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Editorial
by Catherine Hurley

On behalf of the editorial board, I am pleased to present Volume 14 Issue 2 of the R Journal.

First, some news about the journal board. Mark van der Loo has very kindly agreed to
move from Associate Editor to Executive Editor to fill a temporary gap. One new Associate
Editor, Kevin Burke, has recently joined the team.

Behind the scenes, several people are assisting with the journal operations and the new
developments. Mitchell O’Hara-Wild continues to work on infrastructure, and H. Sherry
Zhang continues to develop the rjtools package. In addition, articles in this issue have been
carefully copy edited by Hannah Comiskey.

There are also exciting new efforts in developing software to convert the legacy papers
from latex to Rmarkdown, and hence create an html version to complement the pdf. Ab-
hishek Ulayil, funded by the 2022 Google Summer of Code project, supervised by Heather
Turner and Di Cook, with collaboration from Christophe Dervieux and Mitch O’Hara-
Wild, has created the R package, texor, https://abhi-1u.github.io/texor/. It converts the
legacy latex style into to the new Rmarkdown template, as would be given with the rjtools
package. This package will be used to slowly, and steadily convert as many past articles
into an html version.

If you are currently only a latex author, the texor package will get your paper into an
Rmarkdown paper, doing the hard-work of the conversion. This is a good opportunity to
get a head start on learning how to make reproducible documents. Reproducible documents
keeps your code and results in the same place, and reduces the chance of getting them out
of sync. Going forwards with the R Journal there will be a growing emphasis on receiving
papers in Rmarkdown (and Quarto, at some point) format, because it is easier to test the
code, and it makes the work more accessible to readers.

1 In this issue

News from the CRAN, the R Foundation and the Forwards Taskforce are included in this
issue. We also have a report from the Why R? Turkey 2022 conference.

This issue features 18 contributed research articles the majority of which relate to R
packages for modelling tasks. All packages are available on CRAN. Topics covered are:

• Statistical modelling and inference

– APCI: An R and Stata Package for Age-Period-Cohort Analysis
– refreg: an R package for estimating conditional reference regions
– From the multivariate Faà di Bruno’s formula to unbiased estimates of joint

cumulant products: the kStatistics package in R
– The Concordance Test, an Alternative to Kruskal-Wallis Based on the Kendall tau

Distance: An R Package
– shinybrms: Fitting Bayesian Regression Models Using a Graphical User Interface

for the R Package brms
– PDFEstimator: An R Package for Density Estimation and Analysis
– htestClust: Hypothesis Tests for Clustered Data under Informative Cluster Size

in R
– ClusTorus: An R Package for Prediction and Clustering on the Torus by Confor-

mal Prediction
– TensorTest2D: Fitting Generalized Linear Models with Matrix Covariates

• Ecological and Environmental analysis

– Quantifying Population Movement Using a Novel Implementation of Digital
Image Correlation in the ICvectorfields package
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– iccCounts: an R Package to Estimate the Intraclass Correlation Coefficient for
Assessing Agreement with Count Data

– rassta: Raster-based Spatial Stratification Algorithms

• Missing data

– R-miss-tastic: a unified platform for missing values methods and workflows
– reclin2: a Toolkit for Record Linkage and Deduplication

• Time Series Analysis

– wavScalogram: an R package with wavelet scalogram tools for time series analy-
sis

– brolgar: An R package to BRowse Over Longitudinal Data Graphically and
Analytically in R”

• Other

– akc: A tidy framework for automatic knowledge classification in R
– An Open-Source Implementation of the CMPS Algorithm for Assessing Similarity

of Bullets

Catherine Hurley
Maynooth University

https://journal.r-project.org
r-journal@r-project.org
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brolgar: An R package to BRowse Over
Longitudinal Data Graphically and
Analytically in R
by Nicholas Tierney, Dianne Cook, and Tania Prvan

Abstract Longitudinal (panel) data provide the opportunity to examine temporal patterns of individ-
uals, because measurements are collected on the same person at different, and often irregular, time
points. The data is typically visualised using a “spaghetti plot”, where a line plot is drawn for each
individual. When overlaid in one plot, it can have the appearance of a bowl of spaghetti. With even a
small number of subjects, these plots are too overloaded to be read easily. The interesting aspects of
individual differences are lost in the noise. Longitudinal data is often modelled with a hierarchical
linear model to capture the overall trends, and variation among individuals, while accounting for
various levels of dependence. However, these models can be difficult to fit, and can miss unusual
individual patterns. Better visual tools can help to diagnose longitudinal models, and better capture
the individual experiences. This paper introduces the R package, brolgar (BRowse over Longitudinal
data Graphically and Analytically in R), which provides tools to identify and summarise interesting
individual patterns in longitudinal data.

1 Introduction

This paper is about exploring longitudinal data effectively. By “longitudinal data” we specifically
mean individuals repeatedly measured through time. This could include panel data, where possibly
different samples from a key variable (e.g. country), are aggregated at each time collection. The
important component is a key variable with repeated measurements regularly, or irregularly over time.
The inherent structure allows us to examine temporal patterns of individuals, shown in Figure 1, of
the average height of Australian males over years. The individual component is country, and the time
component is year. The variable country along with other variables is measured repeatedly from 1900
to 1970, with irregular intervals between years.

The full dataset of Figure 1 is shown in Figure 2, showing 144 countries from the year 1700. This
plot is challenging to understand because there is overplotting, making it hard to see the individuals.
Solutions to this are not always obvious. Showing separate individual plots of each country does not
help, as 144 plots is too many to comprehend. Making the lines transparent or fitting a simple model
to all the data Figure 2B, might be a common first step to see common trends. However, all this seems
to clarify is: 1) There is a set of some countries that are similar, and they are distributed around the
center of the countries, and 2) there is a general upward trend in heights over time. We learn about the
collective, but lose sight of the individuals.

This paper demonstrates how to effectively and efficiently explore longitudinal data, using the R
package, brolgar. We examine four problems in exploring longitudinal data:

1. How to sample the data
2. Finding interesting individuals
3. Finding representative individuals

Figure 1: Example of longitudinal data: average height of men in Australia for 1900-1970. The height
increase over time, and are measured at irregular intervals.
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Figure 2: The full dataset shown as a spaghetti plot (A), with transparency (B), and with a linear model
overlayed (C). It is still hard to see the individuals.

4. Understanding a model

This paper proceeds in the following way: first, a brief review of existing approaches to longitudinal
data, then the definition of longitudinal data, then approaches to these four problems are discussed,
followed by a summary.

2 Background

R provides basic time series, ts, objects, which are vectors or matrices that represent data sampled at
equally spaced points in time. These have been extended through packages such as xts, and zoo (Ryan
and Ulrich 2020; Zeileis and Grothendieck 2005), which only consider data in a wide format with a
regular implied time series. These are not appropriate for longitudinal data, which can have indexes
that are not time unit oriented, such as “Wave 1. . . n”, or may contain irregular intervals.

Other packages focus more directly on panel data in R, focussing on data operations and model
interfaces. The pmdplyr package provides “Panel Manoeuvres” in dplyr(Huntington-Klein and
Khor 2020). It defines the data structure in as a pibble object (panel tibble), requiring an id and
group column being defined to identify the unique identifier and grouping. The pmdplyr package
focuses on efficient and custom joins and functions, such as inexact_left_join(). It does not imple-
ment tidyverse equivalent tools, but instead extends their usecase with a new function, for example
mutate_cascade and mutate_subset. The panelr package provides an interface for data reshaping
on panel data, providing widening and lengthening functions (widen_panel() and long_panel()
(Long 2020)). It also provides model facilitating functions by providing its own interface for mixed
effects models. The plm package (Millo 2017) for panel data econometrics provides methods for
estimating models such as GMM for panel data, and testing, for example for model specification or
serial correlation. It also provides a data structure, the pdata.frame, which stores the index attribute
of the individual and time dimensions, for use within the package’s functions.

These software generally re-implement their own custom panel data class object, as well as custom
data cleaning tasks, such as reshaping into long and wide form. They all share similar features,
providing some identifying or index variable, and some grouping or key.

3 Longitudinal Data Structures

Longitudinal data is a sibling of many other temporal data forms, including panel data, repeated
measures, and time series. The differences are many, and can be in data collection, context and even the
field of research. Time series are usually long and regularly spaced in time. Panel data may measure
different units at each time point and aggregate these values by a categorical or key variable. Repeated
measures typically measure before and after treatment effects. We like to think of longitudinal as
measuring the same individual (e.g. wage earner) over time, but this definition is not universally
agreed on. Despite the differences, they all share a fundamental similarity: they are measurements
over a time period.

This time period has structure - the time component (dates, times, waves, seconds, etc), and the
spacing between measurements - unequal or equal. This data structure needs to be respected during
analysis to preserve the lowest level of granularity, to avoid for example, collapsing across month
when the data is collected every second, or assuming measurements occur at fixed time intervals.
These mistakes can be avoided by encoding the data structure into the data itself. This information
can then be accessed by analysis tools, providing a consistent way to understand and summarise the
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data. This ensures the different types of longitudinal data previously mentioned can be handled in the
same way.

Building on a tsibble

Since longitudinal data can be thought of as “individuals repeatedly measured through time”, they can
be considered as a type of time series, as defined in Hyndman and Athanasopoulos (2018): “Anything
that is observed sequentially over time is a time series”. This definition has been realised as a time
series tsibble in (Wang, Cook, and Hyndman 2020). These objects are defined as data meeting these
conditions:

1. The index: the time variable
2. The key: variable(s) defining individual groups (or series)
3. The index and key (1 + 2) together determine a distinct row

If the specified key and index pair do not define a distinct row - for example, if there are duplicates
in the data, the tsibble will not be created. This helps ensure the data is properly understood and
cleaned before analysis is conducted, removing avoidable errors that might have impacted downstream
decisions.

We can formally define our heights data from Figure 1 as a tsibble using, as_tsibble:

heights_brolgar <- as_tsibble(heights_brolgar,
index = year,
key = country,
regular = FALSE)

The index is year, the key is country, and regular = FALSE since the intervals in the years
measured are not regular. Using a tsibble means that the index and key time series information is
recorded only once, and can be referred to many times in other parts of the data analysis by time-aware
tools.

In addition to providing consistent ways to manipulate time series data, further benefits to building
on tsibble are how it works within the tidyverse ecosystem, as well as the tidy time series packages
called “tidyverts”, containing fable (O’Hara-Wild, Hyndman, and Wang 2020a), feasts, (O’Hara-
Wild, Hyndman, and Wang 2020b). For example, tsibble provides modified tidyverse functions to
explore implicit missing values in the index (e.g., has_gaps() and fill_gaps()), as well as grouping
and partitioning based on the index with index_by(). For full details and examples of use with the
tidyverts time series packages, see Wang, Cook, and Hyndman (2020).

The brolgar package uses tsibble so users can take advantage of these tools, learning one way of
operating a data analysis that will work and have overlap with other contexts.

Characterising Individual Series

Calculating a feature

We can summarise the individual series by collapsing their many measurements into a single statistic,
such as the minimum, maximum, or median, with one row per key. We do this with the features
function from the fabletools package, made available in brolgar. This provides a summary of a given
variable, accounting for the time series structure, and returning one row per key specified. It can be
thought of as a time-series aware variant of the summarise function from dplyr. The feature function
works by specifying the data, the variable to summarise, and the feature to calculate. A template is
shown below

features(<DATA>, <VARIABLE>, <FEATURE>)

or, with the pipe:

<DATA> %>% features(<VARIABLE>, <FEATURE>)

For example, to calculate the minimum height for each key (country), in heights, we specify the
heights data, then the variable to calculate features on, height_cm, then the feature to calculate, min
(we write c(min = min) so the column calculated gets the name “min”):
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heights_min <- features(.tbl = heights_brolgar,
.var = height_cm,
features = c(min = min))

heights_min

#> # A tibble: 119 x 2
#> country min
#> <chr> <dbl>
#> 1 Afghanistan 161.
#> 2 Algeria 166.
#> 3 Angola 159.
#> 4 Argentina 167.
#> 5 Armenia 164.
#> 6 Australia 170
#> 7 Austria 162.
#> 8 Azerbaijan 170.
#> 9 Bangladesh 160.
#> 10 Belgium 163.
#> # ... with 109 more rows

We call these summaries features of the data. We can use this information to summarise these
features of the data, for example, visualising the distribution of minimum values (Figure 3A).

We are not limited to one feature at a time, many features can also be calculated, for example:

heights_three <- heights_brolgar %>%
features(height_cm, c(
min = min,
median = median,
max = max

))

heights_three

#> # A tibble: 119 x 4
#> country min median max
#> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan 161. 167. 168.
#> 2 Algeria 166. 169 171.
#> 3 Angola 159. 167. 169.
#> 4 Argentina 167. 168. 174.
#> 5 Armenia 164. 169. 172.
#> 6 Australia 170 172. 178.
#> 7 Austria 162. 167. 179.
#> 8 Azerbaijan 170. 172. 172.
#> 9 Bangladesh 160. 162. 164.
#> 10 Belgium 163. 166. 177.
#> # ... with 109 more rows

These can then be visualised together (Figure 3).

These sets of features can be pre-specified, for example, brolgar provides a five number sum-
mary (minimum, 25th quantile, median, mean, 75th quantile, and maximum) of the data with
feat_five_num:

heights_five <- heights_brolgar %>%
features(height_cm, feat_five_num)

heights_five

#> # A tibble: 119 x 6
#> country min q25 med q75 max
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan 161. 164. 167. 168. 168.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859
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Figure 3: Three plots showing the distribution of minimum, median, and maximum values of height
in centimeters. Part A shows just the distribution of minimum, part B shows the distribution of
minimum, median, and maximum, and part C shows these three values plotted together as a line
graph. We see that there is overlap amongst all three statistics. That is, some countries minimum
heights are taller than some countries maximum heights.

#> 2 Algeria 166. 168. 169 170. 171.
#> 3 Angola 159. 160. 167. 168. 169.
#> 4 Argentina 167. 168. 168. 170. 174.
#> 5 Armenia 164. 166. 169. 172. 172.
#> 6 Australia 170 171. 172. 173. 178.
#> 7 Austria 162. 164. 167. 169. 179.
#> 8 Azerbaijan 170. 171. 172. 172. 172.
#> 9 Bangladesh 160. 162. 162. 163. 164.
#> 10 Belgium 163. 164. 166. 168. 177.
#> # ... with 109 more rows

This takes the heights data, pipes it to features, and then instructs it to summarise the height_cm
variable, using feat_five_num. There are several handy functions for calculating features of the data
that brolgar provides. These all start with feat_, and include:

• feat_ranges(): min, max, range difference, interquartile range;
• feat_spread(): variance, standard deviation, median absolute distance, and interquartile range;
• feat_monotonic(): is it always increasing, decreasing, or unvarying?;
• feat_diff_summary(): the summary statistics of the differences amongst a value, including the

five number summary, as well as the standard deviation and variance;
• feat_brolgar(), which will calculate all features available in the brolgar package.
• Other examples of features from the feasts package.

Feature sets

If you want to run many or all features from a package on your data you can collect them all with
feature_set. For example:

library(fabletools)
feat_set_brolgar <- feature_set(pkgs = "brolgar")
length(feat_set_brolgar)

#> [1] 6

You could then run these like so:

heights_brolgar %>%
features(height_cm, feat_set_brolgar)

#> # A tibble: 119 x 46
#> country min...1 med...2 max...3 min...4 q25...5 med...6 q75...7 max...8
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan 161. 167. 168. 161. 164. 167. 168. 168.
#> 2 Algeria 166. 169 171. 166. 168. 169 170. 171.
#> 3 Angola 159. 167. 169. 159. 160. 167. 168. 169.
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#> 4 Argentina 167. 168. 174. 167. 168. 168. 170. 174.
#> 5 Armenia 164. 169. 172. 164. 166. 169. 172. 172.
#> 6 Australia 170 172. 178. 170 171. 172. 173. 178.
#> 7 Austria 162. 167. 179. 162. 164. 167. 169. 179.
#> 8 Azerbaijan 170. 172. 172. 170. 171. 172. 172. 172.
#> 9 Bangladesh 160. 162. 164. 160. 162. 162. 163. 164.
#> 10 Belgium 163. 166. 177. 163. 164. 166. 168. 177.
#> # ... with 109 more rows, and 37 more variables: min...9 <dbl>, max...10 <dbl>,
#> # range_diff...11 <dbl>, iqr...12 <dbl>, var...13 <dbl>, sd...14 <dbl>,
#> # mad...15 <dbl>, iqr...16 <dbl>, min...17 <dbl>, max...18 <dbl>,
#> # median <dbl>, mean <dbl>, q25...21 <dbl>, q75...22 <dbl>, range1 <dbl>,
#> # range2 <dbl>, range_diff...25 <dbl>, sd...26 <dbl>, var...27 <dbl>,
#> # mad...28 <dbl>, iqr...29 <dbl>, increase...30 <dbl>, decrease...31 <dbl>,
#> # unvary...32 <dbl>, diff_min <dbl>, diff_q25 <dbl>, diff_median <dbl>, ...

To see other features available in the feasts R package run library(feasts) then ?fabletools::feature_set.

Creating your own feature

To create your own features or summaries to pass to features, you provide a named vector of functions.
These can include functions that you have written yourself. For example, returning the first three
elements of a series, by writing our own second and third functions.

second <- function(x) nth(x, n = 2)
third <- function(x) nth(x, n = 3)

feat_first_three <- c(first = first,
second = second,
third = third)

These are then passed to features like so:

heights_brolgar %>%
features(height_cm, feat_first_three)

#> # A tibble: 119 x 4
#> country first second third
#> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan 168. 166. 167.
#> 2 Algeria 169. 166. 169
#> 3 Angola 160. 159. 160.
#> 4 Argentina 170. 168. 168
#> 5 Armenia 169. 168. 166.
#> 6 Australia 170 171. 170.
#> 7 Austria 165. 163. 162.
#> 8 Azerbaijan 170. 171. 171.
#> 9 Bangladesh 162. 162. 164.
#> 10 Belgium 163. 164. 164
#> # ... with 109 more rows

As well, brolgar provides some useful additional features for the five number summary, feat_five_num,
whether keys are monotonically increasing feat_monotonic, and measures of spread or variation,
feat_spread. Inside brolgar, the features are created with the following syntax:

feat_five_num <- function(x, ...) {
c(
min = b_min(x, ...),
q25 = b_q25(x, ...),
med = b_median(x, ...),
q75 = b_q75(x, ...),
max = b_max(x, ...)

)
}
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Figure 4: Twelve facets with three keys per facet shown. This allows us to quickly view a random
sample of the data.

Here the functions b_ are functions with a default of na.rm = TRUE, and in the cases of quantiles,
they use type = 8, and names = FALSE. What is particularly useful is that these will work on any type
of time series data, and you can use other more typical time series features from the feasts package,
such as autocorrelation, feat_acf() and Seasonal and Trend decomposition using Loess feat_stl()
(O’Hara-Wild, Hyndman, and Wang 2020b).

This demonstrates a workflow that can be used to understand and explore your longitudinal data.
The brolgar package builds upon this workflow made available by feasts and fabletools. Users can
also create their own features to summarise the data.

4 Breaking up the Spaghetti

Plots like Figure 2 are often called, “spaghetti plots”, and can be useful for a high level understanding
as a whole. However, we cannot process and understand the individuals when the data is presented
like this.

Sampling

Just how spaghetti is portioned out for consumption, we can sample some of the data by randomly
sampling the data into sub-plots with the facet_sample() function (Figure 4).

ggplot(heights_brolgar,
aes(x = year,

y = height_cm,
group = country)) +

geom_line() +
facet_sample() +
scale_x_continuous(breaks = c(1750, 1850, 1950))

This defaults to 12 facets and 3 samples per facet, and provides options for the number of facets,
and the number of samples per facet. This means the user only needs to consider the most relevant
questions: “How many keys per facet?” and “How many facets to look at?”. The code to change the
figure from Figure 2 into 4 requires only one line of code, shown below:

ggplot(heights_brolgar,
aes(x = year,

y = height_cm,
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Figure 5: All of the data is shown by spreading out each key across twelve facets. Each key is only
shown once, and is randomly allocated to a facet.

group = country)) +
geom_line() +
facet_sample()

Stratifying

Extending this idea of samples, we can instead look at all of the data, spread out equally over facets,
using facet_strata(). It uses 12 facets by default, controllable with n_strata. The code to do so is
shown below, creating Figure 5.

ggplot(heights_brolgar,
aes(x = year,

y = height_cm,
group = country)) +

geom_line() +
facet_strata() +
scale_x_continuous(breaks = c(1750, 1850, 1950))

Featuring

Figure 4 and Figure 5 only show each key once, being randomly assigned to a facet. We can meaning-
fully place the keys into facets, by arranging the heights “along” a variable, like year, using the along
argument in facet_strata to produce Figure 6:

ggplot(heights_brolgar,
aes(x = year,

y = height_cm,
group = country)) +

geom_line() +
facet_strata(along = -year) +
scale_x_continuous(breaks = c(1750, 1850, 1950))

We have not lost any of the data, only the order in which they are presented has changed. We
learn the distribution and changes in heights over time, and those measured from the earliest times
appear to be more similar, but there is much wider variation in the middle years, and then for more
recent heights measured from the early 1900s, the heights are more similar. The starting point of each
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Figure 6: Displaying all the data across twelve facets. Instead of each key being randomly in a facet,
each facet displays a specified range of values of year. In this case, the top left facet shows the keys
with the earliest starting year, and the bottom right shows the facet with the latest starting year.

of these years seems to increase at roughly the same interval. This informs us that the starting times of
the years is approximately uniform.

Together facet_sample() and facet_strata() allow for rapid exploration, by focusing on relevant
questions instead of the minutiae. This is achieved by appropriately randomly assigning while
maintaining key structure, keeping the correct number of keys per plot, and so on. For example,
facet_sample() the questions are: “How many lines per facet” and “How many facets?”, and for
facet_strata() the questions are: “How many facets / strata?” and “What to arrange plots along?”.

Answering these questions keeps the analysis in line with the analytic goals of exploring the
data, rather than distracting to minutiae. This is a key theme of improving tools for data analysis.
Abstracting away the parts that are not needed, so the analyst can focus on the task at hand.

Under the hood, facet_sample() and facet_strata() are powered with sample_n_keys() and
stratify_keys(). These can be used to create data structures used in facet_sample() and facet_strata(),
and extend them for other purposes.

Using a tsibble stores important key and index components, in turn allowing for better ways
to break up spaghetti plots so we can look at many and all sub-samples using facet_sample() and
facet_strata().

5 Book-keeping

Longitudinal data is not always measured at the same time and at the same frequency. When exploring
longitudinal data, a useful first step is to explore the frequency of measurements of the index. We
can check if the index is regular using index_regular() and summarise the spacing of the index
with index_summary(). These are S3 methods, so for data.frame objects, the index must be specified,
however for the tsibble objects, the defined index is used.

index_summary(heights_brolgar)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1710 1782 1855 1855 1928 2000

index_regular(heights_brolgar)

#> [1] TRUE

We can explore how many observations per country by counting the number of observations with
features, like so:
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heights_brolgar %>% features(year, n_obs)

#> # A tibble: 119 x 2
#> country n_obs
#> <chr> <int>
#> 1 Afghanistan 5
#> 2 Algeria 5
#> 3 Angola 9
#> 4 Argentina 20
#> 5 Armenia 11
#> 6 Australia 10
#> 7 Austria 18
#> 8 Azerbaijan 7
#> 9 Bangladesh 9
#> 10 Belgium 10
#> # ... with 109 more rows

This can be further summarised by counting the number of times there are a given number of
observations:

heights_brolgar %>% features(year, n_obs) %>% count(n_obs)

#> # A tibble: 24 x 2
#> n_obs n
#> <int> <int>
#> 1 5 11
#> 2 6 11
#> 3 7 13
#> 4 8 5
#> 5 9 12
#> 6 10 12
#> 7 11 9
#> 8 12 4
#> 9 13 7
#> 10 14 6
#> # ... with 14 more rows

Because we are exploring the temporal patterns, we cannot reliably say anything about those
individuals with few measurements. The data used, heights_brolgar has less than 5 measurements.
This was done using add_n_obs(), which adds the number of observations to the existing data. Overall
this drops 25 countries, leaves us with 119 out of the original 144 countries.

heights_brolgar <- heights %>%
add_n_obs() %>%
filter(n_obs >= 5)

We can further explore when countries are first being measured using features to find the first
year for each country number of starting years with the first function from dplyr, and explore this
with a visualisation (Figure 7).

heights_brolgar %>%
features(year, c(first = first))

#> # A tibble: 119 x 2
#> country first
#> <chr> <dbl>
#> 1 Afghanistan 1870
#> 2 Algeria 1910
#> 3 Angola 1790
#> 4 Argentina 1770
#> 5 Armenia 1850
#> 6 Australia 1850
#> 7 Austria 1750
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Figure 7: Distribution of starting years of measurement. The data is already binned into 10 year blocks.
Most of the years start between 1840 and 1900.

#> 8 Azerbaijan 1850
#> 9 Bangladesh 1850
#> 10 Belgium 1810
#> # ... with 109 more rows

heights_brolgar %>%
features(year, c(first = first)) %>%
ggplot(aes(x = first)) +
geom_bar()

We can explore the variation in first year using feat_diff_summary. This combines many sum-
maries of the differences in year.

heights_diffs <- heights_brolgar %>%
features(year, feat_diff_summary)

heights_diffs

#> # A tibble: 119 x 10
#> country diff_min diff_q25 diff_~1 diff_~2 diff_~3 diff_~4 diff_~5 diff_sd
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan 10 10 30 32.5 55.8 60 692. 26.3
#> 2 Algeria 10 10 10 22.5 39.2 60 625 25
#> 3 Angola 10 10 10 17.5 10 70 450 21.2
#> 4 Argentina 10 10 10 11.6 10 40 47.4 6.88
#> 5 Armenia 10 10 10 15 20.8 30 72.2 8.50
#> 6 Australia 10 10 10 13.3 10 40 100 10
#> 7 Austria 10 10 10 13.5 10 40 74.3 8.62
#> 8 Azerbaijan 10 10 10 25 25.8 90 1030 32.1
#> 9 Bangladesh 10 10 10 18.8 15.8 70 441. 21.0
#> 10 Belgium 10 10 10 16.7 23.3 40 125 11.2
#> # ... with 109 more rows, 1 more variable: diff_iqr <dbl>, and abbreviated
#> # variable names 1: diff_median, 2: diff_mean, 3: diff_q75, 4: diff_max,
#> # 5: diff_var

This is particularly useful as using diff on year would return a very wide dataset that is hard to
explore:

heights_brolgar %>%
features(year, diff)

#> # A tibble: 119 x 30
#> country ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9 ...10 ...11
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan 10 50 60 10 NA NA NA NA NA NA NA
#> 2 Algeria 10 10 60 10 NA NA NA NA NA NA NA
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Figure 8: Exploring the different summary statistics of the differences amongst the years. We learn
that the smallest interval between measurements is 10 years, and the largest interval is between 10
and 125 years, and that most of the data is measured between 10 and 30 or so years.

#> 3 Angola 10 10 70 10 10 10 10 10 NA NA NA
#> 4 Argentina 10 10 10 10 10 10 10 10 10 10 10
#> 5 Armenia 10 30 10 10 30 20 10 10 10 10 NA
#> 6 Australia 10 10 10 10 10 10 10 40 10 NA NA
#> 7 Austria 20 10 10 30 10 10 10 10 10 10 10
#> 8 Azerbaijan 10 90 10 10 10 20 NA NA NA NA NA
#> 9 Bangladesh 10 10 10 70 10 20 10 10 NA NA NA
#> 10 Belgium 10 10 10 10 10 10 30 40 20 NA NA
#> # ... with 109 more rows, and 18 more variables: ...12 <dbl>, ...13 <dbl>,
#> # ...14 <dbl>, ...15 <dbl>, ...16 <dbl>, ...17 <dbl>, ...18 <dbl>,
#> # ...19 <dbl>, ...20 <dbl>, ...21 <dbl>, ...22 <dbl>, ...23 <dbl>,
#> # ...24 <dbl>, ...25 <dbl>, ...26 <dbl>, ...27 <dbl>, ...28 <dbl>,
#> # ...29 <dbl>

We can then look at the summaries of the differences in year by changing to long form and facetting
(Figure 8), we learn about the range of intervals between measurements, the smallest being 10 years,
the largest being 125, and that most of the data is measured between 10 and 30 years.

6 Finding Waldo

Looking at a spaghetti plot, it can be hard to identify which lines are the most interesting, or unusual.
A workflow to identify interesting individuals to start with is given below:

1. Decide upon an interesting feature (e.g., maximum)
2. This feature produces one value per key
3. Examine the distribution of the feature
4. Join this table back to the data to get all observations for those keys
5. Arrange the keys or filter, using the feature
6. Display the data for selected keys

This workflow is now demonstrated. Firstly, we decide on an interesting feature, “maximum
height”, and whether height is always increasing. We calculate our own “feature”, calculating
maximum height, and whether a value is increasing (with brolgar’s increasing function) as follows:

heights_max_in <- heights_brolgar %>%
features(height_cm, list(max = max,

increase = increasing))
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Figure 9: The different distributions of the features - A is depicting the distribution of maximum height,
and B displays the number of countries that are always increasing (FALSE), and always increasing
(TRUE). We note that the average maximum heights range from about 160cm to 185cm, with most
being around 170cm. We also learn that the vast majority of countries are not always increasing in
height through time.

heights_max_in

#> # A tibble: 119 x 3
#> country max increase
#> <chr> <dbl> <lgl>
#> 1 Afghanistan 168. FALSE
#> 2 Algeria 171. FALSE
#> 3 Angola 169. FALSE
#> 4 Argentina 174. FALSE
#> 5 Armenia 172. FALSE
#> 6 Australia 178. FALSE
#> 7 Austria 179. FALSE
#> 8 Azerbaijan 172. FALSE
#> 9 Bangladesh 164. FALSE
#> 10 Belgium 177. FALSE
#> # ... with 109 more rows

This returns a dataset of one value per key. Figure 9 examines the distribution of the fea-
tures, showing us the distribution of maximum height, and the number of countries that are always
increasing.

We can now join this table back to the data to get all observations for those keys to move from
one key per row to all many rows per key.

heights_max_in_full <- heights_max_in %>%
left_join(heights_brolgar,

by = "country")

heights_max_in_full

#> # A tibble: 1,406 x 9
#> country max increase year n_obs continent height_cm year0 country_fct
#> <chr> <dbl> <lgl> <dbl> <int> <chr> <dbl> <dbl> <fct>
#> 1 Afghanistan 168. FALSE 1870 5 Asia 168. 160 Afghanistan
#> 2 Afghanistan 168. FALSE 1880 5 Asia 166. 170 Afghanistan
#> 3 Afghanistan 168. FALSE 1930 5 Asia 167. 220 Afghanistan
#> 4 Afghanistan 168. FALSE 1990 5 Asia 167. 280 Afghanistan
#> 5 Afghanistan 168. FALSE 2000 5 Asia 161. 290 Afghanistan
#> 6 Algeria 171. FALSE 1910 5 Africa 169. 200 Algeria
#> 7 Algeria 171. FALSE 1920 5 Africa 166. 210 Algeria
#> 8 Algeria 171. FALSE 1930 5 Africa 169 220 Algeria
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#> 9 Algeria 171. FALSE 1990 5 Africa 171. 280 Algeria
#> 10 Algeria 171. FALSE 2000 5 Africa 170. 290 Algeria
#> # ... with 1,396 more rows

We can then arrange the keys or filter, using the feature, for example, filtering only those countries
that are only increasing:

heights_increase <- heights_max_in_full %>% filter(increase)
heights_increase

#> # A tibble: 22 x 9
#> country max increase year n_obs continent height_cm year0 country_fct
#> <chr> <dbl> <lgl> <dbl> <int> <chr> <dbl> <dbl> <fct>
#> 1 Honduras 168. TRUE 1950 6 Americas 164. 240 Honduras
#> 2 Honduras 168. TRUE 1960 6 Americas 164. 250 Honduras
#> 3 Honduras 168. TRUE 1970 6 Americas 165. 260 Honduras
#> 4 Honduras 168. TRUE 1980 6 Americas 165. 270 Honduras
#> 5 Honduras 168. TRUE 1990 6 Americas 165. 280 Honduras
#> 6 Honduras 168. TRUE 2000 6 Americas 168. 290 Honduras
#> 7 Moldova 174. TRUE 1840 5 Europe 165. 130 Moldova
#> 8 Moldova 174. TRUE 1950 5 Europe 172. 240 Moldova
#> 9 Moldova 174. TRUE 1960 5 Europe 173. 250 Moldova
#> 10 Moldova 174. TRUE 1970 5 Europe 174. 260 Moldova
#> # ... with 12 more rows

Or tallest country

heights_top <- heights_max_in_full %>% top_n(n = 1, wt = max)
heights_top

#> # A tibble: 16 x 9
#> country max increase year n_obs continent height_cm year0 country_fct
#> <chr> <dbl> <lgl> <dbl> <int> <chr> <dbl> <dbl> <fct>
#> 1 Denmark 183. FALSE 1820 16 Europe 167. 110 Denmark
#> 2 Denmark 183. FALSE 1830 16 Europe 165. 120 Denmark
#> 3 Denmark 183. FALSE 1850 16 Europe 167. 140 Denmark
#> 4 Denmark 183. FALSE 1860 16 Europe 168. 150 Denmark
#> 5 Denmark 183. FALSE 1870 16 Europe 168. 160 Denmark
#> 6 Denmark 183. FALSE 1880 16 Europe 170. 170 Denmark
#> 7 Denmark 183. FALSE 1890 16 Europe 169. 180 Denmark
#> 8 Denmark 183. FALSE 1900 16 Europe 170. 190 Denmark
#> 9 Denmark 183. FALSE 1910 16 Europe 170 200 Denmark
#> 10 Denmark 183. FALSE 1920 16 Europe 174. 210 Denmark
#> 11 Denmark 183. FALSE 1930 16 Europe 174. 220 Denmark
#> 12 Denmark 183. FALSE 1940 16 Europe 176. 230 Denmark
#> 13 Denmark 183. FALSE 1950 16 Europe 180. 240 Denmark
#> 14 Denmark 183. FALSE 1960 16 Europe 180. 250 Denmark
#> 15 Denmark 183. FALSE 1970 16 Europe 181. 260 Denmark
#> 16 Denmark 183. FALSE 1980 16 Europe 183. 270 Denmark

We can then display the data by highlighting it in the background, first creating a background plot
and overlaying the plots on top of this as an additional ggplot layer, in Figure 10.

7 Dancing with Models

These same workflows can be used to interpret and explore a model. As the data tends to follow a non
linear trajectory, we use a general additive model (gam) with the mgcv R package (Wood 2017) using
the code below:

heights_gam <- gam(
height_cm ~ s(year0, by = country_fct) + country_fct,
data = heights_brolgar,
method = "REML"

)
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Figure 10: Plots of the data in the background, with the countries that always increase in height
through time in A, and the country with the tallest people in B

This fits height in centimetres with a smooth effect for year for each country, with a different
intercept for each country. It is roughly equivalent to a random intercept varying slope model. Note
that this gam model took approximately 8074 seconds to fit. We add the predicted and residual values
for the model below, as well as the residual sums of squares for each country.

library(mgcv)
library(modelr)
heights_aug <- heights_brolgar %>%
add_predictions(heights_gam, var = "pred") %>%
add_residuals(heights_gam, var = "res") %>%
group_by_key() %>%
mutate(rss = sum(res^2)) %>%
ungroup()

We can use the previous approach to explore the model results. We can take a look at a sample of
the predictions along with the data, by using sample_n_keys. This provides a useful way to explore
some set of the model predictions. In order to find those predictions that best summarise the best, and
worst, and in between, we need to use the methods in the next section, “Stereotyping”.

heights_aug %>%
sample_n_keys(12) %>%
ggplot(aes(x = year,

y = pred,
group = country)) +

geom_line(colour = "steelblue") +
geom_point(aes(y = height_cm)) +
facet_wrap(~country)

8 Stereotyping

To help understand a population of measurements over time, it can be useful to understand which in-
dividual measurements are typical (or “stereotypical”) of a measurement. For example, to understand
which individuals are stereotypical of a statistic such as the minimum, median, and maximum height.
This section discusses how to find these stereotypes in the data.

Figure 12 shows the residuals of the simple model fit to the data in the previous section. There is
an overlaid five number summary, showing the minimum, 1st quantile, median, 3rd quantile, and
maximum residual value residuals, as well as a rug plot to show the data. We can use these residuals
to understand the stereotypes of the data - those individuals in the model that best match to this five
number summary.

We can do this using keys_near() from brolgar. By default this uses the 5 number summary, but
any function can be used. You specify the variable you want to find the keys nearest, in this case rss,
residual sums of squares for each key:

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 21

Figure 11: Exploration of a random sample of the data. This shows the data points of 12 countries,
with the model fit in blue.

Figure 12: Five number summary of residual values from the model fit. The residuals are centered
around zero with some variation.
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Figure 13: The keys nearest to the five number summary of the residual sums of squares. Moldova
and Madagascar are well fit by the model, and are fit by a straight line. The remaining countries with
poorer fit have greater variation in height. It is not clear how a better model fit could be achieved.

keys_near(heights_aug, var = rss)

#> # A tibble: 62 x 5
#> country rss stat stat_value stat_diff
#> <chr> <dbl> <fct> <dbl> <dbl>
#> 1 Denmark 9.54 med 9.54 0
#> 2 Denmark 9.54 med 9.54 0
#> 3 Denmark 9.54 med 9.54 0
#> 4 Denmark 9.54 med 9.54 0
#> 5 Denmark 9.54 med 9.54 0
#> 6 Denmark 9.54 med 9.54 0
#> 7 Denmark 9.54 med 9.54 0
#> 8 Denmark 9.54 med 9.54 0
#> 9 Denmark 9.54 med 9.54 0
#> 10 Denmark 9.54 med 9.54 0
#> # ... with 52 more rows

To plot the data, they need to be joined back to the original data, we use a left join, joining by
country.

heights_near_aug <- heights_aug %>%
keys_near(var = rss) %>%
left_join(heights_aug,

by = c("country"))

Figure 13 shows those countries closest to the five number summary. Observing this, we see that
the minimum RSS for Moldova fits a nearly perfectly straight line, and the maximum residuals for
Myanmar have wide spread of values.

ggplot(heights_near_aug,
aes(x = year,

y = pred,
group = country,
colour = country)) +

geom_line(colour = "orange") +
geom_point(aes(y = height_cm)) +
scale_x_continuous(breaks = c(1780, 1880, 1980)) +
facet_wrap(~stat + country,

labeller = label_glue("Country: {country} \nNearest to \n{stat} RSS"),
nrow = 1) +

theme(legend.position = "none",
aspect.ratio = 1)

We can also look at the highest and lowest 3 residual sums of squares:

heights_near_aug_top_3 <- heights_aug %>%
distinct(country, rss) %>%
top_n(n = 3,
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Figure 14: Figure of stereotypes for those keys with the three highest and lowest RSS values. Those
that fit best tend to be linear, but those that fit worst have wider variation in heights.

wt = rss)

heights_near_aug_bottom_3 <- heights_aug %>%
distinct(country, rss) %>%
top_n(n = -3,

wt = rss)

heights_near_top_bot_3 <- bind_rows(highest_3 = heights_near_aug_top_3,
lowest_3 = heights_near_aug_bottom_3,
.id = "rank") %>%

left_join(heights_aug,
by = c("country", "rss"))

Figure 14 shows the same information as the previous plot, but with the 3 representative countries
for each statistic. This gives us more data on what the stereotypically “good” and “poor” fitting
countries to this model.

9 Getting Started

The brolgar R package can be installed from CRAN using

# From CRAN
install.packages("brolgar")
# Development version
remotes::install_github("njtierney/brolgar")

The functions are all designed to build upon existing packages, but are predicated on working with
tsibble. The package extends upon ggplot2 to provide facets for exploration: facet_sample() and
facet_strata(). Extending dplyr’s sample_n() and sample_frac() functions by providing sampling
and stratifying based around keys: sample_n_keys(), sample_frac_keys(), and stratify_keys().
New functions are focussed around the use of key, for example key_slope() to find the slope of
each key, and keys_near() to find those keys near a summary statistic. Finally, feature calculation is
provided by building upon the existing time series feature package, feasts.

To get started with brolgar you must first ensure your data is specified as a tsibble - discussed
earlier in the paper, there is also a vignette “Longitudinal Data Structures”, which discusses these
ideas. The next step we recommend is sampling some of your data with facet_sample(), and
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facet_strata(). When using facet_strata(), facets can be arranged in order of a variable, using the
along argument, which can reveal interesting features.

To further explore longitudinal data, we recommend finding summary features of each variable
with features, and identifying variables that are near summary statistics, using keys_near to find
individuals stereotypical of a statistical value.

10 Concluding Remarks

The brolgar package facilitates exploring longitudinal data in R. It builds upon existing infrastructure
from tsibble, and feasts, which work within the tidyverse family of R packages, as well as the newer,
tidyverts, time series packages. Users familiar with either of these package families will find a lot
of similarity in their use, and first time users will be able to easily transition from brolgar to the
tidyverse or tidyverts.

Visualizing categorical or binary data over a time period can be difficult as the limited number of
values on the y axis leads to overplotting. This can conceal the number of values present at a given
value. The tools discussed in brolgar facilitate this in the form of facet_sample, and facet_strata.
Some special methods could be developed to add jitter or noise around these values on the y axis,
while still maintaining the graphical axis and tick marks.

Future work will explore more features and stratifications, and stereotypes, and generalise the
tools to work for data without time components, and other data types.
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12 Paper Source

The complete source files for the paper can be found at https://github.com/njtierney/rjournal-
brolgar. The paper is built using rmarkdown, targets and capsule to ensure R package versions are
the same. See the README file on the github repository for details on recreating the paper.
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The Concordance Test, an Alternative to
Kruskal-Wallis Based on the Kendall-τ
Distance: An R Package
by Javier Alcaraz, Laura Anton-Sanchez and Juan Francisco Monge

Abstract The Kendall rank correlation coefficient, based on the Kendall-τ distance, is used to measure
the ordinal association between two measurements. In this paper, we introduce a new coefficient also
based on the Kendall-τ distance, the Concordance coefficient, and a test to measure whether different
samples come from the same distribution. This work also presents a new R package, ConcordanceTest,
with the implementation of the proposed coefficient. We illustrate the use of the Concordance
coefficient to measure the ordinal association between quantity and quality measures when two or
more samples are considered. In this sense, the Concordance coefficient can be seen as a generalization
of the Kendall rank correlation coefficient and an alternative to the non-parametric mean rank-based
methods for comparing two or more samples. A comparison of the proposed Concordance coefficient
and the classical Kruskal-Wallis statistic is presented through a comparison of the exact distributions
of both statistics.

1 Introduction

When we have a sample of observations of a given population it may be difficult to assume that they
come from a certain distribution since we may not always have any type of information about the
variable under study and when we do, it may not be enough to determine the type of distribution. In
these cases, parametric inference is inappropriate. Moreover, this type of technique may be unsuitable
should the observations not fulfill any of the basic assumptions on which they are based; normality
and a large quantity of data.

Violation of the necessary assumptions in parametric statistics necessitates the use of non-parametric
statistics. Non-parametric tests do not depend on the definition of a distribution function or statistical
parameters such as mean, variance, etc. The use of non-parametric tests, despite being less powerful,
is also adequate when there are not enough observations available, when data are non-normal data or
when ordinal data are being analyzed.

Although the first steps in non-parametric statistics began earlier, it was not until the 1930s
that a systematic study in this field appeared. Fisher (1935) introduced the permutation test or
randomization test as a simple way to compute the sampling distribution for any test statistic under
the null hypothesis that does not establish any effect on all possible outcomes. Over the next two
decades some of the main non-parametric tests emerged, Friedman (1940); Kendall and Smith (1939);
Kendall (1938); Kruskal (1958); Kruskal and Wallis (1952); Mann and Whitney (1947); Pitman (1937);
Wilcoxon (1945), among others.

The main advantages of the non-parametric tests are: the data can be nonnumerical observations
while they can be classified according to some criterion, they are usually easy to calculate and do not
make any hypothesis about the distribution of the population from which the samples are taken. We
can also cite two drawbacks: the non-parametric tests are less precise than other statistical models and
they are based on the order of the elements in the sample and this order will likely stay the same even
if the numerical data change.

There are many non-parametric tests in the literature, which can basically be classified into four
categories depending on whether: it is a test to compare two or more than two related samples or a
test for comparing related or unrelated samples. Examples of the most used non-parametric tests in
the literature for each of these four situations are the following: the Wilcoxon signed-rank test (Wilcoxon,
1945) for comparing two related samples, the Mann-Whitney (Wilcoxon) test (Mann and Whitney, 1947)
for comparing two unrelated samples, the Friedman test (Friedman, 1940) for comparing three or more
related samples, and the Kruskal-Wallis test (Kruskal and Wallis, 1952) for comparing three or more
unrelated samples. Several methods that exploit some characteristic of the samples have appeared in
the literature in recent years, such as Alhakim and Hooper (2008); Terpstra and Magel (2003).

It is also possible to measure the degree of association of two variables through a non-parametric
approach, in that sense we can mention the Kendall rank correlation coefficient (Kendall, 1938) and
the Spearman rank correlation coefficient (Spearman, 1904).

In Aparicio et al. (2020), the authors introduce the Kendall-τ partition ranking; given a ranking of
elements of a set and given a disjoint partition of the same set, the Kendall-τ partition ranking is the
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induced linear order of the subsets of the partition which follows from the given ranking of elements
of a set. In this work, we propose to use the Kendall-τ distance as a concordance measure between the
different samples in an ordered set of observations. In this regard, the proposed measure, which we
call Concordance coefficient, can be considered as an extension of the Kendall rank correlation coefficient
when more than two samples are considered. The main difference between the proposed measure
and the previous ones, is the consideration of the Kendall-τ distance instead of ranks, which use
classical methods. We also propose a significance test in order to determine when more than two
samples come from the same distribution, and present a comparison with the classical Kruskal-Wallis
method. We illustrate the use of the proposed coefficient with a new R package, ConcordanceTest
(Alcaraz et al., 2022), which is freely available from the Comprehensive R Archive Network (CRAN).
Actually, R establishes the state of the art in statistical software. There are currently packages for
all the non-parametric tests mentioned above, for example: the Kendall package (McLeod, 2011),
which deals with the Kendall rank correlation coefficient; the pspearman package (Savicky, 2014),
with the Spearman rank correlation coefficient; or the stats package: an R Core Team and contributors’
worldwide package that contains many of the non-parametric tests for comparing two or more, related
or unrelated, samples. The Kendall-τ distance, on which the proposed coefficient is based, is one
of the most used in distance-based models, for which there are also recent alternatives in R. See,
for example, the PerMallows (Irurozki et al., 2016), rankdist (Qian and Yu, 2019) or BayesMallows
packages (Sorensen et al., 2020).

The remainder of this paper is organized as follows. After a brief review in the next section
of the main features of the Kendall rank correlation coefficient and the Kruskal-Wallis statistic, in
the following two sections we present the coefficient we propose in this work and illustrate its use
with our ConcordanceTest package. Specifically, in the third section we introduce the Concordance
coefficient while in the fourth section the related statistical test is presented. The fifth section includes a
comparison between the Kruskal-Wallis test in the stats package and that presented in this work. Some
final remarks follow in the last section. Appendix A presents an example of the probability distribution
of the Concordance coefficient and the Kruskal-Wallis statistic. Appendix B deals with a comparison
between the probability density function of the Concordance coefficient and the Kruskal-Wallis
statistic for several experiments. Finally, Appendix C presents some details of how the p-values for
the Concordance coefficient have been calculated and shows some critical values and exact p-values.

2 Non-parametric tests

This section presents the Kendall rank correlation coefficient (Kendall, 1938), a coefficient to measure
the relationship between two samples ordinally, and the Kruskal-Wallis statistical test (Kruskal and
Wallis, 1952), which is a rank-based statistical test to measure whether different samples come from
the same distribution, without assuming a given distribution for the population.

Only these two non-parametric tests are presented in detail, since the test proposed in this paper
uses the Kendall-τ distance and it can be seen as an extension of the Kendall rank correlation coefficient
when more than two samples are considered, and it is presented as an alternative to the Kruskal-Wallis
statistical test.

The Kendall rank correlation coefficient is a non-parametric measure of correlation. This measure
is based on the Kendall-τ distance between two permutations of n elements. The Kendall-τ distance
(dK-τ) is defined as the number or pairwise disagreements between two permutations π1 and π2. For
instance, if we have three elements, the distance from permutation 123 to permutations 132, 231 and
321 is 1, 2 and 3 respectively. The maximum number of disagreements that may occur between two
permutations of n elements is n(n − 1)/2 and, in this case, all the values of permutation π1 are in the
reverse order of π2.

The Kendall rank correlation coefficient between permutations π1 and π2, denoted by τ, is defined
by

τ = 1 − 2
dK-τ(π1,π2)

n(n − 1)/2
.

The Kendall rank correlation coefficient is used as a statistical test to determine whether there is a
relationship or dependence between two random variables. The main advantages of this coefficient
are: the data can be non-numerical observations if they can be ordered, it is easy to calculate, and
the associated statistical test does not assume a known distribution of the population from which the
samples are taken.

The Kruskal-Wallis test is a non-parametric statistical method to study whether different samples
come from the same population. The test is the extension of the Mann-Whitney Test (Mann and
Whitney, 1947) when we have more than two samples or groups. The following example illustrates
the Kruskal-Wallis test when comparing three samples.
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Example 1 Let us assume that the effectiveness of three different treatments (A, B, C) has been measured for 6
individuals, two individuals being assigned to each of the treatments, with the effectiveness of each treatment
being measured ordinally. We could obtain the result shown in Table 1, where, for example, the effectiveness of
treatment A has been rated in first and third place.

A B A C C B
Rank 1 2 3 4 5 6

Table 1: Result for an experiment with 6 people and 3 treatments.

The Kruskal-Wallis statistic is determined by the difference between the ranks of the individuals
in each category with the average rank. In our example, the average rank of the test is R = 3.5, while
the average rank of each of the three treatments are RA = 2, RB = 4 and RC = 4.5. The Kruskal-Wallis
statistic, denoted by H, is based on the calculation of the distance of each rank to the average rank,
which can be expressed as follows:

H = −3(n + 1) +
12

n(n + 1)

k

∑
i=1

R2
i

ni
,

where n is the number of observations in the k samples, ni is the number of observations in the i-th
sample and Ri is the sum of the ranks in the i-th sample. In our example, the value of the Kruskal-Wallis
statistic is:

H = −3(n + 1) +
12

n(n + 1)

k

∑
i=1

R2
i

ni
= −3(6 + 1) +

12
6(6 + 1)

(
42

2
+

82

2
+

92

2

)
= 2.

Table 2 shows the probability distribution of the Kruskal-Wallis statistic for 3 treatments, each with 2
patients. Appendix A presents the Kruskal-Wallis statistic for all possible results in the experiment
for 3 treatments with 2 people in each. In Spurrier (2003), the author compares different methods for
approximating the null probability points.

H Prob

0.00 0.06667

0.29 0.13333

0.86 0.13333

1.14 0.13333

2.00 0.13333

2.57 0.06667

3.43 0.13333

3.71 0.13333

4.57 0.06667

Table 2: Probability distribution for the Kruskal-Wallis statistic (H), with sample sizes N = (2, 2, 2).

3 The Concordance coefficient τc

In Aparicio et al. (2020), the authors introduce the Kendall-τ partition ranking; given a ranking of
elements of a set and given a disjoint partition of the same set, the Kendall-τ partition ranking is the
induced linear order of the subsets of the partition which follows from the given ranking of elements
of a set. The Kendall-τ partition ranking presents an ordinal alternative to the mean-based ranking
that uses a pseudo-cardinal scale. Let π be permutation of the elements of set V and let V1, V2, . . ., Vk
be a partition of V then, the Kendall-τ distance from permutation π is given by

dK-τ = min{dK-τ(ρ, π) : elements in Vr are consecutively listed in ρ, ∀r}.

This distance is also called the disorder of permutation π. For the calculation of the disorder of a
permutation of elements, in Aparicio et al. (2020), the authors establish that the distance or disorder
of a permutation of elements π = (a|a|b|b|a|c|a|b|c| · · · |c|a|b) is given by the solution of the Linear

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 29

Ordering Problem (LOP) with the preference matrix M, where the element mab of matrix M indicates
the number of times that an element a of sample A precedes an element b of sample B in the order π.
The solution of the Linear Ordering Problem gives us a new order in the elements of π, the closest to π,
in which all the elements belonging to the same sample are listed consecutively. The book publication
by Martí and Reinelt (2011) provides an exhaustive study of the Linear Ordering Problem.

The authors Aparicio et al. (2020) present the properties of the Kendall-τ partition ranking and
compare it with classical mean and median-based rank approaches. Those properties are extracted
from social choice theory and are adapted to a partition ranking, see Arrow (1951); Kemeny (1959);
Zahid and Swart (2015). Two of these properties are only true for the Kendall-τ partition ranking:
the Condorcet and Deletion Independence properties. The Condorcet property establishes that the most
preferred subset must be listed before any other in any ranking; and the Deletion Independence
property establishes that if any subset is removed, then the induced order of subsets does not change.
In permutation π = (c|c|c|b|b|a|a|c|c) the set C is a condorcet winner, the most preferred set, but B
has a lesser mean rank value than set C if set A is not considered in the comparison; therefore, the
permutation π = (c|c|c|b|b|a|a|c|c) gives an example where ranking subsets from ranks is not very
reliable.

From Aparicio et al. (2020), the maximum number of disagreements that may occur in a permuta-
tion of n elements (where the elements are classified in k subsets V1, V2, . . . , Vk of sizes n1, n2, . . . , nk

respectively) is ∑k
r=1 ∑k

s=r+1 nr ns − (GPb + ∑k
r=1 ∑k

s=r+1⌊
nrns

2
⌋), where GPb is the Generalized Pen-

tagonal Number of b, and b the number of subsets Vk with odd cardinality. The Generalized Pentagonal
number GPb, for b ∈ N, is

GPb =


ℓ(3ℓ− 1)

2
b = 2ℓ (b even),

ℓ(3ℓ+ 1)
2

b = 2ℓ+ 1 (b odd).

This maximum number of disagreements (the maximum disorder) in a permutation π of elements,
allows us to define a relative disorder coefficient of permutation π as

relative disorder(π) =
dK-τ(π)

k

∑
r=1

k

∑
s=r+1

nr ns − (GPb +
k

∑
r=1

k

∑
s=r+1

⌊nrns

2
⌋)

.

Definition 1 We define the Concordance coefficient (τc) of permutation π as

τc = 1 − relative disorder(π) = 1 − dK-τ(π)
k

∑
r=1

k

∑
s=r+1

nr ns − (GPb +
k

∑
r=1

k

∑
s=r+1

⌊nrns

2
⌋)

.

The Concordance coefficient (τc) provides a measure of independence in the k samples, where
τc is a value between 0 and 1, taking the value of 1 when there is a total order between the samples,
and 0 when the disorder is maximum. In this sense, the Concordance coefficient can be seen as
a generalization of the Kendall rank correlation coefficient when we have more than two samples.
Given that the Concordance coefficient satisfies the properties mentioned above, we consider it is
more appropriate for measuring differences between samples than a rank-based method, such as
Kruskal-Wallis’.

Example 1 (Cont.) Continuing with the data in Example 1, the results of the experiment provide the following
order or permutation of the treatments π = (a|b|a|c|c|b|).

Given the order of individuals π = (a|b|a|c|c|b|), the ordering between individuals that leaves
individuals with the same treatment together is ordination (a a b b c c) or (a a c c b b). Both ordinations
only need 3 pairwise disagreements from the permutation π. In order to find the permutation of
elements (equal elements listed consecutively) closer to a given permutation, it is sufficient to solve
the Linear Ordering Problem (LOP) with the preference matrix defined above. In this example, said
matrix is:

A B C
A

 –
1
0

3
–
2

4
2
–

B
C

,
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where each element of the matrix mij represents the number of times an individual of a treatment i
precedes an individual of the treatment j. The solution of the LOP is the permutation of treatments
which maximizes the preferences of order in the experiment, that is, in this example, the permutations
of treatments (A B C) or (A C B) retain 9 preferences expressed in the order of individuals represented
by the permutation π. Therefore, the distance of the permutation π to a total order between treatments
is ∑i<j ninj − 9 = 3. This distance, which is the number of pairwise disagreements needed in a
permutation of elements to reach a permutation that establishes a total order between treatments, is
denominated the disorder of a permutation by the authors of the work by Aparicio et al. (2020)1.

Then, the relative disorder of permutation π can be evaluated as

relative disorder(π) =
dK-τ(π)

k

∑
r=1

k

∑
s=r+1

nr ns − (GPb +
k

∑
r=1

k

∑
s=r+1

⌊nrns

2
⌋)

=
3

12 − (0 + 6)
=

3
6
=

1
2

,

and the Concordance coefficient

τc = 1 − relative disorder(π) = 1 − 1
2
=

1
2

.

Notice that no set of this example has odd cardinality, therefore the pentagonal number is GP0 = 0.

Table 3 shows the probability distribution of the disorder and the Concordance coefficient for 3
treatments with 2 patients each. Appendix A presents the disorder and the Concordance coefficient for
all possible results in the experiment with sample sizes N = (2, 2, 2). Figure 1 compares the probability
distribution of the Concordance coefficient and the Kruskal-Wallis statistic, for 3 treatments and 2
people in each treatment. Notice that some Kruskal-Wallis statistic values (H=2.57) are less probable
than large ones.

dis τc Prob

6 0.0000 0.06667

5 0.1667 0.13333

4 0.3333 0.20000

3 0.5000 0.20000

2 0.6667 0.20000

1 0.8333 0.13333

0 1.0000 0.06667

Table 3: Probability distribution of the disorder (dis) and the Concordance coefficient (τc), with sample
sizes N = (2, 2, 2).

Concordance Coefficient

1−relative disorder

P
ro

b

0 1

0
0.

2

Kruskal Wallis

H statistic

P
ro

b

0 4.57

0
0.

13
33

Figure 1: Probability distribution of the Concordance coefficient (τc=1-relative disorder) and the
Kruskal-Wallis statistic (H), with sample sizes N = (2, 2, 2).

1If the number of samples is small, we can evaluate all the possibilities in order to obtain the solution of the
Linear Ordering Problem, for example, if we have 3 samples the number of feasible solutions for the LOP is 3! = 6.
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The Concordance coefficient in ConcordanceTest package

The R package we have developed allows to calculate both the Concordance coefficient and the
Kruskal-Wallis statistic in order to facilitate their comparison. Given the high combinatorial degree of
the problem of ordering samples of populations, some of the functions implemented in the package
can perform the calculations exactly, exploring the entire sample space or possibilities, or they can
approximate the sample space or possibilities by simulation.

The ConcordanceTest package can be installed from CRAN:

install.packages("ConcordanceTest")
library("ConcordanceTest")

and its functions can perform the calculations related only to the Concordance coefficient (default
option, specified with the parameter H=0) or do them also for the Kruskal-Wallis statistic (H=1), allowing
their comparison.

To obtain the probability distribution of the statistics, it is necessary to have the set of all possible
permutations that can occur in the result of the experiment that we want to analyze (90=6!/2!2!2! in
Example 1). This can be obtained through the function Permutations_With_Repetition(), which has
been developed and included in the ConcordanceTest package.

The function CT_Distribution() calculates the probability distribution of the Concordance coeffi-
cient and the Kruskal-Wallis statistic. The set of possibilities (sample space) grows very quickly with
the number of elements and with the number of sets and, in some cases, to calculate the probability
distribution in an exact way becomes unaffordable, making it necessary to approximate calcula-
tions. Both an exact and an approximate calculation (default option) can be done using the function
CT_Distribution(). It is used as follows:

CT_Distribution(Sample_Sizes, Num_Sim = 10000, H = 0, verbose = TRUE)

where Sample_Sizes is a numeric vector (n1, . . . , nk) containing the number of repetitions of each
element, i.e., the size of each sample in the experiment. Num_Sim is the number of simulations to
be performed in order to obtain the probability distribution of the statistics (10,000 by default).
If Num_Sim is set to 0, the probability distribution tables are obtained exactly using the function
Permutations_With_Repetition(). H is the parameter specifying whether the calculations must also
be performed for the Kruskal-Wallis statistic, and verbose is a logical parameter that indicates whether
some progress report of the simulations should be given.

Example 1 (Cont.) Using the function CT_Distribution() with Num_Sim equal to 0, we could obtain the
probability distribution of the Kruskal-Wallis statistic and the Concordance coefficient in Example 1 (Tables 2
and 3, respectively) in an exact way. As shown in this example, we can also approximate the probability
distributions of Example 1 by simulating, for example, 25,000 permutations of 3 treatments with 2 patients each.
Note that, for reproducibility, we always initialize the generator for pseudo-random numbers when the results
rely on simulation.

set.seed(12)
Sample_Sizes <- c(2,2,2)
CT_Distribution(Sample_Sizes, Num_Sim = 25000, H = 1)

$C_freq
disorder Concordance coefficient Frequency Probability

[1,] 6 0.00 6 0.0667
[2,] 5 0.17 12 0.1333
[3,] 4 0.33 18 0.2000
[4,] 3 0.50 18 0.2000
[5,] 2 0.67 18 0.2000
[6,] 1 0.83 12 0.1333
[7,] 0 1.00 6 0.0667

$H_freq
H Statistic Frequency Probability

[1,] 0.00 6 0.0667
[2,] 0.29 12 0.1333
[3,] 0.86 12 0.1333
[4,] 1.14 12 0.1333
[5,] 2.00 12 0.1333
[6,] 2.57 6 0.0667
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[7,] 3.43 12 0.1333
[8,] 3.71 12 0.1333
[9,] 4.57 6 0.0667

The function CT_Distribution() returns two elements. C_freq is a matrix with the probability
distribution of the Concordance coefficient. Each row in the matrix contains the disorder, the value of
the Concordance coefficient τc, the frequency and its probability. H_freq (only returned if H = 1) is a
matrix with the probability distribution of the Kruskal-Wallis statistic. Each row in the matrix contains
the value of the statistic H, the frequency and its probability. The results obtained by the function
CT_Distribution() are the same as those previously shown in Table 3 and Table 2 of Example 1.

4 Concordance test

In this section, we present the Concordance test in order to evaluate when different samples come
from the same population distribution. The randomization test introduced by Fisher (1935) establishes
a framework for the statistical test based on permutations, see also Box (1980); Stern (1990); Welch
(1990).

If all the samples come from the same distribution, then all possible ways to rank n observations
divided into k samples have the same probability of occurring. If a result of the experiment provides
an order of the observations with a high disorder, it will support the idea that all observations come
from the same population. On the contrary, a result with a small disorder will go against the claim
that the observations come from the same population. In this way, we propose to consider samples
that come from the same distribution as null hypothesis, while the alternative hypothesis is that some
of the samples come from a different distribution.

H0: There is no difference among the k populations.

Ha: At least one of the populations differs from the other populations.

The decision rule is to reject the null hypothesis if the disorder in the permutation of observations
is small, equivalently if the Concordance coefficient τc is close to one. We reject the null hypothesis H0
at the significance level α if τc is greater than the percentile (1 − α)% of the probability distribution of
τc.

The following example illustrates the use of the Concordance test proposed in this work and
compares it with the classical Kruskal-Wallis non-parametric test. The comparison will be made first
considering that there are no ties and then modifying the data in the example so that ties appear.

Example 2 Suppose we have applied three treatments to 18 patients, measuring the number of hours it takes
these patients to recover. The results are shown in Table 4.

Hours
Treatment A 12 13 15 20 23 28 30 32 40 48
Treatment B 29 31 49 52 54
Treatment C 24 26 44

Table 4: Result for an experiment with 18 patients and 3 treatments.

Concordance test:

The experiment ranks the patients in the following ranking

(a a a a a c c a b a b a a c a b b b).

If we perform the contrast using the disorder statistic or the Concordance coefficient τc, we must
calculate the permutation of treatments that maximizes the order between patients obtained in the
experiment. The matrix of preferences between treatments observed is as follows:

A B C
A

 –
7

11

43
–

13

19
2
–

B
C
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The order between treatments that maximizes the order between patients corresponds to the order
(A C B), satisfying 75 of the 95 preferences contained in the matrix, where the value 75 is the solution
of the Linear Ordering Problem (LOP)2. Therefore, exactly 20 = 95-75 is the number of pairwise
disagreements necessary to order the samples and obtain the order (ACB), that is, the disorder is
20. The greatest disorder that an order of elements can have with samples of 10, 5 and 3 elements

is given by: ∑3
r=1 ∑3

s=r+1 nr ns − (GPb + ∑3
r=1 ∑3

s=r+1⌊
nrns

2
⌋) = 95 − (1 + 47) = 47, therefore the

Concordance coefficient is τc = 1 − 20/47 = 0.574. The p-value of the disorder 20 or, equivalently, of
the Concordance coefficient τc = 0.574 is 0.0492723, therefore, at a level of significance less than 5% we
can reject the null hypothesis of equality in treatments.

Kruskal-Wallis test:

The treatments A, B and C have average ranks of 7.3, 14.2 and 9, respectively, and the sum of ranks are
RA = 73, RB = 71 and RC = 27.

The Kruskal-Wallis statistic is given by:

H = −3(n + 1) +
12

n(n + 1) ∑
R2

i
ni

= −3(18 + 1) +
12

18(18 + 1)

(
732

10
+

712

5
+

272

3

)
= 5.6

In Meyer and Seaman (2015), exact values for the Kruskal-Wallis contrast at different levels of
significance are found. We can conclude by looking at the tables that the p-value of the H statistic
is greater than 0.05, therefore, we cannot reject the null hypothesis that the treatments are equally
effective.

Comparing both methods, the Concordance and Kruskal-Wallis tests provide similar results about
the statistic but the conclusion differs.

Example 3 Suppose we have the same experiment as in Example 2 but with ties. The results are shown in
Table 5. Ties are in bold.

Hours
Treatment A 12 13 15 20 24 29 30 32 40 49
Treatment B 29 31 49 52 54
Treatment C 24 26 44

Table 5: Result for an experiment with 18 patients and 3 treatments. Example with ties.

Concordance test with ties:

The results of the experiment order the individuals according to the sequence:

(a a a a (a c) c (a b) a b a a c (a b) b b)

where the elements grouped in the order indicates that they tie. There are 8 different possibilities in
order to undo ties in the ranking of elements. If the same probability is assumed for all of them, the
expected preference matrix between treatments is given distributing the preference in the comparison
of repeated observations with the same weight, that is, assigning the value 0.5 to each of the treatments
when two tied units are compared. The preference matrix for this example would be as follows:

A B C
A

 –
8

11.5

42
–

13

18.5
2
–

B
C

Note that the previous matrix represents the matrix of expected preferences if all permutations
of items with ties in which they are undone are considered, with the same probability of tie between
elements.

2The solution of LOP for this example is the permutation of sets that maximizes the preferences in the preference
matrix. It is sufficient to compare the 6 possibilities, (A B C) = 64, (A C B) = 75, (B A C) = 28, (B C A) = 20,
(C A B) = 67 and (C B A) = 31.

3Tables of p-values for the Concordance coefficient τc are in Appendix C.
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The order between treatments that maximizes the order between patients, corresponds to the order
(A C B), satisfying 73.5 of the 95 preferences contained in the matrix, where 73.5 is the solution of the
Linear Ordering Problem. Therefore, 21.5 = 95-73.5 is the expected number of pairwise disagreements
necessary to order the samples and obtain the order (A C B), that is, the disorder is 21.5 or, equivalently,
the Concordance coefficient is τ = 1 − 21.5/47 = 0.543, a value with a significance greater than 0.05,
p − value > 0.05. In this case, the observed data do not show significant evidence in favor of a
difference in the effectiveness of treatments.

Kruskal-Wallis test with ties:

The treatments A, B and C have average ranks of 7.45, 14 and 8.83, respectively, and the sum of ranks
are RA = 74.5, RB = 70 and RC = 26.5.

The Kruskal-Wallis statistic is given by:

H = −3(n + 1) +
12

n(n + 1) ∑
R2

i
ni

= −3(18 + 1) +
12

18(18 + 1)

(
74.52

10
+

702

5
+

26.52

3

)
= 5.074

If we make the adjustment in the statistic for ties, we get:

H̃ =
H

1 −
∑( t3

i − ti)

N3 − N

=
5.074

1 − (23 − 2) + (23 − 2) + (23 − 2)
183 − 18

= 5.0897

where ti is the number of ties of each value.

In this case, the Kruskal-Wallis test provides the same conclusion as the Concordance test; uncer-
tainty being greater when we have ties.

Concordance test in ConcordanceTest package

The ConcordanceTest R-package allows to perform the hypothesis test for testing whether samples
originate from the same distribution with the function CT_Hypothesis_Test(), which carries out the
calculations by simulation. It is used as follows:

CT_Hypothesis_Test(Sample_List, Num_Sim = 10000, H = 0, verbose = TRUE)

where Sample_List is a list of numeric data vectors with the elements of each sample, Num_Sim is
the number of used simulations (10,000 by default), H specifies whether the Kruskal-Wallis test must
also be done, and verbose is a logical parameter that indicates whether some progress report of the
simulations should be given.

Example 2 (Cont.) We use the ConcordanceTest package to perform the Concordance and Kruskal-Wallis
tests of Example 2. We use 25,000 simulations.

set.seed(12)
A <- c(12,13,15,20,23,28,30,32,40,48)
B <- c(29,31,49,52,54)
C <- c(24,26,44)
Sample_List <- list(A, B, C)
CT_Hypothesis_Test(Sample_List, Num_Sim = 25000, H = 1)

$results
Statistic p-value

Concordance coefficient 0.574 0.04928
Kruskal Wallis 5.600 0.05292

$C_p_value
[1] 0.04928

$H_p_value
[1] 0.05292

The function CT_Hypothesis_Test() provides the value of the statistics together with the p-value
associated with each of them. The result of the Kruskal-Wallis test is only returned if H = 1. Note that
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the approximated p-values obtained by simulation are close to the exact ones, 0.04927 and 0.05223 for
the Concordance coefficient and the Kruskal-Wallis statistic, respectively.

An alternative to the contrast performed with the function CT_Hypothesis_Test() is to obtain the
critical values of our contrast. This can be done with the ConcordanceTest package both in an exact or
approximate way, using the function CT_Critical_Values(). It is used as follows:

CT_Critical_Values(Sample_Sizes, Num_Sim = 10000, H = 0, verbose = TRUE)

where Sample_Sizes is a numeric vector (n1, . . . , nk) containing the number of repetitions of each
element, i.e., the size of each sample in the experiment. Num_Sim is the number of simulations carried
out in order to obtain the probability distribution of the statistics (10,000 by default). If Num_Sim is set
to 0, the critical values are obtained in an exact way. Otherwise they are obtained by simulation. H
is the parameter specifying whether the critical values of the Kruskal-Wallis test must be calculated
and returned, and verbose is a logical parameter that indicates whether some progress report of the
simulations should be given.

The function returns a list with two elements. C_results are the critical values and p-values for a
desired significance levels of 0.1, .05 and .01 of the Concordance coefficient, and H_results are the
critical values and p-values of the Kruskal-Wallis statistic (only returned if H = 1).

Example 2 (Cont.) We show the results of the function CT_Critical_Values() with sample sizes N =
(10, 5, 3) and 25,000 simulations. The results allow us to compare the test statistics with different significance
levels.

set.seed(12)
Sample_Sizes <- c(10,5,3)
CT_Critical_Values(Sample_Sizes, Num_Sim = 25000, H = 1)

$C_results
| disorder | Concordance coefficient | p-value

Sig level .10 23 0.51 0.0954
Sig level .05 20 0.57 0.0492
Sig level .01 14 0.70 0.0096

$H_results
| H Statistic | p-value

Sig level .10 4.55 0.0995
Sig level .05 5.72 0.0497
Sig level .01 7.78 0.0097

To obtain the Concordance coefficient and the Kruskal-Wallis statistic from the result of an experi-
ment, the ConcordanceTest package has the function CT_Coefficient(). This function is useful when
we only want to obtain the value of the statistic to check its significance using statistical tables. The
function CT_Coefficient() is used as follows:

CT_Coefficient(Sample_List, H = 0)

where Sample_List is a list of numeric data vectors with the elements of each sample, and H is defined
as usual.

Example 2 (Cont.) We show the results of the function CT_Coefficient() for the data in Example 2.

A <- c(12,13,15,20,23,28,30,32,40,48)
B <- c(29,31,49,52,54)
C <- c(24,26,44)
Sample_List <- list(A, B, C)
CT_Coefficient(Sample_List, H = 1)

$Sample_Sizes
[1] 10 5 3

$order_elements
[1] 1 1 1 1 1 3 3 1 2 1 2 1 1 3 1 2 2 2

$disorder
[1] 20
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$Concordance_Coefficient
[1] 0.5744681

$H_Statistic
[1] 5.6

The function CT_Coefficient() returns a list with the following elements: Sample_Sizes is a nu-
meric vector with the sample sizes, order_elements is a numeric vector containing the elements order,
disorder is the disorder of the permutation given by order_elements, Concordance_Coefficient is
the value of the Concordance coefficient τc, that is, 1 minus the relative disorder of the permutation
given by order_elements, and H_Statistic is the Kruskal-Wallis statistic (only returned if H = 1).

Note that we can also solve problems with ties (as in Example 3) with the ConcordanceTest
package.

Other functions in the ConcordanceTest package

The graphical visualization of the probability distributions of the Concordance coefficient and the
Kruskal-Wallis statistic can be done with the function CT_Probability_Plot(). It is used as follows:

CT_Probability_Plot(C_freq = NULL, H_freq = NULL)

Using the function CT_Density_Plot() of the ConcordanceTest package, we can make an approxi-
mate representation of the density functions of the statistics, assuming that the probability distributions
represent a sample of a continuous variable. It is used as follows:

CT_Density_Plot(C_freq = NULL, H_freq = NULL)

In both functions, C_freq is the probability distribution of the Concordance coefficient and H_freq
is the probability distribution of the Kruskal-Wallis statistic, obtained exactly or approximately with
the function CT_Distribution(). The function CT_Probability_Plot() can represent both probability
distributions or only one of them (if it only receives the parameter C_freq or H_freq). Equivalently, the
function CT_Density_Plot() can represent both density distributions or only one of them. Appendix
B presents the empirical density probability functions for several experiments, where sample sizes
vary form N = (4, 4) to N = (5, 5, 4, 4, 4, 4, 4).

Example 2 (Cont.) Graphical visualization of the probability distributions and the density distributions of
Example 2 generated by simulation. The first row of Figure 2 compares the probability distribution of the
Concordance coefficient and the Kruskal-Wallis statistic. The second row of Figure 2 shows the probability
density function of the Concordance coefficient (continuous line) and the Kruskal-Wallis statistic (dashed line).
Note that the H statistic has been normalized between 0 and 1.

set.seed(12)
Sample_Sizes <- c(10,5,3)
ProbDistr <- CT_Distribution(Sample_Sizes, Num_Sim = 25000, H = 1)
layout(matrix(c(1,3,2,3), ncol=2))
CT_Probability_Plot(C_freq = ProbDistr$C_freq, H_freq = ProbDistr$H_freq)
CT_Density_Plot(C_freq = ProbDistr$C_freq, H_freq = ProbDistr$H_freq)

As we mentioned in Figure 1, Figure 2 also shows that similar values of the Kruskal-Wallis statistic
present very different probabilities, and this leads to a less smooth function than that presented by the
Concordance coefficient. We can also see that the Concordance coefficient presents a more symmetrical
distribution. This performance is generalized and, therefore, we consider that the Concordance
coefficient is more reliable than the Kruskal-Wallis statistic.

The ConcordanceTest package also contains the function LOP(), which solves the Linear Ordering
Problem from a square data matrix. This function allows to calculate the disorder of a permutation of
elements from the preference matrix induced by that permutation and, therefore, it is necessary for the
calculation of the Concordance coefficient. The function LOP() is used by functions CT_Distribution(),
CT_Hypothesis_Test() and CT_Coefficient(). It is used as follows:

LOP(mat_LOP)

where mat_LOP is the preference matrix defining the Linear Ordering Problem, a numeric square matrix
for which we want to obtain the permutation of rows/columns that maximizes the sum of the elements
above the main diagonal.

The function LOP() returns a list with the following elements: obj_val is the optimal value of the
solution of the Linear Ordering Problem, that is, the sum of the elements above the main diagonal
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Figure 2: Probability distributions (first row) and density distributions (second row) of the Con-
cordance coefficient (τc=1-relative disorder) and the Kruskal-Wallis statistic (H), with sample sizes
N = (10, 5, 3).

under the permutation rows/columns solution, permutation is the solution of the Linear Ordering
Problem, that is, the rows/columns permutation, and permutation_matrix is the optimal permutation
matrix of the Linear Ordering Problem.

Example 2 (Cont.) The matrix of preferences between treatments observed in Example 2 was:

A B C
A

 –
7

11

43
–

13

19
2
–

B
C

If we apply the function LOP() on this preference matrix we obtain the following results:

mat_LOP <- matrix(c(0,7,11,43,0,13,19,2,0), nrow=3)
LOP(mat_LOP)

$obj_val
[1] 75

$permutation
[1] 1 3 2

$permutation_matrix
[,1] [,2] [,3]

[1,] 0 1 1
[2,] 0 0 0
[3,] 0 1 0

As we saw previously, the order between treatments that maximizes the order between patients
corresponds to the order (A C B) (permutation = 1 3 2), satisfying obj_val = 75 of the preferences
contained in the matrix.
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5 Comparison with kruskal.test() function from stats package

The well-known stats package contains, among many other functions, the function kruskal.test()
that performs a Kruskal-Wallis rank sum test. In this section, we compare the results obtained with
the ConcordanceTest package presented in this work and the function kruskal.test(), making use
of the dataset from Hollander and Wolfe (1973) referenced in the kruskal.test() examples.

Example 4 Comparison of kruskal.test() (stats package) and CT_Hypothesis_Test() functions with
25,000 simulations (ConcordanceTest package) using the dataset from Hollander and Wolfe (1973).

## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.

x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
Sample_List <- list(x, y, z)

kruskal.test(Sample_List)

Kruskal-Wallis rank sum test

data: Sample_List
Kruskal-Wallis chi-squared = 0.77143, df = 2, p-value = 0.68

set.seed(12)
CT_Hypothesis_Test(Sample_List, Num_Sim = 25000, H = 1)

results
Statistic p-value

Concordance coefficient 0.188 0.78408
Kruskal-Wallis 0.771 0.71080

$C_p_value
[1] 0.78408

$H_p_value
[1] 0.7108

As can be observed, the value of the Kruskal-Wallis statistic is the same with both functions (0.771).
However, the p-values associated with the statistic differ.

The Kruskal-Wallis statistic follows approximately a χ2 distribution with degrees of freedom
equal to the number of groups minus 1 (Kruskal and Wallis, 1952). For this reason, the function
kruskal.test() uses a χ2 distribution to approximate the p-value (using the function pchisq()).
In the case of the function CT_Hypothesis_Test(), it calculates the p-values using the simulations
performed (25,000 in this example).

The function CT_Distribution() of the ConcordanceTest package allows the probability distri-
bution tables of the Concordance coefficient and Kruskal-Wallis statistic to be computed, and they
can be obtained exactly or by simulation. We can get the exact probability distribution tables and,
consequently, the exact p-values in Example 4 with

CT_Distribution(c(5,4,5), Num_Sim = 0, H = 1)

In Example 4, the exact p-value for the Kruskal-Wallis statistic is 0.71077. Therefore, the difference
between our p-value obtained with 25,000 simulations (0.71080) and the exact one is 0.00003, while the
difference between the p-value approximated by the χ2 distribution (0.68) and the exact one is 0.03077.
Regarding the Concordance coefficient, the exact p-value is 0.78468, hence, the difference between our
p-value obtained with 25,000 simulations (0.78408) and the exact one is 0.0006.

It is worth noting that the function kruskal.test() uses the χ2 distribution to approximate the
p-value regardless of the size of the samples, but Kruskal and Wallis (1952) state that the Kruskal-Wallis
statistic is distributed approximately as a χ2, unless the samples are too small, in which case special

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 39

approximations or exact tables should be provided. On the contrary, the ConcordanceTest package
can always obtain a good approximation of the p-values, regardless of the size of the samples, as long
as a high number of simulations is used.

6 Final remarks and future research

A new measure based on the Kendall-τ distance is presented in this work to estimate the concordance
of different samples. A statistical test to determine when different observations come from the same
distribution is also introduced. A comparison with the classical Kruskal-Wallis test is introduced
to show that both tests differ. As we have shown, the proposed coefficient is more appropriate
and reliable than rank-based methods. This work also describes the R package ConcordanceTest
(Alcaraz et al., 2022), which contains all the functions needed to work with the proposed Concordance
coefficient and allows its comparison with the Kruskal-Wallis statistic.

This work aims to be an introduction of the new concordance measure between samples, but there
still remains much to be done. There is a new problem and further challenges for researchers, for
example: studying the asymptotic distribution of the Concordance coefficient, exploring the possibility
of finding the exact distribution with the help of modern computing, or analyzing the power of the
Concordance test presented in this work, among others.
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1 Appendix A: Results in the experiment with sample sizes N = (2, 2, 2)

Table 6 shows the Concordance coefficient (τc) and Kruskal-Wallis statistic (H) for all possible results
in an experiment with three treatments and two people in each treatment.

dis τc H dis τc H dis τc H
a a b b c c 0 1.0000 4.57 b a a b c c 2 0.6667 3.43 c a a b b c 4 0.3333 1.14

a a b c b c 1 0.8333 3.71 b a a c b c 3 0.5000 2.00 c a a b c b 3 0.5000 2.00

a a b c c b 2 0.6667 3.43 b a a c c b 4 0.3333 1.14 c a a c b b 2 0.6667 3.43

a a c b b c 2 0.6667 3.43 b a b a c c 1 0.8333 3.71 c a b a b c 5 0.1667 0.29

a a c b c b 1 0.8333 3.71 b a b c a c 2 0.6667 2.57 c a b a c b 4 0.3333 0.86

a a c c b b 0 1.0000 4.57 b a b c c a 3 0.5000 2.00 c a b b a c 6 0.0000 0.00

a b a b c c 1 0.8333 3.71 b a c a b c 4 0.3333 0.86 c a b b c a 5 0.1667 0.29

a b a c b c 2 0.6667 2.57 b a c a c b 5 0.1667 0.29 c a b c a b 3 0.5000 1.14

a b a c c b 3 0.5000 2.00 b a c b a c 3 0.5000 1.14 c a b c b a 4 0.3333 0.86

a b b a c c 2 0.6667 3.43 b a c b c a 4 0.3333 0.86 c a c a b b 1 0.8333 3.71

a b b c a c 3 0.5000 2.00 b a c c a b 6 0.0000 0.00 c a c b a b 2 0.6667 2.57

a b b c c a 4 0.3333 1.14 b a c c b a 5 0.1667 0.29 c a c b b a 3 0.5000 2.00

a b c a b c 3 0.5000 1.14 b b a a c c 0 1.0000 4.57 c b a a b c 6 0.0000 0.00

a b c a c b 4 0.3333 0.86 b b a c a c 1 0.8333 3.71 c b a a c b 5 0.1667 0.29

a b c b a c 4 0.3333 0.86 b b a c c a 2 0.6667 3.43 c b a b a c 5 0.1667 0.29

a b c b c a 5 0.1667 0.29 b b c a a c 2 0.6667 3.43 c b a b c a 4 0.3333 0.86

a b c c a b 5 0.1667 0.29 b b c a c a 1 0.8333 3.71 c b a c a b 4 0.3333 0.86

a b c c b a 6 0.0000 0.00 b b c c a a 0 1.0000 4.57 c b a c b a 3 0.5000 1.14

a c a b b c 3 0.5000 2.00 b c a a b c 5 0.1667 0.29 c b b a a c 4 0.3333 1.14

a c a b c b 2 0.6667 2.57 b c a a c b 6 0.0000 0.00 c b b a c a 3 0.5000 2.00

a c a c b b 1 0.8333 3.71 b c a b a c 4 0.3333 0.86 c b b c a a 2 0.6667 3.43

a c b a b c 4 0.3333 0.86 b c a b c a 3 0.5000 1.14 c b c a a b 3 0.5000 2.00

a c b a c b 3 0.5000 1.14 b c a c a b 5 0.1667 0.29 c b c a b a 2 0.6667 2.57

a c b b a c 5 0.1667 0.29 b c a c b a 4 0.3333 0.86 c b c b a a 1 0.8333 3.71

a c b b c a 6 0.0000 0.00 b c b a a c 3 0.5000 2.00 c c a a b b 0 1.0000 4.57

a c b c a b 4 0.3333 0.86 b c b a c a 2 0.6667 2.57 c c a b a b 1 0.8333 3.71

a c b c b a 5 0.1667 0.29 b c b c a a 1 0.8333 3.71 c c a b b a 2 0.6667 3.43

a c c a b b 2 0.6667 3.43 b c c a a b 4 0.3333 1.14 c c b a a b 2 0.6667 3.43

a c c b a b 3 0.5000 2.00 b c c a b a 3 0.5000 2.00 c c b a b a 1 0.8333 3.71

a c c b b a 4 0.3333 1.14 b c c b a a 2 0.6667 3.43 c c b b a a 0 1.0000 4.57

Table 6: Concordance coefficient (τc) and Kruskal-Wallis statistic (H) for all possible results in an
experiment with sample sizes N = (2, 2, 2).
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2 Appendix B: Comparison of distributions

Table 7 shows the probability density function of the Concordance coefficient (continuous lines) and
the Kruskal-Wallis statistic (dashed lines) generated by simulation. Number of simulations 100,000.
Note that the H statistic has been normalized between 0 and 1.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Sample_Sizes=(4,4) Sample_Sizes=(3,3,2) Sample_Sizes=(2,2,2,2)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Sample_Sizes=(5,4) Sample_Sizes=(3,3,3) Sample_Sizes=(3,2,2,2)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Sample_Sizes=(5,5) Sample_Sizes=(4,3,3) Sample_Sizes=(3,3,2,2)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Sample_Sizes=(7,6) Sample_Sizes=(5,5,5) Sample_Sizes=(4,4,4,3)
Continued on next page

Table 7: Empirical density probability functions for several experiments (Concordance coefficient in
continuous lines and Kruskal-Wallis statistic in dashed lines), where sample sizes vary form N = (4, 4)
to N = (5, 5, 4, 4, 4, 4, 4).
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Table 7 – continued from previous page

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6

Sample_Sizes=(10,10) Sample_Sizes=(7,7,6) Sample_Sizes=(5,5,5,5)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Sample_Sizes=(15,15) Sample_Sizes=(10,10,10) Sample_Sizes=(8,8,7,7)

0 0.2 0.4 0.6 0 0.2 0.4 0.6 0.2 0.4 0.6

Sample_Sizes=(6,6,6,6,6,6) Sample_Sizes=(5,5,5,5,5,5) Sample_Sizes=(5,5,4,4,4,4,4)

Table 7: Empirical density probability functions for several experiments (Concordance coefficient in
continuous lines and Kruskal-Wallis statistic in dashed lines), where sample sizes vary form N = (4, 4)
to N = (5, 5, 4, 4, 4, 4, 4).
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3 Appendix C: Concordance coefficient p-values

In order to compute the probability distribution of the Concordance coefficient, the enumeration
of all the permutations of elements from an order is required. Note for example that if we have 4
samples with 6 elements each, N = (6, 6, 6, 6), the number of possible results in the experiment is
24!/6!6!6!6! = 2.15433 · 1020. The total computational time to compute the Concordance coefficient for
all 2.15433 · 1020 possibilities was more than 60 days in an Intel(R) Xeon (R) processor CPU E5-2650 v3
@ 2.30 GHz, 20 cores and RAM 64 GiB. Algorithm 1 presents the recursive function used to evaluate
the Concordance coefficient probability distribution.

Algorithm 1: Algorithm to compute the exact probability distribution function of
the Concordance coefficient τc

Data:
p : ordered array of integers with ties.
n : length of p.
Frequency[0, max(disorder)].

1 Main (p)
2 Permutation(p,0,n);
3 return

4 Permutation (p,s,n):
5 Frequency[Disorder(p)]++;
6 int tmp = 0;
7 if s < n then
8 for i = n − 2 : i ≥ s; i −− do
9 for j = i + 1; j < n; j ++ do

10 if p[i] ̸= p[j] then
11 tmp = p[i]; p[i] = p[j]; p[j] = tmp; Permutation(p,i + 1,n);

12 tmp=p[i];
13 for j = i + 1; j < n; j ++ do
14 p[k] = p[k ++];

15 p[n − 1] = tmp;

16 return

17 Disorder (p)
/* Evaluate the disorder and the Concordance coefficient of permutation p */

18 return

Tables 8, 9 and 10 show the critical values and exact p-values of the Concordance coefficient τc at
desired significance levels of 0.10, 0.05 and 0.01 for k=2, k=3 and k=4 samples, respectively.
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.10 .05 .01
Sample Sizes dis τc p-value dis τc p-value dis τc p-value

4 1
4 2
4 3 0 1.000000 0.057143
4 4 1 0.875000 0.057143 0 1.000000 0.028571
5 1
5 2 0 1.000000 0.095238
5 3 1 0.857143 0.071429 0 1.000000 0.035714
5 4 2 0.800000 0.063492 1 0.900000 0.031746
5 5 4 0.666667 0.095238 2 0.833333 0.031746 0 1.000000 0.007937
6 1
6 2 0 1.000000 0.071429
6 3 2 0.777778 0.095238 1 0.888889 0.047619
6 4 3 0.750000 0.066667 2 0.833333 0.038095 0 1.000000 0.009524
6 5 5 0.666667 0.082251 3 0.800000 0.030303 1 0.933333 0.008658
6 6 7 0.611111 0.093074 5 0.722222 0.041126 2 0.888889 0.008658
7 1
7 2 0 1.000000 0.055556
7 3 2 0.800000 0.066667 1 0.900000 0.033333
7 4 4 0.714286 0.072727 3 0.785714 0.042424 0 1.000000 0.006061
7 5 6 0.647059 0.073232 5 0.705882 0.047980 1 0.941176 0.005051
7 6 8 0.619048 0.073427 6 0.714286 0.034965 3 0.857143 0.008159
7 7 11 0.541667 0.097319 8 0.666667 0.037879 4 0.833333 0.006993
8 1
8 2 1 0.875000 0.088889 0 1.000000 0.044444
8 3 3 0.750000 0.084848 2 0.833333 0.048485
8 4 5 0.687500 0.072727 4 0.750000 0.048485 1 0.937500 0.008081
8 5 8 0.600000 0.093240 6 0.700000 0.045066 2 0.900000 0.006216
8 6 10 0.583333 0.081252 8 0.666667 0.042624 4 0.833333 0.007992
8 7 13 0.535714 0.093862 10 0.642857 0.040093 6 0.785714 0.009324
8 8 15 0.531250 0.082984 13 0.593750 0.049883 7 0.781250 0.006993
9 1
9 2 1 0.888889 0.072727 0 1.000000 0.036364
9 3 3 0.769231 0.063636 2 0.846154 0.036364 0 1.000000 0.009091
9 4 6 0.666667 0.075524 4 0.777778 0.033566 1 0.944444 0.005594
9 5 9 0.590909 0.082917 7 0.681818 0.041958 3 0.863636 0.006993
9 6 12 0.555556 0.087912 10 0.629630 0.049550 5 0.814815 0.007592
9 7 15 0.516129 0.090734 12 0.612903 0.041783 7 0.774194 0.007867
9 8 18 0.500000 0.092719 15 0.583333 0.046401 9 0.750000 0.007898
9 9 21 0.475000 0.093912 17 0.575000 0.039984 11 0.725000 0.007775

10 1
10 2 1 0.900000 0.060606 0 1.000000 0.030303
10 3 4 0.733333 0.076923 3 0.800000 0.048951 0 1.000000 0.006993
10 4 7 0.650000 0.075924 5 0.750000 0.035964 2 0.900000 0.007992
10 5 11 0.560000 0.099234 8 0.680000 0.039960 4 0.840000 0.007992
10 6 14 0.533333 0.093407 11 0.633333 0.041958 6 0.800000 0.007493
10 7 17 0.514286 0.087824 14 0.600000 0.043089 9 0.742857 0.009667
10 8 20 0.500000 0.083139 17 0.575000 0.043421 11 0.725000 0.008547
10 9 24 0.466667 0.094720 20 0.555556 0.043474 13 0.711111 0.007621
10 10 27 0.460000 0.089210 23 0.540000 0.043257 16 0.680000 0.008931
11 1
11 2 1 0.909091 0.051282 0 1.000000 0.025641
11 3 5 0.687500 0.087912 3 0.812500 0.038462 0 1.000000 0.005495
11 4 8 0.636364 0.077656 6 0.727273 0.039560 2 0.909091 0.005861
11 5 12 0.555556 0.089744 9 0.666667 0.038004 5 0.814815 0.008700
11 6 16 0.515152 0.098255 13 0.606061 0.047673 7 0.787879 0.007111
11 7 19 0.500000 0.085344 16 0.578947 0.044118 10 0.736842 0.008296
11 8 23 0.477273 0.090842 19 0.568182 0.040883 13 0.704545 0.009103
11 9 27 0.448980 0.095177 23 0.530612 0.046452 16 0.673469 0.009693
11 10 31 0.436364 0.098618 26 0.527273 0.042964 18 0.672727 0.007950
11 11 34 0.433333 0.087946 30 0.500000 0.047307 21 0.650000 0.008330
12 1
12 2 2 0.833333 0.087912 1 0.916667 0.043956
12 3 5 0.722222 0.070330 4 0.777778 0.048352 1 0.944444 0.008791
12 4 9 0.625000 0.078022 7 0.708333 0.041758 3 0.875000 0.007692
12 5 13 0.566667 0.081771 11 0.633333 0.048481 6 0.800000 0.009373
12 6 17 0.527778 0.083064 14 0.611111 0.041478 9 0.750000 0.009696

Continued on next page

Table 8: Critical values and exact p-values of the Concordance coefficient τc for k=2 samples.
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Table 8 – continued from previous page
Sample Sizes dis τc p-value dis τc p-value dis τc p-value
12 7 21 0.500000 0.083115 18 0.571429 0.044931 12 0.714286 0.009764
12 8 26 0.458333 0.097880 22 0.541667 0.047345 15 0.687500 0.009558
12 9 30 0.444444 0.095451 26 0.518519 0.049073 18 0.666667 0.009288
12 10 34 0.433333 0.093090 29 0.516667 0.042570 21 0.650000 0.008957
12 11 38 0.424242 0.090842 33 0.500000 0.043879 24 0.636364 0.008625
12 12 42 0.416667 0.088734 37 0.486111 0.044902 27 0.625000 0.008293
13 1
13 2 2 0.846154 0.076190 1 0.923077 0.038095
13 3 6 0.684211 0.082143 4 0.789474 0.039286 1 0.947368 0.007143
13 4 10 0.615385 0.078992 8 0.692308 0.044538 3 0.884615 0.005882
13 5 15 0.531250 0.094538 12 0.625000 0.045985 7 0.781250 0.009804
13 6 19 0.512820 0.087424 16 0.589744 0.046218 10 0.743590 0.009214
13 7 24 0.466667 0.096801 20 0.555556 0.045562 13 0.711111 0.008462
13 8 28 0.461538 0.089046 24 0.538462 0.044553 17 0.673077 0.009937
13 9 33 0.431035 0.095557 28 0.517241 0.043376 20 0.655172 0.008910
13 10 37 0.430769 0.088294 33 0.492308 0.049329 24 0.630769 0.009888
13 11 42 0.408451 0.093307 37 0.478873 0.047448 27 0.619718 0.008848
13 12 47 0.397436 0.097642 41 0.474359 0.045711 31 0.602564 0.009556
13 13 51 0.392857 0.090847 45 0.464286 0.044117 34 0.595238 0.008601
14 1
14 2 2 0.857143 0.066667 1 0.928571 0.033333
14 3 7 0.666667 0.091176 5 0.761905 0.047059 1 0.952381 0.005882
14 4 11 0.607143 0.079085 9 0.678571 0.046405 4 0.857143 0.007843
14 5 16 0.542857 0.087031 13 0.628571 0.043688 7 0.800000 0.007224
14 6 21 0.500000 0.091331 17 0.595238 0.040764 11 0.738095 0.008720
14 7 26 0.469388 0.093774 22 0.551020 0.046096 15 0.693878 0.009684
14 8 31 0.446429 0.095018 26 0.535714 0.042149 18 0.678571 0.008125
14 9 36 0.428571 0.095574 31 0.507936 0.045585 22 0.650794 0.008568
14 10 41 0.414286 0.095643 36 0.485714 0.048404 26 0.628571 0.008851
14 11 46 0.402597 0.095427 40 0.480519 0.044228 30 0.610390 0.009022
14 12 51 0.392857 0.095012 45 0.464286 0.046354 34 0.595238 0.009114
14 13 56 0.384615 0.094479 50 0.450549 0.048173 38 0.582418 0.009150
14 14 61 0.377551 0.093868 55 0.438776 0.049736 42 0.571429 0.009146
15 1
15 2 3 0.800000 0.088235 1 0.933333 0.029412
15 3 7 0.681818 0.075980 5 0.772727 0.039216 2 0.909091 0.009804
15 4 12 0.600000 0.079979 10 0.666667 0.048504 5 0.833333 0.009288
15 5 18 0.513514 0.098297 14 0.621622 0.041796 8 0.783784 0.007740
15 6 23 0.488889 0.094833 19 0.577778 0.044855 12 0.733333 0.008367
15 7 28 0.461538 0.091085 24 0.538462 0.046522 16 0.692308 0.008526
15 8 33 0.450000 0.087332 29 0.516667 0.047304 20 0.666667 0.008456
15 9 39 0.417910 0.095507 34 0.492537 0.047584 24 0.641791 0.008255
15 10 44 0.413333 0.090971 39 0.480000 0.047524 29 0.613333 0.009616
15 11 50 0.390244 0.097262 44 0.463415 0.047262 33 0.597561 0.009154
15 12 55 0.388889 0.092610 49 0.455556 0.046866 37 0.588889 0.008710
15 13 61 0.371134 0.097721 54 0.443299 0.046394 42 0.567010 0.009635
15 14 66 0.371429 0.093216 59 0.438095 0.045875 46 0.561905 0.009115
15 15 72 0.357143 0.097526 64 0.428571 0.045334 51 0.544643 0.009875
16 1
16 2 3 0.812500 0.078431 1 0.937500 0.026144
16 3 8 0.666667 0.084623 6 0.750000 0.047472 2 0.916667 0.008256
16 4 14 0.562500 0.099484 11 0.656250 0.049948 5 0.843750 0.007430
16 5 19 0.525000 0.091012 15 0.625000 0.040100 9 0.775000 0.008158
16 6 25 0.479167 0.098026 21 0.562500 0.048731 13 0.729167 0.007988
16 7 30 0.464286 0.088694 26 0.535714 0.046876 18 0.678571 0.009578
16 8 36 0.437500 0.092602 31 0.515625 0.044823 22 0.656250 0.008748
16 9 42 0.416667 0.095397 37 0.486111 0.049384 27 0.625000 0.009643
16 10 48 0.400000 0.097414 42 0.475000 0.046707 31 0.612500 0.008685
16 11 54 0.386364 0.098866 47 0.465909 0.044271 36 0.590909 0.009256
16 12 60 0.375000 0.099904 53 0.447917 0.047276 41 0.572917 0.009707
16 13 65 0.375000 0.091611 59 0.432692 0.049924 45 0.567308 0.008738
16 14 71 0.366071 0.092540 64 0.428571 0.047205 50 0.553571 0.009064
16 15 77 0.358333 0.093259 70 0.416667 0.049381 55 0.541667 0.009331
16 16 83 0.351562 0.093812 75 0.414062 0.046815 60 0.531250 0.009551
17 1
17 2 3 0.823529 0.070175 2 0.882353 0.046784
17 3 9 0.640000 0.092982 6 0.760000 0.040351 2 0.920000 0.007018

Continued on next page

Table 8: Critical values and exact p-values of the Concordance coefficient τc for k=2 samples.
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Table 8 – continued from previous page
Sample Sizes dis τc p-value dis τc p-value dis τc p-value
17 4 15 0.558824 0.098580 11 0.676471 0.040434 6 0.823529 0.009023
17 5 20 0.523810 0.084909 17 0.595238 0.047695 10 0.761905 0.008582
17 6 26 0.490196 0.086501 22 0.568627 0.043766 15 0.705882 0.009867
17 7 33 0.440678 0.099490 28 0.525424 0.047171 19 0.677966 0.008518
17 8 39 0.426471 0.097491 34 0.500000 0.049474 24 0.647059 0.009005
17 9 45 0.407895 0.095246 39 0.486842 0.044566 29 0.618421 0.009248
17 10 51 0.400000 0.092922 45 0.470588 0.045937 34 0.600000 0.009341
17 11 57 0.387097 0.090623 51 0.451613 0.046916 39 0.580645 0.009331
17 12 64 0.372549 0.097270 57 0.441176 0.047604 44 0.568627 0.009257
17 13 70 0.363636 0.094466 63 0.427273 0.048075 49 0.554545 0.009141
17 14 77 0.352941 0.099995 69 0.420168 0.048385 54 0.546219 0.008999
17 15 83 0.346457 0.096996 75 0.409449 0.048571 60 0.527559 0.009973
17 16 89 0.345588 0.094235 81 0.404412 0.048664 65 0.522059 0.009731
17 17 96 0.333333 0.098687 87 0.395833 0.048686 70 0.513889 0.009494
18 1
18 2 4 0.777778 0.094737 2 0.888889 0.042105
18 3 9 0.666667 0.079699 7 0.740741 0.046617 2 0.925926 0.006015
18 4 16 0.555556 0.098154 12 0.666667 0.042379 6 0.833333 0.007382
18 5 22 0.511111 0.094327 18 0.600000 0.045707 11 0.755556 0.008916
18 6 28 0.481481 0.089527 24 0.555556 0.047193 16 0.703704 0.009421
18 7 35 0.444444 0.096701 30 0.523810 0.047418 21 0.666667 0.009445
18 8 41 0.430556 0.090496 36 0.500000 0.046988 26 0.638889 0.009233
18 9 48 0.407407 0.095074 42 0.481481 0.046198 31 0.617284 0.008893
18 10 55 0.388889 0.098664 48 0.466667 0.045221 37 0.588889 0.009955
18 11 61 0.383838 0.092197 55 0.444444 0.049392 42 0.575758 0.009388
18 12 68 0.370370 0.094866 61 0.435185 0.047865 47 0.564815 0.008851
18 13 75 0.358974 0.097070 67 0.427350 0.046401 53 0.547009 0.009505
18 14 82 0.349206 0.098905 74 0.412698 0.049436 58 0.539683 0.008925
18 15 88 0.348148 0.092994 80 0.407407 0.047795 64 0.525926 0.009432
18 16 95 0.340278 0.094552 86 0.402778 0.046272 70 0.513889 0.009880
18 17 102 0.333333 0.095895 93 0.392157 0.048652 75 0.509804 0.009265
18 18 109 0.327160 0.097059 99 0.388889 0.047085 81 0.500000 0.009631
19 1
19 2 4 0.789474 0.085714 2 0.894737 0.038095 0 1.000000 0.009524
19 3 10 0.642857 0.087013 7 0.750000 0.040260 3 0.892857 0.009091
19 4 17 0.552632 0.097346 13 0.657895 0.043817 7 0.815789 0.008583
19 5 23 0.510638 0.088368 19 0.595745 0.043902 12 0.744681 0.009270
19 6 30 0.473684 0.092321 25 0.561404 0.042778 17 0.701754 0.009001
19 7 37 0.439394 0.094199 32 0.515152 0.047622 22 0.666667 0.008489
19 8 44 0.421053 0.094915 38 0.500000 0.044792 28 0.631579 0.009436
19 9 51 0.400000 0.094882 45 0.470588 0.047700 33 0.611765 0.008572
19 10 58 0.389474 0.094392 52 0.452632 0.049957 39 0.589474 0.009074
19 11 65 0.375000 0.093614 58 0.442308 0.046502 45 0.567308 0.009429
19 12 72 0.368421 0.092664 65 0.429825 0.048074 51 0.552632 0.009674
19 13 80 0.349594 0.099454 72 0.414634 0.049346 57 0.536585 0.009835
19 14 87 0.345865 0.097861 78 0.413534 0.046065 63 0.526316 0.009935
19 15 94 0.338028 0.096301 85 0.401408 0.047054 69 0.514085 0.009986
19 16 101 0.335526 0.094785 92 0.394737 0.047883 74 0.513158 0.009009
19 17 109 0.322981 0.099827 99 0.385093 0.048578 81 0.496894 0.009991
19 18 116 0.321637 0.098072 106 0.380117 0.049163 87 0.491228 0.009960
19 19 123 0.316667 0.096409 113 0.372222 0.049656 93 0.483333 0.009914
20 1 0 1.000000 0.095238
20 2 4 0.800000 0.077922 2 0.900000 0.034632 0 1.000000 0.008658
20 3 11 0.633333 0.093732 8 0.733333 0.046302 3 0.900000 0.007905
20 4 18 0.550000 0.096932 14 0.650000 0.045360 8 0.800000 0.009976
20 5 25 0.500000 0.096970 20 0.600000 0.042349 13 0.740000 0.009561
20 6 32 0.466667 0.094905 27 0.550000 0.045858 18 0.700000 0.008652
20 7 39 0.442857 0.091932 34 0.514286 0.047798 24 0.657143 0.009315
20 8 47 0.412500 0.099062 41 0.487500 0.048749 30 0.625000 0.009617
20 9 54 0.400000 0.094682 48 0.466667 0.049091 36 0.600000 0.009687
20 10 62 0.380000 0.099577 55 0.450000 0.049031 42 0.580000 0.009616
20 11 69 0.372727 0.094896 62 0.436364 0.048718 48 0.563636 0.009458
20 12 77 0.358333 0.098543 69 0.425000 0.048240 54 0.550000 0.009249
20 13 84 0.353846 0.093978 76 0.415385 0.047661 60 0.538462 0.009012
20 14 92 0.342857 0.096865 83 0.407143 0.047021 67 0.521429 0.009796
20 15 100 0.333333 0.099377 90 0.400000 0.046348 73 0.513333 0.009462
20 16 107 0.331250 0.094950 98 0.387500 0.049370 79 0.506250 0.009140

Continued on next page
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Table 8 – continued from previous page
Sample Sizes dis τc p-value dis τc p-value dis τc p-value
20 17 115 0.323529 0.097069 105 0.382353 0.048471 86 0.494118 0.009721
20 18 123 0.316667 0.098957 112 0.377778 0.047600 92 0.488889 0.009363
20 19 130 0.315789 0.094835 119 0.373684 0.046761 99 0.478947 0.009856
20 20 138 0.310000 0.096500 127 0.365000 0.049090 105 0.475000 0.009484

Table 8: Critical values and exact p-values of the Concordance coefficient τc for k=2 samples.

.10 .05 .01
Sample Sizes dis τc p-value dis τc p-value dis τc p-value
2 1 1
2 2 1
2 2 2 0 1.000000 0.066667
3 1 1
3 2 1
3 2 2 1 0.875000 0.085714 0 1.000000 0.028571
3 3 1 0 1.000000 0.042857 0 1.000000 0.042857
3 3 2 2 0.800000 0.085714 1 0.900000 0.032143
3 3 3 3 0.769231 0.064286 2 0.846154 0.028571 0 1.000000 0.003571
4 1 1
4 2 1 0 1.000000 0.057143
4 2 2 1 0.900000 0.042857 1 0.900000 0.042857
4 3 1 1 0.888889 0.064286 0 1.000000 0.021429
4 3 2 3 0.769231 0.077778 2 0.846154 0.038095 0 1.000000 0.004762
4 3 3 5 0.687500 0.090000 3 0.812500 0.025714 1 0.937500 0.004286
4 4 1 2 0.833333 0.060317 1 0.916667 0.028571 0 1.000000 0.009524
4 4 2 4 0.750000 0.060952 3 0.812500 0.032381 1 0.937500 0.005714
4 4 3 7 0.650000 0.095065 5 0.750000 0.035325 3 0.850000 0.009351
4 4 4 9 0.625000 0.086580 7 0.708333 0.036883 4 0.833333 0.006580
5 1 1
5 2 1 1 0.875000 0.095238 0 1.000000 0.035714
5 2 2 2 0.833333 0.058201 1 0.916667 0.023810 0 1.000000 0.007937
5 3 1 2 0.818182 0.075397 1 0.909091 0.035714
5 3 2 4 0.733333 0.072222 3 0.800000 0.038889 1 0.933333 0.007143
5 3 3 6 0.684211 0.070130 5 0.736842 0.041558 2 0.894737 0.005195
5 4 1 4 0.714286 0.098413 2 0.857143 0.031746 0 1.000000 0.004762
5 4 2 6 0.684211 0.079654 5 0.736842 0.049062 2 0.894737 0.006926
5 4 3 9 0.608696 0.098341 7 0.695652 0.042641 4 0.826087 0.008009
5 4 4 11 0.607143 0.079343 9 0.678571 0.037163 6 0.785714 0.008658
5 5 1 5 0.705882 0.077201 4 0.764706 0.047619 1 0.941176 0.006494
5 5 2 8 0.636364 0.084416 6 0.727273 0.035714 3 0.863636 0.006133
5 5 3 11 0.592593 0.089022 9 0.666667 0.042374 5 0.814815 0.005828
5 5 4 14 0.562500 0.089498 12 0.625000 0.047072 8 0.750000 0.009039
5 5 5 17 0.540541 0.088887 14 0.621622 0.036630 10 0.729730 0.008016
6 1 1
6 2 1 1 0.900000 0.063492 0 1.000000 0.023810
6 2 2 3 0.785714 0.066667 2 0.857143 0.034921 0 1.000000 0.004762
6 3 1 3 0.769231 0.083333 2 0.846154 0.045238 0 1.000000 0.007143
6 3 2 5 0.722222 0.067532 4 0.777778 0.039394 1 0.944444 0.003896
6 3 3 8 0.636364 0.087554 6 0.727273 0.035390 3 0.863636 0.005844
6 4 1 5 0.705882 0.089177 3 0.823529 0.032035 1 0.941176 0.007792
6 4 2 8 0.636364 0.096537 6 0.727273 0.041414 3 0.863636 0.007359
6 4 3 11 0.592593 0.099933 9 0.666667 0.048119 5 0.814815 0.006893
6 4 4 14 0.562500 0.099310 11 0.656250 0.036934 7 0.781250 0.006394
6 5 1 7 0.650000 0.094156 5 0.750000 0.040043 2 0.900000 0.007576
6 5 2 10 0.615385 0.087468 8 0.692308 0.041570 4 0.846154 0.005661
6 5 3 13 0.580645 0.081205 11 0.645161 0.041625 7 0.774194 0.007635
6 5 4 17 0.540541 0.097296 14 0.621622 0.040721 10 0.729730 0.009238
6 5 5 20 0.523810 0.087370 17 0.595238 0.039446 12 0.714286 0.007222
6 6 1 9 0.625000 0.095571 7 0.708333 0.046287 3 0.875000 0.006660
6 6 2 12 0.600000 0.080039 10 0.666667 0.041173 6 0.800000 0.007588
6 6 3 16 0.555556 0.089258 13 0.638889 0.036473 9 0.750000 0.008044
6 6 4 20 0.523810 0.094960 17 0.595238 0.043424 12 0.714286 0.008249
6 6 5 24 0.500000 0.098268 21 0.562500 0.049106 15 0.687500 0.008321
6 6 6 27 0.500000 0.082204 24 0.555556 0.042636 18 0.666667 0.008323
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Table 9 – continued from previous page
Sample Sizes dis τc p-value dis τc p-value dis τc p-value
7 1 1 0 1.000000 0.083333
7 2 1 2 0.818182 0.094444 1 0.909091 0.044444
7 2 2 4 0.750000 0.076768 3 0.812500 0.042424 1 0.937500 0.009091
7 3 1 4 0.733333 0.092424 2 0.866667 0.028788 0 1.000000 0.004545
7 3 2 7 0.650000 0.098737 5 0.750000 0.039394 2 0.900000 0.006061
7 3 3 9 0.640000 0.071270 8 0.680000 0.047669 4 0.840000 0.006294
7 4 1 6 0.684211 0.083333 4 0.789474 0.033333 1 0.947368 0.004545
7 4 2 9 0.640000 0.078788 7 0.720000 0.035664 4 0.840000 0.007692
7 4 3 12 0.600000 0.074026 10 0.666667 0.036680 6 0.800000 0.006061
7 4 4 16 0.555556 0.090541 13 0.638889 0.036572 9 0.750000 0.007779
7 5 1 8 0.652174 0.077506 6 0.739130 0.035354 3 0.869565 0.007770
7 5 2 12 0.586207 0.089494 10 0.655172 0.046481 6 0.793103 0.008658
7 5 3 16 0.542857 0.098957 13 0.628571 0.040904 9 0.742857 0.009108
7 5 4 19 0.536585 0.081531 17 0.585366 0.048012 12 0.707317 0.009257
7 5 5 23 0.510638 0.085929 20 0.574468 0.041698 15 0.680851 0.009291
7 6 1 11 0.592593 0.096820 8 0.703704 0.035881 5 0.814815 0.009907
7 6 2 15 0.558824 0.097303 12 0.647059 0.040593 8 0.764706 0.009135
7 6 3 19 0.525000 0.096083 16 0.600000 0.043746 11 0.725000 0.008244
7 6 4 23 0.510638 0.092608 20 0.574468 0.045458 14 0.702128 0.007419
7 6 5 27 0.490566 0.088632 24 0.547170 0.046362 18 0.660377 0.009231
7 6 6 31 0.483333 0.084562 28 0.533333 0.046592 21 0.650000 0.008248
7 7 1 13 0.580645 0.088462 11 0.645161 0.049728 6 0.806452 0.007653
7 7 2 17 0.552632 0.081371 15 0.605263 0.048067 10 0.736842 0.009368
7 7 3 22 0.511111 0.093660 19 0.577778 0.045940 13 0.711111 0.007505
7 7 4 26 0.500000 0.083679 23 0.557692 0.043172 17 0.673077 0.008389
7 7 5 31 0.474576 0.090678 27 0.542373 0.040628 21 0.644068 0.009101
7 7 6 36 0.454545 0.095828 32 0.515152 0.046525 25 0.621212 0.009656
7 7 7 40 0.452055 0.085655 36 0.506849 0.043267 28 0.616438 0.007945
8 1 1 0 1.000000 0.066667
8 2 1 2 0.846154 0.068687 1 0.923077 0.032323
8 2 2 5 0.722222 0.083502 3 0.833333 0.028283 1 0.944444 0.006061
8 3 1 5 0.705882 0.097980 3 0.823529 0.036364 1 0.941176 0.009091
8 3 2 8 0.652174 0.091064 6 0.739130 0.039627 3 0.869565 0.007615
8 3 3 11 0.607143 0.084582 9 0.678571 0.041026 5 0.821429 0.006394
8 4 1 7 0.681818 0.077389 5 0.772727 0.033877 2 0.909091 0.006216
8 4 2 11 0.607143 0.091553 9 0.678571 0.046309 5 0.821429 0.007681
8 4 3 14 0.588235 0.076546 12 0.647059 0.040884 8 0.764706 0.008560
8 4 4 18 0.550000 0.083417 16 0.600000 0.048629 11 0.725000 0.008991
8 5 1 10 0.615385 0.089355 8 0.692308 0.045732 4 0.846154 0.007881
8 5 2 14 0.575758 0.090768 11 0.666667 0.036408 7 0.787879 0.007489
8 5 3 18 0.538462 0.090415 15 0.615385 0.040041 10 0.743590 0.006990
8 5 4 22 0.521739 0.087620 19 0.586957 0.042130 14 0.695652 0.009212
8 5 5 26 0.500000 0.084260 23 0.557692 0.043404 17 0.673077 0.008280
8 6 1 13 0.580645 0.096881 10 0.677419 0.040004 6 0.806452 0.008614
8 6 2 17 0.552632 0.089066 14 0.631579 0.039832 9 0.763158 0.007065
8 6 3 21 0.533333 0.081197 18 0.600000 0.038672 13 0.711111 0.008335
8 6 4 26 0.500000 0.090348 23 0.557692 0.046990 17 0.673077 0.009265
8 6 5 31 0.474576 0.097034 27 0.542373 0.043907 21 0.644068 0.009983
8 6 6 35 0.469697 0.086285 32 0.515152 0.049960 24 0.636364 0.008137
8 7 1 15 0.571429 0.081138 13 0.628571 0.047786 8 0.771429 0.009091
8 7 2 20 0.534884 0.087307 17 0.604651 0.042356 12 0.720930 0.009450
8 7 3 25 0.500000 0.091071 22 0.560000 0.047473 16 0.680000 0.009437
8 7 4 30 0.482759 0.092169 26 0.551724 0.041134 20 0.655172 0.009202
8 7 5 35 0.461538 0.091936 31 0.523077 0.044101 24 0.630769 0.008929
8 7 6 40 0.452055 0.090824 36 0.506849 0.046234 28 0.616438 0.008639
8 7 7 45 0.437500 0.089477 41 0.487500 0.047863 32 0.600000 0.008348
8 8 1 18 0.550000 0.086668 15 0.625000 0.042022 10 0.750000 0.009297
8 8 2 23 0.520833 0.085381 20 0.583333 0.044213 14 0.708333 0.008570
8 8 3 29 0.482143 0.099335 25 0.553571 0.044954 18 0.678571 0.007749
8 8 4 34 0.468750 0.093356 30 0.531250 0.044695 23 0.640625 0.009074
8 8 5 39 0.458333 0.087277 35 0.513889 0.044004 27 0.625000 0.008054
8 8 6 45 0.437500 0.094509 40 0.500000 0.043013 32 0.600000 0.009033
8 8 7 50 0.431818 0.087903 46 0.477273 0.049055 37 0.579545 0.009894
8 8 8 56 0.416667 0.093322 51 0.468750 0.047287 41 0.572917 0.008809
9 1 1 0 1.000000 0.054545
9 2 1 3 0.785714 0.093939 1 0.928571 0.024242 0 1.000000 0.009091
9 2 2 6 0.700000 0.090443 4 0.800000 0.035431 1 0.950000 0.004196
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Table 9 – continued from previous page
Sample Sizes dis τc p-value dis τc p-value dis τc p-value
9 3 1 5 0.736842 0.069231 4 0.789474 0.044056 1 0.947368 0.006294
9 3 2 9 0.640000 0.084815 7 0.720000 0.039461 4 0.840000 0.009091
9 3 3 13 0.580645 0.096883 10 0.677419 0.036064 6 0.806452 0.006533
9 4 1 8 0.666667 0.073327 6 0.750000 0.034565 3 0.875000 0.007592
9 4 2 12 0.612903 0.077416 10 0.677419 0.040573 6 0.806452 0.007752
9 4 3 16 0.567568 0.078701 14 0.621622 0.044560 9 0.756757 0.007438
9 4 4 21 0.522727 0.097718 18 0.590909 0.046871 12 0.727273 0.007022
9 5 1 11 0.620690 0.075658 9 0.689655 0.040160 5 0.827586 0.007925
9 5 2 16 0.555556 0.091767 13 0.638889 0.040152 8 0.777778 0.006618
9 5 3 20 0.534884 0.083722 17 0.604651 0.039249 12 0.720930 0.008063
9 5 4 25 0.500000 0.092920 22 0.560000 0.047915 16 0.680000 0.009130
9 5 5 30 0.473684 0.099791 26 0.543860 0.044813 20 0.649123 0.009980
9 6 1 15 0.558824 0.097278 12 0.647059 0.043681 7 0.794118 0.007617
9 6 2 19 0.547619 0.082476 16 0.619048 0.039079 11 0.738095 0.008189
9 6 3 24 0.510204 0.086697 21 0.571429 0.044388 15 0.693878 0.008372
9 6 4 29 0.491228 0.088247 26 0.543860 0.048185 19 0.666667 0.008313
9 6 5 34 0.468750 0.088358 30 0.531250 0.041791 23 0.640625 0.008178
9 6 6 39 0.458333 0.087572 35 0.513889 0.044093 27 0.625000 0.008005
9 7 1 18 0.538462 0.094755 15 0.615385 0.046318 9 0.769231 0.007240
9 7 2 23 0.510638 0.092339 20 0.574468 0.048129 14 0.702128 0.009452
9 7 3 28 0.490909 0.088931 25 0.545455 0.048734 18 0.672727 0.008511
9 7 4 34 0.460317 0.099728 30 0.523810 0.048091 23 0.634921 0.009883
9 7 5 39 0.450704 0.092938 35 0.507042 0.047167 27 0.619718 0.008744
9 7 6 45 0.430380 0.099994 40 0.493671 0.045852 32 0.594937 0.009751
9 7 7 50 0.425287 0.092778 45 0.482759 0.044526 36 0.586207 0.008675
9 8 1 21 0.522727 0.091613 18 0.590909 0.047877 12 0.727273 0.009402
9 8 2 26 0.509434 0.083606 23 0.566038 0.045645 16 0.698113 0.007832
9 8 3 32 0.475410 0.090200 28 0.540984 0.042843 21 0.655738 0.008515
9 8 4 38 0.457143 0.094142 34 0.514286 0.047762 26 0.628571 0.008914
9 8 5 44 0.435897 0.096461 39 0.500000 0.043813 31 0.602564 0.009177
9 8 6 50 0.425287 0.097552 45 0.482759 0.047178 36 0.586207 0.009342
9 8 7 56 0.410526 0.098037 51 0.463158 0.049980 41 0.568421 0.009437
9 8 8 62 0.403846 0.098020 56 0.461538 0.045624 46 0.557692 0.009473
9 9 1 24 0.510204 0.089203 21 0.571429 0.049174 14 0.714286 0.008606
9 9 2 30 0.482759 0.091114 26 0.551724 0.043471 19 0.672414 0.008661
9 9 3 36 0.462687 0.091244 32 0.522388 0.046073 24 0.641791 0.008468
9 9 4 42 0.447368 0.089294 38 0.500000 0.047313 29 0.618421 0.008104
9 9 5 49 0.423529 0.099468 44 0.482353 0.048059 35 0.588235 0.009520
9 9 6 55 0.414894 0.095225 50 0.468085 0.048205 40 0.574468 0.008960
9 9 7 61 0.407767 0.091262 56 0.456311 0.048100 45 0.563107 0.008460
9 9 8 68 0.392857 0.097772 62 0.446429 0.047751 51 0.544643 0.009469
9 9 9 74 0.388430 0.093398 68 0.438017 0.047321 56 0.537190 0.008904

10 1 1 0 1.000000 0.045455 0 1.000000 0.045455
10 2 1 3 0.812500 0.072261 2 0.875000 0.039627 0 1.000000 0.006993
10 2 2 7 0.681818 0.095238 5 0.772727 0.041292 2 0.909091 0.007326
10 3 1 6 0.714286 0.074925 5 0.761905 0.049950 2 0.904762 0.009491
10 3 2 10 0.642857 0.079853 8 0.714286 0.039361 4 0.857143 0.006061
10 3 3 14 0.588235 0.082105 12 0.647059 0.044843 7 0.794118 0.006581
10 4 1 10 0.629630 0.094439 8 0.703704 0.049817 4 0.851852 0.009058
10 4 2 14 0.588235 0.087796 12 0.647059 0.049534 7 0.794118 0.007709
10 4 3 18 0.560976 0.080364 16 0.609756 0.047764 11 0.731707 0.009629
10 4 4 23 0.520833 0.090451 20 0.583333 0.045339 14 0.708333 0.007948
10 5 1 13 0.593750 0.085331 11 0.656250 0.048701 6 0.812500 0.007992
10 5 2 18 0.550000 0.092437 15 0.625000 0.043398 10 0.750000 0.008731
10 5 3 23 0.510638 0.096662 20 0.574468 0.049272 14 0.702128 0.009033
10 5 4 28 0.490909 0.097473 24 0.563636 0.042664 18 0.672727 0.009027
10 5 5 33 0.467742 0.096851 29 0.532258 0.045909 22 0.645161 0.008935
10 6 1 17 0.552632 0.096918 14 0.631579 0.046615 9 0.763158 0.009887
10 6 2 22 0.521739 0.095008 19 0.586957 0.048928 13 0.717391 0.009192
10 6 3 27 0.500000 0.091298 24 0.555556 0.049602 17 0.685185 0.008356
10 6 4 32 0.483871 0.086315 29 0.532258 0.049122 22 0.645161 0.009852
10 6 5 38 0.457143 0.095262 34 0.514286 0.048127 26 0.628571 0.008761
10 6 6 43 0.448718 0.088541 39 0.500000 0.046806 31 0.602564 0.009842
10 7 1 20 0.534884 0.087281 17 0.604651 0.044752 11 0.744186 0.008261
10 7 2 26 0.500000 0.096557 22 0.576923 0.042974 16 0.692308 0.009396
10 7 3 31 0.483333 0.086789 28 0.533333 0.049625 20 0.666667 0.007738
10 7 4 37 0.463768 0.090962 33 0.521739 0.045577 25 0.637681 0.008213
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Table 9 – continued from previous page
Sample Sizes dis τc p-value dis τc p-value dis τc p-value
10 7 5 43 0.441558 0.093529 39 0.493506 0.049803 30 0.610390 0.008552
10 7 6 49 0.430233 0.094802 44 0.488372 0.045397 35 0.593023 0.008781
10 7 7 55 0.414894 0.095476 50 0.468085 0.048288 40 0.574468 0.008936
10 8 1 24 0.510204 0.095314 20 0.591837 0.042629 14 0.714286 0.009362
10 8 2 30 0.482759 0.097293 26 0.551724 0.046727 19 0.672414 0.009415
10 8 3 36 0.462687 0.096898 32 0.522388 0.049214 24 0.641791 0.009154
10 8 4 42 0.447368 0.094647 37 0.513158 0.042505 29 0.618421 0.008738
10 8 5 48 0.435294 0.091545 43 0.494118 0.043502 34 0.600000 0.008310
10 8 6 54 0.425532 0.088149 49 0.478723 0.043991 40 0.574468 0.009585
10 8 7 61 0.407767 0.095600 55 0.466019 0.044145 45 0.563107 0.009021
10 8 8 67 0.401786 0.091405 61 0.455357 0.044080 50 0.553571 0.008511
10 9 1 27 0.500000 0.086557 24 0.555556 0.049882 16 0.703704 0.007882
10 9 2 34 0.468750 0.097666 30 0.531250 0.049878 22 0.656250 0.009353
10 9 3 40 0.452055 0.091779 36 0.506849 0.048772 27 0.630137 0.008369
10 9 4 47 0.433735 0.097637 42 0.493976 0.046800 33 0.602410 0.009150
10 9 5 53 0.423913 0.089682 48 0.478261 0.044758 39 0.576087 0.009781
10 9 6 60 0.411765 0.092986 55 0.460784 0.048988 44 0.568627 0.008606
10 9 7 67 0.396396 0.095498 61 0.450450 0.046335 50 0.549550 0.009061
10 9 8 74 0.388430 0.097309 68 0.438017 0.049566 56 0.537190 0.009435
10 9 9 81 0.376923 0.098701 74 0.430769 0.046792 62 0.523077 0.009745
10 10 1 31 0.483333 0.092777 27 0.550000 0.047070 19 0.683333 0.008615
10 10 2 38 0.457143 0.097689 33 0.528571 0.044350 25 0.642857 0.009229
10 10 3 45 0.437500 0.099986 40 0.500000 0.048153 31 0.612500 0.009472
10 10 4 51 0.433333 0.088023 46 0.488889 0.043698 37 0.588889 0.009472
10 10 5 59 0.410000 0.098994 53 0.470000 0.045715 43 0.570000 0.009375
10 10 6 66 0.400000 0.097217 60 0.454545 0.047170 49 0.554545 0.009231
10 10 7 73 0.391667 0.095144 67 0.441667 0.048198 55 0.541667 0.009064
10 10 8 80 0.384615 0.092953 74 0.430769 0.048911 61 0.530769 0.008881
10 10 9 88 0.371429 0.099700 81 0.421429 0.049390 68 0.514286 0.009996
10 10 10 95 0.366667 0.096934 88 0.413333 0.049695 74 0.506667 0.009709

Table 9: Critical values and exact p-values of the Concordance coefficient τc for k=3 samples.

.10 .05 .01
Sample Sizes dis τc p-value dis τc p-value dis τc p-value
2 2 1 1
2 2 2 1 0 1.000000 0.038095 0 1.000000 0.038095
2 2 2 2 2 0.833333 0.095238 1 0.916667 0.038095 0 1.000000 0.009524
3 1 1 1
3 2 1 1 0 1.000000 0.057143
3 2 2 1 1 0.909091 0.050000 0 1.000000 0.014286
3 2 2 2 3 0.800000 0.077778 2 0.866667 0.036508 0 1.000000 0.003175
3 3 1 1 1 0.888889 0.075000 0 1.000000 0.021429
3 3 2 1 3 0.785714 0.097619 2 0.857143 0.046429 0 1.000000 0.004762
3 3 2 2 5 0.722222 0.097143 3 0.833333 0.027619 1 0.944444 0.003810
3 3 3 1 4 0.750000 0.069286 3 0.812500 0.034286 1 0.937500 0.005714
3 3 3 2 7 0.681818 0.096883 5 0.772727 0.034805 3 0.863636 0.008442
3 3 3 3 9 0.640000 0.084091 7 0.720000 0.034221 4 0.840000 0.005325
4 1 1 1
4 2 1 1 1 0.900000 0.085714 0 1.000000 0.028571
4 2 2 1 2 0.857143 0.055556 1 0.928571 0.022222 0 1.000000 0.006349
4 2 2 2 4 0.777778 0.064444 3 0.833333 0.033016 1 0.944444 0.005079
4 3 1 1 2 0.833333 0.076190 1 0.916667 0.033333 0 1.000000 0.009524
4 3 2 1 4 0.764706 0.077619 3 0.823529 0.041429 1 0.941176 0.007143
4 3 2 2 6 0.727273 0.068312 5 0.772727 0.040173 2 0.909091 0.004329
4 3 3 1 6 0.714286 0.081299 5 0.761905 0.048571 2 0.904762 0.005584
4 3 3 2 9 0.653846 0.092309 7 0.730769 0.038615 4 0.846154 0.006342
4 3 3 3 11 0.645161 0.071618 10 0.677419 0.048871 6 0.806452 0.006678
4 4 1 1 3 0.812500 0.060952 2 0.875000 0.032381 0 1.000000 0.003810
4 4 2 1 6 0.714286 0.089004 4 0.809524 0.031169 2 0.904762 0.007100
4 4 2 2 8 0.692308 0.068283 7 0.730769 0.043579 4 0.846154 0.007734
4 4 3 1 8 0.680000 0.078672 6 0.760000 0.030996 4 0.840000 0.009264
4 4 3 2 11 0.645161 0.078326 9 0.709677 0.035791 6 0.806452 0.007792
4 4 3 3 14 0.611111 0.077325 12 0.666667 0.038965 8 0.777778 0.006591

Continued on next page

Table 10: Critical values and exact p-values of the Concordance coefficient τc for k=4 samples.
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Table 10 – continued from previous page
Sample Sizes dis τc p-value dis τc p-value dis τc p-value
4 4 4 1 11 0.633333 0.095984 9 0.700000 0.045594 5 0.833333 0.005808
4 4 4 2 14 0.611111 0.084038 12 0.666667 0.043035 8 0.777778 0.007570
4 4 4 3 18 0.571429 0.097366 15 0.642857 0.040186 11 0.738095 0.008775
4 4 4 4 21 0.562500 0.083959 19 0.604167 0.049523 14 0.708333 0.009514
5 1 1 1 0 1.000000 0.071429
5 2 1 1 1 0.909091 0.047619 1 0.909091 0.047619
5 2 2 1 3 0.812500 0.058730 2 0.875000 0.028571 0 1.000000 0.003175
5 2 2 2 6 0.714286 0.091631 4 0.809524 0.030592 2 0.904762 0.006638
5 3 1 1 3 0.785714 0.076190 2 0.857143 0.040476 0 1.000000 0.004762
5 3 2 1 5 0.750000 0.065584 4 0.800000 0.037662 2 0.900000 0.008874
5 3 2 2 8 0.680000 0.079221 6 0.760000 0.031025 4 0.840000 0.009235
5 3 3 1 8 0.652174 0.092388 6 0.739130 0.036905 3 0.869565 0.005519
5 3 3 2 11 0.633333 0.089419 9 0.700000 0.041492 6 0.800000 0.009232
5 3 3 3 14 0.588235 0.087484 12 0.647059 0.044634 8 0.764706 0.007746
5 4 1 1 5 0.722222 0.087446 3 0.833333 0.030303 1 0.944444 0.006061
5 4 2 1 8 0.666667 0.099279 6 0.750000 0.041631 3 0.875000 0.006854
5 4 2 2 11 0.633333 0.096947 9 0.700000 0.045865 5 0.833333 0.005972
5 4 3 1 10 0.655172 0.077312 8 0.724138 0.034466 5 0.827586 0.007126
5 4 3 2 14 0.600000 0.093723 12 0.657143 0.048620 8 0.771429 0.008841
5 4 3 3 17 0.585366 0.082249 15 0.634146 0.045133 10 0.756098 0.006435
5 4 4 1 13 0.617647 0.082489 11 0.676471 0.041660 7 0.794118 0.006974
5 4 4 2 17 0.585366 0.088025 15 0.634146 0.048942 10 0.756098 0.007269
5 4 4 3 21 0.553191 0.091439 18 0.617021 0.040930 13 0.723404 0.007254
5 4 4 4 25 0.537037 0.091748 22 0.592593 0.044712 17 0.685185 0.009977
5 5 1 1 7 0.666667 0.098966 5 0.761905 0.041126 2 0.904762 0.006854
5 5 2 1 10 0.642857 0.094933 8 0.714286 0.044483 4 0.857143 0.005606
5 5 2 2 13 0.617647 0.083004 11 0.676471 0.041903 7 0.794118 0.007191
5 5 3 1 13 0.593750 0.093169 11 0.656250 0.047627 7 0.781250 0.008432
5 5 3 2 17 0.575000 0.097342 14 0.650000 0.039675 10 0.750000 0.008422
5 5 3 3 20 0.555556 0.078592 18 0.600000 0.045644 13 0.711111 0.008304
5 5 4 1 16 0.589744 0.086815 14 0.641026 0.047844 9 0.769231 0.006849
5 5 4 2 20 0.565217 0.083163 18 0.608696 0.048813 13 0.717391 0.009174
5 5 4 3 25 0.528302 0.099365 22 0.584906 0.048982 16 0.698113 0.007882
5 5 4 4 29 0.516667 0.091307 26 0.566667 0.047580 20 0.666667 0.009275
5 5 5 1 19 0.558140 0.082239 17 0.604651 0.047987 12 0.720930 0.008799
5 5 5 2 24 0.538462 0.091195 21 0.596154 0.044209 16 0.692308 0.009718
5 5 5 3 29 0.500000 0.098583 25 0.568966 0.040931 19 0.672414 0.007511
5 5 5 4 33 0.507463 0.084597 30 0.552239 0.046171 23 0.656716 0.007853
5 5 5 5 38 0.479452 0.088106 34 0.534247 0.041674 27 0.630137 0.008096
6 1 1 1 0 1.000000 0.047619 0 1.000000 0.047619
6 2 1 1 2 0.857143 0.066667 1 0.928571 0.028571 0 1.000000 0.009524
6 2 2 1 4 0.789474 0.060462 3 0.842105 0.032468 1 0.947368 0.006061
6 2 2 2 7 0.708333 0.077201 6 0.750000 0.048485 3 0.875000 0.007504
6 3 1 1 4 0.764706 0.075325 3 0.823529 0.042857 1 0.941176 0.009091
6 3 2 1 7 0.695652 0.088095 5 0.782609 0.033983 3 0.869565 0.009848
6 3 2 2 10 0.655172 0.087568 8 0.724138 0.039494 5 0.827586 0.008225
6 3 3 1 10 0.642857 0.099459 8 0.714286 0.045538 4 0.857143 0.005370
6 3 3 2 13 0.617647 0.085707 11 0.676471 0.043064 7 0.794118 0.007064
6 3 3 3 16 0.600000 0.075737 14 0.650000 0.040621 10 0.750000 0.008509
6 4 1 1 6 0.727273 0.073737 5 0.772727 0.046609 2 0.909091 0.007792
6 4 2 1 9 0.678571 0.074026 7 0.750000 0.032534 4 0.857143 0.006460
6 4 2 2 13 0.617647 0.092254 11 0.676471 0.047099 7 0.794118 0.008249
6 4 3 1 12 0.636364 0.074599 10 0.696970 0.036371 7 0.787879 0.009576
6 4 3 2 16 0.600000 0.080891 14 0.650000 0.043967 10 0.750000 0.009549
6 4 3 3 20 0.565217 0.085039 18 0.608696 0.049821 13 0.717391 0.009305
6 4 4 1 16 0.589744 0.094578 13 0.666667 0.037925 9 0.769231 0.007777
6 4 4 2 20 0.565217 0.090522 17 0.630435 0.040149 12 0.739130 0.006927
6 4 4 3 24 0.547170 0.085709 21 0.603774 0.040995 16 0.698113 0.008781
6 4 4 4 29 0.516667 0.097941 25 0.583333 0.040644 19 0.683333 0.007460
6 5 1 1 8 0.680000 0.073704 7 0.720000 0.049728 3 0.880000 0.006494
6 5 2 1 12 0.625000 0.089767 10 0.687500 0.045692 6 0.812500 0.007992
6 5 2 2 16 0.589744 0.095524 13 0.666667 0.038420 9 0.769231 0.008052
6 5 3 1 15 0.605263 0.079615 13 0.657895 0.042893 9 0.763158 0.009229
6 5 3 2 20 0.555556 0.098821 17 0.622222 0.044475 12 0.733333 0.007945
6 5 3 3 24 0.538462 0.093325 21 0.596154 0.045191 16 0.692308 0.009911
6 5 4 1 19 0.568182 0.088703 16 0.636364 0.038969 12 0.727273 0.009856
6 5 4 2 24 0.538462 0.098090 21 0.596154 0.048090 15 0.711538 0.007604

Continued on next page

Table 10: Critical values and exact p-values of the Concordance coefficient τc for k=4 samples.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 53

Table 10 – continued from previous page
Sample Sizes dis τc p-value dis τc p-value dis τc p-value
6 5 4 3 28 0.525424 0.085898 25 0.576271 0.044131 19 0.677966 0.008293
6 5 4 4 33 0.507463 0.090101 30 0.552239 0.049583 23 0.656716 0.008625
6 5 5 1 23 0.540000 0.096573 20 0.600000 0.047042 14 0.720000 0.007284
6 5 5 2 28 0.517241 0.097004 24 0.586207 0.040080 18 0.689655 0.007270
6 5 5 3 33 0.500000 0.096429 29 0.560606 0.043157 23 0.651515 0.009514
6 5 5 4 38 0.486486 0.093108 34 0.540541 0.044474 27 0.635135 0.008812
6 5 5 5 43 0.475610 0.090015 39 0.524390 0.045390 31 0.621951 0.008195
6 6 1 1 11 0.633333 0.097617 8 0.733333 0.034775 5 0.833333 0.009134
6 6 2 1 14 0.621622 0.076902 12 0.675676 0.041463 8 0.783784 0.008910
6 6 2 2 19 0.568182 0.097046 16 0.636364 0.043344 11 0.750000 0.007713
6 6 3 1 18 0.581395 0.081966 16 0.627907 0.047471 11 0.744186 0.008665
6 6 3 2 23 0.549020 0.091718 20 0.607843 0.044161 15 0.705882 0.009600
6 6 3 3 28 0.517241 0.099031 24 0.586207 0.040890 18 0.689655 0.007417
6 6 4 1 22 0.560000 0.082630 19 0.620000 0.038997 14 0.720000 0.008129
6 6 4 2 27 0.534483 0.084812 24 0.586207 0.043401 18 0.689655 0.008070
6 6 4 3 32 0.515152 0.085020 29 0.560606 0.046268 22 0.666667 0.007791
6 6 4 4 38 0.486486 0.098717 34 0.540541 0.047595 27 0.635135 0.009613
6 6 5 1 26 0.535714 0.082947 23 0.589286 0.042216 17 0.696429 0.007727
6 6 5 2 32 0.507692 0.095002 28 0.569231 0.042368 22 0.661538 0.009272
6 6 5 3 37 0.493151 0.088417 33 0.547945 0.041732 26 0.643836 0.008054
6 6 5 4 43 0.475610 0.094851 39 0.524390 0.048227 31 0.621951 0.008874
6 6 5 5 48 0.466667 0.086446 44 0.511111 0.045656 36 0.600000 0.009533
6 6 6 1 31 0.507936 0.098636 27 0.571429 0.044191 21 0.666667 0.009750
6 6 6 2 36 0.500000 0.087213 32 0.555556 0.041053 25 0.652778 0.007871
6 6 6 3 42 0.481481 0.090321 38 0.530864 0.045479 30 0.629630 0.008168
6 6 6 4 48 0.466667 0.090941 44 0.511111 0.048376 35 0.611111 0.008207
6 6 6 5 54 0.454545 0.090669 49 0.505051 0.043100 40 0.595960 0.008145
6 6 6 6 60 0.444444 0.089781 55 0.490741 0.044896 46 0.574074 0.009741

Table 10: Critical values and exact p-values of the Concordance coefficient τc for k=4 samples.
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htestClust: A Package for Marginal
Inference of Clustered Data Under
Informative Cluster Size
by Mary Gregg, Somnath Datta and Douglas Lorenz

Abstract When observations are collected in/organized into observational units, within which
observations may be dependent, those observational units are often referred to as "clustered" and the
data as "clustered data". Examples of clustered data include repeated measures or hierarchical shared
association (e.g., individuals within families). This paper provides an overview of the R package
htestClust, a tool for the marginal analysis of such clustered data with potentially informative cluster
and/or group sizes. Contained in htestClust are clustered data analogues to the following classical
hypothesis tests: rank-sum, signed rank, t-, one-way ANOVA, F, Levene, Pearson/Spearman/Kendall
correlation, proportion, goodness-of-fit, independence, and McNemar. Additional functions allow
users to visualize and test for informative cluster size. This package has an easy-to-use interface
mimicking that of classical hypothesis-testing functions in the R environment. Various features of this
package are illustrated through simple examples.

1 Introduction

Observations often occur or can be organized into units called clusters, within which those observations
may be dependent. For example, individuals may be repeatedly assessed or naturally belong to some
hierarchical structure like a family unit. Potential correlation among intra-cluster observations clearly
invalidates the use of classical hypothesis tests for the analysis of such data. Instead, inference is
generally performed using model-based methods that capture intra-cluster relationships through
parametric or semi-parametric assumptions. Generalized estimating equations (GEEs) are one such
approach that fit marginal generalized linear models to clustered data while making a working
assumption on the correlation structure. GEE models are appealing for their flexible and robust nature,
and several packages in the R environment, such as gee (Carey et al., 2019) and geepack (Halekoh
et al., 2006), offer an implementation of this method. However, GEEs and other standard methods
for analysis of clustered data operate under an assumption that the number of observations within
the clusters (defined as the cluster size) is ignorable. In practice, this assumption may not hold and
cluster size may vary systematically in a way that carries information related to the response of
interest. When this occurs data are said to have informative cluster size (ICS). Examples of ICS can be
found in data related to dental health (Williamson et al., 2003), pregnancy studies (Chaurasia et al.,
2018), and longitudinal rehabilitation (Lorenz et al., 2011), among others. For data with ICS, standard
model-based methods can produce biased inference as their estimates may be overweighted in favor
of larger clusters.

A related but distinct type of informativeness occurs when the distribution of group-defining
covariates varies in a way that carries information on the response. Such phenomenon has been called
informative within-cluster group size (IWCGS), as well as informative covariate structure (Pavlou,
2012), sub-cluster covariate informativeness (Lorenz et al., 2018), and informative intra-cluster group
size (Dutta and Datta, 2016a). This additional informativeness may occur simultaneously with or
separately from ICS, and similarly can result in the failure of standard methods to maintain appropriate
nominal size (Huang and Leroux, 2011; Dutta and Datta, 2016a).

Williamson et al. (2003) developed a reweighting methodology that corrects for potential bias from
cluster- or group-size informativeness. This reweighting originates from a Monte Carlo resampling
process, and leads to weighting observations proportional to their inverse cluster or within-cluster
group size. Correction for ICS/IWCGS was originally proposed in the context of modeling, and a
number of extensions to this application have been established (Bible et al., 2016; Iosif and Sampson,
2014; Mitani et al., 2019, 2020). However, when adjustment for covariates is not of interest, this
reweighting can be directly applied in the estimation of marginal parameters. Under mild conditions,
such estimates are asymptotically normal, permitting Wald-type intervals and tests. This methodology
has been applied to develop rank-based tests (Datta and Satten, 2005, 2008; Dutta and Datta, 2016a),
and tests of correlation (Lorenz et al., 2011), proportions (Gregg et al., 2020), means and variances
(Gregg, 2020). This collection of reweighted non-model-based hypothesis tests includes clustered data
analogues of the following classical tests: rank-sum, signed rank, t-, one-way ANOVA, F, Levene,
Pearson/Spearman/Kendall correlation, proportion, goodness-of-fit, independence, and McNemar.

These clustered data analogues to standard hypothesis tests provide simple and intuitive means of
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performing exploratory and preliminary analysis of clustered data in which the cluster and/or group
size varies and is potentially informative. However, many of these tests are recent developments
that are not available in a software environment. We address this deficiency through the package
htestClust, the first R package designed as a comprehensive collection of direct, non-model-based
inferential methods for analysis of clustered data with potential ICS and/or IWCGS. Introduced in
this paper, htestClust implements the collection of methods by Datta and Satten (2005, 2008); Dutta
and Datta (2016a); Lorenz et al. (2011); Gregg et al. (2020) and Gregg (2020), as well as a method by
Nevalainen et al. (2017) that tests for the presence of informative cluster size. The syntax and output
of functions contained in htestClust are intentionally modeled after their corresponding analogous
classical function, allowing researchers to assess various marginal analyses through intuitive and user-
friendly means. The rest of this paper is organized as follows. We will begin by briefly summarizing
the reweighting approach developed by Williamson et al. (2003) and describe how its application has
been used in the development of hypothesis tests of marginal parameters in clustered data. We will
then provide an overview of the htestClust package, describe the features and structure of functions,
and describe an illustrative simulated data set with informativeness. Finally, we will demonstrate
htestClust using the example data set and close with a discussion.

2 Methods for clustered data under informativeness

In this section we outline the weighting methodology that corrects for bias from ICS and IWCGS, and
describe the general form of the tests in htestClust that implement this weighting. We then summarize
the balanced bootstrap design implemented in the test of ICS by Nevalainen et al. (2017).

Notation

Consider a sample of M independent clusters, with each cluster containing ni potentially correlated
observations, i = 1, . . . , M. The jth observation from cluster i is Xij, with j = 1, . . . , ni. The collection
of data from cluster i is Vi = {ni, Xi1, . . . , Xini} and the set of all observed data is V = {V1, . . . , VM}.
Informative cluster size is defined as inequality between the marginal distribution of the response
X and the distribution of X conditional on cluster size: P(Xij ≤ x | ni = n) ̸= P(Xij ≤ x), n =
1, 2, . . . ; j = 1, . . . , ni.

When observations within clusters belong to one of K distinct groups, we define the variable

Gij = k to represent that observation j from cluster i belongs to group k, k = 1, . . . , K. We let n(k)
i

denote the number of observations from cluster i in group k, and note that ni = ∑K
k=1 n(k)

i . We define

Kc
i = ∑K

k=1 I[n(k)
i > 0] to be the number of distinct groups observed in cluster i. When Kc

i < K, not
all groups are observed in cluster i, a condition referred to as incomplete group structure. The data

from cluster i is now the set Vi = {n(k)
i , (Xij, Gij)}, with observations belonging to group k denoted as

the set {X(k)
i1 , . . . , X(k)

in(k)
i

}. Informative within-cluster group size can be defined as P
(

Xij ≤ x | n(k)
i

)
̸=

P
(

Xij ≤ x
)

, i.e. that the marginal distribution of X differs from the distribution of X conditional on
the within-cluster group size.

Weighting for ICS/IWCGS

Let θ denote a marginal parameter to be estimated and/or tested. One approach for estimating θ is
within-cluster resampling (WCR), in which one observation is randomly selected from each cluster
(Hoffman et al., 2001). The resulting subset of data, X∗ = {X∗

1 , X∗
2 , . . . , X∗

M}, consists of independent
observations so an estimate of the parameter, θ̂, can be calculated using standard i.i.d. methods. Clearly,
this estimate is inefficient, using only a subset of the data, so the resampling process is repeated many
times, creating many pseudo data sets and estimates θ̂∗q . An overall estimate of θ is obtained over

Q resamplings (Q large) by averaging the resampled estimates, θ̂∗ = 1
Q ∑Q

q=1 θ̂∗q . This estimator was
shown to be asymptotically normal and inference can be conducted using Wald-type intervals and
tests.

The method of reweighting proposed by Williamson et al. (2003) derives from WCR by noting

that as M, Q → ∞, the overall resampled estimator converges to θ̂ = E
[
θ̂∗q | V

]
with respect to the

resampling distribution. This marginalization is equivalent to averaging the resampled estimator
across all realizations of the resampled data. As sampling is uniform across clusters and with equal
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probability within each cluster, each observation is weighted by the inverse of the associated cluster
size.

The link between WCR and reweighting can be illustrated by a simple example - estimating a
marginal mean. For a single resampled data set produced by WCR, the estimate of the marginal mean
is the simple average, θ̂∗q = 1

M ∑M
i=1 X∗

i . Application of the marginalization calculation produces

θ̂ = E
[
θ̂∗q | V

]
=

1
M

M

∑
i=1

E [X∗
i |V ] =

1
M

M

∑
i=1

1
ni

ni

∑
j=1

Xij

The independence of clusters allows the expectation of the resampled estimate to be expressed as
the average of the expectations. Conditioned on the observed data V , the expectation of a resampled
observation from a particular cluster is the average of all observations from the cluster, as the WCR
process resamples observations from that cluster with equal probability.

The weighting that corrects for ICS can be adapted to correct for IWCGS by modifying the under-
lying resampling process into a two-step procedure that marginalizes the within-cluster distribution of
groups (Dutta and Datta, 2016a; Huang and Leroux, 2011). In this two-step resampling, we first select
a group, G∗

i , with uniform probability from the levels of G available in cluster i. Second, we select X∗
i

from the set of observations in group k, {X(k)
i1 , . . . , X(k)

in(k)
i

}, where k is the group selected in the first step

of the process. As in the original WCR methodology, this process is repeated for all clusters, resulting
in a resampled data (X∗, G∗) =

{
(X∗

1 , G∗
1 ), . . . , (X∗

M, G∗
M)

}
. An estimate of the parameter of interest

is calculated from this resampled data. When the marginalization calculation is applied to a single
WCR estimate produced by this two-step process, observations are weighted by the product of the
two selection probabilities - one for the selection of a group and one for the selection of an observation
within the group. Since both of these selections are made with equal probability, the weights in a given
cluster are defined by the number of groups available in that cluster and the number of observations
within the group:

wij =


(

Kc
i n(k)

i

)−1
, if n(k)

i > 0

0, otherwise.

Hypothesis tests of marginal parameters

The asymptotic normality of the estimators described in the previous section has been established
under mild regularity conditions (Datta and Satten, 2005, 2008; Williamson et al., 2003). The tests
of ranks, correlation, proportions, means and variances contained in htestClust all leverage this
asymptotic normality through the general univariate and multivariate Wald-type forms

Z =
S − E [S]√

V̂ (S)
X = (S − E(S))T (

V̂(S)
)−1

(S − E(S)).

The statistic, S, differs across the various tests. However, in each of the tests S is either a reweighted
estimator derived through the marginalization calculation or a smooth function of such reweighted
estimators. E[S] is the statistic’s expected value under the null hypothesis and V̂ (S) is an estimate of
the variance of S. Z asymptotically follows a standard normal distribution, while X asymptotically
follows a chi square distribution with K − 1 degrees of freedom.

Methods of estimating the variance of S also vary across the tests. The rank-sum and signed
rank tests weighted for ICS apply Hajek projections (Datta and Satten, 2005, 2008), while the tests of
correlation use an approach based on the empirical variances of within-cluster averages (Lorenz et al.,
2011). The rank-sum test weighted for IWCGS and the multi-group tests of means and variances use
jackknife estimates (Dutta and Datta, 2016a; Gregg, 2020). The tests of proportions were constructed
and evaluated under different variance estimation techniques including sandwich forms, method of
moments, and empirical estimates. Gregg et al. (2020) provide a detailed examination by simulation
of different variance estimation techniques in the context of estimating and testing proportions, and
note that no one variance estimation technique is optimal for different types of tests. Further, the
size and power of the tests in htestClust previously have been evaluated via simulation in the source
manuscripts for each test. Predictably, each has been shown to perform well under the informativeness
conditions for which they were designed to adjust.
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Testing for informative cluster size

Nevalainen et al. (2017) proposed a test for ICS using a novel balanced bootstrap scheme. As it might
be desirable to perform this test prior to the application of the marginal methods mentioned thus far,
we have included this test for ICS in the htestClust package and briefly summarize it below.

Let V = (V1, . . . , VM) be a collection of independent clustered observations, where Vi =
(
ni; Xi1, . . . , Xini

)
is the data from cluster i. Assuming exchangeability of observations within clusters, the hypothesis of

interest is H0 : P
(

Xij ≤ x|ni = k
)
= F(x), k = 1, 2, . . . ; j = 1, . . . , k, for some unknown distribution F.

Two test statistics are proposed for testing H0; a Kolmogorov-Smirnov type statistic takes the form

TF = supx|F̂(x)− F̃(x)|

where F̂(x) = 1
n ∑M

i=1 ∑ni
j=1 I

[
Xij ≤ x

]
and F̃(x) = 1

M ∑M
i=1

1
ni

∑ni
j=1 I

[
Xij ≤ x

]
. A Cramer-von Mises

type alternative to TF is:

TCM = ∑
kϵψ

[
kMk

∫ (
F̂k (x)− F̂ (x)

)2 dx
]

,

where ψ represents the set of unique cluster sizes, Mk represents the number of clusters of size k, and

F̂k(x) = 1
kMk

∑M
i=1 ∑ni

j=1 I
[
ni = k, Xij ≤ x

]
. TCM is suggested for use when there is a small number of

distinct cluster sizes, as it tends to be more powerful. TF is preferred when the number of distinct
cluster sizes is large and the number of clusters with those sizes is small, as TCM tends to be too liberal.

The bootstrap scheme, which is employed for either statistic, is as follows. For iteration b, b =
1, . . . , B,

1. Permute observations within each cluster.

2. Resample clusters from the permuted data by performing the following for i = 1, . . . , M:

(a) Randomly select a cluster i∗, i∗ = 1, . . . , M.

(b) If ni∗ ≥ ni, form the ith bootstrapped cluster from the first ni observation from cluster i∗;
e.g., V∗

bi =
(
ni; Xi∗1, . . . , Xi∗ni

)
.

(c) If n∗
i < ni, form the ith bootstrapped cluster by merging observations from the resampled

cluster i∗ and observations from the closest ‘matching’ cluster to cluster i∗; e.g., V∗
bi =(

ni; Xi∗1, . . . , Xi∗n∗
i
, Xk(n∗

i +1), . . . , Xkni

)
, where k = arg mink{D(Vi∗ , Vk) : nk ≥ ni}. The

closest matching cluster is determined by minimum distance calculated by D
(

Vi, Vj

)
=(

min{ni, nj}
)−1

∑
min{ni ,nj}
k=1

(
Xik − Xjk

)2
.

3. Calculate the test statistic from the collection of bootstrapped clusters, T∗
b = T

(
V∗

b
)
, V∗

b =(
V∗

b1, . . . , V∗
bM

)
.

The approximate p-value is then obtained from the sample of bootstrapped test statistics by
1
B ∑B

b=1 I
[
T∗

b ≥ T
]
, where T is the desired test statistic calculated from the original data.

3 Overview of htestClust

htestClust includes ten functions for conducting different hypothesis tests under ICS, one function
for visualizing informativeness in cluster size, and a simulated hypothetical data set to illustrate
the use of the functions. We first note that, at the time of this publication, we are aware of only
two other R packages available on CRAN that provide functions for analyzing data under ICS and
IWCGS: clusrank (Jiang, 2018) and ClusterRankTest (Dutta and Datta, 2016b). Each of these packages
provides functionality only for rank-based tests for clustered data, i.e. clustered data analogues of
the well-known Wilcoxon signed rank and rank sum tests. We know of no other R package that
includes the broad range of tests of means, proportions, variances, and correlations in addition to
these rank-based tests that is provided by htestClust.

Package functions, syntax, and output

With the exception of the test of informative cluster size, each of the hypothesis testing functions
implemented in htestClust has a well-known analogue test for i.i.d. data (Table 1). As such, the syntax
and output of the functions in htestClust are designed to conform with that of the analogous i.i.d.
functions from the R stats library. A notable but necessary departure from this correspondence is that
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htestClust function Reweighted test(s) Classical analogue function

chisqtestClust() Chi squared goodness of fit, independence chisq.test()

cortestClust() Correlation cor.test()

icstestClust() Test of ICS NA
levenetestClust() K-group test of variance leveneTest()

mcnemartestClust() Homogeneity mcnemar.test()

onewaytestClust() K-group mean equality oneway.test()

proptestClust() Proportion prop.test()

ttestClust() Test of means (one/two group, paired) t.test()

vartestClust() 2-group test of variance var.test()

wilcoxtestClust() Rank sum, signed rank wilcox.test()

Table 1: Hypothesis testing functions available in the htestClust package. Each row gives the name of
a htestClust function, the reweighted test the function performs, and the R function that executes the
corresponding classical analogue test. All classical analogue functions are available in R through the
stats package, except for leveneTest(), which is included in the car package.

the htestClust functions require as input (1) a variable identifying the clusters as an argument in the
data set or (2) a cluster-level summary of the data.

As an example, consider the syntax for the stats and htestClust functions for conducting a test of a
single proportion:

prop.test(x, n, p = NULL, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)

proptestClust(x, id, p = NULL, alternative = c("two.sided", "less",
"greater"), variance = c("sand.null", "sand.est", "emp", "MoM"),
conf.level = 0.95)

The stats library function prop.test does not operate on variables in a data frame, but instead takes
summary counts as its input. Argument x can be a scalar representing the number of binomial
successes, whence n is required as the number of binomial trials. Alternatively, x can be a one-
dimensional table or matrix with two entries, whence n is omitted. The remaining arguments customize
the test in ways familiar to most users.

The function proptestClust from htestClust operates on binary variables in a data frame or on
cluster-level summary counts. In this function, x may be a binary variable measured over clusters,
wherein id is required as a vector of cluster identifiers. Alternatively, x may instead be a two-
dimensional table of within-cluster counts of failures and successes, wherein id is omitted. As
previously noted, several options are available for variance estimation; these may be selected by the
user through the variance argument. Additional customization of the test is as in prop.test.

Each of the testing functions in htestClust has been constructed in this vein – parallel to the
analogous stats function with contingencies necessary for clustered data. htestClust functions accept
vector input that designates the response, grouping (if necessary), and clustering variables. However,
for convenience, many functions are designed with a secondary interface accepting tables or formulas.
Like their stats package analogues, htestClust testing functions produce list objects of class htest
for which the print method behaves in the usual way.

icsPlot provides a simple method for illustrating informative cluster size, providing a visual
supplement to the results of the test of ICS, icstestClust. Briefly, icsPlot plots a within-cluster
summary statistic of a variable, such as a mean, against the size of each cluster. For quantitative
variables, icsPlot produces a scatterplot of a within-cluster measure of location (mean, median)
or variation (SD, variance, IQR, range) against cluster size. For a categorical variable, a barplot of
within-cluster proportions is produced.

Simulated example data set

htestClust includes a simulated data set named screen8 of clustered observations with informa-
tiveness, created under a hypothetical scenario we briefly describe here. A large school district has
conducted a voluntary comprehensive exit survey for students graduating elementary school, collect-
ing demographic, biometric, and academic performance data. The clustering mechanism for these
data are the schools, with students comprising the observations within clusters.

The school district has offered an incentive program to boost participation, wherein schools having
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Variable Description
sch.id School identification variable
stud.id Student identification variable within school
age Student age in years
gender Student gender
height Student height in inches
weight Student weight in lbs
math Student score on standardized math test
read Student score on standardized reading test
phq2 Ordinal (0-6) score from a mental health screening. Higher scores correspond to higher levels of

depression
qfit Age-adjusted fitness quartile from physical health assessment taken at end of school year
qfit.s Age-adjusted fitness quartile from physical health assessment taken at beginning of school year
activity Student after-school activity

Table 2: Variables in screen8 data set. Each row gives the name of a variable included in the screen8
data set and its associated description.

higher participation rates are rewarded with priority status for classroom and technology upgrades
for the new academic year. This incentive introduces the potential for ICS – resource-poor schools may
exhibit greater participation (larger cluster sizes) but also tend to have students with poorer health
metrics and standardized test scores.

screen8 contains data from 2224 students from 73 schools in this district. Cluster sizes – the
number of students participating in the exit survey at each school – ranged from 17 to 50, with a
median of 30. The first few lines of the data are printed below, followed by the tabulated number
of participants from each school and a summary of the cluster sizes. Table 2 provides details on the
variables in the data set.

R> library(htestClust)
R> data(screen8)
R> head(screen8)
sch.id stud.id age gender height weight math read phq2 qfit qfit.s activity
1 1 1 15 M 65 136 69 75 3 Q2 Q2 other
2 1 2 14 M 66 135 80 57 2 Q4 Q3 other
3 1 3 15 M 65 146 60 85 0 Q2 Q3 sports
4 1 4 15 M 68 156 70 83 1 Q3 Q2 other
5 1 5 15 M 68 170 66 60 1 Q2 Q2 sports
6 1 6 14 M 63 109 84 62 0 Q1 Q1 academic

R> (tab <- table(screen8$sch.id))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
35 32 26 33 23 25 27 21 39 28 32 38 35 24 29 27 36 29 38 39 25 30 36 29 46 27
...

R> summary(as.vector(tab))
Min. 1st Qu. Median Mean 3rd Qu. Max.
17.00 25.00 30.00 30.47 36.00 50.00
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4 Examples

In this section, we demonstrate usage of the functions in htestClust using the screen8 data set. Our
illustration is not comprehensive, but users can learn more about functions not covered here by
browsing the associated help files. To motivate the demonstration, we’ll investigate the following
questions:

1. Is the proportion of students having “proficient” standardized math test scores (65 or greater)
more than 0.75?

2. Are participation in extracurricular activity and gender independent?

3. Are mean standardized math test scores different between male and female students?

4. Are mean standardized reading test scores different among groups defined by extracurricular
activities?

Evaluating informative cluster size

Before addressing these questions, we illustrate how to assess the potential informativeness of cluster
size in the data set, starting by visualizing ICS through the icsPlot function. The arguments to
icsPlot specify the variable of interest, a cluster-identifying variable, and a summary function to be
applied to the variable within each cluster. This summary can be any of ‘obs’, ‘mean’, ‘median’, ‘var’,
‘IQR’, ‘range’, ‘prop’, producing plots of the observations themselves, measure of location, or measures
of variation against cluster size. Option ‘prop’ can only be used when the variable of interest is a
factor, so numerically coded categorical variables must be converted to factors. Standard R graphical
parameters can also be specified when calling icsPlot().

R> ### Figure 1
R> par(mfrow = c(1,2))
R> icsPlot(x = screen8$math, id = screen8$sch.id, FUN = "mean", pch = 20)
R> icsPlot(x = screen8$read, id = screen8$sch.id, FUN = "mean", pch = 20)

R> ### Figure 2
R> layout(mat = matrix(c(1, 2), nrow = 1, ncol = 2),
+ heights = c(1, 2), # Heights of the two rows
+ widths = c(2, 2.5))
R> par(mar = c(5, 4, 1, 0))
R> icsPlot(x = screen8$gender, id = screen8$sch.id, FUN = "prop",
+ ylab = "P(Female)", pch = 20)
R> par(mar = c(5, 4, 1, 5))
R> icsPlot(x = screen8$activity, id = screen8$sch.id, FUN = "prop",
+ legend = TRUE,
+ args.legend = list(x = "topright", bty = "n", inset=c(-0.32, 0)))

Figures 1 and 2 show potential informativeness in cluster size for the screen8 data. Cluster size
appears to be negatively associated with average standardized test scores but positively associated
with the proportion of male students and the proportion participating in sports-related extracurricular
activities. These empirical results can be verified using the test for ICS, implemented through
the function icstestClust, as illustrated below. The result of this test suggests that cluster size is
informative for standardized math test scores. Cluster size is also informative for standardized reading
test scores, gender, and sports as an extracurricular activity (p < .001, results not shown).

R> set.seed(100)
R> ics.math <- icstestClust(screen8$math, screen8$sch.id, B = 1000,
+ print.it = FALSE)

R> ics.math
Test of informative cluster size (TF)
data: screen8$math
TF = 0.029686, p-value < 2.2e-16

Within the icstestClust function, the type of test statistic, TF or TCM as detailed earlier, is specified
using the test.method argument, and the number of bootstrap loops by argument B. Argument
print.it is a logical indicating whether to print the progress of the bootstrap procedure. We note
that the need for bootstrap resampling in icstestClust can make its implementation computationally
expensive.
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Figure 1: Average scores in maths and reading by cluster size in screen8 data.
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Figure 2: Plots of categorical variables by cluster size in screen8 data. Proportion of female students
decreases with cluster size (left), whereas student participation in sports-related extracurricular
activities increases with cluster size (right).

Testing a marginal proportion

The first question of interest suggests a one-sample test of a proportion via proptestClust. We specify
a one-sided alternative and use the default sandwich variance estimator evaluated at the null value of
the proportion (variance = "sand.null"), shown to perform best for this test (Gregg et al., 2020).

R> screen8$math.p <- 1*(screen8$math >= 65)
R> proptestClust(screen8$math.p, screen8$sch.id, p = .75, alternative = "great")
Cluster-weighted proportion test with variance est: sand.null

data: screen8$math.p, M = 73
z = 0.70159, p-value = 0.2415
alternative hypothesis: true p is greater than 0.75
95 percent confidence interval:
0.7311459 1.0000000
sample estimates:
Cluster-weighted proportion
0.7640235

As noted earlier, htestClust functions produce objects of class htest, producing familiar output
through the print method for such objects. We conclude that the proportion of students with proficient
math test scores is not greater than 0.75.

In the case that all clusters have a size of 1, the results of htestClust functions will be in general
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correspondence with that of the classical analogue test, though exact results will differ slightly due to
the reweighted tests relying on asymptotics. This is demonstrated through the following example.

R> set.seed(123)
R> x <- rbinom(100, size = 1, p = 0.7)
R> id <- 1:100
R> proptestClust(x, id)

Cluster-weighted proportion test with variance est: sand.null

data: x, M = 100
z = 4.2, p-value = 2.669e-05
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.6120018 0.8079982
sample estimates:
Cluster-weighted proportion
0.71

R> prop.test(sum(x), length(x))

1-sample proportions test with continuity correction

data: sum(x) out of length(x), null probability 0.5
X-squared = 16.81, df = 1, p-value = 4.132e-05
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.6093752 0.7942336
sample estimates:
p
0.71

Test of independence

The second question suggests a test of independence of extracurricular activity and gender. We start
by producing cluster-weighted estimates of the proportion of students participating in each activity
within each gender.

R> tab <- table(screen8$gender, screen8$activity, screen8$sch.id)
R> ptab <- prop.table(tab, c(1,3))
R> apply(ptab, c(1,2), mean)
academic other sports
F 0.3952102 0.2968473 0.3079425
M 0.3790267 0.3186699 0.3023035

The cluster-weighted proportions appear roughly similar, and we can test using chisqtestClust. Here,
the default method of variance estimation is method of moments (variance = "MoM"), demonstrated
to be best for the test of independence (Gregg et al., 2020).

R> chisqtestClust(screen8$gender, screen8$activity, screen8$sch.id)
Cluster-weighted Chi-squared test of independence with variance est:
MoM

data: screen8$gender and screen8$activity, M = 73
X-squared = 1.6131, df = 2, p-value = 0.4464

Before proceeding to the next analysis, we note that further evidence of ICS in the screen8 data
can be demonstrated by implementing the standard chi-squared test for this question, which suggests
that females were more likely to participate in academic extracurricular activities and males in sports.

R> prop.table(table(screen8$gender, screen8$activity), 1)
academic other sports
F 0.3891323 0.2979842 0.3128834
M 0.3370268 0.3120960 0.3508772

R> chisq.test(screen8$gender, screen8$activity)
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Pearson's Chi-squared test

data: screen8$gender and screen8$activity
X-squared = 6.9303, df = 2, p-value = 0.03127

Tests of quantitative variables for two or more groups

We compare math test scores between males and females using the ttestClust function. We conclude
that mean standardized test scores are equivalent between males and females, a departure from the
conclusion reached by the standard t test (p < .001, results not shown).

R> ttestClust(math ~ gender, id = sch.id, data = screen8)

Two sample group-weighted test of means

data: math by gender, M = 73
z = 1.3495, p-value = 0.1772
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.2234259 1.2111344
sample estimates:
weighted mean in group F weighted mean in group M
70.75124 70.25739

Even though this test does not make use of the t distribution, we have named it as such to parallel the
standard t-test means (t.test in R). Multi-group tests of quantitative parameters in htestClust imple-
ment jackknife variance estimation, so specification of variance estimation method is not necessary. In
addition to the formula implementation used above, we note that ttestClust can also accept vectors
of data and cluster identifiers for each of the two groups.

An alternative approach to this comparison, particularly if test scores were skewed in any way,
would be a rank-based test. wilcoxtestClust implements the group-weighted analogue of the
Wilcoxon test, which we use as an alternative method for the comparison of math test scores between
males and females.

R> wilcoxtestClust(math ~ gender, id = sch.id, data = screen8, method = "group")
Group-weighted rank sum test

data: math by gender, M = 73
z = -1.3799, p-value = 0.1676
alternative hypothesis: true location shift is not equal to 0

Our conclusion is the same as with the reweighted test of means. We note that this test requires
estimation of the cluster-weighted empirical cumulative distribution (Dutta and Datta, 2016a) as well
as jackknife variance estimation, so there is an added measure of computational expense in using
wilcoxtestClust.

Finally, we compare reading test scores among the three groups defined by extracurricular activity,
using onewaytestClust. Mean standardized reading test scores are not appreciably different among
extracurricular activity groups.

R> onewaytestClust(read ~ activity, id = sch.id, data = screen8)
Reweighted one-way analysis of means for clustered data

data: read and activity, M = 73
X-squared = 1.3191, df = 2, p-value = 0.5171
sample estimates:
academic other sports
60.11498 60.40785 59.69659

We have not shown the full functionality of the above-demonstrated functions, nor the htestClust
functions for testing correlation, marginal homogeneity, and variance listed in Table 1. Their syntax
and usage is similar and fully documented with examples in the help files.
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5 Discussion

Standard model-based inference of clustered data can be biased when cluster or group size is informa-
tive. Reweighting methods that correct for this bias have been established and a number of authors
have applied such weighting to develop direct hypothesis tests of marginal parameters in clustered
data. Such tests can be interpreted as clustered analogues to common classical statistical tests, and
include methods related to ranks, correlation, proportions, means and variances. While these methods
are effective and intuitive, all but a few of these tests have remained inaccessible to many researchers
due to an absence of convenient software.

In this paper we introduced htestClust, which is the first R package designed as a comprehensive
library of inferential methods appropriate for clustered data with ICS/IWCGS. Most functions in
htestClust perform hypothesis tests for clustered data that have an analogous classical form, and
the interface of the package has been designed to reflect this relationship. Function syntax has been
purposefully structured to resemble that of functions available in the native R environment that
perform the analogous classical tests. Many functions have been designed with a secondary interface
that operates through table or formula input, allowing flexibility in data structure. In addition to
the hypothesis tests of marginal parameters, htestClust also includes functions to visualize potential
informativeness and test for ICS. These tools allow analysts to explore the effect and degree of
informativeness in their data.

With the exception of the test for ICS, the hypothesis tests performed by htestClust are derived
through the asymptotic normality of reweighted parameters, and their asymptotic convergence is
indexed by the number of clusters. As such, their use should only be considered when the number of
clusters is sufficiently large (at least 30). Additionally, these methods retain a cluster-based marginal
interpretation, making them appropriate when clusters, rather than intra-cluster observations, are
the unit of interest. The marginal nature of these tests provides researchers with an analysis corre-
sponding to a snapshot in time. If analysis of temporal aspects or effects of additional covariates
is desired, readers might instead consider reweighted model-based methods such as those by Bible
et al. (2016), Neuhaus and McCulloch (2011), and Wang et al. (2011). Future research will also be
devoted to developing tests adjusting for informativeness due to quantitative covariates measured at
the individual-within-cluster level.

htestClust is a tool to facilitate the analysis of clustered data, and we have designed its use to
be accessible and intuitive. While the inferential methods performed by this package have been
developed to correct for the biasing effects of ICS/IWCGS, they remain applicable when fluctuations
of cluster or group size are unrelated to the outcome of interest. As such, this package is an effective
resource for researchers addressing marginal analyses in clustered data with any variation in the
cluster and/or group sizes.

Computational details

The results in this paper were obtained using R 4.0.3 with the MASS 7.3.51 package.
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akc: A Tidy Framework for Automatic
Knowledge Classification in R
by Tian-Yuan Huang, Li Li, and Liying Yang

Abstract Knowledge classification is an extensive and practical approach in domain knowledge
management. Automatically extracting and organizing knowledge from unstructured textual data is
desirable and appealing in various circumstances. In this paper, the tidy framework for automatic
knowledge classification supported by the akc package is introduced. With powerful support from the
R ecosystem, the akc framework can handle multiple procedures in data science workflow, including
text cleaning, keyword extraction, synonyms consolidation and data presentation. While focusing on
bibliometric analysis, the akc package is extensible to be used in other contexts. This paper introduces
the framework and its features in detail. Specific examples are given to guide the potential users and
developers to participate in open science of text mining.

1 Introduction

Co-word analysis has long been used for knowledge discovery, especially in library and information
science (Callon, Rip, and Law 1986). Based on co-occurrence relationships between words or phrases,
this method could provide quantitative evidence of information linkages, mapping the association
and evolution of knowledge over time. In conjunction with social network analysis (SNA), co-word
analysis could be escalated and yield more informative results, such as topic popularity (Huang and
Zhao 2019) and knowledge grouping (Khasseh et al. 2017). Meanwhile, in the area of network science,
many community detection algorithms have been proposed to unveil the topological structure of the
network (Fortunato 2010; Javed et al. 2018). These methods have then been incorporated into the
co-word analysis, assisting to group components in the co-word network. Currently, the co-word
analysis based on community detection is flourishing across various fields, including information
science, social science and medical science (C.-P. Hu et al. 2013; J. Hu and Zhang 2015; Leung, Sun,
and Bai 2017; Baziyad et al. 2019).

For implementation, interactive software applications, such as CiteSpace (Chen 2006) and VOSviewer
(Van Eck and Waltman 2010), have provided freely available toolkits for automatic co-word analysis,
making this technique even more popular. Interactive software applications are generally friendlier to
users, but they might not be flexible enough for the whole data science workflow. In addition, the
manual adjustments could be variant, bringing additional risks to the research reproducibility. In this
paper, we have designed a flexible framework for automatic knowledge classification, and presented
an open software package akc supported by R ecosystem for implementation. Based on community
detection in co-occurrence network, the package could conduct unsupervised classification on the
knowledge represented by extracted keywords. Moreover, the framework could handle tasks such
as data cleaning and keyword merging in the upstream of data science workflow, whereas in the
downstream it provides both summarized table and visualized figure of knowledge grouping. While
the package was first designed for academic knowledge classification in bibliometric analysis, the
framework is general to benefit a broader audience interested in text mining, network science and
knowledge discovery.

2 Background

Classification could be identified as a meaningful clustering of experience, turning information into
structured knowledge (Kwasnik 1999). In bibliometric research, this method has been frequently used
to group domain knowledge represented by author keywords, usually listed as a part of co-word
analysis, keyword analysis or knowledge mapping (He 1999; C.-P. Hu et al. 2013; Leung, Sun, and Bai
2017; Li, Ma, and Qu 2017; Wang and Chai 2018). While all named as (unsupervised) classification
or clustering, the algorithm behind could vary widely. For instance, some researches have utilized
hierarchical clustering to group keywords into different themes (J. Hu and Zhang 2015; Khasseh et al.
2017), whereas the studies applying VOSviewer have adopted a weighted variant of modularity-based
clustering with a resolution parameter to identify smaller clusters (Van Eck and Waltman 2010). In the
framework of akc, we have utilized the modularity-based clustering method known as community
detection in network science (Newman 2004; Murata 2010). These functions are supported by the
igraph package (Csardi, Nepusz, et al. 2006). Main detection algorithms implemented in akc include
Edge betweenness (Girvan and Newman 2002), Fastgreedy (Clauset, Newman, and Moore 2004),
Infomap (Rosvall and Bergstrom 2007; Rosvall, Axelsson, and Bergstrom 2009), Label propagation
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Figure 1: The design of akc framework. Generally, the framework includes four steps, namely: (1)
Keyword extraction (optional); (2) Keyword preprocessing; (3) Network construction and clustering;
(4) Results presentation.

(Raghavan, Albert, and Kumara 2007), Leading eigenvector (Newman 2006), Multilevel (Blondel et al.
2008), Spinglass (Reichardt and Bornholdt 2006) and Walktrap (Pons and Latapy 2005). The details of
these algorithms and their comparisons have been discussed in the previous studies (Sousa and Zhao
2014; Yang, Algesheimer, and Tessone 2016; Garg and Rani 2017; Amrahov and Tugrul 2018).

In practical application, the classification result is susceptible to data variation. The upstream
procedures, such as information retrieval, data cleaning and word sense disambiguation, play vital
roles in automatic knowledge classification. For bibliometric analysis, the author keyword field
provides a valuable source of scientific knowledge. It is a good representation of domain knowledge
and could be used directly for analysis. In addition, such collections of keywords from papers
published in specific fields could provide a professional dictionary for information retrieval, such
as keyword extraction from raw text in the title, abstract and full text of literature. In addition to
automatic knowledge classification based on community detection in keyword co-occurrence network,
the akc framework also provides utilities for keyword-based knowledge retrieval, text cleaning,
synonyms merging and data visualization in data science workflow. These tasks might have different
requirements in specific backgrounds. Currently, akc concentrates on keyword-based bibliometric
analysis of scientific literature. Nonetheless, the R ecosystem is versatile, and the popular tidy data
framework is flexible enough to extend to various data science tasks from other different fields
(Wickham et al. 2014; Wickham and Grolemund 2016; Silge and Robinson 2017), which benefits both
end-users and software developers. In addition, when users have more specific needs in their tasks,
they could easily seek other powerful facilities from the R community. For instance, akc provides
functions to extract keywords using an n-grams model (utilizing facilities provided by tidytext),
but skip-gram modelling is not supported currently. This functionality, on the other hand, could be
provided in tokenizers (Mullen et al. 2018) or quanteda (Benoit et al. 2018) package in R. A greater
picture of natural language processing (NLP) in R could be found in the CRAN Task View: Natural
Language Processing.

3 Framework

An overview of the framework is given in Figure 1. Note that the name akc refers to the overall
framework for automatic keyword classification as well as the released R package in this paper. The
whole workflow can be divided into four procedures: (1) Keyword extraction (optional); (2) Keyword
preprocessing; (3) Network construction and clustering; (4) Results presentation.

(1) Keyword extraction (optional)

In bibliometric meta-data entries, the textual information of title, abstract and keyword are usually
provided for each paper. If the keywords are used directly, there is no need to do information
retrieval. Then we could directly skip this procedure and start from keyword preprocessing. However,
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Figure 2: An example of keyword extraction procedure. The raw text would be first divided sentence
by sentence, then tokenized to n-grams and yield the target keywords based on a dictionary. The
letters are automatically turned to lower case.

Table 1: An example of keyword merging rule applied in akc. The keywords with the same lemma or
stem would be merged to the highest frequency keyword in the original form.

ID Original form Lemmatized form Merged form
1 higher education high education higher education
2 higher education high education higher education
3 high educations high education higher education
4 higher educations high education higher education
5 high education high education higher education
6 higher education high education higher education

sometimes the keyword field is missing, then we would need to extract the keywords from raw text in
the title, abstract or full text with an external dictionary. At other times, one might want to get more
keywords and their co-occurrence relationships from each entry. In such cases, the keyword field
could serve as an internal dictionary for information retrieval in the provided raw text.

Figure 2 has displayed an example of keyword extraction procedure. First, the raw text would
be split into sub-sentences (clauses), which suppresses the generation of cross-clause n-grams. Then
the sub-sentences would be tokenized into n-grams. The n could be specified by the users, inspecting
the average number of words in keyword phrases might help decide the maximum number of n.
Finally, a filter is made. Only tokens that have emerged in the user-defined dictionary are retained for
further analysis. The whole keyword extraction procedure could be implemented automatically with
keyword_extract function in akc.

(2) Keyword preprocessing

In practice, the textualized contents are seldom clean enough to implement analysis directly.
Therefore, the upstream data cleaning process is inevitable. In keyword preprocessing procedure of
akc framework, the cleaning part would take care of some details in the preprocess, such as converting
the letters to lower case and removing parentheses and contents inside (optional). For merging
part, akc help merge the synonymous phrases according to their lemmas or stems. While using
lemmatization and stemming might get abnormal knowledge tokens, here in akc we have designed a
conversion rule to tackle this problem. We first get the lemmatized or stemmed form of keywords,
then group them by their lemma or stem, and use the most frequent keyword in the group to represent
the original keyword. This step could be realized by keyword_merge function in akc package. An
example could be found in Table 1. After keyword merging, there might still be too many keywords
included in the analysis, which poses a great burden for computation in the subsequent procedures.
Therefore, a filter should be carried out here, it could exclude the infrequent terms, or extract top
TF-IDF terms, or use any criteria that meets the need. Last, a manual validation should be carried out
to ensure the final data quality.

(3) Network construction and clustering
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Based on keyword co-occurrence relationship, the keyword pairs would form an edge list for
construction of an undirected network. Then the facilities provided by the igraph package would
automatically group the nodes (representing the keywords). This procedure could be achieved by
using keyword_group function in akc.

(4) Results presentation

Currently, there are two kinds of output presented by akc. One is a summarized result, namely
a table with group number and keyword collections (attached with frequency). Another is network
visualization, which has two modes. The local mode provides a keyword co-occurrence network by
group (use facets in ggplot2), whereas the global mode displays the whole network structure. Note
that one might include a huge number of keywords and make a vast network, but for presentation
the users could choose how many keywords from each group to be displayed. More details could be
found in the following sections.

The akc framework could never be built without the powerful support provided by R community.
The akc package was developed under R environment, and main packages imported to akc framework
include data.table (Dowle and Srinivasan 2021) for high-performance computing, dplyr (Wickham et
al. 2022) for tidy data manipulation, ggplot2 (Wickham 2016) for data visualization, ggraph (Pedersen
2021) for network visualization, ggwordcloud (Le Pennec and Slowikowski 2019) for word cloud
visualization, igraph (Csardi, Nepusz, et al. 2006) for network analysis, stringr (Wickham 2019) for
string operations, textstem (Rinker 2018) for lemmatizing and stemming, tidygraph (Pedersen 2022)
for network data manipulation and tidytext (Silge and Robinson 2016) for tidy tokenization. Getting
more understandings on these R packages could help users utilize more alternative functions, so
as to complete more specific and complex tasks. Hopefully, the users might also become potential
developers of the akc framework in the future.

4 Example

This section shows how akc can be used in a real case. A collection of bibliometric data of R Journal
from 2009 to 2021 is used in this example. The data of this example can be accessed in the GitHub
repository. Only the akc package is used in this workflow. First, we would load the package and
import the data in the R environment.

library (akc)
rj_bib = readRDS ("./rj_bib.rds")
rj_bib

#> # A tibble: 568 x 4
#> id title abstr~1 year
#> <int> <chr> <chr> <dbl>
#> 1 1 Aspects of the Social Organization and Trajectory of the~ Based ~ 2009
#> 2 2 asympTest: A Simple R Package for Classical Parametric S~ asympT~ 2009
#> 3 3 ConvergenceConcepts: An R Package to Investigate Various~ Conver~ 2009
#> 4 4 copas: An R package for Fitting the Copas Selection Model This a~ 2009
#> 5 5 Party on! Random~ 2009
#> 6 6 Rattle: A Data Mining GUI for R Data m~ 2009
#> 7 7 sos: Searching Help Pages of R Packages The so~ 2009
#> 8 8 The New R Help System Versio~ 2009
#> 9 9 Transitioning to R: Replicating SAS, Stata, and SUDAAN A~ Statis~ 2009
#> 10 10 Bayesian Estimation of the GARCH(1,1) Model with Student~ This n~ 2010
#> # ... with 558 more rows, and abbreviated variable name 1: abstract

rj_bib is a data frame with four columns, including id (Paper ID), title (Title of paper), abstract
(Abstract of paper) and year (Publication year of paper). Papers in R Journal do not contain a keyword
field, thus we have to extract the keywords from the title or abstract field (first step in Figure 1). Here
in our case, we use the abstract field as our data source. In addition, we need a user-defined dictionary
to extract the keywords, otherwise all the n-grams (meaningful or meaningless) would be extracted
and the results would include redundant noise.

# import the user-defined dictionary
rj_user_dict = readRDS ("./rj_user_dict.rds")
rj_user_dict
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#> # A tibble: 627 x 1
#> keyword
#> <chr>
#> 1 seasonal-adjustment
#> 2 unit roots
#> 3 transformations
#> 4 decomposition
#> 5 combination
#> 6 integration
#> 7 competition
#> 8 regression
#> 9 accuracy
#> 10 symmetry
#> # ... with 617 more rows

Note that the dictionary should be a data.frame with only one column named “keyword”. The
user can also use make_dict function to build the dictionary data.frame with a string vector. This
function removes duplicated phrases, turns them to lower case and sorts them, which potentially
improves the efficiency for the following processes.

rj_dict = make_dict (rj_user_dict$keyword)

With the bibliometric data (rj_bib) and dictionary data (rj_dict), we could start the workflow
provided in Figure 1.

(1) Keyword extraction

In this step, we need a bibliometric data table with simply two informative columns, namely paper
ID (id) and the raw text field (in our case abstract). The parameter dict is also specified to extract only
keywords emerging in the user-defined dictionary. The implementation is very simple.

rj_extract_keywords = rj_bib %>%
keyword_extract (id = "id",text = "abstract",dict = rj_dict)

By default, only phrases ranging 1 to 4 in length are included as extracted keywords. The user
can change this range using parameters n_min and n_max in keyword_extract function. These is also
a stopword parameter, allowing users to exclude specific keywords in the extracted phrases. The
output of keyword_extract is a data.frame (tibble,tbl_df class provided by tibble package) with two
columns, namely paper ID (id) and the extracted keyword (keyword).

(2) Keyword preprocessing

For the preprocessing part, keyword_clean and keyword_merge would be implemented in the
cleaning part and merging part respectively. In the cleaning part, the keyword_clean function would: 1)
Splits the text with separators (If no separators exist, skip); 2) Removes the contents in the parentheses
(including the parentheses, optional); 3) Removes white spaces from start and end of string and
reduces repeated white spaces inside a string; 4) Removes all the null character string and pure
number sequences (optional); 5) Converts all letters to lower case; 6) Lemmatization (optional). The
merging part has been illustrated in the previous section (see Table 1), thus would not be explained
again. In the tidy workflow, the preprocessing is implemented via:

rj_cleaned_keywords = rj_extract_keywords %>%
keyword_clean () %>%
keyword_merge ()

No parameters are used in these functions because akc has been designed to input and output
tibbles with consistent column names. If the users have data tables with different column names,
specify them in arguments (id and keyword) provided by the functions. More details can be found in
the help document (use ?keyword_clean and ?keyword_merge in the console).

(3) Network construction and clustering

To construct a keyword co-occurrence network, only a data table with two columns (with paper
ID and keyword) is needed. All the details have been taken care of in the keyword_group function.
However, the user could specify: 1) the community detection function (use com_detect_fun argument);
2) the filter rule of keywords according to frequency (use top or min_freq argument, or both). In our
example, we would use the default settings (utilizing Fastgreedy algorithm, only top 200 keywords by
frequency would be included).
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Figure 3: Network visualization for knowledge classification of R Journal (2009-2021). The keywords
were automatically classified into three groups based on Fastgreedy algorithm. Only the top 10
keywords by frequency are displayed in each group.

rj_network = rj_cleaned_keywords %>%
keyword_group ()

The output object rj_network is a tbl_graph class supported by tidygraph, which is a tidy data
format containing the network data. Based on this data, we can present the results in various forms in
the next section.

(4) Results presentation

Currently, there are two major ways to display the classified results in akc, namely network and
table. A fast way to gain the network visualization is using keyword_vis function:

rj_network %>%
keyword_vis ()

In Figure 3, the keyword co-occurrence network is clustered into three groups. The size of nodes is
proportional to the keyword frequency, while the transparency degree of edges is proportional to the
co-occurrence relationship between keywords. For each group, only the top 10 keywords by frequency
are showed in each facet. If the user wants to dig into Group 1, keyword_network could be applied.
Also, max_nodes parameter could be used to control how many nodes to be showed (in our case, we
show 20 nodes in the visualization displayed in Figure 4).

rj_network %>%
keyword_network (group_no = 1,max_nodes = 20)

Another displayed form is using table. This could be implemented by keyword_table via:

rj_table = rj_network %>%
keyword_table ()

This would return a data.frame with two columns (see Table 2), namely the group number and the
keywords (by default, only the top 10 keywords by frequency would be displayed, and the frequency
information is attached).
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Figure 4: Focus on one cluster of the knowledge network of R journal (2009-2021). Top 20 keywords
by frequency are shown in the displayed group.

Table 2: Top 10 keywords by frequency in each knowledge classification of R Journal (2009-2021).

Group Keywords (TOP 10)
1 r package (238); algorithms (117); time (109); software (93); regression (75); number (72);

features (60); sets (45); selection (41); simulation (40)
2 parameters (98); inference (65); framework (58); information (51); distributions (48);

performance (47); probability (45); design (44); likelihood (41); optimization (31)
3 package (505); model (310); tools (140); tests (48); errors (46); multivariate (42); system (41);

hypothesis (18); maps (16); assumptions (15)
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Word cloud visualization is also supported by akc via ggwordcloud package, which could be
implemented by using keyword_cloud function.

In our example, we assume R Journal has a large focus on introducing R packages (Group 1 and
Group 3 contains “r package” and “package” respectively). Common statistical subjects mentioned
in R Journal include “regression” (in Group 1), “optimization” (in Group 2) and “multivariate” (in
Group 3). While our example provides a preliminary analysis of knowledge classification in R Journal,
an in-depth exploration could be carried out with a more professional dictionary containing more
relevant keywords, and more preprocessing could be implemented according to application scenarios
(e.g. “r package” and “package” could be merged into one keyword, and unigrams could be excluded
if we consider them carrying indistinct information).

5 Discussion

The core functionality of the akc framework is to automatically group the knowledge pieces (keywords)
using modularity-based clustering. Because this process is unsupervised, it can be difficult to evaluate
the outcome of classification. Nevertheless, the default setting of community detection algorithm was
selected after empirical tests via benchmarking. It was found that: 1) Edge betweenness and Spinglass
algorithm are most time-consuming; 2) Edge betweenness and Walktrap algorithm could potentially
find more local clusters in the network; 3) Label propagation could hardly divide the keywords into
groups; 4) Infomap has high standard deviation of node number across groups. In the end, Fastgreedy
was chosen as the default community detection algorithm in akc, because its performance is relatively
stable, and the number of groups increases proportionally with the network size.

Though akc currently focuses on automatic knowledge classification based on community detec-
tion in keyword co-occurrence network, this framework is rather general in many natural language
processing problems. One could utilize part of the framework to complete some specific tasks, such
as word consolidating (using keyword merging) and n-gram tokenizing (using keyword extraction
with a null dictionary), then export the tidy table and work in another environment. As long as
the data follows the rule of tidy data format (Wickham et al. 2014; Silge and Robinson 2017), the
akc framework could be easily decomposed and applied in various circumstances. For instance,
by considering the nationalities of authors as keywords, akc framework could also investigate the
international collaboration behavior in specific domain.

In the meantime, the akc framework is still in active development, trying new algorithms to
carry out better unsupervised knowledge classification under the R environment. The expected new
directions include more community detection functions, new clustering methods, better visualization
settings, etc. Note that except for the topology-based community detection approach considering
graph structure of the network, there is still another topic-based approach considering the textual
information of the network nodes (Ding 2011), such as hierarchical clustering (Newman 2003), latent
semantic analysis (Landauer, Foltz, and Laham 1998) and Latent Dirichlet Allocation (Blei, Ng, and
Jordan 2003). These methods are also accessible in R, the relevant packages could be found in the
CRAN Task View: Natural Language Processing. With the tidy framework, akc could assimilate more
nutrition from the modern R ecosystem, and move forward to create better reproducible open science
schemes in the future.

6 Conclusion

In this paper, we have proposed a tidy framework of automatic knowledge classification supported
by a collection of R packages integrated by akc. While focusing on data mining based on keyword
co-occurrence network, the framework also supports other procedures in data science workflow, such
as text cleaning, keyword extraction and consolidating synonyms. Though in the current stage it aims
to support analysis in bibliometric research, the framework is quite flexible to extend to various tasks
in other fields. Hopefully, this work could attract more participants from both R community and
academia to get involved, so as to contribute to the flourishing open science in text mining.
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APCI: An R and Stata Package for
Visualizing and Analyzing
Age-Period-Cohort Data
by Jiahui Xu, Liying Luo

Abstract Social scientists have frequently attempted to assess the relative contribution of age, period,
and cohort variables to the overall trend in an outcome. We develop an R package APCI (and Stata
command apci) to implement the age-period-cohort-interaction (APC-I) model for estimating and
testing age, period, and cohort patterns in various types of outcomes for pooled cross-sectional data
and multi-cohort panel data. Package APCI also provides a set of functions for visualizing the data
and modeling results. We demonstrate the usage of package APCI with empirical data from the
Current Population Survey. We show that package APCI provides useful visualization and analytical
tools for understanding age, period, and cohort trends in various types of outcomes.

1 Introduction

Researchers across disciplines have long been interested in distinguishing the relative contribution of
three time-related variables — namely, age (i.e., how old a person is at the time of data collection),
time periods (e.g., the Great Recession 2007-2009 and the COVID-19 pandemic beginning in December
2019), and cohort membership (e.g., the baby boom cohort born in 1945-1964 and the Millennials born
in 1981-1996) — to the overall trends in various outcomes (e.g., labor force participation, attitudes,
and cognitive functioning) (Alwin and McCammon, 2003; Clogg, 1982; Pescosolido et al., 2021).
Decomposing the overall trends into age, period, and cohort variations provides insight into the ways
in which biological and social factors affect these outcomes (Hobcraft et al., 1982; Heckman and Robb,
1985; Fosse and Winship, 2019).

To quantify the relative contribution of age, period, and cohort, Luo and Hodges (2020a) have
recently developed a model called the age-period-cohort-interaction (APC-I) model. The APC-I is
qualitatively different from other age-period-cohort (APC) models in that it characterizes cohort effects
as a structure of the age-by-period interaction terms to acknowledge the interdependence of age,
period, and cohort effects, whereas prior methods attempt to recover the independent and additive
effects of the three variables. The APC-I model has been used to understand the unique contribution
of cohort membership in various outcomes including crime involvement, substance use, and cultural
taste (Lu and Luo, 2020; Verdery et al., 2020; Ma, 2020). However, the authors of the APC-I model
focused on the conceptual motivation of the method and offered relatively few technical details for
implementing the method. Estimating and testing cohort effects in the APC-I model may be be
challenging for interested readers.

We developed an R package APCI (Xu and Luo, 2021) and a Stata command apci for implementing
the APC-I model in empirical research using pooled cross-sectional data (e.g., the General Social Survey
and the Current Population Survey) and importantly, extend the APC-I method for analyzing multi-
cohort longitudinal or panel data (e.g., data from the Health and Retirement Study (HRS) and the
National Longitudinal Study of Youth (NLSY)). The purpose of this paper is three folded. First, we
describe the R functions in the APCI package and Stata command to estimate and test age, period, and
cohort effects in the APC-I model. The core function can be used for analyzing pooled cross-sectional
data and multi-cohort longitudinal data. Second, we introduce a set of visualization tools to help
researchers motivate an APC analysis and interpret age, period, and cohort effects from the APC-I
model. Third, we clarify several important issues about characterizing cohort effects as a set of age-by-
period interaction terms. We pay particular attention to the implications of coding schemes and how
to interpret the between-cohort average deviations and within-cohort life-course variations.

This paper is organized as follows. Following a description of traditional APC models and the
identification problem, we introduce the APC-I model and the estimation and testing procedures. We
explain how and why the age-by-period interaction terms can be used to characterize cohort effects
with particular attention to the implications of coding schemes for estimating and testing interactions.
Next, we describe the visualization tools and functions in the R package APCI. We then demonstrate
how to use the package with the empirical example of men’s and women’s labor force participation
from 1990 to 2018 in the United States using data from the Current Population Survey (CPS, Flood
et al., 2021).
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2 Methodology: the APC-I model

The APC identification problem

To formally estimate and infer the independent age, period, and cohort effects, Mason et al. (1973)
specified an analysis of variance (ANOVA) model that they labeled the age-period-cohort (APC)
accounting model:

g
(

E
(

Yij

))
= µ + αi + β j + γk (1)

for age groups i = 1, 2, . . . , A, periods j = 1, 2, . . . , P, and cohorts k = 1, 2, . . . , (A + P − 1), where

∑A
i=1 αi = ∑P

j=1 β j = ∑A+P−1
k=1 γk = 0. E

(
Yij

)
denotes the expected value of the outcome Y for the ith

age group in the jth time period; g is the “link function”; αi denotes the mean difference from the
global mean µ associated with the ith age category; β j denotes the mean difference from µ associated
with the jth period; γk denotes the mean difference from µ associated with membership in the kth
cohort.

Unfortunately, the APC accounting model (1) is not identified even when a coding scheme (e.g.,
dummy coding where one group is set as the reference group or effect coding where the sum of the
coefficients for each effect is set to 0) is applied. This is because age, period, and cohort are exactly
linearly related (see Fienberg and Mason, 1979; Fosse and Winship, 2019; Luo et al., 2016, for detailed
discussions). As a result, the design matrix of model (1) has rank one less than full, so an infinite
number of solutions (i.e., estimates) for the parameters fit the data equally well. That is, the data cannot
distinguish different estimation results, so an additional constraint — in addition to the usual reference
group or sum-to-zero constraint — must be imposed in order to choose one set of estimates. Moreover,
interpreting the results is difficult because the standard interpretation of regression coefficients — that
is, the conditional effect of one variable after accounting for other covariates — cannot apply due to
the lack of variation in the third variable (e.g., cohort) after considering the other two (e.g., age and
period).

The theoretical root of the identification problem in traditional APC models is the problematic
assumption that age, period, and cohort effects operate independently of each other. It implies that
the identification challenge is inherent in any APC model that attempts to separate independent and
additive effects of age, period, and cohort and thus cannot be solved by changing the model setup (e.g.,
using random effects for period and cohort as in Yang and Land, 2006; see Luo and Hodges, 2020b,
for a critique) or by variable manipulation (e.g., using unequal interval widths for age, period, and
cohort groups as in Robertson and Boyle, 1986; Sarma et al., 2012; see Luo et al., 2016, for a detailed
discussion). The identification problem is well recognized, and its consequences have been discussed
extensively (Fienberg and Mason, 1985; Fosse and Winship, 2019; Kupper et al., 1983, 1985; Luo et al.,
2016; Luo and Hodges, 2020b; te Grotenhuis et al., 2016; O’Brien, 2020; Morgan and Lee, 2021; Luo,
2013). In essence, internal information derived from the data cannot help because the problem is
circular: researchers do the analysis to learn precisely the kind of information needed to justify any
such constraint.

The APC-I model

Luo and Hodges (2020a) proposed a new APC model called the age-period-cohort-interaction (APC-I)
model. The APC-I model is qualitatively different from all estimators developed under the traditional
framework in that it explicitly specifies cohort effects as a structure of the age-by-period interactions.
A life-course dynamics hypothesis that concerns about whether and how cohort effects may change as
cohorts age thus corresponds to a specific structure of the age-by-period interactions. This specification
is motivated by the theoretical account that “The minimal basis for expecting interdependence between
inter-cohort differentiation and social change is that change has variant import for persons of unlike
age” (Ryder, 1965). That is, a basic notion on which cohort analysis rests is that “transformations of
the social world modify people of different ages in different ways.” (Ryder, 1965)

The APC-I model is fully identified in the sense that it does not require additional constraints
other than a regular coding scheme. It is also flexible enough to test various hypotheses about life-
course changes within cohorts as cohort members age. We first describe the model specification and
estimation and testing techniques. The next section demonstrates the procedure using empirical
examples.

The general form of the APC-I model can be written as:

g
(

E
(

Yij

))
= µ + αi + β j + αβij(k) (2)
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where g, Yij, µ, αi and β j are defined as in model (1) and αβij(k) denotes the interaction of the ith age
group and jth period group, corresponding to the effect of the kth cohort. Note that except for the
oldest and youngest cohorts, the effect of one cohort includes multiple age-by-period interaction terms
αβij(k) that lie on the same diagonal in a table with ages in rows and periods in columns.

Model (2) differs from model (1) in the way that cohort effects are modeled. In model (2), cohort
effects are considered as a specific form of the age-by-period interaction. In statistics, the interaction
between two variables describes the differential effects of one variable depending on the level of the
other (Scheffé, 1999). In APC research, this means that if part of the overall pattern of interest can
be attributed to cohort differences, significant age-by-period interactions should be present. When
cohort membership is not associated with the outcome — that is, when the effects of historical or social
shifts (period effects) are uniform across age groups — then age-by-period interactions should not be
present.

Luo and Hodges (2020a) described a procedure for investigating age and period main effects and
inter-cohort deviations and intra-cohort dynamics. They recommended beginning with a deviance
test about whether the effects of time periods vary among age groups, which is called “a global F
test”. A non-significant global F statistic indicates that there are few age-by-period interaction effects
and thus little cohort variation. If the model suggests significant age-by-period interaction effects,
one may proceed to examine inter- and intra-cohort differences1. Inter-cohort average deviations are
quantified based on the arithmetic mean of the age-by-period interaction terms contained in each
cohort and a t test can be used to examine the average of that cohort-specific deviation. To investigate
intra-cohort dynamics over the life course (e.g., the cumulative (dis)advantage hypothesis in Dannefer,
1987; Ferraro and Morton, 2018; Chauvel et al., 2016; O’Brien, 2020), one may use a t-test of the linear
orthogonal polynomial contrast in each cohort’s age-by-period interaction effects. This intra-cohort
life-course dynamics test is helpful for investigating whether the average (dis)advantages of the
members of that cohort accumulate, remain stable, or diminish as they age.

The APC-I model has three advantages. First, it is identified in that it does not require additional
constraints other than the usual coding scheme. That is, it avoids the identification problem of the
APC accounting model based on the theoretical account of cohort effects and allows inclusion of other
important predictors such as education, sex, and employment status. Second, the interpretation of the
coefficient estimates of the APC-I model is meaningful and straightforward. This is because the APC-I
model recognizes the dependence of age, period, and cohort so the dilemma that analysts face using
traditional APC models does not apply. Third, the APC-I model permits investigating life-course
dynamics as a cohort ages, whereas extant methods usually assume that cohort effects do not change.

It is important to note that the APC-I model is never intended to "solve" the identification problem
in traditional APC accounting models because it is a false problem to begin with. Given the near
monopoly of the accounting model, it may be challenging not to see the APC-I method through the
lens of the traditional APC accounting framework. For example, because the APC-I model quantifies
cohort effects as a structure of the age-by-period interactions, some readers may take it to mean that
the APC-I model cannot estimate "linear cohort main effects". However, the APC-I method, by design,
does not intend to estimate any kind of "linear cohort main effects" precisely because the traditional
model’s assumption that there is a linear cohort effect that is additive or independent of age and
period effects lacks theoretical grounding and is thus arbitrary and questionable. Please see Luo and
Hodges (2020a) for a more thorough discussion about the theoretical motivation of the APC-I model.

Because the APC-I mode is relatively new, below we make additional remarks about interaction
effects and coding schemes to help readers better understand and use the model.

Interaction effects

In some cases, interaction terms may be difficult to interpret besides suggesting that the effect of one
variable may depend on the values of the other. However, as explained by Luo and Hodges (2020a),
the age-by-period interaction terms correspond to the conceptual definition of cohort effects and thus
can be modeled and interpreted in a meaningful way. Specifically, cohort effects are expected when the
influence of social events and changes differ by age groups. This conceptualization of cohort effects
implies that the age-by-period interactions, which represent the differential effects of time periods
depending on age, can be used to measure cohort effects.

Technically, because of the linear dependency among age, period, and cohort, the effects of the
third variable can be expressed as the interaction between the other two variables. The APC-I model
considers age and period as main effects and cohort their interactions, which may give the impression
that it privileges age and period effects and “discriminates” against cohort effects. The theoretical
motivation for this choice is that it is often desirable to estimate a general age pattern that individuals

1The local deviation test is unavailable in the current version (1.0.5) of the R package that we develop.
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follow as they get older. Period main effects are used to represent the kind of impacts of social
environment that everyone in the society is exposed to. The decision to quantify cohort effects as a
specific form of age-by-period interaction is informed by the demographic literature on how cohort
effects are conceptualized in relation to age and period effects. Empirically, as the analysis of women’s
labor force participation in section Examples will illustrate, the size of the cohort effects, characterized
as the age-by-period interactions, is not necessarily smaller—in fact may be larger—than some of the
main effects.

Coding scheme and contrast

For the unidentified APC accounting model, some estimation methods including the intrinsic estimator
yield effect estimates that are dependent on the choice of coding schemes in that estimates under
different coding schemes are not equivalent (see Luo et al., 2016; te Grotenhuis et al., 2016, for a
more detailed discussion). The APC-I model does not have a rank deficiency problem in the sense
that it does not require more constraints than a usual ANOVA model with main effects and their
interactions. For any identified model including the APC-I model, the estimates are equivalent; that is,
the estimated cell means are the same for all coding schemes.

Although this equivalence holds for both main effects and interaction estimates in the APC-I
model, it is less obvious for interaction terms because the interpretation of the specific parameter
estimates do change with coding schemes. To illustrate, consider an example of applying the APC-I
model to health data with three age categories and three periods, shown in table 1 below. Under
dummy coding—for example, the youngest age group 20-24 and the beginning survey period of
2000 are set to zero or omitted as the referent—the interaction for ages 25-29 and period 2005 in
cell Y represents the difference in a health outcome between periods 2000 and 2005 for age 25-29 or
equivalently, health difference between ages 25-29 and 20-24 for the period 2005. That is, interactions
under dummy coding represents a directional difference from a particular reference group.

Period
2000 2005 2010

Age 20 − 24
25 − 29 Y
30 − 34

Table 1: Hypothetical data with three age categories and three periods illustrating a shift in meaning
and interpretation of interaction terms under different coding schemes. The interaction terms under
different types of coding in cell Y necessarily have different numerical values because of different
reference groups. For example, the interaction term in cell Y under dummy coding represents a
directional difference from a particular reference group (e.g., age 20-24 in year 2000). Under effect
coding, the same interaction term in cell Y represents the deviation in the outcome from the age main
effect plus period main effect for the group of individuals who were age 25-29 and surveyed in period
2005. Such different numeric values do not arise from an identification problem but rather from a shift
in what these quantities represent.

By contrast, under effect coding (i.e., sum-to-zero coding), the same interaction term in cell Y
represents the deviation in the health outcome from the age main effect plus period main effect for the
group of individuals who were age 25-29 and surveyed in period 2005.

The estimated interaction terms under these two types of coding in cell Y thus necessarily have
different numerical values. However, this difference does not arise from an identification problem
but rather from a shift in what these quantities represent. That is, the two interaction terms can be
transformed to be equivalent so that the means in Y after considering age and period main effects are
the same under the two coding schemes.

We recommend using effect or sum-to-zero coding for estimating the APC-I model for the following
reasons: when characterizing cohort effects as a set of age-by-period interactions, we are less concerned
about any direction of the interactions; that is, we are not particularly interested in the difference
between two cohorts at a particular age or time period. Rather, we focus on particular structures of
these interactions that may represent theoretically interesting patterns during a cohort’s life span.
Effect coding is helpful because they all have the same referent group — the next lower level in the
hierarchy of main effects and interactions. That is, we choose effect coding for the purpose of easy
interpretation. This is also consistent with the recommendation of coding schemes in the presence of
interactions (Aiken et al., 1991; Jaccard and Turrisi, 2003).
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3 The R package APCI

Package installation

The R package APCI 2 can be installed and loaded using the following R code3:

# install R package APCI
> install.packages("APCI")
# load R package APCI to the current working environment
> library(APCI)

The main routines to implement the APC-I model using package APCI are apci.plot.raw, apci,
apci.plot (or apci.plot.hexagram, apci.plot.heatmap). A summary of these functions and input
arguments used in the routines are described below.

Functions in R package APCI

The R package APCI contains the following functions for estimating the APC-I model and visualizing
the data and the model results:

• apci: to estimate the age, period, and cohort effects using the APC-I model.

• temp_model: an internal function that estimates a generalized linear model.

• tests: to conduct the global F test.

• maineffect: an internal function to extract age and period main effects.

• cohortdeviation: an internal function to extract between-cohort average deviations and within-
cohort life-course dynamics.

• ageperiod_group: to return a cohort index based on how age and period are grouped.

• apci.plot.raw: to visualize the mean values of the outcome across age and period groups,
respectively.

• apci.plot.hexagram: to visualize the estimated cohort effects in a hexagram style.

• apci.plot.heatmap: to visualize the estimated cohort effects in a heatmap style.

• apci.plot: to visualize the estimated age, period, and cohorts in conventional figures.

A summary of input arguments required in these functions will be given one by one 4 in the next
section. Package APCI also contains three empirical datasets women9017, cpsmen, cpswomen, and one
simulated dataset simulation. Dataset women9017 was used and described in Luo and Hodges (2020a).
Applications of the APC-I model to the other two empirical datasets are given in section Examples.

Function apci

Function apci is the core function in the R package APCI. It fits an APC-I model with or without
covariates and returns a list of results including coefficients and standard error estimates for age main
effects, period main effects, inter-cohort average deviations, and intra-cohort life-course trends, and
covariate coefficients if any. Both pooled cross-sectional data and multi-cohort longitudinal/panel
data are supported. Specifically, function apci is used as

apci(data, outcome, age, period, cohort, weight, covariate, family,
dev.test=TRUE, print, gee, id, corstr,...)

and takes the following arguments:

• data: a data frame containing an outcome variable, age group indicators, period group indica-
tors, and covariates to be used in the model. If a variable is not found in data, there will be an
error message reminding users to check the input data again. Supported data structures include
pooled cross-sectional data and multi-cohort longitudinal/panel data.

2The R package APCI works well in R version above 3.6.0., but updating to the latest version of R is highly
recommended.

3If users have never installed packages in R or RStudio, use the following R code instead:
install.packages("APCI", repos = "http://cran.us.r-project.org").

4Summaries for internal functions are not listed. Please see APCI reference manual for details about internal
functions.
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• outcome: an object of class character containing the name of the outcome variable. The outcome
variable can be a continuous, categorical, or count variable.

• age: an object of class character indicating the age group index taking on the number of distinct
values in the data (e.g., six age groups: 20-24, 25-29, 30-34, 35-39, 40-44, and 45-49). The vector
should be a factor (or “category”, or “enumerated type”).

• period: an object of class character indicating the time period index in the data.

• cohort: an optional object of class character indicating cohort membership index in the data.
The cohort index can be generated from the age group index and time period index in the data
because of the exact linear relationship among these three time-related indices.

• weight: an optional vector of sample weights to be used in the model fitting process. If non-NULL,
user-supplied weights will be used in the first step to estimate the model. Observations with
negative weights will be dropped in modeling.

• covariates: an optional vector of characters containing the names of user-specified covariate(s)
to be used in the model. If the variables are not found in data, there will be an error message
reminding the users to check the data again.

• dev.test: logical, specifying if the global F test (step 1) should be implemented before fitting the
APC-I model. If TRUE, apci will first run the global F test and report the test results; otherwise,
apci will skip this step and return NULL. The default setting is TRUE. However, users should be
aware that the algorithm will not automatically stop even if there is no significant age-by-period
interactions based on the global F test.5

• family: a character string specifying the link function to be used in the model. The value can
be “binomial”, “multinomial”, or “gaussian”. See R function glm for more details about link
functions.

• print: logical, specifying if the intermediate results should be displayed in the console when
fitting the model. The default setting is TRUE to display the results of each procedure.

• gee: logical, indicating if the data is cross-sectional data or longitudinal/panel data. If TRUE,
the generalized estimating equation will be used to correct the standard error estimates. The
default is FALSE, indicating that the data are cross-sectional.

• id: a character vector specifying the cluster index in longitudinal data. It is required when gee
is TRUE. The length of the vector should be the same as the number of observations.

• corstr: a character string specifying a possible correlation structure in the error terms when
gee is TRUE. The following are allowed: independence, fixed, stat_M_dep, non_stat_M_dep,
exchangeable, AR-M and unstructured. The default value is exchangeable.

• unequal_interval: logical, indicating if age and period groups are of the same interval width.
The default is set as TRUE.

• age_range,period_range: numeric vectors indicating the actual age or period range (e.g., 10 to
59 years old or from 2000 to 2019).

• age_interval,period_interval,age_group,period_group: numeric values or character vec-
tors indicating how age and period are grouped. age_interval and period_interval indicate
the width of age and period intervals, respectively. age_group and period_group are character
vectors listing possible age and period groups. There are two ways to define age and period
groups with unequal intervals: 1) defining age_interval and period_interval, or 2) defining
age_group and period_group. Users must define age and period groups using one of the two
options when unequal_interval is TRUE.

• ...: further optional arguments to be passed to the model.

As mentioned in section Coding scheme and contrast, we use effect coding to estimate the APC-I
model. The age and period arguments in function apci accept categorical variables. Different from
the common approach of dummy coding or simple coding, where an effect is defined as the difference
of each group from the reference group, function apci uses effect coding (i.e., the sum-to-zero coding,
deviation coding, or the ANOVA coding) as the default coding. Under this coding scheme, the effect of
the omitted category equals the negative sum of the effects of all other categories. Computation wise,
the effect coefficient of the omitted category is redundant because of the coding scheme. However, for
the purpose of quantifying cohort effects as deviations from the main effects of age and period, it is
useful to compute estimates for all age-by-period cross-classifications and their standard errors. For
data with A age groups and P periods, therefore, function apci returns A and P number of main effect
estimates and A ∗ P number of interaction estimates along with their standard error estimates. For the

5The following error may appear: “Error in solve.default(V): ‘a’ is 0-diml”. To address this error, users may
bypass the F test by setting the argument dev.test to FALSE.
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main effects of age or period, the estimate can be interpreted as the deviation associated with each age
or period group from the global mean. The age-by-period interactions represent the deviation from
the expectation determined by the corresponding age and period main effects.

Also note that when age and period groups have unequal interval widths in an age-period
classification table, the age-by-period interactions contained in a cohort no longer lie on the same
diagonals. Because cohort effects are conceptualized and estimated as a structure of the age-by-period
interactions in the APC-I model, it is technically possible to use the argument unequal_interval in
package APCI to extract interaction coefficient estimates that lie on different diagonals. However,
unequal age and period group intervals may complicate the issue of cohort overlapping noted by
Kupper et al. (1985). For this reason, we do not recommend using unequal interval widths for age and
period groups if possible.

After fitting the APC-I model, function apci will store the following components as a list for
further usage:

• model: a summary of the fitted generalized linear regression model.6 It displays the standard
regression output including coefficient and standard errors estimates.

• dev_global: the global F test results. It examines if the interaction terms are significant in
a generalized linear regression model that contains age and period main effects and their
interactions.

• intercept: the overall intercept (µ in equation 2).

• age_effect: a vector containing the estimated effect for each age group.

• period_effect: a vector containing the estimated effect for each time period.

• cohort_average: a vector containing the inter-cohort average deviations for comparing differ-
ences between cohorts.

• cohort_slope: a vector containing intra-cohort life-course trends.

Function tests

As mentioned earlier, the first step of implementing the APC-I model is to conduct a global F test of
the age-by-period interactions. This step is a routine in function apci, but the procedure does not stop
even if there is no statistically significant deviation from the age main effect and period main effect.
Therefore, we recommend separately conducting the global F test. In R package APCI, the function
tests can be used for this purpose. It can be used as follows:

tests(model, A, P, C, ...)

and takes the following arguments:

• model: a generalized linear regression model generated from the internal function temp_model.
7

• A,P,C: numbers of age groups, period groups, or cohort groups. If age and period groups are of
different widths, the values of will be automatically generated by the function.

Function tests will return a standard F test result including the value of the F test statistic and the
associated p-value.

Functions for visualization

In package APCI, we provide four functions to facilitate visualizing the data and model results, namely
apci.plot.raw, apci.heatmap, apci.plot.hexagram, and apci.plot, in different stages of a research
project. They take similar input arguments. A summary of these arguments is given below.

Function apci.plot.raw is designed to plot the outcome variable aggregated by age or period
groups. This function may be used in the stage of data exploration. Functions apci.heatmap and
apci.plot.hexagram are designed to plot the age-by-period interactions from the APC-I model. Both
functions generate heatmaps, where one axis represents age groups, and the other period groups. The
cells in a diagonal represent one cohort. The difference between the two functions is the layout of
the heatmap; one is a rectangular graph and the other a hexagram. Function apci.plot can be used
to visualize both raw data and model results. It divides the canvas into four (2 × 2) panels. Three

6APCI supports all types of generalized linear regression models.
7temp_model is an internal function in R package APCI that accepts the same input arguments as those in

function apci. Detailed syntax of this function can be found in APCI reference manual.
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of the four panels can be used to visualize the three effect estimates in the APC-I model and the left
panel to add notes. For data exploration, users can visualize the mean values of the outcome variable
across age, period, and cohort groups on the same canvas. Users can the same functions to visualize
the estimated age, period, and cohort effects from the modeling results.

The visualization functions in package APCI include:

apci.plot.raw(data, outcome_var, age, period, ...)

apci.plot.heatmap(model, age, period, color_map = NULL, color_scale = NULL,
quantile = NULL, ...)

apci.plot.hexagram(model, age, period, first_age, first_period, interval,
color_scale = NULL, color_map = NULL, quantile = NULL, . . . )

apci.plot(model, age, period, outcome_var, type = "model", quantile = NULL,
...)

and takes the following arguments:

• model: a list recording the results from function apci.

• outcome_var: an object of class character indicating the name of the outcome variable used in
the model. The outcome variable can be a continuous, binary, categorical, or count variable.

• age: a vector indicating the age group. The vector should be converted to a factor (or the terms
of “category” and “enumerated type”).

• period: a vector indicating the time period. The vector should be converted to a factor (or
“category”, “enumerated type”).

• color_map: a vector representing a color palette to be used in the figure. The default setting is
greys if color_map is NULL. Alternatives, for example, can be c(“blue”, “yellow”), “blues”, etc.

• cohort_scale: a vector containing two values to indicate the minimum and maximum values,
respectively, of the estimated cohort effects to be displayed. If NULL, the function will use the
range from the estimation results.

• quantile: a number valued between 0 and 1, representing the desirable percentiles to be used
in visualizing the data or model. If NULL, the original scale of the outcome variable will be used.

4 Examples: Application of the R package APCI to empirical data

We now illustrate how to use package APCI’s visualization and analytical functions. We describe
and analyze two empirical datasets to demonstrate how this package may be used to analyze pooled
cross-sectional data. We later briefly describe how to fit an APC-I model for multi-cohort longitudinal
data.

Cross-sectional data of labor force participation in the United States

Temporal trends in men’s and women’s labor force participation (LFP) in United States have gathered
much scholarly attention (see e.g. Connelly, 1992; Farkas, 1977; Hollister and Smith, 2014; Macunovich,
2012; Treas, 1987; Wilkie, 1991). For example, whereas men’s LFP steadily declined in the past decades
(Wilkie, 1991), women’s LFP continued to rise until the 1990s and the 2000s. Female LFP has since
then reached a plateau and even begun to decline. Researchers have debated about the causes of this
leveling off or decline. Some studies attributed the observed trends to period-specific factors such as
labor demand (Erceg and Levin, 2014), the economic shocks of the Great Recession (Boushey, 2005;
Hoffman, 2009), social welfare and disability insurance (Duggan and Imberman, 2009), and gender
role attitudes (Fortin, 2015).

However, the temporal trends in LFP are unlikely due to a pure period process. For example,
because individuals may begin to leave the labor force in age 50, a decline in LFP should be expected
if the proportion of the population age 50 or older has increased. That is, the recent trends may reflect
a change in the age composition of the US population (Aaronson et al., 2014). The cohort succession
may also contribute to the trend, a process in which older cohorts with higher or lower LFP rates begin
to decease and younger cohorts with lower or higher LFP enter the labor force Lee (2014). At the same
time, critical social and demographic changes in education level, fertility, and attitudes about women
working outside the home may be more of cohort-specific than period-specific processes because these
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forces only affect individuals of certain ages (Balleer et al., 2014; Farré and Vella, 2013; Fernández, 2013;
Goldin, 2006).

Given that the observed trends in LFP are likely a mix of age, period, and/or cohort patterns, an
APC analysis that decomposes the temporal trends into age-, period-, and cohort-related variations is
thus helpful for revealing the demographic, social, and economic changes that have underlined the
temporal trends in American’s labor force participation. In this following section, we demonstrate
how to use the functions in APCI to undertake an APC analysis of men’s and women’s LFP using a
cross-sectional dataset.

The Current Population Survey (CPS, Flood et al., 2021) is the primary source of labor force
statistics in the United States (Flood et al., 2021). Beginning in the 1960s, the CPS has been collecting
data on key demographic, economic, and education topics. We subset the 1990-2019 CPS data by
gender, resulting in two datasets, namely cpsmen and cpswomen, to show how to conduct an APC-I
analysis of men’s and women’s LFP in the United States using package APCI.

Datasets cpsmen and cpswomen contain a subset of men and women age 20-64 who participated in
the 1990 to 2019 CPS. The following code is used to load the data into the working environment:

> data(cpsmen)
> data(cpswomen)

The first five rows of the datasets of cpsmen and cpswomen are:

> head(cpsmen, n = 5)
asecwt year age labforce educc

2854.84 3 5 0 1
1576.54 4 4 1 2
2340.55 2 6 1 3
158.44 3 5 0 0
347.09 6 6 1 3

> head(cpswomen, n = 5)
asecwt year age labforce educc

2415.67 2 3 1 1
663.89 2 5 1 3

1653.01 6 4 1 2
1613.31 6 4 0 2
177.23 4 3 1 2

where labforce indicates the respondent’s labor force participation status (1=in the labor force, 0=not
in the labor force). asecwt is the person-level weight that the CPS recommends to be used in individual-
level data analyses. year indicates the survey year when respondent was interviewed, grouped into 6
period groups (1=1990-94, 2=1995-99, . . . , 6=2015-19). age indicates the respondent’s age categories
(1=20-24, 2=25-29, . . . , 9=60-64). educc is a three-level categorical education measure (1=less than high
school, 2=high school graduate, 3=college degree or above).

For data exploratory purpose, function apci.plot.raw visualizes the outcome variable in the
following way:

> apci.plot.raw(data, outcome_var, age, period)

Figure 1 shows LFP rates by age groups (top panel) and period groups (bottom panel), respectively,
for male (left panel) and female CPS respondents (right panel) age 20 to 64 from 1990 to 2019. Figure
1’s top panel suggests similar age patterns in LFP across time periods. The bottom panel shows distinct
period trends depending on age groups. For example, the LFP rates among women in the 55-59 and
60-64 age groups seem to have gone up whereas other age groups show a relatively flat trend. Such
distinct period patterns in LFP by age groups suggest potential cohort variations in women’s labor
force participation. For men’s LFP, however, the visualization results suggest that a simpler model
with age and period main effects may suffice for summarizing their LFP patterns.

Function apci can be used to fit an APC-I model for pooled cross-sectional data or multi-cohort
longitudinal/panel data. In the simplest form of an APC-I model without covariates for pooled
cross-sectional data, function apci is called as follows:

> no_cov <- APCI::apci(outcome = "labforce",
+ age = "age",
+ period = "year",
+ weight = "asecwt",
+ data = cpswomen,
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Figure 1: Period-specific age trajectories and age-specific period trends in labor force participation rates
for men and women in the United States, the Current Population Survey 1990-2019. Age trajectories
are similar across time periods for both men and women (top panel). Period trends differ by age
groups, especially among women (bottom panel).

+ dev.test = FALSE,
+ family = "binomial")

It is often desirable to add covariates in the model, which can be done by calling the covariate
argument. For example, suppose one would like to add education levels (“educc”) as a covariate in
the model, function apci can be used as:

> with_cov <- APCI::apci(outcome = "labforce",
+ age = "age",
+ period = "year",
+ covariate = c("educc"),
+ weight = "asecwt",
+ data = cpswomen,
+ print=F,
+ dev.test=FALSE,
+ family = "binomial")

Below is a summary of the results from an APC-I model that includes education levels as a
covariate:

> summary(with_cov)
Length Class Mode

model 33 svyglm list
dev_global 0 -none- NULL
intercept 4 -none- character
age_effect 45 -none- character
period_effect 30 -none- character
cohort_average 6 data.frame list
cohort_slope 6 data.frame list
int_matrix 5 data.frame list
cohort_index 54 -none- numeric
data 7 data.frame list
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The returned value is a list of objects. model contains the results from a logistic regression model
with age and period main effects and the unstructured interactions. dev_global displays the global
F test result. A significant F statistic suggests that there may exist cohort effects. intercept is the
overall intercept (µ in Equation 2). age_effect gives estimated age main effect. period_effect is the
estimated period main effect. cohort_average gives inter-cohort average deviations from age and
period main effects. cohort_slope gives intra-cohort life-course linear slopes, which can be used for
testing intra-cohort life-course dynamics. int_matrix displays a matrix that contains the estimated
coefficients for age-by-period interactions. Note that there are A*P interactions in int_matrix because
effect coding is used to compute the A+P-1 interaction estimates based on the (A-1)*(P-1) freely
varying interaction parameters. Such interaction estimates are used to generate heatmaps similar
to Figure 2. data stores the data fed into apci function. Users may call an object to obtain detailed
results. For example, by calling with_cov$cohort_average and with_cov$cohort_slope, users can
obtain estimated inter-cohort average deviations and intra-cohort life-course slopes.

The output below shows education-adjusted inter-cohort average deviations in women’s LFP from
analyzing the cpswomen data using function apci.

> with_cov$cohort_average
c_avg_group c_avg_est c_avg_se c_avg_t c_avg_p c_avg_sig

1 1 -0.329 0.193 -1.709 0.088
2 2 -0.155 0.142 -1.091 0.275
3 3 -0.162 0.114 -1.422 0.155
4 4 0.047 0.097 0.481 0.631
5 5 0.096 0.085 1.139 0.255
6 6 0.174 0.076 2.288 0.022 *
7 7 0.034 0.074 0.457 0.648
8 8 -0.036 0.074 -0.493 0.622
9 9 0.003 0.073 0.047 0.963
10 10 -0.072 0.081 -0.894 0.371
11 11 0.030 0.085 0.353 0.724
12 12 -0.029 0.102 -0.288 0.774
13 13 -0.080 0.131 -0.609 0.543
14 14 -0.103 0.170 -0.608 0.543

where c_avg_group indicates cohort membership (e.g., cohort 1=the 1930 birth cohort, cohort 2=the
1935 birth cohort,...,cohort 14=the 1995 birth cohort), c_avg_est is inter-cohort average deviation,
c_avg_se is the standard error estimate for the average deviation, c_avg_t is the t test statistic for the
average deviation, and c_avg_p and c_avg_sig are the p values and alpha levels (*: p < .05, **: p < .01,
and ***: p < .001), respectively.

The results from with_cov$cohort_average imply that on average, the LFP rates among cohort
6’s–the 1955 birth cohort – significantly differ from the expected rates based on age and period main
effects. Specifically, the 1955 cohort shows a .19 (exp(.174)-1, p < .05) higher participation rate than the
expectation based on the age and period main effects.

The output below shows education-adjusted intra-cohort life-course dynamics in women’s LFP
from analyzing the cpswomen data using function apci.

> with_cov$cohort_slope
c_slp_group c_slp_est c_slp_se c_slp_t c_slp_p c_slp_sig

1 1 NA NA NA NA <NA>
2 2 0.165 0.195 0.849 0.396
3 3 -0.215 0.187 -1.148 0.251
4 4 0.163 0.189 0.866 0.386
5 5 0.093 0.184 0.508 0.611
6 6 0.007 0.169 0.039 0.969
7 7 0.047 0.172 0.277 0.782
8 8 -0.096 0.181 -0.530 0.596
9 9 -0.187 0.173 -1.076 0.282
10 10 -0.106 0.176 -0.602 0.547
11 11 -0.279 0.159 -1.750 0.080
12 12 0.353 0.160 2.207 0.027 *
13 13 -0.047 0.180 -0.262 0.793
14 14 NA NA NA NA <NA>

where c_slp_group indicates cohort membership (e.g., cohort 1=the 1930 birth cohort, cohort 2=the
1935 birth cohort,..., cohort 14=the 1995 birth cohort), c_slp_est is intra-cohort life-course slopes,
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c_slp_se is the standard error estimate for the life-course slope, c_slp_t is the t test statistic for the
life-course slope, and c_slp_p and c_slp_sig are the p values and alpha levels (*: p < .05, **: p < .01,
and ***: p < .001), respectively. NAs are generated for the youngest and oldest cohort because there is
only one age-by-period combination observed for the two cohorts and thus intra-cohort life-course
dynamics cannot be accessed.

For example, for cohort 12 (the 1985 birth cohort), the estimated intra-cohort slope is 0.353 (p < .05),
meaning that this cohort’s LFP is lower than expected when they were young but higher than expected
in older ages. Interestingly, for cohort 12 (the 1985 birth cohort), their average cohort deviation is
not statistically significant. Such an insignificant inter-cohort average deviation and a significantly
negative intra-cohort slope indicate a compensation life-course pattern; that is, this cohort’s lower-
than-expected LFP in younger ages seems to be compensated by their higher LFP when they were
older.

The intra-cohort life-course dynamics are based on the age-by-period interactions as follows:

# the first six rows of the life-course dynamics
> with_cov$int_matrix
iaesti iase iap iasig cohortindex

1 0.166 0.169 0.327 9
2 -0.048 0.207 0.818 8
3 0.068 0.164 0.678 7
4 0.095 0.172 0.581 6
5 0.205 0.191 0.283 5
6 0.227 0.193 0.239 4
# [there are 48 rows compressed]

where “iaesti” is the age-by-period interaction estimates, “iase” is the standard error estimate for the
interaction term, “iap” and “iasig” are the p value and alpha level (*: p < .05, **: p < .01, and ***: p <
.001),respectively, and “cohortindex” indicates cohort membership.

The following code can be used to organize the intra-cohort life-course estimates in a matrix form:

> matrix(with_cov$int_matrix, A, P)[A:1,]
# A is the number of age groups and P is the number of period groups.

period #1 period #2 period #3 period #4 period #5 period #6
age #9 -0.329 -0.038 -0.416* 0.334 0.267 0.182
age #8 -0.272 0.043 0.017 0.125 0.001 0.086
age #7 -0.112 -0.392* -0.070 0.257 0.278 0.040
age #6 0.227 -0.046 0.443* -0.333* -0.258 -0.033
age #5 0.205 0.066 0.061 -0.150 -0.074 -0.107
age #4 0.095 0.044 0.139 0.065 -0.109 -0.234
age #3 0.068 0.059 -0.359* -0.147 0.096 0.283
age #2 -0.048 0.256 -0.006 0.067 -0.156 -0.113
age #1 0.166 0.009 0.191 -0.216 -0.046 -0.103

Based on the R package ggplot2 (Wickham, 2016), heatmaps can be generated to visualize inter-
and intra-cohort patterns and motivate a subsequent formal APC analysis. For example, for dataset
whitemen, both inter-cohort average deviations and intra-cohort life-course dynamics may be visualized
in a heatmap as follows:

> apci.plot.heatmap(model = with_cov, age = "age",period = 'year',
color_map = c('blue','yellow'))

Figure 2 is a heatmap of the estimated age-by-period interactions, with rows defined by age
groups and columns by time periods. Each square represents an age-by-period interaction. Yellow
squares indicate lower participation rates than the expectation determined by the age and period main
effects. Blue squares indicate higher-than-expected rates. Each diagonal that runs from the lower
left to the upper right represents one birth cohort. The dotted line in Figure 2 indicates a significant
inter-cohort average deviation but an insignificant intra-cohort slope in their LFP for the 1955 cohort.
Cohorts that on average significantly deviate from the expected rates based on age and period main
effects are indicated by solid, dashed, or dotted lines. Solid lines indicate significantly (p<.05) positive
intra-cohort life-course slopes, dashed lines significantly negative intra-cohort slopes, and dotted lines
significant average inter-cohort deviations but insignificant intra-cohort slopes. Users have the options
to customize the elements of these figures to suit their research or teaching purposes.

Figure 2 indicates that although some cohorts had LFP rates that differ from the expected rates
based on age and period main effects, only the 1955 birth cohort (marked by a dotted line) had, on
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Figure 2: Cohort deviation heatmap showing higher-than-expected labor force participation rates
that persist over their life course for the 1955 birth cohort. Each square represents an age-by-period
interaction. Yellow squares indicate lower participation rates than the expectation determined by the
age and period main effects. Blue squares indicate higher-than-expected rates. Each diagonal that
runs from the lower left to the upper right represents one birth cohort. The dotted line indicates a
significant average inter-cohort deviation but an insignificant intra-cohort slope in their labor force
participation rates for the 1955 cohort.
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average, higher-than-expected LFP rates (inter-cohort average deviation = .174, p < .05), and this
higher LFP seems to persist over their life course (intra-cohort slope = .007, p = .969). This visualization
results are consistent with the results from with_cov$cohort_average and with_cov$cohort_slope.

Users can also use bar plots to visualize inter-cohort average deviations. Function apci.bar can be
used as:

> apci.bar(model = with_cov, age = "age",period = "year",
cohort_label = seq(1930,1995,5))
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Figure 3: Bar plots showing inter-cohort average deviations in women’s labor force participation rates.
Only the 1955 birth cohort had a significantly higher-than-expected participation rate. The horizontal
line at y=0 indicates expected labor force participation rates for each cohort based on the main effects
of age and period when they were observed. The bars indicate the estimated average deviation for
each cohort from the age and period main effects. Bars above the horizontal line indicate positive
average deviations, and bars below the line indicate negative average deviations. The asterisk sign
indicates that a cohort’s average deviation is significantly different from the expectation determined
by age and period main effects at the .05 or lower level.

Figure 3 illustrates inter-cohort deviations based on the average of the age-by-period interaction
estimates contained in each cohort. The horizontal line at y=0 indicates expectations for all cohort
based on the main effects of age and period when they are observed. The bars indicate the estimated
average deviation for each cohort from the age and period main effects. Bars above the horizontal line
indicate positive average deviations, and bars below the line indicate negative average deviations. The
asterisk sign indicates that a cohort’s average deviation is significantly different from the expectation
determined by age and period main effects. Figure 3 suggests some cohort variation in women’s LFP
using the 1990-2019 CPS data, but only the 1955 birth cohort had significantly higher-than-expected
LFP rates.

Longitudinal data

For longitudinal data (i.e., panel data, repeated measure data) that include multiple cohorts, users may
set the argument gee to TRUE to estimate an APC-I model using the generalized estimating equation
(GEE) technique (Liang and Zeger, 1986; Carey et al., 2019). When gee is TRUE, users will also need to
specify arguments id and corstr accordingly.

> model_gee <- apci(outcome = "y",
+ age = "age",
+ period = "period",
+ cohort = NULL,
+ weight = NULL,
+ covariate = NULL,
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+ data=simulation_gee,
+ family ="gaussian",
+ dev.test = FALSE,
+ print = TRUE,
+ gee = TRUE,
+ id = "id",
+ corstr = "exchangeable")
> summary(model_gee)

The list of output results is similar to that for pooled cross-sectional data, but the standard errors
are corrected using the GEE’s sandwich estimator.

5 Use the R package APCI in Stata

We also designed a Stata command apci based on the Stata command rcall (Haghish, 2019) to help
implement APC-I models in Stata. The command is used as:

apci depvar [indepvars], outcome(depvar) age(age) period(period) family("gaussian") [if] [in] [weight]
Stata users can use the above command to fit APC-I models and obtain all the results as in R. A

Stata ado file for installing this command can be downloaded at https://sites.psu.edu/liyingluo/
software/.

6 Conclusion and future development

In this article, we introduced an R package APCI and Stata command apci for implementing the
age-period-cohort-interaction (APC-I) model developed by Luo and Hodges (2020a). In addition to
pooled cross-sectional data analysis, we extended the package to permit multi-cohort longitudinal or
panel data analysis. This package also contains a set of visualization tools to help researchers motivate
an APC analysis and interpret the results. We clarify the implications of coding schemes for estimating
and testing main effects and interaction effects in the APC-I model. We illustrate how to use this
package using the empirical examples of labor force participation using the 1990-2019 data from the
Current Population Survey.

Luo and Hodges (2020a) described a local F test for testing the variation associated with the
multiple age-by-period interactions contained in each cohort. Because the parameterization of the local
F test is more intricate than it appears, the R package APCI and the Stata command apci currently do
not support such tests as of version 1.0.5 but may be available in later versions.

Moreover, it may be of interest to examine the interaction effects of cohort and other explanatory
variables such as education and geographic areas. Because cohort effects are conceptualized and oper-
ationalized as a two-way interaction term of age and period effects, an interaction term between cohort
and another variable is equivalent to a three-way interaction among age, period, and another variable.
Future development may consider creating functions to facilitate summarizing and interpreting the
more complex three-way interaction terms in the APC-I model.
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shinybrms: Fitting Bayesian Regression
Models Using a Graphical User Interface
for the R Package brms
by Frank Weber, Katja Ickstadt, and Änne Glass

Abstract Despite their advantages, the application of Bayesian regression models is still the exception
compared to frequentist regression models. Here, we present our R package shinybrms which
provides a graphical user interface for fitting Bayesian regression models, with the frontend consisting
of a shiny app and the backend relying on the R package brms which in turn relies on Stan. With
shinybrms, we hope that Bayesian regression models (and regression models in general) will become
more popular in applied research, data analyses, and teaching. Here, we illustrate our graphical user
interface by the help of an example from medical research.

1 Introduction

The relevance of regression models in applied research has already been well pointed out, for example,
by Karabatsos (2015):

“Regression modeling is ubiquitous in empirical areas of scientific research. This is
because most research questions can be asked in terms of how a dependent variable
changes as a function of one or more covariates (predictors).”

Conducting regression analyses in a Bayesian framework has a lot of advantages. Introductory
texts on Bayesian statistics (in general) are, e.g., McElreath (2020), Albert and Hu (2019), Reich and
Ghosh (2019), StataCorp (2019a), Gelman et al. (2020a), and Johnson et al. (2022). For readers with
little background in Bayesian statistics, we recommend reading one of these textbooks first. A more
detailed introduction may be found, e.g., in Gelman et al. (2014). In particular, Bayesian statistics has
the following advantages (for further advantages, see, e.g., Gelman et al., 2014; StataCorp, 2019a):

1. Bayesian methods allow for incorporation of prior knowledge . Generally, inclusion of prior
knowledge is desirable: The flat prior implied by the frequentist maximum likelihood (ML)
method may lead to nonsensical inferences (Gelman et al., 2017). Even if the inclusion of
informative prior knowledge is not desired, weakly informative priors have the advantage
(compared to so-called “noninformative” priors1) to downweight unreasonable parameter
values and to introduce a certain regularization or penalization , helping against overfitting
(Gelman, 2006; Gelman et al., 2008, 2014, 2017). Hereafter, we follow conventional notation in
Bayesian statistics and denote the prior for the parameter vector θ by p(θ).

2. Similarly, the prior distribution may be used to impose parameter constraints in an easy and
natural way. There is no need for ad-hoc solutions to cut off parameter estimates. For example,
many frequentist between-study variance estimators in the random-effects meta-analysis model
are cut off at zero.

3. It is usually possible to infer the posterior exactly (apart from minor approximations such as
those arising from the Monte Carlo error). In that case, Bayesian statistics does not need to
resort to large-sample approximations such as the asymptotic normal distribution of the ML
estimator often used in frequentist statistics.

4. For most practical cases, Markov chain Monte Carlo (MCMC) sampling (see section Markov
chain Monte Carlo) constitutes a generic Bayesian inference method. In frequentist statistics,
generic methods such as the asymptotic normal distribution of the ML estimator can be unsat-
isfactory, e.g., for small sample sizes. This is why in frequentist statistics, different inferential
methods have often evolved for the same task or model. This complicates frequentist analyses
for users, especially for those with little background in statistics.

5. The quantities derived from the posterior have a more intuitive interpretation than their frequen-
tist counterparts which are based on the sampling distribution of the estimator. In particular,
Bayesian posterior intervals (credible intervals, CrIs) have the interpretation that is often in-
correctly attributed to frequentist confidence intervals (CIs) (McElreath, 2020) and posterior
tail-area probabilities have the interpretation that is often incorrectly attributed to frequentist
p-values.

1We added quotation marks here since noninformative priors might be more informative than intended (Gelman
et al., 2017).

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=shinybrms
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=brms


CONTRIBUTED RESEARCH ARTICLE 97

6. In Bayesian statistics, uncertainty in nuisance parameters is easily—and naturally—taken into
account by integrating them out from the posterior:

p(ψ|D) =
∫

p(ψ, ϕ|D) dϕ (1)

with D denoting the data, ψ the parameter vector of interest, and ϕ the nuisance parameter
vector (so that (ψT, ϕT)T = θ)2. Taking uncertainty in nuisance parameters into account helps
against overfitting (like the penalization mentioned in enumeration point number 1 above),
but in general, this is not that easy in frequentist statistics, as can be seen in random-effects
meta-analyses (Weber et al., 2021).

7. When combined with probabilistic programming (as done, e.g., by the various sampling meth-
ods introduced in section Algorithms for inferring the posterior), a Bayesian analysis naturally
propagates the posterior uncertainty into derived quantities (Gelman et al., 2020a).

8. Often, frequentist analyses result in the typical null-hypothesis significance testing which is
being criticized to an increasing degree (Amrhein and Greenland, 2018; Amrhein et al., 2019;
McShane et al., 2019). Null-hypothesis significance testing is especially problematic for null
hypotheses consisting of only a point in parameter space. Of course, Bayesian analyses may
also result in null-hypothesis significance testing or similar hypothesis-testing procedures, but
in our experience, this is not as common as in frequentist analyses. We designed our software
presented here in a way that does not encourage null-hypothesis significance testing.

9. Posterior predictive checks (PPCs)—which should be part of a Bayesian workflow (Gelman
et al., 2020b)—are an easy and intuitive way of performing model diagnostics in a Bayesian
framework, even though the choice and interpretation of the PPCs require some experience
(Gelman et al., 2020b). In a frequentist framework, model diagnostics are often not that easy to
perform, at least if the uncertainty from parameter estimation should be taken into account.

These advantages will be illustrated in the context of the example from section Example, by
comparing our Bayesian analysis to a frequentist one (see section “Frequentist analysis of the example”
in the online Supplement file ‘Supplement_sections.pdf’).

Despite the aforementioned advantages, Bayesian methods—and Bayesian regression models
(BRMs) in particular—are still not as common as their frequentist counterparts. In 2005, Woodward
(2005) supposed one reason to be the lack of a “good user interface” which would allow applied
researchers to fit BRMs as conveniently as other statistical methods for which a graphical user inter-
face (GUI) already exists. In the meantime, several GUIs have emerged (see section Existing GUIs),
but to our knowledge, until the first release of our R package shinybrms (Weber, 2022), there was
no GUI which used Stan (Carpenter et al., 2017; Stan Development Team, 2022d) for inferring the
posterior in BRMs. Stan has several advantages compared to other methods for inferring the posterior.
In particular, it is highly flexible with respect to modeling choices and very efficient. Details will be
given in section Algorithms for inferring the posterior.

Our shinybrms package is noncommercial and available at the Comprehensive R Archive Net-
work (CRAN). While shinybrms’s frontend is a shiny (Chang et al., 2022) app, shinybrms’s backend
completely relies on brms (Bürkner, 2017, 2018) which itself relies on Stan. Both of brms’s backends
(i.e., interfaces to Stan), namely rstan (Stan Development Team, 2022b) and cmdstanr (Gabry and
Češnovar, 2022), are supported by shinybrms. For the inspection of the Stan output, the shinystan
(Gabry, 2022) app may be launched from within shinybrms.

To explain the particular advantages of Stan in detail, we have to take a closer look at different
ways for inferring the posterior. This is the purpose of section Algorithms for inferring the posterior.
In section Existing GUIs, we summarize existing GUIs for BRMs. That section is partly influenced
by Ramírez-Hassan and Graciano-Londoño (2021). In section Features of shinybrms, we present the
features of shinybrms. The usage of the shinybrms app is illustrated by the help of a real-world
example in section Example. Finally, we discuss our work in section Discussion.

2 Algorithms for inferring the posterior

As mentioned above, in Bayesian statistics, uncertainty arising from the estimation of nuisance
parameters is taken into account by integrating them out from the posterior. This is not the only
integration occurring in posterior inference: Basically every quantity derived from the posterior is
somehow connected to an integration over the posterior. However, it is the integration which also
causes a lot of complications. While it is most desirable to perform posterior inference by exact

2Here, we are slightly abusing the notation by employing a single integral symbol for a possibly multiple
integral.
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calculation of the desired integrals (using analytic expressions), this approach is often infeasible and
even if it is feasible, it has the downside of being not as flexible as other approaches since it needs to
be tailored to the statistical model at hand. Numerical integration (e.g., by quadrature) may seem like
a remedy, but is often only feasible up to a limited dimensionality of the parameter space. Depending
on the algorithm, numerical integration may also introduce tuning quantities, hindering its “out-of-
the-box” usage. Integration by simple Monte Carlo (MC) sampling may seem like an alternative, but
this is only possible for distributions one may directly sample from (e.g., a Gaussian distribution).

Markov chain Monte Carlo

With the advent of Markov chain Monte Carlo (MCMC) methods, Bayesian inference has changed a
lot (Woodward, 2005; Lunn et al., 2009). The first MCMC algorithm was the Metropolis algorithm
(Metropolis et al., 1953) which starts from an initial point in parameter space and iteratively samples a
proposal 3 from a symmetric4 jumping distribution and accepts the proposal with a certain acceptance
probability which depends on the ratio of the target (here, the posterior) density at the current position
and at the proposal. The Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings,
1970) generalizes the Metropolis algorithm to asymmetric jumping distributions. Gibbs sampling
(Geman and Geman, 1984; Gelfand and Smith, 1990) consists of alternately sampling from the full
conditional posterior distributions and is a special MH algorithm in which the proposal is always
accepted (Gelman et al., 2014). Combinations of the aforementioned algorithms are also widely used,
e.g., MH-within-Gibbs. All MCMC algorithms (including those mentioned hereafter) require a careful
examination of the convergence of the Markov chains. The MCMC diagnostics used for this purpose
in shinybrms are outlined in section Tab "MCMC diagnostics".

Hamiltonian Monte Carlo (HMC) (initial work and major contributions by Duane et al., 1987;
Neal, 1993; MacKay, 2003; Neal, 2011) is a special MCMC algorithm which is often more efficient than
other MCMC algorithms, especially in case of a high-dimensional posterior distribution and correlated
parameters (Hoffman and Gelman, 2014; Betancourt, 2018). The efficiency of HMC is due to the fact
that it takes advantage of the gradient of the (log) posterior density (Stan Development Team, 2022a),
making it a combination of stochastic and deterministic procedures (which explains why HMC is
also known as hybrid Monte Carlo) (Gelman et al., 2014). HMC provides helpful diagnostics, such
as divergent transitions which can (but must not necessarily) indicate areas of the posterior which
are hard to explore by the HMC sampler (Betancourt, 2018; Gabry et al., 2019). Compared to Gibbs
sampling, HMC also has the advantage that nonconjugate priors may be used easily. For the original
HMC algorithm, three tuning quantities need to be specified by hand in advance: the mass matrix M
(which is the covariance matrix of the auxiliary momentum vector), the number L of leapfrog steps ,
and the size ϵ of the leapfrog steps (Gelman et al., 2014; Stan Development Team, 2022a).

Because of the fixed choice of L, the original HMC algorithm is a static HMC algorithm (Betancourt,
2018). In contrast, the no-U-turn sampler (NUTS) (Hoffman and Gelman, 2014) is a dynamic HMC
algorithm since it automatically chooses a (possibly) new value of L in each iteration of each Markov
chain. Hoffman and Gelman (2014) also proposed a new dual averaging technique for determining ϵ
automatically, too. Apart from these automations, the NUTS has the advantage that in terms of
efficiency, it was shown to perform as well as—or even better than—a well-tuned static HMC algorithm
(Hoffman and Gelman, 2014). A modified (Betancourt, 2018) NUTS is implemented in Stan. Stan’s
NUTS also includes an automatic adaptation of the mass matrix M during the warmup phase (Stan
Development Team, 2022a). A complete presentation of Stan’s NUTS is out of the scope of this
article. A good starting point for a detailed description is Stan Development Team (2022a) as well as
Betancourt (2018). Note that Stan also includes other algorithms for inferring or approximating the
posterior. In this paper however, we only refer to Stan’s NUTS when referring to Stan.

3 Existing GUIs

Table 1 summarizes existing GUIs for BRMs. Details are provided in Supplement section “Existing
GUIs”. Table 1 makes it clear that none of the existing GUIs relies entirely on Stan or the NUTS. JASP
does use Stan for some analyses, but JASP’s concept is quite different from shinybrms’s concept: While
JASP offers a plenty of different statistical methods (including non-regression analyses), shinybrms is
designed to be as concise as possible. While JASP’s approach of using Stan for only some analyses
certainly has a few advantages (especially in terms of runtime), shinybrms’s approach of completely
relying on Stan (and brms in particular) has the advantage of a better maintainability: shinybrms only

3Here, the term “proposal” refers to a proposed parameter vector.
4Here, the term “symmetric” refers to the preservation of the distribution when reverting the jump, not to the

symmetry in the shape of a distribution.
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Figure 1: The navigation bar in shinybrms. In this figure, we have expanded the navigation bar itself
by the structure of the three main pages (“Likelihood”, “Prior”, and “Posterior”) as well as of the
drop-down menu “More”.

provides a lightweight GUI and only needs to perform few computations on its own. This is due to
brms which is very flexible by allowing to fit a variety of regression models within a single R package.
This division of work between shinybrms, shiny, brms, rstan, Stan, and shinystan reduces the amount
of maintenance necessary for shinybrms, resulting in a faster integration of new features, a faster
elimination of bugs, and a longer life cycle. Furthermore, it allows the authors of each component to
focus on their strengths.

4 Features of shinybrms

The following general presentation of shinybrms’s features will be in written form, but with links to
the corresponding screenshots from the example in section Example. In this article, not all aspects
of the shinybrms app are shown in screenshots. For more screenshots, see the shinybrms website
(Weber, 2022).

Note that the mathematical formulation of the models which may be fit with shinybrms has
already been given elsewhere (Bürkner, 2017, 2018), so we will keep it short here.

Overview

The shinybrms app has three main pages which are accessible from a navigation bar at the top
(Figure 1): “Likelihood”, “Prior”, and “Posterior”. This structure follows Bayes’ theorem, simplified to
the proportionality of the posterior density to the product of prior density and likelihood:

p(θ|D) ∝ p(θ) · p(Ḋ|θ, D̈) (2)

where we have split up the data D into D =
[
Ḋ D̈

]
because in BRMs, the distribution in the

likelihood typically conditions on the predictor part D̈ of the data (see section Tab "Predictors" below).
In the following sections, these three main pages will be described in detail.

There are also some auxiliary pages, the first two having direct links in the navigation bar, the last
three being accessible from the drop-down menu “More” at the end of the navigation bar:

• The starting page “Home” gives a short overview of shinybrms’s objective and structure. Thus,
it only contains informational text and no interactive elements.

• On page “Data”, the user uploads his or her custom dataset which shall be used for the regression
analysis. For testing purposes, page “Data” also offers example datasets. The chosen dataset (no
matter if it was uploaded or chosen from the list of example datasets) is automatically shown in
a preview consisting of the dataset’s first six rows (there is an option to show the full dataset,
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though). It is also possible to show the output of R’s str() function applied to the chosen
dataset, which gives some basic information about the dataset and its variables for users familiar
with R.

• Page “About” contains basic information about shinybrms (e.g., version and corresponding
date) as well as some legal information.

• Page “Links” gives links to software relevant for the shinybrms app.

• Page “References” contains the references for literature cited throughout the app.

Page “Likelihood”

Page “Likelihood” has three tabs: “Outcome”, “Predictors”, and “Formula preview”. These tabs will
now be described in turn.

Tab “Outcome”

On tab “Outcome” (Figure 2), the user specifies the outcome variable y = (y1, . . . , yN)T ∈ RN (by
choosing it from a drop-down list of the variables present in the dataset) as well as its distributional
family, i.e., the basic form of the likelihood p(Ḋ|θ, D̈), now with Ḋ = y. For the distributional family,
there is a drop-down menu and a checkbox called “Show advanced distributional families”. By default,
this checkbox is unchecked which means that the drop-down menu offers three general distributional
families of broad practical relevance: the Gaussian family (with the identity link function), the Bernoulli
family with the logit link function, and the negative binomial family with the log link function. This
is intended to be a limited selection: By reducing the choices as much as possible, we want to avoid
overwhelming the user with a variety of special distributions. For example, the Poisson family is
intentionally left out, in favor of the more general negative binomial distribution. However, by
checking the “Show advanced distributional families” checkbox, the drop-down menu is extended
so that a variety of other distributional families can be selected as well (see Supplement section
“Advanced distributional families”).

Tab “Predictors”

If desired, the user may specify predictors on tab “Predictors” (Figure 3). We use the term “predictor”
for a column in the model matrix. In contrast, we use the term “predictor variable” for a column in
the input dataset. Thus, a predictor may also denote an interaction and a predictor variable with K
categories leads to K − 1 predictors (due to dummy coding).

The shinybrms app supports population-level effects as well as group-level effects5. The inclusion
of group-level effects yields a multilevel model (also known as hierarchical or mixed-effects model).
Here, we denote the vector of population-level effects by β and the corresponding model matrix by X.
Likewise, we denote the vector of group-level effects by u and the corresponding model matrix by Z.
The hyperparameters for the group-level effects (i.e., their standard deviations and correlations) will
be collected in a vector τ. If the model does not contain group-level effects, we define here (for the
mathematical description, not for the software) u = 0, Z = (0, . . . , 0)T ∈ RN (for example; the exact
values in Z do not matter if u = 0), and τ = 0 (for example). With X and Z, we now have D̈ =

[
X Z

]
.

We denote the vector of linear predictors by η = Xβ + Zu ∈ RN (written out as η = (η1, . . . , ηN)T).

Note that here as well as in shinybrms, the term “interaction” is also used for interactions involving
predictor variables with group-level main effects (yielding group-level interaction effects). This broad
definition of “interaction” simplifies the GUI and emphasizes the key concept of interactions, namely
that an effect depends on another predictor (or on other predictors).

To avoid common mistakes, shinybrms imposes some restrictions: Firstly, an overall (population-
level) intercept is always included. Secondly, including an interaction causes all corresponding
lower-order interactions to be automatically included, too. The latter restriction also implies that
interactions may only involve predictor variables for which main effects have already been added.

5Population-level effects are also known as fixed effects (Bürkner, 2017, 2018). Group-level effects are also
known as random or partially pooled effects (Bürkner, 2017, 2018; Goodrich et al., 2022). The terms “fixed” and
“random” effects are not really appropriate in a Bayesian context: In a Bayesian model, all parameters have a prior
distribution and may therefore be considered as random (Marchenko and Balov, 2015).

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 102

Tab “Formula preview”

The tab “Formula preview” simply combines the chosen outcome and the chosen predictors into
brms’s formula syntax. This is mainly intended for checking the correct specification of the model
formula (for users familiar with the syntax). However, it also provides a concise and standardized
way to communicate this central part of the model because together with the distributional family, this
model formula determines the likelihood p(Ḋ|θ, D̈) = p(y|θ, X, Z): In case of the Gaussian family
(with the identity link function), we have

p(y|θ, X, Z) =
N

∏
i=1

1√
2π · σ

exp

(
−1

2
·
(

yi − µi
σ

)2
)

(3)

with µi = ηi (see η from section Tab "Predictors"), σ ∈ (0, ∞), and θ = (βT, uT, τT, σ)T. Note that the
dependence on X and Z as well as on most elements of θ is an indirect dependence via µ1, . . . , µN . In
case of the Bernoulli family with the logit link function, we have y ∈ {0, 1}N and

p(y|θ, X, Z) =
N

∏
i=1

µ
yi
i (1 − µi)

(1−yi) (4)

with µi =
1

1+exp(−ηi)
and θ = (βT, uT, τT)T. In case of the negative binomial family with the log link

function, we have y ∈ ({0} ∪ N)N and

p(y|θ, X, Z) =
N

∏
i=1

(
yi + ζ − 1

yi

)(
µi

µi + ζ

)yi
(

ζ

µi + ζ

)ζ

(5)

with µi = exp(ηi), ζ ∈ (0, ∞), and θ = (βT, uT, τT, ζ)T. The mathematical details of the “advanced”
distributional families (see section Tab "Outcome" above) may be found in the brms vignette “Parame-
terization of Response Distributions in brms”.

Page “Prior”

At the top of page “Prior”, the user obtains a preview of the default priors taken from brms (Figure 4).
At the bottom, the user may specify custom priors (Figure 5). Both, the default and the custom priors,
refer to the parameters of the currently specified likelihood. Custom priors may be specified as follows:

• via a Stan function,

• via one of the special brms (pseudo-)functions designed for this purpose, e.g., for the Lewan-
dowski-Kurowicka-Joe (LKJ) prior (Lewandowski et al., 2009),

• via an empty input field to specify a flat prior over the whole support of the corresponding
parameter(s).

The first two possibilities always lead to a proper prior. The flat prior is only proper if the support is
bounded on both sides. Otherwise (which is the more common case), the flat prior is improper.

The user’s selections on page “Prior” ultimately lead to the specification of p(θ). Together with
the likelihood, this completes the model specification. Note that for multilevel models, p(θ) here6

includes the distributions of the group-level effects u as well, even though they do not need to be
specified on page “Prior”.

Page “Posterior”

Page “Posterior” has six tabs: “Run Stan”, “MCMC diagnostics”, “Default summary”, “Custom
summary”, “Conditional effects”, and “Launch shinystan”. These will now be described in turn. The
output shown on these tabs may also be downloaded (with the file format depending on the specific
type of output).

Tab “Run Stan”

At the top of tab “Run Stan”, the user may inspect and download the Stan code and the so-called
Stan data . The Stan data basically consists of the pre-processed part of the chosen dataset which is

6In multilevel models, drawing the line between prior and likelihood can be done in multiple ways, so our
mathematical formulation is just one of several possibilities.
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needed for the Stan model, extended by some internal objects. Apart from checking or documentation
purposes, the Stan code and the Stan data are needed if the user wants to customize the Stan code and
then run Stan outside of shinybrms.

Further down on tab “Run Stan”, the user may set advanced options for the Stan run (Figure 6).
These options have sensible defaults, but sometimes they need to be changed. Probably the most
important option is the seed for the pseudorandom number generator.

The final panel on tab “Run Stan” is the central one (Figure 7): By a click on the “Run Stan” button,
Stan translates the Stan code written by brms to C++ code, compiles this C++ code, and then starts
sampling. By default, Stan writes its sampling progress to an HTML file which is automatically opened
up by shinybrms. The user then only needs to refresh this HTML file to see the current sampling
progress. An example for Stan’s runtime will be given in section Example.

When Stan has finished sampling, the panel “Run Stan” automatically refreshes, in particular to
show the result from an overall check of the MCMC diagnostics (see section Tab "MCMC diagnostics"
for details). The user also has the possibility to download different output objects which can be
analyzed outside of shinybrms or—in case of the fitted model object of class "brmsfit"—uploaded in
a new shinybrms session (to avoid re-running Stan).

Tab “MCMC diagnostics”

On tab “MCMC diagnostics” (Figure 8), the user obtains detailed information concerning the following
MCMC diagnostics:

• HMC-specific diagnostics:

– the number of iterations ending with a divergence,

– the number of iterations hitting the maximum tree depth,

– the Bayesian fraction of missing information for the energy transitions (E-BFMI);

• some general MCMC diagnostics (which are computed for each parameter as well as for the
accumulated log posterior density):

– the modified potential scale reduction factor R̂ proposed by Vehtari et al. (2021) (here
simply called the R̂ instead of the modified R̂)7,

– the effective sample size (ESS) in the bulk of the corresponding marginal posterior (Vehtari
et al., 2021),

– the ESS in the tails of the corresponding marginal posterior (Vehtari et al., 2021).

As a full description of these MCMC diagnostics is out of the scope of this article, we refer the
interested reader to Stan Development Team (2022c), Betancourt (2018), and Vehtari et al. (2021). The
most important basic guidelines for deciding whether these MCMC diagnostics are worrying are
explained in the shinybrms GUI and also checked automatically by shinybrms. For the general
MCMC diagnostics, it is also possible to show a detailed table with the diagnostics for each parameter
(as well as for the accumulated log posterior density).

Tab “Default summary”

Tab “Default summary” (Figure 9) shows brms’s standard robust summary of the posterior inference,
e.g., the medians and the central 95 % intervals of the marginal posteriors (the 95 % CrIs) of the most
important parameters. This tab is only intended for a quick inspection. A much more comprehensive
analysis of the Stan output is offered by the shinystan app (see section Tab "Launch shinystan").

Tab “Custom summary”

On tab “Custom summary” (Figure 10), the user may calculate posterior summary quantities for a
custom mathematical (or logical) expression involving at least one parameter. Such an expression
may be, e.g., a sum of two parameters (as shown in Figure 10) or the event that a parameter exceeds a
certain threshold.

7The term “potential scale reduction factor” is not always appropriate (Vehtari et al., 2021, section 2), but because
of its widespread use, we employ it here nonetheless.
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Tab “Conditional effects”

On tab “Conditional effects” (Figure 11), shinybrms offers conditional-effects plots (created by
brms::conditional_effects()). A conditional-effects plot shows the estimated effect of a predictor
variable on the outcome. An interaction effect involving at most two predictor variables may also be
visualized by showing the estimated effect of the first predictor variable separately for appropriate
values of the second predictor variable.

As described in more detail in the shinybrms GUI, a conditional-effects plot conditions on specific
values of those predictor variables which are not involved in the plot. Likewise, group-level effects
which are not involved in the plot are (usually) set to zero.

Tab “Launch shinystan”

The shinystan app (Gabry, 2022) offers an interactive inspection of Stan (and other MCMC-generated)
results, in particular with respect to:

• MCMC diagnostics (including several additional diagnostics not covered by shinybrms’s tab
“MCMC diagnostics”),

• PPCs,

• summary quantities of univariate marginal posteriors,

• plots of univariate, bivariate, and trivariate marginal posteriors.

Before launching the shinystan app from within the shinybrms app by clicking the corresponding
button on tab “Launch shinystan”, the user may set a seed to ensure the reproducibility of the PPCs.

At this point, the shinybrms workflow ends and passes over to the shinystan workflow. We will
illustrate the shinystan workflow in section Example.

5 Example

We illustrate shinybrms’s features following the workflow implied by Figure 1 and using a real-world
dermatological dataset from Van Welzen et al. (2021). This dataset is available in the Supplement (file
‘CAP.csv’). In Supplement section “Frequentist analysis of the example”, we compare the Bayesian
analysis presented here with a frequentist one, referring to the list of advantages of Bayesian statistics
from section Introduction.

Van Welzen et al. (2021) conducted a prospective pilot study investigating the efficacy and safety
of a novel cold atmospheric plasma (CAP) wound dressing for the healing of split-skin graft donor
sites. The only outcome we focus on here is the tissue water index (TWI), measured by a hyperspectral
imaging camera and having values between 0 and 100, with lower TWI values being associated with
an improved wound healing. Briefly, the study design was as follows: For each of P = 10 patients, the
TWI was measured under T = 3 different treatment conditions (standard-treated wound, CAP-treated
wound, and healthy skin). Each treatment condition was investigated in its own skin area with R = 3
measurements across that area. This procedure of measuring was repeated on each of D = 4 days (day
1, 3, 5, and 7, with day 1 being the day of the split-skin graft donation where the TWI was measured
after the split-skin graft donation but before the first wound dressing). Thus, the dataset consists of
N = P · T · R · D = 360 observations (rows). The dataset’s columns are:

• patID (for “patient ID”; coded as "pat1", . . . , "pat10"),

• age (in years),

• anticoagulation (indicating whether the patient received an anticoagulation therapy before
and during the study; coded as "no" and "yes"),

• diabetes (indicating whether the patient is diabetic; coded as "no" and "yes"),

• day (coded as "d1", "d3", "d5", and "d7"),

• trt (coded as "0_standard", "CAP", and "healthy" to make "0_standard" the reference level),

• TWI (integers in the interval [0, 100]).

The primary research question is whether the CAP treatment leads to a decreased8 TWI compared
to the standard treatment (polyhexanide wound gel with fatty gauze). The healthy skin area serves as
an experimental control (albeit not as a control treatment since this is the role of the standard-treated
wound area) and is not part of the primary research question.

8For this demonstration here, we won’t discuss whether this decrease is clinically relevant.
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Figure 2: Tab “Outcome” on page “Likelihood”. In the example presented here, we select TWI as the
outcome variable and the Gaussian family as the distributional family for this outcome. Tab “Outcome”
and tab “Predictors” (Figure 3) are the two main components of page “Likelihood”.

shinybrms

After launching the shinybrms app in R via

> library("shinybrms")
> launch_shinybrms(launch.browser = TRUE)

(with launch.browser set to TRUE to ensure that the app is opened up in the default web browser), we
switch to page “Data” where we upload the dataset (not shown here).

Next, we head over to page “Likelihood”. On tab “Outcome” (Figure 2), we choose the outcome
variable TWI and the Gaussian family as the distributional family for this outcome. Clearly, the TWI
values cannot follow an unmodified Gaussian distribution since they are bounded by 0 and 100, with
the minimum of the observed TWI values being indeed as low as 9 (the maximum being 67). Thus, a
truncated Gaussian distribution might be more appropriate here. We will come back to this later in
section Discussion.

On tab “Predictors” (Figure 3), we choose age, anticoagulation, diabetes, day, and trt to have
population-level main effects and patID to have group-level main effects (“random intercepts”).
Further down on tab “Predictors”, we add an interaction between day and trt (not shown here). This
interaction is included because the TWI is supposed to show a stronger time-dependence in the two
wound areas than in the healthy skin area. Additionally, the TWI difference (in means) between the
standard and the CAP treatment might change over time.

Now the likelihood is set up, so we can proceed with the prior. The default priors (Figure 4) are
reasonable, but suppose we wanted a weakly informative Student-t prior with 3 degrees of freedom, a
location parameter of 0, and a scale parameter of 30 for all regression coefficients. To add this custom
prior, we choose parameter class b from the corresponding drop-down list shown in Figure 5, enter
student_t(3, 0, 30) into the input field entitled “Prior distribution”, and click the “Add prior”
button. After doing so, our Student-t prior is added to the preview table (Figure 5, right-hand side).
For all remaining parameters for which we do not specify a custom prior, the corresponding default
prior will be used.
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Figure 3: Tab “Predictors” on page “Likelihood”. Here, the main effects of the predictors need to
be defined first (in the example presented here: variables age, anticoagulation, diabetes, day, trt,
and patID). Then, further down on this tab (not visible here), interactions can be specified (in the
example presented here: an interaction between variables day and trt). In principle, offsets may also
be specified further down on this tab (not visible here), but our example does not feature offsets. For
the main effects, the user may choose between population-level and group-level effects. For interaction
effects, this choice will be performed automatically based on the involved main effects.

Figure 4: Section “Default priors” on page “Prior”. The default priors are taken from brms and depend
on the currently specified likelihood. They can be overridden by custom priors (Figure 5).
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Figure 5: Section “Custom priors” on page “Prior”. Here, we specify a Student-t prior with 3 degrees of
freedom, a location parameter of 0, and a scale parameter of 30 for all regression coefficients (parameter
class b). This overrides the default flat prior for these parameters (Figure 4).

Now the model is fully set up, so we can start inferring the posterior. To do this, we switch to page
“Posterior” where we scroll down to the advanced options on tab “Run Stan” (Figure 6). There, we set
a seed for reproducibility. Afterwards, we scroll further down to panel “Run Stan” where we click the
button for starting the Stan run (Figure 7). For this example, the Stan run as a whole (including the
compilation of the C++ code) takes about 50 seconds on a standard desktop machine.

After Stan has finished sampling, we receive a pop-up notification (not shown here) whether all
MCMC diagnostics have passed their checks. Here, this is the case as we may also see on tab “MCMC
diagnostics” (Figure 8).

Since shinybrms reports all MCMC diagnostics as being OK, we may start interpreting the
posterior. On tab “Default summary” (Figure 9), it is mainly the summary of the population-level
effects which is of interest here: With each additional year of age, the TWI is estimated to increase
by ca. 0.10 with a 95 % CrI of ca. (−0.28, 0.48). An anticoagulation therapy is estimated to increase
the TWI by ca. −1.12 with a 95 % CrI of ca. (−7.53, 5.69). A diabetes disease is estimated to increase
the TWI by ca. −0.56 with a 95 % CrI of ca. (−6.51, 5.66). As may be seen from these three CrIs, the
statistical uncertainty is quite big which is probably due to the small P = 10.

Since we included an interaction between day and trt, the coefficients for these two variables
are most conveniently interpreted by the help of a custom summary (Figure 10) and a conditional-
effects plot (Figure 11). On tab “Custom summary” (Figure 10), we may calculate the estimated TWI
difference (in means) between the CAP and the standard treatment separately for each day by entering
the corresponding sum expressions (and the expression `b_trtCAP` for day 1) in turn. The resulting
table is included in Figure 10: On day 1 (where the two wound areas had not been treated yet), the
standard treatment and the CAP treatment lead to a quite similar TWI (the posterior median of their
TWI difference being ca. −0.74 with a 95 % CrI of ca. (−3.69, 2.13)). In contrast, on days 3, 5, and
7, the CAP treatment clearly leads to a lower TWI than the standard treatment (posterior medians
of ca. −10.45, −7.66, and −7.10, respectively, and 95 % CrIs of ca. (−13.43,−7.36), (−10.63,−4.84),
and (−10.11,−4.03), respectively). This answers the primary research question: The CAP treatment
indeed leads to a decreased TWI and therefore an improved wound healing compared to the standard
treatment. This is also well illustrated by the conditional-effects plot (Figure 11). The conditional-
effects plot also confirms that the TWI in the healthy skin area does not change as heavily over time as
in the two wound areas.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 108

Figure 6: Panel “Advanced options” on tab “Run Stan” of page “Posterior”. The defaults for these
advanced options should be fine for most practical situations. In the example presented here, we only
set a specific seed so that results are reproducible.

Finally, we switch to tab “Launch shinystan”, enter a seed for the reproducibility of the PPCs
(here, 63438), and click on the button for launching shinystan.

shinystan

Within shinystan, we may inspect some PPC plots, e.g., a kernel density estimate for the observed
TWI values, overlaid by kernel density estimates for replicated TWI values (Figure 12). This overlaid
density plot suggests that the model is appropriate, being able to generate outcome values similar to
the observed ones after having estimated the unknown parameters by the help of the observed dataset
(as well as the prior). Nevertheless, the model may still be improved, as illustrated by the PPC plots
shown in Figure 13 (lower two histograms): The minimum of the observed TWI values is systematically
smaller than the replicated minimums, the opposite holding—even if not that extremely—for the
maximum. However, we consider the current model to be appropriate for the primary research
question.

With respect to the parameter estimates, shinystan offers, e.g., a visualization of the posterior
medians, together with 50 % and 95 % CrIs (Figure 14). The shinystan app also offers kernel density
estimates for the univariate marginal posteriors (not shown).

6 Discussion

We have presented our shiny app called shinybrms, distributed as an R package. With the shinybrms
GUI, we hope to make Bayesian regression modeling more accessible for people without any knowl-
edge of R’s syntax. Currently, the user still needs to execute some R code for setting up shinybrms’s
backend and for launching the shinybrms app, even if he or she is using a GUI for installing R pack-
ages. We tried to make this as easy as possible by providing step-by-step instructions in the ‘README’
file of the shinybrms package. More importantly however, the shinybrms app may be hosted on a
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Figure 7: Panel “Run Stan” on tab “Run Stan” of page “Posterior”. This is the central UI element: By
clicking the red button, the Stan run is started, which first involves several preparation steps (including
the compilation of the C++ code) and then the MCMC sampling itself.

server and accessed through a web browser, just like any other shiny app. In that case, the user does
not need to install the shinybrms package or any other additional software. With the server-sided
hosting, the shinybrms app may even be accessed from a mobile device where it is usually impossible
to install any software designed for personal computers. Of course, setting up the server-sided hosting
is a lot more complex than following the instructions from our ‘README’ file for running shinybrms
on a local computer, but the idea is that IT departments of bigger institutions could establish the
server-sided hosting (potentially adding an access control on top) and then members of that institution
could access the shinybrms app through their web browsers.

Note that JASP offers an alternative host-client service by relying on rollApp (rollApp, Inc., 2020;
rollApp, Inc. and JASP Team, 2020).

Apart from application in practice, shinybrms may also be valuable for teaching Bayesian regres-
sion models, e.g., to undergraduate students.

Of course, shinybrms may still be extended. As may be seen from our real-world example
in section Example, truncated outcome families would be a useful feature. Apart from this, our
future plans also include further outcome families supported by brms (e.g., ordinal and time-to-event
regression), model selection features (e.g., using the package projpred by Piironen et al., 2022), and
support for special brms features such as smoothed effects and known measurement error in the
outcome variable (needed for meta-analyses). When implementing new features, the challenge will be
to keep the GUI as simple as possible: In our opinion, a GUI such as shinybrms should support the
user by automizing steps wherever this is appropriate and thus focus the attention to steps which may
not be automized (in particular those related to the original research question).
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Figure 8: Tab “MCMC diagnostics” on page “Posterior”. This tab presents the diagnostics from
section Tab "MCMC diagnostics", applied to the user’s Stan run (for the exact values of the general
MCMC diagnostics, the checkbox “Show detailed table of the general MCMC diagnostics” needs to be
checked). The purpose of this tab is to obtain details about problematic MCMC diagnostics in case
there are such (after the Stan run, the user always receives a notification stating if there are problematic
MCMC diagnostics or not).

7 Supplementary Material

This article comes with an online Supplement which consists of the following files:

• file ‘Supplement_sections.pdf’ which is a document with the following sections:

– “Existing GUIs”,

– “Advanced distributional families”,

– “Frequentist analysis of the example”;

• file ‘CAP.csv’ which contains the dataset for section Example;

• file ‘weber_shinybrms.R’ which contains the R code for section Example;

• file ‘weber_shinybrms_sessionInfo.txt’ which contains the original computing environment in-
formation for section Example. Note that the reproducibility of Stan results depends on the
machine’s hardware, so in general, our results from section Example will not be perfectly
reproducible on other machines.
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Figure 9: Tab “Default summary” on page “Posterior”. Presented is the output of method
brms:::summary.brmsfit() with arguments priors and robust set to TRUE (causing the priors to
be shown, too, and the more robust summary quantities median and median absolute deviation to be
used instead of the less robust quantities mean and standard deviation). This tab is only intended for
a quick inspection (the shinystan app offers a more comprehensive output).
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Figure 10: Tab “Custom summary” on page “Posterior”. In contrast to tab “Default summary”
(Figure 9), users can request their own summary quantities here. In the example presented here, we
calculate the day-specific CAP effects. These show that apart from day 1 (where the wound areas had
not been treated yet), the CAP treatment leads to a lower (i.e., better) TWI compared to the standard
treatment (which is the reference category), with the posterior median ranging from ca. −10.45 to
ca. −7.10 on days 3, 5, and 7.
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Figure 11: Tab “Conditional effects” on page “Posterior”. This tab shows the conditional-effects plots
produced by brms::conditional_effects(). In the example presented here, we select the conditional-
effects plot for the day:trt interaction. Similarly to Figure 10, this demonstrates that apart from day 1,
the CAP treatment leads to a lower TWI compared to the standard treatment. This plot also illustrates
that in the healthy skin area, the TWI is roughly constant over time, with a slight increase on day 7.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 114

Figure 12: shinystan: PPC via overlaid kernel density estimates. The shaded blue density corresponds
to the observed outcome values whereas each of the 8 overlaid green density lines corresponds to one
randomly chosen post-warmup MCMC iteration. Here, the distributions of the model’s predictions
(which are based on the posterior, i.e., on the joint parameter distribution inferred from the data and
the prior) are similar to the distribution of the observed outcome values, showing that at least in this
regard, the model is a reasonable one.
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Figure 13: shinystan: PPCs via summary statistics. In contrast to the PPC from Figure 12, these PPCs
here are based on all posterior draws which is possible by aggregating across the observations. The
aggregation statistics are the mean (top left), the standard deviation (top right), the minimum (bottom
left), and the maximum (bottom right). Here, these aggregated predictions show some room for
model improvement: The minimum is overestimated—or rather “overpredicted”—by the model, the
maximum is underestimated. Thus, the range of the replicated outcome values is narrower than the
observed one. In contrast, the mean TWI is replicated reliably. The standard deviation shows a slight
overestimation by the model. In summary, the Gaussian family seems to be a suboptimal outcome
family, but we consider it to be sufficient for answering the primary research question (the comparison
of CAP and standard treatment in terms of the central tendency of TWI values).
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Figure 14: shinystan: Posterior intervals (credible intervals, CrIs). The default plot shown here is
restricted to the first 12 parameters. More parameters may be selected in the two input fields above the
plot. The different scales of the parameters (in particular, the intercept and the regression coefficient for
age are on strikingly different scales) illustrate that in interactive use, it often makes sense to customize
the selection of parameters.
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J. Gabry and R. Češnovar. cmdstanr: R Interface to ’CmdStan’, 2022. URL https://mc-stan.org/
cmdstanr. R package, version 0.5.2. [p97]

A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating marginal densities.
Journal of the American Statistical Association, 85(410):398–409, 1990. URL https://doi.org/10.1080/
01621459.1990.10476213. [p98]

A. Gelman. Prior distributions for variance parameters in hierarchical models (comment on article
by Browne and Draper). Bayesian Analysis, 1(3):515–534, 2006. URL https://doi.org/10.1214/06-
BA117A. [p96]

A. Gelman, A. Jakulin, M. G. Pittau, and Y.-S. Su. A weakly informative default prior distribution
for logistic and other regression models. The Annals of Applied Statistics, 2(4):1360–1383, 2008. URL
https://doi.org/10.1214/08-AOAS191. [p96]

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data Analysis.
Chapman & Hall/CRC Texts in Statistical Science. CRC Press, Boca Raton, FL, USA, 3rd edition,
2014. ISBN 978-1-4398-4095-5. URL https://doi.org/10.1201/b16018. [p96, 98]

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://doi.org/10.1201/9781351030144
https://doi.org/10.1201/9781351030144
https://doi.org/10.1038/s41562-017-0224-0
https://doi.org/10.1038/d41586-019-00857-9
https://besmarter-team.shinyapps.io/BEsmarter-GUI/
https://github.com/besmarter/BSTApp
https://arxiv.org/abs/1701.02434v2
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.32614/RJ-2018-017
https://doi.org/10.18637/jss.v076.i01
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1016/0370-2693(87)91197-X
https://bayeconsoft.com/
https://mc-stan.org/shinystan/
https://doi.org/10.1111/rssa.12378
https://mc-stan.org/cmdstanr
https://mc-stan.org/cmdstanr
https://doi.org/10.1080/01621459.1990.10476213
https://doi.org/10.1080/01621459.1990.10476213
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1214/08-AOAS191
https://doi.org/10.1201/b16018


CONTRIBUTED RESEARCH ARTICLE 118

A. Gelman, D. Simpson, and M. Betancourt. The prior can often only be understood in the context of
the likelihood. Entropy, 19(10):555, 2017. URL https://doi.org/10.3390/e19100555. [p96]

A. Gelman, J. Hill, and A. Vehtari. Regression and Other Stories. Analytical Methods for Social
Research. Cambridge University Press, Cambridge, UK, 2020a. ISBN 978-1-107-67651-0. URL
https://doi.org/10.1017/9781139161879. [p96, 97]

A. Gelman, A. Vehtari, D. Simpson, C. C. Margossian, B. Carpenter, Y. Yao, L. Kennedy, J. Gabry,
P.-C. Bürkner, and M. Modrák. Bayesian workflow. arXiv:2011.01808v1 [stat], 2020b. URL https:
//arxiv.org/abs/2011.01808v1. Accessed on March 7, 2021. [p97]

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6):721–741, 1984. URL
https://doi.org/10.1109/TPAMI.1984.4767596. [p98]

B. Goodrich, J. Gabry, I. Ali, and S. Brilleman. rstanarm: Bayesian applied regression modeling via Stan,
2022. URL https://mc-stan.org/rstanarm. R package, version 2.21.3. [p101]

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika,
57(1):97–109, 1970. URL https://doi.org/10.1093/biomet/57.1.97. [p98]

M. D. Hoffman and A. Gelman. The no-U-turn sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(47):1593–1623, 2014. URL
https://jmlr.org/papers/v15/hoffman14a.html. [p98]

IBM Corp. IBM SPSS Statistics for Windows. IBM Corp., Armonk, NY, USA, 2020. Version 27.0. [p99]

JASP Team. JASP, 2022. URL https://jasp-stats.org/. Version 0.16.3. [p99]

A. A. Johnson, M. Q. Ott, and M. Dogucu. Bayes Rules!: An Introduction to Applied Bayesian Modeling.
Chapman & Hall/CRC Texts in Statistical Science. CRC Press, New York, NY, USA, 2022. ISBN
978-0-429-28834-0. URL https://doi.org/10.1201/9780429288340. [p96]

G. Karabatsos. A menu-driven software package for Bayesian regression analysis. The ISBA Bulletin,
22(4):13–16, 2015. [p96, 99]

G. Karabatsos. A menu-driven software package of Bayesian nonparametric (and parametric) mixed
models for regression analysis and density estimation. Behavior Research Methods, 49(1):335–362,
2017. URL https://doi.org/10.3758/s13428-016-0711-7. [p99]

D. Lewandowski, D. Kurowicka, and H. Joe. Generating random correlation matrices based on
vines and extended onion method. Journal of Multivariate Analysis, 100(9):1989–2001, 2009. URL
https://doi.org/10.1016/j.jmva.2009.04.008. [p102]

D. Lunn, D. Spiegelhalter, A. Thomas, and N. Best. The BUGS project: Evolution, critique and future
directions. Statistics in Medicine, 28(25):3049–3067, 2009. URL https://doi.org/10.1002/sim.3680.
[p98]

D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter. WinBUGS - A Bayesian modelling framework:
Concepts, structure, and extensibility. Statistics and Computing, 10(4):325–337, 2000. URL https:
//doi.org/10.1023/A:1008929526011. [p99]

D. J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press,
Cambridge, UK, 2003. [p98]

Y. Marchenko and N. Balov. In the spotlight: Bayesian “random-effects” models, 2015. URL https:
//www.stata.com/stata-news/news30-2/bayesian-random-effects/. Accessed on July 16, 2020.
[p101]

R. McElreath. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Chapman &
Hall/CRC Texts in Statistical Science. CRC Press, Boca Raton, FL, USA, 2nd edition, 2020. ISBN
978-0-367-13991-9. URL https://doi.org/10.1201/9780429029608. [p96]

B. B. McShane, D. Gal, A. Gelman, C. Robert, and J. L. Tackett. Abandon statistical significance. The
American Statistician, 73:235–245, 2019. URL https://doi.org/10.1080/00031305.2018.1527253.
[p97]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state
calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953. URL
https://doi.org/10.1063/1.1699114. [p98]

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://doi.org/10.3390/e19100555
https://doi.org/10.1017/9781139161879
https://arxiv.org/abs/2011.01808v1
https://arxiv.org/abs/2011.01808v1
https://doi.org/10.1109/TPAMI.1984.4767596
https://mc-stan.org/rstanarm
https://doi.org/10.1093/biomet/57.1.97
https://jmlr.org/papers/v15/hoffman14a.html
https://jasp-stats.org/
https://doi.org/10.1201/9780429288340
https://doi.org/10.3758/s13428-016-0711-7
https://doi.org/10.1016/j.jmva.2009.04.008
https://doi.org/10.1002/sim.3680
https://doi.org/10.1023/A:1008929526011
https://doi.org/10.1023/A:1008929526011
https://www.stata.com/stata-news/news30-2/bayesian-random-effects/
https://www.stata.com/stata-news/news30-2/bayesian-random-effects/
https://doi.org/10.1201/9780429029608
https://doi.org/10.1080/00031305.2018.1527253
https://doi.org/10.1063/1.1699114


CONTRIBUTED RESEARCH ARTICLE 119

R. M. Neal. Probabilistic Inference using Markov Chain Monte Carlo Methods. Technical Report CRG-
TR-93-1, Dept. of Computer Science, University of Toronto, 1993. URL https://www.cs.toronto.
edu/~radford/review.abstract.html. Accessed on March 21, 2022. [p98]

R. M. Neal. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo, Handbooks
of Modern Statistical Methods. CRC Press, Boca Raton, FL, USA, 2011. ISBN 978-0-429-13850-8.
URL https://doi.org/10.1201/b10905. [p98]

J. Piironen, M. Paasiniemi, A. Catalina, F. Weber, and A. Vehtari. projpred: Projection Predictive Feature
Selection, 2022. URL https://mc-stan.org/projpred/. R package, version 2.1.2. [p109]

H. Qian. Toolkit on Econometrics and Economics Teaching. MATLAB Central File Ex-
change, 2011. URL https://www.mathworks.com/matlabcentral/fileexchange/32601-toolkit-
on-econometrics-and-economics-teaching. MATLAB package, version from August 19, 2011.
Accessed on March 26, 2020. [p99]

A. Ramírez-Hassan and M. Graciano-Londoño. A GUIded tour of Bayesian regression. The R Journal,
13(2):135–152, 2021. URL https://doi.org/10.32614/RJ-2021-081. [p97, 99]

B. J. Reich and S. K. Ghosh. Bayesian Statistical Methods. Chapman & Hall/CRC Texts in Statistical
Science. CRC Press, New York, NY, USA, 2019. ISBN 978-0-429-20229-2. URL https://doi.org/10.
1201/9780429202292. [p96]

rollApp, Inc. rollApp - Run desktop applications online, 2020. URL https://www.rollapp.com/.
Accessed on April 24, 2021. [p109]

rollApp, Inc. and JASP Team. JASP on rollApp, 2020. URL https://www.rollapp.com/app/jasp.
Accessed on June 29, 2020. [p109]

D. Spiegelhalter, A. Thomas, N. Best, and D. Lunn. OpenBUGS User Manual, Version 3.2.3, 2014. URL
http://www.openbugs.net/Manuals/Manual.html. Accessed on March 25, 2020. [p99]

Stan Development Team. Stan Reference Manual, Version 2.29, 2022a. URL https://mc-stan.org/docs/
2_29/reference-manual/index.html. Accessed on April 13, 2022. [p98]

Stan Development Team. RStan: The R Interface to Stan, 2022b. URL https://mc-stan.org/. R package,
version 2.21.5; for the example, version 2.26.13 from the repository at https://mc-stan.org/r-
packages/ was used. [p97]

Stan Development Team. Runtime warnings and convergence problems, 2022c. URL https://mc-
stan.org/misc/warnings.html. Version from March 10, 2022. Accessed on April 13, 2022. [p103]

Stan Development Team. Stan Modeling Language Users Guide and Reference Manual, Version 2.29, 2022d.
URL https://mc-stan.org. [p97]

StataCorp. Introduction to Bayesian analysis. In Stata Bayesian Analysis Reference Manual. Stata Press,
College Station, TX, USA, 2019a. ISBN 978-1-59718-272-0. URL https://www.stata.com/manuals/
bayesintro.pdf. Release 16. Accessed on November 11, 2020. [p96]

StataCorp. Stata. StataCorp LLC, College Station, TX, USA, 2019b. Release 16. [p99]

A. Van Welzen, M. Hoch, P. Wahl, F. Weber, S. Rode, J. K. Tietze, L. Boeckmann, S. Emmert, and
A. Thiem. The response and tolerability of a novel cold atmospheric plasma wound dressing for the
healing of split skin graft donor sites: A controlled pilot study. Skin Pharmacology and Physiology, 34
(6):328–336, 2021. URL https://doi.org/10.1159/000517524. [p104]

A. Vehtari, A. Gelman, D. Simpson, B. Carpenter, and P.-C. Bürkner. Rank-normalization, folding,
and localization: An improved R̂ for assessing convergence of MCMC (with discussion). Bayesian
Analysis, 16(2):667–718, 2021. URL https://doi.org/10.1214/20-BA1221. [p103]

F. Weber. shinybrms: Graphical User Interface (’shiny’ App) for ’brms’, 2022. URL https://fweber144.
github.io/shinybrms/. R package, version 1.8.0. [p97, 100]

F. Weber, G. Knapp, Ä. Glass, G. Kundt, and K. Ickstadt. Interval estimation of the overall treatment
effect in random-effects meta-analyses: Recommendations from a simulation study comparing
frequentist, Bayesian, and bootstrap methods. Research Synthesis Methods, 12(3):291–315, 2021. URL
https://doi.org/10.1002/jrsm.1471. [p97]

P. Woodward. BugsXLA: Bayes for the common man. Journal of Statistical Software, 14(1):1–18, 2005.
URL https://doi.org/10.18637/jss.v014.i05. [p97, 98]

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://www.cs.toronto.edu/~radford/review.abstract.html
https://www.cs.toronto.edu/~radford/review.abstract.html
https://doi.org/10.1201/b10905
https://mc-stan.org/projpred/
https://www.mathworks.com/matlabcentral/fileexchange/32601-toolkit-on-econometrics-and-economics-teaching
https://www.mathworks.com/matlabcentral/fileexchange/32601-toolkit-on-econometrics-and-economics-teaching
https://doi.org/10.32614/RJ-2021-081
https://doi.org/10.1201/9780429202292
https://doi.org/10.1201/9780429202292
https://www.rollapp.com/
https://www.rollapp.com/app/jasp
http://www.openbugs.net/Manuals/Manual.html
https://mc-stan.org/docs/2_29/reference-manual/index.html
https://mc-stan.org/docs/2_29/reference-manual/index.html
https://mc-stan.org/
https://mc-stan.org/r-packages/
https://mc-stan.org/r-packages/
https://mc-stan.org/misc/warnings.html
https://mc-stan.org/misc/warnings.html
https://mc-stan.org
https://www.stata.com/manuals/bayesintro.pdf
https://www.stata.com/manuals/bayesintro.pdf
https://doi.org/10.1159/000517524
https://doi.org/10.1214/20-BA1221
https://fweber144.github.io/shinybrms/
https://fweber144.github.io/shinybrms/
https://doi.org/10.1002/jrsm.1471
https://doi.org/10.18637/jss.v014.i05


CONTRIBUTED RESEARCH ARTICLE 120

P. Woodward. Bayesian Analysis Made Simple: An Excel GUI for WinBUGS. Chapman & Hall/CRC
Biostatistics Series. CRC Press, Boca Raton, FL, USA, 2011. ISBN 978-1-4398-3954-6. URL https:
//doi.org/10.1201/b11235. [p99]

Frank Weber
Institute for Biostatistics and Informatics in Medicine and Ageing Research
Rostock University Medical Center
Ernst-Heydemann-Str. 8
18057 Rostock
Germany
ORCiD: 0000-0002-4842-7922
frank.weber@uni-rostock.de

Katja Ickstadt
Department of Statistics
TU Dortmund University
Vogelpothsweg 87
44227 Dortmund
Germany
ORCiD: 0000-0001-5157-2496
ickstadt@statistik.tu-dortmund.de

Änne Glass
Institute for Biostatistics and Informatics in Medicine and Ageing Research
Rostock University Medical Center
Ernst-Heydemann-Str. 8
18057 Rostock
Germany
ORCiD: 0000-0002-7715-9058
aenne.glass@uni-rostock.de

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://doi.org/10.1201/b11235
https://doi.org/10.1201/b11235
https://orcid.org/0000-0002-4842-7922
mailto:frank.weber@uni-rostock.de
https://orcid.org/0000-0001-5157-2496
mailto:ickstadt@statistik.tu-dortmund.de
https://orcid.org/0000-0002-7715-9058
mailto:aenne.glass@uni-rostock.de


CONTRIBUTED RESEARCH ARTICLE 121

Quantifying Population Movement Using
a Novel Implementation of Digital Image
Correlation in the ICvectorfields Package
by Devin W. Goodsman

Abstract Movements in imagery captivate the human eye and imagination. They are also of interest in
variety of scientific disciplines that study spatiotemporal dynamics. Popular methods for quantifying
movement in imagery include particle image velocimetry and digital image correlation. Both methods
are widely applied in engineering and materials science, but less applied in other disciplines. This
paper describes an implementation of a basic digital image correlation algorithm in R as well as an
extension designed to quantify persistent movement velocities in sequences of three or more images.
Algorithms are applied in the novel arena of landscape ecology to quantify population movement
and to produce vector fields for easy visualization of complex movement patterns across space.
Functions to facilitate analyses are available in ICvectorfields (Goodsman, 2021). These methods
and functions are likely to produce novel insights in theoretical and landscape ecology because they
facilitate visualization and comparison of theoretical and observed data in complex and heterogeneous
environments.

1 Introduction

Living organisms move through space in complex ways that have inspired many branches of spatial
pattern analysis from Turing instabilities (Alonso, Bartumeus, and Catalan 2002; Ruan 1998), to
complex systems analysis of the emergent properties of individual-level behaviours when organisms
live in groups (Parrish and Edelstein-Keshet 1999; N. Johnson 2009). Moreover, in mathematical
ecology there is a long history of deriving analytic expressions for traveling wave speeds from
mathematical models of biological systems based on partial differential equations Skellam (1951)
and integrodifference equations (Kot, Lewis, and Driessche 1996). In addition to standard traveling
waves and wave-trains, simulation studies have revealed more unusual patterns of population level
movement can arise from the way organisms interact and move on the landscape (Hassell, Comins,
and May 1994). Spiral waves are one example of surprising spatiotemporal dynamics that can arise in
biological systems (Hassell, Comins, and Mayt 1991).

Travelling waves and spiral waves emerge from mathematical models of population expansion,
which are often based on partial differential equations and integrodifference equations. These types
of models, which represent the movement patterns of populations of organisms, are sometimes
classified as Eulerian approaches to distinguish them from Lagrangian approaches that focus on the
trajectories of individuals. The majority of R packages that quantify organismal movement, however,
are Lagrangian as they pertain to the analysis of the tracks or trajectories of individual animals with
tracking collars or tracking devices. Integrated step selection models (Avgar et al. 2016), such as
those in the amt package (Signer, Fieberg, and Avgar 2019), which incorporate the impact of spatially
variable habitat or environmental variables on movement of individuals modeled using a discrete time
and discrete space framework, are an example of a Lagrangian approach when fitted to movement data
from individuals. Because my focus in this work is on population-level movements that are evident in
imagery, I will forego further discussion of Lagrangian models and instead refer the interested reader
to a review of R packages for modeling animal movement (Joo et al. 2020). At the time of writing, R
packages that focus on the Eulerian approach include IDE (Zammit-Mangion 2019), deSolve (Soetaert,
Petzoldt, and Setzer 2010), and ReacTran (Soetaert and Meysman 2012). These packages are designed
primarily to obtain numerical solutions to Eulerian models, analyze their dynamics, and fit them
to data. Recently, movement modeling based on stochastic differential equations, stochastic partial
differential equations (Krainski et al. 2018), and other stochastic process models (Buderman et al.
2016) has proliferated. Computationally efficient Bayesian statistical approaches are often required
to fit these stochastic models to data due to the ubiquity of noise in spatiotemporal time series in
combination with nonlinear dynamical processes (Krainski et al. 2018).

In contrast to the R packages and approaches I have cited above, this work is focused on the
description of an empirical method for quantifying spatially heterogeneous rates of movement in
sequences of images without fitting a model–although I do approach the quantification problem
from an Eulerian perspective. Empirically quantifying spread rates without imposing a specific
mathematical model allows the user to abandon many of the assumptions implicit in mathematical
modeling of population expansion. For example, tractable mathematical models of consumer-resource
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systems that generate traveling waves, wave-trains, and spiral waves, often rely on assumptions of a
homogeneous spatial environment with respect to resources or one in which there are no discontinuities
in resources. In contrast, many organisms spread in environments that are spatially heterogeneous
(Urban et al. 2008), and in environments subject to persistent directional flows that impact organism
movement (Hoffman et al. 2006). The ramifications of this claim are more easily understood using a
meteorological analogy. In meteorology, vector fields are frequently used to illustrate the impacts of
high and low pressure systems on wind speed and direction, and thus on the movement of weather
systems. In such meteorological systems, wind speed and direction are complicated functions of
topography and complex atmospheric dynamics. As a result, vector fields representing movement in
such systems are often variable at the regional scale, with winds flowing in one direction on one side
of a map and possibly in an opposing direction on the other side. In ecology, populations of organisms
are like the weather systems in that their movement on the landscape is what is of primary interest to
researchers; variable wind causes spatially variable movement of weather systems similarly to how
persistent directional fluid flows, including wind, in an organism’s environment impact dispersal, and
therefore population movement.

At the time of writing, the only tool in R (R Core Team 2021) designed to empirically estimate
spreading speed or the speed of wave-trains in populations without fitting a mathematical model is
implemented in the ncf R package (Bjornstad 2020). The ncf package relies on lagged non-parametric
cross-correlation functions to estimate spreading speed of traveling waves (Bjørnstad and Falck 2001).
To do so, it takes two spatiotemporal data sets that differ from one another only in that one is a
time-lagged version of the other, and projects their planar coordinates onto lines of varying angles that
can be specified using function arguments. After projection onto a line, cross-correlation is estimated
using a spline-correlogram approach (Bjørnstad and Falck 2001) and the location of maximum cross-
correlation gives an estimate of displacement along the direction of the projection line. This approach
was used to estimate the velocity of traveling wave-trains in the larch budmoth system in the European
Alps (Bjørnstad et al. 2002).

Projecting population data from a domain with two spatial coordinates onto a domain that
has only one spatial coordinate and then using a correlogram approach precludes quantification of
more complicated patterns of movement on the landscape. For example if two spatially separated
populations are moving towards one another at the same speed, such an approach will yield enigmatic
correlograms. Similarly, if several populations move radially around a central fulcrum, the correlogram
will be difficult to translate to an estimate of directional movement.

In this paper I present an approach for estimating vector-fields in systems with spatially variable
movement that is inspired by a technique from engineering and materials science called Digital Image
Correlation or DIC (Anuta 1970; Sutton, Orteu, and Schreier 2009). Among other things, Digital Image
Correlation is used to estimate displacement based on photographs of a planar material before, during,
and after a force has been applied to warp its surface (Sutton, Orteu, and Schreier 2009). A typical
DIC approach as well as the extensions described in this paper are implemented in the ICvectorfields
package (Goodsman 2021), in which the IC is the abbreviation for Image Correlation. I demonstrate
these approaches using the ICvectorfields package to analyze a simulated data set as well as the larch
budmoth data set provided with the ncf R package (Bjornstad 2020; Bjørnstad et al. 2002).

2 Mathematical and Computational Details

Here I provide mathematical and computational details of the algorithms used in the ICvectorfields R
package starting with a standard digital image correlation approach, and following with extensions
to estimate persistent movement and to account for spatial variability in persistent movement. The
ICvectorfields package capitalizes on the algorithms written in C under the title FFTW which stands
for Fastest Fourier Transform in the West (Frigo and Johnson, 2005), and a convenient wrapper package
in R called fftwtools (Rahim 2021). Input raster images and raster stacks are read and manipulated
using the terra package (Hijmans 2021).

Digital image correlation

One of the earliest applications of cross-correlation in image analysis was to align images taken
from different sensors or at different times using satellites or aircraft (Anuta 1970). The theoretical
and computational details I present here loosely follow those in this pioneering application. I will
provide the mathematical underpinning of two-dimensional cross-correlation, and then elaborate on its
computational implementation, which involves some additional complexity due to the circular nature
of discrete fast Fourier transforms. In all descriptions below, I do not normalize the cross-correlation
function to obtain Pearson correlation coefficients and therefore, I follow the convention of using the
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terms cross-correlation and cross-covariance interchangeably.

Given two images that have been converted to square matrices f and g of dimension m × m,
two-dimensional cross-correlation can be defined in terms of a convolution:

( f ⋆ g)
(

xj, yi

)
=

(
f
(
−xj,−yi

)
∗ g

(
xj, yi

)) (
xj, yi

)
, (1)

in which ( f ⋆ g) is the two-dimensional cross-correlation matrix, the ∗ operator denotes convolution,

f
(
−xj,−yi

)
is the complex conjugate of the f

(
xj, yi

)
matrix, i is the matrix row index, and j is the

matrix column index i, j ∈ N = {1, 2, ...}. Note that I use array indices that start at one rather than
zero. The coordinates of the centroids of each pixel are given by xj and yi.

Based on the convolution theorem, equation (1) can be rewritten as

( f ⋆ g)
(

xj, yi

)
= F−1

(
F
(

f
(

xj, yi

))
F
(

g
(

xj, yi

))) (
xj, yi

)
, (2)

wherein F denotes the two-dimensional Fourier transform, F−1 denotes its inverse, and F
(

f
(

xj, yi

))
is the complex conjugate of F

(
f
(

xj, yi

))
. Because F

(
f
(

xj, yi

))
= F

(
f
(
−xj,−yi

))
, and be-

cause f
(

xj, yi

)
contains only real numbers, the complex conjugate can be calculated using matrix

multiplication:

f
(
−xj,−yi

)
= r × f × r, (3)

in which the r matrix is a m × m matrix that has zeros everywhere except for along the diagonal that
runs from its lower left to upper right corners, which contains ones:

r =


0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 . (4)

The matrix calculations in equations (3) and (4) substitute for calculation of the complex conjugate
only in the case where all values of the f matrix are real, which is the case in most natural science
applications.

Together, equations (1) through (4) constitute an elegant way to compute two dimensional cross-
correlation. Computer implementation of these, however, requires some additional complexity due to
the use of discrete fast Fourier transforms to efficiently compute convolutions. Discrete fast Fourier
transforms are inherently circular, which means that what happens on the outer edges of matrices
will impact their discrete fast Fourier transform on the opposite side. In order to mitigate this
problem, zeros are added to the outer edge on all sides of both the f and g matrices (Anuta 1970). In
ICvectorfields, the f and g matrices are padded with as many zeros as there are rows and columns in
the original matrix and then additional zeros are added to ensure that both matrices are square with
an even number of rows and columns.

When matrices are padded as described above and discrete fast Fourier transforms are used as
in equation (2), the non-cyclic components of the convolution end up in the outer corners of the

cross-correlation matrix ( f ⋆ g)
(

xj, yi

)
(Anuta 1970). Thus, to obtain a correct estimate of cross-

correlation, ( f ⋆ g)
(

xj, yi

)
must be divided into four quadrants and each quadrant must be flipped

along its horizontal and vertical axes using matrix multiplication. For example, if the zero-padded

matrices have dimension k × k, each quadrant of ( f ⋆ g)
(

xj, yi

)
will have dimension k/2 × k/2 and

the following operation flips each quadrant matrix:

q f = r × q × r, (5)

where r is a k/2 × k/2 matrix as in equation (4). Then the four quadrants can be reassembled into
the k × k cross-correlation matrix. The mathematical operations in equations (1) through (5) are
implemented in the Xcov2D function in the ICvectorfields package.

Once a cross-correlation matrix has been estimated, it can be used to compute displacement in the
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horizontal and vertical directions in terms of the horizontal and vertical shifts in pixel numbers that
maximize cross-correlation. In ICvectorfields, shifts to the right and up are designated as positive,
whereas shifts to the left and down are considered negative.

A typical implementation of DIC will define a region of interest within the input images or their
corresponding matrices wherein displacement vectors are sought using a bounding box as in the
DispFieldbb function in ICvectorfields or using a sub-grid of equal sized regions of interest as in the
DispField function in ICvectorfields. Note that all of the functions in ICvectorfields that use DIC or
variations of it, translate displacement or velocities in terms of pixel shifts to the spatial units defined
in the projection information of the original input rasters. The coordinate information required for
translation of pixel shifts to the correct spatial units is obtained using functions in the terra R package
(Hijmans 2021).

Extending DIC to quantify persistent movement

In applications of DIC in earth systems with persistent directional flows that influence movement, it is
valuable to determine directional movement of populations of interest that persist for more than one
time step. In such situations, a spatiotemporal array of images with two space dimensions and one
time dimension is required. Often these can be formulated as stacks of raster images, with each layer
in the stack representing spatially referenced observations for one time step (step one in Fig. 1). A
variation of DIC which I call Spatiotemporal Image Correlation (STIC) permits estimation of persistent
directional movement in terms of orthogonal velocity vectors.

In STIC, the three dimensional array is first lagged by duplicating it and then removing an integer
number of layers from the top of one duplicate and the bottom of the other (steps two and three in Fig.
1. The integer lag is user defined and serves to minimize estimates of zero movement which always
would occur in the absence of a lag. To differentiate the duplicate lagged arrays, I will refer to the first
as the reference array, and the second as the lagged array. Regions of interest in the reference array
are selected and locations outside the region of interest in the reference array are assigned values of
zero (grey shaded region in steps two and three in Fig. 1 represent regions of interest). The reference
array and the lagged array are then dimension reduced by averaging along rows to obtain one pair of
two-dimensional matrices and by averaging along columns to obtain a second pair of two dimensional
matrices (step 4 in Fig. 1). The first pair of matrices comprises row-averaged reference and lagged
matrices. The second pair of matrices comprises column-averaged reference and lagged matrices.
Each matrix in the two pairs has one space dimension and one time dimension.

Cross-correlation between the pairs of reference and lagged matrices is then computed as described
for DIC. Recall that one dimension of each of the row or column-averaged matrices is spatial while the
other is temporal, which enables calculation of two orthogonal velocity vectors based on space shifts
and time shifts obtained by application of DIC:

vx = sx/stx, stx ̸= 0 (6)

vy = sy/sty, sty ̸= 0 (7)

in which vx and vy are velocity in the horizontal and vertical directions, sx and sy are shifts in the
horizontal and vertical direction, stx is the time shift that corresponds to spatial shifts in the horizontal
direction, and sty is the time shift that corresponds to spatial shifts in the vertical direction. Note that
due to the time shift, the user-defined time lag does not necessarily pre-determine the denominator of
the orthogonal velocity vectors.

Spatially variable velocities

When the magnitudes of movement velocities are highly spatially variable, a single time lag is not
optimal for quantifying orthogonal velocity vectors. For these scenarios a variation on the STIC
algorithm called STIC+ allows the user to specify a maximum time lag. The algorithm then repeats
the steps described for STIC for each integer time lag from one to the maximum time lag. For each
repetition and each location of interest, the total velocity magnitude (speed) is calculated as

|v| =
√

v2
x + v2

y. (8)

For each region of interest, the horizontal and vertical velocity vectors are determined by the time lag
STIC calculation that maximizes equation (8).

A summary table describing which functions in ICvectorfields use each of the algorithms described
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Figure 1: The STIC algorithm: The input array in step one is a raster stack of images in which each
image layer represents the phenomenon of interest in planar space at a different time instance. In step
two, the input array is duplicated and based on a user specified time lag, layers are removed from the
top of one array and the bottom of the other. In addition, a region of interest is defined in one of the
duplicate arrays represented by the grey shaded region at the top of the prism on the left. In step four
the rows are dimension reduced by averaging along one of the axes (either rows or columns). This
produces a pair or row-averaged matrices and a pair of column-averaged matrices that are analyzed
using cross-correlation to estimate orthogonal velocity vectors.
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Table 1: ICvectorfields functions, algorithms, and use contexts to facilitate decisions on which function
is most applicable. ROI stands for region of interest, which is defined either using a grid or a bounding
box, Velocities refers to whether the magnitudes of velocities in the vector field are presumed to be
spatially variable or not.

function algorithm images ROI velocities
DispField DIC 2 grid variable or not
DispFieldbb DIC 2 bounding box variable or not
DispFieldST STIC 3+ grid less variable
DispFieldSTbb STIC 3+ bounding box less variable
DispFieldSTall STIC+ 3+ grid more variable
DispFieldSTbball STIC+ 3+ bounding box more variable

above is provided (Table 1). Two functions in ICvectorfields use a standard implementation of DIC
similar to that described by (Anuta 1970), two functions use the STIC extension and two functions use
the STIC+ extension (Table 1).

3 Application

In this section I demonstrate the use of DIC and extensions implemented in ICvectorfields (Goodsman
2021) using an example in which data were simulated based on a partial differential equation and
using the classic larch budmoth defoliation data that are embedded in the ncf package (Bjornstad
2020). The data from the simulated example are embedded in ICvectorfields. For visualization of
results, the demonstrations call functions in several R packages: These include ggplot2 (Wickham
2016), ggnewscale (Campitelli 2021a), metR (Campitelli 2021b), and terra (Hijmans 2021).

Demonstration using simulated data

The model used to simulate data to test and demonstrate the functionality of ICvectorfields is a
convection-diffusion equation, which is a partial differential equation with terms for diffusion, advec-
tion, and reaction:

∂u
∂t

= ∇ · (D∇u)−∇ · (vu) + ru, (9)

in which r is the growth rate with units of per unit time, D is the diffusion coefficient with squared
spatial units per unit time, v is the bivariate orthogonal velocity vector in units of space per unit time,
∇ represents the gradient, and ∇· represents divergence. The orthogonal velocity vector is spatially
dependent in the simulations that follow:

v =


(0, 0.2), x < 0, y ≥ 0
(0.2, 0), x ≥ 0, y ≥ 0
(0,−0.2), x ≥ 0, y < 0
(−0.2, 0), x < 0, y < 0

(10)

Note that by convention in equations (9) and (10), movement to the right and up has a negative sign,
and movement to the left and down has a positive sign. This is the opposite convention used in
ICvectorfields. Note that the discontinuities at x = 0 and y = 0 in the advection term in equation
(10) create strange model behaviours once concentration reaches x = 0 or y = 0, and so the model
was simulated for only 6 time steps to minimize encounters with these axes. Parameter values for the
diffusion coefficient and the growth rate were D = (0.01, 0.01) squared spatial units per unit time and
r = 0.5 per unit time.

The model in equations (9) and (10) was simulated using the ReacTran R package (Soetaert and
Meysman 2012), using a finite differencing scheme with backward differencing on a square domain
of 202 cells in each direction, each with a width of 0.049 spatial units. The initial condition was a
concentration of one units per arbitrary unit of volume in the centre of each quadrant of the spatial
domain. Boundary conditions were zero flux (reflecting) on all four sides of the spatial domain. The
simulation data are saved in table format within ICvectorfields.

The data are imported and then converted from table format to a raster stack using the RastStack-
Data helper function. They can then be visualized as rasters as shown in Fig. 2.
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Figure 2: Visualization of simulation data for six time steps. The initial condition at t0 is not shown.
Green colours represent the highest concentrations. The populations in each quadrant move counter-
clockwise as time steps forward.

# import simulated data
data(SimData, package = "ICvectorfields")

# convert to raster stack
SimStack <- ICvectorfields::RastStackData(SimData)

# confirming dimension
#dim(SimStack)

# plotting
layout(matrix(1:6, 2, 3, byrow = TRUE))
#layout.show(6)
terra::plot(SimStack[[1]], legend = FALSE, main = "t1")
terra::plot(SimStack[[2]], legend = FALSE, main = "t2")
terra::plot(SimStack[[3]], legend = FALSE, main = "t3")
terra::plot(SimStack[[4]], legend = FALSE, main = "t4")
terra::plot(SimStack[[5]], legend = FALSE, main = "t5")
terra::plot(SimStack[[6]], legend = FALSE, main = "t6")

To analyze displacement based on a pair of images, I chose to use the standard implementation of
DIC in the DispField function of ICvectorfields. The first two arguments of the DispField function are
the input rasters. The first input raster is treated as the reference image and the second is treated as
the shifted image. In this case, the first image is the raster layer corresponding to the first time step
(t1) and the second image is the raster layer corresponding to the sixth time step (t6). The function
selects regions of interests based on a grid of dimensions given in the factv1 and facth1 arguments,
which represent to number of rows and columns in each sub-grid. Sub-grids start in the upper left
corner and as many sub-grids as fit within the original domain are constructed. In the code below,
sub-grids are 101 × 101, which is approximately the size of one quarter of the original spatial domain
of the simulation. The restricted argument is by default set to FALSE. In that case, the DIC algorithm
cross-correlates each region of interest in the first image with the entirety of the second image. When
restricted = TRUE, the algorithm cross correlates both images only within the region of interest. If the
user has reason to believe that movement is predominantly occurring within sub-grids the restricted =
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Table 2: ICvectorfields output from a call of the DispField function using simulated data. The table is
a duplicate of the data table returned after calling the function except that columns 3 through 6 have
been omitted so that the table fits within page width limits.

rowcent colcent centx centy dispx dispy
51 51 -2.487624 2.487624 0.0000000 -0.9851975

152 51 -2.487624 -2.487624 0.9851975 0.0000000
51 152 2.487624 2.487624 -0.9851975 0.0000000

152 152 2.487624 -2.487624 0.0000000 0.9851975

TRUE option has the added benefit of speeding up computation.

# Estimating displacement of simulated data using the DispField function
VFdf1 <- DispField(SimStack[[1]], SimStack[[6]], factv1 = 101, facth1 = 101,

restricted = TRUE)

The output of DispField is in data table format. Because the data table is small, the output is
duplicated in Table 2.

The directions of movement coincide with the directions of advection in the simulation with
movement downwards in the upper left quadrant (first row of Table 2), movement to the right in the
lower left quadrant (second row of Table 2), movement to the left in the upper right quadrant (third
row of Table 2), and upwards movement in the lower right quadrant (fourth row of Table 2). Speed
of movement can be computed by dividing displacement by the number of time steps that passed
0.98/5 = 0.196, which is slightly slower than the simulated advection speed of 0.2 spatial units per
time step. The discrepancy is likely due to the blurring effect of diffusion in the partial differential
equation (equation (9)).

In situations where the speed is constant, velocity can be estimated from pairs of images as I have
demonstrated above. However, the DispFieldST algorithm is designed to return orthogonal velocity
vectors and so for confirmation purposes, I demonstrate it below:

# Estimating orthogonal velocity vectors of simulated data using the DispFieldST function
VFdf2 <- DispFieldST(SimStack, lag1 = 1, factv1 = 101, facth1 = 101, restricted = TRUE)

The data table that is returned after running the code above looks similar to the data table
duplicated in Table ?? except that under the heading dispx and dispy the algorithm returns horizontal
and vertical velocities rather than displacement vectors. The directions of movement are the same as
those shown in Table 2, but the speed is 0.196 spatial units per unit time as previously estimated.

The vector field and the raw data can be visualized simultaneously using plotting functionality in
ggplot2 with extensions in the ggnewscale and metR packages.

SimVF <- ggplot() +
xlim(c(-5, 5)) +
ylim(c(-5, 5)) +
geom_raster(data = SimData,

aes(x = xcoord, y = ycoord, fill = t1)) +
scale_fill_gradient(low = "white", high = "blue", na.value = NA) +
new_scale("fill") +
geom_raster(data = SimData,

aes(x = xcoord, y = ycoord, fill = t6), alpha = 0.5) +
scale_fill_gradient(low = "white", high = "red", na.value = NA) +
geom_vector(data = VFdf2,

aes(x = centx, y = centy,
mag = Mag(dispx, dispy),
angle = Angle(dispx, dispy))) +

theme(panel.background = element_rect(fill = "white", color = "grey"),
legend.key.size = unit(0.4, 'cm'))

SimVF

The resulting figure is duplicated in Fig. 3. The velocity vectors in the vector field are consistent
with the simulated advection vectors (Fig. 3), although they slightly underestimate movement speed.
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Figure 3: Vector field for radial movement simulated using a convection-diffusion equation. The
orthogonal velocity vectors are estimated using the DispFieldST function in the ICvectorfields package.

Table 3: Output from a call of the DispFieldST function using simulated data. This call is meant
to demonstrate a potential pitfall in using the cross-correlation approach because when restricted =
FALSE, the algorithm finds positive cross-correlations that are not caused by movement. The table is a
duplicate of the data table returned after calling the function except that columns 3 through 6 have
been omitted so that the table fits within page width limits.

rowcent colcent centx centy dispx dispy
51 51 -2.487624 2.487624 0.0985198 -3.8915302

152 51 -2.487624 -2.487624 3.8915302 0.0985198
51 152 2.487624 2.487624 -3.8915302 -0.0985198

152 152 2.487624 -2.487624 -0.0985198 3.8915302

Before proceeding to the next demonstration I will illustrate one of the potential pitfalls of estimat-
ing movement based on cross-correlation. If the argument of the DispFieldST function is left its default
restricted = FALSE configuration, the algorithm will search the entire domain for shifts that maximize
cross-correlation. Because the simulations in each quadrant of the spatial domain are quite similar,
cross-correlation is in fact maximized by shifts that cross quadrants, even though simulated movement
was not that large. Therefore, calling DispFieldST with restricted = FALSE produces incorrect output
(Table 3): The simulated advection speed is not at all close to the estimated maximum orthogonal
advection speed of 3.89 spatial units per unit time.

# Estimating orthogonal velocity vectors of simulated data using the DispFieldST function
VFdf3 <- DispFieldST(SimStack, lag1 = 1, factv1 = 101, facth1 = 101, restricted = FALSE)

Demonstration using larch budmoth data

Larch budmoths are lepidopteran defoliators that exhibit periodic outbreaks every 8 to 9 years in the
European Alps (Bjørnstad et al. 2002). The larch budmoth data originated from survey information
collected by the forest administrative agencies of France, Italy, Switzerland, and Austria from 1961 to
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Figure 4: The first five years of the larch budmoth defoliation data included in the ncf package. Green
colours represent the highest level of defoliation. Defoliation intensity moves from the southwest to
the northeast but not along a straight trajectory between the southwest and northeast corners.

1998. The data record the presence of defoliation by larch budmoth caterpillars within 1 × 1 km grid
cells (a binary variable). These data were aggregated up to 20 × 20 km grid cells so that records at this
spatial scale were population proxies for larch budmoth caterpillar abundance (Bjørnstad et al. 2002)
based on the assumption that defoliation damage is proportional to the abundance of the causal agents.
Grid cells were excluded from the data set if they exhibited less than one percent defoliation or if more
than ninety percent of years in which data were collected at that location exhibited no defoliation by
larch budmoth (Bjørnstad et al. 2002). The larch budmoth defoliation data exhibit directional traveling
wave-trains that travel from the southwest to the northeast along the European Alps (Bjørnstad et al.
2002). These data are embedded in the ncf R package.

After loading the ncf package as well as ICvectorfields, the data can be loaded, converted to a
raster stack and visualized as follows:

# import larch budmoth data
data(lbm, package = "ncf")

# convert to raster stack
LBMStack <- ICvectorfields::RastStackData(lbm)

# confirming dimension
#dim(LBMStack)

# visualizing
layout(matrix(1:6, 2, 3, byrow = TRUE))
#layout.show(6)
terra::plot(LBMStack[[1]], legend = FALSE, main = "1961")
terra::plot(LBMStack[[2]], legend = FALSE, main = "1962")
terra::plot(LBMStack[[3]], legend = FALSE, main = "1963")
terra::plot(LBMStack[[4]], legend = FALSE, main = "1964")
terra::plot(LBMStack[[5]], legend = FALSE, main = "1965")

This code plots the first five years of the data set (Fig. 4), which show a standard progression
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Figure 5: Vector field for Larch Budmoth persistent movement. The orthogonal velocity vectors are
estimated using the DispFieldSTall function in the ICvectorfields package. Blue colours show the
locations and intensities of defoliation in 1962 and red colours show the locations and intensities
of defoliation in 1964. Vectors have their own scale that is distinct from the scale of the map. The
figure shows that velocities point predominantly to the north on the southwest corner of the map and
predominantly to the east on the northeast corner of the map. In addition, outbreaks appear to slow
down as they turn the corner from southwest to northeast.

of outbreaks from the southwest corner of the Alps to the northeast. This pattern repeats relatively
regularly every 8 to 10 years in the data set.

The study region covers a large geographic area and so it is likely the population movement
speeds vary geographically. For this reason, I elected to use the STIC+ algorithm to analyze the data
using DispFieldSTall. In the code below I analyze the first 23 years of the time series (1961 to 1983) as
defoliation patterns from 1984 to 1998 are less regular.

# calculating velocity field for larch budmoth
VFdf3 <- DispFieldSTall(LBMStack[[1:23]], lagmax = 3, factv1 = 3, facth1 = 3, restricted = FALSE)

Calling DispFieldSTall returns a data frame object that is convenient for plotting the vector field.
The vector field reveals that moth movement is to the north on the southwestern side of the Alps and
then to the east on the northern side of the Alps (Fig. 5). It also reveals deceleration as outbreaks turn
the corner and then acceleration as outbreaks move eastward (Fig. 5).

The average speed of larch budmoth movement can be computed from the data frame output of
DispFieldSTall as follows:

# calculating average speed of population movement
VFdf3$speed <- sqrt((VFdf3$dispx^2) + VFdf3$dispy^2)

# sub-setting to remove locations where speed is zero
VFdf4 <- subset(VFdf3, speed > 0)

# computing mean, standard deviation and dimension of data frame
# to obtain sample size
mean(VFdf4$speed)
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#> [1] 175810

#sd(VFdf4$speed)
#dim(VFdf4)

# upper and lower Wald-type 95 percent confidence interval on average speed
mean(VFdf4$speed)/1000 + qt(0.975, dim(VFdf4)[1] - 1)*sd(VFdf4$speed)/1000/sqrt(dim(VFdf4)[1] - 1)

#> [1] 218.5415

mean(VFdf4$speed)/1000 + qt(0.025, dim(VFdf4)[1] - 1)*sd(VFdf4$speed)/1000/sqrt(dim(VFdf4)[1] - 1)

#> [1] 133.0786

Using the approach above, the average movement speed is estimated as 176 ± 43 km(Yr)−1,
an estimate that is less than the previous speed estimates for northeastern spread of 220 km(Yr)−1

(Bjørnstad et al. 2002) and 254 km(Yr)−1 (D. M. Johnson, Bjørnstad, and Liebhold 2004). The difference
between estimates in the literature and estimates produced here are likely due to the direction of
movement. The vectors in the larch budmoth vector field point predominantly north and east (Fig.
5. In other words they are orthogonal. In contrast the movement speeds estimated by Bjørnstad et
al. (2002) and D. M. Johnson, Bjørnstad, and Liebhold (2004) are projected along lines that run to
the northeast. A simple application of geometry reveals that an average speed of 176 km(Yr)−1 in
the north and east directions corresponds to an estimated speed of 249 km(Yr)−1 in the northeastern
direction (Pythagorean theorem

√
1762 + 1762). This estimate is consistent with prior speed estimates

for larch budmoth population movement (Bjørnstad et al. 2002; D. M. Johnson, Bjørnstad, and Liebhold
2004).

4 Summary

The ICvectorfields R package implements standard Digital Image Correlation algorithms in addition
to a novel extension that permits estimation of orthogonal velocities of persistent movement in series
of three or more images. Here I demonstrate the usefulness of DIC and the extension implemented
in ICvectorfields in a new arena: Whereas DIC is often applied in engineering and materials science
to quantify the effects of force application on materials (Sutton, Orteu, and Schreier 2009), it has not
been used in landscape ecology. In this field, the approach has potential to provide new insights into
how populations move across landscapes and to demonstrate the untenable nature of assumptions
of homogeneity inherent in most analyses based on the traveling wave paradigm. Even when
models of sufficient complexity to capture environmental heterogeneity can be used, I expect that the
methods in ICvectorfields will be useful because they facilitate comparison between modeled and
empirical population movement data as demonstrated in the partial differential equation example
in this study. Approaches such as this one that estimate movement based on cross-correlation,
however, have a weakness: Under certain circumstances, they are prone to finding cross-correlations
that are unrelated to movement as was demonstrated in this paper. For this reason, users must
exercise vigilance in interpreting the results of vector field analyses like those demonstrated herein. If
possible, results should be checked against a standard or against prior published results regarding
movement propensity. Nevertheless, the methods described here hold promise for exploratory
analyses, hypothesis generation, and synoptic pattern analyses of population movements.
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Refreg: An R Package for Estimating
Conditional Reference Regions
by Lado-Baleato, Óscar, Roca-Pardiñas, Javier, Cadarso-Suárez, Carmen and Gude, Francisco

Abstract Multivariate reference regions (MVR) represent the extension of the reference interval concept
to the multivariate setting. A reference interval is defined by two threshold points between which
a high percentage of healthy subjects’ results, usually 95%, are contained. Analogously, an MVR
characterizes the values of several diagnostic tests most frequently found among non-diseased subjects
by defining a convex hull containing 95% of the results. MVRs have great applicability when working
with diseases that are diagnosed via more than one continuous test, e.g., diabetes or hypothyroidism.
The present work introduces refreg, an R package for estimating conditional MVRs. The reference
region is non-parametrically estimated using a multivariate kernel density estimator, and its shape
allowed to change under the influence of covariates. The effects of covariates on the multivariate
variable means, and on their variance-covariance matrix, are estimated by flexible additive predictors.
Continuous covariate non-linear effects can be estimated by penalized spline smoothers. The package
allows the user to propose, for instance, an age-specific diagnostic rule based on the joint distribution
of two non-Gaussian, continuous test results. The usefulness of the refreg package in clinical practice
is illustrated with a real case in diabetes research, with an age-specific reference region proposed for
the joint interpretation of two glycemia markers (fasting plasma glucose and glycated hemoglobin).
To show that the refreg package can also be used in other, and indeed very different fields, an example
is provided for the joint prediction of two atmospheric pollutants (SO2, and NOx). Additionally, the
text discusses how, conceptually, this method could be extended to more than two dimensions.

1 Introduction

In clinical practice, many medical decisions are based on continuous diagnostic tests (Hallworth,
2011) – i.e., tests that provide results along a continuous, quantitative scale. The interpretation of
such continuous tests requires the comparison of the obtained value with a pre-defined reference
interval, so that a result could be classified as positive or negative (ie, disease present or absent)
based on this comparator value. A reference interval is an interval containing most healthy subjects’
results. For a single test they are usually estimated from the 2.5 and 97.5 empirical percentiles of the
distribution for the healthy population; thus, 95% of healthy patients are located within the interval
limits (Wright and Royston, 1999). Those patients falling outside the reference interval, are likely
to have an undiagnosed disease. If the test results are influenced by some patient characteristics
independent of the disease (e.g., age and gender), reference intervals for specific patient groups must
be obtained. These covariate-dependent reference intervals, usually termed reference curves, are
estimated using quantile regression (Koenker and Bassett Jr, 1978) or location-scale models (Cole
and Green, 1992; Stasinopoulos et al., 2017). Several R packages for estimating reference intervals
and reference curves already exist, including the R package referenceIntervals, which comprises a
collection of tools, the R package gamlss (Stasinopoulos et al., 2007), which provides a general tool for
deriving reference curves in clinical practice (WHO, 2006), and software RefCurv (Winkler et al., 2019),
recently proposed to facilitate clinicians’ use of gamlss. However, all these packages were produced
to provide reference intervals for single tests; they cannot address diseases for which diagnosis and
control are based on multiple tests.

When the results of several tests are available for the same patient, obtaining separate reference
intervals for each one provides an incomplete picture of disease status, particularly when these results
are strongly correlated (Boyd, 2004). Although each reference interval would leave only 5% of healthy
patients out, their combined use can result in a higher percentage of false positives. Moreover, a
patient falling within each univariate reference interval might, in fact, show an abnormal multivariate
result. Thus, a multivariate reference region (MVRs) would provide a better means of interpreting
the results of multiple tests (Winkel and Lyngbye, 1972). MVRs are a straightforward extension of
the univariate reference interval to the multidimensional setting, i.e., a region that contains 95% of
the healthy patients’ results. However, despite being proposed more than 40 years ago, MVRs are
rarely used in clinical practice. This might be explained by the multivariate Gaussian assumption of
MVRs, which is quite restrictive when interpreting diagnostic test results. Further, the multivariate
distribution of test results is usually affected by patient characteristics, independent of their health
status. For example, Espasandín-Domínguez et al. (2019) showed that the correlation between two
diagnostic tests for diabetes was influenced by patient age and red blood cell turnover, independent of
glycemia status. A conditional MVR is therefore desirable, but the statistical literature is not rich in
such proposals (see, e.g., (Wei, 2008)).
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Very few statistical software routines have been proposed for estimating the region containing a
specific percentage of multivariate data points. The function mvtol.region in the R package tolerance
(Young, 2010) obtains a region containing a high percentage of a bivariate Gaussian distribution in the
context of quality control studies, and non-parametric probabilistic regions can be obtained using the
R packages r2d2 (Magnusson and Burgos, 2014), hdrcde (Hyndman, 2018) and distfree.cr (Hu and
cai Yang, 2018). However, these all suffer the major limitation of not being able to estimate the effects
of covariates on the region’s shape. The R package modQR can estimate conditional multivariate
quantiles, but the quantile level τ is not linked to the probability content of the sample (Šiman and
Boček, 2019). Thus, it is not clear how to derive a reference region from these bivariate quantiles.

The present paper introduces refreg, an implementation in R of a new statistical methodology for
estimating bivariate reference regions able to classify subjects as having normal or abnormal values
based on the results of two continuous diagnostic tests. The main advantages of the presented method
are; i) the absence of parametric restrictions for describing bivariate distributions for continuous tests,
and ii) the possibility of estimating the effects of covariates on the shape of the reference region via
flexible additive predictors. To illustrate this statistical methodology, and how to use the package, an
age-specific reference region for two diabetes diagnostic tests was estimated. The estimated reference
region offers new insights into the diagnosis and prognosis of diabetes, enabling physicians to identify
different patients’ profiles. The proposed method can, however, be applied to any disease in which
two continuous diagnostic tests are available, and can even be used in non-medical fields. Indeed,
an application is discussed in which the conditional region is used in the joint forecasting of the
concentrations of two air pollutants. Moreover, the current implementation can be easily extended to
three dimensions.

The statistical model that enables conditional reference regions to be determined is presented
in the next section. The main functions contained in the refreg package are then described, with a
brief introduction to the main functions. The use of the package is shown in analyses of real medical
and environmental data problems. The paper closes with some comments, and some notes on future
research directions.

2 Statistical methodology

In this section the main features of our statistical method is presented. In a nutshell, our proposal is
based on a bivariate location scale model, where the response means, and their variance-covariance
matrix, are related to covariates using flexible additive predictors. The probabilistic region covering a
specific percentage of the data is firstly estimated using the model standardized residuals. Then, it is
generalized for each covariate value based on the aforementioned bivariate location-scale model fit.
This statistical model was already presented and evaluated in (Roca-Pardiñas et al., 2020).

Conditional reference region

Given a bivariate continuous random variable of interest Y = (Y1, Y2), and a vector of covariates
X = (X1, . . . , Xp) we consider the following structure:(

Y1
Y2

)
=

(
µ1(X)
µ2(X)

)
+ Σ1/2(X)

(
ε1
ε2

)
(1)

where µ1(X) and µ2(X) represents the conditional means of both responses and Σ1/2(X) the Cholesky
decomposition of the variance-covariance matrix

Σ(X) =
(

σ2
1 (X) σ12(X)

σ12(X) σ2
2 (X)

)
(2)

so that Var(Y|X) = Σ(X) = Σ1/2(X)
(

Σ1/2(X)
)T

. In order to guarantee the model identification (1),

the bivariate residuals (ε1, ε2) are assumed to be independent of the covariates, with zero mean, unit
variance, and zero correlation.

We consider additive structures for the mean functions µj(X), variance functions σ2
j (X) (j = 1, 2)

and the correlation function ρ(X) – note that σ12(X) = σ̂1(X)σ̂2(X)ρ̂(X). These structures are given,
respectively, by

µr(X) = αr +
p

∑
j=1

f jr(Xj), σ2
r (X) = Hσ

βr +
p

∑
j=1

gjr(Xj)

 for r = 1, 2
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and

ρ(X) = Hρ

γ +
p

∑
j=1

mj(Xj)


where α, β and γ are parametric coefficients and f jr, gjr and mj for j = 1, · · · , p and r = 1, 2 are
smooth and unknown functions. Hσ(·) = exp(·) and Hρ(·) = tanh(·) are link functions used in the
variance and correlation structures, respectively, to ensure that the restrictions on the parameter spaces
(σ2

r (X) ≥ 0 and 0 ≤ ρ(X) ≤ 1) are maintained.

Based on the model presented in equation (1), for a given X the conditional τth- reference region
for (Y1, Y2) is given by:

Rτ(X) =
(

µ1(X)
µ2(X)

)
+ Σ1/2(X)ετ (3)

where ετ is the unconditionally probabilistic region for the errors (ε1, ε2) as

ετ(k) = {(ε1, ε2) ∈ R2| f (ε1, ε2) ≤ k} (4)

f being the density function of the bivariate residuals (ε1, ε2) and k is the τ−quantile of f (ε1, ε2).

Estimation algorithm

In this section, we present the estimation procedure of the conditioned bivariate uncertainty region
given in equation (3). Our approach is based on the estimation of the covariate effects on the response
means using an additive model, and then on the variance-covariance matrix using the squared
residuals of the former models. Finally, the bivariate region Rτ(X) is obtained with a bivariate kernel
estimation of the standardized bivariate residuals.

The steps of the proposed estimation algorithm are the following:

Step 1: For r = 1, 2 fit an additive model to the sample {Xi, Yir}n
i=1 and obtain the estimates

µ̂r(Xi) = α̂ +
p

∑
j=1

f̂ jr(Xij) (5)

Then, estimate σ2
r (X) from the sample {Xi, (Yir − µ̂r(Xi))

2}n
i=1 as

σ̂2
r (Xi) = β̂r +

p

∑
j=1

ĝjr(Xij) (6)

Step 2: Compute the correlation ρ(X), using the sample {Xi, δ̂i}n
i=1, as

ρ̂(Xi) = tanh

γ̂ +
p

∑
j=1

m̂jr(Xij)


where

δ̂i =
(Yi1 − µ̂1(Xi)) (Yi2 − µ̂2(Xi))

σ̂1(Xi)σ̂2(Xi)

Step 3: Compute the standardized residuals(
ε̂i1
ε̂i2

)
= Σ̂−1/2(Xi)

(
Yi1 − µ̂1(Xi)
Yi2 − µ̂2(Xi)

)
i = 1, . . . , n (7)

and obtain the kernel estimation of the bivariate density f̂ (ε1, ε2) given by

f̂ ((ε1, ε2), H) =
1
n

n

∑
i=1

KH

(
ε1 − ε̂i1
ε2 − ε̂i2

)
(8)

where K(·) is the kernel which is a symmetric probability density function and H is a 2 × 2 positive
definite matrix. Then, obtain the τth unconditional bivariate uncertainty region on the residual scale as

ε̂τ = {(ε1, ε2)) ∈ R2| f̂ (ε1, ε2)) ≤ k̂} (9)

k̂ being the empirical τ quantile of the values f̂ (ε11, ε12), . . . , f̂ (εn1, εn2).
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Finally, for a given X, the conditional bivariate uncertainty region Rτ(X) is estimated by

R̂τ(X) =
(

µ̂1(X)
µ̂2(X)

)
+ Σ̂

1/2
(X)ε̂τ (10)

Flexible additive models estimation and inference

The continuous covariates smooth effects ( f jr, gjr and mj for j = 1, · · · , p) may be estimated using
several non-parametric regression techniques. In previous works we applied polynomial kernel
smoothers (Roca-Pardiñas et al., 2020). However, for sake of usage simplicity and computational cost,
in the final package implementation we used a penalized spline basis representation following (Wood,
2017). Thus, given an unknown smooth effect (e.g. f (x)) is estimated as:

f (x) =
K

∑
k=1

βkbk(x)

Confidence intervals for the estimated effects may be obtained using a bootstrap procedure. Given a
specific vector of covariates X0, for the components (means, variances and correlation). The steps for
construction of the bootstrap confidence intervals are:

Step 1. From the sample data {(Yi1, Yi2), Xi}n
i=1 obtain the estimates µ̂r(X0), σ̂r(X0) (r = 1, 2) and

ρ̂(X0).

Step 2. For b = 1, . . . , B generate bootstrap samples {(Y•
i1, Y•

i2), Xi}n
i=1 with(

Y•
i1

Y•
i2

)
=

(
µ̂1(Xi)
µ̂2(Xi)

)
+ Σ̂

1/2
(Xi)

(
ε̂•i1
ε̂•i2

)
(11)

where
{
(ε̂•i1, ε̂•i2)

}n
i=1 is a sample of size n from the residuals {(ε̂i1, ε̂i2)}n

i=1 with replacement, and
compute µ̂•b

r (X0), σ̂•b
r (X0) and ρ̂•b(X0) as in Step 1.

The limits for the 100(1 − α)% confidence intervals of the true components µr(X0), σr(X0) and

ρ(X0) are given respectively by
(

µ̂α/2
r (X0), µ̂1−α/2

r (X0)
)

,
(

σ̂α/2
r (X0), σ̂1−α/2

r (X0)
)

and
(

ρ̂α/2(X0), ρ̂1−α/2(X0)
)

,

where µ̂
p
r (X0) represents the p-percentile of µ̂•1

r (X0), . . . , µ̂•B
r (X0), σ̂

p
r (X0) represents the p-percentile

of σ̂•1
r (X0), . . . , σ̂•B

r (X0), and ρ̂p(X0) is the p-percentile of ρ̂•1(X0), . . . , ρ̂•B(X0).

Bivariate residuals density estimation

The estimation of the unconditionally probabilistic region for the bivariate errors (ε1, ε2) is based on a
kernel density estimator. This estimator is given by:

f̂ ((ε1, ε2), H) =
1
n

n

∑
i=1

KH

(
ε1 − ε̂i1
ε2 − ε̂i2

)
(12)

where H is a matrix defining the kernel bandwidth

H =

(
h11 h12
h12 h22

)

The selection of H is crucial to obtain a good estimation of ετ . A natural option is to use a plug-in
or cross-validation bandwidth estimator, as in a density estimation problem

arg min
H∈H

E(
∫∫ (

f̂H(ε1, ε2)− fH(ε1, ε2)
(−i)

)2
dε1dε2 (13)

where f̂H(ε1, ε2)
−i is the estimated bivariate density function without the i-th observation. However,

as we seek for a probabilistic region (i.e. a region which contains a given percentage of the multivariate
data), the following selection criteria based on the region coverage is proposed

λ̂ = arg min
λ

∣∣∣∣∣
(

n−1
n

∑
i=1

I{(Yi1, Yi2) ∈ R(−i)(Xi)}
)
− τ

∣∣∣∣∣ (14)

where τ is the desired coverage and R̂(−i)
τ (Xi) is the estimated bivariate region without the i-th

observation. Using this criteria the estimated region show a smoother contour and a coverage of
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Figure 1: Estimated reference regions for plug-in and best coverage bandwidths for non-gaussian
data. In black we represent true regions and in red the estimated ones for τ = 0.50, 0.95. Best coverage
bandwidth offers a smoother region than plug-in estimator.

the data points closer to the desired one τ (see Figure 1). Given the high computational cost of the
regular proposed method in (13), a k-fold cross-validation scheme could be used instead. Moreover
we simplify the minimization problem by considering h11 = h22 and h12 = 0.

3 Overview of the package

The refreg package contains a set of functions for estimating a conditional reference, or uncertainty,
region. Its working framework was designed so that people without a strong statistical background
can use it. Indeed, only two functions need to be taken into account by the user: 1) the effects of
the predictor variables on responses need to be estimated using the bivRegr function, a step that
requires the user choose which variables may influence the region; 2) bivRegion needs to be applied to
a bivRegr object so that the reference region can be estimated.

The bivRegr() function has the following structure:

bivRegr(f = formulas,data = data)

The f argument contains a list of five R formulae corresponding to the additive predictors for the
means, variances and correlation models shown in equation (1). Since bivRegr() uses mgcv::gam()
internally, the user can estimate covariate linear and non-linear effects using s() operator. For instance:

mu1 <- y1 ~ s(x1)
mu2 <- y2 ~ s(x1)
var1 <- ~ x2
var2 <- ~ x2
rho <- ~ s(x3)

formula = list(mu1,mu2,var1,var2,rho)

assumes a smooth effect of x1 on the response means, a parametric effect of x2 on their variances, and
a smooth effect of x3 on the response correlation.

The bivRegion() function is designed for non-parametrically estimating a bivariate reference
region:

bivRegion(object,tau = 0.95,bandwidth = "plug-in")

The object may be a set of bivariate data points, or a bivRegr object, while tau defines the desired
coverage(s) for the reference region, which might be a single value or a vector. Finally, “bandwidth”
specifies the kernel bandwidth selection method. The user can chose between the plug-in, cross-
validation, or the best coverage method (see equation (13)).

Additionally, we defined S3 methods for these two main functions. Specifically, associated with
bivRegr we have
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• predict.bivRegr and plot.bivRegr: to predict and depict additive models results for responses’
means, variances, and their correlation.

• summary_boot.bivRegr: a function implementing the bootstrap inference for flexible additive
models (see (11)). This function results can be depicted by applying plot.summary_boot.

On the other hand, we defined the following S3 methods associated to bivRegion:

• summary.bivRegion: this function evaluates the region performance on the healthy patients’
sample.

• predict.bivRegion and plot.bivRegion: these functions offer a prediction or a plot of condi-
tional regions for a new dataset. If the argument cond=FALSE it evaluates the response values in
the standardized scale.

In addition, we define the functions trivRegr, trivRegion and plot.trivRegion as an extension
of the aforementioned method for a trivariate response variable. Finally, our package also contains
some inner functions as ace (for estimating variance, and correlation models), Hcv (it implements
equation (14) method), and refcurve (it implements an univariate location-scale model).

4 Refreg in practice

This section outlines the implemented functions of the proposed package in detail, and illustrates
their use with real datasets. The first illustration is related to diabetes research, in which a reference
region for the joint interpretation of two glycemia tests is calculated. In the second illustration, refreg
methodology is used to predict the concentrations of two air pollutants during a pollution episode.
Finally, the extension of the method to higher dimensions is shown using real data.

Case 1: Glycemic tests for diabetes diagnosis

Diabetes is a chronic disease, the diagnosis of which is based on two glycemia tests: the fasting plasma
glucose (FPG) and glycated hemoglobin (HbA1c)(American Diabetes Association, 2019) tests. The
multivariate interpretation of FPG and HbA1c results is desirable for two reasons: i) the results of both
tests are correlated in healthy patients (Aleyassine et al., 1980), ii) a miss-match between them may be
indicative of a poorer prognosis (Kim et al., 2018). Finally, it is well known that both test results are
influenced by patient age (Davidson, 1979; Pani et al., 2008).

The age-dependent reference region for the FPG and HbA1c tests was estimated using a sample of
healthy subjects derived from the A-Estrada Glycation and Inflammation Study (AEGIS) (see (Gude
et al., 2017)). A subset of this dataset is available in the package under the name “AEGIS”.

This dataset comprised 1516 subjects and 7 variables:

• id: an anonymous identifier for each subject.

• gender: a factor variable that indicates the subject’s gender with levels “male”, and “female”.

• age: the subject’s age.

• dm: a factor variable indicating a previous diabetes mellitus diagnosis with levels “no”, and
“yes”.

• fpg: fasting plasma glucose concentration in mg/dL.

• hba1c: the percentage of glycated hemoglobin.

• fru: fructosamine plasma concentration.

Applying the summary() routine to the aegis dataset indicated 55% of the subjects to be female,
the mean age of all 1516 subjects to be 52 years (range 18-91), and that 187 subjects (12%) had been
previously diagnosed with diabetes.

R> summary(aegis)
id gender age dm fpg

Min. : 1.0 female:838 Min. :18.00 no :1329 Min. : 63.00
1st Qu.: 379.8 male :678 1st Qu.:39.00 yes: 187 1st Qu.: 82.00
Median : 758.5 Median :52.00 Median : 89.00
Mean : 758.5 Mean :52.58 Mean : 94.51
3rd Qu.:1137.2 3rd Qu.:67.00 3rd Qu.:100.00
Max. :1516.0 Max. :91.00 Max. :274.00
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hba1c fru
Min. : 3.900 Min. :119.0
1st Qu.: 5.200 1st Qu.:225.0
Median : 5.400 Median :254.0
Mean : 5.608 Mean :262.2
3rd Qu.: 5.700 3rd Qu.:284.0
Max. :10.200 Max. :700.0

To estimate the reference region, a subset of the patients not previously diagnosed with diabetes
was define as dm_no. This subset sample was deemed the healthy patient sample.

R> dm_no = subset(aegis,aegis$dm == "no")
R> dm_yes = subset(aegis,aegis$dm == "yes")

To estimate the effect of age on the final region shape, the bivRegr() function was used. This
function implements the estimation process of the bivariate location-scale:

R> mu1 = fpg ~ s(age)
R> mu2 = hba1c ~ s(age)
R> var1 = ~ s(age)
R> var2 = ~ s(age)
R> rho = ~ s(age)
R> formula = list(mu1,mu2,var1,var2,rho)

The first and second formulae define the additive models for the mean values of both glycemia
tests. The third and fourth define the additive models for test result variability. The last formula
represents the additive model that comprises the effect of age on the correlation between the results of
both glycemia tests. In addition to the model formulae list, a dataset including both the test results
and subject’s age must be supplied to bivRegr() as:

R> fit = bivRegr(formula,data=dm_no)
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Figure 2: Estimated effects of age on the FPG and HbA1c mean, variance models, and on their
correlation. Output from summary_boot, the shaded area is the 95% pointwise confidence interval
obtained by bootstrap resampling. The parameters of our bivariate response change with age.

By applying the S3 method plot() to a bivRegr object, the estimated effects of covariates can
be shown for each submodel. The argument eq= controls the model component to be represented
(1 = FPG mean, 2 = HbA1c mean, 3 = FPG variance, 4 = HbA1c variance, and 5 = [FPG – HbA1c]
correlation). Moreover, the function summary_boot() may be applied to a bivRegr object to obtain the
95% pointwise confidence interval for the estimated effects via bootstrapping:

R> fit_boot = summary_boot(fit, B=250, parallel = TRUE )
R> plot(fit_boot,eq=1)
R> plot(fit_boot,eq=2)
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R> plot(fit_boot,eq=3)
R> plot(fit_boot,eq=4)
R> plot(fit_boot,eq=5)

Since bootstrap resampling (introduced in equation (11)) is time consuming, the user can fix
parallel = TRUE and run a parallelized computation. The parallel backend is registered using
doParallel (Microsoft and Weston, 2020), and the parallel computation is performed by foreach
(Microsoft and Weston, 2020).

Figure 2 shows that the mean values of both glycemia markers increase almost linearly with age.
FPG variance increases from 20 to 40 years, while the HbA1c variance increases linearly with age.
Finally, the correlation between the FPG and HbA1c concentration seems to be stronger for older
patients.
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Figure 3: Estimated region in the bivariate residuals scale for healthy patients (left), and patients
with diabetes (right). Green contour represents the region for τ = 0.50, while red dashed contour for
τ = 0.95.

Applying the function bivRegion() to a bivRegr object provides a bivariate region containing
100τ% of the model standardized residuals. This region is based on a bivariate kernel density estimator.
The kernel bandwidth selection method may be chosen with the H_choice argument. Here, the 90%,
95% and 97.5% regions are obtained with the best coverage bandwidth selector (see equation (13)):

R> region = bivRegion(fit,tau=c(0.90,0.95,0.975),H_choice = "Hcov")

This region facilitates a multivariate interpretation of the glycemia test results. A patient whose
results are “normal”, for his/her age would see them fall inside this reference region, while a subject
with “abnormal” results for his/her age would not. This interpretation is possible because the model
residuals are centered around zero, show unit variance, no correlation, and they are independent
of age. The user can check test results located outside the reference region using the bivRegion S3
method plot:

R> par(mfrow = c(1, 2))
R> plot(region, xlab = "FPG, mg/dL", ylab = "HbA1c, \%",cond=T, newdata =
data.frame (age = c(20,30,40,50,60,70)),tau=0.95,reg.lwd=2, pch="*",col="grey")

R> plot(region,xlab = "FPG, mg/dL", ylab = "HbA1c, %",cond=T, newdata =
data.frame(age = c(20,60)),tau=c(0.50,0.95), reg.lwd=2, pch="*", col="grey")

Figure 3 shows the unconditional reference region for τ = 0.90, 0.95 and 0.975 for healthy patients,
and those previously diagnosed with diabetes. Note that the plot() function argument ’newdata’
allows the glycemia test values to be observed in the standardized residuals scale of the dataset for
the patients with diabetes. As is clearly seen, most of healthy patients’ results are located inside the
reference region, while those recorded for diabetic patients are located outside.

A major advantage of this representation is that it allows clinicians new insights into the subject’s
glycemia status. Indeed, those patients located outside the reference region may be classified into four
groups: (I) individuals with high values for both tests (first quadrant); (II) those with discordant results,
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with high HbA1c concentrations and low/medium FPG (second quadrant); (III) individuals with low
values for both tests (third quadrant); and (IV) individuals with low/medium HbA1c concentrations
and high FPG values (fourth quadrant). This distinction might be useful for physicians. For instance,
discordant results are probably due to an altered bloodstream protein glycation rate, a condition
associated with a poorer prognosis. Patients located outside the standardized region may be also
checked applying summary() to a bivRegion object:

R> summary(region,tau = 0.95)

This R output presents patients located outside the standardized bivariate region for τ = 0.95.
Note that, in the full sample, patients with different ages were located outside the reference region. The
glycemia tests results located outside the reference region are interesting from a clinical point of view.
For example, the following were seen: a possible case of undiagnosed diabetes in a 20 year old patient
(FPG = 99, HbA1c = 6.3); a 47 year old patient showing a high HbA1c value for his corresponding FPG
result (FPG = 86, HbA1c =6); and a patient of 85 years in the opposite situation (FPG = 120, HbA1c =
5.7).
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Figure 4: Predicted reference regions for different ages. Solid line contour represents the refer-
ence region for τ = 0.50, and the dashed line contour for τ = 0.95. Toprow plots are depicted
by plot.bivRegion function setting the arguments cond=TRUE and add=FALSE for several ages, and
bottomrow ones with cond=TRUE and add=TRUE in a pre-existing plot. The estimated regions change
with age and it describes the shape of the observed data points.

The use of this region in combination with the results of the bivariate location-scale model allow the
conditional reference regions to be obtained. The user can visualize these regions using the bivRegion
S3 method plot(), setting cond = TRUE as follows:

R> plot(region, xlab = "FPG, mg/dL", ylab = "HbA1c, %",cond=T, newdata = data.frame(age =
c(20,30,40,50,60,70)),tau=0.95,reg.lwd=2, pch="*",col="grey")

R> plot(region,xlab = "FPG, mg/dL", ylab = "HbA1c, %",cond=T, newdata = data.frame(age =
c(20,60)),tau=c(0.50,0.95),reg.lwd=2, pch="*",col="grey")

In addition, the region may be represented in a pre-existing plot if the plot function argument add
is equal to TRUE as in the following code:

R> plot(dm_no[dm_no$age==40,"fpg"],dm_no[dm_no$age==40,"hba1c"],main="40 years",
xlim=c(50,140), ylim=c(4.2,7.5),xlab = "FPG, mg/dL", ylab = "HbA1c, %", pch=20,cex=2)

R> plot(region,cond=T,newdata = data.frame(age = 40),add=T,legend=F, tau=c(0.50,0.95),
reg.lty=c(1,2))

R> plot(dm_no[dm_no$age==60,"fpg"],dm_no[dm_no$age==60,"hba1c"],main="60 years",
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xlim=c(50,140), ylim=c(4.2,7.5),xlab = "FPG, mg/dL", ylab = "HbA1c, %", pch=20,cex=2)
R> plot(region,cond=T,newdata = data.frame(age = 60),add=T,legend=F, tau=c(0.50,0.95),

reg.lty=c(1,2))

In Figure 4, the bivariate reference region is shown for several ages. Note that the regions shift
towards the upper right corner and expand as age increase. This agrees with the non-linear effect of
age on the expected means and variability of both markers. The conditional region coverage and the
performance of the methodology have already been assessed (Lado-Baleato et al., 2021).

Extension of case 1, conditional reference region for a trivariate response

This section provides an example of how the method proposed in equation (3) might be extended to
more than two dimensions. This section is intended to provide a proof of concept rather than a formal
statistical proposal. For a trivariate variable (Y1, Y2, Y3) the following model can be assumed: Y1

Y2
Y3

 =

 µ1(X)
µ2(X)
µ3(X)

+ Σ1/2(X)

 ε1
ε2
ε3

 (15)

where {µr(X)}3
r=1 represents the conditional means of each response, and Σ1/2(X) the Cholesky

decomposition of the variance-covariance matrix

Σ(X) =

 σ2
1 (X) σ21(X) σ31(X)

σ12(X) σ2
2 (X) σ23(X)

σ13(X) σ32(X) σ2
3 (X)

 (16)

In the trivariate case, the estimated variance-covariance matrix can be non-positive-definite. Thus, Σ̂

is modified by applying the unweighted bending method of Schaeffer (2014) as implemented in the
mbend R package (Nilforooshan, 2020).

Following equation (15), a trivariate reference region may be estimated as:

Rτ(X) =

 µ1(X)
µ2(X)
µ3(X)

+ Σ1/2(X)ετ (17)

where ετ is the unconditionally probabilistic region for the errors (ε1, ε2, ε3) as

ετ(k) = {(ε1, ε2, ε3) ∈ R3| f (ε1, ε2, ε3) ≤ k} (18)

f being the density function of the trivariate residuals (ε1, ε2, ε3) and k is the τ−quantile of f (ε1, ε2, ε3).

Using this model, the application of the methodology for diabetes diagnosis can be extended by
incorporating an additional glycemia test. This extension is justified since other glycated proteins
are routinely monitored in diabetes control besides FPG and HbA1c. For instance, in conditions that
determine alterations in hemoglobin metabolism (e.g., anemia or kidney disease), fructosamine (Fr) is
frequently used as an additional marker. Nevertheless, the translation of Fr into average glucose levels
is not as clear as for HbA1c, and discordances are often encountered between the Fr and HbA1c results.
In addition, agreement among these glycemia markers can be affected by factors such as patient age.

Figure 5 show the FPG, HbA1c and Fr results for the AEGIS sample. As can be seen, the values
recorded for these tests correlate with one another, showing a complex multivariate distribution.
Moreover, it can be appreciated how their multivariate distribution changes with age. To estimate a
trivariate reference region for these markers, taking into account patient age, the trivRegr() function
was used. This function is an extension of bivRegr() to the trivariate setting. The usage of both
functions is similar, but additional additive predictors must be defined for the means vector and
variance-covariance matrix.

R> dm_no = subset(aegis,aegis$dm == "no")
R> mu1 = fpg ~ s(age)
R> mu2 = hba1c ~ s(age)
R> mu3 = fru ~ s(age)

R> var1 = ~ s(age)
R> var2 = ~ s(age)
R> var3 = ~ s(age)

R> rho12 = ~ s(age)
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Figure 5: Scatter plot for three glycemic markers (fasting plasma glucose, glycated hemoglobin and
fructosamine), with colour scale depending on age. The joint values of these glycemic markers seems
to change with age, i.e., higher values are observed at higher ages. A trivariate and age-dependent
reference region is desirable.

Figure 6: Standardized reference region (toprow plots), and conditional reference region (bottomrow
plots), for three glycemic tests. Red points represent the trivariate values located outside the reference
region after adjusting by age. The grey panels define eight octanes – each one with a different clinical
profile. The trivariate reference region for these markers changes with age.

R> rho13 = ~ s(age)
R> rho23 = ~ s(age)

R> formula = list(mu1,mu2,mu3,var1,var2,var3,rho12,rho13,rho23)
R> fit = trivRegr(formula,data=dm\_no)
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As in the bivariate estimation, the trivRegion function is applied to a trivRegr object. Here, the
method was implemented only for a single τ (the kernel density bandwidth selection was not formally
tested). The plot() method implemented for the trivRegion object can be used to interactively check
the trivariate standardized and conditional reference regions:

R> region = trivRegion(fit,tau=0.95)

R> plot(region,planes = F,size=5, col="red", incol = "grey",xlab="FPG, mg/dl",
ylab="HbA1c, \%", zlab="Fru, mg/dL")

R> plot(region,planes = T,size=5,col="red",incol = "grey",xlab="FPG, mg/dl",
ylab="HbA1c, \%", zlab="Fru, mg/dL")

R> plot(region,cond=T,newdata=data.frame(age=c(20,70)), xlab="FPG, mg/dl",
ylab="HbA1c, \%", zlab="Fru, mg/dL", legend=T)

In Figure 6 the trivariate standardized and conditional reference regions are shown for different
angles. The model residuals are centered around zero, with variance zero, and zero linear correlation.
The region contains the 94.96% of the patients. In the trivariate setting, a patient may be located
outside the region for different reasons. Indeed, if plot() argument panels=T, eight reasons exist for
why a patient is located outside the reference region (explaining each situation goes beyond the scope
of the present work). The conditional reference region may be produced for different ages by setting
the cond = T, and providing new age values in newdata.

Case 2: beyond the medical research – Joint prediction of SO2 and NOx pollutants

This section illustrates how refreg methodology can be used in fields other than laboratory medicine. It
is here shown how an uncertainty region useful for the joint forecasting of the concentration of two air
pollutants (SO2 and NOx) can be derived using the bivRegr and bivRegion functions. The following
example estimates which joint SO2 and NOx values are more likely in the course of a pollution episode.
The data, which are contained in the package, were obtained from the surroundings of the a coal-fire
power station in the northern Spain. Current Spanish legislation places a limit on the mean of 24
successive determinations of pollution concentration taken at 5 minute intervals in the neighborhood
of potential point sources of pollution. Thus, access was available to historical concentrations of both
air pollutants over a year, as well as several records of pollution episodes.

Given the historical concentrations of both pollutants (contained in the pollution dataset), we
aimed to predict the SO2 and NOx concentrations during a specific pollution episode (contained in the
pollution_episode dataset) 30 minutes in advance. As can be seen in the following R output, both
datasets have a similar structure, SO2 and Nox are the current concentrations of both pollutants, while
the remaining columns represent their concentrations in the previous 30, 45, and 60 minutes.
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Figure 7: Two different representations of a pollution incident for SO2 and NOx. Left plot represent
the pollution episode in the univariate scale, and rigth plot in a bivariate scale. SO2 and NOx pollution
episodes are associated.

R > head(pollution[,1:9])
Date So2 Nox So2_0 Nox_0 So2_1 Nox_1 So2_2 Nox_2

316 2003-02-07 16:15:00 38.38 2.38 73.50 3.21 76.79 3.38 81.92 3.54
1865 2003-05-07 03:10:00 3.00 3.67 3.00 3.33 3.00 3.33 3.00 3.33
1383 2003-04-04 01:35:00 256.50 11.17 293.71 8.96 294.54 8.33 285.29 7.71
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3262 2003-07-09 14:35:00 225.29 17.04 104.67 7.67 84.33 6.29 64.67 4.67
1191 2003-03-30 13:55:00 42.33 4.12 80.21 4.96 84.38 5.00 88.33 5.00
3065 2003-07-04 11:50:00 145.83 8.58 99.12 5.71 83.83 5.25 70.92 4.83

R > head(pollution_episode[,1:9])
Date So2 Nox So2_0 Nox_0 So2_1 Nox_1 So2_2 Nox_2

1 2003-05-09 00:00:00 3.08 4.12 3.08 4.50 3.08 4.46 3.08 4.38
2 2003-05-09 00:05:00 3.08 4.12 3.08 4.46 3.08 4.50 3.08 4.46
3 2003-05-09 00:10:00 3.08 4.12 3.08 4.38 3.08 4.46 3.08 4.50
4 2003-05-09 00:15:00 3.08 4.12 3.08 4.29 3.08 4.38 3.08 4.46
5 2003-05-09 00:20:00 3.08 4.12 3.08 4.21 3.08 4.29 3.08 4.38
6 2003-05-09 00:25:00 3.08 4.12 3.08 4.12 3.08 4.21 3.08 4.29
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Figure 8: Estimated bivariate uncertainty region for a pollution episode. Black dashed line represents
the pollution episode evolution, solid black point the observed value, and red contours the predicted
uncertainty region for τ = 0.95 (red solid contour) and τ = 0.975 (red dashed contour).

Figure 7 shows the course of the pollution episode under prediction. In the left plot the SO2 and
NOx concentrations over time are represented by solid and open circles, respectively. Each point in
the right plot of this figure shows the concentration of both pollutants at a specific instant in time. It
can be can seen how, during a pollution episode, the concentration of both pollutants increases to a
peak, and then returns slowly back to lower values. NOx increases in a manner similar to the SO2, but
its decrease is slower. Both representations show an evident correlation between the concentration of
these air pollutants. To monitor this pollution episode, the historical records from the power plant
were used, and NOx levels made dependent on their previous values (30, and 60, minutes before;
NOx0 , and NOx2 ). Similarly, the SO2 concentration was made dependent on its prior concentration
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(So20, So22). Finally, the correlation between both was made dependent on the previous observation
for both air pollutants (Nox0, So20):

R> mu1 = Nox~s(Nox_0)+s(Nox_2)
R> mu2 = So2~s(So2_0)+s(So2_2)
R> var1 = ~s(Nox_0)+s(Nox_2)
R> var2 = ~s(So2_0)+s(So2_2)
R> rho = ~s(Nox_0)+s(So2_0)
R> f = list(mu1,mu2,var1,var2,rho)

R> fit = bivRegr(f,data=pollution)
R> region = bivRegion(fit,tau=c(0.950,0.975),shape=10)

In the previous code example, the reference region was estimated for τ = 0.95, 0.975 for the model-
standardized residuals. A pollution episode can then be forecasted by predicting the uncertainty
regions based on the values provided by the pollution_episode dataset. Note, that one dataset is used
to fit the model, and another when making predictions. The observed SO2 and NOx concentrations
during the pollution episode are shown in Figure 8 along with the predicted probabilistic regions.
Each plot corresponds to a different instant in time, and to different pollution episode states. The
upper right-hand side shows the beginning of the pollution episode, the bottom left plot shows its
ending. The region’s shape changes over time, anticipating reasonably well the evolution of the
pollution episode. The size of the region becomes larger as the pollution peak is approached, and then
gradually becomes smaller. This is to be expected since the maximum corresponds to a transition
between the increase and decrease of the concentrations of both pollutants, a situation that involves
more uncertainty. Moreover, at the end of the pollution episode, the region is higher on the X axis,
which corresponds to greater uncertainty for the Nox prediction. As commented above, this might be
explained in that the NOx concentration decreases more slowly than the SO2 concentration.

par(mfrow=c(3,3))
for(k in c(150, 160, 165, 175, 180, 185, 190, 200,210)){

plot(pollution_episode[,3:2],type="l",lty=2,ylim=c(0,600),xlim=c(0,45),
main=pollution_episode[k,1])
points(pollution_episode[k,3:2],col="black",pch=19)
plot(region, cond = T, newdata = pollution_episode[k,], add = T,
tau=c(0.95, 0.975),legend=F)

}

5 Concluding remarks

This paper discusses the R implementation of a newly developed method for estimating conditional
reference regions. The method was originally designed for bivariate responses to provide a joint
interpretation of two glycemia markers. However, as shown with real data, the proposed package
can be used in other fields, and its extension to three dimensions is feasible. The proposed package is
useful in the definition of conditional reference regions for continuous diagnostic tests. Few MVRs
applications are used in practice, yet they have been shown clinically valuable in the treatment of
patients with cancer (Mattsson et al., 2008), cardiovascular disease (Selmeryd et al., 2018) and endocrine
problems (Hoermann et al., 2016). Given the simplicity with which refreg can be used, and its having
no parametric restrictions, it is hoped it might enhance the use of MVRs.

The definition of a region characterizing the central part of a multivariate distribution may be
of great interest in other fields. For instance, in quality control studies, multivariate control charts
are commonly used when two or more attributes of a product, or process, require evaluation (Fuchs
and Kenett, 1998). Analogously to medical MVRs, this multivariate analysis is currently performed
assuming a Gaussian distribution. Thus, the refreg R package may help provide for better quality
surveillance of medical conditions, environmental problems and even industrial processes that are
monitored by the measurement of more than one variable.

Future versions of our package will look forward to extending our model for continuous responses
of dimension higher than three. Such reference region would require a kernel density estimator for
high dimension applications (Nagler, 2021). To the best of our knowledge, the estimated region
is not easy to visualize for scales larger than three. Although, we might identify and visualize
the multivariate values located inside or outside the region using parallel coordinate plots, or the
interactive visualization methods as the implemented in the tourr package (Wickham et al., 2011).
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TensorTest2D: Fitting Generalized Linear
Models with Matrix Covariates
by Ping-Yang Chen, Hsing-Ming Chang, Yu-Ting Chen, Jung-Ying Tzeng, and Sheng-Mao Chang

Abstract The TensorTest2D package provides the means to fit generalized linear models on second-
order tensor type data. Functions within this package can be used for parameter estimation (e.g.,
estimating regression coefficients and their standard deviations) and hypothesis testing. We use two
examples to illustrate the utility of our package in analyzing data from different disciplines. In the
first example, a tensor regression model is used to study the effect of multi-omics predictors on a
continuous outcome variable which is associated with drug sensitivity. In the second example, we
draw a subset of the MNIST handwritten images and fit to them a logistic tensor regression model.
A significance test characterizes the image pattern that tells the difference between two handwritten
digits. We also provide a function to visualize the areas as effective classifiers based on a tensor
regression model. The visualization tool can also be used together with other variable selection
techniques, such as the LASSO, to inform the selection results.

1 Introduction

Tensors are multidimensional arrays and are increasingly encountered in practices due to the bur-
geoning development of high throughput technology, e.g., brain image data (Zhou et al., 2013) and
multi-omics data (Chang et al., 2021). Within the framework of regression analysis, tensor-structured
data can play a role in the response variable, the explanatory variable, or in both. Some available R
packages, such as TRES and MultiwayRegression, consider tensor regression with general tensor
structure. The package TRES (Wang et al., 2020) provides tools to perform regression analysis with a
tensor envelope structure in the tensor regression model, and the output of which includes p-values
for the regression coefficients. TRES aims at variable selection via significance tests. The package
MultiwayRegression (Lock, 2018, 2019) performs L2 penalized tensor regression which is useful for
predictive modeling but not for the identification of important variables. Both the TRES and the
MultiwayRegression consider regression models with continuous outcome variables only. Compared
to existing R packages, the proposed package TensorTest2D (Chen et al., 2021) considers a generalized
linear model (GLM) with matrix-structured predictors and a scalar outcome, and it can be used for
outcome prediction or testing.

There are four main functions in TensorTest2D. The function tensorReg2D() is designed to provide
estimates of regression coefficients and their standard deviations, as well as the p-value for testing
whether a regression coefficient is significantly different from zero. The function summary() organizes
the above information into an output table. The function plot() can be used to visualize the locations
of the predictors significantly affecting the response variable in the predictor matrix. Finally, the
function predict() can be used to predict the response values using the conditional mean given a
specific predictor matrix.

The rest of this paper is arranged as follows. First, we describe a regression model with tensor
predictors under GLM. Next, we illustrate the main functions in package TensorTest2D using two
examples, and illustrate the relevancy of using low-rank tensor regression. The first example focuses
on association testing, where we apply tensor regression to identify genomic variables that affect the
drug sensitivity for lung cancer treatment. The second example is for classification, where we apply
logistic tensor regression to model the relationship between a binary response variable and images of
handwritten digits in the MNIST database. We also use significance testing of the image predictors
to identify locations of an image that play important roles in distinguishing between two different
handwritten digits. The datasets being used in these two examples are included in the package
TensorTest2D — users can use data(omics) to load the dataset of the first (association) example and
data(mnist_mp2c2) to load the dataset of the second (classification) example.

2 Generalized tensor regression model

In this work, we consider tensor regression under the GLM framework and extend the inference
procedure of tensor parameters in Chang et al. (2021) from continuous responses to binary and
count responses. Suppose that there exists a dataset consisting of n independent triplets, {yi, wi, Xi},
i = 1, . . . , n, where yi is a scalar outcome, wi is a d-dimensional covariate vector and Xi is a P × Q
matrix predictor. Without loss of generality, we assume hereafter P ≤ Q. For two matrices, say X1 and
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X2, of the same size, define the dot product of these two matrices as X1 ◦ X2 = ∑P
p=1 ∑Q

q=1 X1,pqX2,pq

where Xj,pq is the (p, q)th entry of the matrix Xj, j = 1, 2. The GLM with an order-2 tensor predictor
can therefore be defined as

g (E(yi)) = w⊤
i β + Xi ◦ B, (1)

where g(·) is the link function, β ∈ Rd and B ∈ RP×Q. If there are P × Q unconstrained parameters in
B, the above representation is equivalent to a glm with d + PQ covariates, including the intercept. In
TensorTest2D, we implement linear regression with identity link, Poisson regression with log link,
and logistic regression with logit link.

When PQ is relatively small, one can vectorize the matrix Xi so that (1) can be expressed as a
conventional GLM with d + PQ covariates. When PQ is large, one can explore the matrix structure of
predictors and consider a low-rank tensor GLM so as to reduce the number of parameters of interest
while retaining the variable-specific resolution. The main idea of tensor GLM is to model B by a
low-rank-constrained B so that B can be fully specified using fewer unconstrained parameters. See
Hung and Wang (2012) and Chang et al. (2021) for more detail. Take the MNIST handwritten image
classification as an example, where handwritten images are recorded in 10 × 10 matrices. When there
is no constraint on B, the number of parameters of interest is PQ = 100. On the other hand, if we
restrict the rank of B to be r, the number of unconstrained parameters is (P + Q)× r − r2 that takes
a value of 19, 36, 51, and 64 when r = 1, 2, 3, and 4, respectively. The reduction in the number of
parameters is significant when r is small.

Given a pre-specified rank r = R, one can model B with a low-rank constraint by setting B = B1B⊤
2 ,

where B1 ∈ RP×R, B2 ∈ RQ×R and R ≤ P (Zhou et al., 2013; Chang et al., 2021). The low-rank tensor
regression model is therefore

g (E(yi)) = w⊤
i β + Xi ◦

(
B1B⊤

2

)
. (2)

Additional constraints on B1B⊤
2 are needed to ensure parameter identifiability, see Zhou et al. (2013)

for example. We adopt in this package the constraints considered by Chang et al. (2021), that leaves
the total number of unconstrained parameters to be d + (P + Q)R − R2. Denote η as the vector which
collects all unconstrained parameters in (2). According to the theory of GLM, the score function and
the Fisher information matrix with respect to the model are

n

∑
i=1

∂µi
∂η

(yi − µi) and
n

∑
i=1

∂µi
∂η

Vi

(
∂µi
∂η

)⊤
,

respectively, where µi = E(yi) and Vi = Var(yi). However, we are interested in estimating B = B1B⊤
2

and testing whether entries of B are nonzero. The derivation of the sampling distribution of B̂ is
omitted here, for the process is similar to that in Chang et al. (2021) and it does not need to be
reproduced here again to misdirect readers’ attention. As the true rank of B is unknown, following
Chang et al. (2021), we use the Akaike information criterion (AIC) to determine the optimal rank.

Before giving a brief description of how Chang et al. (2021) place constraints on tensor regression
parameterization, we wish to emphasize that the process of estimating for ∂µi/∂η is in typical not
exactly simple. It is known that the matrix factorization (decomposition) B = B1B⊤

2 is not unique

because, for every invertible matrix O ∈ RR×R, B =
(
B1O−1) (OB2

⊤
)

. Write

B1 =

[
B11
B21

]
,

where B11 ∈ RR×R and B21 ∈ R(P−R)×R, and assume B11 is invertible. One way to ensure the
uniqueness of the matrix factorization is to force O = B11, and thus

B1B⊤
2 =

[
B11
B21

]
O−1OB⊤

2 =

[
B11O−1

B21O−1

]
B̃⊤

2 =

[
IR

B̃21

]
B̃⊤

2 ,

where B̃21 = B21O−1 and B̃2 = B2O⊤. Consequently, the unknown parameter matrices are B̃21 ∈
R(P−R)×R and B̃2 ∈ RQ×R with a total of (P − R)× R + Q × R unknown parameters. We believe that
an exact formula for ∂µi/∂η̃ can not be found prior to the work by Chang et al. (2021) in the case when
η̃ = (vec(B̃12)

⊤, vec(B̃1)
⊤)⊤, and the same formula is used in TensorTest2D.
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3 Data analysis examples

In this section, we present examples of real data analysis by using the package TensorTest2D. The
main function, tensorReg2D, in our TensorTest2D package is used for following data analysis. The
inputs are the response vector, y, covariates matrix X, collecting tensor data, and vector W, collecting
adjustment information such as age and gender. The key configurable parameters are the rank of B,
n_R, and the type of response variable, family. The tensorReg2D handles three types of generalized
regression problems. For continuous response, set family = "gaussian" and it fits the linear regression
model based on identity link function. If the responses are binary, by setting family = "binomial", it
runs logistic regression modeling through the logit link. When the response variable is non-negative
integer, the log link corresponding to poisson regression is used by setting family = "poisson".
The function tensorReg2D() returns a list object which includes the following variables: b_EST repre-
sents the coefficient vector β̂; b_SD represents the the corresponding standard deviation vector and b_PV
the p-value vector; B_EST represents the coefficient matrix B̂ for the image effect, B_SD the standard
deviations of the coefficient estimates and B_PV the matrices of p-values; the output IC contains the
AIC and BIC values for the purpose of model selection.
See ?tensorReg2D for more details of the configuration and the output values.

Example 1: Tensor regression for continuous response using CCLE dataset

The package TensorTest2D includes a data set, omics, which consists of a continuous response variable
and 30 omics predictors that can be organized into a 3 × 10 matrix. The response variable is the drug
sensitivity of vandetanib measured by log-transformed activity area. Vandetanib is a drug targeting
gene EGFR for lung cancer treatment. The 30 omics predictors are the genomic information of 10
genes measured from 3 platforms: copy number variation (CNV), methylation and mRNA expression.
Among the 10 genes, 7 of them (EGFR, EREG, HRAS, KRAS, PTPN11, STAT3, and TGFA) are involved
in the protein-protein interaction network of EGFR (https://string-db.org) and the rest (ACTB,
GAPDH, and PPIA) are arbitrarily chosen housekeeping genes with permuted entries and serve as
negative controls. The included data, omics.RData, is a subset of the data set provided by cancer cell
line encyclopedia (CCLE) project (Barretina et al. (2012); https://sites.broadinstitute.org/ccle/).
Detailed pre-processing procedure for omics is available in (Chang et al., 2021). The data set omics can
be loaded via the following syntax:

library(TensorTest2D)
data(omics)
# The size of the data P, Q, n
print(dim(omics$omics))

#> [1] 3 10 68

In the omics example, wi only consists of intercepts and Xi being a P × Q matrix with P = 3 and
Q = 10. As described, this matrix consists of expression values of 10 genes evaluated under three
different platforms. For the reason of R ≤ min {P, Q} (see Chang et al. (2021)), there are three possible
tensor models, namely, the rank-1, the rank-2 and the rank-3 model, to describe the relationship
between the outcome and the matrix predictors. The models with the smallest AIC value will be
selected as the optimal one, and here the rank-1 model has the smallest AIC value. The rank-1 model
identifies two important variables: EGFR under methylation platform (coefficient = -0.2416; p-value
= 0.0022) and EGFR under CNV platform (coefficient = 0.2508; p-value = 0.0061). Those lines of
code below this paragraph were used as an example to perform and print out the results of model
fitting. The utility function summary(omicsMdl) shows the model structure, summary statistics about
the residuals, and the table of significance tests for the coefficients. On top of the result table, the
model structure y ~ I + X of this case is revealed where I is the intercept term and X is the matrix
covariate. The names of the coefficients appear in the first column of the table. In addition to the
(Intercept) and the terms of w, Xi.j is the coefficient of the ith row and jth column of X. If the row
and the column names of X are specified, then the names of coefficients in X are ROWi:COLUMNj. Those
values in the summary table can also be returned separately. Here, we print the attributes of the tsglm
object separately for the estimated coefficients and their standard deviations, along with the p-values
by the Wald test (see Wald (1943)).

set.seed(100) # Set seed for reproducibility
# Try from rank-1 to rank-3 models
omicsAIC <- numeric(3)
for (k in 1:3) {
# Temporary storage for the rank-k model for withdrawing its AIC value
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omicsTmp <- tensorReg2D(y = omics$Y, X = omics$omics,
W = matrix(1, length(omics$Y), 1),
n_R = k, family = "gaussian",
opt = 1, max_ite = 1000, tol = 10^(-7) )

omicsAIC[k] <- omicsTmp$IC[1] # AIC
}
sprintf('Rank-%d model is the best with smallest AIC = %4.4f', which.min(omicsAIC), min(omicsAIC))

#> [1] "Rank-1 model is the best with smallest AIC = -62.3135"

# Train the tensor regression model of rank 1
omicsMdl <- tensorReg2D(y = omics$Y, X = omics$omics,

W = matrix(1, length(omics$Y), 1),
n_R = which.min(omicsAIC), family = "gaussian",
opt = 1, max_ite = 1000, tol = 10^(-7) )

# Return the results of significance tests for all coefficients
summary(omicsMdl)

#> Call:
#> formula = y ~ I + X
#>
#> Residuals:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -1.31835 -0.29160 0.03354 0.00000 0.40356 1.06511
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.06078 0.07044 -0.86285 0.3919672
#> cnv:EGFR 0.25078 0.08796 2.85098 0.0061255 ***
#> meth:EGFR -0.24162 0.07511 -3.21673 0.0021740 ***
#> rna.rpkm:EGFR 0.08933 0.07857 1.13696 0.2604852
#> cnv:EREG -0.00751 0.05094 -0.14743 0.8833301
#> meth:EREG 0.00724 0.0494 0.14648 0.8840812
#> rna.rpkm:EREG -0.00268 0.01849 -0.14468 0.8854906
#> cnv:HRAS -0.04866 0.05983 -0.81334 0.4195282
#> meth:HRAS 0.04689 0.06056 0.77425 0.4421012
#> rna.rpkm:HRAS -0.01733 0.02956 -0.5865 0.5599385
#> cnv:KRAS -0.0267 0.05067 -0.52699 0.6003203
#> meth:KRAS 0.02573 0.04913 0.52367 0.6026098
#> rna.rpkm:KRAS -0.00951 0.01754 -0.54244 0.5897064
#> cnv:PTPN11 0.09193 0.06183 1.48669 0.1428065
#> meth:PTPN11 -0.08857 0.05093 -1.73886 0.0876539 *
#> rna.rpkm:PTPN11 0.03275 0.03289 0.99558 0.3238137
#> cnv:STAT3 -0.05747 0.05517 -1.0417 0.3021072
#> meth:STAT3 0.05537 0.04953 1.11792 0.2684585
#> rna.rpkm:STAT3 -0.02047 0.0257 -0.79672 0.4290423
#> cnv:TGFA 0.05049 0.06361 0.79367 0.4307973
#> meth:TGFA -0.04864 0.05903 -0.82399 0.4135018
#> rna.rpkm:TGFA 0.01798 0.02625 0.68526 0.4960557
#> cnv:ACTB -0.03107 0.05212 -0.5961 0.5535539
#> meth:ACTB 0.02993 0.05128 0.58371 0.5618033
#> rna.rpkm:ACTB -0.01107 0.02339 -0.47307 0.6380374
#> cnv:GAPDH -0.04123 0.04963 -0.83059 0.4097953
#> meth:GAPDH 0.03972 0.04737 0.83856 0.4053450
#> rna.rpkm:GAPDH -0.01469 0.02221 -0.66128 0.5111932
#> cnv:PPIA -0.04299 0.06373 -0.67454 0.5027957
#> meth:PPIA 0.04142 0.05989 0.69153 0.4921444
#> rna.rpkm:PPIA -0.01531 0.02711 -0.56477 0.5745259
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Estimated coefficients
print(round(omicsMdl$B_EST, 3))
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Figure 1: The image plot of the values for t-statistics of matrix covariate in the omics data. The effective
pixels identified by the tensor regression model are marked out by the ⊠ symbol.

#> EGFR EREG HRAS KRAS PTPN11 STAT3 TGFA ACTB GAPDH PPIA
#> cnv 0.251 -0.008 -0.049 -0.027 0.092 -0.057 0.050 -0.031 -0.041 -0.043
#> meth -0.242 0.007 0.047 0.026 -0.089 0.055 -0.049 0.030 0.040 0.041
#> rna.rpkm 0.089 -0.003 -0.017 -0.010 0.033 -0.020 0.018 -0.011 -0.015 -0.015

# The standard deviation of the coefficients
print(round(omicsMdl$B_SD, 3))

#> EGFR EREG HRAS KRAS PTPN11 STAT3 TGFA ACTB GAPDH PPIA
#> cnv 0.088 0.051 0.060 0.051 0.062 0.055 0.064 0.052 0.050 0.064
#> meth 0.075 0.049 0.061 0.049 0.051 0.050 0.059 0.051 0.047 0.060
#> rna.rpkm 0.079 0.018 0.030 0.018 0.033 0.026 0.026 0.023 0.022 0.027

# The p-values of the coefficients by the Wald test
print(round(omicsMdl$B_PV, 3))

#> EGFR EREG HRAS KRAS PTPN11 STAT3 TGFA ACTB GAPDH PPIA
#> cnv 0.006 0.883 0.420 0.600 0.143 0.302 0.431 0.554 0.410 0.503
#> meth 0.002 0.884 0.442 0.603 0.088 0.268 0.414 0.562 0.405 0.492
#> rna.rpkm 0.260 0.885 0.560 0.590 0.324 0.429 0.496 0.638 0.511 0.575

In our package TensorTest2D, the function plot() can be used to visualize the importance of the
matrix predictor. The output is an P × Q heat map that the plotted values on it are controlled by
the option type. If the unit of data varies across the rows or columns in X, it is suggested to choose
the t-statistics of the coefficients (type = "tval") instead of their values type = "coef". In addition,
the function plot() also marks the pixels with p-values smaller than a pre-determined significance
level. Users can select the p-value adjusting method (see help("p.adjust")) by the option method
and specify the significance level through the option alpha. We plot in Figure 1 the t-statistics of
the coefficients in B̂, where red and blue colors represent the pixels of positive and negative values,
respectively. For those coefficients with p-values less than alpha, their corresponding pixels are
marked with the symbol, ⊠, in this example, cnv:EGFR and meth:EGFR.

plot(x = omicsMdl, method = "none", alpha = 0.05, type = "tval",
showlabels = TRUE, plot.legend = TRUE)

Example 2: Logistic tensor regression and classification using MNIST dataset

MNIST is a well-known benchmark database for image recognition in machine learning. It consists
of over 60,000 training images and 10,000 testing images. For R users, one can obtain the image data
from the dslabs package (Irizarry and Gill, 2019). For the purpose of demonstration, we reduce the
size of MNIST image data by a max-pooling step with 2 × 2 block, as shown in the images on the left
and in the middle of Figure 2. The original 28 × 28 images are thus pixelated into 14 × 14 max-pooled
images. Because pixels at the edges and the corners of the max-pooled images take no information
across almost all images, we removed those pixels and ended up with P × Q = 10 × 10 sub-images as
illustrated in the image on the right of Figure 2. The mean image of the pre-processed training set for
each label in the MNIST database is shown in Figure 3. These pre-processed images of 10 × 10 pixels
are included in the package TensorTest2D and can be imported using the following commands:
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Figure 2: Data pre-processing for the MNIST dataset. First, the left subfigure shows the max-pooling
step for reducing the image size. Next, the center subfigure shows the edge-cutting step for removing
the noninformative pixels. Finally, the right subfigure shows the data pre-process result.

Figure 3: The mean plots of pre-processed images in the training dataset. The value at each pixel of
the mean plot is the average grayscale value over the pre-processed images in the training dataset.

library(TensorTest2D)
data(mnist_mp2c2)
mnist_train <- mnist_mp2c2$train
mnist_test <- mnist_mp2c2$test

The aim of this data analysis is to recognize the digit for a given handwritten image using logistic
regression. Here, we choose images of ‘2’ and ‘5’ for demonstration. Let Yi = 1 if the ith image
represents the digit ‘5’, and Yi = 0 if the ith image represents a ‘2’. The predictor matrix Xi here
is a 10 × 10 matrix with its entries the pixel values of the handwritten image in grayscale. In the
following, we first describe the data processing steps and provide the code being used to obtain our
training data in the analysis. Our training data, train_X, is a P × Q × n = 10 × 10 × 2000 array, which
contains subsets of 1,000 images of the digit ‘2’ and 1,000 images of the digit ‘5’ randomly chosen
from the MNIST training set mnist_train. In this MNIST example, some pixels in the corners and on
the edges take on the value zero across all handwritten images, which yields singularity when the
alternating maximum likelihood algorithm is applied to the training data. To solve this problem, we
can simply drop only those zero-valued pixels. However, doing so breaks the matrix form and hence
low-rank model is no longer valid. Alternatively, we add independent standard normal noise to the
images in our training data set that results in no significant harm to the prediction power, because
the signal-noise ratio is high and the training set sample size is sufficiently large. Hereafter, we call
images with random error the contaminated images.

library(abind)
# Draw image data of labels 2 and 5
x0_all <- mnist_train$image[,,which(mnist_train$label == 2)]
x1_all <- mnist_train$image[,,which(mnist_train$label == 5)]
# Random sampling from MNIST training set for each label
nSampleEach <- 1000
n0 <- dim(x0_all)[3]; n1 <- dim(x1_all)[3]
set.seed(2021)
s0 <- sample(1:n0, nSampleEach, replace = FALSE)
s1 <- sample(1:n1, nSampleEach, replace = FALSE)
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# Normalizing image values into [-0.5, 0.5]
x0 <- x0_all[,,s0]/255 - 0.5
x1 <- x1_all[,,s1]/255 - 0.5
# Combine training data
train_X <- abind(x0, x1, along = 3)
# Add negligible noise for the images
# (so no constant zero values in one pixel over all covariate matrices)
set.seed(2021) # Set seed for reproducibility
train_n <- array((rnorm(prod(dim(train_X)), 0, 0.1)), dim(train_X))
train_Xn <- train_X + train_n # Contaminated images
# Define Y = 0 for label 2, and Y = 1 for label 5
train_y <- c(rep(0, dim(x0)[3]), rep(1, dim(x1)[3]))

In the package TensorTest2D, the function tensorReg2D() is also used for fitting the logistic tensor
regression model to data:

log
Pr(Yi = 1 | Xi)

Pr(Yi = 0 | Xi)
= β + Xi ◦ B

Thus, a prediction for the digit presented in image Xi is

Ŷi = arg max
k∈{0,1}

Pr(Yi = k | Xi) = I{Pr(Yi = 1 | Xi) > 0.5},

where I{E} = 1, if E is true, and I{E} = 0, otherwise. To analyze the sampled data set, first, we feed
the response variable, train_y, and the contaminated images, train_Xn, as inputs for model training.
There is no auxiliary information available to further stratify the yi’s, we specify a constant vector W =
matrix(1, length(train_y), 1) of length n, and if a rank R = 4 model is needed, we set n_R = 4.
(In fact, the rank-4 model is the best model in this logistic tensor regression.)

# Train the logistic tensor regression model
lgMdl <- tensorReg2D(y = train_y, X = train_Xn,

W = matrix(1, length(train_y), 1),
n_R = 4, family = "binomial",
opt = 1, max_ite = 100, tol = 10^(-7) )

# Print model summary (not run)
#summary(lgMdl)
# Print the p-values of the estimates
cat("FDR-adjusted p-values of B_pq:\n")

#> FDR-adjusted p-values of B_pq:

round(matrix(p.adjust(as.vector(lgMdl$B_PV), method = "fdr"), 10, 10), 3)

#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 0.263 0.830 0.114 0.243 0.019 0.480 0.595 0.629 0.491 0.830
#> [2,] 0.558 0.552 0.098 0.491 0.263 0.948 0.137 0.816 0.491 0.953
#> [3,] 0.923 0.927 0.029 0.012 0.999 0.017 0.204 0.050 0.471 0.008
#> [4,] 0.648 0.541 0.004 0.019 0.029 0.204 0.004 0.655 0.541 0.156
#> [5,] 0.293 0.491 0.055 0.004 0.381 0.004 0.101 0.024 0.081 0.006
#> [6,] 0.110 0.491 0.954 0.491 0.648 0.948 0.954 0.865 0.491 0.825
#> [7,] 0.023 0.652 0.889 0.019 0.489 0.491 0.110 0.188 0.042 0.029
#> [8,] 0.137 0.706 0.830 0.491 0.244 0.145 0.491 0.491 0.889 0.889
#> [9,] 0.655 0.034 0.655 0.977 0.083 0.114 0.019 0.629 0.706 0.471
#> [10,] 0.137 0.055 0.491 0.764 0.491 0.602 0.019 0.471 0.454 0.025

For binary classification problems, we can apply the function plot() of our package TensorTest2D
in two ways. Similar to that Figure 1, we can make a plot first for the values of t-statistics for the pixels
by using the plot() function as shown below this paragraph. Here, we adjust the p-values according
to the approach in Benjamini and Hochberg (1995) by setting the parameter method = "fdr". The
resulting plot is shown in Figure 4, and most of the effective pixels can be found on the left half side of
the plot.

plot(x = lgMdl, method = "fdr", alpha = 0.05, type = "tval",
showlabels = TRUE, plot.legend = TRUE)

To understand which areas of an image that contribute the most information to classify between
labels 2 and 5, we also add a meaningful background image by specifying an argument to the parameter
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Figure 4: The image plot of the values for t-statistics of matrix covariate in the handwritten label data.
The effective pixels identified by the logistic tensor regression model are marked out by the ⊠ marks.

Figure 5: Effective pixels identified by the logistic tensor rgression model. The important pixels to
discriminate between labels 2 and 5 are marked by red and blue frames, which indicate positive and
negative coefficients, respectively.

background for the function plot(). In this example, we show separately the mean image of label
2 and the mean image of label 5 as the background image by assigning the value xm0 or xm1 to the
parameter background. To adjust the visual style of the background image, one can assign the value
gray(0, 1, 0.05) to the parameter col to create a grayscale colour map for contrast. Please refer
to help("image") for more detail on the options available when creating a plot. Our resulting plots
are shown in Figure 5. On top of both images, there are marks for the important pixels with red and
blue frames. A red rectangle indicates that the corresponding estimate in B̂ has a significant positive
coefficient and a blue one highlights a significant negative coefficient. In our example, important
pixels are found to locate majorly at the curvy parts of 2 and 5.

xm0 <- xm1 <- matrix(0, dim(train_X)[1], dim(train_X)[2])
# Background image: mean image of label 2
for (k in 1:dim(x0)[3]) {
xm0 <- xm0 + (1/nSampleEach)*x0[,,k]

}
# Background image: mean image of label 5
for (k in 1:dim(x1)[3]) {
xm1 <- xm1 + (1/nSampleEach)*x1[,,k]

}
# Draw for visualizing effective pixels for both background images
par(mfrow = c(1, 2), mar = c(1, 1, 1, 1))
plot(x = lgMdl, method = "fdr", alpha = 0.05, background = xm0,

showlabels = FALSE, plot.legend = FALSE, col = gray(seq(0, 1, 0.05)))
plot(x = lgMdl, method = "fdr", alpha = 0.05, background = xm1,

showlabels = FALSE, plot.legend = FALSE, col = gray(seq(0, 1, 0.05)))

We use the function predict() to predict the label for the new images in the testing data set. The
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input data must be a 3-dimensional array of size P × Q × n∗, where n∗ is the number of testing images.
We note here that, one need to reshape the P × Q matrix object into the 3-dimensional array by the
R command array(x, c(P, Q, 1)). The function predict() returns the predictions in two ways.
By setting the option type = "link", it returns the values of the linear predictors; and by setting
type = "response", it returns the expected values of response variable. For example, for our logistic
regression model, the predictions are log-odds (odds ratios on logarithmic scale) if type = "link" is
chosen, or they are the predicted probabilities of Y = 1 if type = "response" is chosen.

# Normalize image values of the testing data into [-0.5, 0.5]
tx0 <- mnist_test$image[,,which(mnist_test$label == 2)]/255 - 0.5
tx1 <- mnist_test$image[,,which(mnist_test$label == 5)]/255 - 0.5
# Combine testing data and assign the vector of the true responses
test_X <- abind(tx0, tx1, along = 3)
test_y <- c(rep(0, dim(tx0)[3]), rep(1, dim(tx1)[3]))
# Print some predictions with different settings of type
pred_link <- predict(lgMdl, test_X, type = "link")
pred_prob <- predict(lgMdl, test_X, type = "response")
head(round(pred_link, digits = 2))

#> [,1]
#> [1,] -3.38
#> [2,] -16.24
#> [3,] -4.93
#> [4,] -5.38
#> [5,] -9.94
#> [6,] -6.41

head(round(pred_prob, digits = 4))

#> [,1]
#> [1,] 0.0331
#> [2,] 0.0000
#> [3,] 0.0072
#> [4,] 0.0046
#> [5,] 0.0000
#> [6,] 0.0016

# Compute the prediction accuracy for the testing data
pred_test_y <- (pred_prob > .5)
cat(
sprintf("Accuracy = %2.2f%%",

100*sum(pred_test_y == test_y)/length(test_y)))

#> Accuracy = 96.10%

In addition, we provide a visualization tool that works with other methods in variable selection
for 2D images. For example, the penalized regression via lasso (Tibshirani, 1996) is one of the popular
approaches. Below are the codes that we implemented to train a LASSO model, including the use
of the function cv.glmnet() (Friedman et al., 2010). The object l1B is the 10 × 10 array of LASSO
estimates. Since LASSO tends to shrink small coefficients to zero, we treat those image pixels with
zero-valued coefficients to be irrelevant to distinguish between images of 2 and 5. To visualize the
effective pixels identified by LASSO, our package TensorTest2D provides the function draw.coef() to
produce the marked image similar to that in Figure 5. Different from the function plot.tsglm(), users
need to provide an input as the markers for effective pixels. The markers in our example here are
the LASSO estimates, and by specifying marks = l1B, the pixels with non-zero coefficients are then
marked. In addition, by specifying markstyle = "bi-dir", as shown in Figure 6, the pixels marked
out with red rectangles correspond to those of positive LASSO estimates, and the pixels with blue
rectangles are those of negative LASSO estimates.

library(glmnet)
# Vectorize the hand-written images
xv <- t(sapply(1:dim(train_X)[3], function(k) as.vector(train_X[,,k])))
# Train the LASSO model using cross-validation
set.seed(2021) # Set seed for reproducibility
l1Mdl <- cv.glmnet(xv, train_y, family = "binomial", alpha = 1, standardize = FALSE)
# Draw the LASSO coefficients from the best model

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=TensorTest2D


CONTRIBUTED RESEARCH ARTICLE 161

Figure 6: Effective pixels identified by the LASSO model. The important pixels to discriminate between
labels 2 and 5 are marked by red and blue frames, which indicate positive and negative coefficients,
respectively.

l1B <- matrix(l1Mdl$glmnet.fit$beta[,which.min(l1Mdl$cvm)], 10, 10)
# The LASSO estimates
print(round(l1B, digits = 3))

#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] -0.247 0.000 0.253 0.000 -0.409 0.000 0.000 0.000 0.000 0.000
#> [2,] -0.559 0.000 0.000 0.000 -0.200 0.000 0.000 0.000 -0.691 0.000
#> [3,] 0.000 0.000 -0.248 -0.513 0.000 1.287 0.000 0.000 0.000 -0.914
#> [4,] 0.000 0.000 -1.526 -1.805 0.734 1.237 1.804 0.000 0.000 -0.254
#> [5,] 0.142 0.000 -0.593 -0.795 0.000 1.280 0.929 0.000 -0.699 -0.738
#> [6,] 1.625 -0.251 0.000 -1.429 -0.527 0.000 0.000 0.000 0.000 -0.592
#> [7,] 0.592 -0.136 -0.668 -0.554 0.000 0.000 0.000 -0.406 -0.397 -0.285
#> [8,] 0.074 -0.204 0.000 -0.757 0.265 -0.211 -1.082 0.000 0.000 0.000
#> [9,] 0.000 -0.574 0.000 0.000 0.360 -1.558 0.000 0.000 0.638 0.000
#> [10,] 0.000 0.000 -0.628 -0.144 0.000 0.000 0.479 1.340 0.303 0.845

# Draw for visualizing effective pixels identified by LASSO for both background images
par(mfrow = c(1, 2), mar = c(1, 1, 1, 1))
draw.coef(img = xm0, marks = l1B, markstyle = "bi-dir", showlabels = FALSE,

plot.legend = FALSE, grids = FALSE, col = gray(seq(0, 1, 0.05)))
draw.coef(img = xm1, marks = l1B, markstyle = "bi-dir", showlabels = FALSE,

plot.legend = FALSE, grids = FALSE, col = gray(seq(0, 1, 0.05)))

4 Summary

Issues in estimation and test of hypothesis that emerged from fitting regression models with predictor
variables that has a matrix form are of our major interest. Low-rank modelling can be applied to
improve the efficiency of estimation. In this line, we developed the R package TensorTest2D to conduct
tensor regression analysis within the framework of generalized linear models. In addition to model
estimation and hypothesis testing, this package also includes a visualization tool that can be used to
indicate the positions of effective or significant pixels when the tensor predictor is of image data type.
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wavScalogram: An R Package with
Wavelet Scalogram Tools for Time Series
Analysis
by Vicente J. Bolós and Rafael Benítez,

Abstract In this work we present the wavScalogram R package, which contains methods based on
wavelet scalograms for time series analysis. These methods are related to two main wavelet tools: the
windowed scalogram difference and the scale index. The windowed scalogram difference compares
two time series, identifying if their scalograms follow similar patterns at different scales and times,
and it is thus a useful complement to other comparison tools such as the squared wavelet coherence.
On the other hand, the scale index provides a numerical estimation of the degree of non-periodicity of
a time series and it is widely used in many scientific areas.

1 Introduction

Since the works of Mallat (2008) and Daubechies (1992), wavelet analysis has become, in the last few
decades, a standard tool in the field of time series analysis. Its ability to simultaneously analyze a
signal in frequency space (scales) and in time, allows it to overcome many of the limitations that
Fourier analysis presents for non-stationary time series. Furthermore, the algorithms for calculating
the different wavelet transforms are characterized by their speed and ease of implementation.

There are currently many software packages that implement functions for wavelet analysis of time
series (MATLAB’s Wavelet Toolbox, Wavelab, etc.), and in recent years, the exponential growth of
the R ecosystem has not been outside the field of wavelet analysis. Within CRAN there are many
packages related to wavelet analysis for time series. Specifically, as collected in the TimeSeries Task
View, the wavelets package (Aldrich, 2020) , the WaveletComp and biwavelet packages (Roesch and
Schmidbauer, 2018; Gouhier et al., 2021) , the mvLSW package (Taylor et al., 2019) and other packages
such as hwwntest (Savchev and Nason, 2018), rwt (Roebuck and Rice University’s DSP group, 2022),
waveslim (Whitcher, 2020) and wavethresh (Nason, 2022).

In this work we will describe in depth the wavScalogram package (Bolós and Benítez, 2021) (also
mentioned in the TimeSeries Task View). In this package, methods based on the wavelet scalogram are
introduced as defined in Benítez et al. (2010); Bolós et al. (2017, 2020). These methods are basically
related to two main wavelet tools: the windowed scalogram difference and the scale index. The first one,
the windowed scalogram difference, was introduced in Bolós et al. (2017). It allows to compare two
time series at different scales and times, determining if their scalograms follow similar patterns. In
this sense, it is a complement to other wavelet tools for comparing time series such as the squared
wavelet coherence and the phase difference, since there are certain differences in time series that
these measurements are not capable of detecting while the windowed scalogram difference can. The
second tool is the scale index introduced in Benítez et al. (2010). It focuses on the analysis of the
non-periodicity of a signal, giving a numerical measure of its degree of non-periodicity, taking the
value 0 if the signal is periodic and a value close to 1 if the signal is totally aperiodic (for example, a
purely stochastic signal). The scale index has been used in many scientific areas, being the evaluation
of the quality of pseudo-random number generators the area where it has been used the most. In
addition, the scale index also has a “windowed” version, in which the windowed scalogram is used
to calculate the scale index instead, allowing to measure the evolution of the scale index over time,
which is useful in the case of non-stationary time series (see Bolós et al. (2020)).

The article is organized as follows: In the next section, we describe the basics of the wavelet
analysis and how to use them in the wavScalogram package. Then, a description of the wavelet
scalogram and its implementation is given. The following sections are devoted to the windowed
scalogram difference and the scale index, in its original and windowed versions. Finally we illustrate
the use of the package with some examples in applied problems, such as the analysis of time series of
sunspots or the use of the windowed scalogram difference in the clustering of time series, particularly
the interest rate series of sovereign bonds.
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Figure 1: Real part (solid) and imaginary part (dashed) of Morlet, Paul and DoG wavelets for default
parameter values, ω0 = 6 and m = 4, 2 respectively. Along with Haar, they are the most used in
wavelet analysis.

2 Wavelet introduction

A wavelet (or mother wavelet ) is a function ψ ∈ L2 (R) with zero average (i.e.
∫

R
ψ = 0), unit energy

(∥ψ∥ = 1, i.e. normalized) and centered in the neighborhood of t = 0 (Mallat, 2008). There exists a
wide variety of wavelets but in this package we use the following, described in Torrence and Compo
(1998) (see Figure 1):

• Morlet:
ψMorlet(t) = π−1/4eiω0te−t2/2.

It is a plane wave modulated by a Gaussian, where the positive parameter ω0 denotes the
central dimensionless frequency. According to Farge (1992), the wavelet function must fulfil an
admissibility condition, which for the Morlet wavelet is only accomplished if some correction
factors are added. We take as default value ω0 = 6, for which those correction factors are
negligible. Nevertheless, other choices of this parameter can be considered.

• Paul:

ψPaul(t) =
(2i)m m!√

π (2m)!
(1 − it)−(m+1) ,

where m is a positive integer parameter representing the order. By default, m = 4.

• Derivative of a Gaussian (DoG):

ψDoG(t) =
(−1)m+1√
Γ
(

m + 1
2

) dm

dtm

(
e−t2/2

)
,

where m is a positive integer parameter representing the derivative. By default, m = 2, that
coincides with the Marr or Mexican hat wavelet.

Moreover, we have added:

• Haar, centered at 0:

ψHaar(t) =


1 if − 1

2 ≤ t < 0,
−1 if 0 ≤ t < 1

2 ,
0 otherwise.

This is the simplest wavelet, but it is not continuous.

Scaling a wavelet ψ by s > 0 and translating it by u, we create a family of unit energy “time-
frequency atoms”, called daughter wavelets , ψu,s, as follows

ψu,s(t) =
1√

s
ψ

(
t − u

s

)
. (1)

Remark 2.2.1 (Fourier factor). Usually, the Fourier wavelength of a daughter wavelet does not coincide
with its scale s. Nevertheless, they are proportional, and this proportionality factor for converting

scales into Fourier periods is called Fourier factor . This Fourier factor is taken 4π/
(

ω0 +
√

2 + ω2
0

)
,

4π/ (2m + 1) and 2π/
√

m + 1/2 for Morlet, Paul and DoG wavelets respectively (Torrence and
Compo, 1998). For the default parameter values, the Fourier factor is approximately 1.033, 1.3963, and
3.9738 respectively. For Haar wavelet, the Fourier factor is 1.
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Given a function f ∈ L2 (R), that we will identify with a signal or time series , the continuous
wavelet transform (CWT) of f at time u and scale s > 0 is defined as

W f (u, s) =
∫ +∞

−∞
f (t)ψ∗

u,s(t)dt, (2)

where ∗ denotes the complex conjugate. The CWT allows us to obtain the frequency components (or
details) of f corresponding to scale s and time location u.

In practical situations, however, it is common to deal with finite signals. That is, given a time signal
x, and a finite time interval [0, T], we shall consider the finite sequence xn = x (tn), for n = 0, . . . , N.
Here, t0, . . . , tN is a discretization of the interval [0, T], i.e. tn = nh, being h = T/N the time step.
According to (1) and (2), the CWT of x at scale s > 0 is defined as the sequence

Wxn(s) = h
N

∑
i=0

xiψ
∗
n,s (ti) , (3)

where n = 0, . . . , N and

ψn,s(t) =
1√

s
ψ

(
t − tn

s

)
. (4)

Note that ψn,s(t) is in fact ψtn ,s(t), but this abuse of notation between (1) and (4) is assumed for the sake
of readability. Using Fourier transform tools, one can calculate (3) for all n = 0, . . . N simultaneously
and efficiently (Torrence and Compo, 1998).

Remark 2.2.2 (Energy density). It is known that the CWT coefficients are biased in favour of large
scales (Liu et al., 2007). Nevertheless, if the mother and daughter wavelets are normalized by the
L1-norm (as in the Rwave package, by Carmona and Torresani (2021)) instead of the L2-norm (as in our
package), this bias is not produced . Hence, to rectify the bias, the CWT in (2) and (3) can be multiplied
by the factor 1√

s . This rectification will be specially useful in some wavelet tools of our package that
quantify the “energy density” of a signal, such as the wavelet power spectrum, the scalograms and the
windowed scalogram difference. On the other hand, in the case of the scale index, this correction will
not be advisable (see Remark 2.5.1). Usually, the wavelet tools of our package have a logical parameter
called energy_density that switches this correction.

For computing the CWT of a time series x at a given set of scales, we use cwt_wst. For example,

# install.packages("wavScalogram")
library(wavScalogram)
h <- 0.1
N <- 1000
time <- seq(from = 0, to = N * h, by = h)
signal <- sin(pi * time)
scales <- seq(from = 0.5, to = 4, by = 0.05)
cwt <- cwt_wst(signal = signal, dt = h,

scales = scales, powerscales = FALSE,
wname = "DOG", wparam = 6)

computes the CWT of signal at scales from sa = 0.5 to sb = 4 using DoG wavelet with m = 6. The
parameter wname indicates the wavelet used, and it can be "MORLET" (default value), "PAUL", "DOG",
"HAAR" or "HAAR2". The difference between these two last values is that "HAAR2" provides a more
accurate but slower algorithm than the one provided by "HAAR". Moreover, we can specify by means
of wparam the value of the parameters ω0 or m. As it has been stated before, the default values of these
parameters are ω0 = 6 for Morlet wavelet, m = 4 for Paul wavelet and m = 2 for DoG wavelet.

If the set of scales is a base 2 power scales set (Torrence and Compo, 1998), the parameter scales can
be a vector of three elements with the lowest scale sa, the highest scale sb and the number of suboctaves
per octave. This vector is internally passed to function pow2scales that returns the constructed base 2
power scales set. For example,

scales <- c(0.5, 4, 16)
cwt <- cwt_wst(signal = signal, dt = h, scales = scales, powerscales = TRUE)

computes the CWT of signal at scales from sa = 0.5 to sb = 4, with 16 suboctaves per octave. Since
parameter powerscales is TRUE by default, it is not necessary to specify it in the function call. If scales
= NULL (default value), then the function constructs the scales set automatically: sa is chosen so that
its equivalent Fourier period is 2h (Torrence and Compo, 1998), and sb = Nh/2rw, where rw is the
corresponding wavelet radius. Note that in this case sb maximizes the length of the scales interval
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Figure 2: Different constructions of an infinite signal from a finite length signal sin(t) with t ∈ [−π, π]
(in red): padding time series with zeroes, using a periodization of the original time series, and using a
symmetric catenation of the original time series. They determine the border effects.

taking into account the cone of influence. The wavelet radius and the cone of influence are defined and
discussed in Remark 2.2.4.

The output cwt is a list containing the following fields:

• coefs is an (N + 1)×length(scales) array (either real or complex depending on the wavelet
used) containing the corresponding CWT coefficients, i.e. cwt$coefs[i,j] is the CWT coefficient
at the i-th time and j-th scale.

• scales is the vector of scales used, either provided by the user or constructed by the function
itself.

• fourier_factor is the scalar used to transform scales into Fourier periods (see Remark 2.2.1).

• coi_maxscale is a numeric vector of size N + 1 that defines the cone of influence (see Remark
2.2.4).

Remark 2.2.3 (Border effects). In (3) (or (2) for finite length signals) there appear border effects (or
edge effects) when the support of the daughter wavelets is not entirely contained in the time domain
[t0, tN ]. In order to try to mitigate border effects, we can construct from the original time series x an
infinite time series x̄ on ti = t0 + ih for i ∈ Z and then we define

W̄xn(s) = W x̄n(s) = h ∑
i∈Z

x̄iψ
∗
n,s (ti) , (5)

where n = 0, . . . , N. The most usual ways to construct x̄ are the following:

• Padding time series with zeroes: x̄i = xi if i ∈ {0, . . . , N}, and x̄i = 0 otherwise. In this case, (3)
and (5) are equivalent, having W̄xn(s) = Wxn(s).

• Using a periodization of the original time series: x̄i = xi mod (N+1).

• Using a symmetric catenation of the original time series: x̄i = xi mod (N+1) if ⌊ i
N+1 ⌋ is even, and

x̄i = x(N−i)mod (N+1) if ⌊ i
N+1 ⌋ is odd.

Depending on the nature of x, it may be preferable to use one construction or another for minimiz-
ing the undesirable border effects (see Figure 2). For example, a periodization is advised for stationary
short time series, and symmetric catenation for non-stationary short time series. On the other hand,
for long time series, border effects are less important and then we can just pad with zeroes, i.e. use the
original CWT given in (3).

How the border effects are treated by function cwt_wst is determined via the border_effects
parameter. Possible values for this parameter are "BE" (raw border effects, padding with zeroes),
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"PER" (periodization) and "SYM" (symmetric catenation), corresponding to the three options described
above.

Remark 2.2.4 (Cone of influence). The cone of influence (CoI) is defined by the scales for which border
effects become important at each time. The field coi_maxscale of the output in cwt_wst function
contains, for each time, the maximum scale at which border effects are negligible, and consequently
determines the CoI.

In order to compute the CoI, we have to set a criterion to distinguish between relevant and
negligible border effects. In Torrence and Compo (1998), the CoI is defined by the e-folding time for
the autocorrelation of wavelet power spectrum (see the next section) at each scale s, and this e-folding
time is chosen so that the wavelet power spectrum for a discontinuity at the edge drops by a factor
e−2. For Morlet and DoG wavelets, this e-folding time is

√
2s, and for Paul wavelets is s/

√
2.

For wavelets with symmetric modulus such as Morlet, Paul and DoG, the e-folding time at s = 1 is
interpreted as a wavelet radius rw that defines an effective support [−rw, rw] for the mother wavelet.
Therefore, the CoI is given by the scales from which the corresponding effective supports of the
daughter wavelets [u − srw, u + srw] are not entirely contained in the time domain.

The wavelet radius rw determines the CoI in the different functions of this package by means of
the parameter waverad. If it is NULL (default value) we consider rw =

√
2 for Morlet and DoG wavelets,

and rw = 1/
√

2 for Paul wavelets, following Torrence and Compo (1998). On the other hand, we take
rw = 0.5 for Haar wavelet, i.e. we assume that its effective support is in fact its support. Nevertheless
we can introduce a custom rw for any wavelet, allowing us in this way to adjust the importance of
border effects in the construction of the CoI. For example,

cwt <- cwt_wst(signal = signal, dt = h,
wname = "DOG", wparam = 6, waverad = 2)

computes the CWT coefficients of signal for DoG wavelet with m = 6. Here, cwt$coi_maxscale is
obtained assuming that the wavelet radius is rw = 2. Note that the value of waverad does not affect
the computation of the CWT coefficients.

3 Wavelet scalograms

The wavelet power spectrum of a signal f ∈ L2 (R) at time u and scale s > 0 is defined as

WPS f (u, s) = |W f (u, s) |2. (6)

Analogously to (6), the wavelet power spectrum of a time series x at scale s > 0 is given by the
sequence

WPSxn(s) = |Wxn(s)|2, (7)

where n = 0, . . . , N.

We can plot the wavelet power spectrum of a time series x at a given set of scales through function
cwt_wst if the parameter makefigure is TRUE (default value). There are other parameters regarding
this plot:

• time_values is a vector that provides customized values in the time axis.

• energy_density is a logical parameter. If it is TRUE, it is plotted the wavelet power spectrum
divided by the scales, according to Remark 2.2.2. By default, it is FALSE.

• figureperiod is a logical parameter that indicates if they are represented periods or scales in
the y-axis (see Remark 2.2.1). By default, it is TRUE.

• xlab,ylab,main,zlim are parameters to customize the figure.

For example,

h <- 1 / 12
time1 <- seq(from = 1920, to = 1970 - h, by = h)
time2 <- seq(from = 1970, to = 2020, by = h)
signal <- c(sin(pi * time1), sin(pi * time2 / 2))
cwt_a <- cwt_wst(signal = signal, dt = h, time_values = c(time1, time2))
cwt_b <- cwt_wst(signal = signal, dt = h, time_values = c(time1, time2),

energy_density = TRUE)
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Figure 3: Wavelet power spectra of signal, non corrected (a) and corrected (b) via parameter
energy_density. The CoI is the shadowed region. This signal is the concatenation of two pure
sinusoidal time series with the same amplitude and different periods. Note that even though both
time series have the same amplitude, when the coefficients are not corrected, the magnitude of the
wavelet power spectrum is biased in favour of large scales, while in the corrected version, this bias is
not present.

plots Figure 3 (a) and (b) respectively. In this figure it is shown how the wavelet power spectrum is
biased in favour of large scales, as it is pointed out in Remark 2.2.2. The parameter energy_density
corrects it and so, values for different scales become comparable. Note that energy_density only
affects the plot and hence, cwt_a is identical to cwt_b.

The scalogram of f at scale s is defined as

S f (s) =
(∫ +∞

−∞
|W f (u, s) |2 du

)1/2
. (8)

It gives the contribution of each scale to the total “energy” of the signal and so, the notion of scalogram
here is analogous to the spectrum of the Fourier transform. It is important to note that the term
“scalogram” is often used to refer the wavelet power spectrum, but in this package, we call “scalogram”
to (8).

If f is a finite length signal with time domain I = [a, b], it is usual to consider a normalized version
of the scalogram for comparison purposes, given by

S f (s) =
(

1
b − a

∫ b

a
|W f (u, s) |2 du

)1/2

. (9)

Hence, according to (9), the (normalized) scalogram of x at scale s is given by

Sx(s) =

(
1

N + 1

N

∑
i=0

|Wxi(s)|2
)1/2

. (10)

The normalization coefficient 1/(N + 1) in (10) allows us to compare scalograms of time series with
different lengths.

We can compute the (normalized) scalograms of a time series x at a given set of scales by means
of function scalogram. This function follows the same rules as cwt_wst regarding the data entry,
construction of scales, choice of the wavelet, border effects and application of Fourier factor. So,
parameters signal, dt, scales, powerscales, wname, wparam, waverad, border_effects, makefigure,
figureperiod, xlab, ylab and main are analogous to those in function cwt_wst with same default
values. On the other hand, parameter energy_density is TRUE by default. For example,

sc_a <- scalogram(signal = signal, dt = h,
energy_density = FALSE)

computes the (normalized) scalogram of signal given by (10) at a base 2 power scales set constructed
automatically and plots Figure 4 (a). The output sc_a is a list with the following fields:

• scalog is a vector of length length(scales) with the values of the (normalized) scalogram at
each scale.

• energy is the total energy of scalog (i.e. its L2-norm) if parameter energy_density is TRUE.
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Figure 4: Original scalogram (a) and corrected scalogram representing an energy density measure (b),
both relative to signal. As in Figure 3, it can be seen how the scalogram is biased in favour of large
scales when the parameter energy_density is FALSE (plot (a)).

• scales and fourier_factor are analogous to those in the output of function cwt_wst.

If parameter energy_density is set to TRUE (default value), then the scalogram is divided by the
square root of the scales, converting it into an energy density measure (see Remark 2.2.2). For example,
if we write

sc_b <- scalogram(signal = signal, dt = h)

it plots Figure 4 (b), and then sc_b$scalog is in fact sc_a$scalog / sqrt(scales).

Inner Scalogram

Given a compactly supported wavelet ψ and f a finite length signal with time domain I = [a, b], the
(normalized) inner scalogram of f at scale s is defined as

S inner f (s) =
(

1
d(s)− c(s)

∫ d(s)

c(s)
|W f (u, s) |2du

)1/2

, (11)

where [c(s), d(s)] is the maximal subinterval in I for which the support of ψu,s is included in I for all
u ∈ [c(s), d(s)]. Hence, according to (11), the (normalized) inner scalogram of x at scale s is given by

S innerx(s) =

 1
n2(s)− n1(s) + 1

n2(s)

∑
i=n1(s)

|Wxi(s)|2
1/2

,

where {n1(s), . . . , n2(s)} is the maximal subset of time indices for which the support of ψi,s is included
in [t0, tN ] for all i ∈ {n1(s), . . . , n2(s)}.

This concept of inner scalogram can be extended to wavelets that do not have compact support,
considering the effective support (see Remark 2.2.4) instead of the support. But we have to take into
account that in this case, some theoretical results exposed in Benítez et al. (2010) may not hold.

We can compute the (normalized) inner scalograms of a time series x at a given set of scales by
means of function scalogram setting the parameter border_effects equal to "INNER". Since Morlet,
Paul and DoG wavelets are not compactly supported, it is considered the effective support given by
the wavelet radius rw.

Windowed Scalogram

The (normalized) windowed scalogram of f centered at time t with time radius τ > 0 at scale s is
defined as

WSτ f (t, s) =
(

1
2τ

∫ t+τ

t−τ
|W f (u, s) |2 du

)1/2
. (12)

It was introduced in Bolós et al. (2017) and it allows to determine the relative importance of the
different scales around a given time point. According to (12), the (normalized) windowed scalogram
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Figure 5: Windowed scalogram (a) and windowed inner scalogram (b) of signal. The CoI is the
shadowed region and, for the inner scalogram, the region where the scalogram cannot be computed is
coloured in gray.

of x with time index radius τ ∈ N at scale s is given by the sequence

WSτ xn(s) =

(
1

2τ + 1

n+τ

∑
i=n−τ

|Wxi(s)|2
)1/2

, (13)

where n = τ, . . . , N − τ. In the particular case of τ = 0, (13) coincides with |Wxn(s)|.
We can compute the (normalized) windowed scalograms of a time series x at a given set of

scales by means of function windowed_scalogram. Parameters signal, dt, scales, powerscales, wname,
wparam, waverad, border_effects, energy_density, makefigure, figureperiod, xlab, ylab and main
are analogous to those in function scalogram, and parameters time_values and zlim are analogous to
those in function cwt_wst. For example,

wsc <- windowed_scalogram(signal = signal, dt = h,
windowrad = 72, delta_t = 6,
time_values = c(time1, time2))

computes the (normalized) windowed scalograms of signal with time index radius τ = windowrad
at a base 2 power scales set constructed automatically. Moreover, it plots Figure 5 (a). If windowrad
is NULL (default value), then it is set to ⌈(N + 1)/20⌉. The parameter delta_t is the index increment
for the computation of the windowed scalograms, i.e. (13) is computed only for n from τ to N − τ by
delta_t. If delta_t is NULL (default value) then it is taken ⌈(N + 1)/256⌉.

The output wsc is a list with the following fields:

• tcentral is the vector of times at which the windows are centered, i.e. the times of the form tn
where n goes from τ to N − τ by delta_t.

• wsc is a matrix of size length(tcentral)×length(scales) containing the values of the win-
dowed scalograms at each scale and at each central time.

• windowrad is the time index radius τ used.

• scales, fourier_factor and coi_maxscale are analogous to those in the output of function
cwt_wst.

Windowed Inner Scalogram

The (normalized) windowed inner scalogram of f centered at time t with time radius τ > 0 at scale s
is defined as

WS inner
τ f (t, s) =

(
1

d(t, s)− c(t, s)

∫ d(t,s)

c(t,s)
|W f (u, s) |2 du

)1/2

, (14)

where [c(t, s), d(t, s)] is the maximal subinterval in [t − τ, t + τ] for which the effective support of ψu,s
is included in I for all u ∈ [c(t, s), d(t, s)]. Then, the (normalized) windowed inner scalogram of x with
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time index radius τ ∈ N at scale s is given by the sequence

WS inner
τ xn(s) =

 1
n2(n, s)− n1(n, s) + 1

n2(n,s)

∑
i=n1(n,s)

|Wxi(s)|2
1/2

, (15)

where {n1(n, s), . . . , n2(n, s)} is the maximal subset of time indices in {n − τ, . . . , n + τ} for which the
effective support of ψi,s is included in [t0, tN ] for all i ∈ {n1(n, s), . . . , n2(n, s)}.

If border_effects is set to "INNER" in function windowed_scalogram, then the (normalized) win-
dowed inner scalograms are computed. For example,

wsc <- windowed_scalogram(signal = signal, dt = h,
windowrad = 72, delta_t = 6,
border_effects = "INNER",
time_values = c(time1, time2))

computes the (normalized) windowed inner scalogram of signal with time index radius τ =
windowrad, at a base 2 power scales set constructed automatically, and plots Figure 5 (b). Note
that in this figure, the “CoI line” is not a real CoI line, because if we consider inner scalograms,
border effects are negligible. This line represents, at each time tn, the maximum scale s such that
n1(n, s) = n − τ and n2(n, s) = n + τ, and coincides with the CoI line of the (normalized) windowed
scalogram.

4 Windowed scalogram difference

The windowed scalogram difference (WSD) is a wavelet tool, introduced in Bolós et al. (2017), whose
main objective is to compare time series by means of their respective windowed scalograms.

In order to consider differences between scalograms, it is convenient to use base 2 power scales
(Bolós et al., 2017) and hence, we must redefine them by making a change of variable. Thus, for
example, from (10), the (normalized) scalogram of a time series x at log-scale k should be given by

Sx(k) =

(
1

N + 1

N

∑
i=0

|Wxi(2
k)|2

)1/2

, (16)

where k ∈ R is the binary logarithm of the scale. From now on, k will denote log-scales of scales s in
the sense that 2k = s.

The windowed scalogram difference of two signals f , g ∈ L2 (R) centered at (t, k) with time radius
τ > 0 and log-scale radius λ > 0 is defined as

WSDτ,λ f g(t, k) =

(∫ k+λ

k−λ

(
WSτ f (t, κ)−WSτ g(t, κ)

WSτ f (t, κ)

)2
dκ

)1/2

. (17)

The commutative version of (17) is given by

1
2

(∫ k+λ

k−λ

(
WSτ f (t, κ)2 −WSτ g(t, κ)2

WSτ f (t, κ)WSτ g(t, κ)

)2

dκ

)1/2

. (18)

From (17), the windowed scalogram difference (WSD) of two time series x, y centered at log-scale k
with time index radius τ ∈ N and log-scale radius λ > 0 is given by the sequence

WSDτ,λxyn(k) =

(∫ k+λ

k−λ

(
WSτ xn(κ)−WSτyn(κ)

WSτ xn(κ)

)2
dκ

)1/2

, (19)

where n = τ, . . . , N − τ. However, in practice, we work with a finite interval of log-scales that is
discretized into k0, . . . , kM with constant step. Thus, we can adapt (19) to this situation so that it can
be written as

WSDτ,λxyn(km) =

(
2λ + 1

m2 − m1 + 1

m2

∑
i=m1

(
WSτ xn(ki)−WSτyn(ki)

WSτ xn(ki)

)2
)1/2

, (20)

where λ ∈ N is the log-scale index radius, m1 = max {0, m − λ} and m2 = min {M, m + λ}. The
factor 2λ+1

m2−m1+1 is added to counteract the “border effects” in the log-scale interval that appear when
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m − λ < 0 or m + λ > M, because in these cases, the number of addends is less than 2λ + 1. Moreover,
according to (18), a commutative version of (20) can be also considered.

We can compute the WSD (20) (or its commutative version) of two time series x, y of the same length
and time step by means of function wsd. Parameters dt, windowrad, delta_t, wname, wparam, waverad,
border_effects, energy_density, makefigure, time_values, figureperiod, xlab, ylab, main and
zlim are analogous to those in function windowed_scalogram. For example,

set.seed(12345) # For reproducibility
N <- 1500
time <- 0:N
signal1 <- rnorm(n = N + 1, mean = 0, sd = 0.2) + sin(time / 10)
signal2 <- rnorm(n = N + 1, mean = 0, sd = 0.2) + sin(time / 10)
signal2[500:1000] = signal2[500:1000] + sin((500:1000) / 2)
wsd <- wsd(signal1 = signal1, signal2 = signal2,

windowrad = 75, rdist = 14)

computes the commutative WSD of signal1 and signal2 centered at a log-scales set {k0, . . . , kM}
constructed automatically, with time index radius τ = windowrad and log-scale index radius λ = rdist.
If windowrad is NULL (default value) then it is set to ⌈(N + 1)/20⌉, and if rdist is NULL (default value)
then it is set to ⌈(M + 1)/20⌉. The log-scales set can be defined by parameter scaleparam, that must be
a vector of three elements with the minimum scale, the maximum scale and the number of suboctaves
per octave. Moreover, logical parameter commutative, whose default value is TRUE, determines if it is
computed the commutative version of the WSD.

Remark 2.4.1 (Normalization). The WSD compares the patterns of the windowed scalograms of two
time series determining if they give similar weights (or energy) to the same scales. Another tool for
comparing two time series is the squared wavelet coherence (Torrence and Compo, 1998; Torrence
and Webster, 1999), that measures the local linear correlation between them. So, these tools focus on
different aspects: while the squared wavelet coherence does not take into account the magnitudes in
the signals, for the WSD they are crucial. In fact, the WSD has sense only when the two time series
considered are expressed in the same unit of measure or they are dimensionless. Otherwise, it will
be necessary to somehow normalize the signals, but depending on the normalization method, some
artifices could appear. For example, we can normalize the signals so that their scalograms have the
same energy and, in this way, we can compare the relative contributions of each scale to the total
energy. Another option is to normalize the signals so that their scalograms attain the same maximum
value. Finally, it could be also useful to normalize the signals so that their scalograms reach the same
value at a given reference scale.

The normalization method can be chosen through parameter normalize in function wsd. It can
be set to "NO" (default value), "ENERGY", "MAX" or "SCALE", according to each normalization method
exposed in Remark 2.4.1. In this last option, the reference scale must be given by parameter refscale.

Remark 2.4.2 (Near zero scalogram values). Some problems can arise in the WSD when a scalogram is
zero or close to zero for a given log-scale because we are computing relative differences and hence, the
WSD can take extremely high values or produce numerical errors. If we consider absolute differences
this would not happen but, on the other hand, it would not be appropriate for scalogram values
not close to zero. A solution is to establish a threshold for the scalogram values above which a
relative difference is computed, and below which a difference proportional to the absolute difference
is computed (the proportionality factor would be determined by requiring continuity). This threshold
can be interpreted as the relative amplitude of the noise in the scalograms.

Another solution is to substitute the original windowed scalograms WSτ xn(s), WSτyn(s) by

C +

(
1 − C

max

)
WSτ xn(s), C +

(
1 − C

max

)
WSτyn(s), (21)

where
max = max

n,s
{WSτ xn(s),WSτyn(s)} ,

and C ≥ 0 is a relatively small value, called compensation (see Figure 6).

Parameters wscnoise and compensation of function wsd allow us to deal with the near zero
scalogram problem mentioned in Remark 2.4.2. The first one is a value in [0, 1] and establishes the
threshold from which a relative difference is computed. As particular cases, if it is 0 then relative
differences are always done, and if it is 1 then absolute differences are always done. The default value
is set to 0.02. The second one determines the compensation C of (21), which is set to 0 by default.

In practical situations, signals will be usually affected by random noises. Therefore it is necessary
to determine whether the results obtained with the WSD are statistically significant or not. In this

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 174

0.
0

0.
2

0.
4

0.
6

0.
8

Compensation Method

Period

S
ca

lo
gr

am

2 4 8 16 32 64 128 256 512

Figure 6: Illustration of the compensation method exposed in Remark 2.4.2 to deal with near zero
scalogram values in the computation of the WSD. Original scalogram of signal2 (solid black line) is
transformed into the compensated scalogram (dashed red line) for a compensation parameter C = 0.2.

package, we perform Monte Carlo simulations of the WSD (with the same parameter values) of
random signals following a normal distribution with the same mean and standard deviation as the
original ones. Then, we find the 95% and 5% quantiles to determine significantly high and low values
respectively. The number of Monte Carlo simulations is set by parameter mc_nrand in function wsd,
whose default value is 0 (no significant contours are computed). For example,

wsd <- wsd(signal1 = signal1, signal2 = signal2,
mc_nrand = 100, parallel = TRUE)

computes the same WSD as before, but determines which values are significant using 100 Monte
Carlo simulations, plotting Figure 7. Parameter parallel enables parallel computations improving
considerably the execution time for high values of mc_nrand.

Finally, the output of wsd is a list with the following fields:

• wsd is a matrix of size length(tcentral)×length(scales) containing the values of the WSD at
each scale and at each central time.

• rdist is the log-scale index radius λ used.

• signif95 and signif05 are logical matrices of size length(tcentral)×length(scales) that
determine if the corresponding values of the wsd matrix are significantly high or low respectively,
following the 95% and 5% quantiles method described above.

• tcentral, scales, windowrad, fourier_factor and coi_maxscale are analogous to those in the
output of function windowed_scalogram.

With respect to the output image, it is plotted the base 2 logarithm of the inverse of the WSD
because in this way high values represent small differences (i.e. high similarity) and low values
represent large differences (i.e. low similarity) (Bolós et al., 2017).

5 Scale index and windowed scale index

Periodicity is one of the most basic characteristics to be determined in a time series study. Mathemati-
cally, the definition is clear: a time series f is periodic of period T whenever f (t + T) = f (t) for all
t, and a time series that fails to be periodic is a non-periodic signal. However, within this definition,
there are very different types of non-periodic signals (e.g. stochastic, quasi-periodic, chaotic signals),
and an interesting question to analyze is how much non-periodic a time series is. Within this regard,
the scale index and the windowed scale index (Benítez et al., 2010; Bolós et al., 2020) are two wavelet tools
that give a satisfactory answer to this question.

The scale index of a signal f ∈ L2 (R) in the scale interval [s0, s1] is defined as the quotient

iscale f =
S f (smin)

S f (smax)
, (22)

where smax ∈ [s0, s1] is the smallest scale such that S f (s) ≤ S f (smax) for all s ∈ [s0, s1], and smin ∈
[smax, 2s1] is the smallest scale such that S f (smin) ≤ S f (s) for all s ∈ [smax, 2s1] (Benítez et al., 2010;
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Figure 7: Base 2 logarithm of the inverse of the commutative WSD of signal1 and signal2 centered at
a log-scales set constructed automatically, with time index radius τ = 75 and log-scale index radius
λ = 14. The significant contours are plotted in black (significantly high) and white (significantly low)
lines, using 100 Monte Carlo simulations. Both time series are the same sinusoidal signal of period 20π
plus different white noises with the same amplitude. Moreover, signal2 has been manually modified
for 500 ≤ t ≤ 1000, with the addition of another pure sin signal of period 4π. The red band around
period 20π corresponds to the period both signals have in common while the dark blue region around
period 4π corresponds to the period both differ.

Bolós et al., 2020). Hence, according to (22), the scale index of a time series x in the scale interval
[s0, s1] is given by

iscalex =
Sx(smin)

Sx(smax)
, (23)

where smax and smin are defined analogously.

The scale index is a quantity in [0, 1] and measures the degree of non-periodicity of a signal in a
given scale interval [s0, s1]: It is close to zero for periodic and quasi-periodic signals, and close to one
for highly non-periodic signals. The choice of the scale interval [s0, s1] is very important, and it should
contain all the relevant scales that we want to study.

Remark 2.5.1 (No energy density). The correction exposed in Remark 2.2.2 should not be carried out
because the scalogram of a white noise signal is more or less constant at all scales giving a scale index
close to 1 for any scale interval [s0, s1], and this is the property that we want to preserve. If, on the
other hand, we apply the correction for converting the scalogram into an “energy density” measure,
the scale index of a white noise signal would tend to zero as we increase s1 and this is not desirable
(Bolós et al., 2020).

We can compute the scale index of a time series x by means of function scale_index. Pa-
rameters signal, dt, scales, powerscales, wname, wparam, waverad, border_effects, makefigure,
figureperiod, xlab, ylab and main are analogous to those in function scalogram. Note that, ac-
cording to Remark 2.5.1, there is no parameter energy_density because scalograms must be computed
without this correction. For example,

set.seed(12345) # For reproducibility
N <- 999
h <- 1 / 8
time <- seq(from = 0, to = N * h, by = h)
signal_si <- sin(pi * time) + rnorm(n = N + 1, mean = 0, sd = 2)
s0 <- 1
s1 <- 4
si <- scale_index(signal = signal_si, dt = h,

scales = c(s0, 2 * s1, 24), s1 = s1,
border_effects = "INNER", makefigure = FALSE)

computes the scale index of signal_si in the scale interval [s0, s1] where s0 = 1 and s1 = 4. The
parameter scales determines the scales set at which the scalograms are computed: In this case, it is
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Figure 8: Scale indices of signal_si in scale intervals [s0, s1] where s0 is the scale whose equivalent
Fourier period is 0.25 and s1 varies. The signal is a pure sin of period 2 plus a noise term. Thus, for
values of s1 lower than 2, the scale index is very high because the scalogram still has not considered
this period. At s1 = 2, there is a sudden drop in the scale index and from that point onwards, as s1
increases, the scale index decreases until it reaches a stable plateau (at 0.2 approximately) for large
values of s1.

a base 2 power scales set from sa = s0 to sb = 2s1 with 24 suboctaves per octave. Note that we take
sb = 2s1 according to the definition of the scale index, because sb can not be lesser than 2s1 and there is
no need for sb to be greater than 2s1. Moreover, function scale_index takes s0 equal to the lowest scale
sa always. If scales = NULL (default value), then the scalograms are computed at an automatically
constructed set of scales with sa equal to the scale whose equivalent Fourier period is 2h, and sb = 2s1.

We can also compute the scale indices of a signal in scale intervals [s0, s1] for different values of s1
assigning a vector of scales to the parameter s1. Thus,

maxs1 <- 4
si <- scale_index(signal = signal_si, dt = h, scales = c(s0, 2 * maxs1, 24),

s1 = pow2scales(c(s0, maxs1, 24)),
border_effects = "INNER")

computes the scale indices of signal_si in scale intervals [s0, s1] where s0 = 1 and s1 varies in a base
2 power scales set from 1 to 4 with 24 suboctaves per octave. Moreover, if s1 = NULL (default value),
then s1 is automatically computed as a base 2 power scales set from s0 to sb/2. If scales is also NULL,
then sb = Nh/2rw as usual, where rw is the corresponding wavelet radius (see Remark 2.2.4). Hence,

si <- scale_index(signal = signal_si, dt = h, border_effects = "INNER")

computes the scale indices of signal_si in scale intervals [s0, s1] where s0 is the scale whose equivalent
Fourier period is 2h and s1 varies in a base 2 power scales set from s0 to Nh/rw. Moreover, it returns a
plot like Figure 8. It is important to remark that if s1 are not base 2 power scales then powerscales
must be FALSE. For example,

si <- scale_index(signal = signal_si, dt = h,
s1 = seq(from = s0, to = maxs1, by = 0.1),
powerscales = FALSE, border_effects = "INNER")

computes the scale indices of signal_si in scale intervals [s0, s1] where s0 = 1 and s1 varies linearly
from 1 to 4 with step 0.1. In this case, since scales are not given, they are constructed automatically in
a linear form, since powerscales must be FALSE.

Alternatively, we can compute the scale indices directly from a scalogram instead of giving the
original signal by means of parameter scalog. In this case, we must give the scales at which the
scalogram has been computed. Thus, we can compute the scale indices of an artificially constructed
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Figure 9: (a) Average of 100 scalograms of noise signals. (b) Scale indices computed from this averaged
scalogram. The scale indices are very close to 1, indicating a high degree of non-periodicity.

scalogram which does not necessarily have to correspond to any signal. For example, we can compute
the scale indices corresponding to the average of 100 scalograms of noise signals:

set.seed(12345) # For reproducibility
N <- 1000
nrand <- 100
X <- matrix(rnorm(N * nrand), nrow = N, ncol = nrand)
scales = pow2scales(c(2, 128, 24))
ns = length(scales)
sc_list <- apply(X, 2, scalogram, scales = scales, border_effects = "INNER",

energy_density = FALSE, makefigure = FALSE)
sc_matrix <- matrix(unlist(lapply(sc_list, "[[", "scalog")),

nrow = ns, ncol = nrand)
sc_mean <- apply(sc_matrix, 1, mean)
s1 = pow2scales(c(2, 64, 24))
si_mean <- scale_index(scalog = sc_mean, scales = scales, s1 = s1,

figureperiod = FALSE, plot_scalog = TRUE)

This code also returns figures like those in Figure 9. The logical parameter plot_scalog is used for
plotting the scalogram from which the scale indices are computed.

The output of scale_index is a list with the following fields:

• si is a vector with the scale indices, for each value of s1.
• s0 is the scale s0.
• s1 is a vector with the scales s1.
• smax and smin are vectors with the scales smax and smin respectively, for each value of s1.
• scalog is the the scalogram Sx from which the scale indices are computed.
• scalog_smax and scalog_smin are vectors with the scalogram values Sx(smax) and Sx(smin)

respectively, for each value of s1.
• fourierfactor is the scalar used to transform scales into Fourier periods (see Remark 2.2.1).

Windowed Scale Index

As was mentioned in the introduction, wavelet analysis is a very useful tool for non-stationary time
series. If we are interested in analyzing the non-periodicity of a non-stationary time series, we should
be aware that the scale index is going to give us a single number between 0 and 1 which represents the
degree of non-periodicity of the signal in the overall time interval of interest. However we may be
interested in how this degree of non-periodicity is changing along this interval. To this aim, Bolós et al.
(2020) introduced the windowed scale index, which uses the windowed scalogram in order to obtain
scale indices for different time and scale intervals.

In particular, the windowed scale index of f in the scale interval [s0, s1] centered at time t with
time radius τ > 0 is defined as

wiscale,τ f (t) =
WSτ f (t, smin)

WSτ f (t, smax)
, (24)

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 178

where, analogously to (22), smax is the smallest scale such that WSτ f (t, s) ≤ WSτ f (t, smax) for all
s ∈ [s0, s1], and smin is the smallest scale such that WSτ f (t, smin) ≤ WSτ f (t, s) for all s ∈ [smax, 2s1]
(Bolós et al., 2020). Finally, according to (24), the windowed scale index of a time series x in the scale
interval [s0, s1] with time index radius τ ∈ N is given by the sequence

wiscale,τ xn =
WSτ xn (smin)

WSτ xn (smax)
,

where n = τ, . . . , N − τ, and smax, smin are defined analogously to (24).

Remark 2.5.2 (Inner scalograms). Although in the computation of the scale index it is recommended
the use of (normalized) inner scalograms in order to fulfil some theoretical results and avoid border
effects, this recommendation is less important in the case of the windowed scale index, because for
long time series and relatively small time radii there would be no relevant border effects in most of the
windowed scalograms.

By means of function windowed_scale_index, we can compute the windowed scale index of a time
series x. As usual, parameters signal, dt, scales, powerscales, windowrad, delta_t, wname, wparam,
waverad, border_effects, makefigure, time_values, figureperiod, xlab, ylab, main and zlim are
analogous to those in function windowed_scalogram. Moreover, parameter s1 is analogous to that in
function scale_index. For example,

set.seed(12345) # For reproducibility
s0 <- 1
s1 <- 4
signal1_wsi <- sin(pi * time[1:500]) + rnorm(n = 500, mean = 0, sd = 2)
signal2_wsi <- sin(pi * time[501:1000] / 2) + rnorm(n = 500, mean = 0, sd = 0.5)
signal_wsi <- c(signal1_wsi, signal2_wsi)
wsi <- windowed_scale_index(signal = signal_wsi, dt = h,

scales = c(s0, 2 * s1, 24), s1 = s1,
windowrad = 50,
time_values = time)

computes the windowed scale index of signal_wsi in a scale interval [s0, s1] where s0 = 1 and s1 = 4.
The time index radius τ is given by the parameter windowrad. If it is NULL (default value), then it is set
to ⌈(N + 1)/20⌉ that, in this case, coincides with the value of windowrad. Moreover, it returns a plot
like Figure 10.

We can compute the windowed scale indices for different values of s1 assigning a vector of scales
to the parameter s1. It is important to remark that if s1 are not base 2 power scales, then powerscales
must be FALSE. If s1 = NULL and/or scales = NULL (default values), then they are automatically
computed in the same way as it is done in function scale_index. So,

wsi <- windowed_scale_index(signal = signal_wsi, dt = h,
time_values = time)

computes the windowed scale indices of signal_wsi in scale intervals [s0, s1] where s0 is the scale
whose equivalent Fourier period is 2h and s1 varies in a base 2 power scales set from s0 to Nh/rw. The
time index radius τ is taken automatically as ⌈(N + 1)/20⌉ = 50. It also returns a plot, like Figure 11.

Alternatively, we can compute the windowed scale indices directly from a windowed scalogram
instead of giving the original signal by means of parameter wsc. This parameter must be equal to a ma-
trix of size (number of central times)×(number of scales), as it is returned by the windowed_scalogram
function. In this case, we must give the scales at which the windowed scalogram wsc has been com-
puted and, in addition, we can give the cone of influence by means of parameter wsc_coi, that must
be a vector containing the values of the maximum scale at each central time from which there are
border effects in wsc. Thus, we can compute the windowed scale indices of an artificially constructed
windowed scalogram as it was shown in the case of the scale index. Taking the same example, we can
compute the windowed scale indices corresponding to the average of 100 windowed scalograms of
noise signals:

set.seed(12345) # For reproducibility
N <- 1000
nrand <- 100
X <- matrix(rnorm(N * nrand), nrow = N, ncol = nrand)
scales = pow2scales(c(2, 128, 24))
ns = length(scales)
wsc_list <- apply(X, 2, windowed_scalogram, scales = scales,

energy_density = FALSE, makefigure = FALSE)
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Figure 10: Windowed scale index of signal_wsi in a scale interval [1, 4] and with time index radius
τ = 50. The dashed vertical lines represent the CoI limits. This time series is the concatenation of two
sinusoidal signals of periods 2 and 4, modified with two white noises of different variance. In the
first part, where the noise has a higher standard deviation, the windowed scale index is also higher.
Moreover, it can be seen how the windowed scale index captures the moment of change in the noise.
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Figure 11: Windowed scale indices of signal_wsi in scale intervals [s0, s1] where s0 is the scale whose
equivalent Fourier period is 0.25 and s1 varies, with time index radius τ = 50. This plot also shows
that s1 should be at least 4 for the scale indices to capture all relevant periods.
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Figure 12: (a) Average of 100 windowed scalograms of noise signals. (b) Windowed scale indices
computed from this averaged windowed scalogram. The windowed scale indices are always close to
1, indicating a high degree of non-periodicity.

tcentral <- wsc_list[[1]]$tcentral
ntc <- length(tcentral)
wsc_matrix <- array(unlist(lapply(wsc_list, "[[", "wsc")), c(ntc, ns, nrand))
wsc_mean <- apply(wsc_matrix, 1:2, mean)
wsc_coi <- wsc_list[[1]]$coi_maxscale
wsi_mean <- windowed_scale_index(wsc = wsc_mean, wsc_coi = wsc_coi,

scales = scales, time_values = tcentral,
figureperiod = FALSE, plot_wsc = TRUE)

This code also returns figures like those in Figure 12. The logical parameter plot_wsc is used for
plotting the windowed scalogram from which the windowed scale indices are computed.

The output of windowed_scale_index is a list with the following fields:

• wsi is a matrix of size length(tcentral)×length(s1) with the windowed scale indices at each
s1 and at each central time.

• wsc is a matrix of size length(tcentral)×length(scales) with the windowed scalograms
from which the windowed scale indices are computed. Note that scales greater than 2*max(s1)
are not necessary and they are internally removed from scales.

• s0, s1, smax, smin, scalog_smax and scalog_smin are analogous to those in the output of function
scale_index.

• tcentral, windowrad, fourierfactor and coi_maxscale are analogous to those in the output of
function windowed_scalogram.

6 Examples and applications

Windowed scalogram difference and clustering

As an application, we are going to show an example of how to define a dissimilarity measure from the
windowed scalogram difference (WSD), which can then be applied to perform time series clustering.
We are going to use the interest.rates time series from package TSclust (Montero and Vilar, 2014),
which consists on 215 observations of the monthly long-term interest rates (10-year bonds) from
January 1995 to November 2012 of several countries.

First, we define the returns time series for each country and then we compute the corresponding
WSD of any pair of countries (see Figure 13). Next, we define the dissimilarity measure as the
binary logarithm of the WSD mean plus 1 (in order to avoid negative distances). Finally, we plot the
hierarchical clusters according to this dissimilarity measure (see Figure 14).

When defining the dissimilarity measure, we can restrict the WSD to only some areas instead
of considering it entirely. For example, if we want to study the relationships between the different
countries from the beginning of the century to the 2008 crisis at long-term scales, then we could only
take into account the WSD area between 2001 and 2007, considering exclusively scales greater than
2 years. On the other hand, if border effects are relevant, only the WSD zone outside the cone of
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Figure 13: Plots of base 2 logarithms of the inverse of the commutative WSD of returns of Netherlands
and (a) Finland, (b) Spain and (c) Japan. The corresponding dissimilarity measures of these pairs are
0.7395, 1.6279 and 2.819 respectively. Red zones indicate time-scale regions where the two signals are
more similar, while blue zones correspond to less similarity between the signals. Note that Netherlands
and Finland are two countries whose economies are similar in both time and scale (plot (a)) but, on the
other hand, Netherlands has a very different economic behaviour than Japan (plot (c)). The big blue
spot in plot (b) corresponds to the 2008 financial crisis, which hit Spain harder than the Netherlands.
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Figure 14: Hierarchical clustering of several countries according to their interest rates from 1995 to
2012. Similar countries are close together in the diagram.
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influence could be considered. However, in our example, border effects do not substantially alter the
clustering result.

library(wavScalogram)
library(TSclust)
data("interest.rates")
returns <- apply(interest.rates, MARGIN = 2, function(x) diff(log(x)))
Nsignals <- ncol(returns)
countries <- colnames(returns)
M <- Nsignals * (Nsignals - 1) / 2 # Number of pairings
auxpair <- vector(mode = "list", M)
k <- 1
for (i in 1:(Nsignals - 1)) {
for (j in (i + 1):Nsignals) {
auxpair[[k]] <- c(i, j)
k <- k + 1

}
}
fwsd <- function(x) wsd(signal1 = returns[, x[1]],

signal2 = returns[, x[2]],
makefigure = FALSE)

Allwsd <- lapply(auxpair, FUN = fwsd)
ntimes <- length(Allwsd[[1]]$tcentral)
nscales <- length(Allwsd[[1]]$scales)
area <- ntimes * nscales
meanwsd <- rep(0, M)
for (i in 1:M) {
meanwsd[i] <- sum(Allwsd[[i]]$wsd) / area

}
d1 <- matrix(0, Nsignals, Nsignals)
d1[lower.tri(d1, diag = FALSE)] <- log2(meanwsd + 1)
dm1 <- as.dist(t(d1) + d1)
names(dm1) <- countries
plot(hclust(dm1), main = "Interest rates 1995-2012", xlab = "", sub = "")

Sunspots

In the next example we are going to illustrate the different tools of wavScalogram on the most famous
sunspot number time series and how to use them in order to find the sunspots period, which is estimated
to be around 11 years.

Let us consider the sunspot.month R dataset consisting on monthly numbers of sunspots from
1749 to present. Firstly, we can estimate the sunspots period by means of the scale at which the
scalogram reaches its maximum. Using this criterion, we obtain that the sunspots period is 10.3254
approximately (see Figure 15 (b)). For this method, it is recommended that energy_density = TRUE
since otherwise, larger scales would be over-estimated. Note that the wavelet power spectrum and
the windowed scalograms present, as expected, horizontal bands of high values precisely around the
scale 10.3254 (see Figure 15 (a) and (c)). Hence, they can be used to estimate a sunspot period that
depends on time.

On the other hand, we can also estimate the sunspots period by means of the scale at which the
scale index reaches its minimum. Contrary to the previous case and according to Remark 2.5.1, it is
recommended that energy_density = FALSE for computing scale indices (see Figure 16). Using this
criterion, we obtain that the sunspots period is 11.1215, approximately (see Figure 17 (a)). Therefore, the
windowed scale index can also be used, analogously to the scalogram and the windowed scalogram,
to estimate sunspots periods depending on time (see Figure 17 (b)).
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Figure 15: (a) Wavelet power spectrum divided by scales, (b) scalogram, and (c) windowed scalogram
of the sunspots time series, with energy_density = TRUE. These plots show how the scalogram can be
used for determining the sunspots period. In plots (a) and (c) the yellow-red band should be centered
in the sunspots period, while in plot (b), this period should be given by the peak in the scalogram.
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Figure 16: (a) Wavelet power spectrum, (b) scalogram, and (c) windowed scalogram of the sunspots
time series, with energy_density = FALSE. These plots depict the same as Figure 15, but the bias in
favour of large scales is present. Nevertheless, this is recommended for computing the corresponding
scale indices.
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Figure 17: (a) Scale indices and (b) windowed scale indices of the sunspots time series. In these plots,
the use of the scale indices to determine the sunspots period is depicted. The period is estimated by
the minimum scale s1 for which the scale indices are stabilized around lower values, presenting the
transition from non-periodicity to a far more periodic signal. The windowed scale indices in plot (b)
are specially useful for non-stationary time series because they can detect changes in the sunspots
period over time.
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ClusTorus: An R Package for Prediction
and Clustering on the Torus by Conformal
Prediction
by Seungki Hong and Sungkyu Jung

Abstract Protein structure data consist of several dihedral angles, lying on a multidimensional torus.
Analyzing such data has been and continues to be key in understanding functional properties of
proteins. However, most of the existing statistical methods assume that data are on Euclidean spaces,
and thus they are improper to deal with angular data. In this paper, we introduce the package
ClusTorus specialized to analyzing multivariate angular data. The package collects some tools and
routines to perform algorithmic clustering and model-based clustering for data on the torus. In
particular, the package enables the construction of conformal prediction sets and predictive clustering,
based on kernel density estimates and mixture model estimates. A novel hyperparameter selection
strategy for predictive clustering is also implemented, with improved stability and computational
efficiency. We demonstrate the use of the package in clustering protein dihedral angles from two real
data sets.

1 Introduction

Multivariate angular or circular data have found applications in some research domains including
geology (e.g., paleomagnetic directions) and bioinformatics (e.g., protein dihedral angles). Due to the
cyclic nature of angles, usual vector-based statistical methods are not directly applicable to such data.
A p-variate angle θ = (θ1, · · · , θp)T lies on the p-dimensional torus Tp = [0, 2π)p in which the angles
0 and 2π are identified as the same point. Likewise, angles θ and θ ± 2π are the same data point on
the torus. Thus, statistical models and predictions on the torus should reflect this geometric constraint.

A prominent example in which multivariate angular data appear is the analysis of protein struc-
tures. As described in Branden and Tooze (1999), the functional properties of proteins are determined
by the ordered sequences of amino acids and their spatial structures. These structures are determined
by several dihedral angles, and thus, protein structures are commonly described on multidimensional
tori. The p-dimensional torus Tp is the sample space we consider in this paper. Especially, for the
2-dimensional case, the backbone chain angles ϕ, ψ of a protein are commonly visualized by the Ra-
machandran plot, a scatter plot of dihedral angles in a 2-dimensional flattened torus T2 (Lovell et al.,
2003; Oberholser, 2010). In Figure 1, several clustering results are visualized on the Ramachandran
plot for the protein angles of SARS-CoV-2 virus, which caused the 2020-2021 pandemic (Coronaviridae
Study Group of the International Committee on Taxonomy of Viruses. et al., 2020). Since the structures
in protein angles are related to functions of the protein, it is of interest to analyze the scatter of the
angles through, for example, density estimation and clustering. Note that the protein structure data
are routinely collected and publicly available at Protein Data Bank (Berman et al., 2003) and importing
such data into R is made easy by the package bio3d (Grant et al., 2006, 2021).

We introduce the R package ClusTorus (Jung and Hong, 2021) which provides various tools
for handling and clustering multivariate angular data on the torus. The package provides angular
adaptations of usual clustering methods such as the k-means clustering and pairwise angular distances,
which can be used as an input for distance-based clustering algorithms, and implements a novel
clustering method based on conformal prediction framework (Vovk et al., 2005). Also implemented in
the package are the EM algorithms and an elliptical k-means algorithm for fitting mixture models on
the torus, and a kernel density estimation. We will introduce various clustering tools implemented
in the package, explaining choices in conformal prediction using two sets of example data. We also
present the theoretical and technical background, and demonstrate these tools with R codes.

For data on the torus, there are a few previous works for mixture modeling and clustering. Mardia
et al. (2007) proposed a mixture of bivariate von Mises distributions for data on T2, with an application
to modeling protein backbone chain angles. Mardia et al. (2012) proposed a density estimation on the
torus, based on a mixture of approximated von Mises sine distributions, for higher dimensional cases,
but the proposed EM algorithm tends to be unstable when sample sizes are limited. The R package
BAMBI (Chakraborty and Wong, 2019, 2020) provides routines to fit such von Mises mixture models
using MCMC, but is only applicable to bivariate (and univariate) angles in T2. We have implemented
EM algorithms (for p = 2) and the elliptical k-means algorithm (for any p), originally proposed for
vector-valued data (Sung and Poggio, 1998; Bishop, 2006; Shin et al., 2019), for fitting mixture models
on the torus. To the best of authors’ knowledge, ClusTorus is the first implementation of methods for
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Figure 1: Several clustering results on Ramachandran plot for SARS-CoV-2 by using clus.torus
(top left) and kmeans.torus (top right), both implemented in ClusTorus, mixtools::mvnormalmixEM
(bottom left), in which the number of components 3 is prespecified, and mclust::Mclust (bottom
right), in which the number of components is chosen by BIC. Gray points in the top-left panel are
“outliers", automatically assigned by clus.torus.

fitting mixture models on multidimensional tori of any dimension.

Algorithmic clustering for data on the torus has also been proposed. For example, Gao et al. (2018)
used an extrinsic k-means algorithm for clustering protein angles. While this algorithm is not always
satisfactory, it is implemented in ClusTorus for a quick-and-dirty analysis. The top right panel of
Figure 1 depicts the result of applying this algorithm with k = 3. Note that the popular R packages
mixtools (Benaglia et al., 2009) and mclust (Scrucca et al., 2016) provide misleading clustering results,
when applied to data on the torus. As we illustrate in Figure 1, these tools do not take into account the
cyclic nature of the angular data.

The main contribution of ClusTorus is an implementation of the predictive clustering approaches
of Jung et al. (2021) and Shin et al. (2019). For this, the conformal prediction framework of Vovk et al.
(2005) is extended for multivariate angular data. The conformal prediction is a distribution-free method
of constructing prediction sets, and our implementation uses kernel density estimates and mixture
models, both based on the multivariate von Mises distribution (Mardia et al., 2012). Furthermore, by
using Gaussian-like approximations of the von Mises distributions and a graph-theoretic approach,
flexible clusters, composed of unions of ellipsoids on Tp, can be identified. The proposed predictive
clustering can be obtained by simply using clus.torus as follows.

library(ClusTorus)
set.seed(2021)
ex <- clus.torus(SARS_CoV_2)
plot(ex)

The result of the predictive clustering is visualized in the top left panel of Figure 1, which is generated
by plot(ex). The dataset SARS_CoV_2, included in ClusTorus, collects the dihedral angles ϕ, ψ in the
backbone chain B of SARS-CoV-2 spike glycoprotein. The raw coronavirus protein data are available
at Protein Data Back with id 6VXX (Walls et al., 2020), and can be retrieved by using R package bio3d.
The function clus.torus performs three core procedures—conformal prediction, hyperparameter
selection and cluster assignment—for predictive clustering.

The rest of this article focuses on introducing the three core procedures: (i) the conformal prediction
framework, including our choices of the conformity scores, (ii) hyperparameter selection and (iii)
cluster assignment. After demonstrating how the package ClusTorus can be used for clustering of T2-
and T4-valued data, we describe how the main function clus.torus and other clustering algorithms
such as k-means and hierarchical clustering can be used to analyze data on the torus. In the Appendix,
we provide technical details and options in fitting mixture models on the torus, and a list of S3 classes
defined in ClusTorus.
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2 Conformal prediction

The conformal prediction framework (Vovk et al., 2005) is one of the main ingredients of our develop-
ment. Based on the work of Vovk et al. (2005) and Lei et al. (2013, 2015), we briefly introduce the basic
concepts and properties of conformal prediction. Suppose that we observe a sample of size n, Xi ∼ F
where Xi ∈ Tp for each i and that the sequence Xn = {X1, · · · , Xn} is exchangeable . Then, for a new
Xn+1 ∼ F, the prediction set Cn = Cn (Xn) is said to be valid at level 1 − α if:

P (Xn+1 ∈ Cn) ≥ 1 − α, α ∈ (0, 1) , (1)

where P is the corresponding probability measure for Xn+1 = Xn ∪ {Xn+1}.

For a given x ∈ Tp, write Xn(x) = Xn ∪ {x}. Consider the null hypothesis H0 : Xn+1 = x, where
Xn+1 ∼ F. To test the hypothesis, the conformal prediction framework uses conformity scores σi
defined as follows:

σi (x) := g (Xi, Xn (x)) , ∀i = 1, · · · , n + 1,

σ (x) := g (x, Xn (x)) = σn+1 (x) ,

for some real valued function g, which measures the conformity or similarity of a point to the given

set. If X(1), · · · , X(n+1) are ordered to satisfy σ(1) ≤ · · · ≤ σ(n+1) for σ(i) = g
(

X(i), Xn+1

)
, then we

may say that X(n+1) is the most similar point to Xn+1.

Consider the following quantity:

π (x) =
1

n + 1

n+1

∑
i=1

I (σi (x) ≤ σn+1 (x)) , I(A) =

{
1, A is true,
0, otherwise,

which can be understood as a p-value for the null hypothesis H0. The conformal prediction set of level
1 − α is constructed as

Cα
n = {x : π (x) > α} . (2)

Because the sequence Xn(x) is exchangeable under H0, π (x) is uniformly distributed on
{

1
n+1 , · · · , 1

}
.

With this property, it can be shown that the conformal prediction set is valid for finite samples, i.e., (1)
holds with Cn replaced by Cα

n for any F, that is, the prediction set is distribution-free (Lei et al., 2013).
The performance of the conformal prediction highly depends on the choice of conformity score σ. In
some previous works on conformal prediction (Lei et al., 2013, 2015; Shin et al., 2019; Jung et al., 2021),
the quality of prediction sets using density based conformity scores has been satisfactory.

We demonstrate a construction of the conformal prediction set with a kernel density estimate-based
conformity score, defined later in (3), for the data shown in Figure 1. With the conformity score given
by (3), cp.torus.kde computes the conformal prediction set Cα

n at a given level 1 − α (α = 0.1 below),
by performing the kernel density estimation. The function tests the inclusion in Cα

n of each point (ϕ, ψ)
over a fine grid of T2, and the result of the testing is shown as the boolean indices in the column Cn of
the output below. The columns Lminus and Lplus provide approximated prediction sets, defined in
Jung et al. (2021).

cp.kde <- cp.torus.kde(SARS_CoV_2)
cp.kde

Conformal prediction sets (Lminus, Cn, Lplus) based on kde with concentration 25

Testing inclusion to the conformal prediction set with level = 0.1 :
-------------

phi psi Lminus Cn Lplus level
1 0.00000000 0 FALSE FALSE FALSE 0.1
2 0.06346652 0 FALSE FALSE FALSE 0.1
3 0.12693304 0 FALSE FALSE FALSE 0.1
4 0.19039955 0 FALSE FALSE FALSE 0.1
5 0.25386607 0 FALSE FALSE FALSE 0.1
6 0.31733259 0 FALSE FALSE FALSE 0.1
7 0.38079911 0 FALSE FALSE FALSE 0.1
8 0.44426563 0 FALSE FALSE FALSE 0.1
9 0.50773215 0 FALSE FALSE FALSE 0.1
10 0.57119866 0 FALSE FALSE FALSE 0.1
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Figure 2: The Ramachandran plot for SARS-CoV-2, with boundaries of the conformal prediction set,
whose conformity score is (3) with κ = 25 for level 1 − α = 0.9.

9990 rows are omitted.

The concentration parameter κ of the kernel density estimation and the level(s) of the prediction
set can be designated by providing arguments concentration and level. By default, these values are
set as concentration = 25 and level = 0.1.

The output cp.kde is an S3 object with class cp.torus.kde, for which a generic method plot is
available. The conformal prediction set for SARS_CoV_2 data can be displayed on the Ramachandran
plot, as follows. The result is shown in Figure 2.

plot(cp.kde)

Inductive conformal prediction

If the sample size n and the number N of grid points over Tp are large, evaluating n + N conformity
scores may take a long time. That is, constructing the conformal prediction set suffers from high
computational costs. A workaround for this inefficiency is inductive conformal prediction , which
enjoys significantly lower computational cost. The inductive conformal prediction framework is
based on splitting the data into two sets. The algorithm for inductive conformal prediction is given in
Algorithm 1.

Algorithm 1 Inductive Conformal Prediction

1: procedure INDUCTIVE CONFORMAL PREDICTION({X1, · · · , Xn} , α, n1 < n)
2: Split the data randomly into X1 = {X1, · · · , Xn1}, X2 =

{
Xn1+1, · · · , Xn

}
.

3: Construct σ with σ (x) = g (x, X1) for some function g.
4: Put σi = g

(
Xn1+i, X1

)
and order as σ(1) ≤ · · · ≤ σ(n2), where n2 = n − n1.

5: Construct Ĉα
n =

{
x : σ(x) ≥ σ(in2,α)

}
where in,α = ⌊(n + 1) α⌋.

6: end procedure

While the sizes n1 and n2 of two split data sets can be of any size, they are typically set as equal
sizes. It is well-known that the output Ĉα

n of the algorithm also satisfies the distribution-free finite-
sample validity (Vovk et al., 2005; Lei et al., 2015). For fast computation, the inductive conformal
prediction is primarily used in constructing prediction sets and clustering, in our implementation
of ClusTorus. Specifically, icp.torus implements Algorithm 1 for several prespecified conformity
scores. As already mentioned, we need to choose the conformity score σ carefully for better clustering
performances.
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Before we discuss our choices of the conformity scores, we first illustrate how the functions
in ClusTorus are used to produce inductive conformal prediction sets. The following codes show
a calculation of the inductive conformal prediction set for the data SARS_CoV_2. The conformal
prediction set with the conformity score given by kernel density estimates (3) can be constructed by
icp.torus and icp.torus.eval. The function icp.torus computes σi’s in line 4 of Algorithm 1 and
icp.torus.eval tests whether pre-specified evaluation points are included in Ĉα

n . If these evaluation
points are not supplied, then icp.torus.eval creates a grid of size 100 × 100 (for p = 2).

set.seed(2021)
icp.torus.kde <- icp.torus(SARS_CoV_2, model = "kde", concentration = 25)
icp.kde <- icp.torus.eval(icp.torus.kde, level = 0.1)
icp.kde

Conformal prediction set (Chat_kde)

Testing inclusion to the conformal prediction set with level = 0.1:
-------------

X1 X2 inclusion
1 0.00000000 0 FALSE
2 0.06346652 0 FALSE
3 0.12693304 0 FALSE
4 0.19039955 0 FALSE
5 0.25386607 0 FALSE
6 0.31733259 0 FALSE
7 0.38079911 0 FALSE
8 0.44426563 0 FALSE
9 0.50773215 0 FALSE
10 0.57119866 0 FALSE

9990 rows are omitted.

In the codes above, the data splitting for icp.torus is done internally, and can be inspected by
icp.torus.kde$split.id.

We now introduce our choices for the conformity score σ in the next two subsections.

Conformity score from kernel density estimates

For the 2-dimensional case, Jung et al. (2021) proposed to use the kernel density estimate based
on the von Mises kernel (Marzio et al., 2011) for the conformity score. A natural extension to the
p-dimensional tori, for p ≥ 2, is

g (u, Xn (x)) =
1

n + 1

n+1

∑
i=1

Kκ (u − Xi) , Kκ (v) =
p

∏
i=1

eκ cos(vi)

2π I0 (κ)
, v =

(
v1, · · · , vp

)T ∈ Tp (3)

where I0 is the modified Bessel function of the first kind of order 0, and κ is a prespecified concentration
parameter. The function kde.torus provides the multivariate von Mises kernel density estimation.
For conformal prediction, we take σ (xi) = g (xi, Xn (x)), and for inductive conformal prediction, we
take σ (x) = g (x, X1).

Conformity scores from mixtures of multivariate von Mises

Our next choices of conformity scores are based on mixture models. Since the multivariate normal
distributions are not defined on Tp, we instead use the multivariate von Mises distribution (Mardia
et al., 2008), whose density on Tp is

f (y; µ, κ, Λ) = C (κ, Λ) exp
{
−1

2

[
κT (2 − 2c (y, µ)) + s (y, µ)T Λs (y, µ)

]}
(4)
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where y =
(
y1, · · · , yp

)T ∈ Tp, µ =
(
µ1, · · · , µp

)T ∈ Tp, κ = (κ1, . . . , κp)T ∈ (0, ∞)p, Λ = (λj,l) for
1 ≤ j, l ≤ p, −∞ < λjl < ∞,

c (y, µ) =
(
cos (y1 − µ1) , · · · , cos

(
yp − µp

))T ,

s (y, µ) =
(
sin (y1 − µ1) , · · · , sin

(
yp − µp

))T ,

(Λ)jl = λjl = λl j, j ̸= l, (Λ)jj = λjj = 0,

and for some normalizing constant C (κ, Λ) > 0. We write f (y; θ) = f (y; µ, κ, Λ) for θ = (µ, κ, Λ).

For any positive integer J and a mixing probability π =
(
π1, · · · , πJ

)
, consider a J-mixture model:

p (u; π, θ) =
J

∑
j=1

πj f
(

u; θj

)
(5)

where θ =
(
θ1, · · · , θJ

)
, θj = (µj, κj, Λj) for j = 1, · · · , J. Let

(
π̂, θ̂

)
be appropriate estimators of (π, θ)

based on X1. The plug-in density estimate based on (5) is then

p
(
·; π̂, θ̂

)
=

J

∑
j=1

π̂j f
(
·; θ̂j

)
, (6)

which can be used as a conformity score by setting g (·, X1) = p̂ (·). Assuming high concentrations,
an alternative conformity score can be set as g (·, X1) = pmax (·, π̂, θ̂

)
where

pmax (u; π̂, θ̂
)

:= max
j=1,··· ,J

(
π̂j f

(
u; θ̂j

))
≈ p

(
u; π̂, θ̂

)
. (7)

On the other hand, Mardia et al. (2012) introduced an approximated density function f ∗ for the
p-variate von Mises sine distribution (4) for sufficiently high concentrations and when Σ ≻ 0:

f ∗ (y; , µ, Σ) = (2π)−p/2 |Σ|−1/2 exp
{
−1

2

[
κT (2 − 2c (y, µ)) + s (y, µ)T Λs (y, µ)

]}
where

(
Σ−1)

jl = λjl ,
(
Σ−1)

jj = κj, j ̸= l. By further approximating via θ ≈ sin θ, 1 − θ2

2 ≈ cos θ, we
write

f ∗ (y; , µ, Σ) ≈ (2π)−p/2 |Σ|−1/2 exp
{
−1

2

[
(y ⊖ µ)T Σ−1 (y ⊖ µ)

]}
, (8)

where the angular subtraction ⊖ stands for

X ⊖ Y :=
(

arg
(

ei(ϕx1−ϕy1)
)

, · · · , arg
(

ei(ϕxp−ϕyp)
))T

,

for X =
(
ϕx1, · · · , ϕxp

)T ∈ Tp and Y =
(
ϕy1, · · · , ϕyp

)T ∈ Tp as defined in Jung et al. (2021) for p = 2.
By replacing the von Mises density f in (7) with the approximate normal density (8), log (pmax (·; π, θ))
is approximated by

log (pmax (u; π, θ)) ≈ 1
2

max
j

e
(

u; πj, θj

)
+ c,

e
(

u; πj, θj

)
= −

(
u ⊖ µj

)T
Σ−1

j

(
u ⊖ µj

)
+ 2 log πj − log

∣∣∣Σj

∣∣∣ (9)

where θj = (µj, Σj), µj = (µ1j, · · · , µpj)
T ∈ Tp, Σj ∈ Rp×p and a constant c ∈ R. Our last choice of

the conformity score is

g (·, X1) = max
j

e
(
·, π̂j, θ̂j

)
. (10)

Note that with this choice of conformity score, the conformal prediction set can be expressed as the
union of ellipsoids on the torus. That is, the following equalities are satisfied (Shin et al., 2019; Jung
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et al., 2021): Let Ce
n be the level 1 − α prediction set using (10). Then

Ce
n :=

{
x ∈ Tp : g (x, X1) ≥ g

(
X(in2,α), X1

)}
=

J⋃
j=1

Êj

(
σ(in2,α)

)
(11)

where Êj (t) =

{
x ∈ Tp :

(
x ⊖ µ̂j

)T
Σ̂−1

j

(
x ⊖ µ̂j

)
≤ 2 log π̂j − log

∣∣∣Σ̂j

∣∣∣− t
}

for t ∈ R. Note that

Êj (t) is automatically vanished if t ≥ 2 log π̂j − log
∣∣∣Σ̂j

∣∣∣.
Implementation

We have implemented four conformity scores, described in the previous section. These are based on

1. kernel density estimate (3),

2. mixture model (6),

3. max-mixture model (7), and

4. ellipsoids obtained by approximating the max-mixture (10).

The function icp.torus in ClusTorus computes these conformity scores using the inductive conformal
prediction framework, and returns icp.torus object(s). Table 1 illustrates several important arguments
of the function icp.torus.

Arguments Descriptions
data n × d matrix of toroidal data on [0, 2π)d or [−π, π)d

model A string. One of "kde", "mixture", and "kmeans" which determines the model or
estimation methods. If "kde", the model is based on the kernel density estimates.
It supports the kde-based conformity score only. If "mixture", the model is based
on the von Mises mixture, fitted with an EM algorithm. It supports the von Mises
mixture and its variants based conformity scores. If "kmeans", the model is also
based on the von Mises mixture, but the parameter estimation is implemented
with the elliptical k-means algorithm illustrated in Appendix. It supports the
log-max-mixture based conformity score only. If the dimension of data space is
greater than 2, only "kmeans" is supported. Default is model = "kmeans".

J A scalar or numeric vector for the number(s) of components for model =
c("mixture", "kmeans"). Default is J = 4.

concentration A scalar or numeric vector for the concentration parameter(s) for model = "kde".
Default is concentration = 25.

Table 1: Key arguments and descriptions for the function icp.torus

The argument model of the function icp.torus indicates which conformity score is used. By
setting model = "kde", the kde-based conformity score (3) is used. By setting model = "mixture" the
mixture model (6) is estimated by an EM algorithm, and conformity scores based on (6), (7), (10) are all
provided. Setting model = "kmeans" provides a mixture model fit by the elliptical k-means algorithm
and conformity score based on (10).

The arguments J and concentration specify the model fitting hyperparameters. To compute con-
formity scores based on kernel density estimate (3), one needs to specify the concentration parameter
κ. Likewise, the number of mixtures, J, needs to be specified in order to fit the mixture model (6) and
the variants (7) and (10). The function icp.torus takes either a single value (e.g., J = 4 is the default),
or a vector (e.g., J = 4:30 or concentration = c(25,50)) for arguments J and concentration. If J
(or concentration) is a scalar, then icp.torus returns an icp.torus object.

On the other hand, if J (or concentration) is a numeric vector containing at least two values, then
icp.torus returns a list of icp.torus objects, one for each value in J (or concentration, respectively).
Typically, the hyperparameter J (or κ) is not predetermined, and one needs to choose among a
set of candidates. A list of icp.torus objects, evaluated for each candidate in vector-valued J (or
concentration) is required for our hyperparameter selection procedure, discussed in a later section.

Let us present an R code example for creating an icp.torus object, fitted with model = "kmeans"
(the default value for argument model) and J = 12.
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Figure 3: The Ramachandran plot for SARS-CoV-2, with conformal prediction set whose conformity
score is (10) with J = 12 for level α = 0.1111. The plot demonstrates the union of ellipses as (11).

set.seed(2021)
icp.torus.12 <- icp.torus(SARS_CoV_2, J = 12)
plot(icp.torus.12, level = 0.1111)

The icp.torus object has an S3 method plot, and the R code plot(icp.torus.12,level = 0.1111)
plots the ellipses in (11) with α specified by argument level = 0.1111. The union of these ellipses is
in fact the inductive conformal prediction set of level 1 − α. The boundaries of the inductive conformal
prediction set can be displayed by specifying ellipse = FALSE, as follows.

plot(icp.torus.12, ellipse = FALSE)

The resulting graphic is omitted.

Conformity scores based on mixture model and its variants need appropriate estimators of the
parameters, π and θ. If the parameters are poorly estimated, the conformal prediction sets will be
constructed trivially and thus become useless. We have implemented two methods of estimation: EM
algorithms and the elliptical k-means algorithm, also known as the generalized Lloyd’s algorithm
(Sung and Poggio, 1998; Bishop, 2006; Shin et al., 2019). EM algorithms for the mixture model (6)
are described in Jung et al. (2021), for the 2-dimensional case. Since the EM estimates require long
computation time and large sample sizes, extensions to higher-dimensional tori do not seem to apt.
The EM estimates of the mixture model parameters can be naturally used for the case of max-mixture
(7) and ellipsoids (10) as well. The argument model = "mixture" of icp.torus works only for the
2-dimensional case. On the other hand, the elliptical k-means algorithm converges much faster even for
moderately high-dimensional tori. The elliptical k-means algorithm is used for estimating parameters
in the approximated normal density (8), and for computation of the conformity score of ellipsoids (10).
The elliptical k-means algorithms for data on the torus are further discussed in the Appendix.

Table 2 summarizes the four choices of conformity scores in terms of model-fitting methods,
dimensionality of the data space, and whether clustering is available. Our predictive clustering is
implemented only based on the "ellipsoids" conformity score (10). The rational for this choice is due to
the relatively simple form of prediction sets (a union of ellipsoids (11)).

3 Clustering by conformal prediction

We now describe our clustering strategies using the conformal prediction sets. Suppose for now that
the level α and the hyperparameter J of the prediction set are given. The basic idea of clustering is
to take each connected component of the prediction set as a cluster. For this, we need an algorithm
identifying connected components from any prediction set. Since the prediction sets are in general of
irregular shapes, such an identification is a quite difficult task. However, as shown in Jung et al. (2021),
if the conformal prediction set is of the form (11), clusters are identified by testing the intersection
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Conformity Scores EM k-means dim = 2 dim > 2 Clustering

Kernel density (3)
Mixture (6)
Max-mixture (7)
Ellipsoids (10)

✓
✓ ✓
✓ ✓
✓ ✓ ✓ ✓ ✓

Table 2: Conformity scores against available fitting methods, dimensions of the torus, and whether
cluster assignment is available.

Figure 4: 1

of ellipsoids. Suppose Ce
n = ∪J

j=1Êj where each Êj is an ellipsoid. Let the (i, j)th entry of a square

matrix A be 0 if Êi ∩ Êj = ∅, 1 otherwise. Then, A is the adjacent matrix of a graph whose nodes and
edges represent the ellipsoids and intersections, respectively. The adjacent matrix A gives a partition
I1, · · · , IK ⊆ {1, · · · , J} satisfying

Êik
∩ Êik′

= ∅, k ̸= k′

where 1 ≤ k, k′ ≤ K, ik ∈ Ik, ik′ ∈ Ik′ . This implies that the union of ellipsoids, Uk = ∪i∈Ik
Êi, whose

indices are in a connected component Ik for some k, can be regarded as a cluster. That is, U1, · · · , UK
are the disjoint clusters. With this, the conformal prediction set naturally generates K clusters. Note
that testing the intersection of ellipsoids can be done efficiently (which is a univariate root finding
problem (Gilitschenski and Hanebeck, 2012)), while testing the intersection of arbitrarily shaped sets
is not feasible in general. This is the reason why we only use the conformity score of the form (10), the
prediction set from which is exactly the union of ellipsoids.

We now describe how the cluster labels are assigned to data points. Each data point included in
the prediction set is automatically assigned to the cluster which contains the point. For the data points
which are not included in the conformal prediction set, we have implemented two different types for
cluster assignment, as defined in Jung et al. (2021). The first is to assign the closest cluster label. The
notion of closest cluster can be defined either by the Mahalanobis distance (x ⊖ µ̂j)

TΣ̂−1
j (x ⊖ µ̂j), the

approximate log-density (9), or the largest posterior probability P̂(Y = k|X = x). For example, for
x ̸∈ Ce

n, let Ei be the set with the largest approximate log-density êi(x). If i ∈ Ik, then x is assigned
to the cluster k. These provide three choices of cluster assignment, depending on the definition of
“closeness." The last choice is to regard the excluded points as outliers. That is, if x ̸∈ Ce

n, then the
point x is labeled as “outlier." This outlier-disposing clustering may be more appropriate for the cases
where some of data points are truely outliers. Figure 4 compares the two different types of clustering
assignment.

The function cluster.assign.torus, which takes as input an icp.torus object and level α, gener-
ates the clusters as we described above. The output of the function is an S3 object with class cluter.obj,
and includes the cluster memberships of all data points, for each and every cluster assignment method
we discussed above. The output of cluster.assign.torus includes the number of clusters detected,
the cluster assignment results for the first 10 observations, and cluster sizes, as shown in the code
example below.

c <- cluster.assign.torus(icp.torus.12, level = 0.1111)
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c

Number of clusters: 5
-------------
Clustering results by log density:
[1] 1 1 1 1 2 4 2 1 3 1
cluster sizes: 538 372 39 4 19

Clustering results by posterior:
[1] 5 5 5 5 2 4 3 5 3 5
cluster sizes: 6 310 104 4 548

Clustering results by representing outliers:
[1] 1 1 1 1 2 6 2 1 6 1
cluster sizes: 508 343 15 3 0 103

Note: cluster id = 6 represents outliers.

Clustering results by Mahalanobis distance:
[1] 1 1 1 1 2 4 2 1 3 1
cluster sizes: 533 372 39 4 24

962 clustering results are omitted.

The clustering results contained in the object c can be visualized as follows.

plot(c, assignment = "log.density")
plot(c, assignment = "outlier")

The results are displayed in Figure 4. When the argument assignment is not specified, the outlier
disposing assignment is chosen by default.

4 Hyperparameter selection

Poor choices of conformity score result in too wide prediction sets. Thus, we need to choose the hyper-
parameters elaborately for a better conformal prediction set and for a better clustering performance.
The hyperparameters are the concentration parameter κ (for the case (3)) or the number of mixture
components J (for the cases (6), (7), (10)), as well as the level α for all cases. There have been some
efforts to select the optimal hyperparameters by introducing adequate criteria. Lei et al. (2013) and
Jung et al. (2021) each proposed criteria based on the minimum volume of the conformal prediction set.
However, as we shall see, these approaches become computationally infeasible for higher dimensions.

We briefly review the criterion used in Jung et al. (2021). Assume for now that mixture models are
used; that is, (J, α) are the hyperparameters of interest. For a set C ⊆ Tp, let µ(C) be the volume of
C. Without loss of generality, we can assume that µ (Tp) = 1. For a given level α, the optimal choice
of hyperparameter J minimizes µ (Cn(α, J)) of conformal prediction set Cn (α, J). To choose α and J
altogether, Jung et al. (2021) proposed to use the following criterion:(

α̂, Ĵ
)
= arg min

α,J
α + µ (Cn (α, J)) . (12)

Note that if (κ, α) are the hyperparameters, then J and Ĵ in (12) are replaced by κ and κ̂.

To evaluate (12), one needs to have a set of candidates for J (or κ), and conformal prediction sets
corresponding to each choice of J (or κ, respectively). For this purpose, the function icp.torus is
designed to take as input a set of hyperparameter candidates. As an example, the following code
evaluates the inductive conformal prediction sets for data SARS_CoV_2, fitted by mixture models with
the number of components given by each J = 3, 4, . . . , 35.

set.seed(2021)
icp.torus.objects <- icp.torus(SARS_CoV_2, J = 3:35)

The result, icp.torus.objects, is a list of 33 icp.torus objects. Evaluating Jung et al. (2021)’s
criterion (12) is implemented in the function hyperparam.torus. There, the criterion (12) is termed
"elbow", since the minimizer (α̂, Ĵ) is typically found at an elbow of the graph of the objective function.
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hyperparam.out <- hyperparam.torus(icp.torus.objects)
hyperparam.out

Type of conformity score: kmeans general
Optimizing method: elbow
-------------
Optimally chosen parameters. Number of components = 12 , alpha = 0.1111111
Results based on criterion elbow :

J alpha mu criterion
2241 12 0.1111111 0.1215 0.2326111
2244 12 0.1172840 0.1169 0.2341840
2242 12 0.1131687 0.1211 0.2342687
2243 12 0.1152263 0.1198 0.2350263
2001 11 0.1172840 0.1179 0.2351840
2240 12 0.1090535 0.1265 0.2355535
2245 12 0.1193416 0.1169 0.2362416
2002 11 0.1193416 0.1175 0.2368416
2494 13 0.1316872 0.1053 0.2369872
2004 11 0.1234568 0.1136 0.2370568
2246 12 0.1213992 0.1161 0.2374992
2003 11 0.1213992 0.1163 0.2376992
2005 11 0.1255144 0.1123 0.2378144
1999 11 0.1131687 0.1248 0.2379687
2239 12 0.1069959 0.1310 0.2379959

8004 rows are omitted.

Available components:
[1] "model" "option" "results" "icp.torus" "Jhat" "alphahat"

It can be checked that the choice of J = 12 and α = 0.1111 in the previous examples was indeed
given by the option "elbow".

In computing the criterion (12), the volume µ (Cn (α, J)) is numerically approximated. This is
feasible for data on T2 = [0, 2π)2 by inspecting the inclusion of each point of a fine grid. However, for
high dimensional cases, for example T4, evaluating the volume becomes computationally infeasible. In
fact, as the dimension increases, the number of required inspections grows exponentially. Furthermore,
the function (α, J) → α + µ (Cn(α, J)) is typically not a convex function and has multiple local minima.
Thus, the choice of

(
α̂, Ĵ

)
by (12) tends to be unstable, resulting in high variability of the clustering

results. Therefore, evaluating (12) is not practical for high-dimensional data.

To this end, we have developed and implemented a computationally more efficient procedure
for hyperparameter selection, which also provides more stable clustering results. This procedure is a
two-step procedure, first choosing the model parameter J, then choosing the level α. The two-step
procedure is implemented for choosing J and α, but not for κ and α. Our approach is in contrast to the
approaches in Lei et al. (2013) and Shin et al. (2019) in which they only choose the model parameter
for a prespecified level α.

The first step of the procedure is to choose J, without making any reference to the level α. Choosing
J can be regarded as selecting an appropriate mixture model. The model selection is based on either
the (prediction) risk, Akaike information criterion (Akaike, 1974), or Bayesian information criterion
(Schwarz, 1978). Since the mixture model-based conformity scores (6), (7) and (10) are actually the
density or the approximated log-density of the mixture model, we use the conformity scores in place
of the likelihood. For example, the sum of the conformity scores (10) over the given data is exactly
the fitted log-likelihood. Specifically, let X1, X2 be the splitted datasets given by Algorithm 1 and
X = X1 ∪ X2. Let σ(·) = log g (·; X1) if g is given by (6) and (7) or σ(·) = g (·; X1) if g is given by (10).
Recall that g is the conformity score, and it depends on the estimated model p̂. Then, the function σ
we defined above also depends on the model p̂, and the criterion R can be defined as follows:

R (X, p̂) =


−2 ∑x∈X2

σ(x) if the criterion is the risk,
−2 ∑x∈X1

σ(x) + 2k if the criterion is AIC,
−2 ∑x∈X1

σ(x) + k log n1 if the criterion is BIC,

where k is the number of model parameters and n1 is the cardinality of X1. The function hyperparam.J
computes the minimizer Ĵ of the criterion, as summarized in Algorithm 2.

The fitted models p̂j1 , · · · , p̂jn of Algorithm 2 are exactly the outputs of icp.torus for various
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Algorithm 2 hyperparam.J

1: procedure HYPERPARAM.J(X ⊂ Tp, fitted models p̂j1 , · · · , p̂jn , criterion R)
2: Evaluate Rj = R

(
X, p̂j

)
for j = j1, · · · , jn.

3: Evaluate Ĵ = arg minj∈{j1,··· ,jn} Rj.
4: Output Ĵ, p̂ Ĵ .
5: end procedure

J = j1, · · · , jn. Which criterion to use is specified by setting the argument option of hyperparam.J.
The argument option = "risk", "AIC", or "BIC" is for the risk, AIC, or BIC, respectively. By choosing
Ĵ, we also fix the model p̂ Ĵ for the next step.

The second step is to choose the level α ∈ (0, 1) for the chosen Ĵ and p̂ Ĵ , so that the clustering
result is stable over perturbations of α. If the number of clusters does not change by varying the level
α ∈ I for some interval I, we regard that the clustering result is stable on I. If I is sufficiently wide, it
is reasonable to choose an α ∈ I. Thus, our strategy is to find the most wide interval I = [a, b] ⊆ (0, 1)
whose elements construct the same number of clusters, and to set α̂ as the midpoint of the interval,
i.e. α̂ = (a + b)/2. However, choosing α large, e.g. α > 0.5, results in a too small coverage 1 − α of
the prediction set. Thus, we restrict the searching area as [0, M] for M ∈ (0, 1) which is close to 0, and
find the desirable I in the restricted area [0, M] rather than the whole interval [0, 1]. This strategy is
implemented in hyperparam.alpha, and the algorithm is described in Algorithm 3.

Algorithm 3 hyperparam.alpha

1: procedure HYPERPARAM.ALPHA(fitted model p̂, n2 := |X2|, M ∈ [0, 1])
2: Evaluate the number of clusters cαj for αj = j/n2, j = 1, · · · , ⌊n2M⌋.
3: Set A = {j : cαj−1 ̸= cαj , j = 2, · · · , ⌊n2M⌋}.
4: For A = {αj1 , · · · , αjN} find i = arg maxk∈{1,··· ,N−1} αjk+1

− αjk .
5: Output α̂ =

(
αji+1 + αji

)
/2

6: end procedure

Note that we could alternatively input an array of levels, for the argument alphavec of hyperparam.alpha,
if there is a prespecified searching area. In our experience, setting M = 0.15 gives generally satisfying
results. By setting M = 0.15, at most 15% of the data points are not included in the prediction set, and
at most 15% of the data can be regarded as the outliers. The default value for argument alpha.lim of
hyperparam.alpha, which is M in Algorithm 3, is 0.15. We may interpret this level selecting procedure
as finding the representative modes for the given mixture model; the chosen level is the cutoff value
for which the most stable modes are not vanished.

In summary, we first choose the number of model components J in view of model selection, and
then find the most stable level α̂ in the sense of invariability of the number of clusters. The function
hyperparam.torus combines and implements Algorithms 2 and 3 sequentially and thus chooses J and
α. This two-step hyperparameter selection procedure is used when mixture models are used to produce
the conformal prediction sets, and can be invoked when the argument option of hyperparam.torus
is set as option = "risk", "AIC", or "BIC". If option = "elbow" (the default value, if the dimension
of data is p = 2), then the "elbow" criterion (12) is used to choose either (J, α) or (κ, α). The function
hyperparam.torus returns the chosen hyperparameters ( Ĵ, α̂) (or (κ̂, α̂)), as well as the corresponding
model as an icp.torus object.

As an example, the following code applies the two-step procedure with option = "risk" to
icp.torus.objects we evaluated earlier.

hyperparam.risk.out <- hyperparam.torus(icp.torus.objects, option = "risk")
hyperparam.risk.out

Type of conformity score: kmeans general
Optimizing method: risk
-------------
Optimally chosen parameters. Number of components = 12 , alpha = 0.132716
Results based on criterion risk :

J criterion
1 3 2016.575
2 4 1990.566

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 198

Figure 5: The pairwise scatter plots of ILE data, in which there are four variables (angles) ϕ, ψ, χ1 and
χ2. Each diagonal entry of the plot shows a marginal kernel density estimate for the corresponding
angle. Each off-diagonal panel is a scatter plot for a pair of variables.

3 5 1907.887
4 6 1922.430
5 7 1924.768
... (omitted)

With the option "risk," ( Ĵ, α̂) = (12, 0.0.1327). Recall that with option "elbow", we have chosen
( Ĵ, α̂) = (12, 0.1111). The hyperparameter selection procedures can be visualized by plot(hyperparam.out)
and plot(hyperparam.risk.out). (The resulting graphic is omitted.)

In the next section, the two-step procedures for hyperparameter selection are used in a cluster
analysis of data on T4.

5 Clustering data on T4

In this section, we give an example of clustering ILE data in T4. ILE is a dataset included in ClusTorus,
which represents the structure of the isoleucine. This dataset is obtained by collecting several different
‘.pdb’ files in the Protein Data Bank (Berman et al., 2003). We used PISCES (Wang and Dunbrack,
2003) to select high-quality protein data, by using several benchmarks—resolution is 1.6Å or better,
R-factor is 0.22 or better, sequence percentage identity is equal to or less than 25—as described in
Harder et al. (2010) and Mardia et al. (2012). The ILE data consist of n = 8080 instances of four angles
(ϕ, ψ, χ1, χ2) ∈ T4, and is displayed in Figure 5.

For predictive clustering of ILE data, the conformal prediction sets and scores are built from
mixture models, fitted with the elliptical k-means algorithm (i.e., model = "kmeans"). Other choices of
models such as "kde" and "mixture" are not applicable for this data set with p > 2. The number J of
components in the mixture model needs to be tuned, and we set the candidates for J as {10, . . . , 40}.
In the code example below, conformal prediction sets from mixture models are constructed by the
function icp.torus, with J = 10:40 indicating the candidates of J.

set.seed(2021)
icp.torus.objects <- icp.torus(ILE, J = 10:40)

Next step is to select the hyperparameter J, and the level α of the prediction set, using the function
hyperparam.torus. As discussed in the previous section, for this data set with p = 4, evaluating the
"elbow" criterion is computationally infeasible, and is not supported in hyperparam.torus, if p > 2.
For p > 2, hyperparam.torus uses the two-step procedure, discussed in the previous section, with
option = "risk" as the default choice for the criterion. In the code example below, we use the two-step
procedure, but apply all three available criteria (option = "risk", "AIC", and "BIC") in choosing Ĵ.
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Figure 6: Hyperparameter selection for ILE data, generated from the outputs of hyperparam.torus.
Rows correspond to different choices of criteria "risk", "AIC" and "BIC". In each row, the left panel
shows the values of criterion over J, with the optimal Ĵ indicated by a thicker dot; the right panel
shows the number of clusters over varying α, in which the longest streak is highlighted. The optimal α̂
is the midpoint of the longest streak.

output_list <- sapply( c("risk", "AIC", "BIC"), function(opt) {
hyperparam.torus(icp.torus.objects, option = opt)},
simplify = FALSE,
USE.NAMES = TRUE)

The result output_list is a list of length 3, consisting of outputs of the function hyperparam.torus.
The details of hyperparameter selection can be visualized, and are shown in Figure 6. The first row
of the figure is created by plot(output_list$risk), and shows that the evaluated prediction risk is
the smallest at Ĵ = 29. On the right panel, it can be seen that the longest streak of the number of
clusters over varying level α occurs at 16, which is given by a range of levels around α̂ = 0.1093. The
second and third rows are similarly generated, and they show the results of AIC- and BIC-based
hyperparameter selection. While the results of hyperparameter selection from the three criteria do not
always agree with each other, we observe that using BIC tends to choose parsimonious models than
others, for this and many other data sets we tested.

The number of clusters, given by the conformal prediction set Cn(α̂, Ĵ), can be seen in the right
panels of Figure 6. For example, in the top right panel, with Ĵ = 29 and α̂ = 0.1093, the number of
clusters is 16 (the vertical position of the blue-colored longest streak). For the subsequent analysis, we
use the risk criterion, thus choosing ( Ĵ, α̂) = (29, 0.1093).

hyperparam.risk.out <- output_list$risk

Finally, the function cluster.assign.torus is used for cluster membership assignment for each
data point in ILE. In the code below, the function cluster.assign.torus takes as input hyperparam.risk.out,
an output of hyperparam.torus, and we have not specified any level. Since the object hyperparam.risk.out
contains the chosen level α̂ (in its value alphahat), the level of the conformal prediction set is, by
default, set as hyperparam.risk.out$alphahat.

cluster.out <- cluster.assign.torus(hyperparam.risk.out)
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The output cluster.out contains the membership assignment results as well as the number of clus-
ters, which can be retrieved by cluster.out$ncluster or by simply printing the output cluster.out.
The assigned cluster memberships can be displayed on the pairwise scatter plots of the four angles. We
demonstrate the outlier-disposing membership assignment (the default behavior for S3 method plot),
as well as the membership assignment based on the maximum of log-densities. Figure 7 displays the
scatter plots generated by the codes:

plot(cluster.out, assignment = "outlier") # Top panel of Figure 7
plot(cluster.out, assignment = "log.density") # Bottom panel of Figure 7

Note that these cluster assignments are based on the conformal prediction set Cn(α̂, Ĵ). The
information to construct Cn(α, Ĵ) (for any α ∈ (0, 1)) is contained in the object hyperparam.risk.out
as value icp.torus. Since the conformal prediction set is a union of 4-dimensional toroidal ellipsoids,
projections of such ellipsoids onto coordinate planes are plotted by the following code, and is shown
in Figure 8.

set.seed(2021)
plot(hyperparam.risk.out$icp.torus,

data = ILE[sample(1:nrow(ILE),500),],
level = hyperparam.risk.out$alphahat)

Scatter plots of n = 8080 observations are typically too busy, especially when other informa-
tion (such as the ellipses) is overlaid. In the code example above, we use the argument data =
ILE[sample(1:nrow(ILE),500),] to plot randomly selected observations.

6 All-in-one function: clus.torus

The predictive clustering for data on the torus is obtained by sequentially applying functions icp.torus,
hyperparam.torus and cluster.assign.torus, as demonstrated for ILE data in the previous section.
The function clus.torus is a user-friendly all-in-one function, which performs the predictive clustering
by sequentially calling the three core functions.

Using clus.torus can be as simple as clus.torus(data), as shown in the first code example,
resulting in Figure 1, in Introduction. In this case, the three functions are called sequentially with
default choices for their arguments. On the other hand, users can specify which models and fitting
methods are used, whether hyperparameter tuning is required, and, if so, which criterion is used
for hyperparam.torus, and so on. Key arguments of clus.torus are summarized in Table 3. The
argument model only takes "kmeans" and "mixture" as input, which is passed to icp.torus inside the
function. Since the function concerns clustering, conformal prediction sets consisting of ellipsoids
(10) are needed, and such prediction sets are given by both model = "kmeans" and "mixture". Next,
the values of the arguments J and level determine whether tuning is needed for hyperparameters J
and α. If both are not specified, i.e., J = NULL and level = NULL, then hyperparam.torus is used to
select both parameters, with argument option (see Table 3). If either J or level is specified as a scalar,
then the function simply uses the given value for constructing the conformal prediction sets and for
clustering. Other arguments available for icp.torus and hyperparam.torus can be specified, and the
function passes those arguments to corresponding functions, if applicable.

The output of the function is a list of three objects, with S3 class clus.torus. The three objects in
the output are

1. a cluster.obj object, containing the results of cluster membership assignments,

2. an icp.torus object, corresponding to the model with Ĵ (or the specified J), and

3. if applicable, a hyperparam.torus, hyperparam.J or hyperparam.alpha object.

Each of these objects can be plotted via plot, defined for S3 class clus.torus. For example, recall that
ex is a clus.torus object we created in Introduction. By setting the argument panel of the method
plot as panel = 1, the cluster.obj object is plotted.

plot(ex, panel = 1) # equivalent to plot(ex)

The result is shown in Figure 1 (top left). If the data dimension is p > 2, then figures similar
to Figure 7 will be created. If panel = 2, the icp.torus object is plotted, similar to Figures 3 and 8.
Finally, if panel = 3, the graphics relevant to hyperparameter selection are created, similar to Figure 6.
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Figure 7: The pairwise scatter plots of ILE data with cluster assignments. (Top) assignment =
"outlier". (Bottom) assignment = "log.density".
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Figure 8: The pairwise scatter plots of ILE data, overlaid with the (projected) ellipsoids that constitute
the conformal prediction set Cn(α̂, Ĵ).

Arguments Descriptions
data n × d matrix of toroidal data on [0, 2π)d or [−π, π)d

model A string. One of "kmeans" and "mixture" which determines the model or estimation
methods. If "mixture", the model is the von Mises mixture, fitted with an EM
algorithm. If "kmeans", the model is also the von Mises mixture, fitted by the
elliptical k-means algorithm. If the dimension of data space is greater than 2, only
"kmeans" is supported. Default is model = "kmeans".

J A scalar or numeric vector. If J is scalar, the number of components J is set as J. If J
is a vector, then hyperparam.torus or hyperparam.J is used to select Ĵ. Default is J
= NULL, in which case J = 4:30 is used.

level A scalar in [0, 1]. The level of the conformal prediction set used for clustering. Default
is level = NULL, in which case hyperparam.alpha is used to choose optimal level α̂.

option A string. One of "elbow", "risk", "AIC", or "BIC", determining the criterion used for
hyperparam.torus andr hyperparam.J. Default is option = "elbow" if d = 2, and
option = "risk" if d > 2.

Table 3: Key arguments and descriptions of the function clus.torus

7 Other methods of clustering on the torus

Gao et al. (2018) and Jung et al. (2021) used the extrinsic k-means , which uses Euclidean embedding and
enjoys fast computation of the vanilla k-means algorithm. That is, consider the mapping f : Tp → R2p

as
f
(
ϕ1, · · · , ϕp

)
=

(
cos ϕ1, · · · , cos ϕp, sin ϕ1, · · · , sin ϕp

)
which is the simple Euclidean embedding and is injective. Since R2p is a Euclidean space, the k-means
clustering for vector-valued data can be used. The function kmeans.torus implements the extrinsic
k-means clustering. In the simple code example below, the number of cluster is set to k = 3, and the
result shows the membership assignment by the extrinsic k-means algorithm.

set.seed(2021)
exkmeans <- kmeans.torus(SARS_CoV_2, centers = 3, nstart = 30)
head(exkmeans$membership)

27.B.ALA 28.B.TYR 29.B.THR 30.B.ASN 31.B.SER 32.B.PHE
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1 1 1 1 2 3

Distance-based clustering methods, such as hierarchical clustering, only requires a pairwise
distances of the data points. The function ang.pdist generates the distance matrix for the input data
in which the angular distance between the two points on Tp is measured. Combined with hclust,
the pairwise angular distances are used to provide a hierarchical clustering using, e.g., the complete
linkage, as done in the following example.

distmat <- ang.pdist(SARS_CoV_2)
hc <- hclust(distmat, method = "complete")
hc.result <- cutree(hc, k = 3)
head(hc.result)

[1] 1 1 1 1 2 3

Figure 9 shows the results for the two clustering algorithms, discussed above. The left panel shows
that the Euclidean embedding reflects the rotational nature of angular data. The right panel shows that
the distance-based clustering methods is well-applied with ang.pdist. Note that both the extrinsic
k-means and the hierarchical clustering results are invariant to different representations of angles.
That is, the cluster assignments do not change if Xn is replaced by Xn − π. However, these methods
are inadequate when true clusters are irregularly shaped and when there are outliers (Jung et al., 2021).
In addition, the number of clusters needs to be predetermined for both methods. In contrast, these
weaknesses are mostly resolved by using the predictive clustering.

Figure 9: The clustering results for SARS-CoV-2 by using extrinsic k-means and hierarchical clustering
under the 3 clusters assumption. The left panel shows the result for extrinsic k-means, and the right
panel shows the result for hierarchical clustering.

8 Summary and discussion

In this paper, we introduced the package ClusTorus which contains various tools and routines for
multivariate angular data, including kernel density estimates and mixture model estimates. ClusTorus
performs clustering based on conformal prediction sets. We demonstrated our implementation with
data on T4. The clustering by ClusTorus can result in cluster assignment either with or without an
outlier class. A reviewer pointed out that the package MoEClust (Murphy and Murphy, 2020, 2021)
can also dispose some points as outliers. However, MoEClust only works on Euclidean space, not on
Tp.

There are some possible future developments for ClusTorus. First, EM algorithms for von Mises
mixture models on high dimensional tori (e.g., T4) can be implemented assuming independence of
angles in each component. Using closed-form approximations of maximum likelihood estimators
for univariate von Mises-Fisher distributions (Banerjee et al., 2005; Hornik and Bettina, 2014), fitting
mixtures of product components can be done efficiently (Grim, 2017). Another direction is obtained by
viewing clustering based on (11) by varying α as surveying birth and death of connected components.
This can be dealt with a persistence diagram, a concept of topological data analysis. Hence, instead of
using Algorithm 3, one may choose desirable α using persistence diagram.
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9 Appendix

Elliptical k-means algorithm

In this appendix, we outline the elliptical k-means algorithm for the data on the torus, implemented in
the function ellip.kmeans.torus. The algorithm is used to estimate the parameters of the mixture
model (5), approximated as in (8). Note that the EM algorithm can be used for parameter estimation
for mixture models in low dimensions. The EM algorithms of Jung et al. (2021) is implemented in
the function EMsinvMmix, but works for p = 2 only. For p > 3, EM algorithms suffer from high
computational costs (Mardia et al., 2012). To circumvent this problem, we estimate the parameters by
modifying the generalized Lloyd’s algorithm (Shin et al., 2019), also known as the elliptical k-means
algorithm (Sung and Poggio, 1998; Bishop, 2006). For vector-valued data, Shin et al. (2019) showed
that the elliptical k-means algorithm estimates the parameters sufficiently well for the max-mixture
density case as (7).

Suppose y1, · · · , yn ∈ Tp are an independent and identically distributed sample. Using the
approximated density (8), the approximated likelihood, L′, is

L′ (µ, Σ) = (2π)−np/2 |Σ|−n/2 exp
[
−n

2
tr
(

SΣ−1
)]

(13)

where S = 1
n ∑n

i=1 (yi ⊖ µ) (yi ⊖ µ)T . Thus, if µ is known, Σ̂ = S maximizes L′. Following Mardia et al.

(2012), the mean µ is estimated as follows. Let Ūj = ∑n
i=1 cos

(
yij

)
/n and V̄j = ∑n

i=1 sin
(

yij

)
/n for

j = 1, · · · , p. Then, µ̂ =
(
µ̂1, · · · , µ̂p

)T ,

µ̂j = arctan
V̄j

Ūj
, j = 1, · · · , p (14)

which is the maximum likelihood estimator of mean direction of von Mises-Fisher distribution (Mardia
and Jupp, 1999).

With these approximated maximum likelihood estimators, the elliptical k-means algorithm, de-
scribed in Algorithm 4, maximizes the likelihood corresponding to the max-mixture model (7). The
algorithm is implemented in the function ellip.kmeans.torus.

Algorithm 4 Elliptical k-means algorithm for the torus

1: procedure ELLIPTICAL K-MEANS({X1, · · · , Xn}, J)
2: Initialize πj, θj =

(
µj, Σj

)
, j = 1, · · · , J

3: set

wi,j =

{
1, if j = arg maxl

[
− (Xi ⊖ µl)

T Σ−1
l (Xi ⊖ µl)− log |Σl |+ 2 log πl

]
0, otherwise

Ij =
{

i ∈ {1, · · · , n} |wi,j = 1
}

4: Update µj as (14) with {Xi}i∈Ij
for j = 1, · · · , J

5: Update Σj =
1

∑n
i=1 wi,j

∑n
i=1 wi,j

(
Xi ⊖ µj

) (
Xi ⊖ µj

)T for j = 1, · · · , J

6: Update πj =
1
n ∑n

i=1 wi,j for j = 1, · · · , J
7: Repeat step 3-6 until converge
8: end procedure

Note that the initial values require an initial clustering. For this, we use other clustering algorithms
such as the extrinsic k-means or the hierarchical clustering algorithms, and can be specified by
argument init of ellip.kmeans.torus and icp.torus. One may specify arguments for either hlcust
or kmeans in icp.torus. For example, one may specify the choice of initial values as follows.

icp.torus(data = SARS_CoV_2, J = 4, init = "kmeans", nstart = 30)
icp.torus(data = SARS_CoV_2, J = 4, init = "hierarchical", method = "complete")

By default, the hierarchical clustering with complete linkage is used. Data analysis in this article
using icp.torus or clus.torus was performed with the default initialization.
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Constraints for mixture models

The protein structure data we aim to analyze typically consist of hundreds of angles (observations).
Fitting the mixture with a large number of components may give inefficient estimators. Thus, we have
implemented options for reducing the number of model parameters, by constraining the shape of
the ellipsoids, or the covariance matrices. Applying the constraints lead much faster convergence
for estimating parameters (Grim, 2017). We list three types of constraints for covariance matrices Σj.
These constraints are specified by setting the arguments mixturefitmethod and kmeansfitmethod (for
icp.torus) and type (for EMsinvMmix and ellip.kmeans.torus). We explain in terms of the arguments
for the function icp.torus.

• Σj = σ2
j Ip for some σ2

j > 0 for all j, and the prediction set will be the union of spheres.
mixturefitmethod = "circular" and kmeansfitmethod = "heterogeneous-circular" rep-
resents this constraint. Furthermore, if σ2

1 = · · · = σ2
J and πj = 1/J for all j, then all the

spheres have the same radii and this constraint can be designated with kmeansfitmethod =
"homogeneous-circular".

• Σj = diag
(

σ2
jk

)
k=1,··· ,p

for σ2
jk > 0, and the fitted ellipsoids Êj (j = 1, · · · , J) are the axis-aligned

ellipsoids. mixturefitmethod = "axis-aligned" represents this constraint.

• No constraint for Σj, and Êj (j = 1, · · · , J) are any ellipsoids. This option can be designated by
mixturefitmethod = "general" and kmeansfitmethod = "general".

The default values for icp.torus are kmeansfitmethod = "general" and mixturefitmethod =
"axis-aligned".

List of S3 classes defined in ClusTorus

Several S3 classes are defined in the packages ClusTorus. A list of the S3 classes is given in Table 4.

S3 class functions methods
cp.torus.kde cp.torus.kde print, plot
icp.torus icp.torus print, plot, LogLik, predict

icp.torus.eval icp.torus.eval print

cluster.obj cluster.assign.torus print, plot
kmeans.torus kmeans.torus print, predict

hyperparam.torus hyperparam.torus print, plot
hyperparam.J hyperparam.J print, plot

hyperparam.alpha hyperparam.alpha print, plot
clus.torus clus.torus print, plot

Table 4: List of S3 classes, the functions returning a list with corresponding S3 class, and available
methods for the S3 class.
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kStatistics: Unbiased Estimates of Joint
Cumulant Products from the Multivariate
Faà Di Bruno’s Formula
by Elvira Di Nardo and Giuseppe Guarino

Abstract kStatistics is a package in R that serves as a unified framework for estimating univariate and
multivariate cumulants as well as products of univariate and multivariate cumulants of a random
sample, using unbiased estimators with minimum variance. The main computational machinery of
kStatistics is an algorithm for computing multi-index partitions. The same algorithm underlies the
general-purpose multivariate Faà di Bruno’s formula, which therefore has been included in the last
release of the package. This formula gives the coefficients of formal power series compositions as
well as the partial derivatives of multivariable function compositions. One of the most significant
applications of this formula is the possibility to generate many well-known polynomial families as
special cases. So, in the package, there are special functions for generating very popular polynomial
families, such as the Bell polynomials. However, further families can be obtained, for suitable choices
of the formal power series involved in the composition or when suitable symbolic strategies are
employed. In both cases, we give examples on how to modify the R codes of the package to accomplish
this task. Future developments are addressed at the end of the paper

1 Introduction

Joint cumulants are usually employed for measuring interactions among two or more random variables
simultaneously, extending the familiar notion of covariance to higher orders. More in details, suppose
Y a random vector with moment generating function MY (z), for z = (z1, . . . , zm) in a suitable
neighborhood of 0. Thus MY (z) can be expressed as

MY (z) = exp
(
KY (z)

)
(1)

where KY (z) is the cumulant generating function of Y . If1 i ∈Nm
0 and

MY (z) = 1 + ∑
|i|>0

E[Y i]

i!
zi KY (z) = ∑

|i|>0

ki(Y)
i!

zi (2)

then {ki(Y)} are said the joint cumulants of {E[Y i]}. From a theoretical point of view, cumulants are a
useful sequence due to the following properties (Elvira Di Nardo 2011):

• Orthogonality: Joint cumulants of independent random vectors are zero, that is ki(Y) = 0 for
|i| > 0 if Y = (Y1, Y2) with Y1 independent of Y2.

• Additivity: Cumulants linearize on independent random vectors, that is
ki(Y1 + Y2) = ki(Y1) + ki(Y2) for |i| > 0 with Y1 independent of Y2.

• Multilinearity: ki(AY) = ∑j1,...,jm (A)
j1
i1
· · · (A)jm

im kj(Y) for |i| > 0 with A ∈ Rm ×Rm.

• Semi-invariance: If b ∈ Rm then ki(Y + b) = ki(Y) for |i| ≥ 2.

Thanks to all these properties, joint cumulants have a wide range of applications: from statistical
inference and time series (Jammalamadaka, Rao, and Terdik 2006) to asymptotic theory (Rao and Wong
1999), from spatial statistics modeling (Dimitrakopoulos, Mustapha, and Gloaguen 2010) to signal
processing (Giannakis 1987), from non-linear systems identification (Oualla et al. 2021) to Wiener
chaos (Peccati and Taqqu 2011), just to mention a few. Indeed it is also well known that cumulants
of order greater than two are zero for random vectors which are Gaussian. Therefore, higher order
cumulants are often used in testing for multivariate Gaussianity (Jammalamadaka, Rao, and Terdik
2006).

The i-th multivariate k-statistic is a symmetric function of the multivariate random sample whose
expectation is the joint cumulant of order i of the population characters. These estimators have
minimum variance when compared to all other unbiased estimators and are built by free-distribution
methods without using sample moments. Due to the properties of joint cumulants, multivariate
k-statistics are employed to check multivariate gaussianity (Ferreira, Magueijo, and Silk 1997) or

1If i ∈Nm
0 is a multi-index then we set i! = i1! · · · im ! and |i| = i1 + · · ·+ im.
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to quantify high-order interactions among data (Geng, Liang, and Wang 2011), for applications in
topology inference (Smith et al. 2022), in neuronal science (Staude, Rotter, and Grün 2010) and in
mathematical finance (E. Di Nardo, Marena, and Semeraro 2020). Polykays are unbiased estimators
of cumulant products (Robson 1957) and are particularly useful in estimating covariances between
k-statistics (McCullagh 1987). In the kStatistics package (E. Di Nardo and Guarino 2021), the nPolyk
function provides k-statistics and polykays as well as their multivariate generalizations. Further
implementations are in Phyton (Smith 2020), in Maple (Guarino, Senato, and Di Nardo 2009) and in
Mathematica (Rose and Smith 2002).

All these estimators are described with a wealth of details by Stuart and Ord (1994) and McCullagh
(1987) and their construction relied on some well-known change of bases in the ring of symmetric
polynomials. In Elvira Di Nardo (2011) a different approach is followed using suitable polynomial
families and symbolic strategies. This procedure was the core of the first release (version 1.0) of the
kStatistics package (E. Di Nardo and Guarino 2019), as the initial goal was to implement tools for
the estimation of cumulants and cumulant products, both in the univariate and in the multivariate
case. As the referred polynomial families can be traced back to the generalized (complete exponential)
Bell polynomials, the latest version of the package (E. Di Nardo and Guarino 2021) has also included
procedures to generate these polynomials together with a number of special cases.

Let us recall that the generalized (complete exponential) Bell polynomials are a family of polynomi-
als involving multivariable Sheffer sequences (Brown 1979). Among its various applications, we recall
the cumulant polynomial sequences and their connection with special families of stochastic processes
(E. Di Nardo 2016a). Indeed, cumulant polynomials allow us to compute moments and cumulants of
multivariate Lévy processes (E. Di Nardo and Oliva 2011), subordinated multivariate Lévy processes
(E. Di Nardo, Marena, and Semeraro 2020) and multivariate compound Poisson processes (E. Di Nardo
2016b). Further examples can be found in Reiner (1976), Shrivastava (2002), Withers and Nadarajah
(2010) or Privault (2021).

The generalized (complete exponential) Bell polynomials arise from the multivariate Faà di Bruno’s
formula, whose computation has been included in the latest version of the kStatistics package. In
enumerative combinatorics, Faà di Bruno’s formula is employed in dealing with formal power series.
In particular the multivariate Faà di Bruno’s formula gives the i-th coefficient of the composition (E.
Di Nardo, Guarino, and Senato 2011)

h(z) = f (g1(z)− 1, . . . , gn(z)− 1) (3)

where f and gj for j = 1, . . . , n are (exponential) formal power series

f (x) = ∑
|t|≥0

ft
xt

t!
and gj(z) = ∑

|s|≥0
gj;s

zs

s!
, (4)

with x = (x1, . . . , xn), z = (z1, . . . , zm) and2 xt = xt1
1 · · · x

tn
n , zs = zs1

1 · · · z
sm
m , ft = ft1,...,tn , gj;s =

gj;s1,...,sm for j = 1, . . . , n, and f0 = g1;0 = · · · = gn;0 = 1. For instance, from (1) and (2) joint
moments can be recovered from joint cumulants using the multivariate Faà di Bruno’s formula for
n = 1, g(z) = 1 + KY (z) and f (x) = exp(x). As 1 + KY (z) = 1+ log([MY (z) − 1] + 1) then joint
cumulants can be recovered from joint moments using the multivariate Faà di Bruno’s formula for
n = 1, g(z) = MY (z) and f (x) = 1 + log(1 + x). Let us remark that the exponential form (4) of the
formal power series f and {gj} is not a constraint. To work with ordinary formal power series, the
multi-index sequence { ft} needs to be replaced by the sequence {t! ft} as well as the multi-index
sequence {gj;s} by the sequence {s!gj;s} for j = 1, . . . , n. In this case, the multivariate Faà di Bruno’s
formula gives the coefficient i!h̃i with h̃i the i-th coefficient of the (ordinary) formal power series
composition (3).

The problem of finding suitable and easily manageable expressions of the multivariate Faà di
Bruno’s formula has received attention from several researchers over the years. This is because the
multivariate Faà di Bruno’s formula is a very general-purpose tool with many applications. We
refer to the paper of Leipnik and Pearce (2007) for a detailed list of references on this subject and a
detailed account of its applications. Further applications can be found in Savits (2006), Chacón and
Duong (2015), Shabat and Efendiev (2017) and Nguwi, Penent, and Privault (2022). A classical way to
generate the multivariate Faà di Bruno’s formula involves the partial derivatives of a composition of
multivariable functions. Suppose f (x) and g1(z), . . . , gn(z) in (3) be differentiable functions a certain
number of times. The multivariate Faà di Bruno’s formula gives the partial derivative of order i of
h(z) in z0

hi =
∂|i|

∂zi1
1 · · · ∂zim

m
h(z1, . . . , zm)

∣∣∣
z=z0

for |i| > 0, (5)

2We use these notations independently if the powers or the subscripts are row vectors or column vectors.
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assuming the partial derivatives of order t of f (x) exist in x0 = (g1(z0), . . . , gn(z0))

ft =
∂|t|

∂xt1
1 · · · ∂xtn

n
f (x1, . . . , xn)

∣∣∣
x=x0

for 0 < |t| ≤ |i|,

and the partial derivatives of order s of gj(z) exist in z0 for j = 1, . . . , n

gj,s =
∂|s|

∂zs1
1 · · · ∂zsm

m
gj(z1, . . . , zm)

∣∣∣
z=z0

for 0 < |s| ≤ |i|.

There are various ways to express hi in (5), see for example Mishkov (2000), Hernández Encinas
and Muñoz Masqué (2003) and Ma (2009). Symbolic manipulation using Macsyma, Maple, Mathematica,
etc. can produce any required order of (5), by applying the chain rule recursively and using a function
that provides partial derivatives. Also in R, there are some functions for computing partial derivatives
(Clausen and Sokol 2020). Despite its conceptual simplicity, applications of the chain rule become
impractical for its cumbersome computation even for small values of its order. As the number of
additive terms becomes huge, the output is often untidy and further manipulations are required to
simplify the result. By using combinatorial methods, Constantine and Savits (1996) have carried out
the following expression of the multivariate Faà di Bruno’s formula

hi = i! ∑
1≤|t|≤|i|

ft

|i|

∑
k=1

∑
pk(i,t)

k

∏
j=1

(gl j )
qj

qj!(l j!)
|qj |

(6)

where (gs)q = ∏n
j=1(gj,s)

qj with q = (q1, . . . , qn) and

pk(i, t) =

(q1, . . . , qk; l1, . . . , lk) : |qj| > 0,
k

∑
j=1

qj = t,
k

∑
j=1
|qj|l j = i


with q1, . . . , qk ∈Nn

0 and l1, . . . , lk ∈Nm
0 such that3 0 ≺ l1 ≺ . . . ≺ lk.

A completely different approach concerns the combinatorics of partial derivatives as Hardy (2006)
pointed out for the univariate-multivariate composition using multisets and collapsing partitions.
Motivated by his results and using the umbral calculus, which is a symbolic method particularly
useful in dealing with formal power series (4), the combinatorics behind (6) has been simplified and a
different expression has been given in E. Di Nardo, Guarino, and Senato (2011). The key tool is the
notion of partition of a multi-index which parallels the multiset partitions given in Hardy (2006).

The contribution of this paper is multi-sided. We explain how to recover in R a multi-index partition,
which is a combinatorial device. For statistical purposes, we show how to recover k-statistics and their
multivariate generalizations using the referred polynomial approach and multi-index partitions. Then,
we explain the main steps of the MFB function producing the multivariate Faà di Bruno’s formula,
without any reference to the umbral calculus or chain rules and whose applications go beyond
statistical purposes. The main idea is to expand the multivariable polynomial

∑
(

i
s1, . . . , sn

)
q1,s1 (y1) · · · qn,sn (yn)

where q1,s1 (y1) . . . qn,sn (yn) are suitable polynomials and the sum is over all the compositions of i in n
parts, that is all the n-tuples (s1, . . . , sn) of non-negative integer m-tuples such that s1 + · · ·+ sn = i.
Readers interested in the umbral setting may refer to Elvira Di Nardo (2011) and references therein.

Consequently, the MFB function gives an efficient computation of the following compositions:

• univariate with univariate, that is n = m = 1;

• univariate with multivariate, that is n = 1 and m > 1;

• multivariate with univariate, that is n > 1 and m = 1;

• multivariate with multivariate, that is n > 1 and m > 1.

The kStatistics package includes additional functions, for some of the most widespread applica-
tions of the multivariate Faà di Bruno’s formula. Indeed, not only this formula permits to generate
joint cumulants and their inverse relations, but also further general families of polynomials. Therefore,
we have set up special procedures for those families used very often in applications. These functions

3If µ, ν ∈Nm
0 we have µ ≺ ν if |µ| < |ν| or |µ| = |ν| and µ1 < ν1 or |µ| = |ν| and µ1 = ν1, . . . , µk = νk, µk+1 <

νk+1 for some 1 ≤ k < m.
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should be considered an easy to manage interfaces of the MFB function, with the aim of simplifying
its application. Moreover, since the R codes are free, the user might follow similar steps to generate
polynomial families not included in the package but always coming from the multivariate Faà di
Bruno’s formula. The construction of new families of polynomials can be done mainly in two ways.
The first way is to choose appropriately the coefficients { ft} and {gj;s} in (4). The second way is to use
some suitable symbolic strategies, as discussed in Elvira Di Nardo (2011). For both cases, we provide
examples.

The paper is organized as follows. The next section explains the main steps of the algorithm that
produces multi-index partitions with particular emphasis on its combinatorics. Then we present the
symbolic strategy to generate k-statistics and their generalizations using suitable polynomial sequences
and multi-index partitions. The subsequent section deals with generalized (complete exponential) Bell
polynomials and some special cases corresponding to well-known families of polynomials. We have
also included the procedures to generate joint cumulants from joint moments and vice versa. In the
last section we explain the main steps of the algorithm to produce the multivariate Faà di Bruno’s
formula. We give examples of how to build new polynomials not included in the package. Some
concluding remarks end the paper.

2 Partitions of a multi-index

Most routines of the kStatistics package use the partitions of a multi-index i. Therefore, before
describing any of these routines, we recall the notion of multi-index partition and describe the
algorithm for its construction as implemented in the mkmSet function of the package.

A partition of the multi-index i = (i1, . . . , im) ∈Nm
0 is a matrix Λ = (λr1

1 , λr2
2 , . . .) of non-negative

integers with m rows and no zero columns such that

• r1 ≥ 1 columns are equal to λ1, r2 ≥ 1 columns are equal to λ2 and so on;

• the columns λ1 < λ2 < . . . are in lexicographic order4;

• the sum of the integers in the t-th row is equal to it, that is λt1 + λt2 + · · · = it for t = 1, 2, . . . , m.

We write Λ ⊢ i to denote that Λ is a partition of i. Some further notations are:

• m(Λ) = (r1, r2, . . .), the vector of multiplicities of λ1, λ2, . . .

• l(Λ) = |m(Λ)| = r1 + r2 + · · · , the number of columns of Λ with l(Λ) = 0 if Λ ⊢ 0

• Λ! = (λ1!)r1 (λ2!)r2 · · ·

Example 1: The partitions of i = (2, 1) are the matrices(
2
1

)
,
(

0 2
1 0

)
,
(

1 1
0 1

)
,
(

0 1 1
1 0 0

)
= (λ1, λ2

2),

with

λ1 =

(
0
1

)
and λ2 =

(
1
0

)
.

The algorithm to get all the partitions of a multi-index resorts to multiset subdivisions. Let’s start
by recalling the notion of multiset. A multiset M is a “set with multiplicities”. Suppose a ∈ M. Then
the multiplicity of a is the number of times a occurs in M as a member. For example, the integers 3 and
2 are the multiplicities of a and b respectively in M = {a, a, a, b, b}. A subdivision of the multiset M is
a multiset of sub-multisets of M, such that their disjoint union returns M. Examples of subdivisions of
M = {a, a, a, b, b} are

S1 = {{a}, {a, b}, {a, b}}, S2 = {{a}, {a, a, b}, {b}}, (7)

S3 = {{a}, {a, a}, {b}, {b}}. (8)

The subdivisions of the multiset M = {a, a, a, b, b} are in one-to-one correspondence with the partitions
Λ ⊢ (3, 2). For example, the subdivisions (7) correspond to the partitions Λ1 = (λ2, λ2

3) and Λ2 =

(λ1, λ2, λ5) respectively, while (8) to Λ3 = (λ2
1, λ2, λ4) with

λ1 =

(
0
1

)
→{b} λ2 =

(
1
0

)
→{a}

4As example (a1, b1) < (a2, b2) if a1 < a2 or a1 = a2 and b1 < b2.
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λ3 =

(
1
1

)
→{a, b} λ4 =

(
2
0

)
→{a, a} λ5 =

(
2
1

)
→{a, a, b}.

Multiset subdivisions can be recovered by using collapsing set partitions (Hardy 2006). If the members
1, 2, 3 of the set {1, 2, 3, 4, 5} are made indistinguishable from each other and called a, and 4 and 5 are
made indistinguishable from each other and called b, then the set {1, 2, 3, 4, 5} has “collapsed” to the
multiset M = {a, a, a, b, b}. Therefore the subdivisions of M can be recovered using the same substitu-
tion in the partitions of {1, 2, 3, 4, 5}. For example, S1 in (7) can be recovered from {{1, 4}, {2, 5}, {3}}
or {{3, 5}, {2, 4}, {1}} and so on. As this last example shows, a subdivision might correspond to
several partitions. The number of partitions corresponding to the same subdivision can be computed
using the countP function of the package. However, to find multi-index partitions using set partitions
is not a particularly efficient algorithm since the computational cost is proportional to the n-th Bell
number, if n is the sum of the multi-index components (Charalambides 2002).

The mkmSet function is based on a different strategy which takes into account the partitions of the
multi-index components. When m = 1, the mkmSet function lists all the partitions λ of the integer
i. Recall that a partition of an integer i is a sequence λ = (λ1, λ2, . . .) of weakly decreasing positive
integers, named parts of λ, such that λ1 + λ2 + · · · = i. A different notation is λ = (1r1 , 2r2 , . . .), where
r1, r2, . . . are the number of parts of λ equal to 1, 2, . . . respectively. The length of the partition is
l(λ) = r1 + r2 + · · · . We write λ ⊢ i to denote that λ is a partition of i. In the following, we describe
the main steps of the mkmSet function by working on an example.

Suppose we want to generate all the partitions of (3, 2). First consider the partitions of (3, 0)
obtained from the partitions (3), (1, 2), (13) of the integer 3, and the partitions of (0, 2) obtained from
the partitions (2), (12) of the integer 2, that is

Λ1 =

(
3
0

)
, Λ2 =

(
1 2
0 0

)
, Λ3 =

(
1 1 1
0 0 0

)
⊢
(

3
0

)
(9)

Λ4 =

(
0
2

)
, Λ5 =

(
0 0
1 1

)
⊢
(

0
2

)
. (10)

The following iterated adding-appending rule is thus implemented.

1. Consider the partition Λ5 in (10).

1.1 Add the first column of Λ5 to each column of Λ1, Λ2 and Λ3 in (9) one by one with the following
rules: the sum must be done only once (if the column has multiplicities greater than one) taking as
reference the first column; the sum can be done only to columns whose second component is zero and
without subsequent elements (in the same row) greater than or equal to the integer we are adding.
Then we have

Λ(1,1)
1 =

(
3
1

)
Λ(1,1)

2 =

(
1 2
1 0

)
Λ(2,1)

2 =

(
1 2
0 1

)
Λ(1,1)

3 =

(
1 1 1
1 0 0

)
. (11)

1.2 Append the same column to each partition Λ1, Λ2 and Λ3 in (10), that is

Λ(1,2)
1 =

(
3 0
0 1

)
Λ(1,2)

2 =

(
1 2 0
0 0 1

)
Λ(1,2)

3 =

(
1 1 1 0
0 0 0 1

)
. (12)

1.3 Repeat steps 1.1 and 1.2 for the second column of Λ5 with respect to the partitions generated in
(11) and (12) :

Λ(1,1)
1 =

(
3
1

)
add⇒ rule out append⇒

(
3 0
1 1

)
Λ(1,1)

2 =

(
1 2
1 0

)
add⇒

(
1 2
1 1

)
append⇒

(
1 2 0
1 0 1

)
Λ(2,1)

2 =

(
1 2
0 1

)
add⇒ rule out append⇒

(
1 2 0
0 1 1

)
Λ(1,1)

3 =

(
1 1 1
1 0 0

)
add⇒

(
1 1 1
1 1 0

)
append⇒

(
1 1 1 0
1 0 0 1

)
Λ(1,2)

1 =

(
3 0
0 1

)
add⇒ rule out append⇒

(
3 0 0
0 1 1

)
Λ(1,2)

2 =

(
1 2 0
0 0 1

)
add⇒ rule out append⇒

(
1 2 0 0
0 0 1 1

)
Λ(1,2)

3 =

(
1 1 1 0
0 0 0 1

)
add⇒ rule out append⇒

(
1 1 1 0 0
0 0 0 1 1

)
2. Repeat step 1 for Λ4 in (10) :
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Λ1 =

(
3
0

)
add⇒

(
3
2

)
append⇒

(
3 0
0 2

)
Λ2 =

(
1 2
0 0

)
add⇒

(
1 2
2 0

)
,
(

1 2
0 2

)
append⇒

(
1 2 0
0 0 2

)
Λ3 =

(
1 1 1
0 0 0

)
add⇒

(
1 1 1
2 0 0

)
append⇒

(
1 1 1 0
0 0 0 2

)
More generally, the mkmSet function lists all the partitions Λ ⊢ i, with the columns reordered in
increasing lexicographic order, together with the number of set partitions corresponding to the same
multi-index partition, that is i!/Λ!m(Λ)!. In the latest version of the kStatistics package, among the
input parameters of the mkmSet function, an input flag parameter has been inserted aiming to print the
multi-index partitions in a more compact form. See the following example.

Example 2: To get all the partitions of (2, 1) run

> mkmSet(c(2,1),TRUE)
[( 0 1 )( 1 0 )( 1 0 ), 1 ]
[( 0 1 )( 2 0 ), 1 ]
[( 1 0 )( 1 1 ), 2 ]
[( 2 1 ), 1 ]

Note that the integers 1, 1, 2, 1 correspond to the coefficients 2!1!/Λ!m(Λ)!.

Example 3: To get all the partitions of the integer 3 run

> mkmSet(c(3),TRUE)
[( 1 )( 1 )( 1 ), 1 ]
[( 1 )( 2 ), 3 ]
[( 3 ), 1 ]

The mkmSet function is called by the intPart function, specifically designed with the purpose of
listing only all the partitions of a given integer in increasing order. The input flag parameter allows us
to print the partitions in a more compact form.

Example 4: To get all the partitions of the integer 4 run

> intPart(4,TRUE)
[ 1 1 1 1 ]
[ 1 1 2 ]
[ 2 2 ]
[ 1 3 ]
[ 4 ]

The parts function of the partitions package (Hankin 2006) lists all the partitions of a given integer,
but in decreasing order. Instead the get.partitions function of the nilde package (Arnqvist et al.
2021) finds all the partitions of a given integer with a fixed length l(λ) (Voinov and Pya Arnqvist 2017).
If l(λ) is equal to the given integer, the get.partitions function lists all the partitions in increasing
order.

3 kStatistics

The i-th k-statistic κi is the (unique) symmetric estimator whose expectation is the i-th cumulant ki(Y)
of a population character Y and whose variance is a minimum relative to all other unbiased estimators.

The nKS function generates the numerical value of the i-th k-statistic starting from a data sample.
The computation relies on the following polynomials

Pt(y) =
t

∑
j=1

yjS(t, j)(−1)j−1(j− 1)! for t = 1, . . . , i (13)

where {S(t, j)} are the Stirling numbers of second kind, generated trough the nStirling2 function. In
detail, suppose to have a sample {a1, . . . , aN} of N numerical data and denote with pt the t-th power
sum in the numerical data

pt(a1, . . . , aN) =
N

∑
j=1

at
j , for t ≥ 1. (14)
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To carry out the numerical value of the i-th k-statistic for i ≤ N, the nKS function computes the explicit
expression of the polynomial of degree i

Qi(y) = ∑
λ⊢i

dλPλ(y)pλ (15)

where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ i, and

dλ =
i!

(1!)r1 r1!(2!)r2 r2! · · · Pλ(y) = [P1(y)]r1 [P2(y)]r2 · · · pλ = [p1]
r1 [p2]

r2 · · · (16)

with {Pt(y)} and {pt} given in (13) and (14) respectively. The final step is to replace the powers yt in
the explicit form of the polynomial (15) with (−1)t−1(t− 1)!/(N)t for t = 1, . . . , i.
The main steps of the nKS function are summarized in the following.

Function nKS

i) Compute the power sums pt in (14) for t = 1, . . . , i.

ii) Compute S(t, j)(−1)j−1(j− 1)! in (13) for j = 1, . . . , t and t = 1, . . . , i.

iii) Using the mkmSet function, compute all the partitions λ ⊢ i.

iv) For a given partition λ, expand the product Pλ(y) in (15) and compute the coefficient
dλ pλ of each monomial in Qi(y) using (16).

v) For t = 1, . . . , i multiply (−1)t−1(t− 1)!/(N)t with the coefficients of the monomial of
degree t carried out at the previous step and do the sum over all the resulting numerical
values.

vi) Repeat steps iv) and v) for all the partitions λ carried out at step iii) and do the sum
over all the resulting numerical values.

Example 5: Using (15) for i = 1, we have Q1(y) = P1(y)p1 = y ∑N
j=1 aj and plugging 1/N in place of

y, the sample mean is recovered. Using (15) for i = 2, we have

Q2(y) = P2(y)p2 +
(
P1(y)p1

)2
= y

N

∑
j=1

a2
j + y2

(( N

∑
j=1

aj
)2 −

N

∑
j=1

a2
j

)

and plugging 1/N in place of y and −1/N(N − 1) in place of y2, the sample variance is recovered.
Compare the values of the sample mean, computed with the nKS function and the mean function, and
the sample variance, computed with the nKS function and the var function, for the following dataset:

> data<-c(16.34, 10.76, 11.84, 13.55, 15.85, 18.20, 7.51, 10.22, 12.52, 14.68,
16.08, 19.43, 8.12, 11.20, 12.95, 14.77, 16.83, 19.80, 8.55, 11.58, 12.10, 15.02,
16.83, 16.98, 19.92, 9.47, 11.68, 13.41, 15.35, 19.11)
> nKS(1,data)
[1] 14.02167
> mean(data)
[1] 14.02167
> nKS(2,data)
[1] 12.65007
> var(data)
[1] 12.65007

Using the nKS function, for instance, the sample skewness and the sample kurtosis can be computed.
Let us recall that the sample skewness is a measure of the central tendency of a univariate sample
and can be computed as κ3/κ3/2

2 where κ2 and κ3 are the second and the third k-statistics respectively
(Joanes and Gill 1998). The sample kurtosis is a measure of the tail-heaviness of a sample distribution.
The sample excess kurtosis is defined as the sample kurtosis minus 3 and can be computed as κ4/κ2

2
where κ2 and κ4 are the second and the fourth k-statistics respectively (Joanes and Gill 1998).

> nKS(3,data)/sqrt(nKS(2,data))^(3/2)
[1] -0.03216229
> nKS(4,data)/nKS(2,data)^2 + 3
[1] 2.114708
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A similar strategy is employed to compute multivariate k-statistics (the nKM function) of a sample
data matrix whose columns each represent a population character. To simplify the notation, in
the following we deal with the case of a bivariate data set {(a1,1, a2,1) . . . , (a1,N , a2,N)} of N paired
numerical data. Denote with p(s,t) the bivariate power sum in the paired data

p(s,t)[(a1,1, a2,1), . . . , (a1,N , a2,N)] =
N

∑
j=1

as
1,ja

t
2,j for s, t ≥ 1. (17)

Suppose i = (i1, i2) with i1, i2 ≤ N and set i = i1 + i2. To carry out the numerical value of the i-th
multivariate k-statistic, the nKM function finds the explicit expression of the polynomial

Qi(y) = ∑
Λ⊢i

dΛPΛ(y)pΛ (18)

where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ i, and

dΛ =
i!

Λ!m(Λ)!
PΛ(y) = [P|λ1|(y)]

r1 [P|λ2|(y)]
r2 · · · pΛ = [pλ1 ]

r1 [pλ2 ]
r2 · · · (19)

with {Pt(y)} and {p(s,t)} given in (13) and (17) respectively. As for the univariate k-statistics, the
final step consists in replacing the powers yj in the explicit expression of the polynomial (18) with the
numerical values (−1)j−1(j− 1)!/(N)j for j = 1, . . . , i.
The main steps of the nKM function are summarized in the following.

Function nKM

i) Compute the bivariate power sums p(s,t) in (17) for s = 1, . . . , i1 and t = 1, . . . , i2.

ii) For i = i1 + i2, compute S(t, j)(−1)j−1(j− 1)! in (13) for j = 1, . . . , t and t = 1, . . . , i.

iii) Using the mkmSet function, compute all the partitions Λ ⊢ i.

iv) For a given partition Λ, expand the product PΛ(y) in (18) and compute the coefficient
dΛ pΛ of each monomial in Qi(y) using (19).

v) For j = 1, . . . , i, multiply (−1)j−1(j− 1)!/(N)j with the coefficient of the monomial of
degree j carried out at the previous step and do the sum over all the resulting numerical
values.

vi) Repeat steps iv) and v) for all the partitions Λ carried out at step iii) and do the sum
over all the resulting numerical values.

Example 6: To estimate the joint cumulant c2,1 of the following dataset, run

> data1<-list(c(5.31,11.16),c(3.26,3.26),c(2.35,2.35),c(8.32,14.34),
c(13.48,49.45),c(6.25,15.05),c(7.01,7.01),c(8.52,8.52),c(0.45,0.45),
c(12.08,12.08),c(19.39,10.42))
> nKM(c(2,1),data1)
[1] -23.7379

If the first column are observations of a population character X and the second column obser-
vations of a population character Y, then c2,1 measures how far from connectedness (as opposite to
independence) are X2 and Y (E. Di Nardo, Marena, and Semeraro 2020). A similar meaning has the
estimation of the joint cumulant c2,2,2 of the following dataset:

> data2<-list(c(5.31,11.16,4.23),c(3.26,3.26,4.10),c(2.35,2.35,2.27),
c(4.31,10.16,6.45),c(3.1,2.3,3.2),c(3.20, 2.31, 7.3))
> nKM(c(2,2,2),data2)
[1] 678.1045
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4 Polykays

Similarly to k-statistics, polykays are symmetric unbiased estimators of cumulant products. More
in detail, when evaluated on a random sample, the i-th polykay gives an estimation of the product
ki1 (Y) · · · kim (Y), where i = (i1, . . . , im) ∈Nm

0 and {kij (Y)} are cumulants of a population character Y.

To simplify the notation, in the following we show how to compute the i-th polykay of N numerical
data {a1, . . . , aN} using the nPS function for i = (i1, i2). Set i = i1 + i2 and suppose i ≤ N. The
computation relies on the so-called logarithmic polynomials

P̃t(y1, . . . , yi) = ∑
λ⊢t

yλdλ(−1)l(λ)−1(l(λ)− 1)! (20)

for t = 1, . . . , i where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ t, dλ is given in (16) and
yλ = yr1

1 yr2
2 · · · . To compute the polykay of order (i1, i2), the nPS function finds the explicit expression

of the polynomial
Ai(y1, . . . , yi) = ∑

λ⊢i
dλ P̃λ(y1, . . . , yi)pλ (21)

where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ i, dλ and pλ are given in (16) and

P̃λ(y1, . . . , yi) = [P̃1(y1, . . . , yi)]
r1 [P̃2(y1, . . . , yi)]

r2 · · ·

with {P̃t(y1, . . . , yi)} given in (20). Note that the monomials in Ai(y1, . . . , yi) are of type yλ = yr1
1 yr2

2 · · ·
with λ = (1r1 , 2r2 , . . .) ⊢ i. The final step is to plug suitable numerical values in place of yλ depending
on how the partition λ is constructed. Indeed, set

q̃(i1, i2) =
{

λ′ + λ′′ ⊢ i
∣∣ λ′ = (1s1 , 2s2 , . . .) ⊢ i1, λ′′ = (1t1 , 2t2 , . . .) ⊢ i2

}
(22)

where λ′ + λ′′ = (1r1 , 2r2 , . . .) with rj = sj + tj for j = 1, 2, . . . . Then yλ is replaced by 0 if λ ̸∈ q̃(i1, i2)
otherwise by

(−1)l(λ′)−1(l(λ′)− 1)!(−1)l(λ′′)−1(l(λ′′)− 1)!
(N)l(λ′′)+l(λ′′)

dλ′dλ′′

dλ′+λ′′
. (23)

Note that dλ′ and dλ′′ in (23) are recovered from (16).

The main steps of the nPS function are summarized in the following.

Function nPS

i) Set i = i1 + i2 and compute the power sums pt in (14) for t = 1, . . . , i.

ii) Generate the polynomials P̃t(y1, . . . , yi) in (20) for t = 1, . . . , i.

iii) Using the mkmSet function, compute all the partitions λ ⊢ i.

iv) For a given partition λ, expand the product P̃λ(y1, . . . , yi) in (21); then plug (23) or 0
in each monomial yλ, depending if λ is or not in the set q̃(i1, i2) given in (22).

v) Multiply the numerical value of P̃λ carried out at step iv) with dλ pλ given in (16).

vi) Repeat steps iv) and v) for all the partitions λ carried out at step iii) and do the sum
over all the resulting numerical values.

Example 7: Suppose we need to estimate the square of the variance σ2 of the population character Y
from which the data of Example 5 have been sampled. We have

> nKS(2,data)^2
[1] 160.0243
> var(data)^2
[1] 160.0243

but k2
2 is not an unbiased estimator of the square of σ2. An unbiased estimator of such a square is the

polykay of order (2, 2), that is

> nPS(c(2,2),data)
[1] 154.1177
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Multivariate polykays are unbiased estimators of products of multivariate cumulants and the nPM
function returns a numerical value for these estimators when evaluated on a random sample. As
before, to show how the nPM function works, we consider a bivariate sample of N numerical data,
that is {(a1,1, a2,1) . . . , (a1,N , a2,N)}. If we choose i = (i1, i2) and j = (j1, j2) with i1 + i2 + j1 + j2 ≤
N as input of the nPM function, the output is a numerical value which represents an estimated
value of the product ki(X, Y)kj(X, Y), where ki(X, Y) and kj(X, Y) are cumulants of the population
characters (X, Y). The computation relies on suitable polynomials in the indeterminates {y(s,t)} for
s = 0, . . . , w1, t = 0, . . . , w2, with s + t > 0 and w1 = i1 + j1, w2 = i2 + j2. These polynomials are a
multivariable generalization of (20), that is

P̃k

(
{y(s,t)}

)
= ∑

Λ⊢k
yΛdΛ(−1)l(Λ)−1(l(Λ)− 1)! (24)

for 0 < k ≤ w = (w1, w2), where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ k and
yΛ = yr1

λ1
yr2

λ2
· · · . To compute the multivariate polykay of order (i, j), the nPM function finds the

explicit expression of the polynomial

Aw

(
{y(s,t)}

)
= ∑

Λ⊢w
dΛ P̃Λ

(
{y(s,t)}

)
pΛ (25)

where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ w, dΛ and pΛ are given in (19), and

P̃Λ

(
{y(s,t)}

)
= [P̃λ1

(
{y(s,t)}

)
]r1 [P̃λ2

(
{y(s,t)}

)
]r2 · · ·

with {P̃λ

(
{y(s,t)}

)
} given in (24). The monomials in Aw

(
{y(s,t)}

)
are of type yΛ with Λ ⊢ w. The

final step is to plug suitable numerical values in place of yΛ depending on how the partition Λ is
constructed. Indeed, set

q̃(w) =

{
Λ′ + Λ′′ ⊢ w

∣∣ Λ′ = (λ′s1
1 , λ′s2

2 , . . .) ⊢ i, Λ′′ = (λ′′t1
1 , λ′′t2

2 , . . .) ⊢ j
}

, (26)

where Λ′ + Λ′′ = (λ̃
r1
1 , λ̃

r2
2 , . . .) is built with the columns of Λ′ and Λ′′ rearranged in increasing

lexicographic order and such that rj = sj if λ̃j = λ′j or rj = tj if λ̃j = λ′′j or rj = sj + tj if λ̃j = λ′j = λ′′j .
Therefore in the explicit expression of (25), yΛ is replaced by 0 if Λ ̸∈ q̃(w) otherwise by

(−1)l(Λ′)−1(l(Λ′)− 1)!(−1)l(Λ′′)−1(l(Λ′′)− 1)!
(N)l(Λ′)+l(Λ′′)

dΛ′dΛ′′

dΛ′+Λ′′
. (27)

Note that dΛ′ and dΛ′′ in (27) are recovered from (19).

The main steps of the nPM function are summarized in the following.

Function nPM

i) Set w1 = i1 + j1 and w2 = i2 + j2; compute the power sums p(s,t) in (17) for s = 1, . . . , w1
and t = 1, . . . , w2.

ii) Generate the polynomials P̃k

(
{y(s,t)}

)
in (24) for 0 < k ≤ w = (w1, w2).

iii) Using the mkmSet function, compute all the partitions Λ ⊢ w.

iv) For a given partition Λ, expand the product P̃Λ

(
{y(s,t)}

)
in (25) and plug (27) or 0 in

each obtained monomial of type yΛ depending if Λ is or not in q̃(w) given in (26).

v) Multiply the numerical value of P̃Λ obtained at step iv) with dΛ pΛ given in (19).

vi) Repeat steps iv) and v) for all the partitions Λ carried out at step iii) and do the sum
over all the resulting numerical values.

Example 8: For the same dataset employed in Example 6, to estimate k(2,1)(X, Y)k(1,0)(X, Y) run

> nPM(list(c(2,1),c(1,0)),data1)
[1] 48.43243

Remark 1: The master nPolyk function runs one of the nKS, nKM, nPS and nPM functions depending if
we ask for simple k-statistics, multivariate k-statistics, simple polykays or multivariate polykays.
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5 Bell polynomials and generalizations

The algorithms to produce k-statistics and polykays rely on handling suitable polynomial families
which are special cases of generalizations of Bell polynomials, as introduced in this section. Moreover,
there are further families of polynomials widely used in applications which are special cases of these
polynomials. For the most popular ones, we have implemented special functions in the kStatistics
package. The list is not exhaustive, see for instance Roman (1984). Furthermore additional families of
polynomials might be recovered using the multivariate Faà di Bruno’s formula. We will give some
examples in the next section.

The i-th generalized (complete exponential) Bell polynomial in the indeterminates y1, . . . , yn is

hi(y1, . . . , yn) = i! ∑
Λ⊢s1,...,Λ̃⊢sn
s1+···+sn=i

yl(Λ)
1 · · · yl(Λ̃)

n
g1,Λ · · · gn,Λ̃

Λ! · · · Λ̃!m(Λ)! · · ·m(Λ̃)!
(28)

where the sum is over all the partitions Λ ⊢ s1, . . . , Λ̃ ⊢ sn with s1, . . . , sn m-tuples of non-negative
integers such that s1 + · · ·+ sn = i and

g1,Λ = gr1
1;λ1

gr2
1;λ2
· · · for Λ = (λr1

1 , λr2
2 , . . .)

...
gn,Λ̃ = gt1

n;λ̃1
gt2

n;λ̃2
· · · for Λ̃ = (λ̃

t1
1 , λ̃

t2
2 , . . .)

(29)

with {g1;λ}, . . . , {gn;λ̃}multi-indexed sequences. These polynomials are the output of the GCBellPol
function.

Example 9: To get h(1,1)(y1, y2) run

> GCBellPol(c(1,1),2)
[1] (y1)(y2)g1[0,1]g2[1,0] + (y1)(y2)g1[1,0]g2[0,1] + (y1^2)g1[0,1]g1[1,0] +
(y1)g1[1,1] + (y2^2)g2[0,1]g2[1,0] + (y2)g2[1,1]

The e_GCBellPol function evaluates hi(y1, . . . , yn) when its indeterminates y1, . . . , yn and/or its
coefficients are substituted with numerical values.

Example 10: To plug the values from 1 to 6 respectively into the coefficients g1[ , ] and g2[ , ] of
the polynomial h(1,1)(y1, y2) given in Example 9 run

> e_GCBellPol(c(1,1), 2, "g1[0,1]=1, g1[1,0]=2, g1[1,1]=3, g2[0,1]=4, g2[1,0]=5,
g2[1,1]=6")
[1] 13(y1)(y2) + 2(y1^2) + 3(y1) + 20(y2^2) + 6(y2)

To evaluate h(1,1)(1, 5) run

> e_GCBellPol(c(1,1), 2, "y1=1, y2=5, g1[0,1]=1, g1[1,0]=2, g1[1,1]=3, g2[0,1]=4,
g2[1,0]=5, g2[1,1]=6")
[1] 600

When the multi-indexed sequences {g1;λ}, . . . , {gn;λ̃} are all equal, the number of distinct addends
in (28) might reduce and the corresponding generalized Bell polynomial is denoted by h̃i(y1, . . . , yn).
To deal with this special case, we have inserted an input flag parameter in the e_GCBellPol function.

Example 11: To compare h̃(1,1)(y1, y2) with h(1,1)(y1, y2) given in Example 9 run

> GCBellPol(c(1,1),2,TRUE)
[1] 2(y1)(y2)g[0,1]g[1,0] + (y1^2)g[0,1]g[1,0] + (y1)g[1,1] + (y2^2)g[0,1]g[1,0] +
(y2)g[1,1]

Set n = 1 in (28). Then hi(y1, . . . , yn) reduces to the univariate polynomial

hi(y) = ∑
Λ⊢i

yl(Λ)dΛgΛ (30)

where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ i, dΛ is given in (19) and gΛ = gr1
λ1

gr2
λ2
· · · .

Example 12: To get h(1,1)(y) run
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> GCBellPol(c(1,1),1)
[1] (y^2)g[0,1]g[1,0] + (y)g[1,1]

Remark 2: For all i ∈Nm
0 , we have hi(y1 + · · ·+ yn) = h̃i(y1, . . . , yn), where h̃i(y1, . . . , yn) is the i-th

generalized Bell polynomial (28) corresponding to all equal multi-indexed sequences {g1,λ}, . . . , {gn,λ̃}
(Elvira Di Nardo 2011). Therefore the e_GCBellPol function, with the input flag TRUE, produces also
an explicit expression of hi(y1 + · · ·+ yn).

The algorithm to generate joint moments in terms of joint cumulants and vice versa follows the
same pattern designed to generate {hi(y)}. Indeed if {ki(Y)} and {mi(Y)} denote the sequences of
joint cumulants and joint moments of a random vector Y respectively, then

mi(Y) = ∑
Λ⊢i

dΛkΛ(Y) and ki(Y) = ∑
Λ⊢i

(−1)l(Λ)−1(l(Λ)− 1)!dΛmΛ(Y), (31)

where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ i, dΛ is given in (19) and

mΛ(Y) = [mλ1 (Y)]
r1 [mλ2 (Y)]

r2 · · · kΛ(Y) = [kλ1 (Y)]
r1 [kλ2 (Y)]

r2 · · ·.

In particular

• the mom2cum function returns the right hand side of the first equation in (31), using the same
algorithm producing hi(y) in (30) with the sequence {kλ} in place of {gλ} and with 1 in place
of y;

• the cum2mom function returns the right hand side of the latter equation in (31), using the same
algorithm producing hi(y) in (30) with the sequence {mλ} in place of {gλ} and with (−1)j−1(j−
1)! in place of the powers yj for j = 1, . . . , |i|.

When the multi-index i reduces to an integer i, formulae (31) are the classical expressions of
univariate moments in terms of univariate cumulants and vice versa. The mom2cum and cum2mom
functions do the same when the input is an integer.

Example 13: To get m(3,1) in terms of k(i,j) run

> mom2cum(c(3,1))
[1] k[0,1]k[1,0]^3 + 3k[0,1]k[1,0]k[2,0] + k[0,1]k[3,0] + 3k[1,0]^2k[1,1] +
3k[1,0]k[2,1] + 3k[1,1]k[2,0] + k[3,1]

To get k(3,1) in terms of m(i,j) run

> cum2mom(c(3,1))
[1] - 6m[0,1]m[1,0]^3 + 6m[0,1]m[1,0]m[2,0] - m[0,1]m[3,0] +
6m[1,0]^2m[1,1] - 3m[1,0]m[2,1] - 3m[1,1]m[2,0] + m[3,1]

Remark 3: There are different functions in R performing similar computations for cumulants and
moments: for instance see De Leeuw, J. (2012) for the multivariate case. A different strategy would
rely on the recursive relations between cumulants and moments (Domino, Gawron, and Pawela 2018).

Similarly to (31), some of the polynomials employed in the previous sections are generated using
the same pattern developed to find the explicit expression of hi(y) in (30):

• The generation of an explicit expression of Qi(y) in (18) parallels the one implemented for hi(y)
with 1 in place of y and with the polynomial sequence {P|λ|(y)pλ} in place of the sequence
{gλ};

• the same for the polynomials P̃k

(
{y(s,t)}

)
in (24) with (−1)j−1(j− 1)! for j = 1, . . . , |i| in place

of the powers yj and with the polynomial sequence {yλ} in place of the sequence {gλ};

• the same for the polynomials Aw

(
{y(s,t)}

)
in (25) with 1 in place of y and with the polynomial

sequence
{

P̃λ

(
{y(s,t)}

)
pλ

}
in place of the sequence {gλ}.

Note that when the multi-index i in (30) reduces to a positive integer i, then the polynomial hi(y)
becomes

hi(y) = ∑
λ⊢i

dλyl(λ)gλ (32)

where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ i, dλ is given in (16) and gλ = gr1
1 gr2

2 . . .
with {gj} a suitable sequence.

Example 14: To get h3(y) run
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> GCBellPol(c(3),1)
[1] (y^3)g[1]^3 + 3(y^2)g[1]g[2] + (y)g[3]

With a combinatorial structure very similar to (32), the i-th general partition polynomial has the
following expression in the indeterminates y1, . . . , yi

Gi(a1, . . . , ai; y1, . . . , yi) = ∑
λ⊢i

dλal(λ)yλ (33)

where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ i, dλ is given in (16), {aj} is a suitable
numerical sequence and yλ = yr1

1 yr2
2 . . . . It’s a straightforward exercise to prove that

Gi(a1, . . . , ai; y1, . . . , yi) =
i

∑
j=1

ajBi,j(y1, . . . , yi−j+1), (34)

where {Bi,j} are the (partial) exponential Bell polynomials

Bi,j(y1, . . . , yi−j+1) = ∑
p̄(i,j)

dλyλ (35)

where p̄(i, j) = {λ = (1r1 , 2r2 , . . .) ⊢ i|l(λ) = j}, dλ is given in (16) and yλ = yr1
1 yr2

2 · · · . The
polynomials in (33) are widely used in applications such as combinatorics, probability theory and
statistics (Charalambides 2002). As particular cases, they include the exponential polynomials and
their inverses, the logarithmic polynomials (20), the potential polynomials and many others (Roman
1984). The general partition polynomials are the output of the gpPart function.

Example 15: To get G4(a1, a2, a3, a4; y1, y2, y3, y4) run

> gpPart(4)
[1] a4(y1^4) + 6a3(y1^2)(y2) + 3a2(y2^2) + 4a2(y1)(y3) + a1(y4)

When a1 = . . . = ai = 1, the i-th general partition polynomial in (34) reduces to the complete
(exponential) Bell polynomial

Gi(1, . . . , 1; y1, . . . , yi) =
i

∑
j=1

Bi,j(y1, . . . , yi−j+1) (36)

where {Bi,j} are the (partial) exponential Bell polynomials (35). For instance, the polynomial Qi(y) in
(15) is generated using the same pattern developed to generate (36) with Pj(y)pj in place of yj.

The eBellPol function returns the complete (exponential) Bell polynomials (36). The same function
also produces the (partial) exponential Bell polynomial Bi,j(y1, . . . , yi−j+1) using (33) with ak = δk,j
(the Kronecker delta) for k = 1, . . . , i. Mihoubi (2008) gives a rather extensive survey of applications of
these homogeneous polynomials.

Example 16: To get B5,3(y1, y2, y3) run

> eBellPol(5,3)
[1] 15(y1)(y2^2) + 10(y1^2)(y3)

To get G4(1, 1, 1, 1; y1, y2, y3, y4) run

> eBellPol(4)
[1] (y1^4) + 6(y1^2)(y2) + 3(y2^2) + 4(y1)(y3) + (y4)

The oBellPol function returns the partial (ordinary) Bell polynomials

B̂i,j(y1, . . . , yi−j+1) =
j!
i!

Bi,j(1!y1, 2!y2, . . . , (i− j + 1)!yi−j+1)

and the complete (ordinary) Bell polynomials

Ĝi(y1, . . . , yi) = Gi(1, . . . , 1; 1!y1, 2!y2, . . . , i!yi).

Example 17: To get B̂5,3(y1, y2, y3) run

> oBellPol(5,3)
[1] 1/120( 360(y1)(y2^2) + 360(y1^2)(y3) )
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To get Ĝ3(y1, y2, y3, y4) run

> oBellPol(4)
[1] 1/24( 24(y1^4) + 72(y1^2)(y2) + 24(y2^2) + 48(y1)(y3) + 24(y4) )

The e_eBellPol function evaluates the exponential Bell polynomials when the indeterminates are
substituted with numerical values. In Table 1 some special sequence of numbers are given obtained
using this procedure.

Table 1: Numerical sequences (second column) obtained evaluating the exponential Bell polynomials (last
column) when suitable numerical values replace indeterminates.

Sequence Bell polynomials

Lah numbers i!
j!

(
i− 1
j− 1

)
Bi,j(1!, 2!, 3!, . . .)

Stirling numbers of first kind s(i, j) Bi,j(0!,−1!, 2!, . . .)
unsigned Stirling numbers of first kind |s(i, j)| Bi,j(0!, 1!, 2!, . . .)

Stirling numbers of second kind S(i, j) Bi,j(1, 1, 1, . . .)

idempotent numbers
(

i
j

)
ji−j Bi,j(1, 2, 3, . . .)

Bell numbers Bi ∑i
j=0 Bi,j(1, 1, 1, . . .)

By default, the e_eBellPol function returns the Stirling numbers of second kind, as the following
example shows.

Example 18: To get S(5, 3) run

> e_eBellPol(5,3)
[1] 25
> e_eBellPol(5,3,c(1,1,1,1,1))
[1] 25

To get the 5-th Bell number B5 run

> e_eBellPol(5)
[1] 52

To get s(5, 3) run

> e_eBellPol(5,3, c(1,-1,2,-6,24))
[1] 35

6 Composition of formal power series

In (3), suppose ft the t-th coefficient of f (x) and g1;s1 , . . . , gn;sn the s1-th,. . . ,sn-th coefficients of
g1(z), . . . , gn(z) respectively. Using multi-index partitions, the multivariate Faà di Bruno’s formula (6)
can be written as (E. Di Nardo, Guarino, and Senato 2011)

hi = i! ∑
Λ⊢s1,...,Λ̃⊢sn
s1+···+sn=i

f(l(Λ),...,l(Λ̃))

g1,Λ · · · gn,Λ̃

Λ! · · · Λ̃!m(Λ)! · · ·m(Λ̃)!
(37)

where g1,Λ, . . . , gn,Λ̃ are given in (29) and the sum is over all the partitions Λ ⊢ s1, . . . , Λ̃ ⊢ sn, with
s1, . . . , sn m-tuples of non-negative integers such that s1 + · · ·+ sn = i.

The MFB function generates all the summands of (37). Its first step is to find the set p̃(n, i) of all the
compositions of i in n parts, that is all the n-tuples (s1, . . . , sn) of non-negative integer m-tuples such
that s1 + · · ·+ sn = i. This task is performed by the mkT function.

Function mkT

i) Find all the partitions Λ ⊢ i, using the mkmSet function.

ii) Select the first partition Λ. If l(Λ) = n, then the columns of Λ are the m-tuples
(s1, . . . , sn) such that s1 + . . . + sn = i. If l(Λ) < n, add n− l(Λ) zero columns to Λ.
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iii) Generate all the permutations of the columns of Λ as collected at step ii).

iv) Repeat steps ii) and iii) for each partition Λ carried out at step i).

In the mkT function an input flag variable permits to obtain the output in a more compact set up.
See the following example.

Example 19: Suppose we are looking for the elements of the set p̃(2, (2, 1)), that is the pairs (s1, s2)
such that s1 + s2 = (2, 1). Then run

> mkT(c(2,1),2,TRUE)
[( 0 1 )( 2 0 )]
[( 2 0 )( 0 1 )]
[( 1 0 )( 1 1 )]
[( 1 1 )( 1 0 )]
[( 2 1 )( 0 0 )]
[( 0 0 )( 2 1 )]

Consider the partitions of (2, 1) as given in Example 2. Note that [( 2 1 )( 0 0 )] and [( 0 0
)( 2 1 )] are obtained adding a zero column to the partition [( 2 1 ), 1 ], and then permuting
the two columns. No zero columns are added to [( 2 0 )( 0 1 )] as the length of the partition is 2.
The same is true for [( 0 1 )( 2 0 )] or [( 1 1 )( 1 0 )] which are only permuted.

The MFB function produces the multivariate Faà di Bruno’s formula (37) making use of the following
steps.

Function MFB

i) Find all the m-tuples (s1, . . . , sn) in p̃(n, i) using the mkT function.

ii) Let y1, . . . , yn be indeterminates. For each j = 1, . . . , n, compute all the partitions Λ ⊢ sj
using the mkmSet function and find the explicit expression of the polynomial

qj,sj (yj) = sj! ∑
Λ⊢sj

yl(Λ)
j

gj,Λ

Λ!m(Λ)!
.

iii) Make the products q1,s1 (y1) · · · qn,sn (yn) in the multivariable polynomial

hi(y1, . . . , yn) = ∑
(s1,...,sn)∈ p̃(n,i)

(
i

s1, . . . , sn

)
q1,s1 (y1) · · · qn,sn (yn)

and compute its explicit expression.

iv) In the explicit expression of the polynomial hi(y1, . . . , yn) as carried out at the previous

step iii), replace the occurrences of the products yl(Λ)
1 · · · yl(Λ̃)

n with f(l(Λ),...,l(Λ̃)).

Step iii) is performed by the joint function. This function is not directly accessible in the package,
as defined locally in the MFB function. The joint function realizes a recursive pair matching: each
coefficient g1,Λ of q1,s1 (y1) is matched with each coefficient g2,Λ̃ of q2,s2 (y2), then each paired coefficient
g1,Λg2,Λ̃ is matched with each coefficient g3,Λ∗ of q3,s3 (y3) and so on. Step iv) consists of multiplying
each coefficient found at step iii) with ft , where t is the multi-index whose j-th component gives how
many times gj,· appears in this coefficient. See the following example.

Example 20: Suppose n = m = 2 and i = (1, 1). To get h(1,1) in (37) run

> MFB(c(1,1),2)
[1] f[1,1]g1[0,1]g2[1,0] + f[1,1]g1[1,0]g2[0,1] + f[2,0]g1[0,1]g1[1,0] +
f[1,0]g1[1,1] + f[0,2]g2[0,1]g2[1,0] + f[0,1]g2[1,1]

Taking into account (4), in the previous output f[i,j] corresponds to f(i,j) as well as g1[i,j]
and g2[i,j] correspond to g1;(i,j) and g2;(i,j) respectively for i, j = 0, 1, 2. Note that g1[1,1] is mul-
tiplied with f[1,0] as there is one occurrence of g1 and no occurrence of g2. In the same way,
g1[1,0]g1[0,1] is multiplied with f[2,0] as there are two occurrences of g1 and no occurrence of g2
and g1[1,0]g2[0,1] is multiplied with f[1,1] as there is one occurrence of g1 and one occurrence of
g2 and so on. Compare the previous output with the one obtained in Maple running
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diff(f(g1(x1,x2),g2(x1,x2),x1,x2):

D2,2( f )(g1(x1, x2), g2(x1, x2))
(

∂
∂x1 g2(x1, x2)

)(
∂

∂x2 g2(x1, x2)
)

+D1,2( f )(g1(x1, x2), g2(x1, x2))
(

∂
∂x2 g1(x1, x2)

)(
∂

∂x1 g2(x1, x2)
)

+D1,2( f )(g1(x1, x2), g2(x1, x2))
(

∂
∂x1 g1(x1, x2))

)(
∂

∂x2 g2(x1, x2)
)

+D1,1( f )(g1(x1, x2), g2(x1, x2))
(

∂
∂x1 g1(x1, x2))

)(
∂

∂x2 g1(x1, x2))
)

+D2( f )(g1(x1, x2), g2(x1, x2))
(

∂2

∂x2∂x1 g2(x1, x2)
)

+D1( f )(g1(x1, x2), g2(x1, x2))
(

∂2

∂x2∂x1 g1(x1, x2)
)

where D1( f ) denotes ∂ f (x1, x2)/∂x1, D2( f ) denotes ∂ f (x1, x2)/∂x2 and similarly

D1,1( f )← ∂2 f (x1, x2)

∂x2
1

, D2,2( f )← ∂2 f (x1, x2)

∂x2
2

, D1,2( f )← ∂2 f (x1, x2)

∂x1∂x2
.

The eMFB function evaluates the multivariate Faà di Bruno’s formula (37) when the coefficients of
the formal power series f and g1, . . . , gn in (4) are substituted with numerical values.

Example 21: To evaluate the output of Example 20 for some numerical values of the coefficients, run

> cfVal<-"f[0,1]=2, f[0,2]=5, f[1,0]=13, f[1,1]=-4, f[2,0]=0"
> cgVal<-"g1[0,1]=-2.1, g1[1,0]=2,g1[1,1]=3.1,g2[0,1]=5,g2[1,0]=0,g2[1,1]=6.1"
> cVal<-paste0(cfVal,",",cgVal)
> e_MFB(c(1,1),2,cVal)
[1] 12.5

The polynomial families discussed in the previous sections are generated using the MFB function.
Indeed, the generalized (complete exponential) Bell polynomials in (28) are coefficients of the following
formal power series

H(y1, . . . , yn; z) = 1 + ∑
|i|>0

hi(y1, . . . , yn)
zi

i!
= exp

[ n

∑
i=1

yi(gi(z)− 1)
]

, (38)

which turns to be a composition (3), with f (x1, . . . , xn) = exp(x1y1 + · · ·+ xnyn) and ft = yt1
1 · · · y

tn
n

for t ∈ Nn
0 . In this case, y1, . . . , yn play the role of indeterminates. The i-th coefficient hi(y1, . . . , yn)

- output of the GCBellPol function - is obtained from the multivariate Faà di Bruno’s formula (37)
dealing with y1, . . . , yn as they were constants. When {g1(z), . . . , gn(z)} are the same formal power
series g(z), the formal power series H(y1, . . . , yn; z) in (38) reduces to

H(y1, . . . , yn; z) = exp
[
(y1 + · · ·+ yn)(g(z)− 1)

]
(39)

with coefficients h̃i(y1, . . . , yn) as given in the previous section.

If n = 1 then H(y1, . . . , yn; z) reduces to the composition exp
[
y(g(z)− 1)] whose coefficients are

the polynomials given in (30). More in general the coefficients of f (g(z)− 1) are

hi = ∑
Λ⊢i

dΛ fl(Λ)gΛ (40)

where the sum is over all the partitions Λ = (λr1
1 , λr2

2 , . . .) ⊢ i, dΛ is given in (19) and gΛ = gr1
λ1

gr2
λ2
· · · .

If also m = 1, then hi in (40) reduces to

hi = ∑
λ⊢i

dλ fl(λ)gλ (41)

where the sum is over all the partitions λ = (1r1 , 2r2 , . . .) ⊢ i, dλ is given in (16) and gλ = gr1
1 gr2

2 · · · .
Formula (41) corresponds to the univariate Faà di Bruno’s formula and gives the i-th coefficient of
f (g(z)− 1) with

f (x) = 1 + ∑
j≥1

f j
xj

j!
and g(z) = 1 + ∑

s≥1
gs

zs

s!
.

Example 22: To get h5 in (41) run

> MFB(c(5), 1)
[1] f[5]g[1]^5 + 10f[4]g[1]^3g[2] + 15f[3]g[1]g[2]^2 + 10f[3]g[1]^2g[3] +
10f[2]g[2]g[3] + 5f[2]g[1]g[4] + f[1]g[5]
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For instance, the i-th general partition polynomial in (33) is generated using the MFB function: in
such a case the univariate Faà di Bruno’s formula (41) is generated with {ys} in place of {gs} and {aj}
in place of { f j}.

Examples of how to generate polynomials not included in the kStatistics package

In the following we give some suggestions on how to use the R codes of the kStatistics package to
generate additional polynomial families.

The pPart function is an example of how to use the univariate Faà di Bruno’s formula and a
symbolic strategy different from those presented so far. Indeed the pPart function generates the
so-called partition polynomial Fi(y) of degree i, whose coefficients are the number of partitions of i
with j parts for j = 1, . . . , i (Boyer and Goh 2008). The partition polynomial Fi(y) is obtained from the
univariate Faà di Bruno’s formula (41) setting

f j = 1/i! and grs
s = (s!)rs rs!yrs (42)

for s = 1, . . . , i − j + 1, j = 1, . . . , i and rs = 1, . . . , i. Note the symbolic substitution of grs
s with the

powers yrs .

Example 23: To get F5(y) run

> pPart(5)
[1] y^5 + y^4 + 2y^3 + 2y^2 + y

Note that F5(y) is obtained from the output of Example 22 using (42).

Example 24: The following code shows how to evaluate F11(y) in y = 7.

> s<-pPart(11) # generate the partition polynomial of degree 11
> s<-paste0("1",s) # add the coefficient to the first term
> s<-gsub(" y","1y",s) # replace the variable y without coefficient
> s<-gsub("y", "*7",s) # assign y = 7
> eval(parse(text=s)) # evaluation of the expression
[1] 3.476775e+182

We give a further example on how to generate a polynomial family not introduced so far but
still coming from (41) for suitable choices of { f j} and {gs}. Consider the elementary symmetric
polynomials in the indeterminates y1, . . . , yn

ei(y1, . . . , yn) =

 ∑
1≤j1<···<ji≤n

yj1 · · · yji , 1 ≤ i ≤ n,

0, i > n.
(43)

A well-known result (Charalambides 2002) states that these polynomials can be expressed in terms of
the power sum symmetric polynomials (14) in the same indeterminates y1, . . . , yn, using the general
partition polynomials (34), that is

ei =
(−1)i

i!
Gi(1, . . . , 1;−p1,−1!p2,−2!p3, . . . ,−(i− 1)!pi) (44)

for i = 1, . . . , n. The following e2p function expresses the i-th elementary symmetric polynomial ei in
terms of the power sum symmetric polynomials p1, . . . , pi, using (44) and the MFB function.

> e2p <- function(n=0){
+ v<-MFB(n,1); # Call the MFB Function
+ v<-MFB2Set( v ); # Expression to vector
+ for (j in 1:length(v)) {
+ # ----- read -----------[ fix block ]-----------------------#
+ c <- as.character(v[[j]][2]); # coefficient
+ x <- v[[j]][3]; # variable
+ i <- v[[j]][4]; # subscript
+ k <- strtoi(v[[j]][5]); # power
+ # ----- change --------------------------------------------#
+ if (x=="f") {
+ c<-paste0(c,"*( (-1)^",n,")");
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+ x<-"";
+ i<-"";
+ }
+ else if (x=="g") {
+ c<-paste0(c,"*((-factorial(",strtoi(i)-1,"))^",k,")");
+ x<-paste0("(p",i,ifelse(k>1,paste0("^",k),""),")");
+ i<-"";k<-1;
+ }
+ # ----- write ---------[ fix block ]-----------------------#
+ v[[j]][2] <- c;
+ v[[j]][3] <- x;
+ v[[j]][4] <- i;
+ v[[j]][5] <- k;
+ # ---------------------------------------------------------#
+ }
+ noquote(paste0("1/",factorial(n),"( ",Set2expr(v), " )"));
+ }

This function starts by initializing the vector v with (41) by means of the MFB function. There
is a first code snippet [fix block] for extracting a set with the coefficients, variables, indexes and
powers of v by means of the MFB2Set function. This first code snippet should not be changed whatever
polynomial family we are generating. The second code snippet change includes instructions that can
be changed according to the expressions of the coefficients { f j} and {gs} in (41). To get (44), we set
f j = 1 and gs = −(s− 1)!ps. Once these coefficients have been changed, the last code snippet [fix
block] updates the vector v. The Set2expr function assembles the final expression.

Example 25: To get e4 in (44) run

> e2p(4)
[1] 1/24( (p1^4) - 6(p1^2)(p2) + 3(p2^2) + 8(p1)(p3) - 6(p4) )

7 Concluding remarks

We have developed the kStatistics package with the aim to generate univariate and multivariate
k-statistics/polykays, togheter with the multivariate Faà di Bruno’s formula and various user-friendly
functions related to this formula. The paper briefly introduces the combinatorial tools involved in
the package and presents, in detail, the core function of the package which generates multi-index
partitions. We emphasize that the algorithms presented here have been designed with the aid of the
umbral calculus, even if we did not mentioned this method in the paper.

One of the main applications we have dealt with is the generation and evaluation of various
families of polynomials: from generalized complete Bell polynomials to general partition polynomials,
from partial Bell polynomials to complete Bell polynomials. Numerical sequences obtained from the
Bell polynomials can also be generated.

All these utilities intend to make the kStatistics package a useful tool not only for statisticians but
also for users who need to work with families of polynomials usually available in symbolic software
or tables. Indeed, we have provided examples on how to generate polynomial families not included in
the package but which can still be recovered using the Faà di Bruno’s formula and suitable strategies,
both numerical and symbolic. Following this approach, also the estimations of joint cumulants or
products of joint cumulants is one further example of symbolic strategy coming from the multivariate
Faà di Bruno’s formula.

Future works consist in expanding the kStatistics package by including extensions of the multi-
variate Faà di Bruno’s formula, as addressed in Bernardini, Natalini, and Ricci (2005) and references
therein, aiming to manage nested compositions, as the BellY function in the Wolfram Language and
System does. Moreover, further procedures can be inserted relied on symbolic strategies not apparently
related to the multivariate Faà di Bruno’s formula but referable to this formula, as for example the
central Bell polynomials (Kim, Kim, and Jang 2019).

The results in this paper were obtained using the kStatistics 2.1.1 package. The package is currently
available with a general public license (GPL) from the Comprehensive R Archive Network.
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iccCounts: An R Package to Estimate the
Intraclass Correlation Coefficient for
Assessing Agreement with Count Data
by Josep L. Carrasco

Abstract The intraclass correlation coefficient (ICC) is a widely used index to assess agreement with
continuous data. The common approach for estimating the ICC involves estimating the variance
components of a linear mixed model under assumptions such as linearity and normality of effects.
However, if the outcomes are counts these assumptions are not met and the ICC estimates are biased
and inefficient. In this situation, it is necessary to use alternative approaches that are better suited for
count data. Here, the iccCounts R package is introduced for estimating the ICC under the Poisson,
Negative Binomial, Zero-Inflated Poisson and Zero-Inflated Negative Binomial distributions. The
utility of the iccCounts package is illustrated by three examples that involve the assessment of
repeatability and concordance with count data.

1 Introduction

Repeated measurements are often collected and hierarchically structured in clusters (commonly, in
subjects). These repeated measurements can be interchangeable within subjects (i.e. they are replicates).
This case is often known as the evaluation of repeatability (Nakagawa and Schielzeth 2010) or intra-
rater reliability (DeVet et al. 2011). Moreover, the repeated measurements may be structured (not
interchangeable) because they were obtained under different experimental conditions, involving
different methods or observers. In this case the analysis of agreement is often known as concordance
analysis, method comparison analysis (Choudhary and Nagaraja 2017) or inter-rater reliability (DeVet
et al. 2011).

Whatever the structure of the repeated measurements, the intraclass correlation coefficient (ICC) is
a common index used to assess agreement with continuous data (Fleiss 1986; Carrasco and Jover 2003).
The general definition of the ICC is the ratio of the between-clusters variance to the total variance.
However, the appropriate ICC has to be defined to afford the different variance components that
are involved in the total variance besides the between-clusters variance. These variance components
are typically estimated by means of a linear mixed model with common assumptions: that there is
linearity between the outcome expectation and the effects (cluster, method,. . . ); and that the random
effects and the random error follow normal distributions. Currently, there are several R packages that
estimate the ICC under the Normality assumption for assessing repeatability or concordance (Wolak,
Fairbairn, and Paulsen 2012; Carrasco et al. 2013; Stoffel, Nakagawa, and Schielzeth 2017).

However, if the outcomes are counts, such assumptions are not met and the ICC estimates are
biased and inefficient (Carrasco and Jover 2005). In this situation, it is necessary to use alternative
approaches that are better suited to the properties of count data. The methodology for estimating the
ICC for non-normal distributions using generalized linear mixed models (GLMM), and in particular
for count data, was developed in Carrasco (2010). The ICC is therefore estimated by the variance
components from the appropriate GLMM. The cluster random effect is still distributed as a Normal
distribution but the within-cluster variability is assumed to follow a probability distribution function
for counts. Stoffel, Nakagawa, and Schielzeth (2017) introduced the rptR package which can be used
to estimate the ICC assuming a Poisson model for the within-subjects variability.

In the iccCounts package introduced here, besides the Poisson distribution, other models as
the Negative Binomial, the Zero-Inflated Poisson and the Zero-Inflated Negative Binomial are also
considered. These models are useful when overdispersion arises in the Poisson model. Overdispersion
means that the variability assumed by the model is lower than that from the data. Therefore, the
within-subjects variability and, by extension, the total variance are underestimated and the ICC and
its standard error are biased. Thus, the validity of the ICC estimate is closely linked to the validity of
the model, so that a goodness-of-fit (GOF) analysis of the model must be performed.

The article is structured as follows: the Methodology background section introduces the definition
of the ICC, their expressions depending on the model GLLM chosen, some inferential aspects and the
validation approach of the GLMM; the issues of the package are described in Package description
section; in Examples section three examples are introduced. Two of them are cases of the repeata-
bility setting whereas the remaining one shows the case of a concordance setting. Finally, the main
contributions are summarized in the Conclusion section.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=rptR
https://CRAN.R-project.org/package=iccCounts


CONTRIBUTED RESEARCH ARTICLE 230

2 Methodology background

Experimental design

As mentioned in the introduction, the experimental design depends on the aim of the study: concor-
dance or repeatability. In the case of a concordance study, a sample of n subjects are measured m times
by k methods. In this setting, the aim is to analyse the degree of concordance of the measurement
methods when assessing the subjects. Note that within-subjects repeated measurements are not inter-
changeable because they belong to one specific method. It is worthy to noting that the term “methods”
is the conventional way to describe the experimental condition of the repeated measurements across
subjects in this context, but it might be referred to differently name depending on the context. In this
setting, Yijk stands for the k-th reading made by the j-th method on the i-th subject, with i = 1, . . . , n,
j = 1, . . . , m and k = 1, . . . , s. Hence, there will be three variance components to consider when
assessing agreement among the repeated measurements: between-subjects, between-methods and
random error variabilities.

In a repeatability study, a sample of n subjects are measured m times. In this case the repeated
measurements share the same experimental condition across subjects, therefore they can be considered
as interchangeable. Thus, in this setting Yik stands for the k-th reading made on the i-th subject, with
i = 1, . . . , n, and k = 1, . . . , s. In this case, only two variance components are involved in the evaluation
of the agreement: between-subjects and random error variabilities.

Generalized linear mixed model

The estimation of the variance components is carried out by means of generalized linear mixed models
(GLMM). The GLMM for the concordance setting (considering subjects and methods effects) is defined
as follows:

• Let αi and β j be the subjects and methods random effects respectively, with i = 1, . . . , n,
j = 1, . . . , m, that follow Normal distributions with mean 0 and variance σ2

α and σ2
β. Although

the method effect could be a fixed effect by design, when defining the agreement index it is
convenient to consider it as a random effect to account for the systematic differences between
observers as a source of disagreement (Fleiss 1986; Carrasco and Jover 2003).

• The conditional distribution of Yijk given αi and β j, f
(

Yijk|αi, β j

)
, is a probability density

function from the exponential family.

• The conditional mean of Yijk given αi and β j is

µij = E
(

Yijk|αi, β j

)
= g−1

(
λi + αi + β j

)
. (1)

where g is called the link function. Here, λi is the linear combination of the mean modifying
covariates for the i-th subject. Furthermore, the conditional variance of Yijk given αi and β j is defined

as Var
(

Yijk|αi, β j

)
= ϕh

(
µij

)
where ϕ is the dispersion parameter and h () is variance function.

If the methods effect is removed, the GLMM for the repeatability setting is obtained. Thus,
depending on the nature of the data the appropriate conditional probability model and link function
must be chosen. When analysing count data, the logarithm is commonly used as a link function and
models such as Poisson or Negative Binomial are considered.

Intraclass correlation coefficient for count data

The intraclass correlation coefficient (ICC) is calculated as:

ICC =
Cov

(
Yijk, Yij′k′

)
Var

(
Yijk

) . (2)

where the Cov
(

Yijk, Yij′k′
)

is the marginal (over subjects and observers) covariance between any

pair of data from the same subject, whereas Var
(

Yijk

)
is the marginal variance of data.

Furthermore, the marginal variance and covariance can be developed as functions of the GLMM
parameters (Carrasco 2010):
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ICC =
Cov

(
µij, µij′

)
Var

(
µij

)
+ E

(
ϕh

(
µij

)) (3)

This result allows the ICC to be generalized to any distribution fitted with a GLMM.

Carrasco (2010) developed the ICC for Poisson and Negative Binomial distributions, the latter with

variance increasing quadratically with the mean (NegBin2), Var
(

Yijk|αi, β j

)
= µij

(
1 + rµij

)
(Table

1). A Negative Binomial model with variance increasing linearly with the mean is also considered

(NegBin1) (Brooks et al. 2017; Hardin and Hilbe 2007), Var
(

Yijk|αi, β j

)
= µij (1 + r). It is worth to

noting that NegBin1 does not belong to the exponential family (Hardin and Hilbe 2007), therefore this
model would not be a proper GLMM. However, it can still be useful to model count data that show
overdispersion in a Poisson model.

Additionally, it is possible to define the ICC for the cases of zero inflated models (Table 1). Let’s
define Bijk as a Bernoulli variable that takes a value of 1 if the reading k on subject i and method
j is a structural zero with probability π and 0 otherwise. The observed data, Xijk is the result of

Xijk = Yijk

(
1 − Bijk

)
, where Yijk is the count variable as defined before. The marginal covariance and

variance of Xijk are:

Cov
(

Xijk, Xij′k′
)
= Cov

(
Yijk, Yij′k′

)
(1 − π)2 (4)

Var
(

Xijk

)
= Var

(
Yijk

)
(1 − π) + E2

(
Yijk

)
π (1 − π) (5)

and the general expression of the ICC for zero-inflated data becomes:

ICC =
Cov

(
Yijk, Yij′k′

)
(1 − π)

Var
(

Yijk

)
+ E2

(
Yijk

)
π

(6)

where π stands for the probability of excess of zeros.

Notice that ICCs appearing in Table 1 are for the concordance setting where σ2
β stands for the

variability between methods. The ICCs for the repeatability setting are obtained just removing σ2
β from

the equations, i.e. by setting σ2
β = 0.

Model ICC θ Model ICC θ

Poisson
µ
(

eσ2
α −1

)
µ

(
e

σ2
α+σ2

β−1
)
+1

(
µ, σ2

α , σ2
β

)
ZIP

µ
(

eσ2
α −1

)
(1−π)

µ

(
e

σ2
α+σ2

β−1
)
+1+µπ

(
µ, σ2

α , σ2
β

)
NegBin1

µ
(

eσ2
α −1

)
µ

(
e

σ2
α+σ2

β−1
)
+r+1

(
µ, σ2

α , σ2
β, r

)
ZI-NegBin1

µ
(

eσ2
α −1

)
(1−π)

µ

(
e

σ2
α+σ2

β−1
)
+1+r+µπ

(
µ, σ2

α , σ2
β, r, π

)
NegBin2
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Table 1: ICC expressions. NegBin1 and NegBin2 are the Negative Binomial models with variance increasing
linearly and quadratically with the mean respectively; ZI are the zero-inflated models. θ stand for parameters
involved in ICC: µ stands for the marginal mean; σ2

α is the between-subjects variance; σ2
β is the between-methods

variability; r is the Negative Binomial’s dispersion parameter; and π is the probability of excess of zeros.

Estimation of ICC

The estimation of the ICC involves estimating the GLMM parameters. However, maximum likelihood
approach is not straightforward because there is no closed analytical expression for the marginal
likelihood besides the Normal case (linear mixed model). Thus, it is necessary to apply numerical
methods to approximate the marginal likelihood and to obtain maximum likelihood estimates (Bolker
et al. 2009). With regards to the standard error of the ICC, let θ be the GLMM parameters involved in
the ICC expression (see Table 1) and Σ the variance-covariance matrix of θ. The asymptotic standard
error can be estimated by applying the delta method (Hoef 2012):
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Var (ICC) ≈ ∆′Σ∆ (7)

where ∆ stand for the vector containing the derivatives of ICC respect to θ. Confidence intervals
for the ICC are based on asymptotic Normal distribution using the inverse hyperbolic tangent function
or Fisher’s Z-transformation (Carrasco and Jover 2003).

Validation

The goodness-of-fit (GOF) analysis can be carried out by the computation of randomized quantile
residuals (RQR) (Dunn and Smyth 1996; C. Feng, Li, and Sadeghpour 2020). Briefly, the GOF analysis
involve the comparison of the RQR from the original data to those obtained by simulation under the
fitted model. Simulations of counts based on the fitted model are generated and the model is refitted
to each simulated dataset. Using the simulated RQR, envelopes are built as the appropriate quantiles
(in relation to the level of significance) of RQR from the refitted models. If the model fits correctly the
data it is expected that the original RQR will completely lie within the simulated envelopes.

Additionally, dispersion as well as zero-inflation can be checked by comparing the dispersion and
proportion of zeros from the simulated data to those from the original data. Thus, tests for dispersion
and zero inflation are carried out by comparing the RQR dispersion and the number of zeros from the
original model and data to those from the refitted models and simulated data.

3 Package description

The main function in the iccCounts package is icc_counts which estimates the ICC under different
models for count data. The argument data identifies the data set to be analysed. This data set has to
be a data.frame object with at at least two columns: outcome and subject identifier (arguments y and
id respectively).

In the case of estimating the ICC for the concordance setting, a third column with the method
identifier must be provided (the argument met ). The argument type is used to identify the setting in
which the ICC should be estimated. Valid values are: rep (default) for the repeatability setting; and
con for the concordance setting. The repeatability setting requires that repeated measurements are
interchangeable within subjects. This means the experimental conditions of the measurements are
the same (replicates), and they come from the same probability distribution function (conditioned
to subjects). On the other hand, in the concordance setting the repeated measurements are not
interchangeable because their experimental conditions are different, and therefore their probability
distribution function, conditioned to subjects, is different (commonly in the mean).

The argument fam is used to identify the within-subjects probability model. Valid options are:
poisson (default) for Poisson model; nbinom1 and nbinom2 for Negative Binomial model with
variance increasing linearly and quadratically with the mean respectively; zip for zero-inflated Poisson
model; zinb1 and zinb2 for zero-inflated Negative Binomial model with variance increasing linearly
and quadratically with the mean.

Once the appropriate setting and model have been chosen, the GLMM is estimated by maximum
likelihood via Laplace approximation using the glmmTMB package (Brooks et al. 2017). The output
of the icc_counts function is an object of class iccc which is a list with the following components:
model which contains the generalized linear mixed model estimates; ICC which includes the ICC
estimate and its standard error and confidence interval; and varcomp with the variance components
and parameters related to the ICC. Finally, the function GOF_check runs the goodness of fit (GOF)
analysis of the GLMM fitted to data. This function has three arguments: x to denote the iccc object to
apply the GOF analysis; the nsim argument that stands for the number of simulations to run which
default value is set to 100; and the α argument to set the level of significance.

The output of GOF_check is an object of class GOF which is a list with the following components:
plot_env, a plot of RQR envelopes with the original RQR; plot_var , a plot of the simulated RQR
dispersion; plot_zi , a plot of the count of zeros in the simulated datasets; res_var , the dispersion of
RQR from the original sample; pval_var , the proportion of simulated RQR dispersion that are greater
than the original dispersion that can be interpreted as a simulated P-value to check the goodness of
fit on dispersion; zero_count , the count of zeros in the original sample; and pval_zi , the proportion
of simulated zero count that are greater than that of the original sample. It can be interpreted as a
simulated P-value to check the hypothesis of zero-inflation. The plots in the list are objects of class
ggplot , hence users may change the plot themes or add modifications to the components.

Additionally, to describe the differences among the repeated measurements from the same subjects,
the function plot_BA draws the Bland-Altman plot (Bland and Altman 1995). The difference between
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each pair of data from the same subject is represented on the y-axis. The mean of data from the same
subject is represented on the x-axis. Additionally, a bar plot with the proportions of differences can
be drawn. This plot is a useful way to describe the differences when the range of observed values is
small relative to the number of observations (Smith, Ma, and Stafford 2010).

The arguments of plot_BA function are: data , a data frame containing at least the columns of the
outcome and subject’s identifier; y , a character string indicating the name of the outcome column in
the data set; id a character string indicating the name of the subjects column in the data set; rm , a
character string indicating the name of the column that stands for the repeated measurements in the
data set. This argument is only needed to identify the differences; type , argument used to choose the
plot to be drawn. Valid values are: BA (default) for the Bland-Altman plot; and bars for the bar plot of
the differences. Besides the plots, the function provides a dataframe object that contains the data used
to generate the plot.

4 Examples

The package includes three real data sets as examples that covers the repeatability and concordance
settings.

Sparrow fledglings paternity example

In the Sparrow fledglings paternity example, the incidence of extra-pair paternity (EPP) was monitored
over 3 breeding seasons in a sparrow colony in Lundy, an island off the southwest coast of England
(Schroeder et al. 2012). One of the aims of the study was to assess the repeatability of counts of
fledglings that a male had in every breeding season. Thus, the repeated measurements are assumed to
be exchangeable replicates. However, the means of the Social variable by year seem to differ:

library(iccCounts)
library(dplyr)
EPP %>% group_by(Year) %>% summarize(Mean=mean(Social),SD=sd(Social))

#> # A tibble: 3 x 3
#> Year Mean SD
#> <int> <dbl> <dbl>
#> 1 2003 3.19 3.10
#> 2 2004 2.53 2.21
#> 3 2005 4.5 2.79

In case these means were significantly different the repeated measurements could not be considered
as exchangeable, and consequently the differences among the means of the repeated measurements
should be included in the agreement index. This led us to the concordance setting considering Year as
the methods effect.

The first model to consider is the Poisson model. The default option in the icc_counts function is
the Poisson model, and so it is necessary to specify the name of the data set, the count variable (Social),
the subjects identifier (id), the methods variable (Year), and the concordance setting (type=“con”).

EPP_P<-icc_counts(EPP,y="Social",id="id",met="Year",type="con")
ICC(EPP_P)

#> ICC SE ICC 95% CI LL 95% CI UL
#> [1,] 0.5284404 0.0866857 0.3383706 0.6770822

VarComp(EPP_P)

#> mu BSVar BMVar
#> 3.172783 0.4002965 0.0798841

The function ICC applied to the iccc object shows that the ICC estimate is 0.53 (95% confidence
interval: 0.34 - 0.68). Moreover, the function VarComp gives the parameters involved in the ICC
estimator, which in this case are the overall mean, the between-subjects variance and the between-
methods variability (the two latter in log-scale).

However, as mentioned in the previous section, the validity of the ICC estimate is linked to the
validity of the model. The function GOF_check is applied to the iccc object to run the simulations and
to compute the RQR. The random seed is set for the sake of the reproducibility of the example.
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set.seed(100)
EPP_P.gof <- GOF_check(EPP_P)

plot(EPP_P.gof)

Figure 1a shows the plot of RQR with envelopes generated by simulation. Points on the plot
stand for the RQR from the original sample. Notice that a substantial number of points lie outside the
envelopes, indicating the fit of the model is unsuitable. The next plot (Figure 1c) shows the density of
the RQR variances computed in the simulated samples. The RQR variance from the initial sample is
2.15 (shown inside the square) which is extreme compared to those from the simulations. Indeed, the
proportion of simulated variances that are higher than that from the initial sample can be interpreted
as a p-value generated by Monte Carlo simulation. This p-value is shown by applying the function
DispersionTest to the GOF object.

DispersionTest(EPP_P.gof)

#> S P_value
#> 2.077549 0.00990099

Additionally, the Social variable has a considerable proportion of zero values (26.4%), and so
the excess of zeros could be the cause of the unsuitable fitting of the Poisson model. To check this
hypothesis, the third plot generated shows the proportion of zeros in the simulated data sets (Figure
1e). The count of zeros in the sample is 51, which exceeds the expected count under the Poisson model.
Again, the proportion of simulated zero counts that are higher than that from the initial sample can be
interpreted as a p-value generated by Monte Carlo simulation. This p-value is obtained by applying
the function ZeroTest to the GOF object.

ZeroTest(EPP_P.gof)

#> Count P_value
#> 51 0.00990099

Thus, it is necessary to use a model able to provide a proportion of zeros higher than that expected
under the Poisson assumption. This model could be the Zero-Inflated Poisson (ZIP) model.

EPP_ZIP<-icc_counts(EPP,y="Social",id="id",met="Year",type="con",fam="zip")
ICC(EPP_ZIP)

#> ICC SE ICC 95% CI LL 95% CI UL
#> [1,] 0.0477628 0.0362002 -0.02331 0.1183553

VarComp(EPP_ZIP)

#> mu BSVar BMVar Pi
#> 4.487117 0.033328 0.0328427 0.2446678

In this case, the ICC is much lower than in the Poisson model (0.05, 95% CI: -0.02, 0.12) indicating
a non-significant ICC. The ICC components are the same as those in the Poisson case (with different
values) plus the proportion of excess of zeros (0.24). Next step is to check whether the model correctly
fits the data.

set.seed(100)
EPP_ZIP.gof <- GOF_check(EPP_ZIP)

plot(EPP_ZIP.gof)

Figure 1b shows the model to be appropriate because all the RQR are within the envelopes.
Additionally, the dispersion and the proportion of zeros from the initial sample are within the values
expected under the ZIP model (Figures 1d and 1f). This fact can be also verified by verifying that
dispersion and excess of zeros tests are non significant.

DispersionTest(EPP_ZIP.gof)
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a) RQR envelopes plot. Poisson Model
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b) RQR envelopes plot. ZIP Model
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c) Dispersion plot. Poisson Model
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d) Dispersion plot. ZIP Model
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f) Proportion of zeros plot. ZIP Model

Figure 1: Goodness of fit for Sparrow fledglings paternity example. The Randomized Quantile
Residuals (RQR) and counts of zeros of original data are compared to those from simulated data under
the fitted model. The plots shown are RQR with envelopes, dispersion of RQR and count of zeros.
Left column shows results for Poisson model while the plots for Zero Inflated Poisson (ZIP) model are
on right column.
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#> S P_value
#> 3.214152 0.5643564

ZeroTest(EPP_ZIP.gof)

#> Count P_value
#> 51 0.4752475

Thus, the ZIP model fits the data appropriately. The next step is to check if the differences in means
between years are significant and the concordance setting is therefore justified. With this aim let us
apply the function icc_counts to the ZIP model but in the repeatability setting.

EPP_ZIP_0<-icc_counts(EPP,y="Social",id="id",fam="zip")

The component model in the iccc object is an object of class glmmTMB that contains the general-
ized linear mixed model fit. The anova method applied to the model objects gives a comparison of
deviances and a likelihood ratio test:

anova(EPP_ZIP$model,EPP_ZIP_0$model)

#> Data: data
#> Models:
#> EPP_ZIP_0$model: y ~ (1 | id), zi=~1, disp=~1
#> EPP_ZIP$model: y ~ met + (1 | id), zi=~1, disp=~1
#> Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
#> EPP_ZIP_0$model 3 847.63 857.42 -420.82 841.63
#> EPP_ZIP$model 5 836.35 852.67 -413.18 826.35 15.279 2 0.0004811 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The result of the comparison confirms a significant difference between the yearly means, and the
convenience of the concordance setting.

Next, let us apply the function plot_BA to generate the Bland-Altman plot and the bar plot of the
differences in EPP between years. The plots are shown in Figures 4a and 4b.

EPP.BA<-plot_BA(EPP,y="Social",id="id",rm="Year") # Bland-Altman plot

plot_BA(EPP,y="Social",id="id",type="bars") # Bar plot

It can be seen that the magnitude of the differences grows as the mean increases. This heteroscedas-
tic pattern is expected in counts because of the relation between the within-subjects variance and mean.
Furthermore, we can compute some descriptive statistics of the differences:

summary(EPP.BA$data$Diff)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -7.0000 -1.0000 1.0000 0.9737 3.0000 10.0000

quantile(EPP.BA$data$Diff,probs=c(0.05,0.95))

#> 5% 95%
#> -4 6

Briefly, the mean of the differences between years is 0.97 fledglings, and the median is 1 fledgling.
Ninety percent of the differences are between -4 and 6 fledglings between years.

CD34+ count cell example

The dataset AF includes data where a new method of flow cytometry for counting CD34+ cells is
compared to the readings obtained by a standard approach (Fornas et al., 2000). Both methods (coded
as 1 and 3 in the dataset) were applied to a sample of 20 subjects. The aim of the study is to assess
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the interchangeability between the methods so it is necessary to evaluate the degree of concordance.
Hence, the ICC used here concurs with the concordance correlation coefficient estimated by variance
components (Carrasco and Jover 2003).

Let’s firstly consider the Poisson model. As we are facing a concordance analysis, in the icc_counts
function the name of the method’s variable (met ) has to be provided along with the counts variable
(y) and subject’s identifier (id ). Additionally, it is necessary to specify the concordance analysis in the
type argument because the default is the repeatability analysis.

AF_P <- icc_counts(AF, y = "y", id = "id", met = "met", type = "con")
ICC(AF_P)

#> ICC SE ICC 95% CI LL 95% CI UL
#> [1,] 0.8472696 0.021989 0.7982025 0.8851678

VarComp(AF_P)

#> mu BSVar BMVar
#> 761.809 1.234619 0.1199439

The function ICC applied to the iccc object shows that the ICC estimate is 0.85 (95% confidence
interval: 0.80, 0.89). Moreover, the function VarComp gives the parameters involved in the ICC
estimator. In this case are the overall mean (mu), the between-subjects variance (BSVar) and the
between-methods variability (BMVar) (the two last in log-scale).

Next, let’s check the validity of the model by applying the function GOF_check to the iccc object.

set.seed(100)
AF_P.gof <- GOF_check(AF_P)

Figure 2a shows the plot of RQR with envelopes generated by simulation. Points on the plot
stand for the RQR from the original sample. Most of points lie outside of the envelopes indicating the
unsuitable fit of the model. Next plot (Figure 2b) shows the density of the RQR variances computed
at the simulated samples. The RQR variance from the initial sample is 32.2 which is much larger
than those from the simulations. The p-value to test overdispersion is obtained by applying the
function DispersionTest to the GOF . With regards the zero inflation, no zeros were found in data so it
is unnecessary to check this issue.

DispersionTest(AF_P.gof)

#> S P_value
#> 32.20049 0.00990099

Consequently, it is necessary to use a model able to afford the overdispersion as the Negative
Binomial distribution.

AF_NB2 <- icc_counts(AF, y = "y", id = "id", met = "met", type = "con", fam = "nbinom2")
ICC(AF_NB2)

#> ICC SE ICC 95% CI LL 95% CI UL
#> [1,] 0.834794 0.0454062 0.7212048 0.9046669

VarComp(AF_NB2)

#> mu BSVar BMVar r
#> 777.1946 1.188904 0.0809433 0.0488122

In this case, the ICC is quite similar to that from the Poisson model (0.83, 95% CI: 0.72, 0.90) but
the confidence interval is wider. The ICC components are the same as those from the Poisson case
(with different values) plus the Negative Binomial dispersion parameter (0.049). Concerning the fit of
the model,

set.seed(100)
AF_NB2.gof <- GOF_check(AF_NB2)
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b) RQR envelopes plot. Negative Binomial model
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Figure 2: Goodness of fit for CD34 cell count example. The Randomized Quantile Residuals (RQR)
of original data are compared to those from simulated data under the fitted model. The plots shown
are RQR with envelopes, and dispersion of RQR. First row shows results for Poisson model while the
plots for Negative Binomial model are on second row.
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plot(AF_NB2.gof)

in Figure 2c all the RQR are within the envelopes indicating the appropriateness of the model.
Additionally, the dispersion from the initial sample is within the expected values (Figure 2d). This
result is also confirmed by running the dispersion test:

DispersionTest(AF_NB2.gof)

#> S P_value
#> 0.8002765 0.4059406

Figures 4c and 4d show the Bland-Altman plot and the Bar plot of the differences between method
1 and 2 that are generated by the following commands:

AF.BA <- plot_BA(AF,y="y",id="id", rm="met") # Bland-Altman plot

plot_BA(AF,y="y",id="id", type="bars") # Bar plot

It can be seen that for values of the mean below 700 the within-subjects differences are very close
to 0. However, for larger values of the mean there is a trend in the differences in relation to the mean
values.

Tick counts example

In this study, the repeatability of line transects survey method to estimate tick abundance was assessed
(Kjellander et al. 2021) in the area of Grimso (Sweden). With this aim, sampling was performed by two
parallel transects separated by 1m-2m where the total count of ticks was recorded. Here, the transects
are the cluster variable and every pair of data from the same transect are considered as replicates. Data
is stored in the package as the Grimso object.

As seen before the first model to consider is the Poisson model. As it is a repeatability analysis, in
the icc_counts function we just need to provide the name of the counts variable (Tot ) and subject’s
identifier (TransectID ).

G_P <- icc_counts(Grimso, y = "Tot", id = "TransectID")
ICC(G_P)

#> ICC SE ICC 95% CI LL 95% CI UL
#> [1,] 0.3494333 0.1369518 0.0589753 0.5853431

VarComp(G_P)

#> mu BSVar
#> 0.2072297 1.278685

The function ICC applied to the iccc object shows that the ICC estimate is 0.35 (95% confidence
interval: 0.06, 0.59). The function VarComp gives the parameters involved in the ICC estimator: the
overall mean and the between-subjects variance (the latter in log-scale).

Let’s apply the function GOF_check to the iccc object to check the validity of the model.

set.seed(100)
G_P.gof <- GOF_check(G_P)

plot(G_P.gof)

Figure 3a shows the plot of RQR with envelopes generated by simulation. All points on the plot lie
within the envelopes indicating the fit of the model is correct. Additionally, Figure 3b shows the RQR
variance from the initial sample (1.84) is compatible with the dispersion observed in the simulated
samples. The overdispersion test is run by applying the function DispersionTest to the GOF object.

DispersionTest(G_P.gof)
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Figure 3: Goodness of fit for Tick counts example. The Randomized Quantile Residuals (RQR) of
original data are compared to those from simulated data under the fitted model. The plots shown are
RQR with envelopes, and dispersion of RQR for Poisson model.

#> S P_value
#> 1.83724 0.4158416

The p-value is 0.416 so the null hypothesis of no overdispersion is not rejected and no further
models have to be fitted.

The Bland-Altman plot and the Bar plot of the within-subjects differences are shown in Figures 4e
and 4f.

G.BA <- plot_BA(Grimso,y="Tot",id="TransectID",rm="Round") # Bland-Altman plot

plot_BA(Grimso,y="Tot",id="TransectID", type="bars") # Bar plot

As in the case of the sparrow fledgling paternity counts, we can observe a heteroscedastic pattern
with the variability of the differences increasing with the mean. Most of the differences are 0 (75%)
and 90% of the differences lie between -1 and 1.

quantile(G.BA$data$Diff, probs=c(0.05,0.95))

#> 5% 95%
#> -1 1

5 Conclusion

The statistical assessment of agreement is an issue that has received a considerable attention in recent
years. It is possible to find statistical software to carry out such analysis for qualitative or continuous
data (see for example Revelle (2021);Carrasco et al. (2013);D. Feng (2020)) . However, there is a lack
of tools when dealing with discrete data. Here, the iccCounts package have been introduced to
assess the agreement with such type of data considering both repeatability and concordance settings.
Furthermore, the iccCounts package provides the methodology to assess the validity of the model
fitted to data.

It is important to note that no factors or predictors other than subjects and methods have been
considered in the linear predictor of the GLMM. When fitting a GLMM, the inclusion of further
covariates allows controlling for confounding effects. In this case, the ICC computed after controlling
for confounding effects is referred to as adjusted repeatability (Nakagawa and Schielzeth 2010).
Including covariates in the linear predictor make sense when the aim is to estimate the magnitude of
an effect (difference in means, odds ratio or ratio of means, for instance) adjusted by the covariates.
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Figure 4: Bland-Altman and Bar plots. The first column shows the Bland-Altman plots where difference
between pairs of data from the same subject (Y-axis) is plotted against mean of data from the same
subject (X-axis). The second column contains the Bar plots of the differences between pairs of data
from the same subject. The plots for Sparrow fledglings paternity example are on the first row, the
CD34+ count cell example plots are on second row, and plots for Tick counts example are on third row.
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When estimating the ICC in a linear model, the inclusion of covariates will lead to a change in the
variance components estimates but they remain as common estimates for all subjects. However, when
facing the models for count data, the addition of covariates in the linear predictor leads to different
ICCs because the value of the marginal mean µ will be different for every level of the covariates. For
this reason, in the case of count data, it is preferable to segregate the data to estimate a different ICC
according to the covariates. In this way, both the variance components and the mean will be different.

Furthermore, in the Normal model setting the ICC takes values from 0 to 1. A value of 0 means
independence among the measures from the same cluster (no cluster effect) whilst a value of 1 implies
perfect agreement, i.e. all data from the same subject are equal. However, it is not possible to reach a
value of 1 in the counts setting. The reason for this is that some within-subject variability is unavoidable
because of the relation between the variance and the mean in these models. Thus, it i s not possible to
observe perfect agreement with count data but the interpretation remains the same: the proportion of
the total variance accounted for between-subjects variability.

6 Availability

The current stable version of the package requires R 4.0 and can be downloaded from CRAN .
Furthermore, iccCounts depends on the following R packages: glmmTMB (Brooks et al. 2017); ggplot2
(Wickham 2016); Deriv (Clausen and Sokol 2020); gridExtra (Auguie 2017); and dplyr (Wickham et al.
2020).
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R-miss-tastic: a unified platform for
missing values methods and workflows
by Imke Mayer, Aude Sportisse, Julie Josse, Nicholas Tierney and Nathalie Vialaneix

Abstract Missing values are unavoidable when working with data. Their occurrence is exacerbated as
more data from different sources become available. However, most statistical models and visualization
methods require complete data, and improper handling of missing data results in information loss or
biased analyses. Since the seminal work of Rubin (1976), a burgeoning literature on missing values has
arisen, with heterogeneous aims and motivations. This led to the development of various methods,
formalizations, and tools. For practitioners, however, it remains a challenge to decide which method is
most appropriate for their problem, in part because this topic is not systematically covered in statistics
or data science curricula. To help address this challenge, we have launched the ‘R-miss-tastic’
platform, which aims to provide an overview of standard missing values problems, methods, and
relevant implementations of methodologies. Beyond gathering and organizing a large majority of the
material on missing data (bibliography, courses, tutorials, implementations), ‘R-miss-tastic’ covers
the development of standardized analysis workflows. Indeed, we have developed several pipelines in
R and Python to allow for hands-on illustration of and recommendations on missing values handling
in various statistical tasks such as matrix completion, estimation, and prediction, while ensuring
reproducibility of the analyses. Finally, the platform is dedicated to users who analyze incomplete
data, researchers who want to compare their methods and search for an up-to-date bibliography, and
teachers who are looking for didactic materials (notebooks, recordings, lecture notes).

1 Context and motivation

Missing data are unavoidable as soon as collecting or acquiring data is involved. They occur for many
reasons including: individuals choosing not to answer survey questions, measurement devices failing,
or data having simply not been recorded. Their presence becomes even more important as data are now
obtained at increasing velocity and volume, and from heterogeneous sources not originally designed
to be analyzed together. As pointed out by Zhu et al. (2019), “one of the ironies of working with Big
Data is that missing data play an ever more significant role, and often present serious difficulties
for analysis”. Despite this, the approach most commonly implemented by default in software is to
toss out cases with missing values. At best, this is inefficient because it wastes information from the
partially observed cases. At worst, it results in biased estimates, particularly when the distributions of
the missing values are systematically different from those of the observed values (e.g., Enders, 2010,
Chap. 2).

However, handling missing data in a more efficient and relevant way (than limiting the analysis to
solely the complete cases) has attracted a lot of attention in the literature in the last two decades. In
particular, a number of reference books have been published (Schafer and Graham, 2002; van Buuren,
2018; Carpenter and Kenward, 2012; Little and Rubin, 2019) and the topic is an active field of research
(Josse and Reiter, 2018). The diversity of the missing data problems means there is great variety in
the proposed and studied methods. They include model-based approaches, integrating likelihoods
or posterior distributions over missing values, filling in missing values in a realistic way with single,
or multiple imputations, or weighting of observations, appealing to ideas from the design-based
literature in survey sampling. The multiplicity of the available solutions makes sense because there
is no single solution or tool to manage missing data: the appropriate methodology to handle them
depends on many features, such as the objective of the analysis, the type of data, the type of missing
data and their pattern. Some of these methods are available in various software solutions. As R is one
of the main pieces of software for statisticians and data scientists, with its development starting almost
three decades ago (Ihaka, 1998), R offers the largest number of implemented approaches. This is also
due to its ease in incorporating new methods and its modular packaging system. Currently, there
are over 270 R packages on CRAN that mention missing data or imputation in their DESCRIPTION
files. These packages serve many different applications, data types or types of analysis. More precisely,
exploratory and visualization tools for missing data are available in packages like naniar, VIM, and
MissingDataGUI (Tierney et al., 2021; Tierney and Cook, 2018; Kowarik and Templ, 2016; Cheng et al.,
2015). Imputation methods are included in packages like mice, Amelia, and mi (van Buuren and
Groothuis-Oudshoorn, 2011; Honaker et al., 2011; Gelman and Hill, 2011). Other packages focus on
dealing with complex, heterogeneous (categorical, quantitative, ordinal variables) data or with large
dimensional multi-level data, such as missMDA, and MixedDataImpute (Josse et al., 2016; Murray
and Reiter, 2015). Besides R, other languages such as Python (Van Rossum and Drake, 2009), which
currently only have few publicly available implementations of methods that handle missing values,
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offer increasingly more solutions. Two prominent examples are: 1) the scikit-learn library (Pedregosa
et al., 2011) which has recently added a module for missing values imputation; and 2) the DataWig
library (Biessmann et al., 2018) which provides a framework to learn to impute incomplete data tables.

Despite the large range of options, missing data are often not handled appropriately by practition-
ers. This may be for several reasons. First, the plethora of options can be a double-edged sword; while
it is great to have many options, finding the most appropriate method is challenging as there are so
many. Second, the topic of missing data is often missing itself from many statistics and data science
syllabuses, despite its omnipresence in data. So, when faced with missing data, practitioners are left
powerless; quite possibly never having been taught about missing data, they do not know how to
approach the problem, the dangers of mismanagement, how to navigate the methods, software, or
how to choose the most appropriate method or workflow.

To help promote better management and understanding of missing data, we have released
‘R-miss-tastic’, an open platform for missing values. The platform takes the form of a reference
website1, which collects, organizes and produces material on missing data. It has been conceived
by an infrastructure steering committee working group (ISC; its members are authors of this article),
which first provided a CRAN Task View2 on missing data3 that lists and organizes existing R packages
on the topic. The ‘R-miss-tastic’ platform extends and builds on the CRAN Task View by collecting,
creating and organizing articles, tutorials, documentation, and workflows for analyses with missing
data.

This platform is easily extendable and well documented, allowing it to seamlessly incorporate
future works and research in missing values. The intent of the platform is to foster a welcoming
community, within and beyond the R community. ‘R-miss-tastic’ has been designed to be accessible
for a wide audience with different levels of prior knowledge, needs, and questions. This includes
students, teachers, statisticians, and researchers. Students can use its content as complementary
course material. Teachers can use it as a reference website for their own classes. Statisticians and
researchers can find example analysis workflows, or even contribute information for specific areas
and find collaborators.

The platform provides new tutorials, examples and pipelines of analyses that we have developed
with missing data spanning the entirety of an analysis. These have been developed in R and in
Python, implementing standard methods for generating missing values, and for analyzing them under
different perspectives. In addition, we reference publicly available datasets that are commonly used as
benchmarks for new missing values methodologies. The developed pipelines cover the entirety of
a data analysis: exploratory analyses, establishing statistical and machine learning models, analysis
diagnostics, and finally interpreting results obtained from incomplete data. We hope these pipelines
also serve as a guide when choosing a method to handle missing values.

The remainder of the article is organized as follows: In the section entitled “Structure and content
of the platform” we describe the different components of the platform, the structure that has been
chosen, and the target audience. The section is organized as the platform itself, starting by describing
materials for less advanced users then materials for researchers and finally resources for practical
implementation. We then detail the implementation and use-cases of the provided R and Python
workflows in the following section entitled “Details of the missing values workflows”. Finally, in the
conclusion, we outline an overview of planed future developments for the platform and interesting
areas in missing values research that we would like to bring to a wider audience.

2 Structure and content of the platform

The ‘R-miss-tastic’ platform is released at https://rmisstastic.netlify.com/. It has been devel-
oped using the R package blogdown (Xie et al., 2017) which generates static websites using Hugo4.
Live examples have been included using the tool https://rdrr.io/snippets/ provided by the web-
site ‘R Package Documentation’. The source code and materials of the platform have been made
publicly available on GitHub at https://github.com/R-miss-tastic, which provides a transparent
record of the platform’s development, and facilitates contributions from the community.

We now discuss the structure of the ‘R-miss-tastic’ platform, the aim and content of each
subsection, and highlight key features of the platform.

1https://rmisstastic.netlify.com/
2https://CRAN.R-project.org/package=ctv
3https://cran.r-project.org/web/views/MissingData.html
4https://gohugo.io/
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Missing values workflows

An important contribution and novelty of this work is the proposal of several workflows that allow
for a hands-on illustration of classical analyses with missing values, both on simulated data and on
publicly available real-world data. These workflows are provided both in R and in Python code and
cover the following topics:

• How to generate missing values? Generate missing values under different mechanisms, on
complete or incomplete datasets. This is useful when performing simulations to compare
methods that impute or handle missing data.

• How to do statistical inference with missing values? In particular, we focus on different solutions for
estimating linear and logistic regression parameters with missing covariate values (maximum
likelihood or multiple imputation).

• How to impute missing values? We compare different single imputation/matrix completion
methods (e.g., using conditional models, low-rank models, etc.).

• How to predict with missing values? We consider building predictive models, e.g., using random
forests (Breiman, 2001), on data with incomplete predictors. The workflows present different
strategies to deal with missing values in the covariates both in the training set and in the test set.

The aim of these workflows is threefold: 1) they provide a practical implementation of concepts and
methods discussed in the lectures and bibliography sections of the platform; 2) they are implemented
in a generic way, allowing for re-use on other datasets, for integration of other estimation or imputation
methods; 3) the distinction between inference, imputation, and prediction lets the user keep in mind
the solutions are not the same.

Furthermore, the workflows allow for a transparent and open discussion about the proposed
implementations, which can be followed on the project GitHub repository, referencing proposals and
discussions about practicable extensions of the workflows.

Additionally, a workflow on How to do causal inference with incomplete covariates/attributes in R?
demonstrates simple weighting and doubly robust estimators for treatment effect estimation using R.
This workflow is based on the R implementation of the methodology proposed by Mayer et al. (2020).

We provide a more detailed view on the proposed workflows in a later section, with examples of
tabular or graphical outputs that can be obtained as well as recommendations on how to interpret and
leverage these outputs.

Missing values lectures

For someone unfamiliar with missing data, it is a challenge to know where to begin the journey of un-
derstanding them, and the methods to handle them. This challenge is addressed with ‘R-miss-tastic’,
which makes the material to get started easily accessible.

Teaching and workshop material takes many forms – slides, course notes, lab workshops, video
tutorials and in-depth seminars. The material is of high quality, and has been generously contributed
by numerous renowned researchers who investigate the problems of missing values, many of whom
are professors having designed introductory and advanced classes for statistical analyses with missing
data. This makes the material on the ‘R-miss-tastic’ platform well suited for both beginners and
more experienced users.

These teaching and workshop materials are described as “lectures”, and are organized into five
sections:

1. General lectures: Introduction to statistical analyses with missing values; the role of visualiza-
tion and exploratory data analysis for understanding missingness and guiding its handling;
theory and concepts are covered, such as missing values mechanisms, likelihood methods, and
imputation.

2. Multiple imputation: Introduction to popular methods of multiple imputation (joint modeling
and fully conditional), how to correctly perform multiple imputation and limits of imputation
methods.

3. Principal component methods: Introduction to methods exploiting low-rank type structures in
the data for visualization, imputation and estimation.

4. Specific data or applications types: Lectures covering in details various sub-problems such as
missing values in time series, in surveys, or in treatment effect estimation (causal inference). Indeed,
certain data types require adaptations of standard missing values methods (e.g., handling time
dependence in time series (Moritz and Bartz-Beielstein, 2017)) or additional assumptions about
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Figure 1: Overview of selected lectures available on the platform (shared by various researchers
working on missing values). The lectures are grouped by topic. Each lecture contains slides or lecture
notes and in certain cases also comes with corresponding R tutorials and lecture recordings.

the impact of missing values (such as the impact on confounded treatment effects in causal
inference (Mayer et al., 2020)). More in-depth material, e.g., video recordings from a virtual
workshop on Missing Data Challenges in Computation, Statistics and Applications5 held in 2020, is
also available.

5. Implementations: A non-exhaustive list of detailed vignettes describing functionalities of R
packages and of Python modules that implement some of the statistical analysis methods
covered in the other lectures. For example, the functionalities and possible applications of the
missMDA R package are presented in a brief summary, allowing the reader to compare the
main differences between this package and the mice package which is also summarized using
the same summary format.

Figure 1 illustrates two views of the lectures page: Figure 1(a) shows a collapsed view presenting
the different topics, Figure 1(b) shows an example of the expanded view of one topic (General
tutorials), with a detailed description of one of the lectures (obtained by clicking on its title), ‘Analysis
of missing values’ by Jae-Kwang Kim. Each lecture can contain several documents (as is the case for
this one) and is briefly described by a header presenting its purpose.

Lectures that we found very complete and thus highly recommend are:

• Statistical Methods for Analysis with Missing Data by Mauricio Sadinle (in ‘General tutorials’);

• Missing Values in Clinical Research – Multiple Imputation by Nicole Erler (in ‘Multiple imputation’);

• Handling missing values in PCA and MCA by François Husson. (in ‘Missing values and
principal component methods’);

• Modern use of Shared Parameter Models for Dropout (in longitudinal and time-to-event data) by
Dimitris Rizopoulos (in ‘Specific data or application types’).

The purpose of these lectures is to provide either an introduction or a deeper understanding of the
statistical problems and proposed solutions in terms of their (mathematical) derivation and theoretical
scope. So there is less of a focus on practical demonstrations with real data, or a systematic comparison
of all methods for the same problems. This is covered in the section presenting in detail the developed
workflows.

References on missing values

Complementary to the Lectures section, this part of the platform serves as a broad overview on the
scientific literature discussing missing values taxonomies and mechanisms and statistical, machine
learning methods to handle them. This overview covers both classical references to books, articles,
etc. such as Schafer and Graham (2002); van Buuren (2018); Carpenter and Kenward (2012); Little and
Rubin (2019) and more recent developments such as Josse et al. (2019); Gondara and Wang (2018),

5https://www.ias.edu/math/mdccsa
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Figure 2: Overview of curated (a) and alphabetical (b) bibliographies on missing values problems and
methods.

which study the consistency of supervised learning with missing values. The entire (non-exhaustive)
bibliography can be browsed in two ways: 1) a complete list, filtered by publication type and year,
with a search option for the authors or, 2) a curated version. For 2), we classified the references into
several domains of research or application, briefly discussing important aspects of each domain. This
dual representation is shown in Figure 2 and allows for an extensive search in the existing literature,
while providing some guidance for those focused on a specific topic. All references are also collected
in a unique BibTex file made available in the GitHub repository6. This shared file allows external users
to easily propose additions to the bibliography, which are then reviewed by the platform committee,
composed of researchers with different focuses on missing values.

Missing values implementations

R packages As mentioned in the introduction, the platform development is based on the release of
the MissingData CRAN Task View, which currently lists approximately 150 R packages. The CRAN
Task View is continuously updated, adding new, and removing obsolete R packages. Packages are
organized by topic: exploration of missing data, likelihood based approaches, single imputation, multiple
imputation, weighting methods, specific types of data, and specific application fields. We selected only
sufficiently mature and stable packages already published on CRAN or Bioconductor. This ensures all
listed packages can easily be installed and used by practitioners.

Even though the Task View classifies packages into different sub-domains, it may still be a
challenge for practitioners and researchers inexperienced with missing values to choose the most
relevant package for their application. To address this challenge, we provide a partial and slightly
more detailed overview of existing R packages, selecting the most popular and versatile ones. This
overview is a blend of the Task View, and of the individual package description pages and vignettes as
provided on CRAN or Bioconductor. For each selected package (7 at the date of writing of this article:
imputeTS, mice, missForest, missMDA, naniar, simputation and VIM), we provide a category (in
the style of the categorization in the Task View), a short description of use-cases, its description (as
on CRAN), the usual CRAN statistics (number of monthly downloads, last update), the handled
data formats (e.g., data.frame, matrix, vector), a list of implemented algorithms (e.g., k-means, PCA,
decision tree), the list of available datasets, some references (such as articles and books), and a small
chunk of code, ready for a direct execution on the platform via the R package Documentation7. Figure 3
shows the condensed view of the package page and the expanded description sheet of a given package
(here naniar).

We believe shortlisting R packages is highly useful for practitioners new to the field, as it demon-
strates data analysis that handles missing values in the data. We are aware that this selection is
subjective, and we welcome external suggestions for other packages to add to this shortlist.

6in resources/rmisstastic_biblio.bib
7https://rdrr.io/snippets/
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This page provides introductions to popular missing data packages with small examples

on how to use them. Thus the page gives more extensive information than the CRAN

Task View on Missing Data, which is recommended to get a first overall overview about

the CRAN missing data landscape.

You
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also
contribute
on
your
own
to
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and
provide
a
short
introduction
to
a

missing
data
package.
Take
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 look
at
 this
short
description
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how
 to
do
 this.
We
are
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happy
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all
contributions.

Search  Sort by name  Sort by Category

missMDA

Category: Single and multiple Imputation, Multivariate Data Analysis

Imputation
of
incomplete
continuous
or
categorical
datasets;
Missing

values
are
imputed
with
a
principal
component
analysis
(PCA),
a

multiple
correspondence
analysis
(MCA)
model
or
a
multiple
factor

analysis
(MFA)
model;
Perform
multiple
imputation
with
and
in
PCA
or

MCA. 

downloadsdownloads 4000/month4000/month  CRANCRAN 2019-01-232019-01-23  

more..

imputeTS

Category: Time-Series Imputation, Visualisations for Missing Data

Imputation
(replacement)
of
missing
values
in
univariate
time
series.

Offers
several
imputation
functions
and
missing
data
plots.
Available

imputation
algorithms
include:
'Mean',
'LOCF',
'Interpolation',
'Moving

Average',
'Seasonal
Decomposition',
'Kalman
Smoothing
on
Structural

Time
Series
models',
'Kalman
Smoothing
on
ARIMA
models'. 

downloadsdownloads 12K/month12K/month  CRANCRAN 2019-07-012019-07-01  

more..

mice

Category: Multiple Imputation

Multiple
imputation
using
Fully
Conditional
Specification
(FCS)

implemented
by
the
MICE
algorithm
as
described
in
Van
Buuren
and

Groothuis-Oudshoorn
(2011).
Each
variable
has
its
own
imputation

model.
Built-in
imputation
models
are
provided
for
continuous
data

(predictive
mean
matching,
normal),
binary
data
(logistic
regression),

unordered
categorical
data
(polytomous
logistic
regression)
and

ordered
categorical
data
(proportional
odds).
MICE
can
also
impute

continuous
two-level
data
(normal
model,
pan,
second-level
variables).

Passive
imputation
can
be
used
to
maintain
consistency
between

variables.
Various
diagnostic
plots
are
available
to
inspect
the
quality
of

the
imputations. 

downloadsdownloads 41K/month41K/month  CRANCRAN 2019-07-102019-07-10  

more..

naniar

Category: Visualisations for Missing Data

Missing
values
are
ubiquitous
in
data
and
need
to
be
explored
and

handled
in
the
initial
stages
of
analysis.
'naniar'
provides
data
structures

and
functions
that
facilitate
the
plotting
of
missing
values
and

examination
of
imputations.
This
allows
missing
data
dependencies
to

be
explored
with
minimal
deviation
from
the
common
work
patterns
of

'ggplot2'
and
tidy
data. 

downloadsdownloads 5305/month5305/month  CRANCRAN 2019-02-152019-02-15  

more..

missForest

Category: Single Imputation

The
function
'missForest'
in
this
package
is
used
to
impute
missing

values
particularly
in
the
case
of
mixed-type
data.
It
uses
a
random

forest
trained
on
the
observed
values
of
a
data
matrix
to
predict
the

missing
values.
It
can
be
used
to
impute
continuous
and/or
categorical

data
including
complex
interactions
and
non-linear
relations.
It
yields
an

out-of-bag
(OOB)
imputation
error
estimate
without
the
need
of
a
test

set
or
elaborate
cross-validation.
It
can
be
run
in
parallel
to
save

computation
time.


downloadsdownloads 9335/month9335/month  CRANCRAN 2013-12-312013-12-31  

more..

simputation

Category: Single Imputation, Meta-Package

Easy
to
use
interfaces
to
a
number
of
imputation
methods
that
fit
in
the

not-a-pipe
operator
of
the
'magrittr'
package.


downloadsdownloads 1093/month1093/month  CRANCRAN 2019-05-202019-05-20  

more..

VIM

Category: Single Imputation, Visualisations for Missing Data

New
tools
for
the
visualization
of
missing
and/or
imputed
values
are

introduced,
which
can
be
used
for
exploring
the
data
and
the
structure

of
the
missing
and/or
imputed
values.
Depending
on
this
structure
of

the
missing
values,
the
corresponding
methods
may
help
to
identify
the

mechanism
generating
the
missing
values
and
allows
to
explore
the

data
including
missing
values.
In
addition,
the
quality
of
imputation
can

be
visually
explored
using
various
univariate,
bivariate,
multiple
and

multivariate
plot
methods.
A
graphical
user
interface
available
in
the

separate
package
VIMGUI
allows
an
easy
handling
of
the
implemented

plot
methods.


downloadsdownloads 15K/month15K/month  CRANCRAN 2019-02-112019-02-11  

more..
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Package:

naniar

Category:

Data Structures, Summaries, and Visualisations for Missing Data

Use-Cases:

Visualization of missing values, descriptive statistics, …

Popularity:

downloadsdownloads 5305/month5305/month

Description:

Missing values are ubiquitous in data and need to be carefully explored and handled in

the initial stages of analysis. In this vignette we describe the tools in the package naniar

for exploring missing data structures with minimal deviation from the common

workflows of ggplot and tidy data.

Last update:

CRANCRAN 2019-02-152019-02-15

Datasets:

oceanbuoys

pedestrian

riskfactors

Further Information:

Tierney, N. J., & Cook, D. H. (2018). Expanding tidy data principles to facilitate

missing data exploration, visualization and assessment of imputations. arXiv

preprint arXiv:1809.02264. PDF (on arXiv)

Vignettes

Related visdat R-package

Input:

data.frame, vector

Example:

library(naniar)

data(airquality)

print("print	data	set	with	NAs")

print(head(airquality))

##	Replace	"NA"	values	with	values	10%	lower	

##	than	the	minimum	value	in	that	variable.

##	This	is	done	by	calling	the	geom_miss_point()	function

ggplot2::ggplot(airquality,	

									 	 ggplot2::aes(x	=	Solar.R,	

												 	 y	=	Ozone))	+	

		geom_miss_point()

Here you can have a interactive look at the example: 

library(naniar)

data(airquality)

print("print	data	set	with	NAs")
print(head(airquality))

##	Replace	“NA”	values	with	values	10%	lower	
##	than	the	minimum	value	in	that	variable.
##	This	is	done	by	calling	the	geom_miss_point()	function
ggplot2::ggplot(airquality,	
									 	 ggplot2::aes(x	=	Solar.R,	
												 	 y	=	Ozone))	+	
		geom_miss_point()Run (Ctrl-Enter)

You should assume that any scripts or data

that you put into this service are public.

Privacy policy.

Computation provided by rdrr.io: hosting

documentation for all R packages.

https://rdrr.io/snippets/embedding/
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(b) Description sheet

Figure 3: Overview of selected R packages, described by scope, related data and publications, as well
as a small code example.
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Python modules To the best of our knowledge, very few methods are already implemented for
handling missing data in Python. However, one of the major libraries for machine learning and
data analysis, scikit-learn (Pedregosa et al., 2011) has recently proposed a module for simple and
multiple imputations, sklearn.impute. Also, as an alternative, the statsmodels8 library also has an
implementation module for multiple imputation in Python now. Additionally, the missingno toolset
(Bilogur, 2018) facilitates visualizing missing values missing values for exploratory data analyses. We
regularly survey new Python implementations for handling missing values and, if pertinent, from a
theoretical and practical point of view, reference them on our platform. We expect this to promote
their use but also additional assessment by practitioners and researchers from the missing values
(statistics/machine learning) community.

Datasets

Especially in methodology research, an important aspect is the comparison of different methods to
assess their respective strengths and weaknesses. Several datasets are recurrent in the missing values
literature but have not been referenced together yet. We gathered publicly available datasets that
have recurrently been used for comparison or illustration purposes in publications, R packages and
tutorials. Most of these datasets are already included in R packages but some are available in other
data collections. Figure 4 shows how the datasets are presented, with a detailed description shown
for one of the dataset (‘Ozone’, obtained by clicking on its name). The description follows the UCI
Machine Learning Repository presentation (Dua and Graff, 2019), including a short description of
the dataset, how to obtain it, external references describing the dataset in more details, and links to
tutorials/lectures on our websites or to vignettes in R packages that use the dataset.

In addition, the Datasets section also references existing methods for generating missing data,
given assumptions on their generation mechanisms (as in the R package mice).

Note, however, that the list of datasets gathered here is short compared to benchmark datasets for
full data methods such as the UCI Machine Learning Repository. Therefore, our proposed list also
serves as an invitation to tackle this lack of a wider variety of common benchmark datasets in the
missing data community.

Additional content

This unified platform collects and edits the contributions of numerous individuals who have investi-
gated missing values problems, and developed methods to handle them. To provide an overview of
some of the main actors in this field, the list of all contributors who agreed to appear on this platform
is given with links to their personal or to their research lab website.

We also provide links to other interesting websites or working groups, not necessarily working
with R and Python (Van Rossum and Drake, 2009) but with other programming languages such as
SAS/STAT® and STATA (StataCorp., 2019).

Two other features are finally provided to engage the community:

1. A regularly updated list of events such as conferences or summer schools with special focus on
missing values problems, and

2. A list of recurring questions together with short answers and links for more details for every
question (FAQ).

3 Details of missing values workflows

After this general introduction to the ‘R-miss-tastic’ project and platform and the overview of
its structure, we now turn to a more detailed presentation of the various workflows that we have
developed and proposed on this platform.

To allow for both hands-on tutorials illustrating current practice and state-of-the-art and ready-to-
use pipelines, we propose the workflows under different formats such as HTML, PDF, R Markdown
(for R code) and IPython Notebook (for Python code). We encourage practitioners and researchers to
use and adapt these workflows and propose modifications and improvements, in order to increase
reproducibility and comparability of their work. Of course, we are aware that these workflows do
not cover the entire spectrum of existing methods and data problems. The goal of the proposed
workflows is rather to initiate a joint effort to create a larger spectrum of open-source workflows, and
to encourage the use of standardized procedures to handle missing values. With an incomplete dataset

8https://www.statsmodels.org/stable/about.html
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Home

Workflows
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Lectures

R packages

Data

People

More info & links

Contact

R-miss-tastic

A resource website on missing values - Methods and references for managing missing data

Website template created by @mdo, ported to Hugo by @mralanorth. Website proudly powered by Blogdown for R.

Back to top

Here you will find a constantly growing list of interesting data sets which are frequently

used in the R community working on missing values. These data sets can be useful to

get familiar with different concepts in handling missing values and to assess the quality

and performance of new methods.

If
you
have
suggestions
on
other
data
sets
which
might
be
of
interest
to
others,
please

feel
free
to
contact
us
via
the
Contact
form.

Complete data

If you wish to evaluate a certain missing data method on real (or simulated) data it can

be useful to first generate missing values in a complete dataset. This allows to control

the response mechanism and evaluate the method for different response mechanisms.

Some useful tools for this:

The ampute function of the mice R-package. Rianne Schouten and her colleagues

wrote a self-contained tutorial on how to ampute data.

The R workflow on How to generate missing values? extending some

functionalities of the ampute function. For the related R source code click here.

The missCompare R-package.

Incomplete data

The data sets listed below are either widely used in general in the missing data

community or used for illustration of different methods handling missing values in the

tutorials from the Tutorials and R packages sections. This presentation scheme is

inspired by the UCI Machine Learning Repository.

Click on a table entry to obtain further information about the data set.

Share

Name Data Types

Attribute

Types

#

Instances

#

Attributes

%

Missing

entries

Complete

data

available Year

Airquality Multivariate,

Time Series

Real 154 6 7 No 1973

chorizonDL Multivariate Integer,

Real

606 110 15 Yes 1998

Health

Nutrition And

Population

Statistics

Multivariate,

Time Series

Integer,

Real

15,022 397 54 No 2017

NHANES Multivariate Categorical,

Integer,

Real

10,000 75 37 No 2012

oceanbuoys Multivariate,

Time Series

Real 736 8 3 No 1997

Ozone Multivariate Categorical,

Integer,

Real

366 13 6 No 1976

Los Angeles Ozone Pollution Data, 1976. This data set contains daily measurements of ozone concentration and

meteorological quantities. It can be found in R in the mlbench package and is loaded by calling data(Ozone). 

More information on the dataset. 

Tutorials illustrating methods on this data:

Julie Josse's course on missing values imputation using PC methods.

Julie Josse's and Nick Tierney's tutorial on handling missing values. Download the data set from this

tutorial: ozoneNA.csv

Nick Tierney's naniar vignette for missing data visualization.

pedestrian Multivariate,

Time series

Categorical,

Integer

37,700 9 2 No 2016

riskfactors Multivariate Categorical,

Integer,

Real

245 34 14 No 2009

SBS52424 Multivariate Real 262 9 2 No 2016

sleep Multivariate Integer,

Real

62 10 6 No 1976

tsAirgap Time series Integer 144 1 9 Yes 1960

tsHeating Time series Real 606,837 1 9 Yes 2015

tsNH4 Time series Real 4,552 1 9 Yes 2014

About

This website is proudly

sponsored by R Consortium

and maintained by Julie

Josse, Imke Mayer, Nicholas

Tierney and Nathalie

Vialaneix.

Read more →

FAQ →

Follow us!

Events

GitHub

Figure 4: Overview of included datasets, described by key attributes and data availability.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 252

at hand, prior to embarking on an in-depth statistical analysis, two preliminary steps are essential: (i)
a descriptive analysis leveraging visualization packages such as VIM (Kowarik and Templ, 2016) or
naniar (Tierney et al., 2021); (ii) a specific aim has to be defined in order to choose a specific method to
use.

An example of a method whose success crucially depends on the analyst’s goal is mean imputation:
this approach is strongly counter-indicated if the aim is to estimate parameters, but it can be consistent
if the aim is to predict as well as possible (Josse et al., 2019). Following this observation, our workflows
are divided into different parts, defined by the objective of the statistical analysis. We aim to present
and compare the main implementations available both in R and Python for each objective. Currently
there are seven workflows available on the platform and we briefly present their scope and use below.
For details on the implementations we encourage the reader to open the corresponding workflows, all
available on the ‘R-miss-tastic’ platform.

How to generate missing values?

The goal of these workflows is to propose functions to generate missing values under different
mechanisms. This code aims to unify classical solutions to do this. Indeed, a usual strategy to compare
imputation or estimation strategies is to introduce (additional) missing values in the dataset, and use
the ground truth for these missing values to evaluate the strategies (see the following section).

Rubin (1976) classifies the cause for a lack of data into three missing data mechanisms. The missing
data mechanism is said to be: (i) missing completely at random (MCAR) if the lack of data is totally
independent of the data values, (ii) missing at random (MAR) if the process that causes the missing
data only depends on the observed values and (iii) missing not at random (MNAR) if the unavailability
of the data depends on the missing variables. See Sportisse (2021) for a recent overview on the topic.

In R In the R workflow9, we have implemented the main function produce_NA10 which facilitates
generating missing values under the three missing data mechanisms outlined above. This function
internally calls the ampute function from the mice package (van Buuren and Groothuis-Oudshoorn,
2011) but we chose to simplify its use while adding some additional options to specify the missing
values generation. In addition, the original ampute function generates missing values only for a
complete dataset with quantitative variables11. In the main function of our workflow, the user
can easily introduce (additional) missing values in a complete or incomplete dataset composed of
quantitative, categorical, or mixed variables, by choosing the mechanism and the percentage of
missing values to be introduced. The function then returns the data matrix containing the new dataset
with missing values, that also includes the missing values already present in the input data, and
the indicator matrix (a binary matrix where an entry is equal to 1 if a new missing value has been
generated at the same location in the data matrix and 0 otherwise).

The three main arguments are the initial dataset (data) in which the missing values are intro-
duced using a given missing data mechanism (mechanism) and a given percentage of missing values
(perc.missing). For example, to introduce 20% of MCAR values in the dataset X, the code is detailed
below.

X.miss.mcar <- produce_NA(data = X, mechanism = "MCAR", perc.missing = 0.2)
X.mcar <- X.miss.mcar['data.incomp']
R.mcar <- X.miss.mcar['idx_newNA']

For example, if X contains three variables (fully observed) denoted as X1, X2, X3, two options are
available to generate MAR values:

1. The first option consists in generating missing values in X1 by using a logistic model depending
on (X2, X3), which are fully observed, i.e.,

P(R1 = 0|X; ϕ) = 1/(1 + exp(−(ϕ2X2 + ϕ3X3)), (1)

where ϕ = (ϕ2, ϕ3) is the parameter of the missing data mechanism. In our function, ϕ is chosen
such that the given percentage of missing values is achieved. This allows us to obtain missing
values in the first variable XNA

1 . Then, the same strategy is performed to introduce missing
values in X2 and X3, by using a logistic model depending on (X1, X3) (fully observed) and

9https://rmisstastic.netlify.app/how-to/generate/misssimul
10https://rmisstastic.netlify.app/how-to/generate/amputation.R
11If qualitative variables have previously been transformed by one-hot-encoding, they can also be handled by the

ampute function of mice. The produce_NA function internally handles the transformation of qualitative variables
prior to amputation.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://rmisstastic.netlify.app/how-to/generate/misssimul
https://rmisstastic.netlify.app/how-to/generate/misssimul
https://rmisstastic.netlify.app/how-to/generate/amputation.R


CONTRIBUTED RESEARCH ARTICLE 253

(X1, X2) (fully observed) respectively. To get the final matrix containing missing values, we
concatenate XNA

1 , XNA
2 and XNA

3 by handling the rows containing only missing values.

2. The second option consists in generating the missing values by pattern, i.e., by rows. In this case,
the combinations of which variables are observed and missing are specified in a pattern matrix.
For the MAR mechanism, in each pattern, at least one variable must be observed. An example
(the choice by default) of such a pattern matrix is0 1 1

1 0 1
1 1 0

 ,

where 0 indicates that the variable should have missing values whereas 1 means that it should
be observed. For example, the first pattern means that the process which causes the missingness
of the first variable X1 depends on the values of X2 and X3 which are observed.

We also propose several ways to generate missing values, under the MNAR mechanism. It includes
the most general one when the missingness depends on both the missing variables and the observed
variables. It also includes the self-masked mechanism, where the unavailability of the data only
depends on their values themselves. For example, it is possible to introduce self-masked missing
values using a quantile censorship for which the form is specified by the argument self.mask, e.g., if
set to ‘lower’, then the values are amputed based on a quantile from the lower tail of the empirical
distribution such that the target proportion of missing values is achieved.

In Python To our knowledge, there is no specific module in Python to generate missing values.
Consequently, we implemented such functions, in a Python workflow, which similarly to its R
counterpart workflow12 allows us to generate missing values under by different mechanisms and
different percentage of missing values.13 The key difference with the R workflow is that the dataset
must be complete and can currently only contain quantitative variables. For MAR and MNAR
mechanisms, only the option not by pattern has been implemented. In this case, for a dataset X with
three variables, a variable is chosen to be fully observed (say X3), and the process which causes the
missingness of two other variables (X1 and X2) depends on the values of the fully observed variable,
for example with the logistic model given in (1).

How to impute missing values?

The aim of these workflows (in R and Python) is to compare the most classical imputation methods
and to propose a reference pipeline for comparison on simulated and real datasets, which can be easily
extended with other imputation methods. Here, the imputation methods are considered as such, i.e.,
the objective is not to estimate a parameter or to perform a statistical analysis on a completed dataset
but to impute missing values to get a complete dataset in the best possible way. Therefore, we evaluate
the methods in terms of imputation quality, by using the mean squared error (MSE). More precisely,
the procedure is the following one: (i) We have access to a complete dataset X, (ii) missing values
are introduced in X and we get an incomplete dataset XNA, (iii) this incomplete dataset is imputed
and we obtain an imputed dataset Ximp, (iv) the MSE, which measures the error committed by the
imputation of the missing values, is computed: It is the ℓ2-norm of the difference of the imputed
dataset and the complete one). Note that this procedure can also be performed on an incomplete
dataset by introducing additional missing values. However, for now, both R and Python workflows
only consider complete datasets.

Different types of imputation methods are included in this workflow:

1. imputation by the mean, which serves as a naive baseline.

2. conditional models, if the imputation relies on the conditional expectation or a draw from the
conditional distribution of each variable given the others.

• in R:

– mice (van Buuren and Groothuis-Oudshoorn, 2011): a multiple imputations method
by chained equations. Even if it is a returns several imputed datasets, they can be
aggregated using the mean of the imputations to get a single imputation.

– missForest (Stekhoven and Bühlmann, 2012): imputes iteratively by training random
forests.

12https://rmisstastic.netlify.app/how-to/python/generate_html/how%20to%20generate%20missing%
20values

13The code has been partially developed in collaboration with Boris Muzellec (Inria Paris).
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• in Python:

– IterativeImputer of scikit-learn library (Pedregosa et al., 2011): this function is
inspired by mice, but it uses (iterative) regularized regression, imputing by the condi-
tional expectation, and providing a simple imputation. We also use the ExtraTreesRegressor
estimator of IterativeImputer, which trains iterative random forests (it is similar to
missForest in R).

3. low-rank based models, the data matrix to impute is assumed to be generated as a low rank
structure plus a noise term.

• in R:

– softImpute (Hastie et al., 2015): minimizes the re-weighted least squares error penal-
ized by the nuclear norm.

– missMDA (Josse et al., 2016): minimizes the re-weighted least squares error penalized
by a mix between the ℓ2-norm and ℓ0-norm.

• in Python: softImpute (coded for the purpose of this notebook and available here14),
which minimizes the re-weighted least squares error penalized by the nuclear norm and
with an internal cross-validation step to choose the regularization parameter.

4. machine learning methods (for the Python workflow only) using optimal transport or varia-
tional autoencoders.

• in Python:

– MIWAE (Mattei and Frellsen, 2019): imputes missing values with a deep latent variable
model based on importance weighted variational inference.

– Sinkhorn (Muzellec et al., 2020): randomly extracts several batches and minimizes
optimal transport distances between batches to impute missing values.

For the sake of clarity, we show a comparison table (Table 1) in the Appendix, showing the difference
of scope between R and Python packages used in the R-miss-tastic workflows.

In R This workflow15 provides two main functions which compares the imputation methods: (i) on a
simulated dataset for different mechanisms and percentage of missing values (how_to_impute) or (ii) on
a list of real datasets and a given mechanism and percentage of missing values (how_to_impute_real).

The function how_to_impute takes as input a complete dataset (X), a list of percentages of missing
values (perc.list) and a list of missing data mechanisms (mecha.list). The code to use this function
is given below.

perc.list <- c(0.1, 0.3, 0.5)
mecha.list <- c("MCAR", "MAR", "MNAR")
res <- how_to_impute(X = X, perc.list = perc.list, mecha.list = mecha.list, nbsim = 10)

The output of the first function how_to_impute is the mean of the methods’ MSEs for the different
missing values settings by taking the average over several repetitions (the number of repetitions can be
specified through the argument nbsim). Figure 5 shows the output of this function and its associated
plot, when the simulated dataset is Gaussian with n = 1000 observations, d = 10 variables, a mean
vector such that µi = 1, ∀i ∈ {1, . . . , d} and a covariance matrix such that Σij = 0.5 if i ̸= j ∈ {1, . . . , d},
and Σij = 1 if i = j. First, the mean of the methods’ MSEs for the different missing values settings are
reported in Figure 5a. We can note that for the MCAR mechanism, the methods perform well, while
for the MNAR mechanism, the results are generally closer to those of the naive imputation by the
mean. As expected, most methods give worse results for high percentages of missing values. Besides,
Figure 5b shows one of the associated plot for MCAR data (there is also a plot for MAR data and a plot
for MNAR data). In the first part of the Appendix, this function is illustrated for a particular dataset
and the code to obtain Figure 5 is given.

The second function how_to_impute_real takes as input a list of datasets (datasets_list), a list
of missing data mechanisms (mech) and a given percentage of missing values (perc). It returns a
table containing the mean of the MSEs for the simulations performed and a table for the summary
plot shown in Figure 6. This can be particularly useful for practitioners who would like to have an
indication of which method might be the most suited for a given or for several specific datasets. Here,
the real datasets are taken from the UCI repository (Dua and Graff, 2019). An example of how to use
this function in practice is detailed below.

14https://github.com/R-miss-tastic/website/blob/master/static/how-to/python/softimpute.py
15https://rmisstastic.netlify.app/how-to/impute/missimp
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0.1 MCAR
0.74X.pca

0.3 MCAR

0.77X.forest

0.5 MCAR

0.82X.mice

0.1 MAR

0.93X.soft

0.3 MAR

1X.mean

0.5 MAR
0.76

0.1 MNAR

0.8

0.3 MNAR

0.83

0.5 MNAR

0.86
0.99

0.78
0.86
0.86
0.87
1

0.75
0.78
0.83
0.97
1.1

0.78
0.81
0.86
1
1.1

0.81
0.87
0.9
1.1
1.1

0.76
0.78
0.84
1
1.2

0.78
0.81
0.87
1.1
1.1

0.81
0.88
0.9
1.1
1.1

(a) Output of the function how_to_impute in R. The results for the MSE are truncated to two digits. Note that the
line X.pca is the result for missMDA. For all methods, the default parameter choices are used.
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1.1
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Percentage of NA

M
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E

Methods
Mean
Mice
PCA
RandomForest
SoftImpute

MNAR

(b) Example of plot for the MNAR mechanism.

Figure 5: Tabular and graphical outputs of the R function how_to_impute. The methods mice, miss-
Forest, softImpute and missMDA are compared with the naive imputation by the mean for several
percentages of missing values (10%, 30%, 50%). The mean of the MSEs computed for several genera-
tions of missing values are given. In the tabular, the results are shown for several mechanisms (MCAR,
MAR, MNAR) and the plot corresponds to the MNAR mechanism.

winequality−white
0.92X.pca

winequality−red

0.71X.forest

slump

0.86X.mice

movement

0.84X.soft

decathlon

1X.mean

0.9
0.63
0.76
0.78
1

0.9
0.72
0.66
0.68
1

0.47
0.19
0.095
0.2
1

0.98
1
1

0.94
1

Figure 6: Output of the R function how_to_impute_real. The results for the MSE are truncated to two
digits. The methods mice, missForest, softImpute and missMDA for several real datasets in which
20% MCAR missing values have been introduced.

datasets_list <- list(wine_white = wine_white, wine_red = wine_red, slump = slump,
movement = movement, decathlon = decathlon)

names_dataset <- c("winequality-white", "winequality-red", "slump", "movement", "decathlon")
perc <- 0.2
mecha <- "MCAR"
res <- how_to_impute_real(datasets_list = datasets_list ,perc = perc, mech = mecha,

nbsim = 10, names_dataset = names_dataset)

An additional workflow16 is available and compares other deep-learning imputation strategies to
most classical ones on datasets simulated either with linear relationships and nonlinear relationships.
The conclusions point to better behavior of the low-rank based imputation methods even when
deep-learning methods are tuned.

In Python The Python workflow is very similar to its R counterpart. The two same functions,
how_to_impute and how_to_impute_real, have been implemented.

16This workflow has been implemented by an external contributor, François Husson (Professor in Statistics,
France).
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How to estimate parameters with missing values in R?

This R workflow17 is dedicated to a specific inferential framework when the aim is to estimate linear
and logistic regression parameters for multivariate normal data. It is currently only available in R, as
there are no analogous implementations available in Python to our knowledge.

There are two main methods to estimate parameters with missing values: maximum likelihood
estimation adapted to missing values, using, e.g., EM-based algorithms or using multiple imputation.
In this workflow, we compare two instances of these main methods, using available R implementations:
the EM algorithm for logistic and linear regressions with the package misaem (Jiang et al., 2020)
which uses the Stochastic Approximation of EM algorithm (SAEM Delyon et al., 1999) and multiple
imputation with the package mice. Both strategies are valid under the MAR missing data mechanism.
The workflow performs the estimation on a simulated dataset, but the dataset can be replaced with
any custom dataset that the user believes satisfies the assumptions about the missing data mechanism
and distribution of covariates.

The misaem package facilitates estimation of parameters of linear and logistic regression models
from incomplete data, and also provides valid estimates of these parameters’ variances. The functions
miss.lm, miss.glm resemble the standard lm and glm functions both in terms of their signature and
output.

The rationale behind the popular multiple imputation approach is to create M > 1 complete
datasets by imputing the missing values with plausible values, and then to estimate a parameter of
interest θ on each of the imputed datasets. The multiple estimations of θ and their variability reflect the
uncertainty due to the unknown missing values. The parameter estimation is performed by applying
the analytic method used, had the data been complete. This provides an estimate of the parameter θ
and an estimate of the corresponding variance, for each imputed dataset. These quantities are finally
‘pooled’ by using specific rules named “Rubin’s rules” (Rubin, 2004), leading to a final point estimate,
with a corresponding estimation of its variance that takes into account the uncertainty due to missing
values.

In the corresponding workflow, we compare this method to the previous EM algorithm and
provide the basic lines of code required to estimate parameters of linear or logistic regression models
with incomplete covariate data.

For an additional example of how to estimate regression parameters, we refer to the tutorial18

on handling missing values in R by Julie Josse: it walks through a complete analysis, covering
visualization of missing data patterns, data visualization, dimensionality reduction of incomplete data,
and regression, in the presence of missing data.

How to predict in the presence of missing values?

As mentioned in the introduction, methods to deal with missing values are not the same when the
aim is to estimate parameters or to predict a target variable. Josse et al. (2019) study the problem
of supervised learning with missing values, i.e., when the aim is to predict an outcome y, from
incomplete covariates in X. Note that contrary to the estimation setting, supervised learning involves
training and test sets and both may have missing values. Josse et al. (2019) recommend to impute the
training set and the test set with a same constant, such as the mean, and then to apply a universally
consistent learner, i.e., a very powerful learner, such as gradient boosting, able to learn or fit any
function. When forest-based methods are used to do prediction, another method is available, the
Missing Incorporated in Attributes (MIA) method (Twala et al., 2008). Note that constant imputation
or MIA are recommended asymptotically but when having limited data in the prediction setting, other
imputation methods can outperform these asymptotically consistent methods (Josse et al., 2019). This
is explored in the following workflows. The different methods are compared in terms of quality of the
prediction of the outcome (AUC for a binary outcome and MSE for a continuous outcome).

In R The R workflow19 assesses a popular strategy (two-step strategy) which involves independently
imputing the training and test sets using the same imputation method. These datasets are then
treated as being complete data, and regular learning algorithms are applied to predict some target
variable.20 Several imputation methods are compared, such as mice, missForest, softImpute, and
mean imputation. Note that, until recently, using the popular mice package for learning predictive

17https://rmisstastic.netlify.app/how-to/estimate/missestim
18https://rmisstastic.netlify.app/tutorials/josse_bookdown_dataanalysismissingr_2020
19https://rmisstastic.netlify.app/how-to/external/how_to_predict_in_r
20This workflow has been written by an external contributor of the website, Katarzyna Woźnica (PhD student at

the Warsaw University of Technology, Poland).
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models on incomplete data in R was hindered by the fact that it did not allow using the same
imputation model for the training and test set. This has, however, been addressed with the argument
ignore of the R function mice, the details of this recent extension can be found on GitHub.21

In Python The Python workflow22 compares two strategies, where the aim is to predict a target
variable and the covariates may contain missing values:

1. The two-step strategy consists of imputing the missing values both in the training and in the test
set with a method like mean imputation or IterativeImputer of the scikit-learn library, and
to apply usual learning algorithms (random forests, gradient boosting, linear regression) on the
imputed dataset. This learning algorithm can be applied to the imputed dataset X̃ but also to a
new variable made of the combination of the imputed covariates X̃ with the response pattern R:
[X̃, R].

2. The one-step strategy performs prediction using learning methods adapted to the missing data
without necessarily imputing them, such as the MIA method (Twala et al., 2008), which is in our
notebook.

We propose a function, score_pred, which compares these strategies in terms of prediction perfor-
mances by introducing missing values in complete covariates (x_comp) under a specific missing data
mechanism (mecha and a given percentage of missing values (p). The code for calling this function
is given below, when the learning algorithm is the gradient boosting and 20% of MCAR values are
introduced.

learner = HistGradientBoostingRegressor()
p = 0.2
res = score_pred(x_comp=X, y = y, learner=learner , p=p, nbsim=10, mecha="MCAR")

The dataset is then split into a training set and a test set (75% in the training set, 25% in the test
set) and the methods presented below are applied by considering a specific learning algorithm. The
function then returns the prediction error on the test set, by comparing the ground truth (y) and
the predicted outcome values on the test set for each simulation (i.e., each run for the generation of
missing values). Figure 7 shows the graphical output of this function called for different learning
algorithms (linear regression, random forests and gradient boosting) and for different missing data
mechanisms (20% MCAR and MNAR, see the section on how to generate missing values). When the
learner is linear regression, the two-step methods with added mask, both for the MCAR mechanism
and the MNAR mechanism, perform well. Since the simulated dataset is generated using a linear
regression model, the linear regression is expected to give better results than the other learners. In
addition, for the MNAR mechanism, the one-step strategy MIA (especially when the gradient boosting
is performed) appears to be a good choice.

Another function is specifically designed to handle datasets which already contain missing values.
The second part of the Appendix shows a concrete example of this notebook on a real dataset.

This concludes the overview of the workflows developed in this project. We invite other prac-
titioners and researchers to use and extend these methods. Overall, we hope that by creating and
sharing implemented methods, new methods can be more easily developed and easily compared and
evaluated.

4 Perspectives and future extensions

By providing a platform and community to discuss missing data, software, approaches and workflows,
the sharing of expertise on missing data can hopefully be improved and extended more easily.

Towards uniformization and reproducibility

One way to promote and encourage practitioners and researchers in their work with missing values is
to provide benchmarks and workflows around missing data. As has been shown in data competitions,
community involvement produces many creative solutions and discussions that move the field
forward, and challenge existing strategies. We will continue to work on our workflows and related
source code. In doing so, we hope to encourage users to continue to test new methods and present
results in a clear and reproducible manner. In addition, we plan to propose two types of data

21https://github.com/amices/mice/issues/32
22https://rmisstastic.netlify.app/how-to/python/predict_html/how%20to%20predict
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Figure 7: Plot of the function score_pred to compare different strategies when the aim is to predict in
Python. 20% of missing values are introduced in a simulated dataset using the MCAR mechanism
or the MNAR mechanism. The covariates X ∈ R1000×3 are generated under a multivariate Gaussian
distribution, the parameter of the regression β ∈ R3 follows a random uniform distribution. The
outcome y is generated according to a linear model such that y = Xβ+ ϵ, with ϵ representing Gaussian
noise. The two-step strategies (IterativeImputer and the mean imputation) with or without adding a
mask and the one-step strategy MIA are compared in terms of prediction error, and several learners
are performed (linear regression, random forests, gradient boosting). The closer the result is to 1, the
more accurate the prediction is (1 corresponds to perfect prediction, 0 to the worst prediction).

challenges: 1) imputation and estimation, and 2) analysis workflows. For the first part of the challenge,
the objective is to find the best imputation or estimation strategy. The community will be given
a dataset with missing values, for which there is actually a hidden copy of the real values. The
community will then get the task of creating imputed values, which are assessed against the original
dataset with complete values, to determine which imputation is best. This is similar in spirit to
the Netflix prize (Bennett et al., 2007) and the M4 challenge in the time series domain (Makridakis
et al., 2018). This benchmarking could be extended to other areas, such as parameter estimation,
and predictive modeling with missing data. Analysis workflows could form another community
challenge, assessed in a similar way to existing ‘datathon’ events where entries are assessed by an
expert panel. Here the challenge could be to develop workflows and data visualizations from complex
data. The data could have challenging features, and be combined from various data sources with
complex structure, such as data with several types of missingness, images, text data, longitudinal data,
and time series.

Future extensions

Possible enhancements that could be added in future releases of the platform, for which we welcome
suggestions and contributions, are the following: A workflow with a focus on MNAR data and
different solutions that can handle such data (as diversity of existing solutions is large, such a unified
workflow will be a consequential contribution); for more applied users, a comparison of computation
times of different methods, benchmarked on various types of data. Another problem that is becoming
more common is missing values in data integration. Indeed, questions such as what do I do when I
have clinical data from multiple centers with different mechanisms of missing values or with systematically
missing values in certain data? or what do I do when I have time series and missing values in one of the groups
of variables? would be also worth addressing in additional workflows.

Participation and interaction

This platform is aimed to offer a venue for the community, in the sense that we welcome every
comment and question, encourage submissions of new works, theoretical or practical, either through
the provided contact form or directly via the GitHub project repository. We have already received
useful feedback and several external contributions, organized several remote calls and working
sessions at statistics conferences. We are planning on regularly relaunching calls for new material for
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the platform, for example through the R consortium blog23, R-bloggers24 and social media platforms.
We also intend to use these channels to communicate more generally about the platform and the topic
of missing values.

In order for the platform to be a reference to the community, it must provide regularly updated,
user-friendly content. To achieve this goal, it is important to propose sustainable and accessible
solutions for the maintenance of the ‘R-miss-tastic’ platform. We hope that the well documented
source code of the platform facilitates external contributions and community feedback on this project.

In conclusion, the aim of this platform is to go beyond mere community participation, namely to
seed meaningful community interactions, and to offer a hub of communication among groups that
rarely exchange, both within, and between academia and industry.
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1 Appendix

Tutorial for imputing missing values in R

The goal of this tutorial is to give practical details on the R-workflow entitled How to impute missing
values?25. In this workflow, users can compare the most popular methods to impute missing values in
R on simulated or real datasets.

We illustrate this workflow by considering a small dataset called decathlon, that contains athletes’
performance during two sporting events (41 rows, 13 columns26). It is available in the R package
FactoMineR (Lê et al., 2008).

library(FactoMineR)
data(decathlon)
head(decathlon[,1:4]) # four first columns of the dataset

100m Long.jump Shot.put High.jump
SEBRLE 11.04 7.58 14.83 2.07
CLAY 10.76 7.40 14.26 1.86
KARPOV 11.02 7.30 14.77 2.04
BERNARD 11.02 7.23 14.25 1.92
YURKOV 11.34 7.09 15.19 2.10
WARNERS 11.11 7.60 14.31 1.98

If we have collected similar data, e.g., described by the same variables but for new athletes,
that contain missing values, practitioners may want to know how to impute such a dataset. To
address this question, we can introduce missing values under different mechanisms (MCAR, MAR
or MNAR) and with different percentages of missing values (here we compare 20% and 50%) in the
complete dataset and compare some imputation methods in terms of mean squared error (MSE), i.e.,
the error committed by the imputation of the missing values. Missing values are introduced in all
covariates. The function how_to_impute can be used to compare the imputation methods described
in the section on how to impute missing values (missMDA, mice, missForest, softImpute and the
imputation by the mean) using different percentages and types of missing values given in two lists
by the users. More particularly, the arguments are the following ones: the complete dataset where
the missing values will be introduced (X), a list containing the different percentage of missing values
(perc.list), a list containing the different missing-data mechanisms (mecha.list) and the number of
simulations performed (nbsim). Note that for missMDA, the number of components in the PCA used
to predict the missing entries is estimated using a cross-validation with the function estim_ncpPCA. For
softImpute, we use a cross-validation to choose the regularization parameter (coded for the purpose
of the notebook). This function returns a table with the mean of the MSEs over the simulations for the
different methods and for the different missing data settings (20% MCAR values, 50% MCAR values,
20% MAR values, 50% MAR values, 20% MNAR values, 50% MNAR values).

perc.list <- c(0.2,0.5)
mecha.list <- c("MCAR", "MAR", "MNAR")
res <- how_to_impute(X=decat_sc, perc.list=perc.list,mecha.list=mecha.list,nbsim=10)
res

0.2 MCAR 0.5 MCAR 0.2 MAR 0.5 MAR 0.2 MNAR 0.5 MNAR
X.pca 0.8822782 1.0537611 0.9394561 1.0873315 0.9876867 1.1026891
X.forest 0.8820789 0.9577351 0.9403659 1.0526915 0.9940827 1.0809478
X.mice 0.8610320 1.0372518 0.9559042 1.0948981 0.9887239 1.1271581
X.soft 0.7935545 0.8865989 0.8721907 0.9556373 0.8951239 0.9692859
X.mean 1.0177192 1.0306089 1.0972080 1.0770715 1.1342289 1.1077467

With this result in hand, we can easily visualize some of the results. Figure 8 shows the associated
graphics, for each of the missing-data mechanism. The code to obtain these graphics is given below.

plotdf <- do.call(c, res)
plotdf <- as.data.frame(plotdf)
names(plotdf) <- 'mse'
n_perc.list <- length(perc.list)
n_mecha.list <- length(mecha.list)

25This tutorial is only an example of use but more practical details are given in the original workflow.
26We do not consider the last variable in this part, which is categorical. Some imputation methods do not handle

mixed data.
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methods.list <- c("PCA", "RandomForest", "Mice", "SoftImpute", "Mean")
meth <- rep(methods.list, n_perc.list * n_mecha.list)
plotdf <- cbind(plotdf, meth)
perc <- rep(rep(as.character(perc.list), each = 5),length(mecha.list))
plotdf <- cbind(plotdf, perc)
mecha <- rep(mecha.list, each = 5 * length(perc.list))
plotdf <- cbind(plotdf, mecha)

# For MCAR data
ggplot(plotdf[plotdf['mecha'] == "MCAR",])
+ geom_point(aes(x = perc, y = mse, color = meth), size = 2)
+ ylab("MSE") + xlab("Percentage of NA")
+ geom_path(aes(x = perc, y = mse, color = meth, group = meth))
+ ggtitle("MNAR") + labs(color = "Methods") + theme(text = element_text(size = 20))

# For MAR data
ggplot(plotdf[plotdf['mecha'] == "MCAR",])
+ geom_point(aes(x = perc, y = mse, color = meth), size = 2)
+ ylab("MSE") + xlab("Percentage of NA")
+ geom_path(aes(x = perc, y = mse, color = meth, group = meth))
+ ggtitle("MNAR") + labs(color = "Methods") + theme(text = element_text(size = 20))

# For MNAR data
ggplot(plotdf[plotdf['mecha'] == "MCAR",])
+ geom_point(aes(x = perc, y = mse, color = meth), size = 2)
+ ylab("MSE") + xlab("Percentage of NA")
+ geom_path(aes(x = perc, y = mse, color = meth, group = meth))
+ ggtitle("MNAR") + labs(color = "Methods") + theme(text = element_text(size = 20))

For this dataset and these missing data settings, softImpute appears to be the best imputation
method.

Tutorial for predicting in presence of missing values in Python

The goal of this tutorial is to give practical details on the Python-workflow entitled How to predict with
missing values?27. In this workflow, users can compare methods in Python to predict a target variable
when the covariates contain missing values.

We consider the dataset called california_housing (20640 rows, 9 columns). The target variable is the
median house value for California districts and the covariates provide information (latitude, longitude,
number of people in the district...) on the different districts.

If we know that new observations will contain missing values, an interesting question is how
to predict the target variable in presence of covariates with missing values. To answer this, we can
impute missing values in the covariates and compare methods which handle them and predict the
target variable.

First, we generate missing values in the covariates of the dataset california_housing, using the
function produce_NA. The three main arguments are the initial dataset (X) in which missing values are
introduced using a given missing data mechanism (mecha) and a given percentage of missing values
(p_miss). In the following example, we introduce 20% MCAR values.

XproduceNA_MCAR = produce_NA(X = x_comp, p_miss = 0.2, mecha = "MCAR")
x_MCAR = XproduceNA_MCAR['X_incomp'].numpy()

To predict, we consider two strategies presented in the section on how to predict in the presence
of missing values: (i) The two-step strategy which consists of imputing missing values and applying
classical methods on the completed datasets to predict, and (ii) the one-step strategy which predicts
using methods adapted to the missing values without necessarily imputing them. The code below
allows comparison of different prediction strategies nested in a two-step or a one-step strategy. To
do so, we use the function plot_score_realdatasets, which handles datasets already containing
missing values. Figure 9 shows the graphical output of this function called for different learning
algorithms. When the learner is the linear regression, the two-step methods with added mask perform

27This tutorial is only an example of use but more practical details are given in the original workflow.
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Figure 8: Graphical outputs of the R function how_to_impute. The methods mice, missForest, softIm-
pute and missMDA are compared with the naive imputation by the mean for several percentages of
missing values (20%, 50%). The mean of the MSEs computed for several generations of missing values
are given. The results are shown for different mechanisms (MCAR, MAR, MNAR).
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Figure 9: Graphical outputs of the Python function plot_score_realdatasets. The x-axis indicates
the MSE. The two-steps methods considering the imputation by the mean (Mean), IterativeImputer
(Iterative) with or without adding the mask and the one-step method MIA are compared with the
case without missing values (X_complete). Note that the mask is the binary matrix which indicates
where are the missing values. When we add the mask, we consider then an augmented matrix, with
the initial matrix and the mask. The learner are the linear regression (left panel), the random forests
(middle panel) and gradient boosting (right panel).

well. Indeed, since the simulated dataset is generated considering a linear regression, the linear
regression is expected to give better results than the other learners.

The code for the function plot_score_realdatasets is given below. The main arguments are the
dataset (X), the outcome variable (y) and the learning algorithm to use (learner).

learners = {'LinReg': LinearRegression()
'RandomForest': RandomForestRegressor(),
'HGBoost': HistGradientBoostingRegressor()}

for learner_name, learner in learners.items():
plt.figure(figsize=(10,10))
for ii, (X, X_name) in enumerate(zip([x_MCAR], ['MCAR'])):

plt.subplot(3, 2, ii+1)
plot_score_realdatasets(X, y, learner, learner_name + ' ' +X_name,x_comp)
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Table 1: Comparison of the scope and functionality of different R and Python packages used for the
same tasks in the R-miss-tastic R and Python workflows. If existing, differences between approximately
equivalent packages or functions are summarized in the last column.

R implementation Scope Python counterpart Differences (if any)
imputeMean

(implemented in
R-miss-tastic

workflow)

Impute missing
values

of each variable
by their means.

module
sklearn.impute,
SimpleImputer

with strategy=’mean’

softImpute

Impute missing
values

using a low-rank
completion

with nuclear norm
penalities

function softImpute
(implemented

in R-miss-tastic
workflow)

The R package is better
optimized than our

Python version.
The R implementation

also has different
optimization

algorithms implemented
(itervative SVD,
iterative ALS).

mice
Give multivariate

imputations by
chained equations

module
sklearn.impute

IterativeImputer
with

BayesianRidge

The Python module uses
iterative chained equations.

However, it differs from
the mice package,

because it uses a ridge iterate
and it returns by default

a single imputation.
Note that the argument

sample_posterior=True allows
to get stochastic imputations,
and not multiple imputations,
as the R function mice does.

missForest

Impute missing
values

using random
forests

module
sklearn.impute,

IterativeImputer
with

ExtraTreesRegressor

The Python
implementation

does not exactly use random
forests with CART trees,

but forests with trees
which choose a random
split (instead of the best

split per feature).

missMDA
Impute missing values

using a low-rank matrix
completion with penality
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An Open-Source Implementation of the
CMPS Algorithm for Assessing Similarity
of Bullets
by Wangqian Ju and Heike Hofmann

Abstract In this paper, we introduce the R package cmpsR, an open-source implementation of the
Congruent Matching Profile Segments (CMPS) method developed at the National Institute of Standards
and Technology (NIST) for objective comparison of striated tool marks. The functionality of the
package is showcased by examples of bullet signatures that come with the package. Graphing tools
are implemented in the package as well for users to assess and understand the CMPS results. Initial
tests were performed on bullet signatures generated from two sets of 3D scans in the Hamby study
under the framework suggested by the R package bulletxtrctr. New metrics based on CMPS scores
are introduced and compared with existing metrics. A measure called sum of squares ratio is included,
and how it can be used for evaluating different scans, metrics, or parameters is showcased with the
Hamby study data sets. An open-source implementation of the CMPS algorithm makes the algorithm
more accessible, generates reproducible results, and facilitates further studies of the algorithm such as
method comparisons.

Introduction

In this paper, we present an open-source implementation of the algorithm of the Congruent Matching
Profile Segments (CMPS) method. Chen et al. (2019) developed the CMPS method for “objective
comparison of striated tool marks” and demonstrated its use in some examples of comparing bullet
signature correlations. Although Chen et al. (2019) conceptually describe the CMPS algorithm in
their paper, the authors did not release an implementation of their method. Thus, our effort here is
to introduce the CMPS method to the R community and provide an open-source, publicly available
implementation of the algorithm to use, review, and improve. Our implementation is made available
as part of the R package cmpsR on CRAN.

According to the Uniform Crime Reporting Program of the FBI (Federal Bureau of Investigation),
“more than 76 percent (76.7) of the homicides for which the FBI received weapons data in 2020 involved
the use of firearms” (United States Department of Justice, Federal Bureau of Investigation., n.d.a). At
the same time, the number of murder victims jumped between 2019 and 2020 by more than 23 percent
(23.4) to 17754 (United States Department of Justice, Federal Bureau of Investigation., n.d.b). This
increase is unprecedented and highlights the important role that firearm examination plays in all these
cases. An important task of firearm examination is to answer the question of whether two pieces of
evidence come from the same source or whether a piece of evidence matches a sample obtained from a
specific firearm. Here, in particular, we are interested to determine whether two bullets were fired from
the same gun barrel. Assessing the similarity between two bullets is based on a comparison of striation
marks acquired during the firing process as bullets are propelled through the barrel. The current state
of the art sees firearms examiners make an assessment of similarity based on a visual comparison,
generally, using a comparison microscope (AFTE Criteria for Identification Committee 1992). This
practice has been criticized for its lack of objectivity and the associated problem of determining valid
error rates (President’s Council of Advisors on Science and Technology 2016).

A report published by the Committee on Identifying the Needs of the Forensic Sciences of the
National Research Council (2009) states that “[m]uch forensic evidence-including, for example, bite
marks and firearm and toolmark identification—is introduced in criminal trials without any mean-
ingful scientific validation, determination of error rates, or reliability testing to explain the limits of
the discipline.” To overcome those criticisms and concerns, researchers have been making an effort
to build databases and develop frameworks and algorithms that bring an objective and quantitative
assessment into the field. The database of Zheng (2016) with digital 3D topographic scans from
various studies by Brundage (1998), Hamby, Brundage, and Thorpe (2009), Hamby et al. (2019) and
others, provides a great resource for researchers. Algorithms that can be validated and tested and
generate quantitative results are developed for 2D and 3D surface texture (Song et al. 2005), tool marks
(Chumbley et al. 2010), and striae on Land Engraved Areas (LEAs) of bullets Chen et al. (2019). The
notion of bullet signatures is one of the results of these efforts, and we will use it to explain the CMPS
algorithm and showcase the cmpsR implementation. Bullet signatures can be extracted from bullet
LEAs, typically one for each land engraved area, and how those bullet signatures are extracted from
scans will be discussed in the Background section. Bullet signatures capture striation marks on the
bullet in a numeric format and therefore serve as the foundation for algorithms. These scans played
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an important role in bringing objectivity into the field. In the following sections, we will: review the
background of bullet signature comparisons, discuss how we followed the idea described by Chen et
al. (2019) for the implementation of the CMPS algorithm, propose new metrics based on the CMPS
score and a principled evaluation framework for algorithmic results comparison, and present results
of applying our implementation to real data.

Background

Hamby data set

The datasets we worked with come from the James Hamby Consecutively Rifled Ruger Barrel
Study (Brundage 1998; Hamby, Brundage, and Thorpe 2009; Hamby et al. 2019), in particular, Hamby
set 252 and Hamby set 44. For each Hamby set, a total of 35 bullets is fired from (the same) ten
consecutively manufactured Ruger P-85 pistol barrels. Two bullets are fired from each barrel, making
up a set of 20 reference bullets. An additional 15 bullets are fired from these ten barrels in a fashion
unknown to the study participant. The aim of the Hamby Study was to have firearms examiners
identify which barrel each of the 15 questioned bullets was fired from. The Ruger P-85 barrels are
traditionally rifled barrels with six grooves and lands as shown in Figure 1. During the firing process,
grooves and lands are engraved on a bullet. Firearms examiners use striation marks on land engraved
areas (LEAs) for their visual comparison. For algorithmic purposes, 3D topographical images of
land engraved areas were obtained and stored in x3p format (XML 3-D Surface Profile). The x3p
format provides a standard way of exchanging 2D and 3D profile data. It conforms to the ISO5436-
2 standard adopted by the OpenFMC (Open Forensic Metrology Consortium), a group of firearm
forensics researchers who contributes to the establishment of best practices of using metrology in
forensic science. Hamby set 252 was scanned using a NanoFocus lens at 20x magnification with the
scan resolution being 1.5625 µm × 1.5625 µm per pixel. Hamby set 44 was scanned at the Roy J Carver
High-Resolution microscopy lab at Iowa State. These scans were acquired with a Sensofar Confocal
Light Microscope at 20x magnification for a nominal resolution of 0.645 µm × 0.645 µm per pixel.
Both Hamby set 252 and Hamby set 44 are publicly available from the NIST Ballistics Database Project
(Zheng 2016).

Extracting signatures from LEA scans

The automated framework for extracting signatures from x3p files used in this paper was proposed
by Hare, Hofmann, and Carriquiry (2017) and is implemented in the R packages x3ptools (Hofmann
et al. 2020) and bulletxtrctr (Hofmann, Vanderplas, and Krishnan 2019). x3ptools is a package to
read, write, and generally, process x3p files. The bulletxtrctr package implements a pipeline for
extracting and comparing signatures from scans of land-engraved areas.

Figure 2 gives an overview of all of the steps in the process from scan to signatures. Figure 2(a)
shows a rendering of a 3D scan of a bullet land engraved area. The raised portion of the surface on
the left and right of the scan are parts of the adjacent groove engraved areas (GEAs), the middle area
shows a land engraved area with well expressed striation marks. The first step of obtaining the bullet
signature is to extract a cross-section at a fixed height on the land engraving.

The thin white horizontal line in Figure 2(a) indicates which cross-section was identified by the
algorithm to represent the LEA; Figure 2(b) shows the corresponding cross-sectional view. Groove
engraved areas are removed from the analysis as indicated by the vertical blue lines in Figure 2(c)
and Figure 2(d). A non-parametric LOESS smooth (Cleveland, Grosse, and Shyu 1991) is fitted to
capture the bullet curvature (Figure 2(e)) and, finally, the bullet signature (Figure 2(f)) is obtained as
residuals of the cross-section and the fitted smooth. Note that in Chen et al. (2019) bullet signatures
are referred to as bullet profiles. However, to avoid confusion, we distinguish the notion of bullet
signatures from bullet profiles. Bullet profiles are shown in panels (b), (c), and (d) of Figure 2, while
Figure 2(f) shows the corresponding bullet signature. Identifying the groove engraved areas correctly
is fundamental for a correct downstream analysis of the signatures. We have provided an interactive
web application to allow for a human-in-the-middle inspection and intervention. It is implemented as
an R Shiny App (Chang et al. 2021) named bulletinspectR for identifying and correcting those errors.
An example of the extraction process with corresponding code and parameter settings can be found in
the “Supplementary materials”. Note that the process of extracting signatures might be different from
the one used in Chen et al. (2019) because no code or parameter settings are made available publicly.

Conceptual idea of CMPS

Most algorithms for comparing striation marks are based on the digitized signatures and produce
a similarity score Krishnan and Hofmann (2019). The congruent matching profile segments (CMPS)
algorithm, developed by Chen et al. (2019) for “objective comparison of striated tool marks”, is one
such algorithm. The algorithm’s main idea is to take a set of consecutive and non-overlapping basis
segments from the comparison and for each segment find the “best” registration position on the
reference (the other bullet signature) with respect to their cross-correlation values. From a comparison
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Figure 1: Photo of a traditionally rifled gun barrel (left) and a fired bullet (right).

Figure 2: A framework of obtaining a bullet signature. (a) rendering from the 3D topographic scan of
a land engraved area (LEA). The selected crosscut location is indicated by a thin white horizontal line.
(b) view of the cross-section of the land engraved area at the white line in (a). (c) the crosscut data
plotted in 2D; blue vertical lines indicate the position of the left and right grooves. (d) the crosscut
data after chopping the left and right grooves. (e) the fitted curvature using LOESS. (f) after removing
the curvature from the crosscut data, the bullet signature is obtained.
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of these registration positions, a congruent registration position is identified, and the number of
basis segments taking the congruent registration position is the CMPS score. Note that researchers in
Chen et al. (2019) refer to the origin of basis segments as the reference, but in this paper we refer to it
as the comparison signature. High CMPS scores are achieved between more similar signatures and
are therefore indicative of a same-source pair. Low scores between pairs of signatures are attributed
to different source pairs. However, a specific threshold of the CMPS score to distinguish between
same-source and different-source comparisons is not provided in Chen et al. (2019), instead the
threshold depends on the underlying structure of the data and the choice of parameters. In a legal
setting this variability is problematic because it allows for situations in which experts could choose
parameters based on whether they are witnesses for the defense or the prosecution. Further research
is needed to understand how to determine optimal threshold settings. The CMPS algorithm can assist
firearms examiners with drawing a conclusion about the source of a comparison pair. Thus, in this
paper we present an open-source implementation of the CMPS algorithm in the R package cmpsR
available from both CRAN and Github. This publicly available implementation calculates the CMPS
score of a comparison using the following code:

# install.packages("cmpsR")

library(cmpsR)
data(bullets)

sig1 <- bullets$sigs[[2]]$sig
sig2 <- bullets$sigs[[9]]$sig
sig3 <- bullets$sigs[[10]]$sig

cmps_result_KM <- extract_feature_cmps(sig1, sig2)
cmps_result_KNM <- extract_feature_cmps(sig1, sig3)

In this example, the comparison between sig1 and sig2, two signatures coming from the same
source (a known-match comparison), gets a CMPS score of 17; the comparison between sig1 and sig3,
two signatures coming from different sources (a known non-match comparison), gets a CMPS score of
1.

We also implemented graphing tools for users to better understand these results as well as the
algorithm itself.

The section “Implementation” will go through the algorithm and show how to use the cmpsR
package. A further example that illustrates the main points is also included. In the section on
“Evaluation metrics”, we introduce new CMPS metrics that summarize land-level CMPS scores and a
sum of squares ratio that can be used to evaluate algorithmic results. The section “Results” presents
the results of evaluating the cmpsR package using Hamby set 252 and Hamby set 44. The results
from Hamby set 252 are used to verify that our implementation is, at least qualitatively, comparable
to the algorithm described in Chen et al. (2019). Results from Hamby 44 show the need for a further
investigation of the parameter choices even in the case of bullets fired from the same barrels. The last
section covers some final discussion and conclusions.

Implementation

Algorithm

Conceptually, the CMPS algorithm consists of three main steps:

1. cut the comparison signature into consecutive, non-overlapping, and equal-length basis
segments: The command get_segs(x, len=50) implements this step: it takes bullet signature x
in the format of a numeric vector and cuts it into consecutive, non-overlapping and equal-length
segments of length len, which are referred to as “basis segments”. Note that the parameter len
determines the length of a basis segment and thus affects the total number of basis segments,
which is the upper limit of the CMPS score of a comparison. The default value of len is 50,
which will result in about 25 basis segments for the example data of the package.

2. identify candidate positions: For each basis segment a set of candidate registration positions
on the comparison signature is identified based on the segment’s similarity to the reference
signature. In the first step, the cross-correlation function of the segment to the reference is
calculated, then a number of positions with high correlation values are identified as candidate
positions. In case multiple segment lengths are considered, the length of each basis segment
is expanded (by default it is doubled) and these two steps are repeated. Only when candidate
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positions coincide (or are similar enough), they are considered further. Figure 5 and Figure 6
illustrate these ideas.

• Calculate the cross-correlation curve: Calculate the cross-correlation curve between a
basis segment x and the reference signature y using the function get_ccf4(x, y, ...) as
shown in Figure 5(b). The position indicates the lag by which a basis segment is moved
with respect to its original placement. A position is considered “good” if it results in a
peak in the cross-correlation between the basis segment and the reference.

• Correlation peaks: Two strategies referred to as “multi-peak inspection” and “multi-peak
inspection at different segment lengths” in Chen et al. (2019) are used for identifying
positions of correlation peaks as candidate positions. The latter is also called the “multi-
segment lengths strategy”. The parameter npeaks_set in extract_feature_cmps(...)
determines which strategy to use and the number of candidate positions:

– If npeaks_set is an integer vector of length 1, for example, npeaks_set = 5, the
positions of the top five peaks in the cross-correlation curve are identified as candidate
positions for registration.

– If npeaks_set is an integer vector of length more than 1, for example, npeaks_set
= c(5, 3, 1), the multi-segment lengths strategy will be used: calculate the cross-
correlation function between a basis segment and the reference and identify positions
of the top five peaks; double the segment length to a specified value, re-calculate the
cross-correlation function, and identify three peaks; repeat this process and identify
a single peak in the newly computed cross-correlation function. Figure 6 shows an
example of three levels of basis segment 6 and their corresponding cross-correlation
curves and identified peaks. Note that in Chen et al. (2019) the segment length is
doubled at each level of a basis segment, but in the present implementation users are
allowed to choose the segment length at each level.

– get_ccr_peaks(comp, segments, seg_outlength, nseg = 1, npeaks = 5) computes
the cross-correlation curve between a basis or increased segment and the reference sig-
nature and finds peaks in the cross-correlation curve. The number of peaks detected
is equal to npeaks, which is an integer. segments, seg_outlength, and nseg deter-
mine the segment in the cross-correlation computation, and comp gives the reference
signature. If the multi-segment lengths strategy is used, then get_ccr_peaks(...) is
called in a lapply() for each level of the basis segment. The resulting list is called
ccr_list.

• multi-segment lengths strategy: with the multi-segment lengths strategy being used, a
position is identified as a candidate position for registration and is called a “consistent
correlation peak” if it results in a top peak in the cross-correlation curve with a tolerance
zone determined by Tx in all segment levels. Note that in Chen et al. (2019), a segment
at its largest scale (highest level) always identifies one peak, but we do not have this
requirement in our implementation.

– the function get_seg_scale(segments, nseg, out_length) is used to obtain the
(potentially increased) version of a basis segment. segments, which is a list containing
all basis segments generated by the function get_segs(...) in step 1, and nseg are
used to determine the basis segment to be increased. out_length specifies the length
of the output segment.

– get_ccp(ccr_list, Tx = 25) tries to identify the “consistent correlation peak”.
ccr_list is the result of lapply() and get_ccr_peaks(...), and Tx determines
the size of a tolerance zone used in identifying the consistent correlation peak.
get_ccp(...) returns NULL if there is no consistent correlation peak.

3. determine the congruent registration position: A candidate position “receives” votes from
basis segments that identify it or a close position within a tolerance zone of Tx as a candidate
position in step 2. Votes for all candidate positions are tallied, and the position with the highest
number of votes gets chosen as the congruent registration position, indicating that most of the
basis segments find their highly similar counterpart in the reference signature in terms of
correlation at this registration position. In the case of ties, the middle position is taken as
the congruent registration position. Basis segments with a congruent registration position are
called “congruent matching profile segments” (CMPS). The total number of CMPS is the CMPS
score of the comparison. get_CMPS(input_ccp, Tx = 25) is the function that tallies the votes
and determines the congruent registration position and congruent matching profile segments
(CMPS).

Note that there are several parameters in the CMPS algorithm that will affect the final results and
are left to the users to decide, such as the length of basis segments seg_length in step 1, the number of
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peaks npeaks_set identified on each level in step 2, and the length of the tolerance zone Tx in both
step 2 and 3. In our implementation of the CMPS algorithm, we used the parameters given in the
original CMPS paper (Chen et al. 2019) as the default values for these parameters. However, the
authors state that no cross-validation has been done - there might also be issues with respect to the
resolution of the scans. Further research is needed, until then users are advised to think of default
values as starting values and consider alternatives. However, the evaluation framework based on
the sum of squares ratio introduced in the later section could be used to evaluate the choices of these
parameters. The main function that combines all steps in the CMPS algorithm described above is
called extract_feature_cmps(...). Here we present it with its default parameters.

extract_feature_cmps(
x,
y,
seg_length = 50,
Tx = 25,
npeaks_set = c(5, 3, 1),
include = NULL,
outlength = NULL

)

The function extract_feature_cmps allows for the following input from users besides the previ-
ously discussed parameters seg_length, npeaks_set, and Tx:

• x and y are two signatures: x serves as the comparison signature (which will be divided into
basis segments) and y is the reference signature;

• include determines the format of the function result. Besides the CMPS_score, other aspects of
the comparison help in understanding how the CMPS_score is computed. By default include
is set to NULL and only the CMPS_score is returned; further results are included when include
is (an abbreviation of) one of or a vector of the following strings: "nseg", "congruent_pos",
"congruent_seg_idx", "segments", "parameters", and "full_result". If include is specified
as "full_result" (or its abbreviation), the output includes everything listed below.

– nseg: the number of basis segments from the comparison signature; this is also the highest
possible CMPS score of the comparison;

– congruent_pos: the congruent registration position;
– congruent_seg_idx: the indices of all congruent matching profile segments;
– ccp_list: a list showing identified candidate positions of all basis segments;
– pos_df: a data frame containing all candidate positions and their respective number of

votes;
– segments: a list containing all basis segments;
– parameters: a list containing all input arguments of extract_feature_cmps;

• outlength specifies the segment length of a basis segment at each level under the multi-segment
lengths strategy. By default outlength is set to NULL, indicating that a basis segment should
double its segment length at the next level and conforming to the description in Chen et al.
(2019) .

In the remainder of the paper, we showcase the use of the cmpsR functionality on some examples
and present the results of applying it to two datasets.

Installation

The cmpsR package is publicly available from CRAN and can be installed by

install.packages("cmpsR")

Moreover, its development version is also available from Github and can be installed by

# install.packages("remotes")
remotes::install_github("willju-wangqian/cmpsR")

An example

The cmpsR package contains a simple example to illustrate the basic usage of the package. The
data in this example are twelve bullet signatures obtained from two bullets in Hamby set 252 (Hamby,
Brundage, and Thorpe 2009). The procedure for generating signatures from high-resolution 3D
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Figure 3: Signatures of all lands of bullet 1 in the top row, and of bullet 2 in the bottom row. Signatures
in the second row are ordered to be in phase with the signatures above, i.e. matching signatures are
displayed on top of each other. On the x-axis is the length of the scan in millimeter, and on the y-axis
is the relative height in micron.

topographic scans of bullet lands used here follows the methodology described in Hare, Hofmann,
and Carriquiry (2017) (as discussed above). The two bullets under consideration are known to have
been fired from the same gun barrel, so for the 36 pairwise land-by-land comparisons, six comparisons
are from same-source pairs (known matches) while thirty are from different-source pairs (known
non-matches). To access the example data, we use

library(cmpsR)
data(bullets)

bullets$sigs is a list of twelve numeric vectors corresponding to the twelve bullet signatures
shown in Figure 3. bullets$source contains the URLs to the corresponding x3p file containing the
topographic scan from the NIST Ballistics Toolmark Research Database (Zheng 2016).

The signatures of Land 4 of Bullet 1 and Land 5 of Bullet 2 are stored in objects sigs2 and sigs1,
respectively. This comparison consists of a pair of signatures that are known to be a match – a KM
(known match) comparison. We compute the CMPS score using two versions of the CMPS algorithm:

sigs1 <- bullets$sigs[bullets$bulletland == "2-5"][[1]]
sigs2 <- bullets$sigs[bullets$bulletland == "1-4"][[1]]

# compute cmps

# algorithm with multi-peak insepction at three different segment levels
cmps_with_multi_scale <-
extract_feature_cmps(sigs1$sig, sigs2$sig,
npeaks_set = c(5, 3, 1), include = "full_result"

)

# algorithm with multi-peak inspection at the basis scale only
cmps_without_multi_scale <-
extract_feature_cmps(sigs1$sig, sigs2$sig,
npeaks_set = 5, include = "full_result"

)
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In the first example, npeaks_set is a vector of three integers, i.e. the algorithm uses the multi-
segment lengths strategy to create the result object cmps_with_multi_scale. For cmps_without_multi_scale
each basis segment is linked to the top 5 candidate positions. We use include = "full_result" to
capture all results. In this example, the CMPS is 9 when using multiple segments, and 12 when using
a single segment. As discussed in Chen et al. (2019), using multi-segment lengths strategy can reduce
the number of false positives when identifying candidate positions; however, any score-based method
is walking the line between false positives and false negatives. As the number of false positives is
reduced the number of false negatives might rise. More discussion and comparisons between the
two versions of the CMPS algorithm will be presented in later sections. Note that the multi-segment
lengths method is slower because the algorithm is run once for each segment length.

Visualize and understand CMPS results

We also implemented graphing tools for visualizing the results of the CMPS algorithm. The goal
is to provide users with tools to inspect each of the basis segments and to help them have a better
understanding of how the algorithm works. Figure 4 shows the plots generated by the first graphing
function, cmps_signature_plot(), and continues with the example above. cmps_signature_plot()
takes the output of extract_feature_cmps(..., include = "full_result") and returns a list of 5
elements. It creates an overall impression of how the comparison signature aligns with the reference
signature at the congruent registration position.

• The first element is a plot called segment_shift_plot, shown in Figure 4(a). On this plot the
reference signature is drawn as a black line, congruent matching profile segments from the
comparison signature are overlaid in red at the congruent registration position.

sig_plot <- cmps_signature_plot(
cmps_with_multi_scale

)

# (a)
sig_plot$segment_shift_plot

• The second plot is called signature_shift_plot, shown in Figure 4(b). This visual presents
both the comparison signature and the reference signature. The comparison signature is aligned
with the reference signature based on the congruent registration position. Congruent matching
profile segments are highlighted by solid red lines.

# (b)
sig_plot$signature_shift_plot

• Other elements of this list are seg_shift and sig_shift. sig_shift gives the congruent reg-
istration position, while seg_shift is a data frame showing the congruent matching profile
segments and their identified candidate position closest to the congruent registration position.

sig_plot$seg_shift
#> seg_idx seg_shift
#> 7 7 0
#> 8 8 -1
#> 14 14 5
#> 16 16 8
#> 17 17 8
#> 18 18 8
#> 19 19 9
#> 20 20 9
#> 22 22 12

While cmps_signature_plot() focuses on the signature level, cmps_segment_plot() focuses on
the segment level. It provides the “full result” of extract_feature_cmps(), but also takes an argument,
seg_idx, indicating which segment should be inspected. When checking sig_plot$seg_shift we
notice that segment number 6 is not one of the congruent matching profile segments. We can therefore
set seg_idx = 6 in cmps_segment_plot() and investigate the reason why this segment disagrees with
the congruent registration position.

For each segment scale, we have two plots: segment_plot and scale_ccf_plot, as shown in Figure
5 for the example of segment number 6:
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Figure 4: In (a) the black line shows the comparison signature; each red line segment shows one
congruent matching profile segment. Each grey rectangle highlights one congruent matching profile
segment. In (b) the black line shows the reference signature; the red line shows the comparison
signature. Solid part shows the congruent matching profile segments, and the dashed part shows
segments that do not agree with the congruent registration position.

• Figure 5(a) is the segment_plot for basis segment 6 at level one (in its original length). We
used npeaks_set = c(5, 3, 1) in extract_feature_cmps() when calculating the CMPS score.
Therefore the top five peaks are identified in the cross-correlation curve at level one. Segment
6 is plotted at the positions where these five peaks are identified with dashed lines in the
segment_plot. The solid thick black line shows the segment at its original position (which in
this example is very close to the actual registration position).

seg_plot <- cmps_segment_plot(
cmps_with_multi_scale,
seg_idx = 6

)

# (a)
seg_plot[[1]]$segment_plot

• Figure 5(b) is the scale_ccf_plot of basis segment 6 at level one. It shows the cross-correlation
curve computed by the reference signature and the level-one basis segment 6. The five highest
peaks are marked by dots on the curve.

# (b)
seg_plot[[1]]$scale_ccf_plot

Additionally, users can have more insights about why segment 6 is not a congruent matching
profile segment if we put the segment_plot and scale_ccf_plot of all three segment levels together,
as shown in Figure 6 with the help of ggpubr::ggarrange().

library(ggpubr)

ggarrange(
plotlist =
unlist(seg_plot,
recursive = FALSE

),
ncol = 2,
nrow = 3

)
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Figure 5: Plot (a) shows segment_plot for segment 6 at level one. The original position of segment 6 is
indicated by the solid black line. Positions, where the segment achieves the 5 highest cross-correlations,
are indicated by the dashed line segments. The scale_ccf_plot in plot (b) shows the cross-correlation
curve between the reference signature and segment 6 at level one. The five highest peaks are marked
by dots. The vertical red dashed line indicates the congruent registration position; the green dashed
line shows a peak position in the highest segment level; the blue dashed lines show the tolerance
zone around the green dashed line. We can see that none of the five highest peaks at level one falls
within the tolerance zone, indicating that there is no consistent correlation peak or a candidate position
identified by basis segment 6 under the multi-segment lengths strategy. Thus, the basis segment 6
doesn’t vote for the congruent registration position and is not a cmps.
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Figure 6: Put segment_plot and scale_ccf_plot of all three levels together. We are identifying the five
highest peaks at level one, three peaks at level two, and one peak at level three since npeaks_set = c(5,
3, 1). The highest peak position at level three is marked by the green dashed line across all segment
levels. However, the highest peak on level three does not coincide with any of the top five highest
peaks at level one. This indicates that there is no consistent correlation peak or a candidate position
for basis segment 6 under the multi-segment lengths strategy.
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In Figure 6, the red vertical dashed line indicates the congruent registration position. We can see
that the basis segment 6 does obtain a peak near the congruent registration position at level two and
level three, respectively; however, this position doesn’t give one of the five highest peaks at level one.
As a result, segment 6 fails to identify the consistent correlation peak (ccp) and fails to become one
of the congruent matching profile segments according to the multi-segment lengths strategy. The
identified top five peaks at level one are also examples of “false positive” peaks. The “true positive”
peak (the peak within the tolerance zone of the congruent registration position) is identified at level
two and three by increasing the segment length, which justifies the usage of the multi-segment lengths
strategy.

Evaluation metrics

Metrics based on CMPS scores

The CMPS algorithm measures the similarity between two signatures resulting in a similarity
score of a land-to-level comparison. Bullets fired from traditionally rifled barrels have multiple land
and groove engraved areas. Here, we are working with bullets fired from Ruger P85 barrels with six
lands and grooves. A comparison of two bullets, therefore, involves 36 land-to-land comparisons,
resulting in 36 CMPS scores (as shown in Figure 7). In order to obtain a single similarity score of a
bullet-level comparison, we need to summarize these 36 CMPS scores. Two similarity metrics for
bullet-level comparisons have been introduced in the literature (Chen et al. 2019): CMPSmax and
CMPSmax. CMPSmax is the highest CMPS score obtained among all land-level comparisons, while
CMPSmax is the highest possible mean CMPS score of land-level comparisons that are in the same
phase:

In general, we assume each bullet has n land engravings (in our case n = 6). Let cij denote the
CMPS score of a comparison between bullet 1 land i and bullet 2 land j, for i, j = 1, . . . , n. Let Pk
denote bullet land pairs in phase k for k = 0, . . . , n − 1, and

Pk = {(i, j) : i = 1, . . . , n; j = (i + k) mod n} (1)

, where mod denotes the modulo operation. For example, P1 = {(1, 2) , (2, 3) , (3, 4) , (4, 5) , (5, 6) , (6, 1)}
when n = 6. Let k∗ denote the index of the highest phase.

With that, the two measures to evaluate accuracy used in Chen et al. (2019) are defined as

CMPSmax = max
i,j

cij , and (2)

CMPSmax =
1
n ∑

(i,j)∈Pk∗

cij , where (3)

k∗ = arg max
k

 1
n ∑

(i,j)∈Pk

cij

 (4)

We can continue with the example used in previous sections. bullets contains bullet signatures of
two bullets, bullet1 and bullet2. As mentioned before, each bullet has six land engravings, resulting
in six bullet signatures. Thus, there are 36 pairwise bullet signature comparisons, resulting in 36 cij
values in total. We use multi-segment lengths strategy with default parameters to compute these
CMPS scores, and the result is shown in Figure 7. We can see that in this example,

CMPSmax = max
i,j

cij = 17

and since bullet lands in phase P1 gives the highest mean CMPS score (k∗ = 1), we have

CMPSmax =
1
6 ∑
(i,j)∈P1

cij

=
1
6
(c12 + c23 + c34 + c45 + c56 + c61)

=
1
6
(3 + 17 + 14 + 10 + 15 + 16)

= 12.5
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Figure 7: CMPS scores of all 36 pairwise bullet signature comparisons for two bullets. Land engraving
pairs generated by the same land (KM comparisons) are highlighted. Note that in this example the
axis along Bullet 2 starts with Land 2. This corresponds to Phase 1 in equation (1).

However, both CMPSmax and CMPSmax consider only relatively high CMPS scores and ignore the
rest. So we introduce a new metric based on CMPS scores called CMPSdiff, which is the difference
between CMPSmax and the mean of all other CMPS scores. With our notation above, we have:

CMPSdiff =

 1
n ∑

(i,j)∈Pk∗

cij

−

 1
n (n − 1) ∑

(i,j)/∈Pk∗

cij

 (5)

CMPSdiff highlights the difference between CMPS scores of matching and non-matching compar-
isons. If two bullets are non-matching, all 36 CMPS scores are expected to be small with relatively the
same values, resulting in a CMPSdiff value close to 0. For the example above, CMPSdiff = 12.5− 1.53 =
10.97

Scaled CMPS scores

Another issue with the CMPS score is that the highest possible CMPS score (the total number of
basis segments) might differ across comparisons (as shown in Figure 8(a)) due to different lengths of
bullet signatures and different lengths of basis segments specified by the parameter. A CMPS score
of 5 might indicate a non-match if the highest possible CMPS score is 30 but indicate a match if the
highest possible CMPS score is 6. Thus, we introduce the scaled CMPS score, denoted as c∗ij. Let sij
denote the highest possible CMPS score or the total number of basis segments, then the scaled CMPS
score c∗ij is defined as the ratio of raw score and maximum score:

c∗ij =
cij

sij
(6)

The scaled CMPS scores of the above example are shown in Figure 8(b). Compared to the original
CMPS scores, scaled scores have values within the interval [0, 1] regardless of the length of the basis
segments and therefore make a comparison of values possible across different parameter choices.
Similar to the original CMPS scores, we will denote the scaled CMPS scores adjusted for out-of-phase
background values by CMPS∗diff. For example, CMPS∗diff = 0.498 for Figure 8(b)

Sum of squares ratio

The “sum of squares ratio” quantifies how well two groups of values separate. Let nT denote the
total number of observations, nk denote the number of observations in group k, and ykl denote the l-th
observation in group k, for k = 1, 2 and l = 1, . . . , nk. Let ȳk. =

1
nk

∑nk
l=1 ykl denote the mean value in

group k and ȳ.. =
1

nT

(
∑k ∑nk

l=1 ykl
)

denote the mean value of all observations. Consider the following
model:
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Figure 8: Plot (a) shows the highest possible CMPS scores (the total number of basis segments) for the
36 comparisons. (b) shows the scaled CMPS scores for the 36 comparisons.

ykl = µk + ekl (7)

where µk is the true mean of group k and ekl is a random effect of different observations. Then we
can define the sum of squares ratio V as:

V =
∑k nk (ȳk. − ȳ..)

2

∑k ∑nk
l (ykl − ȳk.)

2 . (8)

The numerator of the sum of squares ratio V quantifies the variation between the two groups,
while the denominator quantifies the variation within each group. The sum of squares ratio V can be
used as an index for evaluating scans, metrics, and different sets of parameters if the same data set is
being used. Some examples will be presented in the following section. If we impose the normality and
independence assumptions on the random effects ekl , the sum of squares ratio V becomes a scaled
F-statistic with degrees of freedom of k− 1 and nT − k and F = nT−k

k−1 V. If we want to compare different
data sets, stating that a certain setup can achieve better separation on one data set than another, we
can scale the sum of squares ratio V and obtain the F-statistic and obtain the corresponding p-value as
an index for comparison.

Using the sum of squares ratio V as an evaluation metric, we are able to construct a pipeline that
aims to find the optimal parameter values for the CMPS algorithm by maximizing the sum of squares
ratio. Note that other measures of an algorithm, such as the accuracy and the AUC (Area Under
the Curve), are also important and useful. But when algorithms achieve 100 percent accuracy and
AUC value of 1, we need other measures such as the sum of squares ratio to further distinguish the
performance of algorithms. In the following section, we will use the sum of squares ratio to compare
the CMPS metrics introduced earlier and investigate the effects of different parameter settings.

Results

As presented in the work of Chen et al. (2019), researchers applied the CMPS method to scans of one
of the Hamby sets. While it is not explicitly stated in the paper, we presume this to be Hamby 252,
as only those scans were publicly available at the time. In order to show that our implementation
of the CMPS algorithm is able to reproduce the results in Chen et al. (2019) and be used for other
data sets, we applied our implementation to both Hamby set 252 and Hamby set 44. Here we present
how we obtained bullet signatures from the Hamby set data: for both Hamby 252 and Hamby 44, we
started with scans in the form of x3p files in the database. Following the framework proposed by Hare,
Hofmann, and Carriquiry (2017), we used the same set of parameters, removed damaged bullet scans,
obtained bullet signatures for each bullet land engraving, and removed outliers in bullet signatures.
Note that researchers of Chen et al. (2019) applied the CMPS algorithm to bullet signatures as well but
used a framework different from ours. However, since their work is not open-source, we were not able
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Figure 9: Distribution of CMPSmax and CMPSmax for Hamby 252; outliers are removed in bullet
signatures; seg_length = 50, Tx = 25, npeaks_set = c(5,3,1); instead of showing the counts on the y-axis,
we present the observed proportions conditioned on KM group and KNM group to enhance the
visibility of the bars.

to follow their framework and were only able to reproduce the results for Hamby set 252 qualitatively.

Hamby 252

Figure 9 shows the distribution of CMPSmax and CMPSmax after we applied the CMPS algo-
rithm to Hamby set 252 with the multi-segment lengths strategy. The parameters we used in
extract_feature_cmps for the CMPS algorithm are:

extract_feature_cmps(
x, y,
seg_length = 50,
Tx = 25,
npeaks_set = c(5, 3, 1),
include = "nseg"

)

As noted above, the CMPS scores we found here are not exactly the same as those presented in
Chen et al. (2019) since we were not able to follow their framework, but the results presented in Figure
9 are qualitatively equivalent to those presented in Chen et al. (2019), showing a clear separation
between scores based on comparisons from known matches (KM) and scores from comparisons of
known non-matches (KNM) for both CMPSmax and CMPSmax.

Additionally, to mimic the parameters used in Chen et al. (2019), we set seg_length = 50 and
Tx = 25 to make sure that each basis segment has a length of 78.125 µm and the tolerance zone is
±39.0625 µm (one unit represents 1.5625 µm for Hamby set 252).

The sum of squares ratios are 20.64 and 28.96 for CMPSmax and CMPSmax, respectively. This
indicates that even though scores from CMPSmax for known-match comparisons are larger than scores
from the averaged version of CMPSmax, these scores achieve a better separation between the two
groups of comparisons.

Hamby 44

Similar procedures are applied to Hamby set 44, and Figure 10 shows the distribution of CMPSmax
and CMPSmax, respectively. The parameters used in extract_feature_cmps are:

extract_feature_cmps(
x, y,
seg_length = 61,
Tx = 30,
npeaks_set = c(5, 3, 1),
include = "nseg"

)

Since the resolution of Hamby 44 is set to 1.29 µm per unit, we make seg_length = 61 and Tx
= 30 to ensure that the setup of Hamby set 44 is similar to that of Hamby set 252, resulting in basis
segments of 78.69 µm and the tolerance zone of ±38.7 µm.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 281

SS Ratio: 8.87

0.0

0.2

0.4

1 2 3 4 5 6 7 8 9 1011121314151617181920212223

CMPSmax

ob
se

rv
ed

 p
ro

po
rt

io
n 

by
 g

ro
up npeaks_set: 5−3−1, seg_length: 61

SS Ratio: 10.64

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 101112131415161718

CMPSmax

ob
se

rv
ed

 p
ro

po
rt

io
n 

by
 g

ro
up npeaks_set: 5−3−1, seg_length: 61

Comparison Type KM KNM

Hamby 44 − CMPSmax and CMPSmax Distribution

Figure 10: Distribution of CMPSmax and CMPSmax for Hamby 44; outliers are removed in bullet
signatures; seg_length = 61, Tx = 30, npeaks_set = c(5,3,1); instead of showing the counts on the y-axis,
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Hamby 252 Hamby 44

25 50 75 100 125 150 175 200 30 45 61 90 122 150 180 210

0

10

20

30

Segment length

S
um

s 
of

 S
qu

ar
es

 R
at

io

Metric CMPSmax CMPSdiff CMPS∗
diff CMPSmax

Figure 11: Comparison of results from the CMPS algorithm based on different basis segment lengths
(parameter seg_length). Only the CMPSmax metric suggests that the default values for the basis
segment length result in the best separation. Better separation is achieved based on the modified
CMPS metrics, including the newly suggested ones. For Hamby 252 these metrics agree on a segment
length of 75, and a segment length of 122 for Hamby 44 yields better results.

As shown in Figure 10, again, we are able to see a clear separation between the known match
comparisons and the known non-match comparisons, even though the separation is relatively small
compared with that of Hamby set 252, which is also indicated by the sum of squares ratios. For this
specific set of parameters, the sum of squares ratios are 8.87 and 10.64 for CMPSmax and CMPSmax,
respectively. This might suggest that we could enlarge the separation in terms of the sum of squares
ratio by using other CMPS metrics and other sets of parameters.

Comparing CMPS metrics and parameters

We investigated the effects of different sets of parameters in the example of both Hamby sets 252
and 44. More specifically, we investigated the separation achieved using the cmpsR implementation
under various segment lengths (controlled by the parameter seg_length). Specifically, we fixed the
parameter npeaks_set that controls the number of peaks at each segment level to be npeaks_set =
c(5, 3, 1) and modified the parameter seg_length. Figure 11 shows that the default values of
seg_length for Hamby 252 and Hamby 44 (50 for Hamby 252 and 61 for Hamby 44, which represent
78.125 µm and 78.69 µm, respectively) result in high values of the sum of squares ratio, no matter
which CMPS metrics are used for an evaluation. However, we also see, that for Hamby set 252 a basis
segment length of 75 is a better choice than the default segment length; a basis segment length of 122
results in a higher value of the sum of squares ratio for Hamby 44.

Figure 12 shows the results of the CMPS algorithm using different strategies for identifying peaks
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Figure 12: Comparison of CMPS results based on different strategies of number of peak selections.
Starred results compare CMPS performance with results published in the literature. Results for the
random forest score are represented with circles because the metrics are computed not based on the
CMPS scores, but on the random forest scores with the same logic. Since random forest scores lie
within the interval [0, 1], scaling the random forest scores will not change the results.

in the correlation structure between signatures. Basis segment length is fixed to the default level for
this evaluation. As can be seen in Figure 12, the default value of npeaks_set (npeaks_set = c(5,
3, 1)) leads to promising results in terms of the sum of squares ratio; however, other choices of
npeaks_set match and exceed this sum of squares ratio value.

As seen before, the results suggest that the CMPSmax metric produces the least amount of separa-
tion compared with the other three CMPS metrics. They also suggest that the two newly proposed
metrics, CMPSdiff and CMPS∗diff, lead to equally good or even better results as CMPSmax. Because
CMPS∗diff relies on a scaled version of CMPS scores, it is more comparable to other similarity scores
and summarizes the out-of-phase background CMPS scores, making it superior to the other CMPS
metrics.

What we can also observe in Figure 11 and Figure 12 is that the values of the sum of squares ratio
for Hamby 44 is lower than those for Hamby 252. This might be because determining the source is a
harder task for Hamby 44 than for Hamby 252, but also suggests that the choice of parameters also
depends on the resolution or the scanning process of the data set. The same set of parameters might
work for one data set, but not work equally well for another.

The purpose of the results shown in Figure 11 and Figure 12 is not to determine the “best”
parameters for the CMPS algorithm, but to show that the sum of squares ratio can be used as an
evaluation measure to compare different parameters, metrics, or scans. A pipeline that maximizes the
sum of squares ratio might help researchers determine the set of parameters that work best for their
data. But a large database that is representative is what we really need in order to fully understand
and cross-validate the parameters of the CMPS algorithm.

Comparing with original results and the random forest model

Chen et al. (2019) present histograms of CMPSmax and CMPSmax for npeaks_set = 5 and
npeaks_set = c(5, 3, 1) with (presumably) Hamby 252. The values in these histograms allow us to
calculate the sum of squares ratios and include the results in Figure 12 as well. They are marked by an
asterisk at the top right corner in Figure 12. The sum of squares ratios we obtained for npeaks_set = 5
and npeaks_set = c(5, 3, 1) is slightly higher than those obtained from the histograms of Chen et al.
(2019). It’s curious to see that for the Hamby 252 results published in Chen et al. (2019) the CMPSmax
metric achieves values of the sum of squares ratio higher than those achieved by the CMPSmax metric.

Since the researchers of Chen et al. (2019) did not use CMPSdiff or CMPS∗diff, and they did not
apply the CMPS algorithm to the Hamby set 44, we were not able to compare those results.

In Figure 12, we also included the sum of squares ratios computed from the random forest scores
(Hare, Hofmann, and Carriquiry 2017) for different metrics. The random forest model presented
in Hare, Hofmann, and Carriquiry (2017) was trained at the Center for Statistics and Applications
in Forensic Evidence (CSAFE) and is publicly available in the R package bulletxtrctr (Hofmann,
Vanderplas, and Krishnan 2019). Similar to the CMPS algorithm, this random forest model produces
a score to quantify the similarity of a land-by-land comparison. The RF scores lie in an interval of
[0,1] making them most comparable to the scaled CMPS scores. We applied the logic of CMPSmax,
CMPSmax, and CMPSdiff to the random forest scores and obtained results of the random forest model
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for different metrics. As shown in Figure 12, the random forest model does not achieve the sum of
squares ratio as high as those achieved by the top CMPS algorithms for Hamby 252, but it does achieve
better results for Hamby 44. This might suggest that inclusion of the CMPS score as an additional
feature in the random forest model training might be beneficial for an overall separation to determine
the source.

For details about the implementation, examples, and results, please refer to the “Supplementary
materials”.

Conclusion

In this paper, we present the cmpsR package, an open-source implementation of the Congruent
Matching Profile Segments (CMPS) algorithm (Chen et al. 2019), and apply it to two datasets in
Hamby study (Hamby, Brundage, and Thorpe 2009) to show its potential for further research. The
CMPS algorithm was proposed by NIST in 2019 and was made for objective tool marks comparisons.
We introduce the basic logic of the CMPS algorithm and layout its implementation in the cmpsR
package. We also showcase the functionality of the cmpsR package with a small dataset example that
is included in the package. In the cmpsR package we implement some graphing tools for users to
visualize results and to gain a better understanding of both the algorithm and the results.

Additionally, we propose two new metrics based on the CMPS scores and compare the new
metrics with the existing metrics. We also introduce a principled evaluation framework of algorithmic
results using a measure based on the sum of squares ratio. We showcase the implementation with two
datasets in the Hamby study (Hamby set 252 and Hamby set 44) and compare the CMPS algorithm
using different sets of parameters and different metrics, following the evaluation framework based
on the sum of squares ratio. The results obtained are promising: we were both able to reproduce the
results in Chen et al. (2019) qualitatively and achieve a clear separation between the known match
(KM) comparisons and known non-match (KNM) comparisons in another bullet study. However, the
comparisons among different sets of parameters suggest that the optimal choice for parameter settings
varies between different datasets.

Note, that the main difference between Hamby sets 44 and 252 is that they were taken with
different resolution scanning devices. The bullets for Hamby 44 and Hamby 252 are fired from the
same ten consecutively rifled P-85 Ruger barrels. The difference in parameter settings for optimal
differentiation between same-source comparisons and different-source comparisons is therefore quite
surprising. In the next steps, we need validation studies similar to Vanderplas et al. (2020) - trying
out the CMPS algorithm on different firearms and ammunition combinations to test the limits of the
algorithm. The evaluation framework we proposed based on the sum of squares ratio will facilitate
such studies and other validation of the algorithm.

Comparisons of the R implementation of the CMPS algorithm with the random forest model
proposed by Hare, Hofmann, and Carriquiry (2017) suggest that adding the CMPS score as an
additional feature in the random forest model might add further separation between known match
(KM) comparisons and known non-match (KNM) comparisons.

The open-source implementation of the CMPS algorithm provided by the cmpsR package is
just one step towards to the framework of open science. Open science is particularly important to
fields like forensic science where transparency and accuracy are critical to fair justice. Open-source
implementations not only allow a peer-review but also facilitate further research, such as parameter
cross-validations, method comparisons, and the development of statistical methods for modeling
KM and KNM CMPS score distributions, which can then be used for error-rate estimations and fair
applications that were called for by the PCAST (President’s Council of Advisors on Science and
Technology 2016) report. However, having open-source implementations is not enough for open
science. In order to actually build the world of open science, many other efforts, such as open
evaluation, open access publication, open educational resources, etc., are still needed. The database
built and maintained by the National Institute of Standards and Technology is a good example of
open data. What we are aiming for is an open system that is able to collect open results, compare
multiple algorithms using multiple datasets, and evaluate algorithmic variation and accuracy. The
evaluation metric we proposed in this paper can be used to compare different algorithms or even
different datasets and is a snippet of this open system. But the core of this open system is the open
science culture and contributions of the community.
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Supplementary materials

The zip file “supplementary-files.zip” contains R scripts for reproducing all aspects of this paper.

Data not included in “supplementary-files.zip”

The processed data of Hamby set 252 and Hamby set 44 are stored in two .rds files:

• BulletSignatures252.rds
• BulletSignatures44.rds

And the ground truth of Hamby set 252 is provided in StudyInfo.xlsx

Due to the size of the file, these processed data are not included in the “supplementary-files.zip”,
but the links are provided for download.

In order to reproduce the results in the paper, please download “BulletSignatures252.rds”, “Bul-
letSignatures44.rds”, and “StudyInfo.xlsx” and save them in a folder named “bullet_signatures_etc”.
And place the folder “bullet_signatures_etc” into the folder of all the R scripts of “supplementary-
files.zip”.

Please check out the folder structure of the reproducible folder for reference.

File description

• hamby*_result_generator.R: these R scripts take the processed data of Hamby set 252 and
Hamby set 44, generate preliminary results used in the paper, and save the results in the .csv
format in the folder data-csv. Please make sure that the package versions of bulletxtrctr and
cmpsR meet the requirements.

• rds_generator.R: this R script takes the generated .csv files and produce CMPSpaper_results.rds.
CMPSpaper_results.rds is identical to data/CMPSpaper_results.rds and is used generate fig-
ures and other results presented in the paper.

Data included in “supplementary-files.zip”

• data-csv: this folder contains .csv files we generated using R scripts hamby*_result_generator.R
• CMPSpaper_results.rds: this is the .rds file we generated using R script rds_generator.R

These data can be used as reference or example results of the reproducible codes

• csafe_rf2.rds: this .rds file contains the random forest model used in this paper

References

AFTE Criteria for Identification Committee. 1992. “Theory of Identification, Range Striae Comparison
Reports and Modified Glossary Definitions.” AFTE Journal 24 (3): 336–40.

Brundage, David J. 1998. “The Identification of Consecutively Rifled Gun Barrels.” AFTE Journal 30
(3): 438–44.

Chang, Winston, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan
McPherson, Alan Dipert, and Barbara Borges. 2021. shiny: Web Application Framework for R.
https://CRAN.R-project.org/package=shiny.

Chen, Zhe, Wei Chu, Johannes A. Soons, Robert M. Thompson, John Song, and Xuezeng Zhao.
2019. “Fired bullet signature correlation using the Congruent Matching Profile Segments (CMPS)
method.” Forensic Science International 305: Article 109964, (10 pages). https://doi.org/https:
//doi.org/10.1016/j.forsciint.2019.109964.

Chumbley, L. Scott, Max D Morris, M. James Kreiser, Charles Fisher, Jeremy Craft, Lawrence J Genalo,
Stephen Davis, David Faden, and Julie Kidd. 2010. “Validation of Tool Mark Comparisons
Obtained Using a Quantitative, Comparative, Statistical Algorithm: VALIDATION OF TOOL
MARK COMPARISONS.” Journal of Forensic Sciences 55 (4): 953–61. https://doi.org/https:
//doi.org/10.1111/j.1556-4029.2010.01424.x.

Cleveland, William S., Eric Grosse, and William M. Shyu. 1991. “Local Regression Models.” In
Statistical Models in s, edited by John M. Chambers and Tibshirani J. Hastie, 309–76. Boca Raton,
Florida: Chapman; Hall/CRC.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://github.com/willju-wangqian/CMPSpaper/blob/main/reproducible/bullet_signatures_etc/BulletSignatures252.rds
https://github.com/willju-wangqian/CMPSpaper/blob/main/reproducible/bullet_signatures_etc/BulletSignatures44.rds
https://github.com/willju-wangqian/CMPSpaper/blob/main/reproducible/bullet_signatures_etc/StudyInfo.xlsx
https://github.com/willju-wangqian/CMPSpaper/tree/main/reproducible
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1016/j.forsciint.2019.109964
https://doi.org/10.1016/j.forsciint.2019.109964
https://doi.org/10.1111/j.1556-4029.2010.01424.x
https://doi.org/10.1111/j.1556-4029.2010.01424.x


CONTRIBUTED RESEARCH ARTICLE 285

Committee on Identifying the Needs of the Forensic Sciences of the National Research Council. 2009.
“Strengthening Forensic Science in the United States: A Path Forward.” https://www.ncjrs.gov/
pdffiles1/nij/grants/228091.pdf; National Academies Press.

Hamby, James E., David J. Brundage, Nicholas D. K. Petraco, and James W. Thorpe. 2019. “A
Worldwide Study of Bullets Fired From 10 Consecutively Rifled 9mm RUGER Pistol Barrels—
Analysis of Examiner Error Rate.” Journal of Forensic Sciences 64 (2): 551–57. https://doi.org/10.
1111/1556-4029.13916.

Hamby, James E., David J. Brundage, and James W. Thorpe. 2009. “The Identification of Bullets
Fired from 10 Consecutively Rifled 9mm Ruger Pistol Barrels: A Research Project Involving 507
Participants from 20 Countries.” AFTE Journal 41 (2): 99–110.

Hare, Eric, Heike Hofmann, and Alicia Carriquiry. 2017. “Automatic Matching of Bullet Land
Impressions.” Ann. Appl. Stat. 11 (4): 2332–56. https://doi.org/10.1214/17-AOAS1080.

Hofmann, Heike, Susan Vanderplas, and Ganesh Krishnan. 2019. Bulletxtrctr: Automatic Matching of
Bullet Striae. https://heike.github.io/bulletxtrctr/.

Hofmann, Heike, Susan Vanderplas, Ganesh Krishnan, and Eric Hare. 2020. x3ptools: Tools for Working
with 3D Surface Measurements. https://github.com/heike/x3ptools.

Krishnan, G., and H. Hofmann. 2019. “Adapting the Chumbley Score to Match Striae on Land
Engraved Areas (LEAs) of Bullets.” J Forensic Sci 64 (3): 728–40.

President’s Council of Advisors on Science and Technology. 2016. “Report on Forensic Science
in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods.” https://
obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_forensic_
science_report_final.pdf.

Song, J., L. Ma, E. Whitenton, and T. Vorburger. 2005. “2d and 3d Surface Texture Comparisons Using
Autocorrelation Functions.” In Measurement Technology and Intelligent Instruments VI, 295:437–
40. Key Engineering Materials. Trans Tech Publications Ltd. https://doi.org/10.4028/www.
scientific.net/KEM.295-296.437.

United States Department of Justice, Federal Bureau of Investigation. n.d.a. “Crime in the United States,
2019.” https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/tables/expanded-
homicide-data-table-8.xls.

———. n.d.b. “Expanded Homicide Tables, 2020.” https://s3-us-gov-west-1.amazonaws.com/cg-
d4b776d0-d898-4153-90c8-8336f86bdfec/CIUS/downloads/2020/expanded-homicide-2020.zip.

Vanderplas, Susan, Melissa Nally, Tylor Klep, Cristina Cadevall, and Heike Hofmann. 2020. “Compar-
ison of Three Similarity Scores for Bullet LEA Matching.” Forensic Science International 308: 110167.
https://doi.org/https://doi.org/10.1016/j.forsciint.2020.110167.

Zheng, Xiaoyu Alan. 2016. “NIST Ballistics Toolmark Research Database (NBTRB).” https://tsapps.
nist.gov/NRBTD.

Wangqian Ju
Department of Statistics
Center for Statistics and Applications in Forensic Evidence
Iowa State University
2438 Osborn Dr
Ames, IA 50011
https://github.com/willju-wangqian
ORCiD: 0000-0002-9977-377X
wju@iastate.edu

Heike Hofmann
Department of Statistics
Center for Statistics and Applications in Forensic Evidence
Iowa State University
2438 Osborn Dr
Ames, IA 50011
https://github.com/heike
ORCiD: 0000-0002-9079-593X
hofmann@iastate.edu

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859

https://www.ncjrs.gov/pdffiles1/nij/grants/228091.pdf
https://www.ncjrs.gov/pdffiles1/nij/grants/228091.pdf
https://doi.org/10.1111/1556-4029.13916
https://doi.org/10.1111/1556-4029.13916
https://doi.org/10.1214/17-AOAS1080
https://heike.github.io/bulletxtrctr/
https://github.com/heike/x3ptools
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_forensic_science_report_final.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_forensic_science_report_final.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_forensic_science_report_final.pdf
https://doi.org/10.4028/www.scientific.net/KEM.295-296.437
https://doi.org/10.4028/www.scientific.net/KEM.295-296.437
https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/tables/expanded-homicide-data-table-8.xls
https://ucr.fbi.gov/crime-in-the-u.s/2019/crime-in-the-u.s.-2019/tables/expanded-homicide-data-table-8.xls
https://s3-us-gov-west-1.amazonaws.com/cg-d4b776d0-d898-4153-90c8-8336f86bdfec/CIUS/downloads/2020/expanded-homicide-2020.zip
https://s3-us-gov-west-1.amazonaws.com/cg-d4b776d0-d898-4153-90c8-8336f86bdfec/CIUS/downloads/2020/expanded-homicide-2020.zip
https://doi.org/10.1016/j.forsciint.2020.110167
https://tsapps.nist.gov/NRBTD
https://tsapps.nist.gov/NRBTD
https://github.com/willju-wangqian
https://orcid.org/0000-0002-9977-377X
mailto:wju@iastate.edu
https://github.com/heike
https://orcid.org/0000-0002-9079-593X
mailto:hofmann@iastate.edu


CONTRIBUTED RESEARCH ARTICLE 286

rassta: Raster-Based Spatial Stratification
Algorithms
by Bryan A. Fuentes, Minerva J. Dorantes, and John R. Tipton

Abstract Spatial stratification of landscapes allows for the development of efficient sampling surveys,
the inclusion of domain knowledge in data-driven modeling frameworks, and the production of
information relating the spatial variability of response phenomena to that of landscape processes. This
work presents the rassta package as a collection of algorithms dedicated to the spatial stratification
of landscapes, the calculation of landscape correspondence metrics across geographic space, and
the application of these metrics for spatial sampling and modeling of environmental phenomena.
The theoretical background of rassta is presented through references to several studies which have
benefited from landscape stratification routines. The functionality of rassta is presented through code
examples which are complemented with the geographic visualization of their outputs.

1 Introduction

The application of robust, quantitative approaches for the spatial modeling of environmental phenom-
ena has increased in the past few decades mainly due to an increase in computational power, advances
in statistical modeling, and the availability of geospatial layers of environmental information (Scull et
al. 2003; Elith and Leathwick 2009). Most of these approaches aim at building explicit quantitative
relationships between environmental controls and response phenomena through statistical learning.
Examples of these approaches include digital soil mapping (DSM) (McBratney, Mendonça Santos, and
Minasny 2003), species distribution modeling (SDM) (Guisan and Zimmermann 2000), land use/land
cover classification (Ham et al. 2005), and forest fire modeling (Chuvieco et al. 2010). Despite the
extensively documented success of these approaches, there are still some challenges that limit their
application. For instance, poor statistical performance is often reported in studies where input data is
too limited to accurately represent control-response relationships (Araújo and Guisan 2006). Moreover,
model parsimony and interpretation of results can be compromised when using ‘black-box’ algorithms
(Arrouays et al. 2020). Similarly, including a priori knowledge about natural processes in purely
statistical approaches can be challenging to achieve (Heuvelink and Webster 2001).

Several studies have suggested embedding spatial stratification routines within approaches such
as DSM, SDM, land use/cover mapping, forest fire modeling, and others to overcome the challenges
limiting their application. In such studies, the spatial stratification of landscapes creates units with
reduced spatial variability of environmental phenomena as compared to the overall variability across
a landscape. The use of these units allows the researcher to (a) obtain balanced representations of
control-response relationships (Guisan and Zimmermann 2000; West et al. 2016); (b) include expert
knowledge of physical processes for improving modeling with limited data (Zhu et al. 2008); (c)
improve the performance of parameterization of mechanistic models (Park and Van De Giesen 2004;
Baldwin, Naithani, and Lin 2017); and, (d) facilitate the interpretation of environmental conditions
and their influence on the spatiotemporal variability of processes of interest (Rodrigues et al. 2019).

In general, landscape stratification routines follow fundamental ecological concepts that explain the
hierarchical and multi-scale nature of relationships between environmental phenomena across space
(Allen and Starr 1982). Therefore, landscape stratification methods have been applied in many studies
that use geospatial information for environmental modeling, such as those previously cited. However,
few packages exist in the R environment with functions strictly aimed at landscape stratification
routines using geospatial data. Although one could implement custom stratification algorithms using
multiple all-purpose geospatial analysis packages such as terra (Hijmans 2021) and sf (Pebesma
2018), the ease of use, reproducibility, and replicability of analysis is often enhanced when algorithms
are implemented as part of a dedicated package. The motif package (Nowosad 2021) is the only
example the authors could find of a package that is fully dedicated to landscape stratification in R
using geospatial data. Although the methods offered by motif are effective for large-scale studies
(Jasiewicz, Netzel, and Stepinski 2015; Nowosad 2021), their application is currently limited to rasters
of categorical data. Thus, motif is not practical for the modeling of spatially continuous environmental
phenomena, which is often a goal of landscape stratification routines.

This work presents the rassta package as a collection of algorithms for the spatial stratification of
landscapes, sampling, and modeling of environmental phenomena. The rassta package is not intended
as a drop-in replacement for statistically-robust environmental modeling approaches. Rather, it is
intended to serve as a generalized framework to derive geospatial information that can be used to
improve inference with these statistical approaches.
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2 Conceptual overview and functionality

The algorithms in the rassta package assist in the analysis of environmental information related to
the spatial variability of natural phenomena across landscapes. These functions focus on integrating
standard geospatial techniques and quantitative analysis in a generalized framework for landscape
stratification, sampling, and modeling. All of the functions in the rassta package take geospatial data
in raster format as input. In the context of geographic information systems (GIS), the raster format can
be considered a graphical representation of a matrix that is organized in rows and columns, and which
may be stacked in multiple layers (e.g., multi-band satellite imagery). Each cell (pixel) in the raster
contains a value representing a spatially-varying phenomenon, such as elevation or precipitation. A
few functions in rassta also produce geospatial data in vector format. Vector data represents geometric
entities in the form of points, lines, and polygons. The rassta package uses the highly efficient terra
package as the backbone for handling raster and vector data. Most of the geospatial data manipulation
with terra is performed in C++ and is based on two main R data types (classes): SpatRaster and
SpatVector. Note that terra imports the Rcpp package (Eddelbuettel and François 2011) since terra
uses C++ (including external pointers) to manipulate these classes.

Most of the functions implemented in rassta are interrelated in the sense that the outputs from some
functions can be used as the inputs for others. This functional interrelation allows for a generalized
framework to conduct spatial stratification, sampling, and modeling in a single package following
a project-oriented approach. In general, the functions of rassta can be grouped into five categories:
(a) landscape stratification; (b) landscape correspondence metrics; (c) stratified sampling; (d) spatial
modeling; and (e) miscellaneous (Figure 1). Each category and its corresponding functions (except
for miscellaneous) are theoretically founded on several studies focused on understanding spatially-
varying natural phenomena across landscapes. In the next sections, the rationale behind each category
and its functions is described. This description is complemented with references to corresponding
scientific literature and includes code examples showing the application of each function with extensive
use of plotting functions (for visualization purposes only). Most of the plotting functions are derived
from the terra package using the SpatRaster and SpatVector classes. [Note: To reduce the extension of
code examples, all the map and graph plotting functions were consolidated in the function figure()].

Figure 1: Functions of the rassta package. Connectors relate the inputs and outputs of the functions.
The functions can be grouped in five categories: landscape stratification, landscape correspondence
metrics, stratified sampling, predictive modeling, and miscellaneous.

Landscape stratification

Several studies have suggested the need to account for the hierarchical and multi-scale nature of
landscape processes. Allen and Starr (1982) suggested that landscape processes can be explained
through hierarchical multivariate structures given their multiple spatial and temporal scales. Based on
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Dokuchaeiv’s theory of soil formation (Glinka 1927) and the soil-landscape paradigm (Hudson 1992),
McSweeney et al. (1994) proposed a nested model of soil-landscape processes at the physiographic,
geomorphometric, and within-soil domains. Flügel (1995) suggested that the regionalization of
hydrology-related processes should consider the multi-scale landscape heterogeneity in terms of
soil, topography, geology, climate, and vegetation. These ideas have led these and other authors
to formulate frameworks for the creation of spatial entities that stratify the landscape. The general
purpose of these entities has been to define spatially-explicit domains that represent distinctive
landscape processes and/or interactions (McSweeney et al. 1994). Accordingly, spatial stratification
using rassta focuses on the creation of such domains (hereafter referred to as units).

The landscape stratification process with rassta follows a hierarchical approach similar to Austin
and Heyligers (1989), who individually classified gradients of precipitation and elevation into intervals
that were intersected with geologic classes for sampling purposes. Similarly, in rassta, a set of first-
level units is created separately for each landscape factor under analysis. Then, multiple sets of
first-level units are integrated into a single set of second-level units. The first-level units, called
classification units, can be created outside of rassta via multicriteria analysis, statistical learning, or
other methods. Moreover, the classification units can be formally defined through classification
schemes, such as those based on taxonomic keys. The second-level units, called stratification units,
result from the spatial intersection of multiple sets of classification units. Note that both classification
and stratification units represent a spatial stratification for a given landscape. Figure 2 shows an
example of a simple landscape stratification process based on two landscape factors, each with three
raster layers representing continuous variables.

Figure 2: Schematic of a landscape stratification process. Raster layers of variables related to landscape
factors are the inputs. The outputs are raster layers representing classification and stratification units.

There are three important aspects of the stratification approach used within rassta that must be
considered. (a) One can simply create stratification units by incorporating variables from multiple
landscape factors in a single classification process. However, the interpretation of results is often com-
promised when using a large number of variables in “all-in-the-bag” statistically driven classification
schemes. (b) Multiple sets of classification units can belong to a single landscape factor, and each set
can be created from variables at a distinct spatial scale. Presumably, this can account for the multi-scale
nature of landscape factors in the stratification process. (c) A landscape factor can be represented by
a single categorical variable, as in the case of geologic units or soil parent material. In this case, the
landscape factor/variable is already in the form of classification units. Figure 3 shows a landscape
stratification scenario like that addressed in (b) and (c).
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Figure 3: Schematic of a multi-scale landscape stratification process including a categorical variable.
The stratification is based on three landscape factors: local scale terrain, regional scale terrain, and
geology. Each terrain landscape factor is represented by raster layers of variables (local scale: slope
and convergence index and regional scale: aspect and regional terrain). Geology is represented by a
single categorical raster layer. Three sets of classification units (CU), one each for local terrain, regional
terrain, and geology, are intersected to produce one set of stratification units (SU).

Classification units

A set of n classification units represents n distinct landscape configurations related to a single landscape
factor. Note that the term landscape configuration is used here as a generic term for a particular pattern
in the spatial variability of one or multiple variables belonging to a landscape factor. Currently, rassta
allows the creation of classification units via unsupervised learning thanks to its functions som_gap()
and som_pam(). The function som_gap() performs dimension reduction based on the self-organizing
map (SOM) proposed by Kohonen (1990). The R package kohonen (Wehrens and Kruisselbrink
2018) is called internally by som_gap() to produce the SOM. The function som_gap() also performs
cluster analysis on the SOM codes based on the partitioning around medoids (PAM) (Kaufman and
Rousseeuw 1990), with estimation of the optimum number of clusters (k) through the gap statistic
(Tibshirani, Walther, and Hastie 2001). It is important to mention that the output SOM object returned
by som_gap() can be used as input for any other clustering algorithm (e.g., hierarchical, spectral, etc.)
or statistical analysis outside of rassta.

The code below shows how som_gap() reduces the feature space and selects k clusters from four
terrain variables. Note that the processing time of som_gap() is significant (around 162 seconds on a
4-cores Intel processor at 3.2 GHz for the following example). The processing time increases as the
number of cells/layers in the argument var.rast increases, and/or as the argument K.max increases.

# Load the rassta and terra packages
library(rassta)
library(terra)
# Note that terra imports Rcpp, but if Rcpp is not automatically loaded then:
library(Rcpp)
# Get the data required to run the examples from rassta’s installation folder
wasoil <- system.file("exdat/wasoil.zip", package = "rassta")
# Copy data to current working directory and extract files
file.copy(from = wasoil, to = getwd())
unzip("wasoil.zip")

# Set seed
set.seed(963)
# Multi-layer SpatRaster with 4 terrain variables
terr.var <- rast(c("height.tif", "midslope.tif", "slope.tif", "wetness.tif"))
# Scale variables to mean = 0 and standard deviation = 1
terr.varscale <- scale(terr.var)
# Dimensionality reduction and estimation of optimum k (max k to evaluate: 12)
terr.som <- som_gap(terr.varscale, xdim = 10, ydim = 10, K.max = 12)
# Plot results
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figure(4, d = list(terr.var, terr.som))

Figure 4: Dimension reduction and selection of number of clusters (k). The top row shows four terrain
variables (height, midslope, slope, and wetness) that are used to generate the self-organizing map
(SOM). The bottom row shows the reduced feature space of each variable and the Gap statistic that is
used to select k for the construction of classification units.

The function som_pam() creates raster versions from the outputs of som_gap(). The code below
shows how som_pam() creates raster versions of the SOM grid and PAM clustering computed in the
previous example.

# Rasterization of terrain SOM grid and terrain PAM clustering
terr.sompam <- som_pam(ref.rast = terr.var[[1]], kohsom = terr.som$SOM,

k = terr.som$Kopt)
# Plot results
figure(5, d = list(terr.sompam, terr.var))

Figure 5: SOM grid and PAM clustering. Rasterized versions of the terrain SOM grid (left) and the
terrain PAM clustering (right) are produced. The resulting clusters represent the classification units
for the terrain landscape factor.

Note that the approach for creating classification units should not be limited to that offered by
som_gap() and som_pam(). There are many other approaches outside of rassta that can be followed,
such as supervised classification based on statistical learning, or GIS-based multicriteria analysis. The
best approach may depend on the research question(s) being addressed. Therefore, the selection of the
proper approach and the optional use of other R packages and/or GIS software is left to the user. Also,
note that classification units created outside of rassta are completely compatible with rassta objects
and methods if the units are represented through the SpatRaster class from terra.
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Stratification units

A set of n stratification units represents n distinct landscape configurations related to multiple land-
scape factors. Note that the term landscape configuration is used here as a generic term for a particular
pattern in the spatial variability of multiple variables belonging to multiple landscape factors, or
to the same factor represented at multiple spatial scales. The function strata() allows the spatial
intersection of multiple sets of classification units into a single set of stratification units. This function
also assigns a unique numeric code to each stratification unit. The numeric code makes it possible
to trace back each classification unit composing a given stratification unit. The code below shows
the construction of stratification units with strata() using classification units from three landscape
factors (climate, soil parent material, and terrain).

# Multi-layer SpatRaster with 3 sets of classification units
all.cu <- rast(c("climate.tif", "material.tif", "terrain.tif"))
# Stratification units
su <- strata(cu.rast = all.cu)
# Plot results
figure(6, d = list(su, all.cu))

Figure 6: Creation of stratification units from sets of classification units. A set of classification units is
produced for each of three landscape factors: climate, soil parent material, and terrain. The spatial
intersection of these sets results in the stratification units for the landscape (upper left map).

Metrics of landscape correspondence

There are two metrics of landscape correspondence that can be calculated with rassta: (a) the spatial
signature of classification units, and (b) the landscape similarity to stratification units. These metrics
quantify the relative correspondence between any location across geographic space and landscape
configurations represented by classification and stratification units. Several studies have applied
similar concepts related to continuous correspondence between landscape configurations for the
modeling of spatially-varying phenomena. Early examples include studies using multivariate distance
metrics in the feature space for SDM (Carpenter, Gillison, and Winter 1993) and studies applying the
fuzzy set theory (Zadeh 1965) for multicriteria evaluation (Burrough 1989), DSM (Zhu and Band 1994)
and landform classification (MacMillan et al. 2000).

Spatial signature of classification units

The spatial patterns of the degree of correspondence between any landscape configuration and the
configuration represented by a given classification unit are defined as the spatial signature. The
spatial signature is represented by a raster layer of continuous values that results from the cell-wise
aggregation of empirical distribution functions mapped over geographic space. Each distribution
function corresponds to one variable and relates the classification unit to “typical” values of the
variable within the classification unit. The concept of spatial signature is based on the work of Pike
and Rozema (1975) and Pike (1988). These authors used the term geometric signature to describe a set of
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sample statistics (e.g., mean, standard deviation) of terrain variables (e.g., slope, curvature) used to
distinguish “geomorphically disparate landscapes” (Pike 1988).

The spatial signature in rassta replaces the geometric signature’s measurements of central tendency
and dispersion statistics with statistical distribution functions generated across geographic space. The
statistical distribution functions used in rassta are: (a) the probability density function (PDF) based on
the kernel density estimation, (b) the empirical cumulative distribution function (ECDF), and (c) an
inverted version of the ECDF (iECDF). Note that the spatial signature concept is somewhat similar
to the virtual ecological niche (Hirzel, Helfer, and Metral 2001) and the multivariate environmental
similarity surface (Elith, Kearney, and Phillips 2010), which are implemented in R through the packages
virtualspecies (Leroy et al. 2016) and dismo (Hijmans et al. 2020), respectively. Figure 7 and Figure 8
show an illustration and a pseudocode of the process to calculate the spatial signature of a classification
unit, respectively. Note that the function FUNSIG() in the pseudocode is just a placeholder to encompass
the three functions from rassta that are required to calculate spatial signatures. These functions are
select_functions(), predict_functions(), and signature(), each will be further discussed next.

Figure 7: Schematic of the calculation process for spatial signatures. A set of classification units
is produced using three variables. A distribution function is calculated for each variable within
classification unit 1, and then predicted across geographic space. The predicted functions for unit 1 are
aggregated, which results in the spatial signature of that unit.
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Figure 8: Pseudocode of the calculation process for spatial signatures. The calculation process involves
the selection, prediction, and aggregation of distribution functions. The spatial signature is calculated
for each classification unit in a set.

An important assumption is made when using the PDF, ECDF, and iECDF to characterize the
typical values of a given variable within a given classification unit. The position of a value within the
distribution function is an indicator of how typical the value is in terms of the variable’s distribution
within the classification unit. For instance, values closer to, or at the peak of the PDF are assumed to be
the most typical values of the variable within the classification unit. Contrarily, values at the tails of the
PDF are the less typical. Although one could simply use the PDF as a generalized function to denote
typical values, this function assigns the same weight to values at the tails of the distribution regardless
of the tail’s location (left or right). In some cases, a priori knowledge can dictate that typical values of a
variable within a given classification unit are those approaching +∞, or those approaching −∞. The
use of the ECDF and the iECDF is intended for those cases. More specifically, if a classification unit
is known to be associated with a variable’s extreme values toward +∞, then the ECDF can be used
to represent this association. Conversely, if the classification unit is associated with those variable’s
extreme values toward −∞, then the iECDF can be used.

The function select_functions() allows the user to select the statistical distribution function
used to represent the typical values for a given variable within a specific classification unit. Both
automatic and interactive selection modes are supported, with the latter based on a shiny app (Chang
et al. 2021). The automatic selection of distribution functions is based on within-unit statistics, also
referred to as zonal statistics in the GIS literature, and it follows the criteria described next:

• PDF = when the mean (or median) of the variable’s values within the classification unit is neither
the maximum nor the minimum of all the mean (or median) values across all the units.

• ECDF = when the mean (or median) of the variable’s values within the classification unit is the
maximum of all the mean (or median) values across all the units.

• iECDF = when the mean (or median) of the variable’s values within the classification unit is the
minimum of all the mean (or median) values across all the units.

The code below shows the automatic selection of statistical distribution functions for four climatic
classification units and two variables with select_functions().

# Multi-layer SpatRaster with 2 climatic variables
clim.var <- rast(c("precipitation.tif", "temperature.tif"))
# Single-layer SpatRaster with 4 climatic classification units
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clim.cu <- rast("climate.tif")
# Automatic selection of statistical distribution functions
clim.difun <- select_functions(cu.rast = clim.cu,

var.rast = clim.var,
mode = "auto")

# Plot results
figure(8, d = list(clim.difun, clim.cu, clim.var))

Figure 9: Selection of distribution functions. A set of four climatic classification units are produced
using two variables: precipitation and temperature. A distribution function is selected for each
variable within each classification unit.

The selected distribution functions can be used to generate predictions of distribution function
values over geographic space with the function predict_functions() as shown in the code below.
The predictions are generated by fitting a locally estimated scatterplot smoothing (LOESS) regression
with the within-unit distribution function’s values (y) and the within-unit variable’s values (x). The
fitted LOESS and the raster layer of the variable are then used to predict new distribution function
values across geographic space.

# Multi-layer SpatRaster of climatic variables and classification units
clim.all <- c(clim.var, clim.cu)
# Ouput table from select_functions()
df <- clim.difun$distfun
# Predicted distribution functions for climatic variables
clim.pdif <- predict_functions(cuvar.rast = clim.all,

cu.ind = 3,
cu = df$Class.Unit,
vars = df$Variable,
dif = df$Dist.Func)

# Plot results
figure(9, d = list(clim.pdif, clim.cu))
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Figure 10: Prediction of distribution functions. A selected distribution function for each variable is
predicted across geographic space. The predicted distribution function relates the landscape to a
classification unit with regard to a variable.

The function signature() calculates the spatial signature of a given classification unit by aggre-
gating all of the predicted distribution functions associated with the unit. The code below shows
the calculation of spatial signatures with signature(). Note that the arguments inprex and outname
allow the user to identify the raster layers representing the predicted distribution functions associated
with each classification unit in a set, and to assign a unique name to each resulting raster layer of
spatial signature, respectively.

# Spatial signatures from distribution functions predicted for climatic variables
clim.sig <- signature(pdif.rast = clim.pdif,

inprex = paste(seq(1, 4), "_", sep = ""),
outname = paste("climate_", seq(1, 4), sep = ""))

# Plot results
figure(10, d = list(clim.sig, clim.cu))

Figure 11: Calculation of spatial signatures. For each climatic classification unit (1 thru 4), the
distribution functions (see Figure 10) are aggregated (e.g., mean pixel value) to produce the spatial
signature of the unit. The spatial signature relates each position in the landscape to the landscape
configuration represented by a classification unit.

Landscape similarity to stratification units

The spatial patterns of the degree of correspondence between any landscape configuration and the
landscape configuration represented by a given stratification unit are defined as the landscape similarity.
The landscape similarity is represented by a raster layer of continuous values, which results from
the cell-wise aggregation of the spatial signatures of multiple classification units. This aggregation
is possible because any given stratification unit is the result of the spatial intersection of multiple
classification units, commonly one per landscape factor or factor scale (see Figure 2 and 3). Moreover,
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each classification unit has one spatial signature associated with it. Therefore, any given stratification
unit will be associated with multiple spatial signatures, which can be cell-wise aggregated to calculate
the landscape similarity. Figure 12 shows an example of the calculation process for a layer of landscape
similarity to stratification unit.

Figure 12: Schematic of the calculation process for landscape similarities. Sets of variables for each
landscape factor (terrain and climate) are combined to produce sets of classification units (two each
for terrain and climate), which are further combined to produce stratification units (12, 11, 21, and
22). Thus, each stratification unit has two classification units associated with it. Moreover, each
classification unit has a spatial signature associated with it. Aggregating the spatial signatures of
classification unit 1 for climate and unit 1 for terrain, both associated with stratification unit 11, results
in the landscape similarity to that stratification unit.

The function similarity() calculates the landscape similarity layer for each stratification units
in a given set (with the set being represented by a single-layer SpatRaster object), as shown in the
following example. The argument su.code indicates the name of the landscape factors/factor scales
used to create the stratification units, and the digit position (start, end) of the classification units’ ID in
the stratification unit’s numeric code.

# Multi-layer SpatRaster with spatial signatures of classification units
clim.sig <- rast(list.files(pattern = "climate_")) # For climatic units
mat.sig <- rast(list.files(pattern = "material_")) # For soil parent material units
terr.sig <- rast(list.files(pattern = "terrain_")) # For terrain units
# Single-layer SpatRaster of stratification units
su <- rast("su.tif")
# Landscape similarity to stratification units
su.ls <- similarity(su.rast = su, sig.rast = c(clim.sig, mat.sig, terr.sig),

su.code = list(climate = c(1, 1), material = c(2, 2),
terrain = c(3, 3)))

# Plot results
figure(12, d = list(su.ls, su, clim.sig, mat.sig, terr.sig))
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Figure 13: Metrics of landscape correspondence. Landscape similarity (extreme left) and spatial
signatures for climate, parent material (material), and terrain associated with stratification units (SU)
111 (top row) and 468 (bottom row). The red polygons indicate the boundaries of the corresponding
SU defined through the aggregation (i.e., mean pixel value) of the set of spatial signatures for that SU.

Stratified non-probability sampling

Stratified sampling is an efficient technique for achieving an adequate representation of environmental
variability, reducing cost of field work, and improving modeling with limited observations (Austin
and Heyligers 1989; Wessels et al. 1998; Guisan and Zimmermann 2000; Zhu et al. 2008; West et al.
2016). Accordingly, sampling with rassta to select observations/sampling locations is performed in
a stratified fashion using stratification units. Additionally, the raster layers of landscape similarity
to stratification units can be included in the sampling process. Including the landscape similarity
layers results in a non-probability sample. For each stratification unit, the sampling process selects
the observation(s)/sampling location(s) at the raster cell where the highest landscape similarity
value occurs, resulting in a stratified, non-probability sample that is biased towards maximizing the
representativeness of landscape configurations. This idea of biased, stratified sampling is based on
the work of Gillison (1983); Gillison and Brewer (1985), Austin and Heyligers (1989), and Zhu et
al. (2008). These authors have suggested that bias related to landscape configurations is relevant
for the maximization of environmental representativeness, detection of maximum diversity, and
representation of non-stochastic control-response relationships.

The function observation() performs the automatic selection of the representative response ob-
servation for each stratification unit in a given set. Given a stratification unit, the unit’s representative
response observation is that whose value best reflects the influence that the unit’s landscape configura-
tion exerts on the response. This function requires a set of observations/samples already collected
for a set of stratification units. Currently, observation() selects observations based on the following
methods: (a) mls: select the observation at the raster cell with the maximum landscape similarity value;
(b) mrv: select the observation whose response value is the median of all the values; and (c) random:
select an observation at random. Note that the latter represents a case of stratified random sampling.

The code below shows the selection of representative soil organic carbon (SOC) observations
based on the maximum landscape similarity method. Note that the arguments su.rast and ls.rast
require the stratification units and landscape similarity layers previously created with strata() and
similarity(), respectively.

# SpatVector with SOC observations for stratification units
soc.obs <- vect("soc.shp")
# Representative SOC observation for each stratification unit
su.obs <- observation(su.rast = su, obs = soc.obs, col.id = 1, col.resp = 2,

method = "mls", ls.rast = su.ls$landsim)
# Plot results
figure(13, d = list(su.obs, soc.obs, su))
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Figure 14: Selection of representative observations. Green points in the map represent the complete
set of observations. Blue points represent the representative observation for each stratification unit.

The function locations() performs the automatic selection of the representative sampling loca-
tion(s) for each stratification unit in a given set, where the representative sampling location is the
raster cell where the highest landscape similarity value occurs. Currently, locations() implements
two selection methods: (a) buffer: select sampling locations within areas with landscape similarity
values above a certain threshold; and (b) absolute: select sampling locations with the highest landscape
similarity values. The code below shows the use of locations() based on the buffer method.

# Representative sampling location and its buffer area for each stratification unit
su.samp <- locations(ls.rast = su.ls$landsim, su.rast = su, method = "buffer")
# Plot results
figure(14, d = list(su.samp, su))

Figure 15: Selection of representative sampling locations. Green points in the map represent the
sampling location for each stratification unit. Green polygons represent the buffer area for each
sampling location.

Predictive modeling

Predictive modeling with rassta is based on the assumption that each stratification unit represents a
distinct landscape configuration and that this configuration influences a natural phenomenon in a
distinctive manner. It is assumed that the influence that a stratification unit’s landscape configuration
has on response phenomena at a specific location (i.e, raster cell) is proportional to the unit’s landscape
similarity value at that raster cell. Therefore, given a stratification unit x, the corresponding raster
layer of landscape similarity ls, the response y, and a raster cell c, the greater the value of ls at c,
the more similar y at c will be to the typical y for x. The typical (i.e., representative) value of a
response phenomenon for a given stratification unit can be defined in several ways. For instance, if a
response phenomenon was sampled/measured multiple times within a given stratification unit, the
typical response value could be that from the sample/measurement at the raster cell with the highest
landscape similarity value (see observation()).

Several studies have used landscape similarity layers to model the spatial variability of natural
phenomena. These studies argue that the use of similarity layers is appropriate in cases when (a)
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available observations for modeling are limited (Zhu et al. 2008); (b) initial spatial distribution patterns
are needed for survey design (Carpenter, Gillison, and Winter 1993); (c) expert-driven selection of
informative variables is possible (Knick and Dyer 1997); (d) a priori knowledge of response-control
relationships in the form of conceptual models is available (Zhu et al. 2010; Schmidt, Tonkin, and
Hewitt 2005); and (e) discriminating between (ecologically) positive and negative deviations from
reference environments is required (Watrous et al. 2006). Accordingly, engine() allows the modeling of
environmental phenomena with a number of training observations as few as the number of landscape
similarity layers [cases (a) and (b)]; training observations and landscape similarity layers as outcomes
of expert-driven landscape stratification [cases (c) and (d)]; and landscape similarity layers derived
from spatial signatures that discriminate between the tails of distribution functions [case (e)].

Modeling with rassta is performed using the function engine(). For continuous responses,
engine() performs a weighted average involving representative response values and landscape
similarity layers. For a raster cell c, the modeled response value is equal to the weighted average of
the representative values for those stratification units with the highest landscape similarity values
at c. The stratification units with the highest landscape similarity values at c can be considered as
the nearest neighbors (in feature space) of the landscape configuration at c. These nearest neighbors
are called winning stratification units, and the weight of their corresponding representative value is
proportional to the winning unit’s landscape similarity value at c. For categorical responses, the modal
response value of the winning stratification units replaces the weighted average. Figure 16 shows an
example of the modeling process for continuous responses with rassta.

Figure 16: Schematic of the modeling process with rassta. The modeling process is performed in a cell-
wise fashion. The inputs required are the raster layers of landscape similarity and the representative
observations for each stratification unit.

Note that the weighted average for modeling phenomena across geographic space has been
widely applied in GIS-based multicriteria decision analysis (GIS-MCDA). In GIS-MCDA, attributes
(i.e., variables) in the form of raster layers are weighted according to expert criteria. The weighted
variables are then combined through (cell-wise) overlay operators such as multiplication, addition
and (ordered) averaging. The resulting value at each cell represents the relative suitability for a certain
condition/decision (Malczewski 2006). The function engine() generalizes the weighted overlay
process of GIS-MCDA by allowing the use of sampled/measured data of a response phenomenon
in conjunction with the landscape similarity layers acting as weighted variables. This generalization
allows the modeling of real-valued phenomena in continuous or categorical form. The modeling
approach of engine() is almost the same as that proposed by Zhu (1997) to model landscape attributes
across geographic space. The difference between engine() and the approach of Zhu (1997) is that
engine() allows the selection of the number of landscape similarity layers for the weighted average
calculation. Presumably, restricting the number of layers will reduce the shortening (‘shrinking’) effect
that weighted averaging has on the range of modeled continuous response values (Nolan et al. 2019).

The code below demonstrates the use of engine() for the predictive modeling of soil organic
carbon. Note that the representative response values (argument su.repobs) are those previously
selected with observation(), and that the layers of landscape similarity (argument ls.rast) are those
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previously created with similarity().

# Table with the numeric code of stratification units and representative SOC values
su.soc <- su.obs$su_repobs[, c("SU", "soc")]
# engine() requires a (tiled) SpatVector with the boundaries of the area of interest
aoi <- vect("aoi.shp")
# engine() writes results directly on disk
if (dir.exists("soc") == FALSE) {dir.create("soc")} # Create directory
# Spatial modeling of SOC across the landscape based on 3 winning stratification units
soc <- engine(ls.rast = su.ls$landsim, n.win = 3, su.repobs = su.soc,

tiles = aoi, outdir = "soc", overwrite = TRUE)
figure(16, d = list(soc, "soc_valid.shp")) # Plot results

Figure 17: Modeled soil organic carbon (SOC) content (percent). The map shows the modeled SOC
values across the landscape. The plot shows the the modeled (y) versus the measured (x) SOC values
based on 62 independent observations.

Miscellaneous

The spatial signature only applies to classification units created from continuous variables. Thus,
spatial signatures cannot be calculated for classification units that represent categorical variables, such
as land use/land cover. In such cases, a one-hot encoding can be applied to produce binary layers for
the units. These layers are considered the spatial signatures of the classification units. The code below
shows the creation of binary layers for soil parent material units with dummies().

# Multi-layer SpatRaster of soil parent material units
mat.cu <- rast("material.tif")
# Binary layers for each soil parent material unit and their maps
mat.sig <- dummies(mat.cu, preval = 100, absval = 0)
figure(17, d = mat.sig) # Plot results

Figure 18: Construction of binary layers. Binary layers act as the spatial signatures for categorical
variables. In this example, soil parent material acts as both landscape factor and classification units.

The function plot3D() produces interactive maps showing the 3-dimensional (XYZ) variability
in raster layers representing continuous variables. The XYZ reference positions are obtained from
a user-supplied elevation layer. For large raster layers (large spatial coverage and/or high spatial
resolution), this function allows the option to decrease resolution and subset the data. The code below
shows how plot3D() creates a 3D map for SOC, as modeled with engine().
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# Single-layer SpatRaster of terrain elevation and the 3D SOC map
elev <- rast("elevation.tif")
plot3D(c(elev, soc), z = 1, ex = 0.2, pals = "Fall", rev = TRUE) # 3D map

Figure 19: 3D map of SOC (percent). The Z dimension is obtained from a reference terrain model.
Visit the online article to access the interactive version of the map.

3 Future versioning and summary

This work presented the rassta package for spatial stratification, sampling, and modeling of environ-
mental phenomena within the R environment. Future versioning of the rassta package will focus
on developing new approaches for spatial stratification. Stratification based on spatial intersection
may not be feasible to implement in highly complex landscapes because these landscapes may re-
quire many (sets of) classification units to accurately represent the spatial variability of landscape
factors, leading to over-stratification, and thus, greater demand for samples/observations to conduct
predictive modeling based on landscape similarity. One plausible solution is the application of the
stratification methods presented by Jasiewicz, Netzel, and Stepinski (2015), Jasiewicz, Stepinski, and
Niesterowicz (2018), Nowosad (2021), and Nowosad and Stepinski (2021). However, these methods
have been purposely designed for studies with continental/global applications. Therefore, these
methods should be adapted for rassta to tailor their application at local scales to allow for more precise
representations of natural phenomena and their spatial variability. Another focus of versioning can be
new functions to visualize the variability of response phenomena relative to the hierarchical structure
represented by the stratification units. Lastly, future versioning of rassta should also consider the
user’s experiences to ensure its general applicability.

The core ideas implemented in the rassta package include the multi-scale, hierarchical landscape
stratification based on spatial intersection, the application of non-parametric distribution estimators
to define the typical landscape configuration of stratification units, and the use of spatially explicit
landscape correspondence metrics for non-probability sampling and predictive modeling. Some of
these ideas have previously been implemented in R through a few packages dedicated to the analysis
of geospatial data. Nevertheless, rassta offers a unified, generalized framework to conduct multiple
landscape stratification routines through a dedicated set of algorithms. Moreover, spatially-explicit
information created with rassta, like stratification units, landscape similarity layers, and representative
observations, can be embedded into statistically robust modeling approaches to optimize the analysis
of environmental phenomena.
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PDFEstimator: An R Package for Density
Estimation and Analysis
by Jenny Farmer and Donald Jacobs

Abstract This article presents PDFEstimator, an R package for nonparametric probability density
estimation and analysis, as both a practical enhancement and alternative to kernel-based estimators.
PDFEstimator creates fast, highly accurate, data-driven probability density estimates for continuous
random data through an intuitive interface. Excellent results are obtained for a diverse set of data
distributions ranging from 10 to 106 samples when invoked with default parameter definitions in the
absence of user directives. Additionally, the package contains methods for assessing the quality of any
estimate, including robust plotting functions for detailed visualization and trouble-shooting. Usage of
PDFEstimator is illustrated through a variety of examples, including comparisons to several kernel
density methods.

1 Introduction

The ability to estimate a probability distribution from a single data sample is critical across diverse
fields of science and finance (Munkhammar et al., 2017; Sidibé et al., 2018; Tang et al., 2016; Cavuoti
et al., 2017). Estimating the parameters of the underlying density function becomes increasingly
difficult when there is no prior information about the number of parameters, as the shape and
complexity must also be inferred from that data. Although there are many nonparametric methods,
kernel density estimation (KDE) is among the most popular.

Variants of KDE differ based on how they implement the selections of the bandwidth and the
kernel function, which are nontrivial decisions that can have a significant impact on the quality
and performance of the estimate. Most KDE implementations allow the user to manipulate some
parameters manually, allowing for an experienced user to fine-tune the default behavior for improved
results. Unfortunately, user directives introduce unavoidable subjectivity to the estimate. More
advanced implementations include intelligent and adaptive bandwidth selection optimized according
to the characteristics of the data (Chen, 2017; Botev et al., 2010). However, there is inevitably a trade-
off between computational performance and accuracy (Gray and Moore, 2003). There are many R
packages available that can estimate density nonparametrically, typically based on KDE (Calonico
et al., 2019; Hayfield and Racine, 2008; Moss and Tveten, 2019; Konietschke et al., 2015; Sebastian
et al., 2019; Wand and Ripley, 2021; Wand, 2021; Nagler and Vatter, 2020). The core R function density
implements a straightforward kernel density method.

Presented in this article is the package PDFEstimator for nonparametric density estimation and
analysis (Farmer and Jacobs, 2018). The features of PDFEstimator can be separated into two categories.
The first is a novel estimation method based on the principle of maximum entropy, available through
the estimatePDF function. A primary advantage of estimatePDF is the automated interface, requiring
nothing from the user other than a data sample. Range, multi-scale resolution, outliers, and boundaries
are determined within the algorithm to achieve optimized data-driven estimates appropriate to the
given sample. Although these defaults can be overridden by a sophisticated user, overrides generally
do not improve the results. Additionally, multiple acceptable solutions can be returned, which is
particularly useful in the case of low sample sizes where there is more statistical uncertainty.

The second category of features included in PDFEstimator is a unique set of assessment utilities
for evaluating the accuracy of the solution and highlighting areas of uncertainty within a density
estimate. Furthermore, a user-defined threshold can be specified to identify data points that fall
outside of an expected confidence level. These diagnostics tools are visualized through a variety of
customized plotting options, thus aiding in the evaluation of difficult distributions. Most importantly,
all of these features can be applied towards any estimation function, such as density, as they are
universal measurements independent of the method used, allowing for an integrated comparison
between alternative models.

The remainder of this paper is organized as follows. Available functions and usage describes
the functions available in this package, including their usage and underlying methods. Examples
and illustrations provides additional and advanced examples for identifying and troubleshooting
problems with any density estimation method. Comparison to kernel-based estimators compares
estimatePDF with three popular kernel-based estimation packages using a diverse set of known
distributions. Finally, The 1872 Hidalgo stamp issue of Mexico demonstrates the use of PDFEstimator
for a well-known real data set from a rare stamp collection.
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Function Description

getTarget Returns upper and lower limits of SQR for a given target level
plotBeta Plots a shaded region outlining expected range of SQR values by

position
estimatePDF Estimates a density from a data sample. Returns a PDFe estimation

object.
convertToPDFe Converts any PDF to a PDFe estimation object for diagnostic pur-

poses.
approximatePoints Returns approximated PDF for an existing PDFe estimation object at

a given set of data points.
plot Main plotting function for PDFe estimation objects.
lines Plots the density for a PDFe estimation object as a connecting line

segment to an existing plot.
summary Prints a summary of the PDFe object.
print Prints the probability density and cumulative density for each esti-

mation point in the PDFe object.

Table 1: Overview of functions in the PDFEstimator package.

2 Available functions and usage

An overview of the functions included in PDFEstimator is listed in Table 1. A critical component of
the tools in PDFEstimator is a PDFe object, which encapsulates all information necessary for plotting
and assessing the quality of any density estimate. The member variables for the PDFe class definition
are listed in Table 2. The methods for calculating the necessary components of the PDFe and how they
are employed in each of the functions in Table 1 are described in this section.

The PDFe class

The first four member variables listed in Table 2 are commonly understood values for an estimated
density, beginning with the random data sample that is the basis for the estimate. The probability
density function (PDF) is estimated for the range of points defined in x. Similarly, the cumulative
distribution function (CDF) can be calculated representing the cumulative probability of the PDF for
each x. PDFEstimator defines additional descriptions for an estimate that measure the quality of its fit
to the sample data. Central to the quality of these estimates is a scoring mechanism to rate the overall
fit of an estimate to the sample. A single average score is calculated, as well as individual confidence
levels for each data point within the sample. These scores are based on order statistics (Wilks, 1948).

If the CDF, defined on the range (0 1), is an accurate representation of the data, then CDF(x)
will represent uniform random data. The general problem then becomes assessing if rk = CDF(xk)
represents uniform data for a given sample. Although there are many methods to test for uniform
data (Farmer et al., 2019), PDFEstimator employs an average quadratic z-score, defined as

z2 =
−1
N

N

∑
k=1

(rk − µk)
2

σ2
k

, (1)

where k is the sort ordered position in a sample size N, and µk and σk are the mean and standard
deviation from single order statistics known to be µk = − k

N+1 and σk =
µk(µk−1)√

N+2
. Perfectly uniform

data would yield a score of exactly zero.

To study typical z-scores for uniform random data, extensive numerical experiments were gener-
ated with a random number generator on the range (0, 1) for many different sample sizes. The typical
distribution of scores according to Equation 1 is represented in the left plot for Figure 1. The peak
density of the PDF corresponds to the most likely z-score and occurs at a value of approximately -0.5,
with a sharp drop-off in the density as scores approach zero. The threshold value of the PDFe object
reports the empirical cumulative probability for the z-score, as a percentage, shown on the right-hand
plot of Figure 1. The cumulative probability for the peak z-score is calculated to be a little over 0.7,
thus a threshold value near or greater than 70% can be considered a highly probable fit. A threshold of
less than 5%, by contrast, is low probability and therefore likely an underfit for the data. In this event,
the PDFe member variable failedSolution is set to TRUE. A score with a threshold of 95%, however, is
similarly unlikely and can be interpreted as overfitting the data. The software does not rigidly enforce
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Member Variable Description

sample Sample data used to estimate the density.
x Points where the density is estimated.
pdf Estimated density values for x.
cdf Cumulative density values for x.
threshold Threshold score, expressed as a percentage, measuring the unifor-

mity of the CDF of sample data.
failedSolution If true, indicates that the estimate returned does not meet at least a

5% threshold.
sqr Scaled quantile residual values for sample data points.
sqrSize Size of sqr.

Table 2: Member variables of the PDFe class.

a particular score upon an accepted solution, but rather uses the numerically calculated density shown
in Figure 1 as a guide to iteratively move towards increasingly probable solutions.

The threshold provides an average score for the estimate, but to assess the estimate per position
and identify the locations of potential errors, a scaled quantile residual (SQR) is defined as

SQRk =
√

N + 2 (rk − µk) . (2)

The scaling factor of
√

N + 2 creates a sample-size-invariant metric for each position k. The sqr
member variable of the PDFe class contains a vector of SQR values according to Equation 2 and their
ability to diagnose problems in a density estimate will be demonstrated with the plot function. Note
that the PDFe object will also report the size of sqr, which will be the number of samples less the
number of any outliers detected.

getTarget and plotBeta

It has been shown that, when plotted against position, SQRk for uniform random data falls approxi-
mately within an oval shaped region (Farmer et al., 2019). The reason for this can be understood by
examining the beta distributions that govern order statistics for sort ordered random uniform data
(Wilks, 1948). The probability of u for position k in uniform random data with N samples is as follows.

pk(u) =
N!

(k − 1)! (N − k)!
uk−1 (1 − u)N−k (3)

By integrating Equation 3 for each position k, confidence levels for SQR values of sample size N are
calculated in the getTarget function. Figure 2 demonstrates confidence levels for three different target
percentages, plotted as contour lines. The background shading in grey represents typical ranges of SQR
values, with darker shading corresponding to higher probability areas. This shading is independent of
sample size, and is calculated according to Equations 2 and 3 in the plotBeta function.

estimatePDF

estimatePDF provides an R interface for nonparametric density estimation based on a novel method
providing an alternative to traditional KDE implementations. Details of this approach, based on
the principle of maximum entropy (Wu, 1997), were published previously and have been shown to
produce more accurate estimates than KDE in most cases (Farmer and Jacobs, 2018; Farmer et al., 2019;
Puchert et al., 2021; Farmer and Jacobs, 2022). For optimal performance and flexibility with other
applications, this functionality is performed within a set of C++ classes and is not the focus of this
paper, but a brief summary is provided for insight into the estimatePDF interface.

In a traditional maximum entropy method, moments for a set of characteristic functions are
introduced, and the coefficients to these functions are optimized to match the predicted moments with
the empirical moments. As a particular choice of moments that exist for any probability density, and
to form a systematic truncated expansion over a complete set of orthogonal functions, the analytical
form for the density function from a data sample is expressed as

p(ν) =
D

∑
j=1

exp
(

λjgj(ν)
)

, (4)
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Figure 1: These plots demonstrate the distribution of scores as defined by Equation 1 and are used to
assess the probability of a trial solution. The density was estimated empirically by generating 1000
trials of 10,000 uniform random data samples. The probability density function is shown on the left
and the cumulative density function is on the right.
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Figure 2: Confidence levels by position for a scaled quantile residual plot based on beta distribution
probabilities according to single order statistics for a sample size of 50 (left) and 1000 (right). The
colored contour lines define regions within an oval shape that give target levels for observing data
points deviating away from perfect uniform spacing as expected for true uniform random data. Note
that the skewness in the contour lines are noticeable for small sample sizes compared to large sample
sizes.

where gj(ν) are bounded level functions and λj are Lagrange coefficients controlling the shape of the
density function (Jacobs, 2008). For a fixed number of coefficients, D, this method is parametric in form.
Although solving for the coefficients analytically is increasingly impractical for high dimensionality, a
random search method is employed that provides very efficient numerical optimization. An expansion
of orthogonal functions is constructed in the form of Equation 4, without specifying D in advance,
where higher mode orthogonal functions are successively added as needed. The algorithm iteratively
explores possible density functions by perturbing the Lagrange coefficients that are currently present,
while D is slowly increased, testing each possibility according to the scoring function in Equation 1 to
converge towards an accurate estimate.

The arguments for estimatePDF are listed in Table 3. If no other parameters are specified, the
range of the returned estimate is calculated automatically. By default, left and right boundaries are
presumed theoretically infinite and allowed to extend beyond the range of the data sample. The finite
numerical bounds are calculated according to the density near the tails, with longer tails receiving
more padding than shorter tails. Similarly, extreme outliers are detected and removed from the sample
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Arguments Description

sample A vector containing the data sample to estimate.
pdfLength Specifies the desired length of the estimate returned. By default, this

length is calculated based on the length of the sample.
estimationPoints An optional vector containing specific points to estimate.
lowerBound Sets the finite lower bound for the sample, if it exists.
upperBound Sets the finite upper bound for the sample, if it exists.
lagrangeMin Specifies the minimum allowed dimension, D, in Equation 4.
lagrangeMax Specifies the maximum allowed dimension, D, in Equation 4.
debug If TRUE, detailed progress will be printed to the console.
outlierCutoff If greater than 0, specifies the range of included sample data, accord-

ing to the formula [(Q1 - outlierCutoff x IQR), (Q3 + outlierCutoff
x IQR)], where Q1, Q3, and IQR represent the first quartile, third
quartile, and inter-quartile range, respectively.

target Sets a target percentage threshold between 0 and 100. The default is
70, the minimum accepted is 5.

smooth If TRUE (default), preference is given towards smooth density esti-
mates.

Table 3: Overview of arguments in the estimatePDF function.

as appropriate according to the outlierCutoff argument. Alternatively, the lowerBound, upperBound,
and outlierCutoff parameters can be independently specified to provide the user complete control
over the range of the estimate. Setting outlierCutoff to zero turns off outlier detection and includes
all the data.

The number of expansions in Equation 4 begins at lagrangeMin and is capped at lagrangeMax,
with default values of 1 and 200, respectively. The maximum of 200 provides a generous realistic
upper limit to the complexity of the estimate and the computational time required but can be altered to
either increase accuracy or decrease compute time. Another reason to override these limits is to create
a semi-parametric estimate by narrowing the range between minimum and maximum. A strictly
parametric approach can be achieved by setting the two limits to the same value. For example, setting
both langrangeMin and lagrangeMax to 1 forces a uniform fit. Similarly, setting them both to either 2
or 3 respectively yields exponential and Gaussian distributions.

The target argument refers to the cumulative probability of the z-score, as previously discussed.
Note that target is a user-defined argument, whereas threshold in the PDFe class is the actual
threshold achieved. These values may be different for several reasons. For example, the search for the
target threshold may abort prematurely if the lagrangeMax has been exceeded or if progress has been
stalled. Additionally, a small penalty is added to the score if the estimate becomes exceptionally noisy
in areas of low density where sharp features are not justified. Therefore, a smoother curve may be
favored over a higher score. The smoothing penalty is constructed according to a Taylor expansion
error estimate as described previously (Jacobs, 2008). The original model calculated a second order
expansion, but a first order approximation was found to be sufficient and implemented in this version.
This behavior can be circumvented when intentionally searching for small peaks by setting the smooth
argument to FALSE.

convertToPDFe and approximatePoints

The estimatePDF function performs the density estimation based on the input parameters in Table 3
and returns a PDFe object for plotting and additional analysis. Alternatively, the convertToPDFe
function will create a PDFe object for an estimate calculated using any other method for a given data
sample. convertToPDFe requires a data sample and the (x,y) values for the estimate, and calculates
the score, threshold, and SQR values for each point in the sample.

The approximatePoints function operates on a PDFe object to approximate the PDF for additional
data points after the estimate has already been calculated using either estimatePDF or convertToPDFe.
This functionality is similar to specifying estimationPoints in the estimatePDF function, but is
provided for the convenience of approximating different points without having to recalculate the
estimate. The following example will create a PDFe object for a KDE estimate of a random sample from
a standard normal distribution, and then return additional density approximations at points -3, 0, and
1.
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sample = rnorm(1000)
kde = density(sample)
pdfe = convertToPDFe(sample, kde$x, kde$y)
approximatePoints(pdfe, c(-3, 0, 1))

plot

The PDFEstimator::plot.PDFe function extends the generic plot function in R supporting all existing
graphical parameters, with additional options summarized in Table 4. The first argument listed in the
table is the PDFe object returned by estimatePDF or convertToPDFe and is required for all plots. The
plotPDF and plotSQR arguments can be independently set to TRUE or FALSE and collectively control
the plot type. The plotShading and showOutlierPercent values invoke the plotBeta and getTarget
functions from Table 1 and provide optional diagnostics to highlight specified uncertainties within the
estimate through the use of the SQR plot. The remaining arguments listed in Table 4 control minor
graphical features for customized aesthetics. The following examples will demonstrate the variety of
plots that can be created with combinations of these options.

Arguments Description

x A PDFe estimation object. Returned from estimatePDF.
plotPDF Plots the probability density for x if TRUE.
plotSQR Plots the scaled quantile residual (SQR) for x if TRUE. If plotPDF is

also TRUE, the SQR will be scaled to the range of the density.
plotShading Plots gray background shading indicating approximate confidence

levels for the SQR, where darker shades indicate higher confidence.
Setting this to TRUE only has meaning when plotSQR = TRUE.

shadeResolution Specifies the number of data points plotted in the background shad-
ing when plotShading = TRUE. Increasing this resolution will create
sharper and more accurate approximations for the confidence levels,
but will take more time to plot.

showOutlierPercent Specifies the threshold to define outliers for SQR. Must be a number
between 1 and 100.

outlierColor Specifies the color for outliers when showOutlierPercent is defined.
sqrPlotThreshold Magnitude of y-axis for SQR plot.
sqrColor Specifies the SQR color for non-outliers
type Specifies the line type of the density curve if plotPDF = TRUE. If

plotPDF = FALSE and plotSQR = TRUE, the SQR plot uses this type.
The default is lines type.

lwd Specifies the line width of the density curve if plotPDF = TRUE. If
plotPDF = FALSE and plotSQR = true, the SQR plot uses this width.
The default is 2.

xlab x-axis label for pdf. If plotPDF = FALSE and plotSQR = TRUE, then
the sqr plot uses this label.

ylab y-axis label for pdf. If plotPDF = FALSE and plotSQR = TRUE, then
the sqr plot uses this label.

legendcex expansion factor for legend point size with sqr plot type, for plotPDF
= FALSE and plotSQR = TRUE.

... Inherits all other plotting arguments from plot function

Table 4: Overview of arguments in the plot function.

3 Examples and illustrations

Plotting estimates

Figure 3 contains two separate examples of the Maxwell distribution. The left panel demonstrates the
plot function using all the default parameters and simply plots the density estimate. On the right, the
plotSQR parameter creates the SQR plot, as described in Equation 2, overlaying the density. A shaded
background, scaled according to the data sample, is plotted with the addition of the plotShading
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parameter set to TRUE, providing a visual approximation of the most probable range of scaled quantile
residual values. Finally, the showOutlierPercent parameter flags scaled quantile residual values that
are outside of the 99% target interval. By default, these outliers are plotted in red.
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Figure 3: (left) Density estimates for the Maxwell distribution with 100,000 samples using default
parameters. (right) In addition to the density estimate, the scaled quantile residual mapped to the
original variable x is shown along with a shaded region indicating 99% target. The scaled quantile
residuals outside of the 99% target interval are highlighted in red.

Figure 4 contains additional examples for visual assessment of estimates. Each of these plots is
based on the sawtooth distribution, defined by ten identical isosceles triangles at equal intervals. The
sawtooth distribution is designed to be challenging to estimate due to these extremely sharp peaks. The
exact distribution is plotted in gray in the top left panel of Figure 4, with the estimatePDF estimate for
100,000 samples shown in black. The estimate captures the high peaks well but falls short of reaching
the lowest points of each triangle. The top right plot demonstrates how the showOutlierPercent
parameter can identify specific areas of lower confidence in the estimate when the exact distribution is
not known. In this example, the estimate is plotted in gray with green highlighting the sample points
outside of an 80% target level. Although the estimate closely approximates the distribution, the low
peaks are identified as less accurate.

The bottom row of figure 4 shows an alternative diagnostic visualization of the same estimate.
These plots do not include the density estimate, but show only the SQR plot. Note that when the SQR
is plotted alone, each sample point is spaced equally according to sort ordered position. Additionally,
dotted lines represent the confidence interval, if showOutlierPercent is specified, and the calculated
percentage of points lying outside this threshold are printed on the bottom right. These examples show
targeted thresholds of 80% and 99% with outliers representing 8% and 1% of the points, respectively.
If the sum of the threshold and outlier percentages fall far below or above 100%, this indicates a poor
estimate. The figures in this section collectively demonstrate a wide range of visual assessment and
color choices available with this customized plot function.

Advanced diagnostics

The results returned from estimatePDF provide additional information for further analysis when
needed. For example, the first plot in Figure 5 is the SQR result for 10,000 data samples generated
from a normal-cubed distribution. In this case, the failedSolution return value is TRUE, indicating
that the estimate does not meet the required threshold for the scoring function. Rather than return
a NULL solution in the event of an unacceptable score, the best scoring estimate is always returned.
However, in addition to the poor average score, the SQR plot also shows large variations outside of a
99% threshold.

The second plot in Figure 5 shows the SQR result for the same sample data estimated with the core
R function density. The density estimate is first converted to a PDFe object via the convertToPDFe
function. The failedSolution return variable indicates this estimate also does not meet an acceptable
fit, but the SQR plot further suggests an extreme underfit of the estimate near the midpoint of the
sample. This is a common weakness of KDE estimates for data with sharp peaks and long tails. In
fact, the normal-cubed distribution is undefined at zero and diverges as it approaches this singularity
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Figure 4: Density estimates for the sawtooth distribution with 100,000 samples. The top left plot
shows the exact known distribution in gray and the estimate in black. The top right plot shows the
estimate in gray, with green highlights indicating areas outside of the 80% target threshold. The bottom
row demonstrates scaled quantile residual plots for the same estimate, for 80% and 99% target levels.
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from both directions, presenting a challenge for any density estimator. In either method, however, the
information available in PDFe alerts the user of problems that may require intervention.

A manual inspection of the sample data, perhaps in the form of a quantile or histogram plot,
confirms an approximately symmetric distribution of data with an extreme variation in density near
the center. A reasonable course of action in this event is to attempt to fit the low-density tails separately
from the high-density peak. Figure 6 demonstrates this approach, modeling the distribution with
three separate calls to estimatePDF (top) and density (bottom) for ranges delineated by -0.01 and 0.01
around the peak. The tails are bounded according to the range returned from the respective original
estimates for each method.

For estimatePDF, this produces individual estimates mostly within the 99% target range shown
in the three SQR plots in Figure 6. This example suggests a general divide and conquer method for
addressing extreme distributions that is part of an automated procedure (to be published elsewhere).
For density, however, the estimates remain poor in comparison even when fitting the regions sep-
arately. This is due, in part, because KDE methods do not incorporate automatic outlier detection.
Additionally, KDE tends to perform poorly at boundaries, causing them to be less amenable to piecing
together estimates in this way.
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Figure 5: Scaled quantile residual plots for estimates of the normal-cubed distribution with 10,000
samples using estimatePDF (left) and density (right).

4 Comparison to kernel-based estimators

Conducting a fair comparison between nonparametric methods can be challenging due to the unre-
strained nature of the input data. It is inevitable that different methods will do well estimating certain
types of distributions while performing poorly on others. The benchden R package was implemented
specifically to address this concern and facilitate an unbiased comparison between nonparametric
methods (Mildenberger and Weinert, 2012). Benchden includes detailed information about a collection
of 28 diverse known distributions, deliberately chosen to challenge estimation methods in a variety of
ways, including long tails, discontinuities, and sharp or infinite peaks. This data set is used to collect
statistics on the accuracy, computational performance, and usability of estimatorPDF compared to
several kernel-based methods.

Usability is admittedly somewhat subjective and difficult to measure. An advanced user with
in-depth knowledge of the data and experience with a particular method may choose to set parameters
that differ from default values. To control for expert user biases, default settings are used across
all methods. Comparison functions were selected, in part, with the criteria that the only required
user input is a data sample. However, all methods included in this comparison also allow optional
parameters to specify finite boundary support for a distribution when provided by the benchden
package. Although many kernel-based functions were evaluated and tested, three representative
methods were selected for the results in this section. The first is density, the core R function. The
other two are npudens and bkde, from the np (Hayfield and Racine, 2008) and KernSmooth (Wand
and Ripley, 2021) packages, respectively. These packages were also chosen to demonstrate specific
advantages and features.

Computational performance and accuracy comparisons are relatively straightforward to measure.
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Figure 6: Scaled quantile residual plots for estimates of the normal-cubed distribution with 10,000
samples separated by left tail, middle, and right tail for estimatePDF (top row) and density (bottom
row)

The R package philentropy (Drost, 2018) implements 46 measurements designed specifically for
comparing two distributions. Philentropy was used together with benchden to generate random
samples for each distribution and compare estimates for these samples against the known density. For
each of the four selected nonparametric methods, 100 random samples from each distribution available
in benchden were estimated, timed, and averaged for sample sizes ranging from 10 to 106 for all 46
accuracy measures in philentropy. All measurements were averaged first over 100 randomizations
and then over all 28 distributions. Comparative results were qualitatively consistent between the 46
measures, particularly when averaged over a range of distributions, therefore, for simplicity, a single
measure was selected for the plots in this section. A symmetric version of the chi-squared family was
selected for the divergence, defined as

d =
n

∑
i=1

(Pi − Qi)
2

Pi + Qi
. (5)

Representative results for ten trials of each of the 28 distributions for select sample sizes are shown in
the left plot of Figure 7.

For functions density, bkde, and estimatePDF, the chi-squared error decreases with sample size
while computational time, shown in the right plot of Figure 7, increases, as expected. The relative
comparison between these three methods shows that estimatePDF, on average, produces more accurate
estimates at the expense of increased computational time. These trends generally agree with more
comprehensive comparisons between estimatePDF and other nonparametric methods (Puchert et al.,
2021). density and bkde are very similar to one another, with density marginally slower and more
accurate on average over bkde. The performance of npudens is less consistent. The np package allows
for an adaptive bandwidth selection that is the default method for npudens. Although this functionality
produces results with greater accuracy than density and bkde, it becomes computationally intractable
as sample size increases. The authors recommend against using the adaptive bandwidth option for
sample sizes beyond 1000. Simulations (not shown) were pushed to 50,000 samples at 100 trials, and
500,000 samples for a single trial, confirming the prediction of O(n2) time complexity for this method
(Hayfield and Racine, 2008).

Although the plots in Figure 7 provide an excellent snapshot of overall trends for comparison,
a more detailed analysis per distribution is necessary for practical insight into the strengths and
weaknesses of estimatePDF compared to the kernel-based estimates. When viewing accuracy for
each distribution separately, 12 of the 28 showed no significant differences between methods. When
averaged over many trials, the magnitude of error empirically converges toward zero by approximately
n−0.56. The average chi-squared measures as a function of sample size for these 12 distributions are
shown in the top left plot in Figure 8. Simple, well-behaved distributions are easy to estimate for all
methods considered in this work.
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Figure 7: Comparison between four nonparametric estimators as a function of sample size according
to accuracy (left) and performance (right). All quantities are averaged over 28 distributions for sample
sizes in powers of 10.
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Figure 8: Accuracy comparison between four nonparametric estimators as a function of sample size
averaged over subsets of distributions. Top left: distributions with high accuracy; top right: long tailed
distributions; bottom left: Matterhorn and normal cubed distributions; bottom right: distributions
with multiple peaks.
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Figure 9: Left: Density estimates for the sawtooth distribution with 1000 samples for estimatePDF
(green) and npudens (red). Right: Density estimates for the sawtooth distribution with 1 million
samples for estimatePDF (green), density (blue), and bkde (orange).

The remaining plots in Figure 8 illustrate more interesting cases where estimatePDF and kernel-
based methods show their differences. The top right plot, for example, is the accuracy averaged over
four distributions (Cauchy, Pareto, symmetric Pareto, and inverse exponential) with extremely long
tails. Error remains high and somewhat erratic for all KDE methods, and visual inspection of the
density plots reveal that they will often miss the location and density of the peak in favor of attempting
to capture the low density in the tails. The automatic boundary and outlier detection in the default
behavior of estimatePDF correctly identifies the tails with near-zero density and removes them from
consideration, thus fitting the peak extremely well with very little overall error in the estimate.

The bottom left plot in Figure 8, by contrast, shows the average accuracy of the two distributions
(Matterhorn and normal-cubed) where estimatePDF performs poorly compared to the KDE methods.
Although these distributions have quite different definitions, the common characteristics are that
they are symmetrically distributed and are neither in L2 nor L∞, with infinite peaks approaching
zero from both directions. This particular set of features is unique among the 28 distributions in
benchden, and poses an exceptional challenge to estimatePDF. The Matterhorn distribution, by far
the worst performer of the two, additionally suffers from known machine-precision errors in the
random number generator in benchden, occasionally producing samples equal to zero where the
distribution is undefined (Mildenberger and Weinert, 2012). Illustrative results from estimatePDF for
the normal-cubed distribution were previously shown in Figure 5, along with a demonstration of how
a knowledgeable user can fit together segments of the data and combine the solutions to obtain a good
estimate.

The bottom right plot in Figure 8 highlights four distributions (sawtooth, smooth comb, Marronite,
and claw) with multiple sharp peaks. The adaptive bandwidth for npudens provides a clear advantage
in accurately estimating these distributions over other KDE functions. For small sample sizes, npudens
also maintains an advantage over estimatePDF. An example of this advantage is shown in the left
panel of Figure 9, comparing npudens and estimatePDF for 1000 samples of the sawtooth distribution.
The right panel for Figure 9 shows the estimates for this distribution at one million samples for
estimatePDF, density, and bkde. The two kernel-based estimates, processing in under 1 second, are
quite poor. The estimate for estimatePDF, taking about 1 minute, is notably improved and likely
would be considered worth the additional computational investment to a user. The npudens estimate,
however, is projected to require 10-12 days to compute for 1 million samples, assuming the continuation
of O(n2) time increase. Any marginal increase in accuracy is unlikely to be worth the wait.

5 The 1872 Hidalgo stamp issue of Mexico

In 1988, Izenman and Sommer published a detailed statistical study and historical account describing
a postage stamp collection issued in Mexico in 1872 (Izenman and Sommer, 1988). This particular
collection consists of only 485 stamps preserved from the millions originally issued that year, providing
a very small and rare sampling of the data. At this time in history, stamps were printed on a variety
of paper types, with poor documentation and quality control on the thicknesses used for printing.
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Figure 10: Estimates for the 1872 Hidalgo stamp issue of Mexico. (left) Default KDE estimate for
density in blue, variable KDE estimate for npudens in red. (right) Multiple estimates for estimatePDF
shown in gray, average in black.

Therefore, it is unknown how many paper types were used for this stamp issue in 1872, but those citing
historical evidence and statistical analysis have estimated anywhere from 3 to 8 plausibly distinct
thicknesses (Basford et al., 1997; Brewer, 2000; Izenman and Sommer, 1988; Sheather, 1992).

A straightforward default estimate using the density function, shown in blue on the left plot of
Figure 10, yields only two modes, with a bandwidth of 0.00391. Converting this estimate to a PDFe
object calculates a threshold of only 0.27% , indicating a very poor fit. By contrast, the npudens variable
bandwidth estimate, shown in red, calculates a much smaller bandwidth at 0.00104 and includes
at least 10 major and minor modes. Converting this estimate to a PDFe object yields a much more
probable threshold of 56.4%. More sophisticated parametric methods, such as mixed normal mode
analysis, suggest that 7 modes is optimal (Basford et al., 1997; Izenman and Sommer, 1988).

The inherent difficulty in estimating real world data from such a small sample size is in distin-
guishing true characteristics of the data from random fluctuations of the sample. A unique advantage
of estimatePDF is the ability to produce multiple viable solutions to fit the sample data. Since
estimatePDF employs a random process for optimizing its parameters, starting with different seeds
can result in a range of unique possible solutions consistent with the sampled data. When sample
sizes become large, multiple solutions generally will converge to one single solution, but estimates for
small sample sizes will generally have more variation. This application, where small features are of
critical interest, provides an example of when the user may wish to deactivate the smooth functionality.
Removing this penalty from the score will prioritize the most likely fit to the data with no regard to
spurious noise in low-density areas.

This effect is demonstrated in the right plot of Figure 10. The results of 20 calls to estimatePDF are
plotted in gray, and the average density over these 20 estimates is plotted in black. The average shows
7 smooth, distinct modes, corresponding to the 7 paper types proposed by Izenman and Sommer
based on historical evidence. However, even with smoothing disabled, the two peaks in the right tail
are very small and account for some amount of variation from one estimate to the next. There is some
support, both historical and statistical, that these two modes are not justifiable, with some argument
that there are only 5 modes (Brewer, 2000; Sheather, 1992). By contrast, the small mode between the
largest two peaks on the left, seen in the npudens estimate and in some of the estimatePDF estimates,
is generally agreed to be a random fluctuation of the sample set. estimatePDF demonstrates that these
fluctuations are all possible fits to the data.

6 Summary

PDFEstimator is a probability density estimation package that introduces an R implementation of a
novel nonparametric method, estimatePDF, based on maximum entropy. Any computational method
must strike a reasonable balance between usability, computational time, and practical functionality.
For comparison, estimatePDF was tested across a large range of random samples for 28 known
distributions and compared to other popular R packages that implement nonparametric estimation
through kernel density methods. Although specific results are problem-dependent, estimatePDF
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generally computes estimates much more quickly than those with competitive accuracy. Included
in PDFEstimator is a collection of scoring assessments and plotting functions for displaying results
and identifying problem areas in the estimate. These advanced plotting and analysis functions are
independent of distribution type and estimation method and can be applied towards any density
estimator in R.
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reclin2: a Toolkit for Record Linkage and
Deduplication
by D. Jan van der Laan

Abstract The goal of record linkage and deduplication is to detect which records belong to the same
object in data sets where the identifiers of the objects contain errors and missing values. The main
design considerations of reclin2 are: modularity/flexibility, speed and the ability to handle large data
sets. The first points makes it easy for users to extend the package with custom process steps. This
flexibility is obtained by using simple data structures and by following as close as possible common
interfaces in R. For large problems it is possible to distribute the work over multiple worker nodes. A
benchmark comparison to other record linkage packages for R, shows that for this specific benchmark,
the fastLink package performs best. However, this package only performs one specific type of record
linkage model. The performance of reclin2 is not far behind the of fastLink while allowing for much
greater flexibility.

1 Introduction

Combining different data sets is often an important step in many data analysis projects. Sometimes the
data sets will contain high quality linkage keys, especially when the data sets are based on a common
register. For example, the samples for (nearly) all social surveys performed at Statistics Netherlands
are drawn from the population register and therefore can be linked to each other (Bakker et al., 2014).
In these cases exact linkage can be used. In exact linkage, records are linked when they agree exactly
on the linkage keys used. Exact linkage can be performed in R using base functions such as merge.
However, it is not uncommon that data sets have to be linked on keys such as ‘first name’, ‘last name’
and ‘address‘. Often these variables contain errors and/or missing values and, therefore, exact linkage
is not possible. That is where probabilistic record linkage methods come into play (Herzog et al., 2007;
Christen, 2012). These methods will calculate some sort of likelihood that two records belong to the
same object (person, company, . . . ). This will be called a match. Only record pairs with a high enough
likelihood are linked to each other. The goal is to minimise the number of false links (linking two
records that do not belong to the same object) and the number of missed links (not linking two records
that do belong to the same object).

The process of probabilistic record linkage generally consists of the following steps: (1) Generate
pairs of records from each of the two data sets that are to be linked; (2) Compare the two records
of the pair and generate a comparison vector (in the simplest case this a vector of ones and zeros
coding agreement/disagreement on each of linkage keys); (3) Estimate a model that predicts based
on the comparison vector a likelihood that the two records belong to the same object; (4) Select pairs
with a high enough likelihood; (5) Using the selected pairs, generate the final linked dataset. reclin2
offers different methods for most of these steps and by mixing the different methods a custom linkage
process can be developed. This is discussed in more detail with examples in the section on the record
linkage process.

A variant of record linkage is deduplication. Here there is only one data set and one wants to
determine which records belong to the same object. For example, a customer database can contain
the same customer multiple times with slightly different information (e.g. different email addresses).
Deduplication is usually performed by linking a dataset to itself. Matches are then duplicate records.
The principles are, therefore, the same as with regular record linkage and in the remainder of paper
we will focus on regular record linkage of two data sets.

Record linkage can be computationally and memory intensive. In principle each record from a
data set has to be compared to each record in the other data set. Therefore, when the two data sets
are of size N1 and N2 respectively the computational complexity and memory requirements are of
order O(N1N2). For example, at Statistics Netherlands one common data set is the population register
containing in the order of 107 records; other data sets can be in the order of 103–105, resulting in
1010-1012 possible comparisons.

reclin2 is a package that provides a set of tools to perform probabilistic record linkage. It is the
successor of the reclin package. The reason for the update was to be able to provide better support
for the core design considerations of the reclin/reclin2 package. Unfortunately this was not possible
while keeping backward compatibility, therefore it was decided to continue with a new package. The
core design considerations are:

1. Modularity/flexibility.
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2. Speed.

3. Ability to handle large datasets.

The last two points are important because of the aforementioned issues with the size of the problem.
The first point is important, as in practice no record linkage project is the same and, therefore, a
common need is to vary on the default procedure. The next section will discuss how we tried to
address the points above. Besides reclin2 other packages exist for probabilistic record linkage. There
is the RecordLinkage (Sariyar and Borg, 2022) package that implements various methods such as
classic probabilistic record linkage based on the Fellegi and Sunter (1969) model and methods based
on machine learning. Furthermore, there is the fastLink (Enamorado et al., 2020, 2019) package that
focuses on a fast and flexible implementation of the Fellegi-Sunter model. The main difference of
reclin2 with these packages is the focus on the previous three points: fastLink scores well on points 2
and 3, but only supports one type of model while RecordLinkage scores well on point 3 and better
than fastLink on point 1, but lacks some flexibility and speed. Points 2 and 3 are investigated in a later
section using a benchmark.

2 Design considerations

One of the main considerations when designing the package was flexibility. Therefore, the package
has been designed as a set of functions that operate on data.table objects (Dowle and Srinivasan,
2021). The main object of the package is the pairs object which is a subclass of data.table. The pairs
object contains pairs of records from the two datasets that are to be linked (called x and y). The first
two columns of the pairs object contain the indices of the corresponding records from the two data
sets. Most functions of the package accept a pairs object and return a pairs object. The package has
functions for different steps in the linkage process (as described in the next section). By combining the
different available functions a custom data linkage process can be built. Furthermore, as the pairs
object is a data.table it is also easy for the user to manipulate it. For example, new columns can be
derived and pairs can be filtered. Functions that do not manipulate the pairs object are designed to
follow as closely as possible the common interfaces of base R functions. For example, the function
problink_em that can be used to estimate the parameters of the Fellegi-Sunter model accepts similar
input as other modelling functions in R: e.g. a formula to specify the model and a data argument to
pass in the data on which to estimate the model. The corresponding predict function can be used
to calculate likelihoods for pairs being a match. It is therefore also easy to use models from other
packages, such as machine learning methods, to estimate the likelihoods. Where a package such as
RecordLinkage has functions for a number of machine learning methods, reclin2 does not need these
as the user is free to call these themselves as demonstrated in the section on the record linkage process
below.

The other two design considerations, speed and being able to handle large datasets, are obtained in
two ways. First, by using a data.table as the main object. Most methods have an inplace argument
(default value is FALSE). When set to TRUE the pairs object is modified using the [,:=] operation of a
data.table. This prevents unnecessary copies, decreasing memory consumption and increasing speed.
Second, there is the option to create a cluster and distribute the computational load over multiple cores.
Using functionality from the parallel or snow (Tierney et al., 2021) packages, multiple R processes
are started and the data is distributed over these processes. Each process then generates a subset of
the pairs which are kept within the process. Subsequent operations on the pairs, such as comparison,
are also distributed over the processes where each process applies the operation to its subset of pairs.
One of the more computationally intensive operations during linkage is comparing the records from
the two data sets to each other. This problem scales well when parallelising. Therefore parallelization
can lead to a significant speed up. Furthermore, when using a snow cluster the computation can also
be distributed over multiple machines. This can not only lead to a speed up, but also means that the
memory of multiple machines can be utilized allowing for larger problems than could be handled on a
single machine. To work with a cluster, special functions with the cluster_ prefix are offered. The
cluster functions generating the pairs expect as on of their inputs a valid cluster created for example
using makeCluster from the parallel package. When using the cluster variant, the object is no longer a
data.table and it becomes more difficult to manually manipulate the object. The package has a few
functions to help with this which will be discussed at the end of the next section.

3 The record linkage process

This section section will give an overview of the linkage process and show how the functions in reclin2
can be used for this. The discussion will be brief. An overview of the main steps of a record linkage
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process has already been given in the introduction section of the paper. A more extensive description
can be found in the package vignettes and documentation. Also, we will not go into detail into the
methods used as these are well described in, for example, Herzog et al. (2007) and Christen (2012).

Generating pairs

The first step in the linkage process is to generate pairs of records from the two data sets x and y. There
are a number of functions for this: the function pair generates all possible pairs. However, this can
lead to impractically large numbers of pairs. Therefore, often methods are applied to reduce the total
number of pairs. One commonly used method is blocking where only pairs are generated that agree
on some key. This, of course, only works when a good enough quality key is available, otherwise true
matches are lost. Another method in the package, pairs_simsum, is to generate pairs that agree on a
given number of variables (e.g. they have to agree on either the postcode or the town name) (Christen,
2012). In the example below we use blocking on ‘postcode’, e.g. pairs are only generated when they
agree exactly on ‘postcode’ ([...] in the examples indicate removed output).

> library(reclin2)
[...]
> data("linkexample1", "linkexample2")
> (pairs <- pair_blocking(linkexample1, linkexample2, "postcode"))
First data set: 6 records
Second data set: 5 records
Total number of pairs: 17 pairs
Blocking on: 'postcode'

.x .y
1: 1 1
2: 1 2
3: 1 3
4: 2 1
5: 2 2
6: 2 3
7: 3 1
[...]

A data.table is returned with the added class pairs. The columns .x and .y contain the row indices
into the two data sets. A copy (when the original data sets are not modified this is only a reference) of
the two data sets is stored in the attributes x and y. This makes some of the next function calls easier.

There also exist cluster variants of these functions that return a cluster_pairs object:

> library(parallel)
> cl <- makeCluster(2)
> cpairs <- cluster_pair_blocking(cl, linkexample1, linkexample2, "postcode")

When calling the cluster variants of the pair generating algorithms, the records from x are randomly
distributed over the nodes of the cluster and y is copied to each cluster node. On each node the corre-
sponding pair function is called. The resulting pair object is stored on each node in an environment
in the environment reclin2:::reclin_env (the default name of this environment is "default"). The
cluster_pairs object is a list with a copy of the cluster object and the name of the environment on the
cluster nodes in which the pairs are stored.

Comparing pairs

The next step in the linkage process is to compare the pair of records on a set of common variables
in both data sets. For this the package contains various comparison functions. The default function
checks for exact agreement. However, for text fields such as names and addresses, it often better
to allow for spelling errors. For this some of the functions from the stringdist (van der Loo, 2014)
package are imported. For classic record linkage using the Fellegi-Sunter model is necessary that these
are translated into a similarity score between 0 and 1 where 1 is complete agreement which is what
the functions included in reclin2 do. In the example below, we provide a comparison function for
‘firstname’, ‘lastname’ and ‘address’:

> (compare_pairs(pairs, on = c("lastname", "firstname", "address", "sex"),
+ comparators = list(lastname = jaro_winkler(0.9), firstname = jaro_winkler(0.9),
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+ address = jaro_winkler(0.9) ), inplace = TRUE))
[...]

.x .y lastname firstname address sex
1: 1 1 1.000000 0.4722222 0.9230769 NA
2: 1 2 0.000000 0.5833333 0.8641026 TRUE
3: 1 3 0.447619 0.4642857 0.9333333 TRUE
[...]

The Jaro-Winkler string similarity score is used: a value of one indicates complete agreement, a value
of zero indicated complete disagreement (no overlap in letters) and values in between indicate partial
agreement. The 0.9 in the function call is a threshold used, among others, by the EM-algorithm
discussed below as this method only handles complete agreement or disagreement: values above 0.9
are considered to agree completely. We see that the first record from x agrees exactly only on ‘lastname’
with the first record of y, while ‘sex‘ cannot be compared as it is missing in at least one of the data sets.

The compare_pairs method is also implemented for the cluster_pairs object. For more flexibility
there is also the compare_vars method. This function only compares one variable at the time, but it
allows for different names of the variables in the two data sets, generating multiple output columns
out of one comparison and for more complex comparisons where multiple variables are taken into
account. As an example of the latter, the code below compares records on first name and last name
allowing for the two parts of a name to be swapped:

> comp_name <- function(x, y) {
+ equal <- identical()
+ regular <- equal(x[[1]], y[[1]]) & equal(x[[2]], y[[2]])
+ swapped <- equal(x[[1]], y[[2]]) & equal(x[[2]], y[[1]])
+ regular | swapped
+ }
> compare_vars(pairs, "name_swap", on_x = c("firstname", "lastname"),
+ comparator = comp_name)
[...]

.x .y lastname firstname address sex name_swap
1: 1 1 1.000000 0.4722222 0.9230769 NA FALSE
2: 1 2 0.000000 0.5833333 0.8641026 TRUE FALSE
3: 1 3 0.447619 0.4642857 0.9333333 TRUE FALSE
[...]

When records are compared on multiple columns, the comparison function receives two data.table
objects as its inputs.

Scoring pairs

The goal of probabilistic record linkage is to generate a likelihood for each pair that the two records in
the pair belong to the same record. This likelihood is based on the comparison vector. The traditional
method is the model by Fellegi and Sunter (1969). The parameters of this model are usually estimated
using a EM-algorithm (Winkler, 2000). However, reclin2 considers this just a model as any other
model and uses the same interface as any other model that can be estimated in R:

> m <- problink_em(~ lastname + firstname + address + sex, data = pairs)
> (pairs <- predict(m, pairs = pairs, add = TRUE))
[...]

.x .y lastname firstname address sex weights
1: 1 1 1.000000 0.4722222 0.9230769 NA 7.7103862
2: 1 2 0.000000 0.5833333 0.8641026 TRUE -5.9463949
3: 1 3 0.447619 0.4642857 0.9333333 TRUE 0.8042090
[...]

The range of the weights depends on the number of variables and the estimated parameters in the
model. They are log-likelihood ratios (Fellegi and Sunter, 1969). The values of the weights themselves
are not directly of use, except that a higher weight indicates that a pairs if more likely a match. In
principle, a weight above zero indicates that the pair is more likely a match than not. However, in
practice, a threshold higher than zero is often used in order to reduce the likelihood of false links. The
predict function of the EM-model also has the option to estimate posterior probabilities. Thresholds
for the weights (or probabilities) are often determined by manually inspecting pairs around potential
threshold values (Herzog et al., 2007). These methods can also be used for cluster_pairs objects.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 324

As the pairs object is a regular data.table object, it is also relatively easy to estimate other models
on the data set. In principle this is a classification problem: the pairs need to be divided into two
categories: matches and non-matches. For example, when for a part of the pairs the true match status
is known, a supervised learning method can be used. In the example below the ‘id’ field is used to
derive the true match status for the dataset (in practice this would probably only be available for a
subset) and predict a linkage probability using logistic regression:

> compare_vars(pairs, "true", on_x = "id", on_y = "id", inplace = TRUE)
> mglm <- glm(true ~ lastname + firstname, data = pairs,
+ family = binomial())
> pairs[, pglm := predict(mglm, type = "response")]

In the first line of this example, a column named ‘true’ is added to the dataset (in place). This column
is a comparison of the ‘id’ from the first data set (on_x = "id") to the ‘id’ column of the second data
set (on_y = "id"). This column ‘true’ contains the true match status. In the second line, a logistic
regression model is estimated that predicts the match status using the two columns ‘firstname’ and
‘lastname’. Using this model the probability of a true match is estimated in the final line of the example
and added to the data set.

Creating the linked data set

In order to link the pairs a suitable threshold needs to be determined for the weights. Records with
a weight above this threshold are classified as a match. Also, we generally know that each person
only has one record in each data set. So, generally we will want to enforce one-to-one linkage. This
will also generally improve the quality of the linked data set. reclin2 has two methods for enforcing
one-to-one linkage. The method select_n_to_m tries to select the pairs in such a way that the total
weight of the selected pairs is maximised while linking each record from each data set to at most one
record from the other data set (using its arguments it is also possible to enforce n-to-one or one-to-n
linkage). A faster method that can lead to less links is select_greedy that will try to select the pair
with the highest weight for each record. Below the first method is applied; records with a weight
below 0 are not considered (threshold = 0):

> (pairs <- select_n_to_m(pairs, "weights", variable = "select", threshold = 0))
[...]

.x .y lastname firstname address sex weights select
1: 1 1 1.000000 0.4722222 0.9230769 NA 7.7103862 FALSE
2: 1 2 0.000000 0.5833333 0.8641026 TRUE -5.9463949 FALSE
3: 1 3 0.447619 0.4642857 0.9333333 TRUE 0.8042090 FALSE
4: 2 1 1.000000 0.8888889 0.9230769 NA 8.6064218 TRUE
[...]

The method creates a logical column (name given by the ‘variable’ argument) in the pairs object with
the selected pairs. The first pair has a high enough weight to be selected, but there is another candidate
for the first record of y that is more likely, namely record 2 from x (see fourth row of the output above).

Up until now we are still working with a set of pairs. The goal is to get an actually linked dataset
containing matched records from both data sets. This can be done using the link method. This
function takes the pairs and the name of a logical column indicating which pairs are selected and it
will generate the final linked data set. The output is similar to that of merge. The method also has
arguments all_x and all_y that function the same as the corresponding all.x and all.y arguments
of merge.

> (linked_data_set <- link(pairs, selection = "select"))
Total number of pairs: 4 pairs

.y .x id.x lastname.x firstname.x address.x sex.x postcode.x id.y
1: 1 2 2 Smith George 12 Mainstr M 1234 AB 2
2: 2 3 3 Johnson Anna 61 Mainstr F 1234 AB 3
3: 3 4 4 Johnson Charles 61 Mainstr M 1234 AB 4
4: 4 6 6 Schwartz Ben 1 Eaststr M 6789 XY 6

lastname.y firstname.y address.y sex.y postcode.y
1: Smith Gearge 12 Mainstreet <NA> 1234 AB
2: Jonson A. 61 Mainstreet F 1234 AB
3: Johnson Charles 61 Mainstr F 1234 AB
4: Schwartz Ben 1 Main M 6789 XY
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For the cluster_pairs the steps above need to change a little bit as select_n_to_m needs to
consider all pairs and, therefore, does not work with objects of type cluster_pair where the pairs are
distributed over the cluster nodes. Therefore, we first need to copy the relevant pairs to the main R
process. We can use a selection variable for this only returning the pairs with a weight above zero:

> cpairs <- predict(m, pairs = cpairs, add = TRUE)
> select_threshold(cpairs, "weights", variable = "initial", threshold = 0)
> local_cpairs <- cluster_collect(cpairs, "initial")
> local_cpairs <- select_n_to_m(local_cpairs, "weights", variable = "select")

The first line calculates weights for the cpairs object. In the second line a logical column ‘initial’ is
created which is TRUE for records with a weight higher than 0. Using cluster_collect, we collect the
pairs from the worker processes into the main R process. Using the second argument we only collect
pairs for which the column ‘initial’ is TRUE. The local_cpairs object is a regular pairs object (and,
therefore, also a data.table) on which we can use the regular select_n_to_m method.

Helper functions for cluster_pair objects

It is easy to do manual manipulations on the regular pairs object. For the cluster_pairs the pairs
are distributed over the worker nodes. There are a couple of functions to help with this. The already
mentioned cluster_collect function copies the pairs locally. The cluster_call function accepts the
cluster_pairs and a function. It will call the function on each node and pass it the pairs, x and y.
The results of the functions are copied back locally. For example to get the number of pairs on each
node:

> unlist(cluster_call(cpairs, \(p, ...) nrow(p)))
[1] 9 8

The cluster_modify_pairs function can be used to modify the pairs. The arguments are the
cluster_pairs and a function with the same arguments as for cluster_call. The result of that
function overwrites the pairs object on the worker node (except when NULL). In the example below,
this is used to remove pairs with a weight of zero or lower.

> (cluster_modify_pairs(cpairs, \(p, ...) p[weights > 0, ]))
Cluster 'default' with size: 2
First data set: 6 records
Second data set: 5 records
Total number of pairs: 15 pairs
Blocking on: 'postcode'

Showing a random selection of pairs:
.x .y lastname firstname address sex weights initial

1: 3 1 0.447619 0.4722222 0.8641026 NA 0.6017106 TRUE
2: 4 3 1.000000 1.0000000 1.0000000 FALSE 15.4915816 TRUE
[...]

Note, that the original cpairs object has been modified. Using the new_name argument it is also
possible to generate a new set of pairs.

4 Benchmark

In this section the performance of the packages for data linkage will be investigated using example data
from the Eurostat financed ESSnet (European Statistical System Centres and Networks of Excellence)
project on Data Integration (Eurostat, 2011). The two data sets ‘PDR’ and ‘CIS’ were linked to each
other. The datasets have 24,750 and 24,613 records respectively resulting in 612,562,500 possible pairs
when linking the complete data sets. To study the effect of the size of the problem on the performance,
samples were drawn from the two data sets based on the postcode where care was taken to sample
the same postcodes in the two datasets. The sample fraction was varied from 0.1 to 1.0 in steps of 0.1.

The methods are compared on total computation time and memory use. These were measured
using the ‘time‘ program on a Linux server. The virtual server has 16 3.2GHz Intel Xeon Gold 6146
cores and 512GB of memory and runs on Ubuntu 20.04. For the time the reported ‘elapsed (wall clock)
time’ is used and for the memory usage the ‘maximum resident set size’. For reclin2 also the effect of
different numbers of worker nodes was investigated using the cluster functions. It was attempted to
keep the methods used a close as possible to each other. No blocking was applied. The EM-algorithm
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Figure 1: Comparison of computation times (in minutes) for the different packages (lines) as function
of the number of potential pairs (the product of the sizes of the two data sets). For reclin2 also different
numbers of worker nodes were investigated; these are denoted by ‘cluster’ and the number of worker
nodes.
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Figure 2: Comparison of memory usage (in gigabytes) for the different packages (lines) as function of
the number of potential pairs (the product of the sizes of the two data sets). For reclin2 no reliable
estimates could be obtained for the runs with multiple workers. Therefore results are only presented
for the single threaded version of reclin2. In principle the memory usage should not depend on the
number of workers.

The R Journal Vol. 14/2, June 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 327

was used. For comparing the names the Jaro-Winkler similarity score was used with a threshold of 0.85.
The quality of the resulting record linkage was recorded, but as the methods were not optimally tuned,
it is difficult to compare these results and these results are, therefore, not reported. The complete code
for the benchmark and all results can be found on Github (van der Laan, 2022).

Figures 1 and 2 show the computation times and the memory usage respectively as a function of
the size of the problem. For the RecordLinkage package larger problem sizes than reported here were
not investigated as the system started running out of memory. RecordLinkage has the option to also
work from disk for large problems. The performance of this was not investigated as this would only
lead to longer computation times which were already longer than those of the other packages. For
this specific problem the fastLink package performs better than the other packages. Especially the
memory usage is substantially lower because of their use of specialised data structures (Enamorado
et al., 2019). The difference in computation time between fastLink and reclin2 using multiple cores
is limited (approx. factor 1.7 for the largest problem). However, fastLink is tailored for use with the
EM-algorithm while the other packages are more general.

The speed-up of the reclin2 benchmark is not proportional to the number of cores used. This is
caused mainly by the fact that some of the steps take place in the main process: reading and sampling
the data, starting the worker nodes, and importantly, finalizing the record linkage using one-to-one
matching. We are unfortunately limited by Amdal’s law (Amdahl, 1967) although the generation,
comparison and (in case of the EM-algorithm) tabulation of pair and calculating the predictions will
take an increasingly larger part of the running time as the size of problem increases.

5 Conclusion

By using simple data structures, namely data.table objects, and providing a set of functions that
operate on these structures, we have built a flexible and well performing toolkit for record linkage.
For users, it is easy to extend on the methods present in the package. Either by manipulating the data
structures directly, by writing custom functions or by using existing functions. An example of the
latter, is the relative ease with which existing machine learning methods can be used in the record
linkage process.

The package manages to keep memory use limited and on machines with 256GB of memory
it should handle problems up to approximately 109 pairs. By combining the memory of multiple
machines this can of course be extended. When one is only interested in using the Fellegi-Sunter
model of record linkage with an EM-algorithm to estimate the parameters of that model, the fastLink
package is probably the best choice. It performs better and the model and EM-algorithm used is more
flexible than that currently present in reclin2. The main advantage of reclin2 over fastLink is the
flexibility reclin2 provides. Especially for non standard problems this is important.

The package is still being developed. One of the things that is being worked on is the option to
take into account the uniqueness of a certain attribute. For example, agreement on a rare family name
is a stronger indication of a match than agreement on a common family name. However, we hope that
making it easy for users to extend and modify the record linkage processes also lowers the threshold
for contributing to the package.
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News from the Bioconductor Project
by Bioconductor Core Team

Bioconductor provides tools for the analysis and comprehension of high-throughput ge-
nomic data. The project has entered its twentieth year, with funding for core development
and infrastructure maintenance secured through 2025 (NIH NHGRI 2U24HG004059). Ad-
ditional support is provided by NIH NCI, Chan-Zuckerberg Initiative, National Science
Foundation, Microsoft, and Amazon. In this news report, we give some details about the
software and data resource collection, infrastructure for building, checking, and distributing
resources, core team activities, and some new initiatives.

Software ecosystem

Bioconductor 3.15 was released on 27 April, 2022. It is compatible with R 4.2.0 and con-
sists of 2140 software packages, 410 experiment data packages, 990 up-to-date annotation
packages, 29 workflows, and 3 books. Books are built regularly from source and therefore
fully reproducible; an example is the community-developed Orchestrating Single-Cell Anal-
ysis with Bioconductor. The Bioconductor 3.15 release announcement includes descriptions
of 78 new software packages, and updates to NEWS files for many additional packages.

Infrastructure updates

• Thanks to a generous allocation (BIR190004, "Engineering and disseminating a soft-
ware and analysis ecosystem for genomic data science") provided through the National
Science Foundation ACCESS (formerly XSEDE) program, academic cloud resources
including GPUs and highly accessible object storage systems are being integrated into
project operations.

• Transition of primary funding administration from Roswell Park Comprehensive
Cancer Center to Dana-Farber Cancer Institute has led to a number of changes to
platforms in use for the checking and production of binary package images.

– Linux builds occur at Dana-Farber Cancer Institute.

– Windows builds occur in machinery provided by Microsoft Genomics in the
Azure cloud environment.

– MacOS builds occur at Dana-Farber Cancer Institute. Work on the support of
ARM Mac systems occurs at MacStadium.

– Details on the configurations of builders (e.g., the Linux builder for the devel
branch) are available at the Build reports link at bioconductor.org.

• An interactive app for surveying adverse conditions arising for package install, build,
and check processes has been introduced for release and devel branches.

• Cloud-based workshop delivery systems have been an integral part of Bioconductor
conferences and teaching activities.

– Workshops from Bioconductor 2022 are continuously available for inspection
and hands-on exercises at http://app.orchestra.cancerdatasci.org, thanks to
cloud computing support provided by Dr. Sean Davis of University of Colorado.

– http://workshop.bioconductor.org is a Galaxy-based workshop collection de-
ployed on Jetstream2 in NSF ACCESS.

Core team updates

• After six years of highly effective work in the core, Nitesh Turaga has left for a position
in industry. We will miss him!

• New core developers Jen Wokaty and Alexandru Mahmoud have joined. Jen is a
member of the Waldron Lab at CUNY. Alex works at Channing Division of Network
Medicine.
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• Jen and Alex are joined by long-term core members Lori Kern of Roswell Park Com-
prehensive Cancer Center, Marcel Ramos of CUNY and Roswell, and Hervé Pages of
Fred Hutchinson Cancer Research Center.

New initiatives

• Thanks to efforts of members of the Technical and Community Advisory Boards and
community members, a collection of working groups has been defined to achieve new
project aims. An overview of currently active working groups is available, along with
guidelines for proposing new working groups.

• The objectives of the bioconductor-teaching working group are stated at the associated
repository:

The Bioconductor teaching committee is a collaborative effort to consoli-
date Bioconductor-focused training material and establish a community of
Bioconductor trainers. We define a curriculum and implement online lessons
for beginner and more advanced R users who want to learn to analyse their
data with Bioconductor packages.

• A mentoring program for new developers has taken flight.

• Thanks to an Essential Open Source Software grant from the Chan-Zuckerberg Initia-
tive, we have partnered with the Dana-Farber Cancer Institute YES for CURE (Young
Empowered Scientists for Continued Research Engagement) program to offer instruc-
tion in cancer data science to interested undergraduates. A pkgdown site includes
current curricular materials.

• With the NSF-based academic cloud resources previously mentioned, we have begun
gestation of G-DADS, a program for Genomic Data and Analysis Development Ser-
vices, with the objectives of providing publicly accessible storage and compute on
exemplars of the latest high-volume experimental modalities, and of promoting GPUs
to first-class citizenship in our build and check systems.

Using Bioconductor

Start using Bioconductor by installing the most recent version of R and evaluating the
commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker images provides a very effective on-ramp for power users to rapidly obtain access to
standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.

• A list of available software, linking to pages describing each package.

• A question-and-answer style user support site and developer-oriented mailing list.

• A community slack (sign up) for extended technical discussion.

• The F1000Research Bioconductor channel for peer-reviewed Bioconductor work flows.

• The Bioconductor YouTube channel includes recordings of keynote and talks from
recent conferences including Bioc2022, EuroBioC2022, and BiocAsia2021, in addition
to video recordings of training courses.
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• Our package submission repository for open technical review of new packages.

Recent Bioconductor conferences include BioC 2022 (July 27-29), and European Bio-
conductor Meeting (September 14-16). Each had invited and contributed talks, as well
as workshops and other sessions to enable community participation. Slides, videos, and
workshop material for each conference are, or will soon be, available on each conference
web site as well as from the Courses and Conferences section of the Bioconductor web site.

The Bioconductor project continues to mature as a community. The Technical and
Community Advisory Boards provide guidance to ensure that the project addresses leading-
edge biological problems with advanced technical approaches, and adopts practices (such
as a project-wide Code of Conduct) that encourages all to participate. We look forward to
welcoming you!

Bioconductor Core Team
Channing Division of Network Medicine
Mass General Brigham
Harvard Medical School, Boston, MA

Department of Data Science
Dana-Farber Cancer Institute
Harvard Medical School, Boston, MA

Biostatistics and Bioinformatics
Roswell Park Comprehensive Cancer Center, Buffalo, NY

Fred Hutchinson Cancer Research Center, Seatlle, WA

CUNY Graduate School of Public Health, New York, NY

maintainer@bioconductor.org
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Changes on CRAN
2022-04-01 to 2022-06-30

by Kurt Hornik, Uwe Ligges and Achim Zeileis

In the past 3 months, 485 new packages were added to the CRAN package repository.
76 packages were unarchived, 1179 were archived and 3 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:
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On 2022-03-31, the number of active packages was around 18260.

Changes in the CRAN Repository Policy

The Policy now says the following:

• The ownership of copyright and intellectual property rights of all components of
the package must be clear and unambiguous [. . . ] (’All components’ includes any
downloaded at installation or during use.)

• The package’s ‘DESCRIPTION’ file must show both the name and email address of a
single designated maintainer (a person, not a mailing list). That contact address must
be kept up to date, and be usable for information mailed by the CRAN team without
any form of filtering, confirmation . . . . Forwarding mail from the maintainer address
increasingly results in confusing non-delivery notifications to the original sender, so is
best avoided.

• Security provisions must not be circumvented, for example by not verifying SSL/TLS
certificates.

External Libraries for CRAN packages now says

• For macOS: JAGS may or may not be available. There is an ‘official’ release for both
architectures at https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/.

• For Windows: The build system for Windows changed with 4.2.0 and only that is
considered here (and only 64-bit Windows is now supported).
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CRAN package submissions

In the second third of 2022 (May 2022 to August 2022), CRAN received 9860 package
submissions. For these, 17476 actions took place of which 11354 (65%) were auto processed
actions and 6122 (35%) manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting
auto 2559 2660 1635 0 0 2830 933 737
manual 2178 113 568 255 55 2226 595 132

These include the final decisions for the submissions which were

action archive publish
auto 2462 (25.5%) 2311 (23.9%)
manual 2156 (22.3%) 2735 (28.3%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

A new team member, Benjamin Altmann, joined the CRAN submission team. Wel-
come, Beni. Unfortunately, Gregor Seyer left the CRAN submission team after processing
5482 incoming submissions. Thanks a lot!

CRAN mirror security

Currently, there are 102 official CRAN mirrors, 80 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

CRAN Task View Initiative

There are three new task views:

CausalInference Maintained by Imke Mayer, Pan Zhao, Noah Greifer, Nick Huntington-
Klein, and Julie Josse.

Epidemiology Maintained by Thibaut Jombart, Matthieu Rolland, and Hugo Gruson.

SportsAnalytics Maintained by Benjamin S. Baumer, Quang Nguyen, and Gregory J.
Matthews.

Currently there are 39 task views (see https://cran.r-project.org/web/views/), with
median and mean numbers of CRAN packages covered 101 and 112, respectively. Overall,
these task views cover 3668 CRAN packages, which is about 20% of all active CRAN
packages.

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Uwe Ligges
TU Dortmund, Germany
Uwe.Ligges@R-project.org

Achim Zeileis
Universität Innsbruck, Austria
Achim.Zeileis@R-project.org
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News from the Forwards Taskforce
by Heather Turner

Forwards is an R Foundation taskforce working to widen the participation of under-
represented groups in the R project and in related activities, such as the useR! conference.
This report rounds up activities of the taskforce during the first half of 2022.

Accessibility

As another step towards improving the accessibility of the R Journal, Di Cook and Heather
Turner are mentoring a Google Summer of Code student, Abhishek Ulayil, on the project
Converting past R Journal articles to HTML. This project has benefited from regular input
from Mitchell O’Hara Wild and Christophe Dervieux, authors of the rjtools package that
provides the new HTML template for R Journal articles (O’Hara-Wild et al. 2022).

s gwynn sturdevant and Jonathan Godfrey were part of an invited panel at JSM 2022 on
Delivering Data Differently that explored alternatives to data visualisation.

Community engagement

The community team have taken a number of actions to support the R community in Africa.
A WhatsApp group has been set up for leaders of African R User Groups, to facilitate
collaboration. Kevin O’Brien has been a Zoom host for several R User Groups, including the
Botswana, Eswatini and Bulawayo groups. Zane Dax worked with the Accra R User Group
on graphical design for advertising their meetups. Kevin O’Brien and Sam Toet helped to
organize the first Francophone satRday, which featured a line up of African speakers.

Another focus has been the relaunch of RainbowR led by Ella Kaye and Zane Dax.
Following a well-attended online meetup, the website was rebuilt, the Slack group opened
to new members with a new code of conduct, and the Twitter account has been in active use.
The group plan to have regular online meetups and to raise awareness of issues affecting
the LGBTQ+ community through sharing relevant data sets for exploration and teaching.

Beyond this, taskforce members continue to engage with a range of communities. Zane
Dax contributed to an update of the Minorities in R (MiR) website. Yanina Bellini Saibene
and Heather Turner joined the Building inclusive communities panel at the launch of the
AsiaR community, to share their experience from working with different communities.

Conferences

Yanina Bellini Saibene assisted the useR! 2022 team on behalf of the R Foundation, to share
expertise in the organization of virtual conferences and help incorporate good practices
that encourage diverse participation. (The conference was originally planned to be hybrid,
but moved to be completely online.) Such practices included adding representatives from
different regions to the organizing team, securing funding to caption talks, accepting elevator
pitches and tutorials in non-English languages, and adjusting the registration fees to the
income group of each participant’s country of residence. Many of these practices were based
on the work of the organizing team of useR! 2021 - that included Yanina and other Forwards
members - who summarized their recommendations in the recent publication: “Ten simple
rules to host an inclusive conference” (Joo et al. 2022).

R Contribution

Saranjeet Kaur Bhogal and Heather Turner organized a series of Collaboration Campfires
with a goal to demystify the R development process and highlight ways that R programmers
can contribute. The first two sessions explored R’s bug-tracking process and how R users can
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contribute to reviewing bugs. The second two sessions explored R’s process for localization
and how to contribute to a translation team. The sessions attracted a diverse group of
participants who engaged with the interactive activities, providing a foundation for further
engagement.

The R Contribution working Group (RCWG) organized a Bug BBQ as a satellite to useR!
2022. Members of the RCWG prepared a number of open bugs in advance, for participants
to look at in one or more of three organized online sessions. The event was supported
by several R Core members and attended by both novice and experienced contributors.
For experienced contributors the event provided a spur to work on open bugs, leading to
progress on several issues. Meanwhile novice contributors contributed to the analysis of
open bugs, under the guidance of experienced contributors. As the first event of its kind,
the event showed promise as a way to engage the wider R community in contribution.

Saranjeet Kaur Bhogal has been working on a new chapter for the R Development Guide
on contributing translations, as part of the R project’s Google Summer of Docs project,
with substantial contribution from Michael Chirico. Along with Ben Ubah, Michael is
co-mentoring a Google Summer of Code student, Meet Bhatnagar, to create a dashboard to
monitor the status of translations in R.

Changes in Membership

New members

We welcome the following member to the taskforce:

• Community team: Ella Kaye (co-leader)

Previous members

The following members have stepped down:

• Community team: Richard Ngamita (co-leader)
• Accessibility team: Becca Wilson
• Surveys team: Anna Vasylytsya (co-leader)

We thank them for their contribution to the taskforce.
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Changes in R
by Tomas Kalibera, Sebastian Meyer, Kurt Hornik

Abstract We give a selection of the most important changes in R 4.2.0 and of subsequent bug fixes for
the Windows port of R. We also provide statistics on source code commits.

1 R 4.2.0 selected changes

R 4.2.0 (codename “Vigorous Calisthenics”) was released on 2022-04-22. The December 2021 (13/2)
issue of the R Journal provided a selection of the most important changes in that release that were
already settled at that time, including:

• R on Windows uses UTF-8 as the native encoding, uses the new Universal C Runtime (UCRT)
and a new toolchain (Rtools42).

• R on Windows changed the default library location and the default installation location for
user-only installation to match current Windows conventions.

• Support for isolated groups, compositing operators, affine transformations, and stroking and
filling paths has been added to the R graphics engine.

• R now provides an R-level interface for hash tables.

A selection of the remaining important R 4.2.0 changes is provided here.

• The HTML help system has several new features: LATEX-like math can be typeset using ei-
ther KaTeX or MathJax, usage and example code is highlighted using Prism, and for dy-
namic help the output of examples and demos can be shown within the browser if the knitr
package is installed. (These features can be disabled by setting the environment variable
_R_HELP_ENABLE_ENHANCED_HTML_ to a false value.)
The HTML help system now uses HTML5, the current HTML standard, which in particular
helps to facilitate some of the enhancements described above. Considerable effort was put into
ensuring valid HTML5 output. The old validation toolchain could not handle HTML5, so a new
one was created based on HTML Tidy and integrated into the tools package. R CMD check can
now optionally (but included in ‘--as-cran’) validate the package HTML help files.
See https://blog.r-project.org/2022/04/08/enhancements-to-html-documentation/ for more
information.

• Calling if() or while() with a condition of length greater than one now gives an error
rather than a warning. Consequently, environment variable _R_CHECK_LENGTH_1_CONDITION_
no longer has any effect. Similarly, calling && or || with either argument of length greater
than one now gives a warning. In R 4.3.0, it will give an error, and environment variable
_R_CHECK_LENGTH_1_LOGIC2_ will no longer have any effect.

• The grid package now allows the user to specify a vector of pattern fills. The fill argument
to gpar() accepts a list of gradients and/or patterns and the functions linearGradient(),
radialGradient(), and pattern() have a new group argument. Finally, points grobs (data
symbols) can now also have a pattern fill.
See https://blog.r-project.org/2022/06/09/vectorised-patterns-in-r-graphics/ for more
information.

• In lhs |> rhs expressions using the native pipe operator it is now possible to use a named
argument with the placeholder _ in the rhs call to specify where the lhs is to be inserted. The
placeholder can only appear once on the rhs.

• On Windows, download.file(method = "auto") and url(method = "default") now follow
Unix in using "libcurl" for all except ‘file://’ URIs. This impacts, for example, updating of
R packages (HTTPS downloads). Most users should not notice, but an additional proxy setup
may be required (see help("download.file")). Also, "libcurl" is by the decision of the library
authors stricter in checking certificate revocation than the previous "wininet" method. This
brings more security, but also may cause trouble with some corporate HTTPS MITM proxies,
which filter HTTPS traffic. R-patched (to become R 4.2.2) has a work-around via environment
variable R_LIBCURL_SSL_REVOKE_BEST_EFFORT.
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2 R 4.2.1 and R-patched changes on Windows

R 4.2.0 on Windows switched to UTF-8 as the native encoding and to UCRT as the Windows runtime.
R is an early adopter of UCRT in the open-source community of projects compiled using free and
open-source compilers, and particularly an early adopter of UTF-8 as the native encoding on Windows,
hence this came with considerable effort and risk of bugs. Hence, testing using CRAN package checks
has been in place for over a year before the release (and 9 months of that time in parallel to the usual
CRAN checks when R-devel still used MSVCRT as the C runtime).

Still, some issues not covered by such tests, mostly in interactive use and Rgui, have been reported
by users after the 4.2 release and have been fixed in R-patched. R users on Windows should update to
the latest available patch version.

Selected fixes in R 4.2.1:

• Accent keys now work in GraphApp Unicode windows, which are used by Rgui whenever
running in a multi-byte locale (so also in UTF-8), hence fixing a regression for users of systems
where R 4.1 used a single-byte locale. This was one of the bugs already present in GraphApp,
but never reported before, e.g., by users of other multi-byte locales.

• Text injection from external applications via SendInput now works in GraphApp Unicode
windows, fixing a regression in R 4.2.0 for Rgui users of systems where R 4.1 used a single-byte
locale but R 4.2.0 uses UTF-8. Text injection is used via applications such as Dasher, which helps
people with hand impairment to enter text, and by general GUIs that prefer to use a standalone
Rgui window over embedding R. This was another old bug in GraphApp impacting multi-byte
locales. Some other applications injecting text via sending Windows window messages such as
WM_CHAR directly to Rgui should switch to injection via SendInput, which is the proper injection
method on Windows and the switch should not be difficult. Allowing injection via WM_CHAR
even in a multi-byte locale would require too big changes in GraphApp.

• A regression in writing to the clipboard connection has been fixed. That code had to be rewritten
for the UTF-8 transition, but the new version had a bug which prevented writing text in
consecutive operations.

• getlocale has been fixed to also work with strict checking of invalid arguments to the C runtime.
These are normally disabled in applications built using Rtools, but it impacted embedded use in
RStudio with the rJava package, causing crashes by default. This issue was related to switching
to UCRT, which is stricter in checking the validity of function arguments (it was not directly
related to UTF-8 nor the locale).

• The script editor in Rgui has been fixed to work with UTF-8: some operations (such as running
a line of code from the editor in the R console) before did not work with non-ASCII characters,
with a regression in R 4.2.0 (in earlier versions one could work at least with non-ASCII characters
representable in the current locale). These issues are related to at least surprising behavior of the
underlying Windows component used for the editor with UTF-8 as the native (ANSI) encoding:
one would think that no change would be needed for the transition from a non-UTF-8 native
encoding to UTF-8 here. Users of the script editor have to convert their scripts with non-ASCII
characters to UTF-8 before reading them in R 4.2.1 or newer (on recent Windows where UTF-8
is used), and they should upgrade to R 4.2.2 when it is available.

Selected fixes in R-patched, to become R 4.2.2:

• Rterm support for Alt+xxx sequences has been fixed to produce the corresponding character
(only) once. This fixes pasting text that includes tilde on Italian keyboard; without the fix, tilde
may appear twice, depending on the Windows console program used. This was a regression
introduced by an earlier rewrite of Rterm for supporting multi-width characters. That change
was part of the transition to UTF-8, but already included in R 4.1.

• Find and replace operations work again in the script editor in Rgui.

The bug reports have revealed that Rgui is frequently used, including by users with visual or hand
impairments who find Rgui working well with assistive technologies.

The bugs were fixed promptly in R-patched. Impacted users may install a snapshot of R-patched
in case waiting for the next release would be too limiting.
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3 R 4.2.0 code statistics

From the source code Subversion repository, the overall change between May 18, 2021 and April 22,
2022 (so between R 4.1.0 and R 4.2.0) was: 29,000 added lines, 20,000 deleted lines and 900 changed
files. This is rounded to thousands/hundreds and excludes changes to common generated files, bulk
re-organizations, etc. (translations, parsers, Autoconf, LAPACK, R Journal bibliography, test outputs,
Unicode tables, incorporated M4 macros, BLAS, KaTeX files). This is about 10% fewer additions and
changed files and about 43% more deletions than between R 4.0.0 and R 4.1.0, see News and Notes
from the June 2021 issue of the R Journal.

Figure 1 shows commits by month and weekday, respectively, counting line-based changes in
individual commits, excluding the files as above. The statistics are computed the same way as in the
June 2021 issue, hence allowing direct comparisons. However, monthly statistics are impacted by the
release date which varies across versions, so the numbers for April and May are somewhat biased.
The statistics cover code directly committed to the trunk, plus commits from the merged branches
R-groups, R-vecpat. R-ucrt and R-structure. Statistics are based on the dates of the original commits in
the branches, which includes commits from April 2021 (R-groups).
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Figure 1: Commit statistics by month (left) and weekday (right) during R 4.2.0 development. *Counts
for April 2021 represent early work on the R-groups branch. May 2021 and April 2022 are partial
months impacted by the release dates.
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R Foundation News
by Torsten Hothorn

1 Donations and members

Membership fees and donations received between 2022-03-31 and 2022-09-05.

Donations

New Elements GmbH (Germany) William Chiu (United States) Giles Dickenson-Jones
(Australia) Jonathan Keane (United States) Daniel Wollschläger (Germany)

Supporting institutions

Alfred Mueller Analytic Services, München (Germany) Chicago R User Group, Chicago
(United States) Ef-prime, Inc., Chuo-ku (Japan) KIN Services, Tijuana (Mexico) University of
Iowa, Iowa City (United States)

Supporting members

Vedo Alagic (Austria) Mohammed Almozini (Saudi Arabia) Kristoffer Winther Balling (Den-
mark) Joaquín Baquer-Miravete (Spain) Ashanka Beligaswatte (Australia) Chris Billingham
(United Kingdom) Wesley Brooks (United States) Robert Carnell (United States) Rafael
Costa (Brazil) Charles Cowens (United States) Alistair Cullum (United States) Ajit de Silva
(United States) Dubravko Dolic (Germany) Mitch Eppley (United States) Guenter Faes (Ger-
many) Leonardo Ferreira (Germany) Gottfried Fischer (Austria) Ainota Galadriota (United
Kingdom) Jutta Gampe (Germany) James Harris (United States) Takehiko Hayashi (Japan)
Alessamdro Ielpi (Canada) ken ikeda (Japan) Anup Jaltade (United States) Knut Helge Jensen
(Norway) Brian Johnson (United States) Christian Kampichler (Netherlands) Sebastian
Koehler (Germany) Sebastian Krantz (Germany) Luca La Rocca (Italy) Teemu Daniel Laajala
(Finland) Jindra Lacko (Czechia) Seungdoe Lee (Korea, Republic of) Zhiguang Li (United
States) Eric Lim (United Kingdom) Sharon Machlis (United States) Michal Majka (Austria)
harvey minnigh (Puerto Rico) Maciej Nasinski (Poland) Aliaksandr Nekrashevich (Canada)
Mark Niemann-Ross (United States) Boris Ntwoku (United States) Jens Oehlschlägel (Ger-
many) Jaesung James Park (Korea, Republic of) Bill Pikounis (United States) Kelly Pisane
(Netherlands) Andrzej Pokładek (Poland) Davor Pranjic (United States) Srivatsan Raghu-
nathan (India) Sindri Shtepani (Canada) Murray Sondergard (Canada) Marco Steenbergen
(Switzerland) Berthold Stegemann (Germany) Michael Tiefelsdorf (United States) Nicholas
Turner (United States) Philipp Upravitelev (Russian Federation) Mark van der Loo (Nether-
lands) Frans van Dunné (Costa Rica) Jason Wyse (Ireland) Jaejoong Yun (Korea, Republic of)
杨(Yang)胡(Hu) (New Zealand)

Torsten Hothorn
Universität Zürich, Switzerland Torsten.Hothorn@R-project.org
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The Conference Report of Why R? Turkey
2022: The First R Conference with Call For
Papers in Turkey
by Mustafa Cavus, Olgun Aydin, Ozan Evkaya, Derya Turfan, Filiz Karadag, Ozancan Ozdemir,
Ugur Dar, and Deniz Bezer

Abstract Why R? Turkey 2022 was a non-profit conference that aimed to bring Turkish R users together
and encourage them to attend the R conferences. The targeted audience of the conference consisted of,
data scientists, data analysts, and all R users from academia and industry. The three-day conference,
which consisted of several events such as workshops, regular talks, lightning talks, short tutorials, and
panels, was free of charge and fully online. This article describes the challenges and benefits, as well
as providing an overview of the conference’s content and participants’ profile.

1 Motivation

The Why R? Turkey 2022 conference was a three-day online conference that was organized as a part of
the Why R? Global conference series have been organized annually by the Why R? Foundation since
2017. It is known as one of the largest annual R conferences in Europe (Burdukiewicz et al. 2018, 2019).
In addition to the main conference, pre-meetings are held in different cities from all over the world.
One of these pre-meetings was organized with the invited speakers in Turkey in 2020. This online
event was the first R conference in Turkey. In addition, as a result of the positive feedback received
from the participants, the theme of the Why R? Turkey 2021 conference was determined immediately.
Thereafter, the second R conference was organized in 2021 with invited speakers (Cavus et al. 2021).
The main objective was to bring Turkish R users together from all over the world, the second conference
attracted a lot of attention with over 2000 registered participants.

The main limitation of the conference in 2021 was that it consisted of invited speakers only. Upon
the feedback from the participants, the conference structure was changed into having regular talks,
lightning talks. In addition, the conference also had a practical side with workshops for both beginners
and more experienced R users. In this way, the conference turned into a more participant-friendly
format. The following subsections are summarizing the planning phase and the content of the events.

2 Planning

After comparing several alternatives, it was decided to continue with Zoom (zoom.us) with one main
account and six admins as the main platform for all events.

A mailing tool called MailChimp, which also has on admin account, was used to establish seamless
communication with the scientific committee and all other participants in the organization.

Participation certificates for attendees, speakers, workshop tutors and panelists were prepared

Figure 1: The logo of Why R? Turkey 2022 Conference
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and delivered by using the Sertifier platform (sertifier.com/tr/) at the end of the conference.

Numerous academic publishing houses were investigated for publishing proceeding book with E-
ISBN and it was decided to work with Nobel Publication House. The electronic version of the proceeding
book was provided by the international publishing house.

Workshops

Five workshops (∼ 1.5 hour-long sessions), from beginner level to advanced level were organized.
Three of the workshops were held in Turkish and two in English. Thus, it was ensured that participants
from all over the world would benefit from them. Detailed contents provided by the tutors for the
workshops. Each each workshop was recorded with the consent of the tutor and after the conference
videos were published on Youtube. Details and Youtube links for each workshop can be found below.

1. Introduction to R Programming by Ahmet Uraz Akgül (Turkish): R programming language
is increasing its popularity day by day, including our country, and it has found use in almost
every discipline. Being a free software, it has started to reach more people with its access to
open source codes and the opportunities it offers. In such an environment, knowing the R
programming language provides serious advantages. In the competitive software world, R can
survive as a language worth learning; it may even be the language we use most often.

2. Data Visualization with R by İnan Utku Türkmen and Cansu Hürses (Turkish): As part of the
data visualization workshop with R, we will cover basic visualization issues with the ggplot2
(Wickham 2016) package, which is one of the most popular data visualization tools in the field
of data science. Using this package we will practice how to create basic static chart types. We
will see with examples how a chart can be customized by adding a title, specifying axis names,
coloring according to certain categories, marking a specific region on the chart, and taking a
section. During the workshop, we will create the interactive graphic in the link below, which is
one of the famous visualizations of the Gapminder foundation, using R packages step by step:
https://www.gapminder.org/tag/map/.

3. Processing tabular data with tidyverse by İmran Kocabıyık (Turkish): Most of the data we use
in practice are kept in tabular format. The purpose of use of these data, which are stored in
databases and various types of files, may not always be analysis. For this reason, even if the
data is kept in tabular form, it requires serious processing to model or analyze it. The dplyr
(Wickham et al. 2022) and tidyr (Wickham and Girlich 2022) packages offer very simple and
effective solutions for these processes.

4. Introduction to Bioconductor by Nitesh Turaga (English): This talk is an overview of the
Bioconductor project which develops, supports, and disseminates free open source software,
in the R programming language, that facilitates rigorous and reproducible analysis of data
from current and emerging biological assays. The Bioconductor project has a large footprint
around the world both in industry and academic research. We’ll discuss the important aspects
of project such as methods of contribution, programming paradigms - interoperability and data
structure design, and differences to other projects to draw comparison. It will also include a brief
introduction to essential genomics data structures that have been pillars to the Bioconductor
ecosystem. We welcome participation as we are dedicated to building a diverse, collaborative,
and welcoming community of developers and data scientists.

5. Deep Learning using R by Krystian Zielinski (English): Deep Learning is certainly not a future
of technologies that surround us on a daily basis. It’s too late – it’s already here. Just try to find
a company that’s not willing to enhance its products with AI driven algorithms. The data is
there already, and the trust barrier is shrinking. It’s to nobody’s surprise – if AI is used in very
sensitive areas like banking, military or medicine, it can’t be that bad. Netflix’s recommendation
algorithms, Google Lens, Self Driving cars – you name it, Deep Learning is used everywhere.
Thanks to many popular frameworks, training Neural Network model has never been so easy.
You can find tutorials online, and based on them solve many problems. But after some time, the
question arises: „How does this even work?” – and you should really know the answer. In the
workshops I’d like to show you how theory affects the practice. Based on many examples we
will train DNN models, show its limits, check how parameters like e.g. activation function affect
the training phase, suggest best practices in data preparation and DNN architecture, explain
the model’s predictions. If you’re familiar with R – this workshop is suited for you! If you’re
just starting with Deep Learning or already have some experience, come and join us - I bet you
won’t regret it!
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Short Tutorials

In addition to the workshops, short tutorials on three topics were organized. This type of event was
planned to focus on more specific topics in longer duration than a regular talk. (∼ 30 mins each) Each
workshop was recorded with the consent of the tutor and after the conference videos were published
on Youtube. Details and Youtube links for each workshop can be found below.

1. Spatial Analysis with R by Fırat Gündem (Turkish): Open Data Portal applications of local
governments both in America and Europe added a serious spatial dimension to data. The spatial
dimension in question covers a wide area, from storing data in a way that includes spatial
information (shape file, GeoJSON, etc.) to spatial data visualizations and analysis with spatial
statistics and spatial econometric methods. The R program is constantly being renewed and
expanded to include all spatial analysis techniques in the literature. Although there are many
people who do spatial analysis with package programs such as ArcGIS, which are expensive
and require personal licenses, RStudio allows to perform all spatial analyzes easily and free of
charge with the libraries it contains. In this short study, all the basic steps of spatial analysis will
be performed using a set of R libraries. For this, real spatial data from Turkey (GDP per capita
on a provincial basis, etc.) will be used. Then, spatial data projection (sf, sp), neighborhood
matrix creation and manipulation (rgdal), spatial data visualization and static and dynamic
mapping ggplot2 (Wickham 2016), tmap (Tennekes 2018), leaflet (Cheng, Karambelkar, and Xie
2021), three-dimensional mapping rayshader (Morgan-Wall 2021), spatial statistics rgeoda (Li
and Anselin 2022) in RStudio. and spatial econometric models will be introduced practically
using the relevant R libraries. Thus, all necessary tools for spatial data science will be introduced
in R and the use of R will be encouraged with user-friendly applications.

2. The R Application for Physics-Informed Neural Networks by Melih Ağraz (Turkish): Physics-
Informed Neural Networks (PINNs) is a deep learning framework designed to solve nonlinear
differential equations using artificial neural networks, published in 2019. Simple deep feed-
forward neural network architectures and automatic differentiation method are used to solve
differential equations in PINNs method. The PINNs method was first developed with Python
Tensorflow. In this study, we will show how the solution of the equation y′ − y = 0 for y(0) = 1,
y(1) = e is solved by using reticulate (Ushey, Allaire, and Tang 2021) library in R, with the help
of PINNs method. This study is thought to find application area of PINNs method for R users
as well. For this reason, a simple differential equation solution example such as y′ − y = 0 is
preferred.

3. Serverless R in the Cloud - Deploying R into Production with AWS and Docker by İsmail Tigrek
(English): This tutorial will walk through deploying R code, machine learning models, or Shiny
applications in the cloud environment. With this knowledge, you will be able to take any local
R-based project you’ve built on your machine or at your company and deploy it into production
on AWS using modern serverless and microservices architectures. In order to do this, you will
learn how to properly containerize R code using Docker, allowing you to create reproducible
environments. You will also learn how to set up event-based and time-based triggers. We will
build out a real example that reads in live data, processes it, and writes it into a data lake, all in
the cloud.

Panels

The panels were planned based on the sharing experience in an interactive environment, where the
participants could come together with experts in different domains. Biostatistics and R Education were
selected as major topics in these events. The links to the video recordings and detailed content of the
panels are given below:

1. Biostatistics and Applications in R moderated by Prof. Dr. Ergun Karaağaoğlu (Turkish):
Prof. Dr. Recai Yücel (Temple University), Prof. Dr. Mithat Gönen (Memorial Sloan Ketter-
ing Cancer Center), and Dr. Anıl Dolgun (CSL Limited) attended as the panelists. In this panel,
current research studies on biostatistics and the importance of using R in this domain were
discussed. In addition, information about how career development was positively affected by
using R was shared by the panelists with the audience. Thus, it was ensured that the participants
were informed about the importance of the R in this field.

2. R Education moderated by Olgun Aydin (Turkish): The main topic of the panel was how to
teach R in academia. Prof. Dr. Mine Çetinkaya-Rundel (Duke University), Dr. Mine Doğucu
(University of California), and Assoc. Prof. Dr. Kübra Kabasakal (Hacettepe University) attended
as the panelists. The panelists shared their approach in terms of teaching R in different fields of
academic stuides. Moreoever, the panelists shared examples from their teaching materials with
the audience.
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Figure 2: The percentage of the degree of the participant students by years

Figure 3: How did the participants hear about the conference?

3 Participants

The 1366 participants were registered for the conference: 70% of the participants were students and the
rest were professionals who work for governmental institutions, companies from the private sector,
and as academicians. The 43% of the students are undergraduates, 26% of them master studies and
the 31% are Ph.D. students.

When the channels that the participants heard about the conference are examined, surprisingly,
the percentage of participants who registered for the conference “on recommendation” was quite high
(26%), in addition to the social media channels (LinkedIn - 30%, Twitter - 26%, and Instagram - 12%) of
which usage has increased in recent years.

In the registration form, questions about participants’ level of R knowledge and motivation of
participants’ to take part in Why R? Turkey 2022 were included to deeply analyze profile of the
participants. The 69% of the participants stated that they had taken or attended a course related to R
before. They evaluated their R programming language usage levels as shown in Table 1.

It can be seen from Table 1 that 90% of them did not attend a conference about R before. In this
respect, the conference was held with an audience suitable for the purpose of expanding usage of R.

Table 1: The R Programming language usage levels of the participants

Level Percent
Beginner 38
Intermediate 31
Advanced 9
Never used 22
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The areas of their interest are Data Visualization, Statistical Modeling, Big Data, Data Mining, Machine
Learning, and Deep Learning, respectively. The events planned for Why R? Turkey 2022 that motivated
them register the conference are respectively: Scientific Sessions (40%), Workshops (35%) and Panels
(26%).

4 Evaluation

An evaluation questionnaire was conducted after the event to measure the satisfaction with the
conference and to collect suggestions future organizations (Cordoba et al. 2019). The satisfaction part
of the questionnaire consists of two questions: (1) general satisfaction and (2) the interaction level
between the presenters and the listeners. The results of the questionnaire are quite positive in terms of
the answer of the respondents. On a scale of 0 − 5, the mean of the satisfaction score is 4.74 with 0.46
standard deviation. Besides that, the mean of the interaction score is 4.50 with 0.69 standard deviation.

The second part of the questionnaire consists of the questions related to the motivation of the
respondents regarding attendance and being a presenter for the next edition of the conference. Ac-
cording to the responses, although nearly all of the respondents (99%) plan to attend the conference in
the next years, 30% aim to participate to as a presenter.

The last part of the questionnaire is about the suggestions from the respondents. The suggestions
generally focus on increasing the duration of regular talks and workshops. In addition, among the
speakers, the higher number of private sector employees and the mention of sector or freelance job
opportunities were among the most prominent suggestions. Respondents strongly mentioned that
next events, which has been held online for two years, should be held face-to-face in the coming years
to increase its effectiveness.

5 Summary

Why R? Turkey 2022, as the next edition of Why R? Turkey 2021 conference, was the first R conference
with call for papers held in Turkey. This conference aimed to encourage researchers and professionals,
who are R users and developers, to share their work with a wider audience. This conference was
organized as a user-friendly conference, taking into account the feedback received in the previous
year’s version. In addition to scientific sessions, workshops, short tutorials, and panels were organized
to broaden the content of the event. According to the evaluation survey made right after the conference,
the participants stated that they were very satisfied and they would like to participate as a presenter
to Why R conferences in the upcoming years. This finding demonstrates that the organisers of the
conference succeeded the goals.

6 Organizers

The Organizing Committee of Why R? Turkey 2022 consisted of eight Turkish researchers from
three different countries: Turkey, Poland, and United Kingdom. It consisted of Mustafa Cavus
(Warsaw University of Technology, Eskisehir Technical University), Olgun Aydin (Gdansk University
of Technology, Why R? Foundation), Filiz Karadag (Ege University), Ugur Dar (Eskisehir Technical
University), Ozan Evkaya (University of Edinburgh), Derya Turfan (Hacettepe University), Ozancan
Ozdemir, Deniz Bezer (Middle East Technical University).
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8 Additional Information

Further information about the conference such as website of the conference, recordings for regular,
lightning talks, workshops and panels, materials, proceeding book and social media accounts used for
the conference can be reached out via following links:

• Website: https://whyr.pl/2022/turkey/
• Abstract book: https://www.nobelyayin.com/why-r-turkiye-2022-konferansi-18447.html
• YouTube channel: https://www.youtube.com/c/WhyRTurkey
• Twitter: https://twitter.com/whyrturkey
• LinkedIn: https://www.linkedin.com/company/why-r-turkey/
• Instagram: https://www.instagram.com/whyrturkey/
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