using an appropriate optimization method. The parameter space Θ in each case must be
appropriately constrained, and these constraints must be taken into account during the optimization
process. We have thus made use of three R stats functions, namely, optim(), constrOptim(), and
optimize() in this work. The functionality of these optimization functions is described in Table 7.

Function Number of parameters Usage

optim() Multiple General-purpose Optimization
constrOptim() Multiple Optimization with linear constraints
optimize() Single One Dimensional Optimization

Table 7: Use of optimization functions in R stats.

By default, all these functions perform the task of minimization of a function. To maximize (9), we
only need to add argument control = list(fnscale = -1) in functions optim() and constrOptim(),
and set maximum = TRUE in function optimize().

For example, for the multivariate Lomax distribution, we define the log-likelihood function
loglik.lomax() by using the following code:

loglik.lomax <- function(data, par) {
ll <- sum(dmvlomax(data, parm1 = par[1], parm2 = par[-1], log = TRUE))

}

The R stats function constrOptim() is chosen to obtain the maximizer of the log-likelihood function
(or equivalently, loglik.lomax()). The linear constraints imposed on the parameters a, θ1, and θ2 are
a > 0, θ1 > 0, and θ2 > 0. In matrix notation, it is,

Uθ =

1 0 0
0 1 0
0 0 1

 a
θ1
θ2

 =

 a
θ1
θ2

 >

0
0
0

 = C.

Thus, in the code that follows, the constraint matrix ui is set as an identity matrix I3 by using the
function diag(3), and constraint vector ci is set as a zero vector rep(0,3). For our illustration, let the
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data be the one simulated by the methods described earlier, each with n = 300. It is done by

set.seed(1)
bvtlomax <- rmvlomax(n = 300, parm1 = 5, parm2 = c(0.5, 1))

The starting initial values for a, θ1, and θ2 are all set as 10 by assigning rep(10,3) to the argument
theta in function constrOptim(). The gradient argument grad is optional, and we have chosen this to
be NULL.

> est = constrOptim(theta = rep(10, 3), f = loglik.lomax, grad = NULL, data = bvtlomax,
+ ui = diag(3), ci = rep(0, 3), control = list(fnscale = -1))
> est$convergence
[1] 0
> est$par
[1] 5.0555691 0.4468724 0.9036692

The output consists of two important pieces of information, (i) whether convergence is successfully
achieved (est$convergence = 0) or not (est$convergence = 1) and (ii) the values of the final
maximum likelihood estimates. In our illustration, the convergence is successfully achieved, and we
have â = 5.0555691 and (θ̂1, θ̂2) = (0.4468724, 0.9036692).

We summarize the optimization methods, constraints, and the resulting outputs for all the bivariate
distributions (except for bivariate F distribution) in Table 8. The detailed illustrations and codes for
the remaining distributions are included in the digital complement. Observe that these estimates are
reasonably close to the true parameter values, thereby confirming that the program is functioning as it
is expected to.

Multivariate Parameters Optimization Constraints Estimated Parameters
Distribution Method

Lomax a = 5 constrOptim() U = I3 â = 5.05556
θ = (0.5, 1)′ C = (0, 0, 0)′ θ̂ = (0.44687, 0.90366)′

Mardia’s a = 5 constrOptim() U = I3 â = 4.63862
Pareto Type I θ = (0.5, 2)′ C = (0, [min(X1)]

−1, [min(X2)]
−1)′ θ̂ = (0.49971, 1.99785)′

Logistic µ = (0.5, 1)′ optim() N/A µ̂ = (0.39199, 0.89731)′

σ = (1, 1.5)′ σ̂ = (0.97573, 1.55976)′

Burr a = 3 constrOptim() U = I5 â = 3.91498
d = (1, 3)′ C = (0, 0, 0, 0, 0)′ d̂ = (0.64889, 2.06858)′

c = (2, 5)′ ĉ = (1.92719, 5.07697)′

Cook-Johnson’s
Uniform

a = 0.3 optimize() a > 0 â = 0.31064

Generalized a = 5 constrOptim() U = I5 â = 3.91869
Lomax θ = (0.5, 1)′ C = (0, 0, 0, 0, 0)′ θ̂ = (0.54674, 1.79126)′

l = (2, 4)′ l̂ = (1.70310, 5.21736)′

Inverted Beta a = 4 constrOptim() U = I3 â = 3.67153
l = (2, 6)′ C = (0, 0, 0)′ l̂ = (1.82450, 5.46465)′

Table 8: Comparison between True and Estimated Values of Parameters for each of the Distributions
(except for bivariate F distribution).

Two applications

In this last section, we give two brief applications, which not only demonstrate the use but also confirm
the accuracy and verify the correctness of our work.

Generating data from the nonelliptical symmetric distributions with univariate normal
marginals

Cook-Johnson’s multivariate uniform distribution is a family of distributions that can be used for
modeling nonelliptical symmetric data. Further, in view of uniform distribution for marginal, it
has been as one of the useful choices for modeling through copula (in fact, Cook-Johnson’s uniform
distribution is indeed a Clayton copula (Nelsen, 2006)). The value of parameter a impacts the common
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correlation coefficient ρ among variates in that ρ → 0 as a → ∞, and ρ → 1 as a → 0 (Cook and
Johnson, 1981). An interesting application of Cook-Johnson’s multivariate uniform distribution is
to obtain new joint distributions by marginal transformation. Specifically, we consider the problem
of generating random numbers from a multivariate distribution that is not elliptically symmetric
but has univariate normal marginals. Let Ui’s, i = 1, 2, be two random variables corresponding to
the Cook-Johnson’s bivariate uniform distribution. The following code yields the pairs of random
numbers, each having the normal marginals by the transformation Xi = Φ−1(Ui), where Φ−1(·) is
the quantile function of a standard normal distribution. Clearly, the joint distribution of X1 and X2 is
not bivariate normal. To begin with, the parameter a is taken to be a = 2.

set.seed(1)
biv.unif <- rmvunif(8000, parm = 2, dim = 2)
biv.norm <- as.data.frame(apply(biv.unif, 2, qnorm))

The sample correlation coefficient ρ of data set biv.norm is computed by the following code.

> cor(biv.norm$V1, biv.norm$V2)
[1] 0.3180119

We create a bivariate scatter plot using the function ggplot() in package ggplot2 (Wickham, 2016) for
data set biv.norm. This is shown in Figure 3 (a).

library(ggplot2)

ggplot(biv.norm, aes(x = V1, y = V2)) + xlim(c(-4, 4)) +
ylim(c(-4, 4)) + xlab("X1") + ylab("X2") + geom_point()

To assess the behavior as a function of a, we now decrease the parameter a to 1.0, 0.5, 0.1 resulting
in higher correlations ρ (= 0.51, 0.68, 0.93, respectively) between the two variates. The bivariate scatter
plots for the four cases that is, when a = 2.0, 1.0, 0.5, 0.1 are shown in Figure 3 (a)-(d). It is easy to
observe that the generated bivariate data have nonelliptical yet, symmetric contours.

(a) a = 2, ρ = 0.32 (b) a = 1, ρ = 0.51

(c) a = 0.5, ρ = 0.68 (d) a = 0.1, ρ = 0.93

Figure 3: The scatterplots of nonelliptical symmetric normal data generated from transformed Cook-
Johnson’s uniform random numbers with a = 2, 1, 0.5 and 0.1.
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Creating tables for simultaneous MANOVA hypothesis tests

Multivariate F distribution arises naturally as the distribution of test statistics in several testing
problems in simultaneous MANOVA. Let s2

1, · · · , s2
k be k independent sums of squares, and s2

0 be the
sum of squares due to error in the classical ANOVA model. Also, let H1, · · · , Hk be certain individual
linear hypotheses with the corresponding sum of squares s2

1, · · · , s2
k . Assume that under H1, · · · , Hk,

respectively, the sums of squares s2
1, · · · , s2

k are all χ2 random variables each with n degrees of freedom
and s2

0 is a χ2 random variable with m degrees of freedom and is independent of s2
1, · · · , s2

k . Armitage
and Krishnaiah (1964) defined the critical values Fα at α level of significance for simultaneously testing
hypotheses H1, · · · , Hk by the probability statement,

P

[
m max (s2

1, · · · , s2
k)

ns2
0

≤ Fα

∣∣∣∣∣ k⋂
i=1

Hi

]
= P

[
ms2

i
ns2

0
≤ Fα, i = 1, · · · , k

∣∣∣∣∣ k⋂
i=1

Hi

]
= 1 − α.

The quantities (ms2
i )/(ns2

0), i = 1, · · · , k jointly follow multivariate F distribution if the overall null
hypothesis H0 =

⋂k
i=1 Hi is true. In this case, the critical value Fα can be readily computed using

the equicoordinate quantile function qmvf() by setting the argument corresponding to k + 1 values
of the degrees of freedom as df = c(m,n,...,n). The following code gives F0.05 = 9.551505 for the
bivariate F case when m = 5 and n = 1 with default algorithm by using adaptive multiple integration
over unit cube (algorithm = "numerical"). With Monte Carlo algorithm (algorithm = "MC" with
nsim=1,000,000), we obtain F0.05 = 9.550944. Note that the Monte Carlo method is seed dependent,
so the output from different runs may slightly differ from each other.

> qmvf(0.95, df = c(5, 1, 1))
[1] 9.551505
> qmvf(0.95, df = c(5, 1, 1), algorithm = "MC")
[1] 9.550944

For further demonstration and also to further affirm our trust in the calculations, we compare
the output of quantile function qmvf() using both adaptive multivariate integration and Monte Carlo
methods with the values given in Armitage and Krishnaiah (1964). These three calculations are
reported in Table 9 for a few choices of m and n. The agreement among the three columns shows
that the package NonNorMvtDist provides a convenient way to obtain percentage points for the
hypothesis testing problems considered by Armitage and Krishnaiah (1964) and Krishnaiah (1965).
Clearly, unlike the tables in Armitage and Krishnaiah, the choices of α and degrees of freedom are not
restricted, and in that sense, our package is very comprehensive and exhaustive in this respect.

α df (m, n, n) qmvf() Output qmvf() Output Tabulated Values in
(algorithm = "numerical") (algorithm = "MC") Armitage and Krishnaiah

(1964, pp. 33-42)

0.05

(5, 1, 1) 9.551505 9.550944 9.55
(5, 2, 2) 7.879999 7.881698 7.88
(5, 3, 3) 7.136473 7.165361 7.14
(5, 4, 4) 6.702224 6.715759 6.70
(5, 5, 5) 6.412372 6.399167 6.41
(10, 6, 6) 3.899335 3.898442 3.90
(10, 7, 7) 3.768494 3.767915 3.77
(10, 8, 8) 3.665646 3.661366 3.67
(10, 9, 9) 3.582271 3.583923 3.58
(10, 10, 10) 3.513163 3.514059 3.51

Table 9: Comparison between the output of qmvf() with the values given in Armitage and Krishnaiah
(1964).

Concluding remarks

We have developed a new R package, NonNorMvtDist, for generating multivariate random numbers
from Lomax (Pareto type II), generalized Lomax, Mardia’s Pareto type I, logistic, Burr, Cook-Johnson’s
uniform, F, and inverted beta distributions. Detailed examples of each distribution are given to
illustrate data simulation, probability calculations, and statistical modeling.
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The fact that nonnormal and skewed multivariate distributions are common in the real world but
are rarely pursued for analysis due to the lack of ready-to-use computational support underscores the
importance of this package. Possibilities of the use of these distributions are practically limitless and
yet unforeseen in a variety of areas, starting from the biomedical sciences, reliability, and engineering as
well as in statistical finance in the contexts of volatility estimation. Simulations, probability calculations,
as well as calculations of quantiles, and the maximum likelihood estimation of parameters are the
natural first set of computations in such studies. We have addressed all of these in this work.

The calculations of probabilities of hypercubes (for example, of P[a1 < X1 < b1, a2 < X2 <
b2, a3 < X3 < b3]) can be easily implemented by appropriately combining several cd f calculations.
Alternatively, our codes for pmv*() can be suitably modified for this purpose. The probability density
surface plots for any bivariate marginal can be easily constructed since, for the multivariate Lomax
distribution, the marginal distributions of any subset of random variables also follow the multivariate
Lomax distribution in the appropriate dimension. Further, our work provides a way to generate data
from, probability calculations for, as well as modeling for, the data which are marginally distributed as
normal but jointly are not.
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CompModels: A Suite of Computer Model
Test Functions for Bayesian Optimization
by Tony Pourmohamad

Abstract The CompModels package for R provides a suite of computer model test functions that can be
used for computer model prediction/emulation, uncertainty quantification, and calibration. Moreover,
the CompModels package is especially well suited for the sequential optimization of computer models.
The package is a mix of real-world physics problems, known mathematical functions, and black-box
functions that have been converted into computer models with the goal of Bayesian (i.e., sequential)
optimization in mind. Likewise, the package contains computer models that represent either the
constrained or unconstrained optimization case, each with varying levels of difficulty. In this paper,
we illustrate the use of the package with both real-world examples and black-box functions by solving
constrained optimization problems via Bayesian optimization. Ultimately, the package is shown to
provide users with a source of computer model test functions that are reproducible, shareable, and
that can be used for benchmarking of novel optimization methods.

Introduction

The CompModels package (Pourmohamad, 2020) for R (R Core Team, 2020) is a suite of test functions
designed to mimic computer models. Usually deployed when physical experimentation is not possible,
a computer model (or code) is a mathematical model that simulates a complex phenomena or system
under study via a computer program. For example, weather phenomena, such as hurricanes or
global warming, are not reproducible physical experiments. Therefore, computer models based on
climatology are used to study these events. At its simplest, a computer model is a mathematical model
of the form

y = f (x1, . . . , xd) = f (x), x = (x1, . . . , xd)
T ∈ X , (1)

where x is an input variable to the computer model, y is a (possibly multivariate) deterministic output
from the computer model, and X is the domain of the input variable. A defining characteristic of
most computer models is that, for a given input x, the evaluation of the underlying mathematical
model, f , is a time intensive endeavor. Computationally expensive computer models helped spur
the development of the computer modeling field in statistics (Santner et al., 2003), and in particular,
the development of “cheap-to-compute" statistical models, or surrogate models, that resemble the true
computer model very closely but are much faster to run. Outside the scope of this paper, but useful
for forthcoming discussion and illustrations, we simply mention that Gaussian processes (GPs) (Stein,
1999) have been used as the typical modeling choice for building statistical surrogate models. GPs are
the preferred choice of statistical surrogate model due to their flexibility, well-calibrated uncertainty,
and analytic properties (Gramacy, 2020).

Another typical trait of computer models is that they are often treated as black-box functions. Here,
a black-box computer model is a computer model where evaluation requires running computer code
that reveals little information about the functional form of the underlying mathematical function, f .
The black-box assumption often arises due to the fact that f may be extremely complex, analytically
intractable, or that access to the internal workings of the computer model are restricted, say, for such
reasons as being proprietary software. The latter restricted cases have led to a dearth of real-world
computer models that are freely available and/or accessible to statisticians that hope to develop
novel methods for the computer modeling field. It is for this reason that we have developed the
CompModels package which serves as a repository of pseudo computer models for statistical use.

The CompModels package can be used to test and develop methods for computer model emulation
(prediction), uncertainty quantification, and calibration. However, the main focus when developing
the package was placed on building computer models for optimization. Real-world computer models
are often built with the goal of understanding some physical system of interest, and with that goal
usually comes the need to optimize some output of interest from the computer model. For example, in
hydrology, the minimization of contaminants in rivers and soils is of interest and so computer models
representing pump-and-treat remediation plans are often used in order to optimize objectives, such
as the associated costs of running pumps for pump-and-treat remediation, while also ensuring that
contaminants do not spread (Pourmohamad and Lee, 2019). Recalling that most computer models
are computationally expensive to run, the need for efficient sequential optimization algorithms (also
known as Bayesian optimization) that do not require many functional evaluations is high, which is
why the focus of the test functions in the CompModels package is placed on optimization. More
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specifically, the CompModels package presents functions to optimize of the following form

min
x

{ f (x) : c(x) ≤ 0, x ∈ X}, (2)

where X ⊂ Rd is a known, bounded region such that f : X → R denotes a scalar-valued objective
function, and c : X → Rm denotes a vector of m constraint functions. However, many of the package
functions omit the constraint functions and thus the package is a mix of constrained and unconstrained
optimization problems.

Some of the functions in the CompModels package have known functional forms, for example, the
gram() and mtp() functions. However, most all functions are intended to serve as black-box computer
models. All of the black-box computer model functions within the package are aptly named bbox
(short for black-box) and followed by a unique integer value to make the functions discernible. For
example, bbox1() and bbox2() are two unique function calls to two different black-box computer
models that can be used for constrained and unconstrained optimization, respectively. R is an open-
source programming language, and so none of the computer models within the package can ever
truly be a completely black-box function. However, the developers of the CompModels package have
done their best to obscure the analytical forms of the mathematical functions underlying the computer
models. For example, at the first level of the code, a call to the bbox1() function tells the user the
following:

R> bbox1
function(x1,x2){

if(!is.numeric(x1) | !is.numeric(x2) | length(x1) != 1 | length(x2) !=1){
stop("Input is invalid.")

}else if(x1 < -1.5 | x1 > 2.5 | x2 < -3 | x2 > 3){
stop("Input is outside of the domain.")

}else{
ans <- .C("bbox1c",x1=x1,x2=x2,fx=0,c1x=0,c2x=0)
return(list(obj = ans$fx, con = c(ans$c1x,ans$c2x)))

}
}

The only discernible information that the user can glean from this output is that the bbox1()
function has an input dimension of d = 2, where the domain X = [−1.5, 2.5]× [−3, 3], and that there
is one objective function, fx, to minimize, and two constraint functions, c1x and c2x, to satisfy. As
we see from the .C() command, the actual source code for the black-box function has been written
using the C programming language. The C programs are publicly available, but the code within those
programs has been heavily obfuscated to the best of our abilities in order to obscure the source code
such that the computer models remain black-box functions. Moreover, we believe that a good robust
methodology developed for computer models benefits from being applied to black-box functions and
so any attempt to decipher the black-box computer models is simply a disservice to the statistician
developing the methodology.

When developing the computer models in the package, we kept in mind that the best computer
model examples typically have roots in real applications. When possible, we tried to develop computer
models that were either based on physics or that appeared in the literature with real use cases.
For example, one computer model, pressure(), is based on the real-world engineering problem of
minimizing the cost associated with constructing a pressure vessel (Figure 1). Given the thickness of
the shell (x1), the thickness of the head (x2), the inner radius (x3), and the length of the cylindrical
section of the vessel (x4) not including the head, the cost of constructing the pressure vessel is to be
minimized subject to four constraints on the cost of materials, forming, and welding.

!!

!"
!#!$

!"

Figure 1: The physical representation of the pressure vessel computer model.

Likewise, when possible, we sought out real-world problems where solutions already existed that
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could be benchmarked to. For example, the tension spring computer model, tension(), is designed
to minimize the weight of a tension spring (Figure 2) subject to four constraints on the shear stress,
surge frequency, and deflection. The three inputs to the computer model are for the wire diameter (x1),
mean coil diameter (x2), and the number of active coils (x3).

!!

!"

!# = Number of Coils

Figure 2: The physical representation of the tension spring computer model.

The tension spring problem has been solved many times in the literature, and Table 1 summarizes
some of the best solutions.

Optimal Inputs
Source x1 x2 x3 Best Solution

Coello (2000) 0.051480 0.351661 11.632201 0.012704
He and Wang (2007) 0.051728 0.357644 11.244543 0.012675
Gandomi et al. (2013) 0.051690 0.356730 11.288500 0.012670
Mirjalili et al. (2014) 0.051690 0.356737 11.288850 0.012666
Lee and Geem (2005) 0.051154 0.349871 12.076432 0.012671
Askarzadeh (2016) 0.051689 0.356717 11.289012 0.012665
Mirjalili et al. (2017) 0.051207 0.345215 12.004032 0.012676
Li et al. (2019) 0.051618 0.355004 11.390144 0.012665

Table 1: Best solutions to the tension spring optimization problem from the literature.

We stress the need for benchmarking in our examples because we believe that benchmarking
also helps with allowing for good computer model methodology to be developed. In the computer
modeling literature, one tends to see real-world optimization results that stand alone and cannot be
compared against or even replicated because practitioners do not have access to the same computer
models as others. Being able to benchmark one’s results to others helps discern how well a given
optimization method performs and allows for useful internal feedback when developing a method.
Thus, a key reason we have developed the CompModels package is so that equitable access to
computer models for benchmarking exists. Similarly, a problem with real-world computer models is
that they can change over time, and often older versions will be phased out, unsupported, or disappear
entirely. For example, the optimization results for the MODFLOW-96 computer model (McDonald
and Harbaugh, 1996) from Pourmohamad and Lee (2016) was benchmarked to the work in Lindberg
and Lee (2015). However, this computer model is no longer supported by its developers, and so future
benchmarking may become infeasible. Thus, the CompModels package also stands as a repository
of computer models that should be available to all users for the foreseeable future. Lastly, computer
models can often be platform and operating system specific, which ultimately limits the number of
potential users of the computer model. Given that R packages, for the most part, tend to be immune to
this problem, the CompModels package would be available to as wide of an audience as possible,
again providing equitable access to computer models.

The remainder of the paper is organized as follows. Section 2.2 gives a brief introduction to
Bayesian optimization and expected feasible improvement so that the computer models within the
CompModels package can be demonstrated. Section 2.3 illustrates practical applications of package
use for optimization, and Section 2.4 concludes with a discussion.

Bayesian Optimization

Tracing its roots as far back as to Mockus et al. (1978), Bayesian optimization (BO) is a sequential design
strategy for efficiently optimizing black-box functions in a few steps that does not require gradient
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information (Brochu et al., 2010). More specifically, BO seeks to solve the minimization problem

x∗ = argmin
x∈X

f (x). (3)

The minimization problem in (3) is solved by iteratively developing a statistical surrogate model
of the unknown objective function f , and at each step of this iterative process, using predictions
from the statistical surrogate model to maximize an acquisition (or utility) function, a(x). The role
of the acquisition function is to measure how promising each location in the input space, x ∈ X , is
if it were to be the next chosen point to evaluate. As alluded to in Section 2.1, the GP is the typical
choice of surrogate model in the computer modeling literature, and so we adopt that stance as well
in this paper. Lastly, although the general definition of BO is that of an unconstrained optimization
problem, extensions to the constrained optimization case are straightforward and many (Lee et al.,
2011; Gramacy et al., 2016; Letham et al., 2019; Pourmohamad and Lee, 2020). Here, we merely
augment the original problem statement in (3) to be

x∗ = argmin
x∈X

f (x) subject to c(x) ≤ 0, (4)

where now both f and c can be modeled using independent GPs, and all other steps proceed as before.

In order to solve the problems in (3) and (4), an acquisition function must be chosen for efficiently
guiding the search. Perhaps, one of the most popular acquisition functions for unconstrained Bayesian
optimization is that of expected improvement (EI) (Jones et al., 1998). Originally introduced in the
computer modeling literature, Jones et al. (1998) defined the improvement statistic at a proposed
input x to be I(x) = maxx{0, f n

min − Y(x)}, where, after n runs of the computer model, f n
min =

min{ f (x1), ..., f (xn)} is the current minimum value observed. Since the proposed input x has not yet
been observed, Y(x) is unknown and can be regarded as a random variable. Likewise, I(x) can be
regarded as a random variable, and so new candidate inputs, x∗, can be selected by maximizing the
expected improvement, i.e.,

x∗ = arg max
x∈X

E[I(x)]. (5)

Fortunately, if we treat Y(x) as coming from a GP then, conditional on a particular parameterization
of the GP, the EI acquisition function is available in closed form as

E[I(x)] = ( f n
min − µn(x))Φ

(
f n
min − µn(x)

σn(x)

)
+ σn(x)ϕ

(
f n
min − µn(x)

σn(x)

)
. (6)

Here, µn(x) and σn(x) are the mean and standard deviation of the predictive distribution of Y(x), and
Φ(·) and ϕ(·) are the standard normal cdf and pdf, respectively.

Extending EI to the constrained optimization case, Schonlau et al. (1998) defined expected feasible
improvement (EFI) as

EFI(x) = E[I(x)]× Pr(c(x) ≤ 0), (7)

where Pr(c(x) ≤ 0) is the probability of satisfying the joint constraints. Here, I(x) uses an f n
min defined

over the region where the constraint functions are satisfied. Again, new candidate inputs, x∗, can now
be selected by maximizing the expected feasible improvement, i.e.,

x∗ = arg max
x∈X

E[I(x)]× Pr(c(x) ≤ 0). (8)

Here the formula in (6) still holds. However, we are now weighting EI by the probability that x is
feasible.

Illustrations

We illustrate the use and functionality of the computer models in the CompModels package by solving
two constrained optimization problems using the EFI method outlined in Section 2.2. We optimize the
tension spring computer model, tension(), as well as the black-box 1 computer model, bbox1(). In
both cases, we perform Monte Carlo experiments where we repeat the optimization routine a total of
30 times to judge the robustness of the solutions. We take advantage of the function optim.efi() in
the laGP package (Gramacy, 2016) for running the EFI algorithm. A full list of the available computer
models in the CompModels package is given in the Appendix and is generalizable to the proceeding
examples.
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Tension Spring Computer Model

The goal of the tension spring computer model is to minimize the weight of the tension spring subject
to four constraints on the shear stress, surge frequency, and deflection. Here, the inputs to the tension
spring computer model are the wire diameter (x1), mean coil diameter (x2), and the number of active
coils (x3), where x1 ∈ [0.05, 2], x2 ∈ [0.25, 1.3], and x3 ∈ [2, 15]. To evaluate the computer model at a
given input, a user needs to supply an input within the given domain, i.e.,

R> tension(x1 = 1, x2 = 1, x3 = 3)
$obj
[1] 5

$con
[1] 0.9999582 -45.8166667 -0.9995655 0.3333333

All of the computer model functions in the package will return a list where the first element in the list
is the value of the objective function, and (in the case of constrained optimization) the second element
contains the values of the constraint functions. Here we see that for a wire diameter of x1 = 1, mean
coil diameter of x2 = 1, and x3 = 3 active coils, that the weight of the tension spring is five. However,
the first and last constraint has not been satisfied since those values of $con are non-negative. Thus,
the input is not a feasible solution to the problem. The input of x = (1, 1, 3) was merely a guess for
illustrative purposes. A more reasonable approach to minimizing the tension spring computer model
would be to employ the EFI method in Section 2.2. In order to do so, we make use of the function
optim.efi() in the laGP package. To be able to use the optim.efi() function, we need to first build a
wrapper function (which we call bbox) for our tension() function that conforms to the specifications
of the optim.efi() function.

R> bbox <- function(X){
+ output = tension(X[1], X[2], X[3])
+ return(list(obj = output$obj, c = output$con))
}

Next, we need to create a matrix that encodes the domain of the computer model inputs.

R> B <- matrix(c(.05, .25, 2, 2, 1.3, 15), nrow=3)

We can implement the EFI algorithm by passing our wrapper function and domain variable as
arguments to the optim.efi() function, and then by checking the regions where the solution satisfies
the constraints.

R> ans <- optim.efi(bbox, B, fhat = TRUE, start = 10, end = 300)
R> constraint <- ifelse(apply(ans$C, 1, max) > 0, "Not Met", "Met")

Here, we see that the optim.efi() function started with a random input of 10 data points and
sequentially chose 290 more inputs for a total of 300 evaluations. The output of optim.efi() is a large
list storing all steps of the EFI algorithm. We create the constraint variable in order to be able to find
where the minimum feasible value exists.

R> min(ans$obj[constraint == "Met"])
[1] 0.0112376

R> ans$X[ans$obj == min(ans$obj[constraint == "Met"])]
[1] 0.05345441 0.45253754 6.69064005

Here, we see that the best feasible value found by the EFI algorithm is at a weight of 0.0112376, which
occurs at an input of x = (0.05345441, 0.45253754, 6.69064005). Interestingly, this minimum value
found of 0.0112376 is much smaller than all of the best minimums found in our review of the literature
(Table 1). To evaluate the robustness of the EFI algorithm for the tension spring computer model,
we conduct a Monte Carlo experiment where we repeat the optimization routine 30 times based on
different starting input data sets of size 10.

R> S <- 30
R> results <- rep(NA, S)
R> for(i in 1:S){
+ ans <- optim.efi(bbox, B, fhat = TRUE, start = 10, end = 300)
+ constraint <- ifelse(apply(ans$C, 1, max) > 0, "Not Met", "Met")
+ results[i] <- min(ans$obj[constraint == "Met"])
+}
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R> summary(results)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.01081 0.01255 0.01302 0.01325 0.01386 0.01859

From the summary of the results, we see that over the 30 Monte Carlo experiments that the EFI
algorithm was not able to reliably find as good of a solution over the 300 computer model evaluations.
The mean value over the 30 runs was 0.01325, which was much higher than the best solutions presented
in Table 1. However, we do see from the summary that the EFI algorithm was able to find at least one
more better solution, as compared to the literature, at a spring weight of 0.01081.

Black-box Computer Model

Recalling Section 2.1, the bbox1() computer model has an input dimension of d = 2, where the domain
X = [−1.5, 2.5]× [−3, 3], and that there is one objective function, fx, to minimize, and two constraint
functions, c1x and c2x, to satisfy. We can, once again, use the optim.efi() function to perform the EFI
algorithm by creating an appropriate wrapper function and domain variable.

R> bbox <- function(X){
+ output = bbox1(X[1], X[2])
+ return(list(obj = output$obj, c = output$con))
+}

R> B <- matrix(c(-1.5, -3, 2.5, 3), nrow = 2)

We initialize the optim.efi() function with an input data set of 10 points and continue to sequentially
evaluate the bbox1() function for a total of 100 input points.

R> ans <- optim.efi(bbox, B, fhat = TRUE, start = 10, end = 100)
R> constraint <- ifelse(apply(ans$C, 1, max) > 0, "Not Met", "Met")

Checking the EFI algorithm results in the areas where the constraint functions were satisfied, we obtain
a best feasible minimum objective function value of -4.61008, which occurs at x = (0.204649, 2.072964).

R> min(ans$obj[constraint == "Met"])
[1] -4.610088

R> xbest <- ans$X[ans$obj == min(ans$obj[constraint == "Met"])]
R> xbest
[1] 0.204649 2.072964

Now, since the bbox1() function is a black-box computer model, we do not have any analytical way
of checking whether or not our solution to the optimization problem is a good one. However, the
functions in the CompModels package were not developed with the intent of forcing them to be
computationally expensive if they need not be. Thus, with an input dimension of d = 2, it is very
easy to evaluate the bbox1() function on a very dense grid to understand what the potential surface of
the objective and constraint functions look like. Doing so does not guarantee us analytically that our
solution is a good one, but we will be able to tell visually whether or not our solution is a good one.
Plotting the objective and constraint surfaces, we obtain the following (Figure 3).

R> n <- 200
R> x1 <- seq(-1.5, 2.5, len = n)
R> x2 <- seq(-3, 3, len = n)

R> x <- expand.grid(x1, x2)
R> obj <- rep(NA, nrow(x))
R> con <- matrix(NA, nrow = nrow(x), ncol = 2)

R> for(i in 1:nrow(x)){
+ temp <- bbox1(x[i,1], x[i,2])
+ obj[i] <- temp$obj
+ con[i,] <- temp$con
+}

R> y <- obj
R> y[con[,1] > 0 | con[,2] > 0] <- NA

R> z <- obj
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R> z[!(con[,1] > 0 | con[,2] > 0)] <- NA

R> par(ps=15)
R> plot(0, 0, type = "n", xlim = c(-1.5, 2.5), ylim = c(-3, 3),
+ xlab = expression(x[1]), ylab = expression(x[2]), main = "Black-box Function")
R> c1 <- matrix(con[,1], ncol = n)
R> contour(x1, x2, c1, nlevels = 1, levels = 0, drawlabels = FALSE, add = TRUE,
+ lwd = 2)
R> c2 <- matrix(con[,2], ncol = n)
R> contour(x1, x2, c2, nlevels = 1, levels = 0, drawlabels = FALSE, add = TRUE,
+ lwd = 2, lty = 2)
R> contour(x1, x2, matrix(y, ncol = n), nlevels = 10, add = TRUE, col = "forestgreen")
R> contour(x1, x2, matrix(z, ncol = n), nlevels = 20, add = TRUE, col = 2, lty = 2)
R> points(xbest[1], xbest[2], pch = 21, bg = "deepskyblue")
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Figure 3: The objective function colored by the two constraints. The solid black line denotes one
constraint function, while the dashed black line denotes the other constraint function. Contours that
are red are areas where the constraints are not satisfied, while green contours indicate areas where the
constraints are satisfied. The blue point represents the best feasible solution found by EFI.

By plotting the objective function surface, and the constraint functions, we see that the space where the
constraints are satisfied are two disconnected regions where the feasible region with x1 > 0 has much
lower objective function values than the feasible region where x1 < 0. We plotted our best minimum
objective value found, by EFI, as a blue circle in (Figure 3). Visually, our best minimum objective
value found appears to be around the global minimum value based on the calculated contour lines
of the plot. Although this visual inspection suggests that our EFI algorithm has correctly identified
the global solution to the optimization problem, confirmation of our solution could come from others
using the CompModels package in order to benchmark the solution. Lastly, we check the robustness
of the solution found by the EFI algorithm by conducting a Monte Carlo experiment where we repeat
the optimization routine for a total of 30 times.

R> summary(results)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.681 -4.661 -4.645 -4.645 -4.632 -4.602

From the summary of the results, we see that the variation in the results show up in the hundredth
decimal point and beyond, which we regard as representing a very robust solution.
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Discussion

The primary goal of the package is to provide users with a source of computer model test functions
that are reproducible, shareable, and that can ultimately be used for benchmarking of Bayesian
optimization methods. The package will greatly benefit those who do not have access, or connections,
to real-world computer models. In time, it is our hope that the package will come to be viewed as a
suite of real computer models rather than solely as pseudo ones. Likewise, the CompModels package
is not a static package in that we envision it to be a living repository, and so more computer model
functions will be expected to be added over time. The success of any R package ultimately comes from
the feedback received from its users. We greatly encourage all interested users of the package to please
contact the developers in order to provide any insights or examples for new computer models to be
added.

Bibliography

A. Askarzadeh. A novel metaheuristic method for solving constrained engineering optimization
problems: Crow search algorithm. Computers and Structures, 169:1–12, 2016. doi: 10.1016/j.compstruc.
2016.03.001. [p443]

E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning, 2010.
[p444]

C. Coello. Use of a self-adaptive penalty approach for engineering optimization problems. Computers
in Industry, 41(2):113–127, 2000. doi: 10.1016/S0166-3615(99)00046-9. [p443]

A. Gandomi, X. Yang, A. Alavi, and S. Talatahari. Bat algorithm for constrained optimization tasks.
Neural Computing and Applications, 22:1239–1255, 2013. [p443]

R. B. Gramacy. laGP: Large-scale spatial modeling via local approximate Gaussian processes in R.
Journal of Statistical Software, 72(1):1–46, 2016. doi: 10.18637/jss.v072.i01. [p444]

R. B. Gramacy. Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences.
Chapman & Hall/CRC, first edition, 2020. [p441]

R. B. Gramacy, G. A. Gray, S. L. Digabel, H. K. H. Lee, P. Ranjan, G. Wells, and S. M. Wild. Modeling
an augmented Lagrangian for blackbox constrained optimization. Technometrics, 58(1):1–11, 2016.
[p444]

Q. He and L. Wang. An effective co-evolutionary particle swarm optimization for constrained
engineering design problems. Engineering Applications of Artificial Intelligence, 20(1):89–99, 2007. doi:
10.1016/j.engappai.2006.03.003. [p443]

D. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black box functions.
Journal of Global Optimization, 13:455–492, 1998. [p444]

H. K. H. Lee, R. B. Gramacy, C. Linkletter, and G. A. Gray. Optimization subject to hidden constraints
via statistical emulation. Pacific Journal of Optimization, 7:467–478, 2011. [p444]

K. Lee and Z. Geem. A new meta-heuristic algorithm for continuous engineering optimization:
harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering, 194
(36–38):3902–3933, 2005. doi: 10.1016/j.cma.2004.09.007. [p443]

B. Letham, B. Karrer, G. Ottoni, and E. Bakshy. Constrained bayesian optimization with noisy
experiments. Bayesian Analysis, 14(2):495–519, 2019. [p444]

G. Li, F. Shuang, P. Zhao, and C. Le. An improved butterfly optimization algorithm for engineering
design problems using the cross-entropy method. Symmetry, 11(8):1049, 2019. doi: 10.3390/
sym11081049. [p443]

D. Lindberg and H. K. H. Lee. Optimization under constraints by applying an asymmetric entropy
measure. Journal of Computational and Graphical Statistics, 24:379–393, 2015. [p443]

M. McDonald and A. Harbaugh. Programmer’s documentation for MODFLOW-96, an update to
the U.S. geological survey modular finite difference ground-water flow model. Technical report,
Open-File Report 96-486, U.S. Geological Survey, 1996. [p443]

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 449

S. Mirjalili, S. Mirjalili, and A. Lewis. Grey wolf optimizer. Advances in Engineering Software, 69:46–61,
2014. doi: 10.1016/j.advengsoft.2013.12.007. [p443]

S. Mirjalili, A. Gandomi, Z. Mirjalili, S. Saremi, H. Fairs, and S. Mirjalili. Salp Swarm Algorithm:
A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114:
163–191, 2017. doi: 10.1016/j.advengsoft.2017.07.002. [p443]

J. Mockus, V. Tiesis, and A. Zilinskas. The application of bayesian methods for seeking the extremum.
Towards Global Optimization, 2:117–129, 1978. [p443]

T. Pourmohamad. CompModels: Pseudo Computer Models for Optimization, 2020. URL https://CRAN.R-
project.org/package=CompModels. R package version 0.2.0. [p441]

T. Pourmohamad and H. K. H. Lee. Multivariate stochastic process models for correlated responses
of mixed type. Bayesian Analysis, 11(3):797–820, 09 2016. doi: 10.1214/15-BA976. URL https:
//doi.org/10.1214/15-BA976. [p443]

T. Pourmohamad and H. K. H. Lee. The statistical filter approach to constrained optimization.
Technometrics, 62(3):303–312, 2019. doi: 10.1080/00401706.2019.1638304. [p441]

T. Pourmohamad and H. K. H. Lee. Bayesian optimization via barrier functions. Technical report,
Deptartment of Statistics, University of California, Santa Cruz, 2020. [p444]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2020. URL https://www.R-project.org/. [p441]

T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer Experiments. Springer-
Verlag, New York, NY, 2003. [p441]

M. Schonlau, W. J. Welch, and D. Jones. Global versus local search in constrained optimization of
computer models. Lecture Notes-Monograph Series, pages 11–25, 1998. [p444]

M. L. Stein. Interpolation of Spatial Data. Springer, New York, NY, 1999. [p441]

Appendix: Current Computer Models

Table 2 provides a summary of the current computer models that are available in the CompModels
package. The package is a mix of real-world physics problems, known mathematical functions, and
black-box functions, as well as a mix of constrained or unconstrained optimization problems.

Function Input Dimension Optimization Type No. of Constraints

bbox1() 2 Constrained 2
bbox2() 2 Unconstrained –
bbox3() 2 Unconstrained –
bbox4() 2 Constrained 1
bbox5() 3 Unconstrained –
bbox6() 1 Constrained 2
bbox7() 8 Constrained 2
gram() 2 Constrained 2
mtp() 2 Constrained 2
pressure() 4 Constrained 4
sprinkler() 8 Unconstrained –
tension() 3 Constrained 4

Table 2: Current computer models that are implemented in the CompModels package.
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spfilteR: An R package for Semiparametric
Spatial Filtering with Eigenvectors in
(Generalized) Linear Models
by Sebastian Juhl

Abstract Eigenvector-based Spatial filtering constitutes a highly flexible semiparametric approach
to account for spatial autocorrelation in a regression framework. It combines judiciously selected
eigenvectors from a transformed connectivity matrix to construct a synthetic spatial filter and remove
spatial patterns from model residuals. This article introduces the spfilteR package that provides
several useful and flexible tools to estimate spatially filtered linear and generalized linear models in
R. While the package features functions to identify relevant eigenvectors based on different selection
criteria in an unsupervised fashion, it also helps users to perform supervised spatial filtering and
to select eigenvectors based on alternative user-defined criteria. Besides a brief discussion of the
eigenvector-based spatial filtering approach, this article presents the main functions of the package
and illustrates their usage. Comparison to alternative implementations in other R packages highlights
the added value of the spfilteR package.

Introduction

The presence of spatial autocorrelation in regression residuals constitutes a severe problem in standard
inferential statistics as it causes common econometric methods to produce inefficient or even biased
and inconsistent parameter estimates (Darmofal, 2015; Goodchild, 2009; Franzese and Hays, 2007).
Besides parametric spatial regression techniques, which became the dominant approach to this
challenge in the social sciences, spatial filtering techniques offer an alternative approach to handle
spatially clustered data. The particular appeal of these alternative semiparametric approaches to
spatial autocorrelation arise from their flexibility and the relative ease of estimation and interpretation
(e.g., Tiefelsdorf and Griffith, 2007; Getis and Griffith, 2002). Especially the eigenvector-based spatial
filtering (ESF) approach pioneered by Griffith (2003, 2000, 1996) has proven to be useful in various
academic disciplines.

This article introduces the spfilteR package that provides a set of flexible and useful functions
to implement the ESF approach in regression models. Besides tools to detect spatial autocorrelation
in individual variables and regression residuals by means of the Moran coefficient (MC) (Cliff and
Ord, 1981, 1972), the package features easily customizable functions which allow users to perform
supervised and unsupervised spatial filtering with eigenvectors. While other R packages like spa-
tialreg (Bivand and Piras, 2015) and spmoran (Murakami, 2020) also contain implementations of the
unsupervised ESF approach, they are less flexible in the specification of eigenvector selection criteria
which constitutes the crucial step in the ESF approach. These packages also offer few functions for the
supervised selection of eigenvectors.

In contrast, the spfilteR package allows users to obtain eigenvectors from a transformed connec-
tivity matrix and to identify a suitable candidate set in order to perform supervised spatial filtering.
Alternatively, unsupervised eigenvector selection procedures for different (generalized) linear models
based on a stepwise regression procedure are implemented as well. These functions select eigenvectors
based on either i) the maximization of model fit, ii) minimization of residual autocorrelation, iii) the
statistical significance of residual autocorrelation, or iv) the statistical significance of the candidate
eigenvectors. Parameter estimates are obtained by means of ordinary least squares (OLS) for linear
models and maximum likelihood estimation (MLE) for generalized linear models (GLMs). The print,
summary, and plot methods further facilitate the interpretation and visualization of the results.

After a theoretical description of the ESF approach in a regression framework, this article presents
some stylized R code to demonstrate the implementation of the ESF approach using the functions and
the synthetic dataset accompanying the spfilteR package. It also briefly compares the unsupervised
ESF procedures contained in this package to alternative implementations in other R packages. The last
section summarizes and concludes this article.

Spatial filtering with eigenvectors

Intuitively, the ESF approach put forth by Griffith (2003, 2000, 1996) and also Tiefelsdorf and Griffith
(2007) addresses the problem of spatially autocorrelated regression residuals by partitioning the error
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term into a spatially structured and a random component (see also Griffith and Chun, 2014). Consider
a stylized linear regression model of the following form:

y = Xβ + e, (1)

where X denotes the matrix of covariates (plus a vector of ones for the intercept term) and β is the
corresponding parameter vector. If the errors e are not independent but exhibit a non-random spatial
pattern, the ESF approach removes this pattern from the disturbances and thereby “whitens” the
residuals.

To this end, synthetic proxy variables are generated that reflect the spatial pattern present in model
residuals as closely as possible. Subsequently including these synthetic variables as control variables
in the regression’s mean equation removes the problematic spatial structure from the disturbances and
allows the use of standard procedures — such as OLS or MLE — for parameter estimation. Generating
these proxy variables that act as the spatial filter requires the decomposition of the transformed and
exogenously defined connectivity matrix which represents the dependence structure among the units
of analysis.

Eigenfunction decomposition

The eigenfunction (or spectral) decomposition of a transformed connectivity matrix constitutes the
core element of the ESF approach. More formally, the decomposition yields

MV M = EΛE′, (2)

where M is a symmetric and idempotent projection matrix, and V is the exogenously specified
connectivity matrix which is symmetrized by 1

2 (W +W ′). The columns of matrix E are the n mutually
uncorrelated eigenvectors obtained from MV M, and Λ is a diagonal matrix with the corresponding
eigenvalues λ = {λ1, λ2, . . . , λn} on its main diagonal. Tiefelsdorf and Boots (1995) show that each
eigenvector in E represents a distinct map pattern permitted by the units’ spatial arrangement and is
associated with a certain level of spatial autocorrelation.1

The projection matrix is given by M = I − X(X ′X)−1X ′, where I is the identity matrix, and the
eigenvectors in E are mutually uncorrelated and orthogonal to the covariates in the design matrix X.2

If only the intercept is included in the construction of the projection matrix, this equation simplifies to
M = (I − 11′/n), where 1 is an n × 1-dimensional vector of ones. As Tiefelsdorf and Griffith (2007)
show, the underlying spatial process generating the data determines both the form of the spatial
misspecification in a naïve nonspatial regression and the appropriate specification of M.

However, since the number of eigenvectors equals the number of observations in the data, only a
subset of eigenvectors can be included in the regression equation.

Eigenvector selection and the spatial filter

Identifying and selecting relevant eigenvectors is decisive in the ESF approach and involves two steps.
In a first step, a set of candidate eigenvectors, the search set EC ⊂ E, needs to be determined based on
different criteria. If the model residuals exhibit positive levels of spatial autocorrelation, eigenvectors
depicting negative autocorrelation can be discarded since simultaneously including eigenvectors
associated with positive and negative spatial autocorrelation can cause problems (Tiefelsdorf and
Griffith, 2007). Moreover, eigenvectors portraying negligible levels of spatial autocorrelation can be
eliminated as well since they contribute little to the spatial pattern present in model residuals (Chun
and Griffith, 2014).

Griffith (2003), for example, proposes a qualitative threshold determining the candidate set by
computing MCi/MCmax for all eigenvectors i ∈ {1, 2, . . . , n}, where MCmax denotes either the largest
positive or the largest negative Moran coefficient of all eigenvectors in E. According to this approach,
eigenvectors for which MCi/MCmax ≥ 0.25 should be included in the candidate set EC. Alternatively,
Chun et al. (2016) propose a nonlinear function to calculate the ideal size of the candidate set for a
given level of spatial autocorrelation and the total number of positive eigenvectors. However, this
approach is only applicable if the residuals exhibit positive levels of spatial autocorrelation.

1The Moran coefficient for each eigenvector in E can be computed by MCi = λin/1′V1 (e.g., Griffith, 1996;
Tiefelsdorf and Boots, 1995).

2It is important to note that, just like weights in linear models, the presence of a link function corrupts the
uncorrelatedness of the eigenvectors in generalized linear models (e.g., Griffith, 2003, 104-105). To check for
problematic levels of multicollinearity among the eigenvectors, the function glmFilter() in the spfilteR package
reports the condition number (see also Griffith and Amrhein, 1997).
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Once a feasible candidate set is identified, the importance of each eigenvector in EC needs to
be established in a second step. This is typically done by a stepwise regression procedure which
sequentially evaluates each eigenvector in the candidate set. To this end, the search algorithm utilizes
an objective function in order to determine which eigenvectors to select. The selected eigenvectors
E∗ ∈ EC are the synthetic covariates constituting the spatial filter. Selection criteria commonly
employed in the literature include the maximization of model fit statistics (e.g., Tiefelsdorf and Griffith,
2007; Griffith, 2003), the statistical significance of the eigenvectors (e.g., Griffith and Chun, 2014;
Le Gallo and Páez, 2013), the minimization of residual autocorrelation (e.g., Tiefelsdorf and Griffith,
2007), or arbitrary combinations of different selection criteria (e.g., Páez, 2019). The aim is to specify
an objective function that provides a parsimonious subset of eigenvectors. Parsimony here means
that E∗ minimizes residual autocorrelation with respect to the pre-specified connectivity structure
of the filtered model by selecting the smallest number of eigenvectors possible to obtain spatially
independent errors (Tiefelsdorf and Griffith, 2007).

Once E∗ is established, it can be added to the regression model in Equation (1):

y = Xβ +

e︷ ︸︸ ︷
E∗γ︸︷︷︸
f ilter

+ ϵ︸︷︷︸
noise

. (3)

Equation (3) depicts the spatially filtered regression model and illustrates how the ESF approach
partitions the regression residuals e from Equation (1) into a spatial trend component (E∗γ) and a
random component (ϵ). The selected eigenvectors E∗, in conjunction with their parameter estimates γ,
represent the spatial pattern latent in e. This term constitutes the synthetic spatial filter that shifts the
spatial pattern from the error term to the regression’s systematic part. Thereby, it removes the spatial
structure from the error term, leaving white noise residuals ϵ.

This stylized filtering scheme directly extends to GLMs, although the link function might corrupt
the uncorrelatedness of the eigenvectors. If a substantial amount of multicollinearity among the
eigenvectors is present, each eigenvector included in the subset of E∗ should be reevaluated whenever
a new eigenvector is selected (e.g., Griffith et al., 2019).

The spfilteR package

The stable release version of the spfilteR package can be obtained from CRAN.3 Alternatively, the
latest development version is available on GitHub:

# install package from CRAN
R> install.packages("spfilteR")

# OR: install development version from GitHub
R> library(devtools)
R> devtools::install_github("sjuhl/spfilteR")

Alongside a collection of functions, the package also provides an artificial dataset and a stylized
binary connectivity matrix based on the rook scheme of adjacency that connects n = 100 units on
a regular 10 × 10 grid. I use this made-up dataset to illustrate key features of the package and its
functionality.

To this end, consider a simple linear regression model with a single regressor. Once the model is
fitted, the function MI.resid() performs a test of residual spatial autocorrelation based on the Moran
coefficient (Cliff and Ord, 1981).

# load package and data
R> library(spfilteR)
R> data("fakedata")

R> y <- fakedataset$x1
R> X <- fakedataset$x2

R> resid <- resid(lm(y~X))
R> MI.resid(resid,x=X,W=W,alternative="greater")

3This article is based on version 1.0.0 of the spfilteR package.
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I EI VarI zI pI
0.350568 -0.0119261 0.01207299 3.299085 0.0004850019 ***

The results suggest that the residuals are spatially autocorrelated, which violates the Gauss-Markov
assumption of uncorrelated errors since cov(ϵi, ϵj) ̸= 0∀i ̸= j. To address this problem, the spfilteR
package allows users to implement the ESF approach and to select relevant eigenvectors using different
supervised or unsupervised selection procedures.

Supervised spatial filtering

As shown above, the ESF approach starts with the eigenfunction decomposition of a transformed and
symmetrized connectivity matrix as depicted in Equation (2). The function getEVs() allows users to
easily obtain these eigenvectors. Moreover, users have the option to specify covariates that are used in
order to construct the projection matrix M via the input covars.

R> EVs <- getEVs(W=W,covars=NULL)
R> E <- EVs$vectors

In addition to the eigenvectors and their corresponding eigenvalues, getEVs() also reports the
value of the MC associated with each of the eigenvectors.4 The first eigenvector depicts the spatial
pattern permitted by W with the largest possible degree of positive spatial autocorrelation. The
second eigenvector displays the pattern associated with the second largest possible degree of positive
autocorrelation that is uncorrelated with the first pattern, and so on (Griffith, 1996). Consequently,
while the first eigenvectors represent global patterns of positive spatial autocorrelation, the pattern
becomes more local as the degree of spatial autocorrelation approaches zero. The last eigenvectors in
the set capture patterns of negative autocorrelation (see Figure 1).

Figure 1: Visualization of Eigenvectors and their respective Moran coefficient (MC). Positive spatial
patterns are shown in the first row while negative patterns are depicted in the second row.

Based on the MC values, users can define the candidate set EC and select relevant eigenvectors
based on any desired selection criterium. Using the threshold suggested by Griffith (2003) outlined
above, the set EC consists of 31 eigenvectors. For illustrative purposes, I skip the second step of the
eigenvector selection procedure and include all eigenvectors in the ESF model so that EC = E∗.

# identify candidate set
R> Ec <- EVs$moran/max(EVs$moran)>=.25

# obtain ESF residuals
R> esf.resid <- resid(lm(y~X+E[,Ec]))

# check for remaining spatial autocorrelation in model residuals
R> MI.resid(esf.resid,x=X,W=W,alternative="greater")

4To this end, getEVs() calls the helper function MI.ev(), which calculates the MC for each supplied eigenvector
(see also Griffith, 1996; Tiefelsdorf and Boots, 1995).
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I EI VarI zI pI
-0.1836998 -0.0119261 0.01207299 -1.563326 0.941012

The results indicate that the ESF approach successfully removed positive spatial autocorrelation
from regression residuals. Furthermore, the functions partialR2() and vif.ev() included in the
spfilteR package allow users to investigate the proportion of explained variance by each eigenvector
and identify potential problems of variance inflation. In this example, eigenvector 13 accounts for
about 23.21% of the variance in y. Moreover, none of the eigenvectors induces problematic levels of
multicollinearity as the variance inflation factor (VIF) of each eigenvectors remains close to 1.

R> round(partialR2(y=y,x=X,evecs=E[,Ec]),6)

0.000377 0.060584 0.001004 0.028734 0.020554 0.004804 0.000091 0.007010
0.030418 0.079015 0.004550 0.000012 0.232083 0.011407 0.000959 0.004993
0.001714 0.000094 0.036713 0.044113 0.006588 0.005762 0.001845 0.009648
0.002761 0.031923 0.007490 0.000075 0.004271 0.004042 0.004060

R> vif.ev(x=X,evecs=E[,Ec],na.rm=TRUE)

1.004420 1.001660 1.050409 1.049729 1.011899 1.001588 1.008393 1.000929
1.034209 1.013360 1.000230 1.000027 1.005781 1.022793 1.073397 1.015425
1.014602 1.014900 1.000798 1.002998 1.004616 1.019448 1.001397 1.015900
1.005540 1.000474 1.018344 1.008363 1.000284 1.009756 1.086114

Unsupervised spatial filtering

Besides the supervised eigenvector selection procedure, the function lmFilter() performs unsu-
pervised spatial filtering and provides parameter estimates by means of OLS. Importantly, users
can specify different selection criteria. Thereby, this function eases the implementation of the ESF
approach while simultaneously providing considerable flexibility regarding the stepwise selection
of eigenvectors. Specifically, the following input arguments allow users to customize the selection
procedure and ensure the function’s flexibility:

• objfn allows users to determine the objective function of the search algorithm determining
E∗. It supports eigenvector selection based on the adjusted R2 ('R2'), residual spatial auto-
correlation ('MI'), the significance of eigenvectors ('p'), and the significance level of residual
spatial autocorrelation ('pMI'). Alternatively, all eigenvectors may be included by spefifying
objfn='all', implying that no selection takes place.

• MX (optional) specifies the covariates used to construct the projection matrix M. As Tiefelsdorf
and Griffith (2007) show, the specification of M is directly linked to the form of the spatial
misspecification in the unfiltered naïve regression model.

• sig and bonferroni indicate the significance level if the search algorithm selects eigenvec-
tors based on their significance or the significance of residual spatial autocorrelation. If
bonferroni=TRUE and objfn='p', the significance level will be adjusted in order to account
for inflated Type-I errors. If objfn='pMI', bonferroni is automatically set to FALSE.

• positive (TRUE or FALSE) restricts the eigenvector search to those eigenvectors associated with
positive levels of spatial autocorrelation.

• ideal.setsize (TRUE or FALSE) determines the ideal size of the candidate set EC according to
the formula given in Chun et al. (2016). Note that this is only valid when filtering for positive
spatial autocorrelation.

• alpha allows users to specify a threshold for the inclusion of eigenvectors in the candidate set
based on their MC values (see Griffith, 2003).

• tol sets a tolerance threshold for remaining residual autocorrelation if objfn='MI'. Once the
level of residual autocorrelation reaches the threshold, the selection procedure terminates.

• boot.MI (optional) takes integers indicating the number of bootstrap permutations in order to
estimate the variance of the Moran test for residual autocorrelation.

These arguments allow users to customize the ESF model and obtain parameter estimates by using
a single function call and only a few lines of code. While the print method for the output — an
object of class "spfilter" — only reports the number of selected eigenvectors in E∗ and the size of
the candidate set EC, the summary method provides a host of useful additional information.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 455

R> (esf <- lmFilter(y=y,x=X,W=W,objfn="p",sig=.1,bonferroni=TRUE
+ ,positive=TRUE,ideal.setsize=TRUE))

3 out of 22 candidate eigenvectors selected

R> summary(esf,EV=TRUE)

- Spatial Filtering with Eigenvectors (Linear Model) -

Coefficients (OLS):
Estimate SE p-value

(Intercept) 9.370881 0.71253832 4.103548e-23 ***
beta_1 0.975771 0.08536198 1.511830e-19 ***

Adjusted R-squared:
Initial Filtered

0.4673945 0.6534442

Filtered for positive spatial autocorrelation
3 out of 22 candidate eigenvectors selected
Objective Function: "p" (significance level=0.1)
Bonferroni correction: TRUE (adjusted significance level=0.00455)

Summary of selected eigenvectors:
Estimate SE p-value partialR2 VIF MI

ev_13 -9.552977 1.626696 6.290028e-08 0.23208263 1.005781 0.6302019 ***
ev_10 -5.571465 1.632824 9.483754e-04 0.07901543 1.013360 0.7303271 ***
ev_2 4.900028 1.623316 3.261057e-03 0.06058390 1.001660 1.0004147 **

Moran's I ( Residuals):
Observed Expected Variance z p-value

Initial 0.3505680 -0.01192610 0.01207299 3.299085 0.0004850019 ***
Filtered 0.1397003 -0.03703186 0.02417938 1.136562 0.1278607838

Besides the parameter estimates of the filtered model, the summary method provides information
on the fit of the filtered and the unfiltered models, the objective function, and the Moran test for
residual autocorrelation. If users specify EV=TRUE, information on the included eigenvectors in the
order of their selection will be displayed as well. Just like above, we see that the eigenvector 13, for
example, explains 23.21% of the variance, and the VIF indicates no problems of multicollinearity in the
filtered model. The adjusted R2 also shows that the ESF approach considerably improves model fit.

Figure 2: Plotting method for objects of class "spfilter" (left), spatial pattern captured by the filter
and calculated by MI.sf() (center), and spatial patterns of filtered residuals (right).

Finally, the left part of Figure 2 demonstrates the plotting method for objects of class "spfilter"
which is produced by plot(esf). It visualizes the MC of each eigenvector and highlights the ones
selected by the unsupervised selection procedure. The grey shaded area illustrates the candidate set
EC from which the eigenvectors in E∗ are selected. Figure 2 further depicts the spatial pattern of the
spatial filter (center) and the filtered residuals (right). The function MI.sf() computes the MC value
associated with the map pattern depicted by the spatial filter E∗γ in Equation (3) (e.g., Le Gallo and
Páez, 2013).
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Spatial filtering in generalized linear models

The ESF methodology directly extends to GLMs. In fact, one of the advantages of the filtering approach
as compared to parametric spatial regression models in this context is that parameter estimates can
be obtained by standard MLE and do not require the application of more sophisticated estimation
techniques (Griffith et al., 2019).

Besides the supervised filtering procedure, the function glmFilter() from the spfilteR package
allows users to perform unsupervised spatial filtering in GLMs. While its usage is purposefully
similar to the function lmFilter() introduced above, GLMs require some adjustments of the filtering
procedure. As a result, glmFilter() not only uses MLE instead of OLS to obtain parameter estimates
but also differs in some of the function’s input. Hence, in addition the input already discussed above,
glmFilter() differs to lmFilter() with respect to the following input arguments:

• objfn defines the eigenvector selection criterium. Possible criteria are the maximization of
model fit ('AIC' or 'BIC'), minimization of residual autocorrelation ('MI'), the significance
level of candidate eigenvectors ('p'), the significance of residual spatial autocorrelation ('pMI'),
or all eigenvectors in the candidate set ('all').

• model specifies the type of model to be estimated. The current version of spfilteR (version 1.0.0)
supports 'probit', 'logit', and 'poisson' as input.

• optim.method determines the method used to optimize the likelihood function.

• min.reduction takes values in the interval [0, 1). It defines the minimum level of reduction
in the AIC or BIC (if either selection criterium is chosen) relative to the current AIC/ BIC a
candidate eigenvector needs to achieve in order to be included in the spatial filter.

• resid.type allows users to specify the type of residuals which is used to calculate the MC value.
Valid arguments are 'raw', 'deviance', and the default option 'pearson'.

Implementing the ESF approach in GLMs using glmFilter() requires as few lines of code as
using the lmFilter() function in the context of linear regression models. The following example
demonstrates the ease of implementation in the context of a logit, a probit, and a Poisson regression
model:

# define DVs
R> y.bin <- fakedataset$indicator
R> y.count <- fakedataset$count

# seed (because of 'boot.MI')
set.seed(123)

# logit model
R> (esf.logit <- glmFilter(y=y.bin,x=NULL,W=W,objfn="p",model="logit",optim.method="BFGS"
+ ,sig=.05,bonferroni=FALSE,resid.type="pearson",boot.MI=100))

3 out of 31 candidate eigenvectors selected

# probit model
R> (esf.probit <- glmFilter(y=y.bin,x=NULL,W=W,objfn="BIC",model="probit"
+ ,optim.method="BFGS",min.reduction=0,resid.type="deviance"
+ ,boot.MI=100))

2 out of 31 candidate eigenvectors selected

# poisson model
R> (esf.poisson <- glmFilter(y=y.count,x=NULL,W=W,objfn="pMI",model="poisson"
+ ,optim.method="BFGS",sig=.1,resid.type="pearson"
+ ,boot.MI=100))

0 out of 31 candidate eigenvectors selected

Of course, users can also define their own eigenvector selection criteria or apply the ESF approach
to models currently not supported by the glmFilter() function. Just like for linear regression models
illustrated above, the function getEVs() performs the eigenfunction decomposition of the transformed
and symmetrized connectivity matrix, and users can implement a supervised selection procedure
using the standard glm() function.
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A brief comparison to other R packages

Of course, alternative implementations of the ESF approach outlined here exist in other R packages as
well. While these packages are highly useful for spatial analysts, the spfilteR package offers a couple
of notable extensions that improve these existing implementations.5

The spmoran package developed by Murakami (2020) contains different functions for estimating
eigenvector-based spatial additive mixed models. Although the function esf() estimates a linear
spatial filtering model, the main advantages of this package are the estimation of the random effects
ESF model (e.g., Murakami and Griffith, 2019) and the fast approximation of the eigenfunction
decomposition, which makes this package especially useful for large datasets. Moreover, users can
also use the functions meigen() and meigen_f() to obtain eigenfunctions and perform supervised
eigenvector selection.

At the same time, the eigenvector selection criteria implemented in esf() only allow for the
identification of relevant eigenvectors based on model fit statistics such as the adjusted R2, the AIC, or
the BIC. The specification of the projection matrix M also does not allow for the inclusion of covariates.
Furthermore, the spmoran package does not support the ESF approach in the context of GLMs.

Alternatively, the spatialreg package, which encompasses a great variety of different spatial
estimation techniques, not only provides the SpatialFiltering() function estimating spatially filtered
linear models. It also allows for the estimation of spatially filtered GLMs by using ME(). Yet, both of
these functions utilize an objective function that selects eigenvectors based on the overall reduction
of residual autocorrelation. While it is possible to restrict the candidate set size and to customize
the level of remaining autocorrelation at which the search terminates, users cannot select alternative
objective functions. Moreover, ME() does not allow for the inclusion of covariates in the construction
of M. Since there is no function to perform the eigenfunction decomposition shown in Equation (2),
the package offers no support for supervised spatial filtering.

Therefore, the spfilteR package provides additional flexibility – especially for the estimation of
filtered linear and generalized linear models where the ESF approach is predominantly applied. Since
the eigenvector selection procedure is the crucial step in the ESF approach, the options provided
by lmFilter() and glmFilter() allow users to tailor the ESF procedure to their specific needs. The
option to estimate the ideal size of the eigenvector candidate set EC according to Chun et al. (2016), the
specification of different residual types in GLMs, and the ability to define a threshold for the minimum
increase in model fit when an objective function is chosen accordingly are examples of features unique
to the spfilteR package.

Despite this additional flexibility, the functions that perform unsupervised eigenvector selection
are very easy to use and only require a minimum of code. Moreover, the getEVs() command and
several additional helper functions such as MI.ev(), MI.sf(), partialR2(), and vif.ev() introduced
above facilitate the estimation of spatially filtered (generalized) linear models. Consequently, while
the spmoran and the spatialreg packages cover additional model types and estimation strategies,
the flexibility provided by the spfilteR package constitutes a great advantage in the most common
applications of the ESF approach.

Summary

This article briefly covers the basics of spatial filtering with eigenvectors and introduces the spfilteR
package. Using the synthetic dataset provided by the package, it discusses the main functions and
their implementation in the context of supervised and unsupervised spatial filtering as well as its
extension to GLMs. By comparing the package to alternative implementations of the ESF approach,
this article highlights that the flexibility provided by the spfilteR package constitutes an important
improvement in settings where the ESF approach is commonly applied.
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SIQR: An R Package for Single-index
Quantile Regression
by Tianhai Zu and Yan Yu

Abstract We develop an R package SIQR that implements the single-index quantile regression (SIQR)
models via an efficient iterative local linear approach in Wu et al. (2010). Single-index quantile
regression models are important tools in semiparametric regression to provide a comprehensive
view of the conditional distributions of a response variable. It is especially useful when the data is
heterogeneous or heavy-tailed. The package provides functions that allow users to fit SIQR models,
predict, provide standard errors of the single-index coefficients via bootstrap, and visualize the
estimated univariate function. We apply the R package SIQR to a well-known Boston Housing data.

Introduction

Single-index quantile regression (Wu et al., 2010) generalizes the seminal work of linear quantile
regression of Koenker and Bassett (1978) by projecting the d-dimensional covariate x to a univariate
index xβ and allowing a flexible univariate function g(xβ). Quantile regression is often of great interest,
especially when heterogeneity is present. Applications lie in a variety of fields, such as growth curves
and reference charts in medicine; survival analysis when a given covariate may have a different effect
on individuals with different levels of risks; value at risk calculation and wage and income studies in
financial economics; high peak electricity demand in terms of weather characteristics in utility and
energy; modeling rainfall, river flow, and air pollution in environmental modeling (see a survey inYu
et al. 2003).

Single-index quantile regression (SIQR) is a flexible semiparametric quantile regression model
for analyzing heterogeneous data. The SIQR model has some appealing features: (i) It can provide
a comprehensive view of the conditional distribution of a response variable given d-dimensional
covariates by examining the full spectrum of conditional quantiles. This is especially important for
complex heterogeneous data. (ii) The single-index structure is flexible to accommodate nonlinearity
while avoiding the curse of dimensionality. It can also implicitly model some interactions among the
covariates. Some interesting interpretations of the single-index parameter may be preserved. (iii) The
quantile regression approach is robust to heavy-tailed distributions.

We present a package SIQR in R that implements the iterative local linear approach to the single-
index quantile regression in Wu et al. (2010). The unknown univariate function is estimated by
local linear estimation. The key algorithm can be decomposed into two efficient estimation steps on
augmented data through local linear approximation and some equivalent formulation of the expected
loss. Essentially, it iterates between two linear quantile regressions utilizing the state-of-the-art R
package quantreg.

We apply our R package, SIQR, to the well-known Boston Housing data (1978) that is available in
the R default library. The data has a total of 506 observations, and the response variable of interest is
the median price of owner-occupied homes on the census tracts in suburban Boston from the 1970
census. The response variable and some covariates are left-skewed. Clearly, quantile regression is a
natural tool to analyze the data (e.g., Chaudhuri et al. 1997; Yu and Lu 2004; Wu et al. 2010; Kong and
Xia 2012). We organize the rest of the paper as follows. In the next section, we review the SIQR models.
Next, we discuss the estimation algorithms implemented in this package. The section following
describes the main features of the functions provided. Section “Real Data Analysis and Simulation”
illustrates the use of SIQR in R for Boston housing data and a simulation study. The last section
concludes the paper.

An overview for single-index quantile regression

Data structure and model settings

We develop an R package for the single-index quantile regression for semiparametric estimation with
d-dimensional covariates. Let Y be the response variable and X be the covariate vector. Suppose there
are n observations

{
(xi, yi)

}n
i=1 of (X = x, Y = y). Given τ ∈ (0, 1) and covariates xi, the single-index

quantile model for the τ-th conditional quantile of the i-th observation is

qτ(Y = yi|X = xi) = gτ(xiβτ), (1)
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where yi is a real valued response, covariate xi is a d-dimensional row vector, the single-index
parameter βτ is a column vector in Rd, and the univariate function gτ : R → R is subject to different τ.
For identifiability, the single index parameter ∥βτ∥ = 1 and the first non-zero element of βτ is positive
(Yu and Ruppert, 2002). The projection xβ is often termed as the "single index". When gτ is linear,
single-index quantile regression model (1) reduces to the seminal work of linear quantile regression of
Koenker and Bassett (1978).

Review of local linear estimation for single-index quantile regression

We implement the local linear estimation for single-index quantile regression (1) (Wu et al., 2010).
For notational convenience, we omit the subscript τ in gτ and βτ . The true parameter vector β is the
minimizer of

E [ρτ (y − g(xβ))] , (2)

where ρτ(u) = |u|+ (2τ − 1)u is the loss function, often termed as the “check" function in quantile
regression. g(·) is the unknown univariate function. Constraint ∥β∥ = 1, β1 > 0 is imposed for
identifiability. The above expected loss can be equivalently written as

E {E [ρτ (y − g(xβ)) |xβ]} , (3)

where E [ρτ (y − g(xβ)) |xβ] is the conditional expected loss and g(·) is the τth conditional quantile
given the single-index parameter β.

We adopt a local linear approximation. In particular, for xiβ "close” to u, we can approximate the
τth conditional quantile at xiβ linearly via

g(xiβ) ≈ g(u) + g′(u)(xiβ − u) = a + b(xiβ − u),

where we define a≡g(u) and b≡g′(u).
Now, we can minimize the sample analogue of (2) below as in Yu and Jones (1998) with respect to

(a, b) with local linear estimation

n

∑
i=1

ρτ (yi − a − b(xiβ − u))K
(

xiβ − u
h

)
, (4)

where K(·) is the kernel function and h is the bandwidth.

We further average (4) over u and obtain the sample analog of (3). The objective function below is
used to estimate our single-index quantile regression model (1),

n

∑
j=1

n

∑
i=1

ρτ

(
yi − aj − bj(xiβ − xjβ)

)
ωij, (5)

where

ωij =
Kh(xiβ − xjβ)

∑n
k=1 Kh(xkβ − xjβ)

(6)

and Kh(·) = K(·/h)/h. We implement minimizing (5) iteratively with a detailed algorithm described
next.

Bandwidth is a critical smoothing parameter that tunes the smoothness of the fitted function in
local estimation. We implement the choice of the optimal bandwidth hτ as advocated in Wu et al.
(2010) through a computationally-expedient rule-of-thumb:

hτ = hm

{
τ(1 − τ)/ϕ

(
Φ−1(τ)

)2
}1/5

, (7)

where ϕ(·) is the probability density function and Φ(·) is the cumulative distribution function of

the standard normal distribution. Here, hm =
{

[
∫

K2(v)dv][var(y|xβ=u)]

n[
∫

v2K(v)dv]2[ d2

du2 E(y|xβ=u)]2[ fU0 (u)]

}1/5
is the optimal

bandwidth in mean regression, which is easily obtainable from many existing packages (Ruppert et al.,
1995).

Algorithm

We present the main algorithm for fitting the single-index quantile regression (SIQR) with local linear
estimation in detail as following:
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Input: Quantile level τ ∈ (0, 1), d-dimensional covariate vector X = x, and a response vector
Y = y.

Output: The estimated quantile single-index parameter β̂τ and fitted conditional quantile
q̂τ(Y = y|X = x). The univariate function estimate ĝτ(·).

1 Obtain an initial estimate β̂
(0)

of the quantile single-index parameter β from a linear quantile
regression model (default) or a user-provided initial list. Standardize the initial estimate such

that ||β̂(0)|| = 1 and β̂
(0)
1 > 0.

2 Given β̂, obtain {âj, b̂j}n
j=1 by solving a series of the following

min
(aj ,bj)

n

∑
i=1

ρτ

(
yi − aj − bj(xi − xj)β̂

)
ωij, (8)

where the weights ωij is defined in (6). The bandwidth h is chosen optimally following a
rule-of-the-thumb criterion in (7).

3 Given {âj, b̂j}n
j=1, obtain β̂ by solving

min
β

n

∑
j=1

n

∑
i=1

ρτ

(
yi − âj − b̂j(xi − xj)β

)
ωij, (9)

with ωij evaluated at β and h from step 2.
4 Repeat Steps 2 and 3 until convergence.
5 Finally, we estimate g(·) at any u by ĝ(·; h, β̂) = â, where

(â, b̂) = arg min
(a,b)

n

∑
i=1

ρτ

(
yi − a − b(xi β̂ − u)

)
Kh(xi β̂ − u).

Obtain the final fitted conditional quantile q̂τ(Y = y|X = x) from model (1).

The above algorithm effectively decomposes (5) into two steps that can be achieved by two
standard linear quantile regression procedures in Steps 2 and 3. In Step 3, we further note that (9) can
be written as

β̂ = arg min
β

n

∑
j=1

n

∑
i=1

ρτ

(
yi − âj − b̂j(xi − xj)β

)
ωij

= arg min
β

n

∑
j=1

n

∑
i=1

ρτ

(
y∗ij − x∗ijβ

)
ωij,

where y∗ij = yi − âj, x∗ij = b̂j(xi − xj), and ωij evaluated at the previous step, i, j = 1, · · · , n. Given

âj’s and b̂j’s, we can estimate β through usual linear quantile regression without intercept (regression-
through-origin) on n2 "observations" {y∗ij, x∗ij}

n
i,j=1 with known weights {ωij}n

i,j=1 evaluated at the
estimate of β from the previous iteration.

We can see that (9) is an alternative to (8). Adopting (9) yields some advantages: (i) It uses all the
data and is more efficient in estimation; (ii) The double sum in (9) effectively increases the "augmented"
sample size to n2, similar to the minimum average variance estimation (MAVE) in the mean regression
(Xia and Härdle, 2006).

The SIQR package

The R package SIQR consists of one core estimation function siqr and some supporting functions such
as visualization tool plot.siqr and summary function summary.siqr. The R package SIQR depends
on the R packages stats, quantreg, KernSmooth.

Main fitting function

The main estimation function siqr implements the iterative local linear approach to the single-index
quantile regression in Wu et al. (2010).

The usage and input arguments of the main fitting function siqr are summarized as follows:

siqr(y, X, tau=0.5, h=NULL, beta.initial=NULL, se.method = NULL, maxiter=30, tol=1e-8)
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This function takes two required arguments: the response variable y in vector format, the covariate
matrix X. Please note that all the input covariates are required to be numeric variables.

This function also takes several optional arguments for finer controls. The optional argument tau
is the quantile index, which specifies the left-tail probability. The default value of tau is 0.5, which
refers to a single-index median regression. The optional argument h is the bandwidth in local linear
quantile regression. Users can either provide a bandwidth or let the algorithm decide the optimal
bandwidth as advocated in Wu et al. (2010) by setting this argument to NULL as default. The optional
argument beta.initial is a numeric vector of the same length as the dimensionality of covariates.
The users can use this argument to pass in any appropriate user-defined initial single-index coefficients
based on prior information or domain knowledge. The default value is NULL, which instructs the
function to estimate the initial single-index coefficients by linear quantile regression. The optional
argument se.method is a character variable that specifies the method to obtain the standard error of
estimated single-index coefficients. The default value is NULL to skip the calculation of standard error
while the bootstrap-based method is available with "bootstrap". The optional argument maxiter and
tol are control parameters that specify the criteria to terminate the iteration process. Although the
algorithm normally converges quickly, the default maxiter and tol are set to 30 and 1e-8, respectively.

Other functions

We also provide several supporting functions:

summary.siqr(siqr.object)
print.summary.siqr(siqr.object)

The functions summary.siqr and print.summary.siqr provide detailed information related to the
fitted model and summarize the results as illustrated in the next section. These two functions can be
called directly by applying functions print and summary to the siqr.object.

plot.siqr(siqr.object, data.points = TRUE, bootstrap.interval=FALSE)

This function plots the fitted quantiles against the single-index term from an SIQR-fitted model object.
By default, this function will also plot the observed data points in addition to the fitted quantiles to
visualize the fitness of the model. One can remove the data points by setting the optional argument
data.points to FALSE. Pointwise confidence interval will be added to the plot if the optional argument
bootstrap.interval is set to TRUE.

simulation_data <- generate.data(n, true.theta=NULL, sigma=0.1,
setting="setting1", ncopy=1)

To help perform simulation studies, the function generate.data generates a size n data from two
different settings: (i) a sine-bump model; and (ii) a location-scale model as in Wu et al. (2010). Users
can define the single-index coefficients β via the argument true.beta and the noise level via sigma. If
no true.beta was provided, the function will use (1, 1, 1)⊺/

√
3 for setting 1 and (1, 2)⊺/

√
5 for setting

2 as the default. The last optional argument ncopy generates multiple copies of data for Monte Carlo
simulations.

Real Data and Simulations

Boston Housing data

We consider the Boston housing data to demonstrate the real data application of the proposed R
package SIQR. This dataset contains the median value of houses (in $1000’s), medv, in 506 tracts in
Boston and 13 other socio-demographic related variables. This data has been investigated by many
studies. Heterogeneity and some non-linear dependence of medv on predictor variables have been
found by previous researchers. The dataset is maintained at the StatLib library of Carnegie Mellon
University and can be found at the R built-in package MASS.

We focus on the following four covariates: RM, the average number of rooms per dwelling; TAX,
the full-value property tax (in $) per $10,000; PTRATIO, the pupil-teacher ratio by town; and LSTAT,
percentage of the lower status of the population as in Opsomer and Ruppert (1998), Yu and Lu (2004),
and Wu et al. (2010). Following previous studies, we take logarithmic transformations on TAX and
LSTAT and center the dependent variable medv around zero.

We use the following codes to load data from MASS and pre-process as discussed above. We fit
a single-index quantile regression with τ = 0.25, 0.50, 0.75 to the data and report fitted single-index
coefficients for each variable.
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library(SIQR)
#load data from MASS
library(MASS)
medv<- Boston$medv
RM <- Boston$rm
logTAX <- log(Boston$tax)
PTRATIO <- Boston$ptratio
logLSTAT <- log(Boston$lstat)

X <- cbind(RM,logTAX,PTRATIO,logLSTAT)
y0 <- medv - mean(medv)
beta0 <- NULL
tau.vec <- c(0.25,0.50,0.75)
est.coefficient <- matrix(NA, nrow = length(tau.vec), ncol = 5)
est.coefficient[,1] <- tau.vec
for (i in 1:length(tau.vec)){
est <- siqr(y0,X,beta.initial = beta0, tau=tau.vec[i],maxiter = 30,tol = 1e-8)
est.coefficient[i,2:5] <- est$beta
}
colnames(est.coefficient) <- c("quantile tau",colnames(X))
est.coefficient

#> quantile tau RM logTAX PTRATIO logLSTAT
#> [1,] 0.25 0.3358285 -0.5243025 -0.06856117 -0.7795033
#> [2,] 0.50 0.3129182 -0.4294159 -0.06640472 -0.8445558
#> [3,] 0.75 0.2385613 -0.1933015 -0.07860687 -0.9484429

The estimated 0.25, 0.50, and 0.75 quantiles and their 95% pointwise confidence bounds are plotted
with the following codes and outputs.

est.tau25 <- siqr(y0,X,beta.initial = NULL, tau=0.25)
plot.siqr(est.tau25,bootstrap.interval = TRUE)
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Figure 1: The R output of plot.siqr with estimated 0.25 quantiles and the 95% pointwise confidence
bounds.

est.tau50 <- siqr(y0,X,beta.initial = NULL, tau=0.50)
plot.siqr(est.tau05,bootstrap.interval = TRUE)

est.tau75 <- siqr(y0,X,beta.initial = NULL, tau=0.75)
plot.siqr(est.tau75,bootstrap.interval = TRUE)

As the estimated single-index function curves are almost monotonically increasing across different
quantiles, variables that contribute positively to the single index affect the response variable (medv)
positively. Based on the estimated coefficients and above plots, we found that the number of rooms

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 465

−6 −5 −4 −3 −2

−
10

0
10

20

Fitted Quantile Plot

Single Index

P
re

di
ct

ed
 Y

Figure 2: The R output of plot.siqr with estimated 0.50 quantiles and the 95% pointwise confidence
bounds.
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Figure 3: The R output of plot.siqr with estimated 0.75 quantiles and the 95% pointwise confidence
bounds.

per house (rm) positively affects different quantiles. This matches the intuition that people value large
spaces and multi-functional rooms. The property tax rate ln(tax) has a negative impact on housing
prices across different quantiles. However, the influence of the tax rate is not significant at higher
quantile τ = 0.75. That suggests the tax rate may be less concerned for higher-income households,
possibly due to tax deduction towards their income tax. Both the pupil-teacher ratio (ptratio) and the
percentage of the lower (educational) status of the population ln(lstat) show negative influences on
housing values, especially for the higher quantiles. It may suggest that potential buyers prefer areas
featuring solid educational resources for their children and neighbors with higher education degrees
and that preference grows more vital for more expensive houses.

Simulation

We consider two simulation settings. In the first simulation example, we use a sine-bump model with
homoscedastic errors:

y = 5 sin
(

π (xβ − A)

C − A

)
+ 0.1Z, (10)

where A =
√

3
2 − 1.645√

12
, C =

√
3

2 + 1.645√
12

, x is an n × 3 design matrix that draws from an independent
uniform distribution with min of 0 and max of 1, and the residual Z follows a standard normal
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distribution. The true single-index parameter β = (1, 1, 1)⊺/
√

3.

Estimate β̂1 β̂2 β̂3
mean 0.5782 0.5727 0.5725

τ = 0.25 s.e. 0.0131 0.0281 0.0293
bias 0.0009 -0.0046 -0.0048
mean 0.5787 0.5755 0.5774

τ = 0.50 s.e. 0.0115 0.0105 0.0111
bias 0.0014 -0.0018 0.0003
mean 0.5803 0.5756 0.5757

τ = 0.75 s.e. 0.0119 0.0110 0.0118
bias 0.0029 -0.0017 -0.0016

Table 1: Summary of parameter estimates for sine-bump simulation example 1 of sample size n = 400.
True β = (1, 1, 1)⊺/

√
3. The sample mean, standard error (s.e.), and bias of the parameter estimates of

single-index coefficients from 200 replications.

The single-index coefficients are estimated via a series of quantile regressions with τ = 0.25, 0.50, 0.75.
Table 1 reports the mean, standard error (s.e.), and bias for each parameter estimate with sample size
n = 400 over M = 200 replications on the simulation example 1. One can see that the algorithm for
our R package SIQR is effective as the estimates are close to the true values.

For demonstration purposes, we show codes to generate data from (10) and fit the SIQR model
using τ = 0.50 with 200 replications as follows:

n <- 400
beta0 <- c(1, 1, 1)/sqrt(3)
n.sim <- 200
tau <- 0.50
data <- generate.data(n, true.theta=beta0, setting = "setting1",ncopy = n.sim)
sim.results.50 <- foreach(m = 1:n.sim,.combine = "rbind") %do% {
X <- data$X
Y <- data$Y[[m]]
est <- siqr(Y, X, beta.initial = c(2,1,0), tau=0.50,maxiter = 30,tol = 1e-8)
return(est$beta)
}

Note that this process has been repeated for the cases with τ = 0.25, 0.75. We obtain a box plot of
estimated single-index coefficients for τ = 0.25, 0.50, 0.75, respectively, by applying the following code
snippet.

boxplot(data.frame((sim.results.25)), outline=T,notch=T,range=1,
main = "Boxplots of Coefficient Estimates, tau = 0.25",horizontal = F)

boxplot(data.frame((sim.results.50)), outline=T,notch=T,range=1,
main = "Boxplots of Coefficient , tau = 0.50",horizontal = F)

boxplot(data.frame((sim.results.75)), outline=T,notch=T,range=1,
main = "Boxplots of Coefficient Estimates, tau = 0.75",horizontal = F)

Next, we consider a location-scale model as simulation example 2, where both the location and
the scale depend on a common index u = xβ. The quantiles are “almost-linear-in-index" as in Yu and
Jones (1998) when the single index u is close to zero:

y = 5 cos(xβ) + exp(−(xβ)2) + E, (11)

where x is an n × 2 design matrix that draws from an independent normal distribution with a standard
deviation of 0.25, and the residual E follows an exponential distribution with a mean 2. The single-
index parameter β = (1, 2)⊺/

√
5.

The simulated data are generated with the following codes. The sample size n = 400 with 100
replications. We only present the case when τ = 0.50 for demonstration purposes.

n <- 400
beta0 <- c(1, 2)/sqrt(5)
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Figure 4: The box plot of estimated single-index coefficients for τ = 0.25 from example 1.
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Figure 5: The box plot of estimated single-index coefficients for τ = 0.50 from example 1.
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Figure 6: The box plot of estimated single-index coefficients for τ = 0.75 from example 1.
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n.sim <- 100
tau <- 0.5
data <- generate.data(n, true.theta=beta0, setting = "setting3",ncopy = n.sim)
sim.results <- foreach(m = 1:n.sim,.combine = "rbind") %do% {
X <- data$X
Y <- data$Y[[m]]
est <- siqr(Y, X, beta.initial = NULL, tau=tau,maxiter = 30,tol = 1e-8)
est$beta
}
est.mean <- c(tau,apply(sim.results,2,mean))
names(est.mean) <- c("tau","beta1.hat","beta2.hat")
est.mean

est.mean <- cbind(p_vec,apply(sim_results,c(1,2),sd))
colnames(est.mean) <- c("quantile tau","X1","X2","X3")
est.mean

#> tau beta1.hat beta2.hat
#> 0.5 0.4515909 0.8917233

The average estimated single-index coefficients shown above are close to the true single-index
parameter β = (1, 2)⊺/

√
5 ≈ (0.4472, 0.8944). On top of that, the simulation standard error is also

reported as below:

est.se <- c(tau,apply(sim.results,2,sd))
names(est.se) <- c("tau","beta1.se.hat","beta1.se.hat")
est.se

#> tau beta1.se.hat beta1.se.hat
#> 0.5 0.02682211 0.01359602

Meanwhile, the following box plots show that the estimated single-index coefficients are close to
the true parameters with small deviations.

boxplot(data.frame((sim.results)), outline=T,notch=T,range=1,
main = "Boxplots of Coefficient Estimates (100 replications)",horizontal = F)
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Figure 7: The box plot of estimated single-index coefficients for τ = 0.50 from example 2.

Similarly, we plot the estimated quantiles and their 95% pointwise confidence bounds with the
provided plot function plot.siqr. The observed data points are also plotted.

est.sim.50 <- siqr(data$Y[[1]],data$X,beta.initial = NULL, tau=0.5)
plot.siqr(est.sim.50,bootstrap.interval = TRUE)
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Figure 8: The R output of plot.siqr with estimated 0.50 quantiles and the 95% pointwise confidence
bounds from example 2.

Summary

In this paper, we present the R package SIQR for the local linear approach to single-index quantile
regression models in Wu et al. (2010). We demonstrate the package applications to a popular Boston-
housing data application and two simulation studies. It is our hope that the package will be useful to
a variety of applications, especially for complex heterogeneous data where flexible quantile regression
modeling is desirable.
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mgee2: An R package for marginal
analysis of longitudinal ordinal data with
misclassified responses and covariates
by Yuliang Xu, Shuo Shuo Liu and Grace Y. Yi

Abstract Marginal methods have been widely used for analyzing longitudinal ordinal data due to their
simplicity in model assumptions, robustness in inference results, and easiness in the implementation.
However, they are often inapplicable in the presence of measurement errors in the variables. Under the
setup of longitudinal studies with ordinal responses and covariates subject to misclassification, Chen
et al. (2014) developed marginal methods for misclassification adjustments using the second-order
estimating equations and proposed a two-stage estimation approach when the validation subsample
is available. Parameter estimation is conducted through the Newton-Raphson algorithm, and the
asymptotic distribution of the estimators is established. While the methods of Chen et al. (2014) can
successfully correct the misclassification effects, its implementation is not accessible to general users
due to the lack of a software package. In this paper, we develop an R package, mgee2, to implement
the marginal methods proposed by Chen et al. (2014). To evaluate the performance and illustrate the
features of the package, we conduct numerical studies.

Introduction

Analysis of longitudinal ordinal data is a common research topic in health science and survey sampling.
Typically, Liang and Zeger (1986) introduced the generalized estimating equations (GEE) method that
gave consistent estimation with mild assumptions of the joint distribution of the repeated measure-
ments. This method has been used widely in analyzing longitudinal binary and categorical data. The
validity of the GEE method hinges on the critical condition that data are precisely observed, which is
commonly infeasible and violated in practice (Yi, 2017). Extensive discussions about covariate error
(Carroll et al., 2006) and response with binary misclassification (Neuhaus, 1999; Chen et al., 2011; Yi,
2017) have been conducted in the literature. For example, Neuhaus (1999) investigated the bias due to
errors in the response. Yi (2008) proposed a simulation–extrapolation (SIMEX) method to handle both
dropout and covariate measurement error problems in longitudinal studies. Furthermore, in Yi (2017,
Ch5), the impact of covariate measurement error on longitudinal data analysis was investigated, and
methods of addressing covariate measurement error effects were described.

To accommodate effects induced from error-prone correlated ordinal responses and ordinal covari-
ates simultaneously, Chen et al. (2014) proposed GEE-based methods for the estimation of both mean
and association parameters. The proposed methods are based on formulating unbiased second-order
estimating functions and solving the resulting equations using the Newton-Raphson algorithm. The
asymptotic distributions for the proposed estimators are established. While the methods of Chen
et al. (2014) correct for error effects due to misclassified variables, the methods cannot be used by the
analysts without programming the implementation procedures. To expedite the use of the methods
for problems in applications, in this paper, we develop an R package, called mgee2, to implement the
methods of Chen et al. (2014).

Our work offers an R package complement to available R packages for analyzing longitudinal
data with misclassified observations. It is relevant to but differs from available R packages about
measurement error. For example, the package SAMBA, developed by Beesley and Mukherjee (2020),
provides resources for fitting logistic regression with misclassified binary outcomes. The R package
misclassGLM implements inferential procedures for generalized linear models with misclassified
covariates proposed by Dlugosz et al. (2017); Zhang and Yi (2019) developed the package augSIMEX
to implement the method proposed by Yi et al. (2015) for fitting generalized linear models with mixed
continuous and discrete covariates subject to mismeasurement.

When the degree of measurement error is very severe, the observed surrogate measurements are
virtually useless, and hence the corresponding variables may be alternatively treated as subject to
missingness. Regarding the analysis of longitudinal data with missing observations, packages kml
and kml3d, developed by Genolini et al. (2015), describe the implementation procedures of k-means
for longitudinal clustered data with missing observations. Carey (2015) developed the package gee to
solve generalized estimation equations with longitudinal data missing completely at random. Xu et al.
(2018) developed the package wgeesel for using weighted generalized estimating equations approaches
to analyze longitudinal clustered data with data missing at random. Xiong and Yi (2019) developed
the package swgee for analyzing longitudinal data with missingness in the response and measurement
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error in covariates. Our package mgee2 differs from those packages in its ability to simultaneously
handle the features of misclassification in correlated ordinal responses and ordinal covariates, which
to our best knowledge, is the first software package to address this problem.

The article is organized as follows. Section Model setup introduces the notations and estimation
procedures proposed by Chen et al. (2014). Section Package details describes the usage of the package
mgee2. Section Data analysis illustrates the package by simulation studies and a real dataset. We finally
conclude the article in Section Summary.

Model setup

We first review the notation and formulations of Chen et al. (2014). For i = 1, . . . , n and j = 1, . . . , mi,
let Yij denote an error-prone ordinal response variable for subject i at visit j. Suppose that the response
variable Yij has (K + 1) categories, denoted 0, 1, . . . , K, and that an error-prone ordinal covariate Xij

has (H + 1) categories, denoted 0, 1, . . . , H. Let Xij =
(

Xij1, . . . , XijH

)T
be the misclassification-prone

vector of binary variables such that Xijq = I(the covariate Xij in category q) for q = 0, 1, . . . , H, and let
Zij be the vector of covariates that are free of measurement error, where I(·) is the indicator function.

Furthermore, we define Xi =
(

XT
i1, . . . , XT

imi

)T
and Zi =

(
ZT

i1, . . . , ZT
imi

)T
.

Response process

Let
λijk = P

(
Yij ≥ k|Xi, Zi

)
(1)

be the univariate cumulative probability with k = 1, . . . , K, and adopt the assumption P
(
Yij ≥ k|Xi, Zi

)
=

P
(
Yij ≥ k|Xij, Zij

)
(Pepe and Anderson, 1994). Consider the proportional odds models

logit λijk = β0k + XT
ij βx + ZT

ij βz,

where β0k, βx, and βz are regression parameters, k = 1, . . . , K, j = 1, . . . , mi, and i = 1, . . . , n. Similar
to Williamson et al. (1995), we measure the association between a pair of responses for the same subject
at two different visits by the global odds ratio

ψi,jk,j′k′ =
P
(
Yij ≥ k, Yij′ ≥ k′|Xi, Zi

)
× P

(
Yij < k, Yij′ < k′|Xi, Zi

)
P
(
Yij ≥ k, Yij′ < k′|Xi, Zi

)
× P

(
Yij < k, Yij ≥ k′|Xi, Zi

) , (2)

where k, k′ = 1, . . . , K, and j ̸= j′. To characterize the dependence of the global odds ratios on
covariates, the log-linear models can be expressed as

log ψi,jk,j′k′ = ϕ + ϕk + ϕk′ + ϕkk′ + uT
ijj′α1,

where ϕ is the global intercept, ϕk and ϕk′ correspond to the effect of category k and of category
k′, respectively, ϕkk′ is the interaction effect between categories k and k′ with ϕkk′ = ϕk′k, and α1
is a vector of parameters corresponding to pair-specific covariates, denoted uijj′ . The constraint
ϕ1 = ϕ1k = ϕk1 = 0 is set for the model identification for k = 1, . . . , K (Williamson et al., 1995).

Let β =
(

βT
0k, βT

x , βT
z
)T , α =

(
ϕ, ϕk, ϕkk′ , αT

1
)T , and θ =

(
βT , αT)T . For k = 1, . . . , K, let Yij =(

Yij1, . . . , Yijk

)T
with Yijk = I

(
Yij = k

)
. Define Yi =

(
YT

i1, . . . , YT
imi

)T
. For j < j′, let Ci,jk,j′k′ =

YijkYij′k′ , Cijj′ =
(

Ci,j1,j′1, Ci,j1,j′2, . . . , Ci,jK,j′K′

)T
, and Ci =

(
CT

ijj′ , j < j′
)T

. The univariate and bivariate

marginals, µi = E (Yi|Xi, Zi) and ξ i = E (Ci|Xi, Zi), can be expressed in terms of the global odds ratios
and univariate and bivariate cumulative probabilities; the detailed expressions are given by Chen et al.
(2014).

As a result, the estimating functions for the mean and association parameters β and α are given by

U1i (θ; Yi, Xi, Zi) = D1iV
−1
1i (Yi − µi) (3)

and
U2i (θ; Yi, Xi, Zi) = D2iV

−1
2i (Ci − ξ i) , (4)

respectively, where D1i = ∂µT
i /∂β, D2i = ∂ξT

i /∂α, and V1i and V2i are the conditional covariance
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matrices for Yi and Ci, given Xi and Zi.

Case 1: Estimation with known misclassification probabilities

If the true measurements of the responses and covariates are available, (3) and (4) can be used for
estimation of β and α. However, in applications, the Yij and the Xij may be subject to misclassification.

Let Sij and Wij be surrogate measurements of Yij and Xij, respectively. Let τijkl = P
(

Sij = l|Yij = k, Zi

)
be the conditional probability concerning the response for subject i at visit j where k, l = 0, . . . , K. Let

πijqr = P
(

Wij = r|Xij = q, Zi

)
be the conditional probability concerning the covariate for subject i

at visit j where q, r = 0, . . . , H. Consider the generalized logistic models by setting category 0 as the
reference:

log
(

τijkl/τijk0

)
= LT

ijγkl for l = 1, . . . , K; k = 0, . . . , K

and
log

(
πijqr/πijq0

)
= LxT

ij φqr for r = 1, . . . , H; q = 0, . . . , H,

where Lij and Lx
ij are vectors of variables related to response and covariate misclassification processes,

respectively, and γkl and φqr are vectors of regression parameters.

Let γk =
(
γT

k1, . . . , γT
kK
)T and γ =

(
γT

0 , . . . , γT
K
)T . Let φq =

(
φT

q1, . . . ,φT
qH

)T
and φ =

(
φT

0 , . . . ,φT
H
)T .

Let η =
(
γT ,φT)T . Define the K × K matrix Rij =

(
τij1 − τij0, . . . , τijK − τij0

)
and the H × H matrix

Gij =
(

πij1 − πij0, . . . , πijK − πij0

)
, where τijk =

(
τijk1, . . . , τijkK

)T
and πijk =

(
πijk1, . . . , πijkK

)T
.

Then the unbiased surrogates for Yij and Xij are constructed, respectively, by

Y∗ij = R−1
ij

(
Sij − τij0

)
and

X∗
ij = G−1

ij

(
Wij − πij0

)
,

where we write Y∗ij =
(

Y∗
ij1, . . . , Y∗

ijK

)T
, X∗

ij =
(

X∗
ij1, . . . , X∗

ijK

)T
, and let Y∗i =

(
YT

i1, . . . , Y∗T
imi

)T
. Let eq

be an H-dimensional vector whose rth element is an indicator I(r = q) for q = 1, . . . , H and let e0 = 0.

If η is known, then

U∗
1i(θ) =

H

∑
qmi=0

· · ·
H

∑
q1=0

U1i

{
θ; Y∗i ,

(
eT

q1
, . . . , eT

qii

)T
, Zi

} mi

∏
j=1

X∗
ijqj


and

U∗
2i(θ) =

H

∑
qmi=0

· · ·
H

∑
q1=0

U2i

{
θ; Y∗i ,

(
eT

q1
, . . . , eT

qii

)T
, Zi

} mi

∏
j=1

X∗
ijqj


are unbiased estimating functions of θ, as shown in Appendix 2 of Chen et al. (2014). Estimation of θ
can then be obtained by solving

n

∑
i=1

{
U∗

1i(θ)
U∗

2i(θ)

}
= 0 (5)

for θ.

Case 2: Estimation with validation data

Case 1 highlights the estimation of θ when the parameter η for the misclassification models is known
or specified as a given value. In applications, η is unknown and may be estimated from a validation
subsample. In this case, we modify the estimation procedure based on (5) and describe a two-stage
estimation procedure. First, let δij = I(subject i at visit j is included in the validation subsample).
Using validation data (i.e., δij = 1), we may estimate τij and πij.

Define Dγij = ∂τT
ij /∂γ and Dφij = ∂πT

ij /∂φ, then estimating functions for γ and φ are given

by Qγi(γ) = ∑mi
j=1 DγijV

−1
γij

{
Sij − τij

}
δij and Qφi(φ) = ∑mi

j=1 DφijV
−1
φij

{
Wij − πij

}
δij, where Vγij

and Vφij are, respectively, the conditional covariance matrix for Sij and Wij, given Yij and the true
covariates.
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Let Ỹijk = Yijk if δij = 1 and Ỹijk = Y∗ijk otherwise, then we write Ỹij =
(
Ỹij1, . . . , ỸijK

)T
. Let

X̃ijq = Xijq if δij = 1 and X̃ijq = X∗
ijq otherwise. Then the augmented estimating functions of θ are

given by

Ũ1i(θ, η) =
H

∑
qmi=0

· · ·
H

∑
q1=0

U1i

{
θ; Ỹi,

(
eT

q1
, . . . , eT

qm

)T
, Zi

} mi

∏
j=1

X̃ijqj

 (6)

and

Ũ2i(θ, η) =
H

∑
qmi=0

· · ·
H

∑
q1=0

U2i

{
θ; Ỹi,

(
eT

q1
, . . . , eT

qm

)T
, Zi

} mi

∏
j=1

X̃ijqj

 . (7)

Consequently, estimation of η and θ can be carried out by the two-stage procedure.

Stage 1. Solve ∑n
i=1

{
Qγi(γ)
Qφi(φ)

}
= 0 for γ and φ and write η̂ =

(
γ̂T ,φ̂T)T , where γ̂ and φ̂ are the

estimators for γ and φ, respectively.

Stage 2. Substitute η with η̂ in (6) and (7) and solve ∑n
i=1

{
Ũ1i(θ, η̂)
Ũ2i(θ, η̂)

}
= 0 for θ. Let θ̂ =(

β̂T , α̂T
)T

denote the resulting estimator θ.

Chen et al. (2014) established the asymptotic distribution of θ̂. Let Ũi (θ, η) =
{

ŨT
1i(θ, η), ŨT

2i(θ, η)
}T ,

Qi(η) =
{

QT
γi(γ), QT

φi(φ)
}T

, Ωi(θ, η) = Ũi(θ, η) − E
{

∂Ũi(θ, η)/∂ηT} ·
[
E
{

∂Qi(η)/∂ηT}]−1, and

Γ̃(θ, η) = E
{

∂Ũi(θ, η)/∂θT}. Then, under regularity conditions, n1/2(θ̂− θ) is asymptotically nor-

mally distributed with mean 0 and covariance matrix Γ̃−1Σ̃
(
Γ̃−1)T , where Σ̃ = E

{
Ωi(θ, η)ΩT

i (θ, η)
}

.

Package details

We develop an R package, called mgee2, to implement the misclassification adjustment method
described in the preceding section. This package requires support from the external packages MASS
(Venables and Ripley, 2002), Matrix (Bates and Maechler, 2019), and ggplot2 (Wickham, 2016). Our
mgee2 package mainly contains two functions, mgee2k and mgee2v, respectively, implementing cases
1 and 2 described in the previous section. Specifically, mgee2k implements the method where the
misclassification parameters are given, and mgee2v implements the misclassification method for the
case where validation data are available to estimate misclassification probabilities. We now describe
the details of these two functions.

mgee2k

mgee2k implements the misclassification adjustment method outlined in Case 1 of the previous section,
where the misclassification parameters are known. In this case, validation data are not required, and
only the observed data of the outcome and covariates are needed for the implementation.

The function mgee2k requires the data set to be grouped by the individual id, i = 1, ..., n, and each
individual has mi rows of data each corresponding to the visit time j = 1, ..., mi. The column name of
the individual id is indicated by the argument id. The misclassification matrices for the response and
covariate variables are recorded by the arguments gamMat and varphiMat, respectively, which need to
be specified by the user.

To call mgee2k, we issue the following command,

mgee2k(formula, id, data, corstr="exchangeable", misvariable,
gamMat, varphiMat, maxit=50, tol=1e-3)

where the meaning of each argument is described as follows:

• formula: a formula object which specifies the relationship between the response and covariates
for the observed data.

• id: a character object which records individual id in the data.

• data: a dataframe or matrix object for the observed data set.

• corstr: a character object. The default value is "exchangeable", corresponding to the structure
where the association between two paired responses is considered to be a constant. The other
option is "log-linear" which indicates the log-linear association between two paired responses.
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• misvariable: a character object which names the error-prone covariate W.

• maxit: an integer which specifies the maximum number of iterations. The default is 50.

• tol: a numeric object which indicates the tolerance threshold. The default is 1e-3.

• gamMat: a matrix object which records the misclassification parameter γ for response Y.

• varphiMat: a matrix object which records the misclassification parameter ϕ for covariate X.

The function mgee2k returns a list of components:

• beta: the coefficients in the same order as that specified in the formula for the response and
covariates.

• alpha: the coefficients for paired responses global odds ratios. The number of α coefficients corre-
sponds to the paired responses odds ratio structure selected in corstr. When corstr="exchangeable",
only one baseline α is fitted.

• variance: the variance-covariance matrix of the estimators of all parameters.

• convergence: a logical variable; TRUE if the model converges.

• iteration: the number of iterations for the estimates of the model parameters to converge.

• call: an unevaluated function call which consists of the named function applied to the given
arguments.

mgee2v

The function mgee2v does not require the misclassification parameters to be known, but requires the
availability of validation data.

Similar to mgee2k, the function mgee2v needs the data set to be structured by individual id, i =
1, ..., n, and visit time, j = 1, ..., mi. The data set should contain the observed response and covariates, S
and W. To indicate whether or not a subject is in the validation set, an indicator variable delta should
be added in the data set, and we use a column named valid.sample.ind for this purpose. The column
name of the error-prone covariate W should also be specified in misvariable.

To call mgee2v, we issue the command,

mgee2v(formula, id, data, corstr="exchangeable", misvariable, valid.sample.ind,
y.mcformula, x.mcformula, maxit=50, tol=1e-3)

where the arguments are described as follows:

• formula: a formula object which specifies the relationship between the response and covariates
for the observed data.

• id: a character object which records individual id in the data.

• data: a dataframe or matrix object for the observed data set.

• corstr: a character object. The default value is "exchangeable", corresponding to the structure
where the association between two paired responses is considered to be a constant. The other
option is "log-linear" which indicates the log-linear association between two paired responses.

• misvariable: a character object which names the error-prone covariate W.

• valid.sample.ind: a string object which names the indicator variable delta. When a data point
belongs to the validation set, delta = 1; otherwise 0.

• y.mcformula: a string object which indicates the misclassification formula between true response
Y and the surrogate response S.

• x.mcformula: a string object which indicates the misclassification formula between true error-
prone covariate X and the surrogate W.

• maxit: an integer which specifies the maximum number of iterations. The default is 50.

• tol: a numeric object which indicates the tolerance threshold. The default is 1e-3.

The function mgee2v returns a list of components:

• beta: the coefficients in the same order as that specified in the formula for the response and
covariates.

• alpha: the coefficients for paired responses global odds ratios. The number of α coefficients corre-
sponds to the paired responses odds ratio structure selected in corstr. When corstr="exchangeable",
only one baseline α is fitted.
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• variance: the variance-covariance matrix of the estimators of all parameters.

• convergence: a logical variable; TRUE if the model converges.

• iteration: the number of iterations for the estimates of the model parameters to converge.

• call: an unevaluated function call which consists of the named function applied to the given
arguments.

ordGEE2

In addition to developing the package mgee2 to implement the methods of Chen et al. (2014), which
accommodate misclassification effects in inferential procedures, we also implement the naive method
of ignoring the feature of misclassification and call the resulting function ordGEE2. This function can be
used together with the preceding described mgee2k or mgee2v to evaluate the impact of not addressing
misclassification effects:

ordGEE2(formula, id, data, corstr = "exchangeable", maxit = 50, tol = 0.001)

Data analysis

In this section, we conduct numerical studies to demonstrate the usage of our developed R package as
well as to show supplementary functions such as summary and plot functions in this package. We
first demonstrate all of the external functions in mgee2 through an example with a simulated data set,
known as obs1, provided in our package.

An example

The simulated data set, called "obs1", includes 8 columns and 3000 rows, with each patient having 3
entries of visits. The format of this data set is as follows.

> head(obs1)
ID Y X treatment visit S W delta
1 1 2 2 1 1 2 2 1
2 1 0 0 1 2 0 0 1
3 1 <NA> <NA> 1 3 1 2 0
4 2 <NA> <NA> 1 1 1 0 0
5 2 <NA> <NA> 1 2 0 1 0
6 2 <NA> <NA> 1 3 0 0 0
> summary(obs1)
ID Y X treatment visit
Min. : 1.0 0 : 352 0 : 444 0:1500 1:1000
1st Qu.: 250.8 1 : 283 1 : 269 1:1500 2:1000
Median : 500.5 2 : 256 2 : 178 3:1000
Mean : 500.5 NA's:2109 NA's:2109
3rd Qu.: 750.2
Max. :1000.0
S W delta
0:1181 0:1460 Min. :0.000
1: 955 1: 944 1st Qu.:0.000
2: 864 2: 596 Median :0.000
Mean :0.297
3rd Qu.:1.000
Max. :1.000

Here, Y and X represent the true outcome and covariate variables, both being ordinal variables,
each taking 3 possible values, denoted 0, 1, and 2, whereas S and W are the observed surrogates for Y
and X, respectively, with a 5% misclassification rate. delta is 1 when the subject is in the validation set
and 0 otherwise. About 30% of subjects are randomly chosen to be included in the validation set. We
include the subscripts i and j to Y and X to indicate the measurements for the corresponding variables
for subject i at time point j, in considering the proportional odds model indicated by (1),

logit λijk = β0k + βX1Xij1 + βX2Xij2 + βZ1Zij1 + βZ2Zij2 + βZ3Zij3 for k = 1, 2,

where λijk is defined as for (1); the treatment variable, denoted Zij1, is an error-free binary variable;
we simulated 3 visits for each patient, denoted by dummy variables Zij2 and Zij3, with the first visit
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as a reference level; Xij1 and Xij2 represent the dummy variables to reflect the three levels of the
error-prone covariate, Xij; and (β0k, βx1, βx2, βz1, βz2, βz3)

T is the vector of regression coefficients.

In the case corstr = "exchangeable", the association, defined as in (2), between paired responses
is assumed to be

log ψi,jk,j′k′ = ϕ;

while in the case corstr = "log-linear", the association is assumed to be

log ψi,jk,j′k′ = ϕ + ϕ2 I(k = 2) + ϕ2 I(k′ = 2) + ϕ22 I(k = 2, k′ = 2),

where ϕ, ϕ2, and ϕ22 are parameters.

We now apply mgee2k and mgee2v, in contrast to ordGEE2, to fit the data to the models, respectively.
The results are displayed as follows. In the summary tables for the R output, we use "Y>=1" and "Y>=2"
to denote the coefficients β01 and β02, respectively, and let "Delta" correspond to the parameter ϕ in
the dependence structure.

mgee2k

To use function mgee2k, we need to specify the misclassification matrices beforehand. Here, we set
the misclassification matrices the same as used in the simulation process.

> data(obs1)
> obs1$visit <- as.factor(obs1$visit)
> obs1$treatment <- as.factor(obs1$treatment)
> obs1$S <- as.factor(obs1$S)
> obs1$W <- as.factor(obs1$W)
> ## set misclassification parameters to be known.
> varphiMat <- gamMat <- log( cbind(0.04/0.95, 0.01/0.95,
+ 0.95/0.03, 0.02/0.03,
+ 0.04/0.01, 0.95/0.01) )
> mgee2k.fit = mgee2k(formula = S~W+treatment+visit, id = "ID", data = obs1,
+ corstr = "exchangeable", misvariable = "W", gamMat = gamMat,
+ varphiMat = varphiMat)
> summary(mgee2k.fit)
Call:
mgee2k(formula = S ~ W + treatment + visit, id = "ID", data = obs1,
corstr = "exchangeable", misvariable = "W", gamMat = gamMat,
varphiMat = varphiMat)

Summary table of the estimation
Estimate Std.Err Z value Pr(>z)

Y>=1 0.70889 0.08591 8.251 2.22e-16 ***
Y>=2 -0.67521 0.08625 -7.828 4.88e-15 ***
W1 0.58667 0.08719 6.729 1.71e-11 ***
W2 0.94948 0.09745 9.743 < 2e-16 ***
treatment1 -0.70554 0.09114 -7.742 9.77e-15 ***
visit2 -0.24147 0.07735 -3.122 0.0018 **
visit3 -0.62480 0.07571 -8.253 2.22e-16 ***
Delta 1.22606 0.12231 10.024 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

mgee2v

To use mgee2v, a column of indicator variable should be specified in valid.sample.ind.

> data(obs1)
> obs1$visit <- as.factor(obs1$visit)
> obs1$treatment <- as.factor(obs1$treatment)
> obs1$S <- as.factor(obs1$S)
> obs1$W <- as.factor(obs1$W)
> mgee2v.fit = mgee2v(formula = S~W+treatment+visit, id = "ID", data = obs1,
+ y.mcformula = "S~1", x.mcformula = "W~1",
+ misvariable = "W", valid.sample.ind = "delta",
+ corstr = "exchangeable")
> summary(mgee2v.fit)
Call:
mgee2v(formula = S ~ W + treatment + visit, id = "ID",
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Figure 1: The display of the results in the summary table of applying mgee2k method to the example.
The vertical axis presents the estimates for the coefficients corresponding to Y>=1, Y>=2, . . . , and Delta
in the order from the bottom to the top. The horizontal axis shows exp(point estimates) (shown in red
dots) for those coefficients indicated by the vertical axis, together with their 95% confidence intervals
(shown in blue line segments). The confidence intervals are calculated as (exp(CL), exp(CU)), where
(CL, CU) is a 95% confidence interval of a coefficient.

data = obs1, corstr = "exchangeable", misvariable = "W",
valid.sample.ind = "delta", y.mcformula = "S~1", x.mcformula = "W~1")

Summary table of the estimation
Estimate Std.Err Z value Pr(>z)

Y>=1 0.64876 0.08851 7.330 2.30e-13 ***
Y>=2 -0.68226 0.08703 -7.839 4.44e-15 ***
W1 0.56507 0.08140 6.942 3.88e-12 ***
W2 0.98411 0.09305 10.577 < 2e-16 ***
treatment1 -0.68153 0.09052 -7.529 5.11e-14 ***
visit2 -0.24694 0.07483 -3.300 0.000966 ***
visit3 -0.60027 0.07335 -8.184 2.22e-16 ***
Delta 1.22862 0.12160 10.103 < 2e-16 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 2: The display of the results in the summary table of applying mgee2v method to the example.
The vertical axis presents the estimates for the coefficients corresponding to Y>=1, Y>=2, . . . , and Delta
in the order from the bottom to the top. The horizontal axis shows exp(point estimates) (shown in red
dots) for those coefficients indicated by the vertical axis, together with their 95% confidence intervals
(shown in blue line segments). The confidence intervals are calculated as (exp(CL), exp(CU)), where
(CL, CU) is a 95% confidence interval of a coefficient.
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ordGEE2

> naigee.fit = ordGEE2(formula = S~W+treatment+visit, id = "ID",
+ data = obs1, corstr = "exchangeable")
> summary(naigee.fit)
Call:
ordGEE2(formula = S ~ W + treatment + visit, id = "ID",
data = obs1, corstr = "exchangeable")

Summary table of the estimation
Estimate Std.Err Z value Pr(>z)

Y>=1 0.73276 0.07990 9.171 < 2e-16 ***
Y>=2 -0.69330 0.08004 -8.662 < 2e-16 ***
W1 0.51237 0.07354 6.967 3.23e-12 ***
W2 0.84890 0.08582 9.892 < 2e-16 ***
treatment1 -0.65954 0.08511 -7.749 9.33e-15 ***
visit2 -0.22766 0.07241 -3.144 0.00167 **
visit3 -0.58407 0.07052 -8.282 2.22e-16 ***
Delta 1.06616 0.09846 10.828 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Figure 3: The display of the results in the summary table of applying ordGEE2 method to the example.
The vertical axis presents the estimates for the coefficients corresponding to Y>=1, Y>=2, . . . , and Delta
in the order from the bottom to the top. The horizontal axis shows exp(point estimates) (shown in red
dots) for those coefficients indicated by the vertical axis, together with their 95% confidence intervals
(shown in blue line segments). The confidence intervals are calculated as (exp(CL), exp(CU)), where
(CL, CU) is a 95% confidence interval of a coefficient.

plot_model

We use the function plot_model to compare the results obtained from the three functions:

> plot_model(naigee.fit)
> plot_model(mgee2.fit)
> plot_model(mgee2v.fit)

It is helpful to compare the odds ratios when there are multiple covariates. We use the function
plot_model to visualize the odds ratios. The estimated odds ratios for this simulated data set across
the three methods are displayed in Figure 1, 2, and 3. The red dot gives the odds ratio of each covariate.
The horizontal blue line measures the length of each confidence interval. The vertical axes of the
graphs indicate the descending order of the covariates. In other words, the red points from the lowest
to the highest in the graph represent the first covariate, the second covariate, and so on. It is seen that
the three methods yield similar odds ratios.

Simulation studies

To further compare the three methods, a simulation study is conducted. We run 500 simulations where
each data set includes 1000 subjects, with three visits for each subjects. obs1 is one example of the
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simulated data. The true values of the coefficients are reported in Table 1:

β01 β02 βX1 βX2 βZ1 βZ2 βZ3
log 2 log(1/2) log 2 log 3 log(1/2) log(3/4) log(1/2)

Table 1: True coefficients.

Table 2 reports the simulation results for the care with a 5% misclassification rate set for both the
response and covariate variables, where Bias% records a bias in percentage, EV represents an empirical
variance, AMV stands for an average of model-based variance, and CR records a coverage rate of 95%
confidence intervals. Simulation results show that the mgee2 and mgee2v perform better than the naive
method ordGEE2, and they produce reasonable results.

ordGEE2 mgee2 mgee2v
Bias% EV AMV CR Bias% EV AMV CR Bias% EV AMV CR

β01 3.119 0.007 0.007 0.942 -0.915 0.008 0.008 0.944 -2.223 0.008 0.008 0.951
β02 3.226 0.007 0.007 0.946 1.562 0.008 0.008 0.940 3.556 0.009 0.008 0.947
βx1 -12.112 0.006 0.006 0.784 1.238 0.008 0.008 0.942 -6.933 0.024 0.014 0.924
βx2 -9.810 0.007 0.008 0.754 1.433 0.009 0.010 0.964 3.393 0.016 0.011 0.941
βz1 -7.032 0.008 0.007 0.922 -0.456 0.009 0.008 0.954 -0.138 0.009 0.008 0.949
βz2 -6.311 0.006 0.005 0.932 0.071 0.006 0.006 0.938 -0.364 0.006 0.006 0.932
βz3 -6.630 0.005 0.005 0.908 0.056 0.006 0.006 0.964 0.143 0.006 0.006 0.962

ϕ -13.130 0.009 0.010 0.690 0.217 0.014 0.015 0.954 1.257 0.016 0.017 0.956

Table 2: Simulation results with a 5% misclassification rate.

In addition to the preceding simulation with a misclassification rate of 5%, we conducted another
simulation with the same parameters except that the misclassification rate is changed to be 20%, and
corstr = "log-linear". The results are reported in Table 3, which shows more noticeable differences
in implementing the three functions, ‘ordGEE2’, ‘mgee2’, and ‘mgee2v’.

ordGEE2 mgee2 mgee2v
Bias% EV AMV CR Bias% EV AMV CR Bias% EV AMV CR

β01 9.589 0.007 0.007 0.866 0.748 0.015 0.015 0.952 0.872 0.015 0.016 0.966
β02 11.131 0.006 0.007 0.842 -0.210 0.014 0.015 0.958 -0.523 0.015 0.016 0.958
βx1 -48.891 0.005 0.006 0.000 -1.233 0.027 0.029 0.964 -0.874 0.023 0.023 0.940
βx2 -43.506 0.008 0.008 0.000 -0.400 0.026 0.027 0.958 -0.399 0.023 0.023 0.946
βz1 -26.284 0.006 0.006 0.346 0.364 0.011 0.012 0.960 0.084 0.011 0.011 0.940
βz2 -24.870 0.006 0.006 0.832 1.703 0.012 0.011 0.938 1.396 0.010 0.010 0.948
βz3 -26.893 0.006 0.006 0.314 0.228 0.011 0.012 0.954 0.144 0.010 0.011 0.968
ϕ0 -53.210 0.009 0.009 0.000 1.873 0.078 0.068 0.942 1.034 0.052 0.066 0.976
ϕ2 -73.139 0.006 0.006 0.042 -0.353 0.052 0.047 0.948 -1.241 0.037 0.049 0.970

ϕ22 -59.955 0.011 0.011 0.000 0.256 0.075 0.075 0.944 0.188 0.053 0.079 0.978

Table 3: Simulation results with a 20% misclassification rate.

A case study

To illustrate the usage of the developed R package, we analyze a dataset arising from the Framingham
Heart Study, obtained from the NIH website (https://biolincc.nhlbi.nih.gov/teaching/). Similar to
Chen et al. (2014), we consider those 915 male patients who completed both exams #2 and #3, and
age between 31 and 65 at the entry of the study. The response variable, HBP, is a categorical variable
indicating the status of the systolic blood pressure (SBP), where HBP=0 if SBP is below 140 mmHg,
HBP=1 if SBP is between 140 mmHg and 159 mmHg, and HBP=2 if SBP is larger than 160 mmHg.

We are interested in understanding the relationship between HBP and covariates, including the
serum cholesterol level (CHOL), age, and the current smoking status (CURSMOKE), as well as the
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Figure 4: The least squares regression lines by fitting scattered data of SBP against age under different
categories stratified by the combination of current smoking status (CURSMOKE) and cholesterol
level(CHOL), for patients at different exam times. For example, the dotted red line on the left panel is
a linear model fit for SBP against AGE for smokers with level 1 cholesterol at exam 2.

examination status, denoted as "Exam3". CHOL is classified as three categories, with 0, 1, and 2 repre-
senting normal (less than 200 mg/dL), borderline high (200-239mg/dL), and hypercholesterolemia
(greater than 240 mg/dL), respectively. Exam3 is a dummy variable, with 1 indicating observations
for exam 3 and 0 for exam 2.

First, we visualize how SBP may change with age by stratifying the study subjects into different
categories according to the exam time, smoking status, or CHOL. To see the trend, we display simple
linear regression lines that fit scattered points of SBP against AGE for patients in each category, as
shown in Figure 4. Except for the patients with CHOL value 0 and CURSMOKE value 0 at exam 2,
there is generally an upward trend of SBP versus age for each category, though the degree varies.
While each patient takes 2 exams, the time interval between two exams is different from patient to
patient. To reflect this feature of different gap times for the study subjects, in Figure 5 we further
display spaghetti plots (Hedeker and Gibbons, 2006) for patients in different categories, where the two
endpoints of each black line segment mark SBP and age for the corresponding study subject at exams
2 and 3 in each category, respectively. The blue curve represents the loess smooth curve in each panel
to show the trend of SBP against AGE. The loess smooth function is a tool to create smooth lines for
scattered plots using polynomial approximations. The code for producing Figures 4 and 5 is included
in the help file of data set heart in our R package.

Next, we use the proportional odds model to examine how SBP may be quantitatively associated
with the covariates. For the ith patient at the jth visit, Xij,CHOL=1 and Xij,CHOL=2 are binary indicator
variables recording whether the patient’s cholesterol level is 1 and 2, respectively; Zij,smoker is a binary
variable whether or not the patient is a smoker; Zij,exam3 is a binary variable showing whether or not
the patient is taking exam #3; and Zi,age records the age of the ith patient at the entry of the study.

As defined in (1), consider the model

logit λijk =β0k + βX,CHOL=1Xij,CHOL=1 + βX,CHOL=2Xij,CHOL=2

+ βZ,ageZi,age + βZ,smokerZij,smoker + βZ,exam3Zij,exam3 (8)

for k = 1, 2, where β0k, βX,CHOL=1, βX,CHOL=2, βZ,age, βZ,smoker, and βZ,exam3 are the parameters.

The data set used in our example is included in our package called "heart". To demonstrate
the usage of the developed package, we perceive that the response HBP level and the covariate
cholesterol level are prone to misclassification. Since this example does not have a validation data
set, we only analyze the data using the naive method, "ordGEE2", and the corrected method with a
specified known misclassification rate, "mgee2k", where the misclassification rates for both the outcome
and the covariate are assumed to be 5%, and the exchangeable dependence structure is considered.
The analysis results are shown in Table 4. Overall, the naive method and the corrected method indicate
the same significant health factors, yet the magnitude of the coefficient estimates and their standard
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Figure 5: The spaghetti plots of SBP at exams 2 and 3 for the patients classified into different groups
by different values of current smoking status and cholesterol level, where the varying lengths of the
black line segments reflect the fact that the gap time between exams 2 and 3 differ from patient to
patient. The blue curve in each panel is fitted using the loess function.

errors are different. Higher cholesterol levels and older ages appear to be positively correlated with
high blood pressure.

Summary

Analysis of longitudinal ordinal data is important for research in health science, epidemiological
studies, and social science. Marginal analysis using generalized estimating equations has been
extensively employed in applications. However, such a strategy is challenged by the presence of
mismeasurement of variables. To address this challenge, Chen et al. (2014) developed estimation
methods for analyzing correlated ordinal responses and ordinal covariates, which are subject to
misclassification.

To allow analysts to apply the useful methods of Chen et al. (2014) without doing individual codes,
we develop an R package mgee2 to implement the methods for general use. Our package provides
three methods for estimation, including the two methods of corrections for misclassification effects,
as opposed to the naive method, which disregards the feature of mismeasurement in variables. The
package can be used for modeling longitudinal ordinal data with misclassified response and covariates.
It provides consistent estimation results by directly inputting the data under required assumptions.
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ordGEE2 mgee2k
Est. SD p-vlue Est. SD p-vlue

β01 -4.291 0.635 <0.001 -4.943 0.737 <0.001
β02 -5.623 0.638 <0.001 -6.195 0.740 <0.001

βx,CHOL=1 0.068 0.133 0.608 0.117 0.180 0.515
βx,CHOL=2 0.352 0.140 0.012 0.474 0.186 0.011

βz,age 0.063 0.012 <0.001 0.071 0.014 <0.001
βz,smoker -0.044 0.105 0.673 -0.042 0.118 0.722
βz,exam3 0.145 0.097 0.133 0.182 0.110 0.097

ϕ 2.301 0.207 <0.001 2.301 0.318 <0.001

Table 4: A case study of a data subset arising from the Framingham Heart Study, with an assumed
misclassification rate at 5%.
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A New Versatile Discrete Distribution
by Rolf Turner

Abstract This paper introduces a new flexible distribution for discrete data. Approximate moment
estimators of the parameters of the distribution, to be used as starting values for numerical opti-
mization procedures, are discussed. “Exact” moment estimation, effected via a numerical procedure,
and maximum likelihood estimation, are considered. The quality of the results produced by these
estimators is assessed via simulation experiments. Several examples are given of fitting instances of
the new distribution to real and simulated data. It is noted that the new distribution is a member
of the exponential family. Expressions for the gradient and Hessian of the log-likelihood of the new
distribution are derived. The former facilitates the numerical maximization of the likelihood with
optim(); the latter provides means of calculating or estimating the covariance matrix of of the parame-
ter estimates. A discrepancy between estimates of the covariance matrix obtained by inverting the
Hessian and those obtained by Monte Carlo methods is discussed.

Introduction

Modelling the distribution of discrete data sets can be problematic in that it is often the case that
none of the “standard” distributions appears to be appropriate. It is possible to use a “completely
nonparametric” approach (in other words, to apply multinomial distributions, specified in a very
simple manner, by means of tables). However, this approach often turns out to be a little too flexible.
In particular, in the context of hidden Markov models for discrete data (hmm.discnp, Turner 2020),
the number of quantities to estimate rapidly becomes unwieldy. Estimates are unstable, the sensitivity
of fitting algorithms to starting values is exacerbated, and problems with the convergence of fitting
algorithms arise.

To address these problems, I developed a new discrete distribution, termed the “db” (“discretized
Beta”) distribution. The underlying idea is to define a family of distributions, for discrete data, with
shape characteristics as flexible as those of the Beta family of continuous distributions. (See Johnson
et al. 1995, Chapter 25, p. 210. See also the help for the dbeta() function in the stats package, R Core
Team 2020, and Abramowitz and Stegun 1972, Chapter 6. The reader may also find it useful to access
https://en.wikipedia.org/wiki/Beta_distribution.) The db distribution is closely related to the
Beta distribution and has “shape” parameters, α and β, analogous to the shape parameters of the Beta
distribution.

In addition to the shape parameters, the db distribution has two other parameters which specify
the “support” of the distribution. These “support parameters” are not estimated from data but must
be specified by the user prior to estimating the shape parameters. The support parameters are ntop
(a positive integer) and ζ (a logical scalar).

The parameter ntop is the upper limit of the support of the specified distribution. If the parameter
ζ is TRUE then zero origin indexing is to be used, in which case the support of the distribution is the set
{0, 1, 2, . . . , ntop}. Otherwise the support is {1, 2, . . . , ntop}. In the first case I use the notation nbot = 0
and in the second nbot = 1. The first form is convenient if the variable in question may be considered
to be a count and zero counts are possible. Of course, one could structure the distribution always
to have support of the form {0, 1, 2, . . . , ntop}, simply by re-coding or shifting the data. However,
in several of the examples with which I was concerned, it seemed more convenient to allow for a
non-zero origin.

In some contexts the value of ntop may be known (e.g., it may be analogous to the number of trials
in a binomial experiment). In other contexts it must be chosen by the user, and the choice may be
influenced by the observed values of the data. (See the section Choosing ntop.)

Like the Beta distribution upon which it is based, the db distribution is effectively unimodal. It
can have two modes if they occur at the extremes of the support but otherwise can have only one.
This characteristic is less than ideal, but seems to be unavoidable. It appears to be difficult to specify
multimodal distributions (other than by way of mixtures, which are accompanied by other problems).
Wikipedia (https://en.wikipedia.org/wiki/Multimodal_distribution, last accessed 30 March 2021)
says “Bimodal distributions, despite their frequent occurrence in data sets, have only rarely been studied [citation
needed] (sic). This may be because of the difficulties in estimating their parameters either with frequentist or
Bayesian methods.”

A referee of an earlier version of this paper suggested that the beta-binomial distribution be
considered as an alternative to the new db distribution. This referee pointed out to me the paper
“Modeling the patient mix for risk-adjusted CUSUM charts” by Philipp Wittenberg, which has interest-
ing applications in medical science. In this paper, which is to appear in Statistical Methods in Medical
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Research, the beta-binomial distribution is used to model the distribution underlying a large data set of
integer-based Parsonnet risk scores (see Parsonnet et al. 1989; see also Steiner et al. 2000). In addition
to modeling the Parsonnet risk scores with the beta-binomial distribution, Wittenberg rescales these
scores to lie between 0 and 1 and applies the Beta distribution.

The data in question are available (in a slightly modified form) in the spcadjust package (Gandy
and Kvaloy 2013). I fitted both a db distribution and a beta-binomial distribution to these data and
conducted a goodness of fit test in both instances. The tests indicate that neither distribution is
actually appropriate. Both Monte Carlo p-values were 0.01. More detail is given in Example 6 in
section Examples.

The beta-binomial distribution was introduced in Skellam (1948). Like the db distribution, it has
flexibility of shape similar to that of the Beta distribution. However I have a couple of reservations
about this distribution which I discuss in the following section.

The beta-binomial distribution

My first reservation about the beta-binomial distribution is that it is to a large extent focussed on dealing
with data which appear to arise from binomial distributions but which are, in fact, “overdispersed”. In
other words, the focus is on data which exhibit extra-binomial variation. Such data have variance
which is larger than it would be if the underlying distribution were indeed binomial.

The focus of the beta-binomial distribution on overdispersion would appear to make its application
to underdispersed data problematic. Underdispersed pseudo-binomial data sets (i.e. data sets which
have variance smaller than they would have if the underlying distribution were binomial) are rare, but
they do exist. Examples are provided in the dbd package (see section Implementation). It is indeed
possible to fit beta-binomial distributions to these examples, and goodness of fit tests indicate that
the fits are adequate. However, the meaning of the resulting fits is questionable. The estimates of s
range from around 640 thousand to 78 million. Such large values of s essentially indicate that there
is no overdispersion, i.e., that the data are, in fact, from a binomial distribution. In other words, the
estimates are trying as hard as they can to describe the true situation but cannot actually do so given
the constraints of the model.

In fairness, it must be pointed out that the db distribution does not perform particularly well when
applied to the data sets referred to above. There are no obvious theoretical problems with fitting the
db distribution to underdispersed data. However, goodness of fit tests reject the adequacy of the fit of
the db distribution to one of these data sets. In contrast, the beta-binomial distribution appears to fit
this data set adequately. Further details are given in Example 7 in section Examples. The parameter
estimates for the rejected fit of the db distribution appear to be excessively large, which might well
raise suspicions. It is not clear how the values of parameter estimates obtained from the db distribution
relate to under and overdispersion. This may be a topic to explore in future research.

My second reservation about the beta-binomial distribution is that (as revealed by fairly extensive
simulation experiments) parameter estimation for this distribution can, from time to time, be unstable.
The beta-binomial distribution may be conveniently parameterized in terms of a “success probability”
m (which must be strictly between 0 and 1) and an overdispersion parameter s (which must be
strictly positive). This is the parameterization chosen in the rmutil package (Swihart and Lindsey
2020). The reader may also find it informative to access https://en.wikipedia.org/wiki/Beta-
binomial_distribution, where the parameterization is expressed in terms of “shape” parameters α
and β. These are related to m and s by m = α/(α + β) and s = α + β.

Moment estimators of the parameters of a beta-binomial distribution are explicitly available.
However, these are often unsatisfactory in that the moment estimate of s can turn out to be negative.
Maximum likelihood estimates of the parameters may be obtained via numerical maximization (using,
e.g., optim() from the stats package, automatically available in R). Starting values are, of course,
required. If the moment estimates are outside of the required range, e.g., if ŝ is negative, rough ad hoc
starting values (e.g., m = ϵ or m = 1 − ϵ, and s = ϵ, where ϵ is equal to sqrt(.Machine$double.eps))
appear to be adequate most of the time.

However, irrespective of starting values, the maximum likelihood estimate of s is frequently far too
large. In one instance, I simulated (using rbetabinom() from the rmutil package) 100 data sets, each
with 30 observations, with m = 0.75, s = 10, and size (the number of trials) set equal to 10. Maximum
likelihood estimates of s, calculated using the true parameter values as starting values, ranged as high
as 1038.82. (An “h” plot of the estimates is shown in Figure 1.) The variance of these estimates was
13032.98. In contrast, the inverse of the Fisher information, calculated using the true parameter values
and the data corresponding to the highest estimate of s was
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m s
m 0.001121638 0.02524533
s 0.025245334 14.66327852

which indicates that the variance in question should be of the order of 15.
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Figure 1: Estimates of the s parameter of the beta-binomial distribution.

I encountered other problems — tendencies for errors to be thrown in various circumstances,
including the application of optim() — in my exploration of the beta-binomial distribution, but there
would appear to be no point in going into more detail here.

Despite these problems and my reservations about the beta-binomial distribution, I have included
a complete set of tools for working with this distribution in the dbd package. These tools have a
structure exactly analogous to that of the tools provided for working with the db distribution.

Definition of the db distribution

Conceptually, the probability mass function (PMF) of the db distribution is

Pr(X = x | α, β, ntop, ζ) =
1
κ

f
(

x − nbot + 1
ntop − nbot + 2

)
, where

κ =

ntop

∑
i=nbot

f
(

i − nbot + 1
ntop − nbot + 2

) (1)

x = nbot, nbot + 1, . . . , ntop. In (1), f (·) is the probability density function (pdf) of the Beta distribution
with the first shape parameter equal to α and the second shape parameter equal to β. The probabilities
given by (1) are the values of the corresponding Beta density, evaluated at equispaced points in the
interior of the interval (0, 1), normalized to sum to 1. However, it is possible and advantageous to
express the definition of the db distribution in a direct manner without making reference to the Beta
distribution.

Deriving the direct expression for the PMF of the db distribution from (1) is facilitated by noting
that the Beta distribution is a member of the exponential family. From this, it follows that the db
distribution as defined by (1) is, for fixed values of the support parameters ntop and ζ, also a member.
An expression for the PMF of the db distribution, in exponential family form, is derived from the pdf
of the Beta distribution in Appendix I.

From this derivation, it is seen that the PMF of the db distribution, given by (1), can also be
expressed as

Pr(X = x | α, β, ntop, ζ) = h(x) exp{αT1(x) + βT2(x)− A(α, β)},

x = nbot, nbot + 1, . . . , ntop, where
(2)
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h(x) =
(ntop − nbot + 2)2

(x − nbot + 1)(ntop − x + 1)

T1(x) = log((x − nbot + 1)/(ntop − nbot + 2))

T2(x) = log((ntop − x + 1)/(ntop − nbot + 2) and

A(α, β) = log

 ntop

∑
i=nbot

h(i) exp{αT1(i) + βT2(i)}

 .

Consequently the definition of the db distribution may be taken to be (2). This has the following
advantage. The expression given by (2) is well-defined for all values of α and β: positive, negative or
zero, whereas (1) is well-defined only for α and β strictly greater than zero. The difference is due to the
fact that the pdf of the Beta distribution involves the expression B(α, β) = Γ(α)Γ(β)/Γ(α + β). This
latter expression evaluates to ∞ (or Inf in R) if either α or β is less than or equal to zero. Consequently,
in such cases, (1) is undefined (being equal to Inf/Inf = NaN in R). Algebraically, B(α, β) cancels from
(1) due to the division by κ, whence it does not appear in (2).

Although the db distribution is well-defined for negative parameter values, there are indications
of problems in respect of such values. In practice, it may be advisable to restrict attention to positive
values only. There certainly exist data sets — as can be demonstrated by simulation — for which the
(maximum likelihood) estimates of the parameters are undeniably negative. Cursory experimentation
using the dbd package indicates that in some instances, negative parameters are reasonably well
estimated by maximum likelihood. E.g.,

library(dbd)
set.seed(42)
x <- rdb(100,-2,-3,10)
fx <- mleDb(x,10)
print(as.vector(fx))

The preceding code produces estimates α̂ = −2.1645 and β̂ = −3.1365. Ninety-five percent
confidence intervals for α and β (based on the variance entries of the “analytic” covariance matrix —
see section Implementation) are [−3.0585,−1.2706] and [−3.9443,−2.3297], which contain the true
values, equal to −2 and −3, respectively.

On the other hand, there are instances in which the maximum likelihood estimates are very large
(either positive or negative) when the true values are relatively small and negative:

library(dbd)
set.seed(348)
x <- rdb(100,alpha=-3,beta=-6,ntop=10,zeta=TRUE)
fx <- mleDb(x,ntop=10,zeta=TRUE,maxit=2000)
print(as.vector(fx))

The resulting estimates are α̂ = 73.18 and β̂ = −166.61 which bear no relation to the “truth”.

The only (as far as I can see) real advantage in the fact that the parameter values are permitted to be
negative lies in the avoidance of various numerical issues that might otherwise arise in the estimation
of parameters of a db distribution. In particular, the legitimacy of negative parameter values removes
the necessity of imposing box constraints on the procedure for maximizing the likelihood. It also
circumvents difficulties that can otherwise arise in evaluating the Hessian of the log-likelihood when
one or both of the parameter estimates is close to zero.

Plots of the probability functions of a number of db distributions are shown in Figure 2. The
shapes of these distributions mimic those of the corresponding Beta distributions.

Choosing ntop

In fitting a db distribution to an observed data set, it is often sensible to set ntop equal to the maximum
of the data. On the other hand, if there is a conceptual least upper bound for the support of the
distribution (not found amongst the observed values), then one should set ntop equal to this conceptual
least upper bound. Finally, if the data are conceptually unbounded, then one might wish to set ntop
equal to the maximum of the observed data +1. In this latter case, the value of Pr(X = ntop) might be
interpreted as Pr(X ≥ ntop).
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Figure 2: Probability mass functions of db distributions

Implementation

I have written an R package dbd (Turner 2021) to provide tools for working with the db distribution.
The package supplies the four standard, “d”, “p”, “q” and “r” — density, probability, quantile and
random number generation — functions, that are as a rule associated in R with any given distribution.
In this setting, these functions are ddb(), pdb(), qdb(), and rdb(). The package also contains functions
expValDb() and varDb() to calculate the expected value (mean) and variance of a db distribution given
a specification of its parameters. There is no closed-form algebraic expression for these quantities.

Another useful tool in the package is the function mleDb() which enables the easy estimation
from data, of the parameters of the db distribution, via maximum likelihood. The function mleDb()
calls upon an undocumented function meDb() which calculates approximate moment estimates of
the parameters to serve as starting values for the maximization of the likelihood. A user would not
normally make direct use of meDb(). However, the approximation used by meDb() is of interest in its
own right. This approximation is discussed in the section Estimation of parameters.

An alternative to mleDb() is the function exactMeDb(), which is also included in the dbd package.
This function was suggested by a referee of an earlier version of this paper. It calculates “exact”
moment estimates of the parameters by minimizing (x̄ − µ)2 + (s2 − σ2)2 where x̄ and s2 are the
sample mean and variance, respectively, and µ and σ2 are the theoretical mean and variance. The latter
two quantities are functions of α and β and can be calculated from these parameters using expValDb()
and varDb(). The minimization is accomplished using optim(). “Theoretically”, the minimum should
be zero. The achieved minimum is provided as an attribute "minSqdiff" of the value returned by
exactMeDb() so that the user can see how successful the minimization was. In section The quality of
the estimates, the “exact” moment estimates are denoted by α̃ and β̃.

Somewhat to my surprise, exactMeDb() performed (in the simulation experiments that I conducted)
essentially as well as mleDb(). Occasionally exactMeDb() out-performed mleDdb() in terms of mean
squared error. See section Quality of the estimators. On the other hand, it appears that exactMeDb()
is substantially slower than mleDb(). In a small simulation experiment I found that mleDb() was about
20 times as fast as exactMeDb() (with times measured as the "user" time returned by system.time())
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when starting values were taken to be the approximate moment estimates, and nearly 30 times as fast
when starting values were taken to be the true parameter values.

The function mleDb() returns an object of class "mleDb", and there is a corresponding plot()
method to produce plots of the probability mass functions for distributions having parameters equal
to the given estimates. There is also a stand-alone plotting function plotDb() which plots the PMF of
a db distribution given specified parameters.

The package also has functions that provide means of estimating or calculating the covariance
matrix of the parameter estimates. These functions enable the assessment of the uncertainty in the
estimates of the parameters. The functions are: aHess() (“analytic Hessian”), nHess() (“numeric
Hessian”), finfo(), and mcCovMat() (Monte Carlo-based estimate of the covariance matrix). The first
three functions provide matrices whose inverses are estimates of (or in the case of finfo() equal to)
the desired covariance matrix, given the supplied parameter values. The function nHess() calls upon
optimHess() from the stats package. The function aHess() makes use of the expressions set out in
Appendix II.

The values produced by aHess() and nHess() generally appear to be in very good agreement.
However, if the parameter values are “unreasonably large” (e.g., α = 150, β = 400), then there can be
a substantial disparity between the values. In such instances, it would be inadvisable to trust either
result.

Of course, the real reason for calculating the Hessian is to obtain an estimate of the covariance
matrix of the parameter estimates. Another way to obtain an estimated covariance matrix is to use the
Monte Carlo methods conveniently provided by the function mcCovMat() referred to above. Again,
there is generally good agreement between the value produced by mcCovMat() and the inverse of
the Hessian produced, e.g., by aHess(). However, unless the sample size is quite large, the variance
entries of the inverse Hessian are noticeably smaller than those of the matrix returned by mcCovMat():

set.seed(25)
x <- rdb(n=30,alpha=3,beta=4,ntop=10)
fx <- mleDb(x,ntop=10)
solve(aHess(fx))

alpha beta
alpha 0.7712032 1.047111
beta 1.0471108 1.790513
mcCovMat(fx)

alpha beta
alpha 1.342672 1.889880
beta 1.889880 3.291645

Further discussion of this phenomenon is to be found in Appendix III.

The dbd package also contains a function llPlot() for plotting log-likelihood surfaces and a
function gof() for performing tests of goodness of fit for the db distribution. The llPlot() function
may be useful in diagnosing problems with parameter estimation should these arise. The tests effected
by gof() may be either chi-squared-based tests or Monte Carlo tests. Users should be aware that Monte
Carlo tests (which use a relatively small number of simulations) are random. Performing a Monte Carlo
test is not the same as simulating a large number of test statistics (under the null hypothesis) in order
to approximate the null distribution of the statistic. See, for example, Baddeley et al. (2015, Section
10.6, p. 384) for some discussion of such tests.

Estimation of parameters

There is, unsurprisingly, no closed-form for any sort of estimates of the shape parameters of a db
distribution. Estimates may, however, be calculated reasonably easily via (numerical) maximum
likelihood or by solving for moment estimates numerically. The functions mleDb() and exactMeDb()
from the dbd package, discussed in the section Implementation make use of the optim() function
from the stats package (automatically available in R) to effect the calculations.

The optim() function requires starting values for the parameters being estimated. It turns out
that adequate starting values can be produced, as indicated in the section Implementation, via a
(very!) rough explicit approximation to the method of moments. To develop the approximation, it is
necessary to go back to the conceptual definition of the db distribution expressed in terms of the Beta
distribution (1). In terms of the conceptual definition, the mean and variance of a db distribution with
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shape parameters α and β may be written as

µ =
1
κ

n

∑
i=0

i f ((i + 1)/(n + 1))

σ2 =
1
κ

n

∑
i=0

(i − µ)2 f ((i + 1)/(n + 1)),

where f (·) is the probability density function of the Beta distribution with shape parameters α and β,
n is equal to ntop (the maximum value of the support of the distribution), and κ is the normalizing
constant

κ =
n

∑
i=0

f ((i + 1)/(n + 1)) .

In the foregoing, zero origin indexing (i.e., that ζ is TRUE) is assumed. This is of no real consequence
given that the method is so rough to start with.

To get approximate expressions for the mean and variance of the distribution, one may manipulate
the sums in the expressions for µ, σ2, and κ into the form of Riemann sums that approximate integrals.
This reveals that

µ ≈ (n + 2)2

κ

∫ 1

0
x f (x) dx − 1

and that

κ ≈ (n + 2)
∫ 1

0
f (x) dx .

The integral of x f (x) is the mean of the associated Beta distribution, α/(α + β) (Johnson et al. 1995,
Chapter 25, equation 25.15a) and the integral of f (x) is, of course, just 1, whence κ ≈ n + 2. Therefore,

µ ≈ (n + 2)α
α + β

− 1 .

Proceeding similarly, one finds that

σ2 ≈ (n + 2)2αβ

(α + β)2(α + β + 1)
.

This latter result makes use of the fact that the variance of the associated Beta distribution is

αβ

(α + β)2(α + β + 1)

(Johnson et al. 1995, Chapter 25, equation 25.15b).

To calculate the approximate method of moments estimates, which I shall denote by ᾰ and β̆
respectively, equate the foregoing approximate expressions for µ and σ2 to the observed sample mean
and variance (x̄ and s2) and solve for α and β. One obtains

ᾰ =
(n + 2)2a
s2(a + 1)3 − 1

a + 1

β̆ = aᾰ,

where for convenience, I have set a = (n + 1 − x̄)/(1 + x̄).
Note that although the Beta distribution is undefined for non-positive values of α and β, the

foregoing approximate moment estimation procedure can be applied without problem to data for
which non-positive parameter estimates are appropriate.

It must be emphasized here that the explicit moment estimation procedure discussed above is not
intended to be applied by users. It is provided for the purpose of producing starting values for the
maximum likelihood and “exact” moment estimation procedures. The estimates produced via the
explicit moment estimation procedure are not very good, and in general, appear to be substantially
biased. (See Figure 4.) Despite this, they seem to be adequate as starting values.

Quality of the estimators

I investigated the question of how well the estimation procedures perform by means of a number of
simulation experiments.
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Some confidence intervals for the parameters

In the first experiment, I determined interval estimates of α and β for a small grid of true values of
these parameters. One hundred samples were generated for each combination of the true parameter
values, and the means and standard errors of these estimates were calculated. Each sample was of size
of 100. For each combination of the true parameters, 95% confidence intervals (mean ±1.96× standard
error) for the individual parameters were then calculated. Table 1 displays the sample means of the
estimates of α and β and the corresponding confidence intervals.

Half of the 18 confidence intervals failed to cover the true values. For the (3, 3) combination, the β
interval failed to cover. For the (3, 6), (6, 6), (9, 3), and (9, 9) combinations, both intervals failed to
cover. Where the confidence intervals failed to cover, they missed on the high side. As shall be seen
later on, (Figure 6 in subsection Asymptotic bias in the maximum likelihood estimates), this would
seem to be the expected behavior. The amounts by which the confidence intervals missed the true
values were not egregiously large. The worst case was for the (9, 3) combination, where the lower
endpoint of the confidence interval for α was greater than 9 by 0.294.

α β ¯̂α 95% CI for α ¯̂β 95% CI for β

3 3 3.014 (3.005, 3.023) 3.011 (3.003, 3.019)
3 6 3.029 (3.021, 3.038) 6.058 (6.041, 6.075)
3 9 3.018 (3.01, 3.026) 9.056 (9.031, 9.08)
6 3 6.056 (6.04, 6.072) 3.015 (3.007, 3.022)
6 6 6.029 (6.012, 6.046) 6.042 (6.025, 6.059)
6 9 6.019 (6.004, 6.035) 9.022 (8.999, 9.045)
9 3 9.002 (8.974, 9.029) 3.008 (2.998, 3.017)
9 6 9.032 (9.007, 9.057) 6.014 (5.997, 6.031)
9 9 9.032 (9.006, 9.057) 9.005 (8.979, 9.031)

Table 1: Some sample mean parameter estimates and 95% confidence intervals for the true values.

Comparison of estimators using mean squared error

I next conducted an experiment to investigate how well the two sorts of moment estimator compared
with the maximum likelihood estimator. In this experiment, 100 samples, each of size 100, were
generated (using rdb()) from distributions

db(αi, β j, ntop = 10, ζ = TRUE),

with αi and β j varying over the set {0, 1, 2, ..., 9, 10}. For each of the three possible estimators (explicit
but approximate method of moments, “exact” method of moments, and maximum likelihood), the
mean squared error of the estimates, corresponding to the appropriate set of 100 samples, was
calculated. The mean square error is defined as

MSE = (α − ᾱ)2 + (β − β̄)2 + s2
α + s2

β .

In the foregoing, ᾱ and s2
α are the sample mean and variance of the 100 values of the estimates of α

(ᾰi, α̃i, α̂i as the case may be) arising from the 100 samples generated for the given pair of parameter
values. Similarly for β̄ and s2

β. A subset of the MSE values that were produced is presented in table 2.

It is worth mentioning that the MSEs of the “exact” moment estimates and of the maximum
likelihood estimates were not adversely affected by the possibly poor starting values provided by the
approximate moment estimates. In a simulation experiment, it is possible to use the true values of the
parameters as starting values. Doing so gave rise to estimates that were virtually identical to those
obtained when the approximate moment estimates were used to start the optimization.

A plot of the “exact” moment estimates against the maximum likelihood estimates is shown in
Figure 3. The MSE for the “exact” moment estimates tracked the MSE for the maximum likelihood
estimates almost exactly except for one striking outlier, corresponding to the parameter pair α = 10,
β = 0. A little bit of further experimentation indicated that this outlier is a one-off aberration, and
that both “exact” moment estimation and maximum likelihood estimation are subject to occasional
instability. More simulation experiments could be considered, but there are too many possibilities for
this line of enquiry to be pursued in the current paper.

Unsurprisingly, the MSE of estimates produced by the approximate moment method did not track
that of the maximum likelihood estimates nearly as closely, as shown in Figure 4. There is some
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Mean squared error
α β Approx. Mom. Exact Mom. Max. Like.
0 0 1.24 0.10 0.10
5 0 55.58 8.13 8.03

10 0 636.59 102.20 45.55
0 2 4.93 0.69 0.71
5 2 1.10 1.10 1.09

10 2 9.24 7.11 6.83
0 4 27.60 2.50 2.43
5 4 1.02 1.02 1.06

10 4 3.19 3.28 3.45
0 6 94.64 8.58 8.53
5 6 1.34 1.34 1.37

10 6 3.08 3.06 3.13
0 8 292.97 28.21 28.08
5 8 1.48 1.47 1.45

10 8 3.53 3.53 3.69
0 10 556.54 50.80 52.78
5 10 3.82 3.80 3.93

10 10 5.40 5.40 5.78

Table 2: Subset of the MSE values plotted in Figures 3, 4 and 5.

suggestion that the MSE pairs are close to the “y = x” line for small values of MSE, but for values
larger than about five, the plot of the MSE values becomes rather wild.

Evidence from the simulation experiments described here indicates that the MSE becomes large
when the difference between α and β becomes large. Figure 5 displays a plot of the maximum
likelihood MSE against |α − β|. This figure indicates that the MSE values are all of roughly the same
“moderate” size until the absolute difference becomes greater than or equal to six. At this point the
values start to increase substantially.

Asymptotic bias in the maximum likelihood estimates

The squared bias component of the MSE for the maximum likelihood estimates was substantial.
However, the simulation experiment described above used a sample size of 100 exclusively. To assess
the impact of sample size on the bias in the estimates, I undertook a further simulation experiment
in which I set α and β to have true values 0 and 10 respectively, which were the values that led, in
the foregoing experiment, to the largest MSE. The sample size was allowed to range over the set
{100, 200, 300, 500, 1000, 5000}. Five hundred simulated samples were generated in each instance, and
the means and standard errors of the bias in parameter estimates were calculated.

Ninety-five percent confidence intervals for the mean bias at were plotted for both the α and β
estimates. These plots are shown in Figure 6. This figure indicates that for this pair of true parameter
values, the bias remains “significantly” different from 0 until the sample size reaches the surprisingly
large value of 2000.

Examples

Example 1: Simulated binomial data

For an initial example, I simulated 100 data from a binomial distribution Bin(10, 0.25) and fitted
a db distribution to that. I set ζ =TRUE and ntop = 10 (the “conceptual” upper bound). A plot of the
resulting fit is shown in Figure 7. The fit is consistent with the other possible values of the probabilities
of the various counts.

Example 2: The Downloads data

The Downloads data from Weiß (2018) consist of a time series (of length 267) of the observed daily
number of downloads of a TEX editor for the period from June 2006 to February 2007. These data are
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Figure 3: The MSE from “exact” moment estimation plotted against the MSE from maximum likelihood
estimation. The superimposed red line is the line of “exact agreement” between the two estimators, i.e.
it has slope 1 and intercept 0.

available as Downloads in the CRAN package hmm.discnp. They can also be obtained from the Wiley
website https://www.wiley.com/en-gb/An+Introduction+to+Discrete+Valued+Time+Series-p-
9781119096962, by clicking on “Downloads” and then on the “Download” button next to “Datasets”.
This will provide a zip archive of all of the data sets from Weiß’s book.

Prima facie, it might seem plausible that these data are Poisson-distributed, but they are, in fact,
much too overdispersed to be Poisson; the sample mean is 2.401, whereas the sample variance is 7.506.
Weiß finds that an INAR(1) (integer-valued autoregressive, p = 1) model provides a good fit. In fitting
a db distribution to these data, I took ζ = TRUE (zero counts are observed) and ntop = 15 (1+ the
observed maximum of the data, which is 14). This db fit yields a mean of 2.451 and a variance of
7.461. A plot of this fit is shown in Figure 8. Of course, simply fitting a db distribution is not really
appropriate since this treats the data as being i.i.d., and as Weiß’s analysis shows, there is strong
evidence of serial dependence in these data. Moreover, a goodness of fit test yields a p-value of 0.03
(see the help for gof() in the dbd package). One would thereby reject the hypothesis that the fit of the
db distribution is adequate at the 0.05 significance level.

In other analyses of these data, the details of which it is inexpedient to discuss here, I have fitted
hidden Markov models with marginal db distributions and varying numbers of states to these data. I
used both AIC and BIC to select the number of states. Both criteria indicate that a two-state model is
optimal, i.e., a model involving serial dependence is chosen over the model in which the data are i.i.d.

Example 3: The Sydney Coliform Count data

These data were analyzed in Turner et al. (1998). In that paper, the data were modeled after a
certain transformation had been applied, as having a hidden Markov model structure with marginal
Poisson distributions. I have since discretized these data into five (ordered) categories. The resulting
data set is available as SycColDisc in the package hmm.discnp. I fitted db distributions to subsets of
these data, treating them as having the numeric values 1, 2, . . . , 5, taking ntop = 5 and ζ = FALSE.

Plots of the fits, together with the observed proportions, are shown in Figure 9, for the Bondi East
data at each of the four depths, 0, 20, 40, and 60 meters.

Example 4: The Sydney Coliform Count data (continued)

In general, it may be of interest to provide graphical representations of the uncertainty in the estimates
of the parameters of db distributions. This can be done by plotting (say) 95% confidence ellipses
around the point estimates. The ellipse package (Murdoch and Chow 2018) provides convenient
means of plotting such ellipses.

In the context of the current example, it is also of interest to examine whether there are differences
amongst the distributions associated with the various depth and location combinations. Such exami-
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Figure 4: The MSE from approximate moment estimation plotted against the MSE from maximum
likelihood estimation. The superimposed red line is the line of “exact agreement” between the two
estimators, i.e. it has slope 1 and intercept 0.

nation can also be effected by means of plotting confidence ellipses. In this setting, one would plot
confidence ellipses for the differences between the parameters corresponding to different combinations.
Assuming that the samples are independent (possibly problematic here), the covariance matrix on
which to base the confidence ellipse for the difference between the parameters is the sum of the two
individual covariance matrices.

It is also possible to test the hypothesis that the distributions corresponding to a number of
different combinations of depths and locations are all identical (again assuming the samples to be
independent) by means of a likelihood ratio test. The foregoing ideas can be illustrated using the four
different depths at the "BondiE" location. Confidence ellipses for the parameters corresponding to the
four depths are shown in Figure 10. Confidence ellipses for the six pairwise differences are shown in
Figure 11. Code for effecting the likelihood ratio test is as follows:

library(dbd)
X <- hmm.discnp::SydColDisc
X$y <- as.numeric(X$y)
X <- split(X,f=with(X,interaction(locn,depth)))
X <- X[c("BondiE.0","BondiE.20","BondiE.40","BondiE.60")]
fitz <- lapply(X,function(x){mleDb(x$y,ntop=5)})
x.all <- unlist(lapply(X,function(x){x$y}))
fit.all <- mleDb(x.all,ntop=5)
ll0 <- logLik(fit.all) # Two parameters.
ll1 <- sum(sapply(fitz,logLik)) # Eight parameters.
print(pchisq(2*(ll1-ll0),6,lower=FALSE)) # Df = 8 - 2.

The resulting p-value is 0.9781; i.e., there is no evidence at all of any differences. This conclusion is
confirmed by Figure 11, wherein it can be seen that the 95% confidence ellipses all contain the point
(0, 0). It is also in accordance with the visual impression given by Figure 9 in which the plots of the
four distributions all look very similar.

An analogous exercise was done involving measurements all made at a depth of 60 meters, at
four of the seven locations (Longreef, Bondi East, Malabar Offshore, and North Head Offshore; two
“controls” and two “outfalls”). The likelihood ratio test yielded a p-value equal to 6.37 × 10−9, i.e.,
effectively zero. The origin (0, 0) was exterior to the 95% confidence ellipses for the pairwise differences
in four of the six instances.

Note that the foregoing analyses of the Sydney Coliform data are superficial in that they take
no account of the serial dependence of these data. Undertaking analyses that accommodate serial
dependence would lead us much too far afield.
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Figure 5: The MSE from maximum likelihood estimation plotted against the absolute value of the
difference the parameters in the corresponding parameter pair.

Example 5: Monocyte counts and psychosis ratings

The monocyte counts and psychosis ratings data arose in a study initiated by Jonathan Williams,
who was at the start of the study, working for the Northland District Health Board in New Zealand.
The study is still ongoing, and the results have not yet been published. The data involved cannot be
publicly released due to patient confidentiality issues.

This example is really what motivated the development of the db distribution. The data consist of
pairs of sequences of observations of monocyte blood counts, discretized to a 1 to 5 scale, and ratings
of severity of psychosis on a 0 to 4 scale. The observations were made on 1258 patients. They were
made at irregularly spaced times, and there were varying numbers of observations per patient. The
different types of sequence were not observed at the same times, and there were usually different
numbers of observation between the types.

The analysis of these data was intricate, and the details cannot be gone into here. The crucial feature
of the analysis is that hidden Markov models, whose marginal distributions were db distributions
were fitted to both types of sequence. The value of ntop was taken to be 5 for the monocyte counts
and 4 for the psychosis ratings, and that of ζ to be FALSE for the monocyte counts and TRUE for the
psychosis ratings.

For each type, a three-state model was chosen (by means of a cross-validation technique). Plots of
the db distributions corresponding to each of the three states are shown for the monocyte counts in
Figure 12 and for the psychosis ratings in Figure 13.

Example 6: The Parsonnet scores from the cardiacsurgery data

As discussed in the introduction, I fitted both a db and a beta-binomial distribution to these data and
conducted goodness of fit tests. In the case of the db distribution, I chose ntop = 71 and set zeta =
TRUE (since zeroes appear in the data). In the case of the beta-binomial distribution, I set size = 71.
The value 71 is that which was used in the paper by Wittenberg (to appear in Statistical Methods in
Medical Research) referred to on page 485.
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Figure 6: Ninety-five percent confidence intervals for the mean bias in estimates of α = 0 and β = 10,
plotted against the sample size. Five hundred sample were generated for each sample size. The red
horizontal lines are the desired zero bias level.

# Note that the package spcadjust must be available.
data("cardiacsurgery", package = "spcadjust")
xxx <- cardiacsurgery$Parsonnet
fit1 <- mleDb(xxx,ntop=71,zeta=TRUE)
g1 <- gof(fit1,obsd=xxx,MC=TRUE,verb=TRUE,seed=42)
fit2 <- mleBb(xxx,size=71)
g2 <- gof(fit2,obsd=xxx,MC=TRUE,verb=TRUE,seed=17)

Seeds were set in the calls to gof() in order for the Monte Carlo p-values to be reproducible. In both
cases, the value of nsim was left at its default value of 99, which yielded a Monte Carlo p-value of 0.01.
The values of the test statistic were huge, 12792.5 in the case of the db distribution, and 4004.668 in the
case of the beta-binomial distribution. I therefore strongly suspect that if nsim had been increased to,
say 9999, then the p-values would have been 0.0001. Howeveri, I have not checked this out.

Plots of the fits (not shown) can be produced by:

plot(fit1,obsd=xxx,main="db")
plot(fit2,obsd=xxx,main="beta-binomial)

These plots reveal that there are indeed substantial discrepancies between the fitted probabilities
and the observed proportions. The fitted probabilities from the dbd distribution, although differing
significantly from the observed proportions, are “not too different” from each other. This can be seen
from the plot (again not shown) that can be produced by:

x1 <- plot(fit1,plot=FALSE)
x2 <- plot(fit2,plot=FALSE)
ylim <- range(x1$p,x2$p)
plot(fit1,main="Comparing db and beta-binomial fits",ylim=ylim)
with(x2, lines(x+0.5,p,type="h",col="blue"))
legend("topright",lty=1,col=c("red","blue"),

legend=c("db","beta-binomial"),bty="n")

The large size (5595), of the data set that is involved here, revealed an interesting timing issue. The
goodness of fit test took a great deal (of the order of 50 times) longer for the beta-binomial distribution
than for the db distribution. Some rudimentary timing experiments revealed that for data sets of this
size, the random number generator rbetabinom() from the rmutil package is about 50 times slower
than rdb() from the dbd package. I have not investigated the reason for this phenomenon.
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Figure 7: Fit of a db distribution to a sample from a Bin(10, 0.25) distribution. Also shown are the
observed proportions, the true binomial probabilities, and the fitted binomial probabilities.
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Figure 8: Fit of a db distribution to the Downloads data from Weiß (2018). Also shown are the observed
proportions.

Example 7: Underdispersed data

As mentioned in the introduction, the dbd package provides two data sets which are of the na-
ture of binomial data but appear to be underdispersed relative to the binomial distribution. Here are
some examples which illustrate fitting db and beta-binomial distributions to these data.

The horse race prediction data from the dbd package (see the help for hrsRcePred) provides four
examples.

library(dbd)
X <- hrsRcePred
top1e <- X[X$sbjType=="Expert","top1"]
top1n <- X[X$sbjType=="NonXpert","top1"]
top3e <- X[X$sbjType=="Expert","top3"]
top3n <- X[X$sbjType=="NonXpert","top3"]
fit1e <- mleDb(top1e,ntop=10,zeta=TRUE)
fit1n <- mleDb(top1n,ntop=10,zeta=TRUE)
fit3e <- mleDb(top3e,ntop=10,zeta=TRUE)
fit3n <- mleDb(top3n,ntop=10,zeta=TRUE)

The ratios of the raw variance to the putative binomial distribution variance are 0.4895, 0.4100, 0.5718
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Figure 9: Fits of db distributions to discretized Sydney coliform count data from the Bondi East
location, at depths equal to 0, 20, 40, and 60 meters. Also shown are the observed proportions.
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Figure 10: Ninety-five percent confidence ellipses for the parameters of the db distributions fitted to
the data from the Bondi East location at depths 0, 20, 40, and 60 meters.

and 0.7745 respectively. All ar substantialy less than 1, whence these data sets appear to be indeed
underdispersed.

The fitting procedures proceeded without complaint for all four data sets. Goodness of fit tests
(two of which required increasing maxit from its default value) indicate adequate fit for three of the
four data sets.

# Set seeds to get repeatable Monte Carlo p-values.
pv1e <- gof(fit1e,obsd=top1e,MC=TRUE,maxit=5000,

seed=49,verb=TRUE)$pval # 0.02
pv1n <- gof(fit1n,obsd=top1n,MC=TRUE,

seed=128,verb=TRUE)$pval # 0.79
pv3e <- gof(fit3e,obsd=top3e,MC=TRUE,

seed=303,verb=TRUE)$pval # 0.35
pv3n <- gof(fit3n,obsd=top3n,MC=TRUE,maxit=3000,

seed=24,verb=TRUE)$pval # 0.40

There is significant evidence that the db distribution is not appropriate for the top1e data (p-value
= 0.02). For the other three data sets, the p-values are all large, indicating that there is no evidence of
any problems with any of these fits.
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Figure 11: Ninety-five percent confidence ellipses for pairwise differences between the parameter
vectors of the db distributions fitted to the data from the Bondi East location at depths 0, 20, 40, and 60
meters.

Note that for the problematic fit (i.e., fit1e), the parameter estimates might be considered to be
excessively large:

alpha beta
145.14659 21.23249

This may be indicative of problems.

The beta-binomial distribution fits acceptably to all four of the data sets top1e, top1n, top3e, and
top3n. For example, for the first of these data sets (for which the fit of the db distribution was rejected),
the following code produces a Monte Carlo p-value of 0.11:

bbfit1e <- mleBb(top1e,size=10)
bbpv1e <- gof(bbfit1e,obsd=top1e,MC=TRUE,maxit=5000,

seed=792,verb=TRUE)$pval # 0.11

(For the other three data sets, Monte Carlo p-values of 0.64, 0.62, and 0.75 were obtained.)

Another two examples of underdispersed data are provided by the visual recognition data from
the dbd package (see the help for visRecog). The ratios of the raw variance to the putative binomial
distribution variance for these data are 0.7635 and 0.7979. The Monte Carlo p-values from fitting the
db distribution were 0.92 and 0.71, and those from fitting the beta-binomial distribution were 0.97 and
0.83.

As a “reality check”, it is worth noting that fitting a simple binomial distribution to these data
sets yielded Monte Carlo p values, from goodness of fit tests, equal to 0.13, 0.61, 0.72, and 0.70 for the
hrsRcePred data, and 0.98 and 0.81 for the visRecog data. That is, binomial distributions fit these data
sets acceptably despite their apparent underdispersion.

Concluding remarks

The db distribution is a new distribution that can be applied to any sort of data that takes values in
a finite discrete set. It is an ad hoc distribution and does not require any theoretical justification in
terms of properties that the data may have. It is very flexible, with the restriction that (as remarked
in the Introduction) it is effectively unimodal. The values of the distribution are integers varying
from 0 to n or from 1 to n for some n, and data to which a db distribution is to be fitted must be
converted (recoded) into that form. In order that the fit should make practical sense, the data should,
generally speaking, bear some relation to counts or at least be ordered. However, there is no theoretical
requirement that this should be the case.

A number of examples have been given in this paper illustrating the fit of the db distribution to
different data sets. These examples show that the db distribution may reasonably be expected to be
useful to data analysts who need to deal with discrete data that do not conform to one of the standard
distributions.
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Figure 12: Marginal db distributions corresponding to each of the three states of a hidden Markov
model fitted to the monocyte count data.
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Figure 13: Marginal db distributions corresponding to each of the three states of a hidden Markov
model fitted to the psychosis rating data.

Appendix I

Here I derive, from the conceptual definition (1) of the db distribution, an expression for the PMF
of this distribution which, for fixed values of the support parameters ntop and ζ, is in exponential
family form. A distribution is in the exponential family if its probability density or mass function has
a particular structure. Different authors and books express this structure in a variety of equivalent
ways. (See e.g., Cox and Hinkley 1974, p.94, Davidson 2003, p. 168, Hogg et al. 2005, p. 400. Liero
and Zwanzig 2012, p. 15, Abramovich and Ritov 2013, p. 13. The reader may also find it useful to
access https://en.wikipedia.org/wiki/Exponential_family.) Almost all of the commonly used
distributions (with the notable exception of the uniform distribution) are in the exponential family.

A suitable expression for the exponential family form of a probability density or mass function, of
a (scalar) distribution depending on a parameter vector θ = (θ1, . . . , θk)

⊤, is

f (x | θ) = h(x) exp

(
k

∑
i=1

ηi(θ)Ti(x)− A(θ)

)
.

The “natural parameters” of the distribution are the ηi(θ).

The pdf of the Beta distribution can be written in exponential family form (with natural parameters
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equal to α and β) as

f (x | α, β) = hB(x) exp{α log(x) + β log(1 − x)− log B(α, β)},

where hB(x) = (x(1 − x))−1, and B(α, β) is the beta function which is equal to Γ(α)Γ(β)/Γ(α + β)
(where in turn Γ(·) is the gamma function).

The PMF of the db distribution, expressed in terms of the Beta distribution (1), is

Pr(X = x | α, β) =
1
κ

f
(

x − nbot + 1
ntop − nbot + 2

)
,

where f (·) is the pdf of the Beta distribution and

κ =

ntop

∑
i=nbot

f
(

i − nbot + 1
ntop − nbot + 2

)
.

Hence, if one sets h(x) = hB((x − nbot + 1)/(ntop − nbot + 2)), T1(x) = log((x − nbot + 1)/(ntop −
nbot + 2)), and T2(x) = log((ntop − x + 1)/(ntop − nbot + 2), then the PMF of the db distribution can
be written as

Pr(X = x | α, β) = h(x) exp

αT1(x) + βT2(x)− log

 ntop

∑
i=nbot

h(i) exp{αT1(i) + βT2(i)}


Note that the log B(α, β) terms, present in f (·), cancel when

f
(

x − nbot + 1
ntop − nbot + 2

)
is divided by κ.

The foregoing expression for the PMF is equal to

Pr(X = x | α, β) = h(x) exp{αT1(x) + βT2(x)− A(α, β)},

where

A(α, β) = log

 ntop

∑
i=nbot

h(i) exp{αT1(i) + βT2(i)}

 .

This is the expression given in (2) and is of exponential family form, although the constant A(α, β)
might appear to be somewhat unorthodox.

Obviously, the value of A(α, β) is such that the values of Pr(X = i | α, β), i = nbot, . . . , ntop, sum
to 1.

Appendix II

When the PMF of a db distribution is expressed in the form (2), it is a relatively simple matter to derive
an analytic expression for the gradient of the log-likelihood. Such an expression can be passed to
optim() obviating the need for approximating the gradient numerically via finite differencing. The
derivation of an analytic expression for the Hessian is equally easy. The optim() function makes no
provision for using an analytically calculated Hessian. However, the availability of such an expression
permits the calculation or estimation of the covariance matrix of the parameter estimates in an analytic
manner. The derivations of the expressions for the gradient and Hessian are as follows.

The log-likelihood is

ℓ = log Pr(X = x | α, β, ntop, ζ)

= log h(x) + αT1(x) + βT2(x)− A(α, β) .

Consequently, the gradient is given by

∂ℓ

∂α
= T1(x)− ∂A

∂α

∂ℓ

∂β
= T2(x)− ∂A

∂β
.
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The Hessian is given by
∂2ℓ
∂α2 = − ∂2 A

∂α2
∂2ℓ

∂α∂β = − ∂2 A
∂α∂β

∂2ℓ
∂β2 = − ∂2 A

∂β2

Now let

E = exp(A) =

ntop

∑
i=nbot

h(i) exp{αT1(i) + βT2(i)} .

Clearly
∂A
∂α

=
1
E

∂E
∂α

∂A
∂β

=
1
E

∂E
∂β

∂2 A
∂α2 = 1

E
∂2E
∂α2 − 1

E2

(
∂E
∂α

)2
∂2 A
∂α∂β = 1

E
∂2E

∂α∂β − 1
E2

(
∂E
∂α

∂E
∂β

)
∂2 A
∂β2 = 1

E
∂2E
∂β2 − 1

E2

(
∂E
∂β

)2
.

It remains to calculate the relevant partial derivatives of E. These are given by:

∂E
∂α

=

ntop

∑
i=nbot

h(i)T1(i) exp(αT1(i) + βT2(i))

∂E
∂β

=

ntop

∑
i=nbot

h(i)T2(i) exp(αT1(i) + βT2(i))

∂2E
∂α2 =

ntop

∑
i=nbot

h(i)T1(i)2 exp(αT1(i) + βT2(i))

∂2E
∂α∂β

=

ntop

∑
i=nbot

h(i)T1(i)T2(i) exp(αT1(i) + βT2(i))

∂2E
∂β2 =

ntop

∑
i=nbot

h(i)T2(i)2 exp(αT1(i) + βT2(i)) .

The foregoing calculations have been translated into R code in the (undocumented) functions
gradDb() and hessDb() in the dbd package.

Appendix III

Covariance matrices of the maximum likelihood estimates of the parameters of a db distribution may
be calculated both by theoretical means (using, e.g., aHess() from the dbd package) or by a Monte
Carlo procedure using the mcCovMat() function from the same package. Doing such calculations in a
number of examples has indicated that there can be noticeable discrepancies between the theoretical
and Monte Carlo results. To investigate this issue further, I calculated the variance of β̂ from known
(rather than estimated) parameters using both the theoretical (inversion of the Fisher information
matrix) and Monte Carlo procedures. The essential part of the code used to do this is as follows.

obj <- makeDbdpars(alpha=3,beta=3,ntop=10,zeta=TRUE,ndata=<some value>)
varBeta.mc <- mcCovMat(obj,nsim=500)[2,2]
varBeta.fi <- solve(do.call(finfo,obj))[2,2]

I effected the calculations for a range of sample sizes (“ndata”). The results are plotted in Figure 14.

The behavior depicted in Figure 14 is typical. The theoretical covariance matrices for the parameter
estimates generally include variance entries which (for relatively small sample sizes) are appreciably
smaller than the corresponding entries of the covariance matrices produced by Monte Carlo methods.
Since the Monte Carlo covariance matrices are unbiased estimates of the true covariances, it would
appear that the theoretical variances tend to underestimate the truth. This phenomenon is not peculiar
to the db distribution. Such underestimation occurs in the context of the Beta distribution and very
likely in other contexts as well. As illustrated by Figure 14, the level of underestimation (as would
be expected) diminishes as the sample size increases. In the illustrated instance, the underestimation
effectively disappeared when the sample size reached 200.

The fact that variances are underestimated by the theoretical covariance estimates implies that
inference about the shape parameters based on the theoretical values should be treated with a certain
amount of circumspection. Unless the sample size is large, confidence intervals may be somewhat too
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Figure 14: Monte Carlo and analytic estimates of the log variance of β̂ for various sample sizes.

narrow, and hypothesis tests too liberal. When conducting inference about the shape parameters, it
is advisable to estimate the covariance matrix using mcCovMat(). The procedure is not too computa-
tionally demanding and is thus reasonably quick in normal circumstances. It is probably a good idea,
in circumstances in which inferential conclusions are critical, to calculate a number of Monte Carlo
covariance matrix estimates (using different seeds) and to compare these with each other and with the
“analytic” value of the covariance matrix.

The difference between results from using an “analytic” covariance matrix and those from using a
Monte Carlo covariance matrix is also illustrated in Figure 15. The examples used are from the Bondi
East Sydney Coliform Count data. (See Figures 10 and 11.) The chosen examples evince the most
striking difference between the confidence ellipses based on the two different calculation methods.
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Figure 15: The top two panels show 95% confidence ellipses for the parameters of the db distribution
for the Bondi East data at depth equal to 40 meters. The left-hand panel is based on the “analytic”
covariance matrix, the right-hand panel on a Monte Carlo covariance matrix. The bottom two panels
show 95% confidence ellipses for the difference in parameters between depth 60 meters and depth 40
meters. Again, the left-hand panel is based on the “analytic” covariance matrix and the right-hand
panel on a Monte Carlo covariance matrix. The inferential conclusions with respect to the differences
are unchanged.
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Automatic Time Series Forecasting with
Ata Method in R: ATAforecasting Package
by Ali Sabri Taylan, Güçkan Yapar and Hanife Taylan Selamlar

Abstract Ata method is a new univariate time series forecasting method that provides innovative
solutions to issues faced during the initialization and optimization stages of existing methods. The Ata
method’s forecasting performance is superior to existing methods in terms of easy implementation
and accurate forecasting. It can be applied to non-seasonal or deseasonalized time series, where
the deseasonalization can be performed via any preferred decomposition method. The R package
ATAforecasting was developed as a comprehensive toolkit for automatic time series forecasting. It
focuses on modeling all types of time series components with any preferred Ata methods and handling
seasonality patterns by utilizing some popular decomposition techniques. The ATAforecasting
package allows researchers to model seasonality with STL, STLplus, TBATS, stR, and TRAMO/SEATS,
and power family transformation and analyze the any time series with a simple Ata method and
additive, multiplicative, damped trend the Ata methods and level fixed Ata trended methods. It offers
functions for researchers and data analysts to model any type of time series data sets without requiring
specialization. However, an expert user may use the functions that can model all possible time series
behaviors. The package also incorporates types of model specifications and their graphs, uses different
accuracy measures that surely increase the Ata method’s performance.

Introduction

Ata method (Cetin and Yavuz, 2020; Yilmaz et al., 2019; Yapar et al., 2019; Yapar, 2018; Yapar et al.,
2018, 2017) is a new univariate time series forecasting method which provides innovative solutions to
issues faced during the initialization and optimization stages of existing methods. ATAforecasting
performance is superior to existing methods both in terms of easy implementation and accurate fore-
casting. It can be applied to non-seasonal or deseasonalized time series, where the deseasonalization
can be performed via any preferred decomposition method. This methodology performed extremely
well on the M3 and M4-Competition data.

The original exponential smoothing has accomplished well in a wide range of practical researches,
and it is well built as a precise and optimal forecasting method. Nonetheless, two essential difficulties
are to choose the smoothing constant and starting value in exponential smoothing theory. The Ata
method suggests an alternative method for smoothing constant and initial value. The Ata method
places more emphasis than the classical method on most recent activities. The forecasting error is
compared to the error in forecasts obtained by the original model.

Exponential smoothing (ES) is not the only model. In fact, a family of models. ES models suppose
that a time series has four components: seasonality, trend, level, and remainder. Bergmeir et al.
(2016) recommended the bootstrap aggregation of ES methods. The bootstrap aggregation employs
a Box–Cox transformation afterwards an a seasonal trend decomposition based on LOESS (LOcally
Estimated Scatter-plot Smoother) (STL) to segregate the time series sub three part: remainder, seasonal
and trend. The remainder is then bootstrapped via a moving block, and a new data is gathered via this
bootstrapped residual part. Thereafter, an ensemble of ES models is calculated with the bootstrapped
series.

Incorporating other types of model specifications and using different accuracy measures will surely
increase the Ata method’s performance. Like other approaches, the method can also benefit from
certain transformations and decompositions of other types of more involved combinations, outlier
detection, and other more complicated model selection strategies. The fact that these simple selection
and combination strategies can perform better than existing methods is fascinating, and this further
strengthens the idea that simplicity is indeed a prerequisite for forecasting accuracy.
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.

Function Description

ATA Time series analysis and forecasting using the Ata method.
ATA.Core The core algorithm of the Ata method.
ATA.Forecast Produces forecasts from the output of ATA function.
ATA.Accuracy Computes fitting and forecasting accuracy measures.
ATA.Transform Computes transformed data using power transformation techniques.
ATA.BackTransform Computes back transformed data using power transformation techniques.
ATA.BoxCoxAttr Assigns attributes set for unit root and seasonality tests.
ATA.Seasonality Tests seasonality.
ATA.Decomposition Decomposes a time series into seasonal, trend, and irregular.
ATA.SeasAttr Assigns attributes set for unit root and seasonality tests.
ATA.Plot Specialized plot function of the output of ATA function.
ATA.Print Specialized print screen function of the output of ATA function.
ATA.CI Confidence interval function for the Ata method forecasts.

Table 1: A summary of the functions available in the ATAforecasting package.

Several decomposition techniques are used before applying the Ata method for selecting an opti-
mized model. The high performance of these combined models is indicated with an empirical practice.
The Ata method is analyzed in contrast practically with the most well-known forecasting techniques
based on ES and ARIMA in accordance with its predictive performance on the M3 (Makridakis and
Hibon, 2000) and M4-Competitions (Makridakis et al., 2018) data set and is illustrated to outperform
its contestants.

Over the past few years, the preliminary research on ES (Brown, 1959; Pegels, 1969; Gardner
and McKenzie, 1985) expanded to an approach based on a model so that there are 30 potential ES
models for various types of trend, seasonality, and errors. The well-known of these are the simple ES,
Holt’s linear trend model, and Holt-Winter’s model. Then, Gardner and McKenzie (1985) proposed
damped trend model to help deal with overtrending. The reputation and universality of ES can
also be attributed to its proven record against more sophisticated techniques (Makridakis et al., 1984;
Makridakis and Hibon, 2000; Koning et al., 2005). The forecast package (Hyndman et al., 2020) in
the programming language R (R Core Team, 2016) means that a fully automated software for fitting
ETS models is available. These have led to a broadly appropriate ES modelling background, and
with the use of latterly developed software packages, these ES models handle seasonality, trend, and
other attributes of series without any human intervention (Hyndman et al., 2002, 2008; Hyndman and
Athanasopoulos, 2019).

The Theta method (Assimakopoulos and Nikolopoulos, 2000) was introduced as a new univariate
forecasting method which is similar to a simple ES model with drift, and its performance in terms of
forecasting accuracy was prominent in M3-Competition. As confirmed once again in Assimakopoulos
and Nikolopoulos (2000), it is well known that combining forecasts (Bates and Granger, 1969; Clemen,
1989) under certain circumstances improves forecasting accuracy (Armstrong, 1989, 2001; Makridakis
and Winkler, 1983; Makridakis et al., 1982). Due to this, the research focuses on transformations,
decompositions, rules, and combinations of ES and ARIMA (a few examples are (Clemen, 1989;
Cleveland et al., 1990; Adya et al., 2000) to improve the forecasting performance rather than suggesting
new forecasting methods.

Several other studies that are based on automatic forecasting procedures exist. Particularly for
seasonal time series, the forecast package offers the TBATS model (Livera et al., 2011). TBATS uses a
parsimonious trigonometric representation of seasonality instead of conventional seasonal indices
and also incorporates ARMA errors. In addition, the function also automatically performs Box-Cox
transformation of the time series if necessary.

This study introduces ATAforecasting (available from the Comprehensive R Archive Net- work
at https://cran.r-project.org/package=ATAforecasting), a software application for R which per-
forms a novel decomposition and power transformation-based approaches to time series forecasting
using Ata method without any academic expertise. To sum up, the ATAforecasting package (Taylan
et al., 2021a) provides a novel R interface for researchers interested in automatic time series analysis
and students and academics who teach courses related to univariate time series analysis topics. There
are main 13 functions available in the ATAforecasting package; see Table 1. We are going to describe
all of them as we go on to explain the theoretical procedure. The rest of the paper is organized as
follows. Section 2 presents a novel forecasting approach using the Ata method, gives an overview
of the main estimation methods of the Ata method, and provides some technical details about the
ATAforecasting package. Section 3 illustrates M-forecasting Competition dataset examples showing
the package’s functionality. Section 4 contains some concluding remarks.
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Methodology

The objective of this study is to introduce a new decomposition-based approach to time series forecast-
ing with the Ata method to provide the automation and the optimization of the Ata method which
is an innovative and accurate univariate time series analysis method without any expertise of the R
program. Specifically, we propose an analytical methodology of time series method with ATAforecast-
ing R package, as it combines several stationarities and seasonality tests, Box–Cox transformations,
seasonal decomposition techniques with the Ata method. We merge the various preceding concepts to
attain a robust and broadly practicable automatic forecasting algorithm. The methodology involves 2
alternative algorithms with 6 steps as described and summarized below:

First Algorithm in Figure 1a

• Step 1 Transformation
Transformation for stabilizing the variance of a time series if necessary;
There are many power transformation methods available to stabilizing linearity and variance. In
this paper, logarithm, logarithm with shift parameter, Box–Cox, Box–Cox with shift parameter,
Modulus, Bickel–Doksum, Dual, Yeo–Johnson, generalized logarithm (glog), and glog with
power function (gpower) methods are able to applied.

• Step 2 Seasonality Test
Identify and correct for seasonality in time series;
There are several methods to detect stationarity and seasonality in time series. In this package,
Augmented Dickey–Fuller (ADF), Phillips and Perron (PP), Kwiatkowski, Phillips, Schmidt, and
Shin (KPSS) unit root tests are adopted for stationarity. Autocorrelation function (ACF), Canova–
Hansen (CH), Hylleberg-Engle-Granger-Yoo (HEGY), Osborn, Chui, Smith, and Birchenhall
(OCSB) seasonal unit root tests are adopted for seasonality.

• Step 3 Decomposition
Decompose the series into three components: trend, seasonal, and remainder;
There are a few techniques to decompose time series. In this package, classical decomposition
(decompose – stats package (R Core Team, 2016)), the Seasonal-Trend decomposition using
LOESS (STL – stats package (R Core Team, 2016)), an enhanced of STL method (stlplus package
(Hafen, 2016)), Trigonometric Seasonal Box–Cox Transformation–ARMA residuals–Trend and
Seasonality (TBATS – forecast package (Hyndman et al., 2020)), Seasonal–Trend Decomposition
Procedure Based on Regression (stR package (Dokumentov and Hyndman, 2018)) are adopted.

• Step 4 ATA Forecasting
Apply ATA forecasting method to generate forecasts for the time series;
Although there are many forecasting techniques available to perform (e.g., ETS, ARIMA, Theta,
etc.), the Ata forecasting method is used. Ata method is an innovative new forecasting technique
where the forms of the models are similar to exponential smoothing models. Still, the smoothing
parameters depending on the sample size are optimized in a discrete space. Initialization is
easier as it is done simultaneously when the parameters are optimized and less influential since
the weights assigned to initial values approach zero quickly.

• Step 5 Selection and Aggregation
The model fits all possible ATA models to the data, then chooses the best model using the
accuracy measures. Aggregate the best selected ATA forecast model for trend + remainder
components and seasonal component to generate the final result. The final outcome is calculated
from the forecasts from the single ATA models.

• Step 6 Inverse Transformation

Second Algorithm in Figure 1b

• Step 1 Seasonality Test
• Step 2 Decomposition
• Step 3 Transformation
• Step 4 ATA Forecasting
• Step 5 Selection
• Step 6 Inverse Transformation and Aggregation

To summarize, the ATAforecasting procedure is given in Figure 1. As default, initially, the selected
power family transformation is implemented, and the series are decomposed into the seasonal part
and trend + remainder part, using the selected decomposition technique. Then, the Ata method is
applied to the trend + remainder part. The components are added together again, and the selected
power family transformation is inverted.
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(a) First Algorithm (b) Second Algorithm

Figure 1: Algorithms of ATAforecasting procedure.

Power transformation family for ATAforecasting package

Traditional statistical procedures often assume that the data is homoscedastic and normally distributed.
Despite its apparent restrictions, the logarithmic transformation has been used mostly when data
violates these assumptions. The purpose of a particular transformation for better fitting is additivity,
convergence to normality, stationarity, linearity, reduction of skewness, stabilizing variance. These
purposes, which may even be inconsistent, are quite significant as it is just under such assumptions that
particular statistical methods are relevant. Generally, logarithmic transformations almost stabilize the
variance for time series consisting of large values. Some of the problems that arise when implementing
a specific transformation are argued in different settings by Sakia (1992), Staniswalis et al. (1993),
Quiroz et al. (1996), Yeo and Johnson (2000), Chen et al. (2002), Mu and He (2007), Horowitz (2009)
and Meintanis and Stupfler (2015). There are many proposed methods of transformation and a large
amount of research in the literature. Sakia (1992) provided a detailed and extensive review of the
Box–Cox (Box and Cox (1964)) and some alternative versions. Different methodology recommended
for choosing the appropriate value of transformation parameters based on maximizing the likelihood
function (Box and Cox (1964)) or alternatively, Kullback-Leibler information-based method (Hernandez
and Johnson, 1980), robust adaptive method (Carroll, 1980) and a method based on Kendall’s rank
correlation, (Han, 1987).

A chiefly used algorithm of the Box–Cox family is the logarithm transformation, which is con-
venient for multiplicative process data. Moreover, the asymptotic variance of a time series can be
stabilized by the log-transformation. A shift parameter was additionally proposed to apply the log
transformations more responsive and handy. The parameterizations of the shift parameter depend
on knowledge of the data e.g., data range, data distribution, so user intervention is usually required.
ATAforecasting package automates the selection of shift parameter, which is an important contribution
of automatic times series forecasting.

Selected transformation functions included in the ATAforecasting R package provide the appli-
cability of different types of transformation techniques for the data to which the Ata method will
be applied. The ATA.Transform function works with many different types of inputs. Many power
transformation methods are available to stabilize linearity and variance. In this package, power
transformation family is consist of "Box–Cox", "Sqrt", "Reciprocal", "Log", "NegLog", "Modulus",
"Bickel–Doksum", "Manly", "Dual", "Yeo–Johnson", "GPower", "GLog". If the transformation process
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needs a shift parameter, ATA.Transform will calculate the required shift parameter automatically.

• Log Transformation with Shift,

• Box–Cox Transformation with Shift (Box and Cox, 1964),

• GLog Transformation (Durbin et al., 2002),

• NegLog Transformation (Whittaker et al., 2005),

• Reciprocal Transformation (Tukey, 1977),

• Bickel–Doksum Transformation (Bickel and Doksum, 1982),

• Yeo–Johnson Transformation (Yeo and Johnson, 2000),

• Modulus Transformation (John and Draper, 1980),

• Dual Power Transformation (Yang, 2005),

• GPower Transformation (Kelmansky et al., 2013),

The ATA.BoxCoxAttr function

Since the main ATA function and ATA.Transform are designed by some attributes of Box–Cox power
transformation family, we provide the user with the function ATA.BoxCoxAttr.

The R function ATA.BoxCoxAttr can be utilized with the following code,

ATA.BoxCoxAttr(bcMethod = "loglik", bcLower = 0
, bcUpper = 1, bcBiasAdj = FALSE),

and makes use of four parameters. These are

• bcMethod: Choose method to be used in calculating lambda. "loglik" is default. Other method is
"guerrero" (Guerrero, 1993).

• bcLower: Lower limit for possible lambda values. The lower value is limited by -5. Default value
is 0.

• bcUpper: Upper limit for possible lambda values. The upper value is limited by 5. Default value
is 1.

• bcBiasAdj: Use adjusted back-transformed mean for Box–Cox transformations. If transformed
data is used to produce forecasts and fitted values, a regular back transformation will result in
median forecasts. If bcBiasAdj is TRUE, an adjustment will be made to produce mean forecasts
and fitted values. If bcBiasAdj=TRUE, optional parameter fvar required. fvar can either be the
forecast variance or a list containing the interval level and the corresponding upper and lower
intervals. Default value of fvar is NULL and it can’t be changed.

The ATA.Transform function

The main function of power transformations, the ATA.Transform, can be called with

ATA.Transform(X, tMethod = "Box_Cox", tLambda
, tShift = 0, bcMethod = "loglik", bcLower = 0, bcUpper = 1)

and it makes use of seven parameters and returns three outputs. The inputs are

• X: a numeric vector or time series of class ts or msts for in-sample.

• tMethod: Power transformation family is consist of "Box_Cox", "Sqrt", "Reciprocal", "Log",
"NegLog", "Modulus", "BickelDoksum", "Manly", "Dual", "YeoJohnson", "GPower", "GLog" in
ATAforecasting package. If the transformation process needs shift parameter, ATA.Transform
will calculate the required shift parameter automatically.

• tLambda: Box–Cox power transformation family parameter. If NULL, data transformed before
model is estimated.

• tShift: Box–Cox power transformation family shifting parameter. If NULL, data transformed
before model is estimated.

• bcMethod: Choose method to be used in calculating lambda. "loglik" is default. Other method is
"guerrero" (Guerrero, 1993).

• bcLower: Lower limit for possible lambda values. The lower value is limited by -5. Default value
is 0.

• bcUpper: Upper limit for possible lambda values. The upper value is limited by 5. Default value
is 5.
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The outputs are

• trfmX : Transformed data.

• tLambda: Box–Cox power transformation family parameter.

• tShift : Box–Cox power transformation family shifting parameter.

To apply this algorithm to an example in the tsibbledata package "aus_retail", monthly retail
turnover (in million AUD) in Australian states from April 1982 to December 2018, we use the following
commands.

library(tsibbledata)
library(lubridate)
library(dplyr)
library(tsbox)
library(ATAforecasting)
train_data <- aus_retail %>% filter(State == "New South Wales"
, Industry == "Department stores"
, `Series ID`== "A3349790V")

train_data <- tsbox::ts_ts(train_data)
bc_attr_set <- ATA.BoxCoxAttr(bcMethod = "loglik", bcLower = 0, bcUpper = 1)
fit_bc <- ATA(train_data, seasonal.type = "M", model.type = "A"
, seasonal.test = TRUE, seasonal.model = "decomp", plot.out = TRUE
, transform.method = "Box_Cox", transform.order = "before"
, transform.attr = bc_attr_set, negative.forecast = FALSE)

Seasonality for ATAforecasting package

Seasonality is a well-known phenomenon observed in many economic time series. Seasonal decompo-
sition, which is the first stage of a time series modeling, is also the first stage of the Ata method. The
performance of the Ata method has been improved after the seasonal decomposition.

Specifically, our proposed methodology to identify seasonality in time series is as follows. After or
before implementing a Box—Cox transformation (if necessary) to the data, the data is decomposed into
remainder, seasonal, and trend components. The trend and remainder components are then forecasted
via the Ata method, the seasonal component is added back in, and the Box—Cox transformation is
inverted. Then, point forecasts are calculated using each of the different models, and/or the resulting
forecasts are able to be combined.

In previous studies, the classical decomposition method is much used after the seasonality test.
With this package, stl, stlplus, tbats, and stR decomposition techniques are also available choices by
the ATAforecasting package, which can be chosen with only one or multiple.

Seasonality for ATAforecasting package enables estimating all of the below components and
specifications. The main functions of seasonality in the package are the following

• ATA.SeasAttr(),

• ATA.Seasonality(),

• ATA.Decomposition().

Three seasonality diagnostics methods are able to be applied in the package.

• Unit Root Tests,

• Seasonal Unit Root Tests,

• Seasonal Decomposition.

The ATA.SeasAttr function

This function is a class of seasonality tests using corrgram.test from ATAforecasting package,
ndiffs and nsdiffs functions from forecast package. Also, ndiffs and nsdiffs functions have
been modified according to different unit root testing packages. Please review manual and vignette
documents of the latest forecast package. According to forecast package, ndiffs and nsdiffs functions
estimate the number of differences requisite to ensure stationary of a given time series.

ndiffs employs unit root tests to define required number of differences for time series to be
ensured trend stationary. nsdiffs employs seasonal unit root tests to define required number of
seasonal differences for time series to be ensured trend stationary.

The ATA.SeasAttr function works with many different types of inputs. The inputs are below.
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• corrgram.tcrit: t-value for periodogram seasonality test.

• uroot.test: Type of unit root test before all type seasonality test. Possible values are "adf", "pp",
and "kpss".

• suroot.test: Type of seasonal unit root test to use. Possible values are "correlogram", "sea", "hegy",
"ch", and "ocsb".

• suroot.uroot: If TRUE, unit root test for stationary before seasonal unit root test is allowed.

• uroot.type: Specification of the deterministic component in the regression for unit root test.
Possible values are "level" and "trend".

• uroot.alpha: Significant level of the unit root test, possible values range from 0.01 to 0.1.

• suroot.alpha: Significant level of the seasonal unit root test, possible values range from 0.01 to 0.1.

• uroot.maxd: Maximum number of nonseasonal differences allowed.

• suroot.maxD: Maximum number of seasonal differences allowed.

• suroot.m: Deprecated. Length of seasonal period: frequency of data for nsdiffs.

• uroot.pkg: Using ucra or tseries packages for unit root test. The default value is ucra.

• multi.period: Selection type of multiseasonal period. min or max function for selection.

• x13.estimate.maxiter Maximum: iteration for X13ARIMA/SEATS estimation.

• x13.estimate.tol: Convergence tolerence for X13ARIMA/SEATS estimation.

• x11.estimate.maxiter Maximum: iteration for X11 estimation.

• x11.estimate.tol: Convergence tolerence for X11 estimation.

Unit root tests

Unit root tests for stationarity have compatibility in almost every practical time series analysis.
Choosing which unit root procedure to employ is an issue of active interest. In this study, we
implement the three widely used unit root tests. In accordance with past research, the selected unit
root tests occasionally disagree in choosing the convenient order of integration for a given data. The
following literature shows the basic features of unit root tests. Users who demand details should
consult the original resources and standard references (see, for example, (Davidson and MacKinnon,
1993; Hamilton, 1994; Hayashi, 2000)).

In the ATAforecasting package, the following unit roots methods are able to be applied.

• Augmented Dickey–Fuller Test (Dickey and Fuller, 1979; Said and Dickey, 1984)

• Phillips and Perron Test (Phillips and Perron, 1988)

• Kwiatkowski, Phillips, Schmidt, and Shin Test (Kwiatkowski et al., 1992)

The ATA.SeasAttr function for unit root tests

Since the main ATA function and ATA.Seasonality are designed by some attributes of unit root
tests, we provide the user with the function ATA.SeasAttr.

For the main function ATA, the attributes of unit root test can be accessed with

ATA.SeasAttr(uroot.pkg = "tseries", uroot.test = "kpss"
, uroot.type = "trend", uroot.alpha = 0.05)

The following code uses the unit root test approach to search trend component before the seasonal-
ity test of the data in the context of the Ata method.

seas_attr_set <- ATA.SeasAttr(suroot.test = "correlogram"
, corrgram.tcrit = 1.28, uroot.pkg = "tseries"
, uroot.test = "kpss", uroot.type = "trend"
, uroot.alpha = 0.05)

fit_seas <- ATA(train_data, model.type = "A", seasonal.type = "M"
, seasonal.test = TRUE, seasonal.model = "tbats", plot.out = TRUE
, seasonal.test.attr = seas_attr_set, negative.forecast = FALSE)
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Seasonality tests

There are numerous studies relating seasonality and unit root. One of these studies uses autocorrel-
ogram. Autocorrelation function and partial autocorrelation function are useful qualitative tools to
estimate the existence of autocorrelation at individual lags. The Ljung-Box Q-test is a more quantitative
method to test autocorrelation at multiple lags jointly. Other techniques generally use unit root tests.
Hylleberg et al. (1990) improved unit root tests in linear time series regarding seasonality and studied
with different models, including different combinations of seasonal, trend, remainder, and constant
parts. Their purpose is to improve a testing process that will determine what class of seasonality is
accountable for the seasonality in a time series process. There exist more studies for testing seasonal
unit roots, such as Ljung and Box (1978), Dickey et al. (1984), Osborn et al. (1988), and Wang et al.
(2006).

In the ATAforecasting package, the following methods are able to applied.

• Autocorrelogram (Ljung and Box, 1978)

• Canova–Hansen (CH) Test (Canova and Hansen, 1995)

• Hylleberg, Engle, Granger & Yoo (HEGY) Test (Hylleberg et al., 1990)

• Osborn, Chui, Smith, Birchenhall (OCSB)Test (Osborn et al., 1988)

• Seasonal Strength Measure (Wang et al., 2006)

The ATA.SeasAttr function for seasonal unit root test

Since the main ATA function and ATA.Seasonality are designed by some attributes of seasonality
tests, we provide the user with the function ATA.SeasAttr.

For the main function ATA, the attributes of seasonality test can be accessed with

seas_attr_set <- ATA.SeasAttr(suroot.test = "correlogram"
, corrgram.tcrit = 1.28)

seas_attr_set <- ATA.SeasAttr(suroot.test = "ocsb", suroot.alpha = 0.05)

An example of the seasonality test’s call is the following

seas_attr_set <- ATA.SeasAttr(suroot.test = "ocsb", suroot.alpha = 0.05
, uroot.pkg = "tseries", uroot.test = "adf", uroot.type = "trend"
, uroot.alpha = 0.05)

fit_seas <- ATA(train_data, model.type = "A", seasonal.type = "M"
, seasonal.test = TRUE, seasonal.model = "stl", plot.out = TRUE
, seasonal.test.attr = seas_attr_set, negative.forecast = FALSE)

The ATA.Seasonality function for Seasonality Tests

The ATAforecasting’s seasonality diagnostics described before in this paper are implemented into
a function named ATA.Seasonality that can calculate all of them respectively. The function syntax is

ATA.Seasonality(input = train_data, ppy = frequency(train_data)
, attr_set = seas_attr_set)

The ATA.Seasonality function works with many different types of inputs. The inputs are below.

• input: The data.

• ppy: Frequency of the data.

• attr_set: Assign from ATA.SeasAttr function. Attributes set for the unit root, seasonality tests.

Here is an another simple example, applying ATA.SeasAttr and ATA.Seasonality to the M3 data:

library(ATAforecasting)
library(Mcomp)
seas_attr_set <- ATA.SeasAttr(suroot.test = "correlogram"
, corrgram.tcrit = 1.28, uroot.pkg="tseries"
, uroot.test="adf", uroot.type = "trend"
, uroot.alpha = 0.05, uroot.maxd = 1)

is.season <- ATA.Seasonality(M3[[1899]]$x
, frequency(M3[[1899]]$x)
, seas_attr_set)
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Seasonal decomposition

A substantial aim in time series analysis is the decomposition of a time series into latent parts that can
be incorporated with dissimilar versions of temporal variations. Persons (1919) was the first to state
the assumptions of latent parts particularly. Persons indicated that time series was constituted of four
types of fluctuations (Dagum and Bianconcini, 2016): residual variations, seasonal movement, secular trend,
and cyclical movements. Further, research in that direction included Copeland (1915) and Persons (1919),
who introduced for extracting the seasonal component until Macaulay (1931) suggested a technique
which turned into "classical" in the log run.

Macaulay (1931) developed a computer program which is significantly simplified the calcula-
tions (Shiskin, 1957). Extensively used various techniques and features which have such as ARIMA
extensions, regressors, calendar effects, robustness, and extensive diagnostics in literature are X-11
(Shiskin et al., 1967), X-11-ARIMA (Dagum, 1988), X-12-ARIMA (Findley et al., 1998) and X-13ARIMA-
SEATS (Monsell et al., 2003; Findley, 2005; Monsell, 2007). X-13ARIMA-SEATS contains a type of the
TRAMO/SEATS procedure which was improved by the Bank of Spain for seasonal adjustment.

Cleveland et al. (1990) recommended a different approach and developed STL (Seasonal Trend
decomposition using LOESS) based on local regression familiar as moving regression which is a
generalization of moving average and polynomial regression. LOESS is a connected nonparametric
method that assembles multiple regression models in a metamodel based on the k-nearest neighbor.
Burman (1980) discussed plenty of seasonal adjustment techniques and remarked that all but one
were ad hoc techniques. Since this study, several model-based methods for seasonal decomposition
have been evolved, including the TRAMO/SEATS procedure, assorted structural time series models
(Harvey, 1990; Commandeur et al., 2011) and the BATS and TBATS models of Livera et al. (2011).

Conventionally, the four variations suppose to be mutually independent of one another and signify
by means of an additive decomposition model. If there is dependency among the hidden parts, this
relation is signified via a multiplicative decomposition model. In some cases, combined additive and
multiplicative models can be employed. See Dagum and Bianconcini (2016) for further details.

The ATA.Decomposition function for seasonality

Automatic seasonal decomposition for the ATA method is called ATA.Decomposition function in
the ATAforecasting package. The function returns seasonally adjusted data constructed by removing
the seasonal component. The methodology is fully automatic. The ATA.Decomposition function works
with many different types of inputs. The inputs are below.

• input: It must be ts, msts, or numeric object. If it is a numeric object, findPeriod must be 1, 2, 3
or 4. If it is a msts object, findPeriod must be 3 or 4.

• s.model: A string identifying method for seasonal decomposition. If NULL, "decomp" method is
default. c("none", "decomp", "stl", "stlplus", "tbats", "stR") phrases of methods denote.

– none: seasonal decomposition is not required.

– decomp: classical seasonal decomposition. If decomp, the stats package will be used.

– stl: seasonal-trend decomposition procedure based on LOESS developed by Cleveland
et al. (1990) . If stl, the stats and forecast packages will be used. Multiple seasonal periods
are allowed.

– stlplus: seasonal-trend decomposition procedure based on LOESS developed by Cleveland
et al. (1990). If stlplus, the stlplus package will be used.

– tbats: exponential smoothing state space model with Box–Cox transformation, ARMA
errors, trend, and seasonal components as described in Livera et al. (2011). Parallel
processing is used by default to speed up the computations. If tbats, the forecast package
will be used. Multiple seasonal periods are allowed.

– stR: seasonal-trend decomposition procedure based on the regression developed by Doku-
mentov and Hyndman (2015). If stR, the stR package will be used. Multiple seasonal
periods are allowed.

– x13: seasonal-trend decomposition procedure based on X13ARIMA/SEATS. If x13, the
seasonal package will be used.

– x11: seasonal-trend decomposition procedure based on X11. If x11, the seasonal package
will be used.

• s.type: A one-character string identifying method for the seasonal component framework. If
NULL, "M" is default. The letter "A" for additive model, the letter "M" for multiplicative model.

• s.frequency: Value(s) of seasonal periodicity. If s.frequency is not integer, X must be msts time
series object. c(s1,s2,s3,...) for multiple period. If X has multiple periodicity, "tbats" or "stR"
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seasonal model have to be selected. For example, period of the input data, which have one
seasonal pattern –> 12 for monthly / 4 for quarterly / 7 for daily / 5 for business days. Periods
of the input data which have complex/multiple seasonal patterns –> c(7,354.37,365.25).

• seas_attr_set: Assign from ATA.SeasAttr function. Attributes set for unit root, seasonality tests.

ATA.Decomposition function returns four outputs. The outputs are below.

• AdjustedX : Deseasonalized data.

• SeasIndex : Particular seasonality data given cycle/frequency.

• SeasActual : Seasonality given original data.

• SeasType : Seasonal decomposition technique.

As an example, let us compute seasonal decomposition on the real life tsibbledata dataset shown
in the following seven figures (Figures 2, 3, 4, 5, 6, and 7).

best_fit_seas <- ATA(train_data, start.phi = 0.80, end.phi = 0.99
, size.phi = 0.01, train_test_split = 18, seasonal.test = TRUE
, seasonal.model = c("decomp","stl", "stlplus","tbats", "stR")
, negative.forecast = FALSE, plot.out = TRUE)
best_fit_seas$is.season
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Figure 2: Best forecasts for the Australian Retail Turnover using ATA seasonal trended methods.

library(ggplot2)
autoplot(train_data) +
autolayer(fit_decomp$forecast, series="ATA-decomp") +
autolayer(fit_stl$forecast, series="ATA-stl") +
autolayer(fit_stlplus$forecast, series="ATA-stlplus") +
autolayer(fit_stR$forecast, series="ATA-stR") +
autolayer(fit_tbats$forecast, series="ATA-tbats") +
ggtitle("Forecasts from ATA seasonal trended methods") + xlab("Year") +
ylab("Monthly Retail Trade Turnover of Australian States") +
guides(colour=guide_legend(title="Forecast"))

Figure 3: Forecasts from ATA seasonal trended methods.
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There are five different techniques for seasonal decomposition in the package. We use the following
techniques

• Classical Decomposition: The classical method of time series decomposition originated in the
1920s and was widely used until the 1950s.

fit_decomp <- ATA(train_data, seasonal.test = TRUE
, seasonal.model = "decomp" , negative.forecast = FALSE)

Figure 4: The Ata method with classical decomposition.

• STL Decomposition (Cleveland et al., 1990):

fit_stl <- ATA(train_data, model.type = "A", seasonal.type = "M"
, seasonal.test = TRUE, seasonal.model = "stl", negative.forecast = FALSE)

Figure 5: The Ata method with STL decomposition.
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• STL+ Decomposition (Hafen, 2010): The STL+ is implemented in stlplus R package. See more
details in Hafen (2010).

fit_stlplus <- ATA(train_data, model.type = "A", seasonal.type = "M"
, seasonal.test = TRUE, seasonal.model = "stlplus", negative.forecast = FALSE)

Figure 6: The Ata method with STLplus decomposition.

• TBATS Decomposition (Livera et al., 2011):TBATS uses Box–Cox transformation, exponential
smoothing, trigonometric seasonality and ARMA errors (Livera et al., 2011).

fit_tbats <- ATA(train_data, seasonal.test = TRUE, seasonal.model = "tbats"
, level.fixed = TRUE, negative.forecast = FALSE, plot.out = TRUE)

Figure 7: The Ata method with TBATS decomposition.
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• stR Decomposition (Dokumentov and Hyndman, 2015): Seasonal-Trend decomposition procedure
based on Regression (stR) is similar to Ridge Regression, and Robust stR can be related to LASSO.
The stR procedure grants for multiple seasonal and cyclic components and multiple linear
regressors with constant, flexible, seasonal, and cyclic effect. The Seasonal-Trend decomposition
by Regression is implemented in stR R package.

fit_stR <- ATA(train_data, seasonal.test = TRUE, seasonal.model = "stR"
, negative.forecast = FALSE, plot.out = TRUE)

Figure 8: The Ata method with stR decomposition.

Univariate time series forecasting with the Ata method

Ata method is an innovative new forecasting technique where the forms of the models are similar to
ES models. Still, the smoothing parameters depend on the sample size, are optimized on a discrete
space. Initialization is both easier as it is done simultaneously when the parameters are optimized and
is less influential since the weights assigned to initial values approach zero quickly. The Ata method
can easily be applied to all time series settings and provides better forecasting performance due to its
flexibility. ATA-damped is a version of the Ata method that mainly focuses on the trend component,
allowing it to range both in magnitude and form.

For a time series {y1, . . . , yn}, the Ata method can be given in additive form as below:

lt =
( p

t

)
yt +

(
t − p

t

)
(lt−1 + ϕbt−1), (1)

bt =
( q

t

)
(lt − lt−1) +

(
t − q

t

)
(ϕbt−1) , (2)

where p is the smoothing parameter for level, q is the smoothing parameter for trend, ϕ is the
dampening parameter and lt = yt for t ≤ p, bt = yt − yt−1 for t ≤ q, b1 = 0, p ∈ {1, 2, . . . , n},
q ∈ {0, 1, 2, . . . , p}, ϕ ∈ (0, 1], and p ≥ q. Then, the h step ahead forecasts can be obtained by:

ŷt+h|t = lt +
(

ϕ + ϕ2 + . . . + ϕh
)

bt. (3)

Similarly for a time series {y1, . . . , yn}, the Ata method can be given in multiplicative form as
below:

lt =
( p

t

)
yt +

(
t − p

t

)(
lt−1bϕ

t−1

)
, (4)
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bt =
( q

t

)(
lt

lt−1

)
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(
t − q
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)
, (5)

where, again, p is the smoothing parameter for level, q is the smoothing parameter for trend, ϕ is
the dampening parameter and lt = yt for t ≤ p, bt =

yt
yt−1

for t ≤ q, b1 = 1, p ∈ {1, 2, . . . , n},
q ∈ {0, 1, 2, . . . , p}, ϕ ∈ (0, 1], and p ≥ q. Then, the h step ahead forecasts can be obtained by:

ŷt+h|t = lt + b(
ϕ+ϕ2+...+ϕh)

t . (6)

Since both versions of the method require three parameters, we will distinguish between them by
using the notation ATAadd(p, q, ϕ) for the additive form and ATAmult(p, q, ϕ) for the multiplicative
form.

Notice that when q = 0, both forms of ATA are reduced to the simple form ATA(p, 0, ϕ) which can
be written as:

lt =
( p

t

)
yt +

(
t − p

t

)
lt−1, (7)

where p ∈ {1, 2, . . . , n} and lt = yt for t ≤ p. Forecasts then can be obtained by ŷt+h|t = lt.
When q ̸= 0 and ϕ = 1, the additive and multiplicative forms of ATA are reduced to the trended

versions ATAadd(p, q, 1) and ATAmult(p, q, 1), which are given below, respectively:
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ŷt+h|t = lt + hbt, (10)

and
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(lt−1bt−1) , (11)
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)
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)
(bt−1) , (12)

ŷt+h|t = lt + bh
t . (13)

To sum up, ATA can be given in 7 forms, namely the additive damped form ATAadd(p, q, ϕ)
(equations (1-3)), multiplicative damped form ATAmult(p, q, ϕ) (equations (4-6)), simple form
ATA(p, 0, ϕ) (equation (7)), additive trend form ATAadd(p, q, 1) (equations (8-10)), and finally multi-
plicative trend form ATAmult(p, q, 1) (equations (11-13)).

Another distinction can be made based on the parameter optimization process used for these
forms. Unless otherwise stated, the parameter values that minimized the in-sample one step ahead
using selected accuracy measures such as sMAPE, MASE, or OWA are used as optimum values, and
optimization is carried out for all the parameters simultaneously. However, in some cases, we realized
that fixing the smoothing parameter for the level and then optimizing the trend parameter can be
beneficial. We call these the “level-fixed” versions of ATA. The optimization is carried out for these
models as follows:

1. Find the value of p that minimized the in-sample one step ahead sMAPE for q = 0 and ϕ = 1.
Call this value p∗.

2. Holding p = p∗ fixed optimize q (and ϕ if needed) ,again, by minimizing the in-sample one step
ahead sMAPE.

Models where the parameter optimization is carried out using the algorithm in 1. and 2. will
receive the superscript (lf) an abbreviation for “level-fixed” such as ATAl f

add(p, q, ϕ) or ATAl f
mult(p, q, ϕ).

Obtaining prediction interval

For forecasting horizon h, the prediction interval is obtained by:
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yn+h|n ± Ch, (14)

where Ch =
√

hZα/2Se, Zα/2 is the Normal deviate corresponding to (1 − α)% confidence interval,
and Se is the standard deviation of the one step ahead errors of model fitting. If any lower bounds are
found to be negative, they are set equal to zero.

Model selection

There are plenty of measures and criteria available in the forecasting literature for interpreting the
achievements and accuracy of forecasting methods. In the M-Competitions, some of these measures
were employed without any obvious consensus as to the pros and cons of each.

A forecast error is a difference between an observed value and its forecast. Forecast errors are
different from residuals in two aspects. Firstly, residuals are computed on the training set, while
forecast errors are computed on the test set. Secondly, residuals are based on one-step-ahead forecasts,
while forecast errors can contain multi-step forecasts (Hyndman and Athanasopoulos, 2019).

Let Yt indicates the observation at time t, and Ft indicates the forecast of Yt. The forecast error
et = Yt − Ft is calculated. The forecasts are calculated from a common base time and are of varying
forecast horizons. Hence, we calculate out of sample forecasts Fn+1, . . . , Fn+m based on data from
times t = 1, . . . , n. Optionally, the forecasts can be from varying base times and be of a coherent
forecast horizon. Namely, we can calculate forecasts F1+h, . . . , Fm+h where each Fj+h is based on data
from times t = 1, . . . , n. The in-sample forecasts in the examples above were based on the second
scenario with h = 1. A third scenario shows up when we request to compare the accuracy of methods
across many series at a forecast horizon. Then we calculate a single Fn+h based on data from times
t = 1, . . . , n for each of m different series (Hyndman and Koehler, 2006). In this study, we adapt M4
and prior M-Competitions’ accuracy measures pool.

Automatic forecasting

We unite the prior concepts to obtain a robust and widely appropriate automatic forecasting algorithm.
The concept is summarized below.

1. Identify and correct for seasonality in time series, respectively.
- Detect stationarity and seasonality in time series.
- Decompose time series.

2. For the selected time series data, apply all models that are applicable, optimizing the parameters
of the ATA model in each case.

3. Select the best of the ATA models according to the selected accuracy measure (SMAPE is default
for the ATAforecasting package).

4. Generate point forecasts using the best model (with optimized parameters).

5. Obtain prediction intervals for the best model.

ATAforecasting in practice

This section introduces an overview of how the package is structured.

This software enables both numerical and graphical outputs to be displayed for all methods
described in the previous section. This software is intended to be used with the R statistical program
(R Core Team, 2016). Our package is composed of 13 functions that allow users to obtain estimates for
all proposed methods. Details on the usage of the functions (described in Table 1) can be obtained
with the corresponding help pages.

Returns ATA(p,q,ϕ) applied to X, based on the modified simple ES as described in Yapar (2018).
The Ata method is a new univariate time series forecasting method that provides innovative solutions
to issues faced during the initialization and optimization stages of existing methods. The ATA’s
forecasting performance is superior to existing methods both in terms of easy implementation and
accurate forecasting. It can be applied to non-seasonal or deseasonalized time series, where the
deseasonalization can be performed via any preferred decomposition method. This methodology
performed extremely well on the M3 and M4-Competition data.

Functions of ATAforecasting package

Many functions, including ATA, ATA.Forecast, ATA.Plot, ATA.Print, ATA.Accuracy, ATA.Seasonality,
ATA.Transform, ATA.BackTransform produce output in the form of a ATAforecasting object (i.e., an
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object of class "ata"). This package needs some R packages for unit root tests, seasonal unit root tests,
seasonal decompositions, M3 dataset, M4 dataset, and benchmark forecast models to work consis-
tently across a range of forecasting models. These R package are Rcpp (Eddelbuettel et al., 2020a),
RcppArmadillo (Eddelbuettel et al., 2020b), tseries (Trapletti and Hornik, 2020), forecast (Hyndman
et al., 2020), urca (Pfaff et al., 2016), uroot (de Lacalle, 2020), seasonal (Sax and Eddelbuettel, 2020), stR
(Dokumentov and Hyndman, 2018), stlplus (Hafen, 2016), xts (Ryan et al., 2020), timeSeries (Wuertz
et al., 2020), TSA (Chan and Ripley, 2020), Mcomp (Hyndman et al., 2018), M4Comp2018 (BenTaieb,
2018).

Objects of class "ata" contain information about the forecasting method, the data used, the point
forecasts obtained, prediction intervals, residuals, and fitted values. There are several functions de-
signed to work with these objects, including ATA.Forecast, ATA.Accuracy, ATA.Plot and ATA.Print.

Description of the ATA function

ATA function produces a ata object directly. If the first argument is of class ts (time series object)
or msts (multi seasonal time series objects), it returns forecasts from the automatic ATA algorithm
discussed in this chapter. The definition of ATA function is below.

ATA(X, Y = NULL, parP = NULL, parQ = NULL, parPHI = NULL
, start.phi = NULL, end.phi = NULL, size.phi = NULL
, model.type = NULL, seasonal.test = NULL, seasonal.model = NULL
, seasonal.period = NULL, seasonal.type = NULL, find.period = NULL
, seasonal.test.attr = NULL, accuracy.type = NULL
, level.fixed = FALSE, trend.fixed = FALSE, trend.search = FALSE
, initial.level = NULL, initial.trend = NULL, h = NULL
, train_test_split = NULL, holdout = FALSE
, holdout.adjustedP = TRUE, holdout.set_size = NULL
, transform.order = "before", transform.method = NULL
, transform.attr = NULL, lambda = NULL, shift = NULL
, ci.level = 95, negative.forecast = TRUE
, plot.out = TRUE, print.out = TRUE)

Inputs of ATA function

The ATA function works with many different types of inputs. It generally takes a time series data
or time series model as its main argument, and produces forecasts appropriately. It always returns
objects of class "ata".

If the first argument is of class ts or msts, it returns forecasts from the automatic ATA algorithm
discussed in this chapter before.

• X : A numeric vector or time series of class ts or msts for in-sample (trarining set).

• Y : A numeric vector or time series of class ts or msts for out-sample (test set). If you do not have
out-sample data, you can split in-sample data into training and test dataset with train_test_split
argument.

• h: The number of steps to forecast ahead. When the parameter is NULL; if the frequency of X is
4 the parameter is set to 8; if the frequency of X is 5, the parameter is set to 10; if the frequency
of X is 12, the parameter is set to 24; if the frequency of X is 24, the parameter is set to 48; the
parameter is set to 6 for other cases.

• train_test_split : If Y is NULL, this parameter divides X into two parts: training set (in-sample)
and test set (out-sample). train_test_split is number of periods for forecasting and size of test set.
If the value is between 0 and 1, percentage of length is active.

• ci.level : Confidence Interval levels for forecasting.

• negative.forecast : Negative values are allowed for forecasting. Default value is TRUE. If FALSE,
all negative values for forecasting are set to 0.

• plot.out : Default is TRUE. If FALSE, graphics of Ata method are not shown.

• print.out : Default is TRUE. If FALSE, summary of Ata method is not shown.

Level Parameters :

• parP : Value of Level parameter p. If NULL or "opt", it is estimated. p has all integer values
from 1 to length(X).

• level.fixed : If TRUE, pStarQ is selected. First, fits ATA(p,0) where p = p* is optimized for q=0.
Then, fits ATA(p*,q) where q is optimized for p = p*.

• initial.level : If NULL, FALSE is default. If FALSE, Ata method calculates the pth observation in
X for level. If TRUE, Ata method calculates average of first p value in X for level.
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Trend Parameters :

• parQ : Value of Trend parameter q. If NULL or "opt", it is estimated. q has all integer values
from 0 to p.

• parPHI : Value of Damping Trend parameter ϕ. If NULL or "opt", it is estimated. ϕ has all
values from 0 to 1.

• model.type : An one-character string identifying method using the framework terminology. The
letter "A" for additive model, the letter "M" for multiplicative model. If NULL, both letters will
be tried and the best model (according to the accuracy measure accuracy.type) returned.

• initial.trend : If NULL, FALSE is default. If FALSE, Ata method calculates the qth observation
in XT − XT−1 for trend. If TRUE, Ata method calculates average of first q value in XT − XT−1
for trend.

• trend.opt :

1. none : none.

2. fixed : pBullet is selected. Fits ATA(p,1) where p = p* is optimized for q = 1.

3. search : pBullet is selected. Fits ATA(p,q) where p = p* is optimized for q = q* (q > 0). Then,
fits ATA(p*,q) where q is optimized for p = p*.

• start.phi : Lower boundary for searching parPHI. If NULL, 0 is default.

• end.phi : Upper boundary for searching parPHI. If NULL, 1 is is default.

• size.phi : Increment step for searching parPHI. If NULL, the step size will be determined as the
value that allows the bounds for the optimized value of parPHI to be divided into 20 equal parts.

Seasonal Parameters :

• seasonal.test : Testing for stationary and seasonality. If TRUE, the method firstly uses test =
”ad f ”, Augmented Dickey-Fuller, unit-root test then the test returns the least number of differ-
ences required to pass the test at level α. After the unit-root test, a seasonal test applies on the
stationary X.

• seasonal.type : A one-character string identifying method for the seasonal component frame-
work. If NULL, "M" is default. The letter "A" for additive model, the letter "M" for multiplicative
model. If other seasonal decomposition method except decomp with "M", Box–Cox transforma-
tion with lambda=0 is selected.

• seasonal.model : A string identifying method for seasonal decomposition. If NULL, "decomp"
method is default. c("none", "decomp", "stl", "stlplus", "tbats", "stR") phrases of methods denote.

– none : seasonal decomposition is not required.

– decomp : classical seasonal decomposition. If decomp, the stats package will be used.

– stl : seasonal-trend decomposition procedure based on LOESS developed by Cleveland
et al. (1990). If stl, the stats package will be used.

– stlplus : seasonal-trend decomposition procedure based on LOESS developed by Cleve-
land et al. (1990). If stlplus, the stlplus package will be used.

– tbats : exponential smoothing state space model with Box–Cox transformation, ARMA
errors, trend, and seasonal components as described in Livera et al. (2011). Parallel
processing is used by default to speed up the computations. If tbats, the forecast package
will be used.

– stR : seasonal-trend decomposition procedure based on regression developed by Doku-
mentov and Hyndman (2015). If stR, the stR package will be used.

– x13 : seasonal-trend decomposition procedure based on X13ARIMA/SEATS. If x13, the
seasonal package will be used.

– x11 : seasonal-trend decomposition procedure based on X11. If x11, the seasonal package
will be used.

• seasonal.period : Value(s) of seasonal periodicity. If NULL, frequency of X is default If sea-
sonal.period is not integer, X must be an msts time series object. c(s1, s2, s3,...) for multiple period.
If X has multiple periodicity, "tbats" or "stR" seasonal model have to be selected.

• seasonal.test.attr : Attributes set for unit root, seasonal unit root test, seasonality tests and
X13ARIMA/SEATS, and X11. If you want to change, please use ATA.SeasAttr function and its
output.

• find.period : Find seasonal period(s) automatically. If NULL, 0 is default. When find.period,
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– 0 : none.

– 1 : single period with find.freq.

– 2 : single period with forecast::findfrequency.

– 3 : multiple period with find.freq & stR.

– 4 : multiple period with find.freq & tbats.

Accuracy Parameters :

• accuracy.type : Accuracy measure for selection of the best model. IF NULL, sMAPE is default.

1. lik : maximum likelihood functions.

2. sigma : residual variance.

3. MAE : mean absolute error.

4. MSE : mean square error.

5. AMSE : average MSE over first ‘nmse’ forecast horizons.

6. RMSE : root mean squared error.

7. MPE : mean percentage error.

8. MAPE : mean absolute percentage error.

9. sMAPE : symmetric mean absolute percentage error.

10. MASE : mean absolute scaled error.

11. OWA : overall weighted average of MASE and sMAPE.

12. MdAE : median absolute error.

13. MdSE : median square error.

14. RMdSE : root median squared error.

15. MdPE : median percentage error.

16. MdAPE : median absolute percentage error.

17. sMdAPE : symmetric median absolute percentage error.

• nmse : If accuracy.type == "AMSE", "nmse" provides the number of steps for average multistep
MSE (‘2<=nmse<=30’).

Transform Parameters :

• transform.order : If "before", Box–Cox transformation family will be applied, and then seasonal
decomposition techniques will be applied. If "after", seasonal decomposition techniques will be
applied, and then the Box–Cox transformation family will be applied.

• transform.method : Transformation methods: Box_Cox, Sqrt, Reciprocal, Log, NegLog, Modulus,
BickelDoksum, Manly, Dual, YeoJohnson, GPower, GLog are used. Suppose the transformation
process needs a shift parameter, ATA.Transform will calculate required the shift parameter
automatically. When all types of Box–Cox family power techniques (except sqrt, reciprocal) are
specified, model.type and seasonal.type is set to "A".

• transform.attr : Attributes set for Box–Cox transformation. If NULL, bcMethod = "loglik",
bcLower = 0, bcUpper = 1, bcBiasAdj = FALSE. If you want to change, please use ATA.BoxCoxAttr
function and its output.

• lambda : Box–Cox power transformation family parameter. If NULL, data transformed before
the model is estimated.

• shift : Box–Cox power transformation family shifting parameter. If NULL, data transformed
before the model is estimated. When lambda is specified, model.type and seasonal.type is set to "A".
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Holdout Parameters :

• holdout : Default is FALSE. If TRUE, Ata method uses the holdout forecasting for accuracy
measure to select the best model. In holdout forecasting, the last few data points are removed
from the data series. The remaining historical data series is called in-sample data (training set),
and the holdout data is called out-of-sample data (holdout set). If TRUE, holdout.set_size will
used for holdout data.

• holdout.adjustedP : Default is TRUE. If TRUE, parP will be adjusted by the length of training-
validation sets, and in-sample set when the holdout forecasting is active.

• holdout.set_size : If holdout is TRUE, this parameter will be the same as h for defining holdout
set.

• holdin : Default is FALSE. If TRUE, Ata method uses the hold-in forecasting for accuracy
measure to select the best model. In hold-in forecasting, the last h-length data points are used
for accuracy measure.

Output of ATA function

Returns an object of class "ata", containing the generic access or functions ATA.Forecast, and
ATA.Accuracy extracts the useful features of the value returned by "ata" and associated functions.

• actual : The original time series.

• fitted : Fitted values (one-step forecasts). The mean is of the fitted values is calculated over the
ensemble.

• level : Estimated level values.

• trend : Estimated trend values.

• residuals : Original values minus fitted values.

• coefp : The weights attached to level observations.

• coefq : The weights attached to trend observations.

• p : Optimum level parameter.

• q : Optimum trend parameter.

• phi : Optimum damped trend parameter.

• model.type : Form of trend.

• h : The number of steps to forecast ahead.

• forecast : Point forecasts as a time series.

• out.sample : Test sets as a time series.

• method : The name of the optimum forecasting method as a character string.

• initial.level : Selected initial level values for the time series forecasting method.

• initial.trend : Selected initial trend values for the time series forecasting method.

• trend.opt : A choice of optional trend and level optimized trended methods (none, trend.fixed,
or trend.search).

• transform.method : Box–Cox power transformation family methods are Box_Cox, Sqrt, Recipro-
cal, Log, NegLog, Modulus, BickelDoksum, Manly, Dual, YeoJohnson, GPower, GLog.

• transform.order : Define how to apply the Box–Cox power transformation techniques before or
after seasonal decomposition.

• lambda : The Box–Cox power transformation family parameter.

• shift : The Box–Cox power transformation family shifting parameter.

• accuracy.type : Accuracy measure that is chosen for model selection.

• nmse : The number of steps for average multi-step MSE.

• accuracy : In-and out-sample accuracy measures and its descriptive that are calculated for
optimum model are given.

• par.specs : Parameter sets for Information Criteria.

• holdout : Holdout forecasting is TRUE or FALSE.

• holdout.training : Training set in holdout forecasting.

• holdout.validation : Validation set in holdout forecasting.

• holdout.forecast : Holdout forecast.
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• holdout.accuracy : Accuracy measure chosen for model selection in holdout forecasting.

• is.season : Indicates whether it contains seasonal pattern.

• seasonal.model : The name of the selected decomposition method.

• seasonal.type : Form of seasonality.

• seasonal.period : The number of seasonality periods (which defaults to frequency(X)).

• seasonal.index : Weights of seasonality.

• seasonal : Estimated seasonal values.

• seasonal.adjusted : Deseasonalized time series values.

• execution.time : The real and CPU time (in seconds) spent by the system executing that task,
including the time spent executing run-time or system services on its behalf.

• calculation.time : How much real time (in seconds) the currently running R process has already
taken.

Here are quick start examples using "aus_retail" dataset monthly retail turnover (in million AUD)
in Australian states from April 1982 to December 2018 in the tsibbledata package.

library(tsibble)
library(tsibbledata)
library(lubridate)
library(dplyr)
library(tsbox)
library(ATAforecasting)

main_data <- aus_retail %>%
filter(State == "New South Wales",
Industry == "Department stores",
`Series ID`== "A3349790V")

train_data <- tsbox::ts_ts(train_data)
test_data <- tail(train_data, 24)
train_data <- window(train_data, start = 1983, end = 2016.917)
ata_fit <- ATA(train_data, test_data, h=24)
ata_fit$is.season
unlist(ata_fit$accuracy$sMAPE)
unlist(ata_fit$accuracy$sMAPE$inSample)
unlist(ata_fit$accuracy$sMAPE$outSample)
unlist(ata_fit$accuracy$fits)
ata_fit$fitted
ata_fit$forecast
ata_fit$residuals

Here are some outputs for the above example from the ATAforecasting Package whose results
are shown in Figure 9 and 10. 40 properties of the ATA module, including all results of the automatic
forecasting using the Ata method are able to be obtained by using the "$" command as shown in the
above example.
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Figure 9: Forecasts from automatic ATA seasonal damped trended methods.

Another sample data is Makridakis Competitions 2000 (also known as the M-Competitions)
monthly data in the Mcomp package (Hyndman et al., 2018).

atafit <- ATA(M3[[1899]]$x, M3[[1899]]$xx, parQ = 1, parPHI = 1
, model.type = "A", seasonal.type = "M", seasonal.test = TRUE
, seasonal.model = "decomp", level.fixed = FALSE, transform.method = "Box_Cox"
, negative.forecast = FALSE)

Here are some outputs for the above example from the ATAforecasting Package. The results are
shown in Figure 11.
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Figure 10: The default model output from the automatic ATA seasonal damped trended methods.

The object atafit is of class "ata" and contains all of the necessary information about the fitted
model including model parameters, residuals, and so on. Printing the atafit object presents the main
items of interest.

ATA.Forecast(atafit, h = 18, ci.level = 99
, negative.forecast = TRUE)

Some goodness-of-fit measures of forecast accuracy are obtained based on only the fitting data
using ATA.Accuracy, we use the following commands.

ATA.Accuracy(atafit)

Fable modeling wrappers for ATAforecasting

We also developed a wrapper software (called fable.ata (Taylan et al., 2021b) to add the Ata method
into the fable ecosystems using the fabletools (O’Hara-Wild et al., 2021b) package, which provides
tools, helpers, and data structures for developing algorithms for the fable ecosystems (O’Hara-Wild
et al., 2021a). Here are the quick start examples using the "aus_retail" dataset.

library(fable)
library(fable.ata)

fit <- aus_retail %>%
filter(State %in% c("New South Wales", "Victoria"),
Industry == "Department stores") %>%
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Figure 11: Forecasts from the automatic ATA seasonal trended methods for M3 sample.

model(
ets = ETS(Turnover),
arima = ARIMA(Turnover),
snaive = SNAIVE(Turnover),
ata = AutoATA(Turnover~trend("M") + season(type="M",method="stR"))

) %>%
mutate(mixed = (ets + arima + snaive + ata) / 4)
fc <- fit %>% forecast(h = 12)
fc %>% autoplot(filter(aus_retail, year(Month) > 2010), level = NULL)

Here are some outputs for the above example from the fable ecosystem functions (fable and
fable.ata packages). The results are shown in Figure 12 and Figure 13.

Figure 12: Forecasts from fable models for aus_retail dataset.
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fit %>%
accuracy() %>%
group_by(.model) %>%
summarise(

RMSE = mean(RMSE),
MAE = mean(MAE),
MASE = mean(MASE)
) %>%

arrange(MASE)

Figure 13: Comparison of fable models accuracy measures.

Holdout forecasting

Using holdout samples is substantial implementation to fit a model where the epoch of fit is dissimilar
to the epoch of assessment. According to this model evaluation procedure, the epoch of fit completes
at any moment before the last observation, and the rest of the data are held out as a non-overlapping
epoch of assessment. In concern with the epoch of fit, the holdout sample is an epoch in the future,
used to compare the forecasting accuracy of model fits to past data.

The concept of a holdout sample is to split the in-sample data into two parts. The last few data
points are taken out from the in-sample data. The leftover data is called the training set, and the
removed data is called the validation set or holdout set. Assume k periods have been taken out as
holdout samples from a total of T periods. The parameters are optimized by minimizing the fit accuracy
measure for the first part of the data. After the parameters are optimized, for each model, computed
multi-step forecasts over the period covered by the second part, or holdout sample. The models are
then evaluated, comparing accuracy measures for these out-of-sample multi-step predictions of the
holdout sample. The model whose out-of-sample predictions best fit the holdout sample is chosen.
The selected model is refitted using all the data to get the final forecasting model.

The ATAforecasting package makes it easy to use the holdout sample method of model selection.
The time range used to fit models and the time range used for model evaluation are able to indepen-
dently controlled. To use holdout samples, the period of evaluation range to that last part of the data,
and the period of fit range to the remainder of the data are set. The automatic model selection feature
is able to be used to select the model whose multiperiod out-of-sample predictions best fit the holdout
sample.

Now, a quick start example of how to call the holdout method in the package.

ata_holdout <- ATA(train_data, test_data, h=24, holdout = TRUE
, holdout.set_size = 24, holdout.adjustedP = TRUE
, seasonal.test = TRUE, seasonal.model = "decomp")

Applications

Ata method was proposed as an alternative to ES, and it is not a special case of it. The details on the
method and how it helps solve some issues that ES suffers from can be found in Yapar et al. (2019),
Yapar (2018), Yapar et al. (2018), Yapar et al. (2017). ATA can be adapted to all types of time series data
and will always outperform its counter ES models.

There are many studies on the numerical and theoretical comparison of Box-Jenkins and ES
methods. Several empirical studies have been published in turn by Reid (1969), Newbold and Granger
(1974), Makridaki and Hibon (1979), Makridakis et al. (1982), Makridakis et al. (1993), Makridakis and
Hibon (2000), Makridakis et al. (2018).

Efforts for better forecasting and the competitions in which the outcomes of these efforts are tested
and measured will never cease. Better forecasting is crucial to every science and business field. The
most important platforms in which the performance of the studies for accurate forecasting is measured
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are the M-Competitions (Hyndman, 2020). The most recent of these competitions, M4, has ended
(Makridakis et al., 2018). The aim of the M4-Competition, like the competitions held before it, was to
learn how to improve the forecasting accuracy, and how such learning can be applied to advance the
theory and practice of forecasting, and are there any new methods that could really make a difference.

M-Competitions are very important and prestigious platforms for forecasting researchers since
they provide researchers and developers of new forecasting methods opportunities to test and prove
themselves. Another benefit of these competitions is that they usually lead to both the destruction
of many taboos known in the forecasting literature and the discovery of new methods that help
increase forecasting accuracy. The M-Competition was established by Spyros G. Makridakis in 1982 in
a paper that studied the post-sample accuracy of several time series forecasting methods (Makridakis
et al., 1982). The number of series was increased to 1001, and the data were subdivided into various
categories (micro, macro, industry, demography, finance, other). The participants tested the accuracy
of 24 methods on 1001 series with various horizons which were six for yearly data, eight for quarterly
data, and eighteen for monthly data. The competition’s goal was to explore how different procedures
differ from each other and how information can be ensured that forecasters can make convenient
choices under various conditions (Makridakis et al., 1984).

In Makridakis and Hibon (2000), the M3-Competition reports the reasons for conducting the
competition and summarizes its outcomes. In the M3-Competition, 3003 series, composed of 6
different types of series and 4 different time intervals between successive observations. The three prior
competitions have played a very major role in the forecasting literature. Their results ensured a basis
for future forecasting research. Consequently, Makridakis et al. initiated the fourth competition. As
per the Makridakis’ team, the goal of the M4-Competition is to further study the utility and accuracy
of various forecasting methods. Thus, the categories and number of the series and the forecasting
methods are increased.

The M4-Competition is the progression of three previous competitions that began more than 45
years ago, whose objective was to learn how to evolve forecasting accuracy and how such learning
can be implemented to proceed with the theory and performance of forecasting.

The purpose of M4 was to replicate the consequences of the prior ones and expand them into three
aspects:

1. Substantially enhanced the number of series,

2. Contained machine learning forecasting methods,

3. Interpret both point forecasts and prediction intervals.

The some substantial outcomes of the M4-Competition are:

1. 12 of the 17 most accurate methods were "combinations" of mostly statistical approaches.

2. "hybrid" approach was a significant finding that use both statistical and machine learning
features.

In the M4-Competition, the number of data from the previous M3-Competition (Makridakis and
Hibon, 2000) was increased from 3,000 to 100,000. There were numerous applications (248), but only
49 of the applicants were able to provide forecasts for the entire 100,000 series. With the addition of 10
benchmarks and 2 standard methods, 61 methods were considered (Makridakis et al., 2020). Only 17
out of 49 valid applications outperformed the benchmark set by the competition committee. Of these
17 successful methods, 12 are combinations of known statistical methods obtained by using different
weighting techniques.

The M3-Competition data set consists of 645 yearly, 756 quarterly, 1428 monthly, and 174 other
series. The M4-Competition data set consists of 23000 yearly, 24000 quarterly, 48000 monthly, 359
weekly, 4227 daily, and 414 hourly series. The original data sets, as well as the forecasts of the methods
that participated in the competitions, are available in the R packages Mcomp (Hyndman et al., 2018)
and M4comp2018 (BenTaieb, 2018).

In order to test and to apply this approach’s forecasting performance on real data and compare it
to the benchmarks and especially counter ES models, forecasts obtained from five versions of it given
the shortcode numbers Model-M3 and Model-M4 are fitted to the M3 and M4 competitions.

Therefore, in this implementation, predetermined model parameters as defined in the following
list items are used to obtain accurate forecasts. Results from seven different applications of the Ata
method will be considered here.
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1. ATA(p, 0, 1) is an alternative to SES method where p is the optimum value for q = 0 with
fixed damped trend (ϕ = 1), and is where a simple model selection of the two models in
ATAadd(p, 0, 1) and ATAmult(p, 0, 1) is carried out based on selected in-sample accuracy mea-
sure.

# --- Code for Makridakis Competition 2018
# --- (M4 Forecasting Competition) Dataset.

# Load packages for creating plots
library(ATAforecasting)
library(M4comp2018)

fit1 <- ATA(M4[[1]]$x, M4[[1]]$xx, h = M4[[1]]$h, parQ = 0
, parPHI = 1 , seasonal.test = TRUE
, seasonal.model = "decomp", accuracy.type = "sMAPE"
, negative.forecast = FALSE)

2. ATAadd(p, 1, 1) where p is optimized for q = 1 with fixed damped trend (ϕ = 1)

fit2 <- ATA(M4[[1]]$x, M4[[1]]$xx, h = M4[[1]]$h, parQ = 1
, parPHI = 1, seasonal.test = TRUE, seasonal.model = "decomp"
, model.type = "A", accuracy.type = "sMAPE"
, negative.forecast = FALSE)

3. ATA − comb where a simple average of the forecasts from the two models in (1) and (2) is used
as a forecast.

fit3 <- (fit1 + fit2) / 2

4. ATAadd(p, 1, ϕ) is an alternative to damped trend method where q is optimized for p = p∗ with
damped trend.

fit4 <- ATA(M4[[1]]$x, M4[[1]]$xx, h = M4[[1]]$h, parQ = 1
, start.phi = 0.80, end.phi = 1, size.phi = 0.01
, seasonal.test = TRUE, seasonal.model = "decomp"
, model.type = "A", accuracy.type = "sMAPE"
, negative.forecast = FALSE)

Model encoded by Model-M4 fits the ATAadd(p, 1, ϕ) to the yearly data sets and uses the ATA −
comb, a simple average of the forecasts obtained from the models ATAadd(p, 1, 1) and ATA(p, 0, 1),
for the other data sets in M4-Competitions. Model-M3 fits ATAadd(p, 0, 1), ATA(p, 0, 1), and uses the
ATA − comb for the data sets in M3-Competitions.

Team Method Type Yearly Quarterly Monthly Weekly Daily Hourly Total Rank

Smyl Hybrid 13.176 9.679 12.126 7.817 3.170 9.328 11.374 1
Montero-Manso, et al. Combination (S & ML) 13.528 9.733 12.639 7.625 3.097 11.506 11.720 3
Pawlikowski, et al. Combination (S) 13.943 9.796 12.747 6.919 2.452 9.611 11.845 5
Jaganathan. & Prakash Combination (S & ML) 13.712 9.809 12.487 6.814 3.037 9.934 11.695 2
Fiorucci & Louzada Combination (S) 13.673 9.816 12.737 8.627 2.985 15.563 11.836 4
Petropoulos & Svetunkov Combination (S) 13.669 9.800 12.888 6.726 2.995 13.167 11.887 6
Shaub Combination (S) 13.679 10.378 12.839 7.818 3.222 13.466 12.020 9
Legaki & Koutsouri Statistical 13.366 10.155 13.002 9.148 3.041 17.567 11.986 8
Doornik, et al. Combination (S) 13.910 10.000 12.780 6.728 3.053 8.913 11.924 7
Pedregal, et al. Combination (S) 13.821 10.093 13.151 8.989 3.026 9.765 12.114 13
Model-M4 Statistical 13.930 10.292 12.936 8.540 3.095 12.851 12.098 11
Spiliotis & Assimakopoulos Statistical 13.804 10.128 13.142 8.990 3.027 17.756 12.148 15
Roubinchtein Combination (S) 14.445 10.172 12.911 8.435 3.270 12.871 12.183 17
Ibrahim Statistical 13.677 10.089 13.321 9.089 3.071 18.093 12.198 18
Tartu M4 seminar Combination (S & ML) 14.096 11.109 13.290 8.513 2.852 13.851 12.496 23
Waheeb Combination (S) 14.783 10.059 12.770 7.076 2.997 12.047 12.146 14
Darin & Stellwagen Statistical 14.663 10.155 13.058 6.582 3.077 11.683 12.279 19
Dantas & Cyrino Oliveira Combination (S) 14.746 10.254 13.462 8.873 3.245 16.941 12.553 25
The M4 Team (Theta) Statistical 14.593 10.311 13.002 9.093 3.053 18.138 12.309 20
The M4 Team (Com) Statistical 14.848 10.175 13.434 8.944 2.980 22.053 12.555 27
The M4 Team (Arima) Statistical 15.168 10.431 13.443 8.653 3.193 12.045 12.661 29
The M4 Team (Damped) Statistical 15.198 10.237 13.473 8.866 3.064 19.265 12.661 30
The M4 Team (ETS) Statistical 15.356 10.291 13.525 8.727 3.046 17.307 12.725 31
The M4 Team (Holt) Statistical 16.354 10.907 14.812 9.708 3.066 29.249 13.775 43
The M4 Team (SES) Statistical 16.396 10.600 13.618 9.012 3.045 18.094 13.087 37

Table 2: Average forecasting errors for various data types and overall ranks with respect to sMAPE.

The forecasting performance of the Model-M4 that competed in the M4-Competition are given
in the following three tables (Tables 2, 3, and 4) with respect to the error criteria sMAPE, MASE, and
OWA, respectively.
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According to sMAPE (Table 2), the Model-M4 of the ATA models is ranked in the first 20. The
Model-M4 performs much better than ETS despite the fact that only sMAPE was used for optimizing
the ATA approaches for the in-sample data, and these approaches only considered limited numbers of
candidate models to choose from, unlike ETS.

Team Method Type Yearly Quarterly Monthly Weekly Daily Hourly Total Rank

Smyl Hybrid 2.980 1.118 0.884 2.356 3.446 0.893 1.536 1
Montero-Manso, et al. Combination (S & ML) 3.060 1.111 0.893 2.108 3.344 0.819 1.551 3
Pawlikowski, et al. Combination (S) 3.130 1.125 0.905 2.158 2.642 0.873 1.547 2
Jaganathan. & Prakash Combination (S & ML) 3.126 1.135 0.895 2.350 3.258 0.976 1.571 6
Fiorucci & Louzada Combination (S) 3.046 1.122 0.907 2.368 3.194 1.203 1.554 4
Petropoulos & Svetunkov Combination (S) 3.082 1.118 0.913 2.133 3.229 1.458 1.565 5
Shaub Combination (S) 3.038 1.198 0.929 2.947 3.479 1.372 1.595 7
Legaki & Koutsouri Statistical 3.009 1.198 0.966 2.601 3.254 2.557 1.601 8
Doornik, et al. Combination (S) 3.262 1.163 0.931 2.302 3.284 0.801 1.627 11
Pedregal, et al. Combination (S) 3.185 1.164 0.943 2.488 3.232 1.049 1.614 10
Model-M4 Statistical 3.117 1.231 0.962 2.578 3.277 2.238 1.631 13
Spiliotis & Assimakopoulos Statistical 3.184 1.178 0.959 2.488 3.232 1.808 1.628 12
Roubinchtein Combination (S) 3.244 1.159 0.921 2.290 3.632 1.129 1.633 15
Ibrahim Statistical 3.075 1.185 0.977 2.583 3.894 2.388 1.644 16
Tartu M4 seminar Combination (S & ML) 3.091 1.250 1.002 2.375 3.025 1.058 1.633 14
Waheeb Combination (S) 3.400 1.160 1.029 2.180 3.321 0.861 1.706 27
Darin & Stellwagen Statistical 3.406 1.168 0.924 2.107 4.128 0.856 1.693 25
Dantas & Cyrino Oliveira Combination (S) 3.294 1.170 0.952 2.534 3.436 1.598 1.657 17
The M4 Team (Theta) Statistical 3.382 1.232 0.970 2.637 3.262 2.455 1.696 26
The M4 Team (Com) Statistical 3.280 1.173 0.966 2.432 3.203 4.582 1.663 18
The M4 Team (Arima) Statistical 3.402 1.165 0.930 2.556 3.410 0.943 1.666 19
The M4 Team (Damped) Statistical 3.379 1.173 0.972 2.404 3.236 2.956 1.683 23
The M4 Team (ETS) Statistical 3.444 1.161 0.948 2.527 3.253 1.824 1.680 21
The M4 Team (Holt) Statistical 3.550 1.198 1.009 2.420 3.223 9.356 1.772 34
The M4 Team (SES) Statistical 3.981 1.340 1.019 2.685 3.281 2.385 1.885 39

Table 3: Average forecasting errors for various data types and overall ranks with respect to MASE.

Team Method Type Yearly Quarterly Monthly Weekly Daily Hourly Total Rank

Smyl Hybrid 0.778 0.847 0.836 0.851 1.046 0.440 0.821 1
Montero-Manso, et al. Combination (S & ML) 0.799 0.847 0.858 0.796 1.019 0.484 0.838 2
Pawlikowski, et al. Combination (S) 0.820 0.855 0.867 0.766 0.806 0.444 0.841 3
Jaganathan & Prakash Combination (S & ML) 0.813 0.859 0.854 0.795 0.996 0.474 0.842 4
Fiorucci & Louzada Combination (S) 0.802 0.855 0.868 0.897 0.977 0.674 0.843 5
Petropoulos & Svetunkov Combination (S) 0.806 0.853 0.876 0.751 0.984 0.663 0.848 6
Shaub Combination (S) 0.801 0.908 0.882 0.957 1.060 0.653 0.860 7
Legaki & Koutsouri Statistical 0.788 0.898 0.905 0.968 0.996 1.012 0.861 8
Doornik, et al. Combination (S) 0.836 0.878 0.881 0.782 1.002 0.410 0.865 9
Pedregal, et al. Combination (S) 0.824 0.883 0.899 0.939 0.990 0.485 0.869 11
Model-M4 Statistical 0.818 0.916 0.901 0.930 1.008 0.817 0.872 12
Spiliotis & Assimakopoulos Statistical 0.823 0.889 0.907 0.939 0.990 0.860 0.874 13
Roubinchtein Combination (S) 0.850 0.885 0.881 0.873 1.091 0.586 0.876 14
Ibrahim Statistical 0.805 0.890 0.921 0.961 1.098 0.991 0.880 15
Tartu M4 seminar Combination (S & ML) 0.820 0.960 0.932 0.892 0.930 0.598 0.888 17
Waheeb Combination (S) 0.880 0.880 0.927 0.779 0.999 0.507 0.894 18
Darin & Stellwagen Statistical 0.877 0.887 0.887 0.739 1.135 0.496 0.895 19
Dantas & Cyrino Oliveira Combination (S) 0.866 0.892 0.914 0.941 1.057 0.794 0.896 20
The M4 Team (Theta) Statistical 0.872 0.917 0.907 0.971 0.999 1.006 0.897 21
The M4 Team (Com) Statistical 0.867 0.890 0.920 0.926 0.978 1.556 0.898 22
The M4 Team (Arima) Statistical 0.892 0.898 0.903 0.932 1.044 0.524 0.902 23
The M4 Team (Damped) Statistical 0.890 0.893 0.924 0.917 0.997 1.141 0.907 25
The M4 Team (ETS) Statistical 0.903 0.891 0.915 0.931 0.996 0.852 0.908 26
The M4 Team (Holt) Statistical 0.947 0.932 0.988 0.966 0.995 2.749 0.971 37
The M4 Team (SES) Statistical 1.003 0.970 0.951 0.975 1.000 0.990 0.975 39

Table 4: Average forecasting errors for various data types and overall ranks with respect to OWA.

The forecasting performance of the Model-M3 that competed in the M4-Competition are given in
the Table 5 with the error criteria sMAPE.

These results should motivate users to consider ATA instead of ES-based forecasting. An important
result from the M4-Competition was that combining forecasts improved accuracy. This improvement
will become even stronger if the set of initial candidate models are chosen wisely and more meaningful
if the combination can be obtained faster. Speed is an undeniable factor when choosing a forecasting
method due to the need to obtain forecasts for the streaming and big data sets. The results obtained
by using a simple combination of ARIMA and ATA for the M4-Competition data set are given in
Table 6. For all error metrics considered, ATA approaches provide much better forecasts, and since the
optimization is much faster than ETS, these more satisfying forecasts are obtained much faster.

Just by using the simple combination of ATA and ARIMA, forecasts that are more accurate than
most of the methods that competed in the M4-Competition and that can compete with the more
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Forecasting horizons Averages

Method 1 2 3 4 5 6 8 12 15 18 1-4 1-6 1-8 1-12 1-15 1-18

Naive2 10.5 11.3 13.6 15.1 15.1 15.9 14.5 16.0 19.3 20.7 12.62 13.57 13.76 14.24 14.81 15.47
Single 9.5 10.6 12.7 14.1 14.3 15.0 13.3 14.5 18.3 19.4 11.73 12.71 12.84 13.13 13.67 14.32

Holt 9.0 10.4 12.8 14.5 15.1 15.8 13.9 14.8 18.8 20.2 11.67 12.93 13.11 13.42 13.95 14.60
Winter 9.1 10.5 12.9 14.6 15.1 15.9 14.0 14.6 18.9 20.2 11.77 13.01 13.19 13.48 14.01 14.65

Dampen 8.8 10.0 12.0 13.5 13.8 14.3 12.5 13.9 17.5 18.9 11.07 12.05 12.17 12.45 12.98 13.64
Comb (S-H-D) 8.9 10.0 12.0 13.5 13.7 14.2 12.4 13.6 17.3 18.3 11.10 12.04 12.13 12.4 12.91 13.52

ETS 8.8 9.8 12.0 13.5 13.9 14.7 13.0 14.1 17.6 18.9 11.04 12.13 12.32 12.66 13.14 13.77

ATA(p, 0, 1) 8.9 10.0 12.1 13.7 13.9 14.7 12.8 13.9 17.3 18.9 11.16 12.21 12.34 12.64 13.13 13.77
ATA(p, 1, 1) 8.4 9.7 11.5 12.9 13.6 14.2 12.9 15.4 18.9 20.9 10.64 11.72 11.94 12.66 13.32 14.09

ATA(p, q, ϕ = 0.5) 8.6 9.6 11.6 13.2 13.5 14.2 12.4 13.7 17.0 18.6 10.76 11.77 11.92 12.24 12.75 13.39
Model-M3 8.5 9.6 11.4 12.8 13.0 13.6 12.0 13.1 16.3 17.4 10.56 11.47 11.58 11.94 12.40 12.94

Table 5: Average sMAPE across different forecast horizons: all 3003 series.

Yearly Quarterly Monthly Weekly Daily Hourly Total

sMAPE

ETS & ARIMA 14.691 10.027 12.917 8.439 3.076 14.377 12.205
Model-M3 & ARIMA 13.847 9.987 12.653 7.607 2.998 11.942 11.859

MASE

ETS & ARIMA 3.334 1.132 0.909 2.476 3.259 1.249 1.627
Model-M3 & ARIMA 3.093 1.148 0.908 2.345 3.255 1.436 1.575

OWA

ETS & ARIMA 0.869 0.868 0.875 0.906 1.002 0.652 0.875
Model-M3 & ARIMA 0.813 0.872 0.866 0.837 0.989 0.625 0.849

Table 6: Average forecasting errors for various data types and error metrics using simple combinations
of forecasts.

accurate methods considering the computation complexity and time as important factors can be
obtained. The results are given along with the ranks when all the methods are ranked according to
OWA in Table 7. The three simple combinations of ATA and ARIMA are ranked in the top 10 when all
other methods are considered.

Team Yearly Quarterly Monthly Weekly Daily Hourly Total Rank

Smyl 0.778 0.847 0.836 0.851 1.046 0.440 0.821 1
Montero-Manso, et al. 0.799 0.847 0.858 0.796 1.019 0.484 0.838 2
Pawlikowski, et al. 0.820 0.855 0.867 0.766 0.806 0.444 0.841 3
Jaganathan. & Prakash 0.813 0.859 0.854 0.795 0.996 0.474 0.842 4
Fiorucci & Louzada 0.802 0.855 0.868 0.897 0.977 0.674 0.843 5
Petropoulos & Svetunkov 0.806 0.853 0.876 0.751 0.984 0.663 0.848 6
Model-M4 & ARIMA 0.813 0.872 0.866 0.837 0.989 0.625 0.849 8
Shaub 0.801 0.908 0.882 0.957 1.060 0.653 0.860 10
Legaki & Koutsouri 0.788 0.898 0.905 0.968 0.996 1.012 0.861 11
Doornik, et al. 0.836 0.878 0.881 0.782 1.002 0.410 0.865 12

Table 7: Average forecasting errors (OWA) for various data types along with the ranks.

Conclusion

In this study, we have introduced a novel method of bagging for the Ata method using power family
transformations and various seasonal decomposition techniques. Ata method is a new and simple
forecasting method that is an alternative to exponential smoothing. Although the Ata method’s form is
analogous to exponential smoothing, its weighting and parameterization schemes are utterly particular.
Therefore, it is not a specific case of ES. It can be adapted to all types of time series data, much like ES
and ARIMA, in addition to providing more accurate forecasts. Also, ATA can be optimized faster than
exponential smoothing since its parameters can take on a limited number of discrete values only.

The goal of this manuscript is to introduce a new package for a new univariate time series
forecasting method that provides innovative solutions to issues faced during the initialization and
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optimization stages of existing methods. The ATAforecasting package implements several different
routines, most of which are related to the Ata method. Nevertheless, its modular structure enables the
user to customize and complement the included functionality by means of custom algorithms or even
other R packages. The ATAforecasting package provides a more general-purpose development as a
comprehensive toolkit for automatic time series forecasting without any expertise on the R program. It
focuses on modeling all types of time series components with any preferred Ata method and handling
seasonality patterns by utilizing some popular decomposition techniques. Also, it combines several
stationarity and seasonality tests, Box–Cox transformations, seasonal decomposition techniques with
the Ata method. ATAforecasting performance is superior to existing methods both in terms of easy
implementation, accurate, and flexible forecasting framework.

The ATAforecasting package categorizes some of the best-known techniques into three groups:
(a) power transformation-based methods, (b) decomposition-based methods, and (c) time series
forecasting-based methods. The package is also designed to assist research along with the whole
modeling process: data preparation, model selection, prediction and forecasting, and interpretation
of outcomes handling summaries and demonstrating functionalities. Providing these combinations
of methods to the users is considered to introduce a new decomposition-based approach to time
series forecasting with the Ata method, to provide automation, optimization, and bagging of the Ata
method, which is an innovative and accurate univariate time series analysis method without any
expertise by R program. Specifically, a proposed analytical methodology of the time series method
with theATAforecasting R package combines several stationarity and seasonality tests, power family
transformations, and various seasonal decomposition techniques with the Ata method. In addition to
this theoretical model, we focus on the computational implementation of all considered Ata methods
in the ATAforecasting package. In particular, simulation and estimation have been demonstrated.
Besides, the ATAforecasting package is aligned to many worthy R packages, such as forecast, urca,
uroot, seasonal, stR, stlplus, xts, timeSeries, TSA, tseries.

In the future, the package should be extended to provide a comprehensive set of tools for three
common issues in forecast combination prior to estimation, fast optimization of model parameters,
missing values, and modeling with regressor variables. Users would have the option to automate the
selection algorithm so that a good combination method is found based on the training set fit. Finally,
the package offers specialized functions for summarizing and visualizing the combination results.
Along this vein, a class for model specifications should be added alongside the actual implementations
via arguments for the fitting functions. In that way, the package can be aligned to M-Competition
benchmark time series models and useful R package. Furthermore, the package could benefit from
robust estimation methods, another focus for future research.
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PASSED: Calculate Power and Sample
Size for Two Sample Tests
by Jinpu Li, Ryan P. Knigge, Kaiyi Chen, Emily V. Leary

Abstract Power and sample size estimation are critical aspects of study design to demonstrate
minimized risk for subjects and justify the allocation of time, money, and other resources. Researchers
often work with response variables that take the form of various distributions. Here, we present an
R package, PASSED, that allows flexibility with seven common distributions and multiple options
to accommodate sample size or power analysis. The relevant statistical theory, calculations, and
examples for each distribution using PASSED are discussed in this paper.

Introduction

Power and sample size estimation are critical aspects of study design to demonstrate minimized risk
for subjects and justify the allocation of time, money, and other resources (Jones et al., 2003). A number
of R packages for power analysis have been developed over the years. The samplesize (Scherer,
2016) package provides the calculation of sample size for the Student’s t-test and the Wilcoxon-Mann
Whitney test for categorical data. The TrialSize (Zhang et al., 2013) package implements the power
analysis described in Chow et al. (2007), including power and sample size calculations for different
study designs. Most recently, the simglm (LeBeau, 2019) package presents a simulation approach for
power analysis that allows for the specification of missing data, unbalanced designs, and different
random error distributions of generalized linear models.

Moreover, researchers often work with response variables that can take the form of a variety of
distributions. For example, the proportion of thromboembolism after surgery in different treatment
groups can be modeled using the binomial distribution or length of inpatient stay after an orthopedic
procedure can be modeled using the Poisson distribution (Plessl et al., 2020). Some of the R packages
or functions are designed to calculate the power and sample size for the variables following a certain
distribution. The base package stats (R Core Team, 2016) provides such functions for normal (Gaussian)
and binomially distributed variables, and the situations of unequal sample sizes are extended by
packages pwr (Champely et al., 2017), MESS(Ekstrøm, 2012), pwr2ppl(Aberson, 2019), and WebPower
(Zhang and Mai, 2018). The package MKmisc (Kohl, 2021) further adds a function for the comparison
of negative binomial distributions. However, none of these packages provide a comprehensive power
analysis toolkit capable of calculating power or sample sizes for the test of two-sample means or ratios
when the responses have other common distributions (Table 1).

Package Binomial Normal Negative Bi-
nomial Geometric Poisson Beta Gamma

PASSED x x x x x x x

stats x* x*

pwr x x**

WebPower x x**

MESS x x

pwr2ppl x x

MKmisc x x

*: equal sample only; **: equal variance only.

Table 1: The comparison among PASSED and other available packages.

Here, we present an R package, PASSED, that performs power and sample size analyses for the
following distributions: binomial, negative binomial, geometric, Poisson, normal (Gaussian), beta,
and gamma distributions. Distributions, which had existing functions or R infrastructure for sample
size and power calculations were included to streamline these calculations. However, calculations
for the beta, Poisson, and gamma distributions were developed specifically for inclusion in PASSED.
In the following sections, we will discuss the motivating examples, relevant statistical theory, and
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calculations for each distribution using PASSED.

PASSED: R Package Description

All functions in this package can be used to compute the power for a specific study design (e.g., given
sample sizes) or to estimate specific parameter values (e.g., sample sizes) necessary to obtain a target
power. The specific function of interest will depend on the type of outcome variable and the data
distribution. All functions output an object of class power.htest that details the specified parameters
of the test and the estimated parameter set as NULL.

Binomial

The binomial distribution is useful when modeling the number of successes in a sequence of inde-
pendent and identically distributed Bernoulli trials. One example which uses data modeled using a
binomial distribution is the proportion of blood transfusion that has occurred during surgery. The
need for blood transfusion during surgery is an important consideration during surgical planning and
particularly for surgical trials. LEITE et al. (2020) applied a logistic regression with binomial outcomes
to model the rate of blood transfusions after the introduction of Tranexamic acid in knee arthroplasty.

Hypothesis Testing two-sample proportions is commonly considered in research designs when the
outcome follows a binomial distribution. Let xij be a binary response from the jth subject in the ith
group, j = 1, ..., ni, i = 1, 2. It is assumed that xij are independent Bernoulli random variables with
proportion pi,

xij ∼ Bernoulli(pi)

Two hypothesis frameworks are considered for power and sample size calculations, which correspond
to either a one-sided or two-sided test:

H0 : p1 = p2 vs. Ha : p1 ̸= p2 (two − sided)

or
H0 : p1 = p2 vs. Ha : p1 > (<)p2 (one − sided)

Algorithm A binomial asymptotic test statistic was first proposed by Pearson (1900). Fleiss et al.
(1980) provided an explicit formula to calculate the corresponding sample sizes for the test:

n1 =
[z α

2

√
(r + 1) p̄q̄ + zβ

√
rp1q1 + p2q2]

2

rd2 (two − sided)

or

n1 =
[zα

√
(r + 1) p̄q̄ + zβ

√
rp1q1 + p2q2]

2

rd2 (one − sided),

where r = n2/n1, d = p2 − p1, q1 = 1 − p1, q2 = 1 − p2, p̄ =
n1 p1+n2 p2

n1+n2
, q̄ = 1 − p̄, and zx denotes the

probability that a standard normal deviate is greater than x. To obtain the power, this equation can be
re-written as:

zβ =

√
rn1|d| − z α

2

√
(r + 1) p̄q̄

√
rp1q1 + p2q2

(two − sided)

zβ =

√
rn1|d| − zα

√
(r + 1) p̄q̄

√
rp1q1 + p2q2

(one − sided)

And, thus, the power can be derived as:

Power = Pr

(
Z <

z α
2

√
(r + 1) p̄q̄ −√

rn1|d|√
rp1q1 + p2q2

)
(two − sided)

Power = Pr

(
Z <

zα

√
(r + 1) p̄q̄ −√

rn1|d|√
rp1q1 + p2q2

)
(one − sided)

As a result, the target power, required sample sizes (n1 and n2), significance level (α), or the proportions
(p1 and p2) can be obtained once all other remaining parameters are known (Fleiss et al., 1980). To
optimize the sample size allocation, please refer to the discussion in Brittain and Schlesselman (1982).
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Function The power_Binomial() function is useful when testing for differences among two sample
proportions when the data follow a binomial distribution. This function uses the algorithm described
above. The arguments for power_Binomial() are as follows:

power_Binomial(n1 = NULL, n2 = NULL, p1 = 0.5, p2 = 0.5,
sig.level = 0.05, power = NULL, equal.sample = TRUE,
alternative = c("two-sided", "one-sided"))

Sample sizes for each group are designated as n1 and n2. If sample sizes for both groups are equal,
the argument equal.sample should be set to TRUE, and only a value for n1 is needed. If sample sizes
are unequal, equal.sample should be set to FALSE, and values for both n1 and n2 must be specified.
When estimating other parameters, the target power must be set with power. The significance level
is set with sig.level and has a default value of 0.05. The probability of success for each group is
indicated as p1 and p2, respectively, with 0.5 as the default value for both. Only one of the parameters
of n1, n2, p1, p2, power, or sig.level can be set as NULL. The parameter set as NULL will be estimated
based on the other parameter values. The argument alternative specifies the alternative hypothesis
as either "two.sided" (default) or "one.sided".

The power_Binomial() function returns the same results as stats::power.prop.test() in the
equal sample scenario. It also allows power calculations with unequal sample sizes, and the results
are identical to MESS::power_prop_test().

Negative Binomial

The negative binomial distribution can be used to model the number of successes in a sequence of
independent and identically distributed Bernoulli trials before a specified number of failures occurs.
Gates et al. (2020) analyzed the probability of positive intraoperative cultures in a population of
patients with a history of prior ipsilateral shoulder surgery. The probability of the total number
of positive tissue cultures was modeled using a generalized negative binomial mixed model with
maximum likelihood estimation and robust standard errors. Using this negative binomial framework,
the appropriate sample size and power for such a study can be obtained using the method outlined
below.

Hypothesis Consider a sequence of adverse events. Let xij be the number of events during time ti
from the jth subject in the ith group, j = 1, ..., ni, i = 1, 2. Assuming that xij are negative binomial
random variables with a mean µij and parameter θ (θ > 0), the probability function of xij is

P
(

xij

)
=

Γ
(

θ + xij

)
Γ (θ) xij!

(
µij

θ + µij

)xij
(

θ

θ + µij

)θ

, (1)

where n! denotes the product of the integers from 1 to n and Γ(·) is the gamma function (Zhu and
Lakkis, 2014).

To model the negative binomial outcomes, Hilbe (2011) introduced the negative binomial re-
gression. Zhu and Lakkis (2014) then presented a hypothesis test comparing two negative binomial
distributed samples using negative binomial regression, and this is the method used here. In negative
binomial regression, µij can be modeled as

log(µij) = log(ti) + β0 + β1Gij,

where Gij, the group indicator for subject j, is equal to 0 if i = 1 for group 1 and is equal to 1 if i = 2
for group 2. Let r1 and r2 be the mean rates of events per time unit for groups 1 and 2, which can
be expressed as r1 = eβ0 and r2 = eβ0+β1 . Then r2/r1 = eβ1 can be easily obtained (Zhu and Lakkis,
2014).

To compute the power of the test or determine parameters to obtain target power, two hypothesis
frameworks are considered which correspond to either a one-sided or two-sided test:

H0 :
r2
r1

= 1 vs. Ha :
r2
r1

̸= 1 (two − sided)

or
H0 :

r2
r1

= 1 vs. Ha :
r2
r1

> (<)1 (one − sided)

Algorithm The power and sample size calculation algorithms were developed by Zhu and Lakkis
(2014) based on the asymptotic normality of the maximum likelihood estimation of β1. The power can
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be calculated as:

power = Φ

√
n1

∣∣∣log
(

r2
r1

)∣∣∣− z α
2

√
V0

√
V1

 (two − sided)

or

power = Φ

√
n1

∣∣∣log
(

r2
r1

)∣∣∣− zα
√

V0
√

V1

 (one − sided),

where V0 and V1 are the estimates of variance for β̂1 by n1 under H0 and Ha,

V0 =
1
ti

(
1
r̃1

+
n1

n2r̃2

)
+

(n1 + n2)

θn2

V1 =
1
ti

(
1
r1

+
n1

n2r2

)
+

(n1 + n2)

θn2
,

and r̃i, i = 1, 2 denotes the estimation of the event rate under H0 in each group. Zhu and Lakkis (2014)
provided three approaches to estimating r̃i under H0:

Approach 1: using event rate of group 2 (reference group rate)

V0 =
1
ti

(
1
r2

+
n1

n2r2

)
+

(n1 + n2)

θn2
;

Approach 2: using true rates

V0 =
1
ti

(
1
r1

+
n1

n2r2

)
+

(n1 + n2)

θn2
;

Approach 3: using maximum likelihood estimation

V0 =
1
ti

(
1

n1r1+n2r2
n1+n2

+
n1

n2
n1r1+n2r2

n1+n2

)
+

(n1 + n2)

θn2
.

Function The function power_NegativeBinomial() is useful when developing a study design to
compare differences in rates when the data follow a negative binomial distribution. Calculations for
this function are based on Zhu and Lakkis (2014). The following arguments are used:

power_NegativeBinomial(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, mu2 = NULL, duration = 1, theta = NULL,
equal.sample = TRUE,
alternative = c("two-sided", "one-sided"), approach = 3)

The sample size for each group is specified as n1 and n2, both with default values of NULL. When
sample sizes are equal, equal.sample can be set to TRUE, and only n1 must be specified. Otherwise
equal.sample is set to FALSE and values must be input for both n1 and n2. The power argument is set
to NULL unless the target power is specified here and another parameter is set as NULL to be estimated.
The significance level for the test is set by sig.level with a default value of 0.05. The expected rates
of events per unit time for each group are denoted as mu1 and mu2, respectively, with the average
treatment duration set by duration (default value of 1). Theta indicates the θ parameter of the negative
binomial distribution, as noted above. The argument alternative specifies the alternative hypothesis
as either "two.sided" (default) or "one.sided". Lastly, the argument approach can be set as either
"1", "2", or "3" (default). These values indicate the selection of one of three procedures for estimating
the variance under the null hypothesis for the sample size formula and correspond with Approach
1 (reference group rate), Approach 2 (true rates), and Approach 3 (maximum likelihood estimation)
described above. The obtained results match other functions in R such as MKmisc::power.nb.test().

Geometric

The geometric distribution can be used to examine the probability of success given a limited number
of trials and is considered a special case of the negative binomial distribution. For example, in baseball,
the probability of a batter earning a hit before striking out can be compared to that of another batter,
using a geometric distribution.
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Hypothesis Let xij be the number of events during time ti from the jth subject in the ith group.
Assuming that xij are geometric random variables with a mean µij, the probability function of xij is

P
(

xij

)
=

(
µij

1 + µij

)xij
(

1
1 + µij

)
.

Referring to Equation 1, this is a special case of the negative binomial where θ = 1. Similarly, µij can
be modeled as shown in the Section Negative Binomial,

log(µij) = log(ti) + β0 + β1Gij.

The hypotheses and calculations follow as previously shown in the Section Negative Binomial.

Algorithm The power and sample size calculation formula are the same as the Section Negative
Binomial, with θ = 1.

Function The function power_Geometric() applies the same algorithm as the function
power_NegativeBinomial(), with the same arguments, where the parameter theta is set as 1. See
power_NegativeBinomial() for more details.

power_Geometric(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05, mu1 = NULL,
mu2 = NULL, duration = 1, equal.sample = TRUE,
alternative = c("two-sided", "one-sided"), approach = 3)

Poisson

The Poisson distribution can be used to model the number of events occurring in a fixed interval
of time or space. In healthcare, length of stay (LOS) is one of many important considerations for
interventions, particularly when inpatient hospital stay may vary among treatments. LOS, or other
count measurements important to the research study, can be modeled using a Poisson distribution.
Plessl et al. (2020) used a Poisson framework to compare LOS for those who were treated with rapid
recovery protocols versus standard recovery protocols after total knee arthroplasty. This example can
be expanded to the general case as follows.

Hypothesis Let xij be the number of events during the necessary study time ti from the jth subject
in the ith treatment group, j = 1, ..., ni, i = 1, 2. This situation is commonly referred to as the equal
sampling frame approach (Hutchinson and Holtman, 2005). It is assumed that xij are Poisson random
variables with rate λi such that the probability function of xij is

P
(

xij

)
=

tiλietiλi

xij!
,

where i = 1, 2. Then, the total number of events in each group, denoted as X1 and X2, also follow a
Poisson distribution:

Xi ∼ Poisson(λitini)

Four methods have previously been proposed to test the equality of two Poisson rates (Shiue
and Bain, 1982; D. Huffman, 1984; Thode, 1997; Gu et al., 2008). The method utilized in the PASSED
package was proposed by Gu et al. (2008), which considers the ratio of two Poisson rates, R, a
pre-specified positive number. The asymptotic test is as follows:

H0 : λ2/λ1 = R vs. Ha : λ2/λ1 = R′ ̸= R(two − sided)

or
H0 : λ2/λ1 = R vs. Ha : λ2/λ1 = R′ > R(one − sided)

Algorithm The following formula is used in the PASSED package and the details of the derivation
are provided in the Appendix.

n1 =
(

z1− α
2

C+zpower D
A )2 − 3

8
λ1t1

(two − sided)
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or

n1 =
(

z1−αC+zpower D
A )2 − 3

8
λ1t1

(one − sided)

where A = 2(1 −
√

R
R′ ),

B = λ1t1n1 + 3/8,

C =
√

R+d
R′ ,

D =
√

R′+d
R′

d = t1/t2.

Function The power_Poisson() function is designed to compute the power or estimate parameters
to obtain a target power when testing for a ratio of two Poisson rates. This function applies the
asymptotic tests based on normal approximations developed by Gu et al. (2008). The arguments for
power_Poisson() are as follows:

power_Poisson(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
lambda1 = NULL, lambda2 = NULL, t1 = 1, t2 = 1, RR0 = 1,
equal.sample = TRUE, alternative = c("two.sided", "one.sided"))

Sample sizes for each group are set with n1 and n2. If sample sizes for both groups are equal, the
argument equal.sample should be set to TRUE, and only a value for n1 needs to be specified. If
sample sizes are unequal, equal.sample should be set to FALSE, and values for both n1 and n2 must be
specified. The target power of the test is set with power, and the significance level is set with sig.level
(default value of 0.05). The expected rates of events per unit time for each group are denoted as
lambda1 and lambda2, respectively, with the average treatment duration set by t1 and t2 (default
value of 1). Only one of the parameters of n1, n2, lambda1, lambda2, or power can be set as NULL for the
function to run. The parameter set as NULL will be estimated based on the other parameter values. t1
and t2 refer to the specified interval of time (or space) where the events occur. The rate ratio from
the null hypothesis is specified as RR0. It should be set to 1 when testing for equal Poisson rates.
The argument alternative specifies the alternative hypothesis as either "two.sided" (default) or
"one.sided".

For the example in Gu et al. (2008), which aims at testing if the risk of coronary heart disease is
greater for those with postmenopausal hormone use (RR0 = 1), the event rates for those with and
without hormone use are assumed to be 0.2000 and 0.0005 (lambda2 = 0.0020, lambda1 = 0.0005),
respectively, during a 2-year time period (t1 = t2 = 2). Given the sample size for each group as 4295
and 8590 (n2 = 4295, n1 = 8590) 1, the power under a significance level of 0.05 can be calculated as
follows:

power_Poisson(n1 = 8590, n2 = 4295, power = NULL, sig.level = 0.05,
lambda1 = 0.0005, lambda2 = 0.0020, t1 = 2, t2 = 2, RR0 = 1,
equal.sample = FALSE, alternative = "one.sided")

The estimated power is 0.9000147, which matches the results in Gu et al. (2008).

Normal

The normal distribution is widely used in the natural and social sciences. Age is a common demo-
graphic variable recorded during patient care and typically follows a normal distribution. Many
surgeons consider demographic variables to evaluate the possible risks of a surgical procedure and
assess optimal treatment options for patients. Luan et al. (2020) aimed to identify patients who were
suitable for kinematic or mechanical alignment of the knee. To compare these groups, Luan et al. (2020)
used the student t-test to compare normally distributed age.

Hypothesis T-tests are widely used to compare two sample means when the data has a normal
distribution (Cressie and Whitford, 1986). Let xij be a continuous response from the jth subject in the
ith group, j = 1, ..., ni, i = 1, 2. It is assumed that xij are independent, normal random variables with
mean µi and variance σ2

i :
xij ∼ Normal(µi, σ2

i ),

1the sample sizes are corrected in NCSS Software Manuals 2020 Page 437-14, "Tests for the Ratio of Two Poisson
Rates"
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then the probability density function of xij is:

f
(

xij

)
=

1√
2πσ2

i

e−
1
2

( xij−µi
σi

)2

,

where i = 1, 2. It can be shown that the mean of each group, denoted as x̄1 and x̄2 , also follows a
Normal distribution:

x̄i ∼ Normal(µi,
σ2

i
ni

)

To compute the power for a hypothesis test or determine parameters to obtain a target power for
hypothesis, the following two scenarios are considered:

H0 : µ1 = µ2 vs. Ha : µ1 ̸= µ2 (two − sided)

or
H0 : µ1 = µ2 vs. Ha : µ1 > (<)µ2 (one − sided)

Algorithm Based on the work of Ekstrøm (2012), in the PASSED package, the user can define the
sample sizes (n1 and n2) and standard deviations (σ1 and σ2) of each group directly, rather than set
the size ratio (n2/n1) and standard deviation ratio (σ2/σ1). To optimize sample size allocation, please
refer to the discussion in Jan and Shieh (2011).

Function The power_Normal() function is useful for developing a study design to test for differences
between mean values of two groups when the data follow a normal distribution. This function
performs the same operations as pwr.t.test in the pwr package (Champely et al., 2017) but allows for
additional parameter modifications. In particular, this function allows for specifying unequal sample
sizes and standard deviations across groups. The arguments for power_Normal() are as follows:

power_Normal(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
delta = NULL, sd1 = 1, sd2 = 1, equal.sample = TRUE,
alternative = c("two-sided", "one-sided"),
type = c("two-sample", "one-sample", "paired"),
df.method = c("welch", "classical"), strict = FALSE)

Sample sizes for each group are set with n1 and n2. If sample sizes for both groups are equal,
the argument equal.sample should be set to TRUE, and only a value for n1 needs to be specified. If
sample sizes are unequal, equal.sample must be set to FALSE, and values for both n1 and n2 must be
specified. The target power of the test is set with power, and the significance level is set with sig.level
(default value of 0.05). delta indicates the difference in means between the two groups, and sd1 and
sd2 denote the standard deviations for each group. A default value of 1 is indicated for both sd1
and sd2. The default values for n1, n2, power, and delta are NULL, whereas sd1, sd2, and sig.level
have non-NULL default values. Only one of the parameters can be set as NULL. The parameter set as
NULL will be estimated based on the other parameter values. The type of t-test is indicated by type
and set as "two.sample" (default), "one.sample", or "paired". alternative specifies the alternative
hypothesis as either "two.sided" (default) or "one.sided". Lastly, df.method indicates the method
for calculating the degrees of freedom as either "welch" (default) or "classical". Note that setting
strict as TRUE would be applied only in the two-sided case, when the probability of rejection in the
opposite direction of the true effect is included, i.e., the alternative hypothesis of the two-sided t-test is
µ1 ̸= µ2 rather than µ1 > (<)µ2.

The power_Normal() function produces the same results as stats::power.t.test() for the equal
sample size scenario. It also allows power calculations with unequal sample sizes and unequal vari-
ances. The results match other functions in R such as MESS::power_prop_test() and pwr::pwr.t2n.test().

Beta

The beta family of continuous probability distributions is ideal for modeling data with right or
left skewness and allows the probability density to assume a variety of shapes through two shape
parameters (Gupta and Nadarajah, 2004). Disease status is often measured with bounded outcome
scores, which take values on a finite range. The distribution of such data is often skewed, rendering
the standard analysis methods assuming a normal distribution inappropriate (Hu et al., 2020), and
thus, a beta distribution can be utilized. This scenario can be generalized as follows.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 549

Hypothesis Suppose a sequence of random responses, xij from the jth subject in the ith group,
takes the form of a continuous proportion that follows a beta distribution, xij ∼ Beta(ai, bi), where
j = 1, ..., ni, i = 1, 2. The probability density function of xij is:

f (xij) =
Γ(ai + bi)

Γ(ai)Γ(bi)
xai−1

ij (1 − xij)
bi−1,

where 0 ≤ xij ≤ 1, ai > 0, bi > 0, and i = 1, 2. When analyzing continuous proportions as a
response variable, the standard shape parameters of a beta density, ai and bi, are often not directly
observable. Ferrari and Cribari-Neto (2004) developed a class of beta regression models which utilize
an alternative parameterization of the beta density function based on the mean, µi, and an unknown
precision parameter, ϕi. Suppose µi = ai/(ai + bi) and ϕi = ai + bi, then the beta density function can
be expressed in terms of µi and ϕi as below:

f (xij) =
Γ(ϕi)

Γ(µiϕi)Γ((1 − µi)ϕi)
xµiϕi−1

ij (1 − xij)
(1−µi)ϕi−1;

For beta regression, µi can be modeled as

g(µi) = β0 + β1Gij,

where Gij, the group indicator for subject j, is equal to 0 if i = 1 for group 1 and is equal to 1 if i = 2
for group 2, and g(·) denotes the link function. The PASSED package includes the capability for the
following link functions and their respective forms:

• Logit: g(µ) = log
[

µ
(1−µ)

]
• Probit: g(µ) = Φ−1(µ)

• Complementary log-log: g(µ) = log[−log(1 − µ)]

• Log: g(µ) = log(µ)

• Log-log: g(µ) = −log[−log(µ)]

The equality of means µi is equivalent to β1 = 0. The objective is to compute the power of the test or
determine minimum sample sizes to obtain a target power for the needed hypothesis. A two-sided
hypothesis framework is considered for power and sample size calculations:

H0 : µ1 − µ2 = 0 vs. Ha : µ1 − µ2 ̸= 0

Algorithm The mean and variance of xij, denoted as µi and σ2
i , can be obtained using:

µi =
ai

ai + bi

and
σ2

i =
aibi

(ai + bi)2(ai + bi + 1)
.

Incorporating the definition of the precision parameter ϕi, the following equations can be derived:

ai = µiϕi = µi

(µi(1 − µi)

σ2
i

− 1
)

; (2)

bi = (1 − µi)ϕi = (1 − µi)
(µi(1 − µi)

σ2
i

− 1
)

. (3)

To calculate power, a simulation approach is used. Parameters µi and ϕi are first estimated using
the given mean and variance, then they are used to obtain the original beta parameters, ai and bi,
following Equations 2 and 3. The response variable is simulated for each distribution, Beta(a1, b1)
and Beta(a2, b2), with the given sample size. If any simulated response is equal to zero or one, the
following transformation is applied to each response value from both distributions: (x(n− 1) + 0.5)/n,
where x is the response value and n is the sample size (Smithson and Verkuilen, 2006).

Values for the simulated response from both distributions are merged together, along with the
group indicator (0 for group 1 and 1 for group 2). Subsequently, a beta regression model is built using
the specified link type (Cribari-Neto and Zeileis, 2010). A Wald test is performed on the simulated
model, testing the null hypothesis that β1 is equal to 0. The p-values are recorded for each test and the
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simulation is repeated M times. The power is calculated as:

power =
Number of p-values less than 0.05

M
.

Let ss denote sample size, then the generic power/sample size relationship can be formally
expressed as:

power = f(ss)

Assuming the response variable follows a beta distribution, f (·) is continuous on the interval (0, 1)
and increases monotonically. Consequently, the power_Beta function uses the bisection method to
obtain the minimum sample size, ss0, through a sequence of steps for each iteration (Chernick and
Liu, 2002). For each target power, power0, upper and lower sample size bounds, ssu and ssl , which
satisfy f (ssl) < power0 < f (ssu) are established using a two-sample t-test performed with the base
function power.t.test (R Core Team, 2016). Although power.t.test assumes normality, it is useful
to generate starting values for ssu and ssl .

The sequence of steps for each iteration is as follows:

1. Compute the midpoint ssmid = f loor( ssl+ssu
2 ) of interval [ssl , ssu]. f loor(·) denotes retaining the

integer part of a number.

2. Calculate power at the midpoint, ssmid, using the simulation described for the power calculations
above.

3. If f (ssmid) ≥ power0 and ssmid − ssl ≤ 1, then return ssmid and stop iterating.

4. Examine the sign of f (ssmid)− power0. If negative, then replace ssl with ssmid, otherwise replace
ssu with ssmid so that f (ssl) < power0 ≤ f (ssu).

Repeat the process until iteration stops. The output minimum sample size, ss0, is the minimum integer
such that f (ss0) ≥ power0.

Function The power_Beta() function is framed to test differences between mean values for two
groups, assuming the response variable follows a beta distribution in each group. It can be used to
compute the power or to estimate the required sample sizes to obtain a target power. In particular,
this function allows for specifying unequal sample sizes and standard deviations across groups. The
arguments for power_Beta() are as follows:

power_Beta(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, sd1 = NULL, mu2 = NULL, equal.sample = TRUE,
trials = 100, equal.precision = TRUE, sd2 = NULL,
link.type = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"))

Sample sizes for each group are set with n1 and n2. If sample sizes for both groups are equal, the
argument equal.sample should be set to TRUE, and only a value for n1 or power needs to be specified.
If sample sizes are unequal, equal.sample should be set to FALSE, and values for both n1 and n2 must
be specified. The target power of the test is set with power, and the significance level is set with
sig.level (default value of 0.05). Only one of the parameters of n1, n2, or power can be NULL. The
mean and standard deviation for the null distribution are denoted by mu1 and sd1. Analogously,
the mean and standard deviation for the alternative distribution can be specified by mu2 and sd2.
Note that equal.precision=FALSE should be used to set the standard deviation for the alternative
distribution, meaning the precision parameters are assumed to be unequal. Otherwise, option sd2
would be ignored. The option trials indicates the number of trials in the simulation. A default
number of trials (i.e., 100) is recommended to get a rough estimate of other parameters (e.g., sd2), since
the computational time is dependent upon the number of trials in the simulation. Once an appropriate
range of other values is determined, the number of trials should be increased (e.g., trials=1000) to
calculate precise power and sample size estimates. The default link function is the logit link but can be
changed using link.type with the following options: "logit", "probit", "cloglog", "log", "loglog",
to denote the logit, probit, complementary log-log, log, and log-log link functions, respectively.

Gamma

The gamma distribution is widely used to fit lifetime data because its flexibility in shape can vary from
extremely positively skewed to almost symmetric (Casella and Berger, 2002). Hong et al. (2020) provide
an example of modeling data using the gamma distribution to test the association of patient-provider
cost discussion with out-of-pocket spending among cancer survivors. The data (i.e., out-of-pocket
spending in cancer care) have an obvious skewness which is not normally distributed; and therefore,
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the two-sample t-test is not suitable for this purpose. Alternatively, gamma models can be used to
test the difference of average total out-of-pocket spending between the patients with and without a
patient-provider cost discussion.

Hypothesis Currently, there is no explicit formula to calculate the power comparing two gamma
random variables. Let xij be a continuous response from the jth subject in the ith group, j = 1, ..., ni,
i = 1, 2. It is assumed that xij are gamma random variables with scale λi and shape δi so that the
probability density function can be written as

f
(

xij = x
)
=

(
λi

Γ (δi)

)
xδi−1e−λi x.

The mean of Gamma(λi, δi) can be obtained using µi = δi/λi. Shiue and Bain (1983) developed a test
of two equal gamma means with unknown common shape parameter, such that

H0 : µ1 = µ2 = µ.

This can be re-written as H0 : δ = λ1µ = λ2µ, some δ > 0. This can then be tested using an
F distribution based on the ratio of the mean of a random sample from two gamma distributions.
In 1988, Shiue et al. (1988) extended this to the unknown and unequal shape parameter scenarios.
However, this extension can be slightly conservative and problematic for smallscale parameters. More
recently, Chang et al. (2011) provided a computational approach using a variant of the parametric
bootstrap method, used here, in which the shape parameters are completely unknown and unequal.
In this characterization, the hypothesis is two-sided and is of the form H0 : δi = λiµ, some µ > 0 or
equivalently, for two means,

H0 :
δ1
λ1

=
δ2
λ2

vs. Ha :
δ1
δ1

̸= δ2
λ2

.

This can be expressed as a scalar value function, η, such that

H∗
0 : η =

2

∑
i=1

(
βi − β̄

)2
= 0 vs. H∗

a : η > 0,

where βi = ln (µi) and β̄ = ∑2
i=1

βi
2 .

Algorithm The power and sample size calculation algorithm adapted for PASSED was developed
by Chang et al. (2011). This computational approach performs best when the restricted maximum
likelihood estimate of η behaves as approximately normal or as a sum of squared normals.

Function The power_Gamma() function is used to compute the power or estimate sample sizes to
obtain a target power when testing for differences among two sample means when the data follow
a gamma distribution. This function used a parametric bootstrap method addressed by Chang et al.
(2011). The arguments for power_Gamma() are as follows:

power_Gamma(n1 = NULL, n2 = NULL, power = NULL, sig.level = 0.05,
mu1 = NULL, mu2 = NULL, gmu1 = NULL, gmu2 = NULL,
trials = 100, M = 10000, equal.sample = TRUE, equal.shape = NULL)

Sample sizes for each group are set with n1 and n2. If sample sizes for both groups are equal, the
argument equal.sample should be set to TRUE, and only a value for n1 or power needs to be specified.
If sample sizes are unequal, equal.sample should be set to FALSE, and values for both n1 and n2 must
be specified. The target power of the test is set with power, and the significance level is set with
sig.level (default value of 0.05). Only one of the parameters of n1, n2, or power can be set as NULL.
The parameter set as NULL will be estimated based on the other parameter values. The arithmetic
means for each group are indicated by mu1 and mu2, while gmu1 and gmu2 denote the geometric mean
for each group, respectively. Option trials specifies the number of trials in the simulation, and the
number of generated samples in every single trial is identified by M. A small number of trials (e.g.,
using the default value 100) is recommended to get a rough estimate of power or sample size since the
computational time is dependent upon the number of trials in the simulation. To obtain a reasonable
result, a greater value (e.g., 10000) should be used for both trials and M. The assumption of equal
shape parameters should be tested before the comparison of two sample means if equal.shape is
set as NULL (default value is NULL). Otherwise, the test to determine equal shape is skipped (when
equal.shape is set to be TRUE or FALSE).
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For example, Schickedanz and Krause (1970) presented the weekly rainfall data for the sea-
sons of fall and winter. The arithmetic/geometric means are 0.3684/0.2075 for winter (n = 57) and
0.7635/0.3630 for fall (n = 51). Using a significance level of 0.05, the power can be calculated as follows:

set.seed(1)
power_Gamma(n1 = 57, n2 = 51, power = NULL, sig.level = 0.05,

mu1 = 0.3684, mu2 = 0.7635, gmu1 = 0.2075, gmu2 = 0.3630,
trials = 100, M = 1000)

The estimated power is 1.00, which matches the result in Schickedanz and Krause (1970).

Application of PASSED

In this section, we provide an example power analysis and sample size calculation implemented with
PASSED. We propose a hypothetical study to test an intervention protocol designed to reduce the
percentage of residents at nursing facilities who develop new or worsening pressure ulcers, known as
bedsores.

The Skilled Nursing Facility Quality Reporting Program (SNF-QRP) provider dataset contains
information on pressure ulcer rates among nursing home facilities across the US. In this scenario, half
of the participating nursing homes will implement the intervention protocol (treatment group), and
the other half will constitute a control group, without a change in protocol, to determine if the new
intervention reduces rates of pressure ulcers. We consider the following hypotheses for the study:

• H0: There is no difference in pressure ulcer rates among nursing home facilities between control
and treatment groups.

• Ha: There is a difference in pressure ulcer rates among nursing home facilities between control
and treatment groups.

Sample Size Determination

In this example, we use the mean and standard deviation of the SNF-QRP variable, "percentage of
SNF residents with pressure ulcers that are new or worsened" for the control group mu1 and sd1,
0.0174 and 0.0211, respectively. A 25% decrease in the proportion of patients that develop new or
worsening pressure ulcers is considered significant and results in the target alternative mean, mu2,
equal to 0.0131. To determine the appropriate number of facilities necessary in the control and
treatment groups, we first use power_Beta to estimate the minimum sample size with target power
equal to 0.8. The power_Beta is chosen because this proportion is defined on the interval [0, 1] and
right-skewed. The default value of link.type is used, trials is set at 1000, and equal precision in the
control and treatment groups is assumed. This analysis can be fine-tuned through additional iterations
of power_Beta by modifying the number of trials. The output is given below:

library(PASSED)
set.seed(1)
power_Beta(mu1 = 0.0174, sd1 = 0.0211, mu2 = 0.0131, power = 0.8,

link.type = "logit", trials = 1000, equal.precision = TRUE)

Two-sample Beta Means Tests (Equal Sizes) (logit link, equal precision)

N = 151
mu1 = 0.0174
mu2 = 0.0131
sd1 = 0.0211

sig.level = 0.05
power = 0.826

NOTE: N is number in *each* group

The obtained result indicates that 302 nursing home facilities (151 facilities for each group) are
necessary to demonstrate the difference between pressure ulcer rates among the control and treatment
groups, with a significance level of 0.05 and power of 0.80.
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Comparison with T-Test

To further assess the appropriate number needed in the control and treatment groups, we then use
0.0120 to 0.0140 to evaluate a range of target means that encompass the target’s alternative mean of
0.0131, with expected sample sizes of over 100 nursing homes per group. As a comparison, we also
calculate the power using a two-sided t-test under the same scenario, using the function power_Normal.
The true difference in means, delta, is set as the difference of mu1 and mu2, and the alternative standard
deviation is assumed to be equal to sd1. The output for this example is displayed below, assuming
equal precision.

# Set seed for the simulation below
set.seed(1)
Ex1 <- mapply(
function(mu2, sample_size){
Betapower <- power_Beta(mu1 = 0.0174, sd1 = 0.0211,

mu2 = mu2, n1 = sample_size,
link.type = "logit", trials = 1000,
equal.precision = TRUE)

Normalpower <- power_Normal(delta = (0.0174 - mu2), n1 = sample_size,
sd1 = 0.0211, sd2 = 0.0211)

return(c(Betapower$power,
round(Normalpower$power,3),
sample_size,
mu2,
0.0174))

},
# Range of mu2 was set as [0.0120, 0.0140] by 0.0010
rep(seq(0.0120, 0.0140, 0.0010), 5),
# Range of sample size was set as [100, 200] by 25
rep(seq(100, 200, 25), rep(3, 5))

)
# Reform the output
Ex1 <- as.data.frame(t(Ex1))
# Set column names
colnames(Ex1) <- c("Power (Beta)",

"Power (Normal)",
"Sample Size",
"mu2",
"mu1")

# Display the results
Ex1

Power (Beta) Power (Normal) Sample Size mu2 mu1
1 0.813 0.437 100 0.012 0.0174
2 0.623 0.311 100 0.013 0.0174
3 0.435 0.204 100 0.014 0.0174
4 0.891 0.522 125 0.012 0.0174
5 0.743 0.375 125 0.013 0.0174
6 0.488 0.245 125 0.014 0.0174
7 0.954 0.598 150 0.012 0.0174
8 0.821 0.436 150 0.013 0.0174
9 0.576 0.285 150 0.014 0.0174
10 0.979 0.665 175 0.012 0.0174
11 0.872 0.494 175 0.013 0.0174
12 0.609 0.324 175 0.014 0.0174
13 0.986 0.723 200 0.012 0.0174
14 0.914 0.548 200 0.013 0.0174
15 0.708 0.362 200 0.014 0.0174

When equal precision cannot be assumed, equal.precision is set to FALSE, and an input value for
sd2 is required. To demonstrate unequal precision, the previous example is rerun with equal.precision=FALSE
and sd2=0.03. The output is provided below.

# Set seed for the simulation below
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set.seed(1)
Ex2 <- mapply(
function(mu2, sample_size){
Betapower <- power_Beta(mu1 = 0.0174, sd1 = 0.0211, sd2 = 0.030,

mu2 = mu2, n1 = sample_size,
link.type = "logit", trials = 1000,
equal.precision = FALSE)

Normalpower <- power_Normal(delta = (0.0174 - mu2), n1 = sample_size,
sd1 = 0.0211, sd2 = 0.030)

return(c(Betapower$power,
round(Normalpower$power,3),
sample_size,
mu2,
0.0174))

},
# Range of mu2 was set as [0.0120, 0.0140] by 0.0010
rep(seq(0.0120, 0.0140, 0.0010), 5),
# Range of sample size was set as [100, 200] by 25
rep(seq(100, 200, 25), rep(3, 5))

)
# Reform the output
Ex2 <- as.data.frame(t(Ex2))
# Set column names
colnames(Ex2) <- c("Power (Beta)",

"Power (Normal)",
"Sample Size",
"mu2",
"mu1")

# Display the results
Ex2

Power (Beta) Power (Normal) Sample Size mu2 mu1
1 0.985 0.310 100 0.012 0.0174
2 0.942 0.222 100 0.013 0.0174
3 0.879 0.150 100 0.014 0.0174
4 0.999 0.374 125 0.012 0.0174
5 0.986 0.266 125 0.013 0.0174
6 0.959 0.177 125 0.014 0.0174
7 1.000 0.435 150 0.012 0.0174
8 0.999 0.310 150 0.013 0.0174
9 0.991 0.204 150 0.014 0.0174
10 1.000 0.493 175 0.012 0.0174
11 1.000 0.353 175 0.013 0.0174
12 0.999 0.230 175 0.014 0.0174
13 1.000 0.546 200 0.012 0.0174
14 1.000 0.394 200 0.013 0.0174
15 0.999 0.257 200 0.014 0.0174

The results indicate small differences between the power of a two-sided t-test with equal and
unequal standard deviations, while the power from power_Beta changes drastically without the
equal precision assumption. Unlike normally distributed random variables, the beta distribution is
more sensitive to the assumption of equal precision parameters. Figure 1 displays the comparison
of probability density functions for beta distributed random variables with and without the equal
precision assumption and the comparison for the analogous normally distributed variables with and
without equal standard deviations.

Summary

This example demonstrates the use of power_Beta and power_Normal, each with equal and unequal
precision parameters, to perform power analyses and sample size calculations. Since a simulation
method is used within the function power_Beta, the computational time is dependent upon the number
of trials in the simulation. It is suggested that a starting value be used, such as 100, to determine
an initial range for the other parameters (e.g., range of mu2). Once an appropriate range of values
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Figure 1: Comparison of equal and unequal precision or standard deviation parameters (mu2 is
assumed to be 0.0120).

is determined, the number of trials should be increased (e.g., trials=1000) to output more precise
power and sample size estimates.

Summary and Discussion

Multiple packages are available in R to perform power analyses, including pwr, MESS, WebPower,
and the base R stats package. However, these packages do not provide a comprehensive power
analysis toolkit capable of calculating power or sample sizes for the test of two-sample means or ratios
when the outcomes have a beta, gamma, or Poisson distribution.

The PASSED package extends the current power analysis functions available in R. Seven functions
are provided for corresponding distributions, applying either theoretical formulas or simulation
algorithms. All functions have the ability to obtain the statistical power or estimate minimum sample
sizes. In particular, the formula-based approaches also support calculations for other parameters
such as means and proportions. As for the simulation-based methods, users are able to customize
each analysis with options to set the number of trials in the simulation and specify the assumptions
for the tests. An example of how to implement and customize the functions is provided in Section
Application of PASSED. The PASSED package provides a simple, one-package solution for sample
size and power calculations for a wide variety of common and specialty distributions encountered in
clinical research.

Computational Details

The results in this paper were obtained using R 4.0.2 and betareg 3.0.0. R itself and all packages used
are available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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Appendix

Derivation of Power Calculation Formulae for Poisson Distribution

Let xij be the number of events during the necessary study time ti from the jth subject in the ith
treatment group, j = 1, ..., ni, i = 1, 2. It is assumed that xij are Poisson random variables with rate λi
such that the probability function of xij is

P
(

xij

)
=

tiλietiλi

xij!
,

where i = 1, 2. Then, the total number of events in each group, denoted as X1 and X2, also follows a
Poisson distribution:

Xi ∼ Poisson(λitini).

For the hypothesis tests:

H0 : λ2/λ1 = R vs. Ha : λ2/λ1 = R′ > R(one − sided)

and
H0 : λ2/λ1 = R vs. Ha : λ2/λ1 = R′ ̸= R(two − sided),

where R denotes the pre-specified ratio of two Poisson rates. Gu et al. (2008) derives a test statistic W5,
which is asymptotically distributed as a standard normal under the null hypothesis above,

W5 =
2(
√

X2 + 3/8 −
√

Q(X1 + 3/8))√
1 + Q

,

where Q = R/d and d = t1/t2. Then, the critical region of the one-sided test is

W5 =
2(
√

X2 + 3/8 −
√

Q(X1 + 3/8))√
1 + Q

≥ z1−α. (4)

To calculate the power under Ha : λ2/λ1 = R′ > R at significance level α, let c = R/R′ and multiply
both sides of Equation 4 by

√
1 + Q, which is greater than 0 as that

2(
√

X2 + 3/8 −
√

Q(X1 + 3/8)) ≥ z1−α

√
1 + Q. (5)

Add −2(
√

Q/c −
√

Q)
√

X1 + 3/8 to both sides of Equation 5 for the inequality,

2(
√

X2 + 3/8 −
√

Q/c(X1 + 3/8)) ≥ z1−α

√
1 + Q − 2(

√
Q/c −

√
Q)
√

X1 + 3/8. (6)

Then, divide both sides of Equation 6 by
√

1 + Q/c, greater than 0. It follows that

2(
√

X2 + 3/8 −
√

Q/c(X1 + 3/8))√
1 + Q/c

≥ z1−α
√

1 + Q − 2(
√

Q/c −
√

Q)
√

X1 + 3/8√
1 + Q/c

. (7)

Under the alternative hypothesis, the left-hand side of Equation 7 is asymptotically normal distributed
(Gu et al., 2008). Accordingly, the type II error, β, can be derived as:

β = P(H0|Ha)

= P(X <
z1−α

√
1 + Q − 2(

√
Q/c −

√
Q)

√
X1 + 3/8√

1 + Q/c
|Ha)

= Φ(
z1−α

√
1 + Q − 2(

√
Q/c −

√
Q)

√
X1 + 3/8√

1 + Q/c
)
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Incorporating Q = R/d, c = R/R′ and X1 = λ1t1n1, and collecting items

β = Φ(
z1−α

√
1 + R/d − 2(

√
(R/d)/(R/R′)−

√
R/d)

√
λ1t1n1 + 3/8√

1 + (R/d)/(R/R′)
)

= Φ(
z1−α

√
R+d

d − 2(
√

R′

d −
√

R
d )

√
λ1t1n1 + 3/8√

R′+d
d

)

= Φ(
z1−α

√
R+d

R′ − 2(1 −
√

R
R′ )

√
λ1t1n1 + 3/8√

R′+d
R′

)

= Φ(
z1−αC − A

√
B

D
),

where A = 2(1 −
√

R
R′ ),

B = λ1t1n1 + 3/8,

C =
√

R+d
R′ ,

D =
√

R′+d
R′

So, power can be expressed as

Power(W5) = 1 − Φ(
z1−αC − A

√
B

D
)

= Φ(
A
√

B − z1−αC
D

).

(8)

Moreover, using zpower = Φ−1(Power), Equation 8 can be expressed as:

zpower =
A
√

B − z1−αC
D

. (9)

Solving Equation 9 for B,

B = (
zpowerD − z1−αC

A
)2. (10)

Since B = λ1t1n1 + 3/8, the sample size calculation formula of one-sided test can be determined by
solving Equation 10 for n1

n1 =
(

z1−αC+zpower D
A )2 − 3

8
λ1t1

(one − sided)

and the two-sided test can be derived similarly as

n1 =
(

z1− α
2

C+zpower D
A )2 − 3

8
λ1t1

(two − sided).
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spNetwork: A Package for Network
Kernel Density Estimation
by Jeremy Gelb

Abstract This paper introduces the new package spNetwork that provides functions to perform
Network Kernel Density Estimate analysis (NKDE). This method is an extension of the classical Kernel
Density Estimate (KDE), a non parametric approach to estimate the intensity of a spatial process.
More specifically, it adapts the KDE for cases when the study area is a network, constraining the
location of events (such as accidents on roads, leaks in pipes, fish in rivers, etc.). We present and
discuss in this paper the three main versions of NKDE: simple, discontinuous, and continuous that
are implemented in spNetwork. We illustrate how to apply the three methods and map their results
using a sample from a real dataset representing bike accidents in a central neighborhood of Montreal.
We also describe the optimization techniques used to reduce calculation time and investigate their
impacts when applying the three NKDE to a city-wide dataset.

Introduction

Data representing events in space are collected in many research fields. The analysis of these points
clouds is crucial in identifying hot spots, e.g., complaints about environmental noise, cases of dis-
eases, observation of animals or plant species, crimes, etc. The Kernel Density Estimate (KDE) is a
nonparametric method often used to estimate the intensity function of a spatial process from a sample
of events. More specifically, the KDE is part of the point pattern analysis (PPA) family of methods. It
allows for the analysis of first-order properties (variation of density) of a spatial process (Baddeley
et al., 2015). Recent works (Xie and Yan, 2008; Okabe et al., 2009; McSwiggan et al., 2017) have shown
that the KDE method is unadapted when events are constrained on a network (road crashes, leaks in
a network of pipes, crimes reported in streets, etc.). The classical KDE is based on the hypothesis of
an infinite, homogenous, two-dimensional space, which is a very rough approximation if the study
area is a network. Indeed, a network is a particular space between a simple line (1D) and a plan (2D).
In a network, the movement is constrained on multiple one-dimensional lines, event if it is possible
to change direction at intersections. Steenberghen et al. (2010) call it a 1.5D space. Moreover, the
reticular distance between objects on a network is always superior or equal to the Euclidean distance.
Thus, using the latter leads to underestimations of the real distance between the objects on a network.
The need to extend the KDE method is part of a more general trend started in the 1990’s aiming to
generalize the spatial analysis to network spaces (Okabe and Satoh, 2006; Xie and Yan, 2008). At
first, several adaptations were proposed but with a limited relevance because of strong limitations
(applied to very simple networks or a simple spatial aggregation of a classical KDE) (Flahaut et al.,
2003; Borruso, 2003; Porta et al., 2009). More recent works have developed methods overcoming these
first limitations, forming the set of the NKDE methods.

Currently, these methods are not easily accessible. Xie and Yan (2008) developed an ArcMap
(ESRI, 2017) plugin proposing only a biased density estimator; Hwang and Winslow (2012) developed
GeodaNet (GeodaCenter, university of Chicago), but it is no longer accessible on their website; Okabe
et al. (2006) proposed SANET, a toolbox for network analysis as an ArcMap plugin or a standalone
application. Even though SANET is a free software, it is not open-source, and the actual license limits
the use to research only. Moreover, a new user must send a request to the maintainer to obtain an
activation key. Finally, the R package spatstat (Baddeley and Turner, 2005), dedicated to PPA (Baddeley
et al., 2004), includes a function to perform NKDE analysis (density.lpp), but it returns only rasters
and requires an extremely long calculation time for large and medium-sized datasets. Thus, accessible
tools to perform NKDE analysis are missing. This encourages researchers and professionals to use
classical KDE in cases where NKDE is much more adapted and limits the reproducibility of research.

We propose the spNetwork package to fill this gap. It implements three estimators of the intensity
of a spatial process on a network, the possibility to use adaptive bandwidths, and several optimization
methods to ensure reasonable calculation time. R provides a perfect environment to implement
the NKDE method, considering its growing community, its capacity to read, write and manipulate
geographical data (rgdal, sp, rgeos, maptools, (Bivand et al., 2020; Pebesma and Bivand, 2020; Bivand
and Rundel, 2020; Bivand and Lewin-Koh, 2020)), the existence of libraries to manipulate networks
(igraph (Csardi and Nepusz, 2020)), and the facilitated interface to C++ with Rcpp (Eddelbuettel et al.,
2020a).

In the first section of this paper, we present the classical KDE and introduce the main concepts
of the method. In the second section, we introduce the three NKDE estimators and briefly compare
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their respective advantages and limits. The three NKDE are then applied to a small dataset about
road accidents involving a cyclist in a central neighborhood of Montreal. Finally, we investigate the
calculation time of the three NKDE with different settings considering that calculation time is an
important issue for the NKDE method.

Kernel density estimate

General description

For a spatial process p, represented by a set of events e, its intensity function λ at location u (λ(u))
can be estimated in a non parametric way by kernel estimation (Silverman, 1986). Typically, in a
two-dimensional space, a regular grid is defined on the study area, and the intensity is estimated at
the centers of each quadra (pixels). At each location, u, the events within a specified bandwidth, bw,
contributes to the local estimated intensity. The strength of this contribution depends on the distance
between the events and u, the event’s weight, and the kernel function. This function distributes the
mass of the events within a circular area around each event. The radius of this area is called the
bandwidth (or the standard deviation of the kernel). A larger bandwidth produces smoother results
and higher bias but reduces variance. The Kernel Density Estimate can thus be obtained as follows:

λ(u) =
1

bw2

n

∑
i=1

wi · K(dist(u, ei)), (1)

with n, the number of events that satisfy dist(u, ei) < bw, wi the weight of the event ei and K the kernel
function. K must be a probability density function and verifies the two following conditions:

K(x) > 0 if x < bw
K(x) = 0 if x ≥ bw∫ +∞

−∞
K(x) = 1.

(2)

Many kernel functions exist; Figure 1 shows the most commonly used (and implemented in
spNetwork).

library(ggplot2)
library(tidyr)
library(spNetwork)
library(RColorBrewer)
library(kableExtra)
library(dplyr)

x <- seq(-15.01, 15.01, by = 0.01)
kernels_func <- list(gaussian_kernel, epanechnikov_kernel, quartic_kernel,

triangle_kernel, tricube_kernel, triweight_kernel,
cosine_kernel, uniform_kernel)

cols <- lapply(kernels_func, function(f){f(x, 15)})
df <- data.frame(do.call(cbind, cols))
names(df) <- c("Gaussian", "Epanechnikov", "Quartic", "Triangle",

"Tricube", "Triweight", "Cosine", "Uniform")
df$x <- x

pivot_cols <- names(df)[names(df)!="x"]
df2 <- pivot_longer(df,cols = pivot_cols)
names(df2) <- c("x","kernel","y")

ggplot(df2) +
geom_line(aes(x = x, y = y, color = kernel), size = 1)+
xlim(c(-15.01, 15.01))+
scale_color_brewer(palette = "Accent")+
scale_y_continuous(name = "density")
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Figure 1: The different kernels implemented in spNetwork.

Many authors have stressed that the choice of the Kernel function has a smaller impact on final
results in comparison with the choice of the bandwidth (O’Sullivan and Wong, 2007; Xie and Yan,
2008; Turlach, 1993). The Gaussian kernel is a special case (non-compact kernel) because it does not
integrate to one on the domain [−bw;+bw] but on [−∞;+∞], leading to a loss of mass for each event.

Diggle’s correction

Formula 1 describes the basic KDE value, which is unbiased only if the study area is infinite in every
direction and if the spatial process is sampled everywhere in this space. In practice, such situations
are rare, and the basic KDE is biased at the frontier of the study area. For example, let us imagine a
case where abandoned syringes locations are systematically reported in a specific district of a city. The
ones lying outside the district limits are not considered, leading to a situation where the border areas
systematically have a lower estimated intensity. To reduce this effect, Diggle’s correction (equation 3)
is generally used (Diggle, 1985).

λD(u) =
1

bw2

n

∑
i=1

wi ·
1

e(ei)
K(dist(u, ei))

e(u) =
∫ v

W
K(dist(u, v)).

(3)

This correction increases the weight of the events located close to the study area border because a
part of their mass is lost above the border. For an event ei, with the location u, e(u) is the fraction of its
mass in the study area (W). The correction factor is thus inversely proportional to the fraction of the
event’s mass in the study area. For example, an event having only half its mass in the study area will
end up with a doubled weight.

Adaptive bandwidth

In its basic form, the bandwidth of the KDE is fixed, i.e. the value of the bandwidth is the same
everywhere in the study area. This is an important limitation if the intensity of the spatial process has
a pronounced spatial variation. In that case, the risk is to obtain oversmoothed results in areas with
high intensity and undersmoothed results in areas with low intensity. To overcome this limitation, it is
possible to replace the fixed bandwidth with a vector of spatially varying bandwidths. The bandwidths
should be smaller in subregions with higher intensity and wider elsewhere. The Abramson method
(Abramson, 1982) is often used to define this vector of bandwidths. Its calculation requires two steps.
First, a pilot estimate (λ̃) is calculated at the location of each event (uei) by using a global bandwidth
h0. Second, the vector of bandwidths (h(uei)) is calculated with equation 4:
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h(uei) = h0 ·
1√

f̃ (uei)/γ

γ = (
n

∏
i=1

1√
f̃ (ei)

)
1
n .

(4)

A trimming value can be defined to avoid obtaining large bandwidths in subregions with low
intensity. Let us recall here that the adaptive bandwidth is still based on the choice of an arbitrary
global bandwidth and is not a bandwidth selection method.

The three Network Kernel Density Estimate

We present the three NKDE methods implemented in the spNetwork package in this section .

The simple NKDE

A first NKDE method was proposed by Xie and Yan (2008) and constituted a geographical attempt to
extend the planar KDE to the network case. It received some attention in geography (Xie and Yan,
2013) but has been criticized for its statistical incorrectness (detailed later). We refer to this method as
the “simple NKDE”, and it can be summarized by three points:

• The intensity of the spatial process is only estimated on the network. Its edges are split into
lixels (one-dimensional pixels), and the centers of the lixels are used as locations for estimating
intensity.

• The distances between events and sampling points are calculated as the shortest path distances
on the network instead of Euclidean distances.

• The intensity function is slightly modified (equation 5).

λ(u) =
1

bw

n

∑
i=1

K(dist(u, ei)). (5)

The method is appealing for three reasons. First, from a purely geographical point of view, the
extension of the planar KDE to network KDE is intuitive. The modification applied is in line with other
methods in PPA extended from planar to network cases like the K-function or the nearest neighbor
analysis (Okabe and Sugihara, 2012). Second, the method does not rely on an expensive algorithm
and thus achieves a short calculation time. Third, the adapted formula makes the interpretation
straightforward: it “estimates the density over a linear unit” rather than an area unit (Xie and Yan,
2008, pp. 398). Note that the modification of the equation can also be applied to the next methods.

To get a visual representation of the method, we consider the situation depicted in Figure 2. The
lines constitute the network, and a red dot is a single event.

Figure 2: A single event on a network.

We can evaluate the density of the spatial process with the simple NKDE and visualize the result
in 3D (Figure 3), using density as the height.

At intersections on the network, the mass of the event is multiplied in each direction. Consequently,
the simple NKDE is not a real kernel density function because it does not integrate to 1 on its domain.
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Figure 3: 3D visualization of the simple NKDE.

The practical consequence is the systematic overestimation of the density, which could be problematic
in subregions with many events. To overcome this limitation, Okabe et al. (2009) proposed two
unbiased estimators: the discontinuous NKDE and the continuous NKDE.

The discontinuous NKDE

Considering the problem inherent to the simple NKDE, the discontinuous NKDE proposes a simple
solution. The mass is divided at intersections according to the number of directions minus one. This is
easily represented by Figure 4.

Figure 4: Graphical depiction of the discontinuous NKDE.

With the same example as previous, we obtain Figure 5.

Figure 5: 3D visualization of the discontinuous NKDE.

This estimator is unbiased. However, its discontinuous nature can be counter-intuitive in real
application. For example, considering the analysis of crimes on a network, it would be counter-
intuitive that the “influence” of a crime suddenly drops from one street to another. The discontinuous
NKDE can be summarized with Equation 6.

K(dist(u, ei)) =
2k(dist(u, ei))

ni1 ∏
j
i=i(nij − 1)

, (6)

with k the kernel function, nij the number of edges connected at the intersection j on the path originating
at the event, ei, and ending at the location, u.
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The continuous NKDE

Finally, the continuous NKDE attempts to combine the best of the two worlds: it adjusts the values
of the NKDE at intersections to ensure that it integrates to 1 on its domain and applies a backward
correction to force the density values to be continuous. A simple case is represented in Figure 6.

Figure 6: Graphical depiction of the continuous NKDE.

In this simple case, there are three different equations to calculate the kernel density (here, q1, q2,
q3). Considering the previous simple example, we obtain Figure 7.

Figure 7: 3D visualization of the continuous NKDE.

Because of its backward correction, the continuous NKDE is recursive in nature and can hardly be
presented as an equation. Okabe and Sugihara (2012) describe this method with a recursive function,
implemented in spNetwork. Indeed, for each node encountered, a correction factor must be applied to
all the previous edges traveled within the remaining bandwidth, and this correction must also be split
between all the nodes encountered in that direction. In comparison, for the two previous methods, the
algorithm only has to flow in one direction along the edges from the event. As a consequence, much
more iterations are required for the continuous NKDE. More specifically, Okabe et al. (2009) state that
the complexity of the discontinuous (and by extension, of the simple) NKDE algorithm is O(nnL) with
nL the number of edges and n the number of events. For the continuous NKDE, the complexity of the
algorithm is a function of the ratio of the bandwidth and the length of the edges. For this algorithm,
Okabe et al. (2009) observed that the computation time has the following lower limit (equation 7):

imax

∏
i=1

(bw − d)/(di+1 − di), (7)

with di the distance from an event to the ith-nearest node, and imax the last node verifying di < bw.
In other words, having many short edges in a network or using a larger bandwidth will increase the
calculation time exponentially for the continuous NKDE.

The pros and cons of the three methods are summarized in Table 1.

Method Pros Cons

Simple NKDE Continuous / Easy calculation Biased, not a true kernel
Discontinuous NKDE Unbiased / Easy calculation Discontinuous
Continuous NKDE Unbiased / Continuous Time consuming

Table 1: Pros and cons of the three NKDE.
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The two KDE extensions presented in section 2 (adaptive bandwidth and edge correction) can be
directly transposed to these three NKDE methods.

Implementation in spNetwork

The spNetwork package contains two “high- level functions” and three “helper functions”. The “high
level functions” nkde and nkde.mc can be used to calculate the three NKDE presented in the previous
section. Both functions use exactly the same parameters, nkde.mc is a version of nkde allowing for
multiprocessing via the package future (Bengtsson, 2020a). The three main inputs are:

• lines, a “SpatialLinesDataFrame” (object defined in the sp package), representing the lines of
the network.

• events, a “SpatialPointsDataframe” (object defined in the sp package), representing the realiza-
tions of the spatial process.

• samples, a “SpatialPointsDataframe” providing the locations where the density must be esti-
mated.

These three inputs must only have simple and valid geometries and the same coordinates ref-
erence system. Otherwise, an error is raised by the function before starting any calculation. The
parameters method, kernel_name and bw, indicate respectively which NKDE (simple, discontinuous, or
continuous), and which kernel function (gaussian, quartic, triweight, etc.) to use, and the bandwidth
of the kernel. adaptive and diggle_correction allow the user to specify if an adaptive bandwidth
and Diggle’s correction must be calculated. Finally, the remaining parameters control the geometric
precision of the network and the optimization aspects.

The three “helper functions” are provided to facilitate the creation of the sampling points on the
network:

• The function lixelize_lines splits the lines of a “SpatialLinesDataFrame” according to a
selected distance to generate lixels.

• The function lines_center returns for each line of a “SpatialLinesDataFrame” its center points
(the point located at mid-distance between the start and the end of the linestring).

• The function lines_points_along returns points located along the lines of a “SpatialLines-
DataFrame”, evenly spaced according to a selected distance.

Considering the previous functions, the workflow of NKDE analysis with spNetwork follows five
steps:

1. Loading the network dataset and the event dataset as sp objects, typically with the function
readOGR from the package rgdal. Many standard formats can thus be used such as ESRI
Shapefile, Geopackage, GeoJson, SpatialLite, etc.

2. Generating the sampling points on the network by using the helper functions.
3. Calculating the density estimations with the nkde or nkde.mc functions.
4. Adding the densities as a new column to the sampling “SpatialPointsDataFrame” or lixels

“SpatialLinesDataFrame”.
5. Exporting the results, typically with writeOGR from rgdal to map the results with a dedicated

mapping software (like Qgis (QGIS Development Team, 2020)).

Optimization

The main problem with NKDE methods is the calculation time. Building the network and calculating
the paths between its nodes can be a costly process (depending on the size of the network studied
and the number of events). The implementation in SpNetwork uses many techniques to reduce the
calculation time.

First, only the events are added as nodes in the network. The sampling points are snapped to
their nearest edge. Each edge in the network is a straight line. Thus, the final distance between a
sampling point and a node of the network is calculated with the Euclidean distance. Consequently,
the complexity of the network is not affected by the density of the sampling points.

Second, the calculus of the density is event-oriented. In other words, the kernel density is
sequentially calculated around each event. The density values of the samples are updated at each
iteration. The advantage of this approach is that the calculation time is less affected by the density of
the sampling points.
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Third, the events can be aggregated, and their weights added within a threshold distance. In many
applications, a small distance between events is not significant considering the accuracy of the location
method (geocoding, smartphone GPS, location at intersections, etc.). Aggregating events can simplify
networks and limit the number of iterations when calculating the NKDE.

Fourth, following the idiom “divide and conquer”, the user can specify the shape of a grid on
the study area to split the calculation. In that case, for each quadra of the grid, the sampling points
in the quadra are selected. The events and the lines of the network are selected if they intersect a
buffer around the quadra (the size of the buffer being the bandwidth of the kernel). Thus, the separate
calculations do not produce edge effects. All the spatial queries are optimized using the quadtree
spatial index proposed by the package SearchTrees (Becker, 2012). This approach limits the risk of
memory issues and increases calculation speed for big datasets.

Fifth, when the dataset is split, the calculation can be separated between several processes. Consid-
ering the fact that a lot of computers are now equipped with processors having more than four cores,
dividing the work between them is an easy way to reduce the overall calculation time. The packages
future and future.apply (Bengtsson, 2020b) are used in spNetwork to support multiprocessing. It
ensures good compatibility between OS and even has features to dispatch calculations on multiple
computers.

Finally, the main algorithms are implemented with Rcpp and RcppArmadillo (Eddelbuettel et al.,
2020b) to overcome the R (scripted language) limitations when loops and recursions are involved
(Ligges and Fox, 2008) and benefit from faster C++ compiled code.

Example with bike accidents in Montreal

In this section, we illustrate the use of the package with a built-in dataset. This dataset is an extract
from the Montreal Open Data website representing bike accidents that occurred on the Montreal road
network in 2017 (Figure 8).

Figure 8: Example dataset of bike accidents in Montreal.

To identify hot spots of bike accidents, we calculated the three NKDE (simple, discontinuous, and
continuous) with a quartic kernel (Figure 9). We selected a 200 meters bandwidth considering that the
mean length of a road segment in this network is 108 meters. This bandwidth ensures that, most often,
only events located closer than two street segments from a sampling point contribute to its density.

library(spNetwork)
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library(rgdal)

## Step 1: Loading the data
networkgpkg <- system.file("extdata", "networks.gpkg",

package = "spNetwork", mustWork = TRUE)
eventsgpkg <- system.file("extdata", "events.gpkg",

package = "spNetwork", mustWork = TRUE)
mtl_network <- readOGR(networkgpkg,layer="mtl_network",verbose = FALSE)
bike_accidents <- readOGR(eventsgpkg,layer="bike_accidents", verbose = FALSE)

## Step 2: Generating the sampling points on the network
# splitting the lines as lixels
lixels <- lixelize_lines(mtl_network, 100, 50)

# extracting the center of lixels as sampling points
sample_pts <- lines_center(lixels)

## Step 3: Calculating the densities estimations
# densities for the simple NKDE
nkde_simple <- nkde(lines = mtl_network,

events = bike_accidents,
w = rep(1, nrow(bike_accidents)),
samples = sample_pts,
kernel_name = "quartic",
bw = 200, method = "simple",
div = "bw", digits = 2, tol = 0.01,
agg = 10, grid_shape = c(1, 1),
verbose = FALSE)

# densities for the discontinuous NKDE
nkde_discontinuous <- nkde(lines = mtl_network,

events = bike_accidents,
w = rep(1, nrow(bike_accidents)),
samples = sample_pts,
kernel_name = "quartic",
bw = 200,method = "discontinuous",
div = "bw", digits = 2, tol = 0.01,
agg = 10, grid_shape = c(1, 1),
verbose = FALSE)

# densities for the continuous NKDE
nkde_continuous <- nkde(lines = mtl_network,

events = bike_accidents,
w = rep(1, nrow(bike_accidents)),
samples = sample_pts,
kernel_name = "quartic",
bw = 200, method = "continuous",
div = "bw",digits = 2, tol = 0.01,
agg = 10, grid_shape = c(1, 1),
verbose = FALSE)

To obtain more readable results, one can multiply the obtained densities by the total number of
accidents (to make the spatial integral equal to the number of events) and multiply this value again by
1000 to get the estimated numbers of accidents per kilometer.

## Step 4: Adding the densities as new columns to the sampling
lixels$simple_density <- nkde_simple * nrow(bike_accidents) * 1000
lixels$continuous_density <- nkde_continuous * nrow(bike_accidents) * 1000
lixels$dicontinuous_density <- nkde_discontinuous * nrow(bike_accidents) * 1000
lixels$difference <- lixels$simple_density - lixels$continuous_density
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Simple NKDE density
0.00 to 2.14
2.14 to 6.02
6.02 to 10.98
10.98 to 17.52
17.52 to 25.78
25.78 to 37.33
37.33 to 60.85

Discontinuous NKDE density

0.00 to 1.00
1.00 to 3.05
3.05 to 5.98
5.98 to 9.76
9.76 to 14.89
14.89 to 22.93
22.93 to 34.43
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Continuous NKDE density
0.00 to 0.82
0.82 to 2.41
2.41 to 4.32
4.32 to 6.80
6.80 to 10.32
10.32 to 15.87
15.87 to 24.98

Figure 9: Estimated densities of the three NKDE for bike accidents in Montreal.

As one can observe in Figure 9, the three methods highlight the same major hot spots. We can
identify a primary area in the downtown with two distinct clusters (1 and 2). Then, more local hot
spots are also visible on the three maps (3, 4, 5, 6). All of them occur at intersections on streets with the
main bicycle paths.

Figure 10 shows the values obtained for each sampling point for the three NKDE, sorted with the
value of the discontinuous NKDE. We can observe that the simple NKDE tends to produce higher
values and thus seriously overestimate the density of accidents in hot spot regions.
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library(ggplot2)
library(tidyr)

df <- lixels@data[c("simple_density",
"continuous_density",
"dicontinuous_density")]

df <- df[order(df$dicontinuous_density), ]
df$oid <- 1:nrow(df)

pivot_cols <- names(df)[names(df) != "oid"]
df2 <- pivot_longer(df, cols = pivot_cols)
df2$name <- case_when(
df2$name == "simple_density" ~ "Simple NKDE",
df2$name == "continuous_density" ~ "Continuous NKDE",
df2$name == "dicontinuous_density" ~ "Discontinuous NKDE")

ggplot(df2) +
geom_point(aes(x = oid, y = value, color = name), size = 0.2)+
ylab("Estimated densities")+
scale_color_manual(values = c("Simple NKDE"="#F8766D",

"Continuous NKDE"="#00BA38",
"Discontinuous NKDE"="#619CFF"))+

theme(axis.title.x = element_blank(), axis.text.x = element_blank(),
axis.ticks.x = element_blank(), legend.title = element_blank())
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Figure 10: Comparison of the estimated densities.

Adaptive bandwidth

An adaptive bandwidth based on the Abramson’s inverse-square-root rule (Abramson, 1982) can be
used to produce a new version of the three NKDE. We will only calculate here the results for the
continuous NKDE. Figure 11 shows the new results and the size of some calculated bandwidths with
circles (not all the bandwidths are shown; otherwise the map would not be readable). As we can see,
the adaptive kernel produces more smoothed results in low-intensity subregions and more detailed
results in high-density regions. We can see now that the primary hot spot (1) seems concentrated on a
smaller area.

library(rgeos)

# calculating the continuous kernel with an adaptive bandwidth
nkde_abw <- nkde(lines = mtl_network,

events = bike_accidents,
w = rep(1, nrow(bike_accidents)),
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samples = sample_pts,
kernel_name = "quartic",
bw = 200,
adaptive = TRUE, trim_bw = 400,
method = "continuous",
div = "bw",
digits = 2, tol = 0.01,
agg = 10, grid_shape = c(1, 1),
verbose = FALSE)

lixels$continuous_density_abw <- nkde_abw$k * nrow(bike_accidents) * 1000

# extracting the local bandwidth
local_bw <- nkde_abw$events
buff_bw <- gBuffer(local_bw,width = local_bw$bw, byid=TRUE)
sel_buff <- buff_bw[c(1, 52, 20, 86, 14, 75, 126, 200, 177), ]

# mapping the elements
tm_shape(lixels,unit = 'm') +
tm_lines(1.7, title.col = 'continuous NKDE density',

col = 'continuous_density_abw', n = 7,
style = 'jenks', palette = pal)+

tm_shape(sel_buff)+
tm_borders("black", lwd = 1)+
tm_layout(legend.outside = TRUE, inner.margins = 0,

outer.margins = 0, legend.title.size = 1,
legend.outside.position = "right",
frame = FALSE)

continuous NKDE density
0.00 to 0.95
0.95 to 2.77
2.77 to 5.58
5.58 to 9.65
9.65 to 15.49
15.49 to 23.71
23.71 to 41.49

Figure 11: Estimated densities of the continuous NKDE for bike accidents in Montreal with an adaptive
bandwidth.

Local Moran I

It has been proposed to combine the NKDE with the local Moran I autocorrelation index to identify
significant hot spots or cold spots of events’ intensity (Xie and Yan, 2013). Such an approach can
be easily applied with spNetwork, which provides functions to calculate spatial weight matrices
using network distances. We illustrate it here by creating a weight matrix w. wij is the spatial weight
for observations i and j, calculated as the inverse of the network distance between them. Beyond
400 meters the weight is set to 0, and the matrix is row standardized. This example illustrates that
spNetwork is well integrated with the actual ecosystem of R packages dedicated to spatial analysis.
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library(spdep)

# calculating the spatial weight matrix
listw <- network_listw(origins = sample_pts,

lines = mtl_network,
maxdistance = 400, dist_func = "inverse",
matrice_type = "W",
grid_shape = c(1,1),digits = 2,
verbose = F, tol = 0.01)

# calculating the local Moran I values
locmoran<- localmoran(lixels$continuous_density,listw = listw)

# centering the NKDE values and calculating the spatially lagged variable
cent_density <- scale(lixels$continuous_density, scale = F)
lag_cent_density <- lag.listw(listw, cent_density)

# mapping the results
lixels$moran_quad <- case_when(
cent_density > 0 & lag_cent_density > 0 & locmoran[,5]<=0.05 ~ "high-high",
cent_density < 0 & lag_cent_density < 0 & locmoran[,5]<=0.05 ~ "low-low",
cent_density > 0 & lag_cent_density < 0 & locmoran[,5]<=0.05 ~ "high-low",
cent_density < 0 & lag_cent_density > 0 & locmoran[,5]<=0.05 ~ "low-high",
locmoran[,5] > 0.05 ~ "not sign.",

)

colors <- c("high-high" = "#E63946",
"high-low" = "#EC9A9A",
"low-high" = "#A8DADC",
"low-low" = "#457B9D",
"not sign." = "black")

not_sign <- subset(lixels, lixels$moran_quad == "not sign.")
sign <- subset(lixels, lixels$moran_quad != "not sign.")

tm_shape(not_sign,unit = 'm') +
tm_lines(1.2, title.col = 'Local Moran for the continuous NKDE',

col = 'black') +
tm_shape(sign,unit = 'm') +
tm_lines(2, title.col = 'Local Moran for the continuous NKDE',

col = 'moran_quad', palette = colors) +
tm_layout(legend.outside = TRUE, inner.margins = 0,

outer.margins = 0, legend.title.size = 1,
legend.outside.position = "right",
frame = FALSE)
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Local Moran for the continuous NKDE

high−high
high−low
low−high
low−low

Figure 12: Local Moran I calculated on continuous NKDE.

Calculation time

In this final section, we investigate the calculation time of the three NKDE. For the first test, we used
a complete version of the dataset presented above (but not included in the package). The network
used covers the full Island of Montreal for a total of 47488 features (5877 km). The 1722 events are
road accidents involving a cyclist between 2017 and 2018. We ran the calculation of the three NKDE
by using 1 to 8 cores and by splitting the study area with a grid ranging from 10 by 10 to 18 by 18. The
calculations were executed on a computer equipped with an Intel (R) Xeon (R) Bronze 3104 CPU (12
cores 1.70 GHz) and 32 GO of RAM, with the Windows 10 operating system and the R version 4.0.2.
Table 2 shows the calculation times.

Duration (min)

Simple Discontinuous Continuous

Cores 10 x 10 14 x 14 18 x 18 10 x 10 14 x 14 18 x 18 10 x 10 14 x 14 18 x 18

1 23:33 19:22 18:02 21:49 17:31 16:37 87:29 43:37 33:55
2 14:01 11:48 11:36 14:37 11:23 10:31 59:13 32:57 19:41
3 10:28 08:42 08:20 10:57 08:22 08:03 53:35 27:54 17:15
4 09:44 09:42 07:43 09:12 09:00 07:24 78:00 32:23 17:26
5 08:02 07:45 07:13 08:04 07:09 06:21 91:16 30:08 14:56

6 07:50 06:49 07:06 07:01 06:51 06:33 93:05 35:58 12:19
7 07:38 06:43 06:39 06:38 06:36 06:24 53:06 38:17 14:20
8 06:54 06:37 07:06 07:06 06:38 06:56 55:52 33:32 18:47

Table 2: Durations of the first setting.

As one can see, the durations are very similar for the simple and the discontinuous methods.
Because of the backward adjustment of the density, the continuous method is much more time-
consuming. Using multiprocessing is an efficient way to reduce calculation time. In our setting, the
biggest gain is achieved with three cores. Beyond three, the gains are more negligible. Dividing the
study area with a finer grid contributes to reducing calculation time to a smaller extent.

For the second test, we selected a single event in the middle of the complete study area. We then
constructed several study areas by selecting all events and all lines within subsequent radiuses from
500 m to 7000 m. For each iteration, only one core was used and a grid with a 5 x 5 shape. The results
are presented in Table 3. We can observe that the calculation time increases slowly for the simple and
the discontinuous NKDE, but the increase for the continuous NKDE is sharper. These results show
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that the proposed package can calculate the three NKDE with reasonable calculation time, even for
datasets covering a full city.

Duration (min)

Distance Number of events Number of lines Simple Discontinuous Continuous

1000 97 447 00:23 00:16 00:16
1500 198 948 00:41 00:27 00:28
2000 303 1648 00:58 00:40 00:43
2500 486 2581 01:25 00:59 01:03
3000 652 4010 02:01 01:30 04:47

3500 797 5630 02:39 02:03 13:20
4000 905 7032 03:13 02:21 14:06
4500 989 8497 03:44 02:53 16:17
500 22 138 00:13 00:10 00:10
5000 1097 10432 04:30 03:40 18:23

5500 1170 11913 05:23 04:27 22:18
6000 1230 13196 06:04 05:06 25:23
6500 1276 14674 06:44 05:46 32:49
7000 1332 16373 07:31 06:30 34:55

Table 3: Durations of the second setting.

Concluding remarks

The Network Kernel Density Estimate (NKDE) is an extension of the Kernel Density Estimate (KDE).
Numerous spatial phenomena are constrained on a network like road accidents, crimes reported on
streets, leaks in pipes, breaks in a wiring network, bird nests along a river, etc. Analyzing these datasets
with a classical KDE is unsatisfactory because densities are evaluated at places where the events cannot
occur (outside the network). The Euclidean distance underestimates the distance between objects on
the network, and a network is not a homogeneous space. Tang et al. (2013) argue that in practical
applications, the differences between the classical KDE and NKDE are small, the latter providing only
more accurate and detailed results. However, our brief comparison suggests that the simple NKDE (the
closest to the classical KDE) systematically overestimates densities compared to the continuous and
discontinuous NKDE. This is in line with results obtained when comparing the planar and network
K-functions (Yamada and Thill, 2004). The NKDE method remains quite inaccessible because of the
lack of open-source implementation. The spNetwork package introduced here proposes to fill this gap
by implementing it with R, taking advantage of its rich geospatial ecosystem (Spatial).
Three different NKDE are currently available in the package: the simple, the discontinuous, and the
continuous NKDE. The first one is an early attempt to generalize the classical KDE to network spaces.
It produces biased results and is not a true kernel, but it is intuitive from a purely geographical point
of view. The discontinuous and continuous NKDE are true kernels and provide unbiased density
estimates. We discussed in this paper their respective limitations and advantages. Two complementary
features are proposed by spNetwork: Diggle’s edge correction and adaptive bandwidths based on
Abramson’s rule. The spNetwork package uses several techniques to reduce computation time and
memory use for the NKDE: dividing the study area into smaller chunks, multiprocessing, compiled
C++ functions, and spatial indexes. However, for large datasets with large bandwidths the overall
process remains long. Consequently, no methods are currently proposed for automatic bandwidth
selection. In the future, we plan to add in the package other methods for PPA on networks like the
K-function, nearest neighbor analysis and reticular distance weight matrices.
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bssm: Bayesian Inference of Non-linear
and Non-Gaussian State Space Models in
R
by Jouni Helske and Matti Vihola

Abstract We present an R package bssm for Bayesian non-linear/non-Gaussian state space modeling.
Unlike the existing packages, bssm allows for easy-to-use approximate inference based on Gaussian
approximations such as the Laplace approximation and the extended Kalman filter. The package also
accommodates discretely observed latent diffusion processes. The inference is based on fully automatic,
adaptive Markov chain Monte Carlo (MCMC) on the hyperparameters, with optional importance
sampling post-correction to eliminate any approximation bias. The package also implements a direct
pseudo-marginal MCMC and a delayed acceptance pseudo-marginal MCMC using intermediate
approximations. The package offers an easy-to-use interface to define models with linear-Gaussian
state dynamics with non-Gaussian observation models and has an Rcpp interface for specifying
custom non-linear and diffusion models.

Introduction

State space models (SSM) are a flexible class of latent variable models commonly used in analyzing
time series data (cf. Durbin and Koopman, 2012). There are several packages available for state space
modeling for R, especially for two special cases: a linear-Gaussian SSM (LGSSM) where both the
observation and state densities are Gaussian with linear relationships with the states, and an SSM with
discrete state space, which is sometimes called a hidden Markov model (HMM). These classes admit
analytically tractable marginal likelihood functions and conditional state distributions (conditioned on
the observations), making inference relatively straightforward. See, for example, Petris and Petrone
(2011); Tusell (2011); Helske (2017); Helske and Helske (2019) for a review of some of the R packages
dealing with these type of models. The present R package bssm is designed for Bayesian inference of
general state space models with non-Gaussian and/or non-linear observational and state equations.
The package’s primary aim is to provide easy-to-use and fast functions for fully Bayesian inference
with common time series models such as the basic structural time series model (Harvey, 1989) with
exogenous covariates and simple stochastic volatility models. The package also accommodates custom
non-linear models and discretized diffusion models.

When extending the state space modeling to non-linear or non-Gaussian models, some difficulties
arise. As the likelihood is no longer analytically tractable, computing the latent state distributions
and hyperparameter estimation of the model becomes more challenging. One general option is to use
Markov chain Monte Carlo (MCMC) methods targeting the full joint posterior of hyperparameters
and the latent states, for exampl,e by Gibbs sampling or Hamiltonian Monte Carlo. Unfortunately, the
joint posterior is typically very high dimensional, and due to the strong autocorrelation structures of
the state densities, the efficiency of such methods can be relatively poor. Another asymptotically exact
approach is based on the pseudo-marginal particle MCMC approach (Andrieu et al., 2010), where
the likelihood function and the state distributions are estimated using sequential Monte Carlo (SMC),
i.e., the particle filter (PF) algorithm. Instead of computationally demanding Monte Carlo methods,
approximation-based methods such as extended and unscented Kalman filters may be used, as well
as Laplace approximations, which are provided for example by the INLA (Lindgren and Rue, 2015)
R package. These approximations are computationally appealing but may lead to hard-to-quantify
biases of the posterior.

Some of the R packages suitable for Bayesian state space modeling include pomp (King et al.,
2016), rbi (Jacob and Funk, 2020), nimbleSMC (Michaud et al., 2020; NIMBLE Development Team,
2020), and rstan (Stan Development Team, 2020). With the package pomp, the user defines the model
using R or C snippets for simulation from and evaluation of the latent state and observation level
densities, allowing flexible model construction. The rbi package is an interface to LibBi (Murray, 2015),
a standalone software with a focus on Bayesian state space modeling on high-performance computers.
The pomp package provides several simulation-based inference methods mainly based on iterated
filtering and maximum likelihood, whereas rbi is typically used for Bayesian inference via particle
MCMC. For a more detailed comparison of differences of rbi/LibBi and pomp with examples; see
(Funk and King, 2020). The nimbleSMC package contains some particle filtering algorithms which can
be used in the general Nimble modeling system (de Valpine et al., 2017), whereas the rstan package
provides an R interface to the Stan C++ package, a general statistical modeling platform (Carpenter
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et al., 2017).

The key difference to the aforementioned packages and the motivation behind the present bssm
package is to combine the use of fast approximation-based methods with the Monte Carlo correction
step, leading to computationally efficient and unbiased (approximation error free) inference of the
joint posterior of hyperparameters and latent states, as suggested in (Vihola et al., 2020). In a nutshell,
the method uses MCMC, which targets an approximate marginal posterior of the hyperparameters
and an importance sampling type weighting which provides asymptotically exact inference on the
joint posterior of hyperparameters and the latent states. In addition to this two-stage procedure, the
bssm also supports delayed acceptance pseudo-marginal MCMC (Christen and Fox, 2005) using the
approximations and direct pseudo-marginal MCMC. To our knowledge, importance sampling and
delayed acceptance in this form are not available in other Bayesian state space modeling packages in
R.

Supported models

We denote the sequence of observations (y1, . . . , yT) as y, and the sequence of latent state variables
(α1, . . . , αT) as α. The latent states αt ∈ Rd are typically vector-valued, whereas we focus mainly on
scalar observations yt ∈ R (vector-valued observations are also supported, assuming conditional
independence (given αt) in case of non-Gaussian observations).

A general state space model consists of two parts: observation level densities g(θ)t (yt|αt) and latent

state transition densities µ
(θ)
t (αt+1|αt). Typically, both g(θ)t and µ

(θ)
t depend on unknown parameter

vector θ for which we can define arbitrary prior p(θ).

In a linear-Gaussian SSM, both g(θ)t and µ
(θ)
t are Gaussian densities, and they depend linearly on the

current and previous state vectors, respectively. Section Models with linear-Gaussian state dynamics
describes a common extension to these models supported by bssm, which relaxes the assumptions

on observational density g(θ)t , by allowing exponential family links and stochastic volatility models.
While the main focus of bssm is in state space models with linear-Gaussian state dynamics, there
is also support for more general non-linear models, discussed briefly in Section Other state space
models. Section Using the bssm package describes how arbitrary models based on these definitions
are constructed in bssm.

Models with linear-Gaussian state dynamics

The primary class of models supported by bssm consists of SSMs with linear-Gaussian state dynamics
of form

αt+1 = ct + Ttαt + Rtηt,

where ct ∈ Rd, Tt ∈ Rd×d, and Rt ∈ Rd×k can depend on the unknown parameters θ and covariates.
The noise terms ηt ∼ N(0, Ik) and α1 ∼ N(a1, P1) are independent. These state dynamics can be
combined with the observational level density gt of form

gt(yt|dt + Ztαt, ϕ, ut),

where parameters ϕ and the known vector ut are distribution specific and can be omitted in some
cases. Currently, following observational level distributions are supported:

• Gaussian distribution: yt = dt + Ztαt + Htϵt with ϵt ∼ N(0, I).

• Poisson distribution: gt(yt|dt + Ztαt, ut) = Poisson(ut exp(dt + Ztαt)), where ut is the known
exposure at time t.

• Binomial distribution: gt(yt|dt + Ztαt, ut) = B(ut, logit−1(dt + Ztαt)), where ut is the number
of trials, and logit−1(dt + Ztαt) is the probability of the success.

• Negative binomial distribution: gt(yt|dt + Ztαt, ϕ, ut) = NB(exp(dt + Ztαt), ϕ, ut), where
ut exp(dt + Ztαt) is the expected value, ϕ is the dispersion parameter, and ut is a known
offset term.

• Gamma distribution: gt(yt|dt + Ztαt, ϕ, ut) = Gamma(exp(dt + Ztαt), ϕ, ut), where ut exp(dt +
Ztαt) is the expected value, ϕ is the shape parameter, and ut is a known offset term.

• Stochastic volatility model: gt(yt|Ztαt) = exp(αt/2)ϵt, with ϵt ∼ N(0, 1). Here, the state
dynamics is also fixed as αt+1 = µ + ρ(αt − µ) + σηηt, with ηt ∼ N(0, 1) and α1 ∼ N(µ, σ2

η /(1−
ρ2)).
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For multivariate models, these distributions can be combined arbitrarily, except the stochastic
volatility model case, which is currently handled separately. Also, for a fully Gaussian model, the
observational level errors ϵt can be correlated across time series.

Other state space models

The general non-linear Gaussian model in the bssm has the following form:

yt = Z(t, αt, θ) + H(t, αt, θ)ϵt,

αt+1 = T(t, αt, θ) + R(t, αt, θ)ηt,

α1 ∼ N(a1(θ), P1(θ)),

with t = 1, . . . , n, ϵt ∼ N(0, Ip), and η ∼ N(0, Ik).

The bssm package also supports models where the state equation is defined as a continuous-time
diffusion model of the form

dαt = µ(αt, θ)dt + σ(αt, θ)dBt, t ≥ 0,

where Bt is a Brownian motion and where µ and σ are scalar-valued functions, with the univariate
observation density p(yk|αk) defined at integer times k = 1 . . . , n.

Inference methods

The main goal of bssm is to facilitate easy-to-use full Bayesian inference of the joint posterior p(α, θ|y)
for models discussed in Section Supported models. The inference methods implemented in bssm are
based on a factorized approach where the joint posterior of hyperparameters θ and latent states α is
given as

p(α, θ|y) ∝ p(θ)p(α, y|θ) = p(θ)p(y|θ)p(α|y, θ),

where p(y|θ) is the parameter marginal likelihood and p(α|y, θ) is the smoothing distribution.

All the inference algorithms are based on a Markov chain Monte Carlo on the parameters θ, whose
single iteration may be summarised as follows:

Algorithm 1 One iteration of MCMC algorithm for sampling p(θ|y).
1: Draw a proposal θ′ ∼ N(θi−1, Σi−1).
2: Calculate the (approximate) marginal likelihood p̂(y|θ′).
3: Accept the proposal with probability α := min

{
1, p(θ′) p̂(y|θ′)

p(θi−1) p̂(y|θi−1)

}
.

4: If the proposal θ′ is accepted, set θi = θ′. Otherwise, set θi = θi−1.
5: Adapt the proposal covariance matrix Σi−1 → Σi.

The adaptation step 5 in bssm currently implements the robust adaptive Metropolis algorithm
(Vihola, 2012) with a fixed target acceptance rate (0.234 by default) provided by the ramcmc package
(Helske, 2016). The (approximate) marginal likelihood p̂(y|θ) takes different forms, leading to different
inference algorithms discussed below.

Direct inference: marginal algorithm and particle MCMC

The simplest case is with a linear-Gaussian SSM, where we can use the exact marginal likelihood
p̂(y|θ) = p(y|θ), in which case Algorithm 1 reduces to (an adaptive) random-walk Metropolis algo-
rithm targeting the posterior marginal of the parameters θ. Inference from the full posterior may
be made using the simulation smoothing algorithm (Durbin and Koopman, 2002) conditional to the
sampled hyperparameters.

The other ‘direct’ option, which can be used with any model, is using the bootstrap particle filter
(BSF) (Gordon et al., 1993), which leads to a random p̂(y|θ) which is an unbiased estimator of p(y|θ). In
this case, Algorithm 1 reduces to (an adaptive) particle marginal Metropolis-Hastings (Andrieu et al.,
2010). The full posterior inference is achieved simultaneously, by picking particle trajectories based on
their ancestries as in the filter-smoother algorithm (Kitagawa, 1996). Note that with BSF, the desired
acceptance rate needs to be lower, depending on the number of particles used (Doucet et al., 2015).
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Approximate inference: Laplace approximation and the extended Kalman filter

The direct BSF discussed above may be used with any non-linear and/or non-Gaussian model but may
be slow and/or poor mixing. To alleviate this, bssm provides computationally efficient (intermediate)
approximate inference in case of non-Gaussian observation models in Section Models with linear-
Gaussian state dynamics and in case of non-linear dynamics in Section Other state space models.

With non-Gaussian models with linear-Gaussian dynamics, we use an approximating Gaussian
model p̃(y, α|θ) which is a Laplace approximation of p(α, y|θ) following (Durbin and Koopman, 2000).
We write the likelihood as follows

p(y|θ) =
∫

p(α, y|θ)dα = p̃(y|θ)E
[

p(y|α, θ)

p̃(y|α, θ)

]
,

where p̃(y|θ) is the likelihood of the Laplace approximation, and the expectation is taken with respect
to its conditional p̃(α|y, θ) (Durbin and Koopman, 2012). Indeed, denoting α̂ as the mode of p̃(α|θ, y),
we may write

log p(y|θ) = log p̃(y|θ) + log
p(y|α̂, θ)

p̃(y|α̂, θ)
+ log E

[
p(y|α, θ)/p(y|α̂, θ)

p̃(y|α, θ)/ p̃(y|α̂, θ)

]
.

If p̃ resembles p with typical values of α, the latter logarithm of expectation is zero. We take p̂(y|θ) as
the expression on the right, dropping the expectation.

When p̂ is approximate, the MCMC algorithm targets an approximate posterior marginal. Ap-
proximate full inference may be done analogously as in the case of the previous section by simulating
trajectories conditional to the sampled parameter configurations θi. We believe that approximate infer-
ence is often good enough for model development, but we strongly recommend using post-correction
as discussed in Section Post-processing by importance weighting to check the validity of the final
inference.

In addition to these algorithms, bssm also supports p̂(y|θ) based on the extended KF (EKF)
or iterated EKF (IEKF) (Jazwinski, 1970), which can be used for models with non-linear dynamics.
Approximate smoothing based on (iterated) EKF is also supported. It is also possible to perform direct
inference which instead of the BSF, employs particle filter based on EKF (Van Der Merwe et al., 2001).

Post-processing by importance weighting

The approximate inference methods of the previous section are computationally efficient but come with
a bias. The bssm implements importance-sampling type post-correction as discussed in (Vihola et al.,
2020). Indeed, having MCMC samples (θi) from the approximate posterior, we may produce (random)
weights and latent states, such that the weighted samples form estimators which are consistent with
respect to the true posterior p(α, θ|y).

The primary approach which we recommend for post-correction is based on a "ψ-APF", — a
particle filter using intermediate Gaussian approximations in the previous section. In essence, this
particle filter employs the dynamics and a look-ahead strategy coming from the approximation, which
leads to low-variance estimators; see (Vihola et al., 2020) and package vignettes1 for a more detailed
description. Naturally, ψ-APF can also be used in place of BSF in the direct inference of Section Direct
inference: marginal algorithm and particle MCMC.

Direct inference using approximation-based delayed acceptance

An alternative to approximate MCMC and post-correction, bssm also supports an analogous delayed
acceptance method (Christen and Fox, 2005; Banterle et al., 2019) (here denoted by DA-MCMC). This
algorithm is similar to 1, but in the case of "acceptance", it leads to second-stage acceptance using the
same weights as the post-correction would; see (Vihola et al., 2020) for details. Note that as in the
direct approach for non-Gaussian/non-linear models, the desired acceptance rate with DA-MCMC
should be lower than the default 0.234.

The DA-MCMC also leads to consistent posterior estimators and often outperforms the direct
particle marginal Metropolis-Hastings. However, empirical findings (Vihola et al., 2020) and theoretical
considerations (Franks and Vihola, 2020) suggest that approximate inference with post-correction may
often be preferable. The bssm supports parallelization with post-correction using OpenMP, which
may further promote the latter.

1https://cran.r-project.org/package=bssm/vignettes/psi_pf.html
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Inference with diffusion state dynamics

For general continuous-time diffusion models, the transition densities are intractable. The bssm
uses Millstein time-discretization scheme for approximate simulation, and inference is based on the
corresponding BSF. Fine time-discretization mesh gives less bias than the coarser one, with increased
computational complexity. The DA and IS approaches can be used to speed up the inference by
using coarse discretization in the first stage and then using more fine mesh in the second stage. For
comparison of DA and IS approaches in the case of geometric Brownian motion model, see (Vihola
et al., 2020).

Using the bssm package

The main functions of bssm related to the MCMC sampling, approximations, and particle filtering
are written in C++, with help the of Rcpp (Eddelbuettel and François, 2011) and RcppArmadillo
(Eddelbuettel and Sanderson, 2014) packages. On the R side, the package uses S3 methods to provide a
relatively unified workflow independent of the type of model one is working with. The model building
functions such as bsm_ng and svm are used to construct the model objects of the same name, which
can then be passed to other methods, such as logLik and run_mcmc, which compute the log-likelihood
value and run MCMC algorithm, respectively. We will now briefly describe the main functionality of
bssm. For more detailed descriptions of different functions and their arguments, see the corresponding
documentation in R and the package vignettes.

Constructing the model

For models with linear-Gaussian state dynamics, bssm includes some predefined models such as
bsm_lg and bsm_ng for univariate Gaussian and non-Gaussian structural time series models with
external covariates, for which the user only needs to supply the data and priors for unknown model
parameters. In addition, bssm supports general model building functions ssm_ulg, ssm_mlg for
custom univariate and multivariate Gaussian models, and ssm_ung and ssm_mng for their non-Gaussian
counterparts. For these models, users need to supply their own R functions for the evaluation of the
log prior density and for updating the model matrices given the current value of the parameter vector
θ. It is also possible to avoid defining the matrices manually by leveraging the formula interface of the
KFAS package (Helske, 2017) together with as_bssm function which converts the KFAS model to a
bssm equivalent model object. This is especially useful in the case of complex multivariate models
with covariates.

As an example, consider a Gaussian local linear trend model of the form

yt = µt + ϵt,

µt+1 = µt + νt + ηt,

νt+1 = νt + ξt,

with zero-mean Gaussian noise terms ϵt, ηt, ξt with unknown standard deviations. Using the time
series of the mean annual temperature (in Fahrenheit) in New Haven, Connecticut, from 1912 to 1971
(available in the datasets package) as an example, this model can be built with bsm function as

library("bssm")
data("nhtemp", package = "datasets")
prior <- halfnormal(1, 10)
bsm_model <- bsm_lg(y = nhtemp, sd_y = prior, sd_level = prior, sd_slope = prior)

Here, we use a helper function, halfnormal, which defines half-Normal prior distribution for the
standard deviation parameters, with the first argument defining the initial value of the parameter and
the second defines the scale parameter of the half-Normal distribution. Other prior options are normal,
tnormal (truncated normal), gamma, and uniform.

As an example of a multivariate model, consider bivariate Poisson model with latent random walk
model, defined as

yi,t ∼ Poisson(exp(xt)), i = 1, 2,

xt+1 = xt + ηt,

with ηt ∼ N(0, σ2), and prior σ ∼ Gamma(2, 0.01). This model can be built with ssm_mng function as

# Generate observations
set.seed(1)
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x <- cumsum(rnorm(50, sd = 0.2))
y <- cbind(
rpois(50, exp(x)),
rpois(50, exp(x)))

# Log prior density function
prior_fn <- function(theta) {
dgamma(theta, 2, 0.01, log = TRUE)

}

# Model parameters from hyperparameters
update_fn <- function(theta) {
list(R = (theta, c(1, 1, 1)))

}

# define the model
mng_model <- ssm_mng(y = y, Z = matrix(1,2,1), T = 1,
R = 0.1, P1 = 1, distribution = "poisson",
init_theta = 0.1,
prior_fn = prior_fn, update_fn = update_fn)

Here, the user-defined functions prior_fn and update_fn define the log-prior for the model and
how the model components depend on the hyperparameters θ, respectively.

For models where the state equation is no longer linear-Gaussian, we use a pointer-based interface
by defining all model components as well as functions defining the Jacobians of Z(·) and T(·) needed
by the extended Kalman filter as C++ snippets. The general non-linear Gaussian model can be defined
with the function ssm_nlg. Discretely observed diffusion models where the state process is assumed
to be a continuous stochastic process can be constructed using the ssm_sde function, which takes
pointers to C++ functions defining the drift, diffusion, the derivative of the diffusion function, and
the log-densities of the observations and the prior. As an example of the latter, let us consider an
Ornstein–Uhlenbeck process

dαt = ρ(ν − αt)dt + σdBt,

with parameters θ = (ϕ, ν, σ) = (0.5, 2, 1) and the initial condition α0 = 1. For observation density, we
use Poisson distribution with parameter exp(αk). We first simulate a trajectory x0, . . . , xn using the
sde.sim function from the sde package (Iacus, 2016) and use that for the simulation of observations y:

library("sde")
x <- sde.sim(t0 = 0, T = 100, X0 = 1, N = 100,
drift = expression(0.5 * (2 - x)),
sigma = expression(1),
sigma.x = expression(0))

y <- rpois(100, exp(x[-1]))

We then compile and build the model as

Rcpp::sourceCpp("ssm_sde_template.cpp")
pntrs <- create_xptrs()
sde_model <- ssm_sde(y, pntrs$drift, pntrs$diffusion,
pntrs$ddiffusion, pntrs$obs_density, pntrs$prior,
c(0.5, 2, 1), 1, FALSE)

The templates for the C++ functions for SDE and non-linear Gaussian models can be found from
the package vignettes on the CRAN2.

Markov chain Monte Carlo in bssm

The main purpose of the bssm is to allow computationally efficient MCMC-based inference for
various state space models. For this task, a method run_mcmc can be used. The function takes several
arguments, depending on the model class, but for many of these, default values are provided. For
linear-Gaussian models, we only need to supply the number of iterations. Using the previously created
local linear trend model for the New Haven temperature data of Section Constructing the model, we
run an MCMC with 100,000 iterations where the first 10,000 is discarded as a burn-in (burn-in phase is
also used for the adaptation of the proposal distribution):

2https://CRAN.R-project.org/package=bssm
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mcmc_bsm <- run_mcmc(bsm_model, iter = 1e5, burnin = 1e4)

The print method for the output of the MCMC algorithms gives a summary of the results, and
detailed summaries for θ and α can be obtained using summary function. For all MCMC algorithms,
bssm uses so-called jump chain representation of the Markov chain X1, . . . , Xn, where we only
store each accepted Xk and the number of steps we stayed on the same state. So for example if
X1:n = (1, 2, 2, 1, 1, 1), we present such chain as X̃ = (1, 2, 1), N = (1, 2, 3). This approach reduces the
storage space and makes it more computationally efficient to use importance sampling type correction
algorithms. One drawback of this approach is that the results from the MCMC run correspond to
weighted samples from the target posterior, so some of the commonly used postprocessing tools need
to be adjusted. Of course, in the case of other methods than IS-weighting, the simplest option is to
just expand the samples to a typical Markov chain using the stored counts N. This can be done using
the function expand_sample, which returns an object of class "mcmc" of the coda package (Plummer
et al., 2006) (thus the plotting and diagnostic methods of coda can also be used). We can also directly
transform the posterior samples to a "data.frame" object by using as.data.frame method for the
MCMC output (for IS-weighting, the returned data frame contains additional column weights). This
is useful, for example, for visualization purposes with the ggplot2 (Wickham, 2016) package:

library("ggplot2")
d <- as.data.frame(mcmc_bsm, variable = "theta")
ggplot(d, aes(x = value)) +
geom_density(bw = 0.1, fill = "#9ebcda") +
facet_wrap(~ variable, scales = "free") +
theme_bw()
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Figure 1: Posterior densities of hyperparameters θ of the linear-Gaussian model for nhtemp data.

Figure 1 shows the estimated posterior densities of the three standard deviation parameters of the
model. The relatively large observational level standard deviation σy suggests that the underlying
latent temperature series is much smoother than the observed series, which can also be seen from
Figure 2, which shows the original observations (black dots) spread around the estimated temperature
series (solid line). This figure was drawn using dplyr (Wickham et al., 2021) and ggplot2 with the
following code:

library("dplyr")
d <- as.data.frame(mcmc_bsm, variable = "states")
summary_y <- d %>%
filter(variable == "level") %>%
group_by(time) %>%
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summarise(mean = mean(value),
lwr = quantile(value, 0.025),
upr = quantile(value, 0.975))

ggplot(summary_y, aes(x = time, y = mean)) +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = 0.25) +
geom_line() +
geom_point(data = data.frame(mean = nhtemp,
time = time(nhtemp))) +

theme_bw() + xlab("Year") +
ylab("Mean annual temperature in New Haven")
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Figure 2: Observed annual average temperatures in New Haven (black dots) and predicted mean
(solid line) with 95% prediction intervals (grey ribbon) from bssm.

For non-Gaussian models, the default MCMC algorithm is an approximate inference based on
Laplace approximation combined with importance sampling post-correction. It is also possible to
perform first approximate MCMC using the argument mcmc_type = "approx" and then perform the
post-correction step using the results from the approximate MCMC. In doing so, we can also use the
function suggest_N to find a suitable number of particles N for ψ-APF in the spirit of Doucet et al.
(2015):

out_approx <- run_mcmc(mng_model, mcmc_type = "approx", iter = 50000)
est_N <- suggest_N(mng_model, out_approx)
out_exact <- post_correct(mng_model, out_approx, particles = est_N$N)

The function suggest_N computes the standard deviation of the logarithm of the post-correction
weights (i.e., the random part of log-likelihood of ψ-APF) at the approximate MAP estimator of θ using
a range of N and returns a list with component N which is the smallest number of particles where the
standard deviation was less than one. For small and moderate problems, typically, 10-20 particles are
enough.

Filtering and smoothing

The bssm package also offers separate methods for performing (approximate) state filtering and
smoothing which may be useful in some custom settings.

For LGSSM, methods kfilter and smoother perform Kalman filtering and smoothing. For non-
Gaussian models with linear-Gaussian dynamics, approximate filtering and smoothing estimates
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can be obtained by calls to kfilter and smoother. These functions first construct an approximating
Gaussian model for which the Kalman filter/smoother is then applied. For non-linear models defined
by nlg_ssm we can run approximate filtering using the extended Kalman filter with the function ekf,
the unscented Kalman filter with the function ukf, or the iterated EKF by changing the argument
iekf_iter of the ekf function. Function ekf_smoother can be used for smoothing based on EKF/IEKF.

For particle filtering, the bssm package supports a general bootstrap particle filter for all model
classes of the bssm (function bootstrap_filter). For "nlg_ssm", extended Kalman particle filtering
(Van Der Merwe et al., 2001) is also supported (function ekpf_filter). For particle smoothing, function
particle_smoother with the smoothing based on BSF is available for all models. In addition, ψ-APF
(using argument method = "psi") is available for all models except for "ssm_sde" class. Currently,
only the filter-smoother approach (Kitagawa, 1996) for particle smoothing is supported.

Comparison of IS-MCMC and HMC

Vihola et al. (2020) compared the computational efficiency of delayed acceptance MCMC and im-
portance sampling type MCMC approaches in various settings. Here we make a small experiment
comparing the generic Hamiltonian Monte Carlo using the NUTS sampler (Hoffman and Gelman,
2014) with rstan and IS-MCMC with bssm. Given that the bssm package is specialized for state
space models whereas Stan is a general purpose tool suitable for a wider range of problems, it is
to be expected that bssm performs better in terms of computational efficiency. The purpose of this
comparison is to illustrate this fact, i.e., that there is still demand for specialized algorithms for various
types of statistical models. For the complete code of the experiment, see supplementary materials.

We consider the case of a random walk with drift model with negative binomial observations and
some known covariate xt, defined as

yt ∼ NB(exp(βxt + µt), ϕ),

µt+1 = µt + νt + ηt,

νt+1 = νt,

with zero-mean Gaussian noise term ηt with unknown standard deviation σµ. Based on this we
simulate one realization of y and x with n = 200, ϕ = 5, β = −0.9, ν = 0.01, σµ = 0.1.

For the IS approach, we use ng_bsm function for model building, with prior variances 100 and
0.01 for the initial states µ1 and ν1. For hyperparameters, we used a fairly uninformative half-Normal
distribution with a standard deviation of 0.5 for σµ and 0.1 for σν. We then ran the IS-MCMC algorithm
with run_mcmc using a burn-in phase of length 10,000 and ran 50,000 iterations after the burn-in, with
10 particles per SMC.

Using the same setup, we ran the MCMC with rstan using 15,000 iterations (with the first 5000
used for warm-up). Note that in order to avoid sampling problems, it was necessary to tweak the
default control parameters of the sampler (see Appendix).

Table 1 shows the results. We see both methods produce identical results (within the Monte Carlo
error), but while rstan produces similar Monte Carlo standard errors with a smaller amount of total
iterations than bssm, the total computation time of rstan is almost 80 times higher than with bssm (58
minutes versus 45 seconds), which suggests that for these types of problems it is highly beneficial to
take advantage of the known model structure and available approximations versus general Bayesian
software such as Stan which makes no distinction between latent states α and hyperparameters θ.

bssm rstan

Mean SD MCSE Mean SD MCSE

σµ 0.092 0.037 9 × 10−4 0.090 0.036 9 × 10−4

σν 0.003 0.003 5 × 10−5 0.003 0.003 7 × 10−5

ϕ 5.392 0.910 2 × 10−2 5.386 0.898 1 × 10−2

β −0.912 0.056 1 × 10−3 −0.911 0.056 7 × 10−4

µ200 6.962 0.346 5 × 10−3 6.965 0.349 4 × 10−3

ν200 0.006 0.020 3 × 10−4 0.006 0.019 2 × 10−4

Table 1: Estimates of posterior mean, standard deviation and Monte Carlo standard error of the mean
for hyperparameters θ and latent states for last time point for the example model.
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Conclusions

State space models are a flexible tool for analyzing a variety of time series data. Here, we introduced
the R package bssm for fully Bayesian state space modeling for a large class of models with several
alternative MCMC sampling strategies. All computationally intensive parts of the package are
implemented with C++ with parallel computation support for IS-MCMC making it an attractive
option for many common models where relatively accurate Gaussian approximations are available.

Compared to early versions of the bssm package, the option to define R functions for model
updating and prior evaluation has lowered the bar for analyzing custom models. The package is also
written in a way that it is relatively easy to extend to new model types similar to current bsm_lg in the
future. The bssm package could be expanded to allow other proposal adaptation schemes such as the
adaptive Metropolis algorithm by Haario et al. (2001), as well as support for multivariate SDE models
and automatic differentiation for EKF-type algorithms.
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openSkies - Integration of Aviation Data
into the R Ecosystem
by Rafael Ayala, Daniel Ayala, Lara Sellés Vidal, and David Ruiz

Abstract Aviation data has become increasingly more accessible to the public thanks to the adoption
of technologies such as Automatic Dependent Surveillance-Broadcast (ADS-B) and Mode S, which
provide aircraft information over publicly accessible radio channels. Furthermore, the OpenSky
Network provides multiple public resources to access such air traffic data from a large network of
ADS-B receivers. Here, we present openSkies, the first R package for processing public air traffic data.
The package provides an interface to the OpenSky Network resources, standardized data structures to
represent the different entities involved in air traffic data, and functionalities to analyze and visualize
such data. Furthermore, the portability of the implemented data structures makes openSkies easily
reusable by other packages, therefore laying the foundation of aviation data engineering in R.

Introduction

The ADS-B aircraft surveillance technology enables the tracking of aircraft through the reception by
ground stations of a signal broadcast by the aircraft itself (Rekkas and Rees, 2008). Such a system
does not require any external input and is instead fully dependent on data obtained by the aircraft
navigation system. Additionally, unlike other radar-based systems used for aircraft surveillance, no
interrogation signals from the ground stations are required. This is in opposition to, for example, the
air traffic control radar beacon system operating in Mode S (Selective), where specific aircraft send
a response message only after reception of another signal (the interrogation) emitted by a ground
antenna. In the ADS-B, messages broadcast by an aircraft can include precise location information,
typically determined by a Global Navigation Satellite System, such as GPS (Global Positioning System).
Alternatively, it is possible to estimate the position of the aircraft from the timestamps of reception of
the broadcast signal at different stations through multilateration (Kaune et al., 2012).

The OpenSky Network initiative provides free access to high-quality air traffic data derived
from a network of thousands of ground stations that receive ADS-B messages, and, more recently,
FLARM ("Flight Alarm") messages as well (Schäfer et al., 2014). Both ADS-B and FLARM messages
are essentially radio signals broadcasted by an aircraft that can be received by other aircraft or ground
stations. They carry positional information and other data about the broadcasting aircraft (with the
main difference being that the FLARM system is primarily aimed at avoiding collisions. Therefore,
it also transmits a prediction of the trajectory of the aircraft in the next 20 seconds). More than 25
trillion ADS-B messages and over 3 billion FLARM messages have been collected by the OpenSky
Network since 2013, corresponding to over 400,000 aircraft in 190 countries. Such data provides the
basis to develop novel algorithms for the determination of aircraft position and the analysis of air
traffic data. Access to the available data is provided through two main tools: a live API (which also
supports the retrieval of historical data, although with some limitations) and an Impala shell (Apache
Software Foundation, 2020) that provides fast access to the full historical dataset, to which free access
can be obtained for research and other non-profit purposes. However, these resources by themselves
do not provide the data in appropriate data structures that make them amenable to advanced analyses
available in R and other R packages.

We present openSkies, an R package that aims to provide a well-established and documented
basis for the analysis of air traffic in R and to facilitate the future development of related algorithms.
To that extent, access to the OpenSky Network live API and Impala shell is provided, as well as a
decoder of raw ADS-B messages. A set of data structures that represent relevant concepts (such as
aircraft, flights, or airports) is also implemented and used to store the data retrieved from the OpenSky
Network. Relevant methods to process and analyze the corresponding data are associated with each
data structure.

The package also includes functions to perform statistical analysis and to visualize the retrieved
data, enabling, for example, the clustering of trajectories and the representation of aircraft and flight
paths in a given airspace. Additional functionalities can be easily built on the already implemented
classes and functions, either in future versions of openSkies or in other packages developed by
the R community. In the following sections, we describe the different features of the package and
demonstrate how each of them can be accessed and applied to real data.

Firstly, we describe the implemented data structures required to model air traffic (Data structures).
We then show the functions that allow instantiating said classes with data obtained from the OpenSky
Network (Information retrieval). Next, the currently available tools to visualize (Visualization of air
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traffic) and cluster (Clustering of aircraft trajectories) are presented. Finally, a tool to decode raw
ADS-B messages is presented (Decoding ADS-B messages). Examples with real data are provided
throughout the different sections to illustrate the features of the package.

Data structures

In order to establish standardized data structures that could serve as the basis for future developments
in air traffic analysis in R, a set of R6 classes representing the frequently involved entities was
implemented. R6 was chosen as the class system due to the possibility to establish formal definitions
of reference classes, as well as the smaller memory footprint and faster speeds of object instantiation,
field access, and field setting compared to base R’s Reference Classes system.

Additionally, R6 classes are portable. Therefore, the classes defined in openSkies can be used by
other packages.

In its current version (1.1.3), openSkies defines classes for the following entities: aircraft, airports,
flight instances, flight routes, single aircraft state vectors, and series of aircraft state vectors (Figure 1).
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Figure 1: R6 classes implemented in openSkies.

Class "openSkiesStateVector" represents the state vector of an aircraft at a given time. A state
vector comprises multiple pieces of information about the aircraft and its status, including posi-
tional information (latitude, longitude, altitude, whether the aircraft is on the ground) and trajec-
tory information (velocity, track angle, vertical rate). Sets of "openSkiesStateVector" are repre-
sented with class "openSkiesStateVectorSet", which contains two fields: a list of objects of class
"openSkiesStateVector" and a logical, indicating if the set of state vectors corresponds to a time series
of the same aircraft (field time_series). Class "openSkiesStateVectorSet" contains methods to add
more objects of class "openSkiesStateVector" to the contained list of state vectors, get interpolations
of any of the numerical fields of the state vectors (uniformly spaced or at specific time points), sort
the list of state vectors by a specific field, get the values of a given field for all the state vectors, and
split the set of state vectors into individual flight instances. The latter operation is performed by firstly
grouping the state vectors by aircraft and then splitting them into flights based on two conditions:
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either the aircraft staying on the ground for a given amount of time or the aircraft not sending any
status update for a given period (with default values of 300 seconds and 1800 seconds).

A flight instance is defined as a single flight performed by an aircraft, including typically (but
not necessarily) take-off, air transit, and landing. Flights are represented class "openSkiesFlight",
which contain fields for the aircraft that performed the flight, the departure and arrival times, the
airports of origin and destination (as objects of class "openSkiesAirport"), and a set of state vectors
describing the aircraft during the flight, which is an object of class "openSkiesStateVectorSet" with
field time_series=TRUE. The class contains methods to get the state vector of the aircraft for a specified
time, calculate the duration of the flight, and calculate the distance (based on features extracted from
the trajectories) to another object of class "openSkiesFlight".

Airports are represented by class "openSkiesAirport", with fields describing, among others, the
airport codes, its position (latitude, longitude, and altitude), and its location in terms of administrative
divisions of different levels.

Flight routes, which differ from flight instances in that they are designated paths followed regularly
by aircraft to go from one airport to another one, are represented by class "openSkiesRoute". The
class contains fields for the call sign and flight number associated with the route, its operator, and its
airports of origin and destination (objects of class "openSkiesAirport").

Finally, aircraft are represented by class "openSkiesAircraft", which contains fields describing
the aircraft model, registration, manufacturer, owner, and operator. Objects of this class can also
contain a field with an object of class "openSkiesStateVectorSet" representing the history of known
state vectors of the aircraft in a given period.

Information retrieval

While it is possible to manually instantiate any of the classes previously described by providing
values for the required fields with information obtained from any source, a more convenient way is to
instantiate them from information automatically retrieved from the OpenSky Network. To that extent,
a series of functions that retrieve data from the different resources offered by the OpenSky Network is
implemented. State vectors can be accessed with two functions. Firstly, getSingleTimeStateVectors
retrieves all the state vectors received at a specified time as an "openSkiesStateVectorSet" object
with field time_series=FALSE. In the default behavior, state vectors received from any aircraft at any
location are returned. However, the results can be filtered by specifying one or more aircraft and
the boundaries of an area of interest. On the other hand, getAircraftStateVectorsSeries retrieves
a time series of state vectors for a given aircraft with the specified time resolution, in the form of
an "openSkiesStateVectorSet" object with field time_series=TRUE. Both functions can retrieve data
from the OpenSky Network through two resources integrated seamlessly. By default, the live API is
employed. The live API does not require registration but imposes limitations (larger for anonymous
users) on the retrieval of historical data and the time resolution with which data can be accessed.
Additionally, large queries can take considerable amounts of time, especially when retrieving time
series of state vectors. Therefore, the functions can also access the database through the Impala shell,
which requires registration but does not impose such limits and performs queries significantly faster.
Authentication for these two functions can be performed by providing login details through the
username and password arguments, and access through the Impala shell can be enabled by authorized
users simply by setting argument useImpalaShell=TRUE. New users can register through the OpenSky
Network website, and Impala shell access should be directly requested to the OpenSky Network
administrators.

In both cases, the resulting objects of class "openSkiesStateVectorSet" can be used to instan-
tiate objects of class "openSkiesFlight" by calling the split_into_flights method. Alternatively,
functions to retrieve flight instances from the OpenSky Network are available, based on the aircraft
that performed them (getAircraftFlights) or the airport of origin (getAirportDepartures) or des-
tination (getAirportArrivals). In all cases, it is possible to include the time series of state vectors
corresponding to each flight by setting includeStateVectors=TRUE and airport metadata through
includeAirportsMetadata=TRUE.

Airport and aircraft metadata can also be retrieved independently with the getAirportMetadata
and getAircraftMetadata functions by providing the ICAO 4-letter code of the airport of interest or
the ICAO 24 bit address of the target aircraft, respectively.

Finally, information about routes can be accessed by providing the call sign of the route to the
getRouteMetadata function, which includes the possibility to retrieve the metadata of the associated
airports of origin and destination if includeAirportsMetadata=TRUE.

In the following example, we aim to demonstrate some of the most common methods for retrieving
air traffic data and analyzing it.
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library(openSkies)

## In the following example, we retrieve information about all flights
## that departed from Frankfurt Airport the 29th of January 2018 after 12 pm.
## It should be noted that such large requests can take a long time unless
## performed with the Impala shell
## It should also be noted that, in this and the following examples, the
## values for the username and password arguments should be substituted with
## personal credentials registered at the OpenSky Network
flights <- getAirportArrivals(airport="EDDF", startTime="2018-01-29 12:00:00",

endTime="2018-01-29 24:00:00", timeZone="Europe/Berlin",
includeStateVectors = TRUE, timeResolution = 60,
useImpalaShell = TRUE, username = "user",
password = "password")

## We can then easily check the amount of flights
length(flights) # 316 flights

## Trajectories of the 316 flights can be obtained by retrieving
## the set of state vectors of each flight
trajectories_frankfurt <- lapply(flights, function(f) f$state_vectors)

## It is also possible to retrieve all state vectors received from a
## given aircraft in a given period of time. In the following example, we
## obtain all the state vectors received for aircraft with ICAO24 code
## 403003 between 12 PM of the 8th of October, 2020 and 6 PM of the
## 9th of October, 2020
stateVectors <- getAircraftStateVectorsSeries("403003", startTime = "2020-10-08 12:00:00",

endTime = "2020-10-09 18:00:00",
timeZone="Europe/London",
timeResolution = 60,
useImpalaShell = TRUE,
username = "user",
password = "password")

## The ensemble of state vectors can then be split into individual
## flight instances, revealing that the aircraft performed 6 flights
## in the analyzed period
flights <- stateVectors$split_into_flights()
length(flights) # 6 flights

## Let us get some additional information about the flights performed by
## this aircraft. For example, the maximum speed that it reached in km/h
maxSpeed <- max(stateVectors$get_values("velocity", removeNAs = TRUE))/1000*3600

## The maximum speed that it reached is just above 210 km/h. This is well below
## the speed typically used by commercial passenger jets, usually around 800 km/h
## Investigation of the aircraft model confirms that it is indeed a small CESSNA 152
aircraftData <- getAircraftMetadata("403003")
aircraftData$model

Visualization of air traffic

Two main methods for visualization of air traffic are currently available in openSkies: plotting of
flights and plotting of aircraft at a given time.

The first method aims to represent flights performed by one or more aircraft over a given period
of time. If only a single flight is to be plotted, the plotRoute function can be used, which receives
as its main input an object of class "openSkiesStateVectorSet" with time_series=TRUE. Alterna-
tively, plotRoutes can be used for plotting multiple flights, receiving in this case as input a list of
"openSkiesStateVectorSet" objects with time_series=TRUE. The color of the routes can be manually
set by providing a vector of color names to pathColors and setting literalColors=TRUE. It is also
possible to color the routes according to the value of any property by providing such values as a factor
to pathColors and setting literalColors=FALSE.
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The second visualization method (plotPlanes) enables the plotting of all aircraft flying over
a defined area at a particular time. An "openSkiesStateVectorSet" object with each state vector
representing the position of an aircraft at the desired time should be provided as input, most frequently
obtained through getSingleTimeStateVectors.

All plotting functions allow plotting onto any object of class ggmap from the ggmap package (Kahle
et al., 2019). If no ggmap object is provided, one will be created internally, with boundaries large enough
to contain all the positions in the provided "openSkiesStateVectorSet" objects, plus additional space
determined by the paddingFactor argument.

The following examples demonstrate the application of visualization functions. First, the formerly
retrieved trajectories for the CESSNA 152 are plotted with different colors:

## First, let us obtain the trajectories of the flights performed
## by the CESSNA 152
trajectories_CESNA152 <- lapply(flights, function(f) f$state_vectors)

## Then, we create a color palette
library(viridis)
colors <- magma(length(trajectories))

## Then, the trajectories are plotted
plotRoutes(trajectories, pathColors = colors, lineSize = 1.2,

lineAlpha = 0.8, includeArrows = TRUE,
paddingFactor = 0.05)

The resulting plot is shown in Figure 2. Next, we plot all the aircraft flying over Switzerland in a
given instant:

## Firstly we retrieve the state vectors of all aircraft flying over Switzerland
## the 2nd of March, 2018 at 14.30 (London time)
vectors_switzerland <- getSingleTimeStateVectors(time="2018-03-02 14:30:00",

timeZone="Europe/London",
minLatitude=45.8389,
maxLatitude=47.8229,
minLongitude=5.9962,
maxLongitude=10.5226,
username="user",
password="password",
useImpalaShell = TRUE)

## Then, the aircraft are plotted
plotPlanes(vectors_switzerland)

The result is shown in Figure 3.

Clustering of aircraft trajectories

As a means to analyze trajectories, openSkies provides the functionalities to perform clustering of
trajectories. The first step is to obtain a matrix of features of the trajectories to be clustered. This can be
achieved by providing a list of "openSkiesStateVectorSet" objects to the getVectorSetListFeatures
function.

The "openSkiesStateVectorSet" objects in the list should each correspond to a single flight
instance, and therefore it is advisable to first split the data into individual flights with method
split_into_flights. It is possible to include track angles in the generated features matrix by setting
useAngles=TRUE, which can be desirable if flights going along the same route but in opposite directions
should be classified separately.

The computed features matrix (or, alternatively, the list of "openSkiesStateVectorSet" objects, in
which case the features matrix will be calculated internally) can then be passed to the clusterRoutes
function. A number of different clustering algorithms can be selected through the method argument.
Possible methods are dbscan, kmeans, hclust, fanny, clara, and agnes.

The desired number of clusters can be specified through numberClusters, although this argument
is ignored if the DBSCAN algorithm (Hahsler and Piekenbrock, 2019) is used since it does not require
a priori determination of the number of clusters. Instead, the eps parameter controls the size of the
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Figure 2: Visualization of flights performed by a CESSNA 152.
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Figure 3: Visualization of aircraft flying over Switzerland.
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epsilon neighborhood to be passed to the DBSCAN, which influences the number of found clusters
(any two trajectories will be considered to belong to the same cluster if their calculated distance is
below the threshold epsilon).

For all other methods (Maechler et al., 2019), if a number of clusters is not chosen, it will be
internally estimated. The results of clustering can be visualized by providing the factor with the
assigned clusters to the pathColors argument of plotRoutes. In the following example, we perform
clustering of the previously obtained set of 316 flights departing from Frankfurt airport (Figure 4).

## As an example, let´s cluster the previously retrieved 316 flights departing
## from Frankfurt airport into 8 clusters with the k-means algorithm
clusters = clusterRoutes(trajectories_frankfurt, "kmeans", numberClusters = 8)

## The results can be visualized with plotRoutes
plotRoutes(trajectories_frankfurt, pathColors = clusters$cluster,

literalColors = FALSE, paddingFactor = 0.1)

## The clusters differ in their broad area of destination. For example,
## clusters 4, 5 and 6 comprise mostly flights to North America, Japan and
## central Asia respectively. Due to their geographical proximity, it is expected
## that flights from cluster 5 are closer to flights from cluster 6 than
## to those assigned to cluster 4. Let us confirm this:
flights[clusters$cluster==5][[1]]$distance_to_flight(flights[clusters$cluster==6][[1]])
## Returns 123.3449
flights[clusters$cluster==5][[1]]$distance_to_flight(flights[clusters$cluster==4][[1]])
## Returns 348.4957

## The shorter distance between flights of clusters 5 and 6 is in accordance with
## the expectations.
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Figure 4: Clustering of flights departing from Frankfurt airport.

Decoding ADS-B messages

Finally, openSkies also provides a decoder of raw ADS-B messages, implemented as an instance
of R6 class "adsbDecoder" with the methods required to decode messages. This tool is useful for
users willing to extract air traffic data from their own sources, such as private ADS-B receivers.
Firstly, the messages, typically available in hexadecimal format, must be converted to binary format,
which can be achieved with the hexToBits function. The binary messages can then be passed to
the decodeMessage method, which decodes a single message. It should be noticed that, due to the
Compact Position Reporting format with which the position of airborne aircraft is encoded, at least 2
consecutive positional ADS-B messages are required in order to unequivocally determine the position
of the aircraft (referred to as even and odd frames).

Therefore, the decoder caches the most recently even and odd decoded message, to decode the
next complementary positional message.
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It is also possible to provide a list of messages in binary format to the decodeMessages method,
which will directly provide positional information about the aircraft if the list contains two comple-
mentary even and odd positional messages. In the following example, we demonstrate both the
sequential and batch decoding of ADS-B messages:

## Let use the following set of 2 ADS-B messages in hexadecimal format
## to illustrate the ADS-B decoder
message1 <- "8D40621D58C386435CC412692AD6"
message2 <- "8D40621D58C382D690C8AC2863A7"

## First, the messages must be converted to binary format:
message1_bin <- ADSBDecoder$hexToBits(message1)
message2_bin <- ADSBDecoder$hexToBits(message2)

## We can then obtain positional information by sequentially decoding
## both messages. Note that no positional information is obtained from the
## data extracted from message1, since this is the first message of the two
## that, as a pair, encode positional information.
message1_decoded <- ADSBDecoder$decodeMessage(message1_bin)
message2_decoded <- ADSBDecoder$decodeMessage(message2_bin)
message2_decoded$data$lat # The latitude is 52.2572 degrees North
message2_decoded$data$lon # The longitude is 3.919373 degrees East

## We can also provide both messages as a list to decode them simultaneously:
all_messages_decoded <- ADSBDecoder$decodeMessages(list(message1_bin, message2_bin))

Future work

openSkies is in active development. Therefore, novel features are expected to be available through
frequent updates.

Some of the features that will become available in the short and medium-term include:

• Smoothing and filtering of trajectories to remove spurious position outliers through both linear
and non-linear methods.

• Automatic detection of the different segments of flight instances (such as take-off, initial climb,
cruise altitude, descent, and landing).

• Detection of in-flight events and flight patterns. For example, delays in landing due to multiple
reasons, which are often seen as small periodical trajectories near the destination airport.

• Application of detected in-flight events and flight patterns to obtain additional information
about the involved aircraft, such as aircraft, type when this is not readily available.

Summary

New technologies such as ADS-B surveillance and initiatives like the OpenSky Network have largely
increased the amount of air traffic data that is publicly available, as well as its accessibility. However,
the data provided by said resources must be parsed and formatted adequately in order to be analyzed
in-depth and serve as the starting point to develop new algorithms useful for the field, such as novel
multilateration methods.

However, while appropriate toolboxes have been implemented in other languages (Olive and
Basora, 2019), such a standardized set of tools was not available in R until the development of
openSkies, which aims to fill this void. One of the key features of our package is the automation
and streamlining of the data engineering required in order to access air traffic data at a large scale
and to enable data scientists to make meaningful analyses with it. The implemented portable data
structures and functionalities provide a solid base to apply the vast range of functionalities provided
by other R packages to air traffic data. The ecosystem created with future packages that interoperate
with openSkies, together with reference datasets (Schäfer et al., 2020), should serve to standardize
and expand the scope of air traffic data analysis in R.
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Generalized Linear Randomized
Response Modeling using GLMMRR
by Jean-Paul Fox, Konrad Klotzke and Duco Veen

Abstract Randomized response (RR) designs are used to collect response data about sensitive
behaviors (e.g., criminal behavior, sexual desires). The modeling of RR data is more complex since it
requires a description of the RR process. For the class of generalized linear mixed models (GLMMs),
the RR process can be represented by an adjusted link function, which relates the expected RR
to the linear predictor for most common RR designs. The package GLMMRR includes modified
link functions for four different cumulative distributions (i.e., logistic, cumulative normal, Gumbel,
Cauchy) for GLMs and GLMMs, where the package lme4 facilitates ML and REML estimation.
The mixed modeling framework in GLMMRR can be used to jointly analyze data collected under
different designs (e.g., dual questioning, multilevel, mixed mode, repeated measurements designs,
multiple-group designs). Model-fit tests, tools for residual analyses, and plot functions to give
support to a profound RR data analysis are added to the well-known features of the GLM and
GLMM software (package lme4). Data of Höglinger and Jann (2018) and Höglinger, Jann, and
Diekmann (2014) are used to illustrate the methodology and software.

Introduction

Response distortion is known to be a potential threat to accurate (survey) results. The methodological
literature shows many examples of misreporting of embarrassing or socially undesirable behaviors
in surveys (Tourangeau and Yan, 2007; Tourangeau and Smith, 1996). The randomized response
technique (RRT) has been developed to encourage respondents to answer truthfully to questions
about sensitive behaviors. The RRT is designed to collect responses in an indirect way, where
respondents are instructed to answer a sensitive question truthfully only with a certain probability.
Therefore, an affirmative response to a sensitive question is masked by a random device at the
individual level. The traditional way of direct questioning (DQ) about sensitive topics is known to
lead to socially desirable responses or non-cooperation of the respondents. Honest responding is
encouraged by RRT by increasing anonymity and confidentiality.

After the introduction of the randomized response (RR) design by Warner (1965), many ran-
domized response (RR) designs have been introduced to improve RRT performance in collecting
sensitive information. Warner’s design is based on a deck of cards containing cards with the sensitive
question and cards with its negation. Since then, different randomizing devices have been introduced
to improve the privacy protection of the respondent. Outcomes of rolling dice or spinning a spinner
have been used to determine at random one of the possible routings to response for a respondent.
Another non-sensitive question has been introduced to make the design easier to implement, where
the response to the non-sensitive question is used to steer the response process at random. For online
surveys, an online randomizing device, such as a digital dice or spinner, is less reliable since the
computer outcomes can be stored. Therefore, techniques have been developed where user interaction
is requested to generate a random outcome, which cannot be digitally stored. Currently, there are
many ways to randomize the response in an online survey, where the randomizing design properties –
the level of privacy protection and the efficiency of the design – are still under the control of the
investigator.

The flexibility in RR designs has also improved the utility of the RRT. They can be applied
to survey items (Lensvelt-Mulders et al., 2005; van den Hout et al., 2010) but also to scale items
for measuring sensitive constructs (Fox, 2005; Fox and Meijer, 2008; Fox et al., 2013). Different
RRT implementations have been introduced and applied in many research fields. Together with
this expansion of the RRT to different domains, statistical tools have been developed to improve
the analysis of RR data. Scheers and Dayton (1988) developed a (logistic) linear regression method
for RR data to explore relationships between variables in addition to estimating prevalence rates
of the sensitive attribute. Since then, more advanced statistical regression models for RR data
have been developed. For instance, randomized item-response theory (RIRT) models for measuring
sensitive constructs (Fox, 2012) and mixture RR models to deal with non-cooperating participants
(Fox et al., 2013). To further stimulate the use of RRT, software tools are needed to make the
developed methods and designs for RR data widely available.

Recently, two packages for RR data have become available in R. The package rr of Blair et al.
(2015) was developed for univariate power analysis to measure the sensitive item prevalence for four
RR designs. It also comprehends a logistic regression function for RR data collected with a single RR
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design. The package RRreg of Heck and Moshagen (2018) has logistic and linear regression routines,
which can include random effects, and tools for power analysis for different RR designs (including
those for continuous data). However, both packages are restricted to single-group RR designs and
do not allow joint analysis of different randomization schemes across items and/or participants.

Multiple-group RR designs are particularly interesting in online surveys, where different RR
designs and different random devices can be easily varied. For instance, the level of protection
can be moderated by varying the design parameters, and RR designs can be varied across survey
items to improve truth-telling. For validation studies, multiple-group RR designs are relevant to
make comparisons between groups questioned with different RR designs (Höglinger and Jann, 2018;
Höglinger et al., 2016). For a meta-analysis, a joint analysis of the available data can improve
the measurement of a sensitive prevalence. Furthermore, differences in prevalence estimates can
be examined across studies. More recently, there has been an increased interest in measuring the
efficacy of the RRT to improve the honest disclosure of sensitive information (John et al., 2018).
This is usually done through validation studies where a DQ group serves as the baseline, and it is
investigated whether higher prevalence estimates are obtained with a single-group RRT. The huge
amount of literature on the topic and mixed results about the benefits of RRT has led to skeptical
positions toward RRT (Wolter and Preisendörfer, 2013). However, the RR design parameters (the
random-device properties), as well as the type of RR design, can influence the response behavior, and
care must be taken in designing the RRT to reduce the level of misreporting. It is not likely that a
fixed privacy level encourages truth-telling in a uniform way across participants. The performance of
RRT will vary across subgroups and participants, and different RR designs can vary in performance
across subgroups depending on the level of sensitivity of the question.

The R package GLMMRR extends existing implementations by providing generalized regression
tools for multiple-group RR designs. It builds in a natural way on common regression methods of the
system package stats to make them suitable for RR data. The R package GLMMRR gives support
to generalized linear (mixed effects) regression modeling of binary RR data and extends the popular
generalized linear regression routines in R to handle RR outcomes by including RR-specific link
functions for a wide variety of RR designs. The GLMMRR provides several important contributions
for the joint regression analysis of binary RR data:

1. Different link functions (logit, probit, complementary log-log, cauchit) are supported to
optimize the link between the linear predictor and the response and to avoid restrictions on
the range of the (expected) response. The complementary log-log and cauchit link functions
approach the asymptotes of zero and one asymmetrically.

2. Each link function is modified to an RR-link function to make it suitable for various RR
designs (Warner, Unrelated question, Forced response, Kuk, Crosswise, Triangular), where
two design parameters specify the properties of the RR design.

3. The package supports a joint regression analysis of RR data sampled with different RR designs
and different design parameters. Each response observation is either indirectly observed with
an RR design with unique design parameters or directly observed without an RR design.

4. For randomized item-response data, RR-design specific (weighted) prevalence rates and
confidence intervals can be computed for each item. Trait levels can be estimated, where the
items serve as indicators of a sensitive trait.

5. Extensive residual tools are available for the evaluation of the fit of the model. This includes
Pearson, deviance and response residuals, goodness-of-fit statistics (Pearson’s and deviance
chi-square statistic, Hosmer-Lemeshow statistic), and the Akaike’s Information Criterion
(AIC) and the Bayesian Information Criterion (BIC).

6. The RRglm is used to fit a GLM, and an object of class "RRglm" is created, which extends
the class "glm" with RR data. The glm methods are applicable to an object of class "RRglm".
The function summary or print can be used to obtain a summary of the results. Other useful
features can be extracted using the well-known generic functions, such as coefficients,
effects, fitted.values, and anova.

7. The RRglmer for fitting a GLMM returns an object of class "RRglmerMod" which extends the
class "glmerMod" and "merMod" with RR data. The methods for an object of class "glmerMod"
are applicable for an object of class "RRglmerMod" (the methods can be found in the lme4
documentation).

This paper is organized as follows. In the next section, the RR-link functions are introduced,
and the GLM and GLMM modeling framework for RR data is introduced. A general introduction
is given where the responses are distributed according to a distribution of the exponential family,
and the RR-link function is used to link the linear predictor to the expected (randomized) response.
In Section 2.3, the ML and REML estimation method is discussed for the GLM(M) with RR-link
functions. Then, the RIRT modeling approach for measuring sensitive constructs is discussed.
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Section 2.5 discusses different methods to evaluate the fit of the model. Different residuals are
defined (Pearson, deviance, response) for a GLM. For a GLMM, a conditional residual is defined
as the difference between the observation and the conditional expected value (given the random
effect estimate). Goodness-of-fit statistics are introduced by grouping the Pearson and deviance
residuals. For a fixed number of groups, the Hosmer-Lemeshow (H-L), the Pearson, and the deviance
statistic are approximately chi-square distributed and can be used to evaluate the global fit of a
GLM. In Section 2.6, the two main functions of the package are discussed for fitting GLMs and
GLMMs with RR data. In Section 2.7, an illustration of the package is shown by analyzing data
from the validation study of Höglinger and Jann (2018), where differences in outcomes between
RR designs are evaluated. Furthermore, the prevalence of student misconduct is analyzed with a
randomized item-response theory model where students were assigned to different treatment groups,
each assigned to a specific RR design. A joint modeling approach is carried out to examine differences
between treatment groups. Then, in Section 2.8, the conclusions are given.

General randomized-response probability model

When collecting RR data, each observation is randomized before it is observed. The RR process
makes it impossible to directly relate an observed RR to the sensitive question. It masks the answers
of respondents. To ease the notation, a distinction is made between respondents with index i and
items with index k. A further specification is possible where participants and/or items are grouped,
which will be shown in the real data examples in Section 2.7. Thus, respondent’s i prevalence to
the sensitive question k, denoted as π̃ik, cannot be directly measured. Instead, the RR probability,
denoted as πik, is measured.

Fox et al. (2018) showed that for the common RR designs for binary data, the RR probability
for the observed RR data can be related to the prevalence of the sensitive question through a linear
equation. This linear relationship is given by,

πik = cik + dikπ̃ik. (1)

The RR parameters c and d determine the type of RR design. A variety of RR designs can be
represented by Equation (1): Warner’s design (Warner, 1965), Unrelated Question (UQM) design,
Forced response (FR) design (Boruch, 1971), Kuk’s design (Kuk, 1990), Triangular design (Yu et al.,
2008), and the Crosswise (CW) design (Yu et al., 2008). The RR parameters c and d are retrieved
from the RR design parameters. For instance, for Warner’s design, a positive response is given to the
sensitive question with probability p1 or a negative response to its negation with probability 1 − p1,

πik = p1π̃ik + (1 − p1)(1 − π̃ik)

= (1 − p1)︸ ︷︷ ︸
cik

+ (2p1 − 1)︸ ︷︷ ︸
dik

π̃ik.

The parameters cik and dik describe the random response process, which are allowed to vary across
questions and respondents such that the data-collection design is defined for every single response.
Fox et al. (2018) give an overview in which the RR-design parameters are represented as RR
parameters for various RRTs.

Although the RR designs work in different ways, a general RR model can be defined, which
relates the RR data to the prevalence of the sensitive question. This general RR model is extended
to a GLM and GLMM by linking the prevalence π̃ik to a linear predictor. The GLMMRR functions
require the RR design parameters p1 and p2. The function getRRparameters provides the RR
parameters c and d given the type of RR design and corresponding parameter values. This is
illustrated in our applications in Section 2.7, where the RR designs UQM, FR, and CW are used,
and the DQ design serves as a baseline.

Modified link functions for GLMs and GLMMs

The object is to define the natural link function, which relates the expected RR to a linear predictor
for the prevalence π̃ik. The RR parameters cik and dik are integrated into the link function to
relate the expected RR observation to this linear predictor without explicitly parameterizing the
prevalence. In this approach, the natural link functions for Bernoulli distributed observations are
modified to account for the RR parameters. Simply by adjusting the natural link functions, the
class of GLMs and GLMMs is extended to (binary) RR data.

Let Yik denote the (binary) RR observation of respondent i to item k. For binary data, the
expected response is equal to the RR probability, πik. The expected response is related to a linear
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predictor denoted as ηik, which is a linear combination of predictor variables for respondent i related
to the response to item k. For binary RR data, the expected RR observation is equal to the RR
probability, πik, and the relationship with the ηik can be represented by

E (Yik | ηik) = πik

= cik + dik π̃ik

= cik + dikg−1 (ηik)

= cik + dikg−1 (
xt

ikβ + zt
ikbi

)
, (2)

where the explanatory variables xik have fixed effects (i.e., common across respondents) and the
zt

ik have random effects (i.e., vary across respondents). The random effect bi is assumed to have
a multivariate normal distribution with mean zero and variance Σb. For cik = 0 and dik = 1, the
g−1() is the mean function for (non-randomized) Bernoulli distributed observations. It follows
that the natural link function for Bernoulli distributed data, g(), needs to be modified to link the
expected RR to the linear predictor for the prevalence π̃ik,

g

(
πik − cik

dik

)
= ηik. (3)

Consider the Bernoulli distributed RR observation with success probability πik, for which four
different cumulative distribution functions can be applied (i.e., logistic, probit, Gumbel, Cauchy).
Then, the distribution of the RR is given by

Yik ∼ B (πik) (4)
πik = cik + dikg−1 (ηik) (5)

=


cik + dik

exp(ηik)
1+exp(ηik)

Logistic
cik + dikΦ (ηik) Probit
cik + dik (1 − exp (1 − exp (ηik))) Gumbel
cik + dik

(
arctan (ηik) /π + 1

2
)

Cauchy.

(6)

Next, four different link functions are defined by modifying the linear predictor’s relation with
the prevalence, such that it relates to the expected RR observation. The possible (modified) link
functions are given by,

ηik = g ((πik − cik)/dik) (7)

=


ln

(
πik−cik

cik+dik−πik

)
Logit Link

Φ−1 (
πik−cik

dik

)
Probit Link

ln
(
− ln

(
cik+dik−πik

dik

))
Complementary log-log Link

tan
(
π

(
πik−cik

dik

))
Cauchit Link.

(8)

The considered four different link functions are modified versions of the common link functions as
defined in, for example, McCullagh and Nelder (1989) and Tutz (2011). When cik = 0 and dik = 1,
the common link functions for directly observed responses are given.

Exponential family distributions

The modified (natural) link functions can be employed for (Bernoulli) exponential family distributed
RR data. Assume the observed RR data is distributed according to a distribution of the exponential
family; that is,

p (yik | θik, ϕik) = exp
(

yikθik − A (θik)

ϕ
+ C (yik, ϕ)

)
. (9)

Then, the log-likelihood of the parameter θik and ϕ is expressed as

l (θik, ϕ; y) = log p (y | θik, ϕ) =
∑
i,k

yikθik − A (θik)

ϕ
+ C (yik, ϕ) . (10)

The θik is the canonical parameter and depends via a linear predictor on explanatory variables. The
dispersion parameter is usually unknown and used to model the variance of the response data. The
functions A(.) and C(.) are known and determined by the specified distribution of the family. Then,
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for Bernoulli distributed RR observations the natural form of the parameters is given by

θik = log
(

cik + dikπ̃ik

1 − (cik + dikπ̃ik)

)
(11)

A(θik) = log (1 + exp (θik)) (12)
ϕ = 1. (13)

Thus, the general properties of the exponential family distributions can be used to make inferences
about the parameters. For instance, the maximum likelihood estimate for the population prevalence
π̃ can be derived. The log-likelihood has a unique maximum at θ̂ which is the solution to∑

i,k

yik = A′(θ̂) =
∑
i,k

(
1 + exp(−θ̂ik)

)−1

∑
i,k

yik =
∑
i,k

(cik + dikπ̂)

π̂ =

∑
i,k

yik −
∑
i,k

cik

 /
∑
i,k

dik = (y − c)/d. (14)

This maximum likelihood (ML) estimate for the prevalence is referred to as a weighted (ML) estimate,
where the weights are defined by the RR parameters.

Furthermore, the inverse of the function A′(θ) represents the natural link function. Thus, the
modified natural link function for Bernoulli distributed RR data can be derived using this property
of the exponential family distribution:

πik = A′ (θik)

=

[
1 + exp

(
− log

(
cik + dikg−1(ηik)

1 − (cik + dikg−1(ηik))

))]−1

= cik + dikg−1(ηik)

ηik = g ((πik − cik)/dik) ,

where g−1(.) is the cumulative distribution function for (non-randomized) Bernoulli distributed
data as defined in Equation (6). The corresponding link functions are defined in Equation (8).

ML and REML estimation

It can be shown that the maximum likelihood (ML) equations for the GLM for RR data resemble the
general form of the GLM ML-equations (Fox et al., 2018, Appendix B). The only difference is that
the conditional expected RR observation includes the RR parameters, and a modified link function
is needed to link the conditional expected response to the linear term. The GLM parameters are
usually estimated by ML methods using the iterative weighted least squares (IWLS) algorithm or
Fisher scoring algorithm. The glm function implemented in R is a very flexible implementation of
the general GLM framework (Chambers and Hastie, 1992). The package GLMMRR provides an
expanded version of this function (RRglm), which includes modified link functions to fit GLMs on
RR data. Given ML estimates, (maximum) likelihood theory can be used to obtain likelihood ratio
tests, Wald and score tests.

The likelihood equations for the fixed effect parameters of the GLMM for RR data have the same
structure as those for the GLMM (Fox et al., 2018, Appendix B). For the fixed effects, the GLM
methodology can be used, since the fixed effects are not included in the random effect distribution.
Depending on the dimension of the random effect parameter, numerical approximations are required
to approximate the integrals to estimate the variance components and random effects. The numerical
methods available in GLMMRR build on those available in the package lme4. Different numerical
methods have been proposed; Laplace approximation and adaptive Gaussian quadrature are both
implemented. Laplace approximation is usually fast and the default. The approximation improves
when the cluster sizes increase. In Gaussian quadrature, a number of quadrature points need to be
chosen, and the approximation is improved by increasing the number of quadrature points. Adaptive
Gaussian quadrature usually fails when the dimension of the random effects is larger than two. It is
also possible to compute restricted ML estimates (REML), which is also implemented. The control
argument can be used in the function call to RRglmer to set the control parameters, which includes
the optimizer to be used.
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Randomized item-response theory modeling

An important class of item response theory (IRT) models belong to the GLMM class (Rijmen et al.,
2003). These IRT models have a linear component for the transformed expected values of a binary
response variable, which contains a random component(s) representing the latent variable(s). In the
most common form, the linear term has a random component representing a random person effect
and fixed components representing item effects. In Section 2.2.1, it is shown that the GLMM is
extended to RR data using modified link functions. Therefore, IRT models belonging to the GLMM
class can also be generalized to randomized item-response theory (RIRT) models.

The randomized item-response observations are clustered by persons and items, with cik and
dik representing the RR parameters. The latent variable for person i is denoted by ϑi and the effect
of item k by βk. Then, the RIRT model – the Rasch model for RR data – can be represented as

πik = cik + dikg−1 (ϑi + βk) (15)
ϑi ∼ N(0, σ2),

where g−1 is usually the logistic or cumulative normal distribution function. The item effects have a
positive sign and should be interpreted as a easiness parameters.

The RIRT model can be fitted in R using the function RRglmer from our package GLMMRR.
This is similar to fitting an IRT model using the function glmer from lme4 (De Boeck et al., 2011),
except that a modified link function is required for the RIRT. The data needs to be in a long format.
Then, each data case has a response (response), a person identifier (person), an item identifier
(item), the type of RR design (RRmodel), and RR design parameters (RRp1,RRp2). The RR model
and parameters are allowed to vary across data cases.

To fit the RIRT model in Equation (15), a linear component is defined from the factor variables:
-1+item+(1|person). The -1 restricts the general mean to zero, the item represents the item
parameters, and the (1|person) represents the latent variable (random effect). This linear component
is set equal to the outcome response in the model formula. To fit a logistic RIRT, the call to
RRglmer includes a modified logistic link function (RRlink.logit):

RRglmer(response ~ -1 + item + (1|person), link = "RRlink.logit",
RRmodel = RRmodel, p1=RRp1, p2=RRp2, data=data)

where the RRmodel, p1, and p2 arguments define the RR design for every single response. The probit
RIRT model can be fitted using the link function RRlink.probit. The RIRT models can be extended
by including (1) item-covariate models (e.g., linear-logistic test model), (2) person-covariate models
(e.g., multilevel IRT), and (3) person-by-item covariate models. Covariates with fixed or random
effects can be included in the linear term.

Model fit and diagnostics

The likelihood ratio (LR) test can be used to compare nested models. The nested model is a
restriction of a more general model by restricting one or more parameters most often to zero. The
log-likelihood ratio (multiplied by minus two) is asymptotically chi-square distributed with the
degrees of freedom equal to the difference in the number of free parameters. The LR test can be
performed with the anova function to compare two nested GLM(M)s for RR data. Note that the
LR test cannot be applied to test a hypothesis on the boundary of the parameter space. Since then
the LR statistic is no longer chi-square distributed. ML estimation is preferred when comparing
models that only differ in their fixed part.

To compare (non)-nested models, the usual information criteria can be used. The AIC and the
BIC are both computed for GLM and GLMM, with the function RRglm and RRglmer, respectively,
and reported in their output. The anova function also reports the AIC and BIC.

To evaluate the significance of fixed effects, a z-statistic is reported, which is the ratio of the
parameter estimate and the estimated standard error. The z-statistic is asymptotically equivalent to
the LR test. P-values are reported in the output of RRglm and RRglmer with the assumption that
the z-statistic is asymptotically normally distributed.

Residuals

The error term in GLM(M)s represents a Bernoulli random error term, and the errors are assumed to
be independently distributed. There are different types of residuals and different types of residual sum
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of squares to examine the fit of the model. The estimated residuals in the GLM and GLMM are based
on the fitted RR probabilities, π̂ik. The fitted prevalence can be computed as ˆ̃πik = (π̂ik − cik)/dik,
according to Equation (1).

GLM The residuals are computed for each observation yik, but for notational convenience, the
index k is dropped, and the index i refers to a single observation yi. The Pearson and deviance
residual is often computed, and both are used in a goodness-of-fit statistic. The Pearson residual is
defined as the standardized difference of the response and its expected value,

rp(yi, π̂i) =
yi − π̂i√
π̂i(1 − π̂i)

.

The covariate patterns can be used to group the residuals in a natural way. Each unique covariate
pattern defines a cluster j, where the number of response observations in cluster j is given by nj ,
the observed proportion y, and a unique estimated probability denoted as π̂j . Then, the Pearson
residual for cluster j is defined as

rp(yj , π̂j) =
yj − π̂j√

π̂j(1 − π̂j)/nj

.

The clustering of observations can also be based on the predicted outcome (Hosmer and Lemeshow,
1980). The observations are sorted according to their fitted probabilities, and this sorted vector is
divided into J clusters of equal size. The corresponding clustered Pearson residuals are referred to
as H-L residuals. The Pearson residuals and clustered Pearson and H-L residuals can be extracted
from a fitted object of class RRglm with the following commands, respectively:

residuals(object, type="pearson")
residuals(object, type="pearson.grouped")
residuals(object, type="hosmer-lemeshow", ngroups=10)

For the H-L residuals, the ngroups argument defines the desired number of clusters, and the default
is 10. The sum of squared grouped residuals defines a goodness-of-fit statistic, which is given by

X2 =

J∑
j=1

r2(yj , π̂j) =

J∑
j=1

nj

(
yj − π̂j

)2

π̂j(1 − π̂j)
.

Depending on the type of clustering, the statistic is the Pearson goodness-of-fit statistic, X2
p , or the

H-L goodness-of-fit statistic, X2
HL. The Pearson statistic is asymptotically chi-square distributed

for a fixed number of groups with degrees of freedom J − (q + 1), and q the number of independent
covariates. When the predictor variables are continuous, the X2

p test cannot be used. For semi-
continuous observations, it is possible to find a clustering with a sufficient number of observations
in each cluster. The X2

HL statistic is assumed to be chi-square distributed with J − 2 degrees of
freedom (Hosmer and Lemeshow, 1980). The X2

p and X2
HL statistics can be computed from a fitted

object of class RRglm using the function RRglmGOF:

RRglmGOF(object, doPearson = TRUE, doHlemeshow = TRUE,
hlemeshowGroups = 10, rm.na = TRUE)

The default number of clusters for the X2
HL statistic is ten, and data cases with missing observations

are excluded. The deviance residual is defined as

rD(ȳi, π̂i) = sign(ȳi − π̂i)

√
2ni

(
ȳilog

(
ȳi

π̂i

)
+ (1 − ȳi)log

( 1 − ȳi

1 − π̂i

))
, (16)

where sign(ȳi − π̂i) = 1 when ȳi ≥ π̂i and -1 when ȳi < π̂i. The grouped deviance residual is
defined for cluster i with ni > 1 and denoted as rd(yi, π̂i). For clustered observations, the sum of
squared deviance residuals is considered to be a goodness-of-fit statistic, denoted as X2

d , which is
asymptotically chi-square distributed with J − (q + 1) degrees of freedom. The deviance residuals,
the grouped deviance residuals, and the deviance goodness-of-fit statistic can be extracted from a
fitted RRglm object with the commands, respectively:

residuals(out, type = "deviance")
residuals(out, type = "deviance.grouped")
RRglmGOF(object, doDeviance = TRUE, rm.na = TRUE)

In the output of RRglmGOF, the goodness-of-fit test(s) are reported, the p-value(s), the degrees of
freedom, and the number of groups. For the H-L test, the results are also given for each cluster. The
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deviance statistic is equivalent to the LR statistic for testing the fitted model against the saturated
model, which has a deviance of zero. The Pearson goodness-of-fit statistic is a score test statistic,
also testing the fitted model against the saturated model. Thus, the Pearson and the deviance
statistic are the score test and LR test for GLMs, respectively.

GLMM Different residuals can be considered for GLMMs. The response residual conditional on
the random effect is defined as the difference between the observation and the conditional expected
value:

rc(yik, π̂ik) = yik − E(yik | xik, zik, bi) (17)
= yik − π

(
xt

ik β̂ + zt
ikb̂i

)
.

It can be extracted from the residual function by providing the argument type="response". The
unconditional response can be computed by integrating out the random effects to obtain the difference
between the observation and the marginal mean. This residual is computed with the argument
type="unconditional.response".

The conditional and unconditional response residuals can be standardized by dividing them by
their standard deviation, which leads to Pearson residuals:

residuals(object, type = "pearson")
residuals(object, type = "unconditional.pearson")

Finally, as a result of sustained compatibility with lme4, the usage of residuals aimed at "merMod"
objects, such as working residuals and conditional deviance residuals, is not limited. Pearson residuals
can also be scaled by any given user-specified weights.

Software

The package GLMMRR contains two main functions, RRglm and RRglmer, for fitting a GLM and a
GLMM given RR data, respectively. Both functions include the four link functions (logit, probit,
cloglog, cauchit) for the different RR designs. The function RRglm makes a call to the function
glm with the appropriate link function to fit a GLM for (binary) RR data. In the same way, the
function RRglmer makes a call to the function glmer to fit a GLMM for (binary) RR data. The fit of
both models, GLM and GLMM, is arranged by the computational routines of glm and glmer. Their
general control parameters, the model and data-checking options, the type of optimizer, number of
iterations can be specified in the RRglm and RRglmer functions. Thus, the numerical optimization
algorithm and its specification can be defined in a similar way as in the call to functions glm and
glmer.

The function RRglm and RRglmer creates an object of class "RRglm" and "RRglmer", respectively.
The package’s summary, print and plot function, can be used to get estimation results from an
object of each class. Data needs to be defined in long format, where an RR specification is needed
for every single case, including the type of RR model and the design parameters. The package allows
for different RR models and different design parameters across data cases. Together with a binary
RR (outcome) variable and possible predictors, a GLM can be fitted. When also including a (factor)
cluster variable, implying a correlation among clustered observations, a GLMM can be fitted. The
complete functionality of the package can be accessed by making further input specifications.

Input

• RRglm
The general call to the function is: RRglm(formula,link,item,RRmodel,p1,p2,data,na.action
= "na.omit",...)

– formula: a two-sided linear formula object describing the model to be fitted, with the
response on the left of a ∼ operator and the terms, separated by + operators, on the
right.

– link: a GLM RRlink function for binary outcomes. Must be a function name; RRlink.logit,
RRlink.probit, RRlink.cloglog, and RRlink.cauchit.

– item: optional item identifier to obtain prevalence estimates per level of item.
– RRmodel: the RR model per data case. Available options: DQ, Warner, Forced, UQM,

Crosswise, Triangular, and Kuk.
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– p1: the RR parameter p1, defined per data case (0 ≤ p1 ≤ 1).
– p2: the RR parameter p2, defined per data case (0 ≤ p2 ≤ 1).
– data: a data frame containing the variables named in formula as well as the RR model

and parameters. If the required information cannot be found in the data frame, or if
no data frame is given, then the variables are taken from the environment from which
RRglm is called.

– na.action: a function that indicates what should happen when the data contain NAs.
The default action (na.omit, as given by getOption("na.action"))) strips any observations
with any missing values in any variables.

• RRglmer
The general call to the function is RRglmer(formula,item,link,RRmodel,p1,p2,data,control
= glmerControl(),na.action = "na.omit",...)

– formula: a two-sided linear formula object describing both the fixed and random effects
part of the model, with the response on the left of a ∼ operator and the terms, separated
by + operators, on the right. Random-effect terms are distinguished by vertical bars
("|") separating expressions for design matrices from grouping factors.

– item : optional item identifier to obtain prevalence estimates per level of item.
– link: a GLM RRlink function for binary outcomes. Must be a function name; RRlink.logit,

RRlink.probit, RRlink.cloglog, and RRlink.cauchit.
– RRmodel: the RR model per data case. Available options: DQ, Warner, Forced, UQM,

Crosswise, Triangular, and Kuk.
– p1: the RR parameter p1, defined per data case (0 ≤ p1 ≤ 1).
– p2: the RR parameter p2, defined per data case (0 ≤ p2 ≤ 1).
– data: a data frame containing the variables named in formula as well as the RR model

and parameters. If the required information cannot be found in the data frame, or if
no data frame is given, then the variables are taken from the environment from which
RRglmer is called.

– na.action: a function that indicates what should happen when the data contain NAs.
The default action (na.omit, as given by getOption("na.action"))) strips any observations
with any missing values in any variables.

– control: a list (of correct class, resulting from lmerControl() or glmerControl(), re-
spectively) containing control parameters, including the nonlinear optimizer to be used
and parameters to be passed through to the nonlinear optimizer; see the lmerControl
documentation for details.

Output

• RRglm An object of class RRglm, which extends the class glm with RR data. The object of
class RRglm contains the regular GLM output and the following components:

– Item: the item levels for each data case – prevalence rates are computed per level of
item.

– RRc: the RR-parameter c for each data case (Equation (1)).
– RRd: the RR-parameter d for each data case (Equation (1)).
– RRmodel: the RR model for each data case.
– RRp1: the RR design parameter p1.
– RRp2: the RR design parameter p2.

• RRglmer An object of class "RRglmerMod", which extends the class "glmerMod" with RR data.
Many methods are available for the general class "merMod" to which "glmerMod" and also
the class "RRglmerMod" belongs. The methods for the "merMod"-class can be found in the
documentation of lme4 and they are applicable to an object from class "RRglmerMod".
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Applications

An RR validation study

Höglinger and Jann (2018) conducted an online experiment to validate different RRTs on the platform
Amazon Mechanical Turk (https://boris.unibe.ch/81516). Participants were asked to play one
of the two dice games, after which they were asked if they played honestly using randomly one of
four RRTs. In the roll-a-six game, the participant rolled a digital die by clicking a button and was
asked if the first roll resulted in a six. In the prediction game, the participant was asked to think of a
number, roll the digital die, and was asked if the outcome corresponded to the memorized prediction.
The participants were asked if they won in the dice game, and since both games relied on self-reports
about the dice-roll outcomes, cheating was easily possible. However, for the roll-a-six game, the
virtual dice outcomes were registered, and it was evaluated if participants illegitimately claimed a
$2 bonus payment. This enabled classifying the participants as cheater or honest (non-cheater)
players. In the prediction game, individual cheating was not detectable. However, it was expected
that around one-sixth of all predictions were correct since the dice outcomes were random. A
systematic deviation from this percentage was attributed to cheating.

To disguise the true purpose of the study, the survey was posted as a survey on “Mood and
Personality” and included a range of questions, for instance, questions on the big five personality
trades. Participants were randomly appointed to one of four questioning methods (DQ, CW, FR,
UQ) and were asked four sensitive questions. Besides the question about honest playing in the
dice game, questions were asked about shoplifting, tax evasion, and voting. Although the answers
to these last three questions could not be validated, the prevalence estimates of those who were
identified as cheaters and non-cheaters in the dice games can be compared across RRTs.

Höglinger and Jann (2018) compared prevalence estimates of cheating in both games to those
computed from the answers to the question of whether they played honestly using the four RR
techniques. They concluded that two RR techniques (FR, UQ) performed similarly to DQ and did
not reduce the level of misreporting. The level of underreporting was reduced by CW. However,
CW also increased the level of overreporting, and the corresponding prevalence estimates were
substantially higher than the true prevalence estimates of cheating.

The GLMMRR is used to do a joint regression analysis of the RR data of the four questioning
techniques. In a joint analysis, the levels of under- and overreporting across RRTs can be directly
compared through an interaction analysis of identified cheaters and the RRTs. The joint analysis
is needed to quantify the different levels of underreporting across RRTs, and to identify who was
misreporting. It is also examined if any background variables explain differences in misreporting
across RRTs and sensitive questions.

The experiment had a two-by-three-by-five factorial design. Factor one represented the type
of dice game (prediction game, roll-a-six game). Factor two was the type of RRT to ask the
sensitive questions (DQ, CW, FR, UQ). The third factor was included to examine whether the
implementations of the random devices produced the expected outcome distributions. This third
factor is integrated into the current study by defining RRTs with different RR design parameters.
Höglinger and Jann (2018) discuss the RRTs (factor 2), the random devices (factor 3), and the
corresponding RR design parameters. Their supplement Documentation and codebook of the survey
was used to prepare the raw data for this study for analysis in R, which includes the specification of
the design parameters for the RRTs. Our supplementary R script ‘ASQ-MTurk data.R’ comprises the
code for preparing the data MTURK. The package GLMMRR contains the prepared data object
MTURK, which is constructed from the raw data using the code of the supplementary R script.

The true prevalence estimates of cheating are estimated for the roll-a-six game (dicegame=2) for
the different RRTs. The estimates are based on the discrepancy between the actual dice outcome
and the participant’s response to whether the first roll was a six, which was asked through direct
questioning. The true prevalence estimates are reported for each of the groups assigned to one of
the RRTs.

R> package(GLMMRR)
R> data("MTURK", package="GLMMRR")
R> by(MTURK$cheaterdc[MTURK$dicegame==2],
+ MTURK$RRmodel[MTURK$dicegame==2],mean,na.rm=TRUE)

MTURK$RRmodel[MTURK$dicegame == 2]: DQ
[1] 0.04450262
------------------------------------------------------------------------------
MTURK$RRmodel[MTURK$dicegame == 2]: Crosswise
[1] 0.06032787
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------------------------------------------------------------------------------
MTURK$RRmodel[MTURK$dicegame == 2]: UQM
[1] 0.05004812
------------------------------------------------------------------------------
MTURK$RRmodel[MTURK$dicegame == 2]: Forced
[1] 0.05188067

Around 5% of the participants cheated in the roll-a-six game, and the estimates are comparable
across RRT groups. It is examined if the prevalence estimates can also be recovered from the
participant’s responses to the question if they honestly reported whether a six was rolled (item
honest dice game reporting, where the response is coded as honest=0 and dishonest=1). This
question was asked to all participants, but different RRTs were used to obtain the response. The
object is to validate the RRTs by comparing the prevalence estimate of cheating with the true
prevalence estimate. The prevalence estimates are computed using the RRglm function where the
item is the sensitive question if they are reported honestly. The design parameters are stored in
the data variables RRp1 and RRp2, which are also reported in the output. It can be seen that, for
instance, the CW design has two sets of parameters, where some participants were questioned with
the CW method and design parameters .16 and 0, and others with .20 and 0.

R> MTURK_cheating1 <- MTURK[which(MTURK$dicegame==2 &
+ MTURK$Question=="cheating dice game"),]
R> rolla6 <- RRglm(RR_response ~ 1, item = Question,
+ link = "RRlink.logit", RRmodel = RRmodel,
+ p1=RRp1,p2=RRp2,data = MTURK_cheating1)
R> summary(rolla6)

### GLMMRR - Binary Randomized Response Data ###
Generalized linear fixed-effects model

Family: binomial
Link function: RRlogit

---------------------------------------------------------
Item: cheating dice game
Model(s): DQ (1.00 | 0.00)

Crosswise (0.16 | 0.00) (0.20 | 0.00)
UQM (0.78 | 0.49) (0.78 | 0.52)
Forced (0.75 | 0.67)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.143393 0.0204156 1142
DQ 0.039370 0.0099632 381

Forced -0.019361 0.0172690 769
UQM 0.053496 0.0165870 778

For the question honest dice game reporting, the estimated population proportion of dishonest
reporters (ML estimate with standard errors) is reported for each RR design. Each RRT estimate is
the (weighted) average across different design parameters. It follows that the prevalence estimate of
the CW method overestimates the true value of 6% of detected cheaters who were CW questioned.
Furthermore, the DQ and UQ perform approximately the same. The estimate is even negative
for the FR technique. This can occur when some participants did not follow the RR instructions
and/or when the random device distribution deviates from the expected distribution. This could
also be an underlying problem of the CW method. A total of 33.6% admitted that they do not know
exactly the birthday of their parents. This could bias their response to the unrelated question, which
stated if their father/mother’s birthday was in January or February (with an expected probability of
15.9%), or between the 1st and the 6th of the month (with an expected probability of 19.7%). The
overestimation of the CW method could be caused by honest reporters who incorrectly answered No
to the unrelated question about the birthday of one of their parents.

Misreporting is investigated further by computing the reduction in misreporting for each RRT
for detected cheaters (dishonest reporters) and non-cheaters (honest reporters). Therefore, a dummy
coded variable is defined for the cheaters (cheaterdc=1) and for each of the RRTs (DQ, CW, UQ,
FR). Logistic regression analysis is performed using the RRglm function for the RR data of item
honest dice game reporting (variable RR_response) in the roll-a-six game conditional on the RRT
and cheater identifiers.
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R> rolla6A <- RRglm(RR_response ~ 1 + cheaterdc + CW + UQ + FR +
+ cheaterdc*CW+cheaterdc*UQ, item = Question,
+ link = "RRlink.logit", RRmodel = RRmodel, p1=RRp1, p2=RRp2,
+ data = MTURK_cheating1, na.action = "na.omit")
R> summary(rolla6A)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.8807 0.6043 -8.077 6.63e-16 ***
cheaterdc 5.8302 0.8087 7.209 5.63e-13 ***
CW 2.8283 0.6375 4.437 9.14e-06 ***
UQ 1.3453 0.8399 1.602 0.1092
FR -1.3582 0.6941 -1.957 0.0504 .
cheaterdc:CW -3.6246 0.9143 -3.964 7.36e-05 ***
cheaterdc:UQ -2.0967 1.0798 -1.942 0.0522 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3988.2 on 3069 degrees of freedom
Residual deviance: 2631.5 on 3063 degrees of freedom

(5 observations deleted due to missingness)
AIC: 2645.5

Number of Fisher Scoring iterations: 7

The reference level is the DQ technique (factor RRmodel) for those who were identified as honest
reporters (factor cheaterdc) responding to being dishonest in the roll-a-six game. For DQ, the
odds for dishonest reporting for non-cheaters is around zero (exp(−4.88) = 0.008), and for cheaters
around 2.58. Of the DQ participants, identified as cheaters, the probability of admitting to being
dishonest about whether a six was rolled is around 72%. Participants might have guessed that this
type of misreporting could be easily detected, which led to a non-substantial level of misreporting
under DQ. The odds for dishonest reporting for non-cheaters in the UQ and FR condition are
also close to zero. The UQ and FR effects are also not significantly different from zero. For the
non-cheaters, the response technique, DQ, UQ, or FR, did not influence their response. However, in
the CW condition, the odds of dishonest reporting for non-cheaters is significant and around .13,
with a probability of 11.3% of dishonest reporting while being identified to be honest reporters. This
led to the overestimation of the true prevalence rate by CW.

The opposite occurred for the cheaters in the CW and UQ condition. It was expected that the
cheaters would be honest about their dishonesty in the roll-a-six game without the risk of disclosure
in the CW and UQ condition. Instead, for both techniques, the admitted level of misreporting by
cheaters decreased. For cheaters in the CW and UQ condition, the probability of being dishonest is
around 53.8% and 54.9%, respectively, which is much less than the 72% under DQ. Höglinger and
Jann (2018) argued that some cheaters might have misused the RRT to answer untruthfully without
risk of detection who would have felt compelled to answer truthfully in DQ. It turned out that it
was not possible to estimate an interaction effect for cheaters in the FR condition.

The three other sensitive questions (voting, shoplifting, tax evasion) do not have the problem
that participants might be suspicious of being disclosed for their dishonesty as in the roll-a-six game.
However, it is expected that the prevalence rates will be lower for the DQ group. Their responses are
not masked, and those participants are tended to underreport the questioned behavior in comparison
to those not under risk of disclosure through the RR questioning techniques. Differences in prevalence
rates across sensitive items (factor Question) and question techniques (factor RRmodel) are explored
through a logistic regression using the RRglm function. (factor Question)

R> MTURK_cheating2 <- MTURK[which(MTURK$dicegame==2 &
+ MTURK$Question!="cheating dice game"),]
R> rolla6B <- RRglm(RR_response ~ 1 + RRmodel + Question +
+ cheaterdc*RRmodel, item = Question, link = "RRlink.logit",
+ RRmodel = RRmodel,p1=RRp1,p2=RRp2,data = MTURK_cheating2)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.87793 0.08118 -10.815 < 2e-16 ***
RRmodelCrosswise 0.26976 0.09415 2.865 0.00417 **
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RRmodelUQM 0.39283 0.09279 4.233 2.3e-05 ***
RRmodelForced 0.11554 0.09783 1.181 0.23762
Questionshoplifting 0.61299 0.07040 8.708 < 2e-16 ***
Questiontax evasion -1.01421 0.09100 -11.145 < 2e-16 ***
cheaterdc 0.23951 0.31801 0.753 0.45135
RRmodelCrosswise:cheaterdc -0.04895 0.40461 -0.121 0.90371
RRmodelUQM:cheaterdc -0.30170 0.42096 -0.717 0.47355
RRmodelForced:cheaterdc 0.32900 0.42022 0.783 0.43367
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 12705 on 9207 degrees of freedom
Residual deviance: 11797 on 9198 degrees of freedom

(21 observations deleted due to missingness)
AIC: 11817

Number of Fisher Scoring iterations: 4

The intercept corresponds to non-cheaters in the DQ condition responding to the item non-voting.
For DQ, the odds for non-voting of the non-cheaters is around .41 (exp(−0.88) = 0.41), and for
cheaters, around 0.53. However, the cheaters did not respond significantly differently from the
non-cheaters as they did in reporting about being dishonest in the dice game. The prevalence rates
of those questioned with privacy protection (CW, UQ, FR) are higher – the CW and UQ rates are
significantly higher – than those questioned directly. The corresponding odds ratios are .54, 62,
and .47 for CW, UQ, and FR, respectively. The prevalence rates for shoplifting are significantly
higher and for tax evasion significantly lower than for non-voting. It is apparent that cheaters
do not report significantly differently under a privacy-protected response technique in comparison
to the non-cheaters since the interaction effects are approximately zero and non-significant. This
occurred when cheaters were asked about their dishonesty in the roll-a-six game. This was probably
provoked by the knowledge that their dishonesty could be detected under DQ. For the questions
about non-voting, shoplifting, and tax evasion, it was known that this was not possible, so cheaters
were not/less inclined to misreport in the non-DQ condition.

The weighted prevalence rate (averaged over results from the same questioning technique with
different design parameters) for each item and questioning technique are reported in the output. It
follows that the prevalence rates are lower for DQ than for the other RRTs, but the differences are
small. Note that the reported significance in rates between CW and DQ and between UQ and DQ
were averaged across the three items.

### GLMMRR - Binary Randomized Response Data ###
Generalized linear fixed-effects model

Family: binomial
Link function: RRlogit

---------------------------------------------------------
Item: non voting
Model(s): DQ (1.00 | 0.00)

Crosswise (0.16 | 0.00) (0.20 | 0.00)
UQM (0.78 | 0.49) (0.78 | 0.52)
Forced (0.75 | 0.67)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.38215 0.022718 1142
DQ 0.30607 0.023673 379

Forced 0.33333 0.023720 768
UQM 0.33889 0.022338 776

---------------------------------------------------------
Item: shoplifting
Model(s): DQ (1.00 | 0.00)

Crosswise (0.16 | 0.00) (0.20 | 0.00)
UQM (0.78 | 0.49) (0.78 | 0.52)
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Forced (0.75 | 0.67)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.46339 0.022914 1145
DQ 0.44357 0.025452 381

Forced 0.47479 0.024016 769
UQM 0.56174 0.022936 778

---------------------------------------------------------
Item: tax evasion
Model(s): DQ (1.00 | 0.00)

Crosswise (0.16 | 0.00) (0.20 | 0.00)
UQM (0.78 | 0.49) (0.78 | 0.52)
Forced (0.75 | 0.67)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.18850 0.021098 1143
DQ 0.11549 0.016374 381

Forced 0.13057 0.021182 771
UQM 0.19407 0.020301 775

The inclusion of the interaction effect between cheating status and RRT can be tested through a
model comparison. The model is fitted without the interaction term (object rolla6C), and the anova
function is used to produce a deviance table for the fitted objects. It follows that the interaction
term does not lead to a significant model improvement.

R> anova(rolla6C, rolla6B,test="Chisq")
Analysis of Deviance Table

Model 1: RR_response ~ 1 + RRmodel + Question
Model 2: RR_response ~ 1 + RRmodel + Question + cheaterdc * RRmodel

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 9202 11802
2 9198 11797 4 5.3509 0.2532

Residual analysis

The fit of the GLM with factor variables RRT and Question (object rolla6C) is evaluated with
a residual analysis. The function RRglmGOF is used to compute overall goodness-of-fit tests. The
Pearson and deviance chi-square statistics are computed given a grouping of the observations based
on the predictor variables. The H-L statistic is computed for ten groups of (approximately) equal
size. There is evidence for a lack-of-fit when the statistic values are large.

R> RRglmGOF(RRglmOutput = rolla6C, doPearson = TRUE, doDeviance = TRUE,
+ doHlemeshow = TRUE)

GLMMRR - Binary Randomized Response Data

Goodness-of-Fit Testing
Response variable: RR_response
Predictor(s): RRmodel Question
Entries dataset: 9208
---------------------------------------------------------
Summary:

Statistic P.value df Groups
Pearson 12.95 0.0438 6 12
Deviance 13.01 0.0429 6 12
Hosmer-Lemeshow 8.82 0.3578 8 10

---------------------------------------------------------

It follows that the Pearson and deviance goodness-of-fit statistics show a lack of fit, whereas the H-L
statistic does not show a lack of fit. To further investigate the fit, the H-L statistic is computed for
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the same model but with different link functions. A different link function can improve the fit of
the model and reduce the effects of a misspecified linear predictor. The estimated statistic values
are given for the probit link function (see supplementary R-code for the complete analysis), which
shows only a slight improvement in fit. The decrease in AIC is small and around .62.

R> rolla6E <- RRglm(RR_response ~ 1 + RRmodel + Question,
+ item = Question, link = "RRlink.probit",RRmodel = RRmodel,
+ p1=RRp1,p2=RRp2,data = MTURK_cheating2)
R> RRglmGOF(RRglmOutput = rolla6E, doPearson = TRUE, doDeviance = TRUE,
+ doHlemeshow = TRUE) ## improved fit over logit link

---------------------------------------------------------
Summary:

Statistic P.value df Groups
Pearson 12.35 0.0545 6 12
Deviance 12.40 0.0537 6 12
Hosmer-Lemeshow 8.69 0.3689 8 10

---------------------------------------------------------

Finally, the fitted probabilities are plotted against the estimated Pearson residuals for each
RRT (R-code below) – it is also possible to plot the object of class "RRglm", plot(rolla6C,which
= 3,type = "pearson"). In Figure 1, the Pearson residuals (filled circles) under the CW method
are large for the zero response observations. Typical for CW, high fitted probabilities (prevalence
rates) correspond to zero and to one response. There are three items, which leads to three different
fitted probabilities for DQ. CW was used with two different sets of design parameters, which led to
more than three fitted probabilities. The differences between prevalence rates and Pearson residuals
for different design parameters are much larger for CW than for UQ and FR. For UQ and FR,
the estimated Pearson residuals and fitted probabilities hardly differ across design parameters. It
follows that the CW method is particularly sensitive to deviations from the design parameters. For
an observed prevalence rate above .50, increasing the design parameter for CW will decrease the
prevalence estimate. A possibility is that the design parameter for CW was incorrect and too low,
which led to the overestimation of the prevalence rate for CW in the roll-a-six game. The residuals
are also relatively large for low fitted probabilities, which is typical for DQ when the true prevalence
rate is small. For reasons of brevity, we have omitted a further improvement of the model and to
explain individual differences in prevalence by including individual predictor variables (e.g., gender,
education, Big Five personality traits).

R> set <- names(rolla6C$linear.predictors)
R> dataset <- MTURK_cheating2[set,]
R> plot(rolla6C$fitted.values,residuals(rolla6C, type = "pearson"),
+ cex=.8,bty="l",xlim=c(.1,.8),ylim=c(-3,3),xlab="Fitted",
+ ylab="Residual (Pearson)")
R> points(rolla6C$fitted.values[which(dataset$DQ==1)],
+ residuals(rolla6C, type = "pearson")[which(dataset$DQ==1)],
+ xlim=c(0,1),ylim=c(-1,1),pch=15,col="black")
R> points(rolla6C$fitted.values[which(dataset$CW==1)],
+ residuals(rolla6C, type = "pearson")[which(dataset$CW==1)],
+ pch=16,col="green")
R> points(rolla6C$fitted.values[which(dataset$UQ==1)],
+ residuals(rolla6C, type = "pearson")[which(dataset$UQ==1)],
+ pch=17,col="red")
R> points(rolla6C$fitted.values[which(dataset$FR==1)],
+ residuals(rolla6C, type = "pearson")[which(dataset$FR==1)],
+ pch=18,col="blue")
R> legend(.6,3,c("DQ","CW","FR","UQ"),col=c("black","green",
+ "blue","red"),pch = c(15,16,18,17), bg = "gray95",cex=.7)

Extended item response modeling: Prevalence of student misconduct

Höglinger et al. (2014) performed an online survey to estimate the prevalence of various forms of
student misconduct (e.g., plagiarizing, cheating in exams). RRT was used since students might be
reluctant to reveal this kind of information. Four different types of RRTs were used (DQ, FR, CW,
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Figure 1: The roll-a-six game: for each RRT fitted success probabilities against Pearson residuals.

UQ). The RRTs were tailored to be implemented online which led to two implementations of FR
(pick-a-numer, random wheel) and of CW (unrelated question, random wheel). In total, there were
six different RRTs to which participants were randomly assigned: DQ, two implementations of FR,
UQ, and two implementations of CW. For all RRT implementations, the level of protection was also
varied, which led to different design probabilities. In total, six different sets of parameters for UQ,
two for FR, and eight for CW. The package GLMMRR was used to do a joint regression analysis of
the randomized item-response data, (1) to measure differences between RRTs, and (2) to examine
differences in prevalence rates across conditions and students.

No. Item
1 copied from other students during an exam (copied)
2 used illicit crib notes in an exam (crib notes)
3 used prescription drugs to enhance your performance (drugs)
4 handed in someone else’s work without citing (plagiarism)
5 had someone else write a large part of a submitted paper (someone else’s work)

Table 1: Five items for measuring prevalence of student misconduct.

Five sensitive items about student misconduct were surveyed using the six different RRTs with
different design parameters. In Table 1, the five items are given about respondents’ own misconduct
during exams and submitting a paper. The items were assumed to measure student misconduct. An
RIRT model is used to measure each student’s level of misconduct given RR data while taking into
account that students were assigned to different RRT conditions. A multiple-group (normal ogive)
RIRT model is fitted, where the groups represent the RRT conditions. The function RRglmer of
GLMMRR is used with factor variable Question and factor variable expcond representing the items
and experimental conditions (RRTs), respectively, for the randomized responses (RR_response). The
input item equals factor variable Question to obtain the (weighted) prevalence estimates for each
item.

The latent variable is represented by the student identifier id, where each student responded
to the five items. This latent variable represents a student’s propensity to misconduct on an exam
measured by the five items in Table 1. This (continuous) personality trait is measured with the
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RIRT model with data collected under different RRT designs.

R> out.re <- RRglmer(RR_response ~ 1 + Question + expcond + (1|id),
+ item=Question, link = "RRlink.probit", RRmodel = RRmodel,
+ p1=p1,p2=p2,data = ETHBE, control=glmerControl(
+ optimizer="bobyqa", optCtrl = list(maxfun = 200000)))
R> summary(out.re)

AIC BIC logLik deviance df.resid
21015.5 21103.2 -10496.7 20993.5 21394

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 0.4342 0.659

Number of obs: 21405, groups: id, 4281

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.20625 0.05633 -21.416 < 2e-16 ***
Questioncrib notes -0.34520 0.04582 -7.534 4.93e-14 ***
Questiondrugs -0.92016 0.05612 -16.395 < 2e-16 ***
Questionhanded in plagiarism -0.83103 0.05369 -15.478 < 2e-16 ***
Questionhanded in someone else's work -1.06092 0.05982 -17.736 < 2e-16 ***
expcondFR pick-a-number 0.94880 0.06524 14.543 < 2e-16 ***
expcondCM pick-a-number 0.53036 0.08064 6.577 4.80e-11 ***
expcondFR random wheel 0.99941 0.06520 15.329 < 2e-16 ***
expcondUQ Benford 0.39748 0.07245 5.487 4.10e-08 ***
expcondCM unrelated question 0.67867 0.08017 8.465 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The levels of factor variable Question represent the item difficulties, where the intercept represents
the first item (copied work). The levels of factor variable expcond represent the mean level of each
RRT condition, and the intercept is the level of the DQ group. The latent variable variance in
student misconduct is around 0.43, which shows that conditional on the item and experimental
condition differences, around 30% (= .43/(1 + .43)) of the variance can be attributed to individual
differences. The latent variable estimates represent the levels of student misconduct.

It is expected that students underreport their behavior. With an RRT individual responses are
masked, and students are expected to answer more truthfully. Although students were randomly
assigned to RRT conditions, the prevalence rates appear to be different across RRTs. The package
multcomp is used to test individual null hypotheses representing differences between RRTs. Linear
combinations of the experimental condition parameters are defined and tested simultaneously.
Four hypotheses are evaluated to test the difference in prevalence rates (1) between the two FR
implementations (pick a number, random wheel), (2) between the two CW implementations (pick-
a-number, unrelated question), (3) between FR and CW, (4) between FR and UQ. A matrix K
is defined which represents the contrasts of interest and the function glht is used to perform the
general linear hypothesis testing.

R> K <- matrix(c(c(0, 0, 0, 0, 0, 1, 0, -1, 0 , 0),
+ c(0, 0, 0, 0, 0, 0, 1, 0, 0 ,-1),
+ c(0, 0, 0, 0, 0, 1, -1, 1, 0 ,-1),
+ c(0, 0, 0, 0, 0, 0, 0, 1, -1 ,0)), nrow=4,ncol=10,byrow=T)
R> t <- glht(out.re, linfct = K)
R> summary(t)

Simultaneous Tests for General Linear Hypotheses

Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)

1 == 0 -0.05061 0.06176 -0.819 0.870
2 == 0 -0.14831 0.09125 -1.625 0.343
3 == 0 0.73917 0.11108 6.654 <0.001 ***
4 == 0 0.60193 0.06963 8.645 <0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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(Adjusted p values reported -- single-step method)

It follows that the different implementations of FR do not lead to different prevalence rates.
Both FR implementations provide a similar level of privacy protection. Furthermore, both CW
implementations have similar prevalence rates. For FR and CW, differences between random devices
do not lead to different prevalence estimates. The difference is significant between FR and CW,
where FR produces higher rates than CW. FR also produced higher rates than UQ. It is remarkable
that in this study, students reported much higher rates with FR than CW, whereas in the RR
validation study, it was the other way around. It is not clear why with FR, higher rates were
obtained in the student misconduct study than with CW in comparison to the roll-a-six validation
study. However, in the roll-a-six game, the prevalence rates with DQ also differed not much with
those from FR.

The prevalence rates for the five items are estimated for each RRT, averaging across results
from different design parameters. In the output, an overview is given of the RRTs which were used
to administer each item. For each RRT, the design parameters are given which were used. For
instance, for item copied: DQ has one set of design parameters, UQ six sets of design parameters,
FR two sets of design parameters, and CW eight sets of design parameters. Note that different
design parameters were used for different implementations of a random online device (Höglinger
et al., 2014).

### GLMMRR - Binary Randomized Response Data ###
Generalized linear mixed-effects model

Family: binomial
Link function: RRprobit

---------------------------------------------------------
Item: copied
Model(s): DQ (1.00 | 0.00)

UQM (0.70 | 0.49) (0.70 | 0.50) (0.70 | 0.52)
(0.78 | 0.49) (0.78 | 0.50) (0.78 | 0.52)

Forced (0.67 | 0.17) (0.75 | 0.17)
Crosswise (0.17 | 0.00) (0.20 | 0.00) (0.23 | 0.00)

(0.25 | 0.00) (0.26 | 0.00) (0.30 | 0.00) (0.75 | 0.00) (0.83 | 0.00)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.28679 0.047932 1427
DQ 0.21806 0.015389 720

Forced 0.41265 0.017797 1417
UQM 0.17351 0.022187 717

---------------------------------------------------------
Item: crib notes
Model(s): DQ (1.00 | 0.00)

UQM (0.70 | 0.49) (0.70 | 0.50) (0.70 | 0.52)
(0.78 | 0.49) (0.78 | 0.50) (0.78 | 0.52)

Forced (0.67 | 0.17) (0.75 | 0.17)
Crosswise (0.17 | 0.00) (0.20 | 0.00) (0.23 | 0.00)

(0.25 | 0.00) (0.26 | 0.00) (0.30 | 0.00) (0.75 | 0.00) (0.83 | 0.00)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.17570 0.044884 1427
DQ 0.10278 0.011317 720

Forced 0.32396 0.016822 1417
UQM 0.14438 0.021528 717

---------------------------------------------------------
Item: drugs
Model(s): DQ (1.00 | 0.00)

UQM (0.70 | 0.49) (0.70 | 0.50) (0.70 | 0.52)
(0.78 | 0.49) (0.78 | 0.50) (0.78 | 0.52)

Forced (0.67 | 0.17) (0.75 | 0.17)
Crosswise (0.17 | 0.00) (0.20 | 0.00) (0.23 | 0.00)
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(0.25 | 0.00) (0.26 | 0.00) (0.30 | 0.00) (0.75 | 0.00) (0.83 | 0.00)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.095850 0.0475537 1427
DQ 0.029167 0.0062712 720

Forced 0.162119 0.0138931 1417
UQM 0.045145 0.0187692 717

---------------------------------------------------------
Item: handed in plagiarism
Model(s): DQ (1.00 | 0.00)

UQM (0.70 | 0.49) (0.70 | 0.50) (0.70 | 0.52)
(0.78 | 0.49) (0.78 | 0.50) (0.78 | 0.52)

Forced (0.67 | 0.17) (0.75 | 0.17)
Crosswise (0.17 | 0.00) (0.20 | 0.00) (0.23 | 0.00)

(0.25 | 0.00) (0.26 | 0.00) (0.30 | 0.00) (0.75 | 0.00) (0.83 | 0.00)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.081899 0.0444126 1427
DQ 0.029167 0.0062712 720

Forced 0.192582 0.0145974 1417
UQM 0.070978 0.0195603 717

---------------------------------------------------------
Item: handed in someone else's work
Model(s): DQ (1.00 | 0.00)

UQM (0.70 | 0.49) (0.70 | 0.50) (0.70 | 0.52)
(0.78 | 0.49) (0.78 | 0.50) (0.78 | 0.52)

Forced (0.67 | 0.17) (0.75 | 0.17)
Crosswise (0.17 | 0.00) (0.20 | 0.00) (0.23 | 0.00)

(0.25 | 0.00) (0.26 | 0.00) (0.30 | 0.00) (0.75 | 0.00) (0.83 | 0.00)

## Estimated Population Prevalence (weighted per RR model)
RRmodel estimate.weighted se.weighted n

Crosswise 0.033014 0.0468658 1427
DQ 0.015278 0.0045711 720

Forced 0.146240 0.0134956 1417
UQM 0.019240 0.0178254 717

The prevalence estimates are almost always the lowest for DQ. Most likely, students underreported
their behavior when directly asked. In Figure 2, the weighted prevalence estimates are plotted for
each item and RRT. This is the first of four plots when plotting an object of class RRglmerMod of
the package GLMMRR. It can be seen that copying work is the most popular way, and then using a
crib note. Although the CW condition has the highest number of students, the confidence interval
of the CW estimates is much wider than for the other conditions. The CW method is less efficient
in estimating student prevalence than the other RRTs.

Model fit

The relevance of the random person component is examined by comparing the multiple-group IRT
model with a (multiple-group) GLM, which has the same fixed effect part.

R> out.fe <- RRglm(RR_response ~ 1 + Question + expcond, item=Question,
+ link = "RRlink.probit",RRmodel = RRmodel,p1=p1,p2=p2,data = ETHBE)
R> anova(out.re,out.fe)
Data: df
Models:
out.fe: RR_response ~ 1 + Question + expcond
out.re: RR_response ~ 1 + Question + expcond + (1 | id)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
out.fe 10 21147 21227 -10564 21127
out.re 11 21016 21103 -10497 20994 133.82 1 < 2.2e-16 ***
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Figure 2: Prevalence estimates of types of student misconduct for different RRTs.

It follows that the RIRT model fits the data better than the GLM, with a lower AIC and BIC and a
significant decrease in deviance. For the RIRT model, conditional Pearson residuals are computed
given the random effect. The Pearson residuals are plotted against the fitted probabilities. To
obtain the fitted probabilities, the fitted values on the linear predictor scale are computed using
the predict function. Then, according to Equation 1, the fitted probabilities are computed using
parameters c and d, which can be computed from function getRRparameters given the RRT and
RR design parameters.

R> eta <- predict(out.re, type = "link")
R> dum <- getRRparameters(ETHBE$RRmodel, ETHBE$p1, ETHBE$p2)
R> pp <- dum$c + dum$d*pnorm(eta)
R> resid <- residuals(out.re, type = c("pearson"))
R> plot(pp[ETHBE$expcond=="direct questioning"],
+ resid[ETHBE$expcond=="direct questioning"],bty="l",
+ xlim=c(0,1),ylim=c(-2,6),cex=.8,xlab="Fitted probability",ylab="Pearson residual")
R> points(pp[ETHBE$expcond=="CM pick-a-number"],
+ resid[ETHBE$expcond=="CM pick-a-number"],cex=.8,pch=19,col="grey80")
R> points(pp[ETHBE$expcond=="FR pick-a-number"],
+ resid[ETHBE$expcond=="FR pick-a-number"],cex=.8,pch=15,col="red")
R> points(pp[ETHBE$expcond=="FR random wheel"],
+ resid[ETHBE$expcond=="FR random wheel"],cex=.8,pch=16,col="blue")
R> points(pp[ETHBE$expcond=="CM unrelated question"],

resid[ETHBE$expcond=="CM unrelated question"],cex=.8,pch=17,col="green")
R> points(pp[ETHBE$expcond=="UQ Benford"],
+ resid[ETHBE$expcond=="UQ Benford"],cex=.8,pch=18,col="purple")
R> abline(h=1,lty=2,col="grey")
R> abline(h=-1,lty=2,col="grey")
R> legend(.6,6,c("DQ","FR pick-a-number","FR random wheel",
+ "CM unrelated", "UQ","CM pick-a-number"),
+ col=c("black","red","blue","green","purple","grey80"),
+ pch = c(1,15,16,17,18,19),cex=.7,bty="n")

In Figure 3, the Pearson residuals are plotted for each RRT. It can be seen that for DQ, the
residuals are large (small) for positive (zero) responses since the prevalence rates are low. The
residuals for FR and UQ are relatively small, partly because the corresponding fitted probabilities
are in the middle of the scale. For the CW methods, it can be seen that the residuals are large
(small) for zero (positive) responses since they correspond to high prevalence rates. Further analysis
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to improve the model by incorporating predictor variables is omitted for reasons of brevity.
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Figure 3: Fitted probabilities of types of student misconduct for different RRTs versus the Pearson
residuals.

Discussion

The GLMMRR provides tools for fitting GLM(M)s on RR data, where the RR design and the design
parameters are allowed to vary across observations. The multiple-group RR designs are particularly
interesting to validate RR methods, to examine the sensitivity of the attributes, and to examine
the influence of different levels of privacy protection. The multiple group modeling approach also
supports simultaneously testing RR design effects across items and participants. The tools provide
support to substantive applications using RR techniques, which can include different RR designs and
advanced GLM and GLMM methods to analyze RR data. It is our objective to stimulate applied
and methodological RR research by offering the open-source software GLMMRR. The tools extend
the popular modeling tools of lme4, and class functions are simply extended to deal with RR data
while maintaining the general features included in the GLM and GLMM software (e.g., lme4; Bates
et al., 2015).

When some respondents do not follow the RR design instructions, the GLM(M) does not fit the
data (e.g., Böckenholt and van der Heijden, 2007; Fox et al., 2013; De Jong et al., 2010). In that
case, a composite link function can be used to include a linear predictor for those not following the
instructions and one for those following the instructions. Currently, the ML estimations methods
for GLMMRR cannot handle composite link functions. More research is needed to develop and
implement estimation methods that can handle in a flexible way GLMMs with composite link
functions (Thompson and Baker, 1981).

The modified link functions can be used for other types of GLMMs. In longitudinal research, in
practice, time is often observed in discrete units. The discrete-time hazard defines the probability
of the occurrence of an event at time t. The GLM(M) can be used to describe the link between
the hazard rate and a linear predictor. The GLM(M) with the complementary log-log link function
applies when the data is generated by a continuous-time proportional hazards model (Allison, 1982).
Thus, for instance, when using an RR design to collect information about sensitive events (e.g.,
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events related to war, trauma, sexual assault), the GLMM with a modified link function is an
appropriate model to analyze the RR data. For count RR data, the complementary log-log link
function can be used to model the probability of an RR of a non-zero observation (Fox et al., 2018).
Ordinal data can be modeled with a (cumulative) link function for the proportional odds, which
is defined by cumulative probabilities. For each response category, a GLMM defines a cumulative
probability that response falls below or in this category. The modified link functions can be used to
model cumulative probabilities with GLMMs for ordinal RR data.

The GLMMs can be computationally intensive and usually require relatively large sample sizes.
RR designs also require larger samples sizes to achieve the same level of accuracy as DQ. Furthermore,
the prevalence of sensitive behaviors is often relatively low, and to obtain reliable estimates, more
data is required. The GLMMRR package supports large sample sizes, which can be around 106

observations.
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Visual Diagnostics for Constrained
Optimisation with Application to Guided
Tours
by H. Sherry Zhang, Dianne Cook, Ursula Laa, Nicolas Langrené, and Patricia Menéndez

Abstract A guided tour helps to visualise high-dimensional data by showing low-dimensional projec-
tions along a projection pursuit optimisation path. Projection pursuit is a generalisation of principal
component analysis in the sense that different indexes are used to define the interestingness of the
projected data. While much work has been done in developing new indexes in the literature, less has
been done on understanding the optimisation. Index functions can be noisy, might have multiple
local maxima as well as an optimal maximum, and are constrained to generate orthonormal projection
frames, which complicates the optimization. In addition, projection pursuit is primarily used for
exploratory data analysis, and finding the local maxima is also useful. The guided tour is especially
useful for exploration because it conducts geodesic interpolation connecting steps in the optimisation
and shows how the projected data changes as a maxima is approached. This work provides new
visual diagnostics for examining a choice of optimisation procedure based on the provision of a new
data object which collects information throughout the optimisation. It has helped to diagnose and fix
several problems with projection pursuit guided tour. This work might be useful more broadly for
diagnosing optimisers and comparing their performance. The diagnostics are implemented in the R
package ferrn.

Introduction

Visualisation is widely used in exploratory data analysis (Tukey 1977; Unwin 2015; Healy 2018;
Wilke 2019). Presenting information in graphics often unveils insights that would otherwise not be
discovered and provides a more comprehensive understanding of the problem at hand. Task-specific
tools such as Li, Zhao, and Scheidegger (2020) show how visualisation can be used to understand, for
instance, the behaviour of the optimisation for the example of neural network classification models.
However, no general visualisation tool is available for diagnosing optimisation procedures. The work
presented in this paper brings visualization tools into optimisation problems with the aim to better
understand the performance of optimisers in practice.

The focus of this paper is on the optimisation problem arising in the projection pursuit guided
tour (Buja et al. 2005), an exploratory data analysis technique used for detecting interesting structures
in high-dimensional data through a set of lower-dimensional projections (Dianne Cook et al. 2008).
The goal of the optimisation is to identify the projection, represented by the projection matrix, that
gives the most interesting low-dimensional view. A view is said to be interesting if it can show some
structures of the data that depart from normality, such as bimodality, clustering, or outliers.

The optimization challenges encountered in the projection pursuit guided tour problem are
common to those of optimization in general. Examples include the existence of multiple optima (local
and global), the trade-off between computational burden and proximity to the optima, or dealing
with noisy objective functions that might be non-smooth and non-differentiable (Jones, Schonlau, and
Welch 1998). The visualization tools, optimization methods, and conceptual framework presented in
this paper can therefore be applied to other optimization problems.

The remainder of the paper is organised as follows. The next section provides an overview of
optimisation methods, specifically random search and line search methods. A review of the projection
pursuit guided tour, an overview of the optimisation problem and, outlines of three existing algorithms
follows. The third section presents the new visual diagnostics, including the design of a data structure
to capture information during the optimisation, from which several diagnostic plots are created. An
illustration of how the diagnostic plots can be used to examine the performance of different optimisers
and guide improvements to existing algorithms is shown using simulated data. Finally, an explanation
of the implementation in the R package, ferrn (Zhang et al. 2021), is provided.

Optimisation methods

The type of optimisation problem considered in this paper is constrained optimization (Bertsekas
2014), assuming it is not possible to find a solution to the problem in the way of a closed-form. That is,
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the problem consists in finding the minimum or maximum of a function f ∈ Lp in the constrained
space A, where Lp defines the vector space of function f , whose pth power is integrable.

Gradient-based methods are commonly used to optimise an objective function, with the most
notable one being the gradient ascent (descent) method. Although these methods are popular, they
rely on the availability of the objective function derivatives. As will be shown in the next section,
the independent variables in our optimisation problem are the entries of a projection matrix, and the
computational time required to perform differentiation on a matrix could impede the rendering of
tour animation. In addition, some objective functions rely on the empirical distribution of the data,
which makes it in general not possible to get the gradient. Hence, gradient-based methods are not the
focus of this paper, and consideration will be given to derivative-free methods.

Derivative-free methods (Conn, Scheinberg, and Vicente 2009; Rios and Sahinidis 2013), which do
not rely on the knowledge of the gradient, are more generally applicable. Derivative-free methods
have been developed over the years, where the emphasis is on finding, in most cases, a near-optimal
solution. Here we consider three derivative-free methods, two of which are random search methods:
creeping random search and simulated annealing, and the other one is pseudo-derivative search.

Random search methods (Romeijn 2009; Zabinsky 2013; Andradóttir 2015) have a random sampling
component as part of their algorithms and have been shown to have the ability to optimise non-convex
and non-smooth functions. The initial random search algorithm, pure random search (Brooks 1958),
draws candidate points from the entire space without using any information of the current position
and updates the current position when an improvement on the objective function is made. As the
dimension of the space becomes larger, sufficient sampling from the entire space would require a
long time for convergence to occur, despite a guaranteed global convergence (Spall 2005). Various
algorithms have thus been developed to improve pure random search by either concentrating on a
narrower sampling space or using a different updating mechanism. Creeping random search (White
1971) is such a variation, where a candidate point is generated within a neighbourhood of the current
point. This makes creeping random search faster to compute but global convergence is no longer
guaranteed. On the other hand, simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983; Bertsimas
and Tsitsiklis 1993), introduces a different updating mechanism. Rather than only updating the current
point when an improvement is made, it uses a Metropolis acceptance criterion, where worse candidates
still have a chance to be accepted. The convergence of simulated annealing algorithms has been widely
researched (Mitra, Romeo, and Sangiovanni-Vincentelli 1986; Granville, Krivánek, and Rasson 1994)
and the global optimum can be attained under mild regularity conditions.

The pseudo-derivative search uses a common search scheme in optimisation: line search. In
line search methods, users are required to provide an initial estimate x1 and, at each iteration, a
search direction Sk and a step size αk are generated. Then one moves on to the next point following
xk+1 = xk + αkSk and the process is repeated until the desired convergence is reached. In derivative-
free methods, local information of the objective function is used to determine the search direction. The
choice of step size also needs consideration, as inadequate step sizes might prevent the optimisation
method from converging to an optimum. An ideal step size can be chosen by finding the value of
αk ∈ R that maximises f (xk + αkSk) with respect to αk at each iteration.

Projection pursuit guided tour

A projection pursuit guided tour combines two different methods (projection pursuit and guided tour)
to explore interesting features in a high-dimensional space. Projection pursuit, coined by Friedman
and Tukey (1974), detects interesting structures (e.g., clustering, outliers, and skewness) in multivariate
data via low-dimensional projections. Guided tour (Dianne Cook et al. 1995) is one variation of a
broader class of data visualisation methods, tour (Buja et al. 2005), which displays high-dimensional
data through a series of animated projections.

Let Xn×p be the data matrix with n observations in p dimensions. A d-dimensional projection is
a linear transformation from Rp into Rd defined as Y = X · A, where Yn×d is the projected data and
Ap×d is the projection matrix. We define f : Rn×d 7→ R to be an index function that maps the projected
data Y onto a scalar value. This is commonly known as the projection pursuit index function, or just
index function, and is used to measure the “interestingness” of a given projection. An interesting
projection shows structures that are non-normal since theoretical proofs from Diaconis and Freedman
(1984) have shown that projections tend to be normal as n and p approach infinity under certain
conditions. There have been many index functions proposed in the literature, here are a few examples:
early indexes that can be categorised as measuring the L2 distance between the projection and a normal
distribution: Legendre index (Friedman and Tukey 1974); Hermite index (Hall 1989); natural Hermite
index (D. Cook, Buja, and Cabrera 1993); chi-square index (Posse 1995) for detecting spiral structure;
LDA index (E. Lee et al. 2005) and PDA (E.-K. Lee and Cook 2010) index for supervised classification;
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Figure 1: An illustration for demonstrating the frames in a tour path. Each square (frame) represents
the projected data with a corresponding basis. Blue frames are returned by the projection pursuit
optimisation and white frames are constructed between two blue frames by geodesic interpolation.

kurtosis index (Loperfido 2020) and skewness index (Loperfido 2018) for detecting outliers in financial
time series; and most recently, scagnostic indexes (Laa and Cook 2020) for summarising structures in
scatterplot matrices based on eight scagnostic measures (L. Wilkinson, Anand, and Grossman 2005;
Leland Wilkinson and Wills 2008).

As a general visualisation method, tour produces animations of high-dimensional data via rotations
of low-dimensional planes. There are different versions depending on how the high-dimensional
space is investigated: grand tour (Dianne Cook et al. 2008) selects the planes randomly to provide
a general overview; manual tour (Dianne Cook and Buja 1997) gradually phases in and out one
variable to understand the contribution of that variable in the projection. Guided tour, the main
interest of this paper, chooses the planes with the aid of projection pursuit to gradually reveal the
most interesting projection. Given a random start, projection pursuit iteratively finds bases with
higher index values, and the guided tour constructs a geodesic interpolation between these planes to
form a tour path. Figure 1 shows a sketch of the tour path where the blue squares represent planes
(targets) selected by the projection pursuit optimisation, and the white squares represent planes in
the geodesic interpolation between targets. Mathematical details of the geodesic interpolation can be
found in Buja et al. (2005). (Note that the term frame used in Buja’s paper refers to a particular set of
orthonormal vectors defining a plane. This is also conventionally referred to as a basis, which is used
in this paper and the associated software.) The aforementioned tour method has been implemented in
the R package tourr (H. Wickham et al. 2011).

Optimisation in the tour

In projection pursuit, the optimisation aims at finding the global and local maxima that give interesting
projections according to an index function. That is, it starts with a given randomly selected basis
A1 and aims at finding an optimal final projection basis AT that satisfies the following optimisation
problem:

arg max
A∈A

f (X · A) s.t. A′A = Id , (1)

where f and X are defined as in the previous section, A is the set of all p-dimensional projection
bases, Id is the d-dimensional identity matrix, and the constraint ensures the projection bases, A,
to be orthonormal. It is worth noticing the following: 1) The optimisation is constrained, and the
orthonormality constraint imposes a geometrical structure on the bases space: it forms a Stiefel
manifold. 2) There may be index functions for which the objective function might not be differentiable.
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3) While finding the global optimum is the goal of the optimisation problem, interesting projections
may also appear in the local optimum. 4) The optimisation should be fast to compute since the tour
animation is viewed by the users during the optimisation.

Existing algorithms

Three optimisers have been implemented in the tourr (H. Wickham et al. 2011) package: creeping
random search (CRS), simulated annealing (SA), and pseudo-derivative (PD). Creeping random
search (CRS) is a random search optimiser that samples a candidate basis Al in the neighbourhood
of the current basis Acur by Al = (1 − α)Acur + αArand where α ∈ [0, 1] controls the radius of the
sampling neighbourhood and Arand is generated randomly. Al is then orthonormalised to fulfil the
basis constraint. If Al has an index value higher than the current basis Acur, the optimiser outputs Al
for a guided tour to construct an interpolation path. The neighbourhood parameter α is adjusted by a
cooling parameter: αj+1 = αj ∗ cooling before the next iteration starts. The optimiser terminates when
the maximum number of iteration lmax is reached before a better basis can be found. The algorithm of
CRS can be found in the appendix. Posse (1995) has proposed a slightly different cooling scheme by
introducing a halving parameter c. In his proposal, α is only adjusted if the last iteration takes more
than c times to find a better basis.

Simulated annealing (SA) uses the same sampling process as CRS but allows a probabilistic
acceptance of a basis with lower index value than the current one. Given an initial value of T0 ∈ R+,
the “temperature” at iteration l is defined as T(l) = T0

log(l+1) . When a candidate basis fails to have an
index value larger than the current basis, SA gives it a second chance to be accepted with probability

P = min
{

exp
[
−| Icur − Il |

T(l)

]
, 1
}

,

where I(·) ∈ R denotes the index value of a given basis. This implementation allows the optimiser to
make a move and explore the basis space even if the candidate basis does not have a higher index
value. Hence it enables the optimiser to jump out of a local optimum. The second algorithm in the
appendix highlights how SA differs from CRS in the inner loop.

Pseudo-derivative (PD) search uses a different strategy than CRS and SA. Rather than randomly
sample the basis space, PD first computes a search direction by evaluating bases close to the current
basis. The step size is then chosen along the corresponding geodesic by another optimisation over a 90
degree angle from −π/4 to π/4. The resulting candidate basis A∗∗ is returned for the current iteration
if it has a higher index value than the current one. The third algorithm in the appendix summarises
the inner loop of the PD.

Visual diagnostics

A data structure for diagnosing optimisers in projection pursuit guided tour is first defined. With this
data structure, four types of diagnostic plots are presented.

Data structure for diagnostics

Three main pieces of information are recorded during the projection pursuit optimisation: 1) projection
bases A, 2) index values I, and 3) state S. For CRS and SA, possible states include random_search,
new_basis, and interpolation. Pseudo-derivative (PD) has a wider variety of states, including
new_basis, direction_search, best_direction_search, best_line_search, and interpolation. Mul-
tiple iterators index the information collected at different levels: t is a unique identifier prescribing the
natural ordering of each observation; j and l are the counter of the outer and inner loop, respectively.
Other parameters of interest recorded, V, include method that tags the name of the optimiser, and
alpha that indicates the sampling neighbourhood size for searching observations. A matrix notation
describing the data structure is:
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t A I S j l V1 V2 Description

1 A1 I1 S1 1 1 V11 V12 start basis
2 A2 I2 S2 2 1 V21 V22 search
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 2 l2 . . . . . . search (accepted)
. . . . . . . . . . . . 2 1 . . . . . . interpolation
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 2 k2 . . . . . . interpolation
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . J 1 . . . . . . search
. . . . . . . . . . . . . . . . . . . . . . . . . . .
T AT IT ST J lJ VT1 VT2 search (final)
. . . . . . . . . . . . J 1 . . . . . . interpolation
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . J k J . . . . . . interpolation
. . . . . . . . . . . . J + 1 1 . . . . . . search (last

round)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
T′ AT′ IT′ ST′ J + 1 lJ+1 VT′1 VT′2 search (last

round)

where T′ = T + k J + lJ+1. Note that there is no output in iteration J + 1 since the optimiser does not
find a better basis in the last iteration and terminates. The final basis found is AT with index value IT .

The data structure constructed above meets the tidy data principle (Hadley Wickham 2014) that
requires each observation to form a row and each variable to form a column. With tidy data structure,
data wrangling and visualisation can be significantly simplified by well-developed packages such as
dplyr (Hadley Wickham et al. 2020) and ggplot2 (Hadley Wickham 2016).

Diagnostic 1: Checking how hard the optimiser is working

A starting point of diagnosing an optimiser is to understand how many searches it has conducted,
i.e., we want to summarise how the index is increasing over iterations and how many basis need to
be sampled at each iteration. This is achieved using the function explore_trace_search(): a boxplot
shows the distribution of index values for each try, where the accepted basis (corresponding to the
highest index value) is always shown as a point. When there are only few tries at a given iteration,
showing the data points directly is preferred over the boxplot and this is controlled via the cutoff
argument. Additional annotations are added to facilitate better reading of the plot, and these include
1) the number of points searched in each iteration can be added as text label at the bottom of each
iteration; 2) the anchor bases to interpolate are connected and highlighted in a larger size; 3) the colour
of the last iteration is in greyscale to indicate no better basis found in this iteration.

Figure 2 shows an example of the search plot for CRS (left) and SA (right). Both optimisers quickly
find better bases in the first few iterations and then take longer to find one in the later iterations. The
anchor bases, the ones found with the highest index value in each iteration, always have an increased
index value in the optimiser CRS while this is not the case for SA. This feature gives CRS an advantage
in this simple example to quickly find the optimum.

Diagnostic 2: Examining the optimisation progress

Another interesting feature to examine is the changes in the index value between interpolating bases
since the projection on these bases is shown in the tour animation. Trace plots are created by plotting
the index value against time. Figure 3 presents the trace plot of the same optimisations as Figure
2, and one can observe that the trace is smooth in both cases. It may seem bizarre at first sight that
the interpolation sometimes passes bases with higher index values before it decreases to a lower
target. This happens because, on the one hand, the probabilistic acceptance in SA implies that some
worse bases will be accepted by the optimiser. In addition, the guided tour interpolates between
the current and target basis to provide a smooth transition between projections, and sometimes a
higher index value will be observed along the interpolation path. This indicates that a non-monotonic
interpolation cannot be avoided, even for CRS. Later, in Section A problem of non-monotonicity, there
will be a discussion on improving the non-monotonic interpolation for CRS.
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Figure 2: A comparison of the searches by two optimisers: CRS (left) and SA (right) on a 2D projection
problem of a six-variable dataset, boa6 using the holes index. Both optimisers reach the final basis
with a similar index value, while it takes SA longer to find the final basis. In the earlier iterations,
optimisers quickly find a better basis to proceed, while in the later iterations, most sampled bases
fail to make an improvement on the index value, and a boxplot is used to summarise the distribution
of the index values. There is no better basis found in the last iteration, 9 (left) and 15 (right), before
reaching the maximum number of try and hence it is coloured grey. The colour scale is from the
customised botanical palette in the **ferrn** package.
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Figure 3: An inspection of the index values as the optimisation progress for two optimisers: CRS (left)
and SA (right). The holes index is optimised for a 2D projection problem on the six-variable dataset
boa6. Lines indicate the interpolation, and dots indicate new target bases generated by the optimisers.
Interpolation in both optimisation is smooth, while SA is observed to first pass by some bases with
higher index values before reaching the target bases in time 76-130.
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*

CRS PD

Figure 4: Search paths of CRS (green) and PD (brown) in the PCA-reduced basis space for 1D projection
problem on the five-variable dataset, boa5 using holes index. The basis space, a 5D unit sphere, is
projected onto a 2D circle by PCA. The black star represents the theoretical best basis the optimisers
are aiming to find. All the bases in PD have been flipped for easier comparison of the final bases, and
a grey dashed line has been annotated to indicate the symmetry of the two start bases.

Diagnostic 3a: Understanding the optimiser’s coverage of the search space

Apart from checking the search and progression of an optimiser, looking at where the bases are
positioned in the basis space is also of interest. Given the orthonormality constraint, the space
of projection bases Ap×d is a Stiefel manifold. For one-dimensional projections, this forms a p-
dimensional sphere. A dimensionality reduction method, e.g., principal component analysis, is
applied to first project all the bases onto a 2D space. In a projection pursuit guided tour optimisation,
there are various types of bases involved: 1) The starting basis; 2) The search bases that the optimiser
evaluated to produce the anchor bases; 3) The anchor bases that have the highest index value in
each iteration; 4) The interpolating bases on the interpolation path; and finally, 5) the end basis. The
importance of these bases differs but the most important ones are the starting, interpolating, and
end bases. Sometimes, two optimisers can start with the same basis but finish with bases of opposite
signs. This happens because the projection is invariant to the orientation of the basis, and so is the
index value. However, this creates difficulties for comparing the optimisers since the end bases will
be symmetric to the origin. A sign flipping step is conducted to flip the signs of all the bases in one
routine if different optimisations finish at opposite places.

Several annotations have been made to help understand this plot. As mentioned previously, the
original basis space is a high-dimensional sphere, and random bases on the sphere can be generated
via the geozoo (Schloerke 2016) package. We use PCA to project and visualize the parameters/ bases
in 2D. The centre of the 2D view is the first two PCs of the data matrix. It theoretically should be
a circle but may have some irregular edges due to finite sampling. Thus the edge is smoothed by
using a radius estimated as the largest distance from the centre to any basis. In the simulation, the
theoretical best basis is known and can be labelled to compare how close to this that the optimisers
stopped. Various aesthetics, i.e., size, alpha (transparency), and colour, are applicable to emphasize
critical elements and adjust for the presentation. For example, anchor points and search points are less
important, and hence a smaller size and alpha are used. Alpha can also be applied on the interpolation
paths to show start to finish from transparent to opaque.

Figure 4 shows the PCA plot of CRS and PD for a 1D projection problem. Both optimisers find the
optimum, but PD gets closer. With the PCA plot, one can visually appreciate the nature of these two
optimisers: PD first evaluates points in a small neighbourhood for a promising direction, while CRS
evaluates points randomly in the search space to search for the next target. There are dashed lines
annotated for CRS, and it describes the interruption of the interpolation, which will be discussed in
detail in Section A problem of non-monotonicity.
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Figure 5: Six frames selected from the animated version of the previous plot. With animation, the
progression of the search paths from start to finish is better identified. CRS (green) finishes the
optimisation quicker than PD (brown) since there is no further movement for CRS in the sixth frame.
The full video of the animation can be found in the html version of the paper.

Diagnostic 3b: Animating the diagnostic plots

Animation is another type of display to show how the search progresses from start to finish in the
space. Figure 5 shows the animated version (six frames from the animation if viewed in pdf) of the
PCA plot in Figure 4. An additional piece of information one can learn from this animation is that
CRS finds its end basis quicker than PD since CRS finishes its search in the 5th frame while PD is still
making more progress.

Diagnostic 4a: The tour looking at itself

As mentioned previously, the original p × d dimension space can be simulated via randomly generated
bases in the geozoo (Schloerke 2016) package. While the PCA plot projects the bases from the
direction that maximises the variance, the tour plot displays the original high-dimensional space from
various directions using animation. Figure 6 shows some frames from the tour plot of the same two
optimisations in its original space.

Diagnostic 4b: Forming a torus

While the previous few examples have looked at the space of 1D basis in a unit sphere, this section
visualises the space of 2D basis. Recall that the columns in a 2D basis are orthogonal to each other,
so the space of p × 2 bases is a torus in the p-D space (Buja and Asimov 1986). For p = 3 one would
see a classical 3D torus shape as shown by the grey points in Figure 7. The two circles of the torus
can be observed to be perpendicular to each other and this can be linked back to the orthogonality
condition. Two paths from CRS and PD are plotted on top of the torus and coloured in green and
brown, respectively, to match the previous plots. The final basis found by PD and CRS are shown in a
larger shape and printed below, respectively:

#> [,1] [,2]
#> [1,] 0.001196285 0.03273881
#> [2,] -0.242432715 0.96965761
#> [3,] -0.970167484 -0.24226493

#> [,1] [,2]
#> [1,] 0.05707994 -0.007220138
#> [2,] -0.40196202 -0.915510160
#> [3,] -0.91387549 0.402230054

Both optimisers have found the third variable in the first direction and the second variable in the
second direction. Note, however, the different orientation of the basis, following from the different
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Figure 6: Six frames selected from rotating the high-dimensional basis space, along with the same two
search paths from Figure 4 and 5. The basis space in this example is a 5D unit sphere, on which points
(grey) are randomly generated via the CRAN package geozoo. The full animation can be seen in the
html version of the paper.

sign in the second column. One would expect to see this in the torus plot as the final bases match
each other when projected onto one torus circle (due to the same sign in the first column) and are
symmetric when projected onto the other (due to the different sign in the second column). In Figure 7,
this can be seen most clearly in frame 5 where the two circles are rotated into a line from our view.

Diagnosing an optimiser

In this section, several examples will be presented to show how the diagnostic plots discover something
unexpected in projection pursuit optimisation, and guide the implementation of new features.

Simulation setup

Random variables with different distributions have been simulated as follows:

x1
d
= x8

d
= x9

d
= x10 ∼ N (0, 1) (2)

x2 ∼ 0.5N (−3, 1) + 0.5N (3, 1) (3)

Pr(x3) =

{
0.5 if x3 = −1 or 1
0 otherwise

(4)

x4 ∼ 0.25N (−3, 1) + 0.75N (3, 1) (5)

x5 ∼ 1
3
N (−5, 1) +

1
3
N (0, 1) +

1
3
N (5, 1) (6)

x6 ∼ 0.45N (−5, 1) + 0.1N (0, 1) + 0.45N (5, 1) (7)

x7 ∼ 0.5N (−5, 1) + 0.5N (5, 1) (8)

Variables x1, x8 to x10 are normal noise with zero mean, and unit variance and x2 to x7 are normal
mixtures with varied weights and locations. All the variables have been scaled to have overall unit
variance before projection pursuit. The holes index (Dianne Cook et al. 2008), used for detecting
bimodality of the variables, is used throughout the examples unless otherwise specified.

A problem of non-monotonicity

An example of non-monotonic interpolation has been given in Figure 3: a path that passes bases with a
higher index value than the target one. For SA, a non-monotonic interpolation is justified since target
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Figure 7: Six frames selected from rotating the 2D basis space along with two search paths optimised
by PD (brown) and CRS (green). The projection problem is a 2D projection with three variables using
the holes index. The grey points are randomly generated 2D projection bases in the space, and it can
be observed that these points form a torus. The full video of the animation can be found in the html
version of the paper.

bases do not necessarily have a higher index value than the current one, while this is not the case for
CRS. The original trace plot for a 2D projection problem, optimised by CRS, is shown on the left panel
of Figure 8, and one can observe that the non-monotonic interpolation has undermined the optimiser
to realise its full potential. Hence, an interruption is implemented to stop at the best basis found in the
interpolation. The right panel of Figure 8 shows the trace plot after implementing the interruption,
and while the first two interpolations are identical, the basis at time 61 has a higher index value than
the target in the third interpolation. Rather than starting the next iteration from the target basis on
time 65, CRS starts the next iteration at time 61 on the right panel and reaches a better final basis.

Close but not close enough

Once the final basis has been found by an optimiser, one may want to push further in the close
neighbourhood to see if an even better basis can be found. A polish search takes the final basis of an
optimiser as the start of a new guided tour to search for local improvements. The polish algorithm
is similar to the CRS but with three distinctions: 1) a hundred rather than one candidate bases are
generated each time in the inner loop; 2) the neighbourhood size is reduced in the inner loop, rather
than in the outer loop; and 3) three more termination conditions have been added to ensure the new
basis generated is distinguishable from the current one in terms of the distance in the space, the relative
change in the index value, and neighbourhood size:

1) the distance between the basis found and the current needs to be larger than 1e-3;
2) the relative change of the index value needs to be larger than 1e-5; and
3) the alpha parameter needs to be larger than 0.01.

Figure 9 presents the projected data and trace plot of a 2D projection, optimised by CRS and
followed by the polish step. The top row shows the initial projection, the final projection after CRS,
and the final projection after polish, respectively. The end basis found by CRS reveals the four clusters
in the data, but the edges of each cluster are not clean-cut. Polish works with this end basis and further
pushes the index value to produce clearer edges of the cluster, especially along the vertical axis.

Seeing the signal in the noise

The holes index function used for all the examples before this section produces a smooth interpolation,
while this is not the case for all the indexes. An example of a noisy index function for 1D projections
compares the projected data, Yn×1, to a randomly generated normal distribution, Nn×1, using the
Kolmogorov test. Let F.(n) be the empirical cumulative distribution function (ECDF) with two possible
subscripts, Y and N , representing the projected and randomly generated data, and n denoting the
number of observations, the Kolmogorov index Ink(n), is defined as:
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Figure 8: Comparison of the interpolation before and after implementing the interruption for the 2D
projection problem on boa6 data using holes index, optimised by CRS. On the left panel, the basis
with a higher index value is found during the interpolation but not used. On the right panel, the
interruption stops the interpolation at the basis with the highest index value for each iteration and
results in a final basis with a higher index value, as shown on the right panel.
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Figure 9: Comparison of the projected data before and after using polishing for a 2D projection
problem on boa6 data using holes index. The top row shows the initial projected data and the final
views after CRS and polish search, and the second row traces the index value. The clustering structure
in the data is detected by CRS (top middle panel), but the polish step improves the index value and
produces clearer boundaries of the clusters (top right panel), especially along the vertical axis. Note
that the parameter max.tries is set to 400 in this experiment for CRS to do its best.
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Figure 10: Comparison of the three optimisers in optimising Ink(n) index for a 1D projection problem
on a five-variable dataset, boa5. Both CRS and SA succeed in the optimisation, PD fails to optimise this
non-smooth index. Further, SA takes much longer than CRS to finish the optimisation, but finishes off
closer to the theoretical best.

IK(n) = max [FY(n)− FN (n)] .

With a non-smooth index function, two research questions are raised:

1) whether any optimiser fails to optimise this non-smooth index; and
2) whether the optimisers can find the global optimum despite the presence of a local optimum.

Figure 10 presents the trace and PCA plots of all three optimisers, and as expected, none of the
interpolated paths are smooth. There is barely any improvement made by PD, indicating its failure in
optimising non-smooth index functions. While CRS and SA have managed to get close to the index
value of the theoretical best, the trace plot shows that it takes SA much longer to find the final basis.
This long interpolation path is partially due to the fluctuation in the early iterations, where SA tends
to generously accept inferior bases before concentrating near the optimum. The PCA plot shows the
interpolation path and search points, excluding the last termination iteration. Pseudo-Derivative (PD)
quickly gets stuck near the starting position. Comparing the amount of random search done by CRS
and SA, it is surprising that SA does not carry as many samples as CRS. Combining the insights from
both the trace and PCA plot, one can learn the two different search strategies by CRS and SA: CRS
frequently samples in the space and only make a move when an improvement is guaranteed to be
made, while SA first broadly accepts bases in the space and then starts the extensive sampling in a
narrowed subspace. The specific decision of which optimiser to use will depend on the index curve in
the basis space, but if the basis space is non-smooth, accepting inferior bases at first, as SA has done
here, can lead to a more efficient search in terms of the overall number of points evaluated.

The next experiment compares the performance of CRS and SA when a local maximum exists.
Two search neighbourhood sizes, 0.5 and 0.7, are compared to understand how a large search neigh-
bourhood would affect the final basis and the length of the search. Figure 11 shows 80 paths simulated
using 20 seeds in the PCA plot, faceted by the optimiser and search size. With CRS and a search size
of 0.5, despite being the simplest and fastest, the optimiser fails in three instances where the final basis
lands neither near the local nor the global optimum. With a larger search size of 0.7, more seeds have
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*x

*x

*x

optimiser: CRS optimiser: SA

search size: 0.5

search size: 0.7

local global

Figure 11: Comparing 20 search paths in the PCA-projected basis space faceted by two optimisers:
CRS and SA, and two search sizes: 0.5 and 0.7. The optimisation is on the 1D projection index, Ink(n),
for boa6 data, where a local optimum, annotated by the cross (x), is presented in this experiment, along
with the global optimum (*).

found the global maximum. Comparing CRS and SA for a search size of 0.5, SA does not seem to
improve the final basis found, despite having longer interpolation paths. However, the denser paths
near the local maximum are an indicator that SA is working hard to examine if there is any other
optimum in the basis space, but the relatively small search size has diminished its ability to reach the
global maximum. With a larger search size, almost all the seeds (16 out of 20) have found the global
maximum, and some final bases are much closer to the theoretical best, as compared to the three other
cases. This indicates that SA, with a reasonable large search window, is able to overcome the local
optimum and optimise close towards the global optimum.

Reconciling the orientation

One interesting situation observed in the previous examples is that, for some simulations, as shown
on the left panel of Figure 12, the target basis is generated on the other half of the basis space, and the
interpolator seems to draw a straight line to interpolate. Bases with opposite signs do not affect the
projection and index value, but we would prefer the target to have the same orientation as the current
basis. The orientation of two bases can be computationally checked by calculating the determinant – a
negative value suggests the two bases have a different orientation. For 1D bases, this can be corrected
by flipping the sign on one basis. For higher dimensions, it can be a bit more difficult because the
orthonormality of the basis needs to be also maintained when an individual vector is flipped. Here,
an orientation check is carried out once a new target basis is generated, and the sign in the target
basis will be flipped if a negative determinant is obtained. The interpolation after implementing the
orientation check is shown on the right panel of Figure 12, where the unsatisfactory interpolation no
longer exists.

Implementation

This project contributes to the software development in two packages: a data collection object is
implemented in tourr (H. Wickham et al. 2011), while the visual diagnostics of the optimisers is
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original flipped

original flipped

Figure 12: Comparison of the interpolation in the PCA-projected basis space before and after reconcil-
ing the orientation of the target basis. Optimisation is on the 1D projection index, Ink(n), for boa6 data
using CRS with seed 2463. The dots represent the target basis in each iteration, and the path shows
the interpolation. On the left panel, one target basis is generated with an opposite orientation to the
current basis (hence appear on the other side of the basis space), and the interpolator crosses the origin
to perform the interpolation. The right panel shows the same interpolation after implementing an
orientation check, and the undesirable interpolation disappears.

implemented in ferrn (Zhang et al. 2021). The functions in the ferrn (Zhang et al. 2021) package are
listed below:

• Main plotting functions:

– explore_trace_search() produces summary plots in Figure 2.
– explore_trace_interp() produces trace plots for the interpolation points in Figure 3.
– explore_space_pca() produces the PCA plot of projection bases on the reduced space.

Figure 4 includes the additional details of anchor and search bases, which can be turned
on by the argument details = TRUE. The animated version in Figure 5 is produced with
argument animate = TRUE.

– explore_space_tour() produces animated tour view on the full space of the projection
bases in Figure 6.

• get_*() extracts and manipulates certain components from the existing data object.

– get_anchor() extracts target observations.
– get_basis_matrix() flattens all the bases into a matrix.
– get_best() extracts the observation with the highest index value in the data object.
– get_dir_search() extracts directional search observations for PD search.
– get_interp() extracts interpolated observations.
– get_interp_last() extracts the ending interpolated observations in each iteration.
– get_interrupt() extracts the ending interpolated observations and the target observations

if the interpolation is .interrupted
– get_search() extracts search observations.
– get_search_count() extracts the count of search observations.
– get_space_param() produces the coordinates of the centre and radius of the basis space.
– get_start() extracts the starting observation.
– get_theo() extracts the theoretical best observations, if given.

• bind_*() incorporates additional information outside the tour optimisation into the data object.

– bind_theoretical() binds the theoretical best observation in simulated experiment.
– bind_random() binds randomly generated bases in the projection bases space to the data

object.
– bind_random_matrix() binds randomly generated bases and outputs in a matrix format.

• add_*() provides wrapper functions to create ggprotos for different components for the PCA
plot
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– add_anchor() for plotting anchor bases.
– add_anno() for annotating the symmetry of start bases.
– add_dir_search() for plotting the directional search bases with magnified distance.
– add_end() for plotting end bases.
– add_interp() for plotting the interpolation path.
– add_interp_last() for plotting the last interpolation bases for comparing with target

bases when interruption is used.
– add_interrupt() for linking the last interpolation bases with target ones when interrup-

tion is used.
– add_search() for plotting search bases.
– add_space() for plotting the circular space.
– add_start() for plotting start bases.
– add_theo() for plotting theoretical best bases, if applicable.

• Utilities

– theme_fern() and format_label() for better display of the grid lines and axis formatting.
– clean_method() to clean up the name of the optimisers.
– botanical_palettes() is a collection of colour palettes from Australian native plants.

Quantitative palettes include daisy, banksia, and cherry, and sequential palettes contain
fern and acacia.

– botanical_pal() as the colour interpolator.
– scale_color_*() and scale_fill_*() for scaling the colour and fill of the plot.

Conclusion

This paper has provided several visual diagnostics that can be used for understanding a complex
optimisation procedure and are implemented in the ferrn package. The methods were illustrated using
the optimisers available for projection pursuit guided tour. Here the constraint is the orthonormality
condition of the projection bases, which corresponds to optimisation over spheres and torii. The
approach described broadly applies to other constrained optimisers. Although the manifold in p-space
might be different the diagnostic techniques are the same. A researcher would begin by saving the
path of the optimiser in a form required to input into the ferrn package, as described in this paper. One
might generally make more samples from the constrained space upon which to assess and compare
the optimisation paths. These high-dimensional data objects can then be viewed using the tour.

The progressive optimisation of a target function and its coverage of the search space can be viewed
in both reduced 2D space and the full space. These visualisations can lead to insights for evaluating
and comparing the performance of multiple optimisers operating on the same task. They can provide
a better understanding of existing methods or motivate the development of new approaches. For
example, we have compared how three optimisers perform when maximising a non-smooth index
function and have illustrated how the pseudo-derivative search fails in this setting. The observations
from our experiments have also been translated into improved optimisation methods for the guided
tour, e.g., we introduced the option to interrupt the search if a better basis is found along the path.

This work might be considered an effort to bring transparency into algorithms. Although little
attention is paid by algorithm developers to providing ways to output information during intermediate
steps, this is an important component for enabling others to understand and diagnose the performance.
Algorithms are an essential component of artificial intelligence that is used to make daily life easier.
Interpretability of algorithms is important to guard against aspects like bias and inappropriate use.
The data object underlying the visual diagnostics here is an example of what might be useful in
algorithm development generally.
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volesti: Volume Approximation and
Sampling for Convex Polytopes in R
by Apostolos Chalkis and Vissarion Fisikopoulos

Abstract Sampling from high-dimensional distributions and volume approximation of convex bodies
are fundamental operations that appear in optimization, finance, engineering, artificial intelligence,
and machine learning. In this paper, we present volesti, an R package that provides efficient, scalable
algorithms for volume estimation, uniform, and Gaussian sampling from convex polytopes. volesti
scales to hundreds of dimensions, handles efficiently three different types of polyhedra and pro-
vides non existing sampling routines to R. We demonstrate the power of volesti by solving several
challenging problems using the R language.

Introduction

High-dimensional sampling from multivariate distributions with Markov Chain Monte Carlo (MCMC)
algorithms is a fundamental problem with many applications in science and engineering (Iyengar,
1988; Somerville, 1998; Genz and Bretz, 2009; Schellenberger and Palsson, 2009; Venzke et al., 2021).
In particular, multivariate integration over a convex set and volume approximation of such sets
—a special case of integration— have accumulated a broad amount of effort over the last decades.
Nevertheless, those problems are computationally hard for general dimensions (Dyer and Frieze, 1988).
MCMC algorithms have made remarkable progress efficiently solving the problems of sampling and
volume estimation of convex bodies while enjoying great theoretical guarantees (Chen et al., 2018; Lee
and Vempala, 2018; Mangoubi and Vishnoi, 2019). However, theoretical algorithms cannot be applied
efficiently to real-life computations. For example, the asymptotic analysis by Lovász and Vempala
(2006) hides some large constants in the complexity, and in Lee and Vempala (2018), the step of the
random walk used for sampling is too small to be an efficient choice in practice. Therefore, practical
algorithms have been designed by relaxing the theoretical guarantees and applying new algorithmic
and statistical techniques to perform efficiently while at the same time meeting the requirements for
high accuracy results (Emiris and Fisikopoulos, 2014; Cousins and Vempala, 2016; Chalkis et al., 2019).

In this paper, we present volesti (Fisikopoulos et al., 2020), an R package containing a variety
of high-dimensional MCMC methods for sampling from multivariate distributions restricted to a
convex polytope and randomized algorithms for volume estimation of convex polytopes. In partic-
ular, it includes efficient implementations of three practical volume algorithms—Sequence of Balls
(SoB) (Emiris and Fisikopoulos, 2014), Cooling Gaussians (CG) (Cousins and Vempala, 2016), and
Cooling convex Bodies (CB) (Chalkis et al., 2019). In addition to volume estimation, volesti provides
efficient implementations for Random-Directions and Coordinate-Directions Hit and Run (RDHR and
CDHR) (Smith, 1984), Ball Walk (BaW) (Hastings, 1970), Billiard Walk (BiW) (Polyak and Gryazina,
2014). The first three can be used to sample from multivariate uniform or spherical Gaussian distribu-
tions (centered at any point), while BiW can be employed, by definition, only for uniform sampling.
On the whole, volesti is the first R package that:

(a) performs high-dimensional volume estimation,

(b) efficiently handles three different types of polyhedra in high dimensions, namely H-polytopes,
V-polytopes, and Z-polytopes,

(c) provides—previously absent from R—MCMC sampling algorithms for uniform and truncated
Gaussian distributions, namely BaW, CDHR, and BiW,

(d) solves some challenging problems in finance, engineering, and applied mathematics.

On top of volesti presentation, we illustrate the usage of volesti in the study of convergence
of various random walks (e.g., Figure 3) and accuracy of volume estimation methods. Regarding
applications, in the last section, we illustrate how one can (a) exploit volesti to detect shock events
in stock markets following the results by Calès et al. (2018), (b) evaluate zonotope approximation in
engineering (Kopetzki et al., 2017), and (c) approximate the number of linear extensions of a partially
ordered set, which is useful in various applications in artificial intelligence and machine learning.

To improve the presentation of the current paper, detailed comparisons and benchmarking of R
packages–including volesti–for solving the problems of MCMC sampling, volume computation, and
numerical integration are presented in a separate blog post (Chalkis and Fisikopoulos, 2021).
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Figure 1: Examples of three different polytope representations. From left to right: an H-polytope, a
V-polytope, and a Z-polytope (a sum of four segments).

Related R software and applications

Considering MCMC methods to sample from multivariate distributions are divided into two main
categories: truncated to a convex body and untruncated distributions. For the first category—which
clearly is the main focus of this paper—an important case is the truncated Gaussian distribution which
arises in several applications in statistics. Bolin and Lindgren (2015) sample from truncated Gaussian
distributions in a novel importance sampling method to study Markov processes that exceed a certain
level. Wadsworth and Tawn (2014) use sampling from a specific truncated Gaussian distribution
to develop a novel method for likelihood inference, while Huser and Davison (2013) sample from
the same distribution for likelihood estimation for max-stable processes. In curve prediction, they
exploit Gaussian sampling to compute simultaneous confidence bands to forecast a full curve from
explanatory variables (Azaïs et al., 2010). Grün and Hornik (2012) study the posterior distribution
for Bayesian inference on mixed regression models to represent human immunodeficiency virus
ribonucleic acid levels, a Gaussian restricted to a convex polytope. In Albert and Chib (1993), the
probit regression model for binary outcomes have an underlying normal regression structure on latent
continuous data; sampling from the posterior distribution of the parameters involves sampling from a
truncated Gaussian distribution.

Another important special case is the truncated uniform distribution. In systems biology the
flux space of a metabolic network is represented by a convex polytope (Haraldsdòttir et al., 2017);
uniform sampling from the interior of that polytope could lead to important biological insights. In
computational finance, the set of all possible portfolios in a stock market is in general a convex
polytope. Volume computation and uniform sampling from that set is useful for crises detection (Calès
et al., 2018) and efficient portfolio allocation and analysis (Pouchkarev et al., 2004; Hallerbach et al.,
2002).

Considering R packages for the truncated case, there is tmg (Pakman, 2015) implementing exact
Hamiltonian Monte Carlo (HMC) with boundary reflections as well as multinomineq (Heck, 2019),
lineqGPR (Lopez, 2019), restrictedMVN (Taylor and Benjamini, 2016), tmvmixnorm (Ma et al., 2020)
implementing variations of the Gibbs sampler. To our knowledge, the only two R packages for uniform
sampling is hitandrun (van Valkenhoef and Tervonen, 2019) and limSolve (den Meersche K. et al.,
2009), which exposes the R function xsample() (den Meersche et al., 2009). For the untruncated case,
packages HybridMC (Morey, 2009), rhmc (Sartório, 2018), mcmc (Geyer and Johnson, 2020), and
MHadaptive (Chivers, 2012) provide implementations for HMC and Metropolis Hastings algorithms,
respectively. For volume computation, the only existing package, geometry (Roussel et al., 2019),
computes the volume of the convex hull of a set of points and is based on the C++ library, qhull (Barber
et al., 1996).

Algorithms and polytopes

Convex polytopes

Convex polytopes are a special case of convex bodies with special interest in many scientific fields and
applications. For example, in optimization, the feasible region of a linear program is a polytope, and
in finance, the set of portfolios is usually expressed by a polytope (i.e., the simplex). More formally, an
H-polytope is defined as

P := {x | Ax ≤ b} ⊆ Rd,

where A ∈ Rm×d and b ∈ Rm, and we say that P is given in H-representation. Each row aT
i ∈ Rd of

matrix A corresponds to a normal vector that defines a halfspace aT
i x ≤ bi, i = [m]. The intersection

of those halfspaces defines the polytope P, and the hyperplanes aT
i x = bi, i = [m] are called facets of

P. A V-polytope is given by a matrix V ∈ Rd×n, which contains n points column-wise, and we say
that P is given in V-representation. The points of P that cannot be written as convex combinations of
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Figure 2: Examples of random walks. From left to right: RDHR, CDHR, BaW, BiW; p is the point at
current step and q the new point computed; ℓ is the line computed by RDHR and CDHR; B is the ball
computed by BaW. Dotted lines depict previous steps.

other points of P are called vertices. The polytope P is defined as the convex hull of those vertices, i.e.,
the smallest convex set that contains them. Equivalently, a V-polytope can be seen as the linear map of
the canonical simplex ∆n−1 := {x ∈ Rn | xi ≥ 0, ∑n

i=1 xi = 1} according to matrix V, i.e.,

P := {x ∈ Rd | ∃y ∈ ∆n−1 : x = Vy}

A Z-polytope (or zonotope) is given by a matrix G ∈ Rd×k, which contains k segments column-wise,
which are called generators. In this case, P is defined as the Minkowski sum of those segments and we
say that it is given in Z-representation. We call order of a Z-polytope the ratio between the number of
segments over the dimension. Equivalently, P can be expressed as the linear map of the hypercube
[−1, 1]k with matrix G, i.e.

P := {x ∈ Rd | ∃y ∈ [−1, 1]k : x = Gy}.

Thus, a Z-polytope is a centrally symmetric convex body, as a linear map of an other centrally
symmetric convex body. Examples of an H-polytope, a V-polytope and a Z-polytope in two dimensions
are illustrated in Figure 1. For an excellent introduction to polytope theory, we recommend the book
of Ziegler (1995).

MCMC sampling and geometric random walks

We more formally define here the four geometric random walks implemented in volesti, namely, Hit
and Run (two variations, RDHR, and CDHR), Ball walk (Baw), and Billiard walk (BiW). They are
illustrated in Figure 2 for two dimensions.

In general, if f : Rn → R+ is a non-negative integrable function, then it defines a measure π f on
any measurable subset A of Rd,

π f (A) =

∫
A f (x)dx∫

Rd f (x)dx

Let ℓ be a line in Rd and let πℓ, f be the restriction of π to ℓ,

πℓ, f (P) =

∫
p+tu∈P f (p + tu)dt∫

ℓ f (x)dx
,

where p is a point on ℓ and u a unit vector parallel to ℓ.

Algorithm 1 describes the general Hit and Run procedure. When the line ℓ in line (1.) of the
pseudocode is chosen uniformly at random from all possible lines passing through p, then the walk is
called Random-Directions Hit and Run (Smith, 1984). To pick a random direction through point p ∈ Rd,

we could sample d numbers g1, . . . , gd from N (0, 1), and then the vector u = (g1, . . . , gd)/
√

∑ g2
i is

uniformly distributed on the surface of the d-dimensional unit ball. A special case is called Coordinate-
Directions Hit and Run (Smith, 1984), where we pick ℓ uniformly at random from the set of d lines
that passing through p and are parallel to the coordinate axes.
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Algorithm 1: Hit_and_run(P, p, f )

Input :Polytope P ⊂ Rd, point p ∈ P, f : Rd → R+

Output :A point q ∈ P

1. Pick a line ℓ through p.

2. return a random point on the chord ℓ ∩ P chosen from the distribution πℓ, f .

The Ball walk (Algorithm 2) needs, additionally to Hit and Run, a radius δ as input. In particular,
Ball walk is a special case of Metropolis Hastings (Hastings, 1970) when the target distribution is
truncated. For both Hit and Run and Ball walk π f , is the stationary distribution of the random walk.

If f (x) = e−||x−x0||2/2σ2
, then the target distribution is the multidimensional spherical Gaussian with

variance σ2 and its mode at x0. When f is the indicator function of P, then the target distribution is the
uniform distribution.

Algorithm 2: Ball_walk(P, p, δ, f )

Input :Polytope P ⊂ Rd, point p ∈ P, radius δ, f Rd → R+

Output :A point q ∈ P

1. Pick a uniform random point x from the ball of radius δ centered at p

2. return x with probability min
{

1, f (x)
f (p)

}
; return p with the remaining probability.

Billiard walk is a random walk for sampling from the uniform distribution (Polyak and Gryazina,
2014). It tries to emulate the movement of a gas particle during the physical phenomena of filling
uniformly a vessel. Algorithm 3 implements Billiard walk, where ⟨·, ·⟩ is the inner product between
two vectors, || · || is the ℓ2 norm, and | · | is the length of a segment.

Algorithm 3: Billiard_walk(P, p, τ, R)

Input :Polytope P ⊂ Rd, current point of the random walk p ∈ P, length of trajectory
parameter τ ∈ R+, upper bound on the number of reflections R ∈N

Output :A point q ∈ P

1. Set the length of the trajectory L← −τ ln η, η ∼ U (0, 1);
Set the number of reflections n← 0 and p0 ← p;
Pick a uniformly distributed direction on the unit sphere, v;

2. Update n← n + 1; If n > R return p0;

3. Set ℓ← {p + tv, 0 ≤ t ≤ L};
4. If ∂P ∩ ℓ = ∅ return p + Lv;

5. Update p← ∂P ∩ ℓ; Let s be the inner normal vector of the tangent plane on p, s.t. ||s|| = 1;
Update L← L− |P ∩ ℓ|, v← v− 2⟨v, s⟩s; goto 2;

Every random walk starts from a point in the convex body and perform a number of steps called
walk length. The larger the walk length is, the less correlated the final with the starting point will be.
The number of steps to get an uncorrelated point, that is, a point approximately drawn from π f is
called mixing time. The number of operations performed to generate a point is called cost per step.
Hence, the total cost to generate a random point is the mixing time multiplied by the cost per step.

random walk mixing time cost/step cost/step
H-polytope V- & Z-polytope

RDHR (Lovász and Vempala, 2006) O∗(d3) O(md) 2 LPs
CDHR (Laddha and Vempala, 2020) O∗(d10) O(m) 2 LPs
BaW (Lee and Vempala, 2017) O∗(d2.5) O(md) 1 LP
BiW (Polyak and Gryazina, 2014) ? O((d + R)m) R LPs

Table 1: Overview of the random walks implemented in volesti. LP for linear program; R for the
number of reflections per point in BiW; D for the diameter of the polytope.

Table 1 displays known complexities for mixing time and cost per step. For the mixing time of
RDHR, we assume that P is well rounded, i.e., Bd ⊆ P ⊆ C

√
dBd, where Bd is the unit ball and C

a constant. In general, if rBd ⊆ P ⊆ RBd then RDHR mixing time is O∗(d2(R/r)2). For the mixing
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time of Ball walk in Table 1, we assume that P is in isotropic position and the radius of the ball is
δ = Θ(1/

√
d) (Lee and Vempala, 2017). There are no theoretical bounds on mixing time for CDHR

and BiW. Polyak and Gryazina (2014) experimentally shows that BiW converges faster than RDHR
when τ ≈ diam(P), i.e., the diameter of P. CDHR is the main paradigm for sampling in practice from
H-polytopes, e.g., in volume computation (Emiris and Fisikopoulos, 2014) and biology (Haraldsdòttir
et al., 2017). The main reason behind this is the small cost per step and the same convergence in
practice as RDHR (Emiris and Fisikopoulos, 2014). For V- and Z-polytopes, the cost per step of BiW is
comparable with that of CDHR. Moreover, it converges fast to the uniform distribution (Chalkis et al.,
2019). The fact that all above walks are implemented in volesti enable us to empirically evaluate their
mixing time using R (e.g., Figure 3).

Volume estimation

As mentioned before, volume computation is a hard problem, so given a polytope P, we have to
employ randomized algorithms to approximate vol(P) within some target relative error ϵ and high
probability. The keys to the success of those algorithms are the Multiphase Monte Carlo (MMC)
technique and sampling from multivariate distributions with geometric random walks.

In particular, we define a sequence of functions { f0, . . . , fq}, fi : Rd → R. Then, vol(P) is given
by the following telescopic product:

vol(P) =
∫

P
dx =

∫
P

fq(x)dx

∫
P fq−1(x)dx∫

P fq(x)dx
· · ·

∫
P dx∫

P f0(x)dx
(1)

Then, we need to:

• Fix the sequence such that q is as small as possible.

• Select fi such that each integral ratio can be efficiently estimated.

• Estimate
∫

P fq(x)dx.

For a long time researchers, e.g., Lovász et al. (1997), set fi to be indicator functions of concentric
balls intersecting P. It follows that

∫
P fi(x)dx = vol(Bi ∩ P), and the sequence of convex bodies

P = P1 ⊇ · · · ⊇ Pq, Pi = Bi ∩ P forms a telescopic product of ratios of volumes, while for vol(Pq)
there is a closed formula. Assuming rBd ⊂ P ⊂ RBd, then q = O(d lg R/r). The trick now is that
we do not have to compute the exact value of each ratio ri = vol(Pi)/vol(Pi+1), but we can use
sampling-rejection to estimate it within some target relative error ϵi. If ri is bounded, then O(1/ϵ2

i )
uniformly distributed points in Pi+1 suffices. Another crucial aspect is the sandwiching ratio R/r of P
which has to be as small as possible. This was tackled by a rounding algorithm, that is bringing P to
nearly isotropic position (Lovász et al., 1997).

The SoB algorithm follows this paradigm and deterministically defines the sequence of Pi such that
0.5 ≤ vol(Pi)/vol(Pi+1) ≤ 1. In the CG algorithm, each fi is a spherical multidimensional Gaussian
distribution, and the algorithm uses an annealing schedule (Lovász and Vempala, 2006) to fix the
sequence of those Gaussians. The SoB algorithm uses a similar annealing schedule but to fix a sequence
of convex bodies Pi. As far as performance is concerned, the CB algorithm is the most efficient choice
for H-polytopes in less than 200 dimensions and for V- and Z-polytopes in any dimension. For the rest
of the cases, the user should choose CG algorithm.

Package

The package volesti combines the efficiency of C++ and the popularity and usability of R. The package
uses the eigen library (Guennebaud et al., 2010) for linear algebra, lpsolve library (Berkelaar et al., 2004)
for solving linear programs, and boost random library (Maurer and Watanabe, 2017) (part of Boost C++
libraries) for random numbers and distributions. All the code development is performed on github
platform. The package is available in Comprehensive R Archive Network (CRAN) and is regularly
updated with new features and bug fixes. We employ continuous integration to test the package
on various systems and deploy environments. There is detailed documentation of all the exposed
R classes and functions publicly available. We maintain a contribution tutorial to help users and
researchers who want to contribute to the development or propose a bug-fix. The package is shipped
under the LGPL-3 license to be open to all the scientific communities. We use Rcpp (Eddelbuettel et al.,
2020b) to interface C++ with R. In particular, we create one Rcpp function for each procedure (such as
sampling, volume estimation etc.) and we export it as an R function.
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In the following sections, we demonstrate the use of volesti. The R scripts in the following sections
use only standard R functions, volesti. In a single script in Section 2.4, we use Rfast to compute the
assets’ compound return in a stock market.

Polytope classes and generators

The package volesti comes with three classes to handle different representations of polytopes. Table 2
demonstrates the exposed R classes. The names of the classes are the names of polytope representations
as defined in the previous section. Each polytope class has a few variable members that describe a
specific polytope, demonstrated in Table 2. The matrices and the vectors in Table 2 correspond to those
in the polytope definitions. The integer variable type implies the representation: 1 is for H-polytopes,
2 for V-polytopes, 3 for Z-polytopes. The numerical variable volume corresponds to the volume of
the polytopes if it is known. volesti provides standard and random polytope generators. The first
produce well-known polytopes such as cubes, cross polytopes, and simplices and assign the value
of the exact volume to volume variable. The second are random generators using various probability
distributions and methods to produce a variety of different random polytopes; notably the generated
polytopes have unknown volume.

Class Constructor Variable members

"Hpolytope" Hpolytope(A,b) A ∈ Rm×d, b ∈ Rm, integer type, numerical volume
"Vpolytope" Vpolytope(V) V ∈ Rn×d, integer type, numerical volume
"Zonotope" Zonotope(G) G ∈ Rk×d, integer type, numerical volume

Table 2: Overview of the polytopes’ classes in volesti.

Uniform sampling from polytopes

A core feature of volesti is approximate sampling from convex bodies with uniform or spherical
Gaussian target distribution using the four geometric random walks defined above.

The following R script samples 1000 points from the 100-dimensional hypercube [−1, 1]100 defined
as P and stores them in a list.

R> d = 100
R> P = gen_cube(d, 'H')

R> samples = sample_points(P, random_walk = list(
"walk" = "RDHR", "burn-in"=1000, "walk_length" = 5),
n = 1000)

We use the Random Directions Hit-and-Run (RDHR) walk. Other choices are: Coordinate Direc-
tions Hit-and-Run (CDHR), Ball Walk (BaW), and Billiard Walk (BiW). Setting the parameter burn-in
to 1000 means that volesti burns the first 1000 points RDHR generates; setting walk_length to 5 means
that we keep in the list, one every five generated points. The default choice for the target distribution
is the uniform distribution.

To evaluate the efficiency of volesti sampling routines, one could measure the run-time and
estimate the effective sample size (Geyer, 2011) per second. To estimate the effective sample size in
R, a standard choice is the package coda (Plummer et al., 2020). In Chalkis and Fisikopoulos (2021),
benchmarks show that volesti can be up to ∼ 2 500 times faster than hitandrun for uniform sampling
from a polytope.

Moreover, using volesti and R, we can empirically study the mixing time of the geometric random
walks implemented in volesti. To this end, we uniformly sample from a random rotation of the
200-dimensional hypercube [−1, 1]200. First, we generate the hypercube and use rotate_polytope()
that returns the rotated polytope and the matrix of the linear transformation.

R> d = 200
R> num_of_points = 1000
R> P = gen_cube(d, 'H')
R> retList = rotate_polytope(P, rotation = list("seed" = 5))
R> T = retList$T
R> P = retList$P
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Figure 3: Uniform sampling from a random rotation of the hypercube [−1, 1]200. We map the sample
back to [−1, 1]200, and then we project them on R3 by keeping the first three coordinates. Each row
corresponds to a different walk: BaW, CDHR, RDHR, BiW. Each column to a different walk length: {1,
50, 100, 150, 200}. That is, the sub-figure in the third row and the forth column corresponds to RDHR
with 150 walk length.

Then, we use sample_points() to sample from the rotated cube with various walk lengths to test
the practical mixing of the random walk.

R> for (i in c(1, seq(from = 50, to = 200, by = 50))){
points1 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(

"walk" = "BaW", "walk_length" = i, "seed" = 5))
points2 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(

"walk" = "CDHR", "walk_length" = i, "seed" = 5))
points3 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(

"walk" = "RDHR", "walk_length" = i, "seed" = 5))
points4 = t(T) %*% sample_points(P, n = num_of_points, random_walk = list(

"walk" = "BiW", "walk_length" = i, "seed" = 5))
}

Finally, we map the points back to [−1, 1]200 using the inverse transformation, and then we
project all the sample points on R3, or equivalently on the 3D cube [−1, 1]3, by keeping the first three
coordinates. We plot the results in Figure 3.

Note that, in general, perfect uniform sampling in the rotated polytope would result to perfect
uniformly distributed points in the 3D cube [−1, 1]3. Hence, Figure 3 shows an advantage of BiW in
mixing time for this scenario compared to the other walks—it mixes relatively well even with one
step (i.e. walk length). Notice also that the mixing of both CDHR and RDHR seem similar while it is
slightly better than the mixing of BaW.

Gaussian sampling from polytopes

In many Bayesian models, the posterior distribution is a multivariate Gaussian distribution restricted
to a specific domain. We illustrate the usage of volesti for the case of the truncation being the canonical
simplex ∆n = {x ∈ Rn | xi ≥ 0, ∑i xi = 1}, which is of special interest. This situation typically occurs
whenever the unknown parameters can be interpreted as fractions or probabilities. Thus, it appears in
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many important applications (Altmann et al., 2014). In particular, we consider the following density,

f (x|µ, Σ) ∝
{

exp[− 1
2 (x− µ)TΣ(x− µ)], if x ∈ ∆n,

0, otherwise.
(2)

Clearly, the support of the density in Equation (2) is defined by a convex subset of a linear subspace
of Rn. Thus, to sample from f (x|µ, Σ), we apply a proper linear transformation, induced by a matrix
N ∈ Rn×(n−1) that maps the support to a full-dimensional polytope in Rn−1, while the covariance
matrix changes accordingly to Σ′ = NTΣN. Then, we apply a Cholesky decomposition to Σ′ = LLT

and employ the linear transformation induced by L to transform the distribution into a spherical
Gaussian distribution.

In the following R script we first generate a random 100-dimensional positive definite matrix Σ.
Then, we sample from the multivariate Gaussian distribution with the covariance matrix being Σ and
the mode being the center of the canonical simplex ∆n. To achieve this goal, we first apply all the
necessary linear transformations to both the probability density function and the ∆n to obtain the
standard Gaussian distribution, N (0, In), restricted to a general full-dimensional simplex.

R> d = 100
R> S = matrix( rnorm(d*d,mean=0,sd=1), d, d) #random covariance matrix
R> S = S %*% t(S)
R> shift = rep(1/d, d)
R> A = -diag(d)
R> b = rep(0,d)
R> b = b - A %*% shift
R> Aeq = t(as.matrix(rep(1,d), 10,1))
R> N = pracma::nullspace(Aeq)
R> A = A %*% N #transform the truncation into a full dimensional polytope
R> S = t(N) %*% S %*% N
R> A = A %*% t(chol(S)) #Cholesky decomposition to transform to the standard Gaussian
R> P = Hpolytope(A=A, b=as.numeric(b)) #new truncation

Next, we use the sample_points() function to sample from the standard Gaussian distribution
restricted to the computed simplex, and we apply the inverse transformations to obtain a sample in
the initial space.

R> samples = sample_points(P, n = 100000, random_walk =
list("walk"="CDHR", "burn-in"=1000,
"starting_point" = rep(0, d-1),
distribution = list("density" = "gaussian",
"mode" = rep(0, d-1))))

R> samples_initial_space = N %*% samples +
kronecker(matrix(1, 1, 100000), matrix(shift, ncol = 1))

In the previous script, we set the starting point of the walk to the mode of the Gaussian, i.e.,
the origin. Note that the default choice in volesti for the target distribution in the case of Gaussian
sampling is the standard Gaussian; that is, the target distribution in the above script.

Considering comparisons, volesti is at least one order of magnitude faster than restrictedMVN
and tmg for computing a sample of similar quality. For more details on comparison with other
packages, we refer to (Chalkis and Fisikopoulos, 2021).

Volume estimation

Let us now give an example of how we approximate the volume of a polytope in volesti. Since this
is a randomized algorithm, it makes sense to compute some statistics for the output values using R
when approximating the volume of the 10-dimensional cube [−1, 1]10 generated as an H-polytope.

R> P = gen_cube(10, 'H')
R> volumes = list()
R> for (i in seq_len(20)) {

volumes[[i]] = volume(P, settings = list("error" = 0.2))
}

By changing the error to 0.02, we can obtain more accurate results. The results are illustrated in
Figure 4. Note that the exact volume is 1024.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=restrictedMVN


CONTRIBUTED RESEARCH ARTICLES 650

Figure 4: The boxplot of the estimated volumes of the hypercude [−1, 1]10 by volesti. Left, the input
error parameter is ϵ = 0.2, and right is ϵ = 0.02.

To understand the need for randomized computation in high dimensions implemented in volesti,
we can consider the state-of-the-art volume computation in R today, namely, geometry. It implements
a deterministic algorithm in which run-time grows exponentially with the dimension. Because of the
later property, geometry generally, fails to terminate for polytope in dimension d ≥ 20. See (Chalkis
and Fisikopoulos, 2021) for comparison details with geometry.

The following script illustrates the usage and efficiency of volesti to compute the volume of high-
dimensional polytopes. In particular, a V-polytope, namely the cross-polytope, and an H-polytope,
namely the hypercube.

R> d = 80
R> P = gen_cross(80, 'V') #generate a cross polytope in V-representation

R> time = system.time({
volume_estimation = volume(P, settings = list(

"algorithm" = "CB", "random_walk" = "BiW",
"seed" = 127)) })

R> exact_volume = 2^d/prod(1:d)
R> cat(time[1], abs(volume_estimation - exact_volume) / exact_volume)

82.874 0.074434

R> P = gen_cube(d, 'H') #generate a hypercube polytope in H-representation

R> time = system.time({
volume_estimation = volume(P, settings = list(

"algorithm" = "CB", "random_walk" = "CDHR",
"seed" = 23)) })

R> exact_volume = 2^d
R> cat(time[1], abs(volume_estimation - exact_volume) / exact_volume)

0.657 0.067633

For V- and Z- polytopes the most efficient choice of random walk is BiW, while for H-polytopes is
CDHR. This explains why we use different random walks in the previous script. However, notice that
the run-time for the H-polytope is two order of magnitude smaller. This happens because the cost per
step of a random walk in a V-polytope increases comparing to H-polytopes.

Last but not least, volesti provides random polytope generators. The following command estimates
the volume of a randomly generated V-polytope that is the convex hull of 40 uniformly generated
random points from the 20-dimensional cube.

R> P = gen_rand_vpoly(20, 40, generator = list("body" = "cube", "seed" = 1729))
R> volume_estimation = volume(P)

The next call estimates the volume of an H-polytope randomly generated as an intersection of 180
linear halfspaces computed by random tangent hyperplanes on an 60-dimensional hypersphere.
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Figure 5: Left, a copula that corresponds to normal period (07/03/2007− 31/05/2007), I = 0.2316412.
Right, a copula that corresponds to a crisis period (18/12/2008− 13/03/2009), I = 5.610785; x axis is
for return and y axis is for volatility.

R> P = gen_rand_hpoly(60, 180, generator = list('constants' = 'sphere'))
R> volume_estimation = volume(P)

Since the exact volume of those polytopes is unknown, the accuracy of the computed estimation is
unknown and statistical methods such as the effective sample size (Geyer, 2011) could be used.

Applications

We demonstrate volesti’s potential to solve challenging problems. More specifically, we provide
detailed use-cases for applications in finance (crises detection and portfolio scoring), decision and
control, multivariate integration, and artificial intelligence.

Financial crises detection and portfolio scoring

In this subsection, we present how one could employ volesti to detect financial crises or shock events
in stock markets by following the method of Calès et al. (2018). For all the examples in the sequel, we
use a set of 52 popular exchange-traded funds (ETFs) and the US central bank (FED) rate of return
publicly available from https://stanford.edu/class/ee103/portfolio.html. The following script
is used to load the data.

R> MatReturns = read.table("https://stanford.edu/class/ee103/data/returns.txt",
sep = ",")

R> MatReturns = MatReturns[-c(1, 2), ]
R> dates = as.character(MatReturns$V1)
R> MatReturns = as.matrix(MatReturns[ ,-c(1, 54)])
R> MatReturns = matrix(as.numeric(MatReturns), nrow = dim(MatReturns )[1], ncol =

dim(MatReturns )[2], byrow = FALSE)
R> nassets = dim(MatReturns)[2]

The method uses the copula representation to capture the dependence between portfolios’ returns
and volatility. A copula is an approximation of the bivariate joint distribution while both marginals
follow the uniform distribution. In normal times, portfolios are characterized by slightly positive
returns and moderate volatility, in up-market times (typically bubbles) by high returns and low
volatility, and during financial crises by strongly negative returns and high volatility. Thus, when
a copula implies a positive dependence (see Figure 5 left), then it probably comes from a normal
period. On the other side, when the dependence between portfolios’ return and volatility is negative
(see Figure 5 right), the copula probably comes from a crisis period. The first case occurs when the
indicator that computes the ratio between the red mass over the blue mass is smaller than 1, and the
second case when that indicator is larger than 1. The function copula() can be used to compute such
copulas. When two vectors of returns are given as input by the user, then the computed copula is
related to the problem of the momentum effect in stock markets.

The following script produces Figure 5 by setting the starting and the stopping date for the left
and the right plot, respectively. To compute the copula, we use the compound asset return, which is
the rate of return for capital over a cumulative series of time (Calès et al., 2018).
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Figure 6: The values of the indicators from 2007-01-04 until 2010-01-04. We mark the crisis periods
with red, the warning periods with orange, and the normal periods with blue that volesti identifies.

R> row1 = which(dates %in% "2008-12-18")
R> row2 = which(dates %in% "2009-03-13")
R> compound_asset_return = Rfast::colprods(1 + MatReturns[row1:row2, ]) - 1
R> mass = copula(r1 = compound_asset_return, sigma = cov(MatReturns[row1:row2, ]),

m = 100, n = 1e+06, seed = 5)

Moreover, the function compute_indicators() computes the copulas of all the sets of win_len
consecutive days and returns the corresponding indicators and the states of the market during the
given time period. The next script takes as input the daily returns of all the 52 assets from 01/04/2007
until 04/01/2010. When the indicator is ≥ 1 for more than 30 days, we issue a warning, and when it is
for more than 60 days, we mark this period as a crisis (see Figure 6).

R> row1 = which(dates %in% "2007-01-04")
R> row2 = which(dates %in% "2010-01-04")
R> market_analysis = compute_indicators(returns = MatReturns[row1:row2, ],

parameters = list("win_len" = 60, "m" = 100,
"n" = 1e+06, "nwarning" = 30, "ncrisis" = 60,
"seed" = 5))

R> I = market_analysis$indicators
R> market_states = market_analysis$market_states

We compare the results with the database for financial crises in European countries proposed
in Duca et al. (2017). The only listed crisis for this period is the sub-prime crisis (from December 2007
to June 2009). Notice that Figure 6 successfully points out 4 crisis events in that period (2 crisis and 2
warning periods) and detects sub-prime crisis as a W-shape crisis.

As a second financial application, we will use volesti to evaluate the performance of a given
portfolio. In particular, volesti computes the proportion of all possible allocations that the given
portfolio outperforms. This score independently introduced in Pouchkarev (2005); Guegan et al. (2011);
Banerjee and Hung (2011), and is an alternative to more classical choices for the evaluation of the
performance of a portfolio as the Sharpe-like ratios proposed in the 1960’s by Jensen (1967); Sharpe
(1966); Treynor (2015). However, the efficient computation of that score was uncertain until Calès et al.
(2018) notice that Varsi’s algorithm (Varsi, 1973) can be used to perform robust computations in high
dimensions. Varsi’s algorithm is implemented in volesti by the function frustum_of_simplex() and
computes volumes in thousands of dimensions in just a few milliseconds on modest hardware. As an
example, the following R script let us know that on 03/13/2009, any portfolio with a return of 0.002
outperforms almost 48% of all possible portfolios.

R> R = MatReturns[which(dates %in% "2009-03-13"), ]
R> R0 = 0.002
R> tim = system.time({ exact_score = frustum_of_simplex(R, R0) })
R> cat(exact_score, tim[3])
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Figure 7: Blue color represents a 2D Z-polytope. Grey color represents the over-approximation of P
computed with PCA method.

0.4773961 0.001

Zonotope volumes in decision and control

Volume approximation for Z-polytopes (or zonotopes) could be very useful in several applications
in decision and control (Kopetzki et al., 2017), in autonomous driving (Althoff and Dolan, 2014), or
human-robot collaboration (Pereira and Althoff, 2015). The complexity of algorithms that manipulate
Z-polytopes strongly depends on their order. Thus, to achieve efficient computations, the common
approach in practice is to over-approximate the Z-polytope at hand P, as tight as possible, with a
second Z-polytope Pred of a smaller order. Then, the ratio of fitness ρ = (vol(Pred)/vol(P))1/d is a good
measure for the quality of the approximation. However, this ratio cannot be computed for dimensions
typically larger than 10 (see (Kopetzki et al., 2017)). volesti is the first software to the best of our
knowledge that efficiently approximates the ratio of fitness of a high dimensional Z-polytope–typically
up to 100 and order 200–or a Z-polytope of very high order in lower dimensions–e.g., order 1500 in 10
dimensions.

As an illustration, the following R script generates a random 2D zonotope, computes the over-
approximation with the PCA method, and estimates the ratio of fitness. The sample_points function
is then used to plot the two polygons (Figure 7).

R> Z = gen_rand_zonotope(2, 8, generator = list("distribution" = "uniform",
"seed" = 1729))

R> points1 = sample_points(Z, random_walk = list("walk" = "BRDHR"), n = 10000)
R> retList = zonotope_approximation(Z = Z, fit_ratio = TRUE,

generator = list("seed" = 5))
R> P = retList$P
R> cat(retList$fit_ratio)

1.116799539

R> points2 = sample_points(P, random_walk = list("walk" = "BRDHR", "seed" = 5),
n = 10000)

High-dimensional integration

Computing the integral of a function over a convex set (i.e., convex polytope) is a hard fundamental
problem with numerous applications. volesti can be used to approximate the value of such an integral
by a simple MCMC integration method, which employs the vol(P) and a uniform sample in P. In
particular, let

I =
∫

P
f (x)dx. (3)
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dimension Exact value Estimated value Rel. error Exact Time (sec) Est. Time (sec)
5 0.02738404 0.02446581 0.1065667 0.023 3.983
10 3.224286e-06 3.204522e-06 0.00612976 3.562 11.95
15 4.504834e-11 4.867341e-11 0.08047068 471.479 33.256
20 - 1.140189e-16 - - 64.058

Table 3: We compute the integral of the function in Equation (5) over a random generated V-polytope.
Exact value: the exact value of the integral using SimplicialCubature and geometry; Estimated value:
the estimation of the integral with volesti; Rel. error: the relative error of volesti; Exact Time: the sum
of run-times of geometry and SimplicialCubature; Est. Time: the run-time of volesti; "-" indicates that
the program halts.

Then, sample N uniformly distributed points x1, . . . , xN from P and,

I ≈ vol(P)
1
N

N

∑
i=1

f (xi). (4)

The following R script generates a V-polytope for d = 5, 10, 15, 20, and estimates the integral of

f (x) =
n

∑
i=1

xi + 2x2
1 + x2 + x3, (5)

over the generated V-polytope P.

Considering the efficiency of volesti, Table 3 reports the exact value of I computed by Simplicial-
Cubature (Nolan et al., 2016). It computes multivariate integrals over simplices. Hence, to compute an
integral of a function over a convex polytope P in R, one should compute the Delaunay triangulation
with package geometry and then use the package SimplicialCubature to sum the values of all the
integrals over the simplices computed by the triangulation. The pattern is similar to volume computa-
tion. For d = 5, 10 the exact computation is faster than the approximate. For d = 15, volesti is 13 times
faster. For d = 20, the exact approach halts, while volesti returns an estimation in less than a minute.

R> num_of_points = 5000
R> f = function(x) { sum(x^2) + (2 * x[1]^2 + x[2] + x[3]) }
R> for (d in seq(from = 5, to = 20, by = 5)) {

P = gen_rand_vpoly(d, 2 * d, generator = list("seed" = 127))

points = sample_points(P, random_walk = list("walk" = "BiW",
"walk_length" = 1, "seed" = 5), n = num_of_points)

sum_f = 0
for (i in seq_len(num_of_points)){

sum_f = sum_f + f(points[, i])
}
V = volume(P, settings = list("error" = 0.05, "seed" = 5))
I2 = (sum_f * V) / num_of_points

}

Combinatorics and artificial intelligence

We focus now on a different problem, namely, counting the linear extensions of a given partially
ordered set (poset), which arises in various applications in artificial intelligence and machine learning,
such as partial order plans (Muise et al., 2016) and learning graphical models (Niinimäki et al., 2016).

Let G = (V, E) be an acyclic digraph with V = [n] := {1, 2, . . . , n}. One might want to consider G
as a representation of the poset V : i > j if and only if there is a directed path from node i to node j. A
permutation π of [n] is called a linear extension of G (or the associated poset V) if π−1(i) > π−1(j) for
every edge i→ j ∈ E.

Let PLE(G) be the polytope in Rn defined by

PLE(G) = {x ∈ Rn | 1 ≥ xi ≥ 0 for all i = 1, 2, . . . , n},

and xi ≥ xj for all directed edges i→ j ∈ E. It is well known (Stanley, 1986) that the number of linear
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Figure 8: An acyclic directed graph with 5 nodes, 4 edges, and 9 linear extensions.

extensions of G equals the normalized volume of PLE(G), i.e.,

#LEG = vol(PLE(G)) n!

It is also well known that counting linear extensions is #P-complete (Brightwell and Winkler, 1991).
Thus, as the number of graph nodes (i.e., the dimension of PLE(G)) grows, the problem becomes
intractable for exact methods. Interestingly, volesti provides an efficient approximation method that
could be added to the ones surveyed by Talvitie et al. (2018).

As a simple example, consider the graph in Figure 8 that has 9 linear extensions1. This number
can be estimated in milliseconds using volesti as in the following script, where the estimated number
of linear extensions is 9.014706.

R> A = matrix(c(
-1,0,1,0,0,0,
-1,1,0,0,0,-1,
0,1,0,0,0,0,-1,
1,1,0,0,0,0,0,
1,0,0,0,0,0,1,
0,0,0,0,0,1,0,
0,0,0,0,1,-1,
0,0,0,0,0,-1,
0,0,0,0,0,-1,
0,0,0,0,0,-1,
0,0,0,0,0,-1),
ncol = 5, nrow = 14, byrow = TRUE)

R> b = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 , 1, 1, 1)
R> P_LE = Hpolytope(A = A, b = b)
R> time = system.time({ LE = volume(P_LE, settings = list("error" = 0.01,

"seed" = 1927)) * factorial(5) })

Concluding remarks and future work

volesti is an R package that provides MCMC sampling routines for multivariate distributions restricted
to convex polytopes and volume estimation. It supports three different polytope representations, and
thus, it is useful for several applications. We illustrate the usage of volesti with simple, reproducible
examples and show how volesti can be used to address challenging problems in modern applications.

Regarding future work, the expansion of volesti to support general log-concave sampling methods
would be of special interest for several applications. Efficient log-concave sampling could also lead to
additional sophisticated methods to estimate a multivariate integral over a convex polytope (Lovasz
and Vempala, 2006).

Computational details

The results in this paper were obtained using R 3.4.4, R 3.6.3, and volesti 1.1.2-2. The versions of
the imported by volesti packages are stats 3.4.4 (R Core Team, 2020b) and methods 3.4.4 (R Core
Team, 2020a); of the linked by volesti packages, Rcpp 1.0.3, BH 1.69.0.1 (Eddelbuettel et al., 2020a),
RcppEigen 0.3.3.7.0 (Bates and Eddelbuettel, 2013). The suggested package is testthat 2.0.1 (Wickham,
2011). For comparison to volesti and for plots, this paper uses geometry 0.4.5, hitandrun 0.5.5,

1Example taken from https://people.inf.ethz.ch/fukudak/lect/pclect/notes2016/expoly_order.pdf
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SimplicialCubature 1.2, Rfast 2.0.3 (Papadakis et al., 2021), ggplot2 3.1.0 (Wickham, 2016), plotly
4.8.0 (Sievert, 2020), rgl 0.100.50 (Adler et al., 2021), coda 0.19.4. All packages used are available from
CRAN.

All computations were performed on a PC with Intel® Pentium(R) CPU G4400 @ 3.30GHz × 2
CPU and 16GB RAM.
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Elliptical Symmetry Tests in R
by Slad̄ana Babić, Christophe Ley and Marko Palangetić

Abstract The assumption of elliptical symmetry has an important role in many theoretical develop-
ments and applications. Hence, it is of primary importance to be able to test whether that assumption
actually holds true or not. Various tests have been proposed in the literature for this problem. To the
best of our knowledge, none of them has been implemented in R. This article describes the R package
ellipticalsymmetry which implements several well-known tests for elliptical symmetry together with
some recent tests. We demonstrate the testing procedures with a real data example.

Introduction

Let X1, . . . , Xn denote a sample of n i.i.d. d-dimensional observations. A d-dimensional random vector
X is said to be elliptically symmetric about some location parameter θθθ ∈ Rd if its density f is of the
form

x 7→ f (x; θθθ, ΣΣΣ, f ) = cd, f |ΣΣΣ|−1/2 f
(
∥ΣΣΣ−1/2(x − θθθ)∥

)
, x ∈ Rd, (1)

where ΣΣΣ ∈ Sd (the class of symmetric positive definite real d × d matrices) is a scatter parameter,
f : R+

0 → R+ is an, a.e., strictly positive function called radial density, and cd, f is a normalizing
constant depending on f and the dimension d. Many well-known and widely used multivariate
distributions are elliptical. The multivariate normal, multivariate Student t, multivariate power-
exponential, symmetric multivariate stable, symmetric multivariate Laplace, multivariate logistic,
multivariate Cauchy, and multivariate symmetric general hyperbolic distribution are all examples
of elliptical distributions. The family of elliptical distributions has several appealing properties. For
instance, it has a simple stochastic representation, clear parameter interpretation, it is closed under
affine transformations, and its marginal and conditional distributions are also elliptically symmetric;
see Paindaveine (2014) for details. Thanks to its mathematical tractability and nice properties, it became
a fundamental assumption in multivariate analysis and many applications. Numerous statistical
procedures, therefore, rest on the assumption of elliptical symmetry: one- and K-sample location and
shape problems (Um and Randles, 1998; Hallin and Paindaveine, 2002, 2006; Hallin et al., 2006), serial
dependence and time series (Hallin and Paindaveine, 2004), one- and K-sample principal component
problems (Hallin et al., 2010, 2014), multivariate tail estimation (Dominicy et al., 2017), to cite but a few.
Elliptical densities are also considered in portfolio theory (Owen and Rabinovitch, 1983), capital asset
pricing models (Hodgson et al., 2002), semiparametric density estimation (Liebscher, 2005), graphical
models (Vogel and Fried, 2011), and many other areas.

Given the omnipresence of the assumption of elliptical symmetry, it is essential to be able to test
whether that assumption actually holds true or not for the data at hand. Numerous tests have been
proposed in the literature, including Beran (1979), Baringhaus (1991), Koltchinskii and Sakhanenko
(2000), Manzotti et al. (2002), Schott (2002), Huffer and Park (2007), Cassart (2007), and Babić et al.
(2021). Tests for elliptical symmetry based on Monte Carlo simulations can be found in Diks and
Tong (1999) and Zhu and Neuhaus (2000); Li et al. (1997) recur to graphical methods, and Zhu and
Neuhaus (2004) build conditional tests. We refer the reader to Serfling (2006) and Sakhanenko (2008)
for extensive reviews and performance comparisons. To the best of our knowledge, none of these
tests is available in the open software R. The focus of this paper is to close this gap by implementing
several well-known tests for elliptical symmetry together with some recent tests. The test of Beran
(1979) is neither distribution-free nor affine-invariant. Moreover, there are no practical guidelines to
the choice of the basis functions involved in the test statistic. Therefore, we opt not to include it in the
package. Baringhaus (1991) proposes a Cramér-von Mises type test for spherical symmetry based on
the independence between norm and direction. Dyckerhoff et al. (2015) have shown by simulations
that this test can be used as a test for elliptical symmetry in dimension 2. This test assumes the location
parameter to be known and its asymptotic distribution is not simple to use (plus no proven validity
in dimensions higher than 2). Hence, we decided not to include it in the package. Thus, the tests
suggested by Koltchinskii and Sakhanenko (2000), Manzotti et al. (2002), Schott (2002), Huffer and
Park (2007), Cassart (2007), and Babić et al. (2021) are implemented in the package ellipticalsymmetry.

This paper describes the tests for elliptical symmetry that have been implemented in the ellipti-
calsymmetry package, together with a detailed description of the functions that are available in the
package. The use of the implemented functions is illustrated using financial data.
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Testing for elliptical symmetry

In this section, we focus on the tests for elliptical symmetry that have been implemented in our new
ellipticalsymmetry package. Besides formal definitions of test statistics and limiting distributions, we
also explain the details of computation.

Test by Koltchinskii and Sakhanenko

Koltchinskii and Sakhanenko (2000) develop a class of omnibus bootstrap tests for unspecified lo-
cation that are affine invariant and consistent against any fixed alternative. The estimators of the
unknown parameters are as follows: θ̂θθ = n−1 ∑n

i=1 Xi and Σ̂ΣΣ = n−1 ∑n
i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′. Define

Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ) and let FB be a class of Borel functions from Rd to R. Their test statistics are
functionals (for example, sup-norms) of the stochastic process

n−1/2
n

∑
i=1

(
f (Yi)− m f (||Yi||)

)
,

where f ∈ FB and m f (ρ) is the average value of f on the sphere with radius ρ > 0. Several examples of
classes FB and test statistics based on the sup-norm of the above process are considered in Koltchinskii

and Sakhanenko (2000). Here, we restrict our attention to FB :=
{

I0<||x||≤tψ
(

x
||x||

)
: ψ ∈ Gl , ||ψ||2 ≤ 1, t > 0

}
,

where IA stands for the indicator function of A, Gl for the linear space of spherical harmonics of
degree less than or equal to l in Rd, and || · ||2 is the L2-norm on the unit sphere Sd−1 in Rd. With these
quantities in hand, the test statistic becomes

Q(n)
KS := n−1/2 max

1≤j≤n

dim(Gl)

∑
s=1

(
j

∑
k=1

ψs

(
Y[k]

||Y[k]||

)
− δs1

)21/2

,

where Y[i] denotes the ith order statistic from the sample Y1, . . . , Yn, ordered according to their L2-
norm, {ψs, s = 1, . . . , dim(Gl)} denotes an orthonormal basis of Gl , ψ1 = 1, and δij = 1 for i = j
and 0 otherwise. The test statistic is relatively simple to construct if we have formulas for spherical
harmonics. In dimension 2, spherical harmonics coincide with sines and cosines on the unit circle.

The detailed construction of the test statistic Q(n)
KS for dimensions 2 and 3 can be found in Sakhanenko

(2008). In order to be able to use Q(n)
KS in higher dimensions, we need corresponding formulas for

spherical harmonics. Using recursive formulas from Müller (1966) and equations given in Manzotti
and Quiroz (2001), we obtained spherical harmonics of degree one to four in arbitrary dimension. The
reader should bare in mind that the larger degree leads to the better power performance of this test. A
drawback of this test is that it requires bootstrap procedures to obtain critical values.

In our R package, this test can be run using a function called KoltchinskiiSakhanenko(). The syntax
for this function is very simple:

KoltchinskiiSakhanenko(X, R=1000, nJobs = -1),

where X is an input to this function consisting of a data set which must be a matrix, and R stands for the
number of bootstrap replicates. The default number of replicates is set to 1000. The nJobs argument
represents the number of CPU cores to use for the calculation. This is a purely technical option which
is used to speed up the computation of bootstrap-based tests. The default value -1 indicates that all
cores except one are used.

The MPQ test

Manzotti et al. (2002) develop a test based on spherical harmonics. The estimators of the unknown
parameters are the sample mean denoted as θ̂θθ, and the unbiased sample covariance matrix given
by Σ̂ΣΣ = 1

n−1 ∑n
i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′. Define, again, Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ). When the X′

is are elliptically
symmetric, then Yi/||Yi|| should be uniformly distributed on the unit sphere. Manzotti et al. (2002)
chose this property as the basis of their test. The uniformity of the standardized vectors Yi/||Yi||
can be checked in different ways. Manzotti et al. (2002) opt to verify this uniformity using spherical
harmonics. For a fixed ε > 0, let ρn be the ε sample quantile of ||Y1||, . . . , ||Yn||. Then, the test statistic
is

Q(n)
MPQ = n ∑

h∈Sjl

(
1
n

n

∑
i=1

h
(

Yi
||Yi||

)
I(||Yi|| > ρn)

)2
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for l ≥ j ≥ 3, where Sjl =
⋃

j≤i≤l Hi and Hi is the set of spherical harmonics of degree i. In
the implementation of this test we used spherical harmonics of degree 3 and 4. The asymptotic

distribution of the test statistic Q(n)
MPQ is (1 − ε)χ, where χ is a variable with a chi-squared distribution

with νjl degrees of freedom, where νjl denotes the total number of functions in Sjl . Note that Q(n)
MPQ is

only a necessary condition statistic for the null hypothesis of elliptical symmetry, and therefore, this
test does not have asymptotic power against all alternatives. In the ellipticalsymmetry package, this
test is implemented as the MPQ() function with the following syntax

MPQ(X, epsilon = 0.05).

As before, X is a numeric matrix that represents the data while epsilon is an option that allows the
user to indicate the proportion of points Yi close to the origin which will not be used in the calculation.
By doing this, extra assumptions on the radial density in (1) are avoided. The default value of epsilon
is set to 0.05.

Schott’s test

Schott (2002) develops a Wald-type test for elliptical symmetry based on the analysis of covariance
matrices. The test compares the sample fourth moments with the expected theoretical ones under
ellipticity. Given that the test statistic involves consistent estimates of the covariance matrix of the
sample fourth moments, the existence of eight-order moments is required. Furthermore, the test has a
very low power against several alternatives. The final test statistic is of a simple form, even though it
requires lengthy notations.

For an elliptical distribution with mean θθθ and covariance matrix ΣΣΣ, the fourth moment defined as
MMM4 = E{(X − θθθ)(X − θθθ)′ ⊗ (X − θθθ)(X − θθθ)′}, with ⊗ the Kronecker product, has the form

MMM4 = (1 + κ)((Id2 + Kdd)(ΣΣΣ ⊗ΣΣΣ) + vec(ΣΣΣ)vec(ΣΣΣ)′), (2)

where Kdd is a commutation matrix (Magnus, 1988), Id is the d × d identity matrix, and κ is a scalar,
which can be expressed using the characteristic function of the elliptical distribution. Here, the vec
operator stacks all components of a d × d matrix MMM on top of each other to yield the d2 vector vec(MMM).
Let Σ̂ΣΣ denotes the usual unbiased sample covariance matrix and θ̂θθ the sample mean. A simple estimator
of MMM4 is given by M̂MM4 = 1

n ∑n
i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′ ⊗ (Xi − θ̂θθ)(Xi − θ̂θθ)′, and its standardized version is

given by
M̂MM4∗ = (Σ̂ΣΣ−1/2′ ⊗ Σ̂ΣΣ−1/2′ )M̂MM4(Σ̂ΣΣ

−1/2 ⊗ Σ̂ΣΣ−1/2).

Then, an estimator of vec(MMM4) is constructed as GGG = vec(NNN4)vec(NNN4)
′vec(M̂MM4∗)/(3d(d + 2)), and it

is consistent if and only if MMM4 is of the form (2). Here, NNN4 represents the value of MMM4 under the
multivariate standard normal distribution. Note that the asymptotic mean of vvv = n1/2(vec(M̂MM4∗)−GGG)
is 0 if and only if (2) holds, and this expression is used to construct the test statistic. Denote the
estimate of the asymptotic covariance matrix of n1/2vvv as Φ̂ΦΦ. The Wald test statistic is then formalized
as T = vvv′Φ̂ΦΦ−vvv, where Φ̂ΦΦ− is a generalized inverse of Φ̂ΦΦ. For more technical details, we refer the reader
to Section 2 in Schott (2002). In order to define Schott’s test statistic, we further have to define the
following quantities:

(1 + κ̂) =
1

nd(d + 2)

n

∑
i=1

{(Xi − θ̂θθ)′Σ̂ΣΣ−1(Xi − θ̂θθ)}2

(1 + η̂) =
1

nd(d + 2)(d + 4)

n

∑
i=1

{(Xi − θ̂θθ)′Σ̂ΣΣ−1(Xi − θ̂θθ)}3

(1 + ω̂) =
1

nd(d + 2)(d + 4)(d + 6)

n

∑
i=1

{(Xi − θ̂θθ)′Σ̂ΣΣ−1(Xi − θ̂θθ)}4.

Moreover, let β̂1 = (1 + ω̂)−1/24, β̂2 = −3a{24(1 + ω̂)2 + 12(d + 4)a(1 + ω̂)}−1, a = (1 + ω̂) + (1 +
κ̂)3 − 2(1 + κ̂)(1 + η̂). Finally, the test statistic becomes

T = n
[

β̂1tr(M̂MM2
4∗) + β̂2vec(Id)

′M̂MM2
4∗vec(Id)− {3β̂1 + (d + 2)β̂2}d(d + 2)(1 + κ̂)2

]
.

It has an asymptotic chi-squared distribution with degrees of freedom νd = d2 +
d(d − 1)(d2 + 7d − 6)

24
−

1.

The Schott test can be performed in our package by using the function Schott() with the very simple
syntax Schott(X), where X is a numeric matrix of data values.
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Test by Huffer and Park

Huffer and Park (2007) propose a Pearson chi-square type test with multi-dimensional cells. Under
the null hypothesis of ellipticity, the cells have asymptotically equal expected cell countsm, and after
determining the observed cell counts, the test statistic is easily computed. Let θ̂θθ be the sample mean
and Σ̂ΣΣ = n−1 ∑n

i=1(Xi − θ̂θθ)(Xi − θ̂θθ)′ the sample covariance matrix. Define Yi = R(Xi − θ̂θθ), where the
matrix R = R(Σ̂ΣΣ) is a function of Σ̂ΣΣ such that RΣ̂ΣΣR = Id. Typically R = Σ̂ΣΣ−1/2 as for the previous tests.
However, Huffer and Park suggest to use the Gram-Schmidt transformation because that will lead to
standardized data whose joint distribution does not depend on θθθ or ΣΣΣ. In order to compute the test
statistic, the space Rd should be divided into c spherical shells centered at the origin such that each
shell contains an equal number of the scaled residuals Yi. The next step is to divide Rd into g sectors
such that for any pair of sectors, there is an orthogonal transformation mapping one onto the other.
Therefore, the c shells and g sectors divide Rd into gc cells, which, under elliptical symmetry, should
contain n/(gc) of the vectors Yi. The test statistic then has the simple form

HPn = ∑
π
(Uπ − np)2/(np),

where Uπ are cell counts for π = (i, j) with 1 ≤ i ≤ g and 1 ≤ j ≤ c and p = 1/(gc).
In the R package, we are considering three particular ways to partition the space: using (i) the 2d

orthants, (ii) permutation matrices, and (iii) a cyclic group consisting of rotations by angles which are
multiples of 2π/g. The first two options can be used for any dimension, while the angles are supported
only for dimension 2. Huffer and Park’s test can be run using a function called HufferPark(). The
syntax, including all options, for the function HufferPark() is, for instance,

HufferPark(X, c, R = NA, sector = "orthants", g = NA, nJobs = -1).

We will now provide a detailed description of its arguments. X is an input to this function consisting
of a data set. sector is an option that allows the user to specify the type of sectors used to divide the
space. Currently supported options are "orthants", "permutations", and "bivariateangles". The
last one being available only in dimension 2. The g argument indicates the number of sectors. The
user has to choose g only if sector = "bivariateangles" and it denotes the number of regions used
to divide the plane. In this case, regions consist of points whose angle in polar coordinates is between
2(m − 1)π/g and 2mπ/g for m ∈ {1 . . . g}. If sector is set to "orthants", then g is fixed and equal to
2d, while for sector = "permutations", g is d!. No matter what type of sectors is chosen, the user has
to specify the number of spherical shells that are used to divide the space, which is c. The value of c
should be such that the average cell counts n/(gc) are not too small. Several settings with different
sample size and different values of g and c can be found in the simulation studies presented in Sections
4 and 5 of Huffer and Park (2007). As before, nJobs represents the number of CPU cores to use for the
calculation. The default value -1 indicates that all cores except one are used.

The asymptotic distribution is available only under sector = "orthants" when the underlying
distribution is close to normal. It is a linear combination of chi-squared random variables, and it
depends on eigenvalues of congruent sectors used to divide the space Rd. Otherwise, bootstrap
procedures are required, and the user can freely choose the number of bootstrap replicates, denoted as
R. Note that by default, sector is set to "orthants" and R = NA.

Pseudo-Gaussian test

Cassart (2007) and Cassart et al. (2008) construct Pseudo-Gaussian tests for specified and unspecified
location that are most efficient against a multivariate form of Fechner-type asymmetry (defined
in Cassart (2007), Chapter 3). These tests are based on Le Cam’s asymptotic theory of statistical
experiments. We start by describing the specified-location Pseudo-Gaussian test. The unknown
parameter ΣΣΣ is estimated by using Tyler (1987)’s estimator of scatter which we simply denote by Σ̂ΣΣ.

Let mk(θθθ, ΣΣΣ) := n−1 ∑n
i=1(∥ΣΣΣ−1/2(Xi − θθθ)∥)k, Ui(θθθ, ΣΣΣ) := ΣΣΣ−1/2(Xi−θθθ)

∥ΣΣΣ−1/2(Xi−θθθ)∥ and

SU
i (θθθ, ΣΣΣ) := ((Ui1(θθθ, ΣΣΣ))2sign(Ui1(θθθ, ΣΣΣ)), . . . , (Uid(θθθ, ΣΣΣ))2sign(Uid(θθθ, ΣΣΣ)))′.

The test statistic then has the simple form

Q(n)
pG,θθθ =

d(d + 2)
3nm4(θθθ, Σ̂ΣΣ)

n

∑
i,j=1

(∥Σ̂ΣΣ−1/2(Xi − θθθ)∥)2(∥Σ̂ΣΣ−1/2(Xj − θθθ)∥)2S′U
i (θθθ, Σ̂ΣΣ)SU

j (θθθ, Σ̂ΣΣ),

and follows asymptotically a chi-squared distribution χ2
d with d degrees of freedom. Finite moments

of order four are required.
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In most cases, the assumption of a specified center is, however, unrealistic. Cassart (2007), therefore,
proposes also a test for the scenario when the location is not specified. The estimator of the unknown
θθθ is the sample mean denoted by θ̂θθ. Let Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ). The test statistic takes on the guise

Q(n)
pG := (∆∆∆G(θ̂θθ, Σ̂ΣΣ))′(ΓΓΓG(θ̂θθ, Σ̂ΣΣ))−1∆∆∆G(θ̂θθ, Σ̂ΣΣ),

where

∆∆∆G(θ̂θθ, Σ̂ΣΣ) = n−1/2
n

∑
i=1

∥Yi∥
(

cd(d + 1)m1(θ̂θθ, Σ̂ΣΣ)Ui(θ̂θθ, Σ̂ΣΣ)− ∥Yi∥SU
i (θ̂θθ, Σ̂ΣΣ)

)
and

ΓΓΓG(θ̂θθ, Σ̂ΣΣ) :=(
3

d(d + 2)
m4(θ̂θθ, Σ̂ΣΣ)− 2c2

d(d + 1)m1(θ̂θθ, Σ̂ΣΣ)m3(θ̂θθ, Σ̂ΣΣ) + c2
d
(d + 1)2

d
(m1(θ̂θθ, Σ̂ΣΣ))2m2(θ̂θθ, Σ̂ΣΣ)

)
Id,

with cd = 4Γ(d/2)/((d2 − 1)
√

πΓ( d−1
2 )), Γ(·) being the Gamma function. The test rejects the null

hypothesis of elliptical symmetry at asymptotic level α whenever the test statistic Q(n)
pG exceeds χ2

d;1−α,

the upper α-quantile of a χ2
d distribution. We refer to Chapter 3 of Cassart (2007) for formal details.

This test can be run in our package by calling the function pseudoGaussian() with the simple
syntax

pseudoGaussian(X, location = NA).

Besides X, which is a numeric matrix of data values, now we have an extra argument location, which
allows the user to specify the known location. The default is set to NA which means that the unspecified
location test will be performed unless the user specifies location.

SkewOptimal test

Recently, Babić et al. (2021) proposed a new test for elliptical symmetry both for specified and
unspecified location. These tests are based on Le Cam’s asymptotic theory of statistical experiments
and are optimal against generalized skew-elliptical alternatives (defined in Section 2 of said paper),
but they remain quite powerful under a much broader class of non-elliptical distributions.

The test statistic for the specified location scenario has a very simple form and an asymptotic

chi-square distribution. The test rejects the null hypothesis whenever Q(n)
θθθ = n(X̄ − θθθ)′Σ̂ΣΣ−1(X̄ − θθθ)

exceeds the α-upper quantile χ2
d;1−α. Here, Σ̂ΣΣ is Tyler (1987)’s estimator of scatter, and X̄XX is the sample

mean.

When the location is not specified, Babić et al. (2021) propose tests that have a simple asymptotic
chi-squared distribution under the null hypothesis of ellipticity, are affine-invariant, computationally
fast, have a simple and intuitive form, only require finite moments of order 2, and offer much flexibility
in the choice of the radial density f at which optimality (in the maximin sense) is achieved. Note
that the Gaussian f is excluded, though, due to a singular information matrix; see Babić et al. (2021).
We implemented in our package the test statistic based on the radial density f of the multivariate
t distribution, multivariate power-exponential, and multivariate logistic, though in principle, any
non-Gaussian choice for f is possible. The test requires lengthy notations, but its implementation is
straightforward. For the sake of generality, we will derive the test statistic for a general (but fixed)
f , and later on, provide the expressions of f for the three special cases implemented in our package.
Let φ f (x) = − f ′(x)

f (x) and Yi = Σ̂ΣΣ−1/2(Xi − θ̂θθ) where θ̂θθ is the sample mean. In order to construct the test
statistic, we first have to define the quantities

∆∆∆ f (θ̂θθ, Σ̂ΣΣ) = 2n−1/2Π̇(0)
n

∑
i=1

[
∥Yi∥ −

d
K̂d, f (θ̂θθ, Σ̂ΣΣ)

φ f (∥Yi∥)
]

Yi
∥Yi∥

and

Γ̂ΓΓ f (θ̂θθ, Σ̂ΣΣ) :=
4(Π̇(0))2

nd

n

∑
i=1

[
∥Yi∥ −

d
K̂d, f (θ̂θθ, Σ̂ΣΣ)

φ f (∥Yi∥)
]2

Id,

where K̂d, f (θ̂θθ, Σ̂ΣΣ) := 1
n ∑n

i=1

[
φ′

f (∥Yi∥) +
d − 1
∥Yi∥

φ f (∥Yi∥)
]

and Π is the cdf of the standard nor-

mal distribution (we use Π̇(·) for the derivative). Finally, the test statistic is of the form Q(n)
f :=
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(∆∆∆ f (θ̂θθ, Σ̂ΣΣ))′(Γ̂ΓΓ f (θ̂θθ, Σ̂ΣΣ))−1∆∆∆ f (θ̂θθ, Σ̂ΣΣ), and it has a chi-square distribution with d degrees of freedom. The
test is valid under the entire semiparametric hypothesis of elliptical symmetry with unspecified center
and uniformly optimal against any type of generalized skew- f alternative.

From this general expression, one can readily derive the test statistics for specific choices of
f . In our case, the radial density of the multivariate Student t distribution corresponds to f (x) =

(1 + 1
ν x2)−(ν+d)2

, where ν ∈ (0, ∞) represents the degrees of freedom, while that of the multivariate

logistic distribution is given by f (x) =
exp (−x2)

[1 + exp (−x2)]2
and of the multivariate power-exponential

by f (x) = exp
(
−1

2
x2β

)
, where β ∈ (0, ∞) is a parameter related to kurtosis.

These tests can be run in R using a function called SkewOptimal() with the syntax

SkewOptimal(X, location = NA, f = "t", param = NA).

Depending on the type of the test, some of the input arguments are not required. X and location
are the only input arguments for the specified location test and have the same role as for the Pseudo-
Gaussian test. As before, the default value for location is set to NA, which implies that the unspecified
location test will be performed unless the user specifies the location. For the unspecified location
test, besides the data matrix X, the input arguments are f and param. The f argument is a string that
specifies the type of the radial density based on which the test is built. Currently supported options are
"t", "logistic", and "powerExp". Note that the default is set to "t". The role of the param argument
is as follows. If f = "t", then param denotes the degrees of freedom of the multivariate t distribution.
Given that the default radial density is "t", it follows that the default value of param represents the
degrees of freedom of the multivariate t distribution, and it is set to 4. Note also that the degrees of
freedom have to be greater than 2. If f = "powerExp", then param denotes the kurtosis parameter β, in
which case the value of param has to be different from 1 because β = 1 corresponds to the multivariate
normal distribution. The default value is set to 0.5.

Time complexity

We conclude the description of tests for elliptical symmetry by comparing their time complexity in
terms of the big O notation (Cormen et al., 2009). More concretely, we are comparing the number of
simple operations that are required to evaluate the test statistics and the p-values. Table 1 summarizes
the time complexity of the implemented tests.

The test of Koltchinskii and Sakhanenko is computationally more demanding than the bootstrap
version of the test of Huffer and Park. Among unspecified location tests that do not require bootstrap
procedures, the most computationally expensive test is the MPQ test under the realistic assumption
that n > d. Regarding the specified location tests, we can conclude that the Pseudo-Gaussian test is
more computationally demanding than the SkewOptimal test. Note that both the test of Koltchinskii
and Sakhanenko and the MPQ test are based on spherical harmonics up to degree 4. In case we
would use spherical harmonics of higher degrees, the tests would of course become even more
computationally demanding.

We have seen that several tests require bootstrap procedures and therefore are, by default, compu-
tationally demanding. Such tests require the calculation of the statistic on the resampled data R times
in order to get the p-value, where R is the number of bootstrap replicates. Consequently, the time
required to obtain the p-value in such cases is R times the time to calculate the test statistic. For the
tests that do not involve bootstrap procedures, the p-value is calculated using the inverse of the cdf of
the asymptotic distribution under the null hypothesis, which is considered as one simple operation.
The exception here is the test of Huffer and Park, whose asymptotic distribution is more complicated
and includes O(c) operations where c is an integer and represents an input parameter for this test.

Illustrations using financial data

Mean-Variance analysis was introduced by Markowitz (1952) as a model for portfolio selection. In
this model, the portfolio risk expressed through the historical volatility is minimized for a given
expected return, or the expected return is maximized given the risk. The model is widely used for
making portfolio decisions, primarily because it can be easily optimized using quadratic programming
techniques. However, the model has some shortcomings, among which the very important one, that it
does not consider the prior wealth of the investor that makes decisions. This prior wealth is important
since it influences the satisfaction that an investor has from gains. For example, the gain of 50$ will
not bring the same satisfaction to someone whose wealth is 1$ as to someone whose wealth is 1000$.
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statistics p-value

KoltchinskiiSakhanenko O(n log n + nd5) O(Rn log n + Rnd5)
MPQ O(n log n + nd5) O(1)
Schott O(nd2 + d6) O(1)
HufferPark O(nd2 + d3) O(c)
HufferPark (bootstrap) O(nd2 + d3) O(Rnd2 + Rd3)
PseudoGaussian (specified location) O(n2d + nd2 + d3) O(1)
PseudoGaussian O(nd2 + d3) O(1)
SkewOptimal (specified location) O(nd + d3) O(1)
SkewOptimal O(nd2 + d3) O(1)

Table 1: Time complexity of the various tests for elliptical symmetry

This satisfaction further affects the decision-making process in portfolio selection. Because of that
and other financial reasons, a more general concept of expected utility maximization is used (see,
e.g., Schoemaker (2013)). However, the expected utility maximization is not an easy optimization
problem, and some additional assumptions must be made in order to solve it. Hence, despite the
expected utility maximization being more general, the mean-variance approach is still used due to its
computational simplicity. Chamberlain (1983) showed that the two approaches coincide if the returns
are elliptically distributed. In other words, under elliptical symmetry, the mean-variance optimization
solves the expected utility maximization for any increasing concave utility function. Therefore, we
want to test if the assumption of elliptical symmetry holds or not for financial return data. The data set
that we analyze contains daily stock log-returns of 3 major equity market indexes from North America:
S&P 500 (US), TSX (Canada) and IPC (Mexico). The sample consists of 5369 observations from January
2000 through July 2020. To remove temporal dependencies by filtering, following the suggestion of
Lombardi and Veredas (2009), GARCH(1,1) time series models were fitted to each series of log-returns.

We test if the returns are elliptically symmetric in different time periods using a rolling window
analysis. The window has a size of one year, and it is rolled every month, i.e., we start with the
window January 2000 - December 2000, and we test for elliptical symmetry. Then we shift the starting
point by one month, that is, we consider February 2000 - January 2001, and we test again for elliptical
symmetry. We keep doing this until the last possible window. The following tests are used for every
window: the test by Koltchinskii and Sakhanenko with R = 100 bootstrap replicates, the MPQ test,
Schott’s test, the bootstrap test by Huffer and Park based on orthants with c = 3 and with the number
of bootstrap replicates R = 100, the Pseudo-Gaussian test, and the SkewOptimal test with the default
values of the parameters. For every window, we calculate the p-value. The results are presented in
Figure 1, where the horizontal line present on every plot indicates the 0.05 significance level.

Even though all these tests address the null hypothesis of elliptical symmetry, they have different
powers for different alternative distributions, and some tests may fail to detect certain departures
from the null hypothesis. Certain tests are also by nature more conservative than others. We refer the
reader to Babić et al. (2021) for a comparative simulation study that includes the majority of the tests
available in this package. This diversity in behavior presents nice opportunities. For instance, when
all tests agree, we can be pretty sure about the nature of the analyzed data. One could also combine
the six tests into a multiple testing setting by using a Bonferroni correction, though this is not what we
are doing here.

The following general conclusions can be drawn from Figure 1.

• In the past 20 years, the return data do not follow the elliptical distribution at least half of time.
In other words, there are many periods between 2000 and 2020 where the data exhibit some
form of skewness or other type of symmetry, invalidating, thus, the mean-variance analysis.

• The broader periods where the hypothesis of elliptical symmetry cannot be rejected are 2000-
2004, 2005-2006, 2012-2013, 2015-2017 (for Schott’s test only 2015-2016). In these periods, the
tests may have only occasional rejections without a longer time period of rejections.

• In the period around the financial crisis in 2008, almost all tests reject the null hypothesis of
ellipticity. This clearly shows that, in the periods of crisis, the assumption of elliptical symmetry
is less likely to hold.
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(a) SkewOptimal (b) Pseudo-Gaussian

(c) KoltchinskiiSakhanenko (d) MPQ

(e) HufferPark (f) Schott
The plots show the p-values of the corresponding tests for all rolling windows that we considered between 2000
and 2020. The years on the x-axis mark the rolling windows for which the starting point is January of that year. The
horizontal line present on every plot indicates the 0.05 significance level.

Figure 1: North America indexes (S&P, TSX and IPC)

With the aim of guiding the reader through the functions that are available in the ellipticalsymmetry
package, we now focus on the window January 2008 - December 2008. We start with the test by
Koltchinskii and Sakhanenko.

> KoltchinskiiSakhanenko(data2008, R = 100)

Test for elliptical symmetry by Koltchinskii and Sakhanenko

data: data2008
statistic = 6.0884, p-value = 0.01
alternative hypothesis: the distribution is not elliptically symmetric

The KoltchinskiiSakhanenko() output is simple and clear. It reports the value of the test statistic and
p-value. For this particular data set, the test statistic is equal to 6.0884 and the p-value is 0.02. Note
that here we specify the number of bootstrap replicates to be R = 100.

The MPQ test and Schott’s test can be performed by running very simple commands:

> MPQ(data2008)

Test for elliptical symmetry by Manzotti et al.
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data: data2008
statistic = 25.738, p-value = 0.04047
alternative hypothesis: the distribution is not elliptically symmetric

> Schott(data2008)

Schott test for elliptical symmetry

data: data2008
statistic = 24.925, p-value = 0.03531
alternative hypothesis: the distribution is not elliptically symmetric

Given the number of the input arguments, the function for the test by Huffer and Park deserves some
further comments. The non-bootstrap version of the test can be performed by running the command:

> HufferPark(data2008, c = 3)

Test for elliptical symmetry by Huffer and Park

data: data2008
statistic = 24.168, p-value = 0.109
alternative hypothesis: the distribution is not elliptically symmetric

By specifying R, the bootstrap will be applied:

> HufferPark(data2008, c= 3, R = 100)

The p-value for the bootstrap version of the test is equal to 0.15. Note that in both cases, we used the
default value for sector, that is "orthants".

Test for elliptical symmetry by Huffer and Park

data: data2008
statistic = 24.168, p-value = 0.15
alternative hypothesis: the distribution is not elliptically symmetric

If we want to change the type of sectors used to divide the space, we can do it by running the command:

HufferPark(data2008, c=3, R = 100, sector = "permutations")

This version yields a p-value equal to 0.19.

Another very easy-to-use test is the Pseudo-Gaussian test:

> PseudoGaussian(data2008)

Pseudo-Gaussian test for elliptical symmetry

data: data2008
statistic = 9.4853, p-value = 0.02349
alternative hypothesis: the distribution is not elliptically symmetric

Eventually, the following simple command will run the SkewOptimal test based on the radial density
of the multivariate t distribution with 4 degrees of freedom (note that the degrees of freedom could be
readily changed by specifying the param argument).

> SkewOptimal(data2008)

SkewOptimal test for elliptical symmetry

data: data2008
statistic = 12.208, p-value = 0.006702
alternative hypothesis: the distribution is not elliptically symmetric
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The test based on the radial density of the multivariate logistic distribution can be performed by
simply adding f = "logistic":

> SkewOptimal(data2008, f = "logistic")

This version of the SkewOptimal test yields a p-value equal to 0.0003484. Finally, if we want to run the
test based on the radial density of the multivariate power-exponential distribution, we have to set f to
"powerExp". The kurtosis parameter equal to 0.5 will be used unless specified otherwise.

> SkewOptimal(data2008, f = "powerExp")

The resulting p-value equals 0.002052. The kurtosis parameter can be changed by assigning a different
value to param. For example,

SkewOptimal(data2008, f = "powerExp", param = 1.2)

We can conclude that the null hypothesis is rejected at the 5% level by all tests except Huffer and Park’s
tests. Luckily the tests available in the package mostly agree. In general, in situations of discordance
between two (or more) tests, a practitioner may compare the essence of the tests as described in this
paper and check if, perhaps, one test is more suitable for the data at hand than the other (e.g., if
assumptions are not met). The freedom of choice among several tests for elliptical symmetry is an
additional feature of our new package.

Conclusion

In this paper, we have described several existing tests for elliptical symmetry and explained in detail
their R implementation in our new package ellipticalsymmetry. The implemented functions are
simple to use, and we illustrate this via a real data analysis. The availability of several tests for
elliptical symmetry is clearly an appealing strength of our new package.
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The vote Package: Single Transferable
Vote and Other Electoral Systems in R
by Adrian E. Raftery, Hana Ševčíková and Bernard W. Silverman

Abstract We describe the vote package in R, which implements the plurality (or first-past-the-post),
two-round runoff, score, approval, and Single Transferable Vote (STV) electoral systems, as well as
methods for selecting the Condorcet winner and loser. We emphasize the STV system, which we have
found to work well in practice for multi-winner elections with small electorates, such as committee
and council elections, and the selection of multiple job candidates. For single-winner elections, STV
is also called Instant Runoff Voting (IRV), Ranked Choice Voting (RCV), or the alternative vote (AV)
system. The package also implements the STV system with equal preferences, for the first time in a
software package, to our knowledge. It also implements a new variant of STV, in which a minimum
number of candidates from a specified group are required to be elected. We illustrate the package with
several real examples.

Introduction

The vote package implements several electoral methods: plurality voting, approval voting, score
voting, Condorcet methods, and Single Transferable Vote (STV) methods (Ševčíková et al., 2021).

In developing the package, we were motivated particularly by the needs of organizations with
small electorates, such as learned societies, clubs, and university departments, who may need to elect
more than one person in a given election. In the early 1980s, one of us (BWS) was a member of the
Royal Statistical Society (RSS) Council. At that time, six members of the Council were elected at a
time. A nominating committee nominated six candidates, and the RSS membership as a whole voted,
with each member allowed to vote for up to six candidates, and the six candidates with the most
votes being elected. Usually, there were only the six nominated candidates, but that year a seventh
candidate stood on a platform different from that of the “official” candidates. This candidate received
votes from about a quarter of the electorate but was not elected because the other three-quarters of the
members voted as a block for the six candidates proposed by the nominating committee.

This was viewed as unsatisfactory because the seventh candidate’s position was not represented
on the Council, even though it had substantial support among the RSS membership. This led the RSS
Council to undertake a study of electoral methods for multi-winner elections, with a view to adopting
a more representative system. They selected the Single Transferable Vote (STV) method, which was
then adopted for Council elections, initially using a program in the Pascal programming language
developed by Hill et al. (1987). In the next election, held under STV, the seventh candidate stood again
and was elected. STV has been used since then to elect the RSS Council.

In 2002, the Institute of Mathematical Statistics (IMS), the leading international association of
academic mathematical statisticians, considered the same issue and came to the same conclusion, also
adopting STV for its Council elections. They used an R program developed by BWS (Silverman, 2002,
2003), who was also then the IMS President. This R program became the core of the vote package that
we are describing here. This STV electoral method has been used since then by the IMS.

Since then, another one of us (AER) has implemented the STV method in the context of small
electorates selecting or ranking multiple candidates, such as nominating committees selecting mul-
tiple awardees for a prize, or academic departments selecting job candidates for interviews. Those
involved have generally reported finding the method satisfactory. This experience has led to several
modifications of the program that are also implemented in the package.

Our implementation and discussion of STV and other systems is aimed particularly at those
involved in non-party-political elections and decisions, such as those outlined above. Questions of
what approaches are or are not desirable for national elections are matters of political science beyond
the scope of this paper, which is not intended to advocate for or against the use of any particular
voting systems in that context. However, a brief review may be informative.

The USA and the UK, for their national legislatures, almost entirely use the plurality, “first past
the post” or “winner takes all” system, where the leading candidate in each district is elected. The
Electoral College for the US presidency is also elected this way, but with an election between slates
rather than individuals, in all states except Maine and Nebraska. On the other hand, the majority of
countries use some system that (in principle at least) aims for the elected body to represent the views
of the wider electorate proportionately, either over the country as a whole or within larger electoral
districts. However, pure proportional systems are fairly unusual, for example because in nationwide
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proportional systems there is often a threshold below which a party will not have any representation.
The Single Transferable Vote system is used to elect the parliaments or national assemblies of the
Republic of Ireland, Northern Ireland, and Malta, as well as upper houses and/or local assemblies in
some other countries (Wikipedia, 2020c), and we draw an example from a Dublin election in the paper.

As we have said, it is not our purpose to advocate any one electoral method, and indeed it is
well known that there is no one method that dominates all others given a reasonable set of criteria,
according to the impossibility theorems of Arrow (1963), Gibbard (1973) and Satterthwaite (1975).
Indeed, method choice can depend on the purpose of the election, and a method that works well
for one purpose (such as representing the views of the electorate), may not be best for others (such
as electing an effective team to work together) (Syddique, 1988). As a result, we have implemented
multiple electoral methods in the package. Pros and cons of a wide range of different electoral systems
are described in Ace Project (2020), but these focus on nationwide political elections, whereas here we
also pay attention to smaller, often non-political elections, such as those for councils and committees.

The paper is organized as follows. In Section 2.2, we describe the plurality, two-round runoff,
approval, score, and Condorcet vote-counting methods. In Section 2.3, we describe the STV method,
including the first software implementation of the equal preference STV method, to our knowledge.
This also describes a new variant of STV, which enforces minimal representation of a marked group.
In Section 2.4, we describe three multi-winner elections with electorates of different sizes: an election
from one constituency in the 2002 Irish General Election, an election of the IMS Council, and a vote to
select job candidates by a university department. We conclude in Section 2.5 with the discussion of
issues including other R packages for vote-counting.

Electoral methods

In this section, we describe several electoral methods and how they are implemented in the vote
package. We defer description of STV to Section 2.3.

We first illustrate the results here with the toy food_election dataset:

> library (vote)
> data (food_election)
> food_election

Oranges Pears Chocolate Strawberries Sweets
1 NA NA 1 2 NA
2 NA NA 1 2 NA
3 NA NA 1 2 NA
4 2 1 NA NA NA
5 NA NA NA 1 NA
6 1 NA NA NA NA
7 NA NA NA NA 1
8 1 NA NA NA NA
9 NA NA 1 2 NA
10 NA NA 1 NA 2
11 1 NA NA NA NA
12 NA NA 1 2 NA
13 NA NA 1 2 NA
14 NA NA 1 2 NA
15 NA NA 1 NA 2
16 1 NA NA NA NA
17 NA NA 1 NA 2
18 2 1 NA NA NA
19 NA NA 1 NA 2
20 NA NA 1 2 NA

In this toy dataset, voters were asked to rank the options in order of preference. They gave only their
first two preferences, although they could have given more; an NA indicates that no preference was
expressed.

Plurality voting

Plurality voting, or First-Past-The-Post, is used for single-winner elections, such as elections to the
House of Representatives in the USA or the House of Commons in the UK. Each voter votes for one
candidate, and the candidate with the most votes wins.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 675

To implement this with our toy dataset, we first converted it to a dataset where only first preferences
count:

> food_election_plurality <- 1 * (food_election == 1 & !is.na (food_election))
> head(food_election_plurality)

Oranges Pears Chocolate Strawberries Sweets
[1,] 0 0 1 0 0
[2,] 0 0 1 0 0
[3,] 0 0 1 0 0
[4,] 0 1 0 0 0
[5,] 0 0 0 1 0
[6,] 1 0 0 0 0

We then counted the votes using the plurality command:

> plurality (food_election_plurality)

Results of Plurality voting
===========================
Number of valid votes: 20
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 1

| |Candidate | Total| Elected |
|:---|:------------|-----:|:-------:|
|1 |Chocolate | 12| x |
|2 |Oranges | 4| |
|3 |Pears | 2| |
|4 |Strawberries | 1| |
|5 |Sweets | 1| |
|Sum | | 20| |

Elected: Chocolate

Plurality voting has the advantage of simplicity. In political elections, it tends not to yield results
that are in direct proportion to support among the voters but to amplify pluralities when compared to
proportional voting systems, which merge single-winner districts into larger multi-member groups.
In general, any large party which has strong support across a large number of electoral districts will
do well under plurality voting, while smaller parties or interests will tend to be underrepresented
numerically, especially if they are evenly or thinly spread. This may mean that important interests are
not represented, while on the other hand, it may present a barrier to the traction of extremist groups.
The US Electoral College is, in nearly all states, elected by a plurality voting system, with multiple
members, all being elected simultaneously.

Plurality voting in individual-member districts tends to lead to one-party governments with
working majorities, even when the leading party does not achieve half of the popular vote. It also
allows districts to be smaller to facilitate direct contact between a voter and their representative and
identifies each representative more closely with all the voters in their district.

Another effect of plurality voting can be to “waste” the votes of those who live in highly polarised
districts, because they win their particular district by a very wide margin; this seems to be a deliberate
feature of much redistricting in the USA. In non-political elections in the smaller contexts of primary
concern in this paper, there is little or no need for a stable one-“party” result, and the desirability of
closer proportional representation of the views of the voters is less contentious, and so there is likely
to be a clearer case for using other voting systems wherever possible.

Two-round runoff voting

Two-round systems are also used for single-winner elections. In the first round, voters vote for their
first preference. If no candidate gets a majority, there is a second round that involves the top two
candidates. Voters vote again, and the candidate getting more votes wins.

In the vote package, we implemented a variant of this system that can be counted in a single pass
over the data. Each voter ranks the candidates in order of preference. The first round takes place as
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described. The second round is counted as if voters voted for the remaining candidate for which they
had a higher preference.

To illustrate the two-round runoff system, we modify the food election data by removing voters
12–15, so that Chocolate does not have a majority on the first round:

> food_election3 <- food_election[-c(12:15),]
> tworound.runoff (food_election3)

Results of two-round-runoff voting
==================================
Number of valid votes: 16
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 1

| |Candidate | Total| Percent| ROffTotal| ROffPercent| Elected |
|:---|:------------|-----:|-------:|---------:|-----------:|:-------:|
|1 |Oranges | 4| 25.0| 6| 42.9| |
|2 |Pears | 2| 12.5| 0| 0.0| |
|3 |Chocolate | 8| 50.0| 8| 57.1| x |
|4 |Strawberries | 1| 6.2| 0| 0.0| |
|5 |Sweets | 1| 6.2| 0| 0.0| |
|Sum | | 16| 100.0| 14| 100.0| |

Elected: Chocolate

We see that no candidate got a majority on the first round, although Chocolate came close. In the
second round, the two top vote-getters, Chocolate and Oranges, squared off, and Chocolate won.

In the tworound.runoff function, a tie in either the first or the runoff round is resolved by random
draw. A random seed can be specified so that the results are replicable.

Two-round elections are quite common, most famously for French presidential elections since 1965.
In practice, it is usually carried out by voters actually voting twice, rather than ranking candidates as
here. An exception to it is a special case of the two-round runoff, called supplementary voting, where
voters give only their first and second preferences on one ballot, the same way as happened in our
food example. Supplementary voting is used, for example, in electing mayors in England, including
the Mayor of London (London Elects, 2020).

The two-round runoff system differs from plurality voting in that voters for candidates with low
levels of support can change their votes to one of the leading candidates so that they can express
support for a possibly less popular first choice without their vote being “wasted”. Of course, the
choice between the two finalists shares some of the aspects of plurality voting.

Approval voting

Approval voting was advocated by Brams and Fishburn (1978). In this system, voters vote for as many
candidates as they wish. It has been most often advocated for single-winner elections, in which case
the winner is the candidate with the most votes (Brams and Fishburn, 2007). A direct extension to
multi-winner elections with m winners is that voters vote in the same way, and the m candidates with
the most votes win.

Counting the votes is simple. The argument nseats determines the number of winners m:

> food_election_approval <- 1 * !is.na (food_election)
> approval (food_election_approval, nseats = 2)

Results of Approval voting
==========================
Number of valid votes: 20
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 2

| |Candidate | Total| Elected |
|:---|:------------|-----:|:-------:|
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|1 |Chocolate | 12| x |
|2 |Strawberries | 9| x |
|3 |Oranges | 6| |
|4 |Sweets | 5| |
|5 |Pears | 2| |
|Sum | | 34| |

Elected: Chocolate, Strawberries

Approval voting for multi-winner elections has been criticized on various grounds, e.g., Hill (1988),
and indeed in the book by Brams and Fishburn (1983) that advocated and popularized approval voting
for single-winner elections. For elections in which there are parties or slates of candidates, it would
tend to lead to the election of all the members of the most supported party or slate, as happened in
the RSS Council election that first motivated this work. However, one of us [AER] has participated in
multi-winner elections using approval voting and has observed it to work well, particularly when
there are many candidates about whom information is limited and there are no parties or slates. One
example could be the early stages of job candidate selection when a long list is being whittled down to
a small set of finalists.

Score voting

In the score or range voting, each voter gives each candidate a score within a prespecified range.
If the voter does not give a score to a particular candidate, a corresponding prespecified score is
assigned. The candidates with the lowest scores win (or the highest scores if higher scores are better).
In the score function, the argument larger.wins specifies whether lower scores are better or higher
scores are better. The argument max.score sets the prespecified non-vote score. Here, we illustrate
score voting by applying it to the food election example, where the score is equal to the preference, a
non-vote is assigned a value of 6, and lower scores are better:

> score (food_election, larger.wins = FALSE, nseats = 2, max.score = 6)

Results of Score voting
=======================
Number of valid votes: 20
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 2

| |Candidate | Total| Elected |
|:---|:------------|-----:|:-------:|
|1 |Chocolate | 60| x |
|2 |Strawberries | 83| x |
|3 |Oranges | 92| |
|4 |Sweets | 99| |
|5 |Pears | 110| |
|Sum | | 444| |

Elected: Chocolate, Strawberries

Score voting is often used by committees for purposes such as selecting grant applications to be
funded. In such cases, there are often many candidates or applications to be assessed, and it would
not be feasible for the voters to produce a complete ranking. Score voting is similar to multi-winner
approval voting in this sense but allows for a more refined assessment by the voters. Multi-winner
approval voting is actually a special case of score voting.

Condorcet method

The Condorcet method is attributed to Marquis de Condorcet (de Condorcet, 1785). It is a single-winner
method where voters rank the candidates according to their preferences. The so-called Condorcet
winner is the candidate who wins the majority of votes in all head-to-head comparisons. In other
words, each candidate is compared pairwise to all other candidates. To become the Condorcet winner,
one has to win all such comparisons. Analogously, a Condorcet loser is the candidate who loses in every
pairwise comparison.
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The condorcet function can be applied directly to the food election data:

> condorcet(food_election)

Results of Condorcet voting
===========================
Number of valid votes: 20
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 1

| | Oranges| Pears| Chocolate| Strawberries| Sweets| Total| Winner | Loser |
|:------------|-------:|-----:|---------:|------------:|------:|-----:|:------:|:-----:|
|Oranges | 0| 1| 0| 0| 1| 2| | |
|Pears | 0| 0| 0| 0| 0| 0| | x |
|Chocolate | 1| 1| 0| 1| 1| 4| x | |
|Strawberries | 1| 1| 0| 0| 1| 3| | |
|Sweets | 0| 1| 0| 0| 0| 1| | |

Condorcet winner: Chocolate
Condorcet loser: Pears

The output above shows the results of all the pairwise comparisons. Chocolate beat all other
candidates and was, therefore, the Condorcet winner. Similarly, Pears lost against all other candidates
and was thus the Condorcet loser.

The Condorcet method does not guarantee that a Condorcet winner exists. There are many
different ways to deal with such a situation; see, for example, Wikipedia (2020a). Our implementation
offers the possibility of a runoff (argument runoff). In this case, two or more candidates with the most
pairwise wins are selected, and the Condorcet method is applied to such subset. If more than two
candidates are in such a runoff, the selection is performed repeatedly until either a winner is selected
or no more selection is possible.

To our knowledge, the Condorcet method is not used for governmental elections anywhere in
the world. Wikipedia (2020a) cites a few private organizations that use the method, e.g., the Student
Society of the University of British Columbia.

Single Transferable Vote (STV)

The Single Transferable Vote (STV) system is also referred to as Ranked Choice Voting (RCV), In-
stant Runoff Voting (IRV), or the Alternative Vote (AV) system for single-winner elections, and as
Multi-Winner Ranked Choice Voting for multi-winner elections. One of the properties of the Single
Transferable Vote system is that if any subset of candidates gets a sufficient share of the votes, anything
strictly exceeding 1/(m + 1), where m is the number of candidates to be elected, then one of this group
is bound to be elected. To be precise, what is required is that a proportion above 1/(m + 1) of the
voters have to put all the candidates in the subset at the top of their list of preferences, but it does not
matter in what order. This would apply equally if the subset was a particular slate/party, or specified
by some other group characteristic such as sex, race, geographical location, career stage, or subject
area, even if the subset was not consciously constituted. In particular, if a candidate’s proportion of
the first preference votes is above 1/(m + 1), then that candidate will be successful.

There is also the fact that a group is not disadvantaged if more of its members stand for election, at
least if their voters vote along group lines the full way down the preferences. Unlike in some other
systems, they cannot cancel each other out.

When STV was adopted for the elections of the Council of the RSS in the mid-1980s and the IMS
in 2002, it was hoped that it would lead to more diverse Councils than the results of the previous
methods, and also that individual members, other than those chosen by the nominating committee,
would feel able to stand with a real chance of being elected.

STV method

There are many descriptions of the STV system (Newland et al., 1997; Fair Vote, 2020) and its history
(Hill, 1988; Tideman, 1995). The basic principle is that voters rank the candidates in order of preference.
In order to be elected, a candidate must achieve the quota of N/(m + 1) + ε, where N is the total
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number of votes cast, m is the number of candidates to be elected (or seats), and ε is a pre-specified
small positive number, often taken to be 1 when the electorate is large and 0.001 when it is small.
Excess votes over the quota are appropriately downweighted and allocated to the next preference of
voters. If no candidate reaches the quota, the candidate with the smallest number of votes is eliminated
and his or her votes are transferred to the next preferences.

Voters are asked to rank the candidates 1, 2, 3, . . . until they have no further preference between
candidates. Thus 1 is a voter’s first preference, 2 is their next choice, and so on. There is no disadvan-
tage to higher candidates in expressing a full list of preferences; later preferences are used only when
the fate of candidates given higher preferences has been decided one way or the other.

By default, a vote is considered spoiled if the preferences are not numbered consecutively, starting
at 1. However, if this is not desired, the votes can be preprocessed to be consecutive using the
correct.ranking function in the vote package. A useful application of this correction is the case when
a candidate has to be removed, perhaps because of having withdrawn his or her candidacy. In this
case, the function remove.candidate can be used, which removes the given candidate(s) from the set
of votes, and also adjusts the preferences to be consecutive. The package optionally allows the user to
accept a partially correct ranking. That is, only preferences equal to or higher than the non-consecutive
rankings are removed. For example, with this option, a valid version of a vote 1, 2, 3, 4, 4, 5 would be
1, 2, 3, 0, 0, 0.

Also by default, apart from the candidates not numbered at all, no ties are allowed among the num-
bered preferences. However, equal preferences can be allowed by using the setting equal.ranking=TRUE
in the stv function, as described in more detail in Section 2.3.4.

The fact that some voters may not express a full list of preferences can be allowed for by reducing
the quota in later counts1. In the vote package, the default is that the quota is reduced in later counts.
However, in some STV systems (such as the electoral system in the Republic of Ireland), the quota
remains constant over counts at the value that is initially defined. This is specified in the vote package
by setting the argument constant.quota=TRUE in the stv function. In this implementation of STV, the
last candidate is often elected without reaching the quota, which does not happen when the quota is
reduced appropriately at each count.

In the vote package, the votes should be entered into a matrix or data frame, with the header
containing the names of the candidates and each row the votes cast, with blank preferences being
replaced by zeroes or NAs. This will often be done by entering the votes into a spreadsheet first and
then reading the spreadsheet into R. If the data are stored in a text file, the package allows one to
pass the name of the file directly into the stv function while setting the column separator in the fsep
argument.

At the end of the process, the program yields a list of the successful candidates in the order in
which they were elected. It also usually yields a complete ordering of the candidates. This may be
useful, for example, if the purpose of the election is to select job candidates, and one wishes to have an
ordered list of the initially unsuccessful candidates in case any of those selected decline the offer. Also,
in some systems, candidates can claim expenses if a certain rank is achieved, which could be another
motivation for a runner-up list being available.

Until the 1980s, STV elections were counted manually by physically transferring a sample of the
ballot papers from the pile of the candidate being elected or eliminated, to those of the benefitting
candidates. This remains the case in several long-established STV election systems, such as elections
for the Dáil (the lower house of the Irish parliament). Meek (1969, 1970) described the form a computer-
based STV system could take, and this was implemented in Pascal by Hill et al. (1987). This code was
used for the RSS Council elections. A modified version was implemented in R by Silverman (2002,
2003), and this was the starting point for the current STV implementation in the vote package.

Here is the result of the food election with two candidates to be elected, using the stv function:

> stv (food_election, nseats = 2)

Results of Single transferable vote
===================================
Number of valid votes: 20
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 2

1In STV, the process of distributing the surplus or votes of a candidate who is elected or eliminated is referred to
variously as a count, a stage, or a round. Here, we use the term count. The tabulation of the first preference votes is
then called the first count.
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| | 1| 2-trans| 2| 3-trans| 3| 4-trans| 4|
|:------------|---------:|-------:|-----:|-------:|------:|-------:|-------:|
|Quota | 6.668| | 6.667| | 6.667| | 5.278|
|Oranges | 4.000| 0.000| 4.000| 2| 6.000| 0.000| 6.000|
|Pears | 2.000| 0.000| 2.000| -2| | | |
|Chocolate | 12.000| -5.332| | | | | |
|Strawberries | 1.000| 3.555| 4.555| 0| 4.555| 0.000| 4.555|
|Sweets | 1.000| 1.777| 2.777| 0| 2.777| -2.777| |
|Elected | Chocolate| | | | | | Oranges|
|Eliminated | | | Pears| | Sweets| | |

Elected: Chocolate, Oranges

Oranges was elected second, whereas, under the approval vote system with first and second
preferences treated equally, Strawberries was elected second. This reflects the fact that Oranges had
4 first preferences, whereas Strawberries had only 1. Under STV, a vote is credited entirely to the
first preference candidate unless that candidate is elected or eliminated, in which case the second
preferences come into play. Strawberries had 8 second-preference votes, all of which were from voters
who voted for Chocolate first. The quota was only 56% of the votes for Chocolate, and so 44% of
Chocolate’s votes were transferred when Chocolate was elected. Strawberries gained 3.555 votes this
way from its second preference votes, but this was not quite enough to overcome Orange’s advantage
in first preferences. The complete ordering of candidates can be read off the results: Chocolate,
Oranges, Strawberries, Sweets, Pears. Setting the argument complete.ranking to TRUE will include
the complete ordering as part of the output.

The package has several functions for visualizing the STV results, and we will illustrate these
in the Examples section below. In addition, summary functions are available for the resulting objects
of all voting methods in the package. In the case of stv, the summary function returns a data frame
containing the table shown in the above output, which can be used for further processing, for example,
for storing in a spreadsheet.

Computational methods

The algorithm used for counting STV elections using the stv function in the vote package is shown in
Algorithm 1. There are only two changes needed to implement STV with equal preferences; these are
shown in Section 2.3.4.

Tie-breaking

Suppose that on a given count, no candidate is elected, and a candidate needs to be selected for
elimination, and that two or more candidates are tied with the smallest number of votes. Then a
method is needed for choosing the one to be eliminated. The same issue arises when two candidates
can be elected on the same count with the same number of votes, namely which surplus to transfer
first.

Several different methods have been proposed. The Electoral Reform Society, one of the leading
organizations advocating the use of STV, recommends using the Forwards Tie-Breaking Method
(Newland et al., 1997, Section 5.2.5). Other methods such as Backwards Tie-Breaking, Borda Tie-
Breaking, Coombs Tie-Breaking, or a combination of those have been proposed; see, e.g., O’Neill
(2004); Kitchener (2005); Lundell (2006).

By default, the vote package uses the Forwards Tie-Breaking Method. This consists of eliminat-
ing/electing the candidate who had the fewest/most votes on the first count or on the earliest count
where they had unequal votes. If the argument ties in the stv function is set to "b", the Backwards
Tie-Breaking Method is used. In this case, it eliminates/elects the candidate who has the fewest/most
votes on the latest count where the tied candidates had unequal votes.

There is no guarantee that a tie will be broken by either the Forwards or Backwards Tie-Breaking
Method. Also, if one of these two methods does not break the tie, the other will not either because the
tied candidates will have the same number of votes in all the counts so far. In particular, this will be
the case whenever a tie has to be broken on the first count, and it is also relatively likely when a tie
arises on the second count.

When there is a tie that Forwards and Backwards Tie-Breaking fail to break, the stv function uses
a method that compares the candidates on the basis of the numbers of individual preferences. We call
this the Ordered method as it creates an ordering of the candidates before the STV count begins. First,
candidates are ordered by the number of first preferences. Any ties are resolved by proceeding to the
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1: procedure STV(X, m, ε)
▷ X are votes of size N (number of votes) ×M (number of candidates)

2: D ← {1, 2, . . . , M} ▷ Set of hopeful candidates
3: E← {} ▷ Set of elected candidates
4: F ← {} ▷ Set of eliminated candidates
5: L← m ▷ Remaining number of seats
6: Y ← X ▷ Remaining votes
7: c← 0 ▷ Which Count we are at
8: wi ← 1 ∀ i = 1, . . . , N ▷ Initialize a vector of weights, one per voter
9: while L > 0 do ▷ End if there are no remaining seats

10: c← c + 1 ▷ Increase Count
11: ui,j ← wiδYi,j(1) ∀ i = 1, . . . , N, j = 1, . . . , M ▷ Weighted first preferences

12: vc,j ← ∑N
i=1 ui,j ∀ j = 1, . . . , M ▷ Sum of weighted first preferences

13: Q← ∑M
j=1 vc,j/(L + 1) + ε ▷ Compute quota

14: if maxj∈D vc,j ≥ Q then ▷ A candidate is to be elected
15: k← arg maxj∈D vc,j ▷ Which candidate has the most votes
16: if ||k|| > 1 then ▷ If there is more than one such candidate
17: k← resolve.tie.for.election(k, X, v) ▷ Break tie
18: end if
19: S← (maxj∈D vc,j −Q)/ maxj∈D vc,j ▷ Compute surplus
20: wr ← urk ∗ S ∀ r where Yr,k = 1 ▷ Recompute weights
21: L← L− 1 ▷ Decrease number of available seats
22: E← E ∪ {k} ▷ Candidate k is elected
23: else ▷ A candidate is to be eliminated
24: k← arg minj∈D vc,j ▷ Which candidate has the least votes
25: if ||k|| > 1 then ▷ If there is more than one such candidate
26: k← resolve.tie.for.elimination(k, X, v) ▷ Break tie
27: end if
28: F ← F ∪ {k} ▷ Candidate k is eliminated
29: end if
30: D ← D\{k} ▷ Candidate k is removed from the pool of hopefuls
31: Yi,r ← Yi,r − 1 ∀ i = 1, . . . , N where Yi,k > 0 and r = 1, . . . , M where Yi,r > Yi,k
32: ▷ Above: shift votes for voters who voted for candidate k
33: Yi,k ← 0 ∀ i = 1, . . . , N ▷ Remove votes for candidate k
34: end while
35: return(E, F, v)
36: end procedure

Note: δY(1) = 1 if Y = 1 and 0 otherwise, is the Kronecker delta function; the arg max and
arg min functions return sets, with more than one element when there is a tie; and ||k|| is
the number of elements in the set k.

Algorithm 1: STV algorithm. The input data consist of a matrix X of the votes of size N ×M, with N
being the number of ballots and M the number of candidates. m is the number of seats to be filled and
ε is a small number used for defining the quota.
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total number of second preferences, then the third preferences, and so on. If a tie cannot be resolved
even by counting the last preference, then it is broken by a random draw with equal probabilities for
the tied candidates. A random seed is specified so that the result is replicable.

Combining Forwards and Backwards Tie-Breaking with the Ordered method and random sam-
pling, each tie in the stv function is broken in one of the following three ways:

1. Forwards (“f”) or Backwards (“b”) Tie-Breaking method alone

2. Forwards or Backwards Tie-Breaking followed by the Ordered method (“fo”, “bo”)

3. Forwards or Backwards Tie-Breaking followed by the Ordered method, and finally, random
sampling (“fos”, “bos”)

The abbreviation of these three possibilities in parentheses is included in the STV output whenever a
tie is broken during the election count.

Ties of any kind are relatively rare unless the electorate is small. In very small electorates, ties are
more common, but cases where Forwards, Backwards, and Ordered Tie-Breaking all fail to break the
tie are unusual even then, so election by random draw will be a rare event.

In the earliest version of the software (Silverman, 2002), ties were broken deterministically: if a
candidate was to be elected, the last-named member of a tie was chosen. On the other hand, if there
was a tie for elimination, it was the first-named who was eliminated. These choices were aimed at
compensating in a small way for the tendency of candidates higher up the ballot paper to get more
votes. However, they depended on position on the ballot paper, which might be viewed as somewhat
arbitrary, and in the vote package, we have used a more systematic criterion.

Equal preference STV

Extant implementations of STV require that voters not give equal preferences (except among the
candidates that they do not rank). However, Meek (1970) has pointed out that the single transferable
vote system does not exclude this possibility and outlined how the votes might be counted. This has
never been implemented before in software, to our knowledge, although it is used for the election of
the Trustees of the John Muir Trust Wikipedia (2020c).

The basic idea is that if, for example, a voter gives their first preference to candidates A and B,
then the vote will be equally split between the two, giving half a vote to each. If A is elected, then the
proportion of the half-vote for A corresponding to A’s surplus will be transferred to their next highest
preference. This will be B if B is still in contention, i.e., if B has not been elected or eliminated by that
stage. Otherwise, it will be the remaining candidate with the next highest preference from that voter.
Similarly, if A is eliminated, the half-vote for A will be fully transferred to their next highest remaining
preference. This will be B if B is still in contention, or otherwise the candidate with the next highest
preference.

The same principle applies if there are three or more equal preferences. For example, consider
the case where there are three equal preferences A, B, and C, and A is eliminated/elected. If A is
elected, the proportion of the one-third vote for A corresponding to A’s surplus is equally divided
between B and C. If A is eliminated, then both B and C get increased to a half vote. Algebraically, this
is implemented by the change below in Line 11 of Algorithm 1.

Otherwise, the count proceeds in the same way as when equal preferences are not allowed. The
argument equal.ranking in the stv function is set to TRUE when equal preferences are allowed. In this
case, votes are postprocessed before counting so that they correctly reflect preferences. For example, a
vote 1, 1, 2, 3, 3, 3 would be recoded to 1, 1, 3, 4, 4, 4. This is in contrast with the usual case where equal
preferences are not allowed and equal.ranking=FALSE when votes with non-sequential preferences,
such as 1, 2, 4, 5, are declared invalid and considered spoiled unless a partial correction is allowed.

STV with equal preferences can be implemented by Algorithm 1 with only two relatively small
changes, namely:

Line 11 replaced by: ui,j ← wiδYi,j (1)/ ∑M
ℓ=1 δYi,ℓ (1) ∀ i = 1, . . . , N, j = 1, . . . , M

Line 20 replaced by: wr ← ∑M
j=1 ur,j − ur,k + ur,k ∗ S ∀ r where Yr,k = 1

Note that if applied to votes with no equal preferences, the modified algorithm yields the same
result as Algorithm 1. In such a case, the denominator in Line 11 is equal to 1 for all i, and thus, u is
the same as in Algorithm 1. Similarly, in Line 20, ∑M

j=1 ur,j − ur,k = 0 if there are no equal preferences,
and thus, w is the same as in Algorithm 1.

We illustrate this functionality using the food election data by setting the first three votes to equal
first preferences for Chocolate and Strawberries, instead of first and second preferences:
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> food_election2 <- food_election
> food_election2[c(1:3), 4] <- 1
> stv (food_election2, equal.ranking = TRUE)

Results of Single transferable vote with equal preferences
==========================================================
Number of valid votes: 20
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 2

| | 1| 2-trans| 2| 3-trans| 3| 4-trans| 4|
|:------------|---------:|-------:|-----:|-------:|------:|-------:|-------:|
|Quota | 6.668| | 6.667| | 6.667| | 5.437|
|Oranges | 4.000| 0.000| 4.000| 2| 6.000| 0.000| 6.000|
|Pears | 2.000| 0.000| 2.000| -2| | | |
|Chocolate | 10.500| -3.832| | | | | |
|Strawberries | 2.500| 2.372| 4.872| 0| 4.872| 0.000| 4.872|
|Sweets | 1.000| 1.460| 2.460| 0| 2.460| -2.460| |
|Elected | Chocolate| | | | | | Oranges|
|Eliminated | | | Pears| | Sweets| | |

Elected: Chocolate, Oranges

Once again, Oranges is elected second, ahead of Strawberries, although the margin of victory is
smaller than before.

Reserved seats in STV

In addition to having a given number of seats to fill, it may be desired to elect a minimum number of
candidates from a specified class or group of candidates. For example, the selectors of plenary papers
at a conference might wish to reserve at least two slots for students. Or the election of a committee
might wish to ensure that at least three women were elected.

We have incorporated this feature into the stv function as an option. Users can specify the number
of reserved seats with the argument group.nseats and mark the members eligible for those seats in
the argument group.members.

When this requirement is present, we modify our STV algorithm as follows. Suppose m denotes
the number of seats and g denotes the number of reserved seats, and candidates are either marked
(eligible for reserved seats) or unmarked (not eligible). Then on each count,

• if the leading candidate exceeds the quota, they are elected, except that if m − g unmarked
candidates have already been elected, they are only elected if they are marked. Or,

• if no candidate has been elected on this round, the candidate with the fewest votes is eliminated,
except that if there are only g marked candidates still in play (including any already elected)
or if there are already m− g unmarked candidates elected, the unmarked candidate with the
fewest votes is eliminated (even if that number of votes is above the quota).

We will illustrate the reserved seats feature in Section 2.4.3.

We are not aware of any previous method in the literature to allow for reserved seats in STV. It
seems possible that other methods for doing this could be developed. For example, one could just
eliminate all remaining unmarked candidates once m− g unmarked candidates had been elected. It is
not clear if or when this would give different results.

In principle, this general approach could be extended to the situation where there are two or more
constraints, such as ensuring that at least three women and at least two students are elected to a
committee of 12. The basic principles are the same:

• When eliminating a candidate, make sure that there are enough of the right kinds of candidates
still in play that all remaining constraints can be satisfied.

• When choosing a candidate to elect, make sure there are enough slots left so that the remaining
constraints can be satisfied later.

However, in the vote package, for now, it is implemented only for one constraint.
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Examples

We now illustrate the different systems using three examples of elections. Perhaps ironically, systems
are more robust with larger than smaller electorates, in the sense that their results are less sensitive
to small changes in the electoral system. We therefore start with a political election with a relatively
large electorate, continue with the election of the council of a scientific organization with a moderate-
sized electorate, and finally describe an election with a very small electorate. Each of these was a
multi-winner election, but we will also use them to illustrate the single-winner electoral methods.

Irish general election 2002: Dublin West constituency

The Dublin West constituency in the 2002 Irish general election had three seats to be filled, nine
candidates, and just under 30,000 ranked votes. The dataset, called dublin_west, is included in the
package. These data were collected electronically in a trial of electronic voting, with a system that
prevented invalid votes. As a result, there were no invalid votes, unusually for an election of this kind.

> data (dublin_west)
> head(dublin_west)

Bonnie Burton Ryan Higgins Lenihan McDonald Morrissey Smyth Terry
1 0 4 0 3 0 0 1 5 2
2 0 0 2 0 1 4 3 0 0
3 0 0 3 0 1 0 2 0 0
4 0 2 0 0 0 0 3 0 1
5 0 2 1 0 0 0 0 0 0
6 0 3 2 0 1 0 0 0 0

We illustrate the single-winner methods by assuming that there is just one seat to be filled. First
we consider the plurality method. It is necessary to convert the dataset into a set of zeros and ones to
run the plurality function:

> dublin_west1 <- 1*(dublin_west == 1)
> plurality (dublin_west1)

Results of Plurality voting
===========================
Number of valid votes: 29988
Number of invalid votes: 0
Number of candidates: 9
Number of seats: 1

| |Candidate | Total| Elected |
|:---|:---------|-----:|:-------:|
|1 |Lenihan | 8086| x |
|2 |Higgins | 6442| |
|3 |Burton | 3810| |
|4 |Terry | 3694| |
|5 |McDonald | 2404| |
|6 |Morrissey | 2370| |
|7 |Ryan | 2300| |
|8 |Bonnie | 748| |
|9 |Smyth | 134| |
|Sum | | 29988| |

Elected: Lenihan

Lenihan was elected, although he received only 27% of the first preference votes.

Here is the two-round runoff result:

> tworound.runoff (dublin_west)

| |Candidate | Total| Percent| ROffTotal| ROffPercent| Elected |
|:---|:---------|-----:|-------:|---------:|-----------:|:-------:|
|1 |Bonnie | 748| 2.5| 0| 0.0| |
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|2 |Burton | 3810| 12.7| 0| 0.0| |
|3 |Ryan | 2300| 7.7| 0| 0.0| |
|4 |Higgins | 6442| 21.5| 12457| 47.3| |
|5 |Lenihan | 8086| 27.0| 13900| 52.7| x |
|6 |McDonald | 2404| 8.0| 0| 0.0| |
|7 |Morrissey | 2370| 7.9| 0| 0.0| |
|8 |Smyth | 134| 0.4| 0| 0.0| |
|9 |Terry | 3694| 12.3| 0| 0.0| |
|Sum | | 29988| 100.0| 26357| 100.0| |

Elected: Lenihan

Lenihan was again elected, but this time after a run-off, as he did not get a majority on the first count.
He got an absolute majority on the second count. This indicates a broader base of support than the
plurality vote.

We now illustrate the single-winner approval voting method by assuming that voters “approved”
any candidate to whom they gave their first, second, or third preference. Under this assumption,
voters approved 2.8 candidates on average.

> dublin_west2 <- 1*(dublin_west == 1 | dublin_west == 2 | dublin_west == 3)
> approval (dublin_west2)

| |Candidate | Total| Elected |
|:---|:---------|-----:|:-------:|
|1 |Lenihan | 15253| x |
|2 |Higgins | 13638| |
|3 |Burton | 12863| |
|4 |Ryan | 10014| |
|5 |Terry | 9810| |
|6 |Morrissey | 9411| |
|7 |McDonald | 6674| |
|8 |Bonnie | 4936| |
|9 |Smyth | 636| |
|Sum | | 83235| |

Elected: Lenihan

Once again, Lenihan wins. The multi-winner approval vote method with three seats gives wins to
Lenihan, Higgins, and Burton because they got the most votes.

The Condorcet method did have both a winner and a loser in this case:

> condorcet (dublin_west)

| | Bonnie| Burton| Ryan| Higgins| Lenihan| McDonald| Morrissey| Smyth| Terry| Total| Winner | Loser |
|:---------|------:|------:|----:|-------:|-------:|--------:|---------:|-----:|-----:|-----:|:------:|:-----:|
|Bonnie | 0| 0| 0| 0| 0| 0| 0| 1| 0| 1| | |
|Burton | 1| 0| 1| 0| 0| 1| 1| 1| 1| 6| | |
|Ryan | 1| 0| 0| 0| 0| 1| 1| 1| 0| 4| | |
|Higgins | 1| 1| 1| 0| 0| 1| 1| 1| 1| 7| | |
|Lenihan | 1| 1| 1| 1| 0| 1| 1| 1| 1| 8| x | |
|McDonald | 1| 0| 0| 0| 0| 0| 0| 1| 0| 2| | |
|Morrissey | 1| 0| 0| 0| 0| 1| 0| 1| 0| 3| | |
|Smyth | 0| 0| 0| 0| 0| 0| 0| 0| 0| 0| | x |
|Terry | 1| 0| 1| 0| 0| 1| 1| 1| 0| 5| | |

Condorcet winner: Lenihan
Condorcet loser: Smyth

The STV result is as follows:

> stv.dwest <- stv (dublin_west, nseats = 3, eps = 1, digits = 0)

Results of Single transferable vote
===================================
Number of valid votes: 29988
Number of invalid votes: 0
Number of candidates: 9
Number of seats: 3
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| | 1| 2-trans| 2| 3-trans| 3| 4-trans| 4| 5-trans| 5| 6-trans| 6| 7-trans| 7| 8-trans| 8|
|:----------|-------:|-------:|-----:|-------:|------:|-------:|--------:|-------:|-------:|-------:|---------:|-------:|----:|-------:|------:|
|Quota | 7498| | 7491| | 7486| | 7465| | 7303| | 7233| | 7043| | 6143|
|Bonnie | 748| 8| 756| 20| 776| -776| | | | | | | | | |
|Burton | 3810| 55| 3865| 4| 3869| 207| 4076| 295| 4372| 211| 4583| 763| 5345| 1191| 6536|
|Ryan | 2300| 298| 2598| 23| 2621| 65| 2686| 357| 3042| 77| 3119| 673| 3792| -3792| |
|Higgins | 6442| 68| 6510| 21| 6531| 198| 6728| 1124| 7853| -550| | | | | |
|Lenihan | 8086| -588| | | | | | | | | | | | | |
|McDonald | 2404| 24| 2428| 19| 2447| 76| 2523| -2523| | | | | | | |
|Morrissey | 2370| 70| 2440| 13| 2453| 98| 2551| 108| 2659| 52| 2711| -2711| | | |
|Smyth | 134| 1| 135| -135| | | | | | | | | | | |
|Terry | 3694| 43| 3737| 21| 3758| 69| 3828| 151| 3979| 71| 4050| 896| 4946| 802| 5748|
|Elected | Lenihan| | | | | | | | Higgins| | | | | | Burton|
|Eliminated | | | Smyth| | Bonnie| | McDonald| | | | Morrissey| | Ryan| | |

Elected: Lenihan, Higgins, Burton

The three candidates elected were also the ones who got the most first preference votes. All the
candidates represented different political parties or were independents, except Ryan and Lenihan,
who were both candidates for the Fianna Fáil party, the largest party in Ireland at the time. Lenihan
was elected on the first count with a surplus of 588 votes, and 298 of these were transferred to Ryan,
the most of any candidate. This reflects the fact that voters tend to give their highest preferences to
candidates of the same party, although here, we can see that many of the Lenihan voters did not, in
fact, give their second preferences to Ryan.

Although this was an election with almost 30,000 votes and the electoral system appears somewhat
complex, the counting takes just two seconds on a Macbook Pro laptop.

Note that the results were slightly different from the results using the Irish STV system, although
the same candidates were elected; see Wikipedia (2020b). This is because of several minor differences
between the Irish STV system and the stv function in the vote package. The most important of these
is that in the vote package, the quota declines as the counts proceed to reflect votes that are not
transferred because voters did not express enough preferences. In the Irish STV system, the quota
remains the same throughout the counts. We chose to make the quota adaptive because it allows a
more complete transfer of the votes of candidates elected. However, if the argument constant.quota
is set to TRUE, the quota is kept constant for all counts.

The STV results can be visualized in several ways. Figure 1 has been produced by the command

> plot (stv.dwest)

It shows the evolution of the candidate’s vote totals over successive counts, as well as of the quota. It
can be seen that while candidates mostly stayed in the same order, candidate Ryan overtook two other
candidates thanks to transfers, even though she was eventually eliminated. This reflects the fact that
she had high preferences among voters who gave their first preferences to Lenihan and Morrissey.
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Figure 1: Evolution of candidates’ votes over STV counts in the 2002 Irish general election in Dublin
West.

Figure 2 shows the number of preference votes that each candidate received. The first preferences
reflect the numbers we know from the first count. It can be seen that Ryan and Burton had the most
second preferences; in Ryan’s case, this is because she was the second Fianna Fáil (FF) candidate
behind Lenihan and got the majority of his second preferences. Burton and Morrissey had the most
third preferences.
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Figure 2: Number of preference votes that each candidate received in the 2002 Irish general election
in Dublin West.

Figure 3 (left panel) shows the number of votes for each combination of first and second preference.
The biggest number is those who voted first for Lenihan and then for Ryan, again reflecting that they
are from the same party and that Lenihan had the most first preferences.
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Figure 3: Joint preferences in the 2002 Irish general election in Dublin West. Left panel: Number
of votes for each combination of first and second preferences. Right panel: Proportion of the first
preference votes for each candidate that gave their second preference vote to each other candidate.

The right panel in Figure 3 shows the same information but in the form of the proportion of the first
preference voters for each candidate that cast their second preference votes for each other candidate.
The largest single cell shows that over 60% of Ryan voters cast their second preferences for Lenihan.

The code for producing Figures 2 and 3 is as follows:

> image (stv.dwest, all.pref = TRUE) # Figure 2
> image (stv.dwest, proportion = FALSE) # Figure 3 left panel
> image (stv.dwest, proportion = TRUE) # Figure 3 right panel

Note that the image method is available for all functions in the package that use ranked votes, namely
condorcet and tworound.runoff, in addition to stv. However, the method cannot be used if equal
preferences are present in the ballots.

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 688

IMS council election

The ims_election dataset contains the votes in a past election for the Council of the Institute of
Mathematical Statistics (IMS). There were four seats to be filled with 10 candidates running and 620
voters. The names of the candidates have been anonymized2. The election was carried out by STV.
The results were:

> data (ims_election)
> stv.ims <- stv (ims_election, nseats = 4, eps = 1, digits = 0)

The results are shown in Figure 4. Although the electorate was much smaller, the results show
some common patterns to those from Dublin West. The quota declined slowly in the early counts
and more rapidly in the later ones. The four candidates elected were the ones that got the most first
preferences. Figure 4(d) shows that, while there are no political parties in this election, Tilmann and
Hillary tended to share voters, as did Jasper and Li. We do not know the identities of the candidates
because their names have been anonymized, but these pairs of candidates clearly appeal to the same
voters, perhaps because of geographical or intellectual commonalities.

However, neither Li nor Hillary was able to benefit from these shared preferences in this election.
While Jasper was elected on the second count, he reached exactly the number of votes needed to reach
the quota, namely 119, and thus no surplus was available for a transfer. Tilmann, on the other hand,
was elected last, after which the election ended. If there had been one more seat available (i.e., nseats
= 5), Hillary would have got Tilmann’s surplus and then would have been elected.

In this example, 29 votes were identified as invalid. One can explore those votes using

> invalid.votes(stv.ims)

Most of these votes are all zero preference votes. However, a few of them contain a gap in the
ranking. If it is desired that such votes be considered valid up to the last valid ranking, one can
add the argument invalid.partial = TRUE to the stv call. In this case, those votes are corrected.
Using corrected.votes(stv.ims) will then display the original and corrected versions of the votes.
Similarly, valid.votes(stv.ims) will display all the valid votes considered in the election.

Trial faculty recruitment vote

This is a trial election that was carried out to test a proposed use of STV in a university statistics
department for selecting faculty job candidates to whom to make offers. There were two jobs to be
filled, five finalists, and ten voters. It was desired to select the two candidates to whom to make offers
and also to produce a ranking of the other candidates. This is fairly typical of such elections. The
candidates were named Augustin-Louis Cauchy, Carl Friedrich Gauss, Pierre-Simon Laplace, Florence
Nightingale, and Siméon Poisson.

The voters entered their choices into a web-based survey which was then converted into a text file.
Here, we create the corresponding dataset manually:

> faculty <- data.frame(
+ Cauchy = c(3, 4, 4, 4, 4, 5, 4, 5, 5, 5),
+ Gauss = c(4, 1, 2, 2, 2, 2, 2, 2, 2, 4),
+ Laplace = c(5, 2, 1, 3, 1, 3, 3, 4, 4, 1),

2To ensure confidentiality, the names of the candidates were replaced by arbitrarily chosen first names that have
no connection to the actual names of the candidates.
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Figure 4: Visualization of results of IMS Council election by STV. (a) Top left: Evolution of votes
over counts. (b) Top right: Number of votes for each candidate at each preference level. (c) Bottom
left: Number of votes for each first and second preference combination. (d) Bottom right: Number of
second preferences as a proportion of the number of first preference voters for each candidate.

+ Nightingale = c(1, 3, 5, 1, 3, 1, 5, 1, 1, 2),
+ Poisson = c(2, 5, 3, 5, 5, 4, 1, 3, 3, 3)
+ )

The results of the STV election were as follows:

> stv.faculty <- stv (faculty, nseats = 2, digits = 2, complete.ranking = TRUE)

Results of Single transferable vote
===================================
Number of valid votes: 10
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 2

| | 1| 2-trans| 2| 3-trans| 3| 4-trans| 4|
|:-----------|-----------:|-------:|------:|-------:|-------:|-------:|-----:|
|Quota | 3.33| | 3.33| | 3.33| | 3.33|
|Cauchy | 0.00| 0.00| 0.00| 0| | | |
|Gauss | 1.00| 1.33| 2.33| 0| 2.33| 1.33| 3.67|
|Laplace | 3.00| 0.00| 3.00| 0| 3.00| 0.00| 3.00|
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|Nightingale | 5.00| -1.67| | | | | |
|Poisson | 1.00| 0.33| 1.33| 0| 1.33| -1.33| |
|Elected | Nightingale| | | | | | Gauss|
|Eliminated | | | Cauchy| | Poisson| | |

Complete Ranking
================

| Rank|Candidate | Elected |
|----:|:-----------|:-------:|
| 1|Nightingale | x |
| 2|Gauss | x |
| 3|Laplace | |
| 4|Poisson | |
| 5|Cauchy | |

Elected: Nightingale, Gauss

Nightingale and Gauss were elected. The complete ranking could be useful for a vote like this,
where an ordering beyond the winning candidates may be desired, for example, to make further
offers if one of the top two declines the offer. Note that the complete ranking is conditional on the
pre-specified number of seats or winners in the election.

The results are illustrated in Figure 5. An interesting feature that can be seen from Figure 5(a)
is that Laplace got more first preference votes than Gauss, but Gauss ended up beating him by a
small margin for the second offer because almost every voter gave Gauss either their first or second
preference. Thus, as other candidates were elected or eliminated, their votes were transferred to Gauss
rather than Laplace. The large number of second preferences for Gauss is apparent from Figure 5(b).
Figure 5(c) and especially Figure 5(d) show that Gauss got the highest number and proportion of
second preference votes from the electors of each of the other candidates.

If this had been done by approval voting, and all the voters had approved their top two choices,
the same two candidates would have been selected as by STV (i.e., Nightingale and Gauss).

It is interesting to note that there was no Condorcet winner in this election, even though Nightingale
was far ahead of the other candidates by most criteria:

> condorcet (faculty)

| | Cauchy| Gauss| Laplace| Nightingale| Poisson| Total| Loser |
|:-----------|------:|-----:|-------:|-----------:|-------:|-----:|:-----:|
|Cauchy | 0| 0| 0| 0| 0| 0| x |
|Gauss | 1| 0| 1| 0| 1| 3| |
|Laplace | 1| 0| 0| 0| 1| 2| |
|Nightingale | 1| 1| 0| 0| 1| 3| |
|Poisson | 1| 0| 0| 0| 0| 1| |

There is no condorcet winner (no candidate won over all other candidates).
Condorcet loser: Cauchy

This illustrates the fact that even in a relatively clearcut case, there may be no Condorcet winner.

To illustrate the feature of reserved seats in STV, let us assume that it is required that at least one
French candidate be selected. Then,

> stv (faculty, nseats = 2, group.nseats = 1,
+ group.members = c("Laplace", "Poisson", "Cauchy"), digits = 2)

Results of Single transferable vote
===================================
Number of valid votes: 10
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 2
Number of reserved seats: 1
Eligible for reserved seats: 3

| | 1| 2-trans| 2| 3-trans| 3|
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Figure 5: Visualization of results of the trial faculty recruitment vote by STV. (a) Top left: Evolution
of votes over counts. (b) Top right: Number of votes for each candidate at each preference level. (c)
Bottom left: Number of votes for each first and second preference combination. (d) Bottom right:
Number of second preferences as a proportion of the number of first preference voters for each
candidate.

|:-----------|-----------:|-------:|-----:|-------:|-------:|
|Quota | 3.33| | 3.33| | 3.33|
|Cauchy* | 0.00| 0.00| 0.00| 0.00| 0.00|
|Gauss | 1.00| 1.33| 2.33| -2.33| |
|Laplace* | 3.00| 0.00| 3.00| 1.67| 4.67|
|Nightingale | 5.00| -1.67| | | |
|Poisson* | 1.00| 0.33| 1.33| 0.67| 2.00|
|Elected | Nightingale| | | | Laplace|
|Eliminated | | | Gauss| | |

Elected: Nightingale, Laplace

Here, the modifications to the algorithm described in Section 2.3.5 ensured that none of the French
candidates was eliminated on the second count, as the only seat left at that point was the reserved seat.
Thus, Gauss, the only non-French candidate left, was eliminated in spite of having more votes than
Cauchy or Poisson. Laplace was then elected on the following count. In the output, the candidates
eligible for reserved seats are marked with a star.

We now modify this dataset slightly to illustrate the equal ranking STV method. Four of the votes
were changed so as to include equal preferences:
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> faculty2 <- faculty
> faculty2[1,] <- c(2,2,3,1,1)
> faculty2[4,] <- c(3,1,2,1,3)
> faculty2[9,] <- c(4,1,3,1,2)
> faculty2[10,] <- c(2,1,1,1,1)
> faculty2

Cauchy Gauss Laplace Nightingale Poisson
1 2 2 3 1 1
2 4 1 2 3 5
3 4 2 1 5 3
4 3 1 2 1 3
5 4 2 1 3 5
6 5 2 3 1 4
7 4 2 3 5 1
8 5 2 4 1 3
9 4 1 3 1 2
10 2 1 1 1 1

The results of the STV election with equal preferences were as follows:

> stv.faculty.equal <- stv (faculty2, equal.ranking = TRUE, digits = 2)

Results of Single transferable vote with equal preferences
==========================================================
Number of valid votes: 10
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 2

| | 1| 2-trans| 2| 3-trans| 3| 4-trans| 4|
|:-----------|-----------:|-------:|------:|-------:|-------:|-------:|-----:|
|Quota | 3.33| | 3.33| | 3.33| | 3.33|
|Cauchy | 0.00| 0.00| 0.00| 0| | | |
|Gauss | 2.25| 0.34| 2.59| 0| 2.59| 1.69| 4.28|
|Laplace | 2.25| 0.01| 2.26| 0| 2.26| 0.13| 2.39|
|Nightingale | 3.75| -0.42| | | | | |
|Poisson | 1.75| 0.06| 1.81| 0| 1.81| -1.81| |
|Elected | Nightingale| | | | | | Gauss|
|Eliminated | | | Cauchy| | Poisson| | |

Elected: Nightingale, Gauss

Warning message:
In correct.ranking(votes, quiet = quiet) :
Votes 1, 4, 9, 10 were corrected to comply with the required format.

The warning message indicates that the ranking was corrected. When equal.ranking=TRUE, this
correction will be made with any input, as long as the preferences are recorded as positive numbers
(not necessarily integers). The corrected votes can be viewed using the corrected.votes function,
which returns a list. The element new contains the updated votes:

> corrected.votes(stv.faculty.equal)$new

Cauchy Gauss Laplace Nightingale Poisson
1 3 3 5 1 1
4 4 1 3 1 4
9 5 1 4 1 3
10 5 1 1 1 1

Such a correction is not made in the default case in which equal.ranking=FALSE, when the preferences
have to be an ordered sequence of integers starting at one, with no ties and no gaps. However, votes
can be corrected in the same way also from outside stv, using the function correct.ranking. As
noted previously, another option is to set invalid.partial=TRUE in the stv function, which accepts
partial-valid ranking, i.e., each vote is considered valid up to its largest valid preference, after which
ties and gaps are set to 0. When doing such correction externally via the correct.ranking function,
set the argument partial to TRUE.

Finally, we give the results when there is a single winner to illustrate tie-breaking, as it so happens
that tie-breaking is needed on two different counts in this case:
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> stv.faculty.tie <- stv (faculty, nseats = 1)

Results of Single transferable vote
===================================
Number of valid votes: 10
Number of invalid votes: 0
Number of candidates: 5
Number of seats: 1

| | 1| 2-trans| 2| 3-trans| 3| 4-trans| 4| 5-trans| 5|
|:-----------|------:|-------:|-------:|-------:|-----:|-------:|-------:|-------:|-----------:|
|Quota | 5.001| | 5.001| | 5.001| | 5.001| | 5.001|
|Cauchy | 0.000| 0| | | | | | | |
|Gauss | 1.000| 0| 1.000| 1| 2.000| -2| | | |
|Laplace | 3.000| 0| 3.000| 0| 3.000| 2| 5.000| -5| |
|Nightingale | 5.000| 0| 5.000| 0| 5.000| 0| 5.000| 5| 10.000|
|Poisson | 1.000| 0| 1.000| -1| | | | | |
|Tie-breaks | | | fo| | | | f| | |
|Elected | | | | | | | | | Nightingale|
|Eliminated | Cauchy| | Poisson| | Gauss| | Laplace| | |

Elected: Nightingale

On the second count, Gauss and Poisson both had one vote, the lowest number, and so were tied
for elimination. The Forwards Tie-Breaking method did not break the tie, as they both had the same
number of votes also on the first count. The Ordered method did break the tie, however, because
Gauss had 7 second preferences, and Poisson had only 1, so Poisson was eliminated. The notation “fo”
in the Tie-breaks row indicates the tie-breaking method used, here Forwards followed be Ordered.

On the fourth count, Laplace and Nightingale were tied with 5 votes each, so they were tied for
elimination as neither reached the quota of 5.001. The Forwards Tie-Breaking method was then used
and involved looking first at their numbers of votes on the first count when Laplace had 3 votes, and
Nightingale had 5. As a result, Laplace was eliminated, and then Nightingale was elected. If the
Backwards Tie-Breaking method had been used (by setting ties = "b"), the comparison would have
been done based on the third count instead of the first count. Here too, Laplace had 3 votes, and
Nightingale had 5 on the third count, and thus, Laplace would have been eliminated.

Note that the ranking used by the Ordered method can be viewed via the ordered.tiebreak
function, while passing the valid votes stored in the data element of the stv object:

> ordered.tiebreak(stv.faculty.tie$data)

Cauchy Gauss Laplace Nightingale Poisson
1 3 4 5 2

attr(,"sampled")
[1] FALSE FALSE FALSE FALSE FALSE

It gives the elimination ranking. When used for electing a candidate, the order is reversed. The
attribute “sampled" indicates for each candidate whether sampling was involved in determining
its rank, which was not the case in our example. The function ordered.preferences can be used to
view the matrix of preference counts from which the ordered ranking is derived. It gives the same
information as the image plot with all.pref = TRUE, but in matrix form.

Discussion

We have described and illustrated the vote package in R, which implements several electoral systems,
namely the plurality, two-round runoff, approval, score, and Single Transferable Vote (STV) systems
(Ševčíková et al., 2021). It also identifies the Condorcet winner and loser, if they exist. It implements
the Single Transferable Vote system with equal preferences, the first time this has been implemented
in software to our knowledge. It also provides several ways of visualizing the STV results.

We are not advocating any electoral system, and indeed it is well known that no one system
satisfies all of a set of criteria that one might reasonably want to hold. Thus, which system one uses
can depend on the purpose of the election. However, we are particularly interested in multi-winner
elections with small electorates, such as committee and council elections in organizations, and the
selection of multiple job candidates, award winners, or other choices by small “selectorates.” Such
elections are common, and there is no universally accepted method for conducting them. We have
found the STV system to work well in practice for such elections, and so we have emphasized it here,
giving several examples.
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For completeness, we note that the most widely used political voting system around the world is a
party-list approach, where voters vote for a party rather than for individuals, and some mechanism
is then used to fill the party slots allocated (Electoral Reform Society, 2020). Such systems are not
relevant for the purposes of our primary interest.

There are several other R packages that implement electoral systems. The votesys package
implements several electoral methods, including several that are not included in the vote package (Wu,
2018). It implements the Instant Runoff Voting (IRV), which is the special case of STV for single-winner
elections, but it does not implement the full version of STV for multi-winner elections. The rcv package
also implements IRV (calling it Ranked Choice Voting) but has been removed from CRAN (Lee and
Yancheff, 2019).

The STV package implements the STV method (Emerson et al., 2019). The results are generally
very similar to those from the stv function in the vote package. However, there are some minor
differences that can lead to different results, particularly in elections with small electorates. Notably,
in the STV package, all quotas, vote counts, and transfers are rounded to integers, which can lead
to different results when the electorate is small. Also, in the STV package all tie-breaking is done at
random, in contrast with the vote package, which uses forwards and backwards tie-breaking. Unlike
the vote package, none of these other packages implements the STV method with equal ranking or
allows for reserved positions for marked groups.

The HighestMedianRules implements voting rules electing the candidate with the highest median
grade (Fabre, 2020b,a). The electoral and esaps packages compute various measures of electoral
systems; in spite of their names, they do not implement electoral systems or voting rules (Albuja, 2020;
Schmidt, 2018).
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HD070936. The authors are grateful to Salvatore Barbaro and Brendan Murphy for helpful discussions
and to an anonymous reviewer for helpful comments that improved the article.

Bibliography

Ace Project. The systems and their consequences, 2020. URL https://aceproject.org/ace-en/
topics/es/esd/default. [p674]

J. Albuja. electoral: Allocating Seats Methods and Party System Scores, 2020. URL https://CRAN.R-
project.org/package=electoral. R package version 0.1.2. [p694]

K. Arrow. Social Choice and Individual Values. Yale University Press, New Haven, Conn., 2nd edition,
1963. [p674]

S. J. Brams and P. C. Fishburn. Approval voting. American Political Science Review, 72:831–847, 1978.
[p676]

S. J. Brams and P. C. Fishburn. Approval Voting. Birkhauser, Boston, Mass., 1983. [p677]

S. J. Brams and P. C. Fishburn. Approval Voting. Springer Science & Business Media, 2nd edition, 2007.
[p676]

M. de Condorcet. Essai sur l’Application de l’Analyse à la Probabilité des Decisions Rendues à la Pluralité des
Voix. Imprimerie Royale, Paris, France, 1785. [p677]

Electoral Reform Society. Party list proportional representation, 2020. URL https://www.electoral-
reform.org.uk/voting-systems/types-of-voting-system/party-list-pr. [p694]

J. Emerson, S. Chandra, and L. Orr. STV: Single Transferable Vote Counting, 2019. URL https://CRAN.R-
project.org/package=STV. R package version 1.0.1. [p694]

A. Fabre. Tie-breaking the highest median: alternatives to the majority judgment. Social Choice and
Welfare, 2020a. doi: https://doi.org/10.1007/s00355-020-01269-9. [p694]

A. Fabre. HighestMedianRules: Implementation of Voting Rules Electing the Candidate with Highest Me-
dian Grade, 2020b. URL https://CRAN.R-project.org/package=HighestMedianRules. R package
version 1.0. [p694]

Fair Vote. Multi-winner ranked choice voting, 2020. URL https://www.fairvote.org/multi_winner_
rcv_example. [p678]

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=votesys
https://CRAN.R-project.org/package=rcv
https://CRAN.R-project.org/package=STV
https://CRAN.R-project.org/package=HighestMedianRules
https://CRAN.R-project.org/package=electoral
https://CRAN.R-project.org/package=esaps
https://aceproject.org/ace-en/topics/es/esd/default
https://aceproject.org/ace-en/topics/es/esd/default
https://CRAN.R-project.org/package=electoral
https://CRAN.R-project.org/package=electoral
https://www.electoral-reform.org.uk/voting-systems/types-of-voting-system/party-list-pr
https://www.electoral-reform.org.uk/voting-systems/types-of-voting-system/party-list-pr
https://CRAN.R-project.org/package=STV
https://CRAN.R-project.org/package=STV
https://CRAN.R-project.org/package=HighestMedianRules
https://www.fairvote.org/multi_winner_rcv_example
https://www.fairvote.org/multi_winner_rcv_example


CONTRIBUTED RESEARCH ARTICLES 695

A. Gibbard. Manipulation of voting schemes: A general result. Econometrika, 41:587–601, 1973. [p674]

I. D. Hill. Some aspects of elections – To fill one seat or many (with discussion). Journal of the Royal
Statistics Society, Series A (Statistics in Society), 151:243–275, 1988. [p677, 678]

I. D. Hill, B. A. Wichmann, and D. R. Woodall. Single transferable vote by Meek’s method. Computer
Journal, 30:277–281, 1987. [p673, 679]

E. Kitchener. A new way to break STV ties in a special case. Voting Matters, 20:9–11, 2005. URL
http://www.votingmatters.org.uk/ISSUE20/I20P3.PDF. [p680]

J. Lee and M. Yancheff. rcv: Ranked Choice Voting, 2019. URL https://cran.r-project.org/src/
contrib/Archive/rcv/. R package version 0.2.1. [p694]

London Elects. Mayor of London & London Assembly elections: Counting the votes, 2020. URL
https://www.londonelects.org.uk/im-voter/counting-votes. [p676]

J. Lundell. Random tie-breaking in STV. Voting Matters, 22:1–6, 2006. URL http://www.votingmatters.
org.uk/ISSUE22/I22P1.pdf. [p680]

B. L. Meek. Une nouvelle approche du scrutin transférable. Mathématiques et Sciences Humaines, 25:
13–23, 1969. [p679]

B. L. Meek. Une nouvelle approche du scrutin transférable (fin). Mathématiques et Sciences Humaines,
29:33–39, 1970. [p679, 682]

R. A. Newland, F. S. Britton, C. Rosenstiel, and J. Woodward-Nutt. How to Conduct
an Election by the Single Transferable Vote. Electoral Reform Society, London, U.K.,
1997. URL https://www.electoral-reform.org.uk/latest-news-and-research/publications/
how-to-conduct-an-election-by-the-single-transferable-vote-3rd-edition. [p678, 680]

J. C. O’Neill. Tie-breaking with the single transferable vote. Voting Matters, 18:14–17, 2004. URL
http://www.votingmatters.org.uk/ISSUE18/I18P6.PDF. [p680]

M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems
for voting procedures and social welfare functions. Journal of Economic Theory, 10:187–217, 1975.
[p674]

N. Schmidt. esaps: Indicators of Electoral Systems and Party Systems, 2018. URL https://CRAN.R-
project.org/package=esaps. R package version 0.1.0. [p694]
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RPESE: Risk and Performance Estimators
Standard Errors with Serially Dependent
Data
by Anthony-Alexander Christidis and R. Douglas Martin

Abstract The R package RPESE (Risk and Performance Estimators Standard Errors) implements a new
method for computing accurate standard errors of risk and performance estimators when returns are
serially dependent. The new method makes use of the representation of a risk or performance estimator
as a summation of a time series of influence-function (IF) transformed returns, and computes estimator
standard errors using a sophisticated method of estimating the spectral density at frequency zero of the
time series of IF-transformed returns. Two additional packages used by RPESE are introduced, namely
RPEIF which computes and provides graphical displays of the IF of risk and performance estimators,
and RPEGLMEN which implements a regularized Gamma generalized linear model polynomial fit to
the periodogram of the time series of the IF-transformed returns. A Monte Carlo study shows that the
new method provides more accurate estimates of standard errors for risk and performance estimators
compared to well-known alternative methods in the presence of serial correlation.

Introduction

In the risk and portfolio management industry, risk and performance estimators are standard tools
used in data-driven decision-making processes. The current industry practice in reporting risk and
performance estimates for individual assets and portfolios typically do not include their standard
error (SE) estimates. For this reason, consumers of such reports have no way of knowing the statistical
accuracy of the estimates. As a leading example, one seldom sees SEs reported for Sharpe ratios,
and consequently cannot tell whether or not two Sharpe ratios for two different portfolios or assets
are significantly different. This motivated the development of the Risk and Performance Estimator
Standard Errors package, RPESE, for computing risk and performance estimator standard errors
that are accurate when returns that are serially correlated and can have fat-tailed and skewed non-
normality of returns distributions. RPESE uses a new method for computing risk and performance
estimators standard errors developed by Chen and Martin (2021).

In the quantitative finance literature, numerous statistical methods have been proposed to evaluate
the variability of risk and performance estimators under the assumption of independent and identically
distributed (i.i.d.) returns. These methods are however inadequate when returns are serially correlated.
An example of this was provided by Lo (2002), who showed that the Sharpe ratio estimator standard
error based on the assumption of i.i.d. returns is overly optimistic when returns are actually serially
correlated. In terms of statistical methods to compute standard errors of estimators when working with
time series data exhibiting serial correlation, there are two well-known methods in the literature: the
nonparametric heteroskedasticity and autocorrelation consistent (HAC) covariance method (Newey
and West, 1987; Andrews, 1991; Zeileis, 2004) and the nonparametric block bootstrap method (Kunsch,
1989; Politis and Romano, 1994). HAC covariance estimators, which rely on a kernel-based approach
on the lag-k covariance estimates of the time series, possess desirable statistical properties such as
consistency under heteroscedasticity and autocorrelation. Block bootstrap methods have been shown
to provide accurate standard errors if they are well calibrated (Ledoit and Wolf, 2008). However, they
rely on randomness which is an unappealing feature for industry practitioners as different results can
be reported on the same data set, albeit small if a large enough number of replicates are used.

Unlike the nonparametric HAC and block bootstrap methods, the method implemented in the
RPESE package is a fully parametric and deterministic method for computing risk and performance
estimators standard errors for time series with serial correlation, which is an appealing feature for the
purpose of constructing confidence intervals and tests. While IFs are commonly used tools in robust
statistics, they are seldomly used in quantitative finance research and applications. The new method
involves the representation of the risk and performance estimators using influence functions (IFs) and
fitting a penalized Gamma generalized linear model (GLM) to the periodogram of the IF-transformed
returns time series. The estimate of the variance of the estimator can be obtained from the spectral
density estimate of the IF-transformed returns time series at zero frequency, a technique introduced by
Heidelberger and Welch (1981).

The remainder of this article is organized as follows. The "New Methodology: Standard Errors via
Influence Functions" section provides the theoretical and computational details of the new method to
compute standard errors of risk and performance estimators. The "Influence Functions for Risk and
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Performance Estimators" section presents five risk estimators and seven performance estimators with
their influence functions, and introduces the RPEIF package with some sample code for the purpose
of computing and providing graphical displays of such influence functions. The "Periodogram Based
Generalized Linear Model Method" section describes the computational details of the Gamma GLM fit
to the periodogram of the IF-transformed returns time series and briefly discusses the implementation
in the RPEGLMEN package. The "Application: Hedge Funds Data Standard Errors with RPESE"
section provides example code to compute standard errors for hedge funds returns data. The "Monte
Carlo Study with IF-Based Standard Errors" section presents a benchmark comparison of the new
method with two HAC based approaches for serially correlated data. The "Summary" section discusses
future developments for the new method and the RPESE package.

New Methodology: Standard Errors via Influence Functions

IFs were first introduced by Hampel (1974), and were developed further by Hampel et al. (1986). In
this section, we provide the definition and basic properties of influence functions, with a view toward
their use for understanding the influence of outliers on risk and performance estimators, and for
computing standard errors of such estimators for both uncorrelated and serially correlated returns.

Risk and Performance Estimator Functional Representations

The large-sample value (as sample size n tends to infinity) of a risk or performance estimator may
be represented as a functional T = T(F) of the marginal distribution function F of a time series
r1, r2, . . . , rn of returns.1 For example the functional for the mean (expected value) is

µ(F) =
∫

rdF(r) (1)

and the functional for the standard deviation (returns volatility) is

σ(F) =
[ ∫

(r − µ(F))2dF(r)
] 1

2

. (2)

Given a functional representation T(F) of an estimator, a finite-sample non-parametric estimator Tn
is easily obtained by replacing the unknown distribution F by the empirical distribution Fn that has a
jump of height 1/n at each of the observed returns values r1, r2, . . . , rn:

Tn = T(Fn) = T(r1, r2, . . . , rn). (3)

For example, the finite-sample non-parametric estimators of the mean and standard deviation are the
sample mean and sample standard deviation, respectively:

µ̂n =
1
n

n

∑
t=1

rt σ̂n =

[
1
n

n

∑
t=1

(rt − µ̂n)

] 1
2

. (4)

We note that one can also derive parametric estimators from parametric functional representation
obtained by replacing F by Fθ , where θ is the parameter vector for a parametric distribution function. In
this case one obtains the finite-sample estimator by replacing the unknown parameter by its estimator,
typically the maximum-likelihood estimator (MLE). See for example, Martin and Zhang (2019) for
a treatment of parametric and non-parametric expected shortfall (ES) estimators for normal and
t-distributions. However, the current version of the RPEIF package only deals with non-parametric
risk and performance estimators.

Estimator Influence Function Definition

IFs are based on the use of the following mixture distribution perturbation of a fixed target distribution
F(x) :

Fγ(x) = (1 − γ)F(x) + γδr(x), 0 ≤ γ < 1/2 (5)

1The term functional refers to a function whose domain is an infinite dimensional space, e.g., the space of
distribution functions.
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where δr(x) is a point mass discrete distribution function with a jump of height one located at value r .
The IF of an estimator with functional form T(F) is defined as:

IF(r; T, F) = lim
γ→0

T(Fγ)− T(F)
γ

=
d

dγ
T(Fγ)|γ=0 (6)

The IF is a special directional derivative (i.e., a Gateaux derivative) of the functional T(F) in the
direction of a point mass distributions δr, evaluated at F. It is straightforward, and more or less tedious,
to derive formulas for the IFs of risk and performance estimators. For example, the IF of the sample
mean is:

IF(r; µ; F) = r − µ (7)

where µ = µ(F) depends on the underlying returns marginal distribution F. The above influence
function has the property that its expected value is zero, which is a reflection of the general property
than an influence function has zero expected value (Hampel, 1974):

E [IF(r; T, F)] = 0. (8)

A Key Influence Function Property

A key IF property is that for well behaved estimator functionals, the finite-sample estimator Tn =
T(Fn) = T(r1, r2, . . . , rn) can be expressed in terms of the sample mean of IF transformed returns as

Tn − T(F) =
1
n

n

∑
t=1

IF(rt; T, F) + remainder (9)

where the remainder goes to zero in a probabilistic sense as n → ∞. Thus the finite sample variance of
Tn is approximately given by

Var (Tn) = Var

[
1
n

n

∑
t=1

IF(rt; T, F)

]
(10)

and in the special case where the returns rt are i.i.d., the IF-transformed returns are i.i.d., and the
variance of Tn reduces to

Var (Tn) =
1
n

E[IF2(r1; T, F)]. (11)

and the expectation on the right-hand side can be evaluated empirically as the sample mean of the
squared influence functions.

However, when the rt, t = 1, 2, . . . , n are serially dependent, such as in the case of serially correlated
AR(1) returns or serially uncorrelated but dependent GARCH(1,1) returns, the IF-transformed returns
time series IF(rt; T, F) will generally have serial correlation that needs to be accounted for in calculating
the variance on the the right-hand-side of (10). In particular,

1
n

Var

[
n

∑
i=1

IF(rt; T, F)

]
= CIF(0) + 2

n−1

∑
k=1

(
1 − k

n

)
CIF(k), (12)

where CIF(k) is the symmetric lag-k covariance between IF(rt) and IF(rt+k). Spectral analysis theory,
extensively used in science and engineering, shows that the variance of the sum of the values of a
serially correlated stationary time series is given by the spectral density of the time series at zero
frequency. Thus the problem of estimating the variance (10), with possibly serially correlated returns,
reduces to the problem of estimating the spectral density at zero frequency of the the time series
IF(rt; T, F)/n. Chen and Martin (2021) show how to do this by a polynomial Gamma GLM fitting
method, with elastic net (EN) regularization, that works well when the returns are serially correlated,
as well as when they are uncorrelated. Their methodology is implemented in the RPESE package,
which in turn makes fundamental use of the RPEIF package to compute and provide graphical displays
for the influence functions of popular risk and performance estimators, and the RPEGLMEN to fit a
polynomial Gamma GLM with EN penalty to the IF-transformed returns time series periodogram.

Influence Functions for Risk and Performance Estimators

The current version (1.2.2) of the RPESE package supports six risk and nine performance estimators.
The risk estimators are the sample standard deviation (SD), the semi-standard deviation (SemiSD), the
lower partial moment of order one and two (LPM1 and LPM2), the expected shortfall (ES) and the
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Figure 1: Package relations between RPEIF, RPESE and RPEGLMEN.

value-at-risk (VaR), the latter two risk estimators with tail probability α. The performance estimators
are the mean (Mean), a robust M-estimator of the mean (robMean) of ψ-type2, the Sharpe ratio (SR),
the downside Sharpe ratio (DSR), the Sortino ratio (SoR) with constant threshold c, the expected
shortfall ratio (ESratio) and the value-at-risk ratio (VaRratio) with tail probability α, the Rachev ratio
(RachevRatio) with lower and upper tail probability α and β, and the Omega ratio (OmegaRatio) with
constant threshold c.

The formulas for these risk and performance estimators and their functional representations, and
the derivations of their influence function formulas, are given in Zhang et al. (2021). In Table 1, the
names of the functions in the RPEIF and RPESE packages for the risk and performance estimators are
provided.

Risk RPEIF RPESE

SD IF.SD SD.SE
SemiSD IF.SemiSD SemiSD.SE
LPM1 or LPM2 IF.LPM LPM.SE
ES IF.ES ES.SE
VaR IF.VaR VaR.SE

Performance RPEIF RPESE

Mean IF.Mean Mean.SE
robMean IF.robMean robMean.SE
SR IF.SR SR.SE
DSR IF.DSR DSR.SE
SoR IF.SoR SoR.SE
ESratio IF.ESratio Esratio.SE
VaRratio IF.VaRratio VaRratio.SE
RachevRatio IF.RachevRatio RachevRatio.SE
OmegaRatio IF.OmegaRatio OmegaRatio.SE

Table 1: Functions in RPEIF and RPESE for the risk and performance estimators.

The RPEIF Package

The functions in the RPEIF package listed in Table 1 are used for two distinct purposes. The first is
to evaluate an estimator IF at a set of data values, and plot them to display a graph of the influence
function. This allows the user to explore the different shapes of the IFs of different estimators. The
second and primary purpose of these IF functions is to compute IF-transformed time series of returns,
as a first step in the overall method of computing standard errors for risk and performance estimators.

To briefly demonstrate the usage of the RPEIF package, the edhec data set available in the Perfor-
manceAnalytics package will be used. This data set contains hedge fund returns from January, 1997
to November, 2019. The data can be loaded as an xts time series object with the following R code.

install.packages("PerformanceAnalystics")
data(edhec, package = "PerformanceAnalytics")
class(edhec)

## [1] "xts" "zoo"

The hedge fund names in edhec are too long to display well in plots. The following code replaces
those long names with shorter names.

2Commonly referred to as a robust M-estimator of "location" in the literature.
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colnames(edhec) <- c("CA", "CTAG", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA",
"RV", "SS", "FoF")

The following functions are available in RPEIF:

library(RPEIF)
ls("package:RPEIF")

[1] "IF" "IF.DSR" "IF.ES" "IF.ESratio"
[5] "IF.LPM" "IF.Mean" "IF.OmegaRatio" "IF.RachevRatio"
[9] "IF.robMean" "IF.SD" "IF.SemiSD" "IF.SoR"

[13] "IF.SR" "IF.VaR" "IF.VaRratio" "nuisParsFn"

In order to compute the values and plot the shapes of influence functions using the IF functions in
Table 1, nuisance parameters need to be specified, and there are two basic methods of doing so. Using
the nuisParsFn function, nuisance parameters can be generated by specifying "typical" values based
on some assumed returns distribution. For the risk measure estimators and performance measure
estimators, the nuisParsFn function assumes by default that the returns follow the normal distribution,
with monthly mean return of µ = 1%, risk-free rate r f = 0%, monthly volatility of σ = 5% (the
corresponding annual mean and volatility are 12% and 17.3%, respectively), and in addition assumes
by default that c = 0 for LPM and SoR, α = 0.10 for VaR and ES, and in addition β = 0.10 for the
Rachev ratio. Thus:

args(nuisParsFn)

## function (mu = 0.01, sd = 0.05, c = 0, alpha = 0.1, beta = 0.1)

To generate nuisance parameters by using a mean return of 2% instead of 1% and a volatility of 15%
instead of 5% (the defaults) for the purpose of displaying the IF plots for the SD and the SR, the
nuisPars argument can be used as in the following code, with the plots shown in Figure 2.

par(mfrow = c(2, 1))
outSD <- IF.SD(evalShape = T, IFplot = T, nuisPars = nuisParsFn(mu = 0.02, sd = 0.15))
outSR <- IF.SR(evalShape = T, IFplot = T, nuisPars = nuisParsFn(mu = 0.02, sd = 0.15))

Figure 2: IF shapes of SD and SR with user-specified nuisance parameters.

The second way to specify nuisance parameter values is to estimate them from a returns time series
of interest, the latter of which is specified by using the argument returns of the IF functions. For
example, the Convertible Arbitrage (CA) hedge fund time series can be used for this purpose by using
the following code, the results of which are shown in Figure 3.

par(mfrow = c(2, 1))
outSD <- IF.SD(returns = edhec$CA, evalShape = T, IFplot = T)
outSR <- IF.SR(returns = edhec$CA, evalShape = T, IFplot = T)

To plot the IF-transformed returns of the SD and SR estimators, use the following code to generate
the output shown in Figure 4:

SDiftr <- IF.SD(returns = edhec$CA)
SRiftr <- IF.SR(returns = edhec$CA)
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Figure 3: IF shapes of SD and SR with estimated nuisance parameters.

par(mfrow = c(3, 1))
plot(edhec$CA, lwd = 0.8, ylab = "Returns", main = "CA Hedge Fund Returns")
plot(SDiftr, lwd = 0.8, main = "IF.SD Transformed Returns")
plot(SRiftr, lwd = 0.8, main = "IF.SR Transformed Returns")

Figure 4: SD and SR IF-transformed returns for CA hedge fund.

Returns data are prone to outliers which adversely influence parameter estimates and inflate the
standard errors of risk and performance estimators. A very reliable outlier cleaning method that
shrinks outliers can be obtained based on a robust location M-estimator and an associated robust scale
estimator ŝ. A location M-estimator is computed as a solution of the equation

n

∑
t=1

ψmOpt

(
rt − µ̂M

ŝ

)
= 0 (13)

where ψmOpt = ψmOpt(x) is an optimal bias robust "psi" function, and ŝ is a robust scale estimate of
the residuals ϵt = rt − µ̂M. For an introduction to location M-estimators and their computation, see
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Sections 2.3 and 2.7 of Maronna et al. (2019). The optimal bias robust function ψmOpt is the default
used by the function locScaleM in the RobStatTM package. The robMean function in RPESE computes
the estimates µ̂M and ŝ using locScaleM.

Based on a location estimate µ̂M and associated scale estimate ŝ, it is natural to define returns
rt that fall outside the interval [µ̂M − 3 · ŝ, µ̂M + 3 · ŝ] as outliers for a 95% efficiency. Such outliers
are then "cleaned" by shrinking them to the nearest boundary of that interval. For the Fixed Income
Arbitrage (FIA) hedge fund returns, using the optimal bias robust ψmOpt function, it turns out that the
above interval is [−0.01171, 0.02231]. Correspondingly, the FIA hedge fund returns with values less
than -0.01171, or greater than 0.02231, are detected as outliers and shrunk accordingly.

The following code results in Figure 5, which shows the sample mean IF-transformed FIA returns
(which are equal to FIA returns minus the very small mean of the FIA returns) in the top plot, and the
outlier cleaned IF tranformaed FIA returns in the bottom plot.

iftrFIA <- IF.Mean(returns = edhec$FIA)
iftrFIAclean <- IF.Mean(returns = edhec$FIA, cleanOutliers = T)
par(mfrow = c(2, 1))
plot(iftrFIA, main = "FIA IF-transformed Returns", lwd = 0.8)
plot(iftrFIAclean, main = "Outlier Cleaned FIA IF-transformed Returns", lwd = 0.8)

Figure 5: IF and outlier cleaned IF-transformed FIA returns.

Spectral density function estimation is a frequently used method in the field of signal processing,
and in other engineering and science applications. Prewhitening is a technique often used to improve
the performance of spectral density estimators. Since the core of the method described in Chen and
Martin (2021) is estimation of a spectral density at frequency zero of an IF-transformed returns time
series IFt, it is natural to be able to use prewhitening of that time series. The prewhitened variant of
the basic IF-based SE method in the RPESE package implement such prewhitening. A prewhitened
version IFpw

t of the IFt time series by using the prewhitening transformation

IFpw
t = IFt − ρ̂IFt−1 (14)

where ρ̂ is a lag-one serial correlation coefficient estimat of the IFt. In general the IFpw
t series is not a

serially uncorrelated (white noise) series, but it has considerably less serial correlation than IFt, and a
periodogram estimator based on IFpw

t will suffer from relatively little bias compared with one based
on IFt. Since outliers can have adverse influence not only on risk and performance estimators, but also
on the estimator ρ̂ used for prewhitening, it is always a good idea to clean outliers before prewhitening.
This can done for example using the following code, which results in the plot shown in Figure 6.
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iftrFIAcl <- IF.Mean(returns = edhec$FIA, cleanOutliers = T)
PWiftrFIAcl <- IF.Mean(returns = edhec$FIA, cleanOutliers = T, prewhiten = T)
par(mfrow = c(2, 1))
plot(iftrFIAcl, main = "FIA Outlier Cleaned Returns", lwd = 0.8)
plot(PWiftrFIAcl, main = "Prewhitened FIA Outlier Cleaned Returns", lwd = 0.8)

Figure 6: Outlier cleaned IF-transformed FIA returns and its prewhitened version.

For more information on all the features and visualization tools in the RPEIF package, see https:
//CRAN.R-project.org/package=RPEIF, where a reference manual and vignette are provided.

Periodogram Based GLM Method

The problem of estimating the variance (10) of a risk or performance estimator in the presence of
serially correlated returns reduces to estimating the spectral density at zero frequency of the time series
IF(rt; T, F)/n. To do so, Chen and Martin (2021) proposed to fit a polynomial Gamma GLM method
with elastic net (EN) regularization to the periodogram of the time series IF(rt; T, F)/n. Because of
the computationally intensive nature of the cross-validation procedure for the tuning parameter λ
and the fact that the implementation must be efficient enough to handle multiple assets and portfolio
returns, Chen et al. (2018) developed an accelerated proximal gradient descent algorithm for Gamma
GLM with EN regularization.

The RPEGLMEN Package

The accelerated proximal gradient descent algorithm by Chen et al. (2018) was implemented in the
RPEGLMEN package. Multicore processing is available in the penalized Gamma GLM functions
within the package. The EN-penalized Exponential GLM is available as a special case of the Gamma
GLM. For code examples and more details on the parallelization features in RPEGLMEN, see https:
//CRAN.R-project.org/package=RPEGLMEN, where a reference manual and vignette are provided.

Application: Hedge Funds Data Standard Errors with RPESE

The following functions are available in RPESE are:
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library(RPESE)
ls("package:RPESE")

[1] "DSR.SE" "ES.SE" "ESratio.SE" "EstimatorSE"
[5] "LPM.SE" "Mean.SE" "OmegaRatio.SE" "printSE"
[9] "RachevRatio.SE" "robMean.SE" "SD.SE" "SemiSD.SE"
[13] "SoR.SE" "SR.SE" "VaR.SE" "VaRratio.SE"

The only argument that is required for the standard error computing functions in RPESE from Table 1
is the data argument, and if only the data argument is supplied then the function uses the defaults
of the other arguments. The arguments for the SD.SE and SR.SE functions given below show that
the default GLM distribution is the exponential distribution for both the SD risk estimator and the
SR performance estimator, but the se.methods defaults are the pair of IFiid and IFcor for the SD
estimator and the pair IFiid and IFcorPW for the SR estimator.

args(SD.SE)

## function (data, se.method = c("IFiid", "IFcor", "IFcorAdapt",
## "IFcorPW", "BOOTiid", "BOOTcor")[1:2], cleanOutliers = FALSE,
## fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5,
## freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5,
## corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
## return.coef = FALSE, ...)

args(SR.SE)

## function (data, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt",
## "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)], cleanOutliers = FALSE,
## fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5,
## freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5,
## corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
## return.coef = FALSE, ...)

The standard error of the SD for the hedge funds in the edhec package can be computed, using the
default arguments, with the following code:

SRout <- SR.SE(edhec)

The result returned by the function is a list. A more compact display of the results, with rounding to
three digits by default, can be obtained using the printSE function, whose arguments are

args(printSE)

## function (SE.data, round.digit = 3, round.out = TRUE)

with the resulting output with this function for the SR is given below.

printSE(SRout)

## SR IFiid IFcor IFcorPW
## CA 0.338 0.096 0.117 0.203
## CTAG 0.180 0.060 0.057 0.057
## DIS 0.392 0.080 0.108 0.134
## EM 0.194 0.069 0.084 0.092
## EMN 0.543 0.110 0.116 0.124
## ED 0.372 0.079 0.100 0.111
## FIA 0.377 0.113 0.134 0.183
## GM 0.371 0.054 0.057 0.057
## LS 0.315 0.066 0.079 0.085
## MA 0.560 0.092 0.098 0.104
## RV 0.504 0.097 0.117 0.169
## SS -0.041 0.061 0.072 0.072
## FoF 0.275 0.066 0.083 0.093

Standard Errors Methods

The se.method argument is particularly important, and the standard error computation methods for
the various choices for this argument are as follow.
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• "IFiid": This results in an influence function (IF) method based computation of a standard
error assuming i.i.d. returns.

• "IFcor": This is the basic IF method computation of a standard error that takes into account
serial dependence in the returns when the correlation is not too large. This is often the best
method for risk estimators.

• "IFcorAdapt": This IF based method adaptively interpolates between IFcor and IFcorPW which
is a good approach when the user is uncertain of the degree of serial dependence in the returns.

• "IFcorPW": This IF based method uses pre-whitening of the IF-transformed returns and is useful
when serial correlation is large.

• "BOOTiid": This choice results in computing a bootstrap standard error assuming i.i.d. returns.

• "BOOTcor": This choice uses a block bootstrap method to compute a standard error that takes
into account serial dependence of returns.

The two default choices of methods are:

• "IFiid" and "IFcor" for risk estimators, and for performance estimators when returns serial
correlation are known to be small, and

• "IFiid" and "IFcorPW" for performance estimators when returns correlations are unknown and
may be large.

The following code results in standard errors for all thirteen of the edhec hedge funds, using five
different methods methods.

SRout <- SR.SE(edhec, se.method = c("IFiid","BOOTiid","IFcor","IFcorPW","BOOTcor"))
printSE(SRout)

## SR IFiid BOOTiid IFcor IFcorPW BOOTcor
## CA 0.338 0.096 0.101 0.117 0.203 0.146
## CTAG 0.180 0.060 0.062 0.057 0.057 0.039
## DIS 0.392 0.080 0.087 0.108 0.134 0.110
## EM 0.194 0.069 0.068 0.084 0.092 0.074
## EMN 0.543 0.110 0.098 0.116 0.124 0.184
## ED 0.372 0.079 0.076 0.100 0.111 0.084
## FIA 0.377 0.113 0.113 0.134 0.183 0.155
## GM 0.371 0.054 0.059 0.057 0.057 0.052
## LS 0.315 0.066 0.058 0.079 0.085 0.072
## MA 0.560 0.092 0.092 0.097 0.104 0.066
## RV 0.504 0.097 0.109 0.099 0.169 0.129
## SS -0.041 0.061 0.065 0.072 0.072 0.076
## FoF 0.275 0.066 0.073 0.083 0.094 0.087

The value of including IFiid, along with IFcor and IFcorPW is that it allows the user to see whether
or not serial correlation results in a difference in the standard error that assumes i.i.d. returns and the
standard error that takes into account serial dependence. If there is no serial correlation there will not
be much difference, but if there is serial correlation the difference can be considerable.

The BOOTiid and BOOTcor methods are provided for users who want to see how these bootstrap
methods of computing standard errors compare with the IF based methods. Previous numerical
experiments indicate that BOOTiid generally agrees quite well with IFiid, but that BOOTcor is not as
consistent in giving values similar to those of IFcor.

Outliers Cleaning

The following code may be used to compare SR standard errors without and with outlier cleaning.

SRout <- SR.SE(edhec, se.method = "IFcorPW", cleanOutliers = F)
SRoutClean <- SR.SE(edhec, se.method = "IFcorPW", cleanOutliers = T)
clean.compare <- data.frame(SRout$IFcorPW$se, SRoutClean$IFcorPW$se)
names(clean.compare) <- c("With Outliers", "Outliers Cleaned")
row.names(clean.compare) <- names(edhec)
round(clean.compare, 3)

## With Outliers Outliers Cleaned
## CA 0.203 0.116
## CTAG 0.057 0.057
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## DIS 0.134 0.127
## EM 0.092 0.086
## EMN 0.124 0.099
## ED 0.113 0.101
## FIA 0.183 0.116
## GM 0.057 0.060
## LS 0.085 0.083
## MA 0.104 0.094
## RV 0.169 0.106
## SS 0.072 0.073
## FoF 0.093 0.084

Correlations of Returns and IF-transformed Returns

The (lag-1) correlations of the returns and IF-transformed returns time series can be computed as part
of the output using the corOut argument. The options are "retCor", "retIFCor" and "retIFCorPW".
Below is example code to return the correlations for the returns and the IF-transformed returns.

SRretCor <- SR.SE(edhec, corOut = c("retCor", "retIFCor"))
printSE(SRretCor)

## SR IFiid IFcorPW retCor retIFCor
## CA 0.338 0.096 0.202 0.565 0.554
## CTAG 0.180 0.060 0.057 -0.008 -0.039
## DIS 0.392 0.080 0.134 0.492 0.486
## EM 0.194 0.069 0.092 0.296 0.280
## EMN 0.543 0.110 0.124 0.284 0.153
## ED 0.372 0.079 0.111 0.341 0.334
## FIA 0.377 0.113 0.183 0.500 0.440
## GM 0.371 0.054 0.057 0.057 0.060
## LS 0.315 0.066 0.086 0.216 0.252
## MA 0.560 0.092 0.104 0.277 0.130
## RV 0.504 0.097 0.169 0.424 0.480
## SS -0.041 0.061 0.072 0.154 0.154
## FoF 0.275 0.066 0.093 0.311 0.334

Gamma and Exponential Distributions

In addition to the EN-penalized Gamma GLM available for the model-fitting step to the IF-transformed
returns time series, the EN-penalized Exponential GLM is also available in RPEGLMEN. While the
periodogram has an exponential distribution asymptotically, further research may show theat the
Gamma distribution provides better overall results, particularly for non-normally distributed returns.
The argument fitting.method specifies the GLM choice, and the d.GLM.EN argument specifies the
polynomial degree for the model. By way of example, the following code computes standard errors of
the SR for the exponential and Gamma distributions.

Clean.out <- SR.SE(edhec, se.method=c("IFiid","IFcor","IFcorPW"), cleanOutliers = T)
GammaClean.out <- SR.SE(edhec, se.method=c("IFiid","IFcor","IFcorPW"), cleanOutliers = T,

fitting.method = "Gamma")
GammaExp.comparison <- cbind(printSE(Clean.out)[,4], printSE(GammaClean.out)[,4])
colnames(GammaExp.comparison) <- c("IFcorPW-Exponential", "IFcorPW-Gamma")
rownames(GammaExp.comparison) <- names(edhec)
GammaExp.comparison

## IFcorPW-Exponential IFcorPW-Gamma
## CA 0.116 0.116
## CTAG 0.057 0.051
## DIS 0.127 0.128
## EM 0.086 0.101
## EMN 0.099 0.114
## ED 0.101 0.109
## FIA 0.116 0.120
## GM 0.060 0.061
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## LS 0.083 0.081
## MA 0.094 0.094
## RV 0.106 0.098
## SS 0.073 0.071
## FoF 0.084 0.092

Decimation and Truncation of Frequencies of Discrete Fourier Transform

There is an option in the SE functions to use a decimated or truncated percentage of the frequencies
of the discrete Fourier transforms for the periodogram in the fitting of the Gamma distributions.
Decimation implies that only certain frequencies are used, and they will be equally spaced selections
from the frequencies. Truncation implies that only a certain percentage of the frequencies (i.e. only the
first frequencies until a certain point) will be used. By default, the standard error functions use all the
frequencies. If the argument freq.include is set to "Decimate" or "Truncate" a value of 0.5 is used for
the freq.par argument: every second frequency is used in the decimation case, and only the first half
of the frequencies are used in the truncation case. Below is some sample code demonstration.

SRall <- SR.SE(edhec, cleanOutliers = T, freq.include = "All")
SRdecimate <- SR.SE(edhec, cleanOutliers = T, freq.include = "Decimate",

freq.par = 0.5)
SRtruncate <- SR.SE(edhec, cleanOutliers = T, freq.include = "Truncate",

freq.par = 0.5)
frequency <- cbind(printSE(SRall)[,3], printSE(SRdecimate)[,3],

printSE(SRtruncate)[,3])
colnames(frequency) <- c("IFcorPW-All", "IFcorPW-Decimate", "IFcorPW-Truncate")
rownames(frequency) <- names(edhec)
frequency

## IFcorPW-All IFcorPW-Decimate IFcorPW-Truncate
## CA 0.116 0.121 0.113
## CTAG 0.057 0.057 0.057
## DIS 0.127 0.132 0.126
## EM 0.086 0.094 0.088
## EMN 0.099 0.109 0.102
## ED 0.101 0.105 0.100
## FIA 0.116 0.122 0.116
## GM 0.060 0.060 0.061
## LS 0.083 0.086 0.083
## MA 0.094 0.097 0.093
## RV 0.106 0.116 0.109
## SS 0.073 0.079 0.072
## FoF 0.084 0.087 0.088

Monte Carlo Study with IF-Based Standard Errors

To assess the accuracy of risk and performance estimators standard errors for the proposed method in
comparison with alternative methods available for practitioners, a Monte Carlo simulation is carried
out for the SR estimator. The standard error methods included in the simulation study are the IF-based
method, the Newey-West (NW) HAC method (Newey and West, 1987) and the Andrews (AN) HAC
method (Andrews, 1991), as well as their prewhitened versions using the nse.andrews and nse.nw
functions in the nse package3. The Monte Carlo study compares the rejection probabilities of 95%
confidence intervals based on the standard error estimates of the methods. The simulations are
conducted using N = 5,000 replications of AR(1) processes with sample sizes n = 120, 240. The normal
and t-distribution with d f = 5 are considered for the innovations of the AR(1) processes, where the
mean µ = 1% and the volatility σ = 15%. The simulation process is as follows:

1. A sample of size n is simulated from an AR(1) process, where the innovations follow either the
normal or t-distribution (d f = 5) with mean µ = 1% and volatility σ = 15%.

2. The SR is estimated using the sample mean and standard deviation, ŜR =
µ̂−r f

σ̂ .

3. Steps 1. and 2. are repeated N = 5,000 times resulting in the estimates ŜR1, ŜR2, . . . , ŜRN . The
"true" standard error of the SR is computed as the sample standard deviation of the N estimates.

3The nse package is a wrapper for the sandwich package.
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4. For each of the N simulated time series of returns, the standard error of the SR is computed
using the IF, HAC AN and NW methods, as well as for their prewhitened versions.

5. Based on a normal approximation for the SR, a nominal 5% error rate confidence interval is
computed for each ŜRi, i = 1, 2, . . . , N, where the confidence interval is given by(

ŜRi − tα/2, n−1 × SEi, ŜRi + tα/2, n−1 × SEi

)
,

and tα/2,n−1 is the (1 − α/2)-th quantile of the t-distribution with n − 1 degrees of freedom. The
rejection probabilities are computed as the fraction of the N replicates for which the replicate
confidence interval does not contain the true SR.

Steps 1-6 of the Monte Carlo simulation study are repeated for each combination of n = 60, 120, 240
and ϕ = 0, 0.1, . . . , 0.5. The results for the normally and t-distributed innovations are provided in
Tables 2 and 3, respectively, for a nominal error rate of 5%. For all of the methods, the prewhitening
step improved the rejection probabilities. The IF-PW method was the best method overall, achieving
rejection probabilities that were closest to 5% when averaging over all values of ϕ. In particular, the IF-
PW method was also a highly competitive method even in the i.i.d. case (ϕ = 0) for both the normally
and t-distributed innovations, across all sample sizes considered. For a more extensive benchmark
study of the new method and HAC-based methods, including a comparison of the methods under
generalized autoregressive conditional heteroscedasticity (GARCH) models, see Chen and Martin
(2021).

AR(1) Parameter Values

ϕ = 0 ϕ = 0.1 ϕ = 0.2 ϕ = 0.3 ϕ = 0.4 ϕ = 0.5 Avg. RP

n = 60

IF-PW 5.5 5.3 5.4 6.2 5.9 7.0 5.9
AN-PW 6.0 6.2 6.2 7.6 7.5 9.3 7.1
NW-PW 7.4 7.6 7.1 8.2 8.0 9.7 8.0

IF 5.5 5.5 5.8 7.2 8.0 11.6 7.3
AN 5.3 6.4 7.0 9.5 10.3 13.1 8.6
NW 8.4 9.0 8.9 10.1 10.9 13.7 10.2

n = 120

IF-PW 5.2 4.6 5.0 6.0 5.5 5.8 5.3
AN-PW 5.5 4.8 5.4 6.5 6.7 7.3 6.0
NW-PW 6.5 5.9 6.2 7.0 7.1 7.8 6.7

IF 5.3 4.8 5.6 7.0 7.8 10.4 6.8
AN 5.2 5.5 7.0 8.4 8.8 10.2 7.5
NW 7.1 6.7 7.7 8.7 9.1 10.8 8.4

n = 240

IF-PW 4.7 5.3 5.4 4.8 5.4 5.4 5.2
AN-PW 4.8 5.4 5.7 5.3 6.0 6.5 5.6
NW-PW 5.1 5.8 6.0 5.6 6.1 6.5 5.8

IF 4.8 5.5 5.9 5.8 7.8 10.4 6.7
AN 4.6 6.2 7.1 6.7 7.8 8.7 6.8
NW 5.4 6.3 7.2 7.0 7.9 8.8 7.1

Table 2: Rejection probabilities (RP) of the standard error methods for normally distributed innovations.
The nominal error rate is 5%.
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AR(1) Parameter Values

ϕ = 0 ϕ = 0.1 ϕ = 0.2 ϕ = 0.3 ϕ = 0.4 ϕ = 0.5 Avg. RP

n = 60

IF-PW 6.6 6.7 6.9 7.2 6.7 7.9 7.0
AN-PW 7.0 7.4 8.1 8.2 8.2 9.9 8.1
NW-PW 8.2 8.1 9.1 8.8 8.8 10.2 8.9

IF 6.7 6.8 7.5 8.6 8.6 12.0 8.4
AN 6.6 7.8 9.7 10.7 11.3 13.4 9.9
NW 9.5 9.7 10.9 11.4 11.8 14.0 11.2

n = 120

IF-PW 6.2 5.7 6.2 5.9 6.9 5.8 6.1
AN-PW 6.5 5.9 6.8 6.4 7.8 7.1 6.7
NW-PW 7.7 7.1 7.6 7.3 8.4 7.4 7.6

IF 6.4 5.9 6.9 7.1 9.6 9.9 7.6
AN 6.0 6.7 8.3 8.5 10.8 10.2 8.4
NW 7.8 8.0 9.0 9.3 11.1 10.4 9.3

n = 240

IF-PW 5.5 5.7 5.4 5.7 5.9 6.1 5.7
AN-PW 5.7 5.9 5.5 6.1 6.4 6.6 6.0
NW-PW 6.1 6.3 5.9 6.3 6.7 6.9 6.4

IF 5.6 5.9 5.9 6.8 8.2 10.2 7.1
AN 5.6 6.8 6.9 7.6 8.3 8.9 7.3
NW 6.4 7.0 6.6 7.7 8.4 8.9 7.5

Table 3: Rejection probabilities (RP) of the standard error methods for t-distributed innovations with
d f = 5. The nominal error rate is 5%.

Summary

This article introduced the RPESE package, as well as the related packages RPEIF and RPEGLMEN, to
compute standard errors for risk and performance estimators using the new methodology in Chen and
Martin (2021). The new methodology involves the representation of risk and performance estimators
in terms of their IF-transformed returns, and fitting a polynomial Gamma GLM to the spectral density
of the IF time series. The RPEIF package implements the IF computation for six risk estimators and
nine performance estimators, and provides graphical visualization tools for the IFs. The RPEGLMEN
implements an accelerated proximal gradient algorithm for the computation of the EN-penalized
polynomial Gamma GLM applied to the spectral density of the IF-transformed returns, which includes
multicore parallelization capabilities.

Code examples, real data applications and benchmark simulation studies in this article demonstrate
the user-friendly software implementation of the method to assess the accuracy of risk and performance
estimators, providing financial risk and portfolio managers with a powerful open-source toolbox. We
note that the PerformanceAnalytics package uses the RPESE package to make its standard errors for
serially dependent data available to the large base of quantitatiave finance users.

There is much further research that can be accomplished for the methodology of Chen and Martin
(2021) and its software implementation in RPESE. New risk and performance estimators can be
introduced to both RPEIF and RPESE. Alternative model selection methods could be applied in
RPESE in addition to EN regularization, such as AIC or BIC based model selection. The proposed
methodology could be applied to multivariate time series to study the joint behavior of risk and
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performance estimators. In the latter case, a surface fitting method will be required to apply to the
multivariate spectral density of the multivariate IF-transformed returns.

Software and Data Availability

The package is available from the Comprehensive R Archive Network at https://CRAN.R-project.
org/package=RPESE, where a reference manual and vignette are provided. The development web-
site is available at https://github.com/AnthonyChristidis/RPESE. The scripts to replicate the code
examples, the hedge fund data results and the Monte Carlo simulation are available at https:
//github.com/AnthonyChristidis/RPESE_RJournal_Simulation.
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RobustBF: An R Package for Robust
Solution to the Behrens-Fisher Problem
by Gamze Güven, Şükrü Acıtaş, Hatice Şamkar and Birdal Şenoğlu

Abstract Welch’s two-sample t-test based on least squares (LS) estimators is generally used to test the
equality of two normal means when the variances are not equal. However, this test loses its power
when the underlying distribution is not normal. In this paper, two different tests are proposed to test
the equality of two long-tailed symmetric (LTS) means under heterogeneous variances. Adaptive
modified maximum likelihood (AMML) estimators are used in developing the proposed tests since
they are highly efficient under LTS distribution. An R package called RobustBF is given to show
the implementation of these tests. Simulated Type I error rates and powers of the proposed tests are
also given and compared with Welch’s t-test based on LS estimators via an extensive Monte Carlo
simulation study.

Introduction

Testing the equality of two population means is one of the most encountered problems in applied
sciences. Student’s t-test, which is uniformly most powerful unbiased, is commonly used under
normality and homogeneity of variances assumptions. The well-known Behrens-Fisher (BF) problem
arises when the assumption of homogeneity of variances is not met. This problem can be defined as
testing the null hypothesis

H0 : µ1 = µ2 (1)

when Yi1, Yi2, ..., Yini (i = 1, 2) are independent random samples from N
(
µi, σ2

i
)

distribution. Fisher
(1939) endorsed Behrens’ solution to the BF problem by using the fiducial theory. Many researchers
studied this problem. For example, Welch (1938) proposed a test statistic and provided its degrees
of freedom approximately. It should be noted that degrees of freedom provided by Welch (1938) can
also be obtained by using the Satterthwaite approximation; see Satterthwaite (1946). This is why
the mentioned degrees of freedom is also known as Welch-Satterthwaite degrees of freedom in the
literature. Wang (1971) calculated the Type I error rates of the Welch’s two-sample t-test and Aspin-
Welch test for different sets of degrees of freedom and nominal significance levels and concluded that
Welch’s t-test could be used in practice with little loss of accuracy. Davenport and Webster (1975)
considered the test suggested by Fairfield Smith (1936) for the BF problem and compared its Type I
error rates with those of Mehta and Srinivasan (1970). They concluded that this test is a very practical
solution to the BF problem besides being stable in regard to size and having adequate power. Best
and Rayner (1987) calculated the Wald score and likelihood ratio statistics and showed that the test
based on Wald statistics has the same asymptotic properties as the Welch’s t-test. Kim and Cohen
(1998) presented a review of basic concepts and applications concerning the BF problem under fiducial,
Bayesian and frequentist approaches. Singh et al. (2002) developed a test based on the Jackknife
estimator of the common population variance and compared the powers of the proposed test with
those of Welch’s t-test and Cochran and Cox (1957) test. According to the results of their study, the
proposed test is more powerful than the Cochran-Cox test for all cases, while it is more preferable to
Welch’s t-test for some cases. Chang and Pal (2008) developed a computational approach test (CAT)
for the BF problem and compared it with Welch’s t-test, Cochran-Cox text, Generalized p-value test,
and Singh–Saxena–Srivastava test under the normal and t-model. They found that Welch’s t-test,
Cochran-Cox text, and CAT are robust under the heavier tailed t-models besides having similar size
and power.

When the literature is examined, it can be seen that Welch’s t-test has a very good performance as
compared to other tests in the case of heteroscedasticity and unequal sample sizes in the context of
normality. The power of Welch’s t-test decreases very rapidly when the underlying distribution is
long-tailed symmetric (LTS) since the least squares (LS) estimators are not robust to the violation of
normality. It is known that non-normal distributions are more common in real-life problems. Yuen
(1974) proposed a two-sample trimmed t-test and compared its performance of it with Welch’s t-test for
both normal and long-tailed samples. Tiku and Singh (1981) proposed Welch-type statistics based on
modified maximum likelihood (MML) estimators and showed that the proposed test is more powerful
than Yuen (1974)’s trimmed t-test. In addition, Tiku and Singh (1981) investigated the analogous test
based on the robust bisquare estimators BS82 and showed that this test statistic gives misleading Type
I errors.

In this study, a robust version of Welch’s t-test for the BF problem is proposed when the underlying
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distribution is LTS. A second test using the fiducial model, which is a special case of a functional
model given by Dawid and Stone (1982), is also proposed; see Fisher (1933, 1935) for more information
about the fiducial approach. The reason for including a robust version of fiducial-based test into this
study is to see its performance in the context of BF problem and to make comprehensive comparisons
with its rivals (i.e., robust version of Welch’s t-test and the traditional Welch’s t-test). Both of the
proposed tests are based on adaptive modified maximum likelihood (AMML) estimators, see Tiku and
Sürücü (2009) and Dönmez (2010). To the best of our knowledge, this is the first study using AMML
estimators for testing the equality of two LTS means under heterogeneous variances. These estimators
are efficient and easy to compute for LTS samples, see Tiku and Sürücü (2009).

The R packages stats by R Core Team (1970) and asht by Fay (2020) include Welch’s t-test based on
LS estimators and BF test under normality, respectively. WRS2 by Mair and Wilcox (2021) contains
Yuen’s test based on the trimmed sample means. Different from the earlier studies, we provide an
R package RobustBF computing the values of the proposed test statistics and/or the corresponding
p-values.

The rest of this study is organized as follows. Firstly, AMML estimators are given. Secondly, the
robust Welch test and robust test based on the fiducial approach are developed. Thirdly, an extensive
Monte Carlo simulation study is conducted to compare the performances of the proposed tests with
the traditional Welch’s t-test based on LS estimators. The proposed tests are applied to a real data set
via RobustBF package. This paper is finalized some concluding remarks.

AMML Estimators

Assume that Yi1, Yi2, ..., Yini (i = 1, 2) be independent random samples from LTS (p, µi, σi) distribution

f (y) =
1√

kβ (1/2, p − 1/2) σ

(
1 +

(y − µ)2

kσ2

)−p

, −∞ < y < ∞;−∞ < µ < ∞; σ > 0; p ≥ 2, (2)

where µ is the location parameter, σ is the scale parameter, p is the shape parameter, and k = 2p − 3
(Tiku and Kumra, 1985). It should be noted that E (y) = µ, V (y) = σ2, and t =

√
(ν/k) (y/σ) has

Student’s t distribution with ν = 2p − 1 degrees of freedom.

The log-likelihood (ln L) function is given by

ln L = −N ln
(√

kβ (1/2, p − 1/2)
)
−

2

∑
i=1

ni ln (σi)− p
2

∑
i=1

ni

∑
j=1

ln

1 +

(
yij − µi

)2

kσ2
i

 , (3)

where N = n1 + n2. Then, the likelihood equations are obtained as follows

∂ ln L
∂µi

=
2p
kσi

ni

∑
j=1

g
(

zij

)
= 0 (4)

∂ ln L
∂σi

= −ni
σi

+
2p
kσi

ni

∑
j=1

zijg
(

zij

)
= 0 (5)

where

g
(

zij

)
=

zij

1 + (1/k) z2
ij

and zij =
yij − µi

σi
. (6)

By solving the above likelihood equations, (4) and (5), simultaneously, the maximum likelihood
(ML) estimators of the parameters µi and σi are obtained. However, these equations involve nonlinear
functions of the parameters, and so ML estimators cannot be obtained explicitly. Hence, numerical
methods can be used to solve these equations. Numerical methods may cause convergence problems
like non-convergence of iterations, convergence to wrong roots, or multiple roots (Puthenpura and
Sinha, 1986; Vaughan, 1992). MML methodology proposed by Tiku (1967, 1968) overcomes these
mentioned problems by providing explicit solutions to likelihood equations. In MML methodology,
firstly, the standardized statistics are ordered in ascending way, i.e., zi(1) ≤ zi(2) ≤ ... ≤ zi(ni). Then,
likelihood equations in (4) and (5) are rewritten in terms of zi(j) and g(zi(j)) (i = 1, 2; j = 1, 2, ..., ni) as
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shown in (7) and (8) since summation is invariant to ordering, i.e.,
ni

∑
j=1

zi(j) =
ni

∑
j=1

zij.

∂ ln L
∂µi

=
2p
kσi

ni

∑
j=1

g
(

zi(j)

)
= 0 (7)

∂ ln L
∂σi

= −ni
σi

+
2p
kσi

ni

∑
j=1

zi(j)g
(

zi(j)

)
= 0. (8)

Here, zi(j) =
yi(j)−µi

σi
and g(zi(j)) =

zi(j)

1+(1/k)z2
i(j)

. The nonlinear function g(zi(j)) is linearized utilizing

the first two terms of the Taylor series expansion around the expected values of the ordered statistics
E(zi(j)) = ti(j) as follows

g
(

zi(j)

)
∼= αij + βijzi(j), (9)

where

αij =
(2/k) t3

i(j)(
1 + (1/k) t2

i(j)

)2 and βij =
1 − (1/k) t2

i(j)(
1 + (1/k) t2

i(j)

)2 . (10)

Since ti(j) values cannot be obtained exactly, approximate values of ti(j) which do not affect the
efficiencies of the resulting estimators are used,∫ ti(j)

−∞
f (z) dz =

j
ni + 1

, i = 1, 2; j = 1, 2, ..., ni. (11)

Secondly, modified likelihood equations are obtained by inserting the approximation (9) into Eqs. (7)
and (8)

∂ ln L∗

∂µi
=

2p
kσi

ni

∑
j=1

(
αij + βijzi(j)

)
= 0 (12)

∂ ln L∗

∂σi
= −ni

σi
+

2p
kσi

ni

∑
j=1

zi(j)

(
αij + βijzi(j)

)
= 0. (13)

Finally, MML estimators of µi and σi are found by solving Eqs. (12) and (13). They are given as follows

µ̂i =

ni

∑
j=1

βijyi(j)

mi
and σ̂i =

Bi +
√

B2
i + 4niCi

2
√

ni (ni − 1)
, (14)

where

Bi =
2p
k

ni

∑
j=1

αij

(
yi(j) − µ̂i

)
, Ci =

2p
k

ni

∑
j=1

βij

(
yi(j) − µ̂i

)2
and mi =

ni

∑
j=1

βij; (15)

see Tiku and Suresh (1992). The asymptotic properties of the MML estimators µ̂i and σ̂i can be
demonstrated with the help of the following theorems.

Theorem 1 µ̂i is the minimum variance bound (MVB) estimator and is asymptotically normally distributed
with mean µi and variance σ2

i /Mi (Mi = 2pmi/k).

Theorem 2 (ni − 1) σ̂2
i /σ2

i is distributed as chi-square (more accurately a multiple of chi-square) with (ni − 1)
degrees of freedom.

For proofs of theorems, see, e.g. Şenoğlu and Tiku (2001); Güven et al. (2019).

MML estimators have the same asymptotic properties as the ML estimators and are as efficient as
ML estimators, even for small samples. They are easy to compute and robust to the outliers.

It should be noted that the shape parameter p is assumed to be known in the MML methodology.
However, in some real-life applications, it may be possible to assume that the data comes from a
certain type of distribution, namely LTS distribution, but there is no opportunity to specify the value

The R Journal Vol. 13/2, December 2021 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 716

of the shape parameter. Hence, Tiku and Sürücü (2009) proposed AMML methodology, which is a new
version of MML methodology, see Dönmez (2010) and Acıtaş et al. (2020, 2021). This methodology
relaxes the assumption of the known shape parameter. AMML estimators are computed in two
iterations. In the first iteration, initial tij values are calculated from the sample data, as shown below

tij =
(

yij − T0i

)
/S0i i = 1, 2; j = 1, ..., ni. (16)

Here, T0i and S0i are the initial estimates of µi and σi and they are calculated as

T0i = med
{

yij

}
and S0i = 1.483med

{
| yij − T0i |

}
i = 1, 2; j = 1, ..., ni, (17)

respectively. Using the tij values in (16), αij and βij coefficients are calculated as follows

αij =
(1/k) tij

1 + (1/k) t2
ij

and βij =
1

1 + (1/k) t2
ij

. (18)

Then, the AMML estimates of the parameters µi and σi are obtained using Eq. (14) and αij and βij
values given in Eq. (18). To distinguish these estimates from the MML estimates, they are represented
by µ̂i(AMML) and σ̂i(AMML) in the rest of the paper. In the second iteration, tij values are revised as
follows

tij =
(

yij − µ̂i(AMML)

)
/σ̂i(AMML) i = 1, 2; j = 1, ..., ni (19)

and recalculate the αij and βij values using the equalities in (18) for these tij values. Then final AMML
estimates of µi and σi are obtained.

It should be noted that in AMML methodology, yij observations are used rather than the ordered
yi(j) observations since tij values are calculated from the sample observations. In addition, the shape
parameter p is taken to be 16.5 in the calculations of αij and βij coefficients since this value makes
AMML estimators efficient for normal and near normal distributions. It also makes them robust to
mild outliers. The reason why we use AMML methodology in the proposed tests is that it provides the
same asymptotic properties as MML methodology and, as mentioned before, relaxes the assumption
of known shape parameter p.

Proposed Test Statistics

In this section, we propose two different tests for testing the equality of two LTS means.

Robust Welch (RW) Test

In this subsection, we briefly introduce Welch’s t-test proposed by Welch (1938) under normal theory
and then give the robust version of it. Welch’s t-test based on LS estimators is defined as W =

{(x̄1 − x̄2)− (µ1 − µ2)} /
√{(

s2
1/n1

)
+
(
s2

2/n2
)}

. It is known that W is approximately distributed as
Student’s t with degrees of freedom

f =
1

{c2/ (n1 − 1) + (1 − c2) / (n2 − 1)}
, (20)

where c =
(
s2

1/n1
)

/
{(

s2
1/n1

)
+
(
s2

2/n2
)}

. Here, x̄i and s2
i (i = 1, 2) are the sample means and sample

variances, respectively. The value of W test can be obtained using t.test function available in R.

In this study, we propose the following test statistics based on AMML estimators as a robust
alternative to Welch’s t-test

RW =

(
µ̂1(AMML) − µ̂2(AMML)

)
− (µ1 − µ2)√(

σ̂2
1(AMML)/M1

)
+
(

σ̂2
2(AMML)/M2

) . (21)

As we shall see at the end of this section, the null distribution of RW is approximately distributed
as Student’s t based upon Theorems 1 and 2 . The approximate degrees of freedom for this test is
obtained using the Satterthwaite (1946) approximation as follows.
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Let

c1 =
σ2

1
(n1 − 1) M1

, c2 =
σ2

2
(n2 − 1) M2

(22)

Q1 =
(n1 − 1) σ̂2

1(AMML)

σ2
1

and Q2 =
(n2 − 1)σ̂2

2(AMML)

σ2
2

(23)

where Q1 and Q2 are independent chi-square random variables with degrees of freedom (n1 − 1) and
(n2 − 1), respectively (see Theorem 2). If the linear combination of Q1 and Q2 is written as

Q = c1Q1 + c2Q2 =
σ̂2

1(AMML)

M1
+

σ̂2
2(AMML)

M2
, (24)

then νQ/E (Q) has an approximate χ2 distribution with the following degrees of freedom

ν =

[
c1Q1 + c2Q2

]2

([
c1Q1

]2
/ν1

)
+
([

c2Q2

]2
/ν2

)

=

((
σ̂2

1(AMML)/M1

)
+
(

σ̂2
2(AMML)/M2

))2

(
σ̂2

1(AMML)/M1

)2
/ (n1 − 1) +

(
σ̂2

2(AMML)/M2

)2
/ (n2 − 1)

.

(25)

Here,

ν1 = n1 − 1, ν2 = n2 − 1 and E (Q) =
σ2

1
M1

+
σ2

2
M2

. (26)

RW in (21) can be rewritten as follows

RW =

((
µ̂1(AMML) − µ̂2(AMML)

)
− (µ1 − µ2)

)
/
√(

σ2
1 /M1

)
+
(
σ2

2 /M2
)√(

σ̂2
1(AMML)/M1

)
+
(

σ̂2
2(AMML)/M2

)
/
√(

σ2
1 /M1

)
+
(
σ2

2 /M2
) . (27)

Since this expression is equivalent to

Z
√

Q/
√

E (Q)
, (28)

it is obvious that RW is approximately distributed as Student’s t with ν degrees of freedom. Here,
Z ∼ N(0, 1) (see Theorem 1) and

√
Q/
√

E (Q) ∼
√

χ2
ν/ν.

To verify the null distribution of the RW, the probabilities

p1 = Pr
(
|RW| ≥ t1−α/2,ν

)
(29)

are simulated from 10,000 Monte Carlo runs for various combinations of the sample sizes n1 and n2.
The results are demonstrated in Table 1. Here, ν is the degrees of freedom for RW.

Robust Fiducial (RF) Based Test

In this section, fiducial-based test is proposed using the concept of fiducial inference and pivotal
model; see Fisher (1933, 1935) and Dawid and Stone (1982). Let denote the RW test based on the
observed values as

RW∗ =

(
µ̂∗

1(AMML) − µ̂∗
2(AMML)

)
− (µ1 − µ2)√

σ̂2∗
1(AMML)

M1
+

σ̂2∗
2(AMML)

M2

. (30)

First, the fiducial distribution of RW∗ is derived using pivotal quantities and fiducial distribution of

the parameters of interest. Then, the corresponding p-value is obtained. Here,
(

µ̂∗
i(AMML), σ̂2∗

i(AMML)

)
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are the observed values of
(

µ̂i(AMML), σ̂2
i(AMML)

)
(i = 1, 2). Let

Zi =
µ̂i(AMML) − µi

σi/
√

Mi
(31)

and

Qi =
(ni − 1) σ̂2

i(AMML)

σ2
i

(32)

are mutually independent pivotal quantities. They have asymptotically N(0, 1) and χ2
(ni−1) distri-

butions, respectively (see Theorems 1 and 2). Using pivotal quantities Zi and Qi, data generating
equations are obtained as given below

µ̂i(AMML) = µi +
(

σi/
√

Mi

)
Zi (33)

and

σ̂2
i(AMML) = σ2

i Qi/ (ni − 1) . (34)

Given
(

µ̂∗
i(AMML), σ̂2∗

i(AMML)

)
, Eqs. (33) and (34) are expressed as follows

µ̂∗
i(AMML) = µi +

(
σi/
√

Mi

)
zi (35)

and

σ̂2∗
i(AMML) = σ2

i qi/ (ni − 1) . (36)

Here, (zi, qi) are the observed values of (Zi, Qi). Eqs. (35) and (36) have the unique solutions as given
below

µi = µ̂∗
i(AMML) −

zi√
qi/ (ni − 1)

σ̂∗
i(AMML)√

Mi
(37)

and

σ2
i =

(ni − 1) σ̂2∗
i(AMML)

qi
. (38)

Since Zi√
Qi/(ni−1)

is distributed as a ti variable with (ni − 1) degrees of freedom, the fiducial distribution

of µi is the same as that of

T∗
µi
= µ̂∗

i(AMML) −
tiσ̂

∗
i(AMML)√

Mi
(39)

for given
(

µ̂∗
(AMML), σ̂2∗

(AMML)

)
. Therefore, the fiducial distribution of RW∗ in (30) is derived by

utilizing the fiducial distribution of µi as follows

TRF =

((
t1σ̂∗

1(AMML)

)
/
√

M1

)
−
((

t2σ̂∗
2(AMML)

)
/
√

M2

)
√(

σ̂2∗
1(AMML)

)
/M1 +

(
σ̂2∗

2(AMML)

)
/M2

, (40)

where t1 ∼ t(n1−1) and t2 ∼ t(n2−1). Since

RW∗
0 =

(
µ̂∗

1(AMML) − µ̂∗
2(AMML)

)
√(

σ̂2∗
1(AMML)

)
/M1 +

(
σ̂2∗

2(AMML)

)
/M2

(41)

is the observed value of TRF under H0 : µ1 = µ2, the corresponding p-value is given by

p = Pr (TRF ≥ RW∗
0 ) . (42)
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An algorithm for calculating the fiducial p-value in Eq.(42) via Monte Carlo simulation study is given
as follows

Algorithm 1

Step 1 For the given data, compute µ̂∗
i(AMML), σ̂∗

i(AMML) (i = 1, 2) and then RW∗
0 utilizing Eq. (41).

Step 2 Generate ti ∼ t(ni − 1), (i = 1, 2).

Step 3 Compute T2
RF utilizing Eq. (40).

Step 4 Let Fl = 1 if T2
RF > RW2∗

0 , else Fl = 0

Step 5 Repeat the steps 2-4 K times.

Step 6 Compute the simulated p-value using p = 1
K

K
∑

j=1
Fj.

It should be noted that the squares of TRF and RW∗
0 in Steps 3 and 4 are taken since the alternative

hypothesis is two-sided, i.e., H1 : µ1 − µ2 ̸= 0; see Li et al. (2011).

Monte Carlo Simulation

In this section, Type I error rates and powers of the proposed tests (RW and RF) are compared with
those of the W test under the specified nominal level α = 0.05. The plan of the simulation study is
outlined as follows:

We use the following population distributions while generating samples.

Population 1 Population 2

(a) Cauchy(0, 1) Cauchy(0, 1)
(b) 5 × Cauchy(0, 1) Cauchy(0, 1)
(c) Normal(0, 32)/Uni f orm(0, 1) Normal(0, 1)/Uni f orm(0, 1)

(d) 0.8Normal(0, 42) + 0.2 Normal(0,42)
Uni f orm[0,1] 0.8Normal(0, 1) + 0.2 Normal(0,1)

Uni f orm[0,1]
(e) 3t2 t2
(f) 2t5 t5
(g) Logistic(0, 3) Logistic(0, 1)
(h) Laplace(0, 1) Laplace(0,

√
6)

Here, ta: Student’s t distribution with a degrees of freedom.

10,000 different samples are considered for each of size ni (i = 1, 2). Sample sizes are taken
as (n1, n2)=(6, 6),(6, 10),(10, 10),(10, 15),(10, 30), (20, 20),(20, 30),(20, 50),(30, 50) and (50, 50) while
comparing the Type I error rates and powers of the tests. Simulations are conducted in R software.

To compute the Type I error rates of the RW, RF, and W tests, firstly, samples are generated under
the null hypothesis H0:µ1 = µ2 for given (n1, n2) . Then AMML and LS estimates of the parameters
are calculated. The probability in Eq. (29) gives the Type I rates of the RW test. It should be noted that
this probability shows that how close the distribution of the RW test is to Student’s t with degrees
of freedom ν. RF is carried out using Algorithm 1 with K=5,000. The fiducial p-value for the RF is
computed in the final step of the mentioned algorithm. This procedure is repeated for each of the
10,000 samples. The proportion of the 10,000 p-values that are less than the nominal level α = 0.05
gives Type I error rates of the RF.

To compute the power of the tests, similar steps are followed, but a constant d is added to the
observations in the first population. Any test can be considered powerful if it achieves maximum
power and adheres to the prescribed significance level.

Results

The results of the Monte Carlo simulation study are given in Tables 1-9. The Type I error rates and
power of the tests are given in Table 1 and Tables 2-9, respectively.

Numerical results of Table 1 can be summarized for Models (a)-(h) as follows
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• Models (a)-(c): Type I error rates of the RW, RF, and W tests are smaller than the nominal level
of α = 0.05. However, Type I error rates of the RW test are much closer to the nominal level
than those of RF and W. RW test is followed by RF. W test is conservative regardless of the
sample sizes.

• Models (d)-(e): Type I error rates of the RW test are closest to the nominal level of α = 0.05 for all
sample sizes even for small ones. RW test is followed by RF. W test is conservative compared
to the RW and RF.

• Models (f)-(h): Type I error rates of the RW, RF, and W tests are close to the nominal level of
α = 0.05. However, RW has very good performance in terms of Type I error rates, even for small
samples. Type I error rates of the RF test are slightly smaller than the nominal level for small
sample sizes in Model (h).

The numerical results of Tables 2-9 can be summarized as follows. It should be noted that the first
line of Tables 2-9, that is, d = 0.00 presents simulated Type I error rates of the tests.

• Model (a): The RW test appears to be more powerful than the RF for small to moderate sample
sizes. However, as sample sizes increase, powers of RW and RF tests get closer to each other.
These two tests outperform the W test for all sample sizes. The power of the W test is decreasing
with increasing sample sizes.

• Models (b)-(e): The RW and RF tests exhibit similar power properties, and they have the most
power for all sample sizes. The W test has the least power. However, the W test shows the worst
performance in Model (b) when sample sizes are large and equal, i.e., (n1, n2)=(50, 50).

• Models (f)-(g): RW, RF, and W tests have similar power properties for small to moderate sample
sizes. However, as sample sizes increase the RW and RF tests exhibit better performance than
the W test.

• Model (h): The RW test has the most power followed by RF. The W test has the least power
especially for moderate to large sample sizes.

Overall, the RW test can be recommended for testing the equality of two LTS means under the
assumption of heterogeneous variances since it has the best performance with respect to size and
power. Although the performance of the RF test is not as good as the RW test, it has better performance
than the traditional Welch’s t-test.

Using RobustBF package

In the RobustBF package, we show the implementation of the proposed tests (RW and RF), based
on AMML estimators, and W test, based on LS estimators, using the data representing the values of
10(y − 2.0) (y is the pollution level (measurement of lead) in water samples from two lakes). It has
been shown that long-tailed symmetric distribution provides a plausible model for the mentioned
data; see Tiku and Akkaya (2004) and also reference therein.

To run RobustBF package, we first install the package and then load it by typing:

> install.packages("RobustBF")
> library(RobustBF)

respectively. Next the pollution level data are inputted for each lakes (Lake 1 and Lake 2) in terms of
the vectors as shown below

y1 <- c(-1.48, 1.25, -0.51, 0.46, 0.60, -4.27, 0.63, -0.14, -0.38, 1.28,
0.93, 0.51, 1.11, -0.17, -0.79, -1.02, -0.91, 0.10, 0.41, 1.11)

y2 <- c(1.32, 1.81, -0.54, 2.68, 2.27, 2.70, 0.78, -4.62, 1.88, 0.86,
2.86, 0.47, -0.42, 0.16, 0.69, 0.78, 1.72, 1.57, 2.14, 1.62)

The value of the RW test, its degrees of freedom with the corresponding p-value, AMML estimates
of the location parameters (µ̂1(AMML), µ̂2(AMML)), and AMML estimates of the scale parameters
(σ̂1(AMML), σ̂2(AMML)) are given by using the function

> RW(y1,y2)

The p-value and AMML estimates of the location and scale parameters are given for the RF test by
using the function

> RF(y1,y2,iter=5000)
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It should be noted that the p-value for the RF test is obtained using a computational approach, and
it is based on the replication number in Algorithm 1, denoted as iter in the RF function. When the
above-mentioned functions in the RobustBF package are performed, the following results are obtained

> RW(y1,y2)

Robust Welch's Two Sample t-Test

data: y1 and y2
RW = -3.1602, df = 36.892, p-value = 0.0031
alternative hypothesis: true difference between in means is not equal to 0
sample estimates:
mean of y1 mean of y2 sd of y1 sd of y2

0.0626 1.2391 1.0861 1.2876

> RF(y1,y2,iter=5000)

Robust Fiducial Based Test

data: y1 and y2
p-value = 0.0032
alternative hypothesis: true difference in means is not equal to 0
sample estimates:
mean of y1 mean of y2 sd of y1 sd of y2

0.0626 1.2391 1.0861 1.2876

We also use t.test function in R to test the null hypothesis H0:µ1 = µ2 and obtain its p-value as 0.0243.
It can be seen from these results, RW, RF, and W tests reject the null hypothesis at α = 0.05 significance
level since the p-values corresponding to these tests are all less than 0.05. However, p-values for RW
and RF tests are much smaller than the ones obtained for W. Results of the RW and RF tests are
more reliable since the AMML estimates of the σ1 and σ2 (σ̂1(AMML) = 1.0861, σ̂2(AMML) = 1.2876) are
less than the corresponding LS estimates (σ̂1(LS) = 1.2819, σ̂2(LS) = 1.6542). It should be noted that
RW and RF tests reject the null hypothesis while W fails to reject it at the significance level α = 0.01.
These results are in agreement with the simulation results in the context of long-tailed symmetric
distributions.

Conclusion

Reviewing the literature shows that comparing two means is a commonly encountered problem,
especially in applied sciences when the usual normality and homogeneity of variances assumptions
are violated. For this reason, in this study, we present RobustBF package and propose RW and
RF tests to test the equality of two LTS means when the variances are unknown and arbitrary. The
first test included in the package is a robust version of Welch’s t-test, and the other one is a robust
fiducial-based test. The proposed tests are based on AMML estimators. Also, we use t.test function
available in R to compare the proposed tests with Welch’s t-test in terms of Type I error rates and
powers. Examining the results of the simulation study reveals that Type I error rates of the RW test are
closer to the nominal level in general. Therefore, the RW test verifies the obtained null distribution
for long-tailed symmetric samples. This test is followed by RF. RF does not require the knowledge
of sampling distribution of the test statistics. W test appears to be conservative except for the t5,
Logistic and Laplace distributions. RW shows the best power performance among the others besides
being robust for the contamination model for the scenarios considered in this study. Therefore, the
proposed RW test can be recommended for testing the equality of two LTS means under heterogeneity
of variances. W test performs poorly in almost all cases. According to our knowledge, the proposed
tests presented in the RobustBF package are not available in any other R tool.
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Model (a) Model (b)

n1 n2 RW RF W RW RF W

6 6 0.023 0.014 0.015 0.031 0.025 0.019
6 10 0.026 0.016 0.017 0.033 0.027 0.020
10 10 0.025 0.020 0.018 0.031 0.027 0.020
10 15 0.023 0.016 0.017 0.029 0.027 0.020
10 30 0.030 0.025 0.020 0.029 0.028 0.020
20 20 0.024 0.022 0.020 0.028 0.026 0.021
20 30 0.028 0.025 0.024 0.027 0.026 0.022
20 50 0.026 0.024 0.021 0.028 0.027 0.020
30 50 0.027 0.025 0.021 0.026 0.026 0.022
50 50 0.030 0.028 0.020 0.027 0.026 0.020

Model (c) Model (d)

n1 n2 RW RF W RW RF W

6 6 0.035 0.024 0.022 0.047 0.036 0.030
6 10 0.037 0.030 0.020 0.053 0.047 0.037
10 10 0.030 0.025 0.020 0.046 0.042 0.033
10 15 0.031 0.026 0.018 0.046 0.043 0.033
10 30 0.031 0.029 0.022 0.046 0.044 0.030
20 20 0.030 0.027 0.019 0.042 0.040 0.027
20 30 0.030 0.028 0.021 0.046 0.044 0.030
20 50 0.030 0.030 0.022 0.045 0.044 0.030
30 50 0.031 0.029 0.020 0.042 0.041 0.026
50 50 0.030 0.028 0.019 0.044 0.044 0.025

Model (e) Model (f)

n1 n2 RW RF W RW RF W

6 6 0.040 0.030 0.034 0.050 0.042 0.042
6 10 0.050 0.045 0.035 0.054 0.042 0.046
10 10 0.044 0.038 0.038 0.049 0.043 0.044
10 15 0.045 0.042 0.033 0.054 0.048 0.049
10 30 0.042 0.040 0.037 0.055 0.052 0.051
20 20 0.044 0.042 0.028 0.054 0.049 0.047
20 30 0.040 0.037 0.038 0.052 0.049 0.048
20 50 0.041 0.041 0.026 0.051 0.049 0.046
30 50 0.043 0.042 0.036 0.053 0.053 0.049
50 50 0.044 0.043 0.028 0.054 0.052 0.049

Model (g) Model (h)

n1 n2 RW RF W RW RF W

6 6 0.053 0.041 0.045 0.048 0.032 0.044
6 10 0.056 0.052 0.051 0.044 0.034 0.043
10 10 0.055 0.048 0.047 0.044 0.036 0.042
10 15 0.055 0.052 0.048 0.045 0.039 0.044
10 30 0.052 0.050 0.044 0.045 0.039 0.045
20 20 0.054 0.053 0.049 0.044 0.041 0.044
20 30 0.054 0.053 0.048 0.047 0.044 0.047
20 50 0.055 0.055 0.049 0.050 0.046 0.049
30 50 0.054 0.054 0.048 0.046 0.045 0.046
50 50 0.054 0.053 0.049 0.054 0.051 0.052

Table 1: Simulated Type I error rates of the RW, RF and W tests for Models (a)-(h).
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d RW RF W d RW RF W

0.00 0.023 0.014 0.015 0.00 0.024 0.022 0.020
1.60 0.19 0.15 0.11 0.60 0.10 0.09 0.04

n = (6, 6) 3.20 0.51 0.46 0.30 n = (20, 20) 1.20 0.35 0.33 0.09
4.80 0.74 0.70 0.46 1.80 0.65 0.64 0.17
6.40 0.84 0.82 0.56 2.40 0.84 0.83 0.25
8.00 0.91 0.89 0.64 3.00 0.94 0.94 0.33

d RW RF W d RW RF W

0.00 0.026 0.016 0.017 0.00 0.028 0.025 0.024
1.50 0.21 0.17 0.10 0.50 0.09 0.08 0.03

n = (6, 10) 3.00 0.57 0.53 0.29 n = (20, 30) 1.00 0.31 0.29 0.07
4.50 0.78 0.76 0.44 1.50 0.59 0.58 0.13
6.00 0.89 0.88 0.57 2.00 0.80 0.79 0.20
7.50 0.94 0.93 0.62 2.50 0.92 0.91 0.27

d RW RF W d RW RF W

0.00 0.025 0.020 0.018 0.00 0.026 0.024 0.021
1.00 0.13 0.11 0.06 0.46 0.10 0.09 0.04

n = (10, 10) 2.00 0.43 0.39 0.18 n = (20, 50) 0.92 0.32 0.30 0.06
3.00 0.70 0.67 0.32 1.38 0.60 0.59 0.12
4.00 0.85 0.83 0.42 1.84 0.81 0.81 0.18
5.00 0.92 0.91 0.51 2.30 0.92 0.92 0.25

d RW RF W d RW RF W

0.00 0.023 0.016 0.017 0.00 0.027 0.025 0.021
0.80 0.11 0.09 0.05 0.40 0.09 0.09 0.03

n = (10, 15) 1.60 0.36 0.33 0.14 n = (30, 50) 0.80 0.30 0.29 0.06
2.40 0.64 0.61 0.24 1.20 0.60 0.59 0.10
3.20 0.80 0.79 0.35 1.60 0.83 0.83 0.16
4.00 0.90 0.89 0.43 2.00 0.94 0.94 0.22

d RW RF W d RW RF W

0.00 0.030 0.025 0.020 0.00 0.030 0.028 0.020
0.70 0.12 0.10 0.05 0.32 0.08 0.08 0.030

n = (10, 30) 1.40 0.37 0.35 0.11 n = (50, 50) 0.64 0.26 0.26 0.05
2.10 0.65 0.63 0.21 0.96 0.55 0.54 0.08
2.80 0.80 0.79 0.30 1.28 0.79 0.78 0.11
3.50 0.90 0.89 0.39 1.60 0.93 0.92 0.16

Table 2: Simulated powers of the RW, RF and W tests for Model (a).
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d RW RF W d RW RF W

0.00 0.031 0.025 0.019 0.00 0.028 0.026 0.021
5.40 0.22 0.19 0.13 2.00 0.11 0.11 0.04

n = (6, 6) 10.80 0.52 0.50 0.34 n = (20, 20) 4.00 0.34 0.34 0.11
16.20 0.72 0.71 0.49 6.00 0.61 0.60 0.19
21.60 0.83 0.83 0.60 8.00 0.80 0.79 0.30
27.00 0.90 0.90 0.68 10.00 0.90 0.90 0.38

d RW RF W d RW RF W

0.00 0.033 0.027 0.020 0.00 0.027 0.026 0.022
5.30 0.22 0.21 0.13 2.00 0.10 0.10 0.05

n = (6, 10) 10.60 0.53 0.52 0.35 n = (20, 30) 4.00 0.33 0.33 0.10
15.90 0.72 0.71 0.50 6.00 0.62 0.62 0.20
21.20 0.82 0.82 0.59 8.00 0.81 0.80 0.29
26.50 0.90 0.90 0.68 10.00 0.90 0.90 0.37

d RW RF W d RW RF W

0.00 0.031 0.027 0.020 0.00 0.028 0.027 0.20
3.60 0.17 0.16 0.09 2.00 0.11 0.11 0.05

n = (10, 10) 7.20 0.47 0.46 0.23 n = (20, 50) 4.00 0.35 0.34 0.11
10.80 0.71 0.71 0.38 6.00 0.62 0.62 0.20
14.40 0.84 0.84 0.49 8.00 0.80 0.80 0.29
18.00 0.92 0.92 0.58 10.00 0.91 0.91 0.37

d RW RF W d RW RF W

0.00 0.029 0.027 0.020 0.00 0.026 0.026 0.022
3.60 0.17 0.16 0.09 1.60 0.10 0.10 0.04

n = (10, 15) 7.20 0.49 0.48 0.23 n = (30, 50) 3.20 0.32 0.32 0.08
10.80 0.72 0.72 0.39 4.80 0.62 0.62 0.15
14.40 0.85 0.85 0.50 6.40 0.82 0.82 0.23
18.00 0.92 0.91 0.57 8.00 0.92 0.92 0.30

d RW RF W d RW RF W

0.00 0.029 0.028 0.020 0.00 0.027 0.026 0.020
3.40 0.16 0.16 0.09 1.12 0.08 0.08 0.03

n = (10, 30) 6.80 0.45 0.45 0.22 n = (50, 50) 2.24 0.26 0.26 0.05
10.20 0.69 0.69 0.36 3.36 0.53 0.53 0.09
13.60 0.83 0.83 0.47 4.48 0.76 0.76 0.13
17.00 0.90 0.90 0.55 5.60 0.90 0.90 0.18

Table 3: Simulated powers of the RW, RF and W tests for Model (b).
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d RW RF W d RW RF W

0.00 0.035 0.024 0.022 0.00 0.030 0.027 0.019
5.00 0.23 0.20 0.14 1.70 0.10 0.10 0.04

n = (6, 6) 10.00 0.55 0.52 0.37 n = (20, 20) 3.40 0.33 0.32 0.11
15.00 0.76 0.75 0.53 5.10 0.60 0.59 0.19
20.00 0.87 0.86 0.62 6.80 0.80 0.80 0.29
25.00 0.92 0.92 0.70 8.50 0.92 0.91 0.38

d RW RF W d RW RF W

0.00 0.037 0.030 0.020 0.00 0.030 0.028 0.021
4.80 0.23 0.21 0.14 1.70 0.10 0.10 0.04

n = (6, 10) 9.60 0.56 0.54 0.36 n = (20, 30) 3.40 0.33 0.33 0.11
14.40 0.75 0.74 0.52 5.10 0.62 0.61 0.20
19.20 0.86 0.86 0.62 6.80 0.81 0.81 0.30
24.00 0.92 0.92 0.69 8.50 0.92 0.92 0.37

d RW RF W d RW RF W

0.00 0.030 0.025 0.020 0.00 0.030 0.030 0.022
3.00 0.15 0.14 0.08 1.70 0.11 0.11 0.05

n = (10, 10) 6.00 0.44 0.42 0.22 n = (20, 50) 3.40 0.35 0.35 0.11
9.00 0.71 0.69 0.37 5.10 0.63 0.63 0.20
12.00 0.84 0.84 0.48 6.80 0.82 0.82 0.30
15.00 0.92 0.92 0.56 8.50 0.92 0.92 0.38

d RW RF W d RW RF W

0.00 0.031 0.026 0.018 0.00 0.031 0.029 0.20
2.60 0.13 0.12 0.06 1.30 0.09 0.09 0.03

n = (10, 15) 5.20 0.38 0.37 0.18 n = (30, 50) 2.60 0.31 0.30 0.07
7.80 0.64 0.63 0.32 3.90 0.58 0.58 0.13
10.40 0.79 0.79 0.44 5.20 0.79 0.79 0.20
13.00 0.90 0.90 0.54 6.50 0.92 0.92 0.29

d RW RF W d RW RF W

0.00 0.031 0.029 0.022 0.00 0.030 0.028 0.019
2.60 0.14 0.13 0.07 0.96 0.08 0.08 0.03

n = (10, 30) 5.20 0.39 0.39 0.18 n = (50, 50) 1.92 0.25 0.25 0.05
7.80 0.64 0.64 0.32 2.88 0.54 0.53 0.09
10.40 0.80 0.80 0.44 3.84 0.78 0.77 0.13
13.00 0.90 0.90 0.54 4.80 0.91 0.91 0.20

Table 4: Simulated powers of the RW, RF and W tests for Model (c).
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d RW RF W d RW RF W

0.00 0.047 0.036 0.030 0.00 0.42 0.040 0.027
2.00 0.15 0.13 0.11 0.80 0.11 0.10 0.07

n = (6, 6) 4.00 0.42 0.40 0.34 n = (20, 20) 1.60 0.30 0.29 0.17
6.00 0.69 0.67 0.57 2.40 0.57 0.56 0.32
8.00 0.84 0.83 0.71 3.20 0.78 0.78 0.46
10.00 0.91 0.91 0.78 4.00 0.91 0.91 0.57

d RW RF W d RW RF W

0.00 0.053 0.047 0.037 0.00 0.046 0.044 0.030
2.00 0.16 0.15 0.12 0.80 0.13 0.13 0.09

n = (6, 10) 4.00 0.43 0.42 0.34 n = (20, 30) 1.60 0.37 0.36 0.25
6.00 0.70 0.69 0.59 2.40 0.65 0.65 0.47
8.00 0.84 0.84 0.72 3.20 0.82 0.82 0.62
10.00 0.91 0.91 0.79 4.00 0.91 0.91 0.71

d RW RF W d RW RF W

0.00 0.046 0.042 0.033 0.00 0.045 0.044 0.030
1.30 0.12 0.12 0.09 0.80 0.11 0.11 0.06

n = (10, 10) 2.60 0.36 0.34 0.26 n = (20, 50) 1.60 0.31 0.31 0.17
3.90 0.63 0.62 0.46 2.40 0.57 0.56 0.32
5.20 0.81 0.81 0.60 3.20 0.79 0.79 0.46
6.50 0.92 0.92 0.71 4.00 0.92 0.92 0.58

d RW RF W d RW RF W

0.00 0.046 0.043 0.033 0.00 0.042 0.041 0.026
1.30 0.13 0.12 0.09 0.64 0.11 0.11 0.05

n = (10, 15) 2.60 0.37 0.36 0.26 n = (30, 50) 1.28 0.30 0.30 0.14
3.90 0.65 0.64 0.47 1.92 0.56 0.56 0.27
5.20 0.83 0.82 0.62 2.56 0.79 0.79 0.39
6.50 0.92 0.91 0.71 3.20 0.92 0.92 0.51

d RW RF W d RW RF W

0.00 0.046 0.044 0.030 0.00 0.044 0.044 0.025
1.30 0.13 0.13 0.09 0.48 0.10 0.10 0.05

n = (10, 30) 2.60 0.37 0.36 0.25 n = (50, 50) 0.96 0.27 0.27 0.10
3.90 0.65 0.65 0.47 1.44 0.53 0.53 0.19
5.20 0.82 0.82 0.62 1.92 0.78 0.77 0.30
6.50 0.91 0.91 0.71 2.40 0.92 0.92 0.39

Table 5: Simulated powers of the RW, RF and W tests for Model (d).
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d RW RF W d RW RF W

0.00 0.040 0.030 0.034 0.00 0.044 0.042 0.028
2.00 0.16 0.13 0.13 0.80 0.11 0.11 0.07

n = (6, 6) 4.00 0.44 0.40 0.38 n = (20, 20) 1.60 0.30 0.29 0.17
6.00 0.70 0.67 0.62 2.40 0.55 0.55 0.31
8.00 0.84 0.83 0.76 3.20 0.78 0.78 0.46
10.00 0.92 0.91 0.85 4.00 0.91 0.91 0.57

d RW RF W d RW RF W

0.00 0.050 0.045 0.035 0.00 0.040 0.037 0.038
1.90 0.15 0.14 0.11 0.80 0.10 0.10 0.08

n = (6, 10) 3.80 0.41 0.40 0.33 n = (20, 30) 1.60 0.31 0.30 0.23
5.70 0.67 0.66 0.55 2.40 0.59 0.58 0.42
7.60 0.83 0.83 0.71 3.20 0.81 0.81 0.60
9.50 0.90 0.90 0.77 4.00 0.92 0.92 0.74

d RW RF W d RW RF W

0.00 0.044 0.038 0.038 0.00 0.041 0.041 0.026
1.26 0.12 0.10 0.10 0.80 0.11 0.11 0.06

n = (10, 10) 2.52 0.35 0.33 0.29 n = (20, 50) 1.60 0.30 0.30 0.17
3.78 0.62 0.60 0.50 2.40 0.58 0.58 0.32
5.04 0.80 0.80 0.67 3.20 0.79 0.79 0.46
6.30 0.91 0.91 0.78 4.00 0.91 0.91 0.57

d RW RF W d RW RF W

0.00 0.045 0.042 0.033 0.00 0.043 0.042 0.041
1.24 0.12 0.12 0.09 0.64 0.11 0.11 0.08

n = (10, 15) 2.48 0.33 0.33 0.23 n = (30, 50) 1.28 0.31 0.31 0.21
3.72 0.60 0.60 0.44 1.92 0.59 0.58 0.38
4.96 0.80 0.80 0.59 2.56 0.81 0.81 0.56
6.20 0.90 0.90 0.68 3.20 0.93 0.93 0.70

d RW RF W d RW RF W

0.00 0.042 0.040 0.037 0.00 0.044 0.043 0.028
1.24 0.13 0.13 0.11 0.48 0.10 0.10 0.05

n = (10, 30) 2.48 0.36 0.36 0.29 n = (50, 50) 0.96 0.27 0.27 0.10
3.72 0.63 0.63 0.52 1.44 0.55 0.55 0.20
4.96 0.81 0.81 0.69 1.92 0.78 0.78 0.30
6.20 0.91 0.91 0.80 2.40 0.92 0.92 0.41

Table 6: Simulated powers of the RW, RF and W tests for Model (e).
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d RW RF W d RW RF W

0.00 0.050 0.042 0.042 0.00 0.054 0.049 0.047
0.90 0.13 0.10 0.11 0.40 0.11 0.11 0.10

n = (6, 6) 1.80 0.33 0.29 0.30 n = (20, 20) 0.80 0.27 0.26 0.24
2.70 0.60 0.54 0.56 1.20 0.53 0.51 0.47
3.60 0.80 0.77 0.77 1.60 0.76 0.75 0.69
4.50 0.92 0.90 0.89 2.00 0.90 0.90 0.85

d RW RF W d RW RF W

0.00 0.054 0.042 0.046 0.00 0.052 0.049 0.048
0.90 0.13 0.11 0.12 0.40 0.11 0.11 0.09

n = (6, 10) 1.80 0.37 0.34 0.34 n = (20, 30) 0.80 0.29 0.29 0.25
2.70 0.63 0.59 0.59 1.20 0.55 0.54 0.48
3.60 0.83 0.81 0.80 1.60 0.77 0.77 0.71
4.50 0.92 0.92 0.90 2.00 0.92 0.92 0.87

d RW RF W d RW RF W

0.00 0.049 0.043 0.044 0.00 0.051 0.049 0.046
0.64 0.11 0.10 0.10 0.40 0.12 0.11 0.10

n = (10, 10) 1.28 0.32 0.29 0.29 n = (20, 50) 0.80 0.30 0.30 0.27
1.92 0.59 0.55 0.54 1.20 0.57 0.57 0.51
2.56 0.80 0.78 0.76 1.60 0.79 0.78 0.72
3.20 0.93 0.92 0.90 2.00 0.92 0.92 0.88

d RW RF W d RW RF W

0.00 0.054 0.048 0.049 0.00 0.053 0.053 0.049
0.60 0.12 0.11 0.10 0.32 0.11 0.11 0.10

n = (10, 15) 1.20 0.31 0.29 0.28 n = (30, 50) 0.64 0.29 0.28 0.25
1.80 0.56 0.54 0.52 0.96 0.55 0.55 0.49
2.40 0.78 0.77 0.73 1.28 0.78 0.78 0.71
3.00 0.92 0.91 0.88 1.60 0.92 0.92 0.87

d RW RF W d RW RF W

0.00 0.055 0.052 0.051 0.00 0.054 0.052 0.049
0.60 0.12 0.11 0.11 0.26 0.11 0.11 0.10

n = (10, 30) 1.20 0.32 0.31 0.29 n = (50, 50) 0.52 0.30 0.29 0.25
1.80 0.58 0.57 0.54 0.78 0.55 0.54 0.47
2.40 0.80 0.79 0.75 1.04 0.79 0.79 0.71
3.00 0.93 0.92 0.89 1.30 0.93 0.93 0.88

Table 7: Simulated powers of the RW, RF and W tests for Model (f).
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d RW RF W d RW RF W

0.00 0.053 0.041 0.045 0.00 0.054 0.053 0.049
1.90 0.13 0.11 0.12 0.86 0.11 0.11 0.10

n = (6, 6) 3.80 0.33 0.29 0.30 n = (20, 20) 1.72 0.30 0.29 0.26
5.70 0.60 0.56 0.57 2.58 0.55 0.54 0.50
7.60 0.81 0.78 0.78 3.44 0.78 0.78 0.74
9.50 0.92 0.91 0.90 4.30 0.92 0.91 0.89

d RW RF W d RW RF W

0.00 0.056 0.052 0.051 0.00 0.054 0.053 0.048
1.90 0.13 0.12 0.11 0.86 0.12 0.11 0.10

n = (6, 10) 3.80 0.35 0.33 0.32 n = (20, 30) 1.72 0.30 0.30 0.27
5.70 0.61 0.59 0.58 2.58 0.56 0.56 0.51
7.60 0.82 0.81 0.80 3.44 0.80 0.79 0.76
9.50 0.93 0.92 0.91 4.30 0.92 0.92 0.90

d RW RF W d RW RF W

0.00 0.055 0.048 0.047 0.00 0.055 0.055 0.049
1.24 0.11 0.10 0.10 0.82 0.11 0.11 0.10

n = (10, 10) 2.48 0.28 0.27 0.25 n = (20, 50) 1.64 0.29 0.29 0.26
3.72 0.53 0.51 0.49 2.46 0.53 0.53 0.49
4.96 0.75 0.74 0.72 3.28 0.76 0.75 0.71
6.20 0.90 0.89 0.87 4.10 0.90 0.90 0.87

d RW RF W d RW RF W

0.00 0.055 0.052 0.048 0.00 0.054 0.054 0.048
1.24 0.11 0.11 0.10 0.64 0.11 0.11 0.10

n = (10, 15) 2.48 0.29 0.28 0.27 n = (30, 50) 1.28 0.27 0.27 0.24
3.72 0.54 0.53 0.50 1.92 0.50 0.50 0.46
4.96 0.76 0.75 0.72 2.56 0.74 0.74 0.70
6.20 0.90 0.90 0.88 3.20 0.89 0.89 0.86

d RW RF W d RW RF W

0.00 0.052 0.050 0.044 0.00 0.054 0.053 0.049
1.24 0.12 0.11 0.10 0.50 0.11 0.11 0.09

n = (10, 30) 2.48 0.30 0.29 0.27 n = (50, 50) 1.00 0.26 0.26 0.23
3.72 0.55 0.54 0.51 1.50 0.50 0.49 0.45
4.96 0.76 0.76 0.73 2.00 0.73 0.73 0.68
6.20 0.90 0.90 0.88 2.50 0.90 0.89 0.86

Table 8: Simulated powers of the RW, RF and W tests for Model (g).
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d RW RF W d RW RF W

0.00 0.048 0.032 0.044 0.00 0.044 0.041 0.044
1.16 0.13 0.10 0.12 0.54 0.11 0.10 0.10

n = (6, 6) 2.32 0.35 0.30 0.31 n = (20, 20) 1.08 0.30 0.29 0.26
3.48 0.61 0.56 0.56 1.62 0.57 0.56 0.49
4.64 0.80 0.77 0.76 2.16 0.79 0.79 0.71
5.80 0.91 0.90 0.88 2.70 0.93 0.92 0.86

d RW RF W d RW RF W

0.00 0.044 0.034 0.043 0.00 0.047 0.044 0.047
0.84 0.11 0.09 0.10 0.44 0.11 0.10 0.09

n = (6, 10) 1.68 0.30 0.26 0.27 n = (20, 30) 0.88 0.28 0.27 0.24
2.52 0.57 0.52 0.51 1.32 0.56 0.54 0.47
3.36 0.78 0.74 0.72 1.76 0.79 0.78 0.69
4.20 0.91 0.89 0.69 2.20 0.92 0.92 0.86

d RW RF W d RW RF W

0.00 0.044 0.036 0.042 0.00 0.050 0.046 0.049
0.80 0.12 0.10 0.11 0.34 0.10 0.09 0.09

n = (10, 10) 1.60 0.32 0.30 0.28 n = (20, 50) 0.68 0.27 0.26 0.23
2.40 0.57 0.55 0.50 1.02 0.50 0.49 0.42
3.20 0.79 0.77 0.73 1.36 0.74 0.73 0.64
4.00 0.91 0.90 0.86 1.70 0.90 0.89 0.82

d RW RF W d RW RF W

0.00 0.045 0.039 0.044 0.00 0.046 0.045 0.046
0.64 0.11 0.10 0.10 0.34 0.11 0.10 0.09

n = (10, 15) 1.28 0.29 0.27 0.25 n = (30, 50) 0.68 0.29 0.28 0.24
1.92 0.55 0.52 0.48 1.02 0.55 0.54 0.45
2.56 0.78 0.76 0.71 1.36 0.79 0.78 0.69
3.20 0.91 0.90 0.85 1.70 0.92 0.92 0.85

d RW RF W d RW RF W

0.00 0.045 0.039 0.045 0.00 0.054 0.051 0.052
0.48 0.11 0.09 0.10 0.30 0.10 0.09 0.08

n = (10, 30) 0.96 0.28 0.26 0.24 n = (50, 50) 0.60 0.25 0.25 0.21
1.44 0.54 0.51 0.46 0.90 0.48 0.48 0.40
1.92 0.77 0.75 0.68 1.20 0.73 0.72 0.62
2.40 0.91 0.90 0.85 1.50 0.90 0.89 0.80

Table 9: Simulated powers of the RW, RF and W tests for Model (h).
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Changes in R
by Tomas Kalibera, Sebastian Meyer, Kurt Hornik, Gennadiy Starostin and Luke Tierney

Abstract We present important changes in the development version of R (referred to as R-devel, to
become R 4.2) and give a summary of the new search engine interfaced by RSiteSearch(). Some
statistics on bug tracking activities in 2021 are also provided.

R-devel selected changes

R 4.2.0 is due to be released around April 2022. The following gives a selection of the most important
changes in R-devel, which are likely to appear in the new release.

Native UTF-8 support and other changes on Windows

R on Windows now uses UTF-8 as the native encoding. This feature requires recent Windows 10 or
newer (or Windows Server 2022 or newer). On older systems, a (non-Unicode) system locale encoding
will be used as in earlier versions of R. With this feature, it is now possible to work with characters
not representable in the locale encoding (e.g., with Asian characters on European locales). Previously,
such characters could only be used with considerable care needed to prevent their mis-representation
or undesirable substitution. It is now possible to use Unicode characters even in Rterm, the console
front-end for R.

To make this possible, R switched to the Universal C Runtime (UCRT), which is the new C library
on Windows and has to be installed manually on Windows 8.1 and older. The switch required a new
toolchain targeting UCRT. All code linked statically to R or R packages has to be rebuilt. Therefore, a
new toolchain bundle, Rtools42, has been created which includes a recent GCC 10 compiler toolchain
targeting 64-bit UCRT and a set of pre-compiled static libraries for R packages. R and CRAN use this
new toolchain for R-devel (to become R 4.2.0). Older versions of R will still use older toolchains. As
from 4.2, R on Windows will no longer support 32-bit builds. Rtools42, containing only the 64-bit
toolchain, is one step simpler to install for users than the earlier toolchain bundle.

The change so far required updates of over 100 CRAN packages and several of their Bioconductor
dependencies. As these packages have a very large number of reverse dependencies (packages de-
pending recursively on them), R gained support for automated installation-time patching of packages,
so that packages can be quickly patched and their reverse dependencies tested, giving package authors
more time to incorporate the updates. This feature is experimental and may be removed in the future.

R allows package authors to maintain the same package sources for R 4.2 (Rtools42) and R 4.1
(Rtools40) by supporting ‘Makevars.ucrt’ and other make/configuration files with extension ‘.ucrt’
which are used by R 4.2 in preference of their existing ‘.win’ variants, but ignored by older versions of
R. Both toolchain bundles can coexist on the same machine.

The work on the toolchain and on testing CRAN packages has lead to the discovery of new bugs
in GCC: invalid unwind tables causing crashes (GCC PR#103274), inconsistency in option handling
related to unwind tables (GCC PR#103465) and lack of support for UCRT/C99 format strings (GCC
PR#95130). Additional bugs were found that turned out to be fixed already in later versions of GCC,
but required a back-port (GCC PR#101238, GCC PR#100402). Thanks to MinGW-W64 developer
Martin Storsjo and GCC developers Eric Botcazou and Martin Liska for their help with identifying
and resolving the issues. The Rtools42 toolchain bundle includes patches for these and other, smaller,
issues.

Following the philosophy that disruptive changes for users and package authors should be
rare, this seemed a good time to change also the default personal library location. Now it is a
subdirectory of the Local Application Data directory (usually a hidden directory C:\Users\username\
AppData\Local). This is to follow Windows conventions, but also to avoid problems users experienced
with various cloud backup/syncing services enabled by default for the personal directory (usually
C:\Users\username\Documents). For the very same reason, the default installation location for user-
only installation has been changed to C:\Users\username\AppData\Local\Programs.

Additional bug fixes (e.g., for handling previously untested code paths involving characters not
representable in system locale encoding) and improvements (e.g., removal of workarounds no longer
needed with UCRT) are being added following testing and reports from package authors and are to
appear in R 4.2.

More details on the changes in R for Windows and on what is required from package authors are
available in Tomas Kalibera et al. blog post and material linked from there.
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Graphics changes

Support for isolated groups, compositing operators, affine transformations, and stroking and filling
paths has been added to the R graphics engine. The existing support for masks has also been expanded
to include luminance masks. An R-level interface for these new features has been added to the grid
graphics package. See Paul Murrell’s blog post for more details. The changes to the R graphics engine
mean that packages that provide graphics devices, such as the ragg package, will need to be reinstalled.

Hash tables

Hash tables are data structures used to efficiently map keys to values. Keys can be simple, such as
strings or symbols, or more complex objects, such as environments. Hash tables can be thought of as
generalizations of environments that allow more general key objects, though without the notion of a
parent table. Like environments, and unlike most objects in R, hash tables are mutable.

Hash tables have been used internally in R for many years, in particular in match(), unique(), and
duplicate(), to improve the efficiency of these functions. R-devel now provides an R level interface
to the hash table infrastructure used in these functions. The R level interface is provided in package
utils. New hash tables are created by hashtab(); entries are created or modified by sethash(), and
values are retrieved with gethash(). More details are available in the help page for hashtab(). The R
level interface is based loosely on hash table support in Common Lisp.

A C level interface will eventually be made available in the C API as well. The details are still
under development. Comparison of keys typically is based on identical(), but can also be based
on the memory addresses of keys. Address-equality based tables are most likely to be useful at the C
level. For address-based hash tables it may be useful to provide a weak version in which keys are not
protected from garbage collection and entries are scheduled for removal once keys are determined to
no longer be reachable.

Other selected changes

• matrix(x,n,m) now warns in more cases where length(x) differs from n * m, as suggested by
Abby Spurdle and Wolfgang Huber in February 2021 on the R-devel mailing list. This warning
can be turned into an error by setting environment variable _R_CHECK_MATRIX_DATA_ to ‘TRUE’: R
CMD check --as-cran does so unless it is already set.

• simplify2array() gains an except argument for controlling the exceptions used by sapply().

• R on Windows now uses the system memory allocator. Doug Lea’s allocator was used since
R 1.2.0 to mitigate performance limitations seen with system allocators on earlier versions of
Windows.

• R gains more classed errors. Attempting to subset an object that is not subsettable now signals
an error of class notSubsettableError, with the non-subsettable object contained in the object
field of the error condition. Also, subscript-out-of-bounds and stack-overflow errors are now
signaled as errors of class, respectively, subscriptOutOfBoundsError and stackOverflowError.

• New partly experimental Sys.setLanguage() utility, solving the main problem of PR #18055.

• Deparsing no longer remaps attribute names dim, dimnames, levels, names and tsp to historical
S-compatible names (which structure() maps back).

Bug statistics for 2021

Summaries of bug-related activities over the past year were derived from the database underlying R’s
Bugzilla system. Overall, 244 new bugs or requests for enhancements were reported, 220 reports were
closed, and 1065 comments (on any report) were added by a total of 115 contributors. This amounts to
averages of about two new reports and two closures over three days, and three comments per day. All
totals are about 30% lower than in 2020, especially the number of closures. High bug activity in 2020
had largely been driven by dedicated efforts of several contributors in reviewing old reports.

Figure 1 shows statistics for the numbers of new reports, closures and comments by calendar
month and weekday, respectively, in 2021. The frequency of new reports was relatively stable over the
year except for a low in March/April. There tended to be more new reports than closures, but this was
reversed in November/December in a revived effort to address old reports. The top 5 components
reporters have chosen for their reports were “Low-level”, “Language”, “Documentation”, “Misc”,
and “Wishlist”, which is the same set as in 2020. Many reports are suggestions for enhancements and
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Figure 1: Bug tracking activity by month (left) and weekday (right) in 2021.

marked as Wishlist but are sometimes also put in a specific component, ideally with severity level
“enhancement”.

Bug discussions led to an average of 65 comments each month from January to August 2021,
which is less than in the same period of 2020 with an average of 140 comments each month. Comment
activity has increased again in late 2021.

Last but not least, from the numbers by weekday in the right panels of Figure 1 we see that the R
community is also active during weekends, though at a lower frequency.

Relaunch of search.R-project.org

A long time ago, Jonathan Baron (University of Pennsylvania, USA) created an “R Site Search” database
and has for many years provided a web service for queries into this database, allowing the community
to search help files of CRAN packages, task views, vignettes, and initially also the R-help mail archive.
This web service was made available as https://search.R-project.org, with simple and advanced
R interfaces provided by, respectively, functions RSiteSearch() in package utils and CRAN package
sos (see the corresponding article on “Searching Help Pages of R Packages” in the R Journal).

The next generation of this web service was developed by Gennadiy Starostin and is now hosted
at Wirtschaftsuniversität Wien, Austria. In doing so, there were two major changes.

First, the old service was based on the namazu search engine (http://www.namazu.org/), which
is no longer actively developed (last release more than ten years old). After careful examination
of available open-source alternatives xapian-omega (https://xapian.org/) was chosen as the new
search engine, which provides the necessary versatility alongside reasonable complexity. The most
notable features of xapian are ranked search, phrase and proximity searching, Boolean search opera-
tors, Boolean filters, support for stemming of search terms, and allowing simultaneous update and
searching.

For compatibility reasons the server still supports requests in the previously used namazu format
(limited to the parameters used by the former search engine). This compatibility feature may be
dropped in the future.

In addition to the human-readable output of search results, two other formats are made available:
“xml” and “opensearch”. Simply change in the URL ‘FMT=query’ to either ‘FMT=xml’ or ‘FMT=opensearch’
when sending a HTTP GET request to the server. One can tailor search queries using additional
parameters, see the query part of the URL in the default form and the xapian-omega documentation.

Second, the covered CRAN content was expanded. Currently, there are eight categories, any
combination of which can be searched simultaneously:

• R manuals (currently based on the R-patched development branch)

• Help pages of base packages (also from R-patched)

• CRAN packages (5 categories): general info, news, readme files, vignettes, and help pages

• CRAN task views

Although content of the majority of these categories is available on CRAN to read and explore, two of
them, the help pages of base and CRAN packages, are additionally generated for search.R-project.
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org. As of December 22, 2021, in terms of searchable documents they constitute approximately 400,000
out of 450,000 total (about 89%).

Generating this content was not straightforward. HTML content is preferable to PDF content
for browsing search results, but the new R help system works best for dynamic HTML (see the
corresponding article in the R Journal), whereas for the search service, using static HTML is more
appropriate. The code for generating static HTML needed a bit of tweaking by Deepayan Sarkar and
Kurt Hornik, and now can (again) be used to provide help files which are good for both searching and
browsing.

In the future, search.R-project.org may be expanded with relevant sources outside of CRAN,
e.g., the Bioconductor project. Depending on user feedback, which is always welcome, one can expect
other improvements.
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Changes on CRAN
2021-07-01 to 2021-12-31

by Kurt Hornik, Uwe Ligges and Achim Zeileis

In the past 6 months, 1077 new packages were added to the CRAN package repository. 113
packages were unarchived and 331 were archived. The following shows the growth of the
number of active packages in the CRAN package repository:
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On 2021-12-31, the number of active packages was around 18650.

Changes in the CRAN Repository Policy

The Policy now says the following:

• You can check that the submission was received by looking at https://CRAN.R-
project.org/incoming/.

• A package showing issues for macos-arm64 or an ‘M1mac’ additional issue should be
checked using the macbuilder service prior to re-submission.

CRAN package submissions

During the last half of 2021 (July 2021 to December 2021), CRAN received 12256 package
submissions. For these, 21622 actions took place of which 14232 (66%) were auto processed
actions and 7390 (34%) manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting
auto 2748 2722 2577 0 0 3899 1362 924
manual 2760 102 336 464 91 2797 671 169

These include the final decisions for the submissions which were
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action archive publish
auto 2586 (21.5%) 3336 (27.8%)
manual 2728 (22.7%) 3351 (27.9%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

Interestingly, for the first time in CRAN’s history there was a decrease in the number of
submissions:

Year 1st half 2nd half
2018 NA 10259
2019 13218 12938
2020 17598 13510
2021 16339 12256

CRAN mirror security

Currently, there are 101 official CRAN mirrors, 83 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

CRAN Task View Initiative

To facilitate the maintenance of established CRAN task views as well as the proposal of new
ones, a new improved and much more transparent workflow has been established. It is
overseen by the newly established CRAN Task View Editors: Roger Bivand, Dirk Eddelbuettel,
Rocío Joo, David Meyer, Heather Turner, Nathalie Vialaneix, and Achim Zeileis. More details
can be found in the corresponding organization on GitHub: https://github.com/cran-
task-views/ctv/. Currently, the focus is on the transition of the established task views to
the new workflow which also involves the archival of some task views which turned out to
be too broad to be maintainable (Graphics and SocialSciences). Also, the gR task view has been
renamed to GraphicalModels. When the transition is completed, a more detailed introduction
with further details and instructions will be published soon.

New packages in CRAN task views

Bayesian BayesianTools, MHadaptive, RoBMA.

Cluster factoextra.

Databases dittodb.

DifferentialEquations diffeqr.

Econometrics pdynmc, ssmrob.

Finance DOSPortfolio, HDShOP, RTL, bidask, etrm, greeks, ichimoku, monobin, strand.

FunctionalData MFPCA, registr.

Hydrology HBV.IANIGLA, NPRED, RavenR, WASP, hydropeak, hydrotoolbox, metR,
nhdR, nhdplusTools, prism.

MachineLearning abess∗, islasso, joinet, mpath, torch.

MetaAnalysis amanida, metadat, nmarank, ra4bayesmeta.

MissingData BMTAR, Iscores, MGMM, cglasso, cmfrec, mdgc, mgm.
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ModelDeployment lightgbm.

NumericalMathematics FixedPoint, GramQuad, bignum, rim.

OfficialStatistics SimSurvey, eurostat, insee, rdhs, tidyBdE.

Optimization gslnls, stochQN.

Psychometrics DIFplus, semtree.

ReproducibleResearch Require, gt, huxtable, makepipe, pharmaRTF, r2rtf, reproducible,
styler, unrtf.

Robust RobStatTM.

TimeSeries BGVAR, GlarmaVarSel, STFTS, brolgar, esemifar, mrf, mvLSW, profoc, rdb-
nomics, synthesis, tsBSS, tsdb, tssim, uGMAR, ugatsdb.

(* = core package)

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Uwe Ligges
TU Dortmund, Germany
Uwe.Ligges@R-project.org

Achim Zeileis
Universität Innsbruck, Austria
Achim.Zeileis@R-project.org
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R Foundation News
by Torsten Hothorn

Donations and members

Membership fees and donations received between 2021-07-06 and 2021-12-22.

Donations

Jordan Aharoni (Canada) b-data GmbH (Switzerland) Mark Cachia (Canada) Shalese Fitzger-
ald (United States) Knut Helge Jensen (Norway) Roger Koenker (United Kingdom) Merck
Research Laboratories, Kenilwort (United States) Statistik Aargau, Aarau (Switzerland)

Supporting members

Diogo Almeida (United Arab Emirates) Tim Appelhans (Germany) Christopher Beltz
(United States) Gordon Blunt (United Kingdom) Tamara Bozovic (New Zealand) Greg
Bukovatz (United States) Gilberto Camara (Brazil) Susan M Carlson (United States) Charles
Cowens (United States) Terry Cox (United States) Robin Crockett (United Kingdom) Robert
Daly (Australia) Gergely Daroczi (Hungary) Jasja Dekker (Netherlands) Anthony Alan
Egerton (Malaysia) Mitch Eppley (United States) cristiano esclapon (Switzerland) Gottfried
Fischer (Austria) David Freedman (United States) Keita Fukasawa (Japan) Sven Garbade
(Germany) Anne Catherine Gieshoff (Switzerland) Spencer Graves (United States) Jim
Gruman (United States) Krushi Gurudu (United States) Bela Hausmann (Austria) Take-
hiko Hayashi (Japan) Kieran Healy (United States) Adam Hill (United States) Lorenzo
Isella (Belgium) Sebastian Jeworutzki (Germany) JUNE KEE KIM (Korea, Republic of) Gen
KOBAYASHI (Japan) Miha Kosmac (United Kingdom) Jan Herman Kuiper (United King-
dom) Seungdoe Lee (Korea, Republic of) Mauro Lepore (United States) Thomas Levine
(United States) Chin Soon Lim (Singapore) Joseph Luchman (United States) Alexandra
Lypynska (United Kingdom) Gilles Marodon (France) Guido Möser (Germany) yoshinobu
nakahashi (Japan) Bernard OFFMANN (France) Dan Orsholits (Switzerland) George Os-
trouchov (United States) Abdullah Öztop (Turkey) Matt Parker (United States) Elgin Perry
(United States) Peter Ruckdeschel (Germany) Dejan Schuster (Germany) Christian Seu-
bert (Austria) Jagat Sheth (United States) Gaurav Singhal (United States) Tobias Strapatsas
(Germany) ROBERT Szabo (Sweden) Koray Tascilar (Germany) Nicholas Turner (United
States) Philipp Upravitelev (Russian Federation) Mark van der Loo (Netherlands) Marcus
Vollmer (Germany) Jaap Walhout (Netherlands) Sandra Ware (Australia) Arne Jonas Warnke
(Germany) Vaidotas Zemlys-Balevičius (Lithuania) Lim Zhong Hao (Singapore)

R Foundation Financial Support 2021

The R Foundation financially supported the following projects in 2021: The R Journal, useR!
2020 and 2021, R Developer Guide Project, and CRAN.

Torsten Hothorn
Universität Zürich, Switzerland Torsten.Hothorn@R-project.org
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News from the Forwards Taskforce
by Heather Turner

Abstract The “News from the Forwards Taskforce” article from the 2021-2 issue.

Forwards is an R Foundation taskforce working to widen the participation of under-represented
groups in the R project and in related activities, such as the useR! conference. This report rounds up
activities of the taskforce during the second half of 2022.

Accessibility

Since a number of people have joined the taskforce with a particular interest in accessibility, we have
established a new Accessibility Team, led by s gwynn sturdevant and Jonathan Godfrey. The team will
address accessibility to R and the R ecosystem in a broad sense, considering barriers faced by people
with disabilities, or working in situations with limited internet access, or working in a language other
than English, to name some of the major issues.

At their inaugural meeting in November, the team focused on improving documentation and
reference materials for screen-reader users and those who prefer reading electronic documents in
dark mode. Both issues are best handled by creating documents in HTML format. Di Cook shared a
development version of The R Journal’s new HTML format, which was welcomed enthusiastically
by the group and there was agreement to work together on testing and improving the journal’s
accessibility.

The work of the new team is a continuation of the work Forwards has done on accessibility in the
past, primarily in the context of the useR! conference. For 2021, Forwards members supported the
organizers in their efforts to ensure that presentation materials and conference tools were accessible.
Further detail is given in the blog posts Making Accessible Presentations at useR! 2021: The Story
Behind the Scenes and How to Improve Conference Accessibility for Screen-reader Users - An Interview
with Liz Hare. Liz Hare has been working on a joint project with Silvia Canelón as part of the MiR
community, promoting good accessibility practices in data visualisation, a project that received
funding from Code for Science and Society.

Community engagement

The community team had a reboot in November, with Richard Ngamita stepping up to join Kevin
O’Brien as co-lead. The team plans to focus on fostering networks in regions where the R community
is less well connected, in particular supporting the work of AfricaR and the new AsiaR community,
which has established a Slack Workspace and plans to hold regional online meetups in 2022.

A key form of support is to encourage knowledge-sharing between regions, for example, by
nominating speakers from Africa or Asia for speaking opportunities, or by joining events as a guest
speaker. In recent months, Forwards members Mine Çetinkaya-Rundel spoke at satRday Nairobi,
Heather Turner spoke at the 1st anniversary of R-Ladies Nairobi, and Kevin O’Brien spoke at the 3rd
anniversary of Accra R User Ghana.

Several members of the Community team are part of the R-Consortium Diversity & Inclusion
Working Group, led by Samantha Toet. This group is currently working on four big projects: a guide to
writing a code of conduct; an event organizer checklist; a speaker directory, and a speaker nomination
form for R Consortium-affiliated events.

Conferences Team

The conferences team also gained a new lead, Yanina Bellini Saibene, who has been involved in the
organization of many R events and conferences. Along with Natalia da Silva and Riva Quiroga, she
chaired the LatinR 2021 conference, which took place online in November. Being online helped them
to reach a record 1000 registrants. Highlights of the program included several papers from Spain, a
full panel in Portuguese, and a full panel of Latin American women package developers. This is a
great advance from the initial R Foundation endorsed event in 2018, which was a satellite to the 47
JAIIO informatics conference, attended by 50 people.

In collaboration with Claudia Alejandra Huaylla from the Surveys team, Yanina Bellini Saibene
reflected in a blog post on the Latin American Community at useR! 2021, describing an exceptional
increase in participation compared to previous years. They identify many practices that facilitated this
growth, starting with including Latin American R users in the organizing team.
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Several members of Forwards have been involved in the Google Season of Docs project to develop a
knowledgebase and information board to support the organization of useR! conferences. In particular,
Andrea Sánchez-Tapia (co-lead of the Surveys team) and Noa Tamir (co-lead of the Conferences team)
were hired as writers on the project and they made sure that diversity and inclusion were considered
throughout the documentation. The project built on a lot of previous work by Forwards, including the
annual surveys conducted at useR! and pieces of documentation written by the Conferences team as
part of their work to make useR! more inclusive. Forwards will continue to be involved in maintaining
these resources, which have already gained attention from the organizers of other R conferences.

On-ramps Team

The Forwards first-contributions repository walks people through making a simple pull request on
GitHub, a useful skill for contributing to R packages and other open source software. Zane Dax
updated the README with instructions in Spanish in time for Hacktoberfest 2021, which encourages
people to make four quality pull requests to public GitHub and/or GitLab repositories during October.

The R Contribution Working Group held an Ideas Incubator over the summer to generate new
ideas to work on during 2021/2022. One issue prioritised for attention was improving commu-
nications. This led to further development of the R Contribution Site, which is now hosted at
https://contributor.r-project.org/ and linked from the main R Project website. The group has
also set up the @R_Contributors Twitter account, for sharing event announcements and other news.
The current focus is to run some outreach events related to the R Development Guide. Saranjeet Kaur
Bhogal and Heather Turner are leading this project, which is supported by a grant from Code for
Science and Society, as part of the Digital Infrastructure Incubator. The idea is that these events will
provide an on-ramp into a larger contributor event to run in parallel with useR! 2022.

Package Development Modules

Mine Çetinkaya-Rundel and Emma Rand ran a “train-the-trainer” event in November/December
aimed at R-Ladies leaders and others who wanted to use the Forwards package development teaching
materials with their user groups. Attendees are starting to plan workshops based on the materials: a
course was run in early January 2022 by R-Ladies NYC (lead by Joyce Robbins, assisted by Erin Grand
and Emily Dodwell) and a course is currently underway by R-Ladies Remote (lead by Heather Turner
and Rita Giordano).

Changes in Membership

New members

We welcome the following members to the taskforce:

• Conferences team: Yanina Bellini Saibene (co-leader)
• Surveys team: Andrea Sánchez-Tapia (co-leader)

Previous members

The following members have stepped down:

• Community team: Madlene Hamilton, Ileena Mitra
• On-ramps team: Jenny Bryan (co-leader)
• Social media team: Lorna Maria Aine (co-leader), Shakirah Nakalungi (co-leader), Wenfeng Qin
• Surveys team: David Meza
• Teaching team: Yizhe Xu

We thank them for their contribution to the taskforce. We also acknowledge the work of Emily
Dodwell, who has stepped down as administrator after serving for several years (remaining a member
of the Teaching team) – s gwynn sturdevant has taken on this role.

Heather Turner
University of Warwick
UK
Heather.Turner@R-Project.org
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News from the Bioconductor Project
by Bioconductor Core Team

Bioconductor provides tools for the analysis and comprehension of high-throughput ge-
nomic data. Bioconductor 3.14 was released on 27 October, 2021. It is compatible with R
4.1.0 and consists of 2083 software packages, 408 experiment data packages, 904 up-to-date
annotation packages, and 29 workflows.

The project has developed, over the last several years, the ‘AnnotationHub’ and ‘Exper-
imentHub‘ resources for serving and managing genome-scale annotation data, e.g., from
the TCGA, NCBI, and Ensembl. At the time of release there were 60134 records in the
AnnotationHub, and 6075 ExperimentHub records. See the WaldronLab shiny app to get an
overview of the AnnotationHub.

Book production continues in this release. Books are built regularly from source and
therefore fully reproducible; an example is the community-developed Orchestrating Single-
Cell Analysis with Bioconductor.

The Bioconductor 3.14 release announcement includes descriptions of 89 new software
packages, and updates to NEWS files for many additional packages. Start using Bioconduc-
tor by installing the most recent version of R and evaluating the commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker images provide a very effective on-ramp for power users to rapidly obtain access to
standardized and scalable computing environments.

Key learning resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.

• A list of available software, linking to pages describing each package.

• A question-and-answer style user support site and developer-oriented mailing list.

• A community slack (sign up) for extended technical discussion.

• The F1000Research Bioconductor channel for peer-reviewed Bioconductor work flows.

• The Bioconductor YouTube channel includes recordings of keynote and talks from re-
cent conferences including Bioc2021 and BiocAsia2021, in addition to video recordings
of training courses.

• Our package submission repository for open technical review of new packages.

The 2021 Bioconductor conference was held in a virtual format August 4-6, 2021.

In conjunction with the Mexican Bioinformatics Network and the Nodo Nacional de
Bioinformática CCG UNAM, the Comunidad de Desarrolladores de Software en Bioinfor-
mática held two week-long online workshops addressing development of workflows with
RStudio and shiny and analysis of single-cell RNA-seq experiments, August 9-13, 2021.

BiocAsia 2021 was held November 1-4 2021 as a virtual event. The Biopackathon project
has many points of contact with Bioconductor and recurs monthly.

The National Human Genome Research Institute’s Analysis and Visualization Laboratory
(AnVIL) is developing with contributions from Bioconductor core team members. Extensive
background material includes a series of recorded workshops.
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The Bioconductor project continues to mature as a community. The Technical and
Community Advisory Boards provide guidance to ensure that the project addresses leading-
edge biological problems with advanced technical approaches, and adopts practices (such
as a project-wide Code of Conduct) that encourages all to participate. We look forward to
welcoming you!

Bioconductor Core Team
Department of Data Science
Dana Farber Cancer Institute, Boston, MA
maintainer@bioconductor.org
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