
The Journal
Volume 15/4, December 2023

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial . 3

Contributed Research Articles

SIMEXBoost: An R package for Analysis of High-Dimensional Error-Prone Data Based
on Boosting Method . 5

binGroup2: Statistical Tools for Infection Identification via Group Testing 21

multiocc: An R Package for Spatio-Temporal Occupancy Models for Multiple Species . 37

Accessible Computation of Tight Symbolic Bounds on Causal Effects using an Intuitive
Graphical Interface . 53

singR: An R Package for Simultaneous Non-Gaussian Component Analysis for Data
Integration . 69

RobustCalibration: Robust Calibration of Computer Models in R 84

glmmPen: High Dimensional Penalized Generalized Linear Mixed Models 106

Unified ROC Curve Estimator for Diagnosis and Prognosis Studies: The sMSROC
Package. 129

Sparse Model Matrices for Multidimensional Hierarchical Aggregation 150

openalexR: An R-Tool for Collecting Bibliometric Data from OpenAlex 167

Computer Algebra in R Bridges a Gap Between Symbolic Mathematics and Data in
the Teaching of Statistics and Data Science . 181

A Comparison of R Tools for Nonlinear Least Squares Modeling 198

exvatools: Value Added in Exports and Other Input-Output Table Analysis Tools. . . 216

PLreg: An R Package for Modeling Bounded Continuous Data 236

Inference for Network Count Time Series with the R Package PNAR 255

SUrvival Control Chart EStimation Software in R: the success Package 270

News and Notes

Changes in R . 292

Changes on CRAN . 295

News from the Forwards Taskforce . 297

R Foundation News . 299

2

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications

regarding this publication should be addressed to the
editors. All articles are licensed under the Creative

Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Simon Urbanek, University of Auckland, New Zealand

Executive editors:
Catherine Hurley, Maynooth University, Ireland

Mark van der Loo, Statistics Netherlands and University of
Leiden, The Netherlands

Rob Hyndman, Monash University, Australia
Emi Tanaka, Australian National University, Australia

R Journal Homepage:
http://journal.r-project.org/

Email of editors and editorial board:
r-journal@R-project.org

The R Journal is indexed/abstracted by EBSCO, DOAJ,
Thomson Reuters.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
http://journal.r-project.org/

CONTRIBUTED RESEARCH ARTICLE 3

Editorial
by Simon Urbanek

On behalf of the editorial board, I am pleased to present Volume 15 Issue 4 of the R Journal.

This is my last issue as Editor-in-Chief. Mark van der Loo takes over as Editor-in-Chief
for 2024, having served as an Executive Editor since 2022 and as Associate Editor since 2021.

Catherine Hurley recently finished her Editorial board term. She has been leading the
expansion to four issues a year as the first Editor-in-Chief to oversee the process, and worked
tirelessly to reduce the turn-around times despite an increasing numer of submissions.

The articles in this issue have been carefully copy edited by Adam Bartonicek, Chase
Robertson and Taylor Lee.

In this issue

News from CRAN, the R core Development Team, Forwards Taskforce and the R Foundation
are included in this issue.

This issue features 16 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. Supplementary material
with fully reproducible code is available for download from the Journal website.

• SIMEXBoost: An R package for Analysis of High-Dimensional Error-Prone Data
Based on Boosting Method

• binGroup2: Statistical Tools for Infection Identification via Group Testing
• multiocc: An R Package for Spatio-Temporal Occupancy Models for Multiple Species
• Accessible Computation of Tight Symbolic Bounds on Causal Effects using an Intuitive

Graphical Interface
• singR: An R Package for Simultaneous Non-Gaussian Component Analysis for Data

Integration
• RobustCalibration: Robust Calibration of Computer Models in R
• glmmPen: High Dimensional Penalized Generalized Linear Mixed Models
• Unified ROC Curve Estimator for Diagnosis and Prognosis Studies: The sMSROC

Package
• Sparse Model Matrices for Multidimensional Hierarchical Aggregation
• openalexR: An R-Tool for Collecting Bibliometric Data from OpenAlex
• Computer Algebra in R Bridges a Gap Between Symbolic Mathematics and Data in

the Teaching of Statistics and Data Science
• A Comparison of R Tools for Nonlinear Least Squares Modeling
• exvatools: Value Added in Exports and Other Input-Output Table Analysis Tools
• PLreg: An R Package for Modeling Bounded Continuous Data
• Inference for Network Count Time Series with the R Package PNAR
• SUrvival Control Chart EStimation Software in R: the success Package

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=binGroup2
https://CRAN.R-project.org/package=multiocc
https://CRAN.R-project.org/package=singR
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=sMSROC
https://CRAN.R-project.org/package=openalexR
https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PNAR
https://CRAN.R-project.org/package=success

CONTRIBUTED RESEARCH ARTICLE 4

Simon Urbanek
University of Auckland

https://journal.r-project.org
ORCiD: 0000-0003-2297-1732
r-journal@r-project.org

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://journal.r-project.org
https://orcid.org/0000-0003-2297-1732
mailto:r-journal@r-project.org

CONTRIBUTED RESEARCH ARTICLE 5

SIMEXBoost: An R package for Analysis
of High-Dimensional Error-Prone Data
Based on Boosting Method
by Li-Pang Chen and Bangxu Qiu

Abstract Boosting is a powerful statistical learning method. Its key feature is the ability to derive a
strong learner from simple yet weak learners by iteratively updating the learning results. Moreover,
boosting algorithms have been employed to do variable selection and estimation for regression models.
However, measurement error usually appears in covariates. Ignoring measurement error can lead
to biased estimates and wrong inferences. To the best of our knowledge, few packages have been
developed to address measurement error and variable selection simultaneously by using boosting
algorithms. In this paper, we introduce an R package SIMEXBoost, which covers some widely used
regression models and applies the simulation and extrapolation method to deal with measurement
error effects. Moreover, the package SIMEXBoost enables us to do variable selection and estimation
for high-dimensional data under various regression models. To assess the performance and illustrate
the features of the package, we conduct numerical studies.

1 Introduction

In statistical analysis, regression models are important methods for characterizing the relationship
between response and the covariates. When the response follows exponential family distributions,
generalized linear models (GLM) are commonly used to link the response and the covariates. If
the response is taken as failure time and is incomplete due to censoring (e.g., Lawless, 2003), the
accelerated failure time model (AFT) might be one of useful strategies to characterize the survival
outcome in survival analysis. In recent years, complex modeling structures have been explored when
building GLM or survival models, including semi-parametric or mixed-effects structures. To address
these challenges, several statistical learning methods, including the boosting approaches (e.g., Hastie
et al., 2008), have been developed.

In the contemporary statistical analysis, researchers may frequently encounter high-dimensionality
in variables. In particular, high-dimensional data may contain many irrelevant covariates that may
affect analysis results. Therefore, it is crucial to do variable selection. In the development of statis-
tical methods, some useful strategies have been proposed, such as regularization approaches (e.g.,
Tibshirani, 1996; Zou, 2006; Zou and Hastie, 2005) or feature screening methods (e.g., Chen, 2021;
Chen, 2023b). In addition, Wolfson (2011) and Brown et al. (2017) proposed the boosting method to
do variable selection, which avoids having to deal with non-differentiable penalty functions. The
other important feature is measurement error in variables, which is ubiquitous in applications. More-
over, ignoring measurement error effects may affect the estimation results (e.g., Chen and Yi, 2021).
Therefore, it is necessary to correct for measurement error effects. A large body of methods has been
well established to address variable selection, correction of measurement error, or both. Recently,
Chen (2023c) developed the SIMEX method and the regression calibration method with the boosting
algorithm accommodated to handle variable selection and measurement error correction for GLMs.
Chen and Qiu (2023) considered the AFT model to fit time-to-event responses and proposed the SIMEX
method to address measurement error. Chen (2023d) derived the corrected estimating function based
on the logistic regression or probit models and applied the boosting method to do variable selection
for binary outcomes.

In applications, several commonly used packages associated with existing methods have been
developed for public use. A detailed list is summarized in Table 1. Specifically, with variable selection
and measurement error ignored, most packages related to boosting methods, including bst and
adabag, can handle classification with binary or multi-class responses. Some packages can deal with
different response families. For example, xgboost and lightgbm can deal with continuous responses;
gbm and gamboostLSS can be used to model survival data under the Cox model and the AFT
model, respectively; GMMBoost is useful for handling mixed-effects models. In the presence of high-
dimensional but precisely measured variables, glmnet and SIS are two popular packages for variable
selection or feature screening, respectively. On the contrary, if variables are subject to measurement
error, the two packages GLSME and mecor focus on linear models and aim to adjust for measurement
error effects in the response and/or covariates. Moreover, the simulation and extrapolation (SIMEX)
method (e.g., Chen and Yi, 2021; Carroll et al., 2006) has been a powerful strategy to correct for
measurement error effects, and has been widely used under several types of regression models in

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=bst
https://CRAN.R-project.org/package=adabag
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=lightgbm
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gamboostLSS
https://CRAN.R-project.org/package=GMMBoost
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=SIS
https://CRAN.R-project.org/package=GLSME
https://CRAN.R-project.org/package=mecor

CONTRIBUTED RESEARCH ARTICLE 6

existing R packages, including simex for GLM, augSIMEX for GLM with error-prone continuous
and discrete variables, and simexaft for the AFT model. In addition to the R software, Chen (2023a)
developed a Python package BOOME to handle variable selection and measurement error for binary
outcomes.

Table 1: Comparisons among existing and proposed packages. This table summarizes three categories
of packages: (i) variable selection without measurement error correction (glmnet, SIS), (ii) measure-
ment error correction without variable selection (GLSME, mecor, augSIMEX, simex, simexaft), (iii)
statistical learning approaches that handle estimation without consideration of measurement error and
variable selection (bst, xgboost, gbm, adabag, lightgbm, GMMBoost, gamboostLSS). The proposed
package SIMEXBoost is included in these three categories. In the Usage heading, ‘LM’ denotes the
linear model; ‘Class’ is the classification; ‘Pois’ is the Poisson regression, ‘Cox’ is the Cox model; ‘AFT’
is the AFT model; ‘SL’ is statistical learning; ‘ME’ represents measurement error correction; ‘VS’ is
variable selection; and ‘Col’ represents collinearity.

Usage
Packages LM Class1 Pois Cox AFT SL2 ME VS Col
SIMEXBoost ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓
Qiu and Chen (2023)
glmnet ✓ ✓ ✓ ✓ × × × ✓ ✓
Friedman et al. (2023)
SIS ✓ ✓ ✓ ✓ × × × ✓ ×
Feng et al. (2020)
GLSME ✓ × × × × × ✓ × ×
Bartoszek (2019)
mecor ✓ × × × × × ✓ × ×
Nab (2021)
augSIMEX ✓ ✓ ✓ × × × ✓ × ×
Zhang and Yi (2020)
simex ✓ ✓ ✓ ✓ × × ✓ × ×
Lederer et al. (2019)
simexaft × × × × ✓ × ✓ × ×
Xiong et al. (2019)
bst × ✓ × × × ✓ × × ×
Wang and Hothorn (2023)
xgboost ✓ ✓ × × × ✓ × × ×
Chen et al. (2023)
gbm ✓ ✓ ✓ ✓ × ✓ × × ×
Greenwell et al. (2022)
adabag × ✓ × × × ✓ × × ×
Alfaro et al. (2023)
lightgbm ✓ ✓ × × × ✓ × × ×
Shi et al. (2023)
GMMBoost ✓ ✓ × × × ✓ × × ×
Groll (2020)
gamboostLSS ✓ × ✓ × ✓ ✓ × × ×
Hofner et al. (2023)
BOOME (in Python) × ✓ × × × ✓ ✓ ✓ ✓
Chen (2023a)

1 “Class” includes binary or multiclass classification, and the construction of logistic regression models.
2 “SL” contains several estimation methods based on machine learning approaches, such as tree and random forest. In addition, the
corresponding packages may handle complex structures, including semi-paramatric models, mixed-effects models, and generalized
additive models.

While many packages have been available to handle either variable selection or measurement
error correction, few packages deal with these two features simultaneously. To address those concerns,
we develop the R package SIMEXBoost (Qiu and Chen, 2023) by extending the method in Chen
(2023c) and Chen and Qiu (2023), which covers commonly used GLM and AFT models. Motivated
by the idea of the boosting algorithm (see e.g., Hastie et al., 2008, Section 16.2), SIMEXBoost aims to
use estimating functions to iteratively retain informative covariates and exclude unimportant ones,
yielding variable selection result. In addition, to deal with measurement error effects, the package
SIMEXBoost primarily employs the SIMEX method to efficiently correct for measurement error effects
for different types of regression models. There are several advantages of SIMEXBoost over the existing
packages. Specifically, as summarized in Table 1, while glmnet and SIS are able to handle variable
selection, they fail to deal with measurement error effects. In addition, the two packages GLSME
and mecor focus on linear models and aim to adjust for measurement error effects in the response
and/or covariates, but they cannot deal with variable selection. On the contrary, the contribution of
the package SIMEXBoost is able handle measurement error in variables, and do variable selection and
estimation simultaneously. Moreover, boosting iteration may reduce the possibility of falsely excluding
important covariates and enhance the accuracy of the estimator. Most importantly, SIMEXBoost is

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=simex
https://CRAN.R-project.org/package=augSIMEX
https://CRAN.R-project.org/package=simexaft
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=SIS
https://CRAN.R-project.org/package=GLSME
https://CRAN.R-project.org/package=mecor
https://CRAN.R-project.org/package=augSIMEX
https://CRAN.R-project.org/package=simex
https://CRAN.R-project.org/package=simexaft
https://CRAN.R-project.org/package=bst
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=adabag
https://CRAN.R-project.org/package=lightgbm
https://CRAN.R-project.org/package=GMMBoost
https://CRAN.R-project.org/package=gamboostLSS
https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=SIS
https://CRAN.R-project.org/package=GLSME
https://CRAN.R-project.org/package=mecor
https://CRAN.R-project.org/package=augSIMEX
https://CRAN.R-project.org/package=simex
https://CRAN.R-project.org/package=simexaft
https://CRAN.R-project.org/package=bst
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=adabag
https://CRAN.R-project.org/package=lightgbm
https://CRAN.R-project.org/package=GMMBoost
https://CRAN.R-project.org/package=gamboostLSS
https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=SIS
https://CRAN.R-project.org/package=GLSME
https://CRAN.R-project.org/package=mecor
https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=SIMEXBoost

CONTRIBUTED RESEARCH ARTICLE 7

able to deal with collinearity of variables by using the L2-norm penalty function.

The remainder is organized as follows. In the second section, we introduce the data structure and
the corresponding regression models. In addition, the boosting algorithm is outlined. In the third
section, we introduce the measurement error model and extend the correction of measurement error
effects to the boosting algorithm. In the fourth section, we introduce functions and their arguments
in the R package SIMEXBoost. In the fifth section, we demonstrate the application of the R package
SIMEXBoost and conduct simulation studies to assess the performance of the boosting estimators.
Moreover, we also implement SIMEXBoost in a real dataset. A general discussion is presented
in the last section. The supporting information, including a real dataset, programming code, and
numerical results in csv files, are placed in the corresponding author’s GitHub, whose link is given by
https://github.com/lchen723/SIMEXBoost.git.

2 Notation, Models, and Boosting Procedure

2.1 Model

Let Y denote the response, and let X be the p-dimensional vector of covariates. Suppose that we have
a sample of n subjects and for i = 1, · · · , n, {Yi, Xi} has the same distribution as {Y, X}.

Let β be a p-dimensional vector of (unknown) parameters associated with the covariates X,
and write X⊤β as the linear predictor. In the framework of statistical learning, to characterize the
relationship between Y and X, a commonly used approach is to link Y and X⊤β through the convex
loss function L : S×R → R, where S is the support of Y. Let the risk function be defined as the

expectation of the loss function, i.e., R(β) ≜ E
{

L(Y, X⊤β)
}

. Under the finite sample size n, the

empirical version of R(β) is given by

1
n

n

∑
i=1

L(Yi, X⊤i β).

Our goal is to estimate β by minimizing the risk function, and the resulting estimator is given by

β̂ = argmin
β

{
1
n

n

∑
i=1

L(Yi, X⊤i β)

}
.

Equivalently, β̂ satisfies the estimating equation g(X, β) = 0, where g(X, β) is the estimating function

of β, defined as the first order derivative of 1
n

n
∑

i=1
L(Yi, X⊤i β) with respect to β.

2.2 Boosting Procedure

High-dimensionality and sparsity of β are crucial concerns, which reflect the idea that some covariates
are not informative with respect to Y. To address these issues and provide a reliable estimator of β,
we employ the boosting procedure to perform variable selection and estimation (e.g., Hastie et al.,
2008). This version of the boosting algorithm is motivated by Wolfson (2011) and Brown et al. (2017),
and is applied to handle GLM (Chen, 2023c) as well as AFT models (Chen and Qiu, 2023). An overall
procedure is presented in Algorithm 1 with three key steps. Specifically, Steps 1 and 2 in Algorithm 1
treat the estimating function evaluated at an iterated value as the signal, and use it to determine
informative indexes of covariates and parameters. Noting that there is a parameter τ in Step 2 that is
used to control the number of selected covariates in each iteration. In our numerical studies, τ = 0.9
seems to be a suitable choice and has a satisfactory performance.

After that, Step 3 in Algorithm 1 updates β using the informative indexes determined in Step 2
by the sign of signals with increment κ. This approach follows the steepest descent method (see e.g.,
Boyd and Vandenberghe, 2004, Section 9.4.2) and can be used to deal with the L1-norm for variable
selection. In addition, as discussed in Section 16.2.1 of Hastie et al. (2008), the value κ has the opposite
relationship with the number of iteration M that smaller κ requires larger M. In our consideration, we
specify κ = 0.05. Finally, repeating the iteration M times gives the desired estimator. With M time
iterations, we can obtain the final set JM containing informative covariates and the corresponding

β(M) =
(

β
(M)
1 , · · · , β

(M)
p

)⊤, accomplishing variable selection.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=SIMEXBoost
https://github.com/lchen723/SIMEXBoost.git

CONTRIBUTED RESEARCH ARTICLE 8

Algorithm 1: Boost_VSE Algorithm

Let β(0) = 0 denote an initial value;
for iteration m with m = 0, 1, 2, · · · , M do

Step 1: calculate ∆(m−1) = g(X, β)
∣∣
β=β(m−1) ;

Step 2: determine Jm =
{

j :
∣∣∣∆(m−1)

j

∣∣∣ ≥ τ max
j′

∣∣∣∆(m−1)
j′

∣∣∣ } ;

Step 3: update β
(m)
j ← β

(m−1)
j + κ · sign(∆(m−1)

j) for all j ∈ Jm, and define

β(m) =
(

β
(m)
1 , · · · , β

(m)
p

)⊤ ;

Finally, for the application of Algorithm 1, we consider some specific models and the corresponding
regression models listed below. With models specified, we can further determine the estimating
function g(X, β).

Linear regression models:
Given the dataset

{
{Yi, Xi} : i = 1, · · · , n

}
with Yi being a continuous and univariate random

variable, linear models are characterized as

Yi = X⊤i β + ϵi (1)

where ϵi is the noise term with E(ϵi) = 0 and var(ϵi) = σ2
ϵ . The estimating function is defined

as the first order derivative of the least squares function:

g(X, β) =
n

∑
i=1
−Xi(Yi − X⊤i β). (2)

Logistic regression models:
If Yi is a binary and univariate random variable, then Yi and Xi are usually characterized by a
logistic regression model:

πi =
exp

(
X⊤i β

)
1 + exp

(
X⊤i β

) , (3)

where πi ≜ P(Yi = 1|Xi). Following the idea in Agresti (2012), we can construct the likelihood
function based on (3). Therefore, the resulting estimating function is given by the first order
derivative of the likelihood function:

g(X, β) = −
n

∑
i=1

Xi

{
Yi −

exp
(
X⊤i β

)
1 + exp

(
X⊤i β

)} . (4)

Poisson regression models:
When Yi is a count and univariate random variable, one can adopt the Poisson regression model
to fit Yi and Xi:

log λi = X⊤i β (5)

where λi is the parameter of the Poisson distribution. Following the framework of generalized
linear models, the likelihood function based on (5) can be determined. Therefore, the first order
derivative of the likelihood function under (5) yields the corresponding estimating function,
which is given by

g(X, β) = −
n

∑
i=1

Xi

{
Yi − exp

(
X⊤i β

)}
. (6)

Accelerated failure time models:
In survival analysis, the response is known as the failure time, denoted T̃i > 0, and the acceler-
ated failure time (AFT) model is a commonly used model for characterizing the relationship
between the survival time and the covariates (e.g., Lawless, 2003). Specifically, the AFT model is
formulated as

log T̃i = X⊤i β + ηi, (7)

where ηi is the noise term of (7). In the framework of survival analysis, the main challenge is
that T̃i is usually incomplete due to how the observations are collected. In particular, in this
study, the failure time may suffer from length-biased and interval-censoring, which cause the data

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 9

to be biased and incomplete.
Specifically, for the length-biased sampling, it is common to assume that the incidence

rate of the initial event is constant over calendar time, and the truncation time, denoted Ãi,
is uniformly distributed in [0, ξ], where ξ is the maximum support of T̃i (e.g., Chen and Qiu,
2023). For the length-biased data, we can observe (Ãi,T̃i) only if T̃i ≥ Ãi, and thus, we denote
(Ti, Ai) ≡ (T̃i, Ãi)

∣∣T̃i ≥ Ãi as the observed version of (T̃i,Ãi).
On the other hand, for the observed Ti, we may encounter the interval-censoring. Suppose

that Ti is not exactly observed but only determined at a sequence of examination times, denoted
as Ai = U0 < U1 < · · · < UN ≤ ξ for some constant N > 0. The failure time is then known
to lie in the interval (L, R), where Li = max{Uk : Uk < Ti, k = 0, · · · , N} and Ri = min{Uk :
Uk ≥ Ti, k = 1, · · · , N + 1} with UN+1 ≜ ∞. Moreover, if Ti occurs before the first examination
time, then (Li, Ri) ≜ (Ai, U1); if the failure has not occurred at the last examination time,
then (Li, Ri) ≜ (UN , ∞). Finally, let ∆i denote the indicator, where a value 1 indicates that
Ti is observed and zero otherwise. As a consequence, for a sample with size n, the length-
biased and interval-censored survival data is given by

{
{Ai, ∆i, Yi, Xi} : i = 1, · · · , n

}
with

Yi ≜ {∆iTi, (1− ∆i)Li, (1− ∆i)Ri}.
Based on the length-biased and interval-censored data, we can construct the estimating

function (e.g., Chen and Qiu, 2023)

g(X, β) =
n

∑
i=1

Xi

{
∆i

Yβ,i

exp(Yβ,i)
+ (1− ∆i)

∫ Ri,0
Li,0

u−1logudF0(u)

F0(Ri,0)− F0(Li,0)

}
, (8)

where Yβ,i = log Ti − X⊤i β, Ri,0 = Ri exp(−X⊤i β), Li,0 = Li exp(−X⊤i β), and F0 is the cumula-
tive distribution function of ηi.

3 A Modified Boosting Method with the Presence of Covariate Measure-
ment Error

3.1 Measurement Error Models

For i = 1, · · · , n, let X∗i denote the surrogate, or observed covariate, of Xi. Let ΣX∗ and ΣX be the
p× p covariance matrices of X∗i and Xi, respectively. In our development, we focus on the classical
measurement error model (e.g., Carroll et al., 2006, Chapter 1):

X∗i = Xi + ei, (9)

where ei is independent of {Xi, Yi} and ϵi in (1), ei follows a normal distribution with mean zero and
the covariance matrix Σe, say N(0, Σe). Noting that the covariance matrix Σe is usually unknown.
To determine it, we can either employ sensitivity analyses to reasonably specify values, or directly
estimate it if additional information, such as repeated measurements or validation sample is available
(see e.g., Chen and Yi, 2021). As a result, in the presence of measurement error, the observed dataset is
now given by

{
{Yi, X∗i } : i = 1, · · · , n

}
.

3.2 Boosting with Measurement Error Correction

In the presence of measurement error, it is known that directly using X∗i in the estimating procedure
without the correction of measurement error effects may incur biased estimate and wrong conclusion
(see e.g., Carroll et al., 2006). Therefore, even though Algorithm 1 is valid to estimate β for regression
models in the ‘Boosting Procedure’ subsection, it is insufficient in the presence of measurement error
effects.

To deal with measurement error in covariates, we extend Algorithm 1 by adopting the SIMEX
method to eliminate the impact of measurement error (e.g., Chen and Yi, 2021). The modified algorithm,
called SIMEXBoost, is summarized in Algorithm 2.

The idea of the SIMEX method is to first establish the trend of measurement error-induced biases
as a function of the variance of measurement error by artificially creating a sequence of surrogate
measurements, and then extrapolate this trend back to the case without measurement error. Specif-
ically, in Step 1 of Algorithm 2, we artificially create a sequence of error-contaminated surrogate
measurements by introducing different degrees of measurement error. After that, as shown in Step 2
of Algorithm 2, we apply those surrogate measurements to the boosting procedure, and use a new
function gSIM(β; b, ζ), which is defined as (2), (4), (6), or (8) with Xi replaced by Wi (b, ζ) defined in

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 10

(10), to obtain biased estimates by running an estimation method developed for error-free settings.
Finally, Step 3 in Algorithm 2 traces the pattern of biased estimates against varying magnitudes of
measurement error and then does extrapolation based on linear or quadratic regression models.

Noting that there are several parameters in Algorithm 2. The parameters M, κ, and τ in Step 2 are
the same as those in Algorithm 1. On the other hand, Step 1 contains a value B and a sequence of Z
that are usually user-specified. Typically, Z is usually defined as K equal-width cutpoints in an interval
[0, 1] for some positive constant K. A value B is used to perform the Monte Carlo computation in (11)
and make the estimator more stable. A larger value of B may implicitly incur longer computational
time. Our numerical experiments show that B = 50 gives satisfactory performance.

Algorithm 2: SIMEXBoost Algorithm
Step 1: Generate the working data Wi(b, ζ) by

Wi (b, ζ) = X∗i +
√

ζei,b (10)

for b = 1, · · · , B and ζ ∈ Z , where ei,b ∼ N(0, Σe) independently.

Step 2: Boosting estimation.
Perform the following boosting procedure with M iterations.

for b = 1, · · · , B and ζ ∈ Z do
Let β(0)(b, ζ) = 0 denote an initial value;
for iteration m with m = 0, 1, 2, · · · , M do

Step 2.1: calculate ∆(m−1)(b, ζ) = gSIM(β; b, ζ)
∣∣
β=β(m−1) ;

Step 2.2: determine Jm(b, ζ) =
{

j :
∣∣∣∆(m−1)

j (b, ζ)
∣∣∣ ≥ τ max

j

∣∣∣∆(m−1)
j (b, ζ)

∣∣∣ } ;

Step 2.3: update β
(m)
j (b, ζ)← β

(m−1)
j (b, ζ) + κ · sign(∆(m−1)

j (b, ζ)) for all j ∈ Jm(b, ζ);

Write β(M)(b, ζ) =
(

β
(M)
1 (b, ζ), · · · , β

(M)
p (b, ζ)

)⊤
;

When β(M)(b, ζ) is obtained for b = 1, · · · , B and ζ ∈ Z , compute an average

β(M)(ζ) =
1
B

B

∑
b=1

β(M)(b, ζ) for ζ ∈ Z . (11)

Step 3: Extrapolation.

Fit a sequence
{(

ζ, β(M)(ζ)
)

: ζ ∈ Z
}

by a regression model, and the final value is given by
the extrapolated value at ζ = −1.

4 Description and Implementation of SIMEXBoost

We develop an R package, called SIMEXBoost, to implement the variable selection and estimation
with measurement error correction described in the preceding section. This package depends on
the MASS package only. The package SIMEXBoost contains three functions: ME_Data, Boost_VSE,
and SIMEXBoost. The function ME_Data aims to generate artificial data under specific models listed
in ‘Boosting Procedure’ subsection and error-prone covariates. The function Boost_VSE implements
the boosting procedure in Algorithm 1, and the function SIMEXBoost implements the error-eliminated
boosting procedure as displayed in Algorithm 2. We now describe the details of these three functions.

ME_Data

We use the following command to obtain the artificial data:

ME_Data(X,beta,type="normal",sigmae,pr0=0.5)

where the meaning of each argument is described as follows:

• X: An n× p matrix with components generated by random variables. It is provided by the user.

• beta: A p-dimensional vector of parameters, which is specified by the user.

• type: A regression model that is specified to generate the response. Some choices listed
in ‘Boosting Procedure’ subsection are provided in this argument. normal means the linear

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=MASS
https://CRAN.R-project.org/package=SIMEXBoost

CONTRIBUTED RESEARCH ARTICLE 11

regression model (1) with the error term generated by the standard normal distribution; binary
means the logistic regression model (3); poisson means the Poisson regression model (5). In
addition, the accelerated failure time (AFT) model is considered to fit length-biased and interval-
censored survival data. Specifically, AFT-normal generates the length-biased and interval-
censored survival data under the AFT model (7) with the error term being normal distributions;
AFT-loggamma generates the length-biased and interval-censored survival data under the AFT
model with the error term being log-gamma distributions.

• sigmae: A p × p covariance matrix Σe in the measurement error model (9). Given Σe with
non-zero entries, by (9), one can generate the error-prone covariates X∗i . Moreover, if Σe is given
by the zero matrix, then ei is generated as zero values, yielding that X∗i is equal to Xi, and thus,
the resulting covariate is the original input given by users.

• pr0: A numerical value in an interval (0, 1). It is used to determine the censoring rate for the
length-biased and interval-censored data.

The function ME_Data returns a list of components:

• response: It gives the response generated by a specific regression model. type="normal" gives
a n-dimensional continuous vector; type="binary" gives a n-dimensional vector with binary
entries; type="poisson" gives a n-dimensional vector with entries being counting numbers.
In addition, type="AFT-normal" and type="AFT-loggamma" generates a n× 2 matrix of length-
biased and interval-censored responses, where the first column is the lower bound of an
interval-censored response and the second column is the upper bound of an interval-censored
response.

• ME_covariate: This output gives a n × p matrix of “error-prone” or “precisely measured”
covariates. Specifically, as discussed in an argument sigmae, if Σe is a non-zero covariance
matrix, then the result of ME_covariate is given by X∗i ; if Σe is a zero matrix, then the result of
ME_covariate is the original input, say Xi.

Boost_VSE

We use the following function to perform Algorithm 1:

Boost_VSE(Y,Xstar,type="normal",Iter=200,Lambda=0)

where the meaning of each argument is described as follows:

• Y: The response variable. If type is specified as normal, binary, or poisson, then Y should be
a n-dimensional vector; if type is given by AFT-normal or AFT-loggamma, then Y should be a
n× 2 matrix of interval-censored responses, where the first column is the lower bound of an
interval-censored response and the second column is the upper bound of an interval-censored
response.

• Xstar: This argument needs a n× p matrix of covariates. It can be error-prone or precisely
measured.

• type: This argument specifies the regression models as previously described in the function
ME_Data as well as their corresponding estimating functions given by (2), (4), (6), and (8).

• Iter: The number of iterations M for the boosting procedure in Algorithm 1.

• Lambda: A tuning parameter that aims to deal with the collinearity of covariates. Lambda=0
means that no L2-norm is involved, and it is the default value.

The function Boost_VSE returns a list of components:

• BetaHat: The vector of estimated coefficient obtained by Algorithm 1. In particular, if the
covariate Xstar is generated by ME_Data with the argument sigmae being the zero matrix, then
the resulting vector is the “ordinary” estimator based on the boosting procedure; if the covariate
Xstar is generated by ME_Data with the argument sigmae being a non-zero covariance matrix,
then we call the resulting vector as the naive estimator due to involvement of measurement error
effects without correction.

SIMEXBoost

Basically, some arguments in this function are the same as Boost_VSE, except for some slightly different
requirements and additional arguments that are related to the SIMEX method.

We use the following function to perform Algorithm 2:

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 12

SIMEXBoost(Y,Xstar,zeta=c(0,0.25,0.5,0.75,1),B=500,type="normal",sigmae,
Iter=100, Lambda=0, Extrapolation="linear")

where the meanings of arguments Y, Xstar, type, Iter, and Lambda are the same as those in the function
Boost_VSE; additional arguments zeta, B, sigmae, and Extrapolation, which are used to implement
the SIMEX method to correct for measurement error effects, are described as follows:

• zeta: The user-specific sequence of values described as Z in Step 1 of Algorithm 2.

• B: The user-specific positive number of repetition described as B in Step 1 of Algorithm 2.

• sigmae: An p × p covariance matrix Σe in the measurement error model (9). In practical
applications, if auxiliary information is unavailable, sensitivity analyses can be adopted to
reasonably specify values of Σe. If additional information, such as repeated measurements or
validation samples, is available, one can directly estimate Σe.

• Extrapolation: A extrapolation function for the SIMEX method implemented to Step 3 of
Algorithm 2. In the framework of the SIMEX method, quadratic and linear functions are
common. Therefore, in this argument, we provide two choices of the extrapolation functions,
linear and quadratic.

The function SIMEXBoost returns a list of components:

• BetaHatCorrect: The resulting vector of corrected estimates obtained by Algorithm 2.

5 Numerical Studies and Demonstration of Programming Code

In this section, we demonstrate the usage of the functions in the package SIMEXBoost. There are two
parts in this section: we first illustrate simulation studies for linear regression, Poisson regression, and
AFT models. After that, we apply the package to analyze a real-world dataset with binary responses
based on a logistic regression model.

5.1 Simulation Studies

In this section, we use simulation studies to demonstrate applications of functions in the package
SIMEXBoost and assess the performance of the estimators derived by two functions Boost_VSE and
SIMEXBoost.

We consider the dimension of covariates p = 200 or 500, and let the sample size n = 400. Let the
true value β0 = (1, 1, 1, 0⊤p−3)

⊤, where 0q is a q-dimensional zero vector. The unobserved covariate Xi
is generated by the standard normal distribution, and it can be used to generate the response Yi based
on (1), (5), and (7). For the error-prone covariate X∗i , it can be generated by (9), where Σe is a diagonal
matrix with common entries σe being 0.1, 0.3, and 0.5.

Based on the artificial data
{
{Yi, X∗i } : i = 1, · · · , n

}
, we first use the function Boost_VSE to obtain

the estimator without measurement error correction, which is called the naive estimator. Next, we
apply the function SIMEXBoost to derive the corrected estimator. To assess the performance of variable
selection, we examine the specificity (Spe) and the sensitivity (Sen), where the specificity is defined as
the proportion of zero coefficients that are correctly estimated to be zero, and the sensitivity is defined
as the proportion of non-zero coefficients that are correctly estimated to be non-zero. In addition,
to evaluate the performance of estimation, we use the L1 and L2-norms to measure bias, which are
respectively defined as

∥∥β̂− β0
∥∥

1 =
p

∑
j=1

∣∣β̂ j − β0,j
∣∣ and

∥∥β̂− β0
∥∥

2 =

{ p

∑
j=1

(
β̂ j − β0,j

)2
}1/2

, (12)

where β̂ is the estimator, β̂ j and β0,j are the jth component in β̂ and β0, respectively.

We use two ‘for’ loops cover all combinations of p and σe (sigmae). For each p and sigmae, we
first adapt the function ME_Data to generate the simulated data, where Y and Xstar represent the
response and error-prone covariates, respectively. After that, to examine the naive estimator derived
by Algorithm 1, we use the function Boost_VSE to derive the naive estimator and denote it by naive.
To implement Algorithm 2, we adopt the function SIMEXBoost, where two components Z and B in
Step 1 of Algorithm 2 are specified as zeta=c(0,0.25,0.5,0.75,1) and B=50, respectively. For the
SIMEXBoost method, we also examine linear and quadratic extrapolation functions with the argument
Extrapolation="linear" or Extrapolation="quadratic", and denote two resulting estimators as

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SIMEXBoost
https://CRAN.R-project.org/package=SIMEXBoost

CONTRIBUTED RESEARCH ARTICLE 13

correctL and correctQ, respectively. For the two functions Boost_VSE and SIMEXBoost, we set the
number of iterations Iter=50. To save the space in the limited text, we simply illustrate the model
(1) with the argument type="normal"; numerical results under other models can be reprocued by the
following code with type="normal" replaced by type="poisson" or type="AFT-normal".

Next, we assess the performance of naive, correctL, and correctQ. Given a true vector of pa-
rameter beta0, we compute L1 and L2-norms in (12) to examine the bias, and compute Spe and
Sen to examine variable selection. Under a given p and sigma, biases and variable selection results
are recorded by EST1, EST2, and EST3 for the estimators naive, correctL, and correctQ, respectively.
Finally, numerical results of three estimators naive, correctL, and correctQ under all settings are
summarized by NAIVE, SIMEXL, and SIMEXQ, respectively.

library(SIMEXBoost)
library(MASS)

NAIVE = NULL # naive method
SIMEXL = NULL # simex method with linear extrapolation function
SIMEXQ = NULL # simex method with quadratic extrapolation function

for (p in c(200, 500)) {
for (sigma in c(0.1, 0.3, 0.5)) {
set.seed(202270)
beta0 = c(1, 1, 1, rep(0, p - 3))

X = matrix(rnorm((p) * 400),
nrow = 400,
ncol = p,
byrow = TRUE)

Sig = diag(sigma ^ 3, dim(X)[2])

data = ME_Data(
X = X,
beta = beta0,
type = "normal",
sigmae = Sig

)
Y = data$response
Xstar = data$ME_covariate

naive = Boost_VSE(Y, Xstar, type = "normal", Iter = 50)$BetaHat

correctL = SIMEXBoost(
Y,
Xstar,
zeta = c(0, 0.25, 0.5, 0.75, 1),
B = 50,
type = "normal",
sigmae = Sig,
Iter = 50,
Lambda = 0,
Extrapolation = "linear"

)$BetaHatCorrect
correctL[which(abs(correctL) < 0.5)] = 0
correctQ = SIMEXBoost(
Y,
Xstar,
zeta = c(0, 0.25, 0.5, 0.75, 1),
B = 50,
type = "normal",
sigmae = Sig,
Iter = 50,
Lambda = 0,
Extrapolation = "quadratic"

)$BetaHatCorrect

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 14

correctQ[which(abs(correctQ) < 0.5)] = 0

#############

Sen = which(beta0 != 0)
Spe0 = which(beta0 == 0)

results for the naive estimator
naive = as.numeric(naive)
L1_norm = sum(abs(naive - beta0))
L2_norm = sqrt(sum((naive - beta0) ^ 2))
Spe = length(which(naive[Spe0] == 0)) / length(Spe0)
Sen = length(which(naive[Sen0] != 0)) / length(Sen0)

results for the error-corrected estimator based on Extrapolation="linear"
L1_norm_l = sum(abs(correctL - beta0))
L2_norm_l = sqrt(sum((correctL - beta0) ^ 2))
Spe_l = length(which(correctL[Spe0] == 0)) / length(Spe0)
Sen_l = length(which(correctL[Sen0] != 0)) / length(Sen0)

results for the error-corrected estimator based on Extrapolation="quadratic"
L1_norm_q = sum(abs(correctQ - beta0))
L2_norm_q = sqrt(sum((correctQ - beta0) ^ 2))
Spe_q = length(which(correctQ[Spe0] == 0)) / length(Spe0)
Sen_q = length(which(correctQ[Sen0] != 0)) / length(Sen0)

#############

NAIVE = rbind(NAIVE, c(L1_norm, L2_norm, Spe, Sen))
SIMEXL = rbind(SIMEXL, c(L1_norm_l, L2_norm_l, Spe_l, Sen_l))
SIMEXQ = rbind(SIMEXQ, c(L1_norm_q, L2_norm_q, Spe_q, Sen_q))

}
}

Numerical results under (1), (5), and (7) are placed in Tables 2-4, respectively. We observe that
the naive and corrected estimates are affected by the magnitudes of measurement error effects and
the dimension p. When values of p and sigma become large, the biases given by L1 and L2-norms are
increasing. For the comparison between the naive and corrected estimators, we can see that biases
produced by the naive estimator are significantly larger than those obtained by the corrected estimator.
In addition, for the variable selection result, the corrected estimator is able to correctly retain the infor-
mative covariates and exclude unimportant ones, except for some cases that one or two covariates may
be falsely included. On the contrary, we can observe from the naive method that values of Spe_naive
are always small while values of Sen_naive are equal to one. It indicates that the naive estimator
retains the truly important covariates, and meanwhile, includes a lot of unimportant ones, which
shows an evidence that the naive method fails to do variable selection. Finally, for the comparison
between two extrapolation functions, Extrapolation="linear" and Extrapolation="quadratic", we
observe that the specification of a linear extrapolation function has slightly better performance than
the case under a quadratic extrapolation function, especially when sigma is large.

While the proposed SIMEXBoost method can handle measurement error well, the main concern
is the computational time. According to the record of the system CPU time (in seconds) from the
R function proc.time() under the device ASUS DESKTOP-HJSD47S with the processor Intel(R)
Core(TM) i7-10700 CPU @ 2.90GHz, we find that, for each setting with fixed p and sigmae, the
proposed SIMEXBoost method requires 14.09 and 15.04 seconds under Extrapolation="linear" and
Extrapolation="quadratic" to derive the estimator for p = 200, respectively. Unsurprising, when
the dimension increases to p = 500, the computational times under Extrapolation="linear" and
Extrapolation="quadratic" are increasing to 17.70 and 19.68 seconds, respectively. On the other
hand, without measurement error correction under each setting, the naive method needs 12.98 and
15.71 seconds to derive the estimator for p = 200 and 500, yielding the slightly faster computational
time than the SIMEXBoost method. It might be due to the measurement error correction with the
involvement of Z and the number of repetitions B in Step 2 of Algorithm 2. As a result, we comment
that the SIMEXBoost method is able to address measurement error correction, but a slightly longer
computational time is the price that the users should pay for.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 15

Table 2: Simulation results for the model (1) with type="normal". “Naive” is the naive method
obtained by the function Boost_VSE. “SIMEXBoost-Linear” and “SIMEXBoost-Quadratic” refer to the
proposed method obtained by the function SIMEXBoost with the argument Extrapolation = "linear"
and Extrapolation = "quadratic", respectively. L1-norm and L2-norm are given by (12). Spe and
Sen are specificity and sensitivity, respectively.

p σe Methods L1-norm L2-norm Spe Sen
200 0.1 Naive 6.900 0.738 0.487 1.000

SIMEXBoost-Linear 0.116 0.099 1.000 1.000
SIMEXBoost-Quadratic 0.109 0.090 1.000 1.000

0.3 Naive 6.350 0.684 0.503 1.000
SIMEXBoost-Linear 0.101 0.072 1.000 1.000

SIMEXBoost-Quadratic 0.106 0.075 1.000 1.000
0.5 Naive 7.600 0.758 0.426 1.000

SIMEXBoost-Linear 0.257 0.182 1.000 1.000
SIMEXBoost-Quadratic 0.281 0.188 1.000 1.000

500 0.1 Naive 8.050 0.733 0.732 1.000
SIMEXBoost-Linear 0.054 0.051 1.000 1.000

SIMEXBoost-Quadratic 0.069 0.057 1.000 1.000
0.3 Naive 8.900 0.778 0.710 1.000

SIMEXBoost-Linear 0.300 0.187 1.000 1.000
SIMEXBoost-Quadratic 0.300 0.187 1.000 1.000

0.5 Naive 10.000 0.889 0.692 1.000
SIMEXBoost-Linear 0.600 0.354 1.000 1.000

SIMEXBoost-Quadratic 0.600 0.354 1.000 1.000

Table 3: Simulation results for the model (5) with type="poisson". “Naive” is the naive method
obtained by the function Boost_VSE. “SIMEXBoost-Linear” and “SIMEXBoost-Quadratic” refer to the
proposed method obtained by the function SIMEXBoost with the argument Extrapolation = "linear"
and Extrapolation = "quadratic", respectively. L1-norm and L2-norm are given by (12). Spe and
Sen are specificity and sensitivity, respectively.

p σe Methods L1-norm L2-norm Spe Sen
200 0.1 Naive 1.600 0.283 0.848 1.000

SIMEXBoost-Linear 0.208 0.126 1.000 1.000
SIMEXBoost-Quadratic 0.538 0.407 1.000 1.000

0.3 Naive 1.750 0.304 0.838 1.000
SIMEXBoost-Linear 0.178 0.129 1.000 1.000

SIMEXBoost-Quadratic 0.520 0.301 1.000 1.000
0.5 Naive 2.500 0.387 0.782 1.000

SIMEXBoost-Linear 0.366 0.230 1.000 1.000
SIMEXBoost-Quadratic 1.371 0.877 0.995 1.000

500 0.1 Naive 1.400 0.265 0.944 1.000
SIMEXBoost-Linear 0.096 0.087 1.000 1.000

SIMEXBoost-Quadratic 0.428 0.385 1.000 1.000
0.3 Naive 1.850 0.304 0.930 1.000

SIMEXBoost-Linear 0.354 0.236 1.000 1.000
SIMEXBoost-Quadratic 0.279 0.193 1.000 1.000

0.5 Naive 3.000 0.458 0.903 1.000
SIMEXBoost-Linear 0.554 0.393 1.000 1.000

SIMEXBoost-Quadratic 1.238 0.771 1.000 1.000

5.2 Real Data Example

In this section, we apply the package SIMEXBoost to analyze the Company Bankruptcy Prediction
data, which was from the Taiwan Economic Journal during a period 1999–2009, and it is now avail-
able on the Kaggle website (https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-
prediction). In this dataset, there are 6819 observations and 95 continuous covariates related to
customers’ banking records, such as assets, liability, income, and so on. In addition, the response is a
binary random variable, where the value 1 reflects that the company is bankrupt, and 0 otherwise. All
variables’ names and descriptions can be found on the Kaggle website. The main interest in this study
is to identify covariates that are informative to the bankruptcy status, and our goal is to apply (3) to
characterize the bankruptcy status and covariates.

In addition to detecting important covariates from the multivariate variables, as mentioned in Chen
(2023d), measurement error is ubiquitous in variables related to customers’ banking records. Hence,
one should take measurement error effects into account when doing variable selection. Following the
example of the simulation studies, we primarily consider two scenarios: first, without consideration of
measurement error, one can directly apply the function Boost_VSE to do variable selection. Second, if
we wish to implement the function SIMEXBoost and take measurement error correction into account,
the covariance matrix sigmae is needed. Since the dataset has no additional information to estimate Σe,
we may conduct sensitivity analyses, which enable us to characterize various degrees of measurement

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SIMEXBoost
https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction
https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction

CONTRIBUTED RESEARCH ARTICLE 16

Table 4: Simulation results for the model (7) with type="AFT-normal". “Naive” is the naive method
obtained by the function Boost_VSE. “SIMEXBoost-Linear” and “SIMEXBoost-Quadratic” refer to the
proposed method obtained by the function SIMEXBoost with the argument Extrapolation = "linear"
and Extrapolation = "quadratic", respectively. L1-norm and L2-norm are given by (12). Spe and
Sen are specificity and sensitivity, respectively.

p σe Methods L1-norm L2-norm Spe Sen
200 0.1 Naive 0.875 0.603 1.000 1.000

SIMEXBoost-Linear 0.378 0.232 1.000 1.000
SIMEXBoost-Quadratic 0.411 0.258 1.000 1.000

0.3 Naive 1.450 1.078 1.000 0.667
SIMEXBoost-Linear 0.400 0.247 1.000 1.000

SIMEXBoost-Quadratic 0.877 0.605 1.000 1.000
0.5 Naive 4.700 2.801 1.000 0.667

SIMEXBoost-Linear 1.614 1.179 0.995 1.000
SIMEXBoost-Quadratic 2.958 2.204 0.995 1.000

500 0.1 Naive 2.750 1.521 0.998 0.333
SIMEXBoost-Linear 0.959 0.560 1.000 1.000

SIMEXBoost-Quadratic 2.710 2.288 0.998 1.000
0.3 Naive 8.425 5.398 1.000 0.667

SIMEXBoost-Linear 0.949 0.554 1.000 1.000
SIMEXBoost-Quadratic 0.820 0.518 1.000 1.000

0.5 Naive 4.350 2.743 1.000 0.333
SIMEXBoost-Linear 2.541 1.364 0.998 0.667

SIMEXBoost-Quadratic 4.003 2.604 0.998 1.000

error and examine the different magnitudes of measurement error effects (e.g., Chen and Yi, 2021;
Chen, 2023d). Specifically, we specify Σe as a diagonal matrix with common entries being R = 0.1, 0.3
and 0.5, and the extrapolation function is taken as linear or quadratic functions in Algorithm 2.

To show the implementation of data analysis, we demonstrate the programming code below. For
the convenience of data analysis, we export the full dataset as a csv file, which is available in https://
github.com/lchen723/SIMEXBoost.git. One can download the dataset ‘bankruptcy_data.csv’. Based
on the dataset, we denote Y and Xstar as the response and the observed covariates, respectively. For
the naive method without measurement error correction, we adopt the function Boost_VSE with 50
iterations. For the implementation of sensitivity analyses, we use a ‘for’ loop for different values of R.
For each R, we run SIMEXBoost with type="binary" and two extrapolation functions Extrapolation
= "linear" and Extrapolation = "quadratic".

library(MASS)
library(SIMEXBoost)
R = c(0.1, 0.3, 0.5)
data = read.table("bankruptcy_data.csv", sep = ",", head = T)
data = data[, -94]
Y = data[, 95]
Y = as.numeric(Y)
Xstar = t(as.matrix(data[, -95]))
Xstar = scale(Xstar)

p = dim(Xstar)[1]
n = dim(Xstar)[2]

set.seed(202270)
##naive
EST = NULL
naive = Boost_VSE(Y,

t(Xstar),
type = "binary",
Iter = 50,
Lambda = 0)$BetaHat

EST = cbind(EST, naive)
##linear
for (i in R) {
correctL = SIMEXBoost(
Y,
t(Xstar),
zeta = c(0, 0.25, 0.5, 0.75, 1),
B = 50,
type = "binary",

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://github.com/lchen723/SIMEXBoost.git
https://github.com/lchen723/SIMEXBoost.git

CONTRIBUTED RESEARCH ARTICLE 17

sigmae = diag(i, p),
Iter = 50,
Lambda = 0,
Extrapolation = "linear"

)$BetaHatCorrect

EST = rbind(EST, t(correctL))
}
##Quadratic

for (i in R) {
correctQ = SIMEXBoost(
Y,
t(Xstar),
zeta = c(0, 0.25, 0.5, 0.75, 1),
B = 50,
type = "binary",
sigmae = diag(i, p),
Iter = 50,
Lambda = 0,
Extrapolation = "quadratic"

)$BetaHatCorrect

EST = rbind(EST, t(correctQ))
}
round(EST, 3)

Numerical results are summarized in Table 5, where the column “ID” is the indexes of selected
covariates, and the heading “EST” is the estimates of the coefficients. According to our analysis
results, we find that the covariate “Net Income to Stockholder’s Equity” (ID #90) is only one that
is commonly selected from Boost_VSE and SIMEXBoost under different values of R, which indicates
that the covariate #90 is an informative variable regardless of measurement error effects have been
corrected or not. For the corrected estimator with different R and extrapolation functions, we observe
that variables “Operating Profit Rate: Operating Income/Net Sales” (ID #6), “Pre-tax net Interest
Rate: Pre-Tax Income/Net Sales” (ID #7), “Continuous interest rate (after tax): Net Income-Exclude
Disposal Gain or Loss/Net Sales” (ID #10), and “Liability-Assets Flag” (ID #85) are selected, except for
the scenarios “Correct-L-0.3” and “Correct-L-0.5”. Moreover, different variables are selected under
different values of R. It might be due to the impact of different magnitudes of measurement error.
On the other hand, without measurement error correction, we observe from the naive estimator that
most selected variables are different from the proposed estimator, such as “Research and development
expense rate: (Research and Development Expenses)/Net Sales” (ID #12), “Tax rate (A): Effective Tax
Rate” (ID #15), “Per Share Net profit before tax (Yuan ¥): Pretax Income Per Share” (ID #23), “Total
Asset Growth Rate: Total Asset Growth” (ID #29), and “Cash Reinvestment %: Cash Reinvestment
Ratio” (ID #32), and those estimates are close to zero. It implies that noninformative variables are
possibly selected by the naive method if measurement error is not taken into account in analysis, and
it shows an impact of measurement error in data analysis.

Finally, we use the function proc.time() to record the system CPU time, and we find that the
function SIMEXBoost requires 3.84 and 3.50 seconds to run, under Extrapolation = "linear" and
Extrapolation = "quadratic" with a fixed R, respectively, while the function Boost_VSE needs 0.45
seconds to derive the estimates. Consistent with the finding in simulation studies, the SIMEXBoost
method requires slightly longer computational time than the naive method, which is caused by the
repetition of boosting procedure and SIMEX correction.

6 Discussion

The package SIMEXBoost provides a novel method for handling high-dimensional data subject to
measurement error in covariates. It covers widely used GLM and AFT models in survival analysis, and
provides a strategy to deal with variable selection and measurement error correction simultaneously.
Moreover, our package is able to handle the collinearity in the covariates. As evidence by longer
computational times in numerical studies, the function SIMEXBoost seems to be more computationally
demanding compared to the naive implementation, which is basically caused by settings of B andZ for
correction of measurement error. Typically, following the similar idea of the Monte Carlo simulation,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SIMEXBoost

CONTRIBUTED RESEARCH ARTICLE 18

Table 5: Variable selection and estimation for the Company Bankruptcy Prediction data based on the
model (3) and type="binary". “Naive” refers to the naive method based on Boost_VSE. “Correct-L-0.1”,
“Correct-L-0.3”, and “Correct-L-0.5” refer to the function SIMEXBoost with Extrapolation="linear"
and R = 0.1, 0.3 and 0.5, respectively. “Correct-Q-0.1”, “Correct-Q-0.3”, and “Correct-Q-0.5” refer to
the function SIMEXBoost with Extrapolation="quadratic" and R = 0.1, 0.3 and 0.5, respectively. The
label “−” indicates that the variables are not selected.

ID EST
Naive Correct-L-0.1 Correct-L-0.3 Correct-L-0.5 Correct-Q-0.1 Correct-Q-0.3 Correct-Q-0.5

6 − 0.400 − -0.383 3.025 1.781 2.296
7 − 0.474 − − 2.895 2.126 2.943
8 − 0.322 − -0.267 3.143 2.628 2.122
10 − 0.396 0.216 − 1.861 1.760 1.749
12 -0.050 − − − − − −
15 -0.050 − − − − − −
23 0.050 − − − − − −
25 − − − − -0.257 − −
29 -0.100 − − − − −
32 -0.050 − − − − −
37 − − -0.235 − 0.766 1.452 0.365
38 -0.150 − -0.307 − 1.604 1.679 0.404
43 0.050 − − − − − −
46 − -0.300 − − 0.257 − −
48 -0.050 − − − − − −
55 -0.050 − − − − − −
59 0.050 -0.300 − − -1.282 -1.285 −
64 -0.050 − − − − − −
65 − 0.306 0.300 − 0.916 1.261 −
68 -0.150 − − − − − −
74 -0.050 − − − − − −
77 -0.050 − − − − − −
84 0.050 − − − − − −
85 − -0.472 − 0.237 -6.365 -2.636 -2.956
86 -0.150 − − − − − −
87 − -0.300 − − -0.912 − −
90 -1.350 -1.518 -2.397 -2.433 1.613 -1.602 -3.668
94 0.200 0.240 − − -1.553 -1.532 -0.362

larger values of B and Z usually give the stable estimator but also incur longer computational time.
This is a common phenomenon in measurement error analysis and the SIMEX method (e.g., Yi, 2017).
In summary, users need to consider whether to take measurement error effects into account based on
their data and set arguments, such as B and Z , for the implementation based on their computational
resources.

The current state of the package allows for measurement error in continuous covariates and
parametric models for exponential family distributed responses or time-to-event outcomes. There are
still many possible extensions to the methods, such as consideration of measurement error in binary
covariates or measurement error in the response, variable selection for semi-parametric regression
models, including the Cox model in survival analysis or the partially linear single index model.

R Software

The R package SIMEXBoost is now available on the CRAN website (https://cran.r-project.org/
web/packages/SIMEXBoost/index.html).

Acknowledgments

The authors would like to thank the editorial team for useful comments to improve the initial
manuscript. Chen’s research was supported by National Science and Technology Council with
grant ID 110-2118-M-004-006-MY2.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SIMEXBoost
https://cran.r-project.org/web/packages/SIMEXBoost/index.html
https://cran.r-project.org/web/packages/SIMEXBoost/index.html

CONTRIBUTED RESEARCH ARTICLE 19

References

A. Agresti. Categorical Data Analysis. Wiley, New York, 2012. [p8]

E. Alfaro, M. Gamez, L. Garcia, N. Guo, A. Albano, M. Sciandra, and A. Plaia. adabag: Applies Multiclass
AdaBoost.M1, SAMME and Bagging, 2023. URL https://cran.r-project.org/package=adabag. R
package version 5.0. [p6]

K. Bartoszek. GLSME: Generalized Least Squares with Measurement Error, 2019. URL https://cran.r-
project.org/package=GLSME. R package version 1.0.5. [p6]

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, 2004. [p7]

B. Brown, C. J. Miller, and J. Wolfson. Threeboost: Thresholded boosting for variable selection and
prediction via estimating equations. Journal of Computational and Graphical Statistics, 26:579–588,
2017. [p5, 7]

R. J. Carroll, D. Ruppert, L. A. Stefanski, and C. M. Crainiceanu. Measurement Error in Nonlinear Model.
CRC Press, New York, 2006. [p5, 9]

L.-P. Chen. Feature screening based on distance correlation for ultrahigh-dimensional censored data
with covariate measurement error. Computational Statistics, 36:857–884, 2021. [p5]

L.-P. Chen. BOOME: A python package for handling misclassified disease and ultrahigh-dimensional
error-prone gene expression data. PLOS ONE, 17:e0276664, 2023a. [p6]

L.-P. Chen. A note of feature screening via rank-based coefficient of correlation. Biometrical Journal, 65:
2100373, 2023b. [p5]

L.-P. Chen. De-noising boosting methods for variable selection and estimation subject to error-prone
variables. Statistics and Computing, 33:38:1–13, 2023c. [p5, 6, 7]

L.-P. Chen. Variable selection and estimation for misclassified binary responses and multivariate
error-prone predictors. Journal of Computational and Graphical Statistics, 2023d. URL https://doi.
org/10.1080/10618600.2023.2218428. [p5, 15, 16]

L.-P. Chen and B. Qiu. Analysis of length-biased and partly interval-censored survival data with
mismeasured covariates. Biometrics, 79:3929–3940, 2023. [p5, 6, 7, 9]

L.-P. Chen and G. Y. Yi. Analysis of noisy survival data with graphical proportional hazards measure-
ment error models. Biometrics, 77:956–969, 2021. [p5, 9, 16]

T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell, I. Cano, T. Zhou,
M. Li, J. Xie, M. Lin, Y. Geng, Y. Li, J. Yuan, and X. contributors. xgboost: Extreme Gradient Boosting,
2023. URL https://cran.r-project.org/package=xgboost. R package version 1.7.5.1. [p6]

Y. Feng, J. Fan, D. F. Saldana, Y. Wu, and R. Samworth. SIS: Sure Independence Screening, 2020. URL
https://cran.r-project.org/package=SIS. R package version 0.8-8. [p6]

J. Friedman, T. Hastie, R. Tibshirani, B. Narasimhan, K. Tay, N. Simon, J. Qian, and J. Yang. glmnet:
Lasso and Elastic-Net Regularized Generalized Linear Models, 2023. URL https://cran.r-project.
org/package=glmnet. R package version 4.1-7. [p6]

B. Greenwell, B. Boehmke, J. Cunningham, and G. Developers. gbm: Generalized Boosted Regression
Models, 2022. URL https://cran.r-project.org/package=gbm. R package version 2.1.8.1. [p6]

A. Groll. GMMBoost: Likelihood-Based Boosting for Generalized Mixed Models, 2020. URL https://cran.r-
project.org/package=GMMBoost. R package version 1.1.3. [p6]

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction. Springer, New York, 2008. [p5, 6, 7]

B. Hofner, A. Mayr, N. Fenske, J. Thomas, and M. Schmid. gamboostLSS: Boosting Methods for ’GAMLSS’,
2023. URL https://cran.r-project.org/package=glmnet. R package version 4.1-7. [p6]

J. F. Lawless. Statistical Models and Methods for Lifetime Data. Wiley, New York, 2003. [p5, 8]

W. Lederer, H. Seibold, H. Küchenhoff, C. Lawrence, and R. F. Brøndum. simex: SIMEX- And MCSIMEX-
Algorithm for Measurement Error Models, 2019. URL https://cran.r-project.org/package=simex.
R package version 1.8. [p6]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://cran.r-project.org/package=adabag
https://cran.r-project.org/package=GLSME
https://cran.r-project.org/package=GLSME
https://doi.org/10.1080/10618600.2023.2218428
https://doi.org/10.1080/10618600.2023.2218428
https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=SIS
https://cran.r-project.org/package=glmnet
https://cran.r-project.org/package=glmnet
https://cran.r-project.org/package=gbm
https://cran.r-project.org/package=GMMBoost
https://cran.r-project.org/package=GMMBoost
https://cran.r-project.org/package=glmnet
https://cran.r-project.org/package=simex

CONTRIBUTED RESEARCH ARTICLE 20

L. Nab. mecor: Measurement Error Correction in Linear Models with a Continuous Outcome, 2021. URL
https://cran.r-project.org/package=mecor. R package version 1.0.0. [p6]

B. Qiu and L.-P. Chen. SIMEXBoost: Boosting Method for High-Dimensional Error-Prone Data, 2023. URL
https://cran.r-project.org/package=SIMEXBoost. R package version 0.2.0. [p6]

Y. Shi, G. Ke, D. Soukhavong, J. Lamb, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y.
Liu, N. Titov, Y. Yan, M. Corporation, I. Dropbox, J. Loden, D. Daeschler, G. Rodola, A. Ferreira,
D. Lemire, V. Zverovich, I. Corporation, and D. Cortes. lightgbm: Light Gradient Boosting Machine,
2023. URL https://cran.r-project.org/package=lightgbm. R package version 3.3.5. [p6]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of Royal Statistical Society, Series
B, 58:267–288, 1996. [p5]

Z. Wang and T. Hothorn. bst: Gradient Boosting, 2023. URL https://cran.r-project.org/package=
bst. R package version 0.3-24. [p6]

J. Wolfson. Eeboost: a general method for prediction and variable selection based on estimating
equation. Journal of the American Statistical Association, 106:296–305, 2011. [p5, 7]

J. Xiong, W. He, and G. Y. Yi. simexaft: simexaft, 2019. URL https://cran.r-project.org/package=
simexaft. R package version 1.0.7.1. [p6]

G. Y. Yi. Statistical Analysis with Measurement Error and Misclassication: Strategy, Method and Application.
Springer, New York, 2017. [p18]

Q. Zhang and G. Y. Yi. augSIMEX: Analysis of Data with Mixed Measurement Error and Misclassification in
Covariates, 2020. URL https://cran.r-project.org/package=augSIMEX. R package version 3.7.4.
[p6]

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101:
1418–1429, 2006. [p5]

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B, 67:301–320, 2005. [p5]

Li-Pang Chen
Department of Statistics, National Chengchi University
No. 64, Section 2, Zhinan Rd, Wenshan District, Taipei City, 116
Taiwan (R.O.C.)
ORCiD: 0000-0001-5440-5036
lchen723@nccu.edu.tw

Bangxu Qiu
Department of Statistics, National Chengchi University
No. 64, Section 2, Zhinan Rd, Wenshan District, Taipei City, 116
Taiwan (R.O.C.)
1135427976@qq.com

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://cran.r-project.org/package=mecor
https://cran.r-project.org/package=SIMEXBoost
https://cran.r-project.org/package=lightgbm
https://cran.r-project.org/package=bst
https://cran.r-project.org/package=bst
https://cran.r-project.org/package=simexaft
https://cran.r-project.org/package=simexaft
https://cran.r-project.org/package=augSIMEX
https://orcid.org/0000-0001-5440-5036
mailto:lchen723@nccu.edu.tw
mailto:1135427976@qq.com

CONTRIBUTED RESEARCH ARTICLE 21

binGroup2: Statistical Tools for Infection
Identification via Group Testing
by Christopher R. Bilder, Brianna D. Hitt, Brad J. Biggerstaff, Joshua M. Tebbs, and Christopher S.
McMahan

Abstract Group testing is the process of testing items as an amalgamation, rather than separately, to
determine the binary status for each item. Its use was especially important during the COVID-19
pandemic through testing specimens for SARS-CoV-2. The adoption of group testing for this and
many other applications is because members of a negative testing group can be declared negative with
potentially only one test. This subsequently leads to significant increases in laboratory testing capacity.
Whenever a group testing algorithm is put into practice, it is critical for laboratories to understand the
algorithm’s operating characteristics, such as the expected number of tests. Our paper presents the
binGroup2 package that provides the statistical tools for this purpose. This R package is the first to
address the identification aspect of group testing for a wide variety of algorithms. We illustrate its use
through COVID-19 and chlamydia/gonorrhea applications of group testing.

1 Introduction

The COVID-19 pandemic showed the need for accessible, fast, and reliable testing for severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and for infections in general. To meet this need,
many laboratories turned to the use of group testing. Group testing—also known as pooled testing,
specimen pooling, batch testing, and bulk testing—involves combining portions of multiple specimens
from different individuals into a “group” and testing this group as if it were a single specimen. If the
group tests negative, all individuals represented within it generally can be declared negative. Thus,
for a group of size 10, it takes only one test to determine whether all 10 individuals are infection free,
whereas it would take 10 tests if each specimen was tested separately. Alternatively, if a group tests
positive, retesting in some form is needed to determine who is positive or negative within the group.
Dorfman (1943) proposed the original retesting method that involved simply retesting each group
member separately using the remaining portions of their specimens. Since this seminal paper, many
other group testing algorithms have been proposed. These algorithms are categorized into hierarchical
and non-hierarchical approaches corresponding to whether specimens are tested in non-overlapping
or overlapping groups, respectively, at each stage of the algorithm (Hitt et al. 2019).

A large number of research papers (see e.g. Abdalhamid et al. 2020; Hogan et al. 2020; Barathidasan
et al. 2022), articles in the news media (see e.g. Abdelmalek 2020; Mandavilli 2020; Anthes 2022),
and Emergency Use Authorizations given by the US Food and Drug Administration (LabCorp 2022;
Verily Life Sciences 2022; Yale University 2022) showed that group testing was one of the important
tools available to mitigate the crisis caused by COVID-19. Our new binGroup2 package for the
R software environment provides the statistical tools that researchers and laboratories need for
group testing. This package is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=binGroup2. By its name, one can surmise that it is the second
large-scale implementation of the package. The binGroup package (Bilder et al. 2010b) focused on
estimation using the unique type of data that arises through group testing. Its applications ranged
from estimating an overall infection prevalence to estimating a regression model for individual-specific
infection probabilities as a function of risk factors. Bilder et al. (2010b) encouraged researchers to
provide new functions so that there would be one main package for group testing in R. This resulted in
new functions for estimation and a few functions focused on the identification aspect of group testing
(i.e., determine a positive/negative outcome for each individual). Over time, these additions resulted
in many different syntax styles among functions, making use of the package inconsistent and more
difficult. The new binGroup2 package was created to unify function syntax and, most importantly, to
incorporate a new suite of functions for identification. These new functions provide the information
that laboratories need to increase their testing capacity to its fullest potential.

Our paper focuses on these identification functions of binGroup2 because they represent the
main new contribution of the package. There are two other R packages on CRAN that also examine
the identification aspect of group testing but for different settings. First, the gtcorr package (Lendle
2011; archived in 2022) examines hierarchical and non-hierarchical algorithms for a homogeneous
population when there is a constant correlation among individuals within a group. This package
implements the work of Lendle et al. (2012) that uses single-infection assays only. Second, the mMPA
package (Liu and Xu 2018) examines three hierarchical algorithms, where two are for homogeneous
populations and one is for heterogeneous populations. This package implements the work of Liu

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=binGroup2
https://CRAN.R-project.org/package=binGroup2
https://CRAN.R-project.org/package=binGroup2
https://CRAN.R-project.org/package=binGroup
https://CRAN.R-project.org/package=binGroup2
https://CRAN.R-project.org/package=binGroup2
https://CRAN.R-project.org/package=mMPA

CONTRIBUTED RESEARCH ARTICLE 22

3030

1010 Individual
testing

Individual
testing

1010 Individual
testing

Individual
testing

1010 Individual
testing

Individual
testing

Figure 1: The hierarchical testing algorithm of Lohse et al. (2020).

et al. (2017) for single-infection assays that return an additive count outcome (e.g., viral load) when
applied to a group. Both gtcorr and mMPA are useful for their specialized situations. Our package
encompasses a total of 27 different algorithms that include homogeneous/heterogeneous populations
and hierarchical/non-hierarchical algorithms. These algorithms are constructed for the most common
setting of a binary test response (positive/negative) from independent individuals within a group.
We allow for the possibility of testing error and single or multiple-infection assays. Our package
implements the work of more than ten papers on the identification aspect of group testing (e.g., Kim
et al. 2007; McMahan et al. 2012b; Hou et al. 2020).

An outline of our paper is as follows. The next section provides a review of group testing algorithms
that are commonly used by laboratories. The third section discusses how to calculate important
operating characteristics, such as the expected number of tests, for a group testing algorithm by using
binGroup2. This section also demonstrates how one can choose the most efficient implementation of
an algorithm. Finally, we conclude with an overview of changes to estimation functions and future
extensions of the package. Throughout our text, we phrase our discussion in the context of testing
humans for infectious diseases. Applications of group testing for this purpose outside of COVID-19
include testing for influenza (Van et al. 2012), gonorrhea (Ando et al. 2021), HIV (Kim et al. 2014),
and West Nile virus (American Red Cross 2023). The package can also be used in a wide variety of
other areas where group testing is implemented, such as infectious disease testing for farm animals
(Nebraska Veterinary Diagnostic Center 2023), detection of human exposure to pollutants (Thai et al.
2020), determination of virus presence in insect carriers (Zhao and Rosa 2020), development of new
pharmaceuticals (Salzer et al. 2016), and security of computer networks (Thai 2011).

2 Algorithms

Laboratories select a group testing algorithm by examining 1) the expected number of tests needed
to make a positive/negative determination for every individual, 2) the expected accuracy of the
positive/negative determinations, 3) the information available on individuals tested, and 4) the ease
of implementation. The binGroup2 package provides computations needed to address 1) through
3), while laboratories need to address 4) relative to their work environment. Overall, there is not one
group testing algorithm that is best for all situations, which has resulted in many different hierarchical
and non-hierarchical algorithms being used in practice.

2.1 Hierarchical algorithms

Hierarchical group testing algorithms involve testing a group and splitting its members into smaller,
non-overlapping sub-groups for retesting if the original group tests positive. These sub-groups are
split further whenever they test positive. If a group/sub-group tests negative, its members are declared
negative, so that no further testing is performed upon them. Overall, testing can continue until each
group member is tested separately.

A recent example of a hierarchical algorithm comes from Lohse et al. (2020) to test for SARS-CoV-2
(see Figure 1). Individuals were put into non-overlapping groups of size 30. If a group tested positive,
three non-overlapping groups of size 10 were formed from its members. If one of these sub-groups
tested positive, each of its members were retested separately (i.e., individual testing). This hierarchical
algorithm is referred to as a three-stage algorithm because three distinct stages are defined for it.

Hierarchical algorithms can have more or fewer stages than used by Lohse et al. (2020). For
example, Abdalhamid et al. (2020) used two stages for SARS-CoV-2 detection by testing in groups
of size 5 and subsequently retesting each member of a positive group separately. More than three
stages are possible as well, but applications are much rarer because of logistics, larger chance for error,
and delay in obtaining the positive/negative individual outcomes. With respect to the last reason,
this delay can be significant for nucleic acid amplification tests which can take hours to complete.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=mMPA
https://CRAN.R-project.org/package=binGroup2
https://CRAN.R-project.org/package=binGroup2

CONTRIBUTED RESEARCH ARTICLE 23

+ +

+

+

–
Column
groups

+

+ – –– –– ––

–
+

+
–
–
–
–
–
+

–

Row
groups

Figure 2: The array testing algorithm of LabCorp (2022). Circles within the square represent specimen
locations. Row and column groups are formed from the specimens with two each testing positive.
The intersections of these positive rows and columns indicate which specimens need to be retested
(filled-in circles).

For example, the Centers for Disease Control and Prevention’s assay to detect SARS-CoV-2 takes
approximately four hours to complete.

2.2 Non-hierarchical algorithms

Non-hierarchical algorithms were developed to minimize the number of retests needed after an initial
stage of testing. The most prominent of these algorithms is referred to as array testing (also known
as matrix pooling). For this algorithm, specimens are arranged in a grid (see Figure 2). Groups are
formed by row and by column, and each of these groups are subsequently tested. Specimens that lie
at the intersections of positive testing rows and positive testing columns are retested separately in
a second stage to determine a positive/negative outcome for each of them. All other specimens are
declared negative. Because the accuracy of infectious disease assays is not perfect, ambiguities may
occur, resulting in positive rows (columns) without any positive columns (rows). In those situations,
members of positive rows (columns) should be retested separately (Kim et al. 2007). A recent example
of an array testing algorithm is the use of a 5× 5 array by LabCorp for SARS-CoV-2 detection (LabCorp
2022).

Array testing has a number of variants in application. For example, a master group containing
portions of all specimens within an array can be tested first. If this master group is negative, all
individuals are quickly declared negative. If the master group is positive, row and column groups are
tested as usual.

2.3 Additional considerations

The probability an individual has an infection plays a very important role in determining the number
of tests needed by any group testing algorithm. For a homogeneous population of individuals tested,
we can define p as this probability. Equivalently, this p is the overall infection prevalence. In general,
the lower (higher) the p, the lower (higher) the expected number of tests needed for group testing (see
e.g. Figure 3 of Kim et al. (2007) and Table 1 of Bilder et al. (2021a)).

In many situations, additional information is available on each individual to be tested. This
information can be used to determine an individual-specific probability of an infection, say pi, which
can be incorporated into the group testing algorithm to reduce the number of tests (Bilder et al. 2010b;
Lewis et al. 2012). For example, testing is performed by public health laboratories across the United
States for Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG), the bacteria that lead to chlamydia
and gonorrhea, respectively. Clinics collecting specimens also obtain important information on their
patients, including recent sexual history and whether a patient has symptoms, and this information
can be incorporated into a statistical model to estimate individual-specific probabilities of infection.
In general, group testing algorithms that take advantage of this type of additional information are
referred to as being “informative” hierarchical/non-hierarchical algorithms (McMahan et al. 2012a;
McMahan et al. 2012b).

Group testing algorithms can also be used with multiplex assays. Thus, rather than testing for
only one infection, multiple infections can be detected simultaneously. For example, Roche was the
first to receive an Emergency Use Authorization for their SARS-CoV-2 and influenza multiplex assay
(Roche 2020). Also, the widely adopted Aptima Combo 2 Assay (Hologic 2023) is used for CT and NG
detection via group testing. Algorithms with multiplex assays are implemented in the same way as for

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 24

single-infection assays, but now a group that tests positive for at least one infection leads to retesting
for all infections in the next stage. For example, if a group tests positive for CT and negative for NG
in a two-stage hierarchical algorithm, each group member is retested for both bacteria in the second
stage. Testing is performed in this manner, rather than retesting for CT only, because of the dedicated
testing platforms used.

3 Identification

Identifying infected individuals is most often the primary goal of infectious disease testing. Prior
to implementing a particular group testing algorithm for this purpose, laboratories need to know
the expected number of tests. This information is used for planning purposes to make sure enough
resources and staff are available to implement testing. Because cost is often directly proportional to
the number of tests, the expected number of tests can be used for budgeting purposes as well.

Define T as the number of tests required to determine the positive/negative outcomes for I
individuals. These I individuals may be those represented within one initial group for hierarchical
testing or in one array for array testing. For the simplest algorithm, two-stage hierarchical testing,
suppose a single-infection assay is applied to a homogeneous population. The expected number of
tests is

E(T) = 1 + I
[
S(1)

e + (1 − S(1)
p − S(1)

e)(1 − p)I
]

,

where S(1)
e and S(1)

p are the first-stage sensitivity and specificity, respectively, of the assay. This
expression includes a leading 1 because a single group test starts the testing process. The I outside
of the square brackets is for the separate tests performed on each individual when the group tests
positive (which has the probability given within the square brackets; see Kim et al. (2007) and Bilder
(2019)). Expressions for E(T) become much more complicated with other group testing algorithms.
This is especially the case for informative algorithms and when multiplex assays are used. We refer
interested readers to the works of Kim et al. (2007), McMahan et al. (2012a), McMahan et al. (2012a),
Black et al. (2015), Bilder et al. (2019), and Hou et al. (2020) for specific expressions and calculation
details.

The efficiency of a group testing algorithm is expressed typically as the expected number of tests
per individual E(T)/I, rather than E(T) alone, so that comparisons can be made for different I. The
optimal testing configuration (OTC) is the group size or set of group sizes needed by a single algorithm
to minimize E(T)/I. This testing configuration represents the most efficient process to implement
group testing. In other words, it is the group size(s) that increases a laboratory’s testing capacity to its
fullest potential, because resources saved from its application can be used to test more specimens by
the same algorithm. Unfortunately, closed form expressions for the OTC do not exist, but grid searches
are sufficient to find it. Note that group testing is more efficient than initially testing each individual
separately when E(T)/I<1. This is simply because testing each individual separately results in 1 test
per individual.

Accuracy is also important to examine for group testing algorithms. This includes the pooling
sensitivity, the probability a truly positive individual is found to be positive from the group testing
algorithm, and the pooling specificity, the probability a truly negative individual is found to be
negative from the group testing algorithm. These probabilities are not necessarily equal to an assay’s
stated sensitivity and specificity because individuals are tested in one or more groups. For example,

the pooling sensitivity for a two-stage hierarchical algorithm can be shown to be S(1)
e S(2)

e , where

S(2)
e is the sensitivity of the assay at the second stage (Johnson et al. 1991, Kim et al. 2007, and Hitt

2020). Expressions for these accuracy measures corresponding to other algorithms are available in the
previously mentioned references for E(T).

One issue related to accuracy is what is known as the dilution effect that sometimes can reduce
the sensitivity of a group test. If the same sample volume is used for a group and individual test, the
dilution effect can occur because each individual is represented by a smaller portion in the group
than if each individual was tested separately. For example, Abdalhamid et al. (2020) used a sample
volume of 250µL for a group of size 5 with each individual contributing 50µL. In their validation
study, specimens were tested one at a time using a sample volume of 250µL. Thus, there can be less
pathogen present for the test performed upon the group than for a test performed upon a single
specimen. Bilder et al. (2021b) discussed the potential dilution effect and solutions for it. In summary,
the resulting outcome from the dilution effect is often known for assays (Tan et al. 2020), like for those
using real-time reverse transcription polymerase chain reaction (RT-qPCR) which was widely used for
SARS-CoV-2 testing. This effect can be accounted for by specifying a smaller value for a group test
sensitivity when computing E(T). Alternatively, the process for applying the assay can be changed so

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 25

Table 1: Values for algorithm in opChar1() and opChar2(). A five-stage informative hierarchical
algorithm (ID5) is also available for two infections. Informative array testing is not included for
opChar2() because closed-form expressions of operating characteristics have not been proposed in the
literature.

algorithm Description
A2 Array testing
A2M Array testing with master group
D2 Two-stage hierarchical
D3 Three-stage hierarchical
D4 Four-stage hierarchical
IA2 Informative array testing
ID2 Two-stage, informative hierarchical
ID3 Three-stage, informative hierarchical
ID4 Four-stage, informative hierarchical

that there is not a reduction in the sensitivity (Abdalhamid et al. 2020, Sanghani et al. 2021).

3.1 Main functions

There are two main sets of functions in binGroup2 used for identification. First, the opChar1() and
opChar2() functions calculate operating characteristics for a group testing algorithm. These functions
are for single-infection and two-infection assays, where the number in the name designates the number
of infections. Calculations for three or more infection assays are discussed in the concluding section of
the paper. The syntax for opChar1() is

opChar1(algorithm, p = NULL, probabilities = NULL, Se = 0.99,
Sp = 0.99, hier.config = NULL, rowcol.sz = NULL, alpha = 2,
a = NULL, print.time = TRUE, ...)

The required algorithm argument specifies the chosen group testing algorithm. Possible values for
this argument are listed in Table 1. For example, a value of "D2" indicates two-stage hierarchical
testing in a homogeneous population (the “D” is for its originator, Robert Dorfman). The remaining
arguments are dependent on the algorithm chosen or are optional. To indicate the probability of an
infection, a scalar can be given for p or a vector of potentially different probabilities for each individual
can be given for probabilities. Rather than providing a specific vector of probabilities, the p and
alpha arguments can be used together for informative group testing algorithms to specify a beta
distribution from which the expected values of order statistics are found. For this case, p represents
the expected value of a beta random variable and alpha represents a shape parameter. This type of
specification is helpful when probabilities of infection can be characterized well by a beta distribution.

For hierarchical algorithms, a group membership matrix (Bilder et al. 2019) must be provided
for hier.config to detail the testing of each individual. In this matrix, the rows correspond to the
stages of testing, the columns correspond to each individual to be tested, and the cell values specify
the group number of each individual at each stage. We provide an example of its use shortly. For
non-hierarchical algorithms, the rowcol.sz argument must be provided for the row and column size
of a square array.

Additional arguments include Se and Sp for the sensitivity and specificity of the assay, respectively.
If a single value is given for one of these arguments, this value is used for each stage. Otherwise, a
vector of values can be given in order of stage. The a argument specifies individuals for which to
compute accuracy measures. By default, accuracy measures are computed for all individuals. Finally,
print.time allows users to turn off information regarding the duration of calculations.

The opChar2() function follows a similar syntax so we do not provide it here. The main difference
involves p becoming a vector of joint probabilities of infection. For example, p = (0.90,0.03,0.02,0.05)
represents (p−−, p+−, p−+, p++), where pab is the probability of being positive/negative (+/−) for in-
fections a and b. Also, the probabilities argument value becomes a 4× I matrix of these probabilities.
Similarly, the alpha argument becomes the parameter vector for a Dirichlet distribution.

The second set of functions are OTC1() and OTC2() that find the OTC corresponding to single-
infection and two-infection assays, respectively. The syntax for OTC1() is

OTC1(algorithm, p = NULL, probabilities = NULL, Se = 0.99, Sp = 0.99,
group.sz, obj.fn = "ET", weights = NULL, alpha = 2, trace = TRUE,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=binGroup2

CONTRIBUTED RESEARCH ARTICLE 26

print.time = TRUE, ...)

The syntax is similar to opChar1() as well, so we highlight the main differences only. There is no
group membership matrix or row/column size specified because OTC1() searches for the OTC. Instead,
the group.sz argument specifies the initial group sizes to search over. For example, a value of 3:10
searches over initial group sizes of 3 to 10 for hierarchical testing or array testing (row/column size).

The obj.fn argument of OTC1() indicates which objective function to minimize when searching
for the OTC. Earlier in this section, we focused on using the expected number of tests per individual
as this objective function (obj.fn = "ET"). While this is used most often in practice, other objective
functions are possible (Hitt et al. 2019). For example, Graff and Roeloffs (1972) proposed to minimize a
linear combination of the expected number of tests and the number of misclassified individuals (false
positives, false negatives). This objective function is specified using "GR", and the coefficients in this
linear combination are given in the weights argument.

The OTC2() function follows a similar syntax as OTC1() with changes like those for opChar2() com-
pared to opChar1(). We next provide examples using these functions for group testing applications.

3.2 Operating characteristics

We illustrate the use of opChar1() for the three-stage hierarchical testing algorithm of Lohse et al.
(2020). The group membership matrix for this application is the 3 × 30 matrix below.

> group.member <- matrix(data = c(rep(1, times = 30), rep(1:3, each = 10),
1:30), nrow = 3, ncol = 30, byrow = TRUE)

> group.member[, 11]

[1] 1 2 11

For example, the 11th individual is tested initially in a group of size 30 that includes every specimen
(one group overall). In the second stage, this individual is tested in the second sub-group of 10
individuals if its first-stage group is positive. In the third stage, this individual is tested separately if
its second-stage group is positive.

We need to specify p or pi for each individual. In actual practice, these values will be unknown.
However, very good point estimates are usually available from past testing results in high volume
clinical specimen settings where group testing is used. For the Lohse et al. (2020) application, the
observed prevalence of SARS-CoV-2 was 0.0193, so we use this value here for p. By specifying "D3"
for algorithm to represent three-stage hierarchical testing, we invoke opChar1() as follows.

> library(package = "binGroup2")
> save.Lohse <- opChar1(algorithm = "D3", p = 0.0193, Se = 1, Sp = 1,

hier.config = group.member, print.time = FALSE)
> summary(save.Lohse)

Algorithm: Non-informative three-stage hierarchical testing

Testing configuration:
Stage 1: 30
Stage 2: 10,10,10

Expected number of tests: 7.64
Expected number of tests per individual: 0.2547

Accuracy for individuals:
PSe PSp PPPV PNPV Individuals

1 1.0000 1.0000 1.0000 1.0000 All

Overall accuracy of the algorithm:
PSe PSp PPPV PNPV

1 1.0000 1.0000 1.0000 1.0000

PSe denotes the pooling sensitivity.
PSp denotes the pooling specificity.
PPPV denotes the pooling positive predictive value.
PNPV denotes the pooling negative predictive value.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 27

The sensitivity (Se) and the specificity (Sp) are set to 1 for each stage because the assay accuracy is not
stated in Lohse et al. (2020) or in the product insert of the assay (Altona Diagnostics 2023). While the
algorithm’s accuracy values produced will not be useful, this approach is often followed in practice to
focus on the expected number of tests regardless of false positives/negatives.

The generic summary() function uses the corresponding method function for the class to summarize
the operating characteristics. For example, the expected number of tests per individual is E(T)/I =
0.2547. A more compact summary based on the expected number of tests is available with ExpTests().

> ExpTests(save.Lohse)

ExpTests ExpTestsPerIndividual PercentReductionTests PercentIncreaseTestCap
1 7.6403 0.2547 74.53 292.66

Group testing requires 1− E(T)/I = 75% fewer tests on average than testing each specimen separately.
In turn, this leads to a 100{1/[E(T)/I]− 1}% = 293% increase in testing capacity on average when
applying the algorithm to a continuous stream of specimens. This type of large increase in testing
capacity is why laboratories implemented group testing during the COVID-19 pandemic.

Our second example focuses on the Aptima Combo 2 Assay and its use by the State Hygienic
Laboratory (SHL) at the University of Iowa. The SHL tests thousands of female swab specimens
each year in groups of size four using a two-stage hierarchical algorithm. We focus here instead on
their male urine specimens because group testing is not currently implemented. The reason is due to
concern that their infection prevalence may be too large for group testing to be beneficial. Bilder et al.
(2019) provided a Dirichlet distribution with parameter vector α = (10.99, 0.18, 2.04, 0.31) to describe a
vector of the joint probabilities of infection for CT and NG that take into account risk factors, such
as symptoms and exposure to an infected individual. Using a first-stage group size of 5, we want
to calculate how well three-stage hierarchical testing would perform when allowing for differences
among probabilities of infection for individuals. To begin, we simulate what one potential set of
probabilities of infection could be using the Dirichlet distribution and the rdirichlet() function of
the rBeta2009 package (Cheng et al. 2012). These probabilities are ordered by the probability of having
at least one infection.

> library(package = "rBeta2009")
> set.seed(3789)
> p.unordered <- t(rdirichlet(n = 5, shape = c(10.99, 0.18, 2.04, 0.31)))
> p.ordered <- p.unordered[, order(1 - p.unordered[1,])]
> round(p.ordered, 4)

[,1] [,2] [,3] [,4] [,5]
[1,] 0.9714 0.8841 0.8356 0.8291 0.7009
[2,] 0.0001 0.0006 0.0000 0.0238 0.0000
[3,] 0.0274 0.0879 0.1643 0.1292 0.2991
[4,] 0.0011 0.0274 0.0001 0.0178 0.0000

Next, we create the group membership matrix for three-stage informative hierarchical testing
using the OTC found in Bilder et al. (2019). Because individuals 4 and 5 are tested separately in the
second stage, a NA is used for them in the third stage of the group membership matrix.

> group.member <- matrix(data = c(rep(1, times = 5), 1, 1, 1, 2, 3, 1, 2,
3, NA, NA), nrow = 3, ncol = 5, byrow = TRUE)

> group.member

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 1 1 1 2 3
[3,] 1 2 3 NA NA

Lastly, the opChar2() function calculates the operating characteristics for the algorithm. The Se
and Sp matrices provide the sensitivity and specificity values, respectively, for each infection at each
stage (ICBSS 2014). Because these accuracies are equal across the stages, the sensitivity (specificity)
for CT and NG could be instead included as a single vector of length 2 for the Se (Sp) argument of
opChar2(). Alternatively, if accuracies were different across stages, the full matrices provide a general
way to include this information.

> Se <- matrix(data = rep(c(0.979, 0.985), times = 3), nrow = 2, ncol = 3,
dimnames = list(Infection = 1:2, Stage = 1:3))

> Sp <- matrix(data = rep(c(0.985, 0.996), times = 3), nrow = 2, ncol = 3,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=rBeta2009

CONTRIBUTED RESEARCH ARTICLE 28

dimnames = list(Infection = 1:2, Stage = 1:3))
> save.SHL <- opChar2(algorithm = "ID3", probabilities = p.ordered, Se = Se,

Sp = Sp, hier.config = group.member, print.time = FALSE)
> summary(save.SHL)

Algorithm: Informative three-stage hierarchical testing

Testing configuration:
Stage 1: 5
Stage 2: 3,1,1

Expected number of tests: 3.59
Expected number of tests per individual: 0.7182

Disease 1 accuracy for individuals:
PSe PSp PPPV PNPV Individuals

1 0.9770 0.9958 0.2111 1.0000 1
2 0.9778 0.9961 0.8784 0.9994 2
3 0.9784 0.9958 0.0124 1.0000 3
4 0.9729 0.9915 0.8330 0.9988 4
5 0.9787 0.9913 0.0012 1.0000 5

Disease 2 accuracy for individuals:
PSe PSp PPPV PNPV Individuals

1 0.9585 0.9990 0.9643 0.9988 1
2 0.9633 0.9992 0.9940 0.9952 2
3 0.9575 0.9994 0.9969 0.9917 3
4 0.9725 0.9979 0.9879 0.9953 4
5 0.9714 0.9984 0.9961 0.9879 5

Overall accuracy of the algorithm:
PSe PSp PPPV PNPV

1 0.9749 0.9941 0.7039 0.9996
2 0.9669 0.9988 0.9931 0.9941

PSe denotes the pooling sensitivity.
PSp denotes the pooling specificity.
PPPV denotes the pooling positive predictive value.
PNPV denotes the pooling negative predictive value.

The expected number of tests per individual is 0.7182. Because this value is less than 1, group
testing would be more efficient on average than testing each individual separately. The PSe and PSp
values in the output are the pooling sensitivity and specificity, respectively. Additionally, values are
given for the pooling positive predictive value (PPPV) and the pooling negative predictive value
(PNPV; see Altman and Bland (1994) and Hitt et al. (2019)).

Of course, not every set of 5 individuals has these 5 joint probabilities of infection. When this
group testing algorithm was applied to the data from which the Dirichlet distribution was estimated,
Bilder et al. (2019) showed that the number of tests decreased by approximately 26% on average.

3.3 Optimal testing configuration

Returning to the three-stage hierarchical algorithm of Lohse et al. (2020), suppose again that p = 0.0193.
The OTC is found using the following code.

> OTC.Lohse <- OTC1(algorithm = "D3", p = 0.0193, Se = 1, Sp = 1,
group.sz = 3:20, obj.fn = "ET", print.time = FALSE)

Initial Group Size = 3
Initial Group Size = 4
Initial Group Size = 5
Initial Group Size = 6
Initial Group Size = 7
Initial Group Size = 8

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 29

Initial Group Size = 9
Initial Group Size = 10
Initial Group Size = 11
Initial Group Size = 12
Initial Group Size = 13
Initial Group Size = 14
Initial Group Size = 15
Initial Group Size = 16
Initial Group Size = 17
Initial Group Size = 18
Initial Group Size = 19
Initial Group Size = 20

> summary(OTC.Lohse)

Algorithm: Non-informative three-stage hierarchical testing

Optimal testing configuration:
Stage 1 Stage 2

ET 16 4,4,4,4

Expected number of tests:
E(T) Value

ET 3.27 0.2045

E(T) denotes the expected number of tests.
Value denotes the objective function value per individual.

Overall accuracy of the algorithm:
PSe PSp PPPV PNPV

ET 1.0000 1.0000 1.0000 1.0000

PSe denotes the pooling sensitivity.
PSp denotes the pooling specificity.
PPPV denotes the pooling positive predictive value.
PNPV denotes the pooling negative predictive value.

The summary() function summarizes the OTC. The first-stage group size is 16, the second stage has
4 groups of size 4, and the third stage uses individual testing. The expected number of tests per
individual is 0.2045. Therefore, the OTC decreases the expected number of tests per individual further
by almost 20% (= (0.2547 − 0.2045)/0.2547) over the testing configuration used by Lohse et al. (2020).
In terms of expected test capacity, one can show with ExpTests(OTC.Lohse) that the OTC leads to a
389% increase in testing capacity when compared to testing each specimen separately. Again, this is
significantly better than the testing configuration chosen by Lohse et al. (2020) and helps to show the
importance of choosing a testing configuration.

The OTC1() function searches for the optimal set of group sizes at each first-stage group size
specified in the group.sz argument. By default, the function’s progress is printed during its running
(trace = TRUE). We take this approach to finding the OTC, rather than optimizing over all group
sizes initially, because a laboratory may prefer a sub-optimal testing configuration due to their
work environment. The Config() function provides information about these sub-optimal testing
configurations. This function extracts each of the best testing configurations by initial group size and
returns them as a data frame sorted by the value of the objective function (E(T)/I because the default
was used in OTC1()).

> Config(OTC.Lohse)

I config ET value PSe PSp PPPV PNPV
1 16 4,4,4,4 3.2714 0.2045 1 1 1 1
2 17 5,4,4,4 3.4922 0.2054 1 1 1 1
3 15 4,4,4,3 3.0842 0.2056 1 1 1 1
4 20 4,4,4,4,4 4.1138 0.2057 1 1 1 1
5 19 4,4,4,4,3 3.9176 0.2062 1 1 1 1

Adding top.overall = TRUE to Config() provides the same information but with the top testing
configurations overall rather than for each initial group size.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 30

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prevalence

E
xp

ec
te

d
nu

m
be

r
of

 te
st

s
pe

r
in

di
vi

du
al

Lohse et al. (2020) with 30−10−1
Three−stage hierarchical testing with optimal group sizes
Two−stage hierarchical testing with optimal group sizes

Figure 3: Expected number of tests per individual as a function of infection prevalence. Three-stage
hierarchical testing using the OTC is not plotted for prevalences greater than 0.10 because two stages
results in a lower expected number of tests.

The most efficient outcome from the OTC depends on the chosen value of p. As mentioned earlier
in this section, very good point estimates for p are often available. Still, it would be of interest to
determine what would occur for other choices of p. The binGroup2 package provides the tools needed
by experienced R users for this more in depth examination. Our Appendix A discusses additional
code using OTC1() to produce Figure 3. The testing configuration chosen by Lohse et al. (2020) is
never optimal. In fact, two-stage hierarchical group testing is more efficient than Lohse et al. (2020) for
p > 0.03.

Our second example focuses on SARS-CoV-2 detection again, but now in the context of LabCorp’s
array testing. LabCorp (2022) examined the potential performance of their approach using possible
prevalences between 0.001 and 0.15, so we begin with using a prevalence of 0.05. Also, LabCorp (2022)
estimated that approximately 0.023 of all positives would be missed using array testing rather than
individual testing. This is not quite the sensitivity of the assay, but we will use 0.977 and 1 as the
sensitivity for the first and second stages, respectively, for illustration purposes. We will also use 1 as
the specificity for illustration purposes. The expected number of tests per individual for the algorithm
is found first using opChar1() with algorithm = "A2".

> save.LabCorp <- opChar1(algorithm = "A2", p = 0.05, rowcol.sz = 5,
Se = c(1 - 0.023, 1), Sp = 1, print.time = FALSE)

> ExpTests(save.LabCorp)

ExpTests ExpTestsPerIndividual PercentReductionTests PercentIncreaseTestCap
1 12.0763 0.4831 51.69 107.02

The expected number of tests per individual is 0.48, resulting in an expected 107% increase in testing
capacity.

Could LabCorp do better? Below is the code used to find the OTC for a range of group sizes from
3 to 10 with array testing.

> OTC.LabCorp.Array <- OTC1(algorithm = "A2", p = 0.05, Se = c(0.977,
1), Sp = 1, group.sz = 3:10, obj.fn = "ET", trace = FALSE,
print.time = FALSE)

> summary(OTC.LabCorp.Array)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=binGroup2

CONTRIBUTED RESEARCH ARTICLE 31

Algorithm: Non-informative array testing without master pooling

Optimal testing configuration:
Row/column size Array size

ET 10 100

Expected number of tests:
E(T) Value

ET 37.20 0.3720

E(T) denotes the expected number of tests.
Value denotes the objective function value per individual.

Overall accuracy of the algorithm:
PSe PSp PPPV PNPV

ET 0.9550 1.0000 1.0000 0.9976

PSe denotes the pooling sensitivity.
PSp denotes the pooling specificity.
PPPV denotes the pooling positive predictive value.
PNPV denotes the pooling negative predictive value.

> ExpTests(OTC.LabCorp.Array)

ExpTests ExpTestsPerInd PercentReductionTests PercentIncreaseTestCap
opt.ET 37.1953 0.3720 62.80 168.85

The OTC for array testing is a 10 × 10 array that has an expected number of tests per individual of
0.37 and an increase in testing capacity of 169%. This is a significant improvement over the 5 × 5 array.
One could perform similar calculations using two-stage hierarchical testing with algorithm = "D2" in
OTC1. This results in an OTC that uses an initial group size of 5 and leads to an expected number of
tests per individual of 0.42.

Because these calculations rely on p = 0.05, Appendix B includes additional results for different
values of p and a discussion of the corresponding more advanced code. In most cases, we find that a
5 × 5 array is not the OTC.

3.4 Additional functions

Not all group testing algorithms fit well within a general computing framework. For this reason, we
include a few additional functions outside of those discussed previously. In particular, the halving()
and Sterrett() functions provide alternative ways to use hierarchical testing algorithms. The former
function calculates operating characteristics when positive testing groups are split only in half (Litvak
et al. 1994; Black et al. 2012). The latter function calculates operating characteristics for algorithms that
retest only one specimen at a time from a positive group (Sterrett 1957; Bilder et al. 2010a). Once a
positive is found, the remaining specimens are retested again in a group. The idea behind this strategy
is there will likely be only one positive (or few positives) in the original group.

4 Conclusion

The binGroup2 package provides researchers and laboratories with the statistical tools needed to
implement group testing effectively. An earlier version of this package was used as well by The New
York Times to help readers understand the benefits from group testing during the COVID-19 pandemic
(Bui et al. 2020). Similar to Bilder et al. (2010b), we encourage researchers to submit their own functions
to us to be included within the package. This will allow users to have one overall package rather than
many packages that may duplicate the work of others.

The identification functions are for one and two-infection assays. While there are a few three- and
four-infection assays for infectious disease detection that have been recently released (e.g., the BD
Max CT/GC/TV assay (BD 2023) that tests for pathogens which lead to chlamydia, gonorrhea, and
trichomoniasis), these assays are used currently much less than single and two-infection assays. Also,
derivations for operating characteristics become much more complex for more than two infections,
so there are no closed-form expressions available for these types of assays. For example, Hou et al.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=binGroup2

CONTRIBUTED RESEARCH ARTICLE 32

(2020) needed Monte Carlo simulation for a three-infection assay. We anticipate that it will be useful
to include Monte Carlo simulation-based estimates of operating characteristics in future versions of
binGroup2 as these types of multiplex assays become more widely used. New research is needed
though to find efficient computational approaches when searching for the OTC because of these
simulation aspects.

While not the focus of this paper, the estimation functions from binGroup have been simplified
and expanded upon using a coherent style. The new propCI() function combines three previous
functions into one to calculate point estimates and confidence intervals for an infection prevalence. The
new propDiffCI() provides similar functionality for the difference of two infection prevalences. Both
functions incorporate new research since Bilder et al. (2010b). In particular, the bias correction methods
of Hepworth and Biggerstaff (2017) are included to account for the long-standing problem of bias
for point estimates in group testing (Swallow 1985). The gtReg() function combines three previous
binGroup functions used to estimate regression models with group testing data that arise from
different testing algorithms. The gtSim() function also combines three previous binGroup functions
to simulate group testing data with covariates that can arise from different testing algorithms.

5 Acknowledgments

The authors thank Jeffrey Benfer and Kristopher Eveland at the SHL and Peter Iwen and Baha
Abdalhamid at the Nebraska Public Health Laboratory for their consultation on CT/NG and SARS-
CoV-2 testing. This research was supported by Grant R01 AI121351 from the National Institutes of
Health. The views expressed in this article are those of the authors and do not necessarily reflect
the official policy or position of the United States Air Force Academy, the Air Force, the Department
of Defense, or the U.S. Government. Approved for public release: distribution unlimited. PA#:
USAFA-DF-2022-474.

Appendix A: Details for figure

Our separate R program provides the code to create Figure 3. This figure presents a comparison of
the three-stage hierarchical testing algorithm of Lohse et al. (2020) to using the OTC for two- and
three-stage hierarchical testing. We use the OTC1() function to find the OTCs for the prevalences of
0.001, 0.005, and 0.01 to 0.20 by 0.01 with a maximum group size of 64. The large number of prevalences
and large group sizes will result in a significant amount of computational time. For readers interested
in testing the code, we recommend using a few prevalence values and a maximum group size of 30 for
an initial running of it.

Appendix B: Labcorp’s array testing

LabCorp (2022) described the use of arrays for up to size 5 × 5. Our separate R program provides the
code to create Figure 4 that examines their use further. This figure provides evidence that a 5 × 5 array
size is not an optimal choice. For the corresponding calculations, we found the OTC for array testing
by minimizing the expected number of tests per individual for the prevalences of 0.001, 0.005, and
0.01 to 0.20 by 0.01. Because two-stage hierarchical testing is also frequently used for SARS-CoV-2
detection, we also found the OTC for this algorithm. Throughout these calculations, we conservatively
limit the maximum group size to 10.

References

B. Abdalhamid, C. Bilder, E. McCutchen, S. Hinrichs, S. Koepsell, and P. Iwen. Assessment of specimen
pooling to conserve SARS CoV-2 testing resources. American Journal of Clinical Pathology, 153:715–718,
2020. URL https://doi.org/10.1093/ajcp/aqaa064. [p21, 22, 24, 25]

M. Abdelmalek. With all eyes on coronavirus testing, some researchers say ’group testing’ could make
up the shortage. ABC News, 2020. URL https://abcnews.go.com/Health/eyes-coronavirus-
testing-researchers-group-testing-make-shortage/story?id=70658896. May 13; Retrieved
November 11, 2023. [p21]

D. Altman and J. Bland. Diagnostic tests 2: Predictive values. BMJ, 309:102, 1994. URL https:
//doi.org/10.1136/bmj.309.6947.102. [p28]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=binGroup2
https://CRAN.R-project.org/package=binGroup
https://CRAN.R-project.org/package=binGroup
https://CRAN.R-project.org/package=binGroup
https://doi.org/10.1093/ajcp/aqaa064
https://abcnews.go.com/Health/eyes-coronavirus-testing-researchers-group-testing-make-shortage/story?id=70658896
https://abcnews.go.com/Health/eyes-coronavirus-testing-researchers-group-testing-make-shortage/story?id=70658896
https://doi.org/10.1136/bmj.309.6947.102
https://doi.org/10.1136/bmj.309.6947.102

CONTRIBUTED RESEARCH ARTICLE 33

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Prevalence

E
xp

ec
te

d
nu

m
be

r
of

 te
st

s
pe

r
in

di
vi

du
al

LabCorp with 5x5 array
Array testing with optimal group sizes
Two−stage hierarchical testing with optimal group sizes

Figure 4: Expected number of tests per individual as a function of infection prevalence for LabCorp’s
setting.

Altona Diagnostics. Realstar. 2023. URL https://www.altona-diagnostics.com/en/products/
reagents-140/reagents/realstar-real-time-pcr-reagents/realstar-sars-cov-2-rt-pcr-
kit-ruo.html. Retrieved November 11, 2023. [p27]

American Red Cross. Infectious disease testing. 2023. URL https://www.redcrossblood.org/
biomedical-services/blood-diagnostic-testing/blood-testing.html. Retrieved November
11, 2023. [p22]

N. Ando, D. Mizushima, K. Watanabe, M. Takano, D. Shiojiri, H. Uemura, A. Takahiro, Y. Yanagawa,
Y. Kikuchi, S. Oka, and H. Gatanaga. Modified self-obtained pooled sampling to screen for Chlamydia
trachomatis and Neisseria gonorrhoeae infections in men who have sex with men. Sexually Transmitted
Infections, 97:324–328, 2021. URL http://dx.doi.org/10.1136/sextrans-2020-054666. [p22]

E. Anthes. A CDC airport surveillance program found the earliest known US cases of Omicron
subvariants. The New York Times, 2022. URL https://www.nytimes.com/2022/03/24/health/cdc-
us-ba2.html. March 24; retrieved November 11, 2023. [p21]

R. Barathidasan, F. Sharmila, R. Raj, G. Dhanalakshmi, G. Anitha, and R. Dhodapkar. Pooled sample
testing for COVID-19 diagnosis: Evaluation of bi-directional matrix pooling strategies. Journal of
Virological Methods, page 114524, 2022. URL https://doi.org/10.1016/j.jviromet.2022.114524.
[p21]

BD. BD Max CT/NG/TV. 2023. URL https://moleculardiagnostics.bd.com/syndromic-
solutions/womens-health-stis/CT-GC-TV. Retrieved November 11, 2023. [p31]

C. Bilder. Group testing for identification. Wiley StatsRef: Statistics Reference Online, 2019. URL
https://doi.org/10.1002/9781118445112.stat08227. [p24]

C. Bilder, J. Tebbs, and P. Chen. Informative retesting. Journal of the American Statistical Association, 105:
942–955, 2010a. URL https://doi.org/10.1198/jasa.2010.ap09231. [p31]

C. Bilder, B. Zhang, F. Schaarschmidt, and J. Tebbs. binGroup: A package for group testing. The R
Journal, 2:56–60, 2010b. URL https://journal.r-project.org/archive/2010-2. [p21, 23, 31, 32]

C. Bilder, J. Tebbs, and C. McMahan. Informative group testing for multiplex assays. Biometrics, 75:
278–288, 2019. URL https://doi.org/10.1111/biom.12988. [p24, 25, 27, 28]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://www.altona-diagnostics.com/en/products/reagents-140/reagents/realstar-real-time-pcr-reagents/realstar-sars-cov-2-rt-pcr-kit-ruo.html
https://www.altona-diagnostics.com/en/products/reagents-140/reagents/realstar-real-time-pcr-reagents/realstar-sars-cov-2-rt-pcr-kit-ruo.html
https://www.altona-diagnostics.com/en/products/reagents-140/reagents/realstar-real-time-pcr-reagents/realstar-sars-cov-2-rt-pcr-kit-ruo.html
https://www.redcrossblood.org/biomedical-services/blood-diagnostic-testing/blood-testing.html
https://www.redcrossblood.org/biomedical-services/blood-diagnostic-testing/blood-testing.html
http://dx.doi.org/10.1136/sextrans-2020-054666
https://www.nytimes.com/2022/03/24/health/cdc-us-ba2.html
https://www.nytimes.com/2022/03/24/health/cdc-us-ba2.html
https://doi.org/10.1016/j.jviromet.2022.114524
https://moleculardiagnostics.bd.com/syndromic-solutions/womens-health-stis/CT-GC-TV
https://moleculardiagnostics.bd.com/syndromic-solutions/womens-health-stis/CT-GC-TV
https://doi.org/10.1002/9781118445112.stat08227
https://doi.org/10.1198/jasa.2010.ap09231
https://journal.r-project.org/archive/2010-2
https://doi.org/10.1111/biom.12988

CONTRIBUTED RESEARCH ARTICLE 34

C. Bilder, P. Iwen, and B. Abdalhamid. Pool size selection when testing for severe acute respiratory
syndrome coronavirus 2. Clinical Infectious Diseases, 72:1104–1105, 2021a. URL https://doi.org/
10.1093/cid/ciaa774. [p23]

C. Bilder, J. Tebbs, and C. McMahan. Discussion on "Is group testing ready for prime-time in disease
identification". Statistics in Medicine, 40:3881–3886, 2021b. URL https://doi.org/10.1002/sim.
8988. [p24]

M. Black, C. Bilder, and J. Tebbs. Group testing in heterogeneous populations by using halving
algorithms. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61:277–290, 2012. URL
https://doi.org/10.1111/j.1467-9876.2011.01008.x. [p31]

M. Black, C. Bilder, and J. Tebbs. Optimal retesting configurations for hierarchical group testing.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 64:693–710, 2015. URL https:
//doi.org/10.1111/rssc.12097. [p24]

Q. Bui, S. Kliff, and M. Sanger-Katz. How to test more people for coronavirus without actually needing
more tests. The New York Times, 2020. URL https://www.nytimes.com/interactive/2020/07/27/
upshot/coronavirus-pooled-testing.html. July 27; retrieved November 11, 2023. [p31]

C. Cheng, Y. Hung, and N. Balakrishnan. rBeta2009: The Beta Random Number and Dirichlet Random
Vector Generating Functions, 2012. URL https://CRAN.R-project.org/package=rBeta2009. [p27]

R. Dorfman. The detection of defective members of large populations. Annals of Mathematical Statistics,
14:436–440, 1943. URL https://doi.org/10.1214/aoms/1177731363. [p21]

L. Graff and R. Roeloffs. Group testing in the presence of test error; an extension of the Dorfman pro-
cedure. Technometrics, 14:113–122, 1972. URL https://doi.org/10.1080/00401706.1972.10488888.
[p26]

G. Hepworth and B. Biggerstaff. Bias correction in estimating proportions by pooled testing. Journal
of Agricultural, Biological and Environmental Statistics, 22:602–614, 2017. URL https://doi.org/10.
1007/s13253-017-0297-2. [p32]

B. Hitt. Group Testing Identification: Objective Functions, Implementation, and Multiplex Assays. PhD thesis,
University of Nebraska-Lincoln, 2020. URL https://digitalcommons.unl.edu/dissertations/
AAI27956346. [p24]

B. Hitt, C. Bilder, J. Tebbs, and C. McMahan. The objective function controversy for group testing:
Much ado about nothing? Statistics in Medicine, 38:4912–4923, 2019. URL https://doi.org/10.
1002/sim.8341. [p21, 26, 28]

C. Hogan, M. Sahoo, and B. Pinsky. Sample pooling as a strategy to detect community transmission
of SARS-CoV-2. Journal of the American Medical Association, 323:1967–1969, 05 2020. URL https:
//doi.org/10.1001/jama.2020.5445. [p21]

Hologic. Aptima STIs. 2023. URL https://www.hologic.com/hologic-products/diagnostic-
solutions/aptima-stis. Retrieved November 11, 2023. [p23]

P. Hou, J. Tebbs, D. Wang, C. McMahan, and C. Bilder. Array testing for multiplex assays. Biostatistics,
21:417–431, 2020. URL https://doi.org/10.1093/biostatistics/kxy058. [p22, 24, 31]

ICBSS. Iowa Community-Based Screening Services Procedures Manual, 2014. URL http://www.shl.uiowa.
edu/dcd/iippmanual.pdf. Retrieved November 11, 2023. [p27]

N. Johnson, S. Kotz, and X. Wu. Inspection Errors for Attributes in Quality Control. CRC Press, 1991.
URL https://doi.org/10.1201/9781003059868. [p24]

H. Kim, M. Hudgens, J. Dreyfuss, D. Westreich, and C. Pilcher. Comparison of group testing algorithms
for case identification in the presence of test error. Biometrics, 63:1152–1163, 2007. URL https:
//doi.org/10.1111/j.1541-0420.2007.00817.x. [p22, 23, 24]

S. Kim, H. Kim, H. Kim, H. Ann, J. Kim, H. Choi, M. Kim, J. Song, J. Ahn, N. Ku, D. Oh, Y. Kim,
S. Jeong, S. Han, J. Kim, D. Smith, and J. Choi. Pooled nucleic acid testing to identify antiretroviral
treatment failure during HIV infection in Seoul, South Korea. Scandinavian Journal of Infectious
Diseases, 46:136–140, 2014. URL https://doi.org/10.3109/00365548.2013.851415. [p22]

LabCorp. Emergency Use Authorization summary: COVID-19 RT-PCR test. 2022. URL https:
//www.fda.gov/media/136151/download. Retrieved November 11, 2023. [p21, 23, 30, 32]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.1093/cid/ciaa774
https://doi.org/10.1093/cid/ciaa774
https://doi.org/10.1002/sim.8988
https://doi.org/10.1002/sim.8988
https://doi.org/10.1111/j.1467-9876.2011.01008.x
https://doi.org/10.1111/rssc.12097
https://doi.org/10.1111/rssc.12097
https://www.nytimes.com/interactive/2020/07/27/upshot/coronavirus-pooled-testing.html
https://www.nytimes.com/interactive/2020/07/27/upshot/coronavirus-pooled-testing.html
https://CRAN.R-project.org/package=rBeta2009
https://doi.org/10.1214/aoms/1177731363
https://doi.org/10.1080/00401706.1972.10488888
https://doi.org/10.1007/s13253-017-0297-2
https://doi.org/10.1007/s13253-017-0297-2
https://digitalcommons.unl.edu/dissertations/AAI27956346
https://digitalcommons.unl.edu/dissertations/AAI27956346
https://doi.org/10.1002/sim.8341
https://doi.org/10.1002/sim.8341
https://doi.org/10.1001/jama.2020.5445
https://doi.org/10.1001/jama.2020.5445
https://www.hologic.com/hologic-products/diagnostic-solutions/ aptima-stis
https://www.hologic.com/hologic-products/diagnostic-solutions/ aptima-stis
https://doi.org/10.1093/biostatistics/kxy058
http://www.shl.uiowa.edu/dcd/iippmanual.pdf
http://www.shl.uiowa.edu/dcd/iippmanual.pdf
https://doi.org/10.1201/9781003059868
https://doi.org/10.1111/j.1541-0420.2007.00817.x
https://doi.org/10.1111/j.1541-0420.2007.00817.x
https://doi.org/10.3109/00365548.2013.851415
https://www.fda.gov/media/136151/download
https://www.fda.gov/media/136151/download

CONTRIBUTED RESEARCH ARTICLE 35

S. Lendle. gtcorr: Calculate Efficiencies of Group Testing Algorithms with Correlated Responses, 2011. URL
https://CRAN.R-project.org/package=gtcorr. Retrieved November 11, 2023. [p21]

S. Lendle, M. Hudgens, and B. Qaqish. Group testing for case identification with correlated responses.
Biometrics, 68:532–540, 2012. URL https://doi.org/10.1111/j.1541-0420.2011.01674.x. [p21]

J. Lewis, V. Lockary, and S. Kobic. Cost savings and increased efficiency using a stratified specimen
pooling strategy for Chlamydia trachomatis and Neisseria gonorrhoeae. Sexually Transmitted Diseases, 39:
46–48, 2012. URL https://doi.org/10.1097/OLQ.0b013e318231cd4a. [p23]

E. Litvak, X. Tu, and M. Pagano. Screening for the presence of a disease by pooling sera samples.
Journal of the American Statistical Association, 89:424–434, 1994. URL https://doi.org/10.1080/
01621459.1994.10476764. [p31]

T. Liu and Y. Xu. mMPA: Implementation of Marker-Assisted Mini-Pooling with Algorithm, 2018. URL
https://CRAN.R-project.org/package=mMPA. Retrieved November 11, 2023. [p21]

T. Liu, J. Hogan, M. Daniels, M. Coetzer, X. Yizhen, B. Gerald, A. DeLong, L. Ledingham, M. Orido,
L. Diero, and R. Kantor. Improved HIV-1 viral load monitoring capacity using pooled testing with
marker-assisted deconvolution. Journal of Acquired Immune Deficiency Syndromes, 75:580, 2017. URL
https://doi.org/10.1097/QAI.0000000000001424. [p21]

S. Lohse, T. Pfuhl, B. Berkó-Göttel, J. Rissland, T. Geißler, B. Gärtner, S. Becker, S. Schneitler, and
S. Smola. Pooling of samples for testing for SARS-CoV-2 in asymptomatic people. The Lancet
Infectious Diseases, 20:1231–1232, 2020. URL https://doi.org/10.1016/S1473-3099(20)30362-5.
[p22, 26, 27, 28, 29, 30, 32]

A. Mandavilli. Federal officials turn to a new testing strategy as infections surge. The New York
Times, 2020. URL https://www.nytimes.com/2020/07/01/health/coronavirus-pooled-testing.
html. July 1; retrieved November 11, 2023. [p21]

C. McMahan, J. Tebbs, and C. Bilder. Informative Dorfman screening. Biometrics, 68:287–296, 2012a.
URL https://doi.org/10.1111/j.1541-0420.2011.01644.x. [p23, 24]

C. McMahan, J. Tebbs, and C. Bilder. Two-dimensional informative array testing. Biometrics, 68:
793–804, 2012b. URL https://doi.org/10.1111/j.1541-0420.2011.01726.x. [p22, 23]

Nebraska Veterinary Diagnostic Center. Diagnostic tests & fees, 2023. URL https://vbms.unl.edu/
nvdc-tests-fees. Retrieved November 11, 2023. [p22]

Roche. Roche receives FDA Emergency Use Authorization for the cobas SARS-CoV-2 & Influenza A/B
Test for use on the cobas 6800/8800 Systems. 2020. URL https://www.roche.com/media/releases/
med-cor-2020-09-04.htm. Retrieved November 11, 2023. [p23]

E. Salzer, E. Nixon, G. Drewes, F. Reinhard, G. Bergamini, and C. Rau. Screening pools of compounds
against multiple endogenously expressed targets in a chemoproteomics binding assay. Journal of
Laboratory Automation, 21:133–142, 2016. URL https://journals.sagepub.com/doi/full/10.1177/
2211068215595355. [p22]

H. Sanghani, D. Nawrot, F. Marmolejo-Cossío, J. Taylor, J. Craft, E. Kalimeris, M. Andersson, and
S. Vasudevan. Concentrating pooled COVID-19 patient lysates to improve reverse transcription
quantitative PCR sensitivity and efficiency. Clinical Chemistry, 67:797–798, 2021. URL https:
//doi.org/10.1093/clinchem/hvab035. [p25]

A. Sterrett. On the detection of defective members of large populations. The Annals of Mathematical
Statistics, 28:1033–1036, 1957. URL https://doi.org/10.1214/aoms/1177706807. [p31]

W. Swallow. Group testing for estimating infection rates and probabilities of disease transmission.
Phytopathology, 75:882–889, 1985. URL https://www.apsnet.org/publications/phytopathology/
backissues/Documents/1985Abstracts/Phyto75_882.htm. [p32]

J. Tan, A. Omar, W. Lee, and M. Wong. Considerations for group testing: a practical approach for the
clinical laboratory. The Clinical Biochemist Reviews, 41:79–92, 2020. URL https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC7731934. doi:10.33176/AACB-20-00007. [p24]

M. Thai. Group Testing Theory in Network Security: An Advanced Solution. Springer, 2011. URL
https://doi.org/10.1007/978-1-4614-0128-5. [p22]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=gtcorr
https://doi.org/10.1111/j.1541-0420.2011.01674.x
https://doi.org/10.1097/OLQ.0b013e318231cd4a
https://doi.org/10.1080/01621459.1994.10476764
https://doi.org/10.1080/01621459.1994.10476764
https://CRAN.R-project.org/package=mMPA
https://doi.org/10.1097/QAI.0000000000001424
https://doi.org/10.1016/S1473-3099(20)30362-5
https://www.nytimes.com/2020/07/01/health/coronavirus-pooled-testing.html
https://www.nytimes.com/2020/07/01/health/coronavirus-pooled-testing.html
https://doi.org/10.1111/j.1541-0420.2011.01644.x
https://doi.org/10.1111/j.1541-0420.2011.01726.x
https://vbms.unl.edu/nvdc-tests-fees
https://vbms.unl.edu/nvdc-tests-fees
https://www.roche.com/media/releases/med-cor-2020-09-04.htm
https://www.roche.com/media/releases/med-cor-2020-09-04.htm
https://journals.sagepub.com/doi/full/10.1177/2211068215595355
https://journals.sagepub.com/doi/full/10.1177/2211068215595355
https://doi.org/10.1093/clinchem/hvab035
https://doi.org/10.1093/clinchem/hvab035
https://doi.org/10.1214/aoms/1177706807
https://www.apsnet.org/publications/phytopathology/backissues/Documents/1985Abstracts/Phyto75_882.htm
https://www.apsnet.org/publications/phytopathology/backissues/Documents/1985Abstracts/Phyto75_882.htm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731934
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7731934
https://doi.org/10.1007/978-1-4614-0128-5

CONTRIBUTED RESEARCH ARTICLE 36

P. Thai, A. Banks, L. Toms, P. Choi, X. Wang, P. Hobson, and J. Mueller. Analysis of urinary metabolites
of polycyclic aromatic hydrocarbons and cotinine in pooled urine samples to determine the exposure
to PAHs in an Australian population. Environmental Research, 182:109048, 2020. URL https:
//doi.org/10.1016/j.envres.2019.109048. [p22]

T. Van, J. Miller, D. Warshauer, E. Reisdorf, D. Jernigan, R. Humes, and P. Shult. Pooling nasopharyn-
geal/throat swab specimens to increase testing capacity for influenza viruses by PCR. Journal of
Clinical Microbiology, 50:891–896, 2012. URL https://doi.org/10.1128/JCM.05631-11. [p22]

Verily Life Sciences. Emergency Use Authorization summary: Verily COVID-19 RT-PCR test for
use with the Verily COVID-19 Nasal Swab Kit. 2022. URL https://www.fda.gov/media/141951/
download. Retrieved November 11, 2023. [p21]

Yale University. Emergency Use Authorization summary: SalivaDirect for use with DTC Kits assay.
2022. URL https://www.fda.gov/media/151841/download. Retrieved November 11, 2023. [p21]

K. Zhao and C. Rosa. Thrips as the transmission bottleneck for mixed infection of two orthoto-
spoviruses. Plants, 9:509, 2020. URL https://doi.org/10.3390/plants9040509. [p22]

Christopher R. Bilder
University of Nebraska-Lincoln
Department of Statistics
Lincoln, NE 68583, USA
www.chrisbilder.com
chris@chrisbilder.com

Brianna D. Hitt
United States Air Force Academy
Department of Mathematical Sciences
Colorado Springs, CO 80840, USA
brianna.hitt@afacademy.af.edu

Brad J. Biggerstaff
Centers for Disease Control and Prevention
Division of Vector-Borne Diseases
Fort Collins, CO 80521, USA
bkb5@cdc.gov

Joshua M. Tebbs
University of South Carolina
Department of Statistics
Columbia, SC 29208, USA
tebbs@stat.sc.edu

Christopher S. McMahan
Clemson University
School of Mathematical and Statistical Sciences
Clemson, SC 29634, USA
mcmaha2@clemson.edu

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.1016/j.envres.2019.109048
https://doi.org/10.1016/j.envres.2019.109048
https://doi.org/10.1128/JCM.05631-11
https://www.fda.gov/media/141951/download
https://www.fda.gov/media/141951/download
https://www.fda.gov/media/151841/download
https://doi.org/10.3390/plants9040509
www.chrisbilder.com
mailto:chris@chrisbilder.com
mailto:brianna.hitt@afacademy.af.edu
mailto:bkb5@cdc.gov
mailto:tebbs@stat.sc.edu
mailto:mcmaha2@clemson.edu

CONTRIBUTED RESEARCH ARTICLE 37

multiocc: An R Package for
Spatio-Temporal Occupancy Models for
Multiple Species
by Staci Hepler and Robert Erhardt

Abstract Spatio-temporal occupancy models are used to model the presence or absence of a species at
particular locations and times, while accounting for dependence in both space and time. Multivariate
extensions can be used to simultaneously model multiple species, which introduces another dimension
to the dependence structure in the data. In this paper we introduce multiocc, an R package for fitting
multivariate spatio-temporal occupancy models. We demonstrate the use of this package fitting the
multi-species spatio-temporal occupancy model to data on six species of birds from the Swiss MHB
Breeding Bird Survey.

1 Introduction

Occupancy models are commonly used in ecological applications to model presence or absence of
a species of interest across a geographical region over a period of study, or season. The goal is often
to determine the likelihood that a species was present, and to study how that likelihood relates to
environmental features. Occupancy models account for imperfect detection in a binary response
variable Y by treating the true presence as a latent binary process Z. These methods have been
used across a variety of applications including estimating the geographical distribution of species
such as caribou in northern Ontario, Canada (Johnson et al., 2013) and of red fox and coyote in
the eastern United States (Rota et al., 2016). Rahman et al. (2021) and Guillera-Arroita et al. (2019)
used multispecies occupancy models to estimate the richness of mammal species in Bangladesh
and breeding birds in Switzerland, respectively. Recently, occupancy models have been utilized in
public health applications to estimate the risk or prevalence of imperfectly detected diseases such as
Histoplasmosis (Hepler et al., 2022) and SARS-CoV-2 (Sanderlin et al., 2021).

A number of R packages exist for fitting specific types of occupancy models. Here, we highlight
a few of the existing packages, and refer the reader to Doser et al. (2022) for a more comprehensive
list. The package unmarked fits a variety of models using likelihood-based methods; however these
models do not account for spatial dependence in the data. stocc fits single-species spatial occupancy
models in the Bayesian framework (Johnson et al., 2013). Recent attention on joint species distribution
models have highlighted the importance of jointly analyzing species that may be related. Recently,
spOccupancy was developed to fit single-species and multi-species spatial occupancy models (Doser
et al., 2022). However, the multi-species model implemented in spOccupancy accounts for cross-
species dependence by assuming regression coefficients for different species arise from a shared
community prior. While this model is reasonable when studying groups of species that are expected
to respond to the environment similarly, it might not be suitable to all applications. Additionally,
this package does not apply to multi-season occupancy models. gjam can analyze multivariate
presence/absence data and assumes an unstructured covariance matrix to capture species dependence;
however, it does not account for any spatio-temporal dependence (Clark et al., 2017). Hmsc includes a
variety of joint species distribution models for analyzing presence/absence data of species within a
community (Tikhonov et al., 2020; Ovaskainen et al., 2017). However, it does not account for imperfect
detection in the binary observations.

In this paper, we present multiocc, an R package that implements the multivariate spatio-temporal
occupancy model developed by Hepler and Erhardt (2021). This model can be used to analyze pres-
ence/absence data for S ≥ 1 species across T ≥ 1 seasons. Briefly, this model accounts for dependence
across space, across seasons, and also between the species being jointly modeled. Thus, this R package
overcomes limitations of the existing packages mentioned above and can be applied to more general
study designs. As noted by Taylor-Rodriguez et al. (2017), modeling species independently ignores
residual dependence between species and can yield misleading results. Guisan and Rahbek (2011)
found independently modeling species predicted too many species per location, and Clark et al. (2014)
found that prediction was improved by using a multivariate approach that exploits information from
other species. Pollock et al. (2014) proposed a multivariate model for presence/absence data that
captures residual correlation through a covariance matrix, Σ, and applied their method to data on frog
and eucalyptus species, but the model does not account for spatio-temporal dependence or imperfect
detection. The multivariate, spatio-temporal occupancy model of Hepler and Erhardt (2021) that is
implemented in this package similarly accounts for residual species correlation through a matrix, Σ,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=unmarked
https://CRAN.R-project.org/package=stocc
https://CRAN.R-project.org/package=spOccupancy
https://CRAN.R-project.org/package=spOccupancy
https://CRAN.R-project.org/package=gjam
https://CRAN.R-project.org/package=Hmsc
https://CRAN.R-project.org/package=multiocc

CONTRIBUTED RESEARCH ARTICLE 38

but also accounts for spatio-temporal dependence and imperfect detection. In addition, this model
has been shown to yield more accurate estimates of occupancy model parameters as compared to
single-species models.

Additionally, this model and package can be used in the single-survey setting for occupancy
models provided the number of seasons is “large enough", regardless of the number of species of
interest. This has important implications for study design, since previous research has stated that
parameter estimation in standard occupancy models requires multiple surveys for each period of time
where the occupancy status is unchanged (MacKenzie et al., 2002). The assumption of an unchanging
occupancy field across surveys can be unreasonable for many applications. Further, inference can be
biased if this assumption is violated, but standard occupancy models are often fit regardless (Rota
et al., 2009). The model implemented here in multiocc allows researchers to assume that multiple,
dependent seasons are observed with even just a single survey per season. This is less restrictive, as
occupancy status does not need to remain static from one observation to the next, and inference is
reliable provided there are enough seasons.

In the next section, we review the statistical details of the model and discuss the study designs
under which this model is recommended. Then, we describe the core functions of the multiocc
package. Lastly, we illustrate the implementation of the package’s functionality by fitting the model to
data on six species of birds from the Swiss MHB Breeding Bird Survey.

2 Scientific Background

This package implements the multivariate spatio-temporal occupancy model proposed in Hepler
and Erhardt (2021), which is briefly summarized here. The aim is to determine the likelihood that
species s was present at location i during time period t, and how environmental features relate to the
likelihood. However, imperfect detection implies that the observed data only confirms detection, and
not necessarily true presence. Occupancy models differentiate between observed binary detection and

latent true occupancy. Let Z(s)
it denote the true occupancy (Z(s)

it = 1 indicates presence and Z(s)
it = 0

absence) of species s = 1, ..., S at location i ∈ It during season t = 1, ..., T, where It denotes the set of
locations of interest during season t with cardinality |It| = nt. A season is defined to be a time period
over which the true occupancy is unchanged. One feature of this R package is the ability to incorporate
multiple independent observations, or surveys per season, but further to allow different number of
surveys between sites.

Let Vit be the number of surveys of the occupancy field at location i during a season t. Let the

observed binary detection be denoted with Y such that Y(s)
itv = 1 indicates species s was detected at

location i during the vth survey (v = 1, ..., Vit) in season t and Y(s)
itv = 0 indicates it was not detected.

The proposed occupancy model assumes there are no false positives, so Z(s)
it = 0 implies Y(s)

itv = 0 for

all v; if the species is actually present (Z(s)
it = 1), it may be detected during a survey (Y(s)

itv = 1) or not

(Y(s)
itv = 0).

Royle and Dorazio (2008) introduced the hierarchical model[
Y(s)

itv |Z
(s)
it , p(s)itv

]
= Bernoulli

(
Z(s)

it p(s)itv

)
[

Z(s)
it |ψ(s)

it

]
= Bernoulli

(
ψ
(s)
it

)
,

(1)

where ψ
(s)
it denotes the probability of occupancy for species s at location i during time t and p(s)itv the

probability of detection given occupancy during survey v. Hepler and Erhardt (2021) specified the
detection probability as

p(s)itv = Φ
(

W′
itvβ(s)

)
, (2)

where Φ(·) is the cumulative distribution function of the standard normal distribution, Witv is a pD-
dimensional vector of covariates related to detectability, and β(s) is a vector of regression coefficients.
Note that the vector of covariates is assumed to be the same for all S species, but the regression
coefficients are species-specific. For occupancy, Hepler and Erhardt (2021) specified the probability as

ψ
(s)
it = Φ

(
X′

itα
(s) + η

(s)
it

)
, (3)

where Xit is a pO-dimensional vector of covariates related to occupancy and is assumed to be the

same for all species, α(s) is a species-specific vector of regression coefficients, and η
(s)
it is a multivariate

spatio-temporal random effect.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 39

To reduce dimensionality and alleviate confounding with fixed effects, we use a restricted spatial
regression model as in Hughes and Haran (2013) and Bradley et al. (2015). More specifically, if

η
(s)
t ≡ {η

(s)
it , i ∈ It} is the vector of random effects for species s and time t, then we assume η

(s)
t =

Ktγ
(s)
t , where Kt is a nt × q matrix of known spatial basis functions such that K

′
tKt = Iq and γ

(s)
t is a

q-dimensional multivariate random effect. Letting ηt ≡
(

η
(1)
t , ..., η

(S)
t

)
be the ntS-dimensional vector

of random effects, we have ηt = K∗
t γt, where K∗

t = IS ⊗ Kt is the ntS × qS block diagonal matrix

whose (s, s) block is Kt, and γt =
(

γ
(1)
t , ..., γ

(S)
t

)
. An intrinsic multivariate conditional autoregressive

(MCAR) structure is used to capture multivariate and spatial dependence, with temporal dependence
captured through an autoregressive model of order 1 (Mardia, 1988). More specifically, this dependence
framework is captured within the restricted spatial regression model by assuming

γt ∼

N
(

0, K∗′
t QtK∗

t

)
for t = 1

N
(

Mγt−1, K∗′
t QtK∗

t

)
for t = 2, ..., T,

(4)

where Qt = Σ−1 ⊗ (Dt − At) is the intrinsic MCAR precision matrix, Σ is an S × S matrix that
captures conditional dependence (positive or negative) among the species, At is an nt × nt adjacency
matrix, Dt is a diagonal matrix whose (i, i)th element is the number of neighbors of location i, and
M = diag(ρ1, ..., ρS)⊗ Iq is the propagator matrix such that ρs accounts for temporal autocorrelation
for species s. Following the work of Bradley et al. (2015), Hepler and Erhardt (2021) used spatio-
temporal Moran’s I (MI) basis functions for Kt. More specifically, the MI operator for time t is defined
as

I(Xt, At) =
(

Int − Xt
(
X′

tXt
)−1 X′

t

)
At

(
Int − Xt

(
X′

tXt
)−1 X′

t

)
. (5)

The q columns in Kt are chosen to be the q eigenvectors of I(Xt, At) that correspond to the largest
eigenvalues.

Since the model is fit within the Bayesian paradigm, prior distributions are chosen for all remaining
hyperparameters. The prior distributions for the regression coefficients α and β are improper and uni-
form over the real line. The temporal autocorrelation parameters ρ1, ..., ρS are assumed to be uniform
over (0, 1). The cross-species covariance matrix Σ has an inverse Wishart prior distribution with S + 2
degrees of freedom and identity scale matrix. To assist in computation, the data augmentation strategy
of Albert and Chib (1993) is implemented in the Markov chain Monte Carlo (MCMC) algorithm. The
model specification results in all known full conditional distributions, and thus a Gibbs sampling
algorithm is used to simulate from the posterior distribution. Derivations of the full conditional
distributions needed to implement the Gibbs sampling algorithm can be found in the supplementary
material of Hepler and Erhardt (2021).

3 The multiocc package

The entry point for the package is the function multioccbuild(detection = ..., occupancy = ...,
coords = ..., DataNames = ..., threshold = ...). This function accepts raw data as inputs, and
it outputs all ordered matrices and the adjacency information needed to run the MCMC algorithm
and sample from the posterior distribution. This is intentionally split off as a separate function, rather
than written internally as a precursor step in the MCMC algorithm. This structure allows the user to
specify subsets of covariates, seasons, surveys, and/or locations for different model runs and receive
informative errors (or confirmation) that the specification will lead to a valid model fit. The single
output list produced by multioccbuild() contains an internally consistent set of ordered data frames
as well as species and covariates names used, and helps the user avoid confusion by collecting all
model inputs into a single list rather than requiring multiple specifications across objects which may
be internally inconsistent. The five required arguments are:

• ‘detection’ is a data frame with one row for each site/season/survey combination for a total
of ∑T

t=1 ∑i∈It
Vit rows. The first three columns should identify the ’site’, ’season’, and ’survey’,

and be named as such. Site can be a character vector. For each of the S species there is a column
of binary detection (1=yes, 0=no) for that particular species during the site/season/survey
combination. Titles of these columns are chosen by the user, but are commonly the names of
the S species. Next are the set of possible detection covariates used in W. Titles of these are
chosen by the user, and there is no need to include an intercept column in this data frame as
one is automatically added by multioccbuild(). It is strongly encouraged that the quantitative
explanatory variables be standardized to assist with chain mixing. Not every variable included
in detection will necessarily be included in the model, as the DataNames argument described
below is what defines the covariates to be used in W.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 40

• ‘occupancy’ is a data frame with one row for each site/season combination (note there is no
survey for occupancy, as the species either is or is not present for all surveys). The number of
rows is therefore ∑T

t=1 nt, where T is the number of seasons, and nt is the number of locations of
interest (either observed or where predictions are desired) during season t. The first two columns
are ’site’ and ’season’ and must be named as such. Site can be a character vector but must be
consistent with how ’site’ is specified in detection. Next are the set of possible occupancy
covariates used in X. Titles of these are chosen by the user, and there is no need to include an
intercept column in this data frame as one is automatically added by multioccbuild(). It is
strongly encouraged that the quantitative explanatory variables be standardized to assist with
chain mixing. Not every variable included in occupancy will necessarily be included in the
model, as the DataNames argument described below is what defines the covariates to be used in
X.

• ‘coords’ is a data frame with one column for the site name — which must be consistent with the
naming of ’site’ in occupancy and detection — and two columns for the numeric coordinates
of the site location. Column names must be ’site’, ’x’, and ’y’. The number of rows is equal to
the number of unique locations in the study. Units are arbitrary, but must be the same in both
location columns ’x’ and ’y’ for a valid Euclidean distance measure.

• ‘DataNames’ is a list with three elements, always titled ’species’, ’detection’, and ’occupancy’.
Each element is a vector specifying the precise titles of the S species, and the names of the
covariates for detection and occupancy. The names in these vectors must correspond to the
names of the corresponding columns in the detection and occupancy data frames. An intercept
is added by default. DataNames is required because it allows the user to model a subset of species
and/or a subset of all variables in the objects occupancy and detection, and therefore it is very
easy to run multiple versions of the model with distinct covariates on the same data. If the user
desires to have no covariates for detection , they can either write detection=c() or leave the
argument detection out as an input. Similarly, if the user does not want any covariates to be
included in occupancy, they can either write occupancy=c() or leave the argument occupancy
out as an input.

• ‘threshold’ is a number which determines whether or not two sites are considered neighbors
in the adjacency structure of the model. If the (Euclidean) distance between two sites is less
than threshold, they are neighbors; if not, they are not neighbors. This is used to identify the
non-zero entries in the adjacency matrices, At.

A few points of clarification are needed. First, the data frame occupancy should only have columns
named ‘site’, ‘season’, and names of covariates which may appear in ‘DataNames$occupancy’. The
data frame ‘detection’ should only have columns named ‘site’, ‘season’, ‘survey’, names for species
detection data which also appear in ‘DataNames$species’, and names of detection covariates which
may appear in ‘DataNames$detection’. The ordering of ‘DataNames$species’ will determine the
ordering of all results shown by species. Internal checks in multioccbuild() include a scan for
duplicated site/season combinations in occupancy, or site/season/survey combinations in detection.
The presence of either type of duplication halts the function. The function also scans to ensure all
entries for detections y are 0, 1, or NA. Also, if there are any site/season combinations in detection
but not occupancy, they are removed from detection with a warning shown, but the function still
runs. If there are any site/season combinations in occupancy but not detection, corresponding rows
are added to detection with NAs for all variables, which enables prediction of occupancy for those
site/season combinations.

There are also internal checks to identify missing covariates in either X or W. There are two
cases of missing covariates which our model cannot accommodate. The first is any missingness
in X. The second is when y is observed (as either 0 or 1), but covariates for detection W for the
corresponding site/season/survey are missing. Both situations lead to a deletion of rows. If there
are missing covariates in X, then the row(s) are removed from X and the Vit corresponding rows
for the same site/season combination are removed from W. If there are missing covariates for any
site/season/survey combination of W for cases with non-missing y, then the value of y is changed
to NA which effectively removes the detection from the observed data but retains predictions of
occupancy for the corresponding site/season combination.

It is possible to use this package to predict occupancy for site/season combinations where no
observations were taken (meaning there are either no rows in ‘detection’ for that site/season, or the
rows in ‘detection’ have y with NA), provided the values of the occupancy covariates are available.
The site/season combinations of interest just need to be included as rows in the ‘occupancy’ and
‘coords’ data frames that are provided as input to multioccbuild(). The site/season combinations
that are in ‘occupancy’ but not ‘detection’ are identified, and the Gibbs Sampling algorithm will
simulate values of z from the posterior predictive distribution. We note that in other packages,
prediction is a two-step procedure where the site/seasons to be predicted are provided after the model

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 41

fit. That is not the case here because computation of the Moran’s I basis functions requires the full set
of site/seasons at all locations - both observed and unobserved (Bradley et al., 2015).

From a modeling perspective, the primary decisions the researcher needs to make when executing
the multioccbuild() function are: (1) Which specific covariates belong in X and W to model occupancy
and detection? (2) Which species should be included? and (3) What threshold should be used to
determine the definition of neighbor in the adjacency matrix? This R package does not restrict the
type or number of covariates included in X and W, but it is worth noting the literature includes
discussions of possible difficulty identifying regression coefficients when there is only a single survey
per season. In the initial versions of occupancy models, MacKenzie et al. (2002) advised at least two
surveys for a single season when the occupancy rate and detection probability are sufficiently large
(0.7 and 0.3, respectively), and more surveys when these probabilities are smaller. Lele et al. (2012)
investigated the single-survey scenario further and found that occupancy and detection probabilities
can be estimated with a single survey when the number of spatial locations is large, provided they
depend on covariates with at least one numeric covariate in detection and the two sets of covariates
differ by at least one variable. Hepler et al. (2018) extended earlier work on occupancy models and
proposed a spatio-temporal occupancy model for the multiple-season scenario and found the model
could identify covariate effects in the single survey per season case, provided the number of seasons
was large enough. For the multivariate spatio-temporal model implemented in multiocc, Hepler
and Erhardt (2021) found the model could identify covariate effects in the single-survey case with at
least 10-20 seasons. Careful investigation of the posterior distributions for dependence across the two
parameters would be one way to investigate confounding and identifiability. Note that interactions
between two or more variables may also be used and defined in the usual way.

The definition of the threshold governs the structure of the adjacency matrix A. If two sites are
within this distance, then they are neighbors, and the corresponding element of the adjacency matrix
is 1. When the data are collected on a regular grid, it is common to use either a rook (shared edge)
or queen (shared edge or vertex) relationship to determine which grid points are neighbors. These
neighborhood specifications can be implemented in this package by determining the distance between
grid centroids and setting the threshold to be larger than that distance. In general, lower values
of ‘threshold’ result in fewer neighbors and a sparser matrix A, while larger values result in more
neighbors but a less sparse matrix A. There are computational advantages to a sparse adjacency matrix,
and a low threshold can mimic the first-order Markov dependence commonly used when modeling
aerial data (Gelfand et al., 2010).

The output of multioccbuild() is a list called ‘model.input’. This list contains the following
elements:

• ‘DataNames’, the precise list with three elements, always titled ’species’, ’detection’, and ’occu-
pancy’ that the user specified for the multioccbuild() function. These are used downstream in
the package.

• ‘X’, a matrix which serves as the design matrix for the occupancy portion of the model. The first
column is a column of all 1s, and latter columns are from ‘names$occupancy’. The matrix has
∑T

t=1 nt rows - one for each site/season combination.

• ‘W’, a matrix which serves as the design matrix for the detection portion of the model. The first
column is a column of all 1s, and latter columns are from ‘names$detection’. The matrix has
∑T

t=1 ∑i∈It
Vit rows - one for each site/season/survey combination.

• ‘y’, a ∑T
t=1 ∑i∈It

Vit × S matrix of the binary values of detection for the S species. The columns
are in the same order that the species are listed in in the vector ‘DataNames$species’.

• ‘A’, the symmetric adjacency matrix of 1s and 0s indicating which rows of ‘occupancy’ are
neighbors. ‘A’ is a block diagonal matrix, where the tth block is the nt × nt dimensional matrix
At.

• ‘detection.info’ is a data frame with the detection information containing the five columns
’siteID’ (a numeric index of the site), ’site’ (the factor identifier of the site), ’season’, ’survey’,
and an indicator variable named ’observations’ that indicates whether the survey result was
missing (indicated by an NA in the ‘y’ matrix) or not.

• ‘occupancy.info’ is a data frame with ‘siteID’, ‘site’, and ‘season’ columns as well as columns
for the x/y coordinates merged from ‘coords’.

The function GibbsSampler(M.iter,M.burn,M.thin,model.input,q,sv,every,WAIC,param2keep)
performs the Gibbs sampling MCMC algorithm to sample from the posterior distribution. This func-
tion is written entirely in R.

• ‘M.iter’ is a required input and is the number of iterations in the MCMC.

• ‘M.burn’ is the desired length of the burn in. Default is half of ‘M.iter’.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 42

• ‘M.thin’ is the desired thinning of the MCMC output. M.thin=1 is no thinning, M.thin=10 saves
every tenth, etc. Default is 1.

• ‘model.input’ is the output from the multioccbuild() function described above.
• ‘q’ is the number of Moran’s I spatial basis functions used in the restricted spatial regression

model. Default is 10 percent of the minimum number of locations in any season (rounded).
• ‘sv’ is a logical indicator controlling whether or not the chain should be saved at regular

iterations or not. The number of iterations is set by ‘every’. Default for ‘sv’ is FALSE.
• ‘every’ a numeric value controlling the frequency that the MCMC chain results are saved.

Default is 1000.
• ‘WAIC’ is a logical value indicating whether or not the MCMC should compute and save WAIC.

Defaults to false. Note that computing WAIC increases the computational storage required to fit
this model.

• ‘param2keep’ is a character vector that governs which outputs are saved. Permissible entries in
this vector are ‘alpha’, ‘beta’, ‘gamma’, ‘rho’, ‘sigma’, ‘psi’, ‘z’, ‘p’, and ‘loglik’. The default is to
save ‘alpha’, ‘beta’, ‘gamma’, ‘rho’, ‘sigma’, and ‘psi’.

A number of comments are needed to discuss issues with computational cost and computer
memory. First, including more parameters in ‘param2keep’ increases the amount of storage required.
In particular, saving the samples of ‘z’, ‘psi’, ‘p’, and ‘loglik’ can create storage issues depending on
the amount of available RAM. This can be avoided by not saving those quantities as they can easily
be computed based on their definitions provided ‘alpha’, ‘beta’, and ‘gamma’ are saved. For example,
the detection probabilities ‘p’ can be computed for each stored value of β as probit (Wβ). However,
it is also possible to store these outputs if memory is not a concern. If the user specifies WAIC=TRUE,
‘loglik’ will be created and computed but not stored by default; the user would additionally need
to add ‘loglik’ to ‘param2keep’ to store these values. This is a higher cost to memory, but allows the
user to perform other types of model assessment, e.g. leave-one-out cross-validation as in Vehtari et al.
(2017).

The output of GibbsSampler() is a list. Specifically, it contains the following elements.

• ‘samples’ is a list with one element for each of the items specified in ‘param2keep’. Each
individual element of this list is named according to ‘param2keep’ and is a valid MCMC object
defined from the coda package, and contains the saved samples of that object from the MCMC.

• ‘run.time’ saves the run time for the GibbsSampler() command.
• ‘WAIC’ is a vector of length S which contains WAIC values by species, if this argument was true.
• ‘basis.K’ is an ∑T

t=1 nt × q · T matrix of the basis functions created using the make.basis()
function.

Additionally, the list has elements ‘occupancy.info’, ‘detection.info’, ‘X’, ‘W’, and ‘y’ which are
the same quantities that were outputted by multioccbuild() and are saved as output here as well
for convenience. The ordering of the output in ‘psi’ corresponds to the site/season ordering in
‘occupancy.info’. Similarly, if ‘p’ and/or ‘loglik’ are included in ‘param2keep’ then the ordering of
the values in ‘samples’ corresponds to the site/season/survey ordering in ‘detection.info’.

There are several limitations of the model implemented in the current version of the multiocc
package. First, the code requires the same set of covariates are used for all species being modeled.
Second, the package currently does not allow the user to specify their own prior distributions or initial
values for model parameters. Third, the package currently requires the use of Moran’s I basis functions
and assumes an intrinsic, conditional autoregressive structure where the neighborhood matrix is
specific through a distance threshold. Fourth, while the use of basis functions makes the model
scalable in the number of spatial locations, the computational expense could still be prohibitive if the
number of species, S, or the number of seasons, T are very large. It also remains unclear how large
S can be before computational and identifiability issues arise with estimating Σ. Taylor-Rodriguez
et al. (2017) proposed a Dirichlet process approach to dimension reduction to overcome these issues
in settings where the number of species is large (∼ 103). In a simulation study, they found their
dimension reduced model outperformed a model using the full Σ when S = 100, although they noted
that both models still performed well. However, their model did not include multiple seasons, which
will improve estimation. It is important the user perform MCMC diagnostic checks to assess inferential
stability for the elements of Σ.

4 Example

The data are taken from the Swiss MHB ("Monitoring Häufige Brutvögel") Breeding Bird Survey
from the Swiss Ornithological Institute. This survey covers common bird species in Switzerland

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=coda

CONTRIBUTED RESEARCH ARTICLE 43

and first began in 1999. Specifically, we consider the presence or absence of six types of Swiss Tits
obtained at 267 locations over a ten year period (2004 - 2013). Each year is one season in our model.
These data are freely available as ‘SwissTits’ in the R package AHMbook (Kéry et al., 2017), and are
stored in our package multiocc as ‘detection’, ‘opccupancy’, and ‘coords’, which can be called with
data(detection), data(occupancy), data(coords). The locations ‘coords’ are 1km by 1km quadrats
roughly evenly spread across the entire country of Switzerland. Locations are shown in Figure 1.

Figure 1: Locations of the 267 1km by 1km square quadrats laid out across the entirety of Switzerland
in the MHB survey. In general, the spacing of locations supports the use of an areal data model with
neighbors defined through an adjacency matrix A.

The response is the observed detection (Y(s)
itv = 1) or not (Y(s)

itv = 0) of species s at location i, time
period t and survey v. There were 266 to 267 sites observed in each season, with the number of surveys
per season varying from 2 to 3. Covariates on occupancy in X include the standardized percentage of

forest cover at the location as well as the standardized elevation. The latent variable presence Z(s)
it = 1

indicates that species s was present at location i and time period t, with detection probability p(s)it
modeled with standardized covariate duration, which measures the length of the particular survey.
Histograms of the values for the covariates are shown in Figure 2. These same covariates are plotted
across space in Figure 3. The left column shows raw data, and the right column shows interpolated
covariates using a thin plate spline for ease of visualization only.

Figure 2: Histograms of the three covariates. Left: Percent forest cover across the 267 locations. Center:
Elevation of the 267 sites. Right: Durations of the unique surveys. Each coavariate is standardized and
therefore unitless on this scale.

To define the neighborhood structure used for the spatial random effect, we selected a threshold of
15000 (meters, as these are UTM coordinates) and defined any two locations whose distance is less
than 15000 to be neighbors. This threshold gave each location somewhere between 1 and 8 neighbors,
with an average of 4.23 neighbors. We assume q = 10 spatial basis functions in each season.

The multioccbuild(detection,occupancy,coords,DataNames,threshold) function takes five ar-
guments as input, and outputs ‘model.input’ which is then an argument for GibbsSampler() which
implements the Gibbs Sampling MCMC algorithm to simulate from the posterior distribution. Exam-
ples of the inputs ‘occupancy’, ‘detection’, ‘coords’, ‘DataNames’ and ‘threshold’ for our application
are shown below:

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=AHMbook
https://CRAN.R-project.org/package=multiocc

CONTRIBUTED RESEARCH ARTICLE 44

Figure 3: Spatial plots of the three covariates forest cover, elevation, and duration. The left column
shows raw data, and the right column shows interpolated data using a thin plate spline for ease of
visualization only. Forest and Duration are shown for season one, as these two covariates vary in time.

> head(occupancy, n=4L)
site season forest elev

1 Q001 1 -1.148171612 -1.14938671
2 Q002 1 -0.496936229 -1.14938671
3 Q003 1 -0.098959051 -0.21468405
4 Q004 1 -0.931093151 -0.37046783

> head(detection, n=4L)
site season survey Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit duration

1 Q001 1 1 NA NA NA NA NA NA 0.1563255
2 Q002 1 1 1 1 0 0 1 0 -0.9274962
3 Q003 1 1 1 0 1 0 1 0 -0.2605290
4 Q004 1 1 NA NA NA NA NA NA -0.8441253

Observe that some surveys have NAs for all detections. Our model and package can easily accommo-
date missing values for the detections, but our model cannot handle missing values for occupancy
covariates nor missing values for detection covariates when the corresponding ‘y‘ are not missing.
Missing values in the covariates will result in a warning when the multioccbuild() function is run,
and rows corresponding to those observations in ‘detection’ and possibly in ‘occupancy’ will be
removed. We suggest that all quantitative variables to be used as detection or occupancy covariates be
standardized to aid with mixing in the MCMC algorithm. The remainder of the input items are:

> head(coords, n=4L)
site x y

1 Q001 922942 63276
2 Q002 928942 79276
3 Q003 928942 103276
4 Q004 934942 95276

> DataNames = list("species"=colnames(detection)[4:9],"detection"=c("duration"),

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 45

"occupancy"=c("forest","elev"))
> DataNames
$species
[1] "Great.tit" "Blue.tit" "Coal.tit" "Crested.tit" "Marsh.tit" "Willow.tit"

$detection
[1] "duration"

$occupancy
[1] "forest" "elev"

With each of these inputs properly defined, we run the main data function multioccbuild():

> model.input = multioccbuild(detection, occupancy, coords, DataNames, threshold = 15000)
Warning: Rows in detection with missing covariates have been removed for purposes of
fitting the model, but the site/season combination is retained in occupancy and therefore
predictions will be outputted.

The above message arises from cases in which we have NAs for covariates in detection W, but we
have actual observations of y for these same site/season/survey combinations. Our model cannot be
fit using rows with missing detection covariates but non-missing detections in y. There are 544 NAs in
the covariate, but only 4 of these cases have non-missing detections:

> sum(is.na(detection$duration))
[1] 544
> sum(!is.na(detection$Great.tit) & is.na(detection$duration))
[1] 4

One issue is site Q091, season 8:

> detection[detection$site == "Q091" & detection$season==8,]
site season survey Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit duration

5698 Q091 8 1 0 0 1 1 0 1 -1.177609
5965 Q091 8 2 1 0 1 1 0 1 -1.094238
6232 Q091 8 3 0 0 1 1 0 1 NA

The second issue is site Q125, season 2:

> detection[detection$site=="Q125" & detection$season==2,]
site season survey Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit duration

926 Q125 2 1 1 1 1 1 1 0 NA
1193 Q125 2 2 1 1 1 0 1 0 NA
1460 Q125 2 3 1 1 1 1 1 0 NA

The multioccbuild() function replaces the observed occupancy data y with NAs for these 4 cases.
The output is ‘model.input’:

model.input = list("DataNames"=DataNames,"X"=X,"W"=W,"y"=y,"A"=A,
"detection.info"=detection[,c("siteID","site","season","survey","observations")],
"occupancy.info"=occupancy[,c("siteID","site","season","x","y")])

Objects saved here reflect handling the missing data for the 4 rows described above:

>model.input$y[(model.input$detection.info$site == "Q091" &
model.input$detection.info$season == 8),]

Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit
5698 0 0 1 1 0 1
5965 1 0 1 1 0 1
6232 NA NA NA NA NA NA

> model.input$y[(model.input$detection.info$site == "Q125" &
model.input$detection.info$season == 2),]

Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit
926 NA NA NA NA NA NA
1193 NA NA NA NA NA NA
1460 NA NA NA NA NA NA

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 46

The package reorders the data as site, then season, then survey, and ensures all matrices are in this
order. The resulting design matrices for occupancy X and detection W are

> head(model.input$X, n=4L)
forest elev

1 1 -1.14817161 -1.1493867
11 1 -0.49693623 -1.1493867
21 1 -0.09895905 -0.2146840
32 1 -0.93109315 -0.3704678

> nrow(model.input$X)
[1] 2670

> head(model.input$W, n=4L)
[,1] [,2]

[1,] 1 0.1563255
[2,] 1 1.1567763
[3,] 1 1.1567763
[4,] 1 -0.9274962

> nrow(model.input$W)
[1] 8010

The threshold is the Euclidean distance which defines whether or not two locations are neighbors.
In our, setting we set threshold = 15000 which results in the 2670 × 2670 block diagonal adjacency
matrix

> model.input$A[1:5,1:5]
1 11 21 32 41

1 0 0 0 0 0
11 0 0 0 0 0
21 0 0 0 1 1
32 0 0 1 0 0
41 0 0 1 0 0

Observe the detections y are reordered because all components of the data were reordered accord-
ing to site, season, and survey:

> head(model.input$y, n=4L)
Great.tit Blue.tit Coal.tit Crested.tit Marsh.tit Willow.tit

1 NA NA NA NA NA NA
268 NA NA NA NA NA NA
535 NA NA NA NA NA NA
2 1 1 0 0 1 0

> head(model.input$detection.info, n=4L)
siteID site season survey observations

1 1 Q001 1 1 0
268 1 Q001 1 2 0
535 1 Q001 1 3 0
2 2 Q002 1 1 1
> nrow(model.input$detection.info)
[1] 8010

> head(model.input$occupancy.info, n=4L)
siteID site season x y

1 1 Q001 1 922942 63276
11 2 Q002 1 928942 79276
21 3 Q003 1 928942 103276
32 4 Q004 1 934942 95276
> nrow(model.input$occupancy.info)
[1] 2670

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 47

We ran our full analysis using the GibbsSampler(M.iter = 50000,M.burn = 20000,
M.thin = 10,model.input,q=10,sv=TRUE). This took 4.03 hours to run on a single node on the Wake
Forest University DEAC Cluster (Information Systems and Wake Forest University, 2021).

Results from the analysis are shown in Tables 1 and 2. It is important to note that we standardized
all covariates to aid with MCMC mixing, and so we focus on the relative ordering of parameter
estimates when comparing to other studies rather than absolute estimates. Table 1 shows the ordering
of elevation’s impact on occupancy as Willow Tit, Crested and Coal Tit, Great Tit, Blue Tit and Marsh
Tit. This ordering largely matches the ordering published in Tobler et al. (2019) (Table S2), which
considered the same data and six species in a somewhat similar Joint Species Distribution Model.
Chamberlain et al. (2016) published that Willow Tits occupy higher elevations than Coal Tits in a
nearby region of Italy, consistent with the ordering presented here. Turning to percent forest cover,
our results show higher occupancy with higher forest cover for the Willow, Coal and Crested Tits,
middlling occupancy for Marsh Tit, and lower occupancy for the Great and Blue Tits, again matching
the ordering of Tobler et al. (2019).

Species Intercept Forest Elevation
Great Tit 0.847 (0.769, 0.930) -0.143 (-0.215, -0.072) -0.224 (-0.300, -0.149)
Blue Tit 0.639 (0.547, 0.729) -0.139 (-0.221, -0.058) -0.261 (-0.349, -0.177)
Coal Tit 0.996 (0.919, 1.076) -0.007 (-0.080, 0.066) -0.130 (-0.204, -0.055)

Crested Tit 0.764 (0.667 , 0.867) -0.014 (-0.097, 0.071) -0.138 (-0.223, -0.052)
Marsh Tit 0.611 (0.509 , 0.724) -0.124 (-0.219, -0.031) -0.283 (-0.386, -0.182)

Willow Tit 0.383 (0.267 , 0.506) 0.108 (0.013, 0.199) 0.068 (-0.028, 0.163)

Table 1: Posterior means and 95% credible intervals for the occupancy regression coefficients α.

Species Intercept Duration
Great Tit 0.593 (0.553, 0.633) -0.187 (-0.228, -0.147)
Blue Tit 0.109 (0.069, 0.149) -0.257 (-0.299, -0.214)
Coal Tit 0.738 (0.696, 0.779) 0.303 (0.263, 0.346)

Crested Tit -0.030 (-0.072, 0.011) 0.352 (0.309, 0.395)
Marsh Tit -0.307 (-0.351, -0.264) -0.090 (-0.133, -0.048)

Willow Tit -0.482 (-0.532, -0.434) 0.430 (0.377, 0.482)

Table 2: Posterior means and 95% credible intervals for the detection regression coefficients β

Turning next to the residual dependence structure, Figure 4 shows the posterior mean of the
correlation matrix computed from Σ for the six species, with notable differences across pairs of species.
We see a mixture of positive and negative correlations across different pairs of species, with, for
instance, a strong positive signal for the Coal and Crested Tits but a strong negative correlation for the
Willow and Marsh Tits. The positive correlation estimated here for Great tit and Blue tit is consistent
with Stenseth et al. (2015), who noted these species occupy the same geographical areas and compete
for resources, which can result in negative correlation for abundance, but positive correlation for
occupancy. Our estimated correlations for the six species somewhat differ from those estimated by
Tobler et al. (2019), who showed results on residual correlation of occupancy probability for the six tit
species for a single season, but computed under a latent factor model. Their results showed all positive
correlations among the six species, a result they noted with surprise. However, this is reflective of the
factor model structure in their assumed model which is less flexible than the multivariate random
effect we used here. They also assumed different covariates and only modeled a single season, and
as both model’s dependence structures are residual to covariate effects, the estimates are not readily
comparable.

Figures 5 and 6 show posterior means for occupancy probabilities ψ for seasons 1 and 7 for all six
species. Hollow circles show the actual detections of each species in each corresponding season. For
all T = 10 years, we observe a very strong relationship between predicted occupancy probabilities ψ
and species detections for all species and all seasons.

5 Conclusion

In this article, we introduced the R package multiocc for implementing the multivariate spatio-
temporal occupancy model proposed by Hepler and Erhardt (2021). This model overcomes many of
the limitations of occupancy models that can be implemented with already existing R packages. More

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 48

Figure 4: Posterior mean of the correlation matrix computed from Σ. Plot shows examples of pairs
of strongly correlated species (e.g. Great Tit and Blue Tit), strongly negative correlated species (e.g.
Marsh Tit and Willow Tit), and largely uncorrelated species (e.g. Marsh Tit and Coal Tit).

specifically, this model can jointly analyze S ≥ 1 species over multiple seasons with a varying number
of surveys at each site per season. The use of spatial basis functions makes this method feasible even
with a large number of spatial locations.

Using this package to analyze imperfectly detected presence/absence data requires two main
steps. First, the multioccbuild() function takes the raw data and outputs all matrices required to run
the MCMC algorithm. Then, the GibbsSampler() function performs the Gibbs sampling algorithm to
generate samples from the posterior distribution which can then be used to perform inference. We
illustrated use of this package by analyzing occupancy data on six bird species in Switzerland from
2004 - 2013. The development of multiocc makes this multivariate spatio-temporal occupancy model
accessible to the large community of researchers who use R for their data analysis needs.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 49

Figure 5: An example of occupancy predictions for season 1. Colors show posterior means of ψ for
each location and species, interpolated across space using a thin plate spline for ease of visualization
only. Hollow circles show points with detections of the species in that particular season. As expected,
regions of higher posterior probability match regions with greater density of detections.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 50

Figure 6: An example of occupancy predictions for season 7. Colors show posterior means of ψ for
each location and species, interpolated across space using a thin plate spline for ease of visualization
only. Hollow circles show points with detections of the species in that particular season. As expected,
regions of higher posterior probability match regions with greater density of detections.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 51

References

J. Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. Journal of the
American Statistical Association, 88(422):669–679, 1993. [p39]

J. R. Bradley, S. H. Holan, and C. K. Wikle. Multivariate spatio-temporal models for high-dimensional
areal data with application to longitudinal employer-household dynamics. The Annals of Applied
Statistics, 9(4):1761–1791, 2015. [p39, 41]

D. Chamberlain, M. Brambilla, E. Caprio, P. Pedrini, and A. Rolando. Alpine bird distributions
along elevation gradients: the consistency of climate and habitat effects across geographic regions.
Oecologia, 181(4):1139–1150, 2016. [p47]

J. S. Clark, A. E. Gelfand, C. W. Woodall, and K. Zhu. More than the sum of the parts: forest climate
response from joint species distribution models. Ecological Applications, 24(5):990–999, 2014. [p37]

J. S. Clark, D. Nemergut, B. Seyednasrollah, P. J. Turner, and S. Zhang. Generalized joint attribute mod-
eling for biodiversity analysis: Median-zero, multivariate, multifarious data. Ecological Monographs,
87(1):34–56, 2017. [p37]

J. W. Doser, A. O. Finley, M. Kéry, and E. F. Zipkin. spoccupancy: An r package for single-species,
multi-species, and integrated spatial occupancy models. Methods in Ecology and Evolution, 2022.
[p37]

A. E. Gelfand, P. Diggle, P. Guttorp, and M. Fuentes. Handbook of spatial statistics. CRC press, 2010.
[p41]

G. Guillera-Arroita, M. Kéry, and J. Jahoz-Monfort. Inferring species richness using multispecies
occupancy modeling: Estimation performance and interpretation. Ecology and Evolution, 9(2):
780–792, 2019. [p37]

A. Guisan and C. Rahbek. Sesam–a new framework integrating macroecological and species distribu-
tion models for predicting spatio-temporal patterns of species assemblages, 2011. [p37]

S. Hepler, R. Erhardt, and T. Anderson. Identifying drivers of spatial variation in occupancy with
limited replication camera trap data. Ecology, 99(10):2152–2158, 2018. [p41]

S. Hepler, K. Kaufeld, K. Benedict, M. Toda, B. Jackson, X. Liu, and D. Kline. Integrating public
health surveillance and environmental data to model presence of Histoplasma in the United States.
Epidemiology, 2022. doi: 10.1097/EDE.0000000000001499. [p37]

S. A. Hepler and R. J. Erhardt. A spatiotemporal model for multivariate occupancy data. Environmetrics,
32(2):e2657, 2021. [p37, 38, 39, 41, 47]

J. Hughes and M. Haran. Dimension reduction and alleviation of confounding for spatial generalized
linear mixed models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(1):
139–159, 2013. [p39]

Information Systems and Wake Forest University. WFU High Performance Computing Facility, 2021.
URL https://hpc.wfu.edu. [p47]

D. Johnson, P. Conn, M. Hooten, J. Ray, and B. Pond. Spatial occupancy models for large data sets.
Ecology, 94(4):801–808, 2013. [p37]

M. Kéry, A. Royle, and M. Meredith. Ahmbook: functions and data for the book ‘applied hierarchical
modeling in ecology’. R package version 0.1, 3, 2017. [p43]

S. Lele, M. Moreno, and E. Bayne. Dealing with detection error in site occupancy surveys: what can
we do with a single survey? Journal of Plant Ecology, 5(1):22–31, 2012. [p41]

D. MacKenzie, J. Nichols, G. Lachman, S. Droege, J. Royle, and C. Langtimm. Estimating site occupancy
rates when detection probabilities are less than one. Ecology, 83(8):2248–2255, 2002. [p38, 41]

K. Mardia. Multi-dimensional multivariate gaussian markov random fields with application to image
processing. Journal of Multivariate Analysis, 24(2):265–284, 1988. [p39]

O. Ovaskainen, G. Tikhonov, A. Norberg, F. Guillaume Blanchet, L. Duan, D. Dunson, T. Roslin,
and N. Abrego. How to make more out of community data? a conceptual framework and its
implementation as models and software. Ecology letters, 20(5):561–576, 2017. [p37]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://hpc.wfu.edu

CONTRIBUTED RESEARCH ARTICLE 52

L. J. Pollock, R. Tingley, W. K. Morris, N. Golding, R. B. O’Hara, K. M. Parris, P. A. Vesk, and M. A.
McCarthy. Understanding co-occurrence by modelling species simultaneously with a joint species
distribution model (jsdm). Methods in Ecology and Evolution, 5(5):397–406, 2014. [p37]

H. Rahman, K. McCarthy, J. McCarthy, and M. Faisal. Application of multi-species occupancy modeling
to assess mammal diversity in northeast Bangladesh. Global Ecology and Conservation, 25, 2021. [p37]

C. Rota, C. Wikle, R. Kays, T. Forrester, W. McShea, A. Parsons, and J. Millspaugh. A two-species
occupancy model accommodating simultaneous spatial and interspecific dependence. Ecology, 97
(1):48–53, 2016. [p37]

C. T. Rota, R. J. Fletcher Jr, R. M. Dorazio, and M. G. Betts. Occupancy estimation and the closure
assumption. Journal of Applied Ecology, 46(6):1173–1181, 2009. [p38]

J. A. Royle and R. M. Dorazio. Hierarchical modeling and inference in ecology: the analysis of data from
populations, metapopulations and communities. Academic Press, 2008. [p38]

J. Sanderlin, J. Golding, T. Wilcox, D. Mason, K. McKelvey, D. Pearson, and M. Schwartz. Occu-
pancy modeling and resampling overcomes low test sensitivity to produce accurate SARS-CoV-2
prevalence estimates. BMC Public Health, 21(577), 2021. [p37]

N. C. Stenseth, J. M. Durant, M. S. Fowler, E. Matthysen, F. Adriaensen, N. Jonzén, K.-S. Chan, H. Liu,
J. De Laet, B. C. Sheldon, et al. Testing for effects of climate change on competitive relationships
and coexistence between two bird species. Proceedings of the Royal Society B: Biological Sciences, 282
(1807):20141958, 2015. [p47]

D. Taylor-Rodriguez, K. Kaufeld, E. M. Schliep, J. S. Clark, and A. E. Gelfand. Joint species distribution
modeling: dimension reduction using dirichlet processes. Bayesian Analysis, 12(4):939–967, 2017.
[p37, 42]

G. Tikhonov, Ø. H. Opedal, N. Abrego, A. Lehikoinen, M. M. de Jonge, J. Oksanen, and O. Ovaskainen.
Joint species distribution modelling with the r-package hmsc. Methods in ecology and evolution, 11(3):
442–447, 2020. [p37]

M. W. Tobler, M. Kéry, F. K. Hui, G. Guillera-Arroita, P. Knaus, and T. Sattler. Joint species distribution
models with species correlations and imperfect detection. Ecology, 100(8):e02754, 2019. [p47]

A. Vehtari, A. Gelman, and J. Gabry. Practical bayesian model evaluation using leave-one-out cross-
validation and waic. Statistics and computing, 27:1413–1432, 2017. [p42]

Staci Hepler
Department of Statistical Sciences, Wake Forest University
Winston-Salem NC, 27103 USA
heplersa@wfu.edu

Robert Erhardt
Department of Statistical Sciences, Wake Forest University
Winston-Salem NC, 27103 USA
erhardrj@wfu.edu

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

mailto:heplersa@wfu.edu
mailto:erhardrj@wfu.edu

CONTRIBUTED RESEARCH ARTICLE 53

Accessible Computation of Tight Symbolic
Bounds on Causal Effects using an
Intuitive Graphical Interface
by Gustav Jonzon, Michael C Sachs, and Erin E Gabriel

Abstract Strong untestable assumptions are almost universal in causal point estimation. In particular
settings, bounds can be derived to narrow the possible range of a causal effect. Symbolic bounds
apply to all settings that can be depicted using the same directed acyclic graph and for the same
effect of interest. Although the core of the methodology for deriving symbolic bounds has been
previously developed, the means of implementation and computation have been lacking. Our R-
package causaloptim aims to solve this usability problem by providing the user with a graphical
interface through Shiny. This interface takes input in a form that most researchers with an interest in
causal inference will be familiar: a graph drawn in the user’s web browser and a causal query written
in text using common counterfactual notation.

1 Introduction

A common goal in many different areas of scientific research is to determine causal relationships
between one or more exposure variables and an outcome. Prior to any computation or inference,
we must clearly state all assumptions made, i.e., all subject matter knowledge available, regarding
the causal relationships between the involved variables as well as any additional variables, called
confounders, that may not be measured but influence at least two other variables of interest. A popular
tool in applied research for encoding these causal assumptions is a directed acyclic graph (DAG), in
which directed edges represent direct causal influences (Greenland et al., 1999). Such a DAG not only
clearly states the assumptions made by the researcher, but also comes with a sound methodology for
causal inference, in the form of identification results (theorems on when an estimand is estimable) as
well as derivation of expressions of causal estimands in terms of observable quantities (Pearl, 2009).

Unfortunately, point identification of a desired causal effect typically requires an assumption of no
unmeasured confounders, in some form. When there are unmeasured confounders, it is sometimes
still possible to derive bounds on the effect, i.e., a range of possible values for the causal effect in terms
of the observed data distribution. Symbolic bounds are algebraic expressions for the bounds on the
causal effect written in terms of probabilities that can be estimated using observed data. Alexander
Balke and Judea Pearl first used linear programming to derive tight symbolic bounds in a simple
binary instrumental variable (IV) setting (Balke and Pearl, 1997). Balke wrote a program in C++ to take
a linear programming problem as text file input, perform variable reduction, conversion of equality
constraints into inequality constraints, and perform the vertex enumeration algorithm of Mattheiss
(1973). This program has since been used by researchers in the field of causal inference (Balke and
Pearl, 1997; Cai et al., 2008; Sjölander, 2009; Sjölander et al., 2014) but it is not particularly accessible
because of the technical challenge of translating the DAG plus causal query into the constrained
optimization problem and determining whether it is linear. Moreover, the program is not optimized
and hence does not scale well to more complex problems. Since they only cover a simple instrumental
variable setting, it has also not been clear to what extent their techniques extend to more general
settings, nor how to apply them to more complex queries. Thus, applications of this approach have
been limited to a small number of settings and few attempts to generalize the method to more widely
applicable settings have been made.

Recent developments have expanded the applicability by generalizing the techniques and the
causal DAGs and effects to which they apply (Sachs et al., 2022). These new methods have been
applied in novel observational and experimental settings (Gabriel et al., 2022a, 2023, 2022b). Moreover,
through the R package causaloptim (Sachs et al., 2023), these computations are now accessible. With
causaloptim, the user needs only to give input in a way they would usually express their causal
assumptions and state their target causal estimand; through a DAG and counterfactual expression.
Providing DAGs through textual input is an awkward experience for most users, as DAGs are generally
communicated pictorially. Our package causaloptim provides a user-friendly graphical interface (GUI)
through a web browser, where the user can draw their DAG in a way that is familiar to them. The
methodology that underpins causaloptim is not universal however; some restrictions on the DAG
and query are imposed. These are validated and communicated to the user through the graphical
interface, which guides the user through providing the DAG and query, adding any extra conditions
beyond those encoded in the DAG, computing, interpreting and exporting the bounds for various

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=causaloptim
https://CRAN.R-project.org/package=causaloptim
https://CRAN.R-project.org/package=causaloptim
https://CRAN.R-project.org/package=causaloptim

CONTRIBUTED RESEARCH ARTICLE 54

further analyses.

There exist few other R-packages related to causal bounds and none to our knowledge for compu-
tation of symbolic bounds. bpbounds (Palmer et al., 2018) provides a text-based interface to compute
numeric bounds for the original single instrumental variable example of Balke and Pearl and extends
this by being able to compute bounds given different types of data input including a ternary rather
than binary instrument. There is also a standalone program written in Java by the TETRAD Project
(https://github.com/cmu-phil/tetrad) that includes a GUI and has a wrapper for R. Its focus, how-
ever, is on causal discovery in a given sample data set, and although it can also compute bounds, it
can do so only numerically for the given data set.

In this paper we describe our R package causaloptim, first focusing on the graphical and pro-
grammatic user interfaces in the next 2 sections. Then we highlight some of our interesting functions
and data structures that may be useful in other contexts. We provide a summary of the theoretical
background and methods, while referring to the companion paper Sachs et al. (2022) for the details.
We illustrate the use of the package with some numeric examples and close with a discussion and
summary.

2 Graphical user interface

In the following, we will work through the binary instrumental variable example, where we have
3 observed binary variables X, Y, Z, and we want to determine the average causal effect of X on Y
given by the total causal risk difference, in the presence of unmeasured confounding by UR and an
instrumental variable Z. Our causal DAG is given by Z → X → Y and X ← UR → Y and our causal
query is P(Y(X = 1) = 1)− P(Y(X = 0) = 1), where we use Y(X = x) to denote the counterfactual
outcome Y if X were intervened upon to have value x. The package can handle more variables and
complex settings including multiple exposures, outcomes and nested counterfactuals (although only
a single exposure and outcome may be set by clicking vertices in the GUI, the query may easily be
modified to a more complex one), but this classic example will serve to showcase its functionality.

causaloptim includes a GUI implemented in shiny (Chang et al., 2022). The interface is launched
in the user’s default web browser by calling specify_graph(). Once the shiny app is launched, the
user is presented with an interactive display as shown in Figure 1, in which they can draw their causal
DAG. This display is divided into a left side L and right sideR to classify the vertices according to the
class of DAGs that the method covers. This division signifies the following: Existence of unmeasured
confounding is assumed within each of these sides, but not between them, and any causal influence
between the two sides must originate in L. Generally speaking, the outcome variables of interest will
typically be on the right side, things like instruments or randomized treatments will be on the left side,
and confounded exposures of interest on the right side. Thus, for the example, we would want to put
the instrumental variable on the left side, but the exposure and outcome on the right side. In the web
version of this article an interactive version of this interface is shown at the end of this section.

The DAG that we aim to construct is depicted in Figure 2.

2.1 Specifying the setting by drawing a causal diagram and adding attributes

The DAG is drawn using a point-and-click device (e.g., a mouse) to add vertices representing variables
(by Shift-click) and name them (using any valid variable name in R without underscores), and to
draw edges representing direct causal influences (Shift+drag) between them. The vertices may also
be moved around, renamed and deleted (as can the edges) as also described in an instruction text
preceding the DAG interface. As shown in Figure 3, for the example we add a vertex Z on the
left side, and vertices X and Y on the right side. Then the Z → X and X → Y edges are added
by Shift+clicking on a parent vertex and dragging to the child vertex. There is no need to add the
unmeasured confounder variable UR as it is assumed and added automatically. The same would have
applied to UL, but a confounder is added to a side only if it contains at least two variables.

Importantly, the nodes may be selected and assigned additional information. In R, a variable
may be assigned as unobserved (click+‘u’). All observed variables are assumed categorical and their
cardinality (i.e., number of levels) may be set (click+‘c’ brings up a prompt for this this number;
alternatively a short-cut click+‘any digit’ is provided), with the default being binary. Although the
causal query (i.e., the causal effect of interest) is entered subsequently, the DAG interface provides a
convenient short-cut; a node X may be assigned as an exposure (click+‘e’) and another Y as outcome
(click+‘y’), whereupon the default query is the total causal risk difference P(Y(X = 1) = 1) −
P(Y(X = 0) = 1). Finally, an edge may be assigned as representing an assumed monotonic influence
(click+‘m’), i.e., that increasing the value of the exposure can not decrease the value of the outcome,
e.g, X(Z = 0) ≤ X(Z = 1). The nodes and edges change appearance according to their assigned

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=bpbounds
https://github.com/cmu-phil/tetrad
https://CRAN.R-project.org/package=causaloptim
https://CRAN.R-project.org/package=causaloptim
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny

CONTRIBUTED RESEARCH ARTICLE 55

Figure 1: The Shiny web interface at launch

Z X Y

Ur

Figure 2: Causal DAG for the IV example.

(a) Adding and naming variables (b) Adding directed edges

Figure 3: Constructing the DAG

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 56

(a) Setting the number of categories (b) Confirmation message (c) Setting exposure and outcome

Figure 4: Setting attributes

(a) Graphical summary of the DAG with added confound-
ing

(b) Computing the bounds

Figure 5: The causal DAG and bounds

characteristics (Figure 4) and violations to the restrictions characterizing the class of DAGs are detected
and communicated to the user.

Once the DAG has been drawn, the user may click the button “Analyze the graph”, upon which
the DAG is interpreted and converted into an annotated igraph-object (Csardi and Nepusz, 2006)
as described in the implementation details below, and the results are displayed in graphical form to
the user (Figure 5). The addition of UR, the common unmeasured cause of X and Y, is added and
displayed in this static plot.

2.2 Specifying the causal query

Next, the user is asked to specify the causal query, i.e., causal effect of interest. If no outcome variable
has been assigned in the DAG then the input field for the causal query is left blank and a query needs
to be specified. In our example, since we have assigned an exposure and outcome using the DAG
interface, the total causal risk difference P(Y(X = 1) = 1)− P(Y(X = 0) = 1) is suggested.

2.3 Specifying optional additional constraints

The user is also given the option to provide additional constraints besides those imposed by the
DAG. This may be considered an optional advanced feature where, e.g., monotonicity of a certain
direct influence of Z on X may be assumed by entering X(Z = 1) ≥ X(Z = 0), with any such extra
constraints separated by line breaks. If this feature is used, the input is followed by clicking the button
“Parse”, which identifies and fixes them.

2.4 Computing the symbolic tight bounds on the query under the given constraints

As the final step, the button “Compute the bounds” is clicked, whereupon the constraints and objective
are compiled into an optimization problem which is then solved for tight causal bounds on the query
symbolically in terms of observational quantities (conditional probabilities of the observed variables
in the DAG) and the expressions are displayed alongside information on how the parameters are
to be interpreted in terms of the given variable names (Figure 5). During computation, a progress
indicator is shown, and the user should be aware that complex and/or high-dimensional problems
may take significant time. The interface also provides a feature to subsequently convert the bounds to
LATEX-code using standard probabilistic notation for publication purposes.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=igraph

CONTRIBUTED RESEARCH ARTICLE 57

Once done, clicking “Exit and return objects to R” stops the shiny app and returns all information
about the DAG, query and computed bounds to the R-session. This information is bundled in a
list containing the graph, query, parameters and their interpretation, the symbolic tight bounds
as expressions as well as implementations as R-functions and further log information about the
formulation and optimization procedures.

3 Programmatic user interface

Interaction may also be done entirely programmatically as we illustrate with the same binary instru-
mental variable example. First we create the igraph object using the graph_from_literal function.
Once the basic graph is created, the necessary vertex and edge attributes are added. The risk difference
is defined as a character object. The analyze_graph function is the workhorse of causaloptim; it trans-
lates the causal graph, constraints, and causal effect of interest into a linear programming problem.
This linear programming object, stored in obj in the code below, gets passed to optimize_effect_2
which performs vertex enumeration to obtain the bounds as symbolic expressions in terms of observ-
able probabilities. Note that when we textually enter the DAG, we also manually add the unmeasured
confounding. Although the unmeasured confounder is designated as binary in the code, this is not
assumed in the the computations where it is treated as possibly continuous, e.g.

graph <- igraph::graph_from_literal(Z -+ X, X -+ Y,
Ur -+ X, Ur -+ Y)

V(graph)$leftside <- c(1, 0, 0, 0)
V(graph)$latent <- c(0, 0, 0, 1)
V(graph)$nvals <- c(2, 2, 2, 2)
E(graph)$rlconnect <- c(0, 0, 0, 0)
E(graph)$edge.monotone <- c(0, 0, 0, 0)

riskdiff <- "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}"
obj <- analyze_graph(graph, constraints = NULL, effectt = riskdiff)
bounds <- optimize_effect_2(obj)
bounds
#> lower bound =
#> MAX {
#> p00_0 - p00_1 - p10_1 - p01_1,
#> p00_0 - p00_1 - p10_0 - p10_1 - p01_0,
#> p00_0 - p00_1 + p10_0 - 2p10_1 - 2p01_1,
#> -p10_1 - p01_1,
#> -p10_0 - p01_0,
#> -p00_0 + p00_1 - 2p10_0 + p10_1 - 2p01_0,
#> -p00_0 + p00_1 - p10_0 - p10_1 - p01_1,
#> -p00_0 + p00_1 - p10_0 - p01_0
#> }
#> --
#> upper bound =
#> MIN {
#> 1 - p10_1 - p01_0,
#> 1 + p00_0 + p10_0 - 2p10_1 - p01_1,
#> 2 - p00_1 - p10_0 - p10_1 - 2p01_0,
#> 1 - p10_1 - p01_1,
#> 1 - p10_0 - p01_0,
#> 1 + p00_1 - 2p10_0 + p10_1 - p01_0,
#> 2 - p00_0 - p10_0 - p10_1 - 2p01_1,
#> 1 - p10_0 - p01_1
#> }

The resulting bounds object contains character strings representing the bounds and logs containing
detailed information from the vertex enumeration algorithm. The bounds are printed to the console but
more features are available to facilitate their use. The interpret_bounds function takes the bounds and
parameter names as input and returns an R function implementing vectorized forms of the symbolic
expressions for the bounds.

bounds_function <- interpret_bounds(bounds$bounds, obj$parameters)
str(bounds_function)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=causaloptim

CONTRIBUTED RESEARCH ARTICLE 58

#> function (p00_0 = NULL, p00_1 = NULL, p10_0 = NULL, p10_1 = NULL, p01_0 = NULL,
#> p01_1 = NULL, p11_0 = NULL, p11_1 = NULL)

The results can also be used for numerical simulation using simulate_bounds. This function
randomly generates counterfactuals and probability distributions that satisfy the constraints implied
by the DAG and optional constraints. It then computes and returns the bounds as well as the true
causal effect.

If one wants to bound a different effect using the same causal graph, the update_effect function
can be used to save some computation time. It takes the object returned by analyze_graph and the
new effect string and returns an object of class linearcausalproblem that can be optimized:
obj2 <- update_effect(obj, "p{Y(X = 1) = 1}").

Finally, LATEX-code may also be generated using the function latex_bounds as in
latex_bounds(bounds$bounds, obj$parameters) yielding

Lower bound = max

P(X = 0, Y = 0|Z = 0)− P(X = 0, Y = 0|Z = 1)− P(X = 1, Y = 0|Z = 1)− P(X = 0, Y = 1|Z = 1),
P(X = 0, Y = 0|Z = 0)− P(X = 0, Y = 0|Z = 1)− P(X = 1, Y = 0|Z = 0)− P(X = 1, Y = 0|Z = 1)− P(X = 0, Y = 1|Z = 0),
P(X = 0, Y = 0|Z = 0)− P(X = 0, Y = 0|Z = 1) + P(X = 1, Y = 0|Z = 0)− 2P(X = 1, Y = 0|Z = 1)− 2P(X = 0, Y = 1|Z = 1),
−P(X = 1, Y = 0|Z = 1)− P(X = 0, Y = 1|Z = 1),
−P(X = 1, Y = 0|Z = 0)− P(X = 0, Y = 1|Z = 0),
−P(X = 0, Y = 0|Z = 0) + P(X = 0, Y = 0|Z = 1)− 2P(X = 1, Y = 0|Z = 0) + P(X = 1, Y = 0|Z = 1)− 2P(X = 0, Y = 1|Z = 0),
−P(X = 0, Y = 0|Z = 0) + P(X = 0, Y = 0|Z = 1)− P(X = 1, Y = 0|Z = 0)− P(X = 1, Y = 0|Z = 1)− P(X = 0, Y = 1|Z = 1),
−P(X = 0, Y = 0|Z = 0) + P(X = 0, Y = 0|Z = 1)− P(X = 1, Y = 0|Z = 0)− P(X = 0, Y = 1|Z = 0)

Upper bound = min

1− P(X = 1, Y = 0|Z = 1)− P(X = 0, Y = 1|Z = 0),
1 + P(X = 0, Y = 0|Z = 0) + P(X = 1, Y = 0|Z = 0)− 2P(X = 1, Y = 0|Z = 1)− P(X = 0, Y = 1|Z = 1),
2− P(X = 0, Y = 0|Z = 1)− P(X = 1, Y = 0|Z = 0)− P(X = 1, Y = 0|Z = 1)− 2P(X = 0, Y = 1|Z = 0),
1− P(X = 1, Y = 0|Z = 1)− P(X = 0, Y = 1|Z = 1),
1− P(X = 1, Y = 0|Z = 0)− P(X = 0, Y = 1|Z = 0),
1 + P(X = 0, Y = 0|Z = 1)− 2P(X = 1, Y = 0|Z = 0) + P(X = 1, Y = 0|Z = 1)− P(X = 0, Y = 1|Z = 0),
2− P(X = 0, Y = 0|Z = 0)− P(X = 1, Y = 0|Z = 0)− P(X = 1, Y = 0|Z = 1)− 2P(X = 0, Y = 1|Z = 1),
1− P(X = 1, Y = 0|Z = 0)− P(X = 0, Y = 1|Z = 1)

.

4 Implementation and program overview

An overview of the main functions and their relations is depicted as a flow chart in Figure 6.
All functions may be called individually by the user in the R-console and all input, output
and interaction available through the shiny app is available through the R-console as well.

Sachs et al. (2022) define the following class of problems for which the query in general is
not identifiable, but for which a methodology to derive symbolic tight bounds on the query
is provided. The causal DAG consists of a finite set W = {W1, . . . , Wn} = WL ∪WR of
categorical variables withWL ∩WR = ∅, no edges going fromWR toWL and no external
common parent betweenWL andWR, but importantly external common parents UL and
UR of variables withinWR andWR may not be ruled out. Nothing is assumed about any
characteristics of these confounding variables UL and UR.

The causal query may in principle be any linear combination (although causaloptim
version 0.9.8 implements contrasts with unit coefficients only) of joint probabilities of factual
and counterfactual outcomes expressed in terms of the variables inW and may always be
expressed as a sum of probabilities of response function variables of the DAG. It is subject to
the restriction that each outcome variable is inWR and ifWL ̸= ∅ it is also subject to a few
regularity conditions as detailed in Sachs et al. (2022). Tight bounds on the query may then
be derived symbolically in terms of conditional probabilities of the observable variablesW .

Algorithms 1 and 2 in Sachs et al. (2022) construct the constraint space and causal query
in terms of the joint probabilities of the response function variables and in causaloptim
are implemented in the functions create_R_matrix and create_effect_vector respectively.
Both are called as sub-procedures of the function analyze_graph to translate the causal
problem to that of optimizing an objective function over a constraint space. The implemen-
tation of Algorithm 1 involves constructing the response functions themselves as actual
R-functions. Evaluating these correspond to evaluating the structural equations of the causal
DAG.

The conditions on the DAG suffice to ensure that the causal query will depend only on
the response functions corresponding to the variables inWR and that the exhaustive set of
constraints on their probabilities are linear in a subset of conditional probabilities of observ-
able variables (Proposition 2 in Sachs et al. (2022)), and the conditions on the query in turn
ensure that it may be expressed as a linear combination of joint probabilities of the response
functions of the variables inWR (Proposition 3 in Sachs et al. (2022)). Once this formulation

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=causaloptim
https://CRAN.R-project.org/package=causaloptim

CONTRIBUTED RESEARCH ARTICLE 59

Figure 6: A function overview flow chart, listing user input, program output and overall structure.
The function specify_graph launches the GUI. Undirected edges correspond to function calls and
arrow heads to direct input. Objects are color coded according to their sources of information, with red
corresponding to the DAG, blue to the query and purple to a mixture of them, as in the optimization
problem of class linearcausalproblem. Finally, green corresponds to the subsequent optimization
process producing the bounds of class balkebound.

of the causal problem as a linear program has been set up, a vertex enumeration method is
employed to compute the extrema symbolically in terms of conditional probabilities of the
observable variables.

The main and interesting functions will be described in some detail below. We begin
however with an overview of how they are tied together by the shiny app.

specify_graph

The graphical interface is launched by specify_graph(), or preferably
results <- specify_graph(). Once the shiny app is stopped, the input, output and other
useful information is returned by the function, so we recommend assigning it to a variable so
they are saved in the R-session and may easily be further analyzed and processed. All further
function calls will take place automatically as the user interacts with the web interface. Thus,
from a basic user perspective, specify_graph is the main function. The core functionality
however is implemented in the functions analyze_graph, optimize_effect_2 and their
subroutines.

The JavaScript that handles the communication between the shiny server and the input
as the user draws a DAG through the web interface uses on the project
directed-graph-creator, an interactive tool for creating directed graphs, created using
d3.js and hosted at https://github.com/cjrd/directed-graph-creator, which has been
modified for the purpose of causal diagrams. The modification binds the user inputs as they
interact with the graph to shiny so that the directed graph and its attributes set by the user
are reactively converted into an igraph-object for further processing. Since directed graphs
are common in many computational and statistical problems, this shiny interface may also
be valuable to many other R-package authors and maintainers who may wish to provide
their users with an accessible and intuitive way to interact with their software.

The server listens to a reactive function that, as the user draws the DAG, collects infor-

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://github.com/cjrd/directed-graph-creator
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny

CONTRIBUTED RESEARCH ARTICLE 60

mation about the current edges, collects and annotates vertices, adds left- and right-side
confounding, and returns an annotated igraph-object, comprising information about the
connectivity along with some additional attributes; for each variable, its name, cardinality,
latency-indicator and side-indicator, and for each edge, a monotonicity-indicator and (to
detect and communicate violations on direction) a right-to-left-indicator. The server mean-
while also monitors the DAG for any violation of the restriction that each edge between L
andRmust go from L toR, and if detected directly communicates this to the user through
a text message in the shiny app. The app makes use shiny modules which makes testing
the interface easier, and causaloptim includes many automated tests to make sure that the
GUI functionality works as intended.

analyze_graph

The function analyze_graph takes a DAG (in the form of an igraph object), optional con-
straints, and a string representing the causal effect of interest and proceeds to construct and
return a linear optimization problem (a linearcausalproblem-object) from these inputs.

First, some basic data structures are created to keep track of the observed variables, their
possible values, the latent variables, and whether they are in L or R. Once these basic
data-structures have been created, the first task of the algorithm is to create the response
function variables (for each variable, observed or not, except UL and UR). Probabilities of
these will be the entities q in which the objective function (representing the target causal
effect) is expressed and will constitute the points in the space it is optimized over, where this
space itself is constrained by the the relationships between them and observed conditional
probabilities p.

create_response_function

The function create_response_function returns a list respvars that has a named entry for
each observed variable, containing its response function variable and response function. If X
is an observed variable with n response functions, then they are enumerated by {0, . . . , n−
1}. Its entry respvars$X contains the response function variable RX of X, and is a list with
two entries. The first, respvarsXindex, is a vector containing all the possible values of RX ,
i.e., the integers (0, . . . , n− 1). The second, respvarsXvalues is itself a list with n entries;
each containing the particular response function of X corresponding to its index. Each such
response function is an actual R-function and may be evaluated by passing it any possible
values of the parents of X as arguments.

Next, the response function variables are used in the creation of a matrix of unob-
served probabilities. Specifically the joint probabilities P(RR = rR) for each possible
value-combination rR of the response function variables RR of the right-side-variables WR.
In Sachs et al. (2022), the possible value-combinations rR are enumerated by γ ∈ {1, . . . ,ℵR}
with corresponding probabilities qγ := P(RR = rγ) being components of the vector
q ∈ [0, 1]ℵR .

create_R_matrix

The constraints that the DAG and observed conditional probabilities p (in p.vals) im-
pose on the unobserved probabilities q (represented by variables) are linear. Specifically,
there exists a matrix whose entries are the coefficients relating p.vals to variables. This
matrix is called P in Sachs et al. (2022), where its existence is guaranteed by Proposition
2 and its construction is detailed in Algorithm 1, which is implemented in the function
create_R_matrix. This function returns back a list with two entries; a vector of strings
representing the linear constraints on the unobserved q ∈ [0, 1]ℵR imposed by and in terms
of the observed p ∈ [0, 1]B and the numeric matrix R ∈ {0, 1}(B+1)×ℵR of coefficients corre-

sponding to these constraints as well as the probabilistic ones and given by R =

(
1
P

)
where

P ∈ {0, 1}B×ℵR : p = Pq, so Rq =

(
1
p

)
.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=causaloptim

CONTRIBUTED RESEARCH ARTICLE 61

This determines the constraint space as a compact convex polytope in q-space, i.e., in
RℵR . To create the matrix, we define a recursive function gee_r that takes two arguments; a
positive integer i being the index i ∈ {1, . . . , n} of a variable Wi ∈ W (i.e. the ith component
of W or, equivalently, the ith entry of obsvars) and a vector r being a value r ∈ ν(R) in
the set ν(R) of all possible value-vectors of the joint response function variable R. This
recursive function is called for each variable in obsvars and for each possible value of the
response function variable vector. The base case is reached if the variable has no parents, in
which case the list corresponding to the response function variable RWi of Wi is extracted
from respvars. From this list, the entry whose index matches the ith index of r (i.e. the one
corresponding to the response function variable value ri =r[i]) is extracted and finally its
value, i.e., the corresponding response function itself, is extracted and is evaluated on an
empty list of arguments, since it is a constant function and determined only by the value ri.

The recursive case is encountered when parents is non-empty. If so, then for each parent
in parents, its index in obsvars is determined and gee_r is recursively called with the
same vector r as first argument but now with this particular index (i.e. that of the current
parent) as second argument. The numeric values returned by these recursive calls are then
sequentially stored in a vector lookin, whose entries are named by those in parents. Just
as in the base case, the response function corresponding to the particular value ri of the
response function variable RWi (i.e. the response function of the variable obsvars[i] that
has the index r[i]) is extracted from respvars and is now evaluated with arguments given
by the list lookin. Note that gee_r(r, i) corresponds to the value wi = g∗Wi

(r) in Sachs
et al. (2022).

Then the values that match the observed probabilities are recorded, the correspond-
ing entries in the current row of the matrix R are set to 1 and a string representing the
corresponding equation is constructed and added to the vector of constraints.

parse_effect

Now that the constraint space has been determined, the objective function representing
the causal query needs to be specified as a linear function of the components of q, i.e.,
variables. First, the causal query that has been provided by the user as a text-string in
effectt is passed to the function parse_effect, which identifies its components including
nested counterfactuals and creates a data structure representing the causal query. This
structure includes nested lists which represent all interventional paths to each outcome
variable in the query.

Once the nested list effect is returned back to analyze_graph, it checks that the require-
ments (see Proposition 3 in Sachs et al. (2022)) on the query are fulfilled before creating
the linear objective function. Despite these regularity conditions, a large set of possible
queries may be entered using standard counterfactual notation, using syntax described in
the accompanying instruction text along with examples such as P(Y(M(X = 0), X = 1) =
1)− P(Y(M(X = 0), X = 0) = 1); the natural direct effect (Pearl, 2001) of a binary exposure
X at level M = 0 on a binary outcome Y not going through the mediator M, in the presence
of unmeasured confounding between M and Y (Sjölander, 2009).

create_effect_vector

Now that the required characteristics of the query have been established, the correspond-
ing objective function will be constructed by the function create_effect_vector which
returns a list var.eff of string-vectors; one for each term in the query. Each such vector
contains the names (strings in variables) of the response function variables of the right-side
(i.e. the components of q) whose sum corresponds the that particular term. The function
create_effect_vector implements Algorithm 2 of Sachs et al. (2022) with the additional
feature that if the user has entered a query that is incomplete in the sense that there are omit-
ted mediating variables on paths from base/intervention variables to the outcome variable,
then this is interpreted as the user intending the effects of the base/intervention variables to
be propagated through the mediators, so that they are set to their “natural” values under
this intervention. These mediators are detected and their values are set accordingly.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 62

We define a recursive function gee_rA that takes three arguments; a positive integer i
(the index i of a variable Wi ∈ W =obsvars), a vector r (a value r ∈ ν(R) in the set ν(R) of
all possible value-vectors of the joint response function variable R) and a string path that
represents an interventional path and is of the form “X -> . . . -> Y” if not NULL. The base
case is reached either if path is non-NULL and corresponds to a path to the intervention set
or if parents is empty. In the former case, the corresponding numeric intervention-value is
returned, and in the latter case, the value of the corresponding response function called on
the empty list of arguments is returned just as in the base case of gee_r. The recursive case
is encountered when path is NULL and parents is non-empty. This recursion proceeds just
as in gee_r, but now rather with a recursive call to gee_rA, whose third argument is now
path = paste(gu, "->", path) where the string in gu is the name of the parent variable
in parents whose index i in obsvars is the second argument of this recursive call. This
construction traces the full path taken from the outcome of interest to the variable being
intervened upon. Note that gee_rA(r, i, path) corresponds to the value wi = hAi

Wi
(r, Wi)

in Sachs et al. (2022). A matrix is now created just as in the observational case, but this time
using gee_rA instead of gee_r .

optimize_effect_2

Once the constraints on q as well as the effect of interest in terms of q have been established,
it remains only to optimize this expression over the constraint space. Here, c denotes the
constant gradient vector of the linear objective function and P denotes the coefficient matrix
of the linear restrictions on q in terms of p imposed by the causal DAG. By adding the
probabilistic constraints on q we have arrived at e.g. the following linear program giving a
tight lower bound on the average causal effect θq = P{Y(X = 1) = 1} − P{Y(X = 0) = 1}
in the simple instrumental variable problem of the introductory section:

min
q

θq = min{c⊤q | q ∈ R16, q ≥ 016×1, 11×16q = 1, Pq = q}

= max{
(
1 q⊤

)
y | y ∈ R9, y ≥ 09×1,

(
116×1 P⊤

)
≤ c}

= max{
(
1 q⊤

)
ȳ | ȳ is a vertex of {y ∈ R9 | y ≥ 09×1, R⊤ ≤ c}}

Since we allow the user to provide additional linear inequality constraints (e.g. it may
be quite reasonable to assume the proportion of “defiers” in the study population of our
example to be quite low), the actual primal and dual linear programs may look slightly
more complicated, but this small example still captures the essentials.
In general, given the matrix of linear constraints on the observable probabilities implied
by the DAG and an optional user-provided matrix inequality, we construct the coefficient
matrix and right hand side vector of the dual polytope.

The optimization via vertex enumeration step in causaloptim is implemented in the
function optimize_effect_2 which uses the double description method for vertex enu-
meration, as implemented in the rcdd package (Geyer et al., 2021). This step of vertex
enumeration has previously been the major computational bottleneck. The approach is
now based on cddlib (https://people.inf.ethz.ch/fukudak/cdd_home/), which has an
implementation of the Double Description Method (dd). Any convex polytope can be
dually described as either an intersection of half-planes (which is the form we get our dual
constraint space in) or as a minimal set of vertices of which it is the convex hull (which is the
form we want it in) and the dd algorithm efficiently converts between these two descriptions.
cddlib also uses exact rational arithmetic, so there is no need to worry about any numerical
instability issues. The vertices of the dual polytope are obtained and stored as rows of
a matrix with hrep <- rcdd::makeH(a1, b1); vrep <- rcdd::scdd(hrep); vertices <-
vrep$output[vrep$output[, 1] == 0 & vrep$output[, 2] == 1, -c(1, 2), drop=FALSE].

The rest is simply a matter of plugging them into the dual objective function, evaluating
the expression and presenting the results. The first part of this is done by apply(vertices,
1, function(y) evaluate_objective(c1_num, p, y)) (here (c1_num,p)= (

(
b⊤ℓ 1

)
, p)

separates the dual objective gradient into its numeric and symbolic parts).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=causaloptim
https://CRAN.R-project.org/package=rcdd
https://people.inf.ethz.ch/fukudak/cdd_home/

CONTRIBUTED RESEARCH ARTICLE 63

X

M

Y

Ur

Figure 7: Causal DAG for mediation example

causaloptim also contains a precursor to to optimize_effect_2, called optimize_effect.
This legacy function uses the original optimization procedure written in C++ by Alexan-
der Balke and involves linear program formulation followed by the vertex enumeration
algorithm of Mattheiss (1973). This has worked well for very simple settings but has been
found to struggle on more complex problems and thus been insufficient for the ambitions of
causaloptim. The efficiency gains of optimize_effect_2 over the legacy code have reduced
the computation time for several setting from hours to milliseconds.

5 Numeric examples

We illustrate with a couple of applications. Although the problem formulations are entered
via the textual interface below, they may of course just as well be entered via the graphical
interface prior to numeric evaluation. This is done by launching the GUI and assigning its
results to a variable as in results <- specify_graph(), following steps similar to the initial
example in the section “Graphical User Interface” and clicking “Exit and return objects
to R”, whereupon all information about the DAG, query and bounds are accessible via
results. Regardless if drawn via the GUI or entered via code, the DAG may be subsequently
visualized using the plot function.

5.1 A Mediation Analysis

In Sjölander (2009), the author derives bounds on natural direct effects in the presence of
confounded intermediate variables and applies them to data from the Lipid Research Clinics
Coronary Primary Prevention Trial (Freedman et al., 1992), where subjects were randomized
to cholestyramine treatment and presence of coronary heart disease events as well as levels
of cholesterol were recorded after a 1-year follow-up period. We let X be a binary treatment
indicator, with X = 0 indicating actual cholestyramine treatment and X = 1 indicating
placebo. We further let Y be an indicator of the occurrence of coronary heart disease events
within follow-up, with Y = 0 indicating event-free follow-up and Y = 1 indicating an event.
We finally let M be a dichotomized (cut-off at 280 mg/dl) cholesterol level indicator, with
M = 0 indicating levels < 280 mg/dl and M = 1 indicating levels ≥ 280 mg/dl. The causal
assumptions are summarized in the DAG shown in Figure 7, where Ur is unmeasured and
confounds the effect of M on Y.

b <- igraph::graph_from_literal(X -+ Y, X -+ M, M -+ Y,
Ur -+ Y, Ur -+ M)

V(b)$leftside <- c(1, 0, 0, 0)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=causaloptim
https://CRAN.R-project.org/package=causaloptim

CONTRIBUTED RESEARCH ARTICLE 64

V(b)$latent <- c(0, 0, 0, 1)
V(b)$nvals <- c(2, 2, 2, 2)
E(b)$rlconnect <- c(0, 0, 0, 0, 0)
E(b)$edge.monotone <- c(0, 0, 0, 0, 0)

Note that although the unmeasured confounder Ur appears to be designated as binary in
this code, this is not assumed in the the computations, where nothing is assumed about its
distribution.

Using the data from Table IV of Sjölander (2009), we compute the observed conditional
probabilities.

parameters of the form pab_c, which represents
the probability P(Y = a, M = b | X = c)
p00_0 <- 1426/1888 # P(Y=0,M=0|X=0)
p10_0 <- 97/1888 # P(Y=1,M=0|X=0)
p01_0 <- 332/1888 # P(Y=0,M=1|X=0)
p11_0 <- 33/1888 # P(Y=1,M=1|X=0)
p00_1 <- 1081/1918 # P(Y=0,M=0|X=1)
p10_1 <- 86/1918 # P(Y=1,M=0|X=1)
p01_1 <- 669/1918 # P(Y=0,M=1|X=1)
p11_1 <- 82/1918 # P(Y=1,M=1|X=1)

We proceed to compute bounds on the controlled direct effect CDE(0) = P(Y(M =
0, X = 1) = 1) − P(Y(M = 0, X = 0) = 1) of X on Y not passing through M at level
M = 0, the controlled direct effect CDE(1) = P(Y(M = 1, X = 1) = 1)− P(Y(M = 1, X =
0) = 1) at level M = 1, the natural direct effect NDE(0) = P(Y(M(X = 0), X = 1) =
1)− P(Y(M(X = 0), X = 0) = 1) of X on Y at level X = 0 and the natural direct effect
NDE(1) = P(Y(M(X = 1), X = 1) = 1)− P(Y(M(X = 1), X = 0) = 1) at level X = 1.

CDE0_query <- "p{Y(M = 0, X = 1) = 1} - p{Y(M = 0, X = 0) = 1}"
CDE0_obj <- analyze_graph(b, constraints = NULL, effectt = CDE0_query)
CDE0_bounds <- optimize_effect_2(CDE0_obj)
CDE0_boundsfunction <- interpret_bounds(bounds = CDE0_bounds$bounds,

parameters = CDE0_obj$parameters)
CDE0_numericbounds <- CDE0_boundsfunction(p00_0 = p00_0, p00_1 = p00_1,

p10_0 = p10_0, p10_1 = p10_1,
p01_0 = p01_0, p01_1 = p01_1,
p11_0 = p11_0, p11_1 = p11_1)

CDE1_query <- "p{Y(M = 1, X = 1) = 1} - p{Y(M = 1, X = 0) = 1}"
CDE1_obj <- update_effect(CDE0_obj, effectt = CDE1_query)
CDE1_bounds <- optimize_effect_2(CDE1_obj)
CDE1_boundsfunction <- interpret_bounds(bounds = CDE1_bounds$bounds,

parameters = CDE1_obj$parameters)
CDE1_numericbounds <- CDE1_boundsfunction(p00_0 = p00_0, p00_1 = p00_1,

p10_0 = p10_0, p10_1 = p10_1,
p01_0 = p01_0, p01_1 = p01_1,
p11_0 = p11_0, p11_1 = p11_1)

NDE0_query <- "p{Y(M(X = 0), X = 1) = 1} - p{Y(M(X = 0), X = 0) = 1}"
NDE0_obj <- update_effect(CDE0_obj, effectt = NDE0_query)
NDE0_bounds <- optimize_effect_2(NDE0_obj)
NDE0_boundsfunction <- interpret_bounds(bounds = NDE0_bounds$bounds,

parameters = NDE0_obj$parameters)
NDE0_numericbounds <- NDE0_boundsfunction(p00_0 = p00_0, p00_1 = p00_1,

p10_0 = p10_0, p10_1 = p10_1,
p01_0 = p01_0, p01_1 = p01_1,
p11_0 = p11_0, p11_1 = p11_1)

NDE1_query <- "p{Y(M(X = 1), X = 1) = 1} - p{Y(M(X = 1), X = 0) = 1}"

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 65

Table 1: Bounds on the controlled and natural direct effects.

lower upper
CDE(0) -0.20 0.39
CDE(1) -0.78 0.63
NDE(0) -0.07 0.56
NDE(1) -0.55 0.09

NDE1_obj <- update_effect(CDE0_obj, effectt = NDE1_query)
NDE1_bounds <- optimize_effect_2(NDE1_obj)
NDE1_boundsfunction <- interpret_bounds(bounds = NDE1_bounds$bounds,

parameters = NDE1_obj$parameters)
NDE1_numericbounds <- NDE1_boundsfunction(p00_0 = p00_0, p00_1 = p00_1,

p10_0 = p10_0, p10_1 = p10_1,
p01_0 = p01_0, p01_1 = p01_1,
p11_0 = p11_0, p11_1 = p11_1)

We obtain the same symbolic bounds as Sjölander (2009) and the resulting numeric
bounds are given in Table 1 which of course agree with those of Table V in Sjölander (2009).

5.2 A Mendelian Randomization Study of the Effect of Homocysteine on Cardiovascular
Disease

Mendelian randomization (Davey Smith and Ebrahim, 2003) assumes certain genotypes may
serve as suitable instrumental variables for investigating the causal effect of an associated
phenotype on some disease outcome.

In Palmer (2011), the authors investigate the effect of homocysteine on cardiovascular
disease using the 677CT polymorphism (rs1801133) in the Methylenetetrahydrofolate Reduc-
tase gene as an instrument. They use observational data from Meleady et al. (2003) in which
the outcome is binary, the treatment has been made binary by a suitably chosen cut-off
at 15µmol/L, and the instrument is ternary (this polymorphism can take three possible
genotype values).

With X denoting the treatment, Y the outcome and Z the instrument, the DAG is the one
in Figure 2 (although now with a ternary instrument) and the conditional probabilities are
given as follows.

params <- list(p00_0 = 0.83, p00_1 = 0.88, p00_2 = 0.72,
p10_0 = 0.11, p10_1 = 0.05, p10_2 = 0.20,
p01_0 = 0.05, p01_1 = 0.06, p01_2 = 0.05,
p11_0 = 0.01, p11_1 = 0.01, p11_2 = 0.03)

The computation using causaloptim is done using the following code.

Input causal DAG
b <- graph_from_literal(Z -+ X, X -+ Y, Ur -+ X, Ur -+ Y)
V(b)$leftside <- c(1, 0, 0, 0)
V(b)$latent <- c(0, 0, 0, 1)
V(b)$nvals <- c(3, 2, 2, 2)
E(b)$rlconnect <- c(0, 0, 0, 0)
E(b)$edge.monotone <- c(0, 0, 0, 0)
Construct causal problem
obj <- analyze_graph(b, constraints = NULL,

effectt = "p{Y(X = 1) = 1} - p{Y(X = 0) = 1}")
Compute bounds on query
bounds <- optimize_effect_2(obj)
Construct bounds as function of parameters
boundsfunction <- interpret_bounds(bounds = bounds$bounds,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=causaloptim

CONTRIBUTED RESEARCH ARTICLE 66

parameters = obj$parameters)
Insert observed conditional probabilities
numericbounds <- do.call(boundsfunction, as.list(params))
round(numericbounds, 2)

#> lower upper
#> 1 -0.09 0.74

Our computed bounds agree with those computed using bpbounds as well as those
estimated using Theorem 2 of Richardson and Robins (2014), who independently derived
expressions for tight bounds that are applicable to this setting.

6 Summary and discussion

The methods and algorithms described in Sachs et al. (2022) to compute symbolic expressions
for bounds on non-identifiable causal effects are implemented in the package causaloptim.
Our aim was to provide a user-friendly interface to these methods with a graphical interface
to draw DAGs, specify causal effects with commonly used notation for counterfactuals, and
take advantage of an efficient implementation of vertex enumeration to reduce computation
times. These methods are applicable to a wide variety of causal inference problems which
appear in biomedical research, economics, social sciences and more. Aside from the graphi-
cal interface, programming with the package is encouraged to promote reproducibility and
advanced use. Our package includes automated unit tests and also tests for correctness
by comparing the symbolic bounds derived using our program to independently derived
bounds in particular settings.

Our implementation uses a novel approach to draw DAGs using JavaScript in a web
browser that can then be passed to R using shiny. This graphical approach can be adapted
and used in other settings where graphs need to be specified and computed on, such as
other causal inference settings, networks, and multi-state models. Other algorithms and
data structures that could be more broadly useful include the representation of structural
equations as R functions, recursive evaluation of response functions, and parsing of string
equations for causal effects and constraints.

Note that causaloptim computes bounds only in settings with tightness guarantees.
Although the set of available causal queries is quite large, the set of admissible DAGs can
appear restrictive. The usefulness of the methodology and implementation extends to a
much larger class of problems however. Tight bounds for restricted settings can be used to
derive potentially not tight but narrow valid bounds in less restrictive settings. In Cai et al.
(2007) and Cui and Tchetgen (2021) the authors make use of the tight Balke-Pearl bounds to
derive narrow (but not necessarily tight) valid bounds on causal effects subject to causal
DAGs that fall outside the scope for tightness guarantees using this methodology. We believe
the tight bounds computed by causaloptim hold great potential for such applications.

References

A. Balke and J. Pearl. Bounds on treatment effects from studies with imperfect compliance.
Journal of the American Statistical Association, 92(439):1171–1176, 1997. [p53]

Z. Cai, M. Kuroki, and T. Sato. Non-parametric bounds on treatment effects with non-
compliance by covariate adjustment. Statistics in Medicine, 26(16):3188–3204, 2007. doi:
https://doi.org/10.1002/sim.2766. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/sim.2766. [p66]

Z. Cai, M. Kuroki, J. Pearl, and J. Tian. Bounds on direct effects in the presence of confounded
intermediate variables. Biometrics, 64(3):695–701, 2008. [p53]

W. Chang, J. Cheng, J. Allaire, C. Sievert, B. Schloerke, Y. Xie, J. Allen, J. McPherson,
A. Dipert, and B. Borges. shiny: Web Application Framework for R, 2022. URL https:
//CRAN.R-project.org/package=shiny. R package version 1.7.4. [p54]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=bpbounds
https://CRAN.R-project.org/package=causaloptim
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=causaloptim
https://CRAN.R-project.org/package=causaloptim
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2766
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2766
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny

CONTRIBUTED RESEARCH ARTICLE 67

G. Csardi and T. Nepusz. The igraph software package for complex network research.
InterJournal, Complex Systems:1695, 2006. URL https://igraph.org. [p56]

Y. Cui and E. T. Tchetgen. A semiparametric instrumental variable approach to optimal
treatment regimes under endogeneity. Journal of the American Statistical Association, 116
(533):162–173, 2021. doi: 10.1080/01621459.2020.1783272. URL https://doi.org/10.
1080/01621459.2020.1783272. PMID: 33994604. [p66]

G. Davey Smith and S. Ebrahim. ‘Mendelian randomization’: can genetic epidemiology
contribute to understanding environmental determinants of disease? International Journal
of Epidemiology, 32(1):1–22, 02 2003. ISSN 0300-5771. doi: 10.1093/ije/dyg070. URL
https://doi.org/10.1093/ije/dyg070. [p65]

L. S. Freedman, B. I. Graubard, and A. Schatzkin. Statistical validation of intermediate
endpoints for chronic diseases. Statistics in Medicine, 11(2):167–178, 1992. doi: https:
//doi.org/10.1002/sim.4780110204. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/sim.4780110204. [p63]

E. E. Gabriel, M. C. Sachs, and A. Sjölander. Causal bounds for outcome-dependent sampling
in observational studies. Journal of the American Statistical Association, 117(538):939–950,
2022a. [p53]

E. E. Gabriel, M. C. Sachs, and A. Sjölander. Sharp nonparametric bounds for decomposition
effects with two binary mediators. Journal of the American Statistical Association, page In
press, 2022b. [p53]

E. E. Gabriel, A. Sjölander, and M. C. Sachs. Nonparametric bounds for causal effects in
imperfect randomized experiments. Journal of the American Statistical Association, 118(541):
684–692, 2023. [p53]

C. J. Geyer, G. D. Meeden, and incorporates code from cddlib written by Komei Fukuda.
rcdd: Computational Geometry, 2021. URL https://CRAN.R-project.org/package=rcdd. R
package version 1.5. [p62]

S. Greenland, J. Pearl, and J. M. Robins. Causal diagrams for epidemiologic research.
Epidemiology, pages 37–48, 1999. [p53]

T. H. Mattheiss. An algorithm for determining irrelevant constraints and all vertices in
systems of linear inequalities. Operations Research, 21(1):247–260, 1973. [p53, 63]

R. Meleady, P. M. Ueland, H. Blom, A. S. Whitehead, H. Refsum, L. E. Daly, S. E. Vollset,
C. Donohue, B. Giesendorf, I. M. Graham, A. Ulvik, Y. Zhang, and A.-L. Bjorke Monsen.
Thermolabile methylenetetrahydrofolate reductase, homocysteine, and cardiovascular
disease risk: the European Concerted Action Project. The American journal of clinical
nutrition, 77(1):63–70, Jan. 2003. ISSN 0002-9165. doi: 10.1093/ajcn/77.1.63. Place: United
States. [p65]

T. Palmer, R. Ramsahai, V. Didelez, and N. Sheehan. bpbounds: R package implementing
Balke-Pearl bounds for the average causal effect, 2018. URL https://github.com/remlapmot/
bpbounds. [p54]

T. M. Palmer. Nonparametric bounds for the causal effect in a binary instrumental-variable
model. Stata Journal, 11(3):345–367(23), 2011. URL https://journals.sagepub.com/doi/
pdf/10.1177/1536867X1101100302. [p65]

J. Pearl. Direct and indirect effects. In Proceedings of the Seventeenth Conference on Uncertainty
and Artificial Intelligence, 2001, pages 411–420. Morgan Kaufman, 2001. [p61]

J. Pearl. Causality. Cambridge university press, 2009. [p53]

T. S. Richardson and J. M. Robins. Ace bounds; sems with equilibrium conditions. Statistical
Science, 29(3):363–366, 2014. [p66]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://igraph.org
https://doi.org/10.1080/01621459.2020.1783272
https://doi.org/10.1080/01621459.2020.1783272
https://doi.org/10.1093/ije/dyg070
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780110204
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780110204
https://CRAN.R-project.org/package=rcdd
https://github.com/remlapmot/bpbounds
https://github.com/remlapmot/bpbounds
https://journals.sagepub.com/doi/pdf/10.1177/1536867X1101100302
https://journals.sagepub.com/doi/pdf/10.1177/1536867X1101100302

CONTRIBUTED RESEARCH ARTICLE 68

M. C. Sachs, G. Jonzon, A. Sjölander, and E. E. Gabriel. A general method for deriving
tight symbolic bounds on causal effects. Journal of Computational and Graphical Statistics,
0(0):1–10, 2022. doi: 10.1080/10618600.2022.2071905. URL https://doi.org/10.1080/
10618600.2022.2071905. [p53, 54, 58, 60, 61, 62, 66]

M. C. Sachs, G. Jonzon, A. Sjölander, and E. E. Gabriel. causaloptim: An Interface to Specify
Causal Graphs and Compute Bounds on Causal Effects, 2023. URL https://github.com/
sachsmc/causaloptim. R package version 0.9.8. [p53]

A. Sjölander. Bounds on natural direct effects in the presence of confounded intermediate
variables. Statistics in Medicine, 28(4):558–571, 2009. [p53, 61]

A. Sjölander, W. Lee, H. Källberg, and Y. Pawitan. Bounds on causal interactions for binary
outcomes. Biometrics, 70(3):500–505, 2014. [p53]

A. Sjölander. Bounds on natural direct effects in the presence of confounded intermediate
variables. Statistics in Medicine, 28(4):558–571, 2009. doi: https://doi.org/10.1002/sim.
3493. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3493. [p63, 64,
65]

Gustav Jonzon
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Sweden

https://ki.se/meb
gustav.jonzon@ki.se

Michael C Sachs
Department of Public Health, University of Copenhagen, Denmark

Supported in part by Novo Nordisk Fonden Grant NNF22OC0076595

https://biostat.ku.dk/
ORCiD: 0000-0002-1279-8676
michael.sachs@sund.ku.dk

Erin E Gabriel
Department of Public Health, University of Copenhagen, Denmark

Supported in part by Novo Nordisk Fonden Grant NNF22OC0076595

https://biostat.ku.dk/
ORCiD: 0000-0002-0504-8404
erin.gabriel@sund.ku.dk

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.1080/10618600.2022.2071905
https://doi.org/10.1080/10618600.2022.2071905
https://github.com/sachsmc/causaloptim
https://github.com/sachsmc/causaloptim
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.3493
https://ki.se/meb
mailto:gustav.jonzon@ki.se
https://biostat.ku.dk/
https://orcid.org/0000-0002-1279-8676
mailto:michael.sachs@sund.ku.dk
https://biostat.ku.dk/
https://orcid.org/0000-0002-0504-8404
mailto:erin.gabriel@sund.ku.dk

CONTRIBUTED RESEARCH ARTICLE 69

singR: An R Package for Simultaneous
Non-Gaussian Component Analysis for
Data Integration
by Liangkang Wang, Irina Gaynanova, and Benjamin Risk

Abstract This paper introduces an R package singR that implements Simultaneous non-Gaussian
Component Analysis (SING) for data integration. SING uses a non-Gaussian measure of information
to extract feature loadings and scores (latent variables) that are shared across multiple datasets. We
describe the functions implemented in singR and showcase their use on two examples. The first
example is a toy example working with images. The second example is a simulated study integrating
functional connectivity estimates from a resting-state functional magnetic resonance imaging dataset
and task activation maps from a working memory functional magnetic resonance imaging dataset.
The SING model can produce joint components that accurately reflect information shared by multiple
datasets, particularly for datasets with non-Gaussian features such as neuroimaging.

1 Introduction

Combining information across different datasets collected on the same individuals is an important task,
especially in biology and medicine. For example, in neuroimaging research, combining information
across different modalities, or types of imaging data, can lead to a more comprehensive picture of
human brain activity. Commonly used modalities to investigate brain function include functional
magnetic resonance imaging (fMRI), resting-state fMRI (rs-fMRI), diffusion MRI, structural images,
electroencephalography, and positron emission tomography. Combining data from multiple modalities
can result in a better understanding of the underlying biology than analyzing each modality separately
(Calhoun and Sui 2016). In previous studies, researchers use data fusion to define a set of joint
components that are composed of subject scores (a vector in Rn, where n is the number of subjects)
and loadings (a vector in Rpk , where pk is the number of variables in the kth dataset). For a particular
component, the subject scores are equal or strongly correlated across datasets. The loadings represent
the relative importance of each variable to each component. A higher subject score implies the vector
of loadings is more important in that individual.

Data integration approaches for neuroimaging should accommodate the distinct statistical prop-
erties of imaging data. Imaging features characterizing brain activation and intrinsic functional
connectivity are substantially more non-Gaussian compared to noise. Methods employing principal
component analysis (PCA) for dimension reduction and independent component analysis (ICA) have
been widely used in neuroscience (Calhoun and Sui 2016; J. Sui et al. 2012; Zhou et al. 2016). ICA
maximizes the non-Gaussianity of components, which is useful for extracting interesting features
from imaging data. ICA is commonly used to estimate resting-state networks (Beckmann et al. 2005),
estimate task-activated components (Jing Sui et al. 2010), and has been used to derive network struc-
ture in resting-state correlation matrices (Amico et al. 2017). Risk and Gaynanova (2021) proposed
simultaneous non-Gaussian component analysis (SING) for analyzing two datasets, which uses an
objective function that maximizes the skewness and kurtosis of latent components with a penalty to
enhance the similarity between subject scores. Unlike previous methods, SING does not use PCA for
dimension reduction, but rather uses non-Gaussianity measured by skewness and kurtosis, which can
improve feature extraction.

Some useful software have been developed in this area. In multimodal analysis and multitask
fMRI data fusion, FIT is a Matlab toolbox that implements jointICA, parallel ICA (Vergara et al. 2014),
and multimodal/multiset CCA (J. Sui et al. 2011). GIFT provides functions for conducting group ICA
on fMRI data from multiple subjects from a single modality (Calhoun, Liu, and Adali 2009; Calhoun,
Adali, Giuliani, et al. 2006; Calhoun, Adali, Kiehl, et al. 2006). On the Comprehensive R Archive
Network (CRAN), there are several R packages for ICA functions, including steadyICA (Risk, James,
and Matteson 2015), ica (Helwig 2018), fastICA (Marchini, Heaton, and Ripley 2021), JADE (Miettinen,
Nordhausen, and Taskinen 2017), and templateICAr (Mejia et al. 2020). These R packages use different
algorithms to extract non-Gaussian features but are designed for decomposing a single modality.
For data integration, r.jive (O’Connell and Lock 2020) and ajive (Carmichael 2022; Feng et al. 2018)
capture the joint variation, or variance shared between datasets, and individual variation, or variance
unique to a dataset. JIVE methods use singular value decompositions, which are related to maximizing
variance instead of non-Gaussianity. In this way, there exists a need for freely available software for
extracting joint structure from multiple datasets using non-Gaussian measures of information.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=steadyICA
https://CRAN.R-project.org/package=ica
https://CRAN.R-project.org/package=fastICA
https://CRAN.R-project.org/package=JADE
https://CRAN.R-project.org/package=templateICAr

CONTRIBUTED RESEARCH ARTICLE 70

This paper introduces singR, an R package to implement Risk and Gaynanova (2021). This paper
is structured as follows. In Section 2, we review the Simultaneous non-Gaussian component analysis
(SING) model. In Sections 3 and 4, we present the main functions in the singR package and show how
to utilize it for joint components estimation in two example datasets. Finally, Section 5 summarizes
our conclusions.

2 Methods

2.1 Linear non-Gaussian Component Analysis

Matrix decomposition for one dataset. Based on linear non-Gaussian component analysis (LNGCA), we
first summarize a matrix decomposition for a single dataset X ∈ Rn×px (n subjects and px features)
into a non-Gaussian subspace and a Gaussian subspace. Each row of X is a vector of features from the
ith subject. Let Xc denote the double-centered data matrix such that 1T Xc = 0T and Xc1 = 0 where
1 denotes the vector of ones of appropriate dimension, which has rank n − 1 when px > n. Let Irx

denote the rx × rx identity matrix. Then define the matrix decomposition

Xc = MxSx + MNx Nx. (1)

Here, Mx ∈ Rn×rx , and the columns of Mx are called subject scores. MNx ∈ Rn×(n−rx−1), and the
matrix [Mx,MNx] is called the mixing matrix and has rank n − 1. Sx ∈ Rr×px and Nx ∈ R(n−rx−1)×px .
SxST

x = px Irx , NxST
x = 0(n−rx−1)×rx

. The rows of Sx are the non-Gaussian components, and elements
of Sx are called variable loadings because 1

px
XcST

x = Mx. The rows of Nx are the Gaussian components.
The rows of Sx have the largest non-Gaussianity, as described below.

This decomposition may be meaningful in neuroimaging studies because: 1) vectorized compo-
nents like brain activation maps and resting-state networks have highly non-Gaussian distributions,
and 2) it is often the situation that px ≫ n, i.e., the number subjects is smaller than the number of
voxels or edges.

To achieve the matrix decomposition in (1), we need to find a separating matrix Ax that maximizes
non-Gaussianity and satisfies the constraint AxXcXT

c AT
x = SxST

x = px Irx . We utilize a prewhitening
matrix and then reparameterize the model with a semiorthogonal separating matrix to enforce this
constraint. Let Σ̂x = XcX⊤

c /px. Then define the eigenvalue decomposition Σ̂x = VxΛxV⊤
x and the

prewhitening matrix L̂x = VxΛ−1/2
x V⊤

x (for double-centered Xc, this is understood to be the square
root of the generalized inverse from the non-zero eigenvalues). Note Ax = Ux L̂x, and it follows that
M̂x = L̂−

x U⊤
x , with L̂−

x denoting the generalized inverse. Let f () be a measure of non-Gaussianity.
Then (1) is estimated using

minimize
Ux

−
rx

∑
l=1

f
(

u⊤
xl L̂xXc

)
,

subject to UxU⊤
x = Irx ,

(2)

where u⊤
xl is the lth row of the rx × n matrix Ux.

We measure non-Gaussianity with the Jarque-Bera (JB) statistic, a combination of squared skew-
ness and kurtosis. For a vector s ∈ Rp, the JB statistic is

f (s) = 0.8

 1
p ∑

j
s3

j

2

+ 0.2

 1
p ∑

j
s4

j − 3

2

. (3)

2.2 Simultaneous non-Gaussian component analysis model

Matrix decomposition for two datasets. We now decompose X ∈ Rn×px and Y ∈ Rn×py into a joint
non-Gaussian subspace defined by shared subject score directions, individual non-Gaussian subspaces,
and Gaussian subspaces. Let rj denote the rank of the joint non-Gaussian subspace and rx, ry denote
the rank of the non-Gaussian subspaces for X and Y, respectively. Define the double-centered Xc and
Yc, i.e., 1⊤Xc = 0 and Xc1 = 0. In data applications, we also recommend standardizing each feature
to have unit variance, as is common in PCA. The double centering with standardization requires an
iterative algorithm that standardizes each feature (mean 0 variance 1 across subjects), then centers the

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=singR
https://CRAN.R-project.org/package=singR

CONTRIBUTED RESEARCH ARTICLE 71

features for a given subject (the mean of the features for a subject is 0), and repeats (typically < 10
iterations on real data suffices). The function standard is described in Section [3].

The SING matrix decomposition is

Xc = MJ DxSJx + MIxSIx + MNx Nx,

Yc = MJ DySJy + MIySIy + MNy Ny.
(4)

Here, MJ ∈ Rn×rJ , MIx ∈ Rn×(rx−rJ), MIy ∈ Rn×(ry−rJ), MNx ∈ Rn×(n−rx−1), and MNy ∈ Rn×(n−ry−1).
Dx and Dy are diagonal and allow the scaling of MJ to vary between datasets. SJx are the joint non-
Gaussian components, SIx are the individual non-Gaussian components, and Nx are the individual
Gaussian components, respectively, for X, with constraints SJxST

Jx = px IrJ , SIxST
Ix = px Irx−rJ , SJxST

Ix =

0rJ×(rx−rJ), NxST
Jx = 0(n−rx−1)×rJ

, NxST
Ix = 0(n−rx−1)×(rx−rJ), and similarly define the components of

Y.

Simultaneous non-Gaussian Component Analysis fitting and algorithm. Recall the whitening matrix
for Xc is L̂x, and define its generalized inverse L̂−

x = (XcXT
c /px)1/2 = VxΛ1/2

x V⊤
x . We will estimate a

semiorthogonal unmixing matrix Ûx such that M̂x = L̂−
x ÛT

x . Similarly define the whitening matrix L̂y

and M̂y for Yc. Let f be the JB statistic, as defined in (3). We consider

minimize
Ux ,Uy

−
rx

∑
l=1

f (u⊤
xl L̂xXc)−

ry

∑
l=1

f (u⊤
yl L̂yYc) + ρ

rJ

∑
l=1

d(L̂−
x uxl , L̂−

y uyl)

subject to UxU⊤
x = Irx , UyU⊤

y = Iry ,

(5)

where d(x, y) is the chosen distance metric between vectors x and y, calculated using the chordal

distance: d(x, y) =
∥∥∥ xx⊤

∥x∥2
2
− yy⊤

∥y∥2
2

∥∥∥2

F
. When columns are mean zero, the chordal distance between joint

scores in the SING objective function is equal to zero when their correlation is equal to one. Larger
values of the tuning parameter ρ result in common MJ , but smaller values result in highly correlated
joint structure and could also be considered. In our examples, we match components from the separate
LNGCA, determine candidate joint components from a permutation test, and then set ρ equal to the
sum of the JB statistics of all candidate joint loadings divided by 10, which results in L̂−

x uxl ≈ L̂−
y uyl ,

i.e., a shared MJ .

Let Ûx and Ûy be the estimated value of Ux and Uy in (5). The corresponding estimated non-
Gaussian components are defined as Ŝx = ÛxXw and Ŝy = ÛxYw, where Xw = L̂xXc, and Yw = L̂yYc,
respectively. Then the first rJ columns of M̂x = L̂−

x Û⊤
x , scaled to unit norm, define M̂Jx. We can

similarly define M̂Jy. For sufficiently large ρ, M̂Jx = M̂Jy = M̂J , and more generally, M̂J is defined
from their average. Additionally, the first rJ rows of Ŝx correspond to ŜJx.

3 Overview of functions

The R package singR implements simultaneous non-Gaussian component analysis for data integration
in neuroimaging. Highlighted below are key functions:

lngca: This function estimates non-Gaussian components for a single dataset. Non-Gaussian
components can be estimated using the Jarque-Bera test statistic, which is the non-Gaussian measure
used in SING, or using likelihood component analysis, which achieves dimension reduction while
estimating the densities of non-Gaussian components (Risk, Matteson, and Ruppert 2019). It returns
Ûx and Ŝx from decomposing Xc through (2). It also returns the non-Gaussianity of each estimated
component.

standard: This function is an iterative algorithm that standardizes each feature (mean 0 variance 1
across subjects), then centers the features for a given subject (the mean of the features for a subject is 0)
for the original datasets (Rn×p), and repeats until the variance is approximately equal to 1 (typically
< 10 iterations on real data suffices).

est.M.ols: This function returns M̂x with input Ŝx and Xc.

greedymatch: This function reorders the columns in Ûx to match the columns (subject scores) in
Ûy based on the chordal distances between corresponding M̂x and M̂y.

permTestJointRank: This function tests whether the correlation between matched columns (subject
scores) is significant and returns the family wise error rate corrected p-values.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=singR

CONTRIBUTED RESEARCH ARTICLE 72

%ˆ%: Calculates the matrix exponential. For example, A%ˆ%0.5 returns a matrix square root. Used
during prewhitening.

calculateJB: This function calculates the sum of the JB statistics across components and is useful
for determining the size of the penalty parameter ρ (sufficiently large ρ results in the chordal distance
between MJx and MJy equal to 0). Assumes the variance of each row of the input S is equal to 1 and
mean of each row is equal to 0.

curvilinear: This function gives the final estimates of Ûx and Ûy using the curvilinear algorithm
derived from (5). This is a pure R implementation but is slow.

curvilinear_c: This implements the curvilinear algorithm in C++, which is faster.

NG_number: This is a wrapper function for FOBIasymp from ICtest (Nordhausen et al. 2022) that
can be used to estimate the number of non-Gaussian components in a single dataset.

signchange: This function makes the skewness of each row of Ŝx positive, which is useful for
visualizing non-Gaussian component loadings.

singR: This function integrates all the functions above. We can use this function to estimate
joint scores and loadings from two datasets X and Y and optionally return the individual scores and
loadings.

4 Examples

To illustrate the use of singR, we provide two examples.

4.1 Example 1. The toy datasets decomposition

The tutorial dataset exampledata are included in the singR package. We generate the SING model
in (4) as follows. We generate joint subject scores MJ = [mJ1, mJ2] ∈ Rn×2 with mJ1 ∼ N(µ1, In),
mJ2 ∼ N(µ2, In), µ1 = (1⊤24,−1⊤24)

⊤ and µ2 = (−1⊤24, 1⊤24)
⊤. We set Dx = I and Dy = diag(−5, 2) to

have differences in both sign and scale between the two datasets. We generate MIx and MIy similar to
MJ using iid unit variance Gaussian entries with means equal to µ3y = (−1⊤6 , 1⊤6 ,−1⊤6 , 1⊤6 ,−1⊤6 , 1⊤6 −
1⊤6 ,−1⊤6)⊤, µ4y = (1⊤24,−1⊤24)

⊤, µ3x = (−1⊤12, 1⊤12,−1⊤12, 1⊤12)
⊤ and µ4x = (1⊤12,−1⊤12, 1⊤12,−1⊤12)

⊤.
These means result in various degrees of correlation between the columns of the mixing matrices.
For the Gaussian noise, we generate MNx, MNy, Nx and Ny using iid standard Gaussian mean zero
entries.

Each row of SJx and SIx is a vectorized image. We can reshape the loadings back to their image
dimensions for visualization. The loadings SJx are inspired by activation patterns found in functional
MRI, and similar simulations were considered in (Risk, Matteson, and Ruppert 2019). The rows of
SJy and SIy are formed from the lower diagonal of a symmetric matrix, which are inspired by ICA of
correlation matrices (Amico et al. 2017), and we can visualize the loadings by reshaping the vectors
back to the symmetric matrix. The true loadings of latent non-Gaussian components are plotted in
figure 1.

library(singR)
data(exampledata)
data <- exampledata

lgrid = 33
par(mfrow = c(2, 4))
Components for X
image(matrix(data$sjX[1,], lgrid, lgrid), col = heat.colors(12),

xaxt = "n", yaxt = "n", main = expression("True S"["Jx"] * ",1"))
image(matrix(data$sjX[2,], lgrid, lgrid), col = heat.colors(12),

xaxt = "n", yaxt = "n", main = expression("True S"["Jx"] * ", 2"))
image(matrix(data$siX[1,], lgrid, lgrid), col = heat.colors(12),

xaxt = "n", yaxt = "n", main = expression("True S"["Ix"] * ", 1"))
image(matrix(data$siX[2,], lgrid, lgrid), col = heat.colors(12),

xaxt = "n", yaxt = "n", main = expression("True S"["Ix"] * ", 2"))

Components for Y
image(vec2net(data$sjY[1,]), col = heat.colors(12), xaxt = "n", yaxt = "n",

main = expression("True S"["Jy"] * ", 1"))
image(vec2net(data$sjY[2,]), col = heat.colors(12), xaxt = "n", yaxt = "n",

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ICtest
https://CRAN.R-project.org/package=singR
https://CRAN.R-project.org/package=singR

CONTRIBUTED RESEARCH ARTICLE 73

Figure 1: True joint and individual loadings in example 1.

main = expression("True S"["Jy"] * ", 2"))
image(vec2net(data$siY[1,]), col = heat.colors(12), xaxt = "n", yaxt = "n",

main = expression("True S"["Iy"] * ", 1"))
image(vec2net(data$siY[2,]), col = heat.colors(12), xaxt = "n", yaxt = "n",

main = expression("True S"["Iy"] * ", 2"))

Function singR performs all steps in the SING pipeline as a single function

We first illustrate the use of the wrapper function singR using the default settings. We will describe
optional arguments in more detail in example 2.

example1 = singR(dX = data$dX, dY = data$dY, individual = T)

Details of the SING pipeline

We next explain each of the steps involved in SING estimation. Using these individual functions
in place of the high-level singR function allows additional fine-tuning and can be helpful for large
datasets.

Estimate the number of non-Gaussian components in datasets dX and dY using FOBIasymp from
ICtest:

n.comp.X = NG_number(data$dX)
n.comp.Y = NG_number(data$dY)

Apply lngca separately to each dataset using the JB statistic as the measure of non-Gaussianity:

JB on X
estX_JB = lngca(xData = data$dX, n.comp = n.comp.X, whiten = "sqrtprec",

restarts.pbyd = 20, distribution = "JB")
Uxfull <- estX_JB$U
Mx_JB = est.M.ols(sData = estX_JB$S, xData = data$dX)

JB on Y
estY_JB = lngca(xData = data$dY, n.comp = n.comp.Y, whiten = "sqrtprec",

restarts.pbyd = 20, distribution = "JB")
Uyfull <- estY_JB$U
My_JB = est.M.ols(sData = estY_JB$S, xData = data$dY)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ICtest

CONTRIBUTED RESEARCH ARTICLE 74

Use greedymatch to reorder Ûx and Ûy by descending matched correlations and use permTestJointRank
to estimate the number of joint components:

matchMxMy = greedymatch(scale(Mx_JB, scale = F), scale(My_JB, scale = F),
Ux = Uxfull, Uy = Uyfull)

permJoint <- permTestJointRank(matchMxMy$Mx, matchMxMy$My)
joint_rank = permJoint$rj

For preparing input to curvilinear_c, manually prewhiten dX and dY to get L̂−1
x and L̂−1

y :

Center X and Y
dX = data$dX
dY = data$dY
n = nrow(dX)
pX = ncol(dX)
pY = ncol(dY)
dXcentered <- dX - matrix(rowMeans(dX), n, pX, byrow = F)
dYcentered <- dY - matrix(rowMeans(dY), n, pY, byrow = F)

For X Scale rowwise
est.sigmaXA = tcrossprod(dXcentered)/(pX - 1)
whitenerXA = est.sigmaXA %^% (-0.5)
xDataA = whitenerXA %*% dXcentered
invLx = est.sigmaXA %^% (0.5)

For Y Scale rowwise
est.sigmaYA = tcrossprod(dYcentered)/(pY - 1)
whitenerYA = est.sigmaYA %^% (-0.5)
yDataA = whitenerYA %*% dYcentered
invLy = est.sigmaYA %^% (0.5)

Obtain a reasonable value for the penalty ρ by calculating the JB statistics for all the joint compo-
nents:

Calculate the Sx and Sy.
Sx = matchMxMy$Ux[1:joint_rank,] %*% xDataA
Sy = matchMxMy$Uy[1:joint_rank,] %*% yDataA

Calculate total JB
JBall = calculateJB(Sx) + calculateJB(Sy)

Penalty used in curvilinear algorithm:
rho = JBall/10

Estimate Ûx and Ûy with curvilinear_c:

alpha=0.8 corresponds to JB weighting of skewness and kurtosis
(can customize to use different weighting):
alpha = 0.8
tolerance:
tol = 1e-10

out <- curvilinear_c(invLx = invLx, invLy = invLy, xData = xDataA,
yData = yDataA, Ux = matchMxMy$Ux, Uy = matchMxMy$Uy, rho = rho,
tol = tol, alpha = alpha, maxiter = 1500, rj = joint_rank)

Obtain the final result:

Estimate Sx and Sy and true S matrix using rotation matrices
of Ux and Uy
Sjx = out$Ux[1:joint_rank,] %*% xDataA
Six = out$Ux[(joint_rank + 1):n.comp.X,] %*% xDataA
Sjy = out$Uy[1:joint_rank,] %*% yDataA

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 75

Figure 2: Estimated joint and individual loadings in example 1.

Siy = out$Uy[(joint_rank + 1):n.comp.Y,] %*% yDataA

Estimate Mj
Mxjoint = tcrossprod(invLx, out$Ux[1:joint_rank,])
Mxindiv = tcrossprod(invLx, out$Ux[(joint_rank + 1):n.comp.X,])
Myjoint = tcrossprod(invLy, out$Uy[1:joint_rank,])
Myindiv = tcrossprod(invLy, out$Uy[(joint_rank + 1):n.comp.Y,])

signchange to make the skewness of the rows of S positive
Sjx_sign = signchange(Sjx, Mxjoint)
Sjy_sign = signchange(Sjy, Myjoint)
Six_sign = signchange(Six, Mxindiv)
Siy_sign = signchange(Siy, Myindiv)

Sjx = Sjx_sign$S
Sjy = Sjy_sign$S
Six = Six_sign$S
Siy = Siy_sign$S

Mxjoint = Sjx_sign$M
Myjoint = Sjy_sign$M
Mxindiv = Six_sign$M
Myindiv = Siy_sign$M

est.Mj = aveM(Mxjoint, Myjoint)

trueMj <- data.frame(mj1 = data$mj[, 1], mj2 = data$mj[, 2], number = 1:48)
SINGMj <- data.frame(mj1 = est.Mj[, 1], mj2 = est.Mj[, 2], number = 1:48)

Plot ŜJx, ŜJy, ŜIx, and ŜIy in figure 2.

Plot M̂J in figure 3.

library(tidyverse)
library(ggpubr)

true Mj

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 76

Figure 3: Estimated joint subject scores in example 1.

t1 <- ggplot(data = trueMj) + xlab("Subject ID") + geom_point(mapping = aes(y = mj1,
x = number)) + ggtitle(expression("True M"["J"] * ", 1")) + theme_bw() +
theme(panel.grid = element_blank())

t2 <- ggplot(data = trueMj) + xlab("Subject ID") + geom_point(mapping = aes(y = mj2,
x = number)) + ggtitle(expression("True M"["J"] * ", 2")) + theme_bw() +
theme(panel.grid = element_blank())

SING estimated Mj
S1 <- ggplot(data = SINGMj) + xlab("Subject ID") + geom_point(mapping = aes(y = mj1,

x = number)) + ggtitle(expression("Estimated M"["J"] * ", 1")) +
theme_bw() + theme(panel.grid = element_blank())

S2 <- ggplot(data = SINGMj) + xlab("Subject ID") + geom_point(mapping = aes(y = mj2,
x = number)) + ggtitle(expression("Estimated M"["J"] * ", 2")) +
theme_bw() + theme(panel.grid = element_blank())

ggarrange(t1, t2, S1, S2, ncol = 2, nrow = 2)

4.2 Example 2. MRI data simulation

This example is a simulation inspired by the real data analysis of the Human Connectome Project
from Risk and Gaynanova (2021). X are generated from ŜX from working memory task maps and Y
are generated from ŜY from resting-state correlations from a previous SING analysis of the Human
Connectome Project. The working memory loadings are defined on the cortical surface, which is the
highly folded ribbon of gray matter forming the outer layer of the brain containing billions of neural
bodies and dendrites. Large working memory loadings indicate locations in the brain that tend to
work together during memory tasks. The resting-state correlation loadings are defined using a brain
parcellation from (Glasser et al. 2016) and (Akiki and Abdallah 2019). Large resting-state loadings are
related to large correlations between brain regions occurring when a participant is lying in a scanner
performing no task. Additional details are in (Risk and Gaynanova 2021). For the purposes of this
example, we reduce computation time by lowering the resolution of the working memory loadings
in dataset X from 60,000 to 2,000. For the resting-state correlation loadings, we subset from the 360
x 360 loadings matrices formed from the 360 regions in the multimodal parcellation (MMP) to 100 x

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 77

Figure 4: True joint loadings in dataset X in example 2.

100. To run this example, download the files in the folder extdata from the github repository (Wang,
Gaynanova, and Risk 2022).

Load the package
library(singR)

Read and visualize data
load("extdata/simdata.rda")

sign change makes the skewness positive, which makes the
region of 'activation' yellow in the plots that follow
Sxtrue = signchange(simdata$sjx)$S
Sytrue = signchange(simdata$sjy)$S

The simdata.rda have already been resampled from 32k to 2k resolution to reduce computation
time. Next, we resample the background surface (i.e., template found on (Wang, Gaynanova, and
Risk 2022)) to the same resolution, which will allow us to plot the loadings on the cortical surface.
This step uses ciftiTools (Pham, Muschelli, and Mejia 2021) and connectome workbench (Marcus
et al. 2011). To run this code, one needs to install connectome workbench, as described in (https:
//github.com/mandymejia/ciftiTools).

library(ciftiTools)
ciftiTools.setOption("wb_path", "C:/Software/workbench")

the template cifti file is on
https://github.com/thebrisklab/singR/tree/main/extdata.
here, resample to 2k resolution.
xii_template <- read_cifti("extdata/template.dtseries.nii", brainstructures = c("left",

"right"), resamp_res = 2000)

xii_new <- newdata_xifti(xii_template, t(Sxtrue))
view_xifti_surface(select_xifti(xii_new, 1), zlim = c(-2.43, 2.82)) ## true S_JX1
view_xifti_surface(select_xifti(xii_new, 2), zlim = c(-2.43, 2.82)) ## true S_JX2

In figure 4, the yellow regions indicate locations with large loadings. Similar plots can be created
for the two individual components (not shown). When applied to fMRI activation maps, SING tends
to identify small patches of cortex, similar to this figure.

Next, we convert the rows of SJy to symmetric matrices and create plots. The nodes are organized
into communities (i.e., modules) to aid visualization. SING tends to identify a single node and the
connections with this node, which result in a cross-like pattern in the matrix representation. The joint
loadings are plotted in figure 5 with plotNetwork_change, which is defined below. Similar plots can
be created for the loadings from the two individual components.

define plotNetwork_change
plotNetwork_change = function(component, title = "", qmin = 0.005,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ciftiTools
https://github.com/mandymejia/ciftiTools
https://github.com/mandymejia/ciftiTools

CONTRIBUTED RESEARCH ARTICLE 78

qmax = 0.995, path = "mmpplus.csv", make.diag = NA) {
component: vectorized network of length choose(n,2)
require(ggplot2)
require(grid)
require(scales)

load communities for plotting:
mmp_modules = read.csv(path, header = TRUE)
mmp_order = order(mmp_modules$Community_Vector)

zmin = quantile(component, qmin)
zmax = quantile(component, qmax)

netmat = vec2net(component, make.diag)

meltsub = create.graph.long(netmat, mmp_order)

g2 = ggplot(meltsub, aes(X1, X2, fill = value)) + geom_tile() +
scale_fill_gradient2(low = "blue", high = "red", limits = c(zmin,

zmax), oob = squish) + labs(title = title, x = "Node 1",
y = "Node 2") + coord_cartesian(clip = "off", xlim = c(-0,
100))

loadingsummary = apply(abs(netmat), 1, sum, na.rm = TRUE)
loadingsum2 = loadingsummary[mmp_order]

Community = factor(mmp_modules$Community_Label)[mmp_order]

g3 = qplot(c(1:100), loadingsum2, col = Community, size = I(3)) +
xlab("MMP Index") + ylab("L1 Norm of the Rows")

return(list(netmatfig = g2, loadingsfig = g3, netmat = netmat,
loadingsummary = loadingsummary))

}

library(cowplot)
plot for the true component of Y
path = "extdata/new_mmp.csv"
out_true1 = plotNetwork_change(Sytrue[1,], title = expression("True S"["Jy"] *

", 1"), qmin = 0.005, qmax = 0.995, path = path)
out_true2 = plotNetwork_change(Sytrue[2,], title = expression("True S"["Jy"] *

", 2"), qmin = 0.005, qmax = 0.995, path = path)

p1 = out_true1$netmatfig
p2 = out_true1$loadingsfig
p3 = out_true2$netmatfig
p4 = out_true2$loadingsfig

plot_grid(p1, p2, p3, p4, nrow = 2)

In figure 5, the left plots depict the loadings in the network space, where each element represents
the strength of the connection between two nodes (i.e., regions). Then if the subject score corresponding
to the component is large, the loadings make a large contribution to the subject’s functional connectivity.
In our previous work, we found that the loadings for a component tend to be structured such that a
single node is prominent, resulting in a cross-like pattern. To easily identify which node or nodes are
prominent, the right plots depict the L1-norms of the rows of the loadings matrices. In this example,
a single node stands out for each of the components. For additional interpretation, see (Risk and
Gaynanova 2021). In (Risk and Gaynanova 2021), it was discovered that for a given joint component,
the patch of cortex with largest loadings in the working memory task tended to be located in the same
area as the node whose loadings have the largest L1-norm in the resting-state dataset.

Function singR performs all steps in the SING pipeline as a single function

In example 1, we introduced the pipeline of the SING method. We will use example 2 to explain the
singR function in detail. The default output of singR is a list of ŜJx, ŜJy, M̂J , M̂Jx, and M̂Jy. By default,
it will center the data such that the mean of each row is equal to zero. In our simulated dataset, all

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 79

Figure 5: True joint loadings in dataset Y in example 2.

variables are on the same scale, and consequently we do not perform standardization (stand=FALSE).
When stand=TRUE, the data are additionally standardized to have the mean of each column equal to
zero and variance of each column equal to one, which is the standardization commonly used in PCA. If
n.comp.X and n.comp.Y are not specified, singR will use FOBIasymp from ICtest to estimate the number
of non-Gaussian components in each dataset, which requires additional computational expense. Other
tests of the number of non-Gaussian components accounting for spatial smoothing/autocorrelation
can be found in (Zhao et al. 2022). These may be more effective for spatially correlated data but are
generally slower.

When individual = TRUE, the singR will additionally output M̂Ix, M̂Iy, ŜIx and ŜIy. When
distribution = "tiltedgaussian", non-Gaussian components will be estimated through lngca using
likelihood component analysis, which is slower but can be more accurate. By default distribution
= "JB", and lngca will use the Jarque-Bera test statistic as the measure of non-Gaussianity of each
component.

The Cplus argument determines whether to use curvilinear_c or curvilinear in singR. curvilinear
is implemented with pure R but is slow while curvilinear_c uses C++. The parameter rho_extent
can be one of c("small", "medium", "large") or a number. This determines the penalty ρ in
curvilinear or curvilinear_c that results in equal or highly correlated M̂Jx and M̂Jy. Additionally,
we can use pmse() to evaluate the distance between two subject score matrices. With larger ρ, the

pmse
(

M̂Jx, M̂Jy

)
value will be smaller. Usually, “small” ρ is sufficient for approximately equal M̂Jx

and M̂Jy. We have observed that very large ρ can adversely impact the accuracy of the loadings. Our
recommendation is to use “small” ρ and check if it results in equal scores, and if not, then try other
settings. The code below took approximately 20 seconds to run on a 2.8 GHz processor.

example2 = singR(dX = simdata$dX, dY = simdata$dY, rho_extent = "small",
Cplus = TRUE, stand = FALSE, individual = TRUE, distribution = "JB")

The joint loadings ŜJX are depicted in figure 6.

xii_new <- newdata_xifti(xii_template, t(example2$Sjx))

view_xifti_surface(select_xifti(xii_new, 1), zlim = c(-2.43, 2.82)) ## component1 small rho
view_xifti_surface(select_xifti(xii_new, 2), zlim = c(-2.43, 2.82)) ## component2 small rho

The joint loadings ŜJy are depicted in figure 7.

library(cowplot)
path = "extdata/new_mmp.csv"
out_rhoSmall1 = plotNetwork_change(example2$Sjy[1,], title = expression("Estimate S"["Jy"] *

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ICtest

CONTRIBUTED RESEARCH ARTICLE 80

Figure 6: Estimated joint loadings in dataset X in example 2.

Figure 7: Estimated joint loadings in dataset Y in example 2.

", 1"), qmin = 0.005, qmax = 0.995, path = path)
out_rhoSmall2 = plotNetwork_change(example2$Sjy[2,], title = expression("Estimate S"["Jy"] *

", 2"), qmin = 0.005, qmax = 0.995, path = path)

p5 = out_rhoSmall1$netmatfig
p6 = out_rhoSmall1$loadingsfig
p7 = out_rhoSmall2$netmatfig
p8 = out_rhoSmall2$loadingsfig

plot_grid(p5, p6, p7, p8, nrow = 2)

5 Summary

This paper introduces the singR package and demonstrates how simultaneous non-Gaussian compo-
nent analysis can be used to extract shared features from two datasets using R. The main contribution
of the R package singR is to provide easy code for data integration in neuroscience. We introduce
the function singR, which combines the SING pipeline into one function that performs data stan-
dardization, estimates the number of non-Gaussian components and estimates the number of joint
components. Previous analyses indicate the joint structure estimated by SING can improve upon other
neuroimaging data integration methods. SING can reveal new insights by using non-Gaussianity for

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=singR
https://CRAN.R-project.org/package=singR

CONTRIBUTED RESEARCH ARTICLE 81

both dimension reduction and latent variable extraction, whereas ICA methods involve an initial PCA
step that tends to aggregate features and can remove information.

6 Acknowledgments

Research reported in this publication was supported by the National Institute of Mental Health of
the National Institutes of Health under award number R01MH129855 to BBR. The research was
also supported by the Division of Mathematical Sciences of the National Science Foundation under
award number DMS-2044823 to IG. The content is solely the responsibility of the authors and does
not necessarily represent the official views of the National Institutes of Health and National Science
Foundation.

Simulated data were based on a previous analysis of data from the Human Connectome Project.
These data were provided [in part] by the Human Connectome Project, WU-Minn Consortium (Prin-
cipal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH
Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDon-
nell Center for Systems Neuroscience at Washington University.

References

Akiki, Teddy J, and Chadi G Abdallah. 2019. “Determining the Hierarchical Architecture of the
Human Brain Using Subject-Level Clustering of Functional Networks.” Scientific Reports 9 (1):
1–15. https://doi.org/10.1038/s41598-019-55738-y.

Amico, Enrico, Daniele Marinazzo, Carol Di Perri, Lizette Heine, Jitka Annen, Charlotte Martial, Mario
Dzemidzic, et al. 2017. “Mapping the Functional Connectome Traits of Levels of Consciousness.”
NeuroImage 148: 201–11. https://doi.org/https://doi.org/10.1016/j.neuroimage.2017.01.
020.

Beckmann, Christian F, Marilena DeLuca, Joseph T Devlin, and Stephen M Smith. 2005. “Investi-
gations into Resting-State Connectivity Using Independent Component Analysis.” Philosophical
Transactions of the Royal Society B: Biological Sciences 360 (1457): 1001–13. https://doi.org/10.
1098/rstb.2005.1634.

Calhoun, V. D., T. Adali, N. R. Giuliani, J. J. Pekar, K. A. Kiehl, and G. D. Pearlson. 2006. “Method
for Multimodal Analysis of Independent Source Differences in Schizophrenia: Combining Gray
Matter Structural and Auditory Oddball Functional Data.” Journal Article. Hum Brain Mapp 27 (1):
47–62. https://doi.org/10.1002/hbm.20166.

Calhoun, V. D., T. Adali, K. A. Kiehl, R. Astur, J. J. Pekar, and G. D. Pearlson. 2006. “A Method for
Multitask fMRI Data Fusion Applied to Schizophrenia.” Journal Article. Hum Brain Mapp 27 (7):
598–610. https://doi.org/10.1002/hbm.20204.

Calhoun, V. D., J. Liu, and T. Adali. 2009. “A Review of Group ICA for fMRI Data and ICA for Joint
Inference of Imaging, Genetic, and ERP Data.” Journal Article. Neuroimage 45 (1 Suppl): S163–72.
https://doi.org/10.1016/j.neuroimage.2008.10.057.

Calhoun, V. D., and J. Sui. 2016. “Multimodal Fusion of Brain Imaging Data: A Key to Finding
the Missing Link(s) in Complex Mental Illness.” Journal Article. Biol Psychiatry Cogn Neurosci
Neuroimaging 1 (3): 230–44. https://doi.org/10.1016/j.bpsc.2015.12.005.

Carmichael, Iain. 2022. Ajive: Angle Based Joint and Individual Variation Explained. https://cran.r-
project.org/web/packages/RaJIVE/index.html.

Feng, Qing, Meilei Jiang, Jan Hannig, and JS Marron. 2018. “Angle-Based Joint and Individual
Variation Explained.” Journal of Multivariate Analysis 166: 241–65. https://doi.org/10.1016/j.
jmva.2018.03.008.

Glasser, Matthew F, Timothy S Coalson, Emma C Robinson, Carl D Hacker, John Harwell, Essa Yacoub,
Kamil Ugurbil, et al. 2016. “A Multi-Modal Parcellation of Human Cerebral Cortex.” Nature 536
(7615): 171–78. https://doi.org/10.1038/nature18933.

Helwig, Nathaniel E. 2018. Ica: Independent Component Analysis. https://CRAN.R-project.org/
package=ica.

Marchini, J L, C Heaton, and B D Ripley. 2021. fastICA: FastICA Algorithms to Perform ICA and Projection
Pursuit. https://CRAN.R-project.org/package=fastICA.

Marcus, Daniel S, John Harwell, Timothy Olsen, Michael Hodge, Matthew F Glasser, Fred Prior, Mark
Jenkinson, Timothy Laumann, Sandra W Curtiss, and David C Van Essen. 2011. “Informatics and
Data Mining Tools and Strategies for the Human Connectome Project.” Frontiers in Neuroinformatics
5: 4. https://doi.org/10.3389/fninf.2011.00004/full.

Mejia, Amanda F, Mary Beth Nebel, Tikai Wang, Brian S Caffo, and Ying Guo. 2020. “templateICAr.”
https://doi.org/10.1080/01621459.2019.1679638.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.1038/s41598-019-55738-y
https://doi.org/https://doi.org/10.1016/j.neuroimage.2017.01.020
https://doi.org/https://doi.org/10.1016/j.neuroimage.2017.01.020
https://doi.org/10.1098/rstb.2005.1634
https://doi.org/10.1098/rstb.2005.1634
https://doi.org/10.1002/hbm.20166
https://doi.org/10.1002/hbm.20204
https://doi.org/10.1016/j.neuroimage.2008.10.057
https://doi.org/10.1016/j.bpsc.2015.12.005
https://cran.r-project.org/web/packages/RaJIVE/index.html
https://cran.r-project.org/web/packages/RaJIVE/index.html
https://doi.org/10.1016/j.jmva.2018.03.008
https://doi.org/10.1016/j.jmva.2018.03.008
https://doi.org/10.1038/nature18933
https://CRAN.R-project.org/package=ica
https://CRAN.R-project.org/package=ica
https://CRAN.R-project.org/package=fastICA
https://doi.org/10.3389/fninf.2011.00004/full
https://doi.org/10.1080/01621459.2019.1679638

CONTRIBUTED RESEARCH ARTICLE 82

Miettinen, Jari, Klaus Nordhausen, and Sara Taskinen. 2017. “Blind Source Separation Based on Joint
Diagonalization in R: The Packages JADE and BSSasymp.” Journal of Statistical Software 76 (2): 1–31.
https://doi.org/10.18637/jss.v076.i02.

Nordhausen, Klaus, Hannu Oja, David E. Tyler, and Joni Virta. 2022. ICtest: Estimating and Testing
the Number of Interesting Components in Linear Dimension Reduction. https://CRAN.R-project.org/
package=ICtest.

O’Connell, Michael J., and Eric F. Lock. 2020. R.jive: Perform JIVE Decomposition for Multi-Source Data.
https://CRAN.R-project.org/package=r.jive.

Pham, Damon D, John Muschelli, and Amanda F Mejia. 2021. “ciftiTools: A Package for Reading,
Writing, Visualizing and Manipulating CIFTI Files in r.” https://arxiv.org/abs/2106.11338.

Risk, Benjamin B., and Irina Gaynanova. 2021. “Simultaneous Non-Gaussian Component Analysis
(SING) for Data Integration in Neuroimaging.” Journal Article. The Annals of Applied Statistics 15
(3): 1431–54, 24. https://doi.org/10.1214/21-AOAS1466.

Risk, Benjamin B., Nicholas A. James, and David S. Matteson. 2015. steadyICA: ICA and Tests of Indepen-
dence via Multivariate Distance Covariance. https://CRAN.R-project.org/package=steadyICA.

Risk, Benjamin B., David S. Matteson, and David Ruppert. 2019. “Linear Non-Gaussian Component
Analysis via Maximum Likelihood.” Journal of the American Statistical Association 114 (525): 332–43.
https://doi.org/10.1080/01621459.2017.1407772.

Sui, J., T. Adali, Q. Yu, J. Chen, and V. D. Calhoun. 2012. “A Review of Multivariate Methods for
Multimodal Fusion of Brain Imaging Data.” Journal Article. J Neurosci Methods 204 (1): 68–81.
https://doi.org/10.1016/j.jneumeth.2011.10.031.

Sui, Jing, Tülay Adali, Godfrey Pearlson, Honghui Yang, Scott R. Sponheim, Tonya White, and
Vince D. Calhoun. 2010. “A CCA+ICA Based Model for Multi-Task Brain Imaging Data Fusion
and Its Application to Schizophrenia.” NeuroImage 51 (1): 123–34. https://doi.org/10.1016/j.
neuroimage.2010.01.069.

Sui, J., G. Pearlson, A. Caprihan, T. Adali, K. A. Kiehl, J. Liu, J. Yamamoto, and V. D. Calhoun. 2011.
“Discriminating Schizophrenia and Bipolar Disorder by Fusing fMRI and DTI in a Multimodal
CCA+ Joint ICA Model.” Journal Article. Neuroimage 57 (3): 839–55. https://doi.org/10.1016/j.
neuroimage.2011.05.055.

Vergara, V. M., A. Ulloa, V. D. Calhoun, D. Boutte, J. Chen, and J. Liu. 2014. “A Three-Way Parallel
ICA Approach to Analyze Links Among Genetics, Brain Structure and Brain Function.” Journal
Article. Neuroimage 98: 386–94. https://doi.org/10.1016/j.neuroimage.2014.04.060.

Wang, Liangkang, Irina Gaynanova, and Benjamin B. Risk. 2022. “singR.” https://github.com/
thebrisklab/singR.

Zhao, Yuxuan, David S Matteson, Stewart H Mostofsky, Mary Beth Nebel, and Benjamin B Risk.
2022. “Group Linear Non-Gaussian Component Analysis with Applications to Neuroimaging.”
Computational Statistics & Data Analysis 171: 107454. https://doi.org/10.1016/j.csda.2022.
107454.

Zhou, Guoxu, Qibin Zhao, Yu Zhang, Tülay Adalı, Shengli Xie, and Andrzej Cichocki. 2016. “Linked
Component Analysis from Matrices to High-Order Tensors: Applications to Biomedical Data.”
Proceedings of the IEEE 104 (2): 310–31. https://doi.org/10.1109/JPROC.2015.2474704.

Liangkang Wang
Brown University
Department of Biostatistics
Providence, Rhode Island, US
ORCiD: 0000-0003-3393-243X
liangkang_wang@brown.edu

Irina Gaynanova
University of Michigan
Department of Biostatistics
Ann Arbor, MI, US
https://irinagain.github.io/
ORCiD: 0000-0002-4116-0268
irinagn@umich.edu

Benjamin Risk
Emory University
Department of Biostatistics and Bioinformatics
Atlanta, Georgia, US
https://github.com/thebrisklab/
ORCiD: 0000-0003-1090-0777

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.18637/jss.v076.i02
https://CRAN.R-project.org/package=ICtest
https://CRAN.R-project.org/package=ICtest
https://CRAN.R-project.org/package=r.jive
https://arxiv.org/abs/2106.11338
https://doi.org/10.1214/21-AOAS1466
https://CRAN.R-project.org/package=steadyICA
https://doi.org/10.1080/01621459.2017.1407772
https://doi.org/10.1016/j.jneumeth.2011.10.031
https://doi.org/10.1016/j.neuroimage.2010.01.069
https://doi.org/10.1016/j.neuroimage.2010.01.069
https://doi.org/10.1016/j.neuroimage.2011.05.055
https://doi.org/10.1016/j.neuroimage.2011.05.055
https://doi.org/10.1016/j.neuroimage.2014.04.060
https://github.com/thebrisklab/singR
https://github.com/thebrisklab/singR
https://doi.org/10.1016/j.csda.2022.107454
https://doi.org/10.1016/j.csda.2022.107454
https://doi.org/10.1109/JPROC.2015.2474704
https://orcid.org/0000-0003-3393-243X
mailto:liangkang_wang@brown.edu
https://irinagain.github.io/
https://orcid.org/0000-0002-4116-0268
mailto:irinagn@umich.edu
https://github.com/thebrisklab/
https://orcid.org/0000-0003-1090-0777

CONTRIBUTED RESEARCH ARTICLE 83

benjamin.risk@emory.edu

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

mailto:benjamin.risk@emory.edu

CONTRIBUTED RESEARCH ARTICLE 84

RobustCalibration: Robust Calibration of
Computer Models in R
by Mengyang Gu

Abstract Two fundamental research tasks in science and engineering are forward predictions and data
inversion. This article introduces a new R package RobustCalibration for Bayesian data inversion
and model calibration using experiments and field observations. Mathematical models for forward
predictions are often written in computer code, and they can be computationally expensive to run. To
overcome the computational bottleneck from the simulator, we implemented a statistical emulator from
the RobustGaSP package for emulating both scalar-valued or vector-valued computer model outputs.
Both posterior sampling and maximum likelihood approach are implemented in the RobustCalibration
package for parameter estimation. For imperfect computer models, we implement the Gaussian
stochastic process and scaled Gaussian stochastic process for modeling the discrepancy function
between the reality and mathematical model. This package is applicable to various other types of
field observations and models, such as repeated experiments, multiple sources of measurements and
correlated measurement bias. We discuss numerical examples of calibrating mathematical models that
have closed-form expressions, and differential equations solved by numerical methods.

1 Introduction

Complex processes are often represented as mathematical models, implemented in computer code.
These mathematical models are often called computer models or simulators, and are widely used to
simulate different processes given a set of parameters and initial conditions (Sacks et al., 1989). The
initial conditions and model parameters may be unknown or uncertain in practice. Calibrating the
computer models based on real experiments or observations is one of the fundamental tasks in science
and engineering, widely known as data inversion or model calibration.

We follow the notation in Bayarri et al. (2007a) for defining the model calibration problem. Let
yFpxq be the real-valued field observation with a px-dimensional observable input vector x. The field
observation is often decomposed by yFpxq “ yRpxq ` ϵ, where yRp¨q denotes a function of unknown
reality, and ϵ denotes the noise, with the superscript ‘F’ and ‘R’ denoting the field observations and
reality, respectively. Scientists often model the unknown reality by a computer model, denoted by
f Mpx, θq at the px-dimensional observable input x, and pθ-dimensional calibration parameters θ,
unobservable from the experiments, with superscript ‘M’ denoting the computer model.

When the computer model describes the reality perfectly, a field observation can be written as:

yFpxq “ f Mpx, θq ` ϵ, (1)

where ϵ is a zero-mean Gaussian noise. We call the method by Equation (1) the no-discrepancy calibration.

When computer models are imperfect, the statistical calibration model below is often used:

yFpxq “ f Mpx, θq ` δpxq ` ϵ, (2)

where δp¨q is the unobservable discrepancy between the mathematical model and reality. Equation
(2) implies that the reality can be written as yRpxq “ f Mpx, θq ` δpxq at any observable input x P X .
The model calibration framework has been studied extensively. In Kennedy and O’Hagan (2001),
the discrepancy function δp¨q is modeled via a Gaussian stochastic process (GaSP), leading to more
accurate prediction based on the joint model of calibrated computer model and discrepancy compared
to either using the computer model or discrepancy model for prediction alone. We call this method the
GaSP Calibration. The GaSP calibration has been applied in a wide range of studies of continuous and
categorical outputs (Bayarri et al., 2007a; Higdon et al., 2008; Paulo et al., 2012; Chang et al., 2016, 2022).
Both no-discrepancy calibration and GaSP calibration are implemented in the RobustCalibration
package.

The calibrated computer model output can be far from the observations in terms of L2 distance
when the discrepancy function is modeled by the GaSP, (Arendt et al., 2012), since a large proportion
of the variability in the data can be explained by discrepancy function. To solve this problem, we
implemented the scaled Gaussian stochastic process (S-GaSP) calibration, or S-GaSP Calibration in
the RobustCalibration package. The S-GaSP model of discrepancy function was first introduced
in Gu and Wang (2018), where more prior probability mass of the L2 loss is placed on small values.
Consequently, the calibrated computer model by the S-GaSP fits the reality better in terms of L2 loss
than the GaSP calibration. Furthermore, historical data may be used for reducing the parameter space

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustGaSP
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration

CONTRIBUTED RESEARCH ARTICLE 85

(Williamson et al., 2013).

A few recent approaches aim to minimize the L2 distance between the reality and computer model
(Tuo and Wu, 2015; Wong et al., 2017), where the reality and discrepancy function are often estimated
in two steps separately. The S-GaSP calibration bridges the two-step L2 calibration with the GaSP
calibration. Compared with two-step approaches, parameters and discrepancy pθ, δp.qq are estimated
in GaSP calibration and S-GaSP calibration jointly, and the uncertainty of these estimation can be
obtained based on the likelihood function of the sampling model. Furthermore, compared with the
orthogonal calibration model (Plumlee, 2017), the S-GaSP process places more prior mass on inputs
leading to small values of the random L2 loss, instead of more prior mass on inputs close to the critical
points of the loss function.

Another concern is the computational cost of model calibration, as computer models may involve
numerical solutions of differential equations, which can be expensive to run. We utilize a statistical
emulator for approximating computationally expensive computer models. The GaSP emulator is a
well-developed framework for emulating computationally expensive computer models and it was
implemented in a few R packages, such as DiceKriging (Roustant et al., 2012), GPfit (MacDonald
et al., 2015) and RobustGaSP (Gu et al., 2019). Here we specify the functions rgasp, ppgasp and
predict in RobustGaSP for emulating computer models with scalar-valued and vector-valued outputs,
respectively.

Building packages for Bayesian model calibration is much more complicated than packages of
statistical emulator, as both field observations and computer models need to be integrated. A few
statistical packages are available for Bayesian model calibration, such as BACCO (Hankin, 2005), SAVE
package (Palomo et al., 2015), and CaliCo (Carmassi et al., 2018). The CaliCo package, for example,
integrates DiceKriging for emulating computational expensive simulations. It offers different types of
diagnostic plots based on ggplot2 (Wickham, 2011), and distinct prior choices of the parameters. In
the BACCO and SAVE, the GaSP model of the discrepancy function (Kennedy and O’Hagan, 2001) is
assumed, and GaSP emulators can be used to approximate expensive computer models.

Although a large number of studies were developed for Bayesian model calibration, to the authors’
best knowledge, many methods implemented in RobustCalibration have not been implemented in
another software package previously. We highlight a few unique features of the RobustCalibration
package. First of all, we allow users to specify different types of output of field observations, for
different scenarios through the output argument in the rcalibration function. The simplest scenario
is to have a vector of fields observations. We also allow users to input a matrix or a list of fields
observations with the same or different number of replications, respectively. Efficient computation
from sufficient statistics was implemented for model calibration with replications, which can im-
prove computation up to k3 times, where k is the number of repeated experiments. Second, distinct
models can be calibrated with different sets of parameters for data from multiple sources by the
calibration_MS function. Third, we implemented emulators for approximating expensive computer
models with both scalar-valued and vector-valued outputs. Emulators for vector-valued outputs,
capable of handling a large number of temporal or spatial coordinates, were not implemented in other
packages for model calibration. Here we use the parallel partial Gaussian stochastic process (PP-GaSP)
emulator from RobustGaSP package (Gu et al., 2019) as a computationally scalable emulator of vector-
valued output. The RobustGaSP package has been applied to various applications, such as emulating
geophysical models of ground deformation (Anderson et al., 2019), and storm surge simulation (Ma
et al., 2022). Furthermore, users can choose no-discrepancy calibration, GaSP or S-GaSP models of
discrepancy functions for different scenarios. Statistical inferences by both posterior samples and
the maximum likelihood estimator (MLE) are made available for these calibration approaches by the
method argument in the rcalibration function.

The rest of the paper is organized below. We first give an overview of the RobustCalibration
package to introduce the main functions and their usage. We further introduce methodology and
numerical examples to illustrate the implemented methods in the RobustCalibration package. Closed
form expressions of likelihood functions, derivatives, posterior distributions and computational
algorithms are outlined in the Appendix.

2 An overview of RobustCalibration

Figure 1 gives a schematic overview of the RobustCalibration package. We consider predicting the
reality in two ways: using both calibrated computer model and discrepancy (predictive accuracy),
and the calibrated computer model alone (calibration accuracy), both evaluated in terms of the L2
loss. The left panel gives comparison of accuracy and computational cost between the implemented
methods. The no-discrepancy calibration is faster than GaSP and S-GaSP calibration, as one does
not need to compute the inversion and log determinant of the covariance matrix of the field data,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=DiceKriging
https://CRAN.R-project.org/package=GPfit
https://CRAN.R-project.org/package=RobustGaSP
https://CRAN.R-project.org/package=RobustGaSP
https://CRAN.R-project.org/package=BACCO
https://CRAN.R-project.org/package=SAVE
https://CRAN.R-project.org/package=CaliCo
https://CRAN.R-project.org/package=CaliCo
https://CRAN.R-project.org/package=DiceKriging
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=BACCO
https://CRAN.R-project.org/package=SAVE
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustGaSP
https://CRAN.R-project.org/package=RobustGaSP
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration

CONTRIBUTED RESEARCH ARTICLE 86

Figure 1: Schematic overview of the RobustCalibration package. The left panel compares the ex-
pected predictive accuracy and calibration accuracy by different calibration methods. The calibration
and calibration_MS in the right panel are two main functions for parameter estimation for observa-
tions from single and multiple sources, respectively. The arguments of these functions are given in
blue boxes. The object classes calibration and calibration_MS (orange boxes) can be supplied in
predict.rcalibration and predict_MS.rcalibration_MS functions for making predictions.

unlike GaSP calibration and S-GaSP calibration. Because model discrepancy is modeled, predictive
accuracy by GaSP and S-GaSP calibration is typically higher than no-discrepancy calibration. The
RobustCalibration package can handle model calibration and prediction at a wide range of settings.
We first introduce the main functions of the package.

2.1 Main functions

The RobustCalibration package can be used for estimating unobservable parameters from computer
models and predicting reality. The conventional model calibration and prediction from a single source
of field observations are achieved by rcalibration and predict.rcalibration, as shown in upper
blue and yellow boxes in Figure 1, respectively. The function rcalibration allows users to call either
a Markov chain Monte Carlo (MCMC) algorithm for posterior sampling or a numerical optimization
algorithm for computing the maximum likelihood estimator (MLE) of the parameters. Additional
arguments can be specified to handle observations from repeated experiments, select a different
trend or discrepancy function, and build a surrogate model for approximating expensive computer
models, shown in Figure 1. The rcalibration function returns an object of the rcalibration S4 class
with posterior samples or MLE of the parameters, shown in the upper orange box in Figure 1. Then
rcalibration S4 class is used as the input in the predict.rcalibration function to perform predic-
tions on a set of test inputs. The predict.rcalibration function returns a predictobj.rcalibration
S4 class, which contains the predictive mean of the calibrated computer model, estimated trend, and
discrepancy function. The estimated interval at a given quantile can also be returned by specifying the
vector of the interval_est argument in the predict.raclibration function.

In some applications, we have different sources or types of observations. For instance, in calibrat-
ing geophysical models, time series of continuous GPS observations and satellite radar interferogram
can be jointly used to estimate unobservable parameters (Anderson et al., 2019). In the Robust-
Calibration package, we implement parameter estimation for observations from multiple sources
by the rcalibration_MS function, which returns a rcalibration_MS S4 class that contains posterior
samples, shown in Figure 1. Since each source of observations can induce a separate set of model
parameters, making the dimension of the parameter space large, the MLE is unstable, and as such
is not implemented in rcalibration_MS. The rcalibration_MS class can be used as an input into the
predict_MS.rcalibration_MS function for predicting the reality.

2.2 The rcalibration function

To use the rcalibration function, users need to specify 4 inputs: 1) design, an n ˆ px matrix of
observable inputs, 2) observations, field observations that can have three types specified below,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration

CONTRIBUTED RESEARCH ARTICLE 87

3) theta_range, a pθ ˆ 2 matrix of the lower and upper bounds of calibration parameters, and 4)
either math_model, a function of mathematical model, or input_simul and output_simul, simulation
runs by for building the emulator. The RobustCalibration package can handle three different kinds
of field observations as specified by the argument observations. First, one can input an n-vector
pyFpx1q, ..., yFpxnqqT , when one field datum is available at each observable input. Second, when k
repeated measurements are available for each observable input, one can input an n ˆ k matrix of field
observations, where each row contains k replicates of one observable input. Third, one can input a
list, where each element contains ki replications at the ith observable input, for i “ 1, ..., n.

An important feature of the RobustCalibration package is the flexible specification of the computer
model. Users can specify a mathematical model by supplying a generic R function through the argu-
ment math_model and selecting the default choice of the simulator simul_type=1. The second choice
is to use an emulator to predict the computer model by choosing simul_type=0. Users need to input
a set of simulation runs by input_simul and output_simul to call an emulator by the RobustGaSP
package for this choice. Users can either give a D ˆ ppx ` pθq matrix of input and a D-vector of
output to input_simul and output_simul arguments, for calling rgasp function from RobustGaSP
for emulation, or give a D ˆ pθ matrix of input and a D ˆ px matrix of output to input_simul and
output_simul, to call for ppgasp function from RobustGaSP for emulation. To account for stochastic
error or numerical approximation error in the simulator, we also allow users to specify a nugget
parameter estimated by the simulator data by the argument simul_nug=T.

The rcalibration function contains a few optional arguments. First, users can specify GaSP or S-
GaSP discrepancy models by the argument discrepancy_type="GaSP" or discrepancy_type="S-GaSP",
respectively. The default choice is to assume a S-GaSP discrepancy model. The model without a
discrepancy can be specified by the argument discrepancy_type="no-discrepancy". Second, a trend
can be specified by the argument X. By default, the trend (or mean) of the calibration model is zero.
Third, the parameter estimation approach can be specified by the method argument. The default
choice is method="post_sample", where the posterior samples will be drawn, and stored in the slot
post_sample of the rcalibration class. The MLE can be specified by the argument method="mle",
and the estimated parameters are stored in the slot param_est of the rcalibration class. Users can
specify the number of MCMC samples and burn-in samples by the argument S and S_0, respectively.
A vector containing the standard deviation of the proposal distribution for the calibration parameters,
the logarithm of the inverse range parameters, and the logarithm of the nugget parameter can be
specified by the sd_proposal argument. Furthermore, users can “thin” the MCMC samples and only
record a subset by the argument thinning. For instance, thinning=5 means only 1/5 of the posterior
samples will be recorded. Besides, the inverse variances of noises in the field observations can be
specified by the output_weights. Finally, arguments initial_values and num_initial_starts can be
specified in numerical optimization to find MLE, and when posterior sampling is used, initial values
of the calibration parameters can be specified through the argument initial_values.

The object rcalibration created by the rcalibration function have a few key properties. First
of all, if we have method='post_sample', the after burn-in posterior samples of parameters will be
stored in the slot post_sample, where each row contains posterior samples in one iteration. The first pθ

columns contain posterior samples of the calibration parameters θ. In the no-discrepancy calibration,
the pθ ` 1 column of post_sample contains posterior draws of the noise variance σ2

0 and the pθ ` 2 to
pθ ` q ` 1 columns contain the trend parameters θm, for a non-zero mean basis. In the GaSP or S-GaSP
calibration, the pθ ` 1 to pθ ` px ` 1 columns record posterior samples of the log inverse range and
log nugget parameters. The pθ ` px ` 2 to pθ ` px ` q columns record the noise variance parameter
and trend parameters if they are specified. The parameter λz in S-GaSP are recorded in slot lambda_z.
The indices of the accepted proposed samples are recorded in slots accept_S as one of the diagnostic
statistics.

2.3 The predict.rcalibration function

After calling the rcalibration function, an object of the rcalibration S4 class will be created, and
it can be used as an input into the predict.rcalibration function for predicting the reality on
a specified matrix of test input using the argument testing_input. Besides, if the mean basis is
specified by the argument X in rcalibration function, the user also needs to specify the mean basis
of the reality at the test inputs by the argument X_testing in function predict.rcalibration. If the
emulator was not constructed in rcalibration, users also need to specify the mathematical model by
the argument math_model in the predict.rcalibration function. Finally, a predictive interval can be
specified by the argument interval_est. For instance, the 95% predictive interval can be obtained
by the interval_est=c(0.025,0.975) argument. The interval of the field data will be computed if
interval_data=T. Otherwise, the predictive interval of the reality will be computed. If the variance
parameter of the noise in field data was specified by the output_weights, users should also specify the
variance of test data by testing_output_weights, which affects the predictive interval of test data.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustGaSP
https://CRAN.R-project.org/package=RobustGaSP
https://CRAN.R-project.org/package=RobustGaSP

CONTRIBUTED RESEARCH ARTICLE 88

After calling predict.rcalibration function, an object predictobj.rcalibration will be created
and it contains three different predictors for reality. The slot math_model_mean_no_trend gives the
predictive mean based on the calibrated computer model (f M). The slot math_model_mean gives
the predictive mean based on the calibrated computer model and the estimated trend (f M ` µ), if
the basis functions of the trend at the observable input and the test input are specified through X
and X_testing in rcalibration and rcalibration.predict, respectively. The slot mean gives the
predictive mean based on the calibrated computer model, estimated trend, and discrepancy (f M ` µ `

δ). If interval_est is specified, a matrix of the intervals will be created for quantifying the uncertainty
of predictions.

2.4 The rcalibration_MS function and the predict_MS.rcalibration_MS function

Model calibration and predictions using multiple sources or different types of data are implemented
by rcalibration_MS and rcalibration_MS.predict_MS functions, respectively. One needs to specify
4 inputs: design, observations, theta_range and a form of mathematical model. Suppose we have
a data set produced by k sources of observations. The design is a list of k elements, where each
element is a matrix of observable input for each source. The argument observations takes a list of
field observations, where each element is a vector of field observations for each source. In principle,
one can have different number of observations from each source and the type of the observations may
not be the same. The argument theta_range is a pθ ˆ 2 matrix of range of parameters, where the ith
row contains the minimum and maximum values of the ith coordinate of the calibration parameter
vector θ. Furthermore, if closed form expressions of mathematical models are available for each source
of data, users can input a list of functions into the math_model for each source of data. We also allow
users to emulate the expensive simulation. In this scenario, one needs to let simul_type be a vector of
1s, indicating emulators will be called for each computer model.

Additional arguments can be specified in rcalibration_MS. For instance, the argument index_theta
takes a list of indices for the associated calibration parameter for each computer model. Suppose we
have three calibration parameters θ “ pθ1, θ2, θ3q, and the computer model for first source of data is re-
lated to the first two calibration parameters and the computer model for second source of data is related
to second two calibration parameters. Then index_theta is a list where index_theta[[1]]=c(1,2),
and index_theta[[2]]=c(2,3). More arguments will be introduced along with the examples. Af-
ter calling rcalibration_MS, an S4 class rcalibration_MS will be built, and used as an input to
predict_MS.rcalibration_MS for making predictions.

3 Methods and examples

3.1 No-discrepancy calibration

Let us start with the simplest method: no-discrepancy calibration. First, suppose we have a vector of
real-valued field observations yF “ pyFpx1q, ..., yFpxnqqT at n observable inputs, and the corresponding
computer model output is denoted by fM

θ “ p f Mpx1, θq, ..., f Mpxn, θqqT for any calibration parameters θ.
The vector of measurement noise is assumed to follow ϵ „ MN p0, σ2

0 Λq, where the covariance of the
noise is diagonal with the ith term being σ2

0 Λii and MN denote the multivariate normal distribution.
In the default setting, σ2

0 is estimated from the data and Λ “ In, where In is an n ˆ n identity matrix.
Users can manually specify the inverse of the diagonal terms of Λ by the output_weights argument in
rcalibration and rcalibration_MS functions, as the variances of measurement errors can be different.
We assume the diagonal matrix Λ is given in this section.

For a no-discrepancy calibration model in (1), the MLE of the variance of the noise is σ̂2
0 “ S2

0{n
with S2

0 “ pyF ´ fM
θ qTΛ´1pyF ´ fM

θ q. The likelihood function is given in the Appendix. As Λ is a
diagonal matrix with diagonal terms denoted as Λii :“ 1{wi, the profile likelihood follows

Lpθ | σ̂2
0 q9

#

n
ÿ

i“1

wi

´

yFpxiq ´ f Mpxi, θq

¯2
+´n{2

,

where wi “ 1 is used in the default scenario. Maximizing the profile likelihood of a no-discrepancy
model is equivalent to minimizing the weighted squared error

řn
i“1 wi

`

yFpxiq ´ f Mpxi, θq
˘2. We

numerically find θ by the low-storage quasi-Newton optimization method (Liu and Nocedal, 1989)
implemented in lbfgs function in the nloptr package (Ypma (2014)) for optimization.

In the RobustCalibration package, we allow the users to specify the trend or mean function
modeled as µpxiq “ hpxqθm “

řq
t“1 htpxqθm,t for any x, where θm “ pθm,1, ..., θm,qqT is a vector of trend

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nloptr
https://CRAN.R-project.org/package=RobustCalibration

CONTRIBUTED RESEARCH ARTICLE 89

parameters. Maximizing the profile likelihood of a no-discrepancy model with a trend is equivalent to
minimizing the squared error loss:

θ̂LS
m “ argminθ

n
ÿ

i“1

wi

´

yFpxiq ´ f Mpxi, θq ´ hpxiqθ̂LS
m

¯2
,

where the solution follows θ̂LS
m “ pHTΛ´1Hq´1HTΛ´1pyF ´ fM

θ q with H “ phTpx1q, ..., hTpxnqqT being
an n ˆ q matrix of the mean basis.

After calling the rcalibration function with method='mle', the point estimator θ̂LS is recorded
in the slot param_est in the rcalibration class. The MLE is a computationally cheap way to obtain
estimates of calibration parameter vector θ. After obtaining the MLE, we can plug the MLE into the
computer model for predicting reality: f Mpxi, θ̂q ` hpxiqθ̂LS

m , using the predict function.

We also implement the MCMC algorithm for Bayesian inference. The posterior distribution follows

ppθm, σ2
0 , θ | yFq9ppyF | θ, θm, σ2

0 qπpθqπpθm, σ2
0 q. (3)

We assume an objective prior for the mean and variance parameters πpθm, σ2
0 q91{σ2

0 . The posterior
distribution ppθm, σ2

0 | θ, yFq can be sampled by the Gibbs algorithm, since the prior is conjugate.
We assume that the default choice of the prior of the calibration parameters πpθq is uniform over
the parameter space and sample pθ | yF, θm, σ2

0 q using the Metropolis algorithm. The posterior
distributions and predictions from the posterior samples will be discussed in the Appendix.

Here we show one example from Bayarri et al. (2007b), where data are observed from unknown
reality: yFpxq “ 3.5 expp´1.7xq ` 1.5 ` ϵ, where ϵ „ N p0, 0.32q. We have 30 observations at 10 inputs
in the domain xi P r0, 3s, for i “ 1, 2, ..., 10, each containing 3 replications. The computer model is
f Mpx, θq “ 5 expp´θxq with θ P r0, 50s. The goal is to estimate the calibration parameters and predict
the unknown reality (3.5 expp´1.7xq ` 1.5) at x P r0, 5s. The observable inputs and observations from
Bayarri et al. (2007b) can be generated by the code below.

R> input=c(.110, .432, .754, 1.077, 1.399, 1.721, 2.043, 2.366, 2.688,3.010)
R> n=length(input)
R> k=3
R> output=t(matrix(c(4.730,4.720,4.234,3.177,2.966,3.653,1.970,2.267,2.084,2.079,
+ 2.409,2.371, 1.908,1.665,1.685, 1.773,1.603,1.922,1.370,1.661,
+ 1.757, 1.868,1.505,1.638,1.390, 1.275,1.679,1.461,1.157,1.530),k,n))
R> Bayarri_07<-function(x,theta){
+ 5*exp(-x*theta)
+ }
R> theta_range=matrix(c(0,50),1,2)

Here the mathematical model has a closed-form expression so we code it as a function called
Bayarri_07. The parameter range of calibration parameter θ is given by a vector called theta_range.

The no-discrepancy calibration is implemented by the code below.

R> set.seed(1)
R> X=matrix(1,n,1)
R> m_no_discrepancy=rcalibration(input, output,math_model = Bayarri_07,
+ theta_range = theta_range, X =X,
+ have_trend = T,discrepancy_type = 'no-discrepancy')
R> m_no_discrepancy
type of discrepancy function: no-discrepancy
number of after burn-in posterior samples: 8000
0.1385 of proposed calibration parameters are accepted
median and 95\% posterior credible interval of calibration parameter 1 are
2.951997 2.264356 3.930725

Here we use a constant mean basis using the mean (or trend) argument X, such that the mathematical
model is f Mpx, θq ` µ. We draw 10, 000 posterior samples with the first 2, 000 samples used as burn-in
samples. One can adjust the number of posterior and burn-in samples by argument S and S_0 in
the calibration function, respectively. We found that the median of the posterior samples of θ is
2.95, and the 95% posterior interval is around p2.26, 3.93q. Around 14% of the samples were accepted
by the Metropolis algorithm. Here the first pθ terms in sd_proposal is the standard deviation of the
proposal distribution of the calibration parameter, where the default choice is 0.05, and the next px ` 1
parameters are the standard deviation of the inverse logarithm of the range parameter and nugget
parameters in GaSP and S-GaSP calibration, discussed in the next subsection. The code below reduces
sd_proposal to 0.025 of the range of the parameter space to make a larger proportion of the posterior

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 90

samples accepted by the algorithm:

R> m_no_discrepancy_small_sd=rcalibration(input, output,math_model = Bayarri_07,
+ theta_range = theta_range,
+ sd_proposal = c(rep(0.025,dim(theta_range)[1]),
+ rep(0.25,dim(as.matrix(input))[2]),0.25),
+ X =X, have_trend = T,discrepancy_type = 'no-discrepancy')
R> m_no_discrepancy_small_sd
type of discrepancy function: no-discrepancy
number of after burn-in posterior samples: 8000
0.2613 of proposed calibration parameters are accepted
median and 95\% posterior credible interval of calibration parameter 1 are
2.935007 2.19352 3.933492

Around 26% of the posterior samples are accepted. In this example, the median and 95% posterior
credible intervals are similar to the one having a proposal distribution with smaller standard deviation.

The following code gives the predictions and the 95% predictive interval of the reality for 200 test
inputs equally spaced at x P r0, 5s. Since we use a constant trend in model calibration, we also specify
a constant trend for making predictions, through the argument X_testing in the predict function:

R> testing_input=seq(0,5,5/199)
R> X_testing=matrix(1,length(testing_input),1)
R> m_no_discrepancy_pred=predict(m_no_discrepancy,testing_input,math_model=Bayarri_07,
+ interval_est=c(0.025, 0.975),X_testing=X_testing)

Posterior samples of the calibration parameter θ and the mean parameter θm in the no-discrepancy
calibration are plotted as the red rectangles in the right panel in Figure 2. The predictive mean and 95%
predictive interval are graphed as the red curve and grey shaded area in the left panel, respectively.
Compared to models with an estimated discrepancy function, the posterior samples from the no-
discrepancy calibration are more concentrated, and the average length of 95% predictive interval
is shorter. However, a large proportion of reality at x P r0, 1.5s is not covered by the 95% posterior
credible interval, due to large discrepancy between the mathematical model and reality in this domain.
Next, we introduce two discrepancy models to solve this problem.

3.2 Gaussian stochastic process models of discrepancy functions

The discrepancy function can be modeled as a GaSP, meaning that for any tx1, ..., xnu, the marginal
distribution of the discrepancy function follows a multivariate normal distribution:

pδpx1q, ..., δpxnqqT | µ, σ2, R „ MN pµ, σ2Rq,

where µ “ pµpx1q, ..., µpxnqqT is a vector of the mean (or trend), σ2 is a variance parameter, and R is the
correlation matrix between outputs.

Similar to the no-discrepancy calibration, we allow user to model the trend as µpxiq “ hpxiqθm “
řq

t“1 htpxiqθm,t, where hpxiq is a row vector of mean basis and θm is a vector of trend parameters. Since
the trend is often modeled in the computer model, the default value of the trend parameters is 0.

The pi, jqth element of the correlation matrix is modeled by a kernel function Ri,j “ Kpxi, xjq. We
implement the separable kernel Kpxi, xjq “

śpx
l“1 Klpxi, xjq, where Kl models the correlation between

the lth coordinate of the observable input, for l “ 1, ..., px. Some frequently used kernel functions are
listed in Table 1. The range parameters γ are estimated by default.

We denote the nugget parameter by the noise variance to signal variance ratio η “ σ2
0 {σ2.

Marginalizing out the random discrepancy function δp¨q, one has yF „ MN pfM
θ ` Hθm, σ2

0 R̃q, where
R̃ “ R{η ` Λ. Here by default Λ “ In, and we allow users to specify the inverse diagonal terms of Λ

by the argument weights: wi “ 1{Λii, for i “ 1, ..., n.

The MLE of the trend and noise variance parameters in the GaSP calibration follows θ̂m “
`

HTR̃´1H
˘´1 HTR̃´1py ´ fM

θ q and σ̂2
0 “ S2

K{n, where S2
K “ py ´ fM

θ ´ HT θ̂mqTR̃´1py ´ fM
θ ´ HT θ̂mq.

Plugging in the MLE of trend and noise variance parameters, one can numerically maximize the profile
likelihood to obtain the calibration, kernel and nugget parameters in the GaSP calibration:

pθ̂, γ̂, η̂q “ argmax
pθ,γ,ηq

LKpθ, γ, η | θ̂m, σ̂2
0 q (4)

where the closed form expression of the profile likelihood LKpθ, γ, η | θ̂m, σ̂2
0 q with kernel Kp., .q is

given in the Appendix.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 91

0 1 2 3 4 5

0
1

2
3

4
5

6

CM+trend

x

y
reality
GaSP
S−GaSP
no−discrepancy

0 1 2 3 4 5

1
2

3
4

5
6

CM+trend+discrepancy

x

y

reality
GaSP
S−GaSP

0 10 20 30 40 50

−
4

−
2

0
2

4
6

posterior samples

θ

θ m

GaSP
S−GaSP
no−discrepancy

Figure 2: Predictions and posterior samples by the RobustCalibration package for the example
introduced in Bayarri et al. (2007b). In the left and middle panels, the unknown reality is graphed
as black curves, and field observations that contain with 3 replicates at each observable input are
plotted as black dots. In the left panel, predictions of reality based on calibrated computer model with
trend by GaSP, S-GaSP and no-discrepancy calibration are graphed as light blue, blue and red curves,
respectively. ‘CM’ denotes the computer model and the shaded area is the 95% posterior predictive
interval by the no-discrepancy calibration. In the middle panel, predictions based on the calibrated
computer model, discrepancy, and the trend by GaSP and S-GaSP are graphed as light blue and blue
curves, respectively. The shaded area is the 95% predictive interval by the GaSP calibration. After
burn-in posterior samples of calibration parameter θ and mean parameter θm are plotted in the right
panel.

After obtaining the estimation of the parameters, the predictive distribution of reality on any x˚

can be obtained by plugging in the estimator

yRpx˚q | yF, θ̂m, σ̂2
0 , θ̂, γ̂, η̂ „ N pµ̂px˚q, σ̂2

0 pK˚{η̂ ` Λ˚qq, (5)

where Λ˚ is the weight at x˚ set to be 1 by default, and

µ̂px˚q “ f Mpx˚, θ̂q ` hpx˚qθ̂m ` rTpx˚qR̃´1pyF ´ fpx1:n, θ̂q ´ Hθ̂mq,

K˚ “ Kpx˚, x˚q ´ rTpx˚qR̃´1rpx˚q,

with rpx˚q “ pKpx˚, x1q, ..., Kpx˚, xnqqT . Though the predictive mean µ̂px˚q may be the most accurate
for predictions, the calibrated computer model f Mpx˚, θ̂q is sometimes of interest for predicting
the reality, due to its interpretability. Thus, we recorded three slots for predicting the reality: 1)
the calibrated computer model f Mpx˚, θ̂q by math_model_mean_no_trend, 2) The calibrated computer
model with trend f Mpx˚, θ̂q ` hpx˚qθ̂m by math_model_mean , and 3) the predictive mean µ̂px˚q by mean.
Furthermore, users can also output the predictive interval based on (5) by specifying interval_est
in the predict.rcalibration function. For example, setting interval_est=c(0.025,0.975) gives the
95% predictive interval of the reality. Furthermore, if interval_data=T, the predictive interval of the
data will be computed.

Numerically computing the MLE can be unstable as the profile likelihood LKpθ, γ, η | θ̂m, σ̂2
0 q is

typically nonlinear and nonconvex with respect to the parameters pθ, γ, ηq. To obtain the uncertainty
assessment of the estimates and to avoid instability in the numerical search in computing the MLE, we
implement the MCMC algorithm for Bayesian inference. The posterior distribution is

ppθm, σ2
0 , θ, γ, η | yFq9pKpyF | θ, γ, η, θm, σ2

0 qπpθqπpθm, σ2
0 , γ, ηq, (6)

where pKp.q is a multivariate normal density with covariance function of the discrepancy being σ2Kp¨, ¨q,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=RobustCalibration

CONTRIBUTED RESEARCH ARTICLE 92

GaSP calibration Product kernel (Kpdq “
śpx

l“1 Klpdlq)

Matérn α “ 5{2 Klpdlq “

ˆ

1 `

?
5dl

γl
`

5d2
l

3γ2
l

˙

exp
´

´

?
5dl

γl

¯

Matérn α “ 3{2 Klpdlq “

´

1 `

?
3dl

γl

¯

exp
´

´

?
3dl

γl

¯

Power exponential Klpdlq “ exp
!

´

´

dl
γl

¯αl
)

, 0 ă αl ď 2

S-GaSP calibration Scaled kernel (KZd pxa, xbq “ Kpxa, xbq ´ rTpxaqR´1
z rpxbq)

Table 1: Kernel functions implemented in RobustCalibration. For any xa, xb P X , denote d “ xa ´ xd “

pd1, ..., dpx qT . For any kernel K, the discretized scaled kernel KZd pxa, xbq with discretization points
on observed points x1, ..., xn is implemented in the S-GaSP calibration, where Rz :“ R ` nIn{λz, and
rpxq “ pKpx, x1q, ..., Kpx, xnqqT for any x.

and πpθq is the prior of the calibration parameters, assumed to be uniform over the parameter space.
The prior of the mean, variance, kernel and nugget parameters takes the form below

πpθm, σ2
0 , γ, ηq9

πpγ, ηq

σ2
0

,

where the usual reference prior of the trend and variance parameters πpθm, σ2
0 q91{σ2

0 is assumed. We
use jointly robust prior for the kernel and nugget parameters πpγ, ηq, as it has a similar tail density
decay rate as the reference prior, but it is easier and more robust to compute (Gu, 2019). Closed form
expressions of the posterior distributions and MCMC algorithm are provided in the Appendix.

In RobustCalibration, after burn-in posterior samples pθ
piq
m , pσ2

0 qpiq, θpiq, γpiq, ηpiqq are recorded
for i “ S0 ` 1, ..., S. Users can record a subset of posterior samples to reduce storage by thinning
the Markov chain. For instance, thinning=5 in the rcalibration function records 1{5 of posterior
samples.

We also output three types of predictions. For instance, suppose we obtain S posterior samples
with first S0 samples used as burn-in samples, the predictive mean of the reality can be computed by

µ̂px˚q “

S
ÿ

i“S0`1

f Mpx˚, θpiqq ` hpx˚qθ
piq
m ` prpiqpx˚qqTpR̃piqq´1pyF ´ fMpx1:n, θpiqq ´ Hθ

piq
m q,

where rpiqpx˚q and R̃piq are obtained by plugging in the ith posterior samples. The predictive interval
can also be computed by specifying the argument interval_est in predict.rcalibration function.

Code below implements the GaSP calibration of parameter estimation and predictions for the
example in (Bayarri et al., 2007b) that was discussed in the previous subsection.

R> m_gasp=rcalibration(input, output,math_model = Bayarri_07,theta_range = theta_range,
+ X =X, have_trend = T,discrepancy_type = 'GaSP')
R> m_gasp_pred=predict(m_gasp,testing_input,math_model=Bayarri_07,
+ interval_est=c(0.025, 0.975),X_testing=X_testing)

Predictions and posterior samples from the GaSP calibration are plotted in Figure 2. The associated
predictive error is shown in Table 2. Comparing the first two rows in Table 2, the predictive RMSE in
the no-discrepancy calibration is around 0.25, and it decreases to 0.15, after adding the discrepancy
function modeled by GaSP. Around 97.5% of the held-out truth is covered by the 95% predictive
interval of the reality in the GaSP calibration. In comparison, the 95% predictive interval of the reality
in the no-discrepancy calibration only covers around 80% of the held-out reality.

As shown in the right panel in Figure 2, the posterior samples from GaSP spread over a large range,
reflecting the large uncertainty in parameter estimation. This is because the discrepancy modeled
by GaSP with the frequently used kernel listed in Table 1 is very flexible. As a result, the calibrated
computer model by GaSP can be less accurate in predicting the reality. To address this problem, we
introduce a new approach that induces a scaled kernel to constrain the discrepancy function.

3.3 Scaled Gaussian stochastic process models of discrepancy functions

Scaling the kernel of GaSP for model calibration was introduced in Gu and Wang (2018), where the
random L2 distance between the discrepancy model was scaled to have more prior probability mass
at small values, as small distance indicates the computer model fits the reality well. Note that we

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration

CONTRIBUTED RESEARCH ARTICLE 93

RMSE (CM+trend) RMSE (with discrepancy) PCIp95%q LCIp95%q

GaSP 0.253 0.151 0.975 0.880
S-GaSP 0.228 0.131 0.955 1.15
No-discrepancy 0.250 / 0.795 0.409

Table 2: Predictive accuracy and uncertainty assessment. The RMSE of the out-of-sample prediction
based on the calibrated computer model (CM) and trend are shown in the second column. The
predictive RMSE by the summation of the calibrated computer model, trend and discrepancy is given
in the third column. The proportion of the held-out reality covered in the 95% predictive interval, and
average lengths of predictive intervals are given in the last two columns, respectively.

leave σ2 as a free parameter to be estimated from data, and thus S-GaSP is still a flexible model of
discrepancy.

In RobustCalibration, we implemented the discretized S-GaSP to scale the random mean squared
error between the reality and computer model:

δzd pxq “

#

δpxq |
1
n

n
ÿ

i“1

δpxiq
2 “ Zd

+

, (7)

with the subscript ‘d’ denoting discretization, and the density of Zd is defined as

pZd pzq “
gZd pzq pδ pZd “ zq

ş8

0 gZd ptq pδ pZd “ tq dt
, (8)

where pδpZd “ zq is the density of Zd induced by the GaSP with kernel Kp¨, ¨q, and gZp¨q is a nonde-
creasing function that places more probability mass on smaller values of the L2 loss. For a frequently
used kernel function in Table 1, the probability measure of the GaSP places a large probability at large
L2 loss pδ pZd “ zq when the correlation is large, dragging the calibrated computer model away from
the reality. In the S-GaSP calibration, the measure for Zd was scaled to have more probability mass
near zero by a scaling function gZd pzq. The default scaling function is assumed to be an exponential
distribution,

gZd pzq “
λz

2σ2 exp
ˆ

´
λzz
2σ2

˙

, (9)

where λz controls how large the scaling factor is. Large λz concentrates more prior probability mass
at the origin. As shown in Gu et al. (2022), λz9

?
n guarantees the convergence of the calibration

parameters to the ones that minimize the L2 distance between the reality and computer model. We
let the default choice be λz “ pλ||γ̃||q´1{2, where λ “ pσ2

0 {σ2nq is the regularization parameter in the
kernel ridge regression, and γ̃ “ pγ1{L1, ..., γpx {Lpx qT , with Li being the length of domain of the ith
coordinate of the calibration parameter. We allow users to specify λz via the argument lambda_z in the
rcalibration function.

The default choice of the scaling function in (9) has computational advantages. After marginalizing
out Zd, it follows from Lemma 2.4 in Gu and Wang (2018) that δzd p¨q has the covariance function

σ2Kzd pxa, xbq “ σ2

#

Kpxa, xbq ´ rTpxaq

ˆ

R `
nIn

λz

˙´1
rpxbq

+

, (10)

for any xa, xb, where rpxq “ pKpx, x1q, ..., Kpx, xnqqT for any x. The covariance matrix of the S-GaSP
model of pδzpx1q, ..., δzpxnqqT follows

σ2Rz “ σ2

#

R ´ R
ˆ

R `
nIn

λz

˙´1
R

+

. (11)

The closed-form expression in Equation (10) avoids sampling pδzpx1q, ..., δzpxnqq to obtain Zd from the
posterior distribution, which greatly improves the computational speed.

For any covariance function Kp¨, ¨q in the GaSP calibration, a scaled kernel was induced in S-GaSP
calibration, shown in the last row of Table 1. The S-GaSP model of the discrepancy can be specified
by the argument discrepancy_type='S-GaSP' in the rcalibration function. Similar to the model of
GaSP-calibration, we also provide MLE and posterior samples for estimating the parameters, with
arguments method='mle' and method='post_sample', respectively. The MLE of parameters in S-GaSP

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=RobustCalibration

CONTRIBUTED RESEARCH ARTICLE 94

are computed by maximizing the profile likelihood

pθ̂, γ̂, η̂q “ argmax
pθ,γ,ηq

LKZd
pθ, γ, η, | θ̂m, σ̂2

0 q, (12)

where pθ̂m, σ̂2
0 q denotes the MLE of trend and noise variance parameters in S-GaSP calibration, and LKZd

is the profile likelihood with respect to the scaled kernel KZd in (10). Furthermore, point predictions
and intervals can be obtained by the predict.rcalibration function as well.

The code below gives S-GaSP calibration and prediction of the example in Bayarri et al. (2007b).

R> m_sgasp=rcalibration(input, output,math_model = Bayarri_07,theta_range = theta_range,
+ X =X, have_trend = T,discrepancy_type = 'S-GaSP')
R> m_sgasp_pred=predict(m_sgasp,testing_input,math_model=Bayarri_07,
+ interval_est=c(0.025, 0.975),X_testing=X_testing)

Predictions from S-GaSP are plotted as blue curves in Figure 2 and numerical comparisons are
given in Table 2. With the discrepancy modeled by S-GaSP, the prediction of reality is more accurate at
x P r0.5, 1.5s, compared to no-discrepancy calibration. Note that predictions from the S-GaSP model
also extrapolate the reality at x P r3, 5s accurately, because the calibrated computer model is closer
to the truth. Furthermore, the 95% predictive interval by S-GaSP covers around 95% of the held-out
samples.

To compare and illustrate different calibration approaches for differential equations, we discuss
another example of the Lorenz-96 system used in modeling atmospheric dynamics (Lorenz, 1996). The
mathematical model is written as the following differential equations:

9xjptq “ pxj`1ptq ´ xj´2ptqqxj´1ptq ´ xjptq ` θ, (13)

for j “ 1, ..., k states, with k “ 40 and θ is a scalar value of the force. We further denote that x´1 “ xk´1,
x0 “ xk and xk`1 “ x1 for any t. The latent variable xj can model the atmospheric quantities, such as
temperature or pressure, measured at k positions along a constant latitude circle. This model is widely
used for data assimilation (Maclean and Spiller, 2020; Brajard et al., 2020).

We consider model calibration in two scenarios:

Scenario 1: yjptq “ xjptq ` ϵ, (14)

Scenario 2: yjptq “ xjptq ` 2t sin
ˆ

2π j
k

˙

` ϵ, (15)

for j “ 1, ..., k and ϵ „ N p0, 1q being an independent Gaussian noise. In the first scenario, the
mathematical model is the true model and in the second scenario, a discrepancy term is included
for simulating the field data. The discrepancy is treated as unknown. We initialize the states by a
multivariate normal distribution with the covariance generated from a Wishart distribution with k
degrees of freedom and the scale matrix being a diagonal matrix. We use the Runge Kutta method
with order 4 to numerically solve the system. Since the computer model is fast, we do not include an
emulator. We simulate the reality at 40 time points, with a time step of 0.05 between the time points.

The unobserved reality simulated by the Lorenz-96 system is plotted in upper panel in Figure 3.
Only 5% observations (i.e. 2 observations at each time point, plotted as black circles in upper middle
panel) are available for model calibration. The posterior parameters of no-discrepancy calibration,
GaSP and S-GaSP calibration are plotted in the upper right panel. Since the computer model (Lorenz-
96) is the true model in this scenario, the no-discrepancy calibration is expected to perform well. Even
though one allows a flexible discrepancy function, modeled as GaSP or S-GaSP, it seems parameters
are estimated reasonably well in both approaches. In all methods, posterior samples are close to the
true parameter (θ “ 8), and the range of the posterior samples is narrow compared to the parameter
range r´20, 20s2. Furthermore, the estimate states by the calibrated computer model and the reality are
plotted in the lower panels in Figure 3. All methods have small estimation errors, as the parameters
are estimated well.

The reality, observations, posterior samples, and predictions from the different calibration models
of a discrepancy-included Lorenz-96 system are graphed in Figure 4. Note that since the discrepancy is
included, there is no true calibration parameter. The states estimated by the no-discrepancy calibration
model (shown in the lower left panel) have a relatively large error. This is not surprising as the
Lorenz-96 system is a misspecified model. The predictive means of GaSP and S-GaSP models which
includes both the calibrated computer model and discrepancy function is more accurate, as both
models capture the discrepancy between the reality and computer model. The estimation error of all
models is larger than the ones when there is no discrepancy. This is because the measurement error
is large and we only observe 2 states at each time point. Increasing the number of observations or
reducing the variance of measurement error can improve predictive accuracy.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 95

0.5 1.0 1.5 2.0

10
20

30
40

Latent states

Time

S
ta

te

−10

−5

0

5

10

15

0.5 1.0 1.5 2.0

10
20

30
40

Observations

Time

S
ta

te

−10

−5

0

5

10

15

posterior samples

θ

co
un

ts

7.8 7.9 8.0 8.1 8.2

0
20

0
40

0
60

0
80

0
10

00

No−discrepancy
GaSP
S−GaSP

0.5 1.0 1.5 2.0

10
20

30
40

diff, no−discrepancy

Time

S
ta

te

−0.2

−0.1

0.0

0.1

0.2

0.5 1.0 1.5 2.0

10
20

30
40

diff, GaSP

Time

S
ta

te

−0.2

−0.1

0.0

0.1

0.2

0.5 1.0 1.5 2.0

10
20

30
40

diff, S−GaSP

Time

S
ta

te

−0.2

−0.1

0.0

0.1

0.2

Figure 3: The reality and full observations of Lorenz-96 system in Scenario 1 are plotted in the upper
left panel and upper middle panel, respectively, where the black circles are the 5% observations used
for model calibration. Posterior samples of calibration parameters of different calibration methods
are plotted in the upper right panel. The lower panels give the difference between the reality and
calibrated computer model of all latent states.

3.4 Calibration with repeated experiments

Repeated experiments or replicates are commonly used in experiments, as they are helpful for
assessing the experimental error. Consider, for example, ki replicates available for each observable
input xi, denoted as yF

i “ pyF
1 pxiq, ..., yF

ki
pxiqqT . Denote ȳF “ p

řk1
j“1 yF

j px1q{k1, ...,
řkn

j“1 yF
j pxnq{knqT the

aggregated data. The probability density of the field observations can be written as:

ppyF
1 , ..., yF

n | µ, δ, θ, σ2
0 q “ p2πσ2

0 q´

řn
i“1 ki

2 exp

¨

˝´

řn
i“1 ωi

řki
j“1pyF

j pxiq ´ f Mpxi, θq ´ µi ´ δpxiqq2

2σ2
0

˛

‚

“ p2πσ2
0 q´

řn
i“1 ki

2 exp

˜

´
S2

f

2σ2
0

´

řn
i“1 kiωipȳF

i ´ f Mpxi, θq ´ µi ´ δpxiqq2

2σ2
0

¸

where S2
f “

řn
i“1 ωi

řki
j“1pyF

j pxiq ´ ȳF
i q2 “

řn
i“1 ωipyF

i ´ ȳF
i 1ki

qTpyF
i ´ ȳF

i 1ki
q with the subscript ‘f’

denoting the field observations. After integrating out the discrepancy term, assumed to be modeled as
a GaSP as an example, the marginal likelihood of the parameters follows

LKpθ, θm, σ2
0 , γ, ηq9pσ2

0 q´

řn
i“1 ki

2 | ˜̃R|´
1
2 exp

#

´
pȳF ´ fM

θ ´ µ1nqT ˜̃R´1pȳF ´ fM
θ ´ µ1nq

2σ2
0

´
S2

f

2σ2
0

+

, (16)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 96

0.5 1.0 1.5 2.0

10
20

30
40

Latent states

Time

S
ta

te

−10

−5

0

5

10

15

0.5 1.0 1.5 2.0

10
20

30
40

Observations

Time

S
ta

te

−10

−5

0

5

10

15

posterior samples

θ

co
un

ts

7.7 7.9 8.1 8.3

0
20

0
40

0
60

0
80

0
10

00

No−discrepancy
GaSP
S−GaSP

0.5 1.0 1.5 2.0

10
20

30
40

diff, no−discrepancy

Time

S
ta

te

−4

−2

0

2

4

0.5 1.0 1.5 2.0

10
20

30
40

diff, GaSP

Time

S
ta

te

−4

−2

0

2

4

0.5 1.0 1.5 2.0

10
20

30
40

diff, S−GaSP

Time

S
ta

te

−4

−2

0

2

4

Figure 4: The reality of the discrepancy-included Lorenz-96 system (Scenario 2) is plotted in the upper
left panel. The simulated observations are plotted in the upper middle panel, where the 5% of the
observations plotted as black circles are used in model calibration. Posterior samples of calibration
parameters of different calibration methods are plotted in the upper right panel. The lower panels
show the differences between the reality and the predictive mean of all latent states.

where ˜̃R “ pR{η ` Λ̃q, with Λ̃ being an diagonal matrix with diagonal entry Λii “ 1{pωikiq, for
i “ 1, 2, ..., n, and η “ σ2

0 {σ2. The S-GaSP calibration with replications can also be defined, by simply
replacing R by Rz where the pi, jqth term is defined by the scaled kernel in Table 1.

The likelihood in (16) has a clear computational advantage. If one directly computes the covariance
and its inverse, the computational complexity is Opp

řn
i“1 kiq

3q, whereas the computational order by
Equation (16) is only Opn3q ` Op

řn
i“1 kiq. Suppose ki “ k, for i “ 1, ..., n, using Equation (16) is around

k3 times faster than directly computing the likelihood, with no loss of information.

One can specify replications by inputting a n ˆ k matrix into the argument observations in the
rcalibration function for scenarios with n observable inputs, each containing k repeated measure-
ments. Or one can give a list of observations in the rcalibration function with size n, where each
element in the list contains ki values of replicates, for i “ 1, ..., n. For observations with replicates,
MLE and posterior sampling were implemented in the rcalibration function, and predictions were
implemented in the predict.rcalibration function.

3.5 Statistical emulators

Users can specify a mathematical model via the math_model argument in rcalibration function if
the closed-form expression of the mathematical model is available. However, closed-form solutions
of physical systems are typically unavailable, and numerical solvers are required. Simulating the
outputs from computer models can be slow. For instance, the TITAN2D computer model, which
simulates pyroclastic flows for geological hazard quantification, takes roughly 8 minutes per set

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 97

of inputs (Simakov et al., 2019). As hundreds of thousands of model runs are sometimes required
for model calibration (Anderson et al., 2019), directly computing the computer model by numerical
methods is often prohibitive. In this scenario, we construct a statistical emulator as a surrogate model,
to approximate the computer simulation, based on a small number of computer model runs.

To start, assume that we have obtained the output of the computer model at D input design
points, pθ1, ..., θDq, often selected from an “space-filling" design, such as the Latin hypercube design
(Santner et al., 2003). There are two types of computer model outputs: 1) scalar-valued outputs:
f Mpθq P R, and 2) vector-valued outputs at k coordinates fMpx1:k, θq P Rk, where k can be as large
as 106. Various packages are available for fitting scalar-valued GP emulators, such as DiceKriging
(Roustant et al. (2012)), GPfit (MacDonald et al. (2015)), and RobustGaSP (Gu et al. (2019)). Some of
these packages were used in Bayesian model calibration packages (Palomo et al., 2015; Carmassi et al.,
2018). However, the emulator of computer models with vector-valued outputs, a common scenario in
different disciplines (Higdon et al., 2008; Ma et al., 2022; Li et al., 2022; Fang et al., 2022) was rarely
implemented in the model calibration packages.

In Robustcalibration, we call the rgasp function and ppgasp function from the RobustGaSP pack-
age for emulating scalar-valued and vector-valued computer model outputs, respectively. The parallel
partial Gaussian process (PP-GaSP) by the ppgasp function has two advantages. First, computing the
predictive mean by the PP-GaSP only takes OpkDq ` OpD3q operations, which is particularly suitable
for computer models with a large number of outputs (k). Second, as the covariance over θ is shared
across all grids, the estimation of PP-GaSP is more stable than building a separate emulator on each
output coordinate. Furthermore, the marginal posterior mode with robust parameterization typically
avoids the degenerated estimation of the covariance matrix (Gu (2019)).

To call the emulator, users can select the argument simulator=0, and then specify the simulation
runs in arguments input_simul, and output_simul. One can input a vector into output_simul to
emulate scalar-valued computer models, or a matrix into output_simul to call the PP-GaSP emulator
for vector-valued outputs. For both scenarios, we use a modular approach to fit the PP-GaSP emulator
(Bayarri et al., 2007b; Liu et al., 2009), where the predictive distribution of the emulator depends on
simulator runs, but not on field observations. After fitting an emulator, the predictive mean of the
PP-GaSP emulator will be used to approximate the computer model at any unobserved θ˚.

We illustrate the efficiency and accuracy of the PP-GaSP emulator for approximating differential
equations from Box and Coutie (1956), where the interaction between two chemical substances y1 and
y2 are modeled as

9y1ptq “ 10θ1´3y1ptq,

9y2ptq “ 10θ1´3y1ptq ´ 10θ2´3y2ptq.

In each of the 6 time points t “ 10, 20, 40, 80, 160, and 320, 2 replicates of the second chemical substance
are available in Box and Coutie (1956). Initial conditions are y1pt “ 0q “ 100 and y2pt “ 0q “ 0. The
computer model contains two parameters θ1 P r0.5, 1.5s and θ2 P r0.5, 1.5s.

To start, we first use the default method in the ode function from the deSolve package (Soetaert
et al., 2010) to numerically solve the ODEs at a given initial condition and parameter set:

library(deSolve)
R> Box_model <- function(time, state, parameters) {
+ par <- as.list(c(state, parameters))
+ with(par, {
+ dM1=-10^{parameters[1]-3}*M1
+ dM2=10^{parameters[1]-3}*M1-10^{parameters[2]-3}*M2
+ list(c(dM1, dM2))
+ })
+ }
R> Box_model_solved<-function(input, theta){
+ init <- c(M1 = 100 , M2 = 0)
+ out <- ode(y = init, times = c(0,input), func = Box_model, parms = theta)
+ return(out[-1,3])
+ }

We specify the observations and range of calibration parameters from Box and Coutie (1956) below.

R> n=6
R> output=t(matrix(c(19.2,14,14.4,24,42.3,30.8,42.1,40.5,40.7,46.4,27.1,22.3),2,n))
R> input=c(10,20,40,80,160,320)
R> theta_range=matrix(c(0.5,0.5,1.5,1.5),2,2)
###the testing input for emulator should contain the observed inputs

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=DiceKriging
https://CRAN.R-project.org/package=GPfit
https://CRAN.R-project.org/package=RobustGaSP
https://CRAN.R-project.org/package=Robustcalibration
https://CRAN.R-project.org/package=RobustGaSP
https://CRAN.R-project.org/package=deSolve

CONTRIBUTED RESEARCH ARTICLE 98

R> testing_input=as.matrix(seq(1,350,1))
#if observed inputs are not included, then add it
R> set_diff_obs=setdiff(input,testing_input)
R> testing_input=sort(c(testing_input,set_diff_obs))

We compare model calibration and predictions based on the numerical solver by the deSolve
package, and by the GaSP emulator approach below. We first implement the direct approach, where
the numerical solver is called to generate posterior samples.

R> m_sgasp_time=system.time({
+ m_sgasp=rcalibration(input,output,math_model=Box_model_solved,
+ sd_proposal=c(0.25,0.25,1,1),
+ theta_range=theta_range)
+ m_sgasp_pred=predict(m_sgasp,testing_input,math_model=Box_model_solved,
+ interval_est=c(0.025,0.975))})

We then generate 50 design points from maximin Latin hypercube design by the lhs package,
and run a numerical solver at these design points. As the simulator outputs a vector fMpt1:k, θq P Rk

for calibration parameter, we call the PP-GaSP emulator to predict the output at all time points. The
simulator runs are then specified as input_simul and output_simul in the rcalibration function. We
let simul_type=0 to call the emulator instead of the numerical solver to generate posterior samples.
The loc_index_emulator below gives a subset of the output coordinates for the the PP-GaSP emulator
to be predicted and by default, the function will predict all output coordinates.

R> m_sgasp_emulator_time=system.time({
+ ##constructing simulation data
+ D=50
+ p=2
+ lhs_sample=maximinLHS(n=D,k=p)
+ input_simul=matrix(NA,D,p)
+ input_simul[,1]=lhs_sample[,1]+0.5
+ input_simul[,2]=lhs_sample[,2]+0.5
+ k_simul=length(testing_input)
+
+ output_simul=matrix(NA,D,k_simul)
+ for(i_D in 1:D){
+ output_simul[i_D,]=Box_model_solved(c(testing_input), input_simul[i_D,])
+ }
+ ##create loc_index_emulator as a subset of the simulation output
+ loc_index_emulator=rep(NA,n)
+ for(i in 1:n){
+ loc_index_emulator[i]=which(testing_input==input[i])
+ }
+
+ ##emulator
+ m_sgasp_with_emulator=rcalibration(input,output,simul_type=0,
+ input_simul=input_simul, output_simul=output_simul,simul_nug=T,
+ loc_index_emulator=loc_index_emulator,
+ sd_proposal=c(0.25,0.25,1,1),
+ theta_range=theta_range)
+ m_sgasp_with_emulator_pred=predict(m_sgasp_with_emulator,testing_input)
+ })
R> m_sgasp_time[3]/m_sgasp_emulator_time[3]
elapsed
6.252316

The approach with an emulator only costs around 1{6 of the computational time in this example, even
though the numerical solver of this simple ODE is fast. For computer models that take a few or hours
to run, the emulator approach can substantially reduce the computational cost.

Figure 5 gives predictions and posterior samples based on a numerical solver and the PP-GaSP
emulator. First, predictions from the calibrated computer model and the discrepancy function, and by
the calibrated computer model itself are close to each other, implying that the discrepancy modeled
by a S-GaSP is close to be zero. Second, predictions and posterior distributions from the numerical
solver and the emulator are close to each other, meaning that the emulator approximates the solver
well. Calibration with an emulator is preferred as it is faster than numerically solving ODEs each time
when generating the posterior samples.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=deSolve
https://CRAN.R-project.org/package=lhs

CONTRIBUTED RESEARCH ARTICLE 99

0 50 100 150 200 250 300 350

0
10

20
30

40
50

prediction

t

y

predictive mean
calibrated computer model
predictive mean with emulator
calibrated emulator

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

posterior samples

θ1

θ 2

without emulator
with emulator

Figure 5: Comparison between the Bayesian model calibration based on the numerical solver and the
PP-GaSP emulator of the computer model. In the left panel, the green solid curve is the predictive
mean from the calibrated computer model and the discrepancy function, and the blue dashed curves
are predictions from the calibrated computer model alone, both of which call the numerical solver
for each posterior sample. The same result based on the emulator is plotted as the green curves. The
black dots are field observations and the shaded area is the 95% predictive interval of the reality by
the approach that uses the PP-GaSP emulator. In the right panel, posterior samples based on the
numerical solver and the PP-GaSP emulator are denoted by the blue dots and green dots, respectively.

3.6 Calibration with multiple sources of observations

In reality, one may have observations of different types and they may come from multiple sources. In
Anderson et al. (2019), for instance, multiple satellite interferogram and GPS observations measuring
the ground deformation during the Kı̄lauea volcano eruption in Summer 2018 are used for calibrating
mechanical models that relate the observations to calibration parameters, such as depth and shape
of the magma chamber, magma density, pressure change rate, and so on. In these applications, the
measurement bias, such as the atmospheric error, can substantially affect the satellite measurements of
the ground deformation (Zebker et al., 1997; Agram and Simons, 2015).

Model calibration using multiple sources of observations was studied in Gu et al. (2023). For each
source l, l “ 1, 2, ..., k, let the field observations of the l th source at observable input x be modeled as

yF
l pxq “ f M

l px, θq ` δpxq ` δlpxq ` µl ` ϵl , (17)

where f M
l px, θq is the computer model for source l. The discrepancy function is denoted by δpxq and

the source-specific measurement bias is denoted by δlpxq. Measurement bias often appears in the
satellite radar interferogram, as atmospheric error could affect the quality of the image. The mean of
each data source is denoted by µl , and the independent measurement noise is denoted by ϵl .

In RobustCalibration, we allow users to integrate observations from multiple sources to cali-
brate computer models by the function rcalibration_MS and to make predictions using the function
predict_MS.rcalibration_MS. The posterior sampling method is implemented for parameter estima-
tion for multiple sources of data. Besides, both GaSP and S-GaSP models can be chosen to model the
measurement bias δl , for l “ 1, ..., k. Similar to calibration model with a single source of data, we allow
users to choose a model with no-discrepancy, and with GaSP or S-GaSP model of the discrepancy
function δ. Users can choose to have measurement bias or not. We also allow users to integrate
different types of measurements for model calibration by using different designs of observable inputs.

To illustrate, we study a synthetic example for calibrating computer models using multiple sources
of observations. We assume the lth source of data, l “ 1, ..., k, is simulated below

yF
l pxq “ sinpπxq ` δpxq ` δlpxq ` ϵlpxq, (18)

where δp.q and δp.q are independently simulated from Gaussian processes with covariance σ2Kp., .q

and σ2
l Klp¨, ¨q, and the independent noise follows ϵlpxq

i.i.d
„ Np0, σ2

0 q. We let σ0 “ 0.05, σ “ 0.2 and
σ2

l “ 0.5 ˆ l{pl ´ 1q, for l “ 1, ..., k. The Kp., .q and Klp¨, ¨q are assumed to follow Matérn kernel with

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=RobustCalibration

CONTRIBUTED RESEARCH ARTICLE 100

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

Reality

x

yR
(x

)

Truth
Obs Source 1
Obs Source 2
GaSP
S−GaSP
GaSP Stack
S−GaSP Stack

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

Model Discrepancy

x

δ(
x)

Truth
GaSP
S−GaSP
GaSP Stack
S−GaSP Stack

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

Measurement Bias

x

δ 1
(x

)

Truth
GaSP
S−GaSP
GaSP Stack
S−GaSP Stack

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

Measurement Bias

x

δ 1
(x

)
Truth
GaSP
S−GaSP
GaSP Stack
S−GaSP Stack

Figure 6: Comparison between modeling individual data and aggregated data for simulation from
Equation (18). The upper left and right panels give the reality and model discrepancy, whereas the
lower two panels give the measurement bias for the first two sources. The estimation results from
GaSP, S-GaSP, GaSP Stack and S-GaSP calibration are plotted as red, blue, pink and cyan curves. The
observations from the first two sources are graphed as the triangles and dots in the upper left panel.

roughness parameter being α “ 2.5, and the range parameter being γ “ 1{30 and γ “ 1{10, respectively.
We collect n “ 100 observations for each source l with x equally spaced from r0, 1s. We assume data
from k “ 5 sources are available. Here the mathematical model follows f M

l px, θq “ sinpθxq, for
l “ 1, ..., k, and the reality is yRpxq “ f M

l px, θq ` δpxq. The goal is to estimate the calibration parameter
(θ), the reality (yRpxq “ f M

l px, θq ` δpxq), model discrepancy (δpxq), and measurement bias (δlpxq).

We compare four methods. The first two methods are GaSP and S-GaSP calibration methods
to model individual sources of data, with the discrepancy model specified as a GaSP and S-GaSP
respectively. The measurement bias terms are modeled by GaSPs. For instance, the code below
implements S-GaSP model of discrepancy and GaSP model of the measurement bias:

> model_sgasp=rcalibration_MS(design=input_measurement,observations=output,p_theta=1,
math_model=math_model, simul_type=rep(1,length(input_measurement)),
S=5000,S_0=2000,thinning=1,measurement_bias=T,shared_design=input_model,
have_measurement_bias_recorded=T,
discrepancy_type=c(rep('GaSP',length(input_measurement)),'S-GaSP'),
theta_range=matrix(c(-2*pi,2*pi),1,2),sd_proposal_theta=rep(0.02,2));

where math_model, input_measurement and output are lists where each contains the model, input and
output of the field observations for each source. The input_model is a matrix for the input of the
discrepancy function.

As modeling each source of the data can be time-consuming for some applications, a common
solution is to use the aggregated or stacked data ȳRpxq “

řk
l“1 yR

l pxq{k in calibration, as modeling the
aggregated data is around k times faster than modeling the individual sources of data. Thus, we also
include two methods of modeling the aggregated data for comparison, namely the GaSP Stack and
S-GaSP Stack, representing GaSP or S-GaSP discrepancy model, respectively.

In Figure 6, we plot the truth, observations of the first two sources of observations, and the
estimates of reality, discrepancy, and measurement bias in two sources from four different methods.
Here the GaSP and S-GaSP perform better than the GaSP Stack and S-GaSP Stack calibration methods,
as aggregating data leads to loss of information when the data contain measurement bias. The RMSE
of reality, discrepancy and measurement bias estimation of different methods are given in the Table 3,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 101

RMSE reality discrepancy measurement bias
GaSP 0.238 0.194 0.247
S-GaSP 0.204 0.159 0.214
GaSP Stack 0.501 0.483 0.504
S-GaSP Stack 0.502 0.484 0.504

Table 3: The RMSE of the reality, discrepancy and measurement bias, where the smaller number
indicates a smaller error. For measurement bias, we average the RMSE for each source of data.

which shows the S-GaSP calibration of individual sources of data achieves the highest calibration and
predictive accuracy.

Finally, the mean of posterior samples θ from the GaSP, S-GaSP, GaSP Stack and S-GaSP Stack
calibration for calibration parameter θ are 2.46, 2.73, 2.15, and 2.17 respectively, whereas the truth
θ “ π « 3.14. This is a challenging scenario, as the large measurement bias makes estimation hard.
We found model calibration by modeling individual sources of data is more accurate than modeling
the aggregated data, whereas modeling the aggregated data is more computationally scalable.

4 Concluding remarks

We have introduced the RobustCalibration package for Bayesian model calibration and data inversion.
This package has implemented a range of estimation methods and models, such as posterior sampling
and MLE, for no-discrepancy calibration, GaSP and S-GaSP models of the discrepancy function. We
implement statistical emulators for approximating computationally expensive computer models with
both scalar-valued output or vector-valued output. The package is applicable to observations from
a single source, with or without replications, and to observations from multiple sources or having
different types. We illustrate our approaches using mathematical models with closed-form expressions
or written as differential equations.

Even though we tried our best to consider different possible scenarios, a comprehensive statistical
package for model calibration and data inversion is an ambitious goal. The RobustCalibration
package provides tools for researchers to perform Bayesian model inversion without the need to write
emulators or MCMC samplers themselves. We plan to improve the RobustCalibration package with
several specific directions in mind. First, we will make the package more computationally scalable
for structured data, such as imaging and time series observations. Furthermore, we plan allow users
to specify other prior distributions of the parameters and proposal distributions to sample from in
future versions of the package. Third, for problems like the Lorzen-96 system, it may be important to
emulate the time evolution operator, if forecasting future states is the goal.

5 Appendix

5.1 Auxiliary facts

1. Let R̃γ,η “ Rγ{η ` Λ be an n ˆ n positive definite matrix as a function of parameters γ and η. Then
for l “ 1, ..., px:

B log |R̃γ,η |

Bγl
“ tr

˜

R̃´1
γ,η

η

BRγ

Bγl

¸

and
B log |R̃γ,η |

Bη
“ ´ tr

˜

R̃´1
γ,ηRγ

η2

¸

.

2. Let H be an n ˆ q full rank matrix with q ă n, Q “

´

R̃´1
γ,η ´ R̃´1

γ,ηHTpHT R̃´1
γ,ηHq´1HT R̃´1

γ,η

¯

with

R̃γ,η “ Rγ{η ` Λ and y is an n ˆ 1 vector. Then for l “ 1, ..., px:

B logpyTQγ,ηyq

Bγl
“ ´

yTQγ,η
BRγ

Bγl
Qγ,ηy

ηyTQγ,ηy
and

B logpyTQγ,ηyq

Bη
“

yTQγ,ηRγQγ,ηy
η2yTQγ,ηy

.

3. Suppose vθ is an n ˆ 1 vector as a function of θ and R̃ is an n ˆ n positive definite matrix. Then for
i “ 1, ..., pθ :

B logpvT
θ R´1vθq

Bθl
“

2vT
θ R̃´1 Bvθ

Bθl

vT
θ R̃´1vθ

.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration
https://CRAN.R-project.org/package=RobustCalibration

CONTRIBUTED RESEARCH ARTICLE 102

5.2 Likelihood functions and posterior distributions

Posterior distributions of the no-discrepancy calibration. Using the objective prior for the mean
and variance parameters, πpθm, σ2

0 q91{σ2
0 , the full conditional posterior distributions of the trend and

variance parameters follow:

σ´2
0 | θm, θ „ Gamma

˜

n
2

,
pyF ´ fM

θ ´ HθmqTΛ´1pyF ´ fM
θ ´ Hθmq

2

¸

,

θm | σ2
0 , θ „ N

´

θ̂LS
m , σ´2

0 pHTΛ´1Hq´1
¯

.

The posterior distribution of the calibration parameters follows:

ppθ | θm, σ2
0 , β, ηq9 exp

˜

´
pyF ´ fM

θ ´ HθmqTΛ´1pyF ´ fM
θ ´ Hθmq

2σ2
0

¸

πpθq,

where πpθq is the prior of calibration parameters, where the default prior distribution is the uniform
distribution πpθq91. We use the Metropolis algorithm to sample the calibration parameters as a block,
as we only need to compute the likelihood once in each iteration. The proposal distribution of each
coordinate of the calibration parameter vector is chosen as a normal distribution with a pre-specified
standard deviation, proportional to the range of the parameters. The default proportion is 0.05,
and users can adjust the proportion by changing the first pθ value in the argument sd_proposal in
rcalibration function.

After obtaining S posterior samples with the first S0 burn-in samples, the predictive mean of reality
based on calibrated computer model and trend by the no-discrepancy calibration can be computed by:

µ̂px˚q “
1

S ´ S0

S
ÿ

i“S0`1

f Mpx˚, θpiqq ` hpx˚qθ
piq
m .

The posterior credible interval of the reality yRpx˚q in the no-discrepancy calibration can be obtained
by the empirical quantile of posterior samples f Mpx˚, θpiqq ` hpx˚qθ

piq
m . For example, the posterior

credible interval of 1 ´ α percentile of the data in no-discrepancy calibration can be computed by

based on 1
S´S0

řS
i“S0`1

˜

f Mpx˚, θpiqq ` hpx˚qθ
piq
m `

c

σ
piq
0

w˚ Zα

¸

, where Zα is an upper α quantile of the

standard normal distribution and w˚ is the relative test output weight, assumed to be 1 by default.

Likelihood functions and derivatives in GaSP calibration. The profile likelihood function in GaSP
calibration follows

LKpθ, γ, η | θ̂m, σ̂2
0 q9|R̃|´

1
2 pS2

Kq´ n
2 , (19)

where S2
K “ py ´ fM

θ ´ HT θ̂mqTR̃´1py ´ fM
θ ´ HT θ̂mq.

Denote vθm “ py ´ fM
θ ´ HT θ̂mq. Similar to the no-discrepancy calibration, we call the lbfgs

function in the nloptr package (Ypma (2014)) for optimization. By facts 1 and 3, directly differentiating
the profile likelihood function with respect to kernel and nugget parameters in (19) gives:

B logpLKpθ, γ, η | θ̂m, σ̂2qq

Bγl
“ ´

1
2

tr

˜

R̃´1
γ,η

η

BRγ

Bγl

¸

`
n
2

ˆ
vT

θm
Qγ,η

BRγ

Bγl
Qγ,ηvθm

ηvT
θm

Qγ,ηvθm

B logpLKpθ, γ, η | θ̂m, σ̂2qq

Bη
“

1
2

tr

˜

R̃´1
γ,ηRγ

η2

¸

`
n
2

ˆ
vT

θm
Qγ,ηRγQγ,ηvθm

η2vT
θm

Qγ,ηvθm

B logpLKpθ, γ, η | θ̂m, σ̂2qq

Bθl
“

n
2

ˆ
vT

θm
Qγ,η

BfM
θ

Bθl

vT
θm

Qγ,ηvθm

for l “ 1, ..., px and i “ 1, ..., pθ . When the mean function is zero, one can simply replace Qγ,η by

R̃γ,η in the formula above to obtain the derivatives. Besides, when BfM
θ

Bθl
is not available, we use the

numerical derivatives to approximate.

Posterior distributions in GaSP calibration. After marginalizing out the discrepancy function, the
marginal distribution follows yF „ MN pfM

θ ` Hθm, σ2
0 R̃q, where R̃ “ R{η ` Λ. We assume an

objective prior for the mean and noise variance parameters πpθm, σ2
0 q91{σ2

0 . The full conditional

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nloptr

CONTRIBUTED RESEARCH ARTICLE 103

posterior distributions of the trend and variance parameters follow

σ´2
0 | θm, θ „ Gamma

˜

n
2

,
pyF ´ fM

θ ´ HθmqT R̃´1pyF ´ fM
θ ´ Hθmq

2

¸

,

θm | σ2
0 , θ „ MN

´

θ̂m, σ´2
0 pHT R̃´1Hq´1

¯

,

where θ̂m “
`

HTR̃´1H
˘´1 HTR̃´1py ´ fM

θ q. A Gibbs sampler is used to sample σ´2
0 and θm from the

full conditional distribution.

Given the trend and variance parameters, the posterior distribution of the calibration parameters
follows

ppθ | θm, σ2q9 exp

˜

´
pyF ´ fM

θ ´ HθmqTR̃´1pyF ´ fM
θ ´ Hθmq

2σ2
0

¸

πpθq.

We implement the Metropolis algorithm where the proposal distribution is a normal distribution with
the mean centered around the current value of the posterior sample. Users can adjust the standard
deviation of the proposal distribution by argument sd_proposal in the rcalibration function.

Denote the inverse range parameter βl “ 1{γl , l “ 1, ..., px. The conditional distribution of the
inverse range and nugget parameters follow

ppβ, η | θ, θm, σ2
0 q9|R̃|´

n
2 exp

˜

´
pyF ´ fM

θ ´ HθmqTR̃´1pyF ´ fM
θ ´ Hθmq

2σ2
0

¸

πpγ, ηq.

We define the inverse range parameter βl “ 1{γl , and assume that the prior for the inverse range and
nugget parameters follows the jointly robust (JR) prior (Gu, 2019)

πpβ, ηq “ C

˜ px
ÿ

l“1

Cl βl ` η

¸a

exp

#

´b

˜ px
ÿ

l

Cl βl ` η

¸+

,

where C is a normalizing constant. By default, we use the following prior parameters a “ 1{2 ´ px,
b “ 1, and Cl “ n´1{px |xmax

l ´ xmin
l |, with xmax

l and xmin
l being the maximum and minimum values

of the observable input at the lth coordinate, respectively. The default choices of prior parameters
induces a small penalty on very large correlation, preventing the identifiability issues of the calibration
parameters due to large correlation (Gu, 2019). Users can adjust a and b in the rcalibration function.

We use the Metropolis algorithm to sample the logarithm of the inverse range parameter logpβlq

and nugget parameter logpηq. The proposal distribution of each parameter is a normal distribu-
tion centered around the current value with the standard deviation chosen to be 0.25 by default.
User can change the pθ ` 1 to px ` pθ ` 1 coordinates of the vector in the argument sd_proposal in
the rcalibration function to specify the standard deviation in the proposal distribution for these
parameters.

Likelihood function and posterior distributions S-GaSP calibration. The likelihood function and
posterior distribution of S-GaSP follow from the those in GaSP calibration, by simply replacing the
kernel K to KZd in Table 1.

Acknowledgements

This research was supported by the National Science Foundation under Award Number DMS-2053423.
We thank Xubo Liu for implementing the numerical method for simulating the Lorenz 96 model.

References

P. Agram and M. Simons. A noise model for InSAR time series. Journal of Geophysical Research: Solid
Earth, 120(4):2752–2771, 2015. [p99]

K. R. Anderson, I. A. Johanson, M. R. Patrick, M. Gu, P. Segall, M. P. Poland, E. K. Montgomery-Brown,
and A. Miklius. Magma reservoir failure and the onset of caldera collapse at Kı̄lauea volcano in
2018. Science, 366(6470), 2019. [p85, 86, 97, 99]

P. D. Arendt, D. W. Apley, and W. Chen. Quantification of model uncertainty: calibration, model
discrepancy, and identifiability. Journal of Mechanical Design, 134(10):100908, 2012. [p84]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 104

M. Bayarri, J. Berger, J. Cafeo, G. Garcia-Donato, F. Liu, J. Palomo, R. Parthasarathy, R. Paulo, J. Sacks,
and D. Walsh. Computer model validation with functional output. The Annals of Statistics, 35(5):
1874–1906, 2007a. [p84]

M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, C.-H. Lin, and J. Tu. A framework
for validation of computer models. Technometrics, 49(2):138–154, 2007b. [p89, 91, 92, 94, 97]

G. Box and G. Coutie. Application of digital computers in the exploration of functional relationships.
Proceedings of the IEE-Part B: Radio and Electronic Engineering, 103(1S):100–107, 1956. [p97]

J. Brajard, A. Carrassi, M. Bocquet, and L. Bertino. Combining data assimilation and machine learning
to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96
model. Journal of Computational Science, 44:101171, 2020. [p94]

M. Carmassi, P. Barbillon, M. Chiodetti, M. Keller, and E. Parent. CaliCo: a R package for Bayesian
calibration. arXiv preprint arXiv:1808.01932, 2018. [p85, 97]

W. Chang, M. Haran, P. Applegate, and D. Pollard. Calibrating an ice sheet model using high-
dimensional binary spatial data. Journal of the American Statistical Association, 111(513):57–72, 2016.
[p84]

W. Chang, B. A. Konomi, G. Karagiannis, Y. Guan, and M. Haran. Ice model calibration using
semicontinuous spatial data. The Annals of Applied Statistics, 16(3):1937–1961, 2022. [p84]

X. Fang, M. Gu, and J. Wu. Reliable emulation of complex functionals by active learning with error
control. The Journal of Chemical Physics, 157(21):214109, 2022. [p97]

M. Gu. Jointly robust prior for Gaussian stochastic process in emulation, calibration and variable
selection. Bayesian Analysis, 14(1), 2019. [p92, 97, 103]

M. Gu and L. Wang. Scaled Gaussian stochastic process for computer model calibration and prediction.
SIAM/ASA Journal on Uncertainty Quantification, 6(4):1555–1583, 2018. [p84, 92, 93]

M. Gu, J. Palomo, and J. O. Berger. RobustGaSP: Robust Gaussian Stochastic Process Emulation in R.
The R Journal, 11(1):112–136, 2019. doi: 10.32614/RJ-2019-011. [p85, 97]

M. Gu, F. Xie, and L. Wang. A theoretical framework of the scaled Gaussian stochastic process in
prediction and calibration. SIAM/ASA Journal on Uncertainty Quantification, 10(4):1435–1460, 2022.
[p93]

M. Gu, K. Anderson, and E. McPhillips. Calibration of imperfect geophysical models by multiple
satellite interferograms with measurement bias. Technometrics, In Press, 2023. doi: 10.1080/00401706.
2023.2182365. [p99]

R. K. Hankin. Introducing BACCO, an R bundle for Bayesian analysis of computer code output.
Journal of Statistical Software, 14:1–21, 2005. [p85]

D. Higdon, J. Gattiker, B. Williams, and M. Rightley. Computer model calibration using high-
dimensional output. Journal of the American Statistical Association, 103(482):570–583, 2008. [p84,
97]

M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 63(3):425–464, 2001. [p84, 85]

H. Li, M. Zhou, J. Sebastian, J. Wu, and M. Gu. Efficient force field and energy emulation through
partition of permutationally equivalent atoms. The Journal of Chemical Physics, 156(18):184304, 2022.
[p97]

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathe-
matical programming, 45(1-3):503–528, 1989. [p88]

F. Liu, M. Bayarri, and J. Berger. Modularization in Bayesian analysis, with emphasis on analysis of
computer models. Bayesian Analysis, 4(1):119–150, 2009. [p97]

E. N. Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability, volume 1, 1996.
[p94]

P. Ma, G. Karagiannis, B. A. Konomi, T. G. Asher, G. R. Toro, and A. T. Cox. Multifidelity computer
model emulation with high-dimensional output: An application to storm surge. Journal of the Royal
Statistical Society Series C: Applied Statistics, 71(4):861–883, 2022. [p85, 97]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 105

B. MacDonald, P. Ranjan, H. Chipman, et al. Gpfit: An R package for fitting a Gaussian process model
to deterministic simulator outputs. Journal of Statistical Software, 64(i12), 2015. [p85, 97]

J. Maclean and E. T. Spiller. A surrogate-based approach to nonlinear, non-Gaussian joint state-
parameter data assimilation. arXiv preprint arXiv:2012.04793, 2020. [p94]

J. Palomo, R. Paulo, G. García-Donato, et al. Save: an R package for the statistical analysis of computer
models. Journal of Statistical Software, 64(13):1–23, 2015. [p85, 97]

R. Paulo, G. García-Donato, and J. Palomo. Calibration of computer models with multivariate output.
Computational Statistics and Data Analysis, 56(12):3959–3974, 2012. [p84]

M. Plumlee. Bayesian calibration of inexact computer models. Journal of the American Statistical
Association, 112(519):1274–1285, 2017. [p85]

O. Roustant, D. Ginsbourger, and Y. Deville. Dicekriging, Diceoptim: Two R packages for the analysis
of computer experiments by kriging-based metamodeling and optimization. Journal of statistical
software, 51:1–55, 2012. [p85, 97]

J. Sacks, W. J. Welch, T. J. Mitchell, H. P. Wynn, et al. Design and analysis of computer experiments.
Statistical science, 4(4):409–423, 1989. [p84]

T. J. Santner, B. J. Williams, and W. I. Notz. The design and analysis of computer experiments. Springer
Science & Business Media, 2003. [p97]

N. A. Simakov, R. L. Jones-Ivey, A. Akhavan-Safaei, H. Aghakhani, M. D. Jones, and A. K. Patra.
Modernizing Titan2D, a parallel AMR geophysical flow code to support multiple rheologies and
extendability. In International Conference on High Performance Computing, pages 101–112. Springer,
2019. [p97]

K. Soetaert, T. Petzoldt, and R. W. Setzer. Solving differential equations in R: package deSolve. Journal
of statistical software, 33:1–25, 2010. [p97]

R. Tuo and C. J. Wu. Efficient calibration for imperfect computer models. The Annals of Statistics, 43(6):
2331–2352, 2015. [p85]

H. Wickham. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2):180–185, 2011. [p85]

D. Williamson, M. Goldstein, L. Allison, A. Blaker, P. Challenor, L. Jackson, and K. Yamazaki. History
matching for exploring and reducing climate model parameter space using observations and a large
perturbed physics ensemble. Climate dynamics, 41(7-8):1703–1729, 2013. [p85]

R. K. Wong, C. B. Storlie, and T. Lee. A frequentist approach to computer model calibration. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 79:635–648, 2017. [p85]

J. Ypma. nloptr: R interface to NLopt, 2014. URL https://CRAN.R-project.org/package=nloptr. R
package version 1.0.4. [p88, 102]

H. A. Zebker, P. A. Rosen, and S. Hensley. Atmospheric effects in interferometric synthetic aperture
radar surface deformation and topographic maps. Journal of Geophysical Research: Solid Earth, 102
(B4):7547–7563, apr 1997. ISSN 01480227. doi: 10.1029/96JB03804. URL http://doi.wiley.com/10.
1029/96JB03804. [p99]

Mengyang Gu
University of California, Santa Barbara
Department of Statistics and Applied Probability
Santa Barbara, California, USA
mengyang@pstat.ucsb.edu

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nloptr
http://doi.wiley.com/10.1029/96JB03804
http://doi.wiley.com/10.1029/96JB03804
mailto:mengyang@pstat.ucsb.edu

CONTRIBUTED RESEARCH ARTICLE 106

glmmPen: High Dimensional Penalized
Generalized Linear Mixed Models
by Hillary M. Heiling, Naim U. Rashid, Quefeng Li, and Joseph G. Ibrahim

Abstract Generalized linear mixed models (GLMMs) are widely used in research for their ability to
model correlated outcomes with non-Gaussian conditional distributions. The proper selection of fixed
and random effects is a critical part of the modeling process since model misspecification may lead to
significant bias. However, the joint selection of fixed and random effects has historically been limited
to lower-dimensional GLMMs, largely due to the use of criterion-based model selection strategies.
Here we present the R package glmmPen, one of the first to select fixed and random effects in higher
dimension using a penalized GLMM modeling framework. Model parameters are estimated using a
Monte Carlo Expectation Conditional Minimization (MCECM) algorithm, which leverages Stan and
RcppArmadillo for increased computational efficiency. Our package supports the Binomial, Gaussian,
and Poisson families and multiple penalty functions. In this manuscript we discuss the modeling
procedure, estimation scheme, and software implementation through application to a pancreatic
cancer subtyping study. Simulation results show our method has good performance in selecting both
the fixed and random effects in high dimensional GLMMs.

1 Introduction

Generalized linear mixed models (GLMMs) are utilized in many disciplines, including the social
sciences (Schmidt-Catran and Fairbrother, 2016), biomedical sciences (Fitzmaurice et al., 2012), public
health and epidemiology (Szyszkowicz, 2006; Kleinman et al., 2004; Dean and Nielsen, 2007), natu-
ral sciences including ecology and evolution (Bolker et al., 2009), and economics (Langford, 1994).
GLMMs are an extension of generalized linear models (GLMs) where the predictors within the model
can have “fixed” or “random” effects. Coefficients corresponding to fixed effects predictors can
be considered to describe population-level relationships between the predictors and the outcome.
Random effects predictors pertain to variables whose relationships with the outcome are presumed to
vary randomly across “groups” of observations within the data, leading to group-specific coefficient
estimates (Fitzmaurice et al., 2012). In practical applications, these “groups” may pertain to clusters
of samples, repeated measures within the same individual, or observations resulting from nested
designs. Multiple studies have shown that omitting important random effects can lead to bias in the
estimated variance of the fixed effects; conversely, including unnecessary random effects may lead to
computational difficulties (Thompson et al., 2017; Gurka et al., 2011; Bondell et al., 2010). As a result,
proper specification of fixed and random effects is a critical step in the application of GLMMs.

In many low dimensional settings, researchers may have a priori knowledge about which variables
are fixed or random. For instance, researchers may reasonably expect treatment effects in multi-site
clinical trials to vary by site (Feaster et al., 2011). However, in high dimensional settings, it is often not
known a priori which variables should be specified as fixed or random in the model. In such settings,
the feature space may also be sparse, with many variables unrelated to the outcome. Therefore,
variable selection approaches are employed to evaluate and select from a set of candidate models. R
packages such as lme4 (Bates et al., 2015), mcemGLM (Archila, 2020), and MCMCglmm (Hadfield,
2010) allow users to fit a pre-specified set of models, which may then be compared using model
selection criteria such as the profile conditional AIC (Donohue et al., 2011), the BIC-ICQ criterion
(Ibrahim et al., 2011), the hybrid Bayesian information criterion, BICh (Delattre et al., 2014), or other
criteria developed for mixed effects models. However, criterion-based all-subsets selection or direct
model comparison strategies are not feasible even in small dimensions, as with p predictors there are
22p possible combinations of fixed and random effects to be evaluated.

Packages such as glmnet (Friedman et al., 2010), ncvreg (Breheny and Huang, 2011), and grpreg
(Breheny and Huang, 2015) avoid this limitation for GLMs via coordinate-descent based penalized
likelihood methods for variable selection, and therefore scale much better with respect to p. Unfortu-
nately, none of these methods can account for random effects in their variable selection procedure.
Other packages such as glmmLasso (Groll, 2017) and glmmixedLASSO (Schelldorfer et al., 2014)
alternatively allow the inclusion of random effects in the model while performing variable selection,
but only allow for variable selection on the fixed effects. Prior work has shown that simultaneous
selection of fixed and random effects is desirable because improper specification of the random effects
can significantly affect the selection of the fixed effects, and vice versa (Bondell et al., 2010). In addition,
there may not be a priori knowledge of which variables have effects that vary randomly across groups.
Therefore, the specification of random effects may be difficult in practical applications, particularly as

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=mcemGLM
https://CRAN.R-project.org/package=MCMCglmm
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=grpreg
https://CRAN.R-project.org/package=glmmLasso

CONTRIBUTED RESEARCH ARTICLE 107

the dimension of the data grows.

To address these limitations in performing variable selection in high-dimensional GLMMs, we
present the glmmPen R package. This package allows for the simultaneous selection of fixed and
random effects predictors in higher dimensions through the use of penalized generalized linear mixed
models (pGLMMs). Similar to ncvreg and glmnet, this package focuses on variable selection for the
purpose of creating prediction models, and does not provide methods for statistical inference. The
package leverages Monte Carlo Expectation Conditional Minimization (MCECM) in combination
with several techniques to improve the computational efficiency of the algorithm. In the MCECM
E-step, glmmPen utilizes the Stan software implemented in the rstan package to efficiently sample
from the posterior distribution of the random effects, and a Majorization-Minimization coordinate
descent algorithm is utilized to update model parameters in the M-step. The glmmPen package
utilizes the fast looping capabilities within Rcpp and RcppArmadillo in order to recalculate large
matrices within intermediate computing steps without needing to store them, improving memory use.
The glmmPen package is also able to improve the speed of the overall variable selection procedure by
strategic coefficient initialization (see Section “Initialization and convergence”) and strategic restriction
of random effects (see Section “Tuning parameter selection strategy”).

The main estimation functions of the package are glmmPen and glmm, where the latter can be used
to fit traditional generalized linear mixed models without penalization. The user interface and output
of the glmmPen and glmm functions were designed to be very similar to those from the functions lmer
and glmer to facilitate ease of use. Specifically, glmmPen outputs a pglmmObj object which, like the
merMod object from lme4, can facilitate the application of common S3 method functions used by lme4
such as logLik, fixef, ranef, and others. In addition, multiple types of penalties and information
criteria for selecting optimal penalties are available in the package, and the package supports the
Binomial, Gaussian, and Poisson distributional families.

Our manuscript is organized as follows. We begin in Section 2 by reviewing the pGLMMs
modeling framework, first described in Rashid et al. (2020). Section 3 describes the MCECM algorithm
used by glmmPen to fit pGLMM models. Section 4 describes the variable selection procedure of
the package and the Bayesian information criterion (BIC) type selection criteria available for use.
Section 5 illustrates a practical application of the glmmPen R package using data from a recent
cancer subtyping study. Section 6 provides some simulation results. Finally, we provide concluding
comments in Section 7. The package is available from the Comprehensive R Archive Network (CRAN)
at https://cran.r-project.org/package=glmmPen. The replication of all code content, tables, and
figures presented in this paper can be found in the GitHub repository https://github.com/hheiling/
paper_glmmPen_RJournal. Supplementary results mentioned but not reported in this paper can also
be found in this GitHub repository.

2 Generalized linear mixed models

We review the notation and model formulation of our approach, first introduced in Rashid et al. (2020).
We consider the case where we want to analyze data from K independent groups of any kind. For
instance, we could be interested in analyzing data from K different studies, or longitudinal data
from K individuals. For each group k = 1, ..., K, there are nk observations for a total sample size of
N = ∑K

k=1 nk. For the kth group, let yk = (yk1, ..., yknk
)⊤ be the vector of nk independent responses,

let xki = (xki,1, ..., xki,p)
⊤ be the p-dimensional vector of predictors, and let Xk = (xk1, ..., xknk

)⊤.
Although the glmmPen package allows for different nk for the K groups, we will set {nk}K

k=1 = n
to simplify the notation within the equations presented in this paper. In GLMMs, we assume that
the conditional distribution of yk given Xk belongs to the exponential family and has the following
density:

f (yk|Xk, αk; θ) =
n

∏
i=1

c(yki) exp[τ−1{ykiηki − b(ηki)}], (1)

where c(yki) is a constant that only depends on yki, τ is the dispersion parameter, b(·) is a known link
function, and ηki is the linear predictor. The glmmPen algorithm currently allows for the Gaussian,
Binomial, and Poisson families with canonical links.

In the GLMM, the linear predictor has the form

ηki = x⊤ki β + z⊤ki Γαk, (2)

where β = (β1, ..., βp)⊤ is a p-dimensional vector for the fixed effects coefficients (including the inter-
cept), αk is a q-dimensional vector of unobservable random effects (including the random intercept), zki
is a q-dimensional subvector of xki, and Γ is a lower triangular matrix. In this notation, zki represents
the random effects predictors, i.e. the subset of the total predictors (xki) that have predictor effects that

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=rstan
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen
https://cran.r-project.org/package=glmmPen
https://github.com/hheiling/paper_glmmPen_RJournal
https://github.com/hheiling/paper_glmmPen_RJournal
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen

CONTRIBUTED RESEARCH ARTICLE 108

randomly vary across levels of the grouping variable.

In Rashid et al. (2020), the random effects vector αk is assumed to follow Nq(0, I) so that Γαk
follows N(0, ΓΓ⊤). In this way, the random component of the linear predictor has variance Var(Γαk) =
ΓΓ⊤.

To simplify the procedure of estimating Γ, we consider a vector γ containing all of the nonzero
elements of Γ such that γt is a t x 1 vector consisting of nonzero elements of the tth row of Γ and
γ = (γ⊤

1 , ..., γ⊤
q)⊤. We can then reparameterize the linear predictor (Chen and Dunson, 2003; Ibrahim

et al., 2011) to

ηki = x⊤ki β + z⊤ki Γαk =
(

x⊤ki (αk ⊗ zki)
⊤ Jq

)(
β
γ

)
(3)

where Jq is a matrix that transforms γ to vec(Γ) such that vec(Γ) = Jqγ. Jq is of dimension q2 × q(q +
1)/2 when the random effects covariance matrix ΓΓ⊤ is unstructured; alternatively, Jq is of dimension
q2 × q when the random effects covariance matrix has an independence structure (i.e., diagonal). The
vector of parameters θ = (β⊤, γ⊤, τ)⊤ are the main parameters of interest. We denote the true value
of θ as θ∗ = (β∗⊤, γ∗⊤, τ∗)⊤ = argminθEθ[−ℓ(θ)] where ℓ(θ) is the observed marginal log-likelihood
across all K groups such that ℓ(θ) = ∑K

k=1 ℓk(θ), ℓk(θ) = (1/n) log
∫

f (yk|Xk, αk; θ)ϕ(αk)dαk.

Let us consider the high dimensional case where we want to select the true nonzero fixed effects
and true nonzero random effects. In other words, we aim to identify the set

S = S1 ∪ S2 = {j : β∗j ̸= 0} ∪ {t : ||γ∗
t ||2 ̸= 0},

where the set S1 represents the selection of true nonzero fixed effects and the set S2 represents the
selection of true nonzero random effects. When γt = 0, this sets row t of Γ entirely equal to 0,
indicating that effect of covariate t is fixed across the K groups.

We aim to solve the following penalized likelihood:

θ̂ = argminθ − ℓ(θ) + λ0

p

∑
j=1

ρ0

(
β j

)
+ λ1

q

∑
t=1

ρ1 (||γt||2) , (4)

where ℓ(θ) is the observed marginal log-likelihood for all K groups defined earlier, ρ0(t) and ρ1(t)
are general folded-concave penalty functions, and λ0 and λ1 are positive tuning parameters. In
the glmmPen package, the ρ0(t) penalty function options include the least absolute shrinkage and
selection operator (LASSO) L1 penalty, the minimax concave penalty (MCP), and the smoothly clipped
absolute deviation (SCAD) penalty (Friedman et al., 2010; Breheny and Huang, 2011). For the ρ1(t)
penalty, we treat the elements of γt as a group and penalize them in a groupwise manner using the
group LASSO, group MCP, or group SCAD penalties presented by Breheny and Huang (2015). These
groups of γt are then estimated to be either all zero or all nonzero. In this way, we select covariates to
have varying effects (γ̂t ̸= 0) or fixed effects (γ̂t = 0) across the K groups.

Similar to other variable selection packages such as package ncvreg (Breheny and Huang, 2011), in
glmmPen we standardize the fixed effects covariates matrix X = (X⊤

1 , ..., X⊤
K)⊤ such that

∑K
k=1 ∑nk

i=1 xki,j = 0 and N−1 ∑K
k=1 ∑nk

i=1 x2
ki,j = 1 for j = 1, ..., p; this process is performed automati-

cally within the algorithm. Although the package grpreg (Breheny and Huang, 2015) orthogonalizes
grouped effects, we have found through simulations during early package testing that first standardiz-
ing the fixed effects and then using subsets of these standardized fixed effects for the random effects
(recall: zki is a q-dimensional subvector of xki) is sufficient. During the selection procedure, the fixed
effects intercept and the variance of the random effects intercept remain unpenalized.

3 MCECM algorithm

We solve Equation 4 for a specific (λ0, λ1) penalty parameter combination using a Monte Carlo Expec-
tation Conditional Minimization (MCECM) algorithm (Garcia et al., 2010). The MCECM algorithm
described in this section uses many of the steps and assumptions described in Rashid et al. (2020),
but here we provide further practical details about the E-step, M-step, initialization, and conver-
gence. Additionally, the implementation outlined in this paper has several improvements to the
implementation used in Rashid et al. (2020). In glmmPen, the E-step allows for several possible
sampling schemes, including the fast and efficient No-U-Turn Hamiltonian Monte Carlo sampling
procedure (NUTS HMC) from the Stan software (Carpenter et al., 2017; Hoffman and Gelman, 2014).
The glmmPen package was also able to reduce the required memory usage of the MCECM algorithm.
In the M-step, we utilized the fast looping capability of packages Rcpp and RcppArmadillo to allow
for fast recalculation of large matrices (see Step 3 of the M-step presented in Algorithm 1) and avoid

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=grpreg
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo

CONTRIBUTED RESEARCH ARTICLE 109

their storage, improving model scalability.

During the MCECM algorithm, we aim to evaluate (E-step) and minimize (M-step) the following
penalized Q-function in the sth iteration of the algorithm:

Qλ(θ|θ(s)) =
K

∑
k=1

E
{
− log(f (yk, Xk, αk; θ|Do; θ(s)))

}
+ λ0

p

∑
j=1

ρ0

(
β j

)
+ λ1

q

∑
t=1

ρ1 (||γt||2)

= Q1(θ|θ(s)) + Q2(θ
(s)) + λ0

p

∑
j=1

ρ0

(
β j

)
+ λ1

q

∑
t=1

ρ1 (||γt||2) ,

(5)

where (yk, Xk, αk) gives the complete data for group k, Dk,o = (yk, Xk) gives the observed data for
group k, and Do represents the entirety of the observed data. In other words, we aim to evaluate and
minimize the penalized expectation of the negative joint log-likelihood with respect to the observed
data. From Rashid et al. (2020), the expectation can be written as the sum of the following terms:

Q1(θ|θ(s)) = −
K

∑
k=1

∫
log[f (yk|Xk, αk; θ)]ϕ(αk|Dk,o; θ(s))dαk, (6)

Q2(θ
(s)) = −

K

∑
k=1

∫
log[ϕ(αk)]ϕ(αk|Dk,o; θ(s))dαk (7)

The Q1(θ|θ(s)) function expresses the conditional model of the observed data given the latent (random)
variables and integrates over the latent variables. Using the Q1(θ|θ(s)) function, we aim to derive
the fixed and random effect coefficient estimates during the M-step of the algorithm. During the
E-step, we aim to approximate the integral in the Q1(θ|θ(s)) function by incorporating samples from
the posterior distribution of the latent variables.

3.1 Monte Carlo E-step

The integrals in the Q-function do not have closed forms when f (yk|Xk, α
(s,m)
k ; θ) is assumed to be

non-Gaussian, and become difficult to approximate as q (the number of random effect predictors)
increases. Consequently, we approximate these integrals using a Markov chain Monte Carlo (MCMC)
sample of size M from the posterior density ϕ(αk|Dk,o; θ(s)). The glmmPen package can draw samples
from this posterior using one of several techniques: the No-U-Turn Hamiltonian Monte Carlo sampling
procedure (NUTS HMC) implemented by the Stan software, which glmmPen calls using the rstan
package (Carpenter et al. (2017); default, and strongly recommended for its speed and efficiency);
Metropolis-within-Gibbs with an adaptive random walk sampler (Roberts and Rosenthal, 2009); and
Metropolis-within-Gibbs with an independence sampler (Givens and Hoeting, 2012). Each sampler

type uses a standard normal candidate distribution. Let α
(s,m)
k be the mth simulated value, m = 1, ..., M,

at the sth iteration of the algorithm for group k. The integral in Equation 6 can then be approximated as

Q1(θ|θ(s)) ≈ − 1
M

M

∑
m=1

K

∑
k=1

log f (yk|Xk, α
(s,m)
k ; θ).

Although the optimal number of MCMC samples M(s) in the E-step at EM iteration s is not well
defined, the general consensus is that a smaller sample size of the posterior is suitable for the start of
the algorithm but larger sample sizes are needed later in the algorithm (Booth and Hobert, 1999). We
set the default number of MCMC samples in the first iteration of the MCECM algorithm M(1) = 250
when q ≤ 10, and M(1) = 100 otherwise (we decrease the initial sampling size when the number of
random effects predictors is large in order to help speed up the algorithm). Then, in a manner similar to
the mcemGLM package (Archila, 2020), the MCMC sample size is increased by a multiplicative factor
v at each step of the algorithm such that M(s) = v × M(s−1) until either the value of M(s) reaches its
maximum allowed value or the EM algorithm converges. In glmmPen, the default maximum allowed
value is dependent on the the number of random effects in the model, q (see the documentation of
optimControl for more details). For the first 15 iterations of the EM algorithm, the value of v is set to
1.1. For the remaining steps of the algorithm, v is set to 1.2.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=rstan
https://CRAN.R-project.org/package=mcemGLM
https://CRAN.R-project.org/package=glmmPen

CONTRIBUTED RESEARCH ARTICLE 110

3.2 M-step

In the M-step of the algorithm, we aim to minimize

Q1,λ(θ|θ(s)) = Q1(θ|θ(s)) + λ0

p

∑
j=1

ρ0

(
β j

)
+ λ1

q

∑
t=1

ρ1 (||γt||2) (8)

with respect to θ = (β⊤, γ⊤, τ)⊤. The minimization of Equation 8 with respect to β and γ is performed
using a Majorization-Minimization approach. For the general exponential family, Rashid et al. (2020)
suggested minimizing with respect to τ using the standard optimization algorithm Newton-Raphson.
In glmmPen, the only family implemented with a dispersion parameter is the Gaussian family, and
the variance σ2 can be estimated directly from a derivation of the Q function conditional on the most
recent updates of β(s) and γ(s):

σ2 =
1

M × N

M

∑
m=1

K

∑
k=1

nk

∑
i=1

(yki − η
(s,m)
ki)2, (9)

where η
(s,m)
ki is the linear predictor ηki evaluated with β(s), γ(s), and sample α

(s,m)
k .

Let s represent the iteration of the MCECM algorithm, and h represent the iteration within a
particular M-step of the MCECM algorithm. The M-step of the sth iteration of the MCECM algorithm
proceeds as in Algorithm 1.

Algorithm 1 M-step of the s-th iteration of the MCECM algorithm

1. Coefficient parameter estimates from the previous M-step, θ(s−1), are used to initialize
the coefficient parameters of the current M-step at M-step iteration h = 0, denoted θ(s,0).

2. Conditional on γ(s,h−1) and τ(s−1), each β
(s,h)
j for j = {1, ..., p} is given a single update

using the Majorization-Minimization algorithm specified by Breheny and Huang (2015).

3. For each group k in k = {1, ..., K}, the augmented matrix z̃ki = (α̃
(s)
k ⊗ zki)Jq is created

for i = 1, ..., nk where α̃
(s)
k = ((α

(s,1)
k)⊤, ..., (α(s,M)

k)⊤)⊤. This augmented matrix is used in
the random effect portion of the linear predictor specified in Equation 3. The dimension of
z̃ki is M× q(q+ 1)/2 for an unstructured covariance matrix and M× q for an independent
covariance matrix. This augmented matrix is used to calculate Equation 2.9 in Breheny
and Huang (2015).

4. Conditional on the τ(s−1) and the recently updated β(s,h), each γ
(s,h)
t for t = {1, ..., q}

is updated using the Majorization-Minimzation coordinate descent grouped variable
selection algorithm specified by Breheny and Huang (2015), except the residuals are not
updated after every γ

(s,h)
t coefficient update.

5. Steps 2 through 4 are repeated until the M-step convergence criteria specified in
Equation 10 are reached or until the M-step reaches its maximum number of iterations:

max
{

max
j

|β(s,h+1)
j − β

(s,h)
j |, max

t,l
|γ(s,h+1)

tl − γ
(s,h)
tl |

}
< δ, (10)

where γtl is an individual element of γt. The default value of δ is 0.0005.

6. Conditioning on the newly updated β(s) and b(s), τ(s) is updated (generically, using
the Newton-Raphson algorithm; for Gaussian family, using Equation 9).

Algorithm 1 recomputes the augmented matrices z̃ki for k = 1, ..., K and i = 1, ..., nk in step 3 of
every M-step iteration h for several reasons. These repeat calculations prevent the M-step from having
to store the augmented matrix Z̃ = (Z̃⊤

1 , ..., Z̃⊤
K)⊤ where Z̃k = (z̃⊤k1, ..., z̃⊤knk

)⊤. This full augmented
matrix is of dimension (M× N)× q(q+ 1)/2 or (M× N)× q depending on whether the random effect
covariance matrix is unstructured or independent, respectively. As the MCMC sample size increases
throughout the MCECM algorithm and as q increases, saving this Z̃ becomes more and more memory

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=glmmPen

CONTRIBUTED RESEARCH ARTICLE 111

prohibitive even when utilizing large matrix implementation tools such as the package bigmemory
(Kane et al., 2013). During testing, we found that recomputing the z̃ki matrices during each M-step
iteration utilizing Rcpp (Eddelbuettel and François, 2011) and RcppArmadillo (Eddelbuettel and
Sanderson, 2014) significantly reduced the time and memory required to compute each M-step.

In step 4 of the M-step, the residuals are not updated after every update to the random effects

coefficients γ
(s,h)
t for t = 1, ..., q in order to speed up computation. Otherwise, this would require

re-calculation of the augmented matrix specified in step 3 for each of the q random effects within each
M-step iteration. When q is large, this makes the M-step prohibitively time-consuming. Based on early
package testing, simplifying step 4 with no residual updates speeds up the computation time in high
dimensional settings and was found to have negligible impact on estimation accuracy.

The full MCECM algorithm then proceeds in Algorithm 2.

Algorithm 2 Full MCECM algorithm for single (λ0, λ1) penalty combination

1. Fixed and random effects β(0) and γ(0) are initialized as discussed in Section “Initializa-
tion and convergence”.

2. E-step: In each E-step for EM iteration s, a burn-in sample from the posterior distribution
of the random effects is run and discarded. A sample of size M(s) from the posterior is
then drawn and retained for the M-step (see Section “Monte Carlo E-step” for details on
default burn-in sample size, default M(s), and other E-step details).

3. M-step: Parameter estimates β(s), γ(s), and τ(s) are then updated as described in
Algorithm 1.

4. Steps 2 and 3 are repeated until the average Euclidean distance between the vector
containing the current coefficients β(s) and γ(s) and the vector containing the coefficients
from t EM iterations prior (default t = 2) is less than ϵ (default ϵ = 0.0015) for at least two
consecutive EM iterations or until the maximum number of EM iterations is reached (see
Section “Initialization and convergence” for additional details).

5. Using the estimates of β, γ, and τ at EM convergence, a final sample from the posterior
distribution of the random effects is drawn for use in the calculation of the marginal
log-likelihood as well as for diagnostics of the MCMC chain. The marginal log-likelihood
is used for model selection and is discussed in detail in Section 2.4.

3.3 Initialization and convergence

The initial values of the fixed effects β(0) and the Cholesky decomposition of the random effects
covariance matrix γ(0) for MCECM iteration s = 0 are chosen in one of two ways. We discuss first
the initialization procedure used when the package glmmPen is used to fit a single model (glmm
function) or the first model in the sequence of models fit for variable selection (glmmPen function).
In this scenario, the fixed effects β(0) are initialized by fitting a ‘naive’ model using the coordinate
descent techniques of Breheny and Huang (2011) assuming no random effects, and the random effects
covariance matrix is initialized as a diagonal matrix with positive variance. This approach is similar to
the mcemGLM package.

By default, this starting variance is initialized in an automated fashion. First, a GLMM composed
of only a fixed and random intercept is fit using the lme4 package. The random intercept variance
from this model is then multiplied by 2, and this value is set as the starting values of the diagonal
of the random effects covariance matrix. We use this approach so that the starting variance of the
random effects is sufficiently large, which helps improve the stability of the algorithm (Misztal, 2008).

The MCMC chain used in the E-step of the algorithm, which approximately samples from the
posterior density ϕ(αk|Dk,o; θ(s)) for groups k = {1, ..., K}, is initialized in iteration s = 1 with draws
from the standard normal distribution. For all following iterations s > 1, the MCMC chain is initialized
with the last draw from the previous EM iteration s − 1.

When the algorithm performs variable selection using the glmmPen function, the model pertaining
to the first tuning parameter combination evaluated is initialized using approach described above. For
all subsequent tuning parameter combinations evaluated in the sequence, the fixed effects, random

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=bigmemory
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=mcemGLM
https://CRAN.R-project.org/package=lme4

CONTRIBUTED RESEARCH ARTICLE 112

effects covariance matrix, and random effects MCMC chain are initialized using results from the
previous tuning parameter fit. More details about initialization for variable selection is discussed in
Section “Tuning parameter selection”.

The EM algorithm runs until is the algorithm converges, defined as meeting the condition given in
Equation 11 at least 2 consecutive times (default), or until the maximum number of EM iterations is
reached:

||(β(s)⊤, γ(s)⊤)⊤ − (β(s−t)⊤, γ(s−t)⊤)⊤||22/cs−t < ϵ (11)

where the superscript (s − t) indicates the EM iteration t iterations prior, ||.||22 represents the L2 norm,
and cs−t equals the total number of non-zero (β⊤, γ⊤)⊤ coefficients in iteration (s − t). In other
words, the algorithm computes the average Euclidean distance between the current coefficient vector
(β⊤, γ⊤)⊤ and the coefficient vector from t EM iterations prior (default t = 2) and compares it with ϵ,
which has a default value of 0.0015.

This MCECM algorithm is able to handle much larger dimensions of p fixed effect predictors and q
random effect predictors relative to prior methods for simultaneous fixed and random effects variable
selection (Bondell et al., 2010; Ibrahim et al., 2011). When the number of random effect predictors is
greater than or equal to 10, we recommend approximating the random effect covariance matrix ΓΓ⊤

as a diagonal matrix. In the mixed model setting, Fan and Li (2012) demonstrated both theoretical
and empirical advantages to estimating the random effects covariance matrix in this manner as the
number of random effect predictors q grows. Empirically, they found that this approximation had a
relatively low impact on the overall bias of the coefficients and resulted in a relatively large reduction
of accumulated estimation error since many fewer covariance parameters needed to be estimated. This
simplification also has the advantage of enabling the package to have greater computational efficiency
when fitting higher-dimensional models. The above-mentioned recommendation to switch from an
unstructured to an independent random effect covariance matrix at the 10 random effect predictor
mark is an ad hoc recommendation determined by our experience creating and testing this package.

The MCECM algorithm outlined in Algorithm 2 describes how the glmmPen package estimates
the model parameters for a single set of penalty parameters (λ0, λ1). Section “Tuning parameter
selection” discusses how the package chooses optimal set of tuning parameters during the model
selection procedure.

4 Tuning parameter selection

This section provides details on how the glmmPen function selects the set of optimal tuning parameters
from a prespecific grid of values. Section “Software” provides further details on how to use both the
glmmPen and glmm functions, where the latter function allows the user to fit a single model without
performing variable selection on the fixed and random effects.

For glmmPen, we generally recommend that the user specify the ‘full model’, i.e., specify the set of
candidate random effects predictors to be equal to the set of candidate fixed effects predictors, and let
the algorithm select the best fixed and random effects using the procedure outlined in this section.
However, if the user has some prior knowledge about the form of the random effects, they can restrict
the random effects considered to an appropriate subset. As discussed in the previous section, the
package requires that the random effects be a subset of the fixed effects.

4.1 Penalty sequence specification

The glmmPen package calculates default sequences of penalty values for λ0 (penalizing the fixed
effects β) and λ1 (penalizing the random effects γ), but allows users to enter their own penalty
sequences if desired. We define the penalty parameter sequences for the fixed and random effects
as λ0 = (λ0,1, ..., λ0,ω0) and λ1 = (λ1,1, ..., λ1,ω1), respectively, where ω0 and ω1 are the length of the
fixed and random effect penalty sequences. These sequences are ordered from the minimum penalty
(λ0,1 = λ0,min and λ1,1 = λ1,min) to the maximum penalty (λ0,ω0 = λ0,max and λ1,ω1 = λ1,max). By
default, these sequences are calculated in a similar manner to the approach used by the package
ncvreg (Breheny and Huang, 2011). The maximum penalty parameter λmax is calculated using the
same procedure as ncvreg; this value is assumed to penalize all fixed and random effects coefficients
to 0. We then set the sequence of penalty parameters λ0 = λ1 such that λ0,max = λ1,max = λmax
and λ0,min = λ1,min = λmin, where the minimum penalty parameter λmin is a small portion of the
λmax. More details about these default sequences are given in Section “Software”. In Section “Tuning
parameter selection strategy”, we consider a generic case where the λ0 and λ1 sequences do not need
to be equal.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=ncvreg

CONTRIBUTED RESEARCH ARTICLE 113

4.2 Tuning parameter selection strategy

By default, the algorithm runs a computationally efficient two-stage approach to pick the optimal set
of tuning parameters. In the first stage, the algorithm fits a sequence of models where the fixed effect
penalty is kept constant at the minimum value of λ0, λ0,min, and the random effects penalty proceeds
from the minimum value of λ1, λ1,min, to the maximum value λ1,max. The optimal tuning parameter
from this first stage is then identified using Bayesian information criterion (BIC) type selection criteria,
described in more detail later in this section. This first stage identifies the optimal random effect
penalty value, λ1,opt. In the second stage, the algorithm fits a sequence of models where the random
effects penalty is kept fixed at λ1,opt and the fixed effects penalty λ0 proceeds from λ0,min to λ0,max.
The overall best model is chosen from the models in the second stage. In both stages, the results from
each model are used to initialize the coefficients in the subsequent model in the sequence.

Unlike other packages that perform variable selection, such as ncvreg and grpreg, we run the
λ0 and λ1 sequences from their minimum value to their maximum value and not the traditional
progression from their maximum value to their minimum value. In this mixed model setting, we
have found (through simulations conducted during early package testing) that this approach provides
better initialization of subsequent models in the tuning parameter sequence, giving an overall better
performance to the algorithm and improving algorithm speed. This progression of penalty sequences
also speeds up the overall variable selection procedure by restricting the random effects considered
during later penalty combinations within the variable selection procedure. Within stage one, if a
previous tuning parameter in the grid penalized out a set of random effects from the model, the
following model in the tuning parameter sequence will automatically ignore these random effects.
Within stage two, the random effects considered are restricted to the non-zero random effects from the
best model in stage one.

In the original MCECM algorithm implementation given in Rashid et al. (2020), the authors
searched for the best model by performing a ‘full grid search’ and evaluating all possible combinations
of λ0 and λ1. (We sometimes refer to the two-stage approach as the ‘abbreviated grid search’). While
the glmmPen package can perform this full grid search, we strongly recommend the two-stage
abbreviated grid search. Compared with the full grid search, the two-stage grid search significantly
reduces the required time to complete the algorithm, particularly when the number of random effects
predictors is large. Furthermore, we have found that the two-stage grid search works very well in
practice (see Section “Simulations” for performance results).

If users wish to perform a full grid search, the path of solutions is initialized by fitting a model
using the minimum penalty for both the fixed and random effects (λ0,1 = λ0,min, λ1,1 = λ1,min). The
algorithm then proceeds to estimate models over the full grid of λ0 and λ1. For each value of λ1,h ∈ λ1
that penalizes the random effects, the fixed effects penalty parameter sequence proceeds from the
minimum value λ0,min to the maximum value λ0,max while keeping λ1,h fixed. Each model is initialized
using the result from the model fit with the previous tuning parameter combination in the sequence.
The algorithm then updates the penalty parameter to the next λ1,h+1 and repeats the process. The
model with the penalty parameter combination (λ0,min,λ1,h+1) is initialized using the model from the
previous (λ0,min, λ1,h) penalty parameter combination.

4.3 Optimal tuning parameter selection

Once models have been fit pertaining to all tuning parameter combinations within the first and second
stages of the tuning parameter search strategy (or over the full tuning parameter grid search), the
glmmPen package chooses the best model from one of several BIC-type selection criteria options.
For simplification of notation, consider the generic penalty parameter combination λ = (λ0, λ1) that
penalizes the fixed and random effects, respectively. By default, the package uses the BIC-ICQ criterion
(Ibrahim et al., 2011), where the abbreviation ICQ stands for “Information Criterion based on the
Q-function”. This BIC-ICQ criteria is expressed below:

BICq(θλ) = 2{Q1(θλ|α0) + Q2(α0)}+ dλ log(N)

≈
{
− 2

M

M

∑
m=1

K

∑
k=1

[
log f (yk|Xk, α

(m)
0,k ; θλ) + log ϕ(α

(m)
0,k)

]}
+ dλ log(N),

(12)

where θλ are the coefficients of the model fit with the penalty λ = (λ0, λ1), α0 are the posterior samples
from a “minimal penalty model”—the model with either no penalty (when the number of random

effects predictors is less than 5) or a minimum penalty used on the fixed and random effects—and α
(m)
0,k

is the mth posterior sample for group k from such a minimal penalty model, Q1 and Q2 were defined
in Section “MCECM algorithm”, dλ is the number of nonzero coefficients for the model (all nonzero β
plus all nonzero γ), and N is the total number of observations in the data (Nobs).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=grpreg
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen

CONTRIBUTED RESEARCH ARTICLE 114

The package can also calculate the traditional BIC criterion as specified below:

BIC(θλ) = −2ℓ(θλ) + dλ log(N),

where θλ are the coefficients of the penalization model, ℓ(θλ) is the marginal log-likelihood for the
model, dλ is the number of nonzero coefficients for the model, and N can be either the total number of
observations in the data (Nobs) or the total number of independent observations (i.e., number of levels
within the grouping factor, Ngrps) in the data. The marginal log-likelihood is as follows:

ℓ(θ) =
K

∑
k=1

ℓk(θ) =
K

∑
k=1

1
nk

log
∫

f (yk|Xk, αk; θ)ϕ(αk)dαk. (13)

There is a lack of consensus regarding the use of log(Nobs) versus log(Ngrps) in the BIC penalty
term for mixed models. For instance, the log(Nobs) penalty is used in the R package nlme (Pinheiro
et al., 2021), and the log(Ngrp) penalty is used in SAS proc NLMIXED (SAS Institute Inc., 2008; Delattre
et al., 2014). In practice, the performance of the different versions of the BIC penalty term may depend
on the true underlying model (Lorah and Womack, 2019; Delattre et al., 2014), with Delattre et al. (2014)
observing that the log(Nobs) penalty performed better when the true model had very few random
components, and the log(Ngrp) penalty performed better when the true model had a large number of
random components. Both Delattre et al. (2014) and Lorah and Womack (2019) suggest using some
combination of these sample size definitions.

To this point, the package also allows the best model to be selected using a ‘hybrid’ BICh selection
criteria developed by Delattre et al. (2014):

BICh(θλ) = −2ℓ(θλ) + dλ,β log(Nobs) + dλ,γ log(Ngrps), (14)

where dλ,β and dλ,γ are the number of nonzero fixed and random effect coefficients, respectively.

In simulations not shown here (see content in GitHub repository https://github.com/hheiling/
paper_glmmPen_RJournal for details), we found that the BIC-ICQ gave the best performance in choos-
ing the correct set of fixed and random effects. The BIC and BICh methods tended to underestimate
the number of true fixed effects compared to BIC-ICQ in the simulations we considered. However, in
order to calculate the BIC-ICQ, a minimal penalty model needs to be fit using a small penalty (i.e., λmin)
on the fixed and random effects. Posterior samples from this minimal penalty model are then used
to calculate the BIC-ICQ value for each model fit in the variable selection procedure. Depending
on the size of the full model with all fixed and random effects predictors, this calculation can be
time-intensive since fitting the model with a small penalty will keep many fixed and random effects
predictors in the model.

Alternatively, the calculation of the BIC and BICh criteria require a calculation of the marginal
log-likelihood ℓ(θ) for each model. Since the integrals within ℓ(θ) are intractable, we estimate the
marginal log-likelihood using the corrected arithmetic mean estimator (CAME) described by Pajor
(2017). We have found this CAME estimator to be relatively quick and easy to calculate, as well as
consistent with the marginal log-likelihood estimate calculated by the package lme4 (Bates et al., 2015)
for a range of conditions (see content in GitHub repository https://github.com/hheiling/paper_
glmmPen_RJournal for details).

To calculate the CAME, we focus on a single group k and define a set Ak ⊆ Θ as a subset of the
parameter space of the random effects for group k, where P(Ak) and P(Ak|yk, Xk; θ) are nonzero
probabilities. We first start with the knowledge

P(Ak|yk, Xk; θ) =
∫

Ak

ϕ(αk|yk, Xk; θ)dαk

=
∫

Θ

1
f (yk|Xk; θ)

f (yk|Xk, αk; θ)ϕ(αk)I(αk ∈ Ak)dαk,
(15)

where I(.) is an indicator function, f (yk|Xk; θ) =
∫

f (yk|Xk, αk; θ)ϕ(αk)dαk is the marginal likelihood
for group k, and all other terms are described in Section “Generalized linear mixed models”. The
above relationship allows us to obtain the result:

f (yk|Xk; θ) =
1

P(Ak|yk, Xk; θ)

∫
Θ

f (yk|Xk, αk; θ)ϕ(αk)I(αk ∈ Ak)dαk

=
1

P(Ak|yk, Xk; θ)

∫
Θ

f (yk|Xk, αk; θ)ϕ(αk)I(αk ∈ Ak)s(αk)dαk
s(αk)

,
(16)

where s(.) is an importance sampling function.

Suppose at the end of the MCECM algorithm we obtain M samples from the posterior distribution

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nlme
https://github.com/hheiling/paper_glmmPen_RJournal
https://github.com/hheiling/paper_glmmPen_RJournal
https://CRAN.R-project.org/package=lme4
https://github.com/hheiling/paper_glmmPen_RJournal
https://github.com/hheiling/paper_glmmPen_RJournal

CONTRIBUTED RESEARCH ARTICLE 115

of the random effects for group k, α̃k = ((α
(1)
k)⊤, ..., (α(M)

k)⊤)⊤. Let us set Ak = α̃k; this reduces
P(Ak|yk, Xk; θ) to 1. Let us also set the importance sampling function s(.) to be a multivariate normal

distribution with a mean vector equal to the mean of the posterior samples 1
M ∑M

m=1 α
(m)
k and a

covariance matrix equal to the covariance matrix of a thinned subset of the posterior samples (to

obtain a pseudo-independent set of samples). If we draw M⋆ samples α⋆
k = ((α

⋆(1)
k)⊤, ..., (α⋆(M⋆)

k)⊤)⊤

from this importance sampling function, then Equation 16 indicates that we can estimate the marginal
likelihood for group k as

f (yk|Xk; θ) ≈ 1
M⋆

M⋆

∑
m=1

f (yk|Xk, α⋆m
k ; θ)ϕ(α⋆m

k)I(α⋆m
k ∈ Ak)

s(α⋆m
k)

. (17)

We repeat the estimation in Equation 17 for all K groups in order to calculate the full desired
marginal log-likelihood ℓ(θ). This final marginal log-likelihood is then used in the previously men-
tioned BIC and BICh calculations for each fitted model across the λ0 and λ1 grid search. We refer to
this marginal log-likelihood as the Pajor log-likelihood in later sections of the paper.

5 Software

The main function of the glmmPen package is glmmPen, which is used to perform fixed and random
effects variable selection after the specification of a full model with all candidate fixed and random
effects. The glmmPen package is also capable of fitting a GLMM with pre-specified fixed and random
effects (under no penalization) using the function glmm. Here we will use the basal dataset (Rashid
et al., 2020) to illustrate the use of the glmmPen function in practical applications.

5.1 Data example

The basal dataset is composed of four studies that contain gene expression data and tumor subtype
information from patients spanning three cancer types (Moffitt et al., 2015; Weinstein et al., 2013). Two
of these datasets contain gene expression data for subjects with Pancreatic Ductal Adenocarcinoma
(PDAC), one dataset contains data for subjects with Breast Cancer, and the last contains data for
subjects with Bladder Cancer. While each cancer type has separate sets of defined subtypes, all share a
common subtype defined as “basal-like”, which was shown to be similar in character across cancer
types and have an impact on survival (Moffitt et al., 2015). The goal of the original study was to select
features that are relevant in predicting the basal-like subtype. To increase the sample size, it was
proposed that samples were merged from each study into one large dataset.

Multiple approaches have been proposed to integrate gene expression data from multiple studies
to improve the accuracy of downstream prediction models (Riester et al., 2014; Ma et al., 2018; Patil
and Parmigiani, 2018). The pGLMM methodology from Rashid et al. (2020) was originally motivated
by the need to select genes that are predictive of cancer outcomes (e.g. cancer subtype), where the
effects of genes may vary randomly across studies. It was shown that accounting for this heterogeneity
improved the performance of gene selection after data merging.

Using glmmPen package, we fit a pGLMM that can accommodate a large number of features in
the model and account the hetereogeneity in gene effects across studies. It is unclear a priori which
features truly have a non-zero association with the outcome and which features truly have variation in
their effects across studies. Therefore, we will use the glmmPen function to simultaneously select fixed
and random effects from a set of candidate features. Rashid et al. (2020) integrated gene expression
data from each study using a binary rank transformation technique (Top Scoring Pairs or TSPs),
which we use as our covariates in this example. To illustrate the concept of TSPs, let gki,A and gki,B
be the raw expression of genes A and B in subject i of group k. For each gene pair (gki,A, gki,B), the
TSP is the indicator I(gki,A > gki,B) which specifies which gene of the two has higher expression in
the subject. We denote a TSP predictor as “GeneA_GeneB”. A total of 50 binary TSP covariates are
provided in the basal dataset available in the package. For illustration purposes, we randomly select
10 TSP covariates. Our goal is to identify TSPs that are associated with patient tumor subtype while
accounting for study-level heterogeneity in gene effects. In each study subtype is defined a binary
variable with two levels: basal-like or non-basal-like. Therefore, for this example, our example dataset
consists of our matrix of covariates X, our subtype vector y (a factor with two levels), and our study
membership vector (a factor with four levels).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen

CONTRIBUTED RESEARCH ARTICLE 116

Summary information about the data is included below.

> library("glmmPen")
> data("basal")
> y = basal$y
> set.seed(1618)
> idx = sample(1:50, size = 10, replace = FALSE)
> idx = idx[order(idx)]
> X = basal$X[,idx]
> colnames(X)

[1] "GPR160_CD109" "SPDEF_MFI2" "CHST6_CAPN9" "SLC40A1_CDH3"
[5] "PLEK2_HSD17B2" "GPX2_ERO1L" "CYP3A5_B3GNT5" "LY6D_ATP2C2"
[9] "MYO1A_FGFBP1" "CTSE_COL17A1"

> group = basal$group
> levels(group)

[1] "UNC_PDAC" "TCGA_PDAC" "TCGA_Bladder" "UNC_Breast"

We will fit a penalized random effects logistic regression model using the glmmPen function to
model patient subtype, as it is unclear which of the 10 TSPs should be included in the model, and
which may also randomly vary across studies in their effects. We perform variable selection using the
following code:

> set.seed(1618)
> fitB = glmmPen(formula = y ~ X + (X | group),
+ family = "binomial", covar = "independent",
+ tuning_options = selectControl(BIC_option = "BICq",
+ pre_screen = TRUE,
+ search = "abbrev"),
+ penalty = "MCP", BICq_posterior = "Basal_Posterior_Draws")

Here we utilize the pre-screening and abbreviated grid search options, as well as select the optimal
tuning parameter using the BIC-ICQ model selection criteria (denoted “BICq”). Further details
about the pre-screening procedure is described in the Section “selectControl arugments” and the
consequences of this pre-screening procedure are illustrated through simulations and discussed in
Section “Pre-screening performance”. If we were instead interested in fitting a GLMM utilizing all 10
TSPs as fixed effects and assuming a random effect for each (without penalization), we could run the
following code:

> set.seed(1618)
> fit_glmm = glmm(formula = y ~ X + (X | group),
+ family = "binomial", covar = "independent",
+ optim_options = optimControl())

The set of random effects specified does not necessarily have to be equal to the set of fixed effects
as in the above example. Because of the number of random effects that we are considering in the
model, we approximate the random effects covariance matrix as an independent, or diagonal, matrix,
which we specify by using the argument option covar = "independent". Our reasoning for such an
approximation, as well as a discussion of the pros and cons of such an approximation, are given in
Section “Initialization and convergence.”

In the following subsections, we will discuss in detail the glmmPen (and glmm) arguments and
relevant output. We will also examine the output from the variable selection procedure given by the
glmmPen example.

5.2 Full model specification

The syntax for specifying the full model formula (the model with all relevant fixed and random effects
predictors) using the formula argument closely follows the formula syntax of the lme4 package (Bates
et al., 2015). The formula follows the form response ~ fix_expr + (rand_expr | factor) where the
fix_expr specifies the variables to use as the fixed effects, the rand_expr specifies the variables to use
as the random effects, and the factor specifies the grouping factor of the observations. When a data
frame is given for the data argument, the fixed and random effects can be specified using the column
names of the data frame. For higher-dimensional data, users may find it easier to directly specify the

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=lme4

CONTRIBUTED RESEARCH ARTICLE 117

matrix containing the covariates of interest and the response vector, such as the y ~ X + (X | group)
formula given in the earlier glmmPen fit example. No specification of the data argument is needed in
this case. Similar to ncvreg, an intercept is always assumed and required, and therefore an intercept
column need not be specified in X or explicitly in the model formula; glmmPen will output an error if
the input predictor matrix X contains an intercept column.

Regarding the specification of random effects in formula, the glmmPen package currently does
not allow for multiple grouping factors. In addition, the random effects must be a subset of the fixed
effects, and a random intercept is always assumed and required in the model. Lastly, the structure of
the random effects covariance matrix is determined by the covar argument, which may take on the
value of ‘unstructured’ or ‘independent’ (diagonal). By default, the covar parameter is set to NULL.
This automatically selects the ‘independent’ option if the number of random effect predictors is 10
or more and selects ‘unstructured’ otherwise. For a large number of random effect predictors, it is
strongly recommend that the covariance structure to ‘independent’ in order to improve computational
efficiency.

The glmmPen algorithm allows the Binomial, Gaussian, and Poisson families with canonical links.

5.3 Penalization and optimal tuning parameter selection

In glmm, the default is to fit the single model with user-specified fixed and random effects with no
penalization. Although it is generally not recommended, users have the option to specify a single
penalty parameter combination using
tuning_options = lambdaControl(lambda0,lambda1). In glmmPen, the arguments penalty,
gamma_penalty, alpha, fixef_noPen, and tuning_options all play a part in the variable selection
process. The following subsections discuss these argument options in detail and how the arguments
impact variable selection.

Penalty, gamma penalty, alpha parameters

To perform variable selection, glmmPen allows the fixed effect coefficients to be penalized using the
minimax concave penalty (MCP, the default), the smoothly clipped absolute deviation (SCAD) penalty,
or the least absolute shrinkage and selection operator (LASSO) penalty (Breheny and Huang, 2011;
Friedman et al., 2010) via the penalty argument, which takes as input the character strings “MCP”,
“SCAD”, or “lasso”. The random effects are then penalized using the grouped version of the selected
penalty type (Breheny and Huang, 2015), e.g., if the MCP penalty is used to penalize the fixed effects,
then the grouped MCP penalty is used to penalize the random effects covariance matrix coefficients.

In addition to the previously discussed penalty parameters (λ0, λ1), the MCP and SCAD penalties
also use a scaling factor (Breheny and Huang, 2011, 2015). The argument gamma_penalty specifies this
scaling factor, with the default of 3 and 4 for the MCP and SCAD penalties, respectively. Additionally,
the argument alpha allows for the elastic net estimator, controlling the relative contribution of the
MCP/SCAD/LASSO penalty and the ridge, or L2, penalty. Setting alpha to 1 (the default) is equivalent
to the regular penalty with no L2 contribution.

selectControl arguments

The grid search over the fixed effects and random effects penalty parameters λ0 and λ1 is controlled
by the arguments in selectControl(). The user can specify particular sequences for λ0 (fixed effects
penalty parameters) and λ1 (random effects penalty parameters) using the arguments lambda0_seq and
lambda1_seq, respectively; by default, a sequence of penalty parameters (of length nlambda, default 10)
are automatically calculated within glmmPen. These default sequences are calculated using the method
discussed in Section “Tuning parameter selection”. The minimum penalty λmin is a small fraction of
the λmax value; the argument lambda.min controls what fraction is used. By default, lambda.min = 0.01
so that λmin = 0.01(λmax).

The structure of the optimal tuning parameter search is specified by the argument search. If
search = “abbrev” (default), the algorithm performs the abbreviated two-stage tuning parameter
search specified in Section “Tuning parameter selection”. If search = “full_grid”, the algorithm looks
over the full grid search of length(lambda0_seq)×length(lambda1_seq) models before picking the best
model.

After all of the tuning parameters have been evaluated, the optimal combination of tuning
parameters can be selected using a BIC-type selection criteria, which can be specified using the
selectControl() argument BIC_option. Using the BIC_option argument, the user can select one of
four BIC-type selection criteria, given in Table 1, to select the best model.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ncvreg
https://CRAN.R-project.org/package=glmmPen

CONTRIBUTED RESEARCH ARTICLE 118

Selection criteria Description

BICq (Default) BIC-ICQ selection criteria (Ibrahim et al., 2011); requires
fitting the minimal penalty model

BICh Alternative BICh selection criteria specified by Delattre, Lavielle,
and Poursat (2014)

BIC Traditional BIC whose penalty term sets N to the number of total
observations in the data

BICNgrp Traditional BIC whose penalty term sets N to the number of inde-
pendent observations (i.e., number of levels of the grouping factor)

Table 1: BIC-type model selection criteria options for argument BIC_option.

Refer to the discussion in Section “Tuning parameter selection” for further details about these
BIC-type options as well as their respective pros and cons.

The argument pre_screen allows users to screen out some random effects at the start of the
algorithm. When pre_screen is set to TRUE (the default) and the number of random effects predictors
is 5 or more, a minimal penalty model is fit using a small penalty for the fixed and random effects
and relatively lax convergence criteria. If at the end of the pre-screening procedure the variance of a
random effect is penalized to 0 or is estimated to be less than 10−2, that predictor is restricted to have a
zero-valued random effect variance for all models fit by the algorithm. The pre-screening procedure is
not implemented if the number of random effects is less than five. This threshold of five random effect
predictors is an ad hoc choice by the authors; the purpose of the pre-screening procedure is to allow
the user to speed up the variable selection procedure when the full model contains a large number of
random effects.

The argument lambda.min.presc adjusts the value of the random effect penalty parameter λ1 used
in the pre-screening step and the minimal penalty model fit for the BIC-ICQ calculation, where the min-
imum penalty used for the random effects is lambda.min.presc ×λmax. See package documentation
for further details about this argument and other minor arguments not discussed here.

Additional selection arguments in glmmPen

The default variable selection procedure assumes that we have no prior knowledge of which fixed
effects should not be penalized during the model fitting procedure. In order to indicate that a covariate
should not be subject to penalization (and therefore always remain in the model), one can use the
fixef_noPen argument. See the glmmPen function documentation for further details.

After running an initial grid search over the default fixed and random effects penalty parameters,
users may desire to re-run the variable selection procedure using alternative settings, such as different
penalty sequences (e.g. a finer grid search) or different convergence criteria. In this scenario, re-
computing the the minimal penalty model for the BIC-ICQ criterion calculation can be time-consuming.
In order to save the minimal penalty model posterior samples needed for the BIC-ICQ calculation
and re-use these samples to compute the BIC-ICQ within a subsequent tuning parameter selection
grid search, the user can save the posterior samples as a file-backed big.matrix using the argument
BICq_posterior = “file_location/file_name”. This saves the backing file and the descriptor file as
‘file_location/file_name.bin’ and ‘file_location/file_name.desc’, respectively. If the file name is not specified,
then the posterior samples are automatically saved to the working directory with the file name
“BICq_Posterior_Draws”. These saved posterior samples can then be re-loaded in R as a big.matrix
using the attach.big.matrix function from the package bigmemory (Kane et al., 2013). In secondary
calculations using glmmPen, the recalculation of this minimal penalty model fit can be avoided and
these posterior samples can be used by calling BICq_posterior = “file_location/file_name”.

5.4 Examination of output

The glmm and glmmPen functions all output a reference class object of class pglmmObj. A full list of the
methods available for pglmmObj objects are provided in Table 2. These methods and their output were
designed to be very similar to the methods and output available for merMod objects used in the lme4
package. Further information about the output provided in a pglmmObj object and additional methods
documentation is available in the glmmPen package documentation (see ?pglmmObj).

When the pglmmObj object is created using the glmm function, the output from the methods listed
in Table 2 pertains to the single model fit specified by the glmm arguments. When the pglmmObj object

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=bigmemory
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=glmmPen

CONTRIBUTED RESEARCH ARTICLE 119

Generic Brief description of return value

BIC Numeric vector returning the BIC, BICh, BICNgrp, and, if specified for model
selection, BIC-ICQ selection criteria evaluations for either the fitted glmm model
or the optimal fitted glmmPen model (i.e. the ‘best’ model according to the model
selection criteria)

coef Matrix reporting the sum of the fixed effects coefficients and the posterior modes of
the random effects for each variable at each level of the grouping factor

fitted Numeric vector of fitted values (the values of the linear predictor) based on either
the fixed effects only (recommended for most applications) or both the fixed effects
and the posterior modes of the random effects for each level of the grouping factor
(potentially useful for diagnostics)

fixef Numeric vector of the fixed effects coefficient estimates β̂
formula The mixed-model formula of the fitted model
logLik Estimated log-likelihood for the best model of the glmmPen procedure or the final

model from glmm evaluated using the Pajor (2017) marginal likelihood calculation
discussed in Section “Tuning parameter selection”

model.frame A data.frame object containing the output and predictors used to fit the model
model.matrix The fixed-effects model matrix
ngrps Number of levels in the grouping factor
nobs Number of total observations
plot Diagnostic plots for mixed-model fits
predict Predicted values based on either the fixed effects only (recommended) or the com-

bined fixed effects and posterior modes of the random effects for each variable and
each level of the grouping factor

print Basic printout of mixed-model objects
ranef Matrix of posterior modes of the random effects for each variable and each level of

the grouping factor
residuals Numeric vector of residual values: deviance (default), Pearson, response, or work-

ing residuals
sigma Random effect covariance matrix (ΓΓ⊤)
summary Summary of the mixed model results

Table 2: List of currently available methods for objects of class pglmmObj.

is created using the glmmPen function, the output from the methods pertains to the best model chosen
during the model selection procedure. Additional information about each model fit can be found in
the results_all field of the pglmmObj object. Using the basal output object fitB from the glmmPen
function, we illustrate the use of several of these methods in the remainder of this section.

Model summary

The summary method output the function call information such as the sampler used in the E-step (in
this case, Stan), the family, the model formula, the estimates of the fixed effects, the variance and
standard deviation estimates of the random effects, and a summary of the deviance residuals. (Note:
Due to the style of our formula specification using a matrix instead of column names of a data.frame,
all variable names begin with the name of the matrix, X.)

> summary(fitB)

Penalized generalized linear mixed model fit by Monte Carlo Expectation
Conditional Minimization (MCECM) algorithm (Stan) ['pglmmObj']
Family: binomial (logit)

Formula: y ~ X + (X | group)

Fixed Effects:
(Intercept) XGPR160_CD109 XSPDEF_MFI2 XCHST6_CAPN9 XSLC40A1_CDH3

-1.1530 -0.7099 -0.7355 0.5082 -0.5831
XPLEK2_HSD17B2 XGPX2_ERO1L XCYP3A5_B3GNT5 XLY6D_ATP2C2 XMYO1A_FGFBP1

0.4337 -0.5895 0.0000 0.4620 -0.7411

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 120

XCTSE_COL17A1
0.0000

Random Effects:
Group Name Variance Std.Dev.
group (Intercept) 0.8193 0.9052
group XGPR160_CD109 0.2036 0.4512
group XSPDEF_MFI2 0.684 0.827
group XCHST6_CAPN9 0 0
group XSLC40A1_CDH3 0 0
group XPLEK2_HSD17B2 0.0804 0.2835
group XGPX2_ERO1L 0.0842 0.2901
group XCYP3A5_B3GNT5 0 0
group XLY6D_ATP2C2 0 0
group XMYO1A_FGFBP1 0.1551 0.3938
group XCTSE_COL17A1 0.7596 0.8715
Number Observations: 938, groups: group, 4

Deviance residuals:
Min 1Q Median 3Q Max

-2.9338 -0.4026 -0.1512 0.3457 2.9630

We see that the best model included 9 TSPs with non-zero fixed effects and 6 TSPs with non-zero
random effects (i.e., 6 TSPs with varying predictor effects across the studies). The print method
supplies very similar information to the summary method minus the summary of the residuals.

The individual components of the print and summary outputs can be obtained using several acces-
sory functions described in Table 2. Similar to the package lme4, the fixed effects can be summarized
using fixef and the group-specific random effects can be summarized using ranef. The random effect
covariance matrix is summarized using sigma. In the case of the Gaussian family, sigma also provides
the residual standard error.

> fixef(fitB)
> ranef(fitB)
> sigma(fitB)

The residuals for the final model can be called using the residuals method. The different type
options for the residuals include “deviance”, “pearson”, “response”, and “working”, which correspond
to the deviance, Pearson, response, and working residuals, respectively.

> residuals(fitB, type = "deviance")

Predictions and fitted values

Using the predict method, we can make predictions using only the population level information
(i.e., the fixed effects only) or the group-specific level information (i.e., the fixed and random effects
results). The glmmPen package restricts predictions on new data to only use the fixed effects since it
is generally unlikely that the grouping levels within other datasets will exactly match the grouping
levels within the data used to create the prediction model. The predict method has the following
arguments:

• object: an object of class pglmmObj output from glmm or glmmPen.

• newdata: a data frame of new data that contains all of the fixed effects covariates from the model
fit. The variables provided in newdata must match the fixed effects used in the model fit.

• type: a character string specifying whether to output the linear predictor (“link”, default) or the
expected mean response (“response”).

• fixed.only: boolean value specifying if the prediction is made with only the fixed effects (TRUE,
default) or both the fixed and random effects (FALSE). Predictions are restricted to fixed.only =
TRUE for new data predictions.

The fitted method also includes the fixed.only argument, allowing the fitted values of the linear
predictor to be estimated with or without the random effects estimates.

> predict(object = fitB, newdata = NULL, type = "link", fixed.only = TRUE)
> fitted(object = fitB, fixed.only = TRUE)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=glmmPen

CONTRIBUTED RESEARCH ARTICLE 121

Diagnostics

The glmmPen package provides methods to perform diagnostics on the final model fit object. The
plot method plots the residuals against the fitted values. The plot function defaults to plotting the
Pearson residuals for the Gaussian family, and deviance residuals otherwise.

> plot(object = fitB)

The plot_mcmc function performs graphical MCMC diagnostics on the random effect posterior
samples. This command has six arguments with the first argument specifying the pglmmObj output
object. The second argument plots is used to specify which diagnostics plots to produce. The
plots argument is capable of creating sample path plots (“sample.path”, default), autocorrelation
plots (“autocorr”), cumulative sum plots (“cumsum”), and histograms (“histogram”) of the posterior
samples. The plots are output as faceted ggplot2 (Wickham, 2016) plots with the graphics arranged by
groups in the columns and variables in the rows. As objects of class ggplot, they are capable of being
edited as any other ggplot object. The plots argument can specify a vector of multiple plot types
or the choice of “all”, which automatically produces all four types of diagnostic plots. The function
outputs a list object containing the plots specified. The third and fourth arguments grps and vars
allow the user to restrict which groups and/or variables are summarized in the diagnostic plots. The
default values of “all” for these arguments give the results for all groups and variables. To request
specific groups and variables, provide vectors of character strings specifying the variable or group
names. The argument numeric_grp_order tells the function to order the group levels numerically
(default FALSE), and bin_width allows the user to manipulate the bin widths of the histograms (default
NULL results in geom_histogram defaults, only relevant if the “histogram” plot is requested).

The example code below specifies the names of three of TSP predictors with non-zero random
effects across the studies and then uses the plot_mcmc function to produce the sample path plots and
autocorrelation plots for the corresponding posterior samples. Some plot aesthetics are adjusted using
the ggplot2 package (Wickham, 2016). These sample path and autocorrelation plots can be seen in
Figure 1.

> TSP = c("XGPR160_CD109", "XSPDEF_MFI2", "XPLEK2_HSD17B2")
> plot_diag = plot_mcmc(object = fitB, plots = c("sample.path","autocorr"),
+ grps = "all", vars = TSP)
> library("ggplot2")
> plot_diag$sample_path + theme(axis.text.x = element_text(angle = 270))
> plot_diag$autocorr

5.5 Optimization

Additional optimization control options can be passed to the glmm and glmmPen functions using
the optim_options argument and the optimControl() control structure. Some default settings in
optimControl depend on the family of the data or the number of random effects. Descriptions of
several of the main optimControl() arguments and their defaults are listed below. Disclaimer: Some
optimization argument default values may be refined in future versions of the package if additional
package testing suggests that changes could improve package performance (e.g., adjustments for
certain data conditions or outcome families); please check the current glmmPen documentation for
the most up-to-date default information.

sampler: a character string specifying the sampling type used in the E-step of the MCECM
algorithm. The default sampler is “stan”, which requests the No-U-Turn Hamiltonian Monte Carlo
sampling performed by the rstan package (Stan Development Team, 2020; Carpenter et al., 2017). We
strongly recommend using this sampling method due to its speed and efficiency. Other options include
“random_walk”, which requests the Metropolis-within-Gibbs adaptive random walk sampler (Roberts
and Rosenthal, 2009), or “independence”, which requests the Metropolis-within-Gibbs independence
sampler (Givens and Hoeting, 2012).

var_start: either a character string “recommend” (default) or a positive numeric value. This
argument specifies the initial starting variance of the random effects covariance matrix. If var_start
is set to “recommend”, the function fits a fixed and random intercept only model using the lme4
package and sets the starting variance to the random intercept variance multiplied by 2. The random
effects covariance matrix is initialized as a diagonal matrix with the value of var_start as the diagonal
elements.

var_restrictions: either a character string “none” (default) or the character string “fixef”. This
argument can be used to restrict which random effects are considered at the start of the algorithm.
If this argument is set to “none”, then all random effect predictors are initialized to have a non-zero

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=rstan
https://CRAN.R-project.org/package=lme4

CONTRIBUTED RESEARCH ARTICLE 122

TCGA_Bladder TCGA_PDAC UNC_Breast UNC_PDAC

X
G

P
R

160_C
D

109
X

P
LE

K
2_H

S
D

17B
2

X
S

P
D

E
F

_M
F

I2

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

0

1000

2000

3000

4000

5000

−2

−1

0

1

−2

−1

0

1

−2

−1

0

1

iteration t

dr
aw

s

TCGA_Bladder TCGA_PDAC UNC_Breast UNC_PDAC

X
G

P
R

160_C
D

109
X

P
LE

K
2_H

S
D

17B
2

X
S

P
D

E
F

_M
F

I2

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

lag

ac
f

Figure 1: MCMC diagnostic plots for the basal best model results, created using the plot_mcmc func-
tion. Top: Sample path plots for the random slopes of three TSP covariates. Bottom: Autocorrelation
plots for the random slopes of three TSP covariates.

variance in the random effect covariance matrix. If this argument is set to “fixef”, then only the random
effect predictors that are initialized to have non-zero fixed effects estimates during the fixed effects
initialization procedure are given non-zero variances when initializing the random effect covariance
matrix. In effect, this restricts predictors that are initialized with zero-valued fixed effects coefficients
to not have random effects. See glmmPen simulation results utilizing this feature within the GitHub
repository https://github.com/hheiling/paper_glmmPen_RJournal. By using this restriction, the
user assumes that predictors penalized out of the naive model do not have random effects. While this
could be a strong assumption, using this restriction can be helpful in speeding up the algorithm by
removing excessive random effects at the start of the variable selection procedure.

conv_EM: a positive numeric value specifying the convergence threshold for the EM algorithm. The
argument conv_EM specifies the value of ϵ in Equation 11. The default value is 0.0015.

t: a positive integer that specifies the value of t in the EM algorithm convergence criteria specified
in Equation 11. The convergence critera is based on the average Euclidean distance between the most
recent coefficient estimate and the coefficient estimate from t EM iterations back. Default value is set
to 2.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://github.com/hheiling/paper_glmmPen_RJournal

CONTRIBUTED RESEARCH ARTICLE 123

mcc: a positive integer indicating the number of times the EM convergence criteria must be met
before the algorithm is seen as having converged (mcc short for ‘meet condition counter’). Default
value is set to 2, and mcc is restricted to be no less than 2.

maxitEM: The maximum number of EM iterations allowed by the algorithm. When the default
value of NULL is input, maxitEM is set to a value that depends on the family type of the data. For the
Binomial and Poisson families, the default is set to 50. For the Gaussian family, the default is set to 100
(we have observed that the Gaussian family data generally takes longer to converge).

Additional optimization parameters include M-step convergence parameters (conv_CD, maxit_CD),
parameters specifying the number of posterior samples to acquire for the E-step throughout the
algorithm (nMC_burnin, nMC_start, and nMC_max), the number of posterior samples needed to calculate
the log-likelihood (M), and the number of posterior samples to save for diagnostics (nMC_report). Addi-
tional details about these parameters and their defaults can be found in the glmmPen documentation
of the function optimControl.

6 Simulations

In this section, we present results from simulations in order to examine the performance of our package.
We use the glmmPen package to perform variable selection and examine the resulting fixed effects
estimates as well as the true and false positives for the fixed and random effects. All simulations are
performed using the default optimization settings discussed in Section “Optimization”. While the
performance of the original implementation of the pGLMM algorithm was demonstrated in Rashid
et al. (2020), here we confirm the performance of the computational improvements made since then as
well as newer features such as the pre-screening procedure.

6.1 Simulation set-up

We simulated binary responses from a logistic mixed-effects regression model with p predictors. Of p
total predictors, we assume that 2 predictors have truly non-zero fixed and random effects, and the
other p − 2 predictors have zero-valued fixed and random effects. Our aim in the simulations was to
select the true predictors.

In these simulations, we consider the following situations: predictor dimensions of p = {10, 50},
sample size N = 500, number of groups K = {5, 10}, and standard deviation of the random effects
σ = {1,

√
2}. As discussed in Section “Generalized linear mixed models”, we approximate the

covariance matrix of the random effects as a diagonal matrix for these higher dimensions. We further
consider the scenarios of moderate predictor effects, where the true fixed effects are β = (0, 1, 1)⊤.

For group k, we generated the binary response yki, i = 1, ..., nk such that yki ∼ Bernoulli(pki) where
pki = P(yki = 1|xki, zki, αk, θ) = exp(x⊤ki β + z⊤ki αk)/{1 + exp(x⊤ki β + z⊤ki αk)}, and αk ∼ N3(0, σ2 I3).
The fixed effect coefficients were set to β = (0, 1, 1)⊤ (moderate predictor effects). We also simulated
imbalance in sample sizes between the groups. Of the N samples, N/3 samples were given to study
k = 1 and the remaining 2N/3 samples were evenly distributed among the remaining studies. Each
condition was evaluated using 100 total simulated datasets.

For individual i in group k, the vector of predictors for the fixed effects was xki = (1, xki,1, ..., xki,p)
⊤,

and we set the random effects zki = xki, where xki,j ∼ N(0, 1) for j = 1, ..., p.

Setting the input random effects equal to the fixed effects represents the worst-case scenario where
we have no idea what predictors may or may not have random effects. This may be an extreme
assumption; in many real-world scenarios, users will have reason to set the input random effects to a
strict subset of the fixed effects.

In all of these simulations, we use the default settings discussed earlier, which includes using
the default λ0 and λ1 penalty sequences, BIC-ICQ for the selection criteria, pre-screening, and the
MCP penalty. For all simulations, we performed the abbreviated two-stage grid search as described
in Section “Tuning parameter selection”. The results for these simulations are presented in Table 3.
These results include the average coefficients, the average true positive and false positive percentages
for both fixed and random effects, and the median time for the simulations to complete. The true
positive percentages reflect the average percent of the true predictors included in the best models
chosen by the BIC-ICQ model selection criteria, which should ideally be near 100%. Likewise, the false
positive percentages reflect the average percent of the false predictors included in the best models,
which should ideally be near 0%. All simulations were completed on the UNC Longleaf computing
cluster (CPU Intel processors between 2.3Ghz and 2.5GHz).

By examining the simulation results, we can observe that the performance of the variable selection
procedure in glmmPen is impacted by the underlying structure of the data. As the magnitude of the

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen

CONTRIBUTED RESEARCH ARTICLE 124

N p K σ β̂1 β̂2 TP %
Fixed

FP %
Fixed

TP %
Random

FP %
Random

Tmedian

(hours)

500 10 5 1 1.02 1.12 89.0 2.1 90.5 3.5 0.20√
2 1.12 1.18 83.0 1.4 96.0 3.6 0.26

10 1 0.99 1.04 99.0 3.0 95.0 4.8 0.24√
2 1.02 1.11 91.0 1.8 99.5 7.0 0.32

500 50 5 1 1.18 1.14 84.5 1.2 83.5 2.2 8.07√
2 1.42 1.43 75.5 2.5 89.0 2.5 12.20

10 1 1.12 1.11 95.0 1.8 93.0 3.9 10.67√
2 1.33 1.31 84.5 2.4 95.5 6.2 15.75

Table 3: Variable selection simulation results with moderate predictor effects (slopes equal to 1).
Results include the estimated coefficients for true non-zero fixed effects, true positive (TP) percentages
for fixed and random effects, false positive (FP) percentages for fixed and random effects, and the
median time in hours for the algorithm to complete.

random effect variance increases, the true positive percentage of the fixed effects decreases and the
true positive percentage of the random effects increases. Additionally, as the number of groups K
increases, the true positive percentage of both the fixed and random effects increases. We see that
as the dimension of the total number of predictors increases (p = 10 to p = 50), the true positive
percentages of both the fixed and random effects decreases. In regards to the run time, Table 3 shows
that increases in the number of groups and increases in the variance of the random effects generally
increases the time for the algorithm to complete.

In simulations not presented in this paper, we saw that increases to the magnitude of the fixed
effects (e.g., increasing the true slope to 2, see content in GitHub repository https://github.com/
hheiling/paper_glmmPen_RJournal for details) increased the true positive fixed effects and generally
decreased the true positive random effects.

6.2 Pre-screening performance

The time it takes the package to complete the tuning parameter selection procedure depends strongly
on the number of random effects considered by the algorithm. Therefore, the pre-screening procedure,
which reduces the number of random effects considered within the variable selection algorithm, speeds
up the algorithm. Table 4 summarizes the performance of the pre-screening algorithm for the variable
selection simulations described above. This table reports the average percent of true positive and
false positive random effect predictors that remain under consideration within the variable selection
procedure after the pre-screening step has completed. The pre-screening settings were the default
settings described in Section “Software”, which include specifying lambda.min.presc = 0.01 for p = 10
and lambda.min.presc = 0.05 for p = 50 such that the minimum penalty on the random effects is
lambda.min.presc ×λmax. We note that there are currently no methods that are capable of scaling to
the values of q random effect predictors evaluated in our simulation for estimating and performing
variable selection in GLMMs.

N p K σ TP % FP %

500 10 5 1 98.0 25.8√
2 100.0 26.1

10 1 100.0 33.0√
2 100.0 32.2

500 50 5 1 96.0 24.6√
2 96.5 25.7

10 1 97.5 25.9√
2 98.5 27.3

Table 4: Pre-screening results for variable selection simulations with moderate predictor effects (slopes
equal to 1). Results include the true positive percentages and false positive percentages of the random
effect predictors remaining after pre-screening.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://github.com/hheiling/paper_glmmPen_RJournal
https://github.com/hheiling/paper_glmmPen_RJournal

CONTRIBUTED RESEARCH ARTICLE 125

Using this higher penalty in the p = 50 simulations helps reduce the false positive percentage of
the random effects after pre-screening and consequently helps speed up the time of the algorithm to
complete. However, we can see by comparing the p = 50 and p = 10 simulations that this approach
can also slightly decrease the true positive percentage. In general, increasing lambda.min.presc will
help decrease the number of false positive non-zero random effects in the pre-screening step, but it
may also decrease the number of true positive non-zero random effects. Decreasing lambda.min.presc
will generally have the opposite effect. We also see that the true positive percentage for the selection
of the random effects after pre-screening is generally higher when the magnitude of the true random
effect variance is higher.

7 Conclusion

This paper introduces the R package glmmPen for fitting penalized generalized linear mixed models,
including Binomial, Gaussian, and Poisson models. The glmmPen package’s main advantage over
other packages that estimate GLMMs is that it can perform variable selection on the fixed and random
effects simultaneously. The algorithm utilizes a Monte Carlo Expectation Conditional Minimization
(MCECM) algorithm. Several established MCMC sampling techniques are available for the E-step,
and a Majorization-Minimization coordinate descent algorithm is used in the M-step. The package
utilizes the established methods of Stan and RcppArmadillo to increase the computational efficiency
of the E-step and M-step, respectively. As a result, the glmmPen package can fit models with higher
dimensions compared to other packages that fit GLMMs, supporting models with 50 or more fixed
and random effects.

The glmmPen package employs several additional techniques to improve the speed of the algo-
rithm. Such techniques include initialization of subsequent models with the coefficients from the
previous model fit and pre-screening to remove unnecessary random effects.

The glmmPen package has several attributes that make it user-friendly. For one, the package was
designed to have an interface that is similar to the lme4 package, with which many users may be
familiar. Additionally, the glmmPen package has several automated procedures that make it more
convenient to use, including automated data-dependent initialization of the random effect covariance
matrix and automated recommendations for the penalization parameters.

A unique aspect of the package is the calculation of the marginal log-likelihood. The cor-
rected arithmetic mean estimator (CAME) calculation described by Pajor (Pajor, 2017) is relatively
simple and fast to calculate, and we have found that it performs well when compared with the
log-likelihood estimate used in the lme4 package (see content in the GitHub repository https:
//github.com/hheiling/paper_glmmPen_RJournal). This marginal log-likelihood calculation allows
the algorithm to perform tuning parameter selection using traditional BIC selection criterion as well
as other BIC-derived selection criteria. This gives users the option to forgo calculating the BIC-ICQ
selection criterion, which requires the minimal penalty model fit where a minimum penalty is applied
to both the fixed and random effects.

In its current implementation at the time of this paper’s publication, the glmmPen R package
can apply to Binomial, Gaussian, and Poisson families with canonical links. In the future, we plan to
extend the application of this package to survival data, to non-canonical links for the existing families,
and to additional families such as the negative binomial family.

References

F. A. Archila. mcemGLM: Maximum Likelihood Estimation for Generalized Linear Mixed Models, 2020.
URL https://CRAN.R-project.org/package=mcemGLM. R package version 1.1.1. [p106, 109]

D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting linear mixed-effects models using lme4. Journal
of Statistical Software, 67(1):1–48, 2015. URL https://doi.org/10.18637/jss.v067.i01. [p106, 114,
116]

B. M. Bolker, M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J.-S. S. White.
Generalized linear mixed models: a practical guide for ecology and evolution. Trends in ecology &
evolution, 24(3):127–135, 2009. URL https://doi.org/10.1016/j.tree.2008.10.008. [p106]

H. D. Bondell, A. Krishna, and S. K. Ghosh. Joint variable selection for fixed and random effects in linear
mixed-effects models. Biometrics, 66(4):1069–1077, 2010. URL https://doi.org/10.1111/j.1541-
0420.2010.01391.x. [p106, 112]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=glmmPen
https://CRAN.R-project.org/package=lme4
https://github.com/hheiling/paper_glmmPen_RJournal
https://github.com/hheiling/paper_glmmPen_RJournal
https://CRAN.R-project.org/package=mcemGLM
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.tree.2008.10.008
https://doi.org/10.1111/j.1541-0420.2010.01391.x
https://doi.org/10.1111/j.1541-0420.2010.01391.x

CONTRIBUTED RESEARCH ARTICLE 126

J. G. Booth and J. P. Hobert. Maximizing generalized linear mixed model likelihoods with an automated
monte carlo em algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61
(1):265–285, 1999. URL https://doi.org/10.1111/1467-9868.00176. [p109]

P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression, with
applications to biological feature selection. Annals of Applied Statistics, 5(1):232–253, 2011. URL
https://doi.org/10.1214/10-AOAS388. [p106, 108, 112, 117]

P. Breheny and J. Huang. Group descent algorithms for nonconvex penalized linear and logistic
regression models with grouped predictors. Statistics and Computing, 25(2):173–187, 2015. URL
https://doi.org/10.1007/s11222-013-9424-2. [p106, 108, 110, 117]

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo,
P. Li, and A. Riddell. Stan: A probabilistic programming language. Journal of Statistical Software, 76
(1), 2017. URL https://doi.org/10.18637/jss.v076.i01. [p108, 109, 121]

Z. Chen and D. B. Dunson. Random effects selection in linear mixed models. Biometrics, 59(4):762–769,
2003. URL https://doi.org/10.1111/j.0006-341X.2003.00089.x. [p108]

C. Dean and J. D. Nielsen. Generalized linear mixed models: a review and some extensions. Lifetime
data analysis, 13:497–512, 2007. URL https://doi.org/10.1007/s10985-007-9065-x. [p106]

M. Delattre, M. Lavielle, M.-A. Poursat, et al. A note on bic in mixed-effects models. Electronic Journal
of Statistics, 8(1):456–475, 2014. URL https://doi.org/10.1214/14-EJS890. [p106, 114]

M. Donohue, R. Overholser, R. Xu, and F. Vaida. Conditional akaike information under generalized
linear and proportional hazards mixed models. Biometrika, 98(3):685–700, 2011. URL https:
//doi.org/10.1093/biomet/asr023. [p106]

D. Eddelbuettel and R. François. Rcpp: Seamless r and c++ integration. Journal of Statistical Software,
40(8):1–18, 2011. URL http://www.jstatsoft.org/v40/i08/. [p111]

D. Eddelbuettel and C. Sanderson. RcppArmadillo: Accelerating r with high-performance c++
linear algebra. Computational Statistics and Data Analysis, 71:1054–1063, March 2014. URL https:
//doi.org/10.1016/j.csda.2013.02.005. [p111]

Y. Fan and R. Li. Variable selection in linear mixed effects models. Annals of Statistics, 40(4):2043, 2012.
URL https://doi.org/10.1214/12-AOS1028. [p112]

D. J. Feaster, S. Mikulich-Gilbertson, and A. M. Brincks. Modeling site effects in the design and
analysis of multi-site trials. The American journal of drug and alcohol abuse, 37(5):383–391, 2011. URL
https://doi.org/10.3109/00952990.2011.600386. [p106]

G. M. Fitzmaurice, N. M. Laird, and J. H. Ware. Applied Longitudinal Analysis, volume 998. John Wiley
& Sons, 2nd edition, 2012. URL https://doi.org/10.1002/9781119513469. [p106]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL https://www.jstatsoft.
org/v33/i01/. [p106, 108, 117]

R. I. Garcia, J. G. Ibrahim, and H. Zhu. Variable selection for regression models with missing data.
Statistica Sinica, 20(1):149, 2010. URL https://pubmed.ncbi.nlm.nih.gov/20336190/. [p108]

G. H. Givens and J. A. Hoeting. Computational Statistics, volume 703, chapter 7. John Wiley & Sons,
2nd edition, 2012. URL https://doi.org/10.1111/j.1467-985X.2006.00430_5.x. [p109, 121]

A. Groll. glmmLasso: Variable Selection for Generalized Linear Mixed Models by L1-Penalized Estimation,
2017. URL https://CRAN.R-project.org/package=glmmLasso. R package version 1.5.1. [p106]

M. J. Gurka, L. J. Edwards, and K. E. Muller. Avoiding bias in mixed model inference for fixed effects.
Statistics in Medicine, 30(22):2696–2707, 2011. URL https://doi.org/10.1002/sim.4293. [p106]

J. D. Hadfield. Mcmc methods for multi-response generalized linear mixed models: The MCMCglmm r
package. Journal of Statistical Software, 33(2):1–22, 2010. URL https://www.jstatsoft.org/v33/i02/.
[p106]

M. D. Hoffman and A. Gelman. The no-u-turn sampler: Adaptively setting path lengths in hamiltonian
monte carlo. Journal of Machine Learning Research, 15(1):1593–1623, 2014. URL https://dl.acm.org/
doi/abs/10.5555/2627435.2638586. [p108]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.1111/1467-9868.00176
https://doi.org/10.1214/10-AOAS388
https://doi.org/10.1007/s11222-013-9424-2
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1111/j.0006-341X.2003.00089.x
https://doi.org/10.1007/s10985-007-9065-x
https://doi.org/10.1214/14-EJS890
https://doi.org/10.1093/biomet/asr023
https://doi.org/10.1093/biomet/asr023
http://www.jstatsoft.org/v40/i08/
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1214/12-AOS1028
https://doi.org/10.3109/00952990.2011.600386
https://doi.org/10.1002/9781119513469
https://www.jstatsoft.org/v33/i01/
https://www.jstatsoft.org/v33/i01/
https://pubmed.ncbi.nlm.nih.gov/20336190/
https://doi.org/10.1111/j.1467-985X.2006.00430_5.x
https://CRAN.R-project.org/package=glmmLasso
https://doi.org/10.1002/sim.4293
https://www.jstatsoft.org/v33/i02/
https://dl.acm.org/doi/abs/10.5555/2627435.2638586
https://dl.acm.org/doi/abs/10.5555/2627435.2638586

CONTRIBUTED RESEARCH ARTICLE 127

J. G. Ibrahim, H. Zhu, R. I. Garcia, and R. Guo. Fixed and random effects selection in mixed effects
models. Biometrics, 67(2):495–503, 2011. URL https://doi.org/10.1111/j.1541-0420.2010.01463.
x. [p106, 108, 112, 113]

M. J. Kane, J. Emerson, and S. Weston. Scalable strategies for computing with massive data. Journal of
Statistical Software, 55(14):1–19, 2013. URL http://www.jstatsoft.org/v55/i14/. [p111, 118]

K. Kleinman, R. Lazarus, and R. Platt. A generalized linear mixed models approach for detecting
incident clusters of disease in small areas, with an application to biological terrorism. American
Journal of Epidemiology, 159(3):217–224, 2004. URL https://doi.org/10.1093/aje/kwh029. [p106]

I. H. Langford. Using a generalized linear mixed model to analyze dichotomous choice contingent
valuation data. Land Economics, pages 507–514, 1994. URL https://doi.org/10.2307/3146644.
[p106]

J. Lorah and A. Womack. Value of sample size for computation of the bayesian information criterion
(bic) in multilevel modeling. Behavior Research Methods, 51(1):440–450, 2019. URL https://doi.org/
10.3758/s13428-018-1188-3. [p114]

S. Ma, S. Ogino, P. Parsana, R. Nishihara, Z. Qian, J. Shen, K. Mima, Y. Masugi, Y. Cao, J. A. Nowak,
et al. Continuity of transcriptomes among colorectal cancer subtypes based on meta-analysis.
Genome Biology, 19(1):142, 2018. URL https://doi.org/10.1186/s13059-018-1511-4. [p115]

I. Misztal. Reliable computing in estimation of variance components. Journal of Animal Breeding and
Genetics, 125(6):363–370, 2008. URL https://doi.org/10.1111/j.1439-0388.2008.00774.x. [p111]

R. A. Moffitt, R. Marayati, E. L. Flate, K. E. Volmar, S. G. H. Loeza, K. A. Hoadley, N. U. Rashid, L. A.
Williams, S. C. Eaton, A. H. Chung, et al. Virtual microdissection identifies distinct tumor- and
stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nature Genetics, 47(10):1168, 2015.
URL https://doi.org/10.1038/ng.3398. [p115]

A. Pajor. Estimating the marginal likelihood using the arithmetic mean identity. Bayesian Analysis, 12
(1):261–287, 2017. URL https://doi.org/10.1214/16-BA1001. [p114, 125]

P. Patil and G. Parmigiani. Training replicable predictors in multiple studies. Proceedings of the National
Academy of Sciences, 115(11):2578–2583, 2018. URL https://doi.org/10.1073/pnas.1708283115.
[p115]

J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team. nlme: Linear and Nonlinear Mixed Effects
Models, 2021. URL https://CRAN.R-project.org/package=nlme. R package version 3.1-152. [p114]

N. U. Rashid, Q. Li, J. J. Yeh, and J. G. Ibrahim. Modeling between-study heterogeneity for improved
replicability in gene signature selection and clinical prediction. Journal of the American Statistical
Association, 115(531):1125–1138, 2020. URL https://doi.org/10.1080/01621459.2019.1671197.
[p107, 108, 109, 110, 113, 115, 123]

M. Riester, W. Wei, L. Waldron, A. C. Culhane, L. Trippa, E. Oliva, S.-h. Kim, F. Michor, C. Huttenhower,
G. Parmigiani, et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient
samples. JNCI: Journal of the National Cancer Institute, 106(5), 2014. URL https://doi.org/10.1093/
jnci/dju048. [p115]

G. O. Roberts and J. S. Rosenthal. Examples of adaptive mcmc. Journal of Computational and Graphical
Statistics, 18(2):349–367, 2009. URL https://doi.org/10.1002/wics.1307. [p109, 121]

SAS Institute Inc. SAS/STAT Software, Version 9.2. Cary, NC, 2008. URL http://www.sas.com/. [p114]

J. Schelldorfer, L. Meier, and P. Bühlmann. Glmmlasso: An algorithm for high-dimensional generalized
linear mixed models using l1-penalization. Journal of Computational and Graphical Statistics, 23(2):
460–477, 2014. URL https://doi.org/10.1080/10618600.2013.773239. [p106]

A. W. Schmidt-Catran and M. Fairbrother. The random effects in multilevel models: Getting them
wrong and getting them right. European Sociological Review, 32(1):23–38, 2016. URL https://doi.
org/10.1093/esr/jcv090. [p106]

Stan Development Team. RStan: The r interface to stan, 2020. URL http://mc-stan.org/. R package
version 2.21.2. [p121]

M. Szyszkowicz. Use of generalized linear mixed models to examine the association between air
pollution and health outcomes. International Journal of Occupational Medicine and Environmental
Health, 19(4):224–227, 2006. URL https://doi.org/10.2478/v10001-006-0032-7. [p106]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.1111/j.1541-0420.2010.01463.x
https://doi.org/10.1111/j.1541-0420.2010.01463.x
http://www.jstatsoft.org/v55/i14/
https://doi.org/10.1093/aje/kwh029
https://doi.org/10.2307/3146644
https://doi.org/10.3758/s13428-018-1188-3
https://doi.org/10.3758/s13428-018-1188-3
https://doi.org/10.1186/s13059-018-1511-4
https://doi.org/10.1111/j.1439-0388.2008.00774.x
https://doi.org/10.1038/ng.3398
https://doi.org/10.1214/16-BA1001
https://doi.org/10.1073/pnas.1708283115
https://CRAN.R-project.org/package=nlme
https://doi.org/10.1080/01621459.2019.1671197
https://doi.org/10.1093/jnci/dju048
https://doi.org/10.1093/jnci/dju048
https://doi.org/10.1002/wics.1307
http://www.sas.com/
https://doi.org/10.1080/10618600.2013.773239
https://doi.org/10.1093/esr/jcv090
https://doi.org/10.1093/esr/jcv090
http://mc-stan.org/
https://doi.org/10.2478/v10001-006-0032-7

CONTRIBUTED RESEARCH ARTICLE 128

J. A. Thompson, K. L. Fielding, C. Davey, A. M. Aiken, J. R. Hargreaves, and R. J. Hayes. Bias
and inference from misspecified mixed-effect models in stepped wedge trial analysis. Statistics in
Medicine, 36(23):3670–3682, 2017. URL https://doi.org/10.1002/sim.7348. [p106]

J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. Shaw, B. A. Ozenberger, K. Ellrott, I. Shmulevich,
C. Sander, and J. M. Stuart. The cancer genome atlas pan-cancer analysis project. Nature genetics, 45
(10):1113–1120, 2013. URL https://doi.org/10.1038/ng.2764. [p115]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. URL
https://ggplot2.tidyverse.org. [p121]

Hillary M. Heiling
University of North Carolina Chapel Hill

hmheiling@gmail.com

Naim U. Rashid
University of North Carolina Chapel Hill

nur2@email.unc.edu

Quefeng Li
University of North Carolina Chapel Hill

quefeng@email.unc.edu

Joseph G. Ibrahim
University of North Carolina Chapel Hill

ibrahim@bios.unc.edu

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.1002/sim.7348
https://doi.org/10.1038/ng.2764
https://ggplot2.tidyverse.org
mailto:hmheiling@gmail.com
mailto:nur2@email.unc.edu
mailto:quefeng@email.unc.edu
mailto:ibrahim@bios.unc.edu

CONTRIBUTED RESEARCH ARTICLE 129

Unified ROC Curve Estimator for
Diagnosis and Prognosis Studies: The
sMSROC Package
by Susana Díaz-Coto, Pablo Martínez-Camblor, and Norberto Corral-Blanco

Abstract The binary classification problem is a hot topic in Statistics. Its close relationship with the
diagnosis and the prognosis of diseases makes it crucial in biomedical research. In this context, it
is important to identify biomarkers that may help to classify individuals into different classes, for
example, diseased vs. not diseased. The Receiver Operating-Characteristic (ROC) curve is a graphical
tool commonly used to assess the accuracy of such classification. Given the diverse nature of diagnosis
and prognosis problems, the ROC curve estimation has been tackled from separate perspectives in
each setting. The Two-stages Mixed-Subjects (sMS) ROC curve estimator fits both scenarios. Besides,
it can handle data with missing or incomplete outcome values. This paper introduces the R package
sMSROC which implements the sMS ROC estimator, and includes tools that may support researchers
in their decision making. Its practical application is illustrated on three real-world datasets.

1 Introduction

The binary classification problem is crucial in biomedical environments. Researchers and physicians
face the task of classifying patients (as e.g. diseased vs. disease-free, at risk vs. risk-free, etc.) daily.
Frequently, biological measures (biomarkers) are used as objective medical signs that may indicate,
for example, the presence/progress of an event of interest or the response to specific treatments.
Diagnostic biomarkers are normally employed to detect the presence of a disease. For example,
the circulating cardiac troponin I aids in noninvasive detection of myocardial injury in cardiovascular
diseases (Ni and Wehrens, 2018). The blood glucose and the hemoglobin A1c are recognized diagnostic
biomarkers of type 2 diabetes mellitus (Long et al., 2020) and the sweat chloride is often used to confirm
the cystic fibrosis (Farrell et al., 2008).

The Receiver Operating-Characteristic (ROC) curve is a popular graphical tool for assessing the
ability of biomarkers to discriminate between positive and negative individuals (with and without
the event of interest, respectively) (Zhou et al., 2002; Pepe, 2003). For each possible cut-off point, it
plots the pairs formed by the complement of specificity against the sensitivity. The sensitivity, Se, and
the specificity, Sp, are the proportions of positive and negative individuals, respectively, who have
been correctly classified. The closer the ROC curve to the upper left corner, the more accurate the
biomarker.

Mathematically, for each u ∈ [0, 1], the ROC curve has the expression:

R(u) = Se
(

Sp−1(1 − u)
)

, (1)

where Sp−1(·) = inf{x : Sp(x) ≥ ·}. Conventionally, it is assumed that individuals with larger
biomarker values are more likely positive. Therefore, the classification sets defining an individual as
positive are those in the way [c, ∞), with c = Sp−1(1 − u) ∈ R. Besides, the related area under the

ROC curve, (AUC)
(
=

∫ 1
0 R(u)du

)
, is commonly used as a summary index of the global classification

accuracy (Hanley and McNeil, 1982).

The estimation of ROC curves has been addressed from different perspectives (see, for instance,
Gonçalves et al. (2014) and references therein). Estimation procedures generally assume that data come
from case-control designs, where the actual status of all individuals as positive or negative is known
in advance. Further, they do not handle the issue of potential missing values in the outcome. Notice
that such issues arise, for instance, in cohort designs where the outcome is defined ad hoc through a
subsidiary variable. The missing values for that variable lead to missing values in the outcome.

Most of the statistical software (SPSS, SAS, STATA, etc.) offer routines for computing different ROC
curve estimators and related elements. There are also packages in R (www.r-project.org) dealing with
the ROC curve topic. We highlight the pROC package (Robin et al., 2011), which provides functions
for visualizing, smoothing and comparing ROC curves; the package nsROC (Pérez-Fernández, 2017),
where some of the non-standard tools for the ROC curve analyses described in Pérez-Fernández et al.
(2018) are implemented; the package ROCR (Sing et al., 2005), which supplies user-friendly tools for
creating graphics for visualizing classification performance (the ROC curve is a particular case); the
plotROC package (Sachs, 2017), offering interactive ROC curve plots suitable for use on the web, and

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

R
R
www.r-project.org
https://CRAN.R-project.org/package=pROC
https://CRAN.R-project.org/package=nsROC
https://CRAN.R-project.org/package=ROCR
https://CRAN.R-project.org/package=plotROC

CONTRIBUTED RESEARCH ARTICLE 130

finally the ROCnReg package (Rodríguez-Álvarez and Inácio, 2021), which, among other extensive
functionality, implements Bayesian methods for the estimation of ROC curves.

Prognostic biomarkers are used to identify individuals who are likely to experience a future clinical
event (death, the onset/recurrence of a disease or the development of a new medical condition). For
example, the breast cancer genes 1 and 2 mutations are often employed to assess the likelihood of a
second breast cancer (Basu et al., 2015). Similarly, the C-reactive protein level is a prognostic biomarker
used to identify individuals with unstable angina at risk of developing other adverse events (Ferreirós
et al., 1999), and the Gleason score helps to assess the likelihood of prostate cancer progression (Epstein
et al., 2016). These biomarkers are measured at baseline and individuals are then followed over time
to observe whether or not the event of interest occurs. A time-to-event variable is involved in this
process. Different definitions of positive and negative outcomes have been proposed, which has given
rise to extensions of the sensitivity and specificity measures and, of course, to the corresponding
time-dependent ROC curves (Etzioni et al., 1999) .

The Cumulative/Dynamic (C/D) ROC curve (Heagerty et al., 2000) is perhaps the most natural
extension of the ROC curve for time-dependent outcomes. Once set to a specific point of time t, the
time-to-event variable is reduced to a dichotomous variable at that time. Then, the sensitivity and
the specificity can be extended to the so-called cumulative sensitivity and dynamic specificity whose
expressions are

SeC
t (c) = P(X > c | T ≤ t),

SpD
t (c) = P(X ≤ c | T > t),

where c ∈ R is the cut-off point, and X and T are the random variables modeling the biomarker and
the time-to-event variables, respectively. The C/D ROC curve is the plot of the pairs formed by the
complement to the dynamic specificity and the cumulative sensitivity, for all possible cut-off points.
Alternatively, it is given by

RC/D
t (u) = SeC

t

(
[SpD

t]−1(1 − u)
)

, u ∈ [0, 1].

The area under the C/D ROC curve is used as well as a summarize index of the prognostic accuracy
of a biomarker and has the expression

AUCC/D
t =

∫ 1

0
RC/D

t (u)du.

The main challenge when estimating the C/D ROC curve is the potential lack of complete infor-
mation for some individuals (caused by censoring). It arises because of loss of follow-up, either due
to dropouts or because the study ended before the event of interest had the chance to occur in the
individual (right censoring). It may also come up when individuals are not constantly monitored and
the only available information is that the event of interest occurred between two observed timepoints
(interval censorship). The simplest C/D ROC curve estimator removes from the sample the censored
observations and approximates the cumulative sensitivity and the dynamic specificity through their
empirical estimators (naive method). Other procedures integrate, in some way, the information from
the censored observations. Kamarudin et al. (2017) provides an illustrative revision of the available R
packages implementing some of these methods, all of them addressing the right censorship problem.
For example, the survivalROC package (Heagerty and Saha-Chaudhuri, 2022) computes the C/D
ROC curve through the two procedures proposed by Heagerty et al. (2000). The survAUC package
(Potapov et al., 2023) collects several routines for computing the AUCC/D

t , at different times, estimated
by the Inverse Probability Censoring Weighting (IPCW) method (Uno et al., 2007; Hung and Chiang,
2010) and by the Chambles and Diao (2006) approach. The timeROC package (Blanche et al., 2013b)
implements the Conditional Inverse Probability Censoring Weighting (CIPCW) procedure (Blanche
et al., 2013a). In addition to confidence intervals for the AUCC/D

t , the package performs tests for
comparing two areas under the curve corresponding to different prognostic biomarkers. We add to
this list the already mentioned nsROC package, which allows to compute the estimation procedures
proposed in Martínez-Camblor et al. (2016) and Li et al. (2018). The latter method is also available
in the tdROC package (Li and Wu, 2016). Finally, the smoothROCtime (Díaz-Coto et al., 2020b) and
cenROC (Beyene and El Ghouch, 2023) packages implement the smooth C/D ROC curve estimators
suggested by Martínez-Camblor and Pardo-Fernández (2018) and Beyene and El Grouch (2020), re-
spectively. We only found two packages implementing the C/D ROC curve estimation under interval
censorship. The intcensROC package (Lin et al., 2021) computes the estimator for the C/D ROC curve
and AUCC/D

t proposed in Wu et al. (2020), while the cenROC implements the method proposed in
Beyene and El Ghouch (2022). Not a package but an R function is provided in Díaz-Coto et al. (2020a),
computing the C/D ROC curve estimator proposed in that paper.

We present here the package sMSROC, which implements the so-called Two-stage Mixed-Subjects

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ROCnReg
 R
https://CRAN.R-project.org/package=survivalROC
https://CRAN.R-project.org/package=survAUC
https://CRAN.R-project.org/package=timeROC
https://CRAN.R-project.org/package=nsROC
https://CRAN.R-project.org/package=tdROC
https://CRAN.R-project.org/package=smoothROCtime
https://CRAN.R-project.org/package=cenROC
https://CRAN.R-project.org/package=intcensROC
https://CRAN.R-project.org/package=cenROC
R
https://CRAN.R-project.org/package=sMSROC

CONTRIBUTED RESEARCH ARTICLE 131

(sMS) estimator. The sMS estimator uses, in a first stage, a probabilistic model for linking the biomarker
with the outcome, and then, in a second stage and for each potential threshold, it computes both the
sensitivity and the specificity values, which can be used to draw the ROC curve. This approach can be
used to answer both diagnostic and prognostic questions, and, by imposing additional constraints on
the missing-value mechanism, is able to handle missing data in the outcome variable. The probabilistic
model is used for allocating subjects into the positive and the negative groups with certain probabilities.
In this sense, subjects are simultaneously classified as positive and negative, that is, they are mixed.
Interested readers are referred to Díaz-Coto et al. (2021) for a more in depth explanation of the
theoretical properties of the sMS estimator. The presented sMSROC package offers a set of exploratory
tools which help to choose the most suitable probabilistic model (logistic regression, proportional
hazard Cox regression, etc.). These (more standard) estimation proposals are already implemented
in the package, which also allows to manually enter any other estimates of the probabilities of being
positive or negative, which may be estimated by other methods. Among other functionalities, the
sMSROC package computes the AUC with confidence intervals, and provides plots for the ROC curve
estimates, the predictive models, and the evolution of the AUCs across the follow-up time, providing
different options for customizing the final graphics.

The remainder of the paper is organized as follows. In the Section 2, we present the sMS estimator
and review its main properties. We provide a general insight of the structure of the sMSROC package
in the Section 3. In Section 4 the main functions are described in detail. Two real-world datasets are
used to illustrate the use of these functions in the diagnosis and prognosis scenarios. In the Section 5,
we present a third real-world example, and show how the package can be used to assess the prognostic
ability of a biomarker when data are interval censored. We want to present a disclaimer that the
examples that the analyses provided here are used to demonstrate the use of the package only and they
should not be used to inform any clinical decisions. Finally, we end in the Section 6 with a discussion
of the potential uses of the sMSROC package.

2 The two-stage mixed subjects receiver operating-characteristic curve
estimator

We first introduce the notation that will be used along this paper. Let X be a continuous random
variable, with Cumulative Distribution Function (CDF) H(·), which models the behavior of the
biomarker values. Let D be the binary random variable representing the event of interest, taking,
without lost of generality, values 0 and 1, identifying negative and positive individuals, respectively.
For prognosis scenarios, let T be the involved time-to-event random variable and let our aim be to
predict the occurrence of the event of interest before a fixed point of time t. The binary variable
depicting this event is given by Dt, which again takes the values 0, when T > t (negative individuals)
and 1, when T ≤ t (positive individuals). For sake of simplicity, we will remove the subscript t and
will use the same notation in both scenarios.

The expression of the sensitivity can be written as

Se(c) =P(X > c | D)

=
P(X > c, D)

P(D)

=
EX [P(X > c, D | X = x)]

EX [P(D | X = x)]

=
EX [I(c,∞)(x) · P(D | x)]

EX [P(D | x)]

=

∫
[I(c,∞)(x) · P(D | x)]dH(x)∫

(P(D | x))dH(x)
, (2)

where c ∈ R; IA(x) depicts the indicator function; D stands for the positive outcome (D = 1), and
P(D | x) = P(D | X = x).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=sMSROC
https://CRAN.R-project.org/package=sMSROC
https://CRAN.R-project.org/package=sMSROC

CONTRIBUTED RESEARCH ARTICLE 132

Similarly, the specificity has the expression:

Sp(c) =P(X ≤ c | D)

=
P(X ≤ c, D)

P(D)

=
EX [P(X ≤ c, D | X = x)]

EX [P(D | X = x)]

=
EX [I(−∞,c](x) · (1 −P(D | x))]

EX [(1 −P(D | x))]

=

∫
[I(−∞,c](x) · (1 −P(D | x))]dH(x)∫

(1 −P(D | x))dH(x)
, (3)

where D depicts the negative outcome (D = 0).

Let (XN ,DN) = {(x1, d1), · · · , (xN , dN)} be an independent random sample where, for the i-th
individual (1 ≤ i ≤ N), xi is the biomarker value and di reports some information regarding the
outcome of interest. Such information, in the diagnosis scenario, may provide the actual status of
the individual (di = δi, where δi = 0 for a negative individual, or δi = 1, for a positive one) or may
be missing. When dealing with a time-dependent outcome, this information can also include the
event/censoring time, according to the censorship pattern. That is, in the case of right censorship, di =
{δi, zi}, being zi = min{ti, ci}, where ti and ci stand for the event and censoring times, respectively.
Under interval censorship, di = {li, ri}, where li and ri are the lower and upper bounds of the observed
interval containing the event time (li ≤ ti ≤ ri). The sensitivity and specificity given in (2) and (3) can
be estimated through:

Ŝe(c) =
∑N

i=1 I(c,∞)(xi) · P̂N(D | xi)

∑N
i=1P̂N(D | xi)

, (4)

Ŝp(c) =
∑N

i=1 I(−∞,c](xi) · (1 − P̂N(D | xi))

∑N
i=1(1 − P̂N(D | xi))

, c ∈ R, (5)

where P̂N(D | x) is chosen to be an adequate estimator of P(D | x).
Plugging-in the expressions (4) and (5) in the definition of the ROC curve given in (1), we obtain

the Two-stage Mixed Subject (sMS) ROC curve estimator, to which we will refer as sMS estimator:

R̂(u) = Ŝe
(
[1 − Ŝp]−1(u)

)
, u ∈ [0, 1],

where Ŝp
−1

(·) = inf{x : Ŝp(x) ≥ ·}.

We briefly review some features of the sMS estimator already introduced in Díaz-Coto et al. (2021):

• The relationship between the biomaker and the outcome is modeled by P(D | x) (the predictive
model). In the first stage, the sMS estimator approximates the predictive model through the most
suitable probabilistic model (e.g. proportional hazards, logistic regression). In the second stage,
the rest of the unknown parameters is estimated by the corresponding empirical estimators.
The first stage is specially important because the performance of the sMS estimator is highly
dependent on the fit of the predictive model to the actual relationship between the biomarker
and the outcome.

• The sMS estimator does not need to consider the individuals as fully positive or fully negative.
Each individual can be modeled as mixed: partially positive and partially negative (hence the
name “mixed subjects”). The weight allocated to each possibility is determined by the predictive
model considering the biomarker value in the specific individual.

• The sMS estimator can handle missing values in the outcome as well as censored observations
(latter frequently associated with prognosis studies). The individuals with missing outcome are
supposed to be missing at random (MAR) however; that is, their characteristics in the sample
should be similar to those with complete information. Under this assumption, their potential
outcome is determined by the predictive model for the particular biomarker value.

• The sMS estimator generalizes some of the ROC and C/D ROC curve existing estimators. In the
simplest diagnosis scenario, where the real status of all individuals is known, we can estimate
the predictive model P(D | x) through the average of the status of those having a biomarker
value of x. The resulting estimator would be the well-known empirical ROC curve estimator

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 133

(Hsieh and Turnbull, 1996). In the prognosis scenario, considering the adequate estimators
for the predictive model, it is clear the connection with the C/D ROC curve estimators under
right censorship proposed in Martínez-Camblor et al. (2016) and Li et al. (2018), and with
the estimator proposed in Díaz-Coto et al. (2020a) under interval censorship. For particular
parametrizations, the sMS estimator can as well be the C/D ROC curve estimator proposed by
Chambles and Diao (2006) and by Song and Zhou (2008).

• Under certain conditions both the sMS estimator and its corresponding estimator for the AUC
are asymptotically normal distributed. We provide two approximations for the variance of the
AUC estimator: the Theoretical Variance Estimation (TVE), based on a theoretical expression,
and the Empirical Variance Estimator (EVE), which avoids dealing with the expression of
the variance of the predictive model. Explicit expressions for both the TVE and the EVE
approximations are provided in the Appendix of this manuscript. Reported confidence intervals
are A± λα · σ̂, with A and σ̂2 the AUC and variance approximations, respectively, and λα the
adequate quantile based on the normal distribution.

It is worth clarifying that, although related, the sMS estimator is not a single imputation procedure.
In this sense, we are not considering here the presence of missing data in the biomarker. The goal
of the sMS estimator is not to impute the unknown values of the outcome, but to use the estimated
probabilities to approximate the ROC curve. These probabilities could be used even for those subjects
for whom we already know the actual status. For instance, in a standard study in which we collect
the status of each single participant, the empirical model would be an extreme situation in which the
probability of being positive is determined by the actual observed status of the subject (probability
1 or 0). As we have already noted, in this case, the resulting sMS estimator would be the empirical
ROC curve estimator. However, we could model these probabilities by the standard binary logistic
regression to obtain a smoothed ROC curve estimate. For sure, the quality of this estimation would
depend on the goodness of fit of the regression model. For time-to-event outcomes, we can use the
actually observed follow-up times for computing the probabilities. Notice that, if the target of interest
is to predict events prior to the point t = 5, participants who still alive at point 4.99 are more likely
to be alive at 5 than those censored at 0.01. One of the main advantage of the sMS estimator is its
flexibility, which allows to adapt the procedure to several types of data, including different censoring
models, and provides a variety of techniques under the same umbrella.

3 An overview of the package

The main goal of the sMSROC package (available at https://CRAN.R-project.org/package=sMSROC)
is to compute the sMS estimator and related elements, which support the assessment of the diagnos-
tic/prognostic ability of continuous biomarkers. Since R programming is mostly based on objects
(López-Ratón et al., 2014), the sMSROC package consists in a set of functions performing specific
tasks.

Table 1 provides a summary of these functions, grouped by their common features. The functions
have been classified as primary and secondary. Among the former, we consider those directly run by
the end-user to perform the exploratory data analysis, compute the sMS estimator and other metrics
(such as the AUC and its confidence interval), and to summarize the computed results. We refer to
the rest of the functions as secondary, as these are mainly called by other functions and not meant to
be used by the end-user, primarily. We will describe the primary functions in more detail in the next
sections.

The sMSROC package uses some functionalities already implemented in other packages. In a
non-exhaustive list we highlight: the functions Surv and ic_sp, from the survival (Terry M. Therneau
and Patricia M. Grambsch, 2000) and icenReg (Anderson-Bergman, 2017) packages, which provide
estimates of the survival function under right and interval censorship, respectively; the rcs function,
from the rsm package (Harrell Jr, 2023), that computes the cubic splines approximation; the %dopar%
function from the package foreach (Microsoft and Weston, 2022), used to perform parallel computing;
the flextable function, from the package with the same name (Gohel and Skintzos, 2023), which
provides formatted outputs for the tables and the ggplot and plotROC functions, from the packages
ggplot2 (Wickham, 2016) and plotROC (Sachs, 2017), used to obtain well-formatted and interactive
final plots, respectively.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=sMSROC
https://CRAN.R-project.org/package=sMSROC
https://CRAN.R-project.org/package=sMSROC
https://CRAN.R-project.org/package=sMSROC
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=icenReg
https://CRAN.R-project.org/package=rsm
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=plotROC

CONTRIBUTED RESEARCH ARTICLE 134

Table 1: Functions included in the sMSROC package grouped by the similarity of the tasks performed.

Main Functionality Functions General Description

Exploratory explore_table Perform a descriptive analysis
of the biomarker values on
the different samples

data analysis explore_plot

sMS ROC sMSROC Core function that is actually
a wrapper of those functions
computing each element
related to the sMS estimator

curve estimator

Check-ups check_type_outcome

Verify the integrity and the
consistency of the parameters
of the functions entered
by the end-users

check_conf_int
check_grid
check_marker_binout
check_marker_timerc
check_marker_timeic
check_tim
check_meth
check_probs
check_ncpus
check_nboost
check_ci_cl

sMS ROC sMS_binout Compute the sMS ROC curve
estimates in each particular
scenario

sMS_timerc
sMS_timeic

Predictive pred_model_binout Compute the estimates for the
predictive models according to
specific probabilistic models
(first stage of the sMS estimator)

models pred_model_timerc
pred_model_timeic
pred_model_emp

ROC curve compute_ROC Computes the ROC curve and
the AUC through the
estimators of sensitivity and
specificity (second stage of
the sMS estimator)

Confidence intervals auc_ci_boot Compute confidence intervals
for the AUC according to
the selected method

for the AUC auc_ci_emp
auc_ci_var

Plots sMSROC_plot Plot the sMS ROC estimate,
the evolution of the AUCs,
and the predicted probabilities

evol_AUC
prob_pred

Print conf_int_print Prints certain components
of the sMS estimate

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

explore_table
explore_plot
sMSROC
check_type_outcome
check_conf_int
check_grid
check_marker_binout
check_marker_timerc
check_marker_timeic
check_tim
check_meth
check_probs
check_ncpus
check_nboost
check_ci_cl
sMS_binout
sMS_timerc
sMS_timeic
pred_model_binout
pred_model_timerc
pred_model_timeic
pred_model_emp
compute_ROC
auc_ci_boot
auc_ci_emp
auc_ci_var
sMSROC_plot
evol_AUC
prob_pred
conf_int_print

CONTRIBUTED RESEARCH ARTICLE 135

4 Primary functions

4.1 Exploratory data analysis

The exploratory analysis of the data is carried out by the explore_table and explore_plot functions.
They allow to have an insight of the distribution of the biomarker on positive and negative individuals
and on those whose belonging group is unknown. This may help to the selection of the most suitable
predictive model for each particular problem. Both functions share the input parameters collecting
the sample information that was formally introduced previously: the biomarker values and the
information regarding the outcome of interest, which varies depending on the scenario. They also
have specific parameters according to the performed task. The functions provide numerical and
graphical outputs.

The function explore_table computes the most common descriptive statistics for the pooled
sample and the samples of the different types of individuals. The input parameters are:

• marker a vector of the biomarker values.
• status a numeric vector with the status of the individuals. The highest value represents the

event of interest. The lowest value represents the absence of the event of interest. All other
values are ignored.

• observed.time a vector with the observed times for each subject (prognosis scenario under right
censorship). Notice that these values may be the event times or the censoring times.

• left a vector with the lower bounds of the observed intervals. It is mandatory, when computing
the sMS estimator for assessing prognostic biomarkers under interval censorship. It will be
ignored in other situations.

• right a vector with the upper bounds of the observed intervals. Like the previous parameter, it is
mandatory in the prognosis scenario under interval censorship and ignored in other situations.
Non available, NA and ∞ (’Inf’) are admissible values to indicate that the event of interest did
not occur prior to the last observation time.

• time point of time at which the time-dependent sMS estimator will be computed. The default
value is 1. This parameter is mandatory in the prognosis scenario.

• d number of decimal positions to which all results will be rounded. The default value is 2.
• ... rest of the parameters supplied to the flextable function. These can be used to customize the

output table as desired.

In diagnosis scenarios, it is clear when individuals are either positive or negative. When dealing
with time-dependent outcomes, this status depends on a fixed point time t at which they are evaluated.
Particularly, in the interval censorship case, if the last revision time in which the event had already
happened took place before the set time t, the individual is positive at t. If there exists a revision time
beyond t and the event has not been observed yet, the individual is negative at t. When the event
occurs between two consecutive revision times containing the set time t, nothing is known about the
status of the individuals at t, because it is not actually observed when the event happened. We refer to
these individuals as undefined or mixed.

The consistency of the incoming parameters is verified by secondary functions. Next, the type
of scenario handled (diagnosis/prognosis, under right or interval censorship) is determined. The
functions explore_table, explore_plot and sMSROC share both steps.

The output of the function is a list with two components:

• summary a matrix whose columns are the name of the groups, their size and the descriptive
statistics: minimum, maximum, mean, standard deviation and first, second and third quartiles.
The rows show the results for positive, negative, missing/censored/undefined individuals and
the pooled sample.

• table an object of class flextable that collects the descriptive information from the previous
matrix in a table, which can be customized according to the preferences of the users by the
entered parameters.

The function explore_plot plots the kernel density estimations for the biomarker within both
the positive and the negative individuals. The input parameters are those related to the sample
information described for the explore_table function.

The output is a list with three components:

• plot an object of class ggplot with the density functions of the biomarker on the positive and
the negative individuals. The user can add layers to customize the final plot according to the
rules of the ggplot2 package.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

explore_table
explore_plot
explore_table
explore_table
explore_plot
sMSROC
explore_plot
explore_table
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 136

• neg a vector with the marker values of the negative individuals.

• pos a vector with the marker values of the positive individuals.

Example 1 [Exploratory data analysis]: the diabetes dataset

We first consider the study of the ability of stabilized glucose to diagnose diabetes (defined through a
subsidiary measure: a value of glycosylated hemoglobin greater than 7.0) in an African-American
population of central Virginia (USA). We consider the dataset freely available at https://hbiostat.
org/data/. The subset data diabet, used here, is delivered as part of the sMSROC package. More
information about this study can be found in Willems et al. (1997).

A total of 60 individuals out of the 403 included were diabetic (positive), and 330 were classified as
non-diabetic (negative). Besides, there were 13 individuals without glycosylated hemoglobin value, so
we cannot determine their actual status (undefined). The next piece of code provides the distribution
of the stabilized glucose on these groups, shown in HTML format in Table 2:

> library(sMSROC)
> data(diabet)
> expl <- explore_table(marker=diabet$stab.glu, status=diabet$diab)
> expl$table

Table 2: Object of class flextable, one of the elements of the output list of the explore_table function. The usual
descriptive statistics of the stabilized glucose biomarker on the total sample and the samples of Positive, Negative
and Undefined observations are shown.

Left panel of Figure 1 shows the kernel density estimations of the stabilized glucose on positive and
negative individuals generated through the code:

> library(ggplot2)
> density <- explore_plot(marker=diabet$stab.glu, status=diabet$diab)
> output <- density$plot + xlab("Stabilized Glucose") +

scale_x_continuous(breaks = seq(0, 400, 50),
labels = seq(0, 400, 50),
limits = c(0, 400))

> output

4.2 Main function

sMSROC is the main function in the package. It computes the sMS ROC curve estimator and its
associated AUC with confidence intervals, estimated using the bootstrap percentile (BP) method, and
according the approximations EVE and TVE given in Section 2. The function has the following input
parameters:

• meth method for approximating the predictive model P(D|x). There are several options
available:

- E implements the naive method where missing, censored and undefined individuals are
removed from the data.

- L in the diagnosis scenario this option models the probability of being positive as:

P(D|x) = 1
1 + exp{−(β0 + β1 · x)} , β0, β1 ∈ R.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://hbiostat.org/data/
https://hbiostat.org/data/
https://CRAN.R-project.org/package=sMSROC
explore_table

CONTRIBUTED RESEARCH ARTICLE 137

0.00

0.01

0.02

0.03

0 50 100 150 200 250 300 350 400
Stabilized Glucose

D
e

n
si

tie
s

 Negative Positive

0.0

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14
KTFS

D
e

n
si

tie
s

 Negative Positive

Figure 1: Left: Kernel density estimations of the stabilized glucose biomarker on negative and positive individuals.
Right: kernel density estimations of the KTFS biomarker on negative and positive individuals after 5 years from
transplantation.

In the case of prognosis scenarios under right censorship, a proportional hazards Cox
regression model is used to approximate P(T ≤ t|x) (and therefore, P(D|x)).

P(T ≤ t|x) = 1 − exp{−Γ0(t) · exp{β · x}},

where Γ0(·) stands for the so-called cumulative baseline hazard function (Cox, 1972).
Under interval censorship, P(T ≤ t|x) is approximated through the model proposed in
Díaz-Coto et al. (2020a):

P(T ≤ t|x) = S(U|x)− S(t|x)
S(U|x)− S(V|x) , (6)

where U = min {t, L} and V = max {t, R}, being L and R the random variables depicting
the edges of the observable interval (L, R]. The expression S(t|x) stands for S(t|X = x),
that is, the survival function at t, given the marker value. It is estimated by proportional
hazards model under interval censorship (Finkelstein, 1986), applying linear interpolation
inside the Turnbull intervals (Turnbull, 1976).
In this case, the parameter all indicates whether this approximation applied to all individ-
uals or just to the mixed/censored/undefined ones.

- S approximates, in diagnosis scenarios, the logit transformation of the predictive model
via a cubic spline function. That is:

P(D|x) = 1
1 + exp{−s(x)} ,

where s(·) depicts some smooth function, estimated from restricted cubic splines (Harrel,
2015). In the prognosis scenario under right censorship, we consider a proportional
hazards model with a more flexible option to approximate the predictive model:

P(T ≤ t|x) = 1 − exp{−Γ0(t) · exp{s(x)}},

where a penalized splines procedure (Hurvich et al., 1998) estimates the smooth function
s(·). Under interval censorship the predictive model is obtained by

P(T ≤ t|x) = 1 − S(t|x),

where S(t|x) is estimated as before through a proportional hazards model under interval
censorship.

• probs a vector of manually entered predicted probabilities. This argument is useful if the user
wants to estimate the predicted probabilities via a different model than the ones currently
offered by the package. In this case, the argument meth will be ignored.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 138

• sd.probs a vector with the standard deviation of the probabilities entered as probs. It is an
optional parameter.

• grid grid size for computing the ROC curve estimate. The default value is 1000. It is also used
to compute the AUC.

• conf.int argument with two possible values indicating whether confidence intervals for the
AUC will be computed (T) or not (F).

• ci.cl confidence level at which the confidence intervals for the AUC will be calculated. The
default value is 95%.

• ci.meth method for computing the AUC confidence intervals. There are three options available:

- V method that uses the TVE variance approximation.

- E method which uses the EVE approximation.

- B confidence intervals based on BP.

• ci.nboost number of bootstrap samples to be run when the option B is chosen as ci.meth
parameter. The default value is 500.

• parallel argument with two possible values which indicates whether parallel computing will be
carried out (T) or not (F). There are two processes that currently support parallel computing: the
B and V options to obtain confidence intervals for the AUC.

• ncpus number of CPUS that will be used when parallel computing is chosen.

• all parameter indicating whether all probabilities given by the predictive model should be
considered (T) or only those corresponding to individuals whose condition as positive or
negative is unknown (F).

The sMSROC function returns an object of class sMSROC. It is a list of the following elements:

• thres a vector of thresholds at which the sensitivity and the specificity have been computed.

• SE a vector with the sensitivities at the considered thresholds thres.

• SP a vector with the specificities calculated at the thresholds thres.

• probs a vector with the predictive model estimates for each threshold. Recall that they represent
the probability for the observations of being positive, given their marker values.

• u sequence of points at which the sMS estimator will be computed. Its length is determined by
the grid selection parameter.

• ROC sMS ROC curve estimate computed at each value of the sequence u.

• time the point of time at which the ROC curve has been computed, in the case of time-dependent
outcomes.

• auc area under the sMS ROC curve estimate. It is computed as the sum of the area of the
rectangles whose base lies on two consecutive values of the sequence u and whose height is the
sMS estimate value that corresponds to the lower edge of the base.

• auc.ci.cl confidence level at which the confidence interval for the AUC has been computed.

• auc.ci.l lower bound of the confidence interval for the AUC.

• auc.ci.u upper bound of the confidence interval for the AUC.

• ci.meth method used for estimating the confidence intervals for the AUC.

• data a list whose elements are, in addition to the type of outcome handled, the set of parameters
that had been used to compute the sMS estimator. The values for the grid, meth, parallel and
ncpus elements are the default or those entered by the users. The marker, status, observed
time, left and right vectors do not contain the positions that correspond to the missing marker
values. The outcome element is a vector taking the value 1 for the positive individuals; 0, for
negative and −1 for the missing/censored/undefined ones.

• message a table with the warning messages generated along the computation process.

The computation of the sMS ROC curve estimator is wrapped in three secondary functions
according to each scenario. They have the same structure: a part in which the predictive model
is estimated (first stage of the sMS estimator), and a common part where the remainder unknown
elements are approximated through their empirical estimators (second stage of the sMS estimator).

The functions computing the predictive models have a common output: a list with the ordered
marker values and their corresponding estimated probabilities. These two components and the grid
are the input parameters of the compute_ROC function, which implements the computation of the

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

compute_ROC

CONTRIBUTED RESEARCH ARTICLE 139

second stage of the sMS estimator. This function provides: the sMS estimates for the sensitivity and
the specificity according to the expressions given in (4) and (5); the ROC curve approximation obtained
from these estimates (at the granularity level chosen through the grid parameter) and the underlying
AUC. It is possible as well to directly enter the probabilities corresponding to the predictive model as
parameter probs. In this case, none of the functions that compute the predictive model are called.

When the conf.int parameter is set to T, confidence intervals for the AUC are provided at the
confidence level indicated as ci.cl parameter. They are computed according to the method entered as
ci.meth parameter.

• When the chosen method is B the function auc_ci_boot is called and the confidence intervals
based on BP are calculated. Depending on the type of outcome handled, the corresponding
functions for computing the AUC under the sMS estimator are called ci.nboost times. Since the
bootstrap processes can be time-consuming, the function can be run in parallel via the argument
parallel. In this case, the number of desired CPUs to be used should be indicated through the
parameter ncpus. The package foreach was used to implement the parallel computation.

• Placing the option V as ci.method, the function auc_ci_nvar is called and the confidence inter-
vals are computed according to the asymptotic normality of the AUC estimator, based on the
TVE approximation. The expression for the variance in this method depends on the variance
of the predictive model estimates. That variance is calculated in an independent auxiliary
function by bootstrapping (it is possible as well to perform parallel computation to carry out
this task). When the probabilities of the predictive model have been directly entered by the
users, there is also the option of indicating, manually, the corresponding standard deviation for
these probabilities.

• When the selected method is E, the function auc_ci_emp uses the asymptotic normality of the
AUC estimator, in this case, the variance is calculated through the EVE approximation.

The three functions have the same output: a list with two components, the lower and upper edges of
the computed confidence intervals for the AUC.

Example 1 [ROC curve models]: the diabetes dataset

Coming back to the diabetes dataset, we compute the ROC curves to assess the ability of Stabilized
glucose to identify patients with diabetes. First, we only include this biomarker in the model, and since
we observed that its distribution within the positive and the negative populations differs in location,
spread, and shape, we used a smooth logistic regression for the first-stage estimation.

> roc_diabetes <- sMSROC(marker=diabet$stab.glu, status=diabet$diab, meth="S")
> roc_diabetes

The AUC is 0.926.
Predictive model computed through a smooth logistic regression model, based on 60 positive,
330 negative, and 13 undefined (mixed) subjects.

The object roc_diabetes also contains the following components

> summary(roc_diabetes)

Length Class Mode
thres 403 -none- numeric
SE 403 -none- numeric
SP 403 -none- numeric
probs 403 -none- numeric
u 1001 -none- numeric
ROC 1001 -none- numeric
auc 1 -none- numeric
ci.meth 3 -none- character
data 6 -none- list
message 4 -none- character

which allow to perform a number of customized figures and analyses, including the selection of
thresholds under different criteria.

On the other hand, if we want to use an alternative model in the first-stage, for instance, by
including additional information which could help us to have a more accurate prediction of the real

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

auc_ci_boot
https://CRAN.R-project.org/package=foreach
auc_ci_nvar
auc_ci_emp
roc_diabetes

CONTRIBUTED RESEARCH ARTICLE 140

status of the undefined subjects, we just have to perform this first-stage out of the sMSROC function,
and save the vector of the predicted probabilities. This is illustrated in the following chunk of code,
where we use logistic regression with first-order effects for both the biomarker and age.

> alt_mod <- glm(diab ~ diabet$stab.glu + diabet$age, family = 'binomial')
> prob_model <- predict(alt_mod, type = 'response',

newdata = data.frame(diabet$diab, diabet$stab.glu, diabet$age))

Then, we include these probabilities in the function

> roc_diabetes_prob <- sMSROC(marker=diabet$stab.glu, status=diabet$diab,
probs=prob_model)

> roc_diabetes_prob

The AUC is 0.886.
Predictive model externally computed. Based on 0 positive, 0 negative,
and 403 undefined (mixed) subjects.

Notice that, in this example, all the subjects are considered as mixed, since none of them are
considered as fully positive not fully negative. If we would want to apply this model only on those
subjects for which the actual status is unknown, we should introduce probabilities of 1 of 0 for the
actually positive, and actually negative, respectively.

Example 2 [ROC curve models]: the kidney transplant failure score (KTFS) dataset

In this second example, our aim is to evaluate the prognostic ability of the Kidney Transplant Failure
Score (KTFS) to predict the graft failure after five years from kidney transplantation. The KTFS is a
composite score build on the base of accepted risk factors of graft loss (Foucher et al., 2010). We will
use a subset of the DIVAT cohort (https://www.divat.fr) delivered at the RISCA package, and now
also included in our package. This dataset, ktfs, contains the follow-up time from transplantation in
years to either of the graft failure or the censoring time (in many cases due to death), a graft failure
indicator, and the KTFS score for 2,169 kidney transplant recipients. The distribution of the KTFS score
on both patients with graft failure within 5 years (108), and those with a functional graft after 5 years
(954) was depicted in Figure 1 (right). Notice that 1107 patients were undefined (follow-up below 5
years and graft working).

> data(ktfs)
> roc_KTFS <- sMSROC(marker=ktfs$score, status=ktfs$failure,
> observed.time=ktfs$time, time=5, meth="L",
> conf.int="T", ci.meth ="E")

The AUC is 0.763.
Predictive model computed through a Cox PH regression model, based on 108 positive, 954 negative,
and 1107 undefined (mixed) subjects.

4.3 Summarize and plot functions

The sMSROC package includes functions which provide numerical and graphical summaries of the
data contained in the object returned by the sMSROC function. We describe them below.

The sMSROC_plot provides informative plots of the sMS ROC curve estimate. The function has the
following input parameters:

• sMS an object of class sMSROC.

• m.value marker value. When specified, the point which corresponds to that marker value is
added over the plot of the ROC curve.

The function generates two different types of graphics. On one hand, it computes a basic plot
approximating the ROC curve by the pairs given by the sequences 1 - SP and SE, from the sMSROC
object. We have added to this plot the layers geom_roc() and roc_style() from the plotROC package,
to obtain a final object that could take advantage of the whole functionality of this package. On the
other hand, we produce a customized graphic of the ROC curve whose class is ggplot by plotting the
sequence 1 - SP against SE. In the case that a number of m.value is indicated, the final plot displays
over the ROC curve line the point that corresponds to the entered value.

The output of the function is a list with two components:

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://www.divat.fr
https://CRAN.R-project.org/package=RISCA
https://CRAN.R-project.org/package=sMSROC
sMSROC_plot
https://CRAN.R-project.org/package=plotROC

CONTRIBUTED RESEARCH ARTICLE 141

• basic.plot an object that can be used and customized using the tools from the plotROC package.

• roc.plot an object of class ggplot. Although it is already customized (e.g. title, colors or axis
labels) the users can make their own changes by adding the corresponding layers through the
tools available in the ggplot2 package.

The function evol_AUC provides a graphic with the areas under the time-dependent ROC curves
computed by the sMS estimator over a sequence of times. Its input parameters include the sample
information for time-dependent outcomes (marker, status, observed.time, left and right); the time,
that in this case is a vector containing the points of time at which the AUC will be computed; the
method of computation (meth) and the grid. The features of these parameters are the same described
for the corresponding functions in the package. The function evol_AUC calls sMSROC at each of the
times indicated in the vector time, and the AUC is computed according to the parameters indicated.
The output is a list with three elements:

• evol.auc an object of class ggplot. It is a graphic line plotting the AUCs at the considered times.

• time a vector with the values of the time entered as parameter.

• auc a vector with the values of the AUCs computed at the times indicated at the time parameter.

The function pred_probs plots the predicted probabilities estimated from the predictive model for
each of the marker values. It may provide a 95% pointwise confidence intervals. The input parameters
of the function are:

• sMS an object of class sMSROC.

• var argument with two possible values indicating whether the pointwise confidence intervals
should be computed (T) or not (F).

• nboost number of bootstrap samples for computing the pointwise confidence interval.

• parallel argument indicating whether parallel computing will be carried out (T) or not (F).

• ncpus number of CPUS to be used in the case of choosing parallel computing.

The function pred_probs generates a graphic for the probability estimation of the predictive model
versus the marker values. As usual, this is a ggplot object which can be customized by the user. In the
case that the var option is set to T, the function computes and plots 95% pointwise confidence intervals
on the same graphic. The variance of the probability estimates is computed via bootstrap. The output
of the function is a list with four components:

• plot an object of class ggplot.

• thres a vector of marker values (x-axis coordinates).

• probs a vector containing the predicted probabilities (y-axis coordinates).

• sd.probs a vector containing the estimation of the deviation of the predicted probabilities.

Example 2 [ROC curve plots]: the kidney transplant failure score (KTFS) dataset

The next piece of code returns the plot of the ROC curve computed on the data from the KTFS example
(top-left). We only show the basic plot, however, it can be customized with elements from the plotROC
package. The code also generates the probabilities derived from the predicitive model used in the first
stage (i.e. proportional hazard Cox regression), and included in the same panel (top-right), and the
evolution of the AUC over ten years from kidney transplantation (bottom).

> # ROC curve
> plot_KTFS <- sMSROC_plot(sMS = roc_KTFS, m.value = 3.9)
> plot_KTFS$rocplot
>
> # Evolution of the AUCs
> aucs <- evol_auc(marker = ktfs$score, status = ktfs$failure,
> observed.time = ktfs$time,
> time = seq(2, 10), meth = "L")
> plot_aucs <- aucs$evol.auc +
> scale_x_continuous(limit = c(2, 10),
> breaks = seq(2, 10, 1)) +
> scale_y_continuous(limit = c(0.4, 1),
> breaks = seq(0.4, 1, 0.1))
> df1 <- data.frame(x = c(2,10), y = c(0.5, 0.5))

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=plotROC
https://CRAN.R-project.org/package=ggplot2
evol_AUC
evol_AUC
sMSROC
pred_probs
pred_probs
https://CRAN.R-project.org/package=plotROC

CONTRIBUTED RESEARCH ARTICLE 142

> plot_aucs <- plot_aucs +
> geom_line(data = df1, aes(x, y), linewidth = 0.9, colour = "gray", linetype = "twodash")
> plot_aucs
>
> # Predictive model
> probs <- probs_pred(roc_KTFS, var = "T")
> plot_probs_pred <- probs$plot + xlab("KTFS")
> plot_probs_pred

All these plots are arranged in the Figure 2.

3.93.9

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
1 − Specificity

S
en

si
tiv

ity

ROC Curve

0.00

0.25

0.50

0.75

1.00

4 8 12 16
KTFS

P
ro

ba
bi

lit
y

Predictive Model

0.4
0.5
0.6
0.7
0.8
0.9
1.0

2 3 4 5 6 7 8 9 10
Follow−up

A
U

C

Evolution of the AUC

Figure 2: Upper left: graphic of ROC curve estimate obtained from the sMSROC_plot function, customized to
show the point of the curve corresponding to a given KTFS value. Upper right: estimated probabilities from the
predictive model with 95% pointwise confidence intervals computed for the biomarker. Bottom: evolution of the
AUCs over 10 years from kidney transplantation for the KTFS score.

Finally, the function conf_int_print prints the values, method of computation, and the confidence
level of the confidence intervals calculated for the AUC. Since the sMSROC object may contain
information stored in large list of components, we only print a single summary, such as the lower and
the upper bounds of the confidence intervals, the level at which they were obtained, and the method
used for their computation. The input of this function is an object of class sMSROC and the output is
a string including the described information. As example, below is shown the code for printing the
AUC and 95% confidence intervals for the KTFS at 5 years:

> conf.int.print(roc_KTFS)
"AUC: 0.76; 0.95\% C.I.[0.6, 0.93]"

5 Example 3: the fibrosis dataset

We finally consider the fibrosis dataset. This synthetic data set ships alongside singR and emulates a
retrospective study carried out at three different medical centers in Spain. The goal was to determine
the capacity of a score punctuation (based on the age, different polymorphisms, and other variables)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

sMSROC_plot
conf_int_print

CONTRIBUTED RESEARCH ARTICLE 143

to predict the worsening of the fibrosis stage in patients with chronic Hepatitis C (HC). A total of 722
individuals infected by the HC virus, and underwent revision since a particular date were enrolled.
The date of the diagnosis of HC and a number of variables determining the risk score such as the
age, gender, alcohol consumption, and different polymorphism variants were also collected. Reader
interested in having more information about the original study are referred to Vidal-Castiñeira et al.
(2020).

Particularly, we are interested in knowing the prediction ability of the constructed risk score at
5, 10, and 15 years from the HC onset. However, for each patient, we only know whether or not the
fibrosis worsened within the interval (0, Ri] or (Ri, ∞) (1 ≤ i ≤ 722), where Ri is the time between
the diagnosis and the revision dates. Therefore, we have an interval censorship scenario in which, for
instance, at 5 years, the ith patient is positive if they were positive in the revision and Ri ≤ 5, negative
if they was negative in the revision and Ri ≥ 5, and undefined otherwise. The next piece of code
deals with the ROC curve construction at 5 years. Since higher values of the score are associated with
smaller probabilities of having the event, we have transformed the values adequately.

> data(fibrosis)
> explore_table(marker = -fibrosis$Score, left = fibrosis$Start,
> right = fibrosis$Stop, time = 5)$summary

Sample Size Minimun Maximun Mean Sd Variance Q1 Median Q3
1 Positive 21 -8 -2 -5.95 1.63 2.65 -7 -6 -5
2 Negative 112 -22 -3 -11.30 3.21 10.30 -13 -11 -9
3 Miss/Cens/Und 589 -21 -3 -10.02 3.09 9.56 -12 -10 -8
4 Total 722 -22 -2 -10.10 3.19 10.19 -12 -10 -8

> roc_fibrosis_5 <- sMSROC(marker = -fibrosis$Score, left = fibrosis$Start,
> right = fibrosis$Stop, meth = "L", time = 5)
> roc_fibrosis_5

The AUC is 0.647.
Predictive model computed through a D. Finkelstein PH regression model, accounting to
the length of the observed intervals, based on 21 positive, 112 negative
and 589 undefined (mixed) subjects.

> sMSROC_plot(roc_fibrosis_5)$rocplot

Figure 3 shows the ROC curves at 5, 10, and 15 years using the sMS ROC curve estimates (top-left),
and the estimator proposed by Beyene and El Ghouch (2022) (top-right) and recently implemented in
the package cenROC. Besides, since the object roc_fibrosis_5 also contains the values of both the
sensitivity and the specificity for each potential threshold, the next simple piece of code allows to
compute the weighted Youden index (Martínez-Camblor, 2011).

Jλ = max
x∈R

{λ · Se(x) + (1 − λ) · Sp(x)} λ ∈ [0, 1],

and its associated threshold. Figure 3 (middle) depicts Jλ at 5 years, and highlights some of the
thresholds. Notice that J1/2 is equivalent to the Youden index. We also include the AUC evolution
along the follow-up computed through the sMSROC (blue line) and cenROC (red line) packages.
AUCs at 5, 10, and 15 years were 0.647, 0.680 and 0.687 for the sMS ROC curve (Figure 3 bottom), and
0.640, 0.653 and 0.680 for the cenROC-based estimations.

> lambda <- seq(0, 1, length = 101)
> Yw <- seq(0, 1, length = 101)
> Tw <- seq(0, 1 ,length = 101)

> for (j in 1:101) {
> Yw[j]<- max(lambda[j]*roc_fibrosis_5$SE + (1-lambda[j])*roc_fibrosis_5$SP)
> Tw[j]<- roc_fibrosis_5$thres[which.max(lambda[j]*roc_fibrosis_5$SE +

(1-lambda[j])*roc_fibrosis_5$SP)]}

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=cenROC
roc_fibrosis_5
https://CRAN.R-project.org/package=sMSROC
https://CRAN.R-project.org/package=cenROC

CONTRIBUTED RESEARCH ARTICLE 144

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

5 Years

10 Years

15 Years

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

λ

W
ei

gh
te

d
Yo

ud
en

 In
de

x

−3

−3

−11

−18

−22

0.
4

0.
6

0.
8

1.
0

Follow−up

A
U

C

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 3: Top: ROC curves estimates at 5, 10 and 15 years from the sMSROC (left), and from the cenROC (right)
packages. Middle: Weighted Youden Index at 5 years from the sMS ROC curve estimation. Bottom: AUC evolution
from 3 to 18 years for the two considered estimators.

6 Conclusions

We presented the new R package sMSROC which implements the two-stage mixed-subjects ROC
curve estimator. This procedure allows the user to assess the classification performance of both
diagnostic and prognostic biomarkers. The package offers a set of exploratory functions which allow
researches to have an insight of the distribution of the biomarkers on positive and negative individuals,
and on those whose status is unknown. A single main function (sMSROC) wraps secondary functions
developed to compute the sMS estimator, and the AUC with a confidence interval. This method allows
to link the diagnosis and prognosis scenarios via a predictive model which models the relationship
between the biomarker and the event under study. The most common probabilistic models (e.g.
logistic regression, Cox proportional hazards regression) are implemented out-of-the-box and the user
can also enter their own predicted probabilities which can be computed using any other appropriate
model. A separate function computes the weighted empirical estimator of the biomarker to get the
corresponding estimates for the sensitivity and specificity (second stage). We also implemented three
different ways of computing the variance of the AUC and these are available in the package. The
package also contains several summarize functions which provide useful numerical and graphical
outputs. These include the ROC curve plots, a plot of the evolution of the AUC over time, or the plots
of the predictive models.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=sMSROC
https://CRAN.R-project.org/package=cenROC
R
https://CRAN.R-project.org/package=sMSROC
sMSROC

CONTRIBUTED RESEARCH ARTICLE 145

Appendix

Assume a sample with N subjects. Let {P̂(D|x1), · · · , P̂(D|xN)} be the individual estimated proba-
bilities of being within the positive group, and let {σ̂2(x1), · · · , σ̂2(xN)} be their respective variance.
Then, if π̂N = N−1 ∑N

i=1 P̂(D|xi), the TVE approximation for the variance of AUC is

TVE =
1

[π̂N · (1 − π̂N])2 · [v̂2
1 + v̂2

2],

where

v̂2
1 =N−1

N

∑
j=1

{
[Ŵse(xj) + Ŵsp(xj)] · P(D|xj)− Ŵsp(xj)

}2
, and

v̂2
2 =

N−1 ·
N

∑
j=1

[Ŵsp(xj)− Ŵse(xj)]̇̂σ(xj)

2

,

and with

Ŵse(x) =N−1
N

∑
j=1

[I(xj ,∞)(x)− Ŝe(xj)] · [1 − P̂(D|xj)], and

Ŵsp(x) =N−1
N

∑
j=1

[I(xj ,∞)(x)− Ŝp(xj)] · P̂(D|xj),

IA(s) is the indicator function (takes the value 1 if s ∈ A, and 0 otherwise) and Ŝe(·) and Ŝp(·)
are the estimates for the sensitivity and the specificity, respectively. The most challenging part of
approximating the variance is usually the computation of σ̂2(·). When P̂(D|x) is based on logistic
or Cox-type regression models, closed-form equations for estimating the variance are available.
However, these equations are based on the Delta-method and the obtained results are sometimes
not good estimates. The EVE approximation considers that the proposed AUC estimator variance is
similar to the one based on the empirical estimator of the observed subjects, and therefore it could be
approximated through

EVE =
N

NO
·
{

1
1 − π̂N

· < Ŝe, Ŝp > +
1

π̂N
· < Ŝp, Ŝe >

}
,

where given two real functions f and g, < f , g >=
∫

f 2dg − (
∫

f dg)2, and NO is the number of
subjects with complete information (those used for estimating the predictive model).

References

C. Anderson-Bergman. icenReg: Regression models for interval censored data in R. Journal of Statistical
Software, 81(12):1–23, 2017. URL https://doi.org/10.18637/jss.v081.i12. [p133]

N. N. Basu, S. Ingham, J. Hodson, F. Lalloo, M. Bulman, A. Howell, and D. G. Evans. Risk of
contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a 30-year semi-prospective
analysis. Familial Cancer, 14(4):531–538, 2015. URL https://doi.org/10.1007/s10689-015-9825-9.
[p130]

K. M. Beyene and A. El Ghouch. Time-dependent ROC curve estimation for interval-censored data.
Biometrical Journal, 64(6):1056–1074, 2022. URL https://doi.org/10.1002/bimj.202000382. [p130,
143]

K. M. Beyene and A. El Ghouch. cenROC: estimating time-dependent ROC curve and AUC for censored
data, 2023. URL https://CRAN.R-project.org/package=cenROC. R package version 2.0.0. [p130]

K. M. Beyene and A. El Grouch. Smoothed time-dependent receiver operating characteristic curve for
right censored survival data. Statistics in Medicine, 39(24):3373–3396, 2020. URL https://doi.org/
10.1002/sim.8671. [p130]

P. Blanche, J. F. Dartigues, and H. Jacqmin-Gadda. Review and comparison of ROC curve estimators
for a time-dependent outcome with marker-dependent censoring. Biometrical Journal, 55(5):687–704,
2013a. URL https://doi.org/10.1002/bimj.201200045. [p130]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.18637/jss.v081.i12
https://doi.org/10.1007/s10689-015-9825-9
https://doi.org/10.1002/bimj.202000382
https://CRAN.R-project.org/package=cenROC
https://doi.org/10.1002/sim.8671
https://doi.org/10.1002/sim.8671
https://doi.org/10.1002/bimj.201200045

CONTRIBUTED RESEARCH ARTICLE 146

P. Blanche, J.-F. Dartigues, and H. Jacqmin-Gadda. Estimating and comparing time-dependent areas
under receiver operating characteristic curves for censored event times with competing risks.
Statistics in Medicine, 32(30):5381–5397, 2013b. URL https://doi.org/10.1002/sim.5958. [p130]

L. Chambles and G. Diao. Estimation of time-dependent area under ROC curve for long-term risk
prediction. Statistics in Medicine, 20(25):3474–3486, 2006. URL https://doi.org/10.1002/sim.2299.
[p130, 133]

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodologi-
cal), 34(2):187–220, 1972. URL https://doi.org/10.1111/j.2517-6161.1972.tb00899.x. [p137]

S. Díaz-Coto, P. Martínez-Camblor, and N. O. Corral-Blanco. Cumulative/dynamic ROC curve
estimation under interval censorship. Journal of Statistical Computation and Simulation, 90(9):1570–
1590, 2020a. URL https://doi.org/10.1080/00949655.2020.1736071. [p130, 133, 137]

S. Díaz-Coto, P. Martínez-Camblor, and S. Pérez-Fernández. smoothROCtime: an R package for
time-dependent ROC curve estimation. Computational Statistics, 2020b. URL https://doi.org/10.
1007/s00180-020-00955-7. [p130]

S. Díaz-Coto, N. Corral-Blaco, and P. Martínez-Camblor. Two-stage receiver operating-characteristic
curve estimator for cohort studies. The International Journal of Biostatistics, 17:117–137, 2021. URL
https://doi.org/10.1515/ijb-2019-0097. [p131, 132]

J. I. Epstein, L. Egevad, M. B. Amin, B. Delahunt, J. R. Srigley, P. A. Humphrey, and the Grading-
Comittee. The 2014 international society of urological pathology (ISUP) consensus conference on
gleason grading of prostatic carcinoma. The American Journal of Surgical Pathology, 40(2):244–252,
2016. URL https://doi.org/10.1097/PAS.0000000000000530. [p130]

R. Etzioni, M. Pepe, G. Longton, C. Hu, and G. Goodman. Incorporating the time dimension in receiver
operating characteristic curves: A case study of prostate cancer. Medical Decision Making, 19(3):
242–251, 1999. URL https://doi.org/10.1177/0272989X9901900303. [p130]

P. M. Farrell, B. J. Rosenstein, T. B. White, F. J. Accurso, C. Castellani, G. R. Cutting, P. R. Durie,
V. A. LeGrys, J. Massie, R. B. Parad, M. J. Rock, P. W. Campbell 3rd, and Cystic-Fibrosis-
Foundation. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cys-
tic fibrosis foundation consensus report. The Journal of Pediatrics, 153(2):S4–S14, 2008. URL
https://doi.org/10.1016/j.jpeds.2008.05.005. [p129]

E. Ferreirós, C. Boissonnet, R. Pizarro, P. Merletti, G. Corrado, A. Cagide, and O. Bazzino. Independent
prognostic value of elevated C-reactive protein in unstable angina. Circulation, 100(19):1958–1963,
1999. URL https://doi.org/10.1161/01.CIR.100.19.1958. [p130]

D. M. Finkelstein. A proportional hazards model for interval-censored failure time data. Biometrics.,
42(4):845–854, 1986. URL https://doi.org/10.2307/2530698. [p137]

Y. Foucher, P. Daguin, A. Akl, M. Kessler, M. Ladrière, C. Legendre, H. Kreis, L. Rostaing, N. Kamar,
G. Mourad, V. Garrigue, F. Bayle, B. H. de Ligny, M. Büchler, C. Meier, J. P. Daurès, J. P. Soulillou,
and M. Giral. A clinical scoring system highly predictive of long-term kidney graft survival. Kidney
International, 78(12):1288–1294, 2010. URL https://doi.org/10.1038/ki.2010.232. [p140]

D. Gohel and P. Skintzos. flextable: functions for tabular reporting, 2023. URL https://CRAN.R-project.
org/package=flextable. R package version 0.9.3. [p133]

L. Gonçalves, A. Subtil, M. Rosário Oliveira, and P. De Zea Bermudez. ROC curve estimation: An
overview. Statistical Journal, 12(1):1–20, 2014. URL https://doi.org/10.57805/revstat.v12i1.141.
[p129]

J. Hanley and B. McNeil. The meaning and use of the area under the receiver operating characteristic
(ROC) curve. Radiology, 20(143):29–36, 1982. URL https://doi.org/10.1148/radiology.143.1.
7063747. [p129]

F. E. Harrel. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordonal
Regression and Survival Analysis. Springer Series in Statistics. Springer International Publishing, 2015.
[p137]

F. E. Harrell Jr. rms: Regression modeling strategies, 2023. URL https://CRAN.R-project.org/package=
rms. R package version 6.7-1. [p133]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.1002/sim.5958
https://doi.org/10.1002/sim.2299
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1080/00949655.2020.1736071
https://doi.org/10.1007/s00180-020-00955-7
https://doi.org/10.1007/s00180-020-00955-7
https://doi.org/10.1515/ijb-2019-0097
https://doi.org/10.1097/PAS.0000000000000530
https://doi.org/10.1177/0272989X9901900303
https://doi.org/10.1016/j.jpeds.2008.05.005
https://doi.org/10.1161/01.CIR.100.19.1958
https://doi.org/10.2307/2530698
https://doi.org/10.1038/ki.2010.232
https://CRAN.R-project.org/package=flextable
https://CRAN.R-project.org/package=flextable
https://doi.org/10.57805/revstat.v12i1.141
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=rms

CONTRIBUTED RESEARCH ARTICLE 147

P. J. Heagerty and P. Saha-Chaudhuri. survivalROC: time-dependent ROC curve estimation from censored
survival data, 2022. URL https://CRAN.R-project.org/package=survivalROC. R package version
1.0.3.1. [p130]

P. J. Heagerty, T. Lumley, and M. S. Pepe. Time-Dependent ROC Curves for Censored Survival Data
and a Diagnostic Marker. Biometrics., 56(2):337–344, 2000. URL https://doi.org/10.1111/j.0006-
341x.2000.00337.x. [p130]

F. Hsieh and B. W. Turnbull. Nonparametric and semiparametric estimation of the receiver operating
characteristic curve. The Annals of Statistics, 24(1):25–40, 1996. URL https://doi.org/10.1214/aos/
1033066197. [p133]

H. Hung and C. Chiang. Optimal composite markers for time-dependent receiver operating character-
istic curves with censored survival data. Scandinavian Journal of Statistics, 20(37):664–679, 2010. URL
https://doi.org/10.1111/j.1467-9469.2009.00683.x. [p130]

C. M. Hurvich, J. S. Simonoff, and C.-L. Tsai. Smoothing parameter selection in nonparametric
regression using an improved Akaike information criterion. Journal of the Royal Statistical Society,
Series B (Statistical Methodology), 60(2):271–293, 1998. URL https://doi.org/10.1111/1467-9868.
00125. [p137]

A. N. Kamarudin, T. Cox, and R. Kolamunnage-Dona. Time-dependent ROC curve analysis in medical
research: current methods and applications. BMC Medical Research Methodology, 17(53), 2017. URL
https://doi.org/10.1186/s12874-017-0332-6. [p130]

L. Li and C. Wu. tdROC: non-parametric estimation of time-dependent ROC curve for right censored survival
data, 2016. URL https://CRAN.R-project.org/package=tdROC. [p130]

L. Li, T. Greene, and B. Hu. A simple method to estimate the time-dependent receiver operating
characteristic curve and the area under the curve with right censored data. Statistical Methods in
Medical Research, 27(8):2264–2278, 2018. URL https://doi.org/10.1177/0962280216680239. [p130,
133]

J. Lin, Y. Wu, X. Wang, and K. Owzar. intcensROC: AUC estimation of interval censored survival data, 2021.
URL https://CRAN.R-project.org/package=intcensROC. R package version 0.1.3. [p130]

J. Long, Z. Yang, L. Wang, Y. Han, C. Peng, C. Yan, and D. Yan. Metabolite biomarkers of Type 2
diabetes mellitus and pre-diabetes: a systematic review and meta-analysis. BMC Endocrine Disorders,
20(1):SP174, 2020. URL https://doi.org/10.1186/s12902-020-00653-x. [p129]

M. López-Ratón, M. X. Rodríguez-Álvarez, C. Cadarso-Suárez, and F. Gude-Sampedro. OptimalCut-
points: An R package for selecting optimal cutpoints in diagnostic tests. Journal of Statistical Software,
61(8):1–36, 2014. URL https://doi.org/10.18637/jss.v061.i08. [p133]

P. Martínez-Camblor. Nonparametric cutoff point estimation for diagnostic decisions with weighted
errors. Revista Colombiana de Estadística, 34(1):133–146, 2011. URL https://doi.org/10.15446/rce.
[p143]

P. Martínez-Camblor and J. C. Pardo-Fernández. Smooth time-dependent receiver operating char-
acteristic curve estimators. Statistical Methods in Medical Research, 27(3):651–674, 2018. URL
https://doi.org/10.1177/0962280217740786. [p130]

P. Martínez-Camblor, G. F. Bayón, and S. Pérez-Fernández. Cumulative/dynamic ROC curve es-
timation. Journal of Statistical Computation and Simulation, 86(17):3582–3594, 2016. URL https:
//doi.org/10.1080/00949655.2016.1175442. [p130, 133]

Microsoft and S. Weston. foreach: Provides foreach looping construct, 2022. URL https://CRAN.R-
project.org/package=foreach. R package version 1.5.2. [p133]

L. Ni and X. H. Wehrens. Cardiac troponin I - more than a biomarker for myocardial ischemia? Annals
of Translational Medicine, Suppl 1(6):S17, 2018. URL https://doi.org/10.21037/atm.2018.09.07.
[p129]

M. S. Pepe. The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford Statistical
Sciences Series, 2003. [p129]

S. Pérez-Fernández. nsROC: non-standard ROC curve analysis, 2017. URL https://CRAN.R-project.
org/package=nsROC. [p129]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=survivalROC
https://doi.org/10.1111/j.0006-341x.2000.00337.x
https://doi.org/10.1111/j.0006-341x.2000.00337.x
https://doi.org/10.1214/aos/1033066197
https://doi.org/10.1214/aos/1033066197
https://doi.org/10.1111/j.1467-9469.2009.00683.x
https://doi.org/10.1111/1467-9868.00125
https://doi.org/10.1111/1467-9868.00125
https://doi.org/10.1186/s12874-017-0332-6
https://CRAN.R-project.org/package=tdROC
https://doi.org/10.1177/0962280216680239
https://CRAN.R-project.org/package=intcensROC
https://doi.org/10.1186/s12902-020-00653-x
https://doi.org/10.18637/jss.v061.i08
https://doi.org/10.15446/rce
https://doi.org/10.1177/0962280217740786
https://doi.org/10.1080/00949655.2016.1175442
https://doi.org/10.1080/00949655.2016.1175442
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=foreach
https://doi.org/10.21037/atm.2018.09.07
https://CRAN.R-project.org/package=nsROC
https://CRAN.R-project.org/package=nsROC

CONTRIBUTED RESEARCH ARTICLE 148

S. Pérez-Fernández, P. Martínez-Camblor, P. Filzmoser, and N. Corral. nsROC: An R package for non-
standard ROC curve analysis. The R Journal, 10(2):55–77, 2018. URL https://doi.org/10.32614/RJ-
2018-043. [p129]

S. Potapov, W. Adler, and M. Schmid. survAUC: estimators of prediction accuracy for time-to-event data,
2023. URL https://CRAN.R-project.org/package=survAUC. R package version 1.2-0. [p130]

X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J. Sánchez, and M. M¨ uller. pROC: an open-
source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12(3):77,
2011. URL https://doi.org/10.1186/1471-2105-12-77. [p129]

M. X. Rodríguez-Álvarez and V. Inácio. ROCnReg: An R package for receiver operating characteristic
curve inference with and without covariates. The R Journal, 13:525, 2021. URL https://doi.org/10.
32614/RJ-2021-066. [p130]

M. C. Sachs. plotROC: a tool for plotting ROC curves. Journal of Statistical Software, 79(2):1–19, 2017.
URL https://doi.org/10.18637/jss.v079.c02. [p129, 133]

T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. ROCR: visualizing classifier performance in R.
Bioinformatics, 21(20):7881, 2005. URL https://doi.org/10.1093/bioinformatics/bti623. [p129]

X. Song and X. H. Zhou. A semiparametric approach for the covariate-specific ROC curve with survival
outcome. Statistica Sinica, 18:947–965, 2008. URL http://www.jstor.org/stable/24308524. [p133]

Terry M. Therneau and Patricia M. Grambsch. Modeling Survival Data: Extending the Cox Model.
Springer, New York, 2000. ISBN 0-387-98784-3. [p133]

B. Turnbull. The empirical distribution function with arbitrarily grouped, censored and truncated
data. Journal of the Royal Statistical Society. Series B (Methodological), 38(3):290–295, 1976. URL
http://www.jstor.org/stable/2984980. [p137]

H. Uno, T. Cai, L. Tian, and L. J. Wei. Evaluating prediction rules for t-year survivors with censored
regression models. Journal of the American Statistics Association, 478(102):527–537, 2007. URL
https://doi.org/10.1198/016214507000000149. [p130]

J. R. Vidal-Castiñeira, A. López-Vázquez, P. Díaz-Bulnes, S. Díaz-Coto, L. Márquez-Kisinousky,
J. Martínez-Borra, C. A. Navascues, P. Sanz-Cameno, A. A. Juan de la Vega, M. Rodríguez, and
C. López-Larrea. Genetic contribution of endoplasmic reticulum aminopeptidase 1 polymorphisms
to liver fibrosis progression in patients with HCV infection. Journal of Molecular Medicine, 98:
1245–1254, 2020. URL https://doi.org/10.1007/s00109-020-01948-1. [p143]

H. Wickham. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p133]

J. P. Willems, J. T. Saunders, D. E. Hunt, and J. B. Schorling. Prevalence of coronary heart disease risk
factors among rural blacks: A community-based study. Southern Medical Journal, 90(8):814–820, 1997.
URL https://doi.org/10.1097/00007611-199708000-00008. [p136]

Y. Wu, X. Wang, J. Lin, J. Beilin, and K. Owzar. Predictive accuracy of markers or risk scores for interval
censored survival data. Statistics in Medicine, 39(18):2437–2446, 2020. URL https://doi.org/10.
1002/sim.8547. [p130]

X.-H. Zhou, N. A. Obuchowski, and D. K. McClish. Statistical Methods in Diagnostic Medicine. Wiley
Blackwell, New York, 2002. [p129]

Susana Díaz-Coto
Department of Orthopaedics, Dartmouth Health, Lebanon, NH, USA
Geisel School of Medicine at Dartmouth, Hanover, NH, USA

Pablo Martínez-Camblor
Faculty of Health Sciences, Universidad Autonoma de Chile, Chile
and
Department of Anesthesiology, Dartmouth Health, Lebanon, NH, USA
Geisel School of Medicine at Dartmouth, Hanover, NH, USA

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.32614/RJ-2018-043
https://doi.org/10.32614/RJ-2018-043
https://CRAN.R-project.org/package=survAUC
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.32614/RJ-2021-066
https://doi.org/10.32614/RJ-2021-066
https://doi.org/10.18637/jss.v079.c02
https://doi.org/10.1093/bioinformatics/bti623
http://www.jstor.org/stable/24308524
http://www.jstor.org/stable/2984980
https://doi.org/10.1198/016214507000000149
https://doi.org/10.1007/s00109-020-01948-1
https://ggplot2.tidyverse.org
https://doi.org/10.1097/00007611-199708000-00008
https://doi.org/10.1002/sim.8547
https://doi.org/10.1002/sim.8547

CONTRIBUTED RESEARCH ARTICLE 149

Norberto Corral-Blanco
Department of Statistics, Operational Research and Mathematics Didactics, University of Oviedo, Oviedo
(Asturias), Spain

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 150

Sparse Model Matrices for
Multidimensional Hierarchical
Aggregation
by Øyvind Langsrud

Abstract Multidimensional hierarchical sum aggregations can be formulated as matrix multiplications
involving dummy matrices which can be referred to as model matrices. In contrast to standard model
matrices, all categories of all variables must be included. For this purpose, the R package SSBtools
includes functionality to create model matrices in two alternative ways, by model formulas or by
so-called hierarchies. The latter means a coding of hierarchical relationships, and this can be done
in several ways. Tree-shaped hierarchies are not required. The internal standard in the package is a
parent-child coding. Functionality to find hierarchies automatically from the data is also included.
The model matrix functionality is applied in several R packages for statistical disclosure control. This
enables general implementation of methods and a flexible user interface. This paper describes the
model matrix and hierarchy functions in SSBtools, as well as the methods and functions behind it.

1 Introduction

In general, a vector of sum aggregates (z) can be calculated from a data vector (y) through a dummy
matrix (x) by

z = xTy (1)

The matrix x can be referred to as a model matrix. In package SSBtools (Langsrud and Lupp
2023b) there are several tools for creating such model matrices and for computing aggregates via such
matrices. This article focuses on these tools, while there are additional tools included in the package
that are not addressed herein. Note that the package gathers functions that are used by other packages
for specific purposes.

For some applications it is important to have access to the model matrix. In other applications,
the interface or the computational efficiency is what is needed. For efficiency, the aggregates may
sometimes be computed by

z = xT
1 yx2 (2)

where y is a matrix of input data that is appropriately reorganized into multiple columns and
where x1 and x2 are two dummy matrices.

An important part of the model matrix framework within SSBtools is the handling of hierarchical
relationships. That is, the categorical variables in the input data are hierarchically related. Or, alterna-
tively, some codings of hierarchical relationships, such as parent-child, are supplied as separate input.
We refer to these codings as hierarchies and these are not limited to being tree-shaped. Hierarchies
are used both in the process of constructing the model matrix and also to organize the categorical
variables in the aggregated output data.

Model matrices are usually associated with regression models which can be expressed by model
formulas and fitted by the lm function or by other more advanced functions. In this article, we will
also use model formulas to specify model matrices. For this purpose, only the right-hand side of a
model formula is needed. A formula consisting of the variables a and b including the interaction (a:b)
can be written as ~a + b + a:b, or equivalently as ~a * b. By using model formulas, we can take
advantage of the asterisk sign and other possibilities to write comprehensive models in compact ways
(see ?formula in an interactive R console). The intercept term, which is included by default, can be
removed by subtracting a one (~a * b - 1). In the model matrix, the intercept term is a column of
ones. In our context, we would rather refer to this model term as the overall total.

Most elements of the model matrices considered in this paper will be zero. When using regular
dense matrices, as created by the base-R function matrix, an unnecessary amount of memory is used to
store all the zeros. Instead, we use sparse matrices defined in the Matrix package (Bates, Maechler, and
Jagan 2023). Then the matrices are stored in a compressed format, while ordinary matrix operations
can still be performed. In many cases, the matrices will be so large that applications which do not
utilize sparse matrices will be impossible in practice. Please note that the functions discussed in this
article do not create any new classes. The primary outputs of these functions include sparse matrices

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSBtools
https://CRAN.R-project.org/package=SSBtools
https://CRAN.R-project.org/package=Matrix

CONTRIBUTED RESEARCH ARTICLE 151

according to Matrix, data frames, or a combination of both in the form of lists.

The rest of this paper is structured as follows. First, we describe the function, ModelMatrix, for
generating model matrices. The following section takes a closer look at some underlying computations.
Then, a section is devoted to a more advanced function for two-way computation. Within this function,
equation (2) is applied. The next section looks at aggregation beyond summation, such as median
calculation. Then, there is a section where various alternatives for creating model matrices and
aggregates are compared in terms of both time and memory usage. In the penultimate section, we
consider applications in other packages. Finally, a short conclusion is given.

The theory in this paper is described using examples and R code.

2 The function ModelMatrix

The base-R function model.matrix is a workhorse function for constructing model or design matrices
used in regression modeling. To create sparse matrices, the corresponding function sparse.model.matrix
in the Matrix package (Bates, Maechler, and Jagan 2023) can be used. When all variables involved are
categorical, the model matrices are dummy matrices of zeroes and ones. The function ModelMatrix
in package SSBtools is an alternative function with a slightly different purpose. The aim is to repre-
sent the transformation from input to output when producing various types of aggregated data. As
described below, the model matrix can be constructed with both a formula interface and a hierarchy
interface.

2.1 Model matrix from formula

In the examples below, d is a data frame.

> d

age geo eu value
1 young Spain EU 66.9
2 young Iceland nonEU 1.8
3 young Portugal EU 11.6
4 old Spain EU 120.3
5 old Iceland nonEU 1.5
6 old Portugal EU 20.2

A model matrix can be specified with a formula.

> ModelMatrix(d, formula = ~age + geo)

Total-Total old-Total young-Total Total-Iceland Total-Portugal Total-Spain
[1,] 1 . 1 . . 1
[2,] 1 . 1 1 . .
[3,] 1 . 1 . 1 .
[4,] 1 1 . . . 1
[5,] 1 1 . 1 . .
[6,] 1 1 . . 1 .

In contrast to standard model matrices, all categories are included. All variables are considered
categorical. The column names correspond to rows in a data frame, called crossTable, which can be
requested as output. Such a model matrix can be used to compute aggregates according to (1), for
example by:

> t(ModelMatrix(d, formula = ~age + geo)) %*% d$value

[,1]
Total-Total 222.3
old-Total 142.0
young-Total 80.3
Total-Iceland 3.3
Total-Portugal 31.8
Total-Spain 187.2

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=SSBtools

CONTRIBUTED RESEARCH ARTICLE 152

Exactly the same aggregates can be computed more directly using a related SSBtools function:
FormulaSums(d, formula = value~age + geo). With this function, the aggregates are computed
somewhat faster when the data is large. Internally, each model term triggers a call to the function
aggregate. Correspondingly, ModelMatrix calls the Matrix function fac2sparse repeatedly. Note that
the formula interface within aggregate is different from our approach. The formula ~age + geo
interpreted by aggregate corresponds to ~age:geo - 1 interpreted by ModelMatrix or FormulaSums.
So the formula interface in aggregate is less flexible. For example, aggregate(value ~age + geo, d,
sum) and aggregate(value ~age * geo, d, sum) give the same results.

To illustrate hierarchical variables, we proceed with a more complicated formula:

> ModelMatrix(d, formula = ~age*eu + geo, crossTable = TRUE)

$modelMatrix

[[suppressing 12 column names 'Total-Total', 'old-Total', 'young-Total' ...]]

[1,] 1 . 1 1 . . . 1 . . 1 .
[2,] 1 . 1 . 1 1 1
[3,] 1 . 1 1 . . 1 . . . 1 .
[4,] 1 1 . 1 . . . 1 1 . . .
[5,] 1 1 . . 1 1 . . . 1 . .
[6,] 1 1 . 1 . . 1 . 1 . . .

$crossTable
age geo

1 Total Total
2 old Total
3 young Total
4 Total EU
5 Total nonEU
6 Total Iceland
7 Total Portugal
8 Total Spain
9 old EU
10 old nonEU
11 young EU
12 young nonEU

The column names suppressed from the $modelMatrix output can be seen in $crossTable. Here
there are two variables in crossTable even though there are three in the formula. This is because it
has automatically been discovered that geo and eu are hierarchically related. Combining hierarchical
variables in this way is often useful and this is common within official statistics. Automatic detection
and handling of hierarchical relationships can be turned off with the avoidHierarchical parameter.
The calculations made in the background are related to the automatic generation of hierarchies
discussed below.

Note that ModelMatrix does not define any new classes. The dummy matrix will have a sparse ma-
trix class according to Matrix. Though, an attribute called startCol has been added to make locating
individual model terms easy and a related function, FormulaSelection, is available in SSBtools.

2.2 Model matrix from hierarchies

From the data we can generate hierarchies coded as trees:

> dimLists <- FindDimLists(d[c("age", "geo", "eu")])
> dimLists

$age
levels codes

1 @ Total
2 @@ old
3 @@ young

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSBtools
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=SSBtools

CONTRIBUTED RESEARCH ARTICLE 153

Figure 1: The hierarchies in the examples.

$geo
levels codes

1 @ Total
2 @@ EU
3 @@@ Portugal
4 @@@ Spain
5 @@ nonEU
6 @@@ Iceland

The two hierarchies are illustrated in Figure 1. This way of coding hierarchies follows the standard
used in the R package sdcTable (Meindl 2023), which is a tool for statistical disclosure control (SDC)
(Hundepool et al. 2012). A model matrix can be constructed from the data and the hierarchies.

> ModelMatrix(d[-6, -3], hierarchies = dimLists, inputInOutput = c(TRUE, FALSE),
+ crossTable = TRUE)

$modelMatrix

[[suppressing 9 column names 'Total:Total', 'Total:EU', 'Total:nonEU' ...]]

[1,] 1 1 1 1 .
[2,] 1 . 1 . . . 1 . 1
[3,] 1 1 1 1 .
[4,] 1 1 . 1 1
[5,] 1 . 1 1 . 1 . . .

$crossTable
age geo

1 Total Total
2 Total EU
3 Total nonEU
4 old Total
5 old EU
6 old nonEU
7 young Total
8 young EU
9 young nonEU

By default, with hierarchy input, all possible combinations are made. Here, parameter inputInOutput
is used to prevent columns being constructed from input codes for geo (country names). The eu column

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=sdcTable

CONTRIBUTED RESEARCH ARTICLE 154

(3rd) was removed from the input data to illustrate that this column is not being used. Instead, the
information about EU and nonEU is now given in the hierarchy. The last row (6th) was also removed to
illustrate that complete data is not required. Either way, the rows in the output correspond to the rows
in the input.

An alternative coding of the above hierarchies follow the standard used in the SDC program called
τ-Argus (Wolf et al. 2014). Conversion to and from this standard is possible:

> hrc <- DimList2Hrc(dimLists)
> hrc

$age
[1] "old" "young"

$geo
[1] "EU" "@Portugal" "@Spain" "nonEU" "@Iceland"

However, the standard we use within the framework of ModelMatrix is more general and tree-
shaped hierarchies are not required. By the function AutoHierarchies, hierarchies coded in several
ways are converted to our internal standard. As shown below, it is also possible to specify total codes.

> hi <- AutoHierarchies(hrc, total = c("All", "Europe"))
> hi

$age
mapsFrom mapsTo sign level

1 old All 1 1
2 young All 1 1

$geo
mapsFrom mapsTo sign level

1 EU Europe 1 2
2 Portugal EU 1 1
3 Spain EU 1 1
4 nonEU Europe 1 2
5 Iceland nonEU 1 1

The variable names mapsFrom and mapsTo were chosen because the starting point was to reprogram
an application implemented in the Validation and Transformation Language (VTL) described in Airo
et al. (2015). The level variable indicates the order in which the codes must be calculated. This variable
can be computed automatically and is not needed in input. Sign, as coded in the sign column, can also
be negative (-1), which means subtraction instead of addition. The hierarchies can be very general
(but not circular) and it is possible that the final model matrix consists of values beyond zeros and
ones. A dummy matrix can be ensured by unionComplement = TRUE. Then, in accordance with VTL,
sign is interpreted as union or complement instead of addition or subtraction.

Another possible coding that can be input to AutoHierarchies is formulas. This should not be
confused with model formulas in the section above. Conversion to formulas from the internal standard
is possible.

> Hierarchies2Formulas(hi)

$age
[1] "All = old + young"

$geo
[1] "Europe = EU + nonEU" "EU = Portugal + Spain" "nonEU = Iceland"

By using the parameter select, the columns in the model matrix, i.e. crossTable, can be specified
in advance. This can be much more efficient than making the selection afterwards.

> ModelMatrix(d, hierarchies = hi, select = data.frame(
+ age = c("young", "young", "All", "All"),
+ geo = c("EU", "nonEU", "nonEU", "Europe")))

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 155

young:EU young:nonEU All:nonEU All:Europe
[1,] 1 . . 1
[2,] . 1 1 1
[3,] 1 . . 1
[4,] . . . 1
[5,] . . 1 1
[6,] . . . 1

With few rows in input, many columns in the model matrix will only consist of zeros. As illustrated
below, such columns can be omitted by the parameter, removeEmpty.

> ModelMatrix(d[c(1, 4),], hierarchies = hi, removeEmpty = TRUE)

All:Europe All:EU All:Spain old:Europe old:EU old:Spain young:Europe
[1,] 1 1 1 . . . 1
[2,] 1 1 1 1 1 1 .

young:EU young:Spain
[1,] 1 1
[2,] . .

Due to removeEmpty, nine columns were omitted ("All", "old" and "young" crossed with "nonEU",
"Iceland" and "Portugal"). In large real data sets, the effect of removeEmpty can be enormous.

Two special possibilities are that the hierarchies can be encoded as a string or as an empty string.
A string is considered a total code. An empty string means that the variable is considered a pure
categorical variable without a hierarchy.

> ModelMatrix(d[c(1,2,4),], hierarchies = list(age = "", geo = "Europe"))

old:Europe old:Iceland old:Spain young:Europe young:Iceland young:Spain
[1,] . . . 1 . 1
[2,] . . . 1 1 .
[3,] 1 . 1 . . .

In this case only two countries are present in the input data. If removeEmpty had been TRUE, the
old:Iceland column would have been omitted.

Note that both ModelMatrix parameters, hierarchies and formula, can be used simultaneously.
How the hierarchies are to be crossed is then defined by the formula.

3 Underlying computations

3.1 Hierarchies automatically from the data

To find hierarchies automatically from the data, a kind of correlation matrix is first computed by
the function FactorLevCorr. The function was named with factor variables and their levels in mind,
but any variable type is possible. To illustrate a little more complexity, we add isSpain as a logical
variable.

> d$isSpain <- d$geo == "Spain"
> fCorr <- FactorLevCorr(d[c("age", "geo", "eu", "isSpain")])
> fCorr

age geo eu isSpain
age 2 0 0.0 0.0
geo 0 3 -1.0 -1.0
eu 0 1 2.0 0.5
isSpain 0 1 -0.5 2.0

The diagonal elements in this matrix are used to store the number of unique values of each variable
(ni). To calculate our correlations, we first find the number of unique combinations (mij) of each pair of
variables. For this purpose, the function, unique, is repeatedly called with two-column data frames as
input. The absolute values of off-diagonal elements are 0 when mij = ni ∗ nj, 1 when mij = max(ni, nj)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 156

and otherwise computed as (ni ∗ nj − mij)/(ni ∗ nj − max(ni, nj)). So 0 means that all possible level
combinations exist in the data and 1 means that the two variables are hierarchically related. In our
example the correlation between eu and isSpain isn’t zero since the combination (nonEU, TRUE) is
missing in the data. The signs of off-diagonal elements are set to be positive when ni < nj and negative
when ni > nj. In cases where ni = nj, elements will be positive above the diagonal and negative below.
Values other than 0, −1 and 1 could be useful for detecting errors in the data. For example, values
close to one may be suspicious.

In our application, to generate hierarchies, we only need to look for ones. A one means that two
hierarchically related variables are found. More generally, one can find trees by connecting relations
when the variables are ordered according to the diagonal elements. The function, HierarchicalGroups,
does this repeatedly using a recursive algorithm so that all possible trees are found. Below we run this
function with eachName = TRUE so that names are included instead of indices.

> HierarchicalGroups(fCorr = fCorr, eachName = TRUE)

$age
[1] "age"

$geo
[1] "geo" "eu"

$geo
[1] "geo" "isSpain"

Here two groups were named geo. This means also that FindDimLists will result in two hierarchies
named geo. Each hierarchy is achieved by looking at sorted unique rows. For example, this hierarchy,

> FindDimLists(d[c("age", "geo", "eu", "isSpain")])[[3]]

levels codes
1 @ Total
2 @@ FALSE
3 @@@ Iceland
4 @@@ Portugal
5 @@ TRUE
6 @@@ Spain

was constructed from this data frame:

> SSBtools::SortRows(unique(d[c("isSpain", "geo")]))

isSpain geo
2 FALSE Iceland
3 FALSE Portugal
1 TRUE Spain

The top level (@) is always the total code. The remaining levels correspond to the columns in the
data as defined by the hierarchical groups. Here this means "isSpain" (@@) and "geo" (@@@).

Note that the corresponding function FindHierarchies produces only a single geo hierarchy.

> FindHierarchies(d[c("age", "geo", "eu", "isSpain")])$geo

mapsFrom mapsTo sign level
1 Iceland nonEU 1 1
2 Iceland Total 1 1
3 Iceland FALSE 1 1
4 Portugal EU 1 1
5 Portugal Total 1 1
6 Portugal FALSE 1 1
7 Spain EU 1 1
8 Spain Total 1 1
9 Spain TRUE 1 1

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 157

FindHierarchies wraps FindDimLists and AutoHierarchies into a single function. By default,
when multiple hierarchies exist for the same variable, AutoHierarchies combines them by generating
a flattened hierarchy with a single level. The output codes are the parents (mapsTo) and all childs
(mapsFrom) are input codes. Parent-child relationships corresponding to multilevel tree structures are
not directly available, but the information needed to create model matrices is available. In fact, the
hierarchies are combined via dummy matrices described below.

3.2 From hierarchies to dummy matrices

To produce model matrices, the hierarchies are converted to dummy matrices and the parameter
inputInOutput is used. Here we convert the hierarchies, hi, in the previous section:

> hiM <- DummyHierarchies(hi, inputInOutput = c(TRUE, FALSE))
> hiM

$age
old young

old 1 .
young . 1
All 1 1

$geo
Iceland Portugal Spain

EU . 1 1
nonEU 1 . .
Europe 1 1 1

The first two rows of hiM$age are a perturbed identity matrix since inputInOutput = TRUE for this
variable. The first two rows of hiM$geo can be found directly from the level 1 rows of the hierarchy,
hi$geo. The nonzero elements are taken from the sign variable and the corresponding rows and
columns can be read from the variables mapsFrom and mapsTo, respectively. A similar matrix can be
constructed from level 2. In our example this matrix is:

> geo2 <- Matrix(1, 1, 2, dimnames = list("Europe", c("EU", "nonEU")))
> geo2

EU nonEU
Europe 1 1

The last row of hiM$geo can now be found by the matrix multiplication:

> geo2 %*% hiM$geo[1:2,]

Iceland Portugal Spain
Europe 1 1 1

In general, the dummy matrix is constructed successively by adding one level at a time. The new
rows are found as a matrix constructed from the new level multiplied by the preliminary dummy
matrix. The parameter unionComplement mentioned above is used within this process.

The next step is to extend these matrices to match the data and this can be achieved by the function
DataDummyHierarchies:

> hiD <- DataDummyHierarchies(d, hiM, colNamesFromData = TRUE)
> hiD

$age
young young young old old old

old . . . 1 1 1
young 1 1 1 . . .
All 1 1 1 1 1 1

$geo

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 158

Spain Iceland Portugal Spain Iceland Portugal
EU 1 . 1 1 . 1
nonEU . 1 . . 1 .
Europe 1 1 1 1 1 1

For readability colNamesFromData was here set to TRUE. This also means that the relationship to hiM
is direct. Now a transposed model matrix can be achieved by the function KhatriRao (column-wise
Kronecker product) within the Matrix package.

> Matrix::KhatriRao(hiDgeo, hiDage, make.dimnames = TRUE)

Spain Iceland Portugal Spain Iceland Portugal
old:EU . . . 1 . 1
young:EU 1 . 1 . . .
All:EU 1 . 1 1 . 1
old:nonEU 1 .
young:nonEU . 1
All:nonEU . 1 . . 1 .
old:Europe . . . 1 1 1
young:Europe 1 1 1 . . .
All:Europe 1 1 1 1 1 1

Now the column names are misleading since only names from the first input matrix are used.
However, the row names can be useful. With more than two variables, KhatriRao is run several times
by adding one variable at a time.

We now recall how a model matrix with pre-selected columns was created in the previous section
using the select parameter to ModelMatrix. When we look at dummy matrices here, this means
pre-selected rows. To produce such a matrix with pre-selected rows, one possibility is to first produce
separate matrices for each variable.

> hiD$age[c("young", "young", "All", "All"),]

young young young old old old
young 1 1 1 . . .
young 1 1 1 . . .
All 1 1 1 1 1 1
All 1 1 1 1 1 1

> hiD$geo[c("EU", "nonEU", "nonEU", "Europe"),]

Spain Iceland Portugal Spain Iceland Portugal
EU 1 . 1 1 . 1
nonEU . 1 . . 1 .
nonEU . 1 . . 1 .
Europe 1 1 1 1 1 1

The transposed model matrix is then obtained by multiplying these matrices together. This is a fast
way to obtain the model matrix. A possible problem is, however, that the matrices to be multiplied are
not as sparse as the final matrix. Therefore KhatriRao combined with reducing the matrices as much
as possible first, can still be better. The choice between the two methods is controlled by a parameter,
called selectionByMultiplicationLimit. The functionality of the parameter removeEmpty mentioned
above, is implemented by KhatriRao combined with reducing the matrices.

4 Two-way computation

4.1 The function HierarchyCompute

We recall that sum aggregates of a data vector (y) can be calculated by equation (1) where the model
matrix (x) can be produced by the function ModelMatrix. As mentioned above, with formula input
an alternative function is FormulaSums. Then the aggregates are calculated without x being created.
In the cases of hierarchies, a corresponding function is HierarchyCompute. Although this function

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 159

makes aggregates via one or two dummy matrices, a model matrix that matches the input data is
not necessarily made. A special case of HierarchyCompute is to make such a model matrix and this
matrix can also be requested as output. Actually, ModelMatrix with hierarchy input make use of
HierarchyCompute. The HierarchyCompute function does not take many hierarchy types as input, so
AutoHierarchies may have to be run first.

In general, aggregates are computed by HierarchyCompute according to equation (2). But the
original version of the function, without the colVar parameter, is limited to equation (1). However, y
may be a multi-column matrix containing a reorganized version of the input data vector. Then the
columns represent a single categorical variable with no hierarchy. To tell HierarchyCompute to treat a
categorical variable in this way, this categorical variable is encoded as the string "colFactor" in the hi-
erarchy input. Other categorical variables are encoded as "rowFactor". The function AutoHierarchies
re-encodes an empty string to "rowFactor".

To illustrate this function, we add an extra variable, year, to the data. Although, it is only a single
year.

> HierarchyCompute(data = cbind(d, year = 2022),
+ hierarchies = list(age = "colFactor", geo = hi$geo, year = "rowFactor"),
+ valueVar = "value")

age geo year value
1 old EU 2022 140.5
2 old nonEU 2022 1.5
3 old Europe 2022 142.0
4 young EU 2022 78.5
5 young nonEU 2022 1.8
6 young Europe 2022 80.3

Except for column and row order, the output will be the same if "rowFactor" and "colFactor" are
swapped or if both age and year are set to "rowFactor". If output = "matrixComponents" is included
in the function call, the internal differences can be seen. Then, in our example, output become:

> hc <- HierarchyCompute(data = cbind(d, year = 2022),
+ hierarchies = list(age = "colFactor", geo = hi$geo, year = "rowFactor"),
+ valueVar = "value", output = "matrixComponents")
> hc

$dataDummyHierarchy

EU:2022 . 1 1
nonEU:2022 1 . .
Europe:2022 1 1 1

$valueMatrix
old young

[1,] 1.5 1.8
[2,] 20.2 11.6
[3,] 120.3 66.9

$fromCrossCode
geo year

1 Iceland 2022
2 Portugal 2022
3 Spain 2022

$toCrossCode
geo year

1 EU 2022
2 nonEU 2022
3 Europe 2022

The matrix, valueMatrix is a reorganized version of the value variable in the input data. If a
variable is selected as "colFactor", there is one column for each level of that variable. Even without
such a variable, there may be fewer rows in the valueMatrix than in the input data. This is because

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 160

rows where the values are zero can be removed and because duplicated code combinations in the
input can be aggregated. This is controlled by parameters "reduceData" and "handleDuplicated".
The data frame fromCrossCode contains variables that characterize the rows of valueMatrix. The
matrix dataDummyHierarchy is a transposed model matrix that matches valueMatrix. This means that
the aggregate output values can be calculated as dataDummyHierarchy %*% valueMatrix:

> hc$dataDummyHierarchy %*% hc$valueMatrix

old young
EU:2022 140.5 78.5
nonEU:2022 1.5 1.8
Europe:2022 142.0 80.3

The data frame toCrossCode contains variables that characterize the rows of this matrix. Along
with column names, this is the information needed to reorganize the aggregate result into a regular
output data frame.

4.2 HierarchyCompute with colVar

When the parameter colVar is applied, two (transposed) model matrices are made, one for rows and
one for columns. Parameter colVar splits the hierarchy variables in two groups and this variable
overrides the difference between "rowFactor" and "colFactor". Actually, there will be two runs of
HierarchyCompute. With output = "matrixComponents", output from the two runs are returned as
a list with elements hcRow and hcCol. Below we illustrate this by including the age hierarchy with
inputInOutput = TRUE (FALSE is default).

> hc2 <- HierarchyCompute(data = cbind(d, year = 2022),
+ hierarchies = list(age = hi$age, geo = hi$geo, year = "rowFactor"),
+ colVar = "age", inputInOutput = c(TRUE, FALSE),
+ valueVar = "value", output = "matrixComponents")

For rows, we obtain the same matrices as earlier. The aggregates in the previous subsection can
now be computed as:

> hc2$hcRow$dataDummyHierarchy %*% hc2$hcRow$valueMatrix

1 2
EU:2022 140.5 78.5
nonEU:2022 1.5 1.8
Europe:2022 142.0 80.3

The model matrix for columns can be seen as:

> t(hc2$hcCol$dataDummyHierarchy)

old young All
[1,] 1 . 1
[2,] . 1 1

Finally, the aggregate output values can be calculated as:

> hc2$hcRow$dataDummyHierarchy %*% hc2$hcRow$valueMatrix %*% t(hc2$hcCol$dataDummyHierarchy)

old young All
EU:2022 140.5 78.5 219.0
nonEU:2022 1.5 1.8 3.3
Europe:2022 142.0 80.3 222.3

Taking into account that the dummy matrices are transposed model matrices, equation (2) is
applied. With ordinary output, these values are organized into a data frame and we do not see what is
going on internally.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 161

> HierarchyCompute(data = cbind(d, year = 2022),
+ hierarchies = list(age = hi$age, geo = hi$geo, year = "rowFactor"),
+ colVar = "age", inputInOutput = c(TRUE, FALSE),
+ valueVar = "value")

age geo year value
1 old EU 2022 140.5
2 old nonEU 2022 1.5
3 old Europe 2022 142.0
4 young EU 2022 78.5
5 young nonEU 2022 1.8
6 young Europe 2022 80.3
7 All EU 2022 219.0
8 All nonEU 2022 3.3
9 All Europe 2022 222.3

We obtain the same results without specifying colVar. One reason to use colVar is to do the
computations more efficiently. Another reason may be that the internal matrices may be of interest.
Note that variable combinations for output can be specified by parameters rowSelect, colSelect and
select. Then colVar also matters.

5 Aggregation beyond summation

The most recent functions in the SSBtools package are about general aggregation beyond summation.
With respect to future application packages, this is written in a different coding style (lower snake
case). The function model_aggregate combines the model specification capabilities of ModelMatrix
with aggregation with general functions. Below is an example:

> model_aggregate(d, formula = ~age + eu,
+ fun_vars = c(max = "value", median = "value", length = "geo"))

age eu value_max value_median geo_length
1 Total Total 120.3 15.90 6
2 old Total 120.3 20.20 3
3 young Total 66.9 11.60 3
4 Total EU 120.3 43.55 4
5 Total nonEU 1.8 1.65 2

The underlying computations make use of a model matrix. By default (pre_aggregate = TRUE),
the number of rows in the input data frame is reduced before ModelMatrix is called. In practice, this
pre-aggregation step is done by running aggregate with FUN = function(x){x} and simplify =
FALSE. The individual observations to be aggregated are then included as lists. In this example, the
reduced input data is:

age eu value geo
1 old EU 120.3, 20.2 Spain, Portugal
2 young EU 66.9, 11.6 Spain, Portugal
3 old nonEU 1.5 Iceland
4 young nonEU 1.8 Iceland

The corresponding model matrix is:

Total-Total old-Total young-Total Total-EU Total-nonEU
[1,] 1 1 . 1 .
[2,] 1 . 1 1 .
[3,] 1 1 . . 1
[4,] 1 . 1 . 1

The function model_aggregate has many possibilities for specifying the aggregation. Functions of
several data variables are possible. Output variable names can be passed as input, even for functions
with multiple outputs. This is possible since model_aggregate calls dummy_aggregate (model matrix
is input) which calls aggregate_multiple_fun which is an advanced wrapper to aggregate. The
implementation uses indexes to rows, which made it possible to call aggregate only once. Since
matrix multiplication is a fast way to do sum aggregation, this is also included as a possibility in
model_aggregate (parameter sum_vars).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSBtools

CONTRIBUTED RESEARCH ARTICLE 162

6 Comparisons with comments

To facilitate comparisons, we utilize hierarchical example data with 10i rows obtained by crossing i
dimensions. For each dimension there is a child variable with 10 categories and a parent variable with
3 categories (2, 3 and 5 categories aggregated). The child and parent variables are named alphabetically
by small and capital letters, respectively. Below is an illustration of a HierarchyCompute call when
i = 4, showing eight rows in both the input and output.

> d <- SSBtoolsData("power10to4")
> d[c(1:4, 3715:3716, 9999:10000),]

a A b B c C d D
1 a1 A100 b1 B100 c1 C100 d1 D100
2 a2 A100 b1 B100 c1 C100 d1 D100
3 a3 A200 b1 B100 c1 C100 d1 D100
4 a4 A200 b1 B100 c1 C100 d1 D100
3715 a5 A200 b2 B100 c8 C300 d4 D200
3716 a6 A300 b2 B100 c8 C300 d4 D200
9999 a9 A300 b10 B300 c10 C300 d10 D300
10000 a10 A300 b10 B300 c10 C300 d10 D300

> hi <- FindHierarchies(d)
> d$y <- 1:nrow(d)
> output <- HierarchyCompute(d, hi, "y", inputInOutput = TRUE)
> output[c(1, 5473:5475, 37852:37854, 38416),]

a b c d y
1 a1 b1 c1 d1 1
5473 A300 B300 Total d10 2382000
5474 Total B300 Total d10 4762750
5475 a1 Total Total d10 949600
37852 a9 b10 C200 Total 146970
37853 A100 b10 C200 Total 293490
37854 A200 b10 C200 Total 440460
38416 Total Total Total Total 50005000

Here an integer y is added to the input data. Either way, the variable becomes numeric in the
output. In the comparisons below, the input class is also numeric. We use inputInOutput = TRUE,
which is the default in ModelMatrix. With 10 child categories, 3 parent categories, and the inclusion of
a total code, this results in 14i rows in the output.

Table 1 displays the CPU times for different function calls. The measurements were made by
system.time (first element). The median values from five runs are shown. Table 2 displays the memory
usage as peak RAM, measured using the peakRAM package (Quinn 2017). The median values from
five runs are shown. These runs were conducted separately from the CPU time measurements. Table 2
also presents object sizes obtained using the object.size function. The source code is shown in Table
3. These comparisons were made with R version 4.2.2 running on Linux. The server had about 500
GiB of RAM, and it appeared that less than 10% of it were occupied by other users.

Since some functions are based on hierarchy input that may need to be generated from data,
FindHierarchies are also included in the tables. Some functions produce aggregate results
(HierarchyCompute, FormulaSums and model_aggregate), while others produce a model matrix.
However, the time required for calculating sum aggregates through matrix multiplication is almost
negligible. When i = 6, crossprod(x, d$y) takes four seconds. Here x refers to the sparse model
matrix.

Generation of the model matrix from hierarchies by ModelMatrix is done via HierarchyCompute.
The transposed model matrix is outputted before the ordinary results are produced. The main
reason why ModelMatrix still takes longer, when i ≥ 4, is a parameter setting that ensures that the
column order is more similar to a usual model matrix (reorder = TRUE). Some time is also spent on
matrix transposition. Even if ModelMatrix is run with crossTable = FALSE, which is the default, this
information is still internally generated in order to create column names.

If the desired output is sum aggregates, there is no doubt that HierarchyCompute with colVar is
the most efficient option. In this case, equation (2) is utilized, and instead of creating one large model
matrix, two smaller matrices are generated. For example, when i = 5, dimensions a and b are used for
columns, while c, d, and e are used for rows.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=peakRAM

CONTRIBUTED RESEARCH ARTICLE 163

Table 1: User CPU time in seconds based on hierarchical input data with 10i rows, resulting in 14i

output aggregates. Thus, the size of the model matrix is 10i × 14i. The source code is given in Table 3.

function call i = 2 i = 3 i = 4 i = 5 i = 6
FindHierarchies 0.010 0.032 0.392 8 131

HierarchyCompute 0.017 0.027 0.188 5 147
HierarchyCompute with colVar 0.018 0.028 0.086 1 22

ModelMatrix from hierarchies 0.014 0.026 0.229 7 218
ModelMatrix from formula 0.016 0.083 1.294 60 2922

sparse.model.matrix 0.026 0.173 11.703 1597
model.matrix 0.004 0.024 3.238
FormulaSums 0.021 0.110 1.417 43 1041

median by model_aggregate 0.030 0.208 3.353 74 1403

Table 2: Peak RAM in MiB for the calculations described in Tables 1 and 3. For i ≥ 4, the size of the
output object is provided within parentheses, denoted in MiB as well.

function call i = 2 i = 3 i = 4 i = 5 i = 6
FindHierarchies 0.9 1.9 12 (0.010) 57 (0.012) 610 (0.015)

HierarchyCompute 3.0 3.8 69 (1.5) 1074 (25) 30792 (402)
HierarchyCompute with colVar 1.2 2.1 20 (1.5) 201 (25) 1273 (402)

ModelMatrix from hierarchies 1.0 4.3 71 (12.2) 1079 (324) 32246 (9003)
ModelMatrix from formula 0.7 16.8 71 (12.2) 919 (324) 27809 (9003)

sparse.model.matrix 2.4 40.0 536 (13.1) 61654 (333)
model.matrix 0.6 42.1 5864 (2935)
FormulaSums 1.0 18.2 431 (3.1) 6884 (48) 1252 (689)

median by model_aggregate 0.9 15.2 230 (1.5) 2257 (25) 63435 (402)

Table 3: The source code for the calculations underlying Tables 1 and 2. With i defined, the code can be
run directly from top to bottom. Be careful not to run FindHierarchies(d) with y included in d.

function call, etc. source code
Input data d <- SSBtoolsData(paste0("power10to", i))

FindHierarchies hi <- FindHierarchies(d)
Adding numeric variable d$y <- as.numeric(1:nrow(d))

HierarchyCompute HierarchyCompute(d, hi, "y", inputInOutput = TRUE)

HierarchyCompute with colVar
HierarchyCompute(d, hi, "y", inputInOutput = TRUE,

colVar = letters[1:(floor(i/2))])
ModelMatrix from hierarchies ModelMatrix(d, hierarchies = hi)

Formula
f <- as.formula(strtrim(

"y ~ (a+A)*(b+B)*(c+C)*(d+D)*(e+E)*(f+F)", 3 + 6*i))
ModelMatrix from formula ModelMatrix(d, formula = f)

sparse.model.matrix ModelMatrix(d, formula = f, viaOrdinary = TRUE)

model.matrix
ModelMatrix(d, formula = f, viaOrdinary = TRUE,

sparse = FALSE)
FormulaSums FormulaSums(d, formula = f)

median by model_aggregate
model_aggregate(d, hierarchies = hi,

fun_vars = c(median = "y"))

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 164

Even though the functions handle hierarchical relationships, the formula used in the input must
be written appropriately in order to achieve the desired output. To generate all combinations, the
input formula to ModelMatrix at i = 4 would be ~(a+A)*(b+B)*(c+C)*(d+D). In Table 3, a response
term is included in the formula, but it is only necessary for the FormulaSums function. The output
from FormulaSums is a one-column matrix containing aggregates. However, the object size is larger
compared to the data frame output of HierarchyCompute. This is because row names are a less efficient
method of storing the information. It is interesting to note that FormulaSums uses more memory at
i = 5 than i = 6. This is probably because the aggregate function uses a different method for large
data.

The initial implementation of ModelMatrix utilized the functions sparse.model.matrix and
model.matrix. This option still remains available by setting viaOrdinary = TRUE. Since these functions
omit a factor level, the input variables are encoded as factors and an empty factor level is added.
In this way, the desired matrix is achieved, here a 10i × 14i matrix. With small data sets (i ≤ 3),
model.matrix is the fastest method, but with i ≥ 5, there was not enough available memory. With
i = 5 and i = 6, the size of the output object would be approximately 400 GiB and 55 TiB, respectively.
The results show, perhaps surprisingly, that sparse.model.matrix consumes significant time and
memory. It was not feasible to run it at i = 6. Profiling indicates that this is primarily due to interaction
calculations. In contrast, in ModelMatrix, which only handles categorical variables, this process is
simplified by combining multiple variables from the input before calling fac2sparse. The hierarchy
interface to ModelMatrix, however, is significantly faster than the formula interface. This is because
a few calls to the KhatriRao function are much faster than building the matrix with cbind based
on numerous fac2sparse calls. The object size of the output matrix is slightly larger when using
sparse.model.matrix compared to the regular ModelMatrix. This is primarily because the output
from sparse.model.matrix includes row names as well.

Here, model_aggregate is used to calculate median values instead of the sums calculated by
HierarchyCompute. Output is similar, but the rows are sorted differently. Internally, ModelMatrix is
called, and the formula interface is also possible. Instead of matrix multiplication, the median function
is now called 14i times. This is more resource-intensive, but still feasible when i = 6.

7 Applications in other R packages

The first of the functions demonstrated above to be used in a specific purpose package was FindDimLists.
Package easySdcTable (Langsrud 2022) provides a simplifying interface to the statistical disclosure
control (SDC) package sdcTable (Meindl 2023). This is about protecting frequency tables by the sup-
pression method. Automatic hierarchies by FindDimLists is an important part of the simplification.

The function HierarchyCompute was originally made for Statistics Norway’s modernized calcu-
lations of municipal accounts, which involve complicated hierarchies. The original intention was
to do the computations by an implementation of VTL (Airo et al. 2015), but this approach proved
to be too inefficient and R was chosen instead. The calculations are implemented in the package
Kostra (Lillegård et al. 2023) that is made for internal use in Statistics Norway. The two complicated
hierarchies involved are illustrated on Figure 2. This figure as well as Figure 1 is made using package
igraph (Csardi and Nepusz 2006). Plotting could be achieved by converting the hierarchies produced
by AutoHierarchies into igraph objects using the graph_from_data_frame function.

The hierarchy interface part of ModelMatrix was created as a spin-off from HierarchyCompute.
The first application was in the SDC package SmallCountRounding (Langsrud and Heldal 2022),
which protects frequency tables data by the perturbation method described by Langsrud and Heldal
(2018). The earliest versions of this package were limited to formula input and the package then
contained the first version of ModelMatrix. Two other SDC packages also use ModelMatrix. The
packages SSBcellKey (Lupp and Langsrud 2023) and GaussSuppression (Langsrud and Lupp 2023a)
can be used to protect both frequency and magnitude tables by, respectively, perturbation (Thompson,
Broadfoot, and Elazar 2013) and suppression (Hundepool et al. 2012).

All the SDC packages mentioned above are about protection of tabular data. When ModelMatrix is
used, the model matrix itself is important to the algorithm. The model matrix is therefore necessary
for more than aggregating the data by a matrix multiplication. In the package SSBcellKey, however,
use of the model matrix is limited to running the SSBtools function DummyApply which is a precursor
to the dummy_aggregate function mentioned above.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=easySdcTable
https://CRAN.R-project.org/package=sdcTable
https://www.ssb.no/en/kommregnko/
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=SmallCountRounding
https://CRAN.R-project.org/package=GaussSuppression
https://CRAN.R-project.org/package=SSBtools

CONTRIBUTED RESEARCH ARTICLE 165

Figure 2: The function (left) and art (right) hierarchy involved in Statistics Norway’s municipal
accounts calculations. Red arrow means negative sign.

8 Conclusion

The SSBtools package provides functionality to handle hierarchical relationships and to generate
corresponding model matrices. This is useful in contexts where multidimensional aggregation and
related computations are to be done. This is applied by several R packages for statistical disclosure
control, a field that is important for official statistics.

Acknowledgements

I would like to thank my colleagues Daniel Lupp and Johan Fosen at Statistics Norway, as well as an
anonymous reviewer, for their valuable comments that led to improvements.

References

Airo, Sami, Foteini Andrikopoulou, David Barraclough, Luigi Bellomarini, Marc Bouffard, Maurizio
Capaccioli, Vincenzo Vecchio, et al. 2015. Validation & Transformation Language, Part 2 Library
of Operators, Version 1.0. https://sdmx.org/wp-content/uploads/VTL1_2015_part2_operators_
final.pdf.

Bates, Douglas, Martin Maechler, and Mikael Jagan. 2023. Matrix: Sparse and Dense Matrix Classes and
Methods. https://CRAN.R-project.org/package=Matrix.

Csardi, Gabor, and Tamas Nepusz. 2006. “The Igraph Software Package for Complex Network
Research.” InterJournal Complex Systems: 1695. https://igraph.org.

Hundepool, Anco, Josep Domingo-Ferrer, Luisa Franconi, Sarah Giessing, Eric Schulte Nordholt,
Keith Spicer, and Peter-Paul de Wolf. 2012. Statistical Disclosure Control. John Wiley & Sons, Ltd.
https://doi.org/10.1002/9781118348239.ch1.

Langsrud, Øyvind. 2022. easySdcTable: Easy Interface to the Statistical Disclosure Control Package ’sdcTable’
Extended with Own Implementation of ’GaussSuppression’. https://CRAN.R-project.org/package=
easySdcTable.

Langsrud, Øyvind, and Johan Heldal. 2018. “An Algorithm for Small Count Rounding of Tabular
Data.” Privacy in statistical databases, Valencia, Spain.

———. 2022. SmallCountRounding: Small Count Rounding of Tabular Data. https://CRAN.R-project.
org/package=SmallCountRounding.

Langsrud, Øyvind, and Daniel Lupp. 2023a. GaussSuppression: Tabular Data Suppression Using Gaussian
Elimination. https://CRAN.R-project.org/package=GaussSuppression.

———. 2023b. SSBtools: Statistics Norway’s Miscellaneous Tools. https://CRAN.R-project.org/package=
SSBtools.

Lillegård, Magnar, Anna-Karin Mevik, Johan Heldal, and Øyvind Langsrud. 2023. Kostra: Functions
for Kostra. https://github.com/statisticsnorway/Kostra.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=SSBtools
https://sdmx.org/wp-content/uploads/VTL1_2015_part2_operators_final.pdf
https://sdmx.org/wp-content/uploads/VTL1_2015_part2_operators_final.pdf
https://CRAN.R-project.org/package=Matrix
https://igraph.org
https://doi.org/10.1002/9781118348239.ch1
https://CRAN.R-project.org/package=easySdcTable
https://CRAN.R-project.org/package=easySdcTable
https://CRAN.R-project.org/package=SmallCountRounding
https://CRAN.R-project.org/package=SmallCountRounding
https://CRAN.R-project.org/package=GaussSuppression
https://CRAN.R-project.org/package=SSBtools
https://CRAN.R-project.org/package=SSBtools
https://github.com/statisticsnorway/Kostra

CONTRIBUTED RESEARCH ARTICLE 166

Lupp, Daniel, and Øyvind Langsrud. 2023. SSBcellKey: Cell-Key Method for Tabular Data. https:
//github.com/statisticsnorway/SSBcellKey.

Meindl, Bernhard. 2023. sdcTable: Methods for Statistical Disclosure Control in Tabular Data. https:
//CRAN.R-project.org/package=sdcTable.

Quinn, Thomas. 2017. peakRAM: Monitor the Total and Peak RAM Used by an Expression or Function.
https://CRAN.R-project.org/package=peakRAM.

Thompson, G., S. Broadfoot, and D. Elazar. 2013. “Methodology for the automatic confidentiali-
sation of statistical outputs from remote servers at the Australian Bureau of Statistics.” Joint
UNECE/Eurostat Work Session on Statistical Data.

Wolf, Peter-Paul de, Anco Hundepool, Sarah Giessing, Juan-José Salazar, and Jordi Castro. 2014.
“tau-ARGUS user’s manual, version 4.1.” Statistics Netherlands. https://github.com/sdcTools/
tauargus.

Øyvind Langsrud
Statistics Norway
P.O. Box 8131 Dep.,
0033 Oslo, Norway
https://github.com/olangsrud
ORCiD: 0000-0002-1380-4396
Oyvind.Langsrud@ssb.no

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://github.com/statisticsnorway/SSBcellKey
https://github.com/statisticsnorway/SSBcellKey
https://CRAN.R-project.org/package=sdcTable
https://CRAN.R-project.org/package=sdcTable
https://CRAN.R-project.org/package=peakRAM
https://github.com/sdcTools/tauargus
https://github.com/sdcTools/tauargus
https://github.com/olangsrud
https://orcid.org/0000-0002-1380-4396
mailto:Oyvind.Langsrud@ssb.no

CONTRIBUTED RESEARCH ARTICLE 167

openalexR: An R-Tool for Collecting
Bibliometric Data from OpenAlex
by Massimo Aria, Trang Le, Corrado Cuccurullo, Alessandra Belfiore, and June Choe

Abstract Bibliographic databases are indispensable sources of information on published literature.
OpenAlex is an open-source collection of academic metadata that enable comprehensive bibliographic
analyses (Priem, Piwowar, and Orr 2022). In this paper, we provide details on the implementation of
openalexR, an R package to interface with the OpenAlex API. We present a general overview of its main
functions and several detailed examples of its use. Following best API package practices, openalexR
offers an intuitive interface for collecting information on different entities, including works, authors,
institutions, sources, and concepts. openalexR exposes to the user different API parameters including
filtering, searching, sorting, and grouping. This new open-source package is well-documented and
available on CRAN.

1 Introduction

Bibliographic data sources are organized digital collections of reference metadata and citation links
related to published scientific literature. One primary purpose is to assess the scholarly performance,
although it is important to exercise caution when employing bibliometric indicators for performance
evaluation (Van Noorden, 2013; Hicks et al., 2015; Priem et al., 2011). Another objective of bibliometric
analyzes is science mapping, a process that involves synthesizing extensive data, prioritizing impact-
ful research, and extracting key knowledge structures (Chen, 2017). Given the rapid proliferation
of scientific publications, science mapping evidence is particularly valuable for reconstructing the
theoretical framework of empirical studies or literature reviews.

Recently, new sources of multidisciplinary bibliographic data have emerged, including Microsoft
Academic, launched in 2016 (Sinha et al., 2015; Wang et al., 2019, 2020), Semantic Scholar launched
in 2015 (Ammar et al., 2018), and CrossRef, an open bibliographic data source launched in 2017
(Hendricks et al., 2020; Van Eck et al., 2018). Dimensions is a scientometric data source that provides
also information on grants, datasets, clinical trials, patents, and policy documents (Herzog et al., 2020;
Hook et al., 2018). These databases complement the many existing open and commercial sources. The
two most widely used commercial multidisciplinary databases are Web of Science and Scopus while
the specialized ones include PubMed, EconBiz, and arXiv, which are the main open bibliographic
sources for medicine, economics, and physical sciences and engineering, respectively.

The value of these open and commercial bibliographic data sources hinges on several character-
istics: (1) document coverage, (2) completeness and accuracy of citation links, (3) update speed, (4)
automation of data access through web interfaces, APIs, and data dumps, and (5) the terms of use for
a data source (Wanyama et al., 2022; Kulkanjanapiban and Silwattananusarn, 2022; Singh et al., 2021;
Martín-Martín et al., 2021; Visser et al., 2021; Waltman and Larivière, 2020; Winter, 2017). OpenAlex is
recognized for providing the most extensive coverage of scientific literature, encompassing a notably
larger number of documents compared to other data sources (see https://openalex.org/about). Its
document coverage outpaces all major databases, including Microsoft Academic (Visser et al., 2021;
Wang et al., 2020) and CrossRef, which are its primary sources. While Google Scholar reportedly
boasts an estimated 389 million database, it is crucial to note that Google Scholar does not adhere to
the conventional database model due to its lack of comprehensive metadata, and it does not permit
users to download query search results (Dallas et al., 2018).

Another remarkable strength of OpenAlex is its substantial collection of open-access works,
totaling 48 million. This extensive repository grants users open and free access to a wealth of scholarly
resources, aligning with OpenAlex’s dedication to open science principles. This commitment promotes
both accessibility and transparency in the sharing of knowledge. Furthermore, OpenAlex stands out
not only in terms of quantity but also in data quality. With a substantial number of citations amounting
to 1.9 billion, OpenAlex emphasizes its relevance for researchers engaged in citation-based studies.
This robust citation data enhances its appeal as a valuable resource for scholars conducting research
reliant on citation analysis.

The purpose of this article is to introduce the OpenAlexR R package, which facilitates the retrieval
of metadata from OpenAlex, performs specific functions, and formats the data for utilization in
bibliometrix, particularly for science mapping and research assessment purposes.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://openalex.org/about

CONTRIBUTED RESEARCH ARTICLE 168

1.1 OpenAlex

Named after the ancient Library of Alexandria, OpenAlex is a free and fully open catalogue of
scholarly metadata with open data, open APIs, open-source code (Priem et al., 2022). Behind this tour
de force is OurResearch, a nonprofit organisation dedicated to open principles of academic works with
other impactful projects such as CiteAs (Du et al., 2021) and Unpaywall (Chawla, 2017). OpenAlex
was launched in January 2022, timely replacing the retired Microsoft Academic system. OpenAlex
is already extensively used in many scholarly articles (Belfiore et al., 2022). The data is currently
accessible through a complete database snapshot and a REST API that is updated daily.

The OpenAlex database consists of eight academic entity types: works, authors, institutions,
sources, concepts, publishers, funders, geo (Fig. 1). It is important to know the OpenAlex entities
because it is possible to make query for each entity. In fact, each entity is assigned an OpenAlex ID
(OAID) which represents the primary key to access the data. However, OpenAlex also recognizes
different external canonical IDs for different entities. We briefly summarise the eight entities below. For
more detail, visit the documentation page and the more recent Postgres schema diagram by OpenAlex.

Figure 1: Eight OpenAlex entities and their first few attributes.

• Works: academic documents such as journal articles, proceedings, books, and datasets. The
Works entity is central in that it ties together the other four entities (Fig. 1).
OpenAlex indexes over 200 million works. One can identify a work by its OAID or DOI, a
unique alphanumeric string assigned to a digital document, often a research article.

• Authors: individuals who create works. Authors create Works, study Concepts, and are affiliated
with Institutions. OpenAlex indexes more than 200 million authors. One can identify an author
by their OAID or ORCID, a persistent and unique identifier assigned to researchers.

• Institutions: universities and organisations affiliated with authors. Institutions are linked to
Works via Authors. OpenAlex indexes more than 100,000 institutions. One can identify an
institution by its OAID or ROR ID, a persistent identifier for research organizations.

• sources: repositories that house works such as journals, conferences, preprint repositories, or
institutional repositories. OpenAlex uses a fingerprinting algorithm to match multiple locations
a work may be hosted in and flag the version of the record’s host as primary. OpenAlex indexes
more than 100,000 sources. One can identify a source by its OAID or ISSN-L, i.e., a single ISSN
that groups the publication’s all possible ISSNs (standardized numeric identifiers assigned to
serial publications).

• Concepts: topics of works, deduced from their titles and abstracts. To identify a concept, you
can use the OAID or its Wikidata ID, a unique identifier assigned to that entity in Wikidata
because all OpenAlex concepts are also Wikidata concepts. The concepts follow a hierarchy;
there are 19 concepts at the root level (0-level) and 5 layers of descendants. OpenAlex indexes ∼
65,000 concepts.

• Publishers: companies and organizations that distribute academic documents. Each publisher
publishes multiple journals, so publisher data is aggregate data. OpenAlex indexes about 10,000
publishers.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

http://docs.openalex.org
https://en.wikipedia.org/wiki/Representational_state_transfer#Applied_to_web_services
https://docs.openalex.org/how-to-use-the-api/get-single-entities#canonical-external-ids
http://docs.openalex.org/
https://docs.openalex.org/download-all-data/upload-to-your-database/load-to-a-relational-database/postgres-schema-diagram
https://www.doi.org/
https://orcid.org/
https://ror.org/
https://www.issn.org/
https://www.wikidata.org/wiki/Wikidata:Identifiers

CONTRIBUTED RESEARCH ARTICLE 169

• Funders: public and private companies that fund research. OpenAlex indexes about 30,000
funders. Funder data comes from Crossref, and is enhanced with data from Wikidata and ROR.

• Geo: works produced in the country based on the nationality of the institution with which the
author is affiliated. In particular, there are some ways to filter and group academic documents
by continents and the Global South. OpenAlex uses United Nations data to divide the globe
into continents and regions, making it easier to filter the data.

2 Implementation of openalexR

Interacting with the OpenAlex API, openalexR provides easy querying and downloading of scholarly
metadata as well as converting the output into a classic bibliographic dataframe (Fig. 2), which allows
the user to streamline their data collection and downstream analyses (Aria, 2022).

Figure 2: openalexR workflow

With minimal dependencies, openalexR lowers the barrier to using the REST API by simplifying
input entry, handling rate limits, and automatically parsing API responses. The package also offers
other useful functionality such as snowball search and N-grams of works. openalexR is currently
listed on the OpenAlex website as the supported R library for API access. The main function of
openalexR, oa_fetch, is a convenience wrapper for three smaller functions to

1. generate a valid query from a set of arguments provided by the user (oa_query),

2. download a collection of entities matching the query (oa_request),

3. and convert the list output to a classical bibliographic data frame (oa2df).

Specifically, in constructing valid queries following the OpenAlex API syntax, oa_query utilizes
the modify_url function of the httr package (Wickham, 2022) to pass the filter, sort, search, and
group_by parameters specified by the user. Next, oa_request sends a request to OpenAlex, downloads
the JSON output matching the created query, and returns the result in a nested list. Finally, oa2df
converts this output list into a classic bibliographic data frame (similar to an Excel sheet) that can be
used as input in a bibliometric analysis or scientific mapping (Wais, 2016), e.g., using the bibliometrix
package (Aria and Cuccurullo, 2017).

In addition to oa_fetch, the package openalexR includes three other functions specific to certain
features: oa_random, oa_snowball, and oa_ngrams. The function oa_random, similar to oa_fetch,
returns a record randomly. This function is particularly useful for casual sampling purposes. For
instance, when conducting an analysis of gender bias within the academy, one could utilize this
function to randomly query the database.

oa_snowball enables the user to perform snowballing. Snowballing, or snowball search, is a
literature search technique where the researcher starts with a set of articles and finds other articles that
cite (forward citations) or were cited by (backward citations) the original set (Wohlin, 2014). Meta-
analysis researchers often employ this technique to collect relevant primary studies, where sufficient
iterations of snowballing can converge on and exhaust the target literature space (Siddaway et al., 2019).
The traditional method of conducting a snowball search involves manual effort. However, computer-
assisted snowball search can effectively reduce the time and resources required while maintaining
a representative coverage of the target literature (McWeeny et al., 2021, 2022). oa_snowball takes a
vector of OpenAlex IDs as input and returns a list of 2 elements: nodes and edges. oa_snowball locates
and retrieves information on articles that cite or are cited by the initial set of articles (nodes) and also
the relationships between these articles (edges). Following tidygraph’s convention (Pedersen, 2022b),
the edges dataframe contains 2 columns of OpenAlex IDs, from and to. The row from A to B means A
cites B.

The oa_ngrams function is used to obtain N-grams from a specific set of works. N-grams are
defined as sequences of n words that occur within a work and are commonly used in language

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://docs.openalex.org/how-to-use-the-api/api-overview
https://docs.openalex.org/api#client-libraries
https://CRAN.R-project.org/package=httr
https://CRAN.R-project.org/package=bibliometrix
https://CRAN.R-project.org/package=openalexR
https://CRAN.R-project.org/package=tidygraph

CONTRIBUTED RESEARCH ARTICLE 170

modeling and text analysis to identify relationships between words. The use of N-grams allows for the
analysis of the frequency and distribution of words within a text or set of texts and is widely employed
in fields such as natural language processing, machine translation, and sentiment analysis. Some work
entities in OpenAlex include N-grams of their full text, which are obtained from the Internet Archive
using the spaCy parser to index academic works. The openalexR package offers the capability to
extract N-grams of works through the oa_ngrams function. This function takes a vector of OpenAlex
IDs as input and returns a list of N-grams and their corresponding frequencies.

3 Installation of openalexR

The package is available from the Comprehensive R Archive Network (CRAN) via the command
install.packages("openalexR"). The current version is v1.2.0. Development versions (latest v1.2.0.9000)
are available on GitHub and can be installed using devtools (Wickham et al., 2022) or remotes (Csárdi
et al., 2021).

install.packages("devtools")
devtools::install_github("ropensci/openalexR")
or
install.packages("remotes")
remotes::install_github("ropensci/openalexR")

Other installation details are available on the GitHub page https://github.com/ropensci/openalexR.

4 Polite use

The OpenAlex API doesn’t require authentication but requires following polite usage. To get into the
polite pool, it is necessary to provide a user e-mail address through the mailto parameter in R options

options(openalexR.mailto = "example@email.com")

in all API requests. The polite pool has much faster and more consistent response times.

5 Examples of use

We show many different examples of typical use cases on the package’s README and vignettes.
Examples we show in this manuscript can be found at https://github.com/trangdata/oarj/blob/
main/paper-examples.md.

First, we demonstrate an example that uses a few different filters. We want to describe the use
of "bibliometrics" approaches in the scientific literature. We first describe how to make the query that
allows us to answer this search question. After a brief description of the concept "bibliometrics", we
identify the scientific literature that has used the concept "bibliometrics" in OpenAlex. Finally, focusing
on the metadata offered by OpenAlex, we analyse the most relevant sources, authors, institutions, and
works on bibliometrics.

5.1 The bibliometrics concept

We define the search on the entity "concepts" by filtering the "bibliometrics" topic associated with
the id C178315738. The function oa_fetch generates the query from the set of arguments provided
to it, downloads the set of concepts that match the query, and converts the output into a classical
bibliographic data frame. Concepts can be queried using concept IDs or by concept name searching.

Searching "bibliometrics" concept by name:

concept <- oa_fetch(
entity = "concepts",
display_name.search = "bibliometrics" # search by concept name "bibliometrics"

)

concept$id
[1] "https://openalex.org/C178315738"

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=remotes
https://github.com/ropensci/openalexR
https://ropensci.github.io/openalexR/
https://ropensci.github.io/openalexR/articles/
https://github.com/trangdata/oarj/blob/main/paper-examples.md
https://github.com/trangdata/oarj/blob/main/paper-examples.md
https://ropensci.github.io/openalexR/articles/Filters.html
https://api.openalex.org/C178315738

CONTRIBUTED RESEARCH ARTICLE 171

cat(concept$description, "\nis a level", concept$level, "concept")
[1] statistical analysis of written publications, such as books or articles
is a level 2 concept

Alternatively, once we know the OAID for a concept, we can search by its ID and get a similar result:

concept <- oa_fetch(
entity = "concepts",
identifier = "C178315738" # OAID for "bibliometrics"

)

cat(concept$description, "\nis a level", concept$level, "concept")
[1] statistical analysis of written publications, such as books or articles
is a level 2 concept

To describe which concepts are related to the term bibliometrics, let’s analyze the OpenAlex hierar-
chy. In OpenAlex each work is tagged with multiple concepts, based on the title, abstract and host
source title. A score is available for each concept in a work, demonstrating how well that concept
represents the work to which it was assigned. However, when a lower-level descendant concept is
assigned, all of its antecedent concepts are also assigned. Since bibliometrics is a level 2 concept in
OpenAlex, we have detailed information on the concepts related to ancestors (level 0 or 1), peers (level
2), and descendants (level 3).

related_concepts <- concept$related_concepts[[1]] |>
dplyr::mutate(relation = case_when(
level < 2 ~ "ancestor",
level == 2 ~ "equal level",
TRUE ~ "descendant"

)) |>
dplyr::arrange(level) |>
dplyr::relocate(relation) |>
dplyr::select(-wikidata)

output in Table 1:
related_concepts

We find 4 ancestor, 11 equal-level and 9 descendant concepts of bibliometrics (Tab. 1). The resulting
hierarchy of bibliometrics can enable us to analyse, for example, all equal-level concepts.

concept_df <- oa_fetch(
entity = "concepts",
identifier = c(concept$id, equal_level$id)

)

concept_df |>
dplyr::select(display_name, counts_by_year) |>
tidyr::unnest(counts_by_year) |>
dplyr::filter(year < 2022) |>
ggplot(aes(x = year, y = works_count, color = display_name)) +
facet_wrap(~display_name) +
geom_line() +
...

Visualising all bibliometrics-related concepts together, we observe an increasing trend in the sub-
fields of bibliometrics, peer review, scientific literature and scientometrics. Conversely, there has been a
reduction in the number of papers in the subfields of webometrics, knowledge organisation, information
science, collection development, and altmetrics. PageRank and Impact factor, concepts have remained stable
in popularity over the last 10 years. Compared to other topics, citation has the highest number of
papers over time (Fig. 3).

5.2 Bibliometrics dataset

We download all works, included in OpenAlex, that have the words bibliometrics or science mapping
in the title to map bibliometric approaches in the scientific literature. We set the query using the

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 172

relation id display_name level score

ancestor C124101348 Data mining 1
ancestor C161191863 Library science 1
ancestor C136764020 World Wide Web 1
ancestor C41008148 Computer science 0

equal level C525823164 Scientometrics 2 6.6193560
equal level C2779455604 Impact factor 2 4.1035270
equal level C2778407487 Altmetrics 2 2.5396087
equal level C521491914 Webometrics 2 2.3026270
equal level C2781083858 Scientific literature 2 1.6163236
equal level C2778805511 Citation 2 1.6110690
equal level C95831776 Information science 2 1.5750017
equal level C2779172887 PageRank 2 1.5363927
equal level C138368954 Peer review 2 1.4112837
equal level C2779810430 Knowledge organization 2 1.0037539
equal level C2780416505 Collection development 2 0.8137859

descendant C105345328 Citation analysis 3 4.9036117
descendant C2778793908 Citation impact 3 4.0405297
descendant C2780378607 Informetrics 3 2.1396947
descendant C2778032371 Citation index 3 1.8888942
descendant C83867959 Scopus 3 1.6536747
descendant C2776822937 Bibliographic coupling 3 1.3375385
descendant C2779693592 Journal ranking 3 1.1321522
descendant C45462083 Documentation science 3 0.8473609
descendant C2777765086 Co-citation 3 0.8002241

Table 1: Concepts related to bibliometrics: ancestors, equal-levels, and descendants.

following parameters: entity is "works"; title.search is "bibliometrics|science mapping" and,
for the first part, count_only is TRUE so we can see how many records will be returned.

oa_fetch(
entity = "works",
title.search = "bibliometrics|science mapping",
count_only = TRUE

)
count db_response_time_ms page per_page
[1,] 26,953 118 1 1

biblio_works <- oa_fetch(
entity = "works",
title.search = "bibliometrics|science mapping",
count_only = FALSE

)

Our query returns 26,953 works concerning bibliometrics. By default, the oa_fetch converts
these records in a tibble object (dataframe) with each row containing information about a work. This
dataframe has 28 columns containing important information about a work, such as the publication
date, DOI, reference works, and so on. If users wish to convert the original nested list into another
object, they can change the parameters in the following way oa_fetch(..., output = "list"). From
this dataset, we could describe the most relevant sources, authors, and institutions.

5.3 Most relevant sources

We first identify the core journals for the discipline by tallying all bibliometrics-related works for each
source and selecting the top 5 sources with the most works.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 173

Figure 3: Trends in bibliometrics-related topics in the past 10 years.

sources <- biblio_works |>
dplyr::count(so) |>
tidyr::drop_na(so) |>
dplyr::slice_max(n, n = 5) |>
dplyr::pull(so)

sources
[1] "Scientometrics"
[2] "Sustainability"
[3] "Social Science Research Network"
[4] "International Journal Environmental Research and Public Health"
[5] "Environmental Science and Pollution Research"

Visualising these counts over the years (Fig.4), we observe the field has expanded overall, especially
starting around 2015. Scientometrics is the oldest journal publishing on bibliometrics and remains the
top source for these articles. Other journals started to publish these works in 2015 and have maintained
some volume in this field. Sustainability only started publishing in this field in 2017 but has rapidly
increased its number of publications since. In 2021, it was the second source to have published the
most bibliometrics articles, after Scientometrics.

5.4 Most relevant authors and institutions

Secondly, we identify the authors and institutions most relevant to the discipline by extracting the list
of author and institution-related metadata from the collection, tallying all bibliometrics-related works
for each author, and selecting the top 10 authors who write the most articles and 10 institutions with
the most publications in the field.

biblio_authors_raw <- do.call(rbind.data.frame, biblio_works$author)
biblio_insts <- biblio_authors_raw |>
dplyr::count(institution_display_name) |>
dplyr::rename("name" = institution_display_name) |>
tidyr::drop_na(name) |>
dplyr::slice_max(n, n = 10) |>
dplyr::mutate(type = "Institution")

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 174

Figure 4: Number of bibliometrics articles by journal over the years.

biblio_authors <- biblio_authors_raw |>
dplyr::count(au_display_name) |>
dplyr::rename("name" = au_display_name) |>
tidyr::drop_na(name) |>
dplyr::slice_max(n, n = 10) |>
dplyr::mutate(type = "Author")

Figure 5: Most relevant authors and institutions.

Among the 84,335 authors in our collection, Yuh-Shan Ho appears to have published the most
bibliometrics articles. He has over 150 bibliometric papers in his career. Another relevant author in
our collection is Lutz Bornmann with more than 100 bibliometrics papers. The other authors in the top
10 all have between 50 and 100 papers (Fig. 5).

With regard to institutions, we observe that the concept bibliometrics is widely developed by
different centres of expertise. At the top of the ranking, we see Beijing University of Chinese Medicine
(China) and University of Granada (Spain) with over 250 articles. Other relevant institutions in our
dataset include Sichuan University (China), Indiana University (US), Leiden University (Netherlands),
An-Najah National University (Palestine) with more than 200 bibliometric papers. Other institutions
in the top 10 have between 150 and 200 papers (Fig.5).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 175

5.5 Most relevant works

We identify the most relevant papers for the discipline by tallying all citations of articles related to
bibliometrics and selecting the top 10 most cited articles (Tab.2). We find ’Software survey: VOSviewer,
a computer programme for bibliometric mapping’ at the top with 4805 citations. Other relevant works
in our collection are ’Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths
and weaknesses’ with 1996 citations and ’bibliometrix: An R-tool for comprehensive science mapping
analysis’ with 1800 citations. The other papers in the top 10 all have between 950 and 1500 citations.

seminal_works <- slice_max(biblio_works, cited_by_count, n = 10)

output in Table 2:
seminal_works |>
dplyr::select(publication_date, display_name, so, cited_by_count)

Year Article source Cited
2010 Software survey: VOSviewer, Scientometrics 5364

a computer program for bibliometric mapping
2017 bibliometrix : An R-tool for Journal of Informetrics 2127

comprehensive science mapping analysis
1976 A general theory of bibliometric Journal of the American Society 1505

and other cumulative advantage processes for Information Science
2015 Bibliometric Methods in Management and Organizational Research Methods 1488

Organization
2015 Bibliometrics: The Leiden Manifesto for research metrics Nature 1168
2011 Science mapping software tools: Review, analysis, Journal of the Association for 1100

and cooperative study among tools Information Science and Technology
2004 Changes in the intellectual structure of strategic Strategic Management Journal 1038

management research: a bibliometric study
of the Strategic Management Journal, 1980–2000

2010 A unified approach to mapping Journal of Informetrics 922
and clustering of bibliometric networks

2015 Green supply chain management: International Journal of 920
A review and bibliometric analysis Production Economics

2006 Forecasting emerging technologies: Technological Forecasting 804
Use of bibliometrics and patent analysis and Social Change

Table 2: Most relevant works

5.6 Snowball search

We perform snowballing with oa_snowball to identify the set of articles that cite and are cited by
the two seminal works associated with the concept of bibliometrics: Software survey: VOSviewer, a
computer programme for bibliometric mapping (W2150220236), bibliometrix : An R-tool for compre-
hensive science mapping analysis (W2755950973). We insert these OAIDs as identifiers in oa_snowball,
use the filter on the citations obtaining only those related to 2022, then use tidygraph (Pedersen, 2022b)
and ggraph (Pedersen, 2022a) to display this citation network (Fig. 6). oa_snowball returns a list of 2
elements: nodes and edges. The first have information about the work, while edges have the start and
end points of the links. This list output from oa_snowball can be used directly as input to standard
graph functions such as tidygraph::as_tbl_graph for further network analyses and visualisations in
co-citation analysis, historiograph analysis, etc.

sb_docs <- oa_snowball(
identifier = c("W2150220236", "W2755950973"),
citing_filter = list(from_publication_date = "2022-01-01")

)

Reduced output
print(sb_docs)
$nodes
A tibble: 5,769 × 37
id display_name
<chr> <chr>

1 W2150220236 Software survey: VOSviewer, a computer program for bibliometric ...
2 W2755950973 bibliometrix : An R-tool for comprehensive science mapping analysis
3 W4306178549 Literature reviews as independent studies: guidelines for academic ...

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=tidygraph
https://CRAN.R-project.org/package=ggraph

CONTRIBUTED RESEARCH ARTICLE 176

4 W4320070415 Is Metaverse in education a blessing or a curse: a combined content ...
i 5,765 more rows
i 35 more variables
$edges
A tibble: 6,444 × 2
from to
<chr> <chr>

1 W4306178549 W2755950973
2 W4320070415 W2150220236
3 W3203542139 W2150220236
4 W4283392904 W2150220236
i 6,440 more rows

Conversion to a `tbl_graph` object for network analysis and visualization
sb_docs_graph <- tidygraph::as_tbl_graph(sb_docs)

Figure 6: Two seminal works and their citations and references, from oa_snowball output.

oa_snowball finds and returns the metadata on the two seminal works in our dataset, and also
information on the articles that cite and are cited by them, in 2022. We have a total of 2,907 citing
articles: 2,078 articles cite van Eck et al., 1,161 articles cite Aria and Cuccurullo. In addition, as we
can see from the graph, there are 332 articles citing both van Eck et al. and Aria and Cuccurullo,
simultaneously.

5.7 N-grams

Finally, we obtain the N-grams of all the bibliometric works that make up our collection. N-grams
are groups of words that occur in the full text of a work. To extract n-grams we use the oa_ngrams
function from the openalexR package. From this list we then extract only the bigrams because we
believe they can be more informative.

ngrams_data <- oa_ngrams(sample(biblio_works$id, 1000), verbose = TRUE)
top_10 <- do.call(rbind.data.frame, ngrams_data$ngrams) |>
dplyr::filter(ngram_tokens == 2, nchar(ngram) > 10) |>
dplyr::arrange(desc(ngram_count)) |>
dplyr::slice_max(ngram_count, n = 10, with_ties = FALSE)

As can be seen from the graph of the 10 most frequent bi-grams, the papers are very much focused
on the use of advanced technologies to improve efficiency and sustainability in various fields, such

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 177

Figure 7: TreeMap of the top 10 bi-grams of bibliometrics articles.

as circular economy, climate change, management strategy, and energy management (Fig. 7). In addition,
there are themes related to political risk, organizational learning, and cooperation within organizations
and social networks. In general, these topics suggest the need for greater attention to environmental
and social issues in business management and risk prevention. Finally, bibliometric model (scientific
performance evaluation) and credit union (financial regulation) are interrelated to bibliometrics, which
requires a global vision and cooperation among different stakeholders to be effectively applied.

6 Summary

openalexR is a new package that facilitates querying, collecting, and downloading bibliographic
metadata of OpenAlex entities through the provided REST APIs. It is available on CRAN at https:
//cran.r-project.org/package=openalexR. openalexR helps streamline the researcher’s workflow
in accessing, collecting, and wrangling OpenAlex data. Extensive documentation, comprehensive
tests of the package’s internal functions, and common use cases are provided, sufficiently covering the
current OpenAlex API. The source code and development versions are available at https://github.
com/ropensci/openalexR. The current version of the package is a stable version, and there are no
plans for any breaking changes soon. Of course, openalexR will continue to be actively maintained to
keep up with CRAN policies and distribute any bug fixes. Bug reports, help requests, or improvement
suggestions are welcome in the package software repository. For more information on openalexR,
vignettes are available at https://ropensci.github.io/openalexR/articles/.

7 Acknowledgements

8 Supplementary material

Examples we show in this manuscript can be found at https://github.com/trangdata/oarj/blob/
main/paper-examples.md.

References

W. Ammar, D. Groeneveld, C. Bhagavatula, I. Beltagy, M. Crawford, D. Downey, J. Dunkelberger,
A. Elgohary, S. Feldman, V. Ha, et al. Construction of the literature graph in semantic scholar. arXiv
preprint arXiv:1805.02262, 2018. [p167]

M. Aria. openalexR: Getting Bibliographic Records from ’OpenAlex’ Database Using ’DSL’ API, 2022.
https://github.com/massimoaria/openalexR, https://massimoaria.github.io/openalexR/. [p169]

M. Aria and C. Cuccurullo. bibliometrix: An r-tool for comprehensive science mapping analysis.
Journal of informetrics, 11(4):959–975, 2017. [p169]

A. Belfiore, A. Salatino, and F. Osborne. Characterising research areas in the field of ai. arXiv preprint
arXiv:2205.13471, 2022. [p168]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://cran.r-project.org/package=openalexR
https://cran.r-project.org/package=openalexR
https://github.com/ropensci/openalexR
https://github.com/ropensci/openalexR
https://ropensci.github.io/openalexR/articles/
https://github.com/trangdata/oarj/blob/main/paper-examples.md
https://github.com/trangdata/oarj/blob/main/paper-examples.md

CONTRIBUTED RESEARCH ARTICLE 178

D. S. Chawla. Unpaywall finds free versions of paywalled papers. Nature, 2017. [p168]

C. Chen. Science mapping: A systematic review of the literature. Journal of Data and Information Science,
2(2):1–40, 2017. doi: doi:10.1515/jdis-2017-0006. URL https://doi.org/10.1515/jdis-2017-0006.
[p167]

G. Csárdi, J. Hester, H. Wickham, W. Chang, M. Morgan, and D. Tenenbaum. remotes: R Package
Installation from Remote Repositories, Including ’GitHub’, 2021. URL https://CRAN.R-project.org/
package=remotes. R package version 2.4.2. [p170]

T. Dallas, A.-L. Gehman, and M. J. Farrell. Variable bibliographic database access could limit repro-
ducibility. BioScience, 68(8):552–553, 2018. [p167]

C. Du, J. Cohoon, J. Priem, H. Piwowar, C. Meyer, and J. Howison. Citeas: Better software through
sociotechnical change for better software citation. Companion Publication of the 2021 Conference on
Computer Supported Cooperative Work and Social Computing, 2021. [p168]

G. Hendricks, D. Tkaczyk, J. Lin, and P. Feeney. Crossref: The sustainable source of community-owned
scholarly metadata. Quantitative Science Studies, 1(1):414–427, 2020. [p167]

C. Herzog, D. Hook, and S. Konkiel. Dimensions: Bringing down barriers between scientometricians
and data. Quantitative Science Studies, 1(1):387–395, 2020. [p167]

D. Hicks, P. Wouters, L. Waltman, S. De Rijcke, and I. Rafols. Bibliometrics: the leiden manifesto for
research metrics. Nature, 520(7548):429–431, 2015. [p167]

D. W. Hook, S. J. Porter, and C. Herzog. Dimensions: building context for search and evaluation.
Frontiers in Research Metrics and Analytics, 3:23, 2018. [p167]

P. Kulkanjanapiban and T. Silwattananusarn. Comparative analysis of dimensions and scopus bib-
liographic data sources: an approach to university research productivity. International Journal of
Electrical & Computer Engineering (2088-8708), 12(1), 2022. [p167]

A. Martín-Martín, M. Thelwall, E. Orduna-Malea, and E. Delgado López-Cózar. Google scholar,
microsoft academic, scopus, dimensions, web of science, and opencitations’ coci: a multidisciplinary
comparison of coverage via citations. Scientometrics, 126(1):871–906, 2021. [p167]

S. McWeeny, J. Choe, and E. S. Norton. SnowGlobe: An Iterative Search Tool for Systematic Reviews and
Meta-Analyses, 2021. [p169]

S. McWeeny, S. Choi, J. Choe, A. LaTourrette, M. Y. Roberts, and E. S. Norton. Rapid automatized
naming (ran) as a kindergarten predictor of future reading in english: A systematic review and meta-
analysis. Reading Research Quarterly, 57(4):1187–1211, 2022. doi: https://doi.org/10.1002/rrq.467.
URL https://ila.onlinelibrary.wiley.com/doi/abs/10.1002/rrq.467. [p169]

T. L. Pedersen. ggraph: An Implementation of Grammar of Graphics for Graphs and Networks, 2022a. URL
https://CRAN.R-project.org/package=ggraph. R package version 2.1.0. [p175]

T. L. Pedersen. tidygraph: A Tidy API for Graph Manipulation, 2022b. URL https://CRAN.R-project.
org/package=tidygraph. R package version 1.2.2. [p169, 175]

J. Priem, D. Taraborelli, P. Groth, and C. Neylon. Altmetrics: A manifesto. 2011. [p167]

J. Priem, H. Piwowar, and R. Orr. Openalex: A fully-open index of scholarly works, authors, venues,
institutions, and concepts. arXiv preprint arXiv:2205.01833, 2022. URL http://altmetrics.org/
manifesto. [p168]

A. P. Siddaway, A. M. Wood, and L. V. Hedges. How to do a systematic review: A best practice guide
for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annual Review
of Psychology, 70(1):747–770, 2019. doi: 10.1146/annurev-psych-010418-102803. [p169]

V. K. Singh, P. Singh, M. Karmakar, J. Leta, and P. Mayr. The journal coverage of web of science, scopus
and dimensions: A comparative analysis. Scientometrics, 126(6):5113–5142, 2021. [p167]

A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-J. Hsu, and K. Wang. An overview of microsoft academic
service (mas) and applications. In Proceedings of the 24th international conference on world wide web,
pages 243–246, 2015. [p167]

N. J. Van Eck, L. Waltman, V. Larivière, and C. Sugimoto. Crossref as a new source of citation data: A
comparison with web of science and scopus. CWTS Blog, 17, 2018. [p167]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.1515/jdis-2017-0006
https://CRAN.R-project.org/package=remotes
https://CRAN.R-project.org/package=remotes
https://ila.onlinelibrary.wiley.com/doi/abs/10.1002/rrq.467
https://CRAN.R-project.org/package=ggraph
https://CRAN.R-project.org/package=tidygraph
https://CRAN.R-project.org/package=tidygraph
http://altmetrics.org/manifesto
http://altmetrics.org/manifesto

CONTRIBUTED RESEARCH ARTICLE 179

R. Van Noorden. Scientists join journal editors to fight impact-factor abuse. Nature News Blog, 16, 2013.
[p167]

M. Visser, N. J. van Eck, and L. Waltman. Large-scale comparison of bibliographic data sources:
Scopus, web of science, dimensions, crossref, and microsoft academic. Quantitative Science Studies, 2
(1):20–41, 2021. [p167]

K. Wais. Gender prediction methods based on first names with genderizer. R J., 8(1):17, 2016. [p169]

L. Waltman and V. Larivière. Special issue on bibliographic data sources, 2020. [p167]

K. Wang, Z. Shen, C. Huang, C.-H. Wu, Y. Dong, and A. Kanakia. Microsoft academic graph: When
experts are not enough. Quantitative Science Studies, 1(1):396–413, 2020. [p167]

K. Wang et al. A review of microsoft academic services for science of science studies. front. big data 2,
45 (2019), 2019. [p167]

S. B. Wanyama, R. W. McQuaid, and M. Kittler. Where you search determines what you find: the
effects of bibliographic databases on systematic reviews. International Journal of Social Research
Methodology, 25(3):409–422, 2022. [p167]

H. Wickham. httr: Tools for Working with URLs and HTTP, 2022. URL https://CRAN.R-project.org/
package=httr. R package version 1.4.4. [p169]

H. Wickham, J. Hester, W. Chang, and J. Bryan. devtools: Tools to Make Developing R Packages Easier,
2022. URL https://CRAN.R-project.org/package=devtools. R package version 2.4.5. [p170]

D. J. Winter. rentrez: An r package for the ncbi eutils api. Technical report, PeerJ Preprints, 2017. [p167]

C. Wohlin. Guidelines for snowballing in systematic literature studies and a replication in software
engineering. In Proceedings of the 18th international conference on evaluation and assessment in software
engineering, EASE ’14, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450324762. doi: 10.1145/2601248.2601268. URL https://doi.org/10.1145/2601248.2601268.
[p169]

Massimo Aria
Università degli Studi di Napoli Federico II
K-Synth srl, Academic Spin-off
Department of Economics and Statistics
Napoli, NA 80126
Italy
(0000-0002-8517-9411)
aria@unina.it

Trang Le
Bristol Myers Squibb
Cambridge, MA 02143
USA
(0000-0003-3737-6565)
trang.le@bms.com

Corrado Cuccurullo
Università della Campania Luigi Vanvitelli
Capua, CE 81043
Italy
Università degli Studi di Napoli Federico II
K-Synth srl, Academic Spin-off
Department of Economics and Statistics
Napoli, NA 80126
Italy
(0000-0002-7401-8575)
corrado.cuccurullo@unicampania.it

Alessandra Belfiore
Università degli Studi di Napoli Federico II

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=httr
https://CRAN.R-project.org/package=httr
https://CRAN.R-project.org/package=devtools
https://doi.org/10.1145/2601248.2601268
mailto:aria@unina.it
mailto:trang.le@bms.com
mailto:corrado.cuccurullo@unicampania.it

CONTRIBUTED RESEARCH ARTICLE 180

K-Synth srl, Academic Spin-off
Department of Economics and Statistics
Napoli, NA 80126
Italy
(0000-0003-3709-9481)
alessandra.belfiore@unina.it

June Choe
University of Pennsylvania
Philadelphia, PE 19104
USA
(0000-0002-0701-921X)
yjchoe@sas.upenn.edu

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

mailto:alessandra.belfiore@unina.it
mailto:yjchoe@sas.upenn.edu

CONTRIBUTED RESEARCH ARTICLE 181

Computer Algebra in R Bridges a Gap
Between Symbolic Mathematics and Data
in the Teaching of Statistics and Data
Science
by Mikkel Meyer Andersen and Søren Højsgaard

Abstract The capability of R to do symbolic mathematics is enhanced by the reticulate and caracas
packages. The workhorse behind these packages is the Python computer algebra library SymPy. Via
reticulate, the SymPy library can be accessed from within R. This, however, requires some knowledge
of SymPy, Python and reticulate. The caracas package, on the other hand, provides access to SymPy
(via reticulate) but by using R syntax, and this is the main contribution of caracas. We show examples
of how to use the SymPy library from R via reticulate and caracas. Using caracas, we demonstrate how
mathematics and statistics can benefit from bridging computer algebra and data via R. The caracas
package integrates well with Rmarkdown and Quarto, and as such supports creation of teaching
material and scientific reports. As inspiration for teachers, we include ideas for small student projects.

1 Introduction

The capability of R to do symbolic mathematics is enhanced by the reticulate (Ushey, Allaire, and
Tang 2020) and caracas (Andersen and Højsgaard 2021) packages. The reticulate package allows
R users to make use of various Python libraries, such as the symbolic mathematics package SymPy,
which is the workhorse behind symbolic mathematics in this connection. However, the reticulate
package does require that the users are somewhat familiar with Python syntax. The caracas package,
on the other hand, provides an interface to reticulate that conforms fully to the existing R syntax. In
short form, caracas provides the following:

(1) Mathematical tools like equation solving, summation, limits, symbolic linear algebra in R syntax
and formatting of tex output.

(2) Symbolic mathematics can easily be combined with data which is helpful in e.g. numerical
optimization.

In this paper we will illustrate the use of the caracas package (version 2.1.0) in connection with
teaching mathematics and statistics and how students can benefit benefit from bridging computer
algebra and data via R. Focus is on: 1) treating statistical models symbolically, 2) bridging the gap
between symbolic mathematics and numerical computations and 3) preparing teaching material in a
reproducible framework (provided by, e.g. rmarkdown and Quarto; J. Allaire et al. (2021); Xie, Allaire,
and Grolemund (2018); Xie, Dervieux, and Riederer (2020); J. J. Allaire et al. (2022)) .

The caracas package is available from CRAN. Several vignettes illustrating caracas are provided
with the package and they are also available online together with the help pages, see https://r-
cas.github.io/caracas/. The development version of caracas is available at https://github.com/r-
cas/caracas.

The paper is organized in the following sections: The section Introducing caracas briefly in-
troduces the caracas package and its syntax, and relates caracas to SymPy via reticulate. The
section Statistics examples presents a sample of statistical models where we believe that a symbolic
treatment can enhance purely numerical computations. In the section Further topics we demonstrate
further aspects of caracas, including how caracas can be used in connection with preparing texts,
e.g. teaching material and working documents. The section Hands-on activities contains suggestions
about hands-on activities, e.g. for students. The last section Discussion contains a discussion of the
paper.

1.1 Installation

The caracas package is available on CRAN and can be installed as usual with install.packages('caracas').
Please ensure that you have SymPy installed, or else install it:

if (!caracas::has_sympy()) {

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=caracas
https://CRAN.R-project.org/package=rmarkdown
https://r-cas.github.io/caracas/
https://r-cas.github.io/caracas/
https://github.com/r-cas/caracas
https://github.com/r-cas/caracas

CONTRIBUTED RESEARCH ARTICLE 182

caracas::install_sympy()
}

The caracas package relies on the reticulate package to run Python code. Thus, if you wish to
configure your Python environment, you need to first load reticulate, then configure the Python
environment, and at last load caracas. The Python environment can be configured as in reticulate’s
“Python Version Configuration” vignette. Again, configuring the Python environment needs to be
done before loading caracas. Please find further details in reticulate’s documentation.

2 Introducing caracas

Here we introduce key concepts and show functionality subsequently needed in the section Statistics
examples. We will demonstrate both caracas and contrast this with using reticulate directly.

2.1 Symbols

A caracas symbol is a list with a pyobj slot and the class caracas_symbol. The pyobj is a Python
object (often a SymPy object). As such, a caracas symbol (in R) provides a handle to a Python object.
In the design of caracas we have tried to make this distinction something the user should not be
concerned with, but it is worthwhile being aware of the distinction. Whenever we refer to a symbol
we mean a caracas symbol. Two functions that create symbols are def_sym() and as_sym(); these
and other functions that create symbols will be illustrated below.

2.2 Linear algebra

We create a symbolic matrix (a caracas symbol) from an R object and a symbolic vector (a caracas
symbol) directly. A vector is a one-column matrix which is printed as its transpose to save space.
Matrix products are computed using the %*% operator:

R> M0 <- toeplitz(c("a", "b")) # Character matrix
R> M <- as_sym(M0) # as_sym() converts to a caracas symbol
R> v <- vector_sym(2, "v") # vector_sym creates symbolic vector
R> y <- M %*% v
R> Minv <- solve(M)
R> w <- Minv %*% y |> simplify()

Here we make use of the fact that caracas is tightly integrated with R which has a toeplitz()
function that can be used. Similarly, caracas offers matrix_sym() and vector_sym() for generating
general matrix and vector objects. The object M is

R> M

#> c: [[a, b],
#> [b, a]]

The LaTeX rendering using the tex() function of the symbols above are (refer to section Further
topics):

M =

[
a b
b a

]
; v =

[
v1
v2

]
; y =

[
av1 + bv2
av2 + bv1

]
; M−1 =

[
a

a2−b2 − b
a2−b2

− b
a2−b2

a
a2−b2

]
; w =

[
v1
v2

]
. (1)

Symbols can be substituted with other symbols or with numerical values using subs().

R> M2 <- subs(M, "b", "a^2")
R> M3 <- subs(M2, "a", 2)

M2 =

[
a a2

a2 a

]
; M3 =

[
2 4
4 2

]
. (2)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 183

2.3 Linear algebra - using reticulate

The reticulate package already enables SymPy from within R, but does not use standard R syntax
for many operations (e.g. matrix multiplication), and certain operations are more complicated than the
R counterparts (e.g. replacing elements in a matrix and constructing R expressions). As illustration,
the previous linear algebra example can also be done using reticulate:

R> library(reticulate)
R> sympy <- import("sympy")
R> M_ <- sympy$Matrix(list(c("a_", "b_"), c("b_", "a_")))
R> v_ <- sympy$Matrix(list("v1_", "v2_"))
R> y_ <- M_ * v_
R> w_ <- M_$inv() * y_
R> sympy$simplify(w_)

#> Matrix([
#> [v1_],
#> [v2_]])

This shows that it is possible to do the same linear algebra example using only reticulate, but it
requires using non-standard R syntax (for example, using * for matrix multiplication instead of %*%).

2.4 Functionality and R syntax provided by caracas

In caracas we use R syntax:

R> rbind(v, v)
R> cbind(v, v)
R> c(v, v)
R> v[3] <- "v3" # Insert element
R> M[, 2]
R> M[2]

The code correspondence between reticulate and caracas shows that the same can be achieved
with reticulate. However, it can be argued that the syntax is more involved, at least for users only
familiar with R. Note in particular that Python’s “object-oriented” syntax can make code harder to
read due to having to call methods with $:

R> v_$row_join(v_) # rbind(v, v)
R> v_Tcol_join(v_$T) # cbind(v, v)
R> sympy$Matrix(c(v_$tolist(), v_$tolist())) # c(v, v)
R> sympy$Matrix(c(v_$tolist(), list(list(sympy$symbols("v3_"))))) # v[3] <- "v3"
R> M_$col(1L) # M[, 2]
R> M_$row(1L)$col(0L) # M[2]

Notice that SymPy uses 0-based indexing (as Python does), whereas caracas uses 1-based indexing
(as R does). Furthermore, indexing has to be done using explicit integers so above we write 1L (an
integer) rather than simply 1 (a numeric).

We have already shown that caracas can coerce R matrices to symbols. Additionally, caracas
provides various convenience functions:

R> M <- matrix_sym(2, 2, entry = "sigma")
R> D <- matrix_sym_diag(2, entry = "d")
R> S <- matrix_sym_symmetric(2, entry = "s")
R> E <- eye_sym(2, 2)
R> J <- ones_sym(2, 2)
R> b <- vector_sym(2, entry = "b")

M =

[
σ11 σ12
σ21 σ22

]
; D =

[
d1 0
0 d2

]
; S =

[
s11 s21
s21 s22

]
; E =

[
1 0
0 1

]
; J =

[
1 1
1 1

]
; b =

[
b1
b2

]
(3)

A caracas symbol can be turned into an R function for subsequent numerical evaluation using
as_func() or into an R expression using as_expr():

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 184

R> as_func(M)

#> function (sigma11, sigma12, sigma21, sigma22)
#> {
#> matrix(c(sigma11, sigma21, sigma12, sigma22), nrow = 2)
#> }
#> <environment: 0x105ed4910>

R> as_expr(M)

#> expression(matrix(c(sigma11, sigma21, sigma12, sigma22), nrow = 2))

2.5 Algebra and calculus

We can define a polynomial p in the variable x. This is done by defining a caracas symbol x and
subsequently a caracas polynomial p in x (notice that p gets automatically coerced into a symbol as
well, because p is defined in terms of the symbol x):

R> def_sym(x)
R> p <- 1 - x^2 + x^3 + x^4/4 - 3 * x^5 / 5 + x^6 / 6

The function def_sym() creates the symbol x. Alternatively, x <- as_sym("x") can be used, but it
has the drawback that you could also write y <- as_sym("x"). We investigate p further by finding the
first and second derivatives of p, i.e. the gradient and Hessian of p.

R> g <- der(p, x)
R> g2 <- factor_(g)
R> h <- der2(p, x)

Notice here that some functions have a postfix underscore as a simple way of distinguishing
them from R functions with a different meaning. Thus, here the function factor_() factorizes the
polynomial which shows that the stationary points are −1, 0, 1 and 2:

g = x5 − 3x4 + x3 + 3x2 − 2x; g2 = x (x − 2) (x − 1)2 (x + 1) . (4)

In a more general setting we can find the stationary points by equating the gradient to zero: The
output sol is a list of solutions in which each solution is a list of caracas symbols.

R> sol <- solve_sys(lhs = g, rhs = 0, vars = x)
R> sol

#> x = -1
#> x = 0
#> x = 1
#> x = 2

Notice that solve_sys also works with complex solutions:

R> solve_sys(lhs = x^2 + 1, rhs = 0, vars = x)

#> x = -1i
#> x = 1i

As noted before, a caracas symbol can be coerced to an R expression using as_expr(). This can be
used to get the roots of g (the stationary points) above as an R object. The sign of the second derivative
in the stationary points can be obtained by coercing the second derivative symbol to a function:

R> sol_expr <- as_expr(sol) |> unlist() |> unname()
R> sol_expr

#> [1] -1 0 1 2

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 185

0.00
0.25
0.50
0.75
1.00

−1 0 1 2
x

p
−4

−2

0

2

−1 0 1 2
x

g

0

10

20

−1 0 1 2
x

h

Figure 1: Left: A polynomial. Center: First derivative (the gradient). Right: Second derivative (the
Hessian).

R> h_fn <- as_func(h)
R> h_fn(sol_expr)

#> [1] 12 -2 0 6

The sign of the second derivative in the stationary points shows that −1 and 2 are local minima, 0
is a local maximum and 1 is an inflection point. The polynomial, the first derivative and the second
derivative are shown in Fig. 1. The stationary points, −1, 0, 1, 2, are indicated in the plots.

3 Statistics examples

In this section we examine larger statistical examples and demonstrate how caracas can help improve
understanding of the models.

3.1 Example: Linear models

While the matrix form of linear models is quite clear and concise, it can also be argued that matrix
algebra obscures what is being computed. Numerical examples are useful for some aspects of the
computations but not for others. In this respect symbolic computations can be enlightening.

Consider a two-way analysis of variance (ANOVA) with one observation per group, see Table 1.

Table 1: Two-by-two layout of data.

y11 y12
y21 y22

Previously, it was demonstrated that a symbolic vector could be defined with the vector_sym()
function. Another way to specify a symbolic vector with explicit elements is by using as_sym():

R> y <- as_sym(c("y_11", "y_21", "y_12", "y_22"))
R> dat <- expand.grid(r = factor(1:2), s = factor(1:2))
R> X <- model.matrix(~ r + s, data = dat) |> as_sym()
R> b <- vector_sym(ncol(X), "b")
R> mu <- X %*% b

For the specific model we have random variables y = (yij). All yijs are assumed independent and
yij ∼ N(µij, v). The corresponding mean vector µ has the form given below:

y =

y11
y21
y12
y22

 ; X =

1 . .
1 1 .
1 . 1
1 1 1

 ; b =

b1
b2
b3

 ; µ = Xb =

b1

b1 + b2
b1 + b3

b1 + b2 + b3

 . (5)

Above and elsewhere, dots represent zero. The least squares estimate of b is the vector b̂ that
minimizes ||y − Xb||2 which leads to the normal equations (X⊤X)b = X⊤y to be solved. If X has full
rank, the unique solution to the normal equations is b̂ = (X⊤X)−1X⊤y. Hence the estimated mean
vector is µ̂ = Xb̂ = X(X⊤X)−1X⊤y. Symbolic computations are not needed for quantities involving
only the model matrix X, but when it comes to computations involving y, a symbolic treatment of y is
useful:

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 186

−2

0

2

4

0 10 20 30
dose

E
m

pi
ric

al
lo

gi
t

−2

0

2

4

0 1 2 3 4 5
log2(dose)

E
m

pi
ric

al
lo

gi
t

Figure 2: Insecticide mortality of the moth tobacco budworm.

R> Xty <- t(X) %*% y
R> b_hat <- solve(t(X) %*% X, Xty)

X⊤y =

y11 + y12 + y21 + y22
y21 + y22
y12 + y22

 ; b̂ =
1
2

 3y11
2 +

y12
2 +

y21
2 − y22

2
−y11 − y12 + y21 + y22
−y11 + y12 − y21 + y22

 . (6)

Hence X⊤y (a sufficient reduction of data if the variance is known) consists of the sum of all
observations, the sum of observations in the second row and the sum of observations in the second
column. For b̂, the second component is, apart from a scaling, the sum of the second row minus the
sum of the first row. Likewise, the third component is the sum of the second column minus the sum of
the first column. Hence, for example the second component of b̂ is the difference in mean between the
first and second column in Table 1.

3.2 Example: Logistic regression

In the following we go through details of the logistic regression model, for a classical description see
e.g. McCullagh and Nelder (1989) for a classical description.

As an example, consider the budworm data from the doBy package (Højsgaard and Halekoh 2023).
The data shows the number of killed moth tobacco budworm Heliothis virescens. Batches of 20 moths
of each sex were exposed for three days to the pyrethroid and the number in each batch that were
dead or knocked down was recorded. Below we focus only on male budworms and the mortality is
illustrated in Figure 2 (produced with ggplot2; Wickham (2016)). The y-axis shows the empirical logits,
i.e. log((ndead+ 0.5)/(ntotal− ndead+ 0.5)). The figure suggests that log odds of dying grows
linearly with log dose.

R> data(budworm, package = "doBy")
R> bud <- subset(budworm, sex == "male")
R> bud

#> sex dose ndead ntotal
#> 1 male 1 1 20
#> 2 male 2 4 20
#> 3 male 4 9 20
#> 4 male 8 13 20
#> 5 male 16 18 20
#> 6 male 32 20 20

Observables are binomially distributed, yi ∼ bin(pi, ni). The probability pi is connected to a
q-vector of covariates xi = (xi1, . . . , xiq) and a q-vector of regression coefficients b = (b1, . . . , bq)
as follows: The term si = xi · b is denoted the linear predictor. The probability pi can be linked
to si in different ways, but the most commonly employed is via the logit link function which is
logit(pi) = log(pi/(1 − pi)) so here logit(pi) = si. Based on Figure 2, we consider the specific model
with si = b1 + b2 log 2(dosei). For later use, we define the data matrix below:

R> DM <- cbind(model.matrix(~log2(dose), data=bud),
+ bud[, c("ndead", "ntotal")]) |> as.matrix()
R> DM |> head(3)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=doBy
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 187

#> (Intercept) log2(dose) ndead ntotal
#> 1 1 0 1 20
#> 2 1 1 4 20
#> 3 1 2 9 20

Each component of the likelihood

The log-likelihood is log L = ∑i yi log(pi) + (ni − yi) log(1 − pi) = ∑i log Li, say. Consider the
contribution to the total log-likelihood from the ith observation which is log Li = li = yi log(pi) +
(ni − yi) log(1 − pi). Since we are focusing on one observation only, we shall ignore the subscript i in
this section. First notice that with s = log(p/(1 − p)) we can find p as a function of s as:

R> def_sym(s, p) # The previous polynomial p is removed by this new declaration
R> sol_ <- solve_sys(lhs = log(p / (1 - p)), rhs = s, vars = p)
R> p_s <- sol_[[1]]$p

p_s =
es

es + 1
(7)

Next, find the likelihood as a function of p, as a function of s and as a function of b. The underscore
in logLb_ and elsewhere indicates that this expression is defined in terms of other symbols. The
log-likelihood can be maximized using e.g. Newton-Raphson (see e.g. Nocedal and Wright (2006))
and in this connection we need the score function, S, and the Hessian, H:

R> def_sym(y, n)
R> b <- vector_sym(2, "b")
R> x <- vector_sym(2, "x")
R> logLp_ <- y * log(p) + (n - y) * log(1 - p) # logL as fn of p
R> s_b <- sum(x * b) # s as fn of b
R> p_b <- subs(p_s, s, s_b) # p as fn of b
R> logLb_ <- subs(logLp_, p, p_b) # logL as fn of b
R> Sb_ <- score(logLb_, b) |> simplify()
R> Hb_ <- hessian(logLb_, b) |> simplify()

p_b =
eb1x1+b2x2

eb1x1+b2x2 + 1
; (8)

logLb_ = y log

(
eb1x1+b2x2

eb1x1+b2x2 + 1

)
+ (n − y) log

(
1 − eb1x1+b2x2

eb1x1+b2x2 + 1

)
; (9)

Sb_ =

 x1(−neb1 x1+b2 x2+yeb1 x1+b2 x2+y)
eb1 x1+b2 x2+1

x2(−neb1 x1+b2 x2+yeb1 x1+b2 x2+y)
eb1 x1+b2 x2+1

 ; (10)

Hb_ =

− nx2
1eb1 x1+b2 x2

2eb1 x1+b2 x2+e2b1 x1+2b2 x2+1
− nx1x2eb1 x1+b2 x2

2eb1 x1+b2 x2+e2b1 x1+2b2 x2+1

− nx1x2eb1 x1+b2 x2

2eb1 x1+b2 x2+e2b1 x1+2b2 x2+1
− nx2

2eb1 x1+b2 x2

2eb1 x1+b2 x2+e2b1 x1+2b2 x2+1

 . (11)

There are some possible approaches before maximizing the total log likelihood. One is to insert
data case by case into the symbolic log likelihood:

R> nms <- c("x1", "x2", "y", "n")
R> DM_lst <- doBy::split_byrow(DM)
R> logLb_lst <- lapply(DM_lst, function(vls) {
+ subs(logLb_, nms, vls)
+ })

For example, the contribution from the third observation to the total log likelihood is:

logLb_lst[[3]] = 9 log

(
eb1+2b2

eb1+2b2 + 1

)
+ 11 log

(
1 − eb1+2b2

eb1+2b2 + 1

)
. (12)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 188

The full likelihood can be maximized either e.g. using SymPy (not pursued here) or by converting
the sum to an R function which can be maximized using one of R’s internal optimization procedures:

R> logLb_tot <- Reduce(`+`, logLb_lst)
R> logLb_fn <- as_func(logLb_tot, vec_arg = TRUE)
R> opt <- optim(c(b1 = 0, b2 = 0), logLb_fn,
+ control = list(fnscale = -1), hessian = TRUE)
R> opt$par

#> b1 b2
#> -2.82 1.26

The same model can be fitted e.g. using R’s glm() function as follows:

R> m <- glm(cbind(ndead, ntotal - ndead) ~ log2(dose), family=binomial(), data=bud)
R> m |> coef()

#> (Intercept) log2(dose)
#> -2.82 1.26

The total likelihood symbolically

We conclude this section by illustrating that the log-likelihood for the entire dataset can be constructed
in a few steps (output is omitted to save space):

R> N <- 6; q <- 2
R> X <- matrix_sym(N, q, "x")
R> n <- vector_sym(N, "n")
R> y <- vector_sym(N, "y")
R> p <- vector_sym(N, "p")
R> s <- vector_sym(N, "s")
R> b <- vector_sym(q, "b")

X =

x11 x12
x21 x22
x31 x32
x41 x42
x51 x52
x61 x62

 ; n =

n1
n2
n3
n4
n5
n6

 ; y =

y1
y2
y3
y4
y5
y6

 . (13)

The symbolic computations are as follows: We express the linear predictor s as function of the
regression coefficients b and express the probability p as function of the linear predictor:

R> logLp <- sum(y * log(p) + (n - y) * log(1 - p)) # logL as fn of p
R> p_s <- exp(s) / (exp(s) + 1) # p as fn of s
R> s_b <- X %*% b # s as fn of b
R> p_b <- subs(p_s, s, s_b) # p as fn of b
R> logLb_ <- subs(logLp, p, p_b) # logL as fn of b

Next step could be to go from symbolic to numerical computations by inserting numerical values.
From here, one may proceed by computing the score function and the Hessian matrix and solve the
score equation, using e.g. Newton-Raphson. Alternatively, one might create an R function based on
the log-likelihood, and maximize this function using one of R’s optimization methods (see the example
in the previous section):

R> logLb <- subs(logLb_, cbind(X, y, n), DM)
R> logLb_fn <- as_func(logLb, vec_arg = TRUE)
R> opt <- optim(c(b1 = 0, b2 = 0), logLb_fn,
+ control = list(fnscale = -1), hessian = TRUE)
R> opt$par

#> b1 b2
#> -2.82 1.26

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 189

3.3 Example: Constrained maximum likelihood

In this section we illustrate constrained optimization using Lagrange multipliers. This is demonstrated
for the independence model for a two-way contingency table. Consider a 2 × 2 contingency table with
cell counts yij and cell probabilities pij for i = 1, 2 and j = 1, 2, where i refers to row and j to column
as illustrated in Table 1.

Under multinomial sampling, the log likelihood is

l = log L = ∑
ij

yij log(pij). (14)

Under the assumption of independence between rows and columns, the cell probabilities have the
form, (see e.g. Højsgaard, Edwards, and Lauritzen (2012), p. 32)

pij = u · ri · sj. (15)

To make the parameters (u, ri, sj) identifiable, constraints must be imposed. One possibility is to
require that r1 = s1 = 1. The task is then to estimate u, r2, s2 by maximizing the log likelihood under
the constraint that ∑ij pij = 1. These constraints can be imposed using a Lagrange multiplier where
we solve the unconstrained optimization problem maxp Lag(p) where

Lag(p) = −l(p) + λg(p) under the constraint that (16)

g(p) = ∑
ij

pij − 1 = 0, (17)

where λ is a Lagrange multiplier. The likelihood equations can be found in closed-form. In SymPy,
lambda is a reserved symbol so it is denoted by an postfixed underscore below:

R> def_sym(u, r2, s2, lambda_)
R> y <- as_sym(c("y_11", "y_21", "y_12", "y_22"))
R> p <- as_sym(c("u", "u*r2", "u*s2", "u*r2*s2"))
R> logL <- sum(y * log(p))
R> Lag <- -logL + lambda_ * (sum(p) - 1)
R> vars <- list(u, r2, s2, lambda_)
R> gLag <- der(Lag, vars)
R> sol <- solve_sys(gLag, vars)
R> print(sol, method = "ascii")

#> Solution 1:
#> lambda_ = y_11 + y_12 + y_21 + y_22
#> r2 = (y_21 + y_22)/(y_11 + y_12)
#> s2 = (y_12 + y_22)/(y_11 + y_21)
#> u = (y_11 + y_12)*(y_11 + y_21)/(y_11 + y_12 + y_21 + y_22)^2

R> sol <- sol[[1]]

There is only one critical point. The fitted cell probabilities p̂ij are:

R> p11 <- sol$u
R> p21 <- sol$u * sol$r2
R> p12 <- sol$u * sol$s2
R> p22 <- sol$u * sol$r2 * sol$s2
R> p.hat <- matrix_(c(p11, p21, p12, p22), nrow = 2)

p̂ =
1

(y11 + y12 + y21 + y22)
2

[
(y11 + y12) (y11 + y21) (y11 + y12) (y12 + y22)
(y11 + y21) (y21 + y22) (y12 + y22) (y21 + y22)

]
(18)

To verify that the maximum likelihood estimate has been found, we compute the Hessian matrix
which is negative definite (the Hessian matrix is diagonal so the eigenvalues are the diagonal entries
and these are all negative), output omitted:

R> H <- hessian(logL, list(u, r2, s2)) |> simplify()

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 190

3.4 Example: An auto regression model

Symbolic computations

In this section we study the auto regressive model of order 1 (an AR(1) model, see e.g. Shumway and
Stoffer (2016), p. 75): Consider random variables x1, x2, . . . , xn following a stationary zero mean AR(1)
process:

xi = axi−1 + ei; i = 2, . . . , n, (19)

where ei ∼ N(0, v) and all independent and with constant variance v. The marginal distribution
of x1 is also assumed normal, and for the process to be stationary we must have that the variance
Var(x1) = v/(1 − a2). Hence we can write x1 = 1√

1−a2 e1.

For simplicity of exposition, we set n = 4 such that e = (e1, . . . , e4) and x = (x1, . . . x4). Hence
e ∼ N(0, vI). Isolating error terms in (19) gives

e =

e1
e2
e3
e4

 =

√

1 − a2 . . .
−a 1 . .

. −a 1 .

. . −a 1

x1
x2
x3
x4

 = Lx. (20)

Since Var(e) = vI we have Var(e) = vI = LVar(x)L⊤ so the covariance matrix of x is V =

Var(x) = vL−1 (L−1)⊤ while the concentration matrix (the inverse covariance matrix) is K = v−1L⊤L:

R> def_sym(a, v)
R> n <- 4
R> L <- diff_mat(n, "-a") # The difference matrix, L, shown above
R> L[1, 1] <- sqrt(1 - a^2)
R> Linv <- solve(L)
R> K <- crossprod_(L) / v
R> V <- tcrossprod_(Linv) * v

L−1 =

1√

1−a2 . . .
a√

1−a2 1 . .
a2√
1−a2 a 1 .
a3√
1−a2 a2 a 1

 ; (21)

K =
1
v

1 −a 0 0
−a a2 + 1 −a 0
0 −a a2 + 1 −a
0 0 −a 1

 ; (22)

V =
v

a2 − 1

−1 −a −a2 −a3

−a −1 −a −a2

−a2 −a −1 −a
−a3 −a2 −a −1

 . (23)

The zeros in the concentration matrix K implies a conditional independence restriction: If the ijth
element of a concentration matrix is zero then xi and xj are conditionally independent given all other
variables (see e.g. Højsgaard, Edwards, and Lauritzen (2012), p. 84 for details).

Next, we take the step from symbolic computations to numerical evaluations. The joint distribution
of x is multivariate normal distribution, x ∼ N(0, K−1). Let W = xx⊤ denote the matrix of (cross)
products. The log-likelihood is therefore (ignoring additive constants)

log L =
n
2
(log det(K)− x⊤Kx) =

n
2
(log det(K)− tr(KW)), (24)

where we note that tr(KW) is the sum of the elementwise products of K and W since both matrices
are symmetric. Ignoring the constant n

2 , this can be written symbolically to obtain the expression in
this particular case:

R> x <- vector_sym(n, "x")
R> logL <- log(det(K)) - sum(K * (x %*% t(x))) |> simplify()

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 191

log L = log
(
− a2

v4 +
1
v4

)
−

−2ax1x2 − 2ax2x3 − 2ax3x4 + x2
1 + x2

2
(
a2 + 1

)
+ x2

3
(
a2 + 1

)
+ x2

4
v

. (25)

Numerical evaluation

Next we illustrate how bridge the gap from symbolic computations to numerical computations based
on a dataset: For a specific data vector we get:

R> xt <- c(0.1, -0.9, 0.4, 0.0)
R> logL. <- subs(logL, x, xt)

log L = log
(
− a2

v4 +
1
v4

)
− 0.97a2 + 0.9a + 0.98

v
. (26)

We can use R for numerical maximization of the likelihood and constraints on the parameter
values can be imposed e.g. in the optim() function:

R> logL_wrap <- as_func(logL., vec_arg = TRUE)
R> eps <- 0.01
R> par <- optim(c(a=0, v=1), logL_wrap,
+ lower=c(-(1-eps), eps), upper=c((1-eps), 10),
+ method="L-BFGS-B", control=list(fnscale=-1))$par
R> par

#> a v
#> -0.376 0.195

The same model can be fitted e.g. using R’s arima() function as follows (output omitted):

R> arima(xt, order = c(1, 0, 0), include.mean = FALSE, method = "ML")

It is less trivial to do the optimization in caracas by solving the score equations. There are some
possibilities for putting assumptions on variables in caracas (see the “Reference” vignette), but it is
not possible to restrict the parameter a to only take values in (−1, 1).

3.5 Example: Variance of average of correlated variables

Consider random variables x1, . . . , xn where Var(xi) = v and Cov(xi, xj) = vr for i ̸= j, where
0 ≤ |r| ≤ 1. For n = 3, the covariance matrix of (x1, . . . , xn) is therefore

V = vR = v

1 r r
r 1 r
r r 1

 . (27)

Let x̄ = ∑i xi/n denote the average. Suppose interest is in the variance of the average, wnr =
Var(x̄), when n goes to infinity. Here the subscripts n and r emphasize the dependence on the
sample size n and the correlation r. The variance of a sum x. = ∑i xi is Var(x.) = ∑i Var(xi) +
2 ∑ij:i<j Cov(xi, xj) (i.e., the sum of the elements of the covariance matrix). Then wnr = Var(x̄) =

Var(x.)/n2. We can do this in caracas as follows using the sum_ function that calculate a symbolic
sum:

R> def_sym(v, r, n, j, i)
R> s1 <- sum_(r, j, i+1, n) # sum_{j = i+1}^n r
R> s2 <- sum_(s1, i, 1, n-1) |> simplify()
R> var_sum <- v*(n + 2 * s2) |> simplify()
R> w_nr <- var_sum / n^2

Above, s1 is the sum of elements i + 1 to n in row j of the covariance matrix and therefore s2 is the
sum of the entire upper triangular of the covariance matrix.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 192

s1 = r (−i + n) ; s2 =
nr (n − 1)

2
; wnr = Var(x̄) =

v (r (n − 1) + 1)
n

. (28)

The limiting behavior of the variance wnr can be studied in different situations (results shown
later):

R> l_1 <- lim(w_nr, n, Inf) # when sample size n goes to infinity
R> l_2 <- lim(w_nr, r, 0, dir = '+') # when correlation r goes to zero
R> l_3 <- lim(w_nr, r, 1, dir = '-') # when correlation r goes to one

Moreover, for a given correlation r it is instructive to investigate how many independent variables,
say knr the n correlated variables correspond to (in the sense of giving the same variance of the
average), because then knr can be seen as a measure of the amount of information in data. We call knr
the effective sample size. Moreover, one might study how knr behaves as function of n when n → ∞.
That is we must (1) solve v(1 + (n − 1)r)/n = v/knr for knr and (2) find the limit kr = limn→∞ knr:

R> def_sym(k_n)
R> sol <- solve_sys(w_nr - v / k_n, k_n)
R> k_nr <- sol[[1]]$k_n # effective sample size
R> k_r <- lim(k_nr, n, Inf)

The findings above are:

l1 = lim
n→∞

wnr = rv; l2 = lim
r→0

wnr =
v
n

; l3 = lim
r→1

wnr = v; knr =
n

nr − r + 1
; kr =

1
r

. (29)

It is illustrative to supplement the symbolic computations above with numerical evaluations,
which shows that even a moderate correlation reduces the effective sample size substantially. In Fig. 3,
this is illustrated for a wider range of correlations and sample sizes.

R> dat <- expand.grid(r = c(.1, .2, .5), n = c(10, 50, 1000))
R> k_nr_fn <- as_func(k_nr)
R> dat$k_nr <- k_nr_fn(r = dat$r, n = dat$n)
R> dat$k_r <- 1 / dat$r
R> dat

#> r n k_nr k_r
#> 1 0.1 10 5.26 10
#> 2 0.2 10 3.57 5
#> 3 0.5 10 1.82 2
#> 4 0.1 50 8.47 10
#> 5 0.2 50 4.63 5
#> 6 0.5 50 1.96 2
#> 7 0.1 1000 9.91 10
#> 8 0.2 1000 4.98 5
#> 9 0.5 1000 2.00 2

2

4

6

8

0.25 0.50 0.75 1.00
r

k n
r

n

5

10

50

Figure 3: Effective sample size knr as function of correlation r for different values of n. The dashed
line is the limit of kr as r → 1, i.e. 1.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 193

4 Further topics

4.1 Integration, limits, and unevaluated expressions

The unit circle is given by x2 + y2 = 1 so the area of the upper half of the unit circle is
∫ 1
−1

√
1 − x2 dx

(which is known to be π/2). This result is produced by caracas while the integrate function in R
produces the approximate result 1.57.

R> x <- as_sym("x")
R> half_circle_ <- sqrt(1 - x^2)
R> ad <- int(half_circle_, "x") # Anti derivative
R> area <- int(half_circle_, "x", -1, 1) # Definite integral

ad =
x
√

1 − x2

2
+

asin (x)
2

; area =
π

2
. (30)

Finally, we illustrate limits and the creation of unevaluated expressions:

R> def_sym(x, n)
R> y <- (1 + x/n)^n
R> l <- lim(y, n, Inf, doit = FALSE)
R> l_2 <- doit(l)

l = lim
n→∞

(
1 +

x
n

)n
; l2 = ex (31)

Several functions have the doit argument, e.g. lim(), int() and sum_(). Among other things,
unevaluated expressions help making reproducible documents where the changes in code appears
automatically in the generated formulas.

4.2 Documents with mathematical content

A LaTeX rendering of a caracas symbol, say x, is obtained by typing $$x = `r tex(x)`$$. This
feature is useful when creating documents with a mathematical content and has been used extensively
throughout this paper.

For rendering matrices, the tex() function has a zero_as_dot argument which is useful:

R> A <- diag_(c("a", "b", "c"))

tex(A) =

a 0 0
0 b 0
0 0 c

 ; tex(A, zero_as_dot = TRUE) =

a . .
. b .
. . c

 (32)

When displaying a matrix A, the expression can sometimes be greatly simplified by displaying k
and (A/k) for some factor k. A specific example could when displaying M−1. Here one may choose
to display (1/det(M)) and M−1det(M). This can be illustrated as follows:

R> M0 <- toeplitz(c("a", "b")) # Character matrix
R> M <- as_sym(M0) # as_sym() converts to a caracas symbol
R> Minv <- solve(M)
R> Minv2 <- scale_matrix(Minv, det(Minv))

Minv =

[
a

a2−b2 − b
a2−b2

− b
a2−b2

a
a2−b2

]
; Minv2 =

1
a2 − b2

[
a −b
−b a

]
(33)

4.3 Extending caracas

It is possible to easily extend caracas with additional functionality from SymPy using sympy_func()
from caracas which we illustrate below. This example illustrates how to use SymPy’s diff() function
to find univariate derivatives multiple times. The partial derivative of sin(xy) with respect to x and y
is found with diff in SymPy:

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 194

R> library(reticulate)
R> sympy <- import("sympy")
R> sympy$diff("sin(x * y)", "x", "y")

#> -x*y*sin(x*y) + cos(x*y)

Alternatively:

R> x <- sympy$symbols("x")
R> y <- sympy$symbols("y")
R> sympy$diff(sympy$sin(x*y), x, y)

One the other hand, the der() function in caracas finds the gradient, which is a design choice in
caracas:

R> def_sym(x, y)
R> f <- sin(x * y)
R> der(f, list(x, y))

#> c: [y*cos(x*y), x*cos(x*y)]

If we want to obtain the functionality from SymPy we can write a function that invokes diff in
SymPy using the sympy_func() function in caracas:

R> der_diff <- function(expr, ...) {
+ sympy_func(expr, "diff", ...)
+ }
R> der_diff(sin(x * y), x, y)

#> c: -x*y*sin(x*y) + cos(x*y)

This latter function is especially useful if we need to find the higher-order derivative with respect
to the same variable:

R> sympy$diff("sin(x * y)", "x", 100L)
R> der_diff(sin(x * y), x, 100L)

4.4 Switching back and forth between caracas and reticulate

Another way of invoking SymPy functionality that is not available in caracas is the following. As
mentioned, a caracas symbol is a list with a slot called pyobj (accessed by $pyobj). Therefore, one can
work with caracas symbols in reticulate, and one can also coerce a Python object into a caracas
symbol. For example, it is straight forward to create a Toeplitz matrix using caracas. The minor sub
matrix obtained by removing the first row and column using reticulate and the result can be coerced
to a caracas object with as_sym(), e.g. for numerical evaluation (introduced later).

R> A <- as_sym(toeplitz(c("a", "b", 0))) # caracas symbol
R> B_ <- A$pyobj$minor_submatrix(0, 1) # reticulate object (notice: 0-based indexing)
R> B <- B_ |> as_sym() # caracas symbol

A =

a b 0
b a b
0 b a

 ; B =

[
b b
0 a

]
. (34)

5 Hands-on activities

1. Related to Section Example: Linear models:

a) The orthogonal projection matrix onto the span of the model matrix X is P = X(X⊤X)−1X⊤.
The residuals are r = (I − P)y. From this one may verify that these are not all independent.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 195

b) If one of the factors is ignored, then the two-way analysis of variance model becomes a
one-way analysis of variance model, and it is illustrative to redo the computations in this
setting.

c) Likewise if an interaction between the two factors is included in the model, what are the
residuals in this case?

2. Related to Section Example: Logistic regression:

a) In Each component of the likelihood, Newton-Raphson can be implemented to solve the
likelihood equations. Note how sensitive Newton-Raphson is to starting point. This can be
solved by another optimisation scheme, e.g. Nelder-Mead (optimising the log likelihood)
or BFGS (finding extreme for the score function).

b) The example is done as logistic regression with the logit link function. Try other link
functions such as cloglog (complementary log-log).

3. Related to Section Example: Constrained maximum likelihood:

a) Identifiability of the parameters was handled by not including r1 and s1 in the specification
of pij. An alternative is to impose the restrictions r1 = 1 and s1 = 1, and this can also be
handled via Lagrange multipliers. Another alternative is to regard the model as a log-
linear model where log pij = log u + log ri + log sj = ũ + r̃i + s̃j. This model is similar in
its structure to the two-way ANOVA for Section Example: Linear models. This model can
be fitted as a generalized linear model with a Poisson likelihood and log as link function.
Hence, one may modify the results in Section Example: Logistic regression to provide an
alternative way of fitting the model.

b) A simpler task is to consider a multinomial distribution with four categories, counts yi
and cell probabilities pi, i = 1, 2, 3, 4 where ∑i pi = 1. For this model, find the maximum
likelihood estimate for pi (use the Hessian to verify that the critical point is a maximum).

4. Related to Section Example: An auto regression model:

a) Compare the estimated parameter values with those obtained from the arima() function.
b) Modify the model in Equation (19) by setting x1 = axn + e1 (“wrapping around”) and see

what happens to the pattern of zeros in the concentration matrix.
c) Extend the AR(1) model to an AR(2) model (“wrapping around”) and investigate this

model along the same lines. Specifically, what are the conditional independencies (try at
least n = 6)?

5. Related to Section Example: Variance of average of correlated variables:

a) Simulate the situation given in the paper (e.g. using the function mvrnorm() in R package
MASS) and verify that the results align with the symbolic computations.

b) It is interesting to study such behaviours for other covariance functions. Replicate the
calculations for the covariance matrix of the form

V = vR = v

1 r 0
r 1 r
0 r 1

 , (35)

i.e., a special case of a Toeplitz matrix. How many independent variables, k, do the n
correlated variables correspond to?

6 Discussion

We have presented the caracas package and argued that the package extends the functionality of
R significantly with respect to symbolic mathematics. In contrast to using reticulate and SymPy
directly, caracas provides symbolic mathematics in standard R syntax.

One practical virtue of caracas is that the package integrates nicely with Rmarkdown, (J. Allaire et
al. 2021), (e.g. with the tex() functionality)
and thus supports creating of scientific documents and teaching material. As for the usability in
practice we await feedback from users.

Another related R package is Ryacas based on Yacas (Pinkus and Winitzki 2002; Pinkus, Winnitzky,
and Mazur 2016). The Ryacas package has existed for many years and is still of relevance. Ryacas
probably has fewer features than caracas. On the other hand, Ryacas does not require Python (it is
compiled). Finally, the Yacas language is extendable (see e.g. the vignette “User-defined yacas rules”
in the Ryacas package).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 196

One possible future development could be an R package which is designed without a view towards
the underlying engine (SymPy or Yacas) and which then draws more freely from SymPy and Yacas. In
this connection we mention that there are additional resources on CRAN such as calculus (Guidotti
2022).

Lastly, with respect to freely available resources in a CAS context, we would like to draw attention
to WolframAlpha, see e.g. https://www.wolframalpha.com/, which provides an online service for
answering (mathematical) queries.

7 Acknowledgements

We would like to thank the R Consortium for financial support for creating the caracas package,
users for pin pointing aspects that can be improved in caracas and Ege Rubak (Aalborg University,
Denmark), Poul Svante Eriksen (Aalborg University, Denmark), Giovanni Marchetti (University of
Florence, Italy) and reviewers for constructive comments.

References

Allaire, J. J., Charles Teague, Carlos Scheidegger, Yihui Xie, and Christophe Dervieux. 2022. “Quarto.”
https://doi.org/10.5281/zenodo.5960048.

Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wick-
ham, Joe Cheng, Winston Chang, and Richard Iannone. 2021. Rmarkdown: Dynamic Documents for r.
https://github.com/rstudio/rmarkdown.

Andersen, Mikkel Meyer, and Søren Højsgaard. 2021. “caracas: Computer algebra in R.” Journal of
Open Source Software 6 (63): 3438. https://doi.org/10.21105/joss.03438.

Guidotti, Emanuele. 2022. “calculus: High-Dimensional Numerical and Symbolic Calculus in R.”
Journal of Statistical Software 104 (1): 1–37. https://doi.org/10.18637/jss.v104.i05.

Højsgaard, Søren, David Edwards, and Steffen Lauritzen. 2012. Graphical Models with R. New York:
Springer. https://doi.org/10.1007/978-1-4614-2299-0.

Højsgaard, Søren, and Ulrich Halekoh. 2023. doBy: Groupwise Statistics, LSmeans, Linear Estimates,
Utilities. https://github.com/hojsgaard/doby.

McCullagh, P, and John A Nelder. 1989. Generalized Linear Models. 2nd ed. Chapman & Hall/CRC
Monographs on Statistics and Applied Probability. Philadelphia, PA: Chapman & Hall/CRC.
https://www.routledge.com/Generalized-Linear-Models/McCullagh-Nelder/p/book/9780412317606.

Nocedal, Jorge, and Stephen J. Wright. 2006. Numerical Optimization. Springer New York. https:
//doi.org/10.1007/978-0-387-40065-5.

Pinkus, Ayal, and Serge Winitzki. 2002. “YACAS: A Do-It-Yourself Symbolic Algebra Environment.”
In Proceedings of the Joint International Conferences on Artificial Intelligence, Automated Reasoning,
and Symbolic Computation, 332–36. AISC ’02/Calculemus ’02. London, UK, UK: Springer-Verlag.
https://doi.org/10.1007/3-540-45470-5_29.

Pinkus, Ayal, Serge Winnitzky, and Grzegorz Mazur. 2016. “Yacas - Yet another computer algebra
system.” https://yacas.readthedocs.io/en/latest/.

Shumway, Robert H., and David S. Stoffer. 2016. Time Series Analysis and Its Applications. Fourth
Edition. Springer. https://doi.org/10.1007/978-3-319-52452-8.

Ushey, Kevin, JJ Allaire, and Yuan Tang. 2020. Reticulate: Interface to ’Python’. https://CRAN.R-
project.org/package=reticulate.

Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org.

Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. R Markdown: The Definitive Guide. Boca Raton,
Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.

Xie, Yihui, Christophe Dervieux, and Emily Riederer. 2020. R Markdown Cookbook. Boca Raton, Florida:
Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook.

Mikkel Meyer Andersen
Department of Mathematical Sciences, Aalborg University, Denmark
Skjernvej 4A
9220 Aalborg Ø, Denmark
ORCiD: 0000-0002-0234-0266
mikl@math.aau.dk

Søren Højsgaard
Department of Mathematical Sciences, Aalborg University, Denmark

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=calculus
https://www.wolframalpha.com/
https://doi.org/10.5281/zenodo.5960048
https://github.com/rstudio/rmarkdown
https://doi.org/10.21105/joss.03438
https://doi.org/10.18637/jss.v104.i05
https://doi.org/10.1007/978-1-4614-2299-0
https://github.com/hojsgaard/doby
https://www.routledge.com/Generalized-Linear-Models/McCullagh-Nelder/p/book/9780412317606
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/3-540-45470-5_29
https://yacas.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-319-52452-8
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate
https://ggplot2.tidyverse.org
https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown-cookbook
https://orcid.org/0000-0002-0234-0266
mailto:mikl@math.aau.dk

CONTRIBUTED RESEARCH ARTICLE 197

Skjernvej 4A
9220 Aalborg Ø, Denmark
ORCiD: 0000-0002-3269-9552
sorenh@math.aau.dk

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://orcid.org/0000-0002-3269-9552
mailto:sorenh@math.aau.dk

CONTRIBUTED RESEARCH ARTICLE 198

A Comparison of R Tools for Nonlinear
Least Squares Modeling
by John C. Nash and Arkajyoti Bhattacharjee

Abstract Our Google Summer of Code project “Improvements to nls()” investigated rationalizing R
tools for nonlinear regression and nonlinear estimation tools by considering usability, maintainability,
and functionality, especially for a Gauss-Newton solver. The rich features of nls() are weakened by
several deficiencies and inconsistencies such as a lack of stabilization of the Gauss-Newton solver.
Further considerations are the usability and maintainability of the code base that provides the func-
tionality nls() claims to offer. Various packages, including our nlsr, provide alternative capabilities.
We consider the differences in goals, approaches, and features of different tools for nonlinear least
squares modeling in R. Discussion of these matters is relevant to improving R generally as well as its
nonlinear estimation tools.

1 The nls() function

nls() is a Comprehensive R Archive Network (CRAN: https://cran.r-project.org) tool that has
remarkable and wide-ranging features for estimating nonlinear statistical models that are expressed as
formulas. The function dates to the 1980s and the work related to D. M. Bates and Watts (1988) in S
(see https://en.wikipedia.org/wiki/S_%28programming_language%29).

In particular, we note that it

• can call calculations in other programming languages
• allows weighted or subset data
• can estimate bound-constrained parameters
• provides partially linear model handling mechanism
• permits parameters to be indexed over a set of related data
• produces measures of variability (i.e., standard error estimates) for the estimated parameters
• has related profiling capabilities for exploring the likelihood surface as parameters are changed
• links to many pre-coded (selfStart) models that do not require initial parameter values.

Due to its extensive range of features and prolonged history, the code has become untidy and overly
patched, making it challenging to maintain and ripe for improvement in its underlying methods.

2 Scope of our comparison

Besides the base-R nls() function, we will pay particular attention to nlsr (John C. Nash and Murdoch
(2023)), minpack.lm (Elzhov et al. (2012)), and gslnls (Chau (2023)) which are general nonlinear
least-squares solvers in the CRAN repository. While we will provide capsule comments for some
other CRAN packages, those in the Bioconductor (Gentleman et al. (2004)) collection are more
specialized, and those on repositories such as GitHub (https://github.com) and Gitlab (https:
//about.gitlab.com), while interesting, do not have the checking applied to CRAN packages.

Our work aimed at unifying nonlinear modeling functionality in R, ideally in a refactored nls()
function. The primary messages from this work are:

• For R users, we would advise that it is most efficient to carry out nonlinear modeling or least
squares by adapting working scripts, preferably those with documentation and using recent
tools. If there is a suspicion that there may be ill-conditioning, package nlsr or the example
we give in the section “Comparison notes for formula-setup solutions” below of how to find
singular values of the Jacobian allow these diagnostics to be calculated.

• For R developers, we invite and encourage discussion of the design choices, since these have
downstream implications for ease of use, adaptation to new features, and efficiency of ongoing
maintenance.

3 Some other CRAN packages for nonlinear modeling

onls (Spiess, Andrej-Nikolai (2022)) is used for optimising and estimating nonlinear models by
minimizing the sum of squares of orthogonal residuals rather than vertical residuals. The objec-

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://cran.r-project.org
https://en.wikipedia.org/wiki/S_%28programming_language%29
https://github.com
https://about.gitlab.com
https://about.gitlab.com

CONTRIBUTED RESEARCH ARTICLE 199

tive is therefore different and involves nontrivial extra calculation. A vignette with the package
and the blog article https://www.r-bloggers.com/2015/01/introducing-orthogonal-nonlinear-
least-squares-regression-in-r/ give some description with illustrative graphs. onls appears
to be limited to problems with one independent and one dependent variable. The Wikipedia article
https://en.wikipedia.org/wiki/Total_least_squares presents an overview of some ideas, with
references to the literature. The approach needs a wider discussion and tutorial examples to allow its
merits to be judged than can be included here.

crsnls (Tvrdík (2016)) – This package allows nonlinear estimation by controlled random search via
two methods. There is unfortunately no vignette. A modest trial we carried out showed nlsr::nlxb()
gave the same results in a small fraction of the time required by either of the methods in crsnls. The
method discussed in Josef Tvrdík and Ivan Křivý and Ladislav Mišík (2007) claims better reliability
in finding solutions than a Levenberg-Marquardt code (actually from Matlab), but the tests were
conducted on the extreme NIST examples mentioned next.

NISTnls (D. M. Bates (2012)) – This package provides R code and data for a set of (numerically
ill-conditioned) nonlinear least squares problems from the U.S. National Institute for Standards and
Technology. These may not represent real-world situations.

nlshelper (Duursma (2017)) – This package, which unfortunately lacks a vignette, provides a
few utilities for summarizing, testing, and plotting non-linear regression models estimated with nls(),
nlsList() or nlme() that are linked or grouped in some way.

nlsic (Sokol (2022)) – This solves nonlinear least squares problems with optional equality and/or
inequality constraints. It is clearly not about modeling, and the input and output are quite different
from class nls methods. However, there do not appear to be other R packages with these capabilities.

nlsMicrobio (Baty and Delignette-Muller (2014)) – Data sets and nonlinear regression models
dedicated to predictive microbiology, including a vignette, by authors of the nlstools package.

nlstools (Baty and Delignette-Muller (2013)) – This package provides several tools for aiding the
estimation of nonlinear models, particularly using nls(). The vignette is actually a journal article, and
the authors have considerable experience in the subject.

nlsmsn (Prates, Lachos, and Garay (2021)) – Fit univariate non-linear scale mixture of skew-normal
(NL-SMSN) regression, with details in Garay, Lachos, and Abanto-Valle (2011). The problem here is to
minimize an objective that is modified from the traditional sum of squared residuals.

nls.multstart (Padfield and Matheson (2020)) – Non-linear least squares regression using AIC
scores with the Levenberg-Marquardt algorithm using multiple starting values for increasing the
chance that the minimum found is the global minimum.

nls2 (Grothendieck (2022)) – Nonlinear least squares by brute force has similar motivations to
nls.multstart, but uses nls() within multiple trials. The author has extensive expertise in R.

nlstac (Rodriguez-Arias et al. (2020)) – A set of functions implementing the algorithm described
in Torvisco, Rodriguez-Arias, and Sanchez (2018) for fitting separable nonlinear regression curves.
The special class of problem for which this package is intended is an important and difficult one. No
vignette is provided, unfortunately.

easynls – Fit and plot some nonlinear models. Thirteen models are treated, but there is minimal
documentation and no vignette. Package nlraa is to be preferred.

nlraa (Miguez (2021)) – a set of nonlinear selfStart models, primarily from agriculture. Most
include analytic Jacobian code.

optimx (John C. Nash and Varadhan (2011)) – This provides optimizers that can be applied to
minimize a nonlinear function which could be a nonlinear sum of squares. Not generally recommended
if nonlinear least squares programs can be easily used, but provides a check and alternative solvers.

4 An illustrative example

The Hobbs weed infestation problem (John C. Nash (1979, 120)) is a growth-curve modeling task. Its
very succinct statement provides the “short reproducible example” much requested on R mailing lists.
The problem is small and seemingly straightforward, yet presents such difficulties that optimization
researchers have asked if it is contrived rather than a real problem from a field researcher. The data
and graph follow.

weed <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,
38.558, 50.156, 62.948, 75.995, 91.972)

tt <- 1:12
weeddf <- data.frame(tt, weed)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://www.r-bloggers.com/2015/01/introducing-orthogonal-nonlinear-least-squares-regression-in-r/
https://www.r-bloggers.com/2015/01/introducing-orthogonal-nonlinear-least-squares-regression-in-r/
https://en.wikipedia.org/wiki/Total_least_squares

CONTRIBUTED RESEARCH ARTICLE 200

plot(weeddf, main="Hobbs weed infestation data")

2 4 6 8 10 12

20
40

60
80

Hobbs weed infestation data

tt

w
ee

d

While model estimation is increasingly automated, nonlinear regression should use background
knowledge and graphs to obtain an understanding of the general magnitude of the parameters. Indeed,
the “visual fitting” approach (John C. Nash and Velleman (1996)) mentioned later accords with this
viewpoint, as does use of the Logistic3T variant of the model, as well as discussions in Ross (1990),
Seber and Wild (1989), D. M. Bates and Watts (1988), and Gallant (1987). Our emphasis on the software
resilience to starting parameters that are, in the sense of statistical modeling, “silly” comes from over
half a century of dealing with users whose interests and understanding are very far from those of
statistical modelers. Thus, we seek methods and codes that obtain reasonable answers under highly
unfavourable conditions. Nevertheless, a proper approach to nonlinear modeling is to apply all
available knowledge to the task.

Three suggested models for this data are (with names to allow for easy reference)

Logistic3U:
y ≈ b1/(1 + b2 ∗ exp(−b3 ∗ t))

Logistic3S:
y ≈ 100 ∗ c1/(1 + 10 ∗ c2 ∗ exp(−0.1 ∗ c3 ∗ t))

Logistic3T:
y ≈ Asym/(1 + exp((xmid − t)/scal))

where we will use weed for y and tt for t. The functions above are equivalent, but the first is
generally more awkward to solve numerically due to its poor scaling. The parameters of the three
forms are related as follows:

Asym = b1 = 100 ∗ c1

exp(xmid/scal) = b2 = 10 ∗ c2

1/scal = b3 = 0.1 ∗ c3

To allow for a simpler discussion, let us say that the parameters form a (named) vector p and the
model function is called model(p) with r = y − model(p).

We wish to minimize the sum of squared residuals, which is our loss (or objective) function.
Starting with some guess for the parameters, we aim to alter these parameters to obtain a smaller loss
function. We then iterate until we can make no further progress.

Let us consider there are n parameters and m residuals. The loss function is

S(p) = r′r =
m

∑
i=1

r2
i

The gradient of S(p) is
g = 2 ∗ J′r

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 201

where the Jacobian J is given by elements

Ji,j = ∂ri/∂pj

and the Hessian is defined by elements

Hi,j = ∂2S(p)/∂pi∂pj

If we expand the Hessian for nonlinear least squares problems, we find

0.5 ∗ Hi,j =
m

∑
k=1

Jk,i Jk,j +
m

∑
k=1

rk ∗ ∂rk/∂pi∂pj

Let us use Di,j for the elements of the second term of this expression. What is generally called Newton’s
method for function minimization tries to set the gradient to zero (to find a stationary point of the
function S(p)). This leads to Newton’s equation

Hδ = −g

Given a set of parameters p, we solve this equation for δ, adjust p to p + δ and iterate, hopefully to
converge on a solution. Applying this to a sum of squares problem gives

0.5 ∗ Hδ = (J′ J + D)δ = −J′r

In this expression, only the elements of D have second partial derivatives. Gauss, attempting to model
planetary orbits, had small residuals, and noted that these multiplied the second partial derivatives of
r, so he approximated

0.5 ∗ H ≈ J′ J

by assuming D ≈ 0. This results in the Gauss-Newton method where we solve

J′ Jδ = −J′r

though we can avoid some loss of accuracy by not forming the inner product matrix J′ J and solving
the linear least squares matrix problem

Jδ ≈ −r

by one of several matrix decomposition methods.

In reality, there are many problems where D should not be ignored, but the work to compute it
precisely is considerable. Many work-arounds have been proposed, of which the Levenberg-Marquardt
stabilization (Levenberg (1944), Marquardt (1963)) is the most commonly used. For convenience, we
will use “Marquardt”, as we believe he first incorporated the ideas into a practical computer program.

The usual suggestion is that D be replaced by a multiple of the unit matrix or else a multiple of the
diagonal part of J′ J. In low precision, some elements of J′ J could underflow to zero (John C. Nash
(1977)), and a linear combination of both choices is an effective compromise. Various choices for D, as
well as a possible line search along the direction δ rather than a unit step (Hartley (1961)), give rise to
several variant algorithms. “Marquardt’s method” is a family of methods. Fortunately, most choices
work well.

4.1 Problem setup

Let us specify in R the three model formulas and set some starting values for parameters. These
starting points are not equivalent and are deliberately crude choices. Workers performing many
calculations of a similar nature should try to provide good starting points to reduce computation time
and avoid finding a false solution.

model formulas
frmu <- weed ~ b1 / (1 + b2 * exp(-b3 * tt))
frms <- weed ~ 100 * c1/(1 + 10* c2* exp(-0.1 * c3* tt))
frmt <- weed ~ Asym / (1 + exp((xmid - tt) / scal))
#
Starting parameter sets
stu1 <- c(b1 = 1, b2 = 1, b3 = 1)
sts1 <- c(c1 = 1, c2 = 1, c3 = 1)
stt1 <- c(Asym = 1, xmid = 1, scal = 1)

One of the useful features of nls() is the possibility of a selfStart model, where starting pa-

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 202

rameter values are not required. However, if a selfStart model is not available, nls() sets all the
starting parameters to 1. This is tolerable but could be improved by using a set of values that are all
slightly different, which, in the case of the example model y ∼ a ∗ exp(−b ∗ x) + c ∗ exp(−d ∗ x)
would avoid a singular Jacobian because b and d were equal in value. Program modifications to give a
sequence like 1.0, 1.1, 1.2, 1.3 for the four parameters are fairly obvious.

It is also possible to provide R functions for the residual and Jacobian. This is usually much more
work for the user if the formula setup is possible. To illustrate, we show the functions for the unscaled
3 parameter logistic. The particular form of these explicit residual and Jacobian functions comes from
their translation from BASIC codes of the 1970s, as adapted in John C. Nash and Walker-Smith (1987).
The use of the Laplace form of the residual and the inclusion of data within the functions reflects
choices of that era that are at odds with current practice. Some users still want or need to provide
problems as explicit functions, particularly for problems that are not regressions. For example, the
Rosenbrock banana-valley test problem can be provided this way, where the two “residuals” are
different functional forms.

Logistic3U
hobbs.res <- function(x){ # unscaled Hobbs weeds problem -- residual
if(length(x) != 3) stop("hobbs.res -- parameter vector n!=3")
y <- c(5.308, 7.24, 9.638, 12.866, 17.069, 23.192, 31.443,

38.558, 50.156, 62.948, 75.995, 91.972)
tt <- 1:12
res <- x[1] / (1 + x[2] * exp(-x[3] * tt)) - y
Note: this form of the residual, from Laplace (1788) in the form
of "fitted - observed" has been used in our software for half
a century, but sometimes concerns users of the more traditional
"observed - fitted" form

}

hobbs.jac <- function(x) { # unscaled Hobbs weeds problem -- Jacobian
jj <- matrix(0.0, 12, 3)
tt <- 1:12
yy <- exp(-x[3] * tt)
zz <- 1.0 / (1 + x[2] * yy)
jj[tt, 1] <- zz
jj[tt, 2] <- -x[1] * zz * zz * yy
jj[tt, 3] <- x[1] * zz * zz * yy * x[2] * tt
attr(jj, "gradient") <- jj
jj

}

5 Estimation of models specified as formulas

Using a formula specification was a principal advantage made with nls() when it became available in
S sometime in the 1980s. It uses a Gauss-Newton (i.e., unstabilized) iteration with a step reduction line
search. This works very efficiently as long as J is not ill-conditioned. Below we see nls() does poorly
on the example problem. To save page space, we use 1-line result display functions from package
nlsr, namely pnls() and pshort().

#> Error in nls(formula = frmu, start = stu1, data = weeddf) :
#> singular gradient

#> Error in nls(formula = frms, start = sts1, data = weeddf) :
#> singular gradient

#> Error in nls(formula = frmt, start = stt1, data = weeddf) :
#> singular gradient

Here we see the infamous “singular gradient” termination message of nls(). Users should, of
course, be using the SSlogis selfStart tool, but ignorance of this possibility or a slight variant in the
model can easily lead to outcomes similar to those seen here.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 203

5.1 Solution attempts with nlsr

#> unlx1:residual sumsquares = 2.5873 on 12 observations
#> after 19 Jacobian and 25 function evaluations
#> name coeff SE tstat pval gradient JSingval
#> b1 196.186 11.31 17.35 3.167e-08 -4.859e-09 1011
#> b2 49.0916 1.688 29.08 3.284e-10 -3.099e-08 0.4605
#> b3 0.31357 0.006863 45.69 5.768e-12 2.305e-06 0.04714

#> snlx1 -- ss= 2.5873 : c1 = 1.9619 c2 = 4.9092 c3 = 3.1357; 34 res/ 23 jac

#> tnlx1 -- ss= 2.5873 : Asym = 196.19 xmid = 12.417 scal = 3.1891; 36 res/ 27 jac

Though we have found solutions, the Jacobian is essentially singular as shown by its singular
values. Note that these are displayed by package nlsr in a single column in the output to provide a
compact layout, but the values do not correspond to the individual parameters in whose row they
appear; they are a property of the whole problem.

5.2 Solution attempts with minpack.lm

#> unlm1 -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 17 itns

#> snlm1 -- ss= 2.5873 : c1 = 1.9619 c2 = 4.9092 c3 = 3.1357; 7 itns

#> Error in nlsModel(formula, mf, start, wts) :
#> singular gradient matrix at initial parameter estimates

5.3 Solution attempts with gslnls

#> ugslnls1 -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 25 itns

#> sgslnls1 -- ss= 2.5873 : c1 = 1.9619 c2 = 4.9092 c3 = 3.1357; 9 itns

#> tgslnls1 -- ss= 9205.4 : Asym = 35.532 xmid = 20846 scal = -1745.2; 47 itns

5.4 Comparison notes for formula-setup solutions

nlsr::nlxb() uses print() to output standard errors and singular values of the Jacobian (for diagnos-
tic purposes). By contrast, minpack.lm::nlsLM() and nls() use summary(), which does not display
the sum of squares, while print() gives the sum of squares, but not the standard error of the residuals.

The singular values allow us to gauge how “nearly singular” the Jacobian is at the solution, and
the ratio of the smallest to largest of the singular values is a simple but effective measure. The ratios
are 4.6641e-05 for Logistic3U, 0.021022 for Logistic3S, and 0.001055 for Logistic3T, so Logistic3S is the
“least singular”.

The results from nlsLM and gsl_nls for the transformed model Logistic3T have a very large sum
of squares, which may suggest that these programs have failed. Since nls(), nlsLM(), and gsl_nls()
do not offer singular values, we need to extract the Jacobian and compute its singular values. The
following script shows how to do this, using as Jacobian what is called the gradient element in the
returned solution for these solvers.

for nlsLM
if (inherits(tnlm1, "try-error")) {

print("Cannot compute solution -- likely singular Jacobian")
} else {
JtnlsLM <- tnlm1mgradient() # actually the Jacobian
svd(JtnlsLM)$d # Singular values

}

#> [1] "Cannot compute solution -- likely singular Jacobian"

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 204

for gsl_nls
if (inherits(tgslnls1, "try-error")) {

cat("Cannot compute solution -- likely singular Jacobian")
} else {

JtnlsLM <- tgslnls1mgradient()
svd(JtnlsLM)$d # Singular values

}

#> [1] 3.4641e+00 9.8541e-09 3.8249e-11

We see that there are differences in detail, but the more important result is that two out of three
singular values are essentially 0. Our Jacobian is singular, and no method of the Gauss-Newton type
should be able to continue. Indeed, from the parameters reported at this saddle point, nlsr::nlxb()
cannot proceed.

stspecial <- c(Asym = 35.532, xmid = 43376, scal = -2935.4)
badstart <- try(nlxb(formula = frmt, start = stspecial, data = weeddf))
if (! inherits(badstart, "try-error")) print(badstart)

#> residual sumsquares = 9205.4 on 12 observations
#> after 2 Jacobian and 2 function evaluations
#> name coeff SE tstat pval gradient JSingval
#> Asym 35.5321 NA NA NA -9.694e-09 3.464
#> xmid 43376 NA NA NA -1.742e-09 2.61e-10
#> scal -2935.4 NA NA NA -2.4e-08 7.12e-16

6 Functional specification of problems

We illustrate how to solve nonlinear least squares problems using a function to define the residual. Note
that gsl_nls() requires a vector y that is the length of the vector returned by the function supplied,
e.g., hobbs.res(). gsl_nls uses a numerical approximation for the Jacobian if the argument jac is
missing. Note function nlsr::pnlslm() for a 1-line display of the results of minpack.lm::nls.lm().

#> hobnlfb<-nlfb(start=stu1, resfn=hobbs.res, jacfn=hobbs.jac)

#> hobnlfb -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 25 res/ 19 jac

#> hobnlm<-nls.lm(par=stu1, fn=hobbs.res, jac=hobbs.jac)

#> hobnlm -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 17 itns

#> hobgsln<-gsl_nls(start=stu1, fn=hobbs.res, y=rep(0,12))

#> hobgsln -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 25 itns

#> hobgsl<-gsl_nls(start=stu1, fn=hobbs.res, y=rep(0,12), jac=hobbs.jac)

#> hobgsl -- ss= 2.5873 : b1 = 196.19 b2 = 49.092 b3 = 0.31357; 25 itns

7 Design goals, termination tests, and output objects

The output object of nlxb() is smaller than the class nls object returned by nls(), nlsLM(), and
gsl_nls(). Package nlsr emphasizes the solution of the nonlinear least squares problem rather than
the estimation of a nonlinear model that fits or explains the data. The object of class nls allows for a
number of specialized modeling and diagnostic extensions. For compatibility, the nlsr package has
the function wrapnlsr(), for which nlsr() is an alias. This uses nlxb() to find good parameters, then
calls nls() to return the class nls object. Unless particular modeling features are needed, the use of
wrapnlsr() is unnecessary and wasteful of resources.

The design goals of the different tools may also be revealed in the so-called “convergence tests”
for the iterative solvers. In the manual page for nls() in R 4.0.0, there was the warning:

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 205

> Do not use nls on artificial “zero-residual” data
with the suggested addition of small perturbations to the data. This admits nls() could not solve
well-posed problems unless data is polluted with errors. Zero-residual problems are not always
artificial, since problems in function approximation and nonlinear equations can be approached with
nonlinear least squares. Fortunately, a small adjustment to the “termination test” for the program,
rather than for the “convergence” of the underlying algorithm, fixes the defect. The test is the Relative
Offset Convergence Criterion (see D. M. Bates and Watts (1981)). This scales an estimated reduction in
the loss function by its current value. If the loss function is very small, we are close to a zero-divide.
Adding a small quantity to the divisor avoids trouble. In 2021, one of us (J. Nash) proposed that
nls.control() have an additional parameter scaleOffset with a default value of zero. Setting it to a
small number – 1.0 is a reasonable choice – allows small-residual problems (i.e., near-exact fits) to be
dealt with easily. We call this the safeguarded relative offset convergence criterion, and it has been in
nlsr since it was introduced. The default value gives the legacy behavior. This improvement has been
in the R distributed code since version 4.1.0.

Additional termination tests can be used. nlsr has a small sum of squares test (smallsstest) that
compares the latest evaluated sum of squared (weighted) residuals to e4 times the initial sum of
squares, where e4 <- (100*.Machine$double.eps)ˆ4 is approximately 2.43e-55.

Termination after what may be considered excessive computation is also important. nls() stops
after maxiter “iterations”. The meaning of “iteration” may require an examination of the code for the
different algorithms. nlsr terminates execution when the number of residual or Jacobian evaluations
exceed set limits. Generally, we prefer larger limits than the default maxiter = 50 of nls() to avoid
stopping early, though this may result in some unnecessary computations.

7.1 Returned results of nls() and other tools

As mentioned, the output of nls(), minpack.lm::nlsLM(), or gslnls::gsl_nls() is an object of class
“nls” which has a quite rich structure described in the manual files or revealed by applying the str()
function to the result of nls(). The complexity of this object is a challenge to users. Let us use for
example result <- snlm1 as the returned object from nlsLM() for the Logistic3S problem. The data
return element is an R symbol. To actually access the data from this element, we need to use the syntax:

eval(parse(text = result$data))

However, if the call is made with model = TRUE, then there is a returned element model which
contains the data, and we can list its contents using:

ls(result$model)

and if there is an element called xdata, then it can be accessed as result$model$xdata.

By contrast, nlsr::nlxb() returns a much simpler structure of 11 items in one level. Moreover,
nlxb explicitly returns the sum of squares, the residual vector, Jacobian, and counts of evaluations.

7.2 When to compute ancillary information

Tools that produce a class nls output object create a rich set of functions and structures that are then
used in a variety of modeling tasks, including the least squares solution. By contrast, nlsr computes
quantities as they are requested or needed, with additional features in separate functions. For example,
the singular values of the Jacobian are actually computed in the print and summary methods for the
result. These two approaches lead to different consequences for performance and how features are
provided. nlsr has antecedents in the methods of John C. Nash (1979), where storage for data and
programs was at a ridiculous premium in the small computers of the era. Thus, the code in nlsr is
likely of value for workers to copy and modify for customized tools.

8 Jacobian calculation

Gauss-Newton/Marquardt methods all need a Jacobian matrix at each iteration. By default, nlsr::nlxb()
will try to evaluate this using analytic expressions using symbolic and automatic differentiation tools.
When using a formula specification of the model, nls(), minpack.lm::nlsLM() and gslnls::gsl_nls()
use a finite difference approximation to compute the Jacobian, though gsl_nls() does have an option
to attempt symbolic expressions. Package nlsr provides, via appropriate calling syntax, four numeric

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 206

approximation options for the Jacobian, with a further control ndstep for the size of the step used
in the approximation. These options allow programming choices to be examined. Users can largely
ignore them.

Using the “gradient” attribute of the output of the Jacobian function to hold the Jacobian matrix
lets us embed this in the residual function as well, so that the call to nlsr::nlfb() can be made with
the same name used for both residual and Jacobian function arguments. This programming trick saves
a lot of trouble for the package developer, but it can be a nuisance for users trying to understand the
code.

As far as we can understand the logic in nls(), the Jacobian computation during parameter
estimation is carried out within the called C-language program and its wrapper R code function
numericDeriv(), part of ./src/library/stats/R/nls.R in the R distribution source code. This is
used to provide Jacobian information in the nlsModel() and nlsModel.plinear() functions, which
are not exported for general use. gsl_nls() also appears to use numericDeriv().

numericDeriv() uses a simple forward difference approximation of derivatives, though a central
difference approximation can be specified in control parameters. We are unclear why numericDeriv()
in base R calls C_numeric_deriv, as we were easily able to create a more compact version entirely in R.
See https://github.com/nashjc/RNonlinearLS/tree/main/DerivsNLS.

minpack.lm::nlsLM() invokes numericDeriv() in its local version of nlsModel(), but it appears
to use an internal approximate Jacobian code from the original Fortran minpack code, namely, lmdif.f.
Such differences in approach can lead to different behavior, usually minor, but sometimes annoying
with ill-conditioned problems.

• A pasture regrowth problem (Huet et al. (2004), page 1, based on Ratkowsky (1983)) has a poorly
conditioned Jacobian and nls() fails with “singular gradient”. Worse, numerical approximation
to the Jacobian gives the error “singular gradient matrix at initial parameter estimates” for
minpack.lm::nlsLM so that the Marquardt stabilization is unable to take effect, while the analytic
derivatives of nlsr::nlxb give a solution.

• Karl Schilling (private communication) provided an example where a model specified with the
formula y ~ a * (x ^ b) causes nlsr::nlxb to fail because the partial derivative w.r.t. b is
a * (x ˆ b * log(x)). If there is data for which x = 0, the derivative is undefined, but the
model can be computed. In such cases, we observed that nls() and minpack.lm::nlsLM found
a solution, though this seems to be a lucky accident.

8.1 Jacobian code in selfStart models

Analytic Jacobian code can be provided to all the solvers discussed. Most selfStart models that
automatically provide starting parameters also include such code. There is documentation in R
of selfStart models, but their construction is non-trivial. A number of such models are included
with base R in ./src/library/stats/R/zzModels.R, with package nlraa (Miguez (2021)) providing a
richer set. There are also some in the now-archived package NRAIA. These provide the Jacobian in the
“gradient” attribute of the “one-sided” formula that defines each model, and these Jacobians are often
the analytic forms.

The nls() function, after computing the “right-hand side” or rhs of the residual, checks to see if
the “gradient” attribute is defined, otherwise using numericDeriv() to compute a Jacobian into that
attribute. This code is within the nlsModel() or nlsModel.plinear() functions. The use of analytic
Jacobians almost certainly contributes to the good performance of nls() on selfStart models.

The use of selfStart models with nlsr is described in the “Introduction to nlsr” vignette. How-
ever, since nlsr generally can use very crude starting values, we have rarely needed them, though it
should be pointed out that our work is primarily diagnostic. If we were carrying out a large number
of similar estimations, such initial parameters are critical to efficiency.

In considering selfStart models, we noted that the base-R function SSlogis is intended to solve
problem Logistic3T above. When this function is used via getInitial() to find starting values, it
actually calls nls() with the ‘plinear’ algorithm and finds a (full) solution. It then passes the solution
coefficients to the default algorithm unnecessarily. Moreover, the implicit double call is, in our view,
prone to creating errors in code maintenance. To provide simpler starting parameters, the function
SSlogisJN is now part of the package nlsr, but is most useful for nls().

Users may also want to profit from the Jacobian code of selfStart models but supply explicit
starting values other than those suggested by getInitial(). This does not appear to be possible with
nls(). nlsr::nlxb() always requires starting parameters, and can either use getInitial() to find
them from the selfStart model or provide explicit values, but the formula used in the call to nlxb()
still involves the selfStart function.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://github.com/nashjc/RNonlinearLS/tree/main/DerivsNLS

CONTRIBUTED RESEARCH ARTICLE 207

We are also surprised that the analytic expressions for the Jacobian (“gradient”) in the SSLogis
function and others save quantities in “hidden” variables, i.e., with names preceded by “.”. These are
then not displayed by the ls() command, making them difficult to access by users who may wish to
create their own selfStart model via copy and edit. Interactive tools, such as “visual fitting” (John C.
Nash and Velleman (1996)) might be worth considering as another way to find starting parameters,
but we know of no R capability of this type.

As a side note, the introduction of scaleOffset in R 4.1.1 to deal with the convergence test for
small residual problems now requires that the getInitial() function have dot-arguments (...) in
its argument list. This illustrates the entanglement of many features in nls() that complicate its
maintenance and improvement.

9 Bounds constraints on parameters

For many problems, we know that parameters cannot be bigger or smaller than some externally known
limits. Such limits should be built into models, but there are some important details for using the tools
in R.

• nls() can only impose bounds if the algorithm = "port" argument is used in the call. Unfor-
tunately, the documentation warns us:
The algorithm = “port” code appears unfinished, and does not even check that the starting value is within
the bounds. Use with caution, especially where bounds are supplied.

• gsl_nls() does not offer bounds.

• bounds are part of the default method for package nlsr.

• nlsLM() includes bounds in the standard call, but we have observed cases where it fails to get
the correct answer. From an examination of the code, we believe the authors have not taken
into account all possibilities, though all programs have some weakness regarding constrained
optimization in that programmers have to work with assumptions on the scale of numbers, and
some problems will be outside the scope envisaged.

Start MUST be feasible i.e. on or within bounds
anlshob1b <- try(nls(frms, start = sts1, data = weeddf, lower = c(0,0,0),

upper = c(2,6,3), algorithm = 'port'))
if (! inherits(anlshob1b, "try-error")) pnls(anlshob1b) # check the answer (short form)

#> anlshob1b -- ss= 9.4726 : c1 = 2 c2 = 4.4332 c3 = 3; 12 itns

nlsLM seems NOT to work with bounds in this example
anlsLM1b <- try(nlsLM(frms, start = sts1, data = weeddf, lower = c(0,0,0), upper = c(2,6,3)))
if (! inherits(anlsLM1b, "try-error")) pnls(anlsLM1b)

#> anlsLM1b -- ss= 881.02 : c1 = 2 c2 = 6 c3 = 3; 2 itns

also no warning if starting out of bounds, but gets a good answer!!
st4 <- c(c1 = 4, c2 = 4, c3 = 4)
anlsLMob <- try(nlsLM(frms, start = st4, data = weeddf, lower = c(0,0,0), upper = c(2,6,3)))
if (! inherits(anlsLMob, "try-error")) pnls(anlsLMob)

#> anlsLMob -- ss= 9.4726 : c1 = 2 c2 = 4.4332 c3 = 3; 4 itns

Try nlsr::nlxb()
anlx1b <- try(nlxb(frms, start = sts1, data = weeddf, lower = c(0,0,0), upper = c(2,6,3)))
if (! inherits(anlx1b, "try-error")) pshort(anlx1b)

#> anlx1b -- ss= 9.4726 : c1 = 2 c2 = 4.4332 c3 = 3; 12 res/ 12 jac

9.1 Philosophical considerations

Bounds on parameters raise some interesting questions about how uncertainty in parameter estimates
should be computed or reported. That is, the traditional “standard errors” are generally taken to imply
symmetric intervals about the point estimate in which the parameter may be expected to be found

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 208

with some probability under certain assumptions. Bounds change those assumptions and hence the
interpretation of estimates of uncertainty, whether by traditional approximations from the J′ J matrix
or from methods such as profile likelihood or bootstrap. At the time of writing, nlsr::nlxb() does
not compute standard errors nor their derived statistics when bounds are active to avoid providing
misleading information.

9.2 Fixed parameters (masks)

Let us try to fix (mask) the first parameter in the first two example problems.

Hobbsmaskx.R -- masks with formula specification of the problem
require(nlsr); require(minpack.lm); traceval <- FALSE
stu <- c(b1 = 200, b2 = 50, b3 = 0.3) # a default starting vector (named!)
sts <- c(c1 = 2, c2 = 5, c3 = 3) # a default scaled starting vector (named!)
fix first parameter
anxbmsk1 <- try(nlxb(frmu, start = stu, data = weeddf, lower = c(200, 0, 0),

upper = c(200, 60, 3), trace=traceval))
if (! inherits(anxbmsk1, "try-error")) print(anxbmsk1)

#> residual sumsquares = 2.6182 on 12 observations
#> after 4 Jacobian and 4 function evaluations
#> name coeff SE tstat pval gradient JSingval
#> b1 200U M NA NA NA 0 NA
#> b2 49.5108 1.12 44.21 8.421e-13 -2.887e-07 1022
#> b3 0.311461 0.002278 136.8 1.073e-17 0.0001635 0.4569

anlM1 <- try(nlsLM(frmu, start = stu, data = weeddf, lower = c(200, 0, 0),
upper=c(200, 60, 3), trace = traceval))

if (! inherits(anlM1, "try-error")) pnls(anlM1)

#> anlM1 -- ss= 2.6182 : b1 = 200 b2 = 49.511 b3 = 0.31146; 4 itns

anlsmsk1 <- try(nls(frmu, start = stu, data = weeddf, lower = c(200, 0, 0),
upper = c(200, 60, 3), algorithm = "port", trace = traceval))

if (! inherits(anlsmsk1, "try-error")) pnls(anlsmsk1)

#> anlsmsk1 -- ss= 2.6182 : b1 = 200 b2 = 49.511 b3 = 0.31146; 5 itns

Hobbs scaled problem with bounds, formula specification
anlxmsks1 <- try(nlxb(frms, start = sts, data = weeddf, lower = c(2, 0, 0),

upper = c(2, 6, 30)))
if (! inherits(anlxmsks1, "try-error")) print(anlxmsks1)

#> residual sumsquares = 2.6182 on 12 observations
#> after 4 Jacobian and 4 function evaluations
#> name coeff SE tstat pval gradient JSingval
#> c1 2U M NA NA NA 0 NA
#> c2 4.95108 0.112 44.21 8.421e-13 -2.981e-06 104.2
#> c3 3.11461 0.02278 136.8 1.073e-17 1.583e-05 4.482

anlshmsk1 <- try(nls(frms, start = sts, trace = traceval, data = weeddf,
lower = c(2, 0, 0), upper = c(2, 6, 30), algorithm = 'port'))

if (! inherits(anlshmsk1, "try-error")) pnls(anlshmsk1)

#> anlshmsk1 -- ss= 2.6182 : c1 = 2 c2 = 4.9511 c3 = 3.1146; 5 itns

anlsLMmsks1 <- try(nlsLM(frms, start = sts, data = weeddf, lower = c(2,0,0),
upper = c(2,6,30)))

if (! inherits(anlsLMmsks1, "try-error")) pnls(anlsLMmsks1)

#> anlsLMmsks1 -- ss= 2.6182 : c1 = 2 c2 = 4.9511 c3 = 3.1146; 4 itns

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 209

Test with all parameters masked
anlxmskall <- try(nlxb(frms, start=sts, data=weeddf, lower=sts, upper=sts))
if (! inherits(anlxmskall, "try-error")) print(anlxmskall)

#> residual sumsquares = 158.23 on 12 observations
#> after 0 Jacobian and 1 function evaluations
#> name coeff SE tstat pval gradient JSingval
#> c1 2U M NA NA NA NA NA
#> c2 5U M NA NA NA NA NA
#> c3 3U M NA NA NA NA NA

nlsr has an output format that indicates the constraint status of the parameter estimates. For nlsr,
we have chosen to suppress the calculation of approximate standard errors in the parameters when
constraints are active because their meaning under constraints is unclear, though we believe this policy
worthy of discussion and further investigation.

10 Stabilization of Gauss-Newton computations

All four major tools illustrated solve some variant of the Gauss-Newton equations. nls() uses a
modification of an approach suggested by Hartley (1961), while nlsr, gslnls, and minpack.lm use
flavors of Marquardt (1963). gslnls offers an accelerated Marquardt method and three alternative
methods which we have not investigated. Control settings for nlxb() or nlfb() allow exploration
of Hartley and Marquardt algorithm variants. In general, the Levenberg-Marquardt stabilization is
important in obtaining solutions in methods of the Gauss-Newton family, as nls() terminates too
frequently and unnecessarily with singular gradient errors.

10.1 Programming language

An important choice made in developing nlsr was to code entirely within the R programming
language. nls() uses a mix of R, C, and Fortran, as does minpack.lm. gslnls is an R wrapper to
various C-language routines in the GNU Scientific Library (Galassi et al. (2009)). Generally, keeping to
a single programming language can allow for easier maintenance and upgrades. It also avoids some
work when there are changes or upgrades to libraries for the non-R languages. R is usually considered
slower than most computing environments because it keeps track of objects and because it is usually
interpreted. In recent years, the performance penalty for using code entirely in R has been much
reduced with the just-in-time compiler and other improvements. All-R computation may now offer
acceptable performance. In nlsr, the use of R may be a smaller performance cost than the aggressive
approach to a solution, which can cause more iterations to be used.

11 Data sources for problems

nls() can be called without specifying the data argument. In this case, it will search in the available
environments (i.e., workspaces) for suitable data objects. We do not like this approach, but it is “the R
way”. R allows users to leave many objects in the default (.GlobalEnv) workspace. Moreover, users
have to actively suppress saving this workspace (.RData) on exit, otherwise any such file in the path
will be loaded on startup. R users in our acquaintance avoid saving the workspace because of lurking
data and functions that may cause unwanted results.

11.1 Feature: Subsetting

nls() and other class nls tools accept an argument subset. This acts through the mediation of
model.frame, which is not obvious in the source code files /src/library/stats/R/nls.R and
/src/library/stats/src/nls.C. Having subset at the level of the call to a function like nls() saves
effort, but it does mean that the programmer of the solver needs to be aware of the origin (and value)
of objects such as the data, residuals and Jacobian. By preference, we would implement subsetting by
zero-value weights, with observation counts (and degrees of freedom) computed via the numbers of
non-zero weights. Alternatively, we would extract a working dataframe from the relevant elements in
the original.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 210

11.2 Feature: na.action (missing value treatment)

na.action is an argument to the nls() function, but it does not appear obviously in the source code, of-
ten being handled behind the scenes after referencing the option na.action. This feature also changes
the data supplied to our nonlinear least squares solver. A useful, but possibly dated, description is
given in: https://stats.idre.ucla.edu/r/faq/how-does-r-handle-missing-values/. The typical
default action, which can be seen by using the command getOption("na.action") is na.omit. This
option removes from computations any observations containing missing values (i.e. any row of a data
frame containing an NA). na.exclude does much of the same for solver computations, but keeps the
rows with NA elements so that predictions are in the correct row position. We recommend that workers
test output to verify the behavior is as wanted. See https://stats.stackexchange.com/questions/
492955/should-i-use-na-omit-or-na-exclude-in-a-linear-model-in-r. As with subset, our con-
cern with na.action is that users may be unaware of the effects of an option they may not even be
aware has been set. Should na.fail be the default?

11.3 Feature: model frame

model is an argument to the nls() and related functions, which is documented as:

model logical. If true, the model frame is returned as part of the object. Default is FALSE.

Indeed, the argument only gets used when nls() is about to return its result object, and the
element model is NULL unless the calling argument model is TRUE. Using the same name for both
function argument and object element could be confusing. Despite this, the model frame is used within
the function code in the form of the object mf. We feel that users could benefit from more extensive
documentation and examples of its use since it is used to implement features like subset.

11.4 Weights on observations

All four main tools we consider here allow a weights argument that specifies a vector of fixed weights
the same length as the number of residuals. Each residual is multiplied by the square root of the
corresponding weight. Where available, the values returned by the residuals() function are weighted,
and the fitted() or predict() function are used to compute raw residuals.

While fixed weights may be useful, there are many problems for which we want weights that are
determined at least partially from the model parameters, for example, a measure of the standard devi-
ation of observations. Such dynamic weighting situations are discussed in the vignette “Introduction
to nlsr” of package nlsr in section Weights that are functions of the model parameters. minpack.lm offers a
function wfct() to facilitate such weighting. Care is advised in applying such ideas.

11.5 Weights in returned functions from nls()

The function resid() (an alias for residuals()) gives weighted residuals like resultmresid(). The
function nlsModel() allows us to compute residuals for particular coefficient sets. We have had to
extract nlsModel() from the base R code and include it via a code chunk (not echoed here for space)
because it is not exported to the working namespace, We could also explicitly source() this code.

wts <- 0.5 ^ tt # simple weights
frmlogis <- weed ~ Asym / (1 + exp((xmid - tt)/scal))
Asym <- 1; xmid <- 1; scal <- 1
nowt <- try(nls(weed ~ SSlogis(tt, Asym, xmid, scal))) # UNWEIGHTED
if (! inherits(nowt, "try-error")) {
rnowt <- nowtmresid() # This has UNWEIGHTED residual and Jacobian. Does NOT take coefficients.
attr(rnowt, "gradient") <- NULL

} else rnowt <- NULL
rnowt

#> [1] -0.011900 0.032755 -0.092030 -0.208782 -0.392634 0.057594 1.105728
#> [8] -0.715786 0.107647 0.348396 -0.652592 0.287569

usewt <- try(nls(weed ~ SSlogis(tt, Asym, xmid, scal), weights = wts))
if (! inherits(usewt, "try-error")) {
rusewt <- usewtmresid() # WEIGHTED. Does NOT take coefficients.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://stats.idre.ucla.edu/r/faq/how-does-r-handle-missing-values/
https://stats.stackexchange.com/questions/492955/should-i-use-na-omit-or-na-exclude-in-a-linear-model-in-r
https://stats.stackexchange.com/questions/492955/should-i-use-na-omit-or-na-exclude-in-a-linear-model-in-r

CONTRIBUTED RESEARCH ARTICLE 211

attr(rusewt, "gradient") <- NULL
} else rusewt <- NULL
rusewt

#> [1] 0.0085640 0.0324442 -0.0176652 -0.0388479 -0.0579575 0.0163623
#> [7] 0.1042380 -0.0411766 0.0052509 0.0084324 -0.0194246 -0.0024053

source("nlsModel.R") # or use {r nlsmodelsource, echo=FALSE} code chunk
nmod0 <- nlsModel(frmlogis, data = weeddf, start = c(Asym = 1, xmid = 1, scal = 1), wts = wts)
rn0 <- nmod0$resid() # Parameters are supplied in nlsModel() `start` above.
attr(rn0, "gradient") <- NULL; rn0 # weighted residuals at starting coefficients

#> [1] 3.3998 3.2545 3.0961 2.9784 2.8438 2.7748 2.6910 2.3474 2.1724 1.9359
#> [11] 1.6572 1.4214

nmod <- nlsModel(frmlogis, data = weeddf, start = coef(usewt), wts = wts)
rn <- nmod$resid()
attr(rn,"gradient")<-NULL; rn # same as rusewt

#> [1] 0.0085640 0.0324442 -0.0176652 -0.0388479 -0.0579575 0.0163623
#> [7] 0.1042380 -0.0411766 0.0052509 0.0084324 -0.0194246 -0.0024053

12 Minor issues with nonlinear least-squares tools

12.1 Interim output from the “port” algorithm

As the nls() man page states, when the “port” algorithm is used with the trace argument TRUE, the
iterations display the objective function value which is 1/2 the sum of squares (or deviance). The
trace display is likely embedded in the Fortran of the nlminb routine that is called to execute the “port”
algorithm, but the factor of 2 discrepancy is nonetheless unfortunate for users.

12.2 Failure to return the best result achieved

If nls() reaches a point where it cannot continue but has not found a point where the relative offset
convergence criterion is met, it may simply exit, especially if a “singular gradient” (singular Jacobian)
is found. However, this may occur AFTER the function has made considerable progress in reducing
the sum of squared residuals. Here is an abbreviated example:

time <- c(1, 2, 3, 4, 6 , 8, 10, 12, 16)
conc <- c(0.7, 1.2, 1.4, 1.4, 1.1, 0.8, 0.6, 0.5, 0.3)
NLSdata <- data.frame(time,conc)
NLSstart <- c(lrc1 = -2, lrc2 = 0.25, A1 = 150, A2 = 50) # a starting vector (named!)
NLSformula <- conc ~ A1 * exp(-exp(lrc1) * time) + A2 * exp(-exp(lrc2) * time)
tryit <- try(nls(NLSformula, data = NLSdata, start = NLSstart, trace = TRUE))

#> 61216. (3.56e+03): par = (-2 0.25 150 50)
#> 2.1757 (2.23e+01): par = (-1.9991 0.31711 2.6182 -1.3668)
#> 1.6211 (7.14e+00): par = (-1.9605 -2.6203 2.5753 -0.55599)
#> Error in nls(NLSformula, data = NLSdata, start = NLSstart, trace = TRUE) :
#> singular gradient

if (! inherits(tryit, "try-error")) print(tryit)

Note that the sum of squares has been reduced from 61216 to 1.6211, but unless trace is invoked,
the user will not get any information about this. Changing this in the nls() function could be useful
to R users, and would be almost trivial.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 212

13 Estimating models that are partially linear

The variable projection method (Golub and Pereyra (1973), O’Leary and Rust (2013)) is usually much
more effective than general approaches in finding good solutions to nonlinear least squares problems
when some of the parameters appear linearly. In our logistic examples, the asymptote parameters are
an illustration. However, identifying which parameters are linear and communicating this information
to estimating functions is not a trivial task. nls() has an option algorithm = "plinear" that allows
some partially linear models to be solved. The other tools, as far as we are aware, do not offer any
such capability. The nlstac package uses a different algorithm for similar goals.

Within nls() itself we must, unfortunately, use different specifications with different algorithm
options. For example, the explicit model y ~ a * x + b does not work with the linear modeling
function lm(), which requires this model to be specified as y ~ x. Within nls(), consider the following
FOUR different specifications for the same problem, plus an intuitive choice, labeled fm2a, that does
not work. In this failed attempt, putting the Asym parameter in the model causes the plinear algorithm
to try to add another term to the model. We believe this is unfortunate, and would like to see a
consistent syntax. At the time of writing, we do not foresee a resolution for this issue. In the example,
we have not evaluated the commands to save space.

DNase1 <- subset(DNase, Run == 1) # select the data
using a selfStart model - do not specify the starting parameters
fm1 <- try(nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1))
if (! inherits(fm1, "try-error")) summary(fm1)

using conditional linearity - leave out the Asym parameter
fm2 <- try(nls(density ~ 1 / (1 + exp((xmid - log(conc)) / scal)),

data = DNase1, start = list(xmid = 0, scal = 1),
algorithm = "plinear"))

if (! inherits(fm2, "try-error")) summary(fm2)

without conditional linearity
fm3 <- try(nls(density ~ Asym / (1 + exp((xmid - log(conc)) / scal)),

data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1)))

if (! inherits(fm3, "try-error")) summary(fm3)

using Port's nl2sol algorithm
fm4 <- try(nls(density ~ Asym / (1 + exp((xmid - log(conc)) / scal)),

data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1),
algorithm = "port"))

if (! inherits(fm4, "try-error")) summary(fm4)

using conditional linearity AND Asym does not work
fm2a <- try(nls(density ~ Asym / (1 + exp((xmid - log(conc)) / scal)),

data = DNase1, start = list(Asym=3, xmid = 0, scal = 1),
algorithm = "plinear", trace = TRUE))

if (! inherits(fm2a, "try-error")) summary(fm2a)

14 Models with indexed parameters

Some models have several common parameters and others that are tied to particular cases. The man
file for nls() includes an example of a situation in which parameters are indexed but which uses the
“plinear” option as an added complication. Running this example reveals that the answers for the
parameters are not indexed as in a vector. That is, we do not see a[1], a[2], a[3] but a1, a2, a3.
This is no doubt because programming for indexed parameters is challenging. We note that there are
capabilities in packages for mixed-effects modeling such as nlme (Pinheiro et al. (2013)), bbmle (Bolker
and Team (2013)), and lme4 (D. Bates et al. (2015)) for estimating models of such type.

15 Tests and use-case examples

Maintainers of packages need suitable tests and use-case examples in order

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 213

• to ensure packages work properly, in particular, giving results comparable to or better than the
functions they are to replace.

• to test individual solver functions to ensure they work across the range of calling mechanisms,
that is, different ways of supplying inputs to the solver(s);

• to pose “silly” inputs to see if these bad inputs are caught by the programs.

Such goals align with the aims of unit testing (e.g., https://towardsdatascience.com/unit-
testing-in-r-68ab9cc8d211, Wickham (2011), Wickham et al. (2021) and the conventional R package
testing tools). In our work, one of us (AB) has developed a working prototype package at https://
github.com/ArkaB-DS/nlsCompare . A primary design objective of this is to allow the summarization
of multiple tests in a compact output. The prototype has a vignette to illustrate its use.

16 Documentation and resources

In our investigation, we built several resources, which are now part of the repository https://github.
com/nashjc/RNonlinearLS/. Particular items are:

• A BibTex bibliography for use with all documents in this project, but which has wider applica-
tion to nonlinear least squares projects in general (https://github.com/nashjc/RNonlinearLS/
blob/main/BibSupport/ImproveNLS.bib).

• MachID.R offers a suggested concise summary function to identify a particular computational
system used for tests. A discussion of how it was built and the resources needed across platforms
is given in at https://github.com/nashjc/RNonlinearLS/tree/main/MachineSummary.

• John C. Nash and Bhattacharjee (2022) is an explanation of the construction of the nlspkg from
the nls() code in R-base.

• As the 2021 Summer of Code period was ending, one of us (JN) was invited to prepare a review
of optimization in R. Ideas from the present work have been instrumental in the creation of John
C. Nash (2022).

17 Future of nonlinear model estimation in R

Given its importance to R, it is possible that nls() will remain more or less as it has been for the past
several decades. If so, the focus of discussion should be the measures needed to secure its continued
operation for legacy purposes and how that may be accomplished. We welcome an opportunity to
participate in such conversations.

To advance the stability and maintainability of R, we believe the program objects (R functions) that
are created by tools such as nls() should have minimal cross-linkages and side-effects. The aspects of
nls() that concern us follow.

• R tools presume data and parameters needed are available in an accessible environment. This
provides a compact syntax to invoke the calculations, but the wrong data can be used if the
internal search finds a valid name that is not the object we want, or if subset or na.action
settings modify the selection, or weights are applied.

• Mixing of R, C and Fortran code adds to the burden of following the program logic.

• The class nls structure simplifies calls with its rich set of functions, but also adds to the task of
understanding what has been done. A design that isolates the setup, solution, and post-solution
parts of complicated calculations reduces the number of objects that must be kept in alignment.

Given the existence of examples of good practices such as analytic derivatives, stabilized solution
of Gauss-Newton equations, and bounds-constrained parameters, base R tools should be moving to
incorporate them. These capabilities are available now by using several tools, but it would be helpful
if they were unified.

18 Acknowledgments

Hans Werner Borchers was helpful in developing the GSoC project motivating this article and in
comments on this and related work. Heather Turner co-mentored the project and helped guide the
progress of the work. Exchanges with Fernando Miguez helped to clarify aspects of selfStart models
and instigated the “Introduction to nlsr” vignette. Colin Gillespie (package benchmarkme) has been

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://towardsdatascience.com/unit-testing-in-r-68ab9cc8d211
https://towardsdatascience.com/unit-testing-in-r-68ab9cc8d211
https://github.com/ArkaB-DS/nlsCompare
https://github.com/ArkaB-DS/nlsCompare
https://github.com/nashjc/RNonlinearLS/
https://github.com/nashjc/RNonlinearLS/
https://github.com/nashjc/RNonlinearLS/blob/main/BibSupport/ImproveNLS.bib
https://github.com/nashjc/RNonlinearLS/blob/main/BibSupport/ImproveNLS.bib
https://github.com/nashjc/RNonlinearLS/tree/main/MachineSummary

CONTRIBUTED RESEARCH ARTICLE 214

helpful in guiding our attempts to succinctly summarize computing environments. We thank one of
the referees for pointing out that it is important to use background knowledge and graphs to guide
modeling. Simon Urbanek gave some important practical help with preparing files for publication.

References

Bates, Douglas M. 2012. NISTnls: Nonlinear least squares examples from NIST. https://CRAN.R-project.
org/package=NISTnls.

Bates, Douglas M., and Donald G. Watts. 1981. “A Relative Offset Orthogonality Convergence
Criterion for Nonlinear least Squares.” Technometrics 23 (2): 179–83.

———. 1988. Nonlinear Regression Analysis and Its Applications. Wiley.
Bates, Douglas, Martin Mächler, Ben Bolker, and Steve Walker. 2015. “Fitting Linear Mixed-Effects

Models Using lme4.” Journal of Statistical Software 67 (1): 1–48. https://doi.org/10.18637/jss.
v067.i01.

Baty, Florent, and Marie-Laure Delignette-Muller. 2013. Nlstools: Tools for Nonlinear Regression Diagnos-
tics.

———. 2014. nlsMicrobio: Data Sets and Nonlinear Regression Models Dedicated to Predictive Microbiology.
Bolker, Ben, and R Development Core Team. 2013. Bbmle: Tools for General Maximum Likelihood

Estimation. http://CRAN.R-project.org/package=bbmle.
Chau, Joris. 2023. gslnls: GSL Nonlinear Least-Squares Fitting. https://CRAN.R-project.org/package=

gslnls.
Duursma, Remko. 2017. Nlshelper: Convenient Functions for Non-Linear Regression. https://CRAN.R-

project.org/package=nlshelper.
Elzhov, Timur V., Katharine M. Mullen, Andrej-Nikolai Spiess, and Ben Bolker. 2012. minpack.lm: R

interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support
for bounds. R Project for Statistical Computing. http://CRAN.R-project.org/package=minpack.
lm.

Galassi, Mark, Jim Davies, James Theiler, Brian Gough, and Gerard Jungman. 2009. GNU Scientific
Library - Reference Manual, Third Edition, for GSL Version 1.12 (3. ed.). Free Software Foundation.

Gallant, A. Ronald. 1987. Nonlinear Statistical Models. Wiley.
Gentleman, Robert C., Vincent J. Carey, Douglas M. Bates, Ben Bolstad, Marcel Dettling, Sandrine

Dudoit, Byron Ellis, et al. 2004. “Bioconductor: Open Software Development for Computational
Biology and Bioinformatics.” Genome Biology 5 (R80). https://doi.org/10.1186/gb-2004-5-10-
r80.

Golub, G. H., and V. Pereyra. 1973. “The Differentiation of Pseudo-Inverses and Nonlinear Least
Squares Problems Whose Variables Separate.” SIAM Journal of Numerical Analysis 10 (2): 413–32.

Grothendieck, G. 2022. Nls2: Non-Linear Regression with Brute Force. https://CRAN.R-project.org/
package=nls2.

Hartley, H. O. 1961. “The Modified Gauss-Newton Method for the Fitting of Non-Linear Regression
Functions by Least Squares.” Technometrics 3: 269–80.

Huet, S., A. Bouvier, M.-A. Poursat, and E. Jolivet. 2004. Statistical Tools for Nonlinear Regression: A
Practical Guide with S-PLUS Examples, 2nd Edition. Berlin & New York: Springer-Verlag.

Josef Tvrdík and Ivan Křivý and Ladislav Mišík. 2007. “Adaptive Population-Based Search: Applica-
tion to Estimation of Nonlinear Regression Parameters.” Computational Statistics & Data Analysis
52 (2): 713–24. https://doi.org/10.1016/j.csda.2006.10.014.

Levenberg, Kenneth. 1944. “A Method for the Solution of Certain Non-Linear Problems in Least
Squares.” Quarterly of Applied Mathematics 2: 164–68.

Marquardt, Donald W. 1963. “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.”
SIAM Journal on Applied Mathematics 11 (2): 431–41.

Miguez, Fernando. 2021. nlraa: Nonlinear Regression for Agricultural Applications. https://CRAN.R-
project.org/package=nlraa.

Nash, John C. 1977. “Minimizing a Nonlinear Sum of Squares Function on a Small Computer.” Journal
of the Institute for Mathematics and Its Applications 19: 231–37.

———. 1979. Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation. Bristol:
Adam Hilger.

———. 2022. “Function minimization and nonlinear least squares in R.” WIREs Computational Statistics
14 (e1580). https://doi.org/https://doi.org/10.1002/wics.1580.

Nash, John C., and Arkajyoti Bhattacharjee. 2022. “Making a Package from Base R Files.” R-Bloggers,
January. https://www.r-bloggers.com/2022/01/making-a-package-from-base-r-files/.

Nash, John C, and Duncan Murdoch. 2023. nlsr: Functions for Nonlinear Least Squares Solutions.
Nash, John C, and Ravi Varadhan. 2011. Optimx: A Replacement and Extension of the optim() Function.

Nash Information Services Inc.; Johns Hopkins University.
Nash, John C., and Paul Velleman. 1996. “Nonlinear Estimation Combining Visual Fitting with

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=NISTnls
https://CRAN.R-project.org/package=NISTnls
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
http://CRAN.R-project.org/package=bbmle
https://CRAN.R-project.org/package=gslnls
https://CRAN.R-project.org/package=gslnls
https://CRAN.R-project.org/package=nlshelper
https://CRAN.R-project.org/package=nlshelper
http://CRAN.R-project.org/package=minpack.lm
http://CRAN.R-project.org/package=minpack.lm
https://doi.org/10.1186/gb-2004-5-10-r80
https://doi.org/10.1186/gb-2004-5-10-r80
https://CRAN.R-project.org/package=nls2
https://CRAN.R-project.org/package=nls2
https://doi.org/10.1016/j.csda.2006.10.014
https://CRAN.R-project.org/package=nlraa
https://CRAN.R-project.org/package=nlraa
https://doi.org/10.1002/wics.1580
https://www.r-bloggers.com/2022/01/making-a-package-from-base-r-files/

CONTRIBUTED RESEARCH ARTICLE 215

Optimization Methods.” In Proceedings of the Section on Physical and Engineering Sciences of the
American Statistical Association, 256–61. American Statistical Association.

Nash, John C., and Mary Walker-Smith. 1987. Nonlinear Parameter Estimation: An Integrated System in
BASIC. New York: Marcel Dekker.

O’Leary, Dianne P., and Bert W. Rust. 2013. “Variable Projection for Nonlinear Least Squares Problems.”
Computational Optimization and Applications 54 (3): 579–93.

Padfield, Daniel, and Granville Matheson. 2020. nls.multstart: Robust Non-Linear Regression using AIC
Scores. https://CRAN.R-project.org/package=nls.multstart.

Pinheiro, Jose, Douglas Bates, Saikat DebRoy, Deepayan Sarkar, and R Core Team. 2013. Nlme: Linear
and Nonlinear Mixed Effects Models.

Prates, Marcos, Victor Lachos, and Aldo Garay. 2021. nlsmsn: Fitting Nonlinear Models with Scale
Mixture of Skew-Normal Distributions. https://CRAN.R-project.org/package=nlsmsn.

Ratkowsky, David A. 1983. Nonlinear Regression Modeling: A Unified Practical Approach. New York;
Basel: Marcel Dekker Inc.

Rodriguez-Arias, Mariano, Juan Antonio Fernandez, Javier Cabello, and Rafael Benitez. 2020. Nlstac:
An r Package for Fitting Separable Nonlinear Models. https://CRAN.R-project.org/package=nlstac.

Ross, Gavin J. S. 1990. Nonlinear Estimation. New York etc.: Springer-Verlag.
Seber, G. A. F., and C. J. Wild. 1989. Nonlinear regression. New York: Wiley.
Sokol, Serguei. 2022. Nlsic: Non Linear Least Squares with Inequality Constraints. https://CRAN.R-

project.org/package=nlsic.
Spiess, Andrej-Nikolai. 2022. Onls: Orthogonal Nonlinear Least-Squares Regression. https://CRAN.R-

project.org/package=onls.
Torvisco, Juan Antonio Fernandez, Mariano Rodriguez-Arias, and Javier Cabello Sanchez. 2018.

“A New Algorithm to Fit Exponential Decays Without Initial Guess.” Faculty of Sciences and
Mathematics, University of Nis, Serbia. https://doi.org/10.2298/fil1812233t.

Tvrdík, Josef. 2016. crsnls: Nonlinear Regression Parameters Estimation by ’CRS4HC’ and ’CRS4HCe’.
https://CRAN.R-project.org/package=crsnls.

Wickham, Hadley. 2011. “testthat: Get Started with Testing.” The R Journal 3: 5–10. https://journal.
r-project.org/archive/2011-1/RJournal/_2011-1/_Wickham.pdf.

Wickham, Hadley, Jim Hester, Winston Chang, and Jennifer Bryan. 2021. devtools: Tools to Make
Developing R Packages Easier. https://CRAN.R-project.org/package=devtools.

John C. Nash
retired professor, University of Ottawa
Telfer School of Management
Ottawa ON Canada K1N 6N5
ORCiD: 0000-0002-2762-8039
profjcnash@gmail.com

Arkajyoti Bhattacharjee
Indian Institute of Technology
Department of Mathematics and Statistics
Kanpur
arkastat98@gmail.com

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nls.multstart
https://CRAN.R-project.org/package=nlsmsn
https://CRAN.R-project.org/package=nlstac
https://CRAN.R-project.org/package=nlsic
https://CRAN.R-project.org/package=nlsic
https://CRAN.R-project.org/package=onls
https://CRAN.R-project.org/package=onls
https://doi.org/10.2298/fil1812233t
https://CRAN.R-project.org/package=crsnls
https://journal.r-project.org/archive/2011-1/RJournal/_2011-1/_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal/_2011-1/_Wickham.pdf
https://CRAN.R-project.org/package=devtools
https://orcid.org/0000-0002-2762-8039
mailto:profjcnash@gmail.com
mailto:arkastat98@gmail.com

CONTRIBUTED RESEARCH ARTICLE 216

exvatools: Value Added in Exports and
Other Input-Output Table Analysis Tools
by Enrique Feás

Abstract This article introduces an R package, exvatools, that simplifies the analysis of trade in value
added with international input-output tables. It provides a full set of commands for data extraction,
matrix creation and manipulation, decomposition of value added in gross exports (using alternative
methodologies) and a straightforward calculation of many value added indicators. It can handle
both raw data from well-known public input-output databases and custom data. It has a wide sector
and geographical flexibility and can be easily expanded and adapted to specific economic analysis
needs, facilitating a better understanding and a wider use of the available statistical resources to study
globalization.

1 Introduction

The analysis of trade in value added involves the use of international input-output tables and intensive
matrix manipulation. Some trade databases, such as the OECD Trade in Value Added Database (TiVA),
offer a web interface, but cannot be customized and lack some key indicators developed in recent
literature, especially indicators of bilateral trade in value added and participation in global value
chains. This makes recourse to raw data almost inevitable and creates the need for software capable of
performing complex matrix analysis in a user-friendly environment.

This is the gap exvatools pretends to fill. It has been designed as a package for R with a triple
purpose: as an international input-output table general analysis tool (with commands to extract raw
data and produce and manipulate large matrices), as a way to decompose value added in exports
using alternative methodologies, and as a tool to easily produce complex tailor-made value added
indicators with flexible sector and geographical customization.

To our knowledge, there are no equivalent software tools available. There are some input-out
analysis tools, like ioanalysis (Wade and Sarmiento-Barbieri 2020), but they cannot properly handle
OECD’s ICIO-type data (with some countries divided in industrial areas). The package decompr
(Quast and Kummritz 2015) produces a decomposition of value added in exports, but only according
to the methodology of Wang, Wei, and Zhu (2013).

Outside of the R ecosystem, the module icio (Belotti, Borin, and Mancini 2021) for the software
Stata (StataCorp 2021) provides the more modern (and methodologically sounder) decomposition
method of Borin and Mancini (2023). However, icio is a closed-source module, it does not allow
complex sector analysis and customization, direct handling of input-output tables nor detailed decom-
positions (for instance, distinguishing between value added exported induced by inputs and by final
goods).

exvatools can therefore be used as all-purpose tool, both to facilitate the extraction and manipula-
tion of input-output matrices and to obtain detailed and customized indicators of trade in value added,
facilitating research on global value chains, globalization, and its economic effects. In the following
sections, we will describe the methodological background of exvatools, in particular the international
input-output table framework and its use to calculate value added induced by gross exports. Then we
will explain the creation of the three basic objects of exvatools: a list of basic input-output tables (the
wio class), a list with the different matrix components of a decomposition of value added in exports
(the exvadec class) and a list with a detailed origin and destination of value added (the exvadir class).
We will then explain the commands to fully exploit the information included in the aforementioned
classes. Along the way we will produce examples of use.

exvatools can be installed from the CRAN repository and made available for the current session
following the usual procedure:

install.packages("exvatools")
library(exvatools)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=ioanalysis
https://CRAN.R-project.org/package=decompr
https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools

CONTRIBUTED RESEARCH ARTICLE 217

2 Background methodology

2.1 The international input-output framework

Analyzing the value added in exports requires the previous extraction of a series of basic input-output
matrices in a standardized format. We will consider a typical international input-output framework
with G countries and N sectors. Each country s provides goods and services from each sector i to each
sector j in country r, and sources its goods and services from the sectors of each country t.

Table 1: Structure of an international Input-Output Table

Output Intermediate uses Final uses Output
Input 1 2 ... G 1 2 ... G

1 Z11 Z12 ... Z1G Y11 Y12 ... Y1G X1
Intermediate 2 Z21 Z22 ... Z2G Y21 Y22 ... Y2G X2
inputs

G ZG1 ZG2 ... ZGG YG1 YG2 ... YGG XG
Value added VA1 VA2 ... VAG
Input X1 X2 ... XG

In a typical international input-output table (which is a matrix composed of block matrices) Z is
the matrix of intermediate inputs (dimension GN × GN), with each sub-matrix Zsr (dimension N × N)
elements zij

sr representing the deliveries of intermediate inputs from sector i in country s to sector j in
country r. Y is the matrix of final demand, of dimension GN × G (aggregated by country for practical
purposes from an original Yfd matrix with FD demand components). X is the production matrix, of
dimension GN × 1, and VA the value added demand, of dimension 1 × GN.

2.2 The demand model

The typical demand model, which dates back to Leontief (1936), assumes that the inputs from sector
i of country s to sector j of country r are a constant proportion of the output of sector j in country r.
From there we obtain a matrix of coefficients A whose elements are the proportion of intermediate
inputs over total production, aij

sr = zij
sr/xj

r. Then the relations in the international input-output table
can be expressed as AX + Y = X, from where we deduct a relation between production and final
demand:

X = (I − A)−1 Y = BY (1)

Here the matrix B (inverse of I − A, where I is the identity matrix) collects the backward linkages
that the final demand Y induces on production. Each element of B, bij

sr, can be expressed as the increase
of production of sector i in country s, when the final demand of sector j in country r increases by one
unit.

2.3 Value added in trade

If the ratio between inputs and production is constant, then the ratio between value added (i.e., the
value of production minus the value of inputs) and production can also be considered constant, so we
can define vector V as the value added by unit of output X and express the value added in terms of
global demand as VX = VBY. More specifically, for a given country s:

VsXs = Vs

G

∑
j

G

∑
r

BsjYjr (2)

that we can break down into the value added produced and absorbed in s and the value added
produced in s and absorbed abroad:

Vs

G

∑
j

BsjYjs + Vs

G

∑
j

G

∑
r ̸=s

BsjYjr (3)

The second term in (3) is usually referred to as value added exported VAXs (Johnson and Noguera
2012). In aggregated terms, value added absorbed abroad coincides with value added exported, but

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 218

this is not true in bilateral terms. In fact, VAXsr is the value added produced in s and absorbed in r,
but regardless of the export destination. To obtain the value added exported to r regardless of the absorption
country we need to calculate the value added induced not by final demand, but by the demand of
gross exports.

For that, knowing that each column of the matrix product VB is a linear combination whose sum
is a unit vector ι, we can break down the linkage effects over the production of any country s into
those derived of domestic inputs and those derived of foreign components.

ι =
G

∑
t

VtBts = VsBss +
G

∑
t ̸=s

VtBts (4)

If we multiply both terms of equation (4) by the demand of gross exports of country s, Es, we
obtain a basic decomposition of the content of value added in exports into domestic and foreign
content.

ιEs =
G

∑
t

VtBtsEs = VsBssEs +
G

∑
t ̸=s

VtBtsEs (5)

Expression (5) reflects that the demand of gross exports of s can only be satisfied with domestic
value added or with foreign value added (with inputs being value added of other sectors). This is also
valid for the bilateral exports of s, Esr (the sum being in this case the total gross bilateral exports).

We have so far overlooked the sector distribution of exports. It we wanted to preserve the sector
information, we should use a diagonalized version of matrix V, V̂, with the resulting product V̂B
reflecting the sector of origin of value added. If we opted instead (as it normally the case) to reflect
the value-added exporting sector, then the products V̂sBss and V̂tBts should be diagonalized as V̂sBss

and V̂tBts, respectively.

The decomposition of value added in exports essentially consists in analyzing the elements of
Equation (5), extracting the elements that are not really value added (double counted) as well as those
that are not really exports (flows eventually re-imported and absorbed domestically).

3 Creating and manipulating input-output matrices

3.1 Usage

The basic matrices of a Leontief demand-induced model can be easily obtained from raw data with
the command make_wio():

make_wio(wiotype = "icio2023", year = NULL,
src_dir = NULL, quiet = FALSE)

where:

• wiotype is a string specifying the type of international input-output table to be used (and
therefore the source zip file to be looked for in the source directory src_dir).

• year is an integer specifying the reference year. If missing, make_wio() will use the last available
year for that database (e.g., 2020 for "icio2023" or 2014 for "wiod2016").

• src_dir is the source directory where the raw data is located. If data is stored in the current
working directory, this argument can be omitted.

• quiet is a boolean, with TRUE opting for a silent output.

3.2 Source data

exvatools produces basic input-output tables from three types of data: public international input-
output databases, custom data and sample data.

Public international input-output databases can be directly downloaded from the web pages of
their respective institutions. Three sources are currently supported:

• OECD Inter-Country Input-Output (ICIO) tables (OECD 2023), on which the OECD’s Trade in
Value Added database (TiVA) is based,

• World Input Output Database (WIOD) tables (Timmer et al. 2015).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=exvatools

CONTRIBUTED RESEARCH ARTICLE 219

• FIGARO EU Input-Output Tables (EU IC-SUIOTs) (Remond-Tierrez and Rueda-Cantuche 2019)

The default wiotype is "icio2023", corresponding to the OECD ICIO Tables, version 2023 (years
1995 to 2020), available as zip files that can be downloaded from the ICIO web page. Older versions
of OECD ICIO ("icio2021", "icio2018" and "icio2016") are provided for backward compatibility
(for example, to reproduce examples in literature using those databases). For WIOD Tables, versions
included are "wiod2016" (version 2016, years 2000 to 2014), "wiod2013" and "lrwiod2022" (long-run
WIOD tables, version 2022, for years 1965 to 2000). All of them are available at the University of
Groningen’s Growth and Development Centre web page. FIGARO tables, whether industry-by-
industry ("figaro2022i") or product-by-product ("figaro2022p") are available at the Eurostat web
page.

The advantage of these databases is threefold: they are widely used in the economic literature,
they are quite rich in terms of countries and sectors, and they are directly downloadable from the
web page of their supporting institutions, typically as zipped files containing comma-delimited files
(.csv), Excel files (.xlsx) or R data files (.RData). In any case, exvatools can be easily extended to
other available international input-output databases like the Eora database (Lenzen et al. 2013) or the
ADB Multi-Regional Input Output (ADB-MRIO) Database (Asian Development Bank 2023).

For instance, if we want to use exvatools with the 2023 edition of the OECD ICIO tables (with data
up to 2020), we must first download the source file “ICIO_2016-2020-extended.zip” (92 MB) from the
ICIO web page. Then we will use the command make_wio(), specifying the edition, the year and the
folder where the source zip file is saved (just the directory). For instance, if the file was located in
C:\Users\Username\Documents\R and we wanted the year 2020:

wio <- make_wio("icio2023", year = 2020,
src_dir = "C:/Users/Username/Documents/R")

and exvatools will take care of the rest: it will extract the .csv files from the zip file and produce
the basic input-output matrices.

Alternatively, exvatools can use custom data to create basic input-output matrices. In this case,
we just need as input a numeric matrix or data frame with the intermediate inputs Z and the final
demand Yfd, plus a vector with the names of the countries. In this case, we will use an alternative
command, make_custom_wio().

wio <- make_custom_wio(df, g_names = c("C01", "C02", "C03"))

If we just want to check the features of exvatools, there is no need to download any data. The
package includes two sets of fictitious data, wiotype = "iciotest" (an ICIO-type data sample, with
Mexico and China disaggregated) and wiotype = "wiodtest" (a WIOD-type data sample). Both can
be directly used in make_wio(), with no need to specify year or source directory.

As the dimension of publicly available input-output matrices is big, here we will use here ICIO-type
fictitious data made with make_wio("iciotest").

wio <- make_wio("iciotest")

The newly created wio class, which can be easily checked with summary(wio), includes the follow-
ing elements:

• Z, the GN × GN matrix of intermediate inputs. Zd is the matrix of domestic intermediate inputs
(diagonal block matrix of Z) and Zm the matrix of international intermediate inputs, exported
or imported (off-diagonal block matrix of Z).

• A, the GN × GN coefficient matrix. Ad is the coefficient matrix of domestic inputs (diagonal
block matrix of A) and Am the matrix of exported or imported inputs (off-diagonal block matrix
of A).

• B, the GN × GN global inverse Leontief matrix. Bd is the global Leontief matrix for domestic
linkage effects (diagonal block matrix) and Bm is the global Leontief matrix for international
linkage effects (off-diagonal block matrix), in both cases using both domestic and international
inputs.

• Ld, the GN × GN local inverse Leontief matrix reflecting domestic linkage effects using only
domestic inputs.

• VA, the GN × 1 value added vector matrix.
• X, the GN × 1 production vector matrix.
• V, the GN × 1 vector reflecting the value-added share of production (VA/X). W is the diagonal

matrix of V (usually expressed as V̂).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://www.oecd.org/sti/ind/inter-country-input-output-tables.htm
https://www.rug.nl/ggdc/valuechain/wiod/
https://ec.europa.eu/eurostat/web/esa-supply-use-input-tables/database
https://ec.europa.eu/eurostat/web/esa-supply-use-input-tables/database
https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools
https://www.oecd.org/sti/ind/inter-country-input-output-tables.htm
https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools

CONTRIBUTED RESEARCH ARTICLE 220

• Yfd, the GN ×GFD full demand matrix (with final demand components by country in columns);
Y, the GN × G final demand matrix, with aggregated total demand by country in columns; Yd
is the domestic final demand (diagonal block matrix of Y) and Ym the foreign final demand
(non-diagonal block matrix of Y).

• EXGR, the GN × G total gross bilateral exports matrix. E is the GN × GN diagonal matrix of
aggregated total exports (also shown sometimes as Ê).

Additionally, the main dimensions are provided in the list dims, such as the number of countries G,
the number of countries including disaggregated countries GX, the number of sectors N, the number
of final demand components FD, or combinations thereof (GN, GXN, GFD). A list names is also
provided, including the names of countries (ISO codes of 3 characters), the names of sectors, (from D01
to D99 for tables based in ISIC revision 4, and from C01 to C99 for tables based in ISIC revision 3), the
names of demand components, and two additional metadata: the type of source database ("icio2023",
"wiod2016", etc.) and the year.

3.3 Commands for input-output matrix manipulation

Although exvatools was initially conceived as a trade analysis software, it also includes a series of
commands that facilitate the manipulation of international input-output tables for any other purposes.
Thus, we can multiply a diagonal matrix by an ordinary one with dmult(), an ordinary by a diagonal
with multd(), or make a block-by-block Hadamard product of matrices with hmult(). We can also
easily obtain a block diagonal matrix with bkd(), a block off-diagonal matrix with bkoffd(), or a
diagonal matrix with the sums of all columns with diagcs().

Additionally, as exvatools always operates with named rows and columns (names of countries
and sectors), several commands are included to consolidate matrices, preserving the matrix format
and optionally providing names for the resulting rows or columns: rsums() to sum rows, csums()
to sum columns, sumnrow() to sum every nth row of a matrix, sumncol() to sum every nth column,
sumgrows() to sum groups of rows of a particular size, sumgcols() to do the same with columns, etc.

On the other hand, the OECD ICIO tables have a particular feature: two big industrial countries,
China and Mexico, are broken down into two regions each. Calculations must initially be done with
disaggregated data, but later consolidated under the name of the country. The command meld() takes
care of that.

Let us, for instance, check that the production X is equivalent to the product of the global Leontief
inverse matrix B and the final demand Y:

BY <- wio$B %*% wio$Y

We can sum the rows (with rsums(), naming the result as "BY") and check that it coincides with
the production vector:

BY <- rsums(BY, "BY")
print(cbind(head(BY, 10), head(wio$X, 10)))

#> BY X
#> ESP_01T09 1378.568 1378.568
#> ESP_10T39 1914.607 1914.607
#> ESP_41T98 2113.699 2113.699
#> FRA_01T09 1848.173 1848.173
#> FRA_10T39 1799.486 1799.486
#> FRA_41T98 1608.004 1608.004
#> MEX_01T09 0.000 0.000
#> MEX_10T39 0.000 0.000
#> MEX_41T98 0.000 0.000
#> USA_01T09 1895.742 1895.742

Now let us calculate the value added absorbed abroad. For that we need to multiply the value
added coefficients matrix V̂ (represented here as W) by the global inverse matrix B by the final demand
matrix Y, and then exclude the value added absorbed domestically. This can be easily done with a few
commands.

To calculate all value added induced by final demand:

VBY <- dmult(wioW, wioB) %*% wio$Y
VBY

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools

CONTRIBUTED RESEARCH ARTICLE 221

#> ESP FRA MEX USA CHN ROW
#> ESP_01T09 33.25239 33.04328 29.13415 39.26315 44.36171 40.26254
#> ESP_10T39 105.86567 99.40932 118.73322 139.90848 115.91495 126.97831
#> ESP_41T98 221.93642 191.16663 158.37563 173.76610 145.22181 168.64254
#> FRA_01T09 48.48628 66.62310 51.62458 49.45643 47.66424 70.97642
#> FRA_10T39 120.80031 104.64030 128.78920 102.79096 97.91708 99.78527
#> FRA_41T98 134.74749 129.14500 99.99938 88.70168 86.75694 101.79354
#> MEX_01T09 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
#> MEX_10T39 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
#> MEX_41T98 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
#> USA_01T09 175.01545 130.46673 128.74728 107.71747 102.20179 117.94400
#> USA_10T39 102.29790 84.03672 79.60012 121.89497 66.60450 100.75615
#> USA_41T98 115.50508 118.18725 129.51719 122.16680 95.86500 111.98916
#> CHN_01T09 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
#> CHN_10T39 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
#> CHN_41T98 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
#> ROW_01T09 82.22487 42.82585 45.01008 60.06683 46.78138 51.62906
#> ROW_10T39 90.44372 97.64510 80.63597 95.00232 91.33130 91.05473
#> ROW_41T98 62.56171 51.01318 42.64560 58.70599 41.40437 50.09897
#> MX1_01T09 173.85507 180.14952 154.43342 149.69601 164.13090 149.43125
#> MX1_10T39 119.84480 74.11099 117.78742 97.93871 142.64384 121.97803
#> MX1_41T98 49.45281 29.23090 35.52473 39.69653 36.67997 31.42076
#> MX2_01T09 96.85254 83.89485 70.55941 97.36493 80.35587 66.40230
#> MX2_10T39 138.50490 86.35272 92.84516 108.88726 99.24637 102.95958
#> MX2_41T98 82.91973 67.68778 62.14849 77.03372 65.06803 75.12146
#> CN1_01T09 109.94070 114.47837 91.18810 152.37369 127.84703 118.37641
#> CN1_10T39 119.64017 127.22095 126.45021 165.70116 164.43470 128.00251
#> CN1_41T98 109.34845 93.91197 106.67385 115.50129 111.77386 119.86482
#> CN2_01T09 84.74417 83.13258 69.33664 86.84078 80.88526 72.00972
#> CN2_10T39 73.17244 54.76049 43.08188 56.11525 70.19744 78.67920
#> CN2_41T98 158.98841 103.45062 108.60598 136.04997 128.63627 109.93866

The rows for Mexico and China are disaggregated. We can easily meld them with meld():

VBY <- meld(VBY)
VBY

#> ESP FRA MEX USA CHN ROW
#> ESP_01T09 33.25239 33.04328 29.13415 39.26315 44.36171 40.26254
#> ESP_10T39 105.86567 99.40932 118.73322 139.90848 115.91495 126.97831
#> ESP_41T98 221.93642 191.16663 158.37563 173.76610 145.22181 168.64254
#> FRA_01T09 48.48628 66.62310 51.62458 49.45643 47.66424 70.97642
#> FRA_10T39 120.80031 104.64030 128.78920 102.79096 97.91708 99.78527
#> FRA_41T98 134.74749 129.14500 99.99938 88.70168 86.75694 101.79354
#> MEX_01T09 270.70761 264.04436 224.99283 247.06094 244.48677 215.83355
#> MEX_10T39 258.34970 160.46370 210.63258 206.82598 241.89021 224.93762
#> MEX_41T98 132.37254 96.91869 97.67322 116.73025 101.74800 106.54222
#> USA_01T09 175.01545 130.46673 128.74728 107.71747 102.20179 117.94400
#> USA_10T39 102.29790 84.03672 79.60012 121.89497 66.60450 100.75615
#> USA_41T98 115.50508 118.18725 129.51719 122.16680 95.86500 111.98916
#> CHN_01T09 194.68487 197.61095 160.52474 239.21447 208.73229 190.38614
#> CHN_10T39 192.81261 181.98144 169.53209 221.81640 234.63214 206.68171
#> CHN_41T98 268.33686 197.36260 215.27984 251.55127 240.41013 229.80349
#> ROW_01T09 82.22487 42.82585 45.01008 60.06683 46.78138 51.62906
#> ROW_10T39 90.44372 97.64510 80.63597 95.00232 91.33130 91.05473
#> ROW_41T98 62.56171 51.01318 42.64560 58.70599 41.40437 50.09897

We just want the value added absorbed abroad. For that we need the block off-diagonal matrix of
V̂BY, that we can produce with bkoffd():

vax <- bkoffd(VBY)
head(vax, 10)

#> ESP FRA MEX USA CHN ROW

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 222

#> ESP_01T09 0.00000 33.04328 29.13415 39.26315 44.36171 40.26254
#> ESP_10T39 0.00000 99.40932 118.73322 139.90848 115.91495 126.97831
#> ESP_41T98 0.00000 191.16663 158.37563 173.76610 145.22181 168.64254
#> FRA_01T09 48.48628 0.00000 51.62458 49.45643 47.66424 70.97642
#> FRA_10T39 120.80031 0.00000 128.78920 102.79096 97.91708 99.78527
#> FRA_41T98 134.74749 0.00000 99.99938 88.70168 86.75694 101.79354
#> MEX_01T09 270.70761 264.04436 0.00000 247.06094 244.48677 215.83355
#> MEX_10T39 258.34970 160.46370 0.00000 206.82598 241.89021 224.93762
#> MEX_41T98 132.37254 96.91869 0.00000 116.73025 101.74800 106.54222
#> USA_01T09 175.01545 130.46673 128.74728 0.00000 102.20179 117.94400

4 Decomposition of value added in exports

4.1 Methodology: extracting double counting and re-imports

Equation (5) showed a basic decomposition of the value of gross exports into its domestic and foreign
content. However, matrix B in that equation is the result of successive rounds of production induced by
demand, therefore incurring in double counting. To differentiate between true value added and double
counting we must specify a spatial perimeter and a sequential perimeter. The spatial perimeter (or
perspective) will delimit the border that has to be crossed a specific number of times for a transaction
to be considered as value added, and the the sequential perimeter (or approach) will delimit the
number of border crossings for a transaction to be considered as value added.

The most consistent decomposition methods employ for the spatial perimeter the exporting
country’s border (country perspective) and for the sequential perimeter the first border crossing
(source-based approach). As a result, export flows are considered as value added the first time they
cross the exporting country’s border, with ulterior flows being considered as double counting.

Once we have identified export flows that are double counted (and therefore do not constitute
real value added), we must also differentiate the export flows that eventually return to be absorbed in
the exporting country (and therefore do not constitute true exports). The methodology to calculate
value added in exports is not univocal, and has led to a considerable amount of discussion in the
past few years, following Daudin, Rifflart, and Schweisguth (2011); Johnson and Noguera (2012);
Foster-McGregor and Stehrer (2013); Wang, Wei, and Zhu (2013); Koopman, Wang, and Wei (2014);
Los, Timmer, and Vries (2016) and Los and Timmer (2018); Nagengast and Stehrer (2016); Johnson
(2018); Arto et al. (2019); Miroudot and Ye (2021) and Borin and Mancini (2023).

The most recent decomposition methods, including those of Borin and Mancini (2023) or Miroudot
and Ye (2021), involve the calculation of a coefficient matrix A that excludes the linkage effects of
exported inputs. Thus, for a given country s we will define an extraction matrix Axs as a global
coefficient matrix whose coefficients corresponding to the exports of inputs of s are equal to zero.

Axs =

A11 A12 · · · A1s · · · A1G
A21 A22 · · · A2s · · · A2G

...
...

. . .
...

...
...

0 0 · · · Ass · · · 0
...

...
...

...
. . .

...
AG1 AG2 · · · AGs · · · AGG

(6)

The global inverse Leontief matrix Bxs derived of this extraction matrix will collect the value
added induced by exports excluding intermediate goods. Therefore, the double counting will be the
difference between the Leontief inverse global matrix B and the Leontief inverse global extraction
matrix Bxs, from where we can break down the components of equation (5) into the domestic value
added VsBxs

ss Esr, the double counted domestic value added Vs(Bss − Bxs
ss)Esr, the foreign value added

∑G
t ̸=s VtBxs

ts Esr, and the foreign double counting ∑G
t ̸=s Vt(Bts − Bxs

ts)Esr

Then, after expressing exports in terms of final demand, we we will be able to separate the exports
that eventually return home to be absorbed, called reflection. Figure 1 shows the process carried out by
make_exvadec(), first separating Domestic Content (DC) and Foreign Content (FC), then identifying
Domestic Value Added (DVA) and Foreign Value added (FVA), separating them from Domestic Double
Counting (DDC) and Foreign Double Counting (FDC), and finally dividing Domestic Value Added
between Value Added Exported (VAX) and Reflection (REF).

Using these indicators (or parts thereof) we can obtain additional indicators to measure the
participation of countries in global value chains, whether in the form of foreign inputs used in the

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 223

Figure 1: Decomposition of the value added embodied in exports

Gross
Exports
(EXGR)

Foreign Content
(FC)

Foreign
Double

Counting
(FDC)

Foreign
Value Added

(FVA)

Domestic
Content

(DC)

Domestic
Double Count-

ing (DDC)

Domestic
Value Added

(DVA)
Reflection

(REF)

Value Added
Exported

(VAX)

domestic production of exports (backward vertical specialization) or in the form of domestic inputs
exported to be used in the production of foreign exports (forward vertical specialization). In case these
indicators are available, the denomination will be global value chain participation (GVC), divided in
global value chain participation backwards (GVCB) and forward (GVCF).

4.2 Usage

The command make_exvadec() (export value added decomposition) provides, from a wio object, the
full decomposition of the value added in exports for every country or for a particular country or
country group, according to different methodologies. The command syntax is as follows:

make_exvadec(wio_object, exporter = "all", method = "bm_src",
output = "standard", quiet = TRUE)

with the following arguments:

• wio_object is an object of class wio obtained through the command make_wio.
• exporter is a string with the code for the exporting country. Default is "all" (producing an

output of dimension GN × G), but can be the code of a country, e.g., "ESP", or country group,
e.g., "EU27" (producing an output of dimension N × G).

• method is a string specifying the decomposition method.
• output is a string specifying the desired output type.
• quiet is a boolean indicating whether to produce output silently (default is FALSE).

The available methods and outputs are summarized in Table 2. Selecting "bm_src" will produce a
Borin and Mancini (2023) source-based decomposition (from our point of view, the most methodologi-
cally sound), "bm_snk" a Borin and Mancini (2023) sink-based decomposition, "my" a Miroudot and Ye
(2021) decomposition, "wwz" a Wang, Wei, and Zhu (2013) decomposition, "kww" a Koopman, Wang,
and Wei (2014) decomposition and "oecd" a basic OECD decomposition.

The "standard" output of make_exvadec() will include a series of matrices of dimension GN × G
(when exporter is "all") or of dimension N × G (when the exporting country is specified, e.g., "USA"),
with breakdown by exporting country and sector, and by importer (country of destination), plus
additional metadata:

• EXGR, total gross exports by country and exporting sector and by country of destination.
• DC, total domestic content in exports by exporting sector and country of destination.
• DVA, domestic value added (including value added that returns home).
• VAX, or value added effectively exported.
• REF, or reflection, value added that is eventually absorbed in the exporting country and

therefore does not constitute real exports.
• DDC, or domestic double counting, or flows of value added that are reexported after passing a

second time for the exporting country and therefore nor constituting real value added.
• FC, total foreign value added content in exports (including double counting).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 224

Table 2: Output

Decomposition Description Perimeters output options
method (approach/perspective)
"bm_src" Borin and Mancini Source-based / "basic", "standard",

(2019) source-based various "terms"
"bm_snk" Borin and Mancini Sink-based / "standard", "terms"

(2019) sink-based exporting country
"my" Miroudot and Ye Source-based / "standard", "terms"

(2021) source-based various "terms2"
"wwz" Wang et al. (2013) Mix of both "standard", "terms",

"terms2"
"kww" Koopman et al. Sink-based / "standard", "terms",

(2014) mixed
"oecd" OECD TiVA (not Not applicable "standard", "terms",

a decomposition) "tiva"

• FVA, foreign value added, excluding double counting.
• FDC, foreign double content, or flows of foreign value added that have passed more than once

by the exporting country, therefore already computed.

In some cases, indicators reflecting the participation in global value chains (vertical specialization)
will be provided, mainly foreign value added that eventually takes part in the domestic production
of exports (GVCB or global value chain participation backwards) or domestic value added that
eventually takes part in the foreign production of exports (GVCF or global value chain participation
forward).

exvadec objects will inherit metadata of the wio object they come from, like dims, names, or source
(type), plus the indication of the decomposition method used and, in case of individual decompositions,
the exporter. The "standard" output should be enough for most analyses, but alternative outputs
can be specified with the argument output. The option "terms" will show all the elements of the
decomposition (whose sum is the total value of gross exports), which is useful if we need to distinguish
the value added induced by intermediate outputs. The Wang, Wei, and Zhu (2013) decomposition
corresponds with the terminology of their Table A2 (pg. 35), but an additional "terms2" is provided
(with the terminology of their Table E1, pg. 61).

The "kww" and "wwz" methods are, in fact, a mix of perspectives and approaches. The exporting
country perspective and the source approach should probably be considered as the standard, but
some alternative approaches (like the sink approach, considering value added all flows prior to the
last border crossing) and various tailored perspectives are provided. Thus, the sector, bilateral or
bilateral-sector perspectives consider double counting all flows out of those perimeters, and can be
calculated for the "bm_src" and the "my" methods (by using the additional arguments partner and
sector). Additionally, the "my" method allows a world perspective (using perim = "WLD"), consider
as double counting the crossing of any border more than once, not only that of the exporting country.

We have included an additional decomposition called "oecd", which is not a true full decomposi-
tion method, but represents nevertheless a calculation of several elements of value added in exports.
It includes a "tiva" output to show the most typical indicators included in the OECD TiVA database.
In this decomposition (unlike in the the rest), the bilateral VAX is just VAX absorbed in the partner
country.

4.3 Examples

To create create a full decomposition of the value added in the exports of Spain using the method of
Borin and Mancini (2023), using a exporting country perspective and a source-based approach, we
would type:

exvadec <- make_exvadec(wio, exporter = "ESP", method = "bm_src")

#> ==
#> DECOMPOSITION OF VALUE ADDED IN EXPORTS OF SPAIN IN 2022
#> Sector: All sectors
#> Destination: All countries
#> ==
#> VA_components USD_MM Percent

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 225

#> Gross exports of goods and services (EXGR) 4666.96 100.00
#> Domestic Content in VA (DC) 2165.17 46.39
#> Domestic Value Added (DVA) 1880.60 40.30
#> Value Added Exported (VAX) 1624.18 34.80
#> Reflection (REF) 256.41 5.49
#> Domestic Double Counting (DDC) 284.58 6.10
#> Foreign Content in VA (FC) 2501.78 53.61
#> Foreign Value Added (FVA) 2176.21 46.63
#> Foreign Double Counting (FDC) 325.58 6.98
#> Global Value Chain-related trade (GVC) 4034.25 86.44
#> GVC-related trade, backward (GVCB) 2786.36 59.70
#> GVC-related trade, forward (GVCF) 1247.89 26.74
#> ==
#> Method: Borin and Mancini (2023), source-based, standard output
#> Country perspective, source approach

If we want to go deeper into the components of this value added, differentiating between final and
intermediate exports, we can use:

exvadec.terms <- make_exvadec(wio, exporter = "ESP",
method = "bm_src", output = "terms")

#> ==
#> DECOMPOSITION OF VALUE ADDED IN EXPORTS OF SPAIN IN 2022
#> Sector: All sectors
#> Destination: All countries
#> ==
#> VA_components USD_MM Percent
#> EXGR (Gross exports of goods and services) 4666.96 100.00
#> T01 VAX1 (DVA, finals) 534.98 11.46
#> T02 VAX2 (DVA, interm. for absorption) 97.73 2.09
#> T03 VAX3 (DVA, interm. for final exports) 314.51 6.74
#> T04 VAX4 (DVA, interm. for reexport) 676.96 14.51
#> T05 REF1 (Reflection, finals) 102.25 2.19
#> T06 REF2 (Reflection, intermediates) 154.17 3.30
#> T07 DDC (Domestic Double Counting) 284.58 6.10
#> T08 FVA1 (FVA, finals) 631.12 13.52
#> T09 FVA2 (FVA, interm. for absorption) 112.29 2.41
#> T10 FVA3 (FVA, interm. for final exports) 478.65 10.26
#> T11 FVA4 (FVA, interm. for reexport) 954.15 20.44
#> T12 FDC (Foreign Double Counting) 325.58 6.98
#> ==
#> Method: Borin and Mancini (2023), source-based, terms output
#> Country perspective, source approach

If we want to get a list of common trade indicators (exports, imports, value added, production)
similar to those of the TiVA database, we could just use make_exvadec() with the method "oecd" and
output = "tiva".

tiva <- make_exvadec(wio, exporter = "ESP",
method = "oecd", output = "tiva")

#> ==
#> DECOMPOSITION OF VALUE ADDED IN EXPORTS OF SPAIN IN 2022
#> Sector: All sectors
#> Destination: All countries
#> ==
#> VA_components USD_MM Percent
#> Gross exports of goods and services (EXGR) 4666.96 100.00
#> Gross exports, finals (EXGR_FNL) 1343.03 28.78
#> Gross exports, intermediates (EXGR_INT) 3323.92 71.22
#> Gross imports (IMGR) 5292.12 113.40
#> Gross imports, finals (IMGR_FNL) 2386.14 51.13
#> Gross imports, intermediates (IMGR_INT) 2905.98 62.27

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 226

#> Domestic absorption (DOM) 739.92 15.85
#> Domestic absorption, finals (DOM_FNL) 224.26 4.81
#> Domestic absorption, interm. (DOM_INT) 515.66 11.05
#> Gross balance (BALGR) -625.17 -13.40
#> Domestic Content in VA (EXGR_DVA) 2165.17 46.39
#> Direct domestic VA content (EXGR_DDC) 1757.25 37.65
#> Indirect domestic VA content (EXGR_IDC) 123.34 2.64
#> Reimported domestic VA content (EXGR_RIM) 284.58 6.10
#> Value Added in final demand (FD_VA) 1985.24 42.54
#> DVA in dom. final dem. (VAD) (DXD_DVA) 361.05 7.74
#> DVA in foreign final dem. (VAX) (FFD_DVA) 1624.18 34.80
#> FVA in dom. final dem. (VAM) (DFD_FVA) 2249.35 48.20
#> Balance of VA (VAX - VAM) (BALVAFD) -625.17 -13.40
#> Foreign VA Content (EXGR_FVA) 2501.78 53.61
#> Backward participation in GVC (DEXFVAP) 2501.78 53.61
#> Forward participation in GVC (FEXDVAP) 3047.87 65.31
#> Value added (VA) 1985.24 42.54
#> Production (PROD) 5406.87 115.85
#> ==
#> Method: OECD (2022), TiVA output
#> Country perspective, source approach

5 Direction (origin and destination) of value added

The decomposition of make_exvadec() does not distinguish between the different sources of foreign
value added. This is where the command make_exvadir() might be useful. It provides data on the
direction of value added, i.e., details of both the geographical and sectoral origin of the value added
incorporated in exports and of the final destination (in gross terms or in terms of final demand). It
allows therefore a thorough analysis of where the value added is generated and where it ends up (for
instance, how EU services are important for UK’s exports of goods, or the role of China as intermediate
party in the exports of Russia).

5.1 Methodology

The command make_exvadir() produces an output which is the result of multiplying the value added
matrix V̂ by the global Leontief inverse matrix B by a matrix of exports EXGR, but with a high level
of specification of the three matrices. First, the matrix V̂ (V diagonalized, to preserve the sector
information) will be multiplied by a specific form of B: regular B to obtain the total value added
content, Bd to obtain the domestic value added content and Bm to obtain the foreign value added
content; or its equivalents in the form of extraction matrices Bxs to obtain the total, domestic or foreign
value added excluding double counting, according to the methodology of Borin and Mancini (2023).

Then, depending of the sectoral perspective, the product V̂B will be left as it is (sector of origin)
or will be summed up by columns and diagonalized, i.e., as V̂B (default option, exporting sector
perspective). The specification of sectors or countries of origin of value added will be done by setting
the non-specified values to zero. If the exporter is a group of countries, there is the possibility of
considering intra-regional flows as exports or not (by default, intra-regional flows will be excluded).

Finally, the resulting adjusted product VB will be multiplied by a form of export matrix EXGR.
By default, the ordinary gross export matrix will be considered, but the option will be given to express
exports in terms of absorption (i.e., final demand), as EXGRY, giving in this case the possibility
of distinguishing between destination of final goods (Ym) and destination of intermediate exports
processed as final goods (AmBY: this is the only way of calculating the value added induced by
intermediate exports).

Additionally, the possibility will be given to consider exports that go via a specific country, i.e., an
intermediate importer (for example, Russian exports to the EU that go via China). If this is the case,
V̂B will be multiplied by Ysr + Asr[BY]r, with s being the exporter and r the intermediate importer,
and [BY]r the rows of product BY for country r), i.e., the exports of s used in the production of r, that
ends up in r or exported elsewhere.

5.2 Usage

The syntax of make_exvadir() is:

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 227

make_exvadir(wio_object, va_type = "TC", flow_type = "EXGR", exporter,
via = "any", sec_orig = "all", geo_orig = "all",
intra = FALSE, perspective = "exporter")

The arguments are as follows:

• wio_object is an object of class wio (required).
• va_type is a string describing the type of value added: "TC", the default, is the total content in

value added (matrix B), both foreign and domestic, but we can also select "DC" (the domestic
value added content, using matrix Bd) or "FC" (the foreign value added content, using matrix
Bm). "TVA" is the total pure value added, i.e., excluding double counting (matrix Bxs), and we
can also get the "DVA" (domestic value added, excluding double counting, matrix Bd

xs) or the
"FVA" (foreign value added, excluding double counting, matrix Bm

xs).
• flow_type is a string specifying the type of export flow. Default is gross total exports ("EXGR").

Alternatives are exports expressed in terms of final demand: total exports ("EXGRY"), final exports
("EXGRY_FIN") or intermediate exports ("EXGRY_INT"). The latter options will show where value
added exported is eventually absorbed, regardless of where it was initially exported.

• exporter is a string reflecting the code of the exporting country or group of countries.
• via is a string with the code of the intermediate importing country or country group. Default is

"any". This option requires flows to be expressed necessarily in terms of final demand.
• geo_orig is a string with the code of the country or country group origin of value added. Default

is "all".
• sec_orig is string with the code of sector of origin of value added (e.g., "AGR", "MANUF",

"SRVWC". . .). Default is "all".
• intra is a boolean to specify whether to include or not intra-region exports (default is FALSE,

i.e., EU27 exports will include only extra-EU exports).
• perspective shows the sectoral perspective of value added. Default is exporting sector ("exporter")

but sector of "origin" can also be specified.

Please note that, compared to make_exvadec(), make_exvadir() is logically more restricted at
decomposing value added, so in principle calculations will be shown in terms of domestic and
foreign content (DC/FC) or, at most, domestic and foreign value added (DVA/FVA, excluding double
counting), but including reflection (REF). Also note that the total content in value added from all
origins and all sectors is, precisely, the value of total gross exports.

5.3 Example

We have seen that the foreign content in Spanish exports amounts to USD 2501.78 million. Where
does it come from? The specific geographical and sector origin of the value added in exports can be
obtained using the command make_exvadir():

exvadir <- make_exvadir(wio, exporter = "ESP", va_type = "FC",
flow_type = "EXGR")

head(exvadir$FC, 10)

#> ESP FRA MEX USA CHN ROW
#> ESP_01T09 0 0.00000 0.00000 0.00000 0.00000 0.00000
#> ESP_10T39 0 0.00000 0.00000 0.00000 0.00000 0.00000
#> ESP_41T98 0 0.00000 0.00000 0.00000 0.00000 0.00000
#> FRA_01T09 0 19.45318 26.47295 15.19438 35.51728 24.42115
#> FRA_10T39 0 14.09801 34.93554 23.48504 32.13613 27.09630
#> FRA_41T98 0 15.84674 25.71533 14.12113 17.62330 14.63281
#> MEX_01T09 0 38.41321 52.27477 30.00356 70.13415 48.22319
#> MEX_10T39 0 31.07698 77.01024 51.76931 70.83935 59.72978
#> MEX_41T98 0 33.18999 53.85912 29.57581 36.91088 30.64749
#> USA_01T09 0 23.35813 31.78700 18.24443 42.64685 29.32333

Note that the exvadir object that we have obtained is different from the exvadec object, in the
sense that ‘exporters’ in an exvadir object are the different countries and sectors of origin of the value
added included in the exports of a specific country (in this case, Spain). We can better understand this
by typing summary(exvadir):

summary(exvadir)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 228

#>
#> ==
#> ORIGIN AND DESTINATION OF VALUE ADDED IN EXPORTS OF SPAIN IN 2022
#> ==
#> Value added type: Foreign VA content (FC)
#> In type of flow: Total gross exports (EXGR)
#> That goes via country: any
#> Using inputs from sector: all sectors
#> Of country: all countries
#> With sector perspective: exporter
#> ==
#>
#> Available countries of origin of VA (G): 6
#> ESP, FRA, MEX, USA, CHN, ROW
#>
#> Available sectors of origin of VA (N): 3
#> D01T09, D10T39, D41T98
#>
#> Available destinations of VA (G): 6
#> ESP, FRA, MEX, USA, CHN, ROW
#>

Now we will see how to maximize the information given by these objects.

6 Sector and geographic analysis

The commands make_wio(), make_exvadec() and make_exvadir() produce objects that are lists of
matrices will a full breakdown by sector and countries of destination. However, most analyses require
grouping of those variables. The advantage is that grouping by sector or by destination do not require
additional computing, just an aggregation of variables.

To check the information about sectors, it suffices to print info_sec():

info_sec("iciotest")

#>
#> ==
#> Test Input Output Table, ICIO-type, 2022 edition
#> ==
#>
#> Individual sectors:
#> PRIMARY: D01T09 (Primary sector), MANUF: D10T39 (Manufacturing),
#> SRVWC: D41T98 (Services, including construction)
#>
#> Sector groups:
#> TOTAL: D01T98 (Total goods and services), GOODSWU: D01T39 (Goods,
#> total, incl. utilities)

To check the information about available countries, the command is info_geo():

info_geo("iciotest")

#>
#> ==
#> Test Input Output Table, ICIO-type, 2022 edition
#> ==
#>
#> Individual countries:
#> FRA (France), MEX (Mexico), ESP (Spain), USA (United States), CHN
#> (China), ROW (Rest of the world)
#>
#> Groups of countries:
#> WLD (World), EU27 (EU-27), NONEU27 (Non-EU27), NAFTA (NAFTA), USMCA
#> (USMCA)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 229

These commands do not require to have a wio in the environment, so we can just check what
countries are available in the OECD’s ICIO tables, 2023 edition.

info_geo("icio2023")

#>
#> ==
#> OECD's Inter-Country Input-Output Table (ICIO), 2023 edition
#> ==
#>
#> Individual countries:
#> AUS (Australia), AUT (Austria), BEL (Belgium), CAN (Canada), CHL
#> (Chile), CZE (Czech Republic), DNK (Denmark), EST (Estonia), FIN
#> (Finland), FRA (France), DEU (Germany), GRC (Greece), HUN (Hungary),
#> ISL (Iceland), IRL (Ireland), ISR (Israel), ITA (Italy), JPN (Japan),
#> KOR (Korea), LVA (Latvia), LTU (Lithuania), LUX (Luxembourg), MEX
#> (Mexico), NLD (Netherlands), NZL (New Zealand), NOR (Norway), POL
#> (Poland), PRT (Portugal), SVK (Slovak Republic), SVN (Slovenia), ESP
#> (Spain), SWE (Sweden), CHE (Switzerland), TUR (Turkey), GBR (United
#> Kingdom), USA (United States), ARG (Argentina), BGD (Bangladesh), BLR
#> (Belarus), BRA (Brazil), BRN (Brunei Darussalam), BGR (Bulgaria), KHM
#> (Cambodia), CMR (Cameroon), CHN (China), COL (Colombia), CRI (Costa
#> Rica), CIV (Côte d'Ivoire), HRV (Croatia), CYP (Cyprus), EGY (Egypt),
#> IND (India), IDN (Indonesia), JOR (Jordania), HKG (Hong Kong, China),
#> KAZ (Kazakhstan), LAO (Laos), MYS (Malaysia), MLT (Malta), MAR
#> (Morocco), MMR (Myanmar), NGA (Nigeria), PAK (Pakistan), PER (Peru),
#> PHL (Philippines), ROU (Romania), RUS (Russia), SAU (Saudi Arabia),
#> SEN (Senegal), SGP (Singapore), ZAF (South Africa), TWN (Chinese
#> Taipei), THA (Thailand), TUN (Tunisia), UKR (Ukraine), VNM (Vietnam),
#> ROW (Rest of the world)
#>
#> Groups of countries:
#> WLD (World), EU28 (EU-28), EU27 (EU-27), OECD (OECD), EMU (EMU),
#> NONEU28 (Non-EU28), NONEU27 (Non-EU27), NONOECD (Non-OECD),
#> EU28NONEMU (EU-28 not EMU), EU27NONEMU (EU-27 not EMU), EURNONEU
#> (Rest of Europe), EUROPE (Europe), AMER (America), NAMER (North
#> America), CSAMER (Central and South America), LATAM (Latin America
#> and Caribbean), AFRI (Africa), ASIA (Asia), OCEA (Oceania), ASIAOC
#> (Asia and Oceania), G20 (G-20), G7 (G7), NAFTA (NAFTA), USMCA
#> (USMCA), EEA (EEA), EFTA (EFTA), APEC (APEC), ASEAN (ASEAN), RCEP
#> (RCEP)

Additionally, the commands get_geo_codes() and get_sec_codes() provide details about the
components of the different groups. These commands are also directly applicable for any available
input-output table. For instance, for "wiod2016" we would have the following components of NAFTA:

get_geo_codes("NAFTA", wiotype = "wiod2016")

#> [1] "CAN|MEX|USA"

And for "icio2023" we have the following components of the information services sector (INFO):

get_sec_codes("INFO", wiotype = "icio2023")

#> [1] "D58T60|D61|D62T63"

Once we know the sector and geographical disaggregation, we can discuss how to take advantage
of the information contained in exvatools objects.

7 Breaking down decompositions

Once we have obtained a decomposition, we can play with the results in terms of sectors and countries
of destination just using the command get_exvadec_bkdown(). For instance, to select the value added
in Spanish exports of services (including construction) to the United States, we just have to type:

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 230

get_exvadec_bkdown(exvadec, exporter = "ESP",
sector = "SRVWC", importer = "USA")

#> ==
#> DECOMPOSITION OF VALUE ADDED IN EXPORTS OF SPAIN IN 2022
#> Sector: Services, including construction (SRVWC)
#> Destination: United States (USA)
#> ==
#> VA_components USD_MM Percent
#> Gross exports of goods and services (EXGR) 276.71 100.00
#> Domestic Content in VA (DC) 159.63 57.69
#> Domestic Value Added (DVA) 145.95 52.74
#> Value Added Exported (VAX) 127.28 46.00
#> Reflection (REF) 18.67 6.75
#> Domestic Double Counting (DDC) 13.68 4.94
#> Foreign Content in VA (FC) 117.08 42.31
#> Foreign Value Added (FVA) 101.53 36.69
#> Foreign Double Counting (FDC) 15.55 5.62
#> Global Value Chain-related trade (GVC) 221.62 80.09
#> GVC-related trade, backward (GVCB) 130.76 47.26
#> GVC-related trade, forward (GVCF) 90.86 32.84
#> ==
#> Method: Borin and Mancini (2023), source-based, standard output
#> Country perspective, source approach

Note that the bilateral VAX in this case shows the value added exported to the United States,
regardless of the final absorption country.

We can also produce an exvadec object will all countries and then select any exporting country
and any partner or sector:

exvadec.all <- make_exvadec(wio, exporter = "all", quiet = TRUE)

and then:

get_exvadec_bkdown(exvadec.all, exporter = "USA",
sector = "MANUF", importer = "CHN")

#> ==
#> DECOMPOSITION OF VALUE ADDED IN EXPORTS OF UNITED STATES IN 2022
#> Sector: Manufacturing (MANUF)
#> Destination: China (CHN)
#> ==
#> VA_components USD_MM Percent
#> Gross exports of goods and services (EXGR) 400.89 100.00
#> Domestic Content in VA (DC) 164.19 40.96
#> Domestic Value Added (DVA) 138.36 34.51
#> Value Added Exported (VAX) 114.29 28.51
#> Reflection (REF) 24.06 6.00
#> Domestic Double Counting (DDC) 25.83 6.44
#> Foreign Content in VA (FC) 236.70 59.04
#> Foreign Value Added (FVA) 204.59 51.03
#> Foreign Double Counting (FDC) 32.12 8.01
#> Global Value Chain-related trade (GVC) 379.14 94.58
#> GVC-related trade, backward (GVCB) 262.53 65.49
#> GVC-related trade, forward (GVCF) 116.61 29.09
#> ==
#> Method: Borin and Mancini (2023), source-based, standard output
#> Country perspective, source approach

Apart from the console printout, get_exvadec_bkdown() will output a matrix with the results.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 231

8 Extracting data from exvatools objects

The command get_data() takes an exvatools object (wio or exvadec) and produces a value or a
matrix of values. It allows a quick extraction of data. The main advantage of get_data() is that it does
not only admit individual sectoral codes ("MANUF") or destination country codes ("USA", "NAFTA"), but
also lists of sectors and countries in vector form. Therefore, we can easily produce a matrix of domestic
value added with breakdown by sector and by destination groups. The syntax of get_data()is as
follows:

get_data(exvatools_object, variable, exporter = NULL,
sector = "TOTAL", importer = "WLD", custom = FALSE)

The arguments are as follows:

• exvatools_object (required) is an object of class wio, exvadec or exvadir, and variable is a
string specifying one of the variables included in the exvatools_object, such as "EXGR", "VAX",
"FVA", etc.

• exporter is a string vector with one or more codes of exporters or groups of exporters, such
as "ESP", "EU27", c("WLD", "EU27", "NONEU27"), etc. This will define the rows in the resulting
matrix. Specific exclusions can be accepted through the excluding code x (lowercase x), so
"EU27xESP" would be EU countries, excluding Spain, "WLDxEU27" would be total world except
EU, and so on. More than one exception can be specified with the "|" element, such as in
"WLDxESP|FRA|ITA". Available countries and country group id codes can be checked with the
command info_geo(). The argument exporter is required in all cases except two: in case of
a country-specific exvadec object, in which the exporter is previously defined, and in case of
an exvadir object, where, by definition, there is only one exporter. Note that, in the case of
an exvadir object obtained for country s, the argument exporter does not refer to country s
itself, but to the t = 1 . . . G exporters of value added that is used by country s to produce its
exports. Therefore, if the exporter argument is missing, the default behavior of get_data()
will be different, depending on the case: for a country-specific exvadec, it will default to the
exporting country, whereas for an exvadir object it will default to "WLD" (i.e., sum of all origins
of value added).

• sector is a string vector with one or more codes of sectors or groups of sectors, such as "MANUF",
"SERVS", "TOTAL", c("TOTAL", "GOODSWU", "SRVWC"), etc. These will also show as rows in
the result. Specific exclusions can be accepted through the excluding code x, so "MANUFxPET"
would be manufactures, excluding oil products, "SRVWCxBIZSV" would be total services (with
construction) except business services, and so on. Available sector id codes can be checked
with the command info_sec(). Default option is "TOTAL" (sum of all sectors for the specific
exporter). The option "all" can be used to specify all sectors.

• importer is a character string or vector with one or more codes of importing countries or
groups of countries, such as "ESP", "EU27", c("WLD", "EU27", "NONEU27"), etc. This defines
the columns of the result. Default option is "WLD", i.e, the sum of all importers for the specific
exporter (and sector) selection.

• custom is a boolean specifying whether custom-made groups of countries or sectors present in
the environment should be looked up by get_data(). For instance, HITECH could be a specific
variable including all high-tech sectors, or LDC could be a list of least-developed countries.
Custom variables should be referred to as strings in get_data(), so, for instance, get_data(exva,
"VAX", exporter = "LDC", custom = TRUE) would look for a variable called LDC in the
environment and would use its codes to extract and group data.

We can use get_data() to summarize the foreign content of Spanish exports, with a breakdown
between EU and Non-EU origin (specifying a few countries) and also distinguishing between goods
(with utilities) and services. We can also break down the destination of those exports between EU and
non-EU countries:

get_data(exvadir, exporter = c("WLD", "EU27", "FRA",
"NONEU27", "USA"),

sector = c("TOTAL", "GOODSWU", "SRVWC"),
importer = c("WLD", "EU27", "NONEU27"))

#> WLD EU27 NONEU27
#> WLD_TOTAL 2501.78421 367.55781 2134.22640
#> WLD_GOODSWU 1772.66226 236.16941 1536.49285
#> WLD_SRVWC 729.12195 131.38840 597.73355

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 232

#> EU27_TOTAL 340.74928 49.39794 291.35134
#> EU27_GOODSWU 252.80996 33.55120 219.25877
#> EU27_SRVWC 87.93932 15.84674 72.09258
#> FRA_TOTAL 340.74928 49.39794 291.35134
#> FRA_GOODSWU 252.80996 33.55120 219.25877
#> FRA_SRVWC 87.93932 15.84674 72.09258
#> NONEU27_TOTAL 2161.03493 318.15987 1842.87505
#> NONEU27_GOODSWU 1519.85229 202.61821 1317.23408
#> NONEU27_SRVWC 641.18263 115.54166 525.64097
#> USA_TOTAL 433.65389 64.94868 368.70521
#> USA_GOODSWU 286.90179 38.50383 248.39796
#> USA_SRVWC 146.75210 26.44485 120.30725

If there is not a specific group in the database of sectors or countries, the user has two options: to
create a group and use get_data() with the option custom = TRUE, or simply to use a combination of
countries or sectors with a vertical line "|".

In the latter case, for instance, if we want to combine ESP and MEX in a single group, we can just
type:

get_data(exvadec.all, "VAX", exporter = "ESP|MEX",
sector = c("TOTAL", "MANUF", "SRVWC"),
importer = "USA")

#> USA
#> ESP|MEX_TOTAL 756.1258
#> ESP|MEX_MANUF 251.3334
#> ESP|MEX_SRVWC 257.0910

If the vertical line "|" is used to join, the exception marker is "x". It allows us, for instance, to
calculate NAFTA exports, both intra-regional and extra-regional, employing services and non-services,
using as extra-regional "WLDxNAFTA" and as non-services "TOTALxSRVWC"

get_data(exvadec.all, "EXGR", exporter = "NAFTA",
sector = c("TOTAL", "TOTALxSRVWC", "SRVWC"),
importer = c("WLD", "NAFTA", "WLDxNAFTA"))

#> WLD NAFTA WLDxNAFTA
#> NAFTA_TOTAL 13087.740 2602.338 10485.402
#> NAFTA_TOTALxSRVWC 8736.552 1502.340 7234.212
#> NAFTA_SRVWC 4351.188 1099.998 3251.189

Let us use get_data()to calculate the relative comparative advantage (RCA) in terms of gross
exports and compare it with that in terms of VAX. The RCA is the relation between the proportion of
exports of sector i in country s to total exports of s (Esi/Es) and the proportion of world exports of
sector i to total world exports (Ewi/Ew). If RCA is more than 1, it means that country s has a relative
specialization (and a comparative advantage) in sector i compared to the world average.

We will create a function to calculate the RCA so it can be used with both gross exports (EXGR)
and value added exported (VAX). As we can see, get_data() considerably simplifies the calculation of
country exports and sector exports.

RCA <- function(exva, exvar) {
Esi <- get_data(exva, exvar, exporter = "all", sector = "all")
Es <- get_data(exva, exvar, exporter = "all", sector = "TOTAL")
Es <- rep(as.numeric(Es), each = exva$dims$N)
Ewi <- get_data(exva, exvar, exporter = "WLD", sector = "all")
Ewi <- rep(as.numeric(Ewi), exva$dims$G)
Ew <- as.numeric(get_data(exva, exvar, exporter = "WLD", sector = "TOTAL"))
rca <- (Esi/Es)/(Ewi/Ew)
colnames(rca) <- paste0("RCA", ".", exvar)
return(rca)

}
head(cbind(RCA(exvadec.all, "EXGR"),

RCA(exvadec.all, "VAX")), 10)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 233

#> RCA.EXGR RCA.VAX
#> ESP_01T09 0.7981206 0.4575154
#> ESP_10T39 1.1110328 1.0953243
#> ESP_41T98 1.0883393 1.3971980
#> FRA_01T09 1.0378051 0.7268141
#> FRA_10T39 1.0686493 1.1512224
#> FRA_41T98 0.8963249 1.0970064
#> MEX_01T09 1.0752922 1.3324652
#> MEX_10T39 0.9908369 1.0324864
#> MEX_41T98 0.9356388 0.6658469
#> USA_01T09 1.0464957 1.2057567

We can see that some relative advantage (RCA > 1) in terms of gross exports disappear when
calculated in terms of VAX, while some other appear.

Another useful application is the calculation of bilateral balances. We can see that there are
considerable difference in bilateral balances when calculated in terms of value added compared to the
same balances using gross exports.

EXGR <- get_data(exvadec.all, "EXGR", "all", importer = "all")
IMGR <- bkt(EXGR)
VAX <- get_data(exvadec.all, "VAX", "all", importer = "all")
VAM <- bkt(VAX)
BALGR <- round(EXGR - IMGR, 0)
BALVA <- round(VAX - VAM, 0)
as.data.frame(cbind(BALGR, " "=" ", BALVA),

row.names = exvadec.all$names$g_names)

#> ESP FRA MEX USA CHN ROW ESP FRA MEX USA CHN ROW
#> ESP 0 8 -394 -130 -158 49 0 30 -151 -34 -92 111
#> FRA -8 0 53 -290 -544 173 -30 0 -28 -127 -253 96
#> MEX 394 -53 0 263 189 459 151 28 0 84 68 279
#> USA 130 290 -263 0 -570 -19 34 127 -84 0 -297 74
#> CHN 158 544 -189 570 0 464 92 253 -68 297 0 319
#> ROW -49 -173 -459 19 -464 0 -111 -96 -279 -74 -319 0

9 Other useful commands

exvatools provides several additional commands, some of them resulting from the mere combination
of make_exvadir() and get_data() with specific default arguments. Of course, it would be easy to
create other custom combinations.

9.1 Detailed origin of value added

The command get_va_exgr() provides a detailed sector and geographical origin and destination of
value added.

get_va_exgr(wio_object, va_type = "FC",
geo_orig = "all", sec_orig = "TOTAL",
geo_export, sec_export = "TOTAL", as_numeric = TRUE)

It allows to analyze, for instance, the percentage of services (both domestic and foreign) embedded
in Spanish exports of manufactures, i.e. the so-called ‘servicification’ of Spanish exports:

get_va_exgr(wio, va_type = "TC",
geo_orig = c("ESP", "WLDxESP"), sec_orig = "SRVWC",
geo_export = "ESP", sec_export = "MANUF",
as_numeric = FALSE)

#> WLD
#> ESP_MANUF 84.95594
#> WLDxESP_MANUF 263.71717

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=exvatools

CONTRIBUTED RESEARCH ARTICLE 234

On the other hand, if we wanted the value added in services of the US incorporated in the
Spanish exports of manufactures, i.e., the Spanish dependence of US services to produce exports of
manufactures:

get_va_exgr(wio, geo_orig = "USA", sec_orig = "SRVWC",
geo_export = "ESP", sec_export = "MANUF")

#> [1] 51.31605

9.2 Detailed final absorption of value added

Sometimes we are not only interested in the origin, but also in the country of final absorption. For that
we have the command get_va_exgry(). This is equivalent to the OECD’s Gross Exports by Origin of
Value Added and Final destination (FD_EXGR_VA, FD_EXGRFNL_VA and FD_EXGRINT_VA), but with much
more flexible geographical and sector options. Since the OECD TiVA database no longer provides this
indicator in their online version, this command becomes particularly useful.

get_va_exgry(wio_object, va_type = "TC", flow_type = "EXGRY",
geo_orig = "WLD", geo_export, sec_export = "TOTAL",
geo_fd = "WLD", as_numeric = TRUE)

Here flow_type are exports (expressed in terms of final demand), whether total ("EXGRY"), final
("EXGRY_FIN") or intermediate ("EXGRY_INT"), and geo_fd is the country or region of final demand.

This allows, for instance, to calculate what part of US value added incorporated in China’s exports
of manufactures ends up absorbed back in the US.

get_va_exgry(wio, geo_orig = "USA", geo_export = "CHN",
sec_export = "MANUF", geo_fd = "USA")

#> [1] 53.81984

9.3 Value added induced by final demand

exvatools also provides a simple command to obtain details of both the geographical and sector origin
of the value added incorporated in exports induced by final demand.

get_va_fd(wio_object, va_type = "TOTAL",
geo_orig = "WLD", sec_orig = "TOTAL",
geo_fd = "WLD", sec_fd = "TOTAL", intra = FALSE)

This would allow, for instance, the calculation of the Chinese total value added (or GDP) induced
by US final demand for manufactures:

get_va_fd(wio, geo_orig = "CHN", sec_orig = "TOTAL",
geo_fd = "USA", sec_fd = "MANUF")

#> WLD
#> CHN_TOTAL 229.385

10 Summary and conclusions

We have presented the package exvatools for decomposition of value added in exports using international-
input out tables in R. exvatools provides a convenient tool for calculating and manipulating inter-
national input-output matrices, and simplifies the decomposition of value added in exports (using
alternative methodologies). It also allows a straightforward calculation of custom value added indica-
tors.

The purpose of exvatools is to provide the scientific community with tools to take advantage of
the valuable statistical resources that are the international input-output tables, facilitating the analysis
of the complex interaction between trade in goods and services and between economic sectors in
different countries.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools
https://CRAN.R-project.org/package=exvatools

CONTRIBUTED RESEARCH ARTICLE 235

References

Arto, Iñaki, Erik Dietzenbacher, José Manuel Rueda-Cantuche, European Commission, and Joint
Research Centre. 2019. “Measuring Bilateral Trade in Terms of Value Added.” JRC Technical
Report. https://doi.org/10.2760/639612.

Asian Development Bank. 2023. “Multiregional Input-Output Database (ADB-MRIO).” https://kidb.
adb.org/mrio.

Belotti, Federico, Alessandro Borin, and Michele Mancini. 2021. “Icio: Economic Analysis with
Intercountry Input–Output Tables.” The Stata Journal 21 (3): 708–55. https://doi.org/10.1177/
1536867X211045573.

Borin, Alessandro, and Michele Mancini. 2023. “Measuring What Matters in Value-Added Trade.”
Economic Systems Research, January, 1–28. https://doi.org/10.1080/09535314.2022.2153221.

Daudin, Guillaume, Christine Rifflart, and Danielle Schweisguth. 2011. “Who Produces for Whom in
the World Economy?” Canadian Journal of Economics 44 (4): 1403–37. https://doi.org/10.1111/j.
1540-5982.2011.01679.x.

Foster-McGregor, Neil, and Robert Stehrer. 2013. “Value Added Content of Trade: A Comprehensive
Approach.” Economics Letters 120 (2): 354–57. https://doi.org/10.1016/j.econlet.2013.05.
003.

Johnson, Robert C. 2018. “Measuring Global Value Chains.” Annual Review of Economics 10 (1): 207–36.
https://doi.org/10.1146/annurev-economics-080217-053600.

Johnson, Robert C., and Guillermo Noguera. 2012. “Accounting for Intermediates: Production
Sharing and Trade in Value Added.” Journal of International Economics 86 (2): 224–36. https:
//doi.org/10.1016/j.jinteco.2011.10.003.

Koopman, Robert, Zhi Wang, and Shang-Jin Wei. 2014. “Tracing Value-Added and Double Counting
in Gross Exports.” American Economic Review 104 (2): 459–94. https://doi.org/10.1257/aer.104.
2.459.

Lenzen, Manfred, Daniel Moran, Keiichiro Kanemoto, and Arne Geschke. 2013. “Building Eora: A
Global Multi-Region Input–Output Database at High Country and Sector Resolution.” Economic
Systems Research 25 (1): 20–49. https://doi.org/10.1080/09535314.2013.769938.

Leontief, Wassily W. 1936. “Quantitative Input and Output Relations in the Economic System of the
United States.” Review of Economics and Statistics 18: 105–25.

Los, Bart, and Marcel P. Timmer. 2018. “Measuring Bilateral Exports of Value Added: A Unified
Framework.” NBER Working Paper w24896. NBER. https://doi.org/10.3386/w24896.

Los, Bart, Marcel P. Timmer, and Gaaitzen J. de Vries. 2016. “Tracing Value-Added and Double
Counting in Gross Exports: Comment.” American Economic Review 106 (7): 1958–66. https:
//doi.org/10.1257/aer.20140883.

Miroudot, Sébastien, and Ming Ye. 2021. “Decomposing Value Added in Gross Exports.” Economic
Systems Research 33 (1): 67–87. https://doi.org/10.1080/09535314.2020.1730308.

Nagengast, Arne J., and Robert Stehrer. 2016. “Accounting for the Differences Between Gross and
Value Added Trade Balances.” The World Economy 39 (9): 1276–306. https://doi.org/10.1111/
twec.12401.

OECD. 2023. “OECD Inter-Country Input-Output Database.” http://oe.cd/icio.
Quast, Bastiaan, and Victor Kummritz. 2015. “Decompr: Global Value Chain Decomposition in R.”

CTEI Papers 2015-01. Centre for Trade & Economic Integration. https://qua.st/decompr/.
Remond-Tierrez, Isabelle, and José Manuel Rueda-Cantuche, eds. 2019. EU Inter-Country Supply, Use

and Input-Output Tables: Full International and Global Accounts for Research in Input Output Analysis
(FIGARO): 2019 Edition. LU: EU Publications Office. https://doi.org/10.2785/008780.

StataCorp. 2021. “Stata Statistical Software: Release 17.” College Station, TX: StataCorp LLC.
Timmer, Marcel P., Erik Dietzenbacher, Bart Los, Robert Stehrer, and Gaaitzen J. de Vries. 2015. “An

Illustrated User Guide to the World Input-Output Database: The Case of Global Automotive
Production.” Review of International Economics 23 (3): 575–605. https://doi.org/10.1111/roie.
12178.

Wade, John, and Ignacio Sarmiento-Barbieri. 2020. “Ioanalysis: Input Output Analysis.” https:
//cran.r-project.org/web/packages/ioanalysis/ioanalysis.pdf.

Wang, Zhi, Shang-Jin Wei, and Kunfu Zhu. 2013. “Quantifying International Production Sharing at the
Bilateral and Sector Levels.” NBER Working Paper 19677. National Bureau of Economic Research,
Inc. https://econpapers.repec.org/paper/nbrnberwo/19677.htm.

Enrique Feás
Universidad de Alcalá and Elcano Royal Institute
Universidad de Alcalá, Pl. de San Diego, s/n, 28801 Alcalá de Henares, Madrid, Spain
Elcano Royal Institute, Calle del Príncipe de Vergara, 51. 28006 Madrid, Spain
ORCiD: 0000-0002-9431-6051
enrique.feas@edu.uah.es, efeas@rielcano.org

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://doi.org/10.2760/639612
https://kidb.adb.org/mrio
https://kidb.adb.org/mrio
https://doi.org/10.1177/1536867X211045573
https://doi.org/10.1177/1536867X211045573
https://doi.org/10.1080/09535314.2022.2153221
https://doi.org/10.1111/j.1540-5982.2011.01679.x
https://doi.org/10.1111/j.1540-5982.2011.01679.x
https://doi.org/10.1016/j.econlet.2013.05.003
https://doi.org/10.1016/j.econlet.2013.05.003
https://doi.org/10.1146/annurev-economics-080217-053600
https://doi.org/10.1016/j.jinteco.2011.10.003
https://doi.org/10.1016/j.jinteco.2011.10.003
https://doi.org/10.1257/aer.104.2.459
https://doi.org/10.1257/aer.104.2.459
https://doi.org/10.1080/09535314.2013.769938
https://doi.org/10.3386/w24896
https://doi.org/10.1257/aer.20140883
https://doi.org/10.1257/aer.20140883
https://doi.org/10.1080/09535314.2020.1730308
https://doi.org/10.1111/twec.12401
https://doi.org/10.1111/twec.12401
http://oe.cd/icio
https://qua.st/decompr/
https://doi.org/10.2785/008780
https://doi.org/10.1111/roie.12178
https://doi.org/10.1111/roie.12178
https://cran.r-project.org/web/packages/ioanalysis/ioanalysis.pdf
https://cran.r-project.org/web/packages/ioanalysis/ioanalysis.pdf
https://econpapers.repec.org/paper/nbrnberwo/19677.htm
https://orcid.org/0000-0002-9431-6051
mailto:enrique.feas@edu.uah.es
mailto:efeas@rielcano.org

CONTRIBUTED RESEARCH ARTICLE 236

PLreg: An R Package for Modeling
Bounded Continuous Data
by Francisco F. Queiroz and Silvia L.P. Ferrari

Abstract The power logit class of distributions is useful for modeling continuous data on the unit
interval, such as fractions and proportions. It is very flexible and the parameters represent the median,
dispersion and skewness of the distribution. Based on the power logit class, Queiroz and Ferrari
(2023b, Statistical Modelling) proposed the power logit regression models. The dependent variable
is assumed to have a distribution in the power logit class, with its median and dispersion linked to
regressors through linear predictors with unknown coefficients. We present the R package PLreg which
implements a suite of functions for working with power logit class of distributions and the associated
regression models. This paper describes and illustrates the methods and algorithms implemented in
the package, including tools for parameter estimation, diagnosis of fitted models, and various helper
functions for working with power logit distributions, including density, cumulative distribution,
quantile, and random number generating functions. Additional examples are presented to show the
ability of the PLreg package to fit generalized Johnson SB, log-log, and inflated power logit regression
models.

1 Introduction

Continuous proportion data frequently appear in areas including medicine, biology, and economics.
Some concrete examples are vegetation cover fraction, mortality rate, and body fat percentage. Fre-
quently, the interest lies in predicting or explaining the behaviour of proportions from a set of other
variables. A natural approach is to use a regression model in which the response variable takes values
on the unit interval. The most frequently employed model for bounded data is the beta regression
model (Ferrari and Cribari-Neto, 2004) and its extensions. Other models used for bounded continuous
data include, for example, rectangular beta (Bayes et al., 2012), simplex (Barndorff-Nielsen and Jør-
gensen, 1991; Zhang and Qiu, 2014), log-Lindley (Gómez-Déniz et al., 2014), CDF-quantile (Smithson
and Shou, 2017), generalized Johnson SB (GJS; Lemonte and Bazán (2016)). Some of these models are
implemented in R. For instance, the beta, simplex, and CDF-quantile regression models can be fitted
using the packages betareg (Zeileis et al., 2021), simplexreg (Zhang et al., 2016), and cdfquantreg
(Shou and Smithson, 2022), respectively. The gamlss (Stasinopoulos and Rigby, 2007) package can also
be used to fit beta and simplex regression models.

Recently, Queiroz and Ferrari (2023b) proposed a new class of regression models useful for
modeling continuous data with bounded support. The models employ a new class of distributions
called power logit (PL), indexed by the median, dispersion and skewness parameters. The PL
distributions are constructed from standard symmetric distributions assigned to the power logit
transformation of the variable that has support on (0, 1). The power logit transformation is defined in
Queiroz and Ferrari (2023b) as t(y; λ) = log[yλ/(1 − yλ)], for λ > 0 and y ∈ (0, 1); it reduces to the
logit transformation when λ = 1. The PL distributions may also depend on an extra parameter that
indexes the underlying symmetric distribution; for example, the degrees-of-freedom parameter of
the Student-t distribution. The extra parameter adds extra flexibility, which can be used, for example,
to deal with outliers. The PL distributions are more flexible than two-parameter distributions, such
as the beta, simplex, and CDF-quantile distributions. The class of PL regression models has the GJS
regression models as a particular case (λ = 1), with the advantage that the skewness parameter λ
provides extra flexibility to fit highly skewed data. Applications in real data presented in Queiroz and
Ferrari (2023b) reveal that the PL regression models are helpful for modeling continuous proportions.

The new R package PLreg provides a broad set of tools for fitting PL regression models and
performing diagnostic analysis. The package is implemented in R and available from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=PLreg. This paper
describes and illustrates the methods and algorithms implemented in the package. It also presents
some examples to demonstrate the ability of the package to fit generalized Johnson SB, log-log, and
inflated power logit regression models.

The remaining of this paper is organized as follows. Section 2.2 presents the PL distributions and
the associated regression models. Section 2.3 describes the implementation of the PL distributions and
the PL regression models in the PLreg package. Section 2.4 gives detailed illustrations of the use of the
PLreg package for modeling continuous bounded data in different scenarios. The paper closes with a
brief discussion outlining the features of the PLreg package.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=betareg
https://CRAN.R-project.org/package=simplexreg
https://CRAN.R-project.org/package=cdfquantreg
https://CRAN.R-project.org/package=gamlss
https://CRAN.R-project.org/package=PLreg
https: //CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 237

2 Power logit regression models

2.1 Power logit distributions

The PL distributions (Queiroz and Ferrari, 2023b) are defined from a transformation of a continuous
random variable whose distribution is standard symmetric with probability density function r(z2),
z ∈ R, in which r(z) > 0, for z ≥ 0, with

∫ ∞
0 z−1/2r(z)dz = 1. The function r(·) is called the density

generator function. Let Y be a continuous random variable with support (0, 1) and let:

Z = h(Y; µ, σ, λ) =
1
σ

[
log

(
Yλ

1 − Yλ

)
− log

(
µλ

1 − µλ

)]
,

where 0 < µ < 1, σ > 0, and λ > 0. If Z has a standard symmetric distribution with density generator
function r(·), we say that Y has a PL distribution with parameters µ, σ and λ, and density generator
function r(·). We write Y ∼ PL(µ, σ, λ; r). The density generator function r(·) may depend on an
extra parameter, denoted here by ζ. The distribution of Y depends on the distribution chosen for Z.
For instance, if Z has a standard normal distribution, then Y has a PL normal distribution; if Z has
a standard Student-t distribution with ζ degrees-of-freedom, then Y has a PL Student-t distribution
with extra parameter ζ.

The probability density function (pdf) of Y ∼ PL(µ, σ, λ; r) is:

fY(y; µ, σ, λ) =
λ

σy(1 − yλ)
r(z2), y ∈ (0, 1),

where z = h(y; µ, σ, λ). The cumulative distribution function (cdf) of Y is FY(y; µ, σ, λ) = R(z), where
R(·) is the cdf of Z.

The GJS class of distributions is a particular case of the PL distributions when λ = 1. Other
particular cases are the logit normal distribution (Johnson, 1949), the L-Logistic distribution (da Paz
et al., 2019), and the logit slash distribution (Korkmaz, 2020), obtained by taking λ = 1 and Z as a
standard normal, type II logistic, and slash random variable, respectively.

The PL distributions have some interesting properties. For instance, the parameters µ, σ and λ
represent the median, dispersion and skewness of the distributions, and they have as a limiting case
when λ → 0+, the class of log-log distributions, defined in Queiroz and Ferrari (2023b).

2.2 Power logit regression models

The PL regression models are defined as follows. Let Y1, . . . , Yn be n independent random variables,
where Yi ∼ PL(µi, σi, λ; r), for i = 1, . . . , n, and

d1(µi) = x⊤i β = η1i,

d2(σi) = s⊤i τ = η2i,
(1)

where β = (β1, . . . , βp)⊤ ∈ Rp, τ = (τ1, . . . , τq)⊤ ∈ Rq and λ > 0 are the unknown parameters, which
are assumed to be functionally independent and p + q + 1 < n; η1i and η2i are the linear predictors;
xi = (xi1, . . . , xip)

⊤ and si = (si1, . . . , siq)
⊤ are the covariates. We assume that X = [x1, . . . , xn]⊤ and

S = [s1, . . . , sn]⊤ have column rank p and q, respectively. In addition, we assume that the link functions
d1 : (0, 1) → R and d2 : (0, ∞) → R are strictly monotonic and twice differentiable. Some examples of
link functions for the median submodel are: d1(µ) = log{µ/(1 − µ)} (logit); d1(µ) = Φ−1(µ) (probit),
where Φ−1(·) is the cdf of a standard normal random variable; d1(µ) = − log{− log µ} (log-log);
and d1(µ) = log{− log(1 − µ)} (complementary log-log). For the dispersion submodel, the log link,
d2(σ) = log σ, is the natural choice.

The log-log regression models are a limiting case of the PL regression models when λ → 0+. The
GJS regression models (Lemonte and Bazán, 2016) are obtained by taking λ = 1.

The estimation of θ = (β⊤, τ⊤, λ)⊤ is based on the maximum likelihood approach. The log-
likelihood function of θ for the observed sample y1, . . . , yn is:

ℓ(θ) =
n

∑
i=1

ℓi(µi, σi, λ),

where ℓi = ℓi(µi, σi, λ) = log λ − log σi − log{1− yλ
i }+ log{r(z2

i)}+ c, zi = h(yi; µi, σi, λ), and c does
not depend on θ. The maximum likelihood estimate (mle) of θ, denoted by θ̂, can be obtained by

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 238

solving simultaneously the nonlinear system of equations U(θ) = 0p+q+1, which does not have a
closed form, where U(θ) is the score function and 0p+q+1 denotes a (p + q + 1)-dimensional vector of
zeros. Queiroz and Ferrari (2023b) also proposed a penalized maximum likelihood estimator (pmle),
which is recommended when the sample size is small. The pmle, denoted by θ̃, is computed through
numerical optimization as follows.

i. Compute λ̃ such that:
λ̃ = argmax

λ>0
ℓ∗p(λ),

where ℓ∗p(λ) is the penalized profile log-likelihood for λ; see Queiroz and Ferrari (2023b, Equa-
tion 7).

ii. Compute β̃ and τ̃ by maximizing ℓ(β, τ, λ̃).

The extra parameter ζ, if any, is selected by minimizing the overall goodness-of-fit measure Υζ ,
defined as:

Υζ = n−1
n

∑
i=1

|Φ−1[R(z̃(i))]− υ(i)|,

where z̃(i) is the ith order statistic of z̃, υ(i) is the mean of the ith order statistic in a random sample
of size n of the standard normal distribution and Φ(·) is the cdf of the standard normal distribution.
Alternatively, ζ may be selected by maximizing ℓ(θ̃).

Some diagnostic tools for the PL regression models are presented in Queiroz and Ferrari (2023b),
including quantile, deviance, and standardized residuals, local influence methods, and a generalized
leverage measure. Applications and further details on inference methods are found in Queiroz and
Ferrari (2023b).

3 R implementation

The PLreg package allows fitting the PL regression models. The package is organized in a similar
way to other packages for fitting regression models, such as betareg and simplexreg. The estimation
process is based on the likelihood theory, and two estimators are available: the mle and the pmle.
Diagnostic tools for evaluating the fitted model are also implemented. Currently, the package includes
methods for computing three types of residuals: quantile, deviance, and standardized residuals. Local
influence measures, leverage measures, and goodness-of-fit statistics are also available. Additionally,
the package supports PL regression models with the skewness parameter λ fixed, i.e., the package
also allows fitting GJS and log-log regression models.

3.1 Power logit distributions in the PLreg package

Currently, the PLreg package includes seven distributions of the PL class: the PL normal, PL Student-t,
PL power exponential, PL slash, PL hyperbolic, PL sinh-normal, and PL type II logistic distributions.
PLreg provides the dPL(), pPL(), and qPL() functions to compute the probability density function,
cumulative distribution function and quantile function of the PL distributions. Also, the rPL() function
may be used to generate random samples of variables with a PL distribution. The basic usages of these
functions are:

dPL(x, mu, sigma, lambda, zeta = 2, family, log = FALSE)

pPL(q, mu, sigma, lambda, zeta = 2, family, lower.tail = TRUE, log.p = FALSE)

qPL(p, mu, sigma, lambda, zeta = 2, family, lower.tail = TRUE, log.p = FALSE)

rPL(n, mu, sigma, lambda, zeta = 2, family)

The main arguments for these functions are mu, sigma, lambda and family, specifying the parameters
µ, σ, and λ and the corresponding density generator function r(·), that is, the distribution of the
symmetric distribution Z. If lambda = 0, those functions provide results for the log-log distributions.
If the density generator function depends on an extra parameter, its value must be specified in the
zeta argument. On the other hand, if it does not depend on an extra parameter, the argument zeta is
ignored. The arguments x and q are the vector of quantiles, p is a vector of probabilities, and n is the
number of random numbers to be generated. Other arguments are log, log.p and lower.tail. If log
= TRUE, then the logarithm of the probability density function will be returned. If log.p = TRUE, then
the logarithm of the cumulative distribution function will be returned and the quantile function will

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=betareg
https://CRAN.R-project.org/package=simplexreg
https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 239

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Figure 1: Histograms of random numbers of the PL hyperbolic distributions with ζ = 1.2 with
different values for µ, σ, and λ. First line: µ = (0.1, 0.5, 0.9), σ = 1, λ = 1.5; second line: µ = 0.5,
σ = (0.2, 1, 3), λ = 1.5; third line: µ = 0.3, σ = 1, λ = (0.01, 1, 5). Solid lines are corresponding to the
respective PL hyperbolic density.

be computed for exp(p). If lower.tail = FALSE, then one minus the cumulative distribution function
will be returned and the quantile function will be computed for 1 − p.

In the following, we present the density generator function of all PL distributions implemented in
the PLreg package:

• PL normal (family = "NO"): r(z) = (2π)−1/2 exp(−z/2);

• PL Student-t (family = "TF"): r(z) = ζζ/2B(1/2, ζ/2)−1(ζ + z)−(ζ+1)/2, ζ > 0 and B(·, ·) is the
beta function;

• PL type II logistic (family = "LO"): r(z) = exp{−z1/2}(1 + exp{−z1/2})−2;

• PL power exponential (family = "PE"): r(z) = ζ/[p(ζ)21+1/ζ Γ(1/ζ)]×
exp

{
−zζ/2/(2p(ζ)ζ)

}
, ζ > 0 and p(ζ)2 = 2−2/ζ Γ(1/ζ)/Γ(3/ζ);

• PL slash (family = "SLASH"): r(z) = (ζ/
√

2π) (z/2)−(ζ+1/2) G (ζ + 1/2, z/2), for z > 0, and
r(z) = 2ζ/[(2ζ + 1)

√
2π], for z = 0, where ζ > 0 and G(a, x) =

∫ x
0 ta−1e−tdt is the lower

incomplete gamma function. When ζ = 1 the slash distribution coincides with the canonical
slash distribution;

• PL hyperbolic (family = "Hyp"): r(z) = exp
{
−ζ

√
1 + z

}
/(2ζK1(ζ)), with Ks(ζ) =

∫ ∞
0

xs−1

2 ×
exp{− ζ

2

(
x + 1

x

)
}dx, is the modified Bessel function of third-order and index s.

• PL sinh-normal (family = "SN"): r(z) = 1/(ζ
√

2π) cosh(z1/2) exp
[
−2/ζ2 sinh2(z1/2)

]
, where

ζ > 0 and sinh(·) and cosh(·) represent the hyperbolic sine and cosine functions, respectively.

Figure 1 illustrates the use of the rPL() and dPL() functions showing the distribution of random
numbers generated from PL hyperbolic distributions with ζ = 1.2.

3.2 Power logit regression models

The main model-fitting function of the PLreg package is PLreg(), which is similar to the other functions
for implementing regression models in R. The basic usage of the PLreg() function is:

PLreg(formula, data, subset, na.action,
family = c("NO", "LO", "TF", "PE", "SN", "SLASH", "Hyp"), zeta = NULL,
link = c("logit", "probit", "cloglog", "cauchit", "log", "loglog"),
link.sigma = NULL, type = c("pML", "ML"), control = PLreg.control(...),
model = TRUE, y = TRUE, x = FALSE, ...)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 240

The argument formula may comprise three parts (separated by the symbols “ ” and “|”), namely:
the observed response variable with values on (0, 1), the linear predictor of the median submodel
and the linear predictor of the dispersion submodel (for further details about the formula argument,
see Zeileis and Croissant (2010)). For instance, formula = y x1 + x2 + x3 | z1 + z2 describes y
for the response variable, x1, x2, and x3 for the median submodel, and z1 and z2 for the dispersion
submodel. The model is fitted with constant dispersion if the third part of the argument formula is
omitted. So, a PL regression model with constant dispersion may be specified either by formula =
y x1 + x2 + x3 or formula = y x1 + x2 + x3 | 1. The available link functions for the median
submodel are "logit", "probit", "cloglog", "cauchit", and "loglog". For the dispersion submodel,
two link functions are allowed: "log" and "sqrt". The default link functions are "logit" for the
median submodel and "log" for the dispersion submodel. There are two other important arguments:
family and zeta. The argument family specifies the symmetric distribution used for generating the
PL model; the currentlu supported families are "NO, "LO", "TF", "PE", "Hyp", "SN", and "SLASH". For
the "TF", "PE", "Hyp", "SN", and "SLASH" families the extra parameter must be specified in the zeta
argument.

The estimation process is carried out via optim() with control options set in PLreg.control(). It
is based on the maximum likelihood method. Currently, two estimators are supported: the usual
maximum likelihood estimator ("ML") and a penalized maximum likelihood estimator ("pML"); this
should be specified in the type argument. If the skewness parameter (λ) is fixed, only the usual
maximum likelihood estimator is supported. In this case, a value should be specified in the control
argument through the PLreg.control() function. For instance, control = PLreg.control(lambda =
1) and control = PLreg.control(lambda = 0) lead to the GJS and the log-log regression models,
respectively; note that λ = 0 represents λ → 0+. Also, if type = "ML", optim() uses analytical
gradients in the iterative process; if type = "pML", analytical gradients are used only in the iterative
process to estimate the parameters of the median and dispersion submodels. By default, the starting
values are chosen as described in Queiroz and Ferrari (2023b), but they may be user-supplied through
the PLreg.control() function.

Once the model has been fitted, an object of S3 class ‘PLreg’ is produced. A list of some of the
components of this object is presented in Table 1. The complete list can be obtained in the reference
manual of the package (Queiroz and Ferrari, 2023a). Several methods are available for objects of class
‘PLreg’. The summary() method presents a standard output, with coefficient estimates, standard errors,
partial Wald statistics and p values for the regression coefficients, as well as the overall goodness-of-fit
measure (Υζ), the pseudo R2, and other metrics. The argument type in summary() specifies the type
of residuals included in the output: "standardized", "quantile" or "deviance". The plot() method
draws graphs for diagnostic and influence analyses. Table 2 presents a list with all the available
functions and methods.

The extra.parameter() function can be used to select the extra parameter of some PL models.
The basic use is as follows:

extra.parameter(object, lower, upper, grid = 10)

This function provides a graph of -2loglik and Υζ as functions of ζ, the extra parameter. The object
argument is an object of class ‘PLreg’; lower and upper are the lower and upper limits of the interval
for the extra parameter, respectively; and grid is the number of values of the extra parameter for
which the measures are evaluated.

4 Examples using the PLreg package

We present some examples to illustrate the features of the PLreg package. We use a simulated dataset
and three datasets available in the package: bodyfat_Aeolus, Firm, and PeruVotes. These analyses
were conducted using R version 4.2.2.

4.1 bodyfat_Aeolus data: IID setting

For a simple illustration of the PLreg package, we consider the bodyfat_Aeolus data reported in Cheng
et al. (2019). The dataset used here has 159 observations and was collected in Aeolus Cave, located
in East Dorset, Vermont, in the USA. The bats were sampled during the winter of 2009 (covering
the winter season from October 2008 to April 2009) and 2016 (October 2015 to April 2016). Here, the
interest lies in modeling the proportion of body fat of little brown bats (percentfat) using the PL
distributions. The data can be loaded by:

R> data("bodyfat_Aeolus", package = "PLreg")

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 241

Component Description
coefficients list of the fitted model coefficients.
residuals vector of raw residuals.
fitted.values vector of the fitted values (fitted median for each observation).
optim list with the optim() output. For unfixed λ, if type = "pML", the

output is based on the iterative process for estimating β and γ; and,
if type = "ML", it is based on the iterative process for estimating the
whole parameter vector.

family character specifying the underlying symmetric distribution.
method optimization method used in optim(). Default is "BFGS".
control control arguments passed to optim().
start vector with the starting values used to initialize the optimization

process.
nobs number of observations.
df.null residual degrees of freedom in the null model (constant median and

dispersion).
df.residual residual degrees of freedom in the fitted model.
lambda value of the skewness parameter λ (NULL when λ is not fixed).
loglik log-likelihood of the fitted model.
loglikp penalized profile log-likelihood for λ.
vcov covariance matrix of all the parameters.
pseudo.r.squared pseudo R-squared value.
Upsilon.zeta an overall goodness-of-fit measure.
link a list with elements "median" and "dispersion" containing the link

objects for the respective models.
converged logical value indicating whether the optimization converged suc-

cessfully.
zeta a numeric specifying the value of ζ used in the estimation process.
type a character specifying the estimation method used.
v a vector with the v(z) values for all the observations; see Queiroz

and Ferrari (2023b) for details.

Table 1: List of the components of an object of the ‘PLreg’ class.

proportion of body fat

F
re

qu
en

cy

0.00 0.10 0.20 0.30

0
10

20
30

40
50

60
70

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

pr
op

or
tio

n
of

 b
od

y
fa

t

Figure 2: Histogram (left side) and boxplot (right side) of the response variable – bodyfat_Aeolus
data.

and the histogram and boxplot of the response variable are presented in Figure 2. Some summary
measures of percentfat are presented below. Note that the distributions of this variable is right-
skewed and have some values close to zero, with range 2.5% − 32%.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 242

Function Description
print() prints the coefficients estimates.
summary() output for the fitted model. Returns an object of class

"summary.PLreg" containing the relevant information about the fit
and has a print() method.

coef() extracts the coefficients of the fitted model.
vcov() variance and covariance matrix.
logLik() extracts the fitted log-likelihood function.
model.matrix() extracts model matrix of model components.
AIC() computes information criteria (AIC, BIC, . . .).
residuals() extracts residuals for the fitted model (quantile, standardized and

deviance). Default is the standardized residual.
plot() presents some diagnostic plots. Currently, seven types of plots are

available: index plot of residuals, local influence plot based on the
case-weight perturbation scheme, scatter plot of the generalized
leverage versus the predicted values, scatter plot of the residuals
versus the linear predictors, normal probability plot of the residuals,
scatter plot of the predicted values versus the observed values, and
a scatter plot of the v(z) function versus the residuals (for some
PL models, v(z) may be interpreted as weights in the estimation
process).

influence() provides two influence measures and the generalized leverage for
PL regression models.

envelope() returns a normal probability plot with simulated envelopes for the
residuals.

extra.parameter() provides plots for selecting the extra parameter, if any.
CI.lambda() provides plot of the profile (penalized) likelihood ratio statistics for

λ. Used to obtain confidence intervals for λ.
sandwich() provides an estimate for the asymptotic variance and covariance

matrix of the parameter estimators of the PL regression models
based on the sandwich estimator.

Table 2: List with the methods and functions of an object of the ‘PLreg’ class.

R> summary(bodyfat_Aeolus$percentfat)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.02544 0.06658 0.09565 0.12168 0.16371 0.32336

We now fit the percentfat variable using the PL normal and PL sinh-normal distributions. For
the PL sinh-normal distribution, we first fit the distribution with a fixed value of ζ, e.g., ζ = 1, and
then we use the extra.parameter() function to select an optimal value for ζ. In the PLreg package, it
can be done via:

R> PLNO <- PLreg(percentfat ~ 1, data = bodyfat_Aeolus, family = "NO")
R> PLSN.aux <- PLreg(percentfat ~ 1, data = bodyfat_Aeolus, family = "SN",
+ zeta = 1)
R> extra.parameter(PLSN.aux, lower = 1, upper = 4, grid = 10)

Estimates for zeta are:
zeta.Ups = 1.67
zeta.loglik = 2

> PLSN <- PLreg(percentfat ~ 1, data = bodyfat_Aeolus, family = "SN",
+ zeta = 1.67)

The extra.parameter() returns the optimal values for ζ based on two measures and plots these
measures as functions of ζ; see Figure 3. We choose zeta = 1.67.

To select between the PL normal and PL sinh-normal distributions, we compute the Υζ and the
AIC for both fits:

R> PL_NO <- round(c(PLNO$Upsilon.zeta, AIC(PLNO)), 3)
R> PL_SN <- round(c(PLSN$Upsilon.zeta, AIC(PLSN)), 3)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 243

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.08

0.10

0.12

0.14

0.16

ζ

Υ
(ζ

)

Behaviour of Upsilon
ζ = 1.67

1.0 1.5 2.0 2.5 3.0 3.5 4.0

−464

−462

−460

−458

−456

ζ

−
2*

lo
g−

lik
el

ih
oo

d

Behaviour of −2*log−Likelihood
ζ = 2

Figure 3: Plot returned by the extra.parameter() for selecting an optimal value for ζ of the fit of the
PL sinh-normal distribution – bodyfat_Aeolus data.

R> measures <- rbind(PL_NO, PL_SN)
R> colnames(measures) <- c("Upsilon", "AIC")
R> measures

Upsilon AIC
PL_NO 0.114 -443.771
PL_SN 0.082 -453.942

Since the values of Υζ and AIC for the PL sinh-normal fit are smaller than those of the PL normal fit,
we select the PL sinh-normal distribution. The summary output of the PL sinh-normal fit is presented
in the following:

R> summary(PLSN)

Call:
PLreg(formula = percentfat ~ 1, data = bodyfat_Aeolus, family = "SN",

zeta = 1.67)

Standardized residuals:
Min 1Q Median 3Q Max

-2.4654 -0.8318 -0.2065 0.7453 2.0551

Coefficients (median model with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.11477 0.05416 -39.05 <2e-16 ***

Sigma coefficients (dispersion model with log link):
Estimate Std. Error z value Pr(>|z|)

(sigma) 0.2107 0.4506 0.468 0.64

Lambda coefficient:
Estimate Std. Error

(lambda) 1.438 0.764

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Family: PL - SN (1.67) (Power logit sinh-normal)
Estimation method: pML (penalized maximum likelihood)
Log-likelihood: 230 on 3 Df
Upsilon statistic: 0.08151
AIC: -453.9
Number of iterations in BFGS optimization: 9

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 244

+

+ +

++
+

+

+
+
+

+

+

+
+

+

+

+

+

+

+

+++

+

+

+

+

+
+

+

+

+
+

+

+

+
+

++

+

+

++

+

+

+

+

+
+

+

+
+

+
+

+

+

+

+

++

+

+
+

+++

+

+
+

+
++++

+

++

+

+

+

+
+

+

+

++

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

+++

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+
+

+
+++

+

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

Quantile N(0,1)

Q
ua

nt
ile

 r
es

id
ua

ls

proportion of body fat

D
en

si
ty

0.00 0.10 0.20 0.30

0
2

4
6

8
10

Figure 4: Normal probability plot of the quantile residual with simulated envelope for the PLSN fit
and the histogram of percentfat with the estimated density – bodyfat_Aeolus data.

The estimated median of the body fat proportion based on the fit is exp(−2.11477)/[1+ exp(−2.11477)] ≈
10.8%, close to the sample median. Figure 4 presents the normal probability plot of the quantile resid-
ual with simulated envelope for the PLSN fit and the histogram of percentfat with the estimated
density. These plots can be obtained as follows:

R> set.seed(180123)
R> envelope(PLSN)
R> hist(bodyfat_Aeolus$percentfat, main = " ",
+ xlab = "proportion of body fat", prob = TRUE, ylim = c(0, 10))
R> curve(dPL(x, PLSN$fitted.values[1], exp(PLSN$coefficients$dispersion),
+ PLSN$coefficients$skewness, zeta = 1.67, family = "SN"), 0 , 1,
+ add = TRUE, lwd = 2, col= "blue")

Using the delta method, an approximated 95% confidence interval for the median of the body fat
proportion is: [

µ̃ ∓ 1.96 × se(β̃)
exp(β̃)

[1 + exp(β̃)]2

]
= [0.097, 0.118].

4.2 Firm data: PL regression model

We now use the Firm data to replicate the application presented in Queiroz and Ferrari (2023b, Section
6.2). The dataset was introduced by Schmit and Roth (1990) and presents information on the risk
management practices of 73 firms. The response variable is firmcost, defined as premiums plus
uninsured losses as a percentage of the total assets. It is a measure of the firm’s risk management cost-
effectiveness. Queiroz and Ferrari (2023b) start the analysis with the PL slash regression model with
varying dispersion, employing two covariates: sizelog, the logarithm of total assets, and indcost, a
measure of the firm’s industry risk. This model can be fitted via:

R> data("Firm", package = "PLreg")

R> Firm_slash2 <- PLreg(firmcost ~ indcost + sizelog | indcost + sizelog,
+ data = Firm, family = "SLASH", zeta = 2)
R> extra.parameter(Firm_slash2, lower = 1, upper = 2.5, grid = 30)

Estimates for zeta are:
zeta.Ups = 1.88
zeta.loglik = 1.93

R> Firm_slash <- PLreg(firmcost ~ indcost + sizelog | indcost + sizelog,
+ data = Firm, family = "SLASH", zeta = 1.88)
R> summary(Firm_slash)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 245

Call:
PLreg(formula = firmcost ~ indcost + sizelog | indcost + sizelog,

data = Firm, family = "SLASH", zeta = 1.88)

Standardized residuals:
Min 1Q Median 3Q Max

-2.1220 -0.6253 0.0251 0.6548 4.6194

Coefficients (median model with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.8223 1.0196 3.749 0.000178 ***
indcost 2.3117 0.8062 2.867 0.004140 **
sizelog -0.9082 0.1225 -7.416 1.21e-13 ***

Sigma coefficients (dispersion model with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.56915 0.78874 -0.722 0.471
indcost 0.36623 0.54062 0.677 0.498
sizelog 0.07455 0.09979 0.747 0.455

Lambda coefficient:
Estimate Std. Error

(lambda) 2.035 1.196

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Family: PL - SLASH (1.88) (Power logit slash)
Estimation method: pML (penalized maximum likelihood)
Log-likelihood: 123 on 7 Df
Pseudo R-squared: 0.4177
Upsilon statistic: 0.06723
AIC: -232.1
Number of iterations in BFGS optimization: 10

The standard errors presented in the summary() output is computed from the observed information
matrix. Queiroz and Ferrari (2023b) employ the sandwich matrix to obtain standard errors. Standard
errors are computed from the sandwich matrix by using the sandwich() function in the PLreg package
as follows:

R> sand.matrix <- sandwich(Firm_slash)
R> se <- sqrt(diag(sand.matrix))
R> se

(Intercept) indcost sizelog (sigma)_(Intercept)
1.30397074 1.05026082 0.16419123 0.54569178

(sigma)_indcost (sigma)_sizelog (lambda)
0.59534023 0.08767362 0.91164845

All the covariates are statistically significant for the median submodel but not for the dispersion
submodel. Then, the authors fit the PL slash regression model with constant dispersion and select
ζ = 2.29. The model can be fitted as follows:

R> Firm_slash.CD <- PLreg(firmcost ~ indcost + sizelog,
+ data = Firm, family = "SLASH", zeta = 2.29)
R> summary(Firm_slash.CD)

Call:
PLreg(formula = firmcost ~ indcost + sizelog,

data = Firm, family = "SLASH", zeta = 2.29)

Standardized residuals:
Min 1Q Median 3Q Max

-2.1133 -0.6590 0.0546 0.7168 5.9131

Coefficients (median model with logit link):
Estimate Std. Error z value Pr(>|z|)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 246

(Intercept) 3.8668 0.9994 3.869 0.000109 ***
indcost 2.1330 0.5836 3.655 0.000257 ***
sizelog -0.9053 0.1120 -8.082 6.38e-16 ***

Sigma coefficients (dispersion model with log link):
Estimate Std. Error z value Pr(>|z|)

(sigma) 0.1333 0.5331 0.25 0.803

Lambda coefficient:
Estimate Std. Error

(lambda) 1.788 1.01

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Family: PL - SLASH (2.29) (Power logit slash)
Estimation method: pML (penalized maximum likelihood)
Log-likelihood: 122 on 5 Df
Pseudo R-squared: 0.4162
Upsilon statistic: 0.06448
AIC: -234
Number of iterations in BFGS optimization: 15

Normal probability plots of the residuals with simulated envelopes as well as influence plots may
be obtained via envelope() and influence() functions, respectively. For instance, the plots presented
in Figure 5 are obtained as follows:

R> envelope(Firm_slash.CD, type = "quantile")
R> envelope(Firm_slash.CD, type = "deviance")
R> envelope(Firm_slash.CD, type = "standardized")
R> influence(Firm_slash.CD)

Note that one observation is highlighted in almost all the graphics in Figure 5. It is the case #15
and corresponds to a firm with the highest firmcost value. Queiroz and Ferrari (2023b) conclude that
this observation does not significantly influence the fitted model. In fact, the weight of this observation
in the estimation process is close to zero — it may be verified by plotting the weights against the
residuals. This plot is presented in Figure 6 and is obtained via:

R> plot(Firm_slash.CD, which = 7)

The PLreg package allows different link functions for the median submodel. In order to illustrate
it, we fit the model with the probit and cloglog link functions; for simplicity, we set zeta = 2.29. We
compare the fits through the values of the pseudo R2 and the Υζ measure as follows:

R> measures <- sapply(c("logit", "probit", "cloglog"),
+ function(x){
+ fit <- update(Firm_slash.CD, link = x)
+ round(c(fit$pseudo.r.squared, fit$Upsilon.zeta),3)
+ })
R> rownames(measures) <- c("pseudo R-squared", "Upsilon_zeta")
R> measures

logit probit cloglog
pseudo R-squared 0.416 0.379 0.482
Upsilon_zeta 0.064 0.071 0.069

No model simultaneously has the highest pseudo R2 and the smallest Υζ . Note that the values
for the fit with the logit and cloglog link functions are close. The probit link function leads to the
smallest pseudo R2 and the highest Υζ ; hence it is not recommended.

4.3 PeruVotes data: GJS regression models

Lemonte and Bazán (2016) use the GJS Student-t regression model to model the proportion of blank
votes (votes) in the 2006 Peruvian general election of an electoral district as a function of the Human
Development Index (HDI). The PeruVotes dataset contains information on 194 electoral districts. Recall
that the PL regression models with λ = 1 reduce to the GJS regression models. The extra parameter ζ
of the GJS Student-t regression model may be selected using the extra.parameter() function as in

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 247

+
+

+

++

+

+

+

+
+

+
+

+

+

+

++
+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

++
+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

Quantile N(0,1)

Q
ua

nt
ile

 r
es

id
ua

ls

+
+

+

++

+

+

+

+
+

+
+

+

+

+

++
+

++

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+

+

+

+

++

+

+

+

+

+

+

+

+
+

+

++
+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

−2 −1 0 1 2

−4

−2

0

2

4

Quantile N(0,1)

D
ev

ia
nc

e
re

si
du

al
s

+
+

+

++

+

+

+

+
+

++
+

+

+

++ +

++

+

+

+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+
+ +

+

+

+

++

+

+

+

+

+

+
+

++
+

+++

+

+

+

+

+

+

+ +

+
+

+
+

+
+

+

−2 −1 0 1 2

−6

−4

−2

0

2

4

6

Quantile N(0,1)

S
ta

nd
ar

di
ze

d
re

si
du

al
s

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

Case−weight perturbation

Index

Lo
ca

l i
nf

lu
en

ce

0 10 20 30 40 50 60 70

0

2

4

6

Case−weight perturbation

Index

To
ta

l l
oc

al
 in

flu
en

ce

++

+
+

+

+

+

+

+

+

++
+

++

+

+

+
+
+

+

+
+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

++
+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+++
+

+

+

+

++

+

+

+

+

0 10 20 30 40 50 60 70

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Generalized leverage

Index

G
L i

i

Figure 5: Normal probability plot of the quantile, deviance and standardized residuals with simulated
envelope and influence plots for the Firm_slash.CD fit – Firm data.

the previous examples. However, to replicate the analysis in Lemonte and Bazán (2016) we fit the
PL Student-t regression model with ζ = 4 (and λ = 1). Using the control argument in the PLreg()
function, we set lambda = 1:

R> data("PeruVotes", package = "PLreg")
R> PV_GJSt <- PLreg(votes ~ HDI | HDI, data = PeruVotes, family = "TF",
+ zeta = 4, control = PLreg.control(lambda = 1))
R> summary(PV_GJSt)

Call:
PLreg(formula = votes ~ HDI | HDI, data = PeruVotes, family = "TF",

zeta = 4, control = PLreg.control(lambda = 1))

Standardized residuals:
Min 1Q Median 3Q Max

-5.1247 -0.5838 0.0024 0.5821 4.1666

Coefficients (median model with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.3054 0.2086 11.05 <2e-16 ***
HDI -6.8075 0.3780 -18.01 <2e-16 ***

Sigma coefficients (dispersion model with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7560 0.7008 -3.933 8.4e-05 ***
HDI 2.1667 1.2422 1.744 0.0811 .

Fixed skewness parameter (lambda = 1).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 248

+
++

++

+

+

+

+

+

++
+ +

+

+++

++
+

+

+

+

+

+ ++ ++

+
+

+

+

+
+

+
+ + ++

+

+

++

++
++

+

+
+

++
++++

+

+

+

+
+

+
++

+
+ +

+

+

+
+

−2 0 2 4 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Standardized residuals

v(
z)

v(z) function vs residuals

PLreg(formula = firmcost ~ indcost + sizelog, data = Firm, family = "SLASH",
 zeta = 2.29)

Figure 6: Plot of the v(z) function against the standardized residual for the Firm_slash.CD fit – Firm
data.

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Family: PL - TF (4) (Power logit Student-t)
Estimation method: ML (maximum likelihood)
Log-likelihood: 352.8 on 4 Df
Pseudo R-squared: 0.5822
Upsilon statistic: 0.06836
AIC: -697.5
Number of iterations in BFGS optimization: 9

As mentioned before, for fixed λ, the estimation is based on the usual maximum likelihood
estimator. The output of the summary() function may be used to replicate part of Table 2 of Lemonte
and Bazán (2016). The GJS distribution in their paper has a median-precision parameterization, while
we use a median-dispersion parameterization. As we are using the logarithmic link function for the
dispersion parameter, the estimates for the precision submodel are the negative of those obtained here
for the dispersion submodel.

As the GJS regression models are a particular case of the PL regression models when λ = 1,
an inherent question is whether the dataset supports the assumption that λ = 1. A confidence
interval for λ may be constructed using the profile penalized likelihood ratio statistic defined by
W∗

p (λ) = 2{ℓ∗p(λ̃) − ℓ∗p(λ)}, that is asymptotically distributed as χ2
1 (Queiroz and Ferrari, 2023b).

The CI.lambda() function in the PLreg package provides a plot of W∗
p (λ) against λ and shows the

observed confidence interval for λ. As an illustration, we fit the PL Student-t regression model with
ζ = 4 and use the CI.lambda() function to obtain a 90% confidence interval for λ:

R> PV_PLt <- PLreg(votes ~ HDI | HDI, data = PeruVotes, family = "TF",
+ zeta = 4)
R> coefficients(PV_PLt, conf.coef = 0.9)

(Intercept) HDI (sigma)_(Intercept)
2.3050765 -6.8065881 -2.7445500

(sigma)_HDI (lambda)
2.0459250 0.9102018

R> CI.lambda(PV_PLt)

The confidence interval for lambda is: (0, 5.4).

The CI.lambda() function provides the plot presented in Figure 7; the horizontal dashed line
indicates the 90% confidence interval for λ. Note that the estimated λ is close to one, and the
confidence interval contains λ = 1. A diagnostic analysis not shown here indicates that the GJS
Student-t regression model with ζ = 4 suitably fits the data.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 249

0 1 2 3 4 5 6

0.0

0.5

1.0

1.5

2.0

2.5

λ

pe
na

liz
ed

 p
ro

fil
e

lik
el

ih
oo

d
ra

tio
 s

ta
tis

tic

Figure 7: Plot of the profile penalized likelihood ratio statistics for λ based on the PV_PLt fit –
PeruVotes data.

4.4 bodyfat_Aeolus data: log-log regression models

We now turn to the bodyfat_Aeolus data, introduced in Section 2.4.1. The interest lies in modelling
the proportion of body fat of little brown bats (percentfat) as a function of the year (year, 1 for 2016
and 0 for 2009), sex of the sampled bat (sex, 1 for male and 0 for female) and the hibernation time
(days), defined as the number of days since the fall equinox. First, we fit the PL normal regression
model and print the estimated skewness parameter:

R> bodyf_PL <- PLreg(percentfat ~ days + sex + year | days + sex + year,
+ data = bodyfat_Aeolus, family = "NO")
R> bodyf_PL$coefficients$skewness

(lambda)
0.0007122085

Note that the estimate of λ is close to zero. It may indicate the limiting model when λ → 0+

may be reasonable. The log-log normal regression model may be fitted by setting lambda = 0 in the
control argument of the PLreg() function as follows:

R> bodyf_loglog <- PLreg(percentfat ~ days + sex + year | days + sex + year,
+ data = bodyfat_Aeolus, family = "NO",
+ control = PLreg.control(lambda = 0))
R> summary(bodyf_loglog)

Call:
PLreg(formula = percentfat ~ days + sex + year | days + sex +

year, data = bodyfat_Aeolus, family = "NO",
control = PLreg.control(lambda = 0))

Standardized residuals:
Min 1Q Median 3Q Max

-2.7679 -0.6402 0.0664 0.6834 2.3130

Coefficients (median model with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.1532851 0.0665887 -17.320 <2e-16 ***
days -0.0094255 0.0005409 -17.427 <2e-16 ***
sexM -0.0324633 0.0531725 -0.611 0.542
year2016 0.5039790 0.0581870 8.661 <2e-16 ***

Sigma coefficients (dispersion model with log link):
Estimate Std. Error z value Pr(>|z|)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 250

(Intercept) -1.9668123 0.1663712 -11.822 <2e-16 ***
days 0.0007478 0.0012223 0.612 0.5407
sexM -0.2873759 0.1145487 -2.509 0.0121 *
year2016 0.1088719 0.1314918 0.828 0.4077

Fixed skewness parameter (limiting case lambda -> 0).

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Family: log-log - NO (log-log normal)
Estimation method: ML (maximum likelihood)
Log-likelihood: 323.4 on 8 Df
Pseudo R-squared: 0.6755
Upsilon statistic: 0.05339
AIC: -630.8
Number of iterations in BFGS optimization: 28

Since the log-log normal regression model is more parsimonious than the PL normal regression
model, it should be used. One can also consider other models in the log-log class specifying a different
family in the family argument.

4.5 Simulated data: Inflated PL regression models

The PLreg package requires that the response variable values are all in the open interval (0, 1). It does
not allow values at the boundaries, i.e., equal to zero or one. The zero-or-one inflated PL regression
models may be employed when the response variable contains values at one of the boundaries. These
models may be fitted using the PLreg package in conjunction with the glm() function.

We say that Y has an inflated PL distribution with parameters α ∈ (0, 1), µ ∈ (0, 1), σ > 0, and
λ > 0 if P(Y = c) = α, with c = 0 or c = 1, and, with probability 1 − α, Y ∼ PL(µ, σ, λ; r). In other
words, an inflated PL distribution is a mixture of a PL distribution and a degenerate variable in a
known value c (c = 0 or c = 1). If c = 0, we have the zero-inflated PL distribution and if c = 1, the one-
inflated PL distribution. The parameters µ, σ, and λ represent the median, dispersion and skewness of
the conditional distribution of Y given that Y ∈ (0, 1) and α is the mixture parameter. When λ = 1
the inflated PL distributions reduce to the inflated GJS distributions (Queiroz and Lemonte, 2021). If
λ → 0+, we have the inflated log-log distributions as a limiting case.

In the inflated PL regression models, µ and σ are linked to the covariates through linear predictors
with unknown coefficients as in Equation 1. Likewise, the mixture parameter submodel is d0(αi) =
z⊤i κ = η0i.

One may use the maximum likelihood approach to estimate the parameters of the model, denoted
here by θ = (κ⊤, β⊤, τ⊤, λ)⊤. The likelihood function of θ factorizes in two terms, one that depends
only on κ (discrete part) and the other that depends on the remaining parameters (continuous part).
Thus, the inference of the discrete part and the continuous part is performed separately.

We present a brief example with simulated data. We generate 300 observations from the zero-
inflated PL normal regression model with a constant dispersion and logit link for the median and
mixture parameter submodels:

R> n <- 300
R> kappa <- c(-2, 0.5)
R> beta <- c(-1.0, -2.0)
R> sigma <- 0.5
R> lambda <- 2
R> set.seed(25012023)
R> x1 <- runif(n)
R> Z <- X <- matrix(c(rep(1,n), x1), ncol = 2, byrow = FALSE)
R> alpha <- exp(Z%*%kappa)/(1 + exp(Z%*%kappa))
R> mu <- exp(X%*%beta)/(1 + exp(X%*%beta))
R> prob <- runif(n)
R> y <- ifelse((prob <= alpha), 0, rPL(n, mu, sigma, lambda, family = "NO"))

The histogram and boxplot of the response variable y are presented in Figure 8. We consider fitting the
zero-inflated PL normal regression model in which the parameters α and µ are modeled as a function
of x1 through the logit link. To estimate the parameters associated with the discrete part, we fit a
binomial regression model in which the response variable is equal to one if y = 0 and is equal to zero
otherwise. The success probability for the i-th observation is αi. This model is fitted using the glm()

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 251

y

F
re

qu
en

cy

0.0 0.2 0.4

0
20

40
60

80
10

0

0.
0

0.
1

0.
2

0.
3

0.
4

y
Figure 8: Histogram (left side) and boxplot (right side) of the response variable y – simulated data.

function (Chambers and Hastie, 1992) of the stats package. The continuous part is modeled using the
PLreg package. The following code shows how the model is fitted:

R> Ind <- ifelse(y == 0, 1, 0)
R> fit.glm <- glm(Ind ~ x1, family = binomial())
R> fit.PL <- PLreg(y[Ind == 0] ~ x1[Ind == 0], family = "NO", type = "ML")

For estimating the parameters of the discrete part, we consider all the observations. In contrast, to
estimate the parameters of the continuous part (PL model), we only consider the observations in (0, 1).
The estimated coefficients are obtained as follows:

R> coefficients(fit.glm)

(Intercept) x1
-2.1812682 0.9445324

R> coefficients(fit.PL)

(Intercept) x1[Ind == 0] (sigma)_(sigma) (lambda)
-0.9608803 -2.1254449 0.3261416 5.3304235

Standard errors and further information may be obtained through the summary() function. As
expected, the estimates of the parameters are close to those used to generate the data. Diagnostic plots
for the discrete and continuous parts may be obtained separately by using the plot() method for
the fit.glm and fit.PL fits. The overall adequacy of the fitted model may be investigated using the
randomized quantile residual (Dunn and Smyth, 1996). For the inflated PL regression models, the
randomized quantile residuals are defined as:

ri =

{
Φ−1(ui), yi = c,

Φ−1
(

α̃iI[c,∞)(y) + (1 − α̃i)FY(yi; µ̃i, σ̃i, λ̃)
)

, yi ∈ (0, 1),

for i = 1, . . . , n, where c = 0 or c = 1 depending on the case. Also, ui is a random draw from the
uniform distribution on the interval (0, α̃i) if c = 0, and (1 − α̃i, 1) if c = 1. As the PLreg package
provides the pPL() function to obtain the cdf of the PL distributions, the randomized quantile residuals
can be easily computed. For the data under investigation, the code below provides the computation of
the residuals and the plots presented in Figure 9.

R> alpha <- fit.glm$fitted.values
R> mu <- fit.PL$link$median$linkinv(X%*%fit.PL$coefficients$median)
R> sigma <- fit.PL$link$dispersion$linkinv(fit.PL$coefficients$dispersion)
R> lambda <- fit.PL$coefficients$skewness
R> cdf <- alpha*as.numeric(y >= 0) + (1 - alpha)*pPL(y, mu, sigma, lambda,

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=stats
https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 252

+

++

++
+

+

+

+

+

+

++

+
++

+
+
+
+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

++

+

+
+

+

+

+
++

++

+

+

+

+++

+

+
+

+
++
++

+

+
+

+

++
+

+

+

+
++
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+
+

+
+

+

+

+

+

+

+

+

++

+

+

+

+

++

+

+
+

++
+

++
+

++

+
++
+

+

+

++

+
+

+

+

++
+
+++

+

+
+

+

+

+

++

++

+
+

+

+

+

+
++

+

+
+
+
+
+

+

+

+

+

++

+
+
+

+++
+

++++

+
+
++
+

++

+

+

+

+
+
+++

+
+

+

+

+
+

+
+

+

+

++

+

++

+++
++
+

+

+

++

+

++
+

+

+

+
+

+

+
+
++

++

+
+

+

++

+

+
+

+
+

+
+++

+
+
+

+

+

+

+

+

+

++

+

+

+

+
+

+

+

+

+

+

+
++

+

+
+
+

+

+

+

+++

+
+++

+
+

+

+

+

+
+
+
+

+

+

+
+

+
+

0 50 100 200 300

−
4

−
2

0
2

4

Index

R
an

do
m

iz
ed

 q
ua

nt
ile

 r
es

id
ua

ls

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 9: Scatter plot (left side) and quantile-quantile plot (right side) of the randomized quantile
residual – simulated data.

+ family = "NO")
R> res <- ifelse(y == 0, qnorm(runif(length(y), 0, alpha)), qnorm(cdf))
R> plot(res, ylab = "Randomized quantile residuals", pch = "+", ylim = c(-4, 4))
R> abline(h = 2.5, col = "gray", lty = 2)
R> abline(h = -2.5, col = "gray", lty = 2)
R> abline(h = 0, col = "gray", lty = 2)
R> qqnorm(res)
R> qqline(res, col = "gray")

We may also fit inflated GJS and inflated log-log regression models specifying lambda = 1 and
lambda = 0 in the control argument of the PLreg() function, respectively.

5 Concluding remarks

This paper presents the R implementation of the PL regression models available in the PLreg package.
The models are suitable for modeling continuous data observed in the open interval (0,1). The package
provides tools for likelihood-based inference and diagnostic analysis. Currently, the package includes
seven distributions in the PL class, two types of estimators, profile likelihood-based confidence
intervals for the skewness parameter, and procedures for selecting the extra parameter, if any. Different
residuals and influence methods for performing diagnostic analysis are implemented. The applications
in the previous sections illustrate the ability of the package to fit different PL regression models,
including the GJS and log-log models.

The response variable for using the PLreg package must lie in the open interval (0,1), as it is
an inherent assumption of the PL regression models. A possible approach when the data contain
observations in one of the boundaries is to employ the inflated PL regression models, that assume that
the response variable has a mixture of a PL distribution and a degenerate distribution at zero or one.
A relevant contribution of this paper is to show how the PLreg package can be used to fit and perform
diagnostic analysis for inflated PL regression models as well as inflated GJS and log-log regression
models.

Acknowledgments

We thank the associate editor and the reviewer for their constructive comments on an earlier version
of this article. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brazil (CAPES) - Finance Code 001 and by the Conselho Nacional de Desenvolvimento
Científico e Tecnológico - Brazil (CNPq). The authors gratefully acknowledge funding provided by
CNPq (Grants No. 150976-2022-4 and No. 305963-2018-0).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=PLreg

CONTRIBUTED RESEARCH ARTICLE 253

References

O. E. Barndorff-Nielsen and B. Jørgensen. Some parametric models on the simplex. Journal of
Multivariate Analysis, 39(1):106–116, 1991. doi: 10.1016/0047-259X(91)90008-P. [p236]

C. L. Bayes, J. L. Bazán, and C. García. A new robust regression model for proportions. Bayesian
Analysis, 7(4):841 – 866, 2012. doi: 10.1214/12-BA728. [p236]

J. M. Chambers and T. J. Hastie, editors. Statistical Models in S. Chapman & Hall, London, 1992. [p251]

T. L. Cheng, A. Gerson, M. S. Moore, J. D. Reichard, J. DeSimone, C. K. R. Willis, W. F. Frick, and
A. M. Kilpatrick. Higher fat stores contribute to persistence of little brown bat populations with
white-nose syndrome. Journal of Animal Ecology, 88(4):591–600, 2019. doi: 10.1111/1365-2656.12954.
[p240]

R. F. da Paz, N. Balakrishnan, and J. L. Bazán. L-logistic regression models: Prior sensitivity analysis,
robustness to outliers and applications. Brazilian Journal of Probability and Statistics, 33(3):455 – 479,
2019. doi: 10.1214/18-BJPS397. [p237]

P. K. Dunn and G. K. Smyth. Randomized quantile residuals. Journal of Computational and Graphical
Statistics, 5(3):236–244, 1996. doi: 10.1080/10618600.1996.10474708. [p251]

S. L. P. Ferrari and F. Cribari-Neto. Beta regression for modelling rates and proportions. Journal of
Applied Statistics, 31(7):799–815, 2004. doi: 1010.1080/0266476042000214501. [p236]

E. Gómez-Déniz, M. A. Sordo, and E. Calderín-Ojeda. The log–lindley distribution as an alternative to
the beta regression model with applications in insurance. Insurance: Mathematics and Economics, 54:
49–57, 2014. doi: 10.1016/j.insmatheco.2013.10.017. [p236]

N. L. Johnson. Systems of frequency curves generated by methods of translation. Biometrika, 36(1/2):
149–176, 1949. doi: 10.2307/2332539. [p237]

M. C. Korkmaz. A new heavy-tailed distribution defined on the bounded interval: The logit slash
distribution and its application. Journal of Applied Statistics, 47(12):2097–2119, 2020. doi: 10.1080/
02664763.2019.1704701. [p237]

A. J. Lemonte and J. L. Bazán. New class of johnson distributions and its associated regression model
for rates and proportions. Biometrical Journal, 58(4):727–746, 2016. doi: 10.1002/bimj.201500030.
[p236, 237, 246, 247, 248]

F. F. Queiroz and S. L. P. Ferrari. PLreg: Power Logit Regression for Modeling Bounded Data, 2023a. URL
https://CRAN.R-project.org/package=PLreg. R package version 0.4.1. [p240]

F. F. Queiroz and S. L. P. Ferrari. Power logit regression for modeling bounded data. Statistical
Modelling, 2023b. doi: 10.1177/1471082X221140157. [p236, 237, 238, 240, 241, 244, 245, 246, 248]

F. F. Queiroz and A. J. Lemonte. A broad class of zero-or-one inflated regression models for rates and
proportions. Canadian Journal of Statistics, 49(2):566–590, 2021. doi: 10.1002/cjs.11576. [p250]

J. T. Schmit and K. Roth. Cost effectiveness of risk management practices. The Journal of Risk and
Insurance, 57(3):455–470, 1990. [p244]

Y. Shou and M. Smithson. cdfquantreg: Quantile Regression for Random Variables on the Unit Interval, 2022.
URL https://CRAN.R-project.org/package=cdfquantreg. R package version 1.3.1-1. [p236]

M. Smithson and Y. Shou. Cdf-quantile distributions for modelling random variables on the unit
interval. British Journal of Mathematical and Statistical Psychology, 70(3):412–438, 2017. doi: 10.1111/
bmsp.12091. [p236]

D. M. Stasinopoulos and R. A. Rigby. Generalized additive models for location scale and shape
(GAMLSS) in r. Journal of Statistical Software, 23(7):1–46, 2007. doi: 10.18637/jss.v023.i07. [p236]

A. Zeileis and Y. Croissant. Extended model formulas in r: Multiple parts and multiple responses.
Journal of Statistical Software, 34(1):1–13, 2010. doi: 10.18637/jss.v034.i01. [p240]

A. Zeileis, F. Cribari-Neto, B. Gruen, and I. Kosmidis. betareg: Beta Regression, 2021. URL https:
//CRAN.R-project.org/package=betareg. R package version 3.1-4. [p236]

P. Zhang and Z. Qiu. Regression analysis of proportional data using simplex distribution. Science
China Mathematics (Chinese Version), 44(1):89–104, 2014. doi: 10.1360/012013-200. [p236]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PLreg
https://CRAN.R-project.org/package=cdfquantreg
https://CRAN.R-project.org/package=betareg
https://CRAN.R-project.org/package=betareg

CONTRIBUTED RESEARCH ARTICLE 254

P. Zhang, Z. Qiu, and C. Shi. simplexreg: Regression Analysis of Proportional Data Using Simplex Dis-
tribution, 2016. URL https://CRAN.R-project.org/package=simplexreg. R package version 1.3.
[p236]

Francisco F. Queiroz
Department of Statistics, University of São Paulo
Rua do Matão, 1010
05508-090, São Paulo, Brazil
E-mail: email:felipeq@ime.usp.br

Silvia L.P. Ferrari
Department of Statistics, University of São Paulo
Rua do Matão, 1010
05508-090, São Paulo, Brazil
E-mail: email:silviaferrari@usp.br

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=simplexreg
mailto:felipeq@ime.usp.br
mailto:silviaferrari@usp.br

CONTRIBUTED RESEARCH ARTICLE 255

Inference for Network Count Time Series
with the R Package PNAR
by Mirko Armillotta, Michail Tsagris, and Konstantinos Fokianos

Abstract We introduce a new R package useful for inference about network count time series. Such
data are frequently encountered in statistics and they are usually treated as multivariate time series.
Their statistical analysis is based on linear or log-linear models. Nonlinear models, which have been
applied successfully in several research areas, have been neglected from such applications mainly
because of their computational complexity. We provide R users the flexibility to fit and study nonlinear
network count time series models which include either a drift in the intercept or a regime switching
mechanism. We develop several computational tools including estimation of various count Network
Autoregressive models and fast computational algorithms for testing linearity in standard cases
and when non-identifiable parameters hamper the analysis. Finally, we introduce a copula Poisson
algorithm for simulating multivariate network count time series. We illustrate the methodology by
modeling weekly number of influenza cases in Germany.

1 Introduction

Many data examples are frequently observed as multivariate counting processes recorded over a
time-span and with known relations among observations (e.g epidemiological data with geographical
distances between different areas). An important objective then is to study the effect of a known
network to the observed data. This motivates a great amount of interest to network time series models;
see Zhu et al. (2017) who developed continuous Network Autoregressive models (abbreviated as NAR).
For these models, the observed variable Y, for the node i at time t, is denoted by Yi,t, and it is assumed
to depend on the past value of the variable for the node itself, say Yi,t−1, and on the historical averages
of its neighboring variables. The unknown parameters of the model are estimated by Least Squares
estimation (LS). This work was advanced by Armillotta and Fokianos (2023a) who developed linear
and log-linear Poisson Network Autoregression model (PNAR) for multivariate count distributed
data. The joint dependence among different variables is specified by a copula construction (Fokianos
et al., 2020, Sec. 2). In addition, Armillotta and Fokianos (2023a) have further established parametric
estimation under the framework of quasi maximum likelihood inference (see Wedderburn (1974)
Gourieroux et al. (1984)) and associated asymptotic theory when the network dimension increases. In
the context of epidemiology, related applied work has been developed by Held et al. (2005) for the
linear model only, and it was extended by Paul et al. (2008); Paul and Held (2011); Held and Paul
(2012); Meyer and Held (2014) and Bracher and Held (2020).

The previous contributions impose linearity (or log-linearity) of the model, which can be a restric-
tive assumption for real world applications. For example, existence of different underlying states (e.g.
exponentially expanding pandemic/ dying out pandemic) implies that different regime switching data
generating processes should be applied and this fits the framework we consider. Recently, Armillotta
and Fokianos (2023b) specified a general nonlinear Network Autoregressive model for both continuous
and discrete-valued processes, establishing also related theory. In addition, the authors study testing
procedures for examining linearity of NAR model against specific nonlinear alternatives by means
of a quasi score test statistic. This methodology was developed with and without the presence of
identifiable parameters under the null hypothesis.

Even though there exists sufficient statistical methodology for PNAR models, there has been a
lack of up-to-date software for implementing their analyses. The aim of this work is to fill this gap by
introducing the new package PNAR (Tsagris et al., 2023) and to demonstrate its usefulness for count
network data analysis. Related R packages do not provide tools for estimating nonlinear models and
applying associated testing procedures. The package GNAR (Leeming et al., 2023; Knight et al., 2020)
studies Generalized NAR models (GNAR); this is a linear NAR model which takes into account the
effect of several connection layers between the network nodes. This package deals with continuous-
valued time series and does not contain tools for testing linearity. PNAR complements GNAR as it
provides additional methodology for testing and inference about nonlinear discrete-valued network
models.

Package surveillance (Höhle et al., 2022; Meyer et al., 2017) fits only linear models for spatial-
temporal disease counts with Poisson or Negative Binomial distribution and with an autoregressive
network effect. The package does accommodate various structural break-point tests but it does not
contains functions for testing linearity and for log-linear model fitting. Moreover, standard errors of
estimated parameters are computed by considering the quasi-likelihood as the true likelihood of the

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=PNAR
https://CRAN.R-project.org/package=GNAR
https://CRAN.R-project.org/package=surveillance

CONTRIBUTED RESEARCH ARTICLE 256

model (Paul et al., 2008, Sec. 2.3). However, if the count time series are cross-sectional dependent, as it
is usually the case, the likelihood function is misspecified and the obtained standard errors are not
consistently estimated.

The PNAR package provides several advancements to the state of the art software: i) efficient
estimation of (log-)linear models with proper robust standard errors accounting for possible model
misspecification; ii) appropriate functions for testing linearity when a parameter is either identifiable of
non-identifiable, under then null hypothesis, by providing appropriate p-value bounds and bootstrap
approximations; iii) new algorithms for generating (log-)linear and nonlinear network count time
series models.

The paper is organized as follows. The next section introduces linear and log-linear network time
series autoregressive models for count data. Details about inference for unknown model parameters
are provided. An application to estimation of weekly number of influenza A & B cases from two
Southern German states is given and some further model aspects are discussed. Then we focus on
non-linear models and associated testing theory. Results concerning score tests for testing linearity in
NAR models are discussed and applied to influenza data. We also address the issue of computational
speed. A short section discussing simulation of network count time series shows the usefulness of this
methodology. The paper concludes with a short discussion.

2 Poisson network models

Consider a known network with N nodes, indexed by i = 1, . . . N. The neighborhood structure of
such a network is completely described by its adjacency matrix, say A = (aij) ∈ RN×N where aij = 1,
if there is a directed edge from i to j, say i → j, and 0 otherwise. Undirected graphs are allowed
(A = A′), which means that the edge between two nodes, i and j, has no specific direction (say i ∼ j).
This is common in geographical and epidemic networks (e.g. district i shares a border with district j,
patient i has a contact with patient j). Self-relationships are excluded i.e. aii = 0 for any i = 1, . . . , N.

Let Y be a count variable measured on each node of the network (i = 1, . . . , N), over a window
of time (t = 1, . . . , T). The data is a N-dimensional vector of time series Yt = (Y1,t, . . . , Yi,t, . . . YN,t)

′,
which is observed over the domain t = 1, 2 . . . , T; in this way, a univariate time series is observed for
each node, say Yi,t, with corresponding conditional expectation λi,t. Denote by λt = E(Yt|Ft−1) with
λt = (λ1,t, . . . , λi,t, . . . , λN,t)

′ the conditional expectation vector of the counts with respect to their
past history Ft−1. The following linear autoregressive network model takes into account the known
relations between nodes

Yi,t|Ft−1 ∼ Poisson(λi,t), λi,t = β0 + β1n−1
i

N

∑
j=1

aijYj,t−1 + β2Yi,t−1 , (1)

where ni = ∑j ̸=i aij is the total number of connections starting from the node i, such that i → j;
called out-degree. We call (1) linear Poisson Network Autoregression of order 1, abbreviated by
PNAR(1); (Armillotta and Fokianos, 2023a). From the left hand side equation of (1), we observe that
the process Yi,t is assumed to be marginally Poisson but the joint process depends upon a copula
function described in simulations at the end of the paper. Note that β0, β1, β2 > 0 since the conditional
mean of the Poisson is positive. Model (1) postulates that, for every single node i, the marginal
conditional mean of the process is regressed on:

• the average count of the other nodes j ̸= i which have a connection with i; the parameter β1 is
called network effect, as it measures the average impact of node i’s connections;

• the past count of the variable itself for i; the coefficient β2 is called autoregressive effect because
it provides an estimator for the impact of past count Yi,t−1.

Model (1) implies that only nodes directly followed by the focal node i (i.e. i → j), possibly, have an
impact on its mean process of counts. It is a reasonable assumption in many applications; for example,
in a social network the activity of node k, which satisfies aik = 0, does not affect node i. Hence, (1)
measures the effect of a network to the observed multivariate count time series. Moreover, the model
accommodates different types of network connectivity i.e. ai,j does not necessarily take the values 1-0
(connected-not connected). For example, ai,j = 1/di,j where di,j is some measure of distance between
node i and node j and ai,i = 0. In this way the network effect becomes a spatial network component;
see the last paragraph of Knight et al. (2020, p.3) for a discussion about a similar set of weights.

More generally, the counts Yi,t can be assumed to depend on the last p lagged values and q

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 257

covariates. Then consider the PNAR(p, q) model

λi,t = β0 +
p

∑
h=1

β1h

n−1
i

N

∑
j=1

aijYj,t−h

+
p

∑
h=1

β2hYi,t−h +
q

∑
l=1

δl Zi,l , (2)

where β0, β1h, β2h ≥ 0, for all h = 1 . . . , p, δl ≥ 0, l = 1, 2, . . . , q and Zi,l are non-negative covariates
measured for each node i = 1, . . . , N. If p = 1 and q = 0 set β11 = β1, β21 = β2 to obtain (1). Model
(2) is stationary if ∑

p
h=1(β1h + β2h) < 1 (Armillotta and Fokianos, 2023a).

The linear form of (2) offers a great advantage interpreting the parameters but it accommodates
positive covariates. A real valued covariate enters (2) through suitable transformations that ensure
positivity (e.g. include exp(Z) instead of directly Z). This restriction is bypassed by the log-linear
model (Armillotta and Fokianos, 2023a):

νi,t = β0 +
p

∑
h=1

β1h

n−1
i

N

∑
j=1

aij log(1 + Yj,t−h)

+
p

∑
h=1

β2h log(1 + Yi,t−h) +
q

∑
l=1

δl Zi,l , (3)

where νi,t = log(λi,t) and the observation are still marginally Poisson, Yi,t|Ft−1 ∼ Poisson(exp(νi,t)),
for every i = 1, . . . , N. Then the model parameters are real-valued since νi,t ∈ R and the covariates
can take any real values. The stationarity condition turns out to be ∑

p
h=1(|β1h|+ |β2h|) < 1. Moreover,

the interpretation of coefficients is similar to the case of linear model (1) but on the log-scale.

2.1 Inference

Model (2), or (3), depends on the m-dimensional vector of unknown parameters θ = (β0, β11, . . . , β1p,
β21, . . . , β2p, δ1, . . . , δq)′, with m = 1 + 2p + q. We use of quasi-maximum likelihood methodology for
estimation of θ; see Wedderburn (1974) and Gourieroux et al. (1984). The Quasi Maximum Likelihood
Estimator (QMLE) is the vector of parameters θ̂ maximizing the function

lT(θ) =
T

∑
t=1

N

∑
i=1

(
Yi,t log λi,t(θ)− λi,t(θ)

)
, (4)

which is the so called pooled Poisson log-likelihood (up to a constant). Note that (4) is not necessarily
the true log-likelihood of the process but it serves as an approximation. In particular, (4) is the
log-likelihood function that would have been obtained if all time series were contemporaneously
independent. However, the QMLE is not computed under the assumption of independence because (4)
is simply a working log-likelihood function. The choice of maximizing (4) is justified for several reasons:
i) full likelihood based on the joint process is complex (see the last section); ii) the optimization of (4)
guarantees consistency and asymptotic normality of QMLE for the true parameter vector θ0; iii) the
QMLE is asymptotically equivalent to the MLE if the true probability mass function belongs to the
linear exponential family (Gourieroux et al., 1984); iv) simplified computations entailing increased
speed for estimation. Robustness of the QMLE in finite samples has been verified by Armillotta and
Fokianos (2023a) through extensive simulation studies.

When considering the linear model (2), the score function is

ST(θ) =
T

∑
t=1

N

∑
i=1

(
Yi,t

λi,t(θ)
− 1

)
∂λi,t(θ)

∂θ
=

T

∑
t=1

st(θ) . (5)

Define ∂λt(θ)/∂θ′ the N × m matrix of derivatives, Dt(θ) the N × N diagonal matrix with elements
equal to λi,t(θ), for i = 1, . . . , N and ξt(θ) = Yt − λt(θ) is the error sequence. Then, the empirical
Hessian and conditional information matrices are given, respectively, by

HT(θ) =
T

∑
t=1

N

∑
i=1

Yi,t

λ2
i,t(θ)

∂λi,t(θ)

∂θ

∂λi,t(θ)

∂θ′
, BT(θ) =

T

∑
t=1

∂λ′
t(θ)

∂θ
D−1

t (θ)Σt(θ)D−1
t (θ)

∂λt(θ)

∂θ′
, (6)

where Σt(θ) = E (ξt(θ)ξ
′
t(θ) | Ft−1) is the conditional covariance matrix evaluated at θ. Under

suitable assumptions, Armillotta and Fokianos (2023a) proved that
√

NT(θ̂ − θ0)
d−→ N(0, H−1BH−1),

when N → ∞ and T → ∞, where H and B are the theoretical limiting Hessian and information
matrices, respectively, evaluated at the true value θ = θ0. Then, a suitable estimator for the standard
errors of θ is the square-rooted main diagonal of the empirical "sandwich" covariance matrix, i.e.

SE(θ̂) =
{

diag
[
HT(θ̂)

−1BT(θ̂)HT(θ̂)
−1]}1/2. Closely related works to ours have employed (4) for

inference ; Paul et al. (2008) and Paul and Held (2011), among others. However, in such works (4) is

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 258

viewed as the true log-likelihood of the model and standard errors are computed by using the naive

approach SEH(θ̂) =
{

diag
[
HT(θ̂)

−1]}1/2 which underestimates the real source of variation of the
parameters when cross-section dependence among counts is present; see (6) which depends on the
conditional covariance matrix of the process Yt. The package PNAR returns robust standard errors
as independence among counts is not assumed for their calculation. Similar theory holds for the
log-linear model (3); details can be found in the aforementioned works.

2.2 Influenza data

To illustrate the use of PNAR we apply the methodology to the dataset fluBYBW from the surveillance
package (Meyer et al., 2017). This dataset includes information about the weekly number of influenza
A & B cases in the 140 districts of the two Southern German states Bavaria and Baden-Wuerttemberg,
for the years 2001 to 2008 (416 time points). The response variable Y = (Y1, . . . , Yt, . . . YT)

′ is then a
416 × 140 matrix of collective disease counts. Figure 1 illustrates the data in these two regions during
2007. We model these data by a linear PNAR model as we discuss next.

(a) 1st Quarter of 2007 (b) 2nd Quarter of 2007

(a) 3rd Quarter of 2007 (b) 4th Quarter of 2007

Figure 1: Quarterly flu cases in two Southern German states Bavaria and Baden-Wuerttemberg for
2007.

library(PNAR)
library(surveillance)
data(fluBYBW)
flu <- fluBYBW@observed
A_flu <- fluBYBW@neighbourhood
pop <- as.matrix(t(fluBYBW@populationFrac)[,1])

After loading PNAR we load surveillance for obtaining the 140 × 416 matrix of collective disease
counts flu. The network adjacency matrix A_flu of dimension 140 × 140 has been obtained by linking
two districts if they share (at least) a border. A covariate vector consisting of fraction of population in
each district is introduced (pop). Model estimation for (2) when p = 1 and p = 2 are obtained below
by using the function lin_estimnarpq() as follows:

est1.z <- lin_estimnarpq(y = flu, W = A_flu, p = 1, Z = pop)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 259

est2.z <- lin_estimnarpq(y = flu, W = A_flu, p = 2, Z = pop)

Any type of non-negative matrix with zero main diagonal can be used as a valid adjacency matrix
W. For instance consider weighted networks or inverse distance matrices, etc; see the last section
for some alternatives when generating data. Optimization of (4) is implemented under the non-
negativity constraint of coefficients satisfying the stationary condition. This is a nonlinear constrained
optimization problem solved by means of a Sequential Quadratic programming (SQP) gradient-based
algorithm (Kraft, 1994) of package nloptr (Ypma and Johnson, 2022). By default, the optimization
is constrained in the stationary region; this can be removed by setting the option uncons = TRUE
although this is not suggested because large sample properties of the estimators have been developed
within the stationary region. The function lin_estimnarpq() has three additional features:

• maxeval: the maximum number of iterations for the optimization (the default is 100);

• xtol_rel: relative tolerance for the optimization termination condition (the default is 1e-8);

• init: starting value of the optimization (the default is NULL).

When init = NULL starting values are computed internally by ordinary LS using a lower barrier value
of 0.01 because the regression coefficients cannot assume negative values. However, users can provide
their own initial values through the argument init.

The function lin_estimnarpq returns as output a list consisting of the estimated coefficients,
their associated standard errors, a z-test statistics with p-values, the score function evaluated at the
optimum, the maximized log-likelihood, and the usual Akaike and Bayesian Information Criteria
(AIC, BIC) accompanied by the Quasi IC (QIC) (Pan, 2001) which takes into account the fact that the
log-likelihood (4) is a quasi log-likelihood; see Table 1 for the results, which are obtained in less than
a second (see also Table 2). The score computed at the optimum values is of order 1e-5, on average,
indicating successful convergence of the algorithm.

Table 1: Estimation of linear PNAR model (2) for p = 1, 2 and Z = pop. Standard errors of coefficients
are given in parentheses.

p β0 β1,1 β1,2 β2,1 β2,2 δ AIC BIC QIC

1 0.0118 0.2862 - 0.6302 - 2.0027 -6041.20 -6025.08 -5886.16
(0.0022) (0.0204) (0.0345) (0.4475)

2 0.0081 0.2303 0.0136 0.5459 0.1445 1.7609 -7447.48 -7423.30 -7240.56
(0.0018) (0.0218) (0.006) (0.0379) (0.0183) (0.3998)

All the estimated coefficients are positive and significantly different from 0. The autoregressive
effect β2,h shows higher magnitude with respect to the network effects β1,h since past counts of
the same district are, in general, more informative than the neighboring cases. Both network and
autoregressive parameters when p = 1 have a larger magnitude when compared to the corresponding
coefficients at p = 2. This can be explained since influenza has an incubation period of only 1-4 days
(with an average of 2 days) and a patient is still contagious for no more than 5-7 days after becoming
sick1 so the case counts at first lag are more informative than the ones at second lag which are still
important. The population covariate is significant with positive effect. Standard errors are computed
by using the sandwich estimator.

To select the model order p, for the PNAR model (2), PNAR includes a function for estimating
model parameters for a range of lag values. By default p ∈ {1, 2, . . . , 10}. This function returns the
scatter plot of any IC (default is QIC) versus the lag order, for example

lin_ic_plot(y = flu, W = A_flu, p = 1:10, Z = pop, ic = "AIC")

Figure 2 shows the output of lin_ic_plot() for the case of AIC. Plots for the cases of BIC and QIC are
similar and not shown. All information criteria point to the model with p = 9. However, from the
corresponding estimation results reported in the Appendix, almost all β coefficients, which correspond
to lags p ≥ 3, are close to zero and non significant. Therefore, we decide to retain p = 2, for parsimony.

We compare estimation of standard errors after fitting the linear PNAR model to influenza data
using PNAR and surveillance packages (covariate Z is excluded). The latter follows the standard
error estimation according to the approach described in Paul et al. (2008) and Paul and Held (2011).
The estimation of model (1) with PNAR gives

est1 <- lin_estimnarpq(y = flu, W = A_flu, p = 1)
summary(est1)

1https://www.cdc.gov/flu/about/disease/spread.htm

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=nloptr
https://www.cdc.gov/flu/about/disease/spread.htm

CONTRIBUTED RESEARCH ARTICLE 260

−
85

00
−

70
00

Lag

A
IC

1 2 3 4 5 6 7 8 9 10

Figure 2: Scatter plot of AIC for PNAR(p) model versus p.

Coefficients:
Estimate Std. Error z value Pr(>|z|)

beta0 0.02460691 0.002722673 9.037777 1.598906e-19 ***
beta11 0.28952683 0.020393106 14.197289 9.522500e-46 ***
beta21 0.63082409 0.034462519 18.304642 7.598940e-75 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Using surveillance, the same model is fitted by the following lines of code:

stsObj <- fluBYBW
ni <- rowSums(neighbourhood(stsObj))
control <- list(ar = list(f = ~ 1),
ne = list(f = ~ 1, weights = neighbourhood(stsObj) == 1,
offset = matrix(1/ni, nrow(stsObj), ncol(stsObj), byrow=TRUE)),
end = list(f = ~ 1),
family = "Poisson", keep.terms = TRUE)
fit1 <- hhh4(stsObj, control)
coefSE <- coef(fit1, idx2Exp = TRUE, se = TRUE)
coefSE

Estimate Std. Error
exp(ar.1) 0.63082409 0.0066281675
exp(ne.1) 0.28952683 0.0052551614
exp(end.1) 0.02460691 0.0007619529

Comparing the above outputs, note that estimated coefficients are identical (subject to rounding errors)
but standard errors, obtained by surveillance package, underestimate their value as it was explained
at the end of the inference section. In addition, PNAR is more user-friendly for fitting (2) and it is
almost twice as fast. Indeed, the average estimation time over 10 calls of the same function is 0.42
seconds in comparison to 0.22 by the PNAR package (see Table 2).

The usefulness of the PNAR package is not limited to epidemiological data. For example,
the dataset crime, which is already built in the package, contains monthly number of burglaries
within the census blocks on the south side of Chicago during 2010-2015 and includes a network
matrix, called crime_W, connecting two blocks sharing a border. The documentation of the functions
lin_estimnarpq() and log_lin_estimnarpq() provides an example of PNAR models applied to crime
data.

3 Extending Linearity

In this section, we give some motivating examples of nonlinear models for time series of networks
as introduced by Armillotta and Fokianos (2023b). In addition, we provide testing procedures for

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 261

testing the linearity assumption. For ease of presentation, denote by Xi,t = n−1
i ∑N

j=1 aijYj,t the average
neighbor network mean. When a drift in the intercept term of (2) is introduced, the following nonlinear
Intercept Drift model, ID-PNAR(p, q), is obtained

λi,t =
β0

(1 + Xi,t−d)γ
+

p

∑
h=1

(
β1hXi,t−h + β2hYi,t−h

)
+

q

∑
l=1

δl Zi,l , (7)

where γ ≥ 0. Model (7) shares similar to a linear model when the parameter γ takes small values
and for γ = 0 reduces to (2). Instead, when γ takes values away from zero, model (7) introduces a
perturbation, deviating from the linear model, which depends on the network mean at lag (t − d),
where d is an additional delay parameter such that d = 1, 2, . . . , p. Model (7) is directly applicable
when the baseline effect, β0, varies over time as a function of the network.

Another interesting class of nonlinear models are regime switching models, i.e. models allowing
for the dynamics of the count process to depend on different regimes (e.g. exponentially expanding
pandemic/ dying out pandemic). We give two such examples of models whose specification is based
either on a smooth distortion or an abrupt transition. With the same notation as before, the Smooth
Transition PNAR model, ST-PNAR(p, q) assumes a smooth transition between two regimes and it is
defined by

λi,t = β0 +
p

∑
h=1

(
β1hXi,t−h + β2hYi,t−h + αhe−γX2

i,t−d Xi,t−h

)
+

q

∑
l=1

δl Zi,l , (8)

where γ ≥ 0 and αh ≥ 0, for h = 1, . . . , p. This models introduces a smooth regime switching behavior
of the network effect making it possible to vary smoothly from β1,h to β1,h + αh, as γ varies from large
to small values. The additional delay parameter d determines the time of nonlinear transition that
can be chosen. When αh = 0, for h = 1, . . . , p in (8), the linear PNAR model (2) is recovered. In some
applications the transition between regimes may be abrupt (e.g. financial market crashes). For this
reason, we consider the Threshold PNAR model, T-PNAR(p, q), which is defined by

λi,t = β0 +
p

∑
h=1

(
β1hXi,t−h + β2hYi,t−h +

(
α0 + α1hXi,t−h + α2hYi,t−h

)
I
(
Xi,t−d ≤ γ

))
+

q

∑
l=1

δl Zi,l , (9)

where I(·) is the indicator function and γ ≥ 0 is now threshold parameter. Moreover, α0, α1,h, α2,h ≥ 0,
for h = 1, . . . , p. When α0 = α11 = ... = α2p = 0, model (9) reduces to (2).

For all nonlinear models, estimation of the unknown parameters is based on QMLE, following the
discussion in the inference section. Therefore, analogous conclusions about estimation of regression
parameters, their standard errors and model selection apply to the case of nonlinear models (7)–(9).
Further details can be found in Armillotta and Fokianos (2023b).

3.1 Standard implementation of testing linearity

Testing linearity against several specific alternatives offers guidance about the type of nonlinear model
to be fitted. Moreover, in certain cases where the linear model is nested within a nonlinear model,
some nonlinear parameters may be inconsistently estimated (see the case ST-PNAR and T-PNAR
models below) so testing linearity prevents incorrect estimation.

Consider model (7) and the hypothesis testing problem H0 : γ = 0 vs. H1 : γ > 0 which is
a hypothesis between the linear PNAR (2) null assumption versus ID-PNAR alternative model (7).
Consider the vector of all the parameters of ID-PNAR model (7), θ = (β0, β11, . . . , β2p, δ1, . . . , δq, γ)′.
Define the partition of the parameters θ = (θ(1)′, θ(2)′)′, where θ(1) = (β0, β11, . . . , β2p, δ1, . . . , δq)′ is
the sub-vector of parameters associated with the linear part of model. Let θ(2) be the sub-vector of
θ which corresponds to nonlinear parameters; for model (7), θ(2) = γ. Denote further by ST(θ) =

(S(1)′
T (θ), S(2)′

T (θ))′ the corresponding partition of the quasi score function (5). We develop a quasi
score test statistic based on the quasi log-likelihood (4). This is a convenient choice, because the score
test requires estimation of model under the null hypothesis, i.e. under the linear model. Then the
restricted estimator is denoted by θ̃ = (β̃0, β̃11, . . . , β̃2p, δ̃1, . . . , δ̃q)′ and it is usually simpler to compute.
The quasi score test statistic is given by

LMT = S(2)′
T

(
θ̃
)

Σ−1
T

(
θ̃
)

S(2)
T

(
θ̃
)

, (10)

with ΣT(θ̃) = J̃H−1
T (θ̃) J̃′

(
J̃H−1

T (θ̃)BT(θ̃)H−1
T (θ̃) J̃′

)−1
J̃H−1

T (θ̃) J̃′, where J̃ = (Om2×m1 , Im2), Is is a

s × s identity matrix and Oa×b is a a × b matrix of zeros. ΣT(θ̃) is a the estimator for the unknown

covariance matrix Σ = Var[S(2)
T (θ̃)]. It can be proved that the quasi score test (10) converges, asymp-

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 262

totically, to a χ2
m2

distribution, where m2 is the number of nonlinear parameter tested (Armillotta and
Fokianos, 2023b). Then, in case of model (7), m2 = 1 and we can compute the p-value of the test
statistic (10) by p = P(χ2

1 ≥ M), where M is the observed value of the test statistic LMT .

3.2 Non-standard implementation of testing linearity

Suppose now we wish to test linearity against (8). Then, considering the hypotheses H0 : α1 = · · · =
αp = 0 versus H1 : αh ̸= 0 for some h = 1, . . . , p, we note that this testing problem is non-standard
because it is not possible to estimate the value of γ under H0. Note that the parameter γ exists in the
partition of the score function (5) related to nonlinear parameters, in particular in ∂λi,t(θ)/∂αh, and
its associated covariance matrix. Hence, all relevant quantities for computing (10) are functions of

γ; that is S(2)
T (θ̃, γ), ΣT(θ̃, γ) and LMT(γ). The model is then subject to non-identifiable parameter γ

under the null. So if the true model is the linear PNAR model but a ST-PNAR is estimated instead the
smoothing parameter γ will not be consistently estimated. Analogous conclusions hold for testing
linearity against the T-PNAR model (9), where the threshold parameter γ is not identifiable under
the null. When this issue arises, the standard theory does not apply and a chi-square type test is not
suitable any more; see Davies (1987), Hansen (1996) and Armillotta and Fokianos (2023b), among
others. It is clear that the value of the test changes by varying γ ∈ Γ, where Γ is some domain. A
summary function of the test, computed under different values of γ, is then routinely employed
in applications; a typical choice is gT = supγ∈Γ LMT(γ); see Armillotta and Fokianos (2023b) who
established the convergence of gT to g = supγ∈Γ LM(γ), where g is a function of a chi-square process,
LM(γ). The values of the latter asymptotic distribution cannot be tabulated, as they depends on
unknown values of γ. Hence, we give methodology for computing p-values of such sup-type test
statistic since they cannot be obtained otherwise.

Davies’ bound. Since the space Γ = [γL, γU] is usually assumed to be a closed interval, in practice,
we take ΓF = (γL, γ1, . . . , γl , γU) i.e. a grid of values for the non-identifiable parameter γ, and the
sup-test is obtained as the maximum of the tests LMT(γ) computed over ΓF. Davies (1987) showed
that that the p-value of the sup-test is approximately bounded by

P

[
sup
γ∈ΓF

LM(γ) ≥ M

]
≤ P(χ2

m2
≥ M) + VM

1
2 (m2−1) exp(− M

2)2−
m2
2

Γ(m2
2)

, (11)

where M is the value of the sup-test statistic computed in the available sample, Γ(·) is the gamma
function, and V is the approximated total variation

V = |LM
1
2
T (γ1)− LM

1
2
T (γL) + |LM

1
2
T (γ2)− LM

1
2
T (γ1)|+ · · ·+ |LM

1
2
T (γU)− LM

1
2
T (γl)|.

Equation (11) shows how to approximate the p-values of the sup-type test in a straightforward way.
Indeed, by adding to the tail probability of a chi-square distribution a correction term, which depends
on the total variation of the process, we obtain the desired bound. This method is attractive for its
simplicity and speed even when the dimension N of the network is large. However, the method
approximate p-values with their bound (11) leading to a conservative test. In addition, (11) cannot be
applied to the T-PNAR model (9), because the total variation requires differentiability of the asymptotic
distribution LM(γ) under the null hypothesis (Davies, 1987, p. 36), a condition that is not met for the
case of T-PNAR models.

Bootstrapping the test statistic. Based on the previous arguments, we suggest an alternative p-value
approximation of the test statistic employing stochastic permutations (Hansen, 1996; Armillotta and
Fokianos, 2023b)-see Algorithm 1.

An approximation of the p-values is obtained from step 10 of Algorithm 1, where gT is the value
of the sup-test statistic computed on the available sample. When the number of bootstrap replications
J is large enough, pJ

T provides a good approximation to the unknown p-values of the test. Then, the
null hypothesis H0 is rejected if pJ

T is smaller than a given significance level.

3.3 Revisiting the influenza data

We now apply the testing methodology described in the previous sections to influenza data. Consider
testing linearity of the PNAR(2) model against the nonlinear ID-PNAR(2) (7) with d = 1. Analogous

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 263

Algorithm 1 Score bootstrap

1: Obtain the constrained QMLE of the linear model (2), say θ̃
2: for j = 1, . . . , J do
3: for t = 1, . . . , T do
4: Generate νt,j ∼ N(0, 1)
5: end for
6: Compute S

νj
T (θ̃, γ) = ∑T

t=1 st(θ̃, γ)νt,j

7: Compute the test LM
νj
T (γ) = S

νj(2)′
T (θ̃, γ)Σ−1

T (θ̃, γ)S
νj(2)
T (θ̃, γ)

8: Optimize LM
νj
T (γ) for γ and take gj

T = supγ∈Γ LM
νj
T (γ)

9: end for
10: Compute pJ

T = J−1 ∑J
j=1 I(gj

T ≥ gT)

results have been obtained for d = 2 and therefore are omitted. The quasi score test (10) is computed
by

id2.z <- score_test_nonlinpq_h0(b = est2.z$coefs[, 1], y = flu, W = A_flu,
p = 2, d = 1, Z = pop)
id2.z

Linearity test against non-linear ID-PNAR(p) model

data: coefficients of the PNAR(p, q)/time series data/order/lag/covariates/
chi-square-test statistic = 7.2318, df = 1, p-value = 0.007162
alternative hypothesis: True gamma parameter is greater than 0

where the first argument requires estimates under the null hypothesis H0 : γ = 0 which have been
obtained already. The rest of arguments follow previous syntax. For this testing problem the test is
asymptotically chi-square distributed with 1 degree of freedom. The output lists the test statistic value
and its corresponding p-value. There is strong indication to reject the linear model in favour of model
(7).

Next consider testing linearity against the ST-PNAR(2) alternative (8). In this case, the test behaves
in a non-standard way so we will be using the Davies’ bound p-value (DV) for the sup-type test (11)
and the bootstrap p-value approximation. First, the DV is computed by calling the following function

dv2.z <- score_test_stnarpq_DV(b = est2.z$coefs[, 1], y = flu, W = A_flu,
p = 2, d = 1, Z = pop)

Extreme values for the range of γ ∈ ΓF are computed internally in such a way that γU and γL are
those values of γ where, on average, the smoothing function exp(−γX2

i,t−d) is equal to 0.1 and 0.9,
respectively. In this way, during the optimization procedure, the extremes of the function domain are
excluded. For more details see the PNAR manual (Tsagris et al., 2023). The user can specify different
values for γL and γU using the arguments gama_L, gama_U and the number of grid values len (the
default is 100). Results suggest again a deviation from linearity of the model, i.e.

dv2.z

Test for linearity of PNAR(p) versus the non-linear ST-PNAR(p)

data: coefficients of the PNAR(p, q)/time series data/order/lag/covariates
/lower gamma/upper gamma/length
chi-square-test statistic = 35.074, df = 2, p-value = 9.076e-08
alternative hypothesis: At least one coefficient of the non-linear component
is not zero

Next, we apply Algorithm 1 to compute the bootstrap p-values for the sup-type test statistic. In this
case, the observed value of supγ∈Γ LM(γ) has to be computed. Initially, perform a global optimization
of the LMT(γ) for the ST-PNAR(p) model, with respect to the nuisance scale parameter γ by using
Brent’s algorithm (Brent, 1973) in the interval [gama_L to gama_U], (see previous discussion for their
computation). To ensure global optimality, the optimization is performed on runs at len-1 consecutive

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 264

equidistant sub-intervals and the global optimum is determined by the maximum over those sub-
intervals. The default value for len is 10. Then using the function global_optimise_LM_stnarpq with
the same arguments we obtain the optimal γ value and the corresponding value of the test statistic:

go1.z2 <- global_optimise_LM_stnarpq(b = est2.z$coefs[, 1], y = flu, W = A_flu,
p = 2, d = 1, Z = pop)
go1.z2$gama
[1] 8.387526
go1.z2$supLM
[1] 35.07402

This information is used as follows

boot1.z2 <- score_test_stnarpq_j(supLM = go1.z2$supLM, b = est2.z$coefs[, 1],
y = flu, W = A_flu, p = 2, d = 1, Z = pop,
J = 499, ncores = 7, seed = 1234)

which implements Algorithm 1 using J = 499 bootstrap replicates. The function uses a parallel
processing option; the user can set the number of cores ncores (the default is no parallel). The seed for
random number generation assures reproducibility of the results.

boot1.z2$pJ
[1] 0.002004008
boot1.z2$cpJ
[1] 0.004

The above output gives (among other information) pJ
T of step 10 of Algorithm 1 and an alternative

corrected unbiased estimator for the p-value which is cpJ
T = (J + 1)−1

[
∑J

j=1 I(gj
T ≥ gT) + 1

]
. Like in

the case of DV p-value, linearity is rejected.

We work analogously for testing the PNAR(2) model versus the T-PNAR(2) model (9). Note that
optimization of LMT(γ), in this case, is based on gama_L and gama_U which are obtained (by default) as
the mean over i = 1, . . . , N of 20% and 80% quantiles of the empirical distribution of the network mean
Xi,t for t = 1, . . . , T. In this way, during the optimization process, the indicator function I(Xi,t−d ≤ γ)
avoids values close to 0 or 1. Alternatively, their value can be supplied by the user. The functions used
are analogous to the functions used for the ST-PNAR(2).

tgo1.z2 <- global_optimise_LM_tnarpq(b = est2.z$coefs[, 1], y = flu, W = A_flu,
p = 2, d = 1, Z = pop)
tgo1.z2$gama
[1] 0.1257529
tgo1.z2$supLM
[1] 49.06505

tboot1.z2 <- score_test_tnarpq_j(supLM = tgo1.z2$supLM, b = est2.z$coefs[, 1],
y = flu, W = A_flu, p = 2, d = 1, Z = pop,
J = 499, ncores = 7, seed = 1234)
tboot1.z2$pJ
[1] 0.3907816
tboot1.z2$cpJ
[1] 0.392

The test does not reject the null hypothesis of linearity, in the case of a threshold model. Overall, the
analysis shows that the linear PNAR model may not be a suitable model to fit such epidemic data
and nonlinear alternatives should be considered. In particular, evidence of a nonlinear drift in the
intercept and of a regime switching mechanism is detected. In addition, it appears that a smooth
regime switching mechanism might be more appropriate for the data.

3.4 Computational Speed

Package PNAR is quite efficient in terms of computational speed, especially for estimation problems.
We have employed the Rfast and Rfast2 packages (Papadakis et al., 2023a,b) wherever possible to
ensure computational speed. We run each function 10 times and compute the average time required to
be executed. We use a laptop computer equipped with Intel Core i7 processor (3.00GHz) and 16 GB of
RAM. Results are given in Table 2. Estimation of linear PNAR model and standard testing (ID-PNAR
model) is fast. Computations of p-values, in the case of non-identifiable parameters, requires several

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=Rfast
https://CRAN.R-project.org/package=Rfast2

CONTRIBUTED RESEARCH ARTICLE 265

evaluations of the test statistic on a grid of values for γ (Davies’ bound) or global optimization of
the test statistic (bootstrap). However both tasks are executed in a satisfactory amount of time. The
bootstrap approximation Algorithm 1 runs slower but it still executed within satisfactory time limits.
Computational speed, for both Davies’ bound and bootstrap p-values, can be further increased by
reducing the length of the γ grid for the former and the number of bootstrap replications for the latter.
Increasing the number of cores will provide faster bootstrap approximated p-values.

Table 2: Average computation times (in seconds) for the functions called in the text.

PNAR Estimation

p 1 2 4 9

No cov. 0.22 - - -
Cov. 0.39 0.57 0.89 1.26

Tests

Models χ2
1 DV Global opt. Bootstrap

ID-PNAR 0.43 - - -
ST-PNAR - 12.88 3.74 74.60
T-PNAR - - 1.30 75.20

4 Simulating network count time series

In this last section we present a further novel implementation of the PNAR package which can be
used to simulate network count time series from linear and nonlinear models with multivariate copula
Poisson distribution, as we explain next.

Equation (1) does not include information about the joint dependence structure of the PNAR(1)
model. Following Fokianos et al. (2020) the joint multivariate distribution of the vector count time
series Yt is defined as Yt = Nt(λt) where, {Nt} is a sequence of copula-Poisson processes, that is Nt(λt)
is a sequence of N-dimensional IID marginally Poisson count processes, with intensity 1, counting the
number of events in the interval of time [0, λ1,t]× · · · × [0, λN,t], and whose structure of dependence
is modeled through a copula function C(ρ) on their associated exponential waiting times random
variables. The algorithm is described below for model (1).

Consider a network matrix A and a set of values (β0, β1, β2)
′ for model (1). Moreover, define a

starting mean vector at time t = 0, say λ0 = (λ1,0, . . . , λN,0)
′.

1. Let Ul = (U1,l , . . . , UN,l)
′, for l = 1, . . . , K a sample from a N-dimensional copula C(u1, . . . , uN ; ρ),

where Ui,l follows a Uniform(0,1) distribution, for i = 1, . . . , N.

2. The transformation Ei,l = − log Ui,l/λi,0 follows the exponential distribution with parameter
λi,0, for i = 1, . . . , N.

3. If Ei,1 > 1, then Yi,0 = 0, otherwise Yi,0 = max
{

k ∈ [1, K] : ∑k
l=1 Xi,l ≤ 1

}
, by taking K large

enough. Then, Yi,0|λ0 ∼ Poisson(λi,0), for i = 1, . . . , N. So, Y0 = (Y1,0, . . . , YN,0)
′ is a set of

(conditionally) marginal Poisson processes with mean λ0.

4. By using the model (1), λ1 is obtained.

5. Return back to step 1 to obtain Y1, and so on.

In applications, choose K large , e.g. K = 100; its values generally depends on the magnitude of
observed data. Moreover, the copula C(ρ) depends on one or more unknown parameters, say ρ, which
capture the contemporaneous correlation among the variables. The proposed algorithm ensures that
all marginal distributions of Yi,t are univariate Poisson, conditionally to the past, as described in (1),
while it introduces an arbitrary dependence among them in a flexible and general way by the copula
construction through the parameter ρ. An analogous process is employed for generating log-linear
and nonlinear count network models by suitable modifications.

Multivariate Poisson-type distributions have typically complicated form and their covariance
matrix might not be appropriate (Fokianos et al., 2020); this inspired the adoption of this simulation
methodology. Imposing a copula directly on Poisson marginals can lead to identifiability issues
(Genest and Nešlehová, 2007). For further details see Fokianos et al. (2020), Armillotta and Fokianos
(2023a) and the recent review in Fokianos (2022).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 266

PNAR allows to generate multivariate count times from well-known network models like the
Erdős-Rényi Model (Erdös and Rényi, 1959), with the function adja_gnp(), or the Stochastic Block
Model (SBM) (Wang and Wong, 1987) with the function adja(). Such functions are based on the
igraph package (Csardi and Nepusz, 2006); see Tsagris et al. (2023) for details.

set.seed(1234)

W_SBM <- adja(N = 10, K = 2, alpha = 0.7, directed = TRUE)

sim1 <- poisson.MODpq(b = c(0.2,0.2,0.4), W = W_SBM, p = 1, TT = 100, N = 10,
copula = "gaussian", corrtype = "equicorrelation", rho = 0.5)
sim1$y

The first function randomly generates an adjacency matrix from the directed SBM model with 10
nodes and 2 groups. The second function generates a 100 × 10 time series matrix object of network
counts from the linear PNAR(1) model (1) where the joint dependence in the data generating process
is modeled by a Gaussian copula with ρ = 0.5. The "equicorrelation" option generates a correlation
matrix for the Gaussian copula where all the off-diagonal entries equal ρ. Another type of correlation
matrix which can be used is the "toeplitz" option that returns a correlation matrix whose generic
off-diagonal (i, j)-element is ρ|i−j|. Moreover, other copula functions can also be chosen as the t or
the Clayton copula. Some of the 10 simulated time series are plotted in Figure 3, for illustration.
Analogous functions are provided for generating synthetic data from log-linear or nonlinear Poisson
network model (Table 4 in the Appendix).

Time

0 20 40 60 80 100

0
2

4

Time

0 20 40 60 80 100

0.
0

1.
5

3.
0

Time

0 20 40 60 80 100

0.
0

1.
5

3.
0

Time

0 20 40 60 80 100

0.
0

1.
5

3.
0

Time

0 20 40 60 80 100

0.
0

1.
5

3.
0

Time

0 20 40 60 80 100

0
2

4

Time

0 20 40 60 80 100

0.
0

1.
5

3.
0

Time

0 20 40 60 80 100

0
2

4

Time

0 20 40 60 80 100

0.
0

1.
5

3.
0

Figure 3: Simulated count time series from the linear PNAR(1) model.

5 Conclusion

There exists R software for fitting Network Autoregressive models (GNAR, surveillance). However,
no published package includes functions for inference with nonlinear Network Autoregressive models.
PNAR fills this gap by providing users tools for efficient estimation of (log-)linear models with proper
robust standard errors, test statics and computational algorithms for testing model linearity and new
simulation methodology for generating (log-)linear and nonlinear network count time series models.
We showed that all these tasks are executed with a minimal computational effort.

There are a number of possible developments for PNAR. One possibility is to include several other
nonlinear models and develop related linearity tests. In addition, developing a negative binomial
quasi-likelihood estimation method offers more flexibility to model fitting. Alternative ways to
compute p-values, for example employing different bootstrap approximation, may also be considered.
Further simulation methods for generating network count time series are easily accommodated by
suitable modification of the copula Poisson algorithm. All these extensions provide users with new set
of tools for inference in the broad framework of multivariate discrete-valued time series models.

6 Appendix

Output from estimation of PNAR model (2) with lag p = 9 and population covariate:

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=igraph

CONTRIBUTED RESEARCH ARTICLE 267

est9.z <- lin_estimnarpq(y = flu, W = A_flu, p = 9, Z = pop)
summary(est9.z)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

beta0 8.046948e-03 0.0018543147 4.339581e+00 1.427548e-05 ***
beta11 2.291637e-01 0.0222504112 1.029930e+01 7.097436e-25 ***
beta12 1.219436e-02 0.0058931749 2.069234e+00 3.852414e-02 *
beta13 2.880415e-08 0.0034601665 8.324498e-06 9.999934e-01
beta14 6.840207e-08 0.0047642557 1.435735e-05 9.999885e-01
beta15 4.994822e-08 0.0022529259 2.217038e-05 9.999823e-01
beta16 6.335964e-07 0.0023712114 2.672037e-04 9.997868e-01
beta17 1.096226e-06 0.0022836178 4.800390e-04 9.996170e-01
beta18 1.094862e-07 0.0018014328 6.077731e-05 9.999515e-01
beta19 1.230050e-07 0.0017010627 7.231070e-05 9.999423e-01
beta21 5.462136e-01 0.0389427608 1.402606e+01 1.079843e-44 ***
beta22 1.361396e-01 0.0179869627 7.568794e+00 3.767043e-14 ***
beta23 1.404481e-02 0.0053121667 2.643894e+00 8.195825e-03 **
beta24 1.764756e-08 0.0023065543 7.651051e-06 9.999939e-01
beta25 1.874096e-06 0.0016152031 1.160285e-03 9.990742e-01
beta26 2.036961e-05 0.0023094311 8.820187e-03 9.929626e-01
beta27 1.492721e-06 0.0019472654 7.665731e-04 9.993884e-01
beta28 6.414357e-08 0.0018167793 3.530620e-05 9.999718e-01
beta29 8.818047e-07 0.0009314276 9.467238e-04 9.992446e-01
delta1 1.412017e+00 0.3536615653 3.992566e+00 6.536216e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Log-likelihood value: 4324.057
AIC: -8608.114 BIC: -8527.5 QIC: -8362.176

Table 3: A brief overview of the main functions in PNAR.

Function Description

lin_estimnarpq() Fitting the linear PNAR(p, q) model.
log_lin_estimnarpq() Fitting the log-linear PNAR(p, q) model.
score_test_nonlinpq_h0() Score test of linear PNAR versus ID-PNAR model.
score_test_stnarpq_DV() Score test of linear PNAR versus ST-PNAR model by (11).
global_optimise_LM_stnarpq() Maximize test statistic of ST-PNAR for nuisance parameters.
score_test_stnarpq_j() Bootstrap score test of linear PNAR versus ST-PNAR model.
global_optimise_LM_tnarpq() Maximize test statistic of T-PNAR for nuisance parameters.
score_test_tnarpq_j() Bootstrap score test of linear PNAR versus T-PNAR model.

Table 4: A brief overview of functions simulating network count time series models in PNAR.

Function Description

poisson.MODpq() Generation from a linear PNAR(p) model with covariates.
poisson.MODpq.log() Generation from a log-linear PNAR(p) model with covariates.
poisson.MODpq.nonlin() Generation from a Intercept Drift PNAR(p) model with covariates.
poisson.MODpq.stnar() Generation from a Smooth Transition PNAR(p) model with covariates.
poisson.MODpq.tnar() Generation from a Threshold PNAR(p) model with covariates.

7 Acknowledgments

Part of this work was done while M. Armillotta was with the Department of Mathematics & Statistics,
University of Cyprus. We cordially thank R. Hyndman and two anonymous reviewers for several
constructive comments that improved an earlier version of the manuscript. In addition, we thank M.
Papadakis for his help with the S3 methods (print() and summary() functions). M. Armillotta acknowl-
edges financial support from the EU Horizon Europe programme under the Marie Skłodowska-Curie
grant agreement No.101108797.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 268

References

M. Armillotta and K. Fokianos. Count network autoregression. Journal of Time Series Analysis, jtsa.12728,
2023a. URL http://doi.org/10.1111/jtsa.12728. [p255, 256, 257, 265]

M. Armillotta and K. Fokianos. Nonlinear Network Autoregression. The Annals of Statistics, 51(6):
2526–2552, 2023b. URL https://doi.org/10.1214/23-AOS2345. [p255, 260, 261, 262]

J. Bracher and L. Held. Endemic-epidemic models with discrete-time serial interval distributions for
infectious disease prediction. International Journal of Forecasting, 38:1221–1233, 2020. [p255]

R. Brent. Algorithms for Minimization Without Derivatives. Prentice-Hall, 1973. [p263]

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL https://igraph.org. [p266]

R. Davies. Hypothesis testing when a nuisance parameter is present only under the alternative.
Biometrika, 74:33–43, 1987. [p262]

P. Erdös and A. Rényi. On random graphs I. Publicationes Mathematicae Debrecen, 6, 1959. [p266]

K. Fokianos. Multivariate count time series modelling. To appear in Econometrics and Statistics, 2022.
[p265]

K. Fokianos, B. Støve, D. Tjøstheim, and P. Doukhan. Multivariate count autoregression. Bernoulli, 26:
471–499, 2020. [p255, 265]

C. Genest and J. Nešlehová. A primer on copulas for count data. Astin Bulletin, 37:475–515, 2007.
[p265]

C. Gourieroux, A. Monfort, and A. Trognon. Pseudo maximum likelihood methods: Theory. Economet-
rica, 52:681–700, 1984. [p255, 257]

B. Hansen. Inference when a nuisance parameter is not identified under the null hypothesis. Economet-
rica, 64:413–430, 1996. [p262]

L. Held and M. Paul. Modeling seasonality in space-time infectious disease surveillance data. Biomet-
rical Journal, 54:824–843, 2012. [p255]

L. Held, M. Höhle, and M. Hofmann. A statistical framework for the analysis of multivariate infectious
disease surveillance counts. Statistical Modelling, 5:187–199, 2005. [p255]

M. Höhle, S. Meyer, and M. Paul. surveillance: Temporal and Spatio-Temporal Modeling and Monitoring of
Epidemic Phenomena, 2022. URL https://CRAN.R-project.org/package=surveillance. R package
version 1.21.1. [p255]

M. Knight, K. Leeming, G. Nason, and M. Nunes. Generalized network autoregressive processes and
the GNAR package. Journal of Statistical Software, 96:1–36, 2020. URL https://www.jstatsoft.org/
v096/i05. [p255, 256]

D. Kraft. Algorithm 733: TOMP–Fortran modules for optimal control calculations. ACM Transactions
on Mathematical Software (TOMS), 20:262–281, 1994. [p259]

K. Leeming, G. Nason, M. Nunes, and J. Wei. GNAR: Methods for Fitting Network Time Series Models,
2023. URL https://CRAN.R-project.org/package=GNAR. R package version 1.1.2. [p255]

S. Meyer and L. Held. Power-law models for infectious disease spread. The Annals of Applied Statistics,
8:1612–1639, 2014. [p255]

S. Meyer, L. Held, and M. Höhle. Spatio-temporal analysis of epidemic phenomena using the R
package surveillance. Journal of Statistical Software, 77:1–55, 2017. [p255, 258]

W. Pan. Akaike’s information criterion in generalized estimating equations. Biometrics, 57:120–125,
2001. [p259]

M. Papadakis, M. Tsagris, M. Dimitriadis, S. Fafalios, I. Tsamardinos, M. Fasiolo, G. Borboudakis,
J. Burkardt, C. Zou, K. Lakiotaki, and C. Chatzipantsiou. Rfast: A Collection of Efficient and Extremely
Fast R Functions, 2023a. URL https://CRAN.R-project.org/package=Rfast. R package version
2.0.8. [p264]

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

http://doi.org/10.1111/jtsa.12728
https://doi.org/10.1214/23-AOS2345
https://igraph.org
https://CRAN.R-project.org/package=surveillance
https://www.jstatsoft.org/v096/i05
https://www.jstatsoft.org/v096/i05
https://CRAN.R-project.org/package=GNAR
https://CRAN.R-project.org/package=Rfast

CONTRIBUTED RESEARCH ARTICLE 269

M. Papadakis, M. Tsagris, S. Fafalios, and M. Dimitriadis. Rfast2: A Collection of Efficient and Extremely
Fast R Functions II, 2023b. URL https://CRAN.R-project.org/package=Rfast2. R package version
0.1.5.1. [p264]

M. Paul and L. Held. Predictive assessment of a non-linear random effects model for multivariate time
series of infectious disease counts. Statistics in Medicine, 30:1118–1136, 2011. [p255, 257, 259]

M. Paul, L. Held, and A. M. Toschke. Multivariate modelling of infectious disease surveillance data.
Statistics in Medicine, 27:6250–6267, 2008. [p255, 256, 257, 259]

M. Tsagris, M. Armillotta, and K. Fokianos. PNAR: Poisson Network Autoregressive Models., 2023. URL
https://CRAN.R-project.org/package=PNAR. R package version 1.6. [p255, 263, 266]

Y. J. Wang and G. Y. Wong. Stochastic blockmodels for directed graphs. Journal of the American Statistical
Association, 82:8–19, 1987. [p266]

R. W. Wedderburn. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton
method. Biometrika, 61:439–447, 1974. [p255, 257]

J. Ypma and S. G. Johnson. nloptr: R Interface to NLopt, 2022. URL https://CRAN.R-project.org/
package=nloptr. R package version 2.0.3. [p259]

X. Zhu, R. Pan, G. Li, Y. Liu, and H. Wang. Network vector autoregression. The Annals of Statistics, 45:
1096–1123, 2017. [p255]

Mirko Armillotta
Vrije Universiteit Amsterdam
Department of Econometrics and Data Science
Netherlands
Tinbergen Institute
Netherlands
ORCiD: 0000-0002-0548-6957
m.armillotta@vu.nl

Michail Tsagris
University of Crete
Department of Economics
Greece
ORCiD: 0000-0002-2049-3063
mtsagris@uoc.gr

Konstantinos Fokianos
University of Cyprus
Department of Mathematics and Statistics
Cyprus
ORCiD: 0000-0002-0051-711X
fokianos@ucy.ac.cy

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=Rfast2
https://CRAN.R-project.org/package=PNAR
https://CRAN.R-project.org/package=nloptr
https://CRAN.R-project.org/package=nloptr
https://orcid.org/0000-0002-0548-6957
mailto:m.armillotta@vu.nl
https://orcid.org/0000-0002-2049-3063
mailto:mtsagris@uoc.gr
https://orcid.org/0000-0002-0051-711X
mailto:fokianos@ucy.ac.cy

CONTRIBUTED RESEARCH ARTICLE 270

SUrvival Control Chart EStimation
Software in R: the success Package
by Daniel Gomon, Marta Fiocco, Hein Putter, and Mirko Signorelli

Abstract Monitoring the quality of statistical processes has been of great importance, mostly in
industrial applications. Control charts are widely used for this purpose, but often lack the ability to
monitor survival outcomes. Recently, inspecting survival outcomes has become of interest, especially
in medical settings where outcomes often depend on risk factors of patients. For this reason many
new survival control charts have been devised and existing ones have been extended to incorporate
survival outcomes. The package success allows users to construct risk-adjusted control charts for
survival data. Functions to determine control chart parameters are included, which can be used even
without expert knowledge on the subject of control charts. The package allows to create static as well
as interactive charts, which are built using ggplot2 (Wickham 2016) and plotly (Sievert 2020).

1 Introduction

Inspecting the quality of a survival process is of great importance, especially in the medical field.
Many of the methods currently used to inspect the quality of survival processes in a medical setting,
such as funnel plots (Spiegelhalter 2005), Bernoulli Cumulative sum (CUSUM) charts (Steiner et al.
2000) and exponentially weighted moving average (EWMA) charts (Cook, Coory, and Webster 2011)
work only with binary outcomes, and are thus not appropriate for survival outcomes. These charts
require the continuous time outcome to be dichotomized, often leading to delays when trying to detect
problems in the quality of care. To overcome this limitation, (Biswas and Kalbfleisch 2008) developed
a continuous time CUSUM procedure (which we call the BK-CUSUM), that can be used to inspect
survival outcomes in real time. (Gomon et al. 2022) proposed a generalization of the BK-CUSUM chart
called the Continuous Time Generalized Rapid Response CUSUM (CGR-CUSUM). The CGR-CUSUM
allows to estimate some of the parameters involved in the construction of the chart, overcoming the
need for the user to correctly specify parameters that the BK-CUSUM procedure relies on. Recently
other procedures for the continuous time inspection of survival outcomes have been developed, such
as the improved Bernoulli CUSUM (Keefe et al. 2017), uEWMA chart (Steiner and Jones 2009) and
STRAND chart (Grigg 2018). To the best of our knowledge there are no publicly available software
implementations of these methods.

When constructing control charts in continuous time, not only the time to failure of a subject
is of interest, but also the information provided by the survival up until current time is crucial.
Many quality control methods cannot incorporate continuous time (survival) outcomes, requiring the
continuous time outcome to be dichotomized (e.g. 30-day survival). The resulting binary data is called
discrete time data. We provide an overview of some of the existing R packages which can be used for
constructing control charts. The package qcc (Scrucca 2004) for discrete time data contains functions
to construct many types of Shewhart, binary CUSUM, EWMA and other charts. The packages qcr
(Flores 2021), qicharts (Anhoej 2021) and ggQC (Grey 2018) also allow for the construction of discrete
time control charts, but differ in their graphical possibilities and their intended application area such
as medicine, industry and economics. It is possible to assess some of the discrete time control charts
by means of their zero/steady state average run length using the packages spc (Knoth 2021) and
vlad (Wittenberg and Knoth 2020). The package funnelR (Kumar 2018) allows for the construction of
funnel plots for proportion data, a method often used in medical statistics to visualise the difference
in proportion over a time frame. The package cusum (Hubig 2019) can be used to monitor hospital
performance using a Bernoulli CUSUM, also allowing users to easily determine control limits for
continuously inspecting hospitals. The package however requires the input to be presented in a binary
format.

Whereas many packages exist allowing for the construction of quality control charts on discrete
time data, to the best of our knowledge there are currently few statistical software packages allowing
for the construction of quality control charts on survival data and no R packages allowing for the
continuous time inspection of survival outcomes.

The main contribution of this article is to present the R package success (SUrvival Control Chart
EStimation Software), a tool for constructing quality control charts on survival data. With this package,
we aim to fill the gap in available open source software for the construction of control charts on survival
data. The primary goal of success is to allow users to easily construct the BK- and CGR-CUSUM;
moreover, success can also be used to construct the discrete time funnel plot (Spiegelhalter 2005) and
the Bernoulli CUSUM chart (Steiner et al. 2000) on survival data without manually dichotomizing the

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=qcc
https://CRAN.R-project.org/package=qcr
https://CRAN.R-project.org/package=qicharts
https://CRAN.R-project.org/package=ggQC
https://CRAN.R-project.org/package=spc
https://CRAN.R-project.org/package=vlad
https://CRAN.R-project.org/package=funnelR
https://CRAN.R-project.org/package=cusum
https://CRAN.R-project.org/package=success
https://CRAN.R-project.org/package=success
https://CRAN.R-project.org/package=success

CONTRIBUTED RESEARCH ARTICLE 271

outcomes. This way, users can determine the possible gain in detection speed by using continuous
time quality control methods over some popular discrete time methods.

The article is structured as follows. In Section Theory and models we briefly describe the theory
that underlines the control charts presented in the package. Section The R package success shows how
to prepare the input data and describes the main functions and their arguments. For the reader not
interested in technical details, a helper function is described in Section The parameter-assist function.
The control charts in the package are then applied to data based on a clinical trial for breast cancer in
the Application section. Finally, the article ends with a Discussion about the methods presented.

2 Theory and models

Throughout this article, we are interested in comparing institutional (hospital) performance for survival
after a medical procedure (surgery). Even though our focus is on medical applications, the methods
can be applied to any data set containing survival outcomes.

In this section we introduce the funnel plot, Bernoulli CUSUM, BK-CUSUM and CGR-CUSUM
implemented in the package success. The goal of each of the methods is to detect a deviation from a
certain target performance measure and discover hospitals with increased mortality rates as quickly
as possible.

Reading guide

This section consists of two parts. Section Terminology summarizes the minimal required knowledge in
layman’s terms. Section Mathematical notation delves into the mathematical details and assumptions.
Further sections introduce the mathematical theory of the methods available in success.

2.1 Terminology

We assume that hospitals/units have a constant and steady stream of patients/subjects coming in
for a treatment of interest (e.g. surgery). In survival quality control, we are interested in determining
whether failure/death rates after treatment at a certain hospital deviate significantly from a certain
target measure. A target measure defines the acceptable failure rate. This measure can be set or
estimated from a large set of (historical) data. Most of the time, we are only interested in detecting an
increase in failure rate as this indicates that the hospital in question is performing worse than expected,
and that corrective interventions may be necessary to improve the quality of care at such a hospital.

The process is defined to be in-control when failures occur according to the target level. It is
out-of-control if failures happen at a higher rate then expected. Hospitals may have in-control periods
followed by out-of-control periods. The goal is to detect when observations at a hospital start going
out-of-control as soon as possible, so action can be taken quickly.

To continuously inspect the quality of the process, we construct a control chart to monitor the
process failure rate from the start of the study. Some charts only change value when an outcome is
observed (discrete time), while others change value at each time point (continuous time). When the
control chart exceeds a pre-defined control limit, a signal is produced, indicating that the hospital in
question is performing worse/better than the target measure. The time it takes for a control chart to
exceed the control limit is called the run length of the chart. For some control charts it is necessary to
fix the expected increase in failure rate in advance. This is done by specifying a parameter θ, where eθ

indicates the expected increase in the failure odds (discrete time) or expected increase in the failure
rate (continuous time).

Not all patients have an equal probability of failure at any given point in time. For example,
people who smoke may have a larger risk of failure than non-smokers. Therefore, patient’s risk can be
incorporated into the control charts by using a risk-adjustment model. Relevant characteristics (called
covariates) are then used to determine the increase/decrease in the risk of failure for each patient.

2.2 Mathematical notation

Consider a single hospital. For each patient (i = 1, 2, ...) let Ai and Xi be the chronological entry time
and survival/failure time from the time of entry respectively. The chronological time of failure is then
given by Ti = Ai + Xi. Assume that patients arrive (enter the study) at the hospital according to a
Poisson process with rate ψ, and that each patient i has a set of p covariates Zi. Let hi(x) = h0(x)eZiβββ

be the subject-specific hazard rate obtained from the Cox proportional hazards model (Cox 1972). Let

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=success
https://CRAN.R-project.org/package=success

CONTRIBUTED RESEARCH ARTICLE 272

Yi(t) = 1{Ai ≤ t ≤ min(Ti, Ri)} indicate whether a patient is at risk (of failure) at time t, where Ri
denotes the right censoring time of patient i.

Define by Ni(t) the counting process indicating whether patient i experiences a failure at or before
time t. Let N(t) = ∑i≥1 Ni(t) be the total number of observed failures at the hospital at or before time
t. Define the cumulative intensity of patient i as Λi(t) =

∫ t
0 Yi(u)hi(u)du and λi(t) = Yi(t)hi(t). Note

that λi(t) is equal to zero when patient i is not at risk. Similarly, let Λ(t) = ∑i≥1 Λi(t) be the total
cumulative intensity at the hospital at time t.

For some methods, we will be interested in detecting a fixed increase in the cumulative intensity at
the hospital from Λ(t) to Λθ(t) := eθΛ(t). In a similar fashion, denote hθ

i := eθhi(t). The correspond-
ing density and distribution functions are denoted by f θ

i and Fθ
i . We call eθ the true hazard ratio. When

eθ = 1 (similarly θ = 0), we say that the failure rate is in-control. Alternatively, when eθ > 1 we say
that the failure rate is out-of-control.

For a chart K(t) with changing values over time define the average run length for a given control
limit h as E[τh], where τh = inf{t > 0 : K(t) ≥ h}.

2.3 Funnel plot

The risk-adjusted funnel plot (Spiegelhalter 2005) is a graphical method used to compare performance
between hospitals over a fixed period of time. The general structure of the data is as follows: there
are k centers/hospitals (j=1. . . k) with nj treated patients in hospital j. For each patient we observe a
binary variable Xi,j:

Xi,j =

{
1, if patient i at hospital j had an adverse event within C days,
0, if patient i at hospital j otherwise.

(1)

We model Xi,j ∼ Ber(pj), with pj the probability of failure at hospital j within C days. Consider the
hypotheses:

H0 : pj = p0 H1 : pj ̸= p0 (2)

with p0 some baseline (in-control) failure proportion. The proportion of failures observed at hospital j

is then given by γj =
∑

nj
i=1 Xi,j

nj
. The asymptotic distribution of γj under H0 is γj

∣∣∣
H0

∼ N
(

p0, p0(1−p0)
nj

)
.

We can then signal an increase or decrease in the failure proportion of hospital j with confidence level
1 − 2α when

γj /∈
[

p0 + ξα

√
p0(1 − p0)

nj
, p0 − ξα

√
p0(1 − p0)

nj

]
, (3)

with ξα the α−th quantile of the standard normal distribution.

It is often desirable to determine patient specific failure probabilities using some of their char-
acteristics. A risk-adjusted funnel plot procedure can then be performed by modelling the patient
specific failure probability using a logistic regression model: pi =

1
1+e−β0+ZZZiβββ , where ZZZi is the vector of

p covariates for patient i. The expected number of failures at hospital j is then given by

Ej = E

[nj

∑
i=1

Xj,i

]
=

nj

∑
i=1

pi =
nj

∑
i=1

1
1 + e−β0+ZZZi β

. (4)

Let Oj be the observed number of failures at hospital j, the risk-adjusted proportion of failures at

hospital j is given by γRA
j =

Oj
Ej

· p0. The quantity γRA
j is then used in Equation (3) instead of γj.

The funnel plot can be used to compare hospital performance over a fixed time period. The funnel
plot is often used for monitoring the quality of a process by repeatedly constructing funnel plots over
different time intervals. We advocate against such an inspection scheme, as it introduces an increased
probability of a type I error due to multiple testing. We recommend to only use the funnel plot as
a graphical tool to visually inspect the proportion of failures at all hospitals over a time frame. The
funnel plot is a discrete time method and can therefore only be used to compare overall performance
over a time span. To determine whether a hospital was performing poorly during the time of interest,
one of the following CUSUM charts should be used.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 273

2.4 Bernoulli cumulative sum (CUSUM) chart

The Bernoulli CUSUM chart (Steiner et al. 2000) can be used to sequentially test whether the failure
rate of patients at a single hospital has changed starting from some patient ν ≥ 1. Consider a hospital
with patients i = 1, ..., ν, ... and a binary outcome:

Xi =

{
1, if patient i had an undesirable outcome within C days,
0, if patient i had a desirable outcome within C days.

(5)

We model Xi ∼ Ber(pi) with pi the failure probability within C days for patient i. The Bernoulli
CUSUM can be used to test the hypotheses of an increased failure rate starting from some patient ν:

H0 :X1, X2, ... ∼ Ber(p0) H1 :
X1, ..., Xν−1 ∼ Ber(p0)
Xν, Xν+1, ∼ Ber(p1)

, (6)

where ν ≥ 1 is not known in advance, p0 < p1, and patient outcomes are ordered according to the
time of entry into the study Ai.

The Bernoulli CUSUM statistic is given by:

Sn = max (0, Sn−1 + Wn) , (7)

with Wn = Xn ln
(

p1(1−p0)
p0(1−p1)

)
+ ln

(
1−p1
1−p0

)
. Alternatively, it is possible to reformulate the chart in terms

of the Odds Ratio OR =
p1(1−p0)
p0(1−p1)

=: eθ . In that case, Wn = Xn ln
(

eθ
)
+ ln

(
1

1−p0+eθ p0

)
. The null

hypothesis is rejected when the value of the chart exceeds a control limit h.

A risk-adjusted procedure may be performed by modelling patient-specific failure probability (p0,i)
using a logistic regression model. The risk-adjusted Bernoulli CUSUM can be used as a sequential
quality control method for binary outcomes. Dichotomizing the outcome (survival time) can lead to
delays in detection. When survival outcomes are available, it can therefore be beneficial to construct
one of the CUSUM charts described in the following sections.

2.5 Biswas and Kalbfleisch CUSUM (BK-CUSUM)

The BK-CUSUM chart can be used to continuously test whether the failure rate of patients at the
hospital has changed at some point in time. Consider a hospital with patients i = 1, 2, ... and assume
that the patient specific hazard rate is given by hi(x) = h0(x)eZi β. The BK-CUSUM chart can be used
to test the hypotheses that the baseline hazard rate of all active patients has increased from h0(x) to
h0(x)eθ1 at some point in time s > 0 after the start of the study:

H0 : Xi ∼ Λi(t), i = 1, 2, ... H1 :
Xi ∼ Λi(t)| t < s, i = 1, 2, ...
Xi ∼ Λθ1

i (t)
∣∣∣ t ≥ s, i = 1, 2, ... , (8)

where θ1 > 0 is the user’s estimate of the true hazard ratio θ and s > 0 is the unknown time of change
in hazard rate.

The likelihood ratio chart associated with the hypotheses in (8) is given by:

BK(t) = max
0≤s≤t

{
θ1N(s, t)−

(
eθ1 − 1

)
Λ(s, t)

}
, (9)

where the estimated hazard ratio eθ1 > 1 has to be prespecified, N(s, t) = N(t)− N(s) and Λ(s, t) =
Λ(t)− Λ(s). The null hypothesis is rejected when the value of the chart exceeds the control limit.

The BK-CUSUM chart can lead to faster detection speeds than the Bernoulli CUSUM chart as the
hypotheses can be tested at any point in time, rather than just at the (dichotomized) times of outcome.
Unfortunately the chart requires users to specify θ1 to estimate θ, which is not known a priori in most
practical applications. Misspecifying this parameter can lead to large delays in detection (Gomon et al.
2022).

2.6 Continuous time Generalized Rapid response CUSUM (CGR-CUSUM)

The CGR-CUSUM chart can be used to test the following hypotheses:

H0 : Xi ∼ Λi, i = 1, 2, ... H1 :
Xi ∼ Λi, i = 1, 2, ..., ν − 1
Xi ∼ Λθ

i , i = ν, ν + 1,
, (10)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 274

where eθ and ν do not need to be prespecified. The CGR-CUSUM chart is then given by

CGR(t) = max
1≤ν≤n

{
θ̂≥ν(t)N≥ν(t)−

(
exp

(
θ̂≥ν(t)

)
− 1

)
Λ≥ν(t)

}
, (11)

where the subscript “≥ ν” stands for all subjects after the potential change point ν: N≥ν(t) =

∑i≥ν Ni(t), Λ≥ν(t) = ∑i≥ν Λi(t) and θ̂≥ν(t) = max
(

0, log
(

N≥ν(t)
Λ≥ν(t)

))
. The null hypothesis is rejected

when the value of the chart exceeds the control limit.

In contrast to the BK-CUSUM where an estimate of eθ had to be specified in advance, the CGR-
CUSUM uses the maximum likelihood estimate eθ̂ to estimate the true hazard ratio eθ from the data.
This means that when eθ1 is misspecified in the BK-CUSUM, the CGR-CUSUM can lead to quicker
detections. In practice the real hazard ratio eθ is never known in advance and may vary over time. The
maximum likelihood estimator can alleviate this problem, therefore the CGR-CUSUM is generally
the preferred chart. The major difference between the two charts is that the BK-CUSUM tests for a
sudden change in the failure rate of all patients currently at risk of failure, while the CGR-CUSUM
tests for a sudden change in the failure rate of all patients currently at risk of failure who have entered
the hospital after a certain time. A drawback of the CGR-CUSUM is that the computation of the MLE
θ̂ requires sufficient information (in the form of survival times/failures) to converge to the true value.
This means that the chart can be unstable at the beginning of the study and might not provide reliable
values for hospitals with low volumes of patients.

2.7 Choosing control limits

For the funnel plot in Section Funnel plot, it is sufficient to choose a confidence level to determine
which hospitals are performing worse/better than the baseline. For the CUSUM charts, instead, it is
necessary to choose a control limit h, so that a signal is produced when the value of the chart exceeds
h. The most common ways to choose this control limit are to either restrict the in-control average
run length (ARL) of the chart, or to restrict the type I error over a certain time period. With the first
method, one could choose to restrict the in-control ARL to approximately 5 years, so that on average
we would expect a hospital which performs according to the target to produce a false signal (detection)
once every 5 years. Using the second method, one could choose the control limit such that at most a
proportion α of the in-control hospitals yields a signal (false detection) within a period of 5 years. For
the (risk-adjusted) Bernoulli CUSUM plenty of results exist allowing for the numerical estimation of
the ARL, most of which are implemented in the packages spc and vlad. For continuous time control
charts such results are lacking, therefore in the success package we choose to determine control limits
by restricting the type I error probability α over a chosen time frame. We estimate these control limits
by means of a simulation procedure.

3 The R package success

The package success can be used by both laymen and experts in the field of quality control charts. In
Section Input data we describe the general data structure to be used for constructing control charts by
means of an example data set. In Section The parameter-assist function, a function is described that
can be used to determine all necessary parameters for the construction of control charts for the user
not interested in technical details. In Sections Manual risk-adjustment - The CGR-CUSUM function
we present the functions that can be used to compute the control charts described in Section Theory
and models.

3.1 Input data

All methods in this package require the user to supply a data.frame for the construction of control
charts and the estimation of a benchmark failure rate. We show how to use the success package by
means of an enclosed data set.

Example data set

The data frame surgerydat contains 32529 survival times, censoring times and covariates (age, BMI
and sex) of patients from 45 hospitals with 15 small, medium and large hospitals (0.5, 1 and 1.5 patients
per day). Patients enter the hospitals for 2 years (730 days) after the start of the study. Survival
times were generated using a risk-adjusted Cox proportional hazards model using inverse transform
sampling (Austin 2012), with coefficient vector β = c(age = 0.003, BMI = 0.02, sexmale = 0.2)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=spc
https://CRAN.R-project.org/package=vlad
https://CRAN.R-project.org/package=success
https://CRAN.R-project.org/package=success
https://CRAN.R-project.org/package=success

CONTRIBUTED RESEARCH ARTICLE 275

Table 1: Overview of the enclosed ‘surgerydat‘ data set.

entrytime survtime censorid unit exptheta psival age sex BMI
5 21 0 1 1.887204 0.5 70 male 29.52
9 19 1 1 1.887204 0.5 68 male 24.06

10 64 1 1 1.887204 0.5 101 female 20.72
20 64 1 1 1.887204 0.5 67 female 24.72
21 0 1 1 1.887204 0.5 44 male 27.15

and exponential baseline hazard rate h0(t, λ = 0.01)eθ . Hospitals are numbered from 1 to 45 with
hazard ratio θ sampled from a normal distribution with mean 0 and standard deviation 0.4. This
means that some hospitals are performing better or equal to baseline (θ ≤ 0) and some are performing
worse (θ > 0).

An overview of the data set can be found in Table 1.

library(success)
data("surgerydat", package = "success")
head(surgerydat, 5)

Each row represents a patient. The first 2 columns (entrytime and survtime) are crucial for the
construction of control charts. These columns have to be present in the data. The time scale of
entrytime and survtime must be the same. They can both only be supplied in a "numeric" format
(dates are not allowed). In the example data, the time scale is in days; entrytime is the number of
days since the start of the study and survtime is the survival time since the time of entry. The column
censorid is a censoring indicator, with 0 indicating right-censoring and 1 that the event has occurred.
If censorid is missing, a column of 1’s will automatically be created, assuming that no observations
were right-censored. All relevant functions in the package will print a warning when this happens.
The column unit (indicating the hospital number) is required for the construction of a funnel plot,
but not for the CUSUM charts. This is because CUSUM charts are constructed separately for every
unit, requiring the user to manually subset the data for each unit. The columns exptheta and psival
indicate the parameters eθ and ψ used to create the simulated data set. The last three columns age, sex
and BMI are the covariates of each individual. In a user supplied data.frame these can of course take
any desired name.

3.2 The parameter-assist function

Readers not interested in technical details can use the parameter_assist function to determine most
of the parameters required for constructing the control charts in this package.

The parameter_assist function can be used to determine control limits for all control charts
described in Section Theory and models. The function guides users through the following 3 steps:

• Step 1: Specify arguments to parameter_assist.
• Step 2: Determine control limit(s) for the required control chart(s) by feeding the output of Step

1 to one of the *_control_limit functions.
• Step 3: Construct the desired control chart by feeding the output of Step 1 to the function, as

well as the control limit from Step 2.

Step 2 can be skipped for the funnel_plot function, as funnel plots do not require control limits.

The parameter_assist function has the following arguments:

• baseline_data (required): a data.frame in the format described in Section Input data. It should
contain the data to be used to determine the target performance metric (both for discrete and
continuous time charts). This data is used to determine what the “acceptable” failure rate is,
as well as how much risk-adjustment variables influence the probability of observing an event.
Preferably this should be data of subjects that were known to fail at acceptable rates, or historical
data which we want to compare with. Usually all available data is used instead, resulting in the
average performance being selected as the target;

• data (required): a data.frame in the format described in Section Input data. It should contain
the data used to construct a control chart. For this data we want to know whether it adheres to
the target determined in baseline_data or not. For example: the data from one hospital;

• formula (optional): a formula indicating in which way the linear predictor of the risk-adjustment
models should be constructed in the underlying generalized linear model or Cox proportional

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 276

hazards model. Only the right-hand side of the formula will be used. If left empty, no risk-
adjustment procedure will be performed;

• followup (required for discrete time charts): a numeric value which has to be in the same
unit as entrytime and survtime and should specify how long after entrytime we consider the
binary outcome (failure/non-failure) of the patient. This argument can be left empty when the
user does not want to construct discrete time charts;

• theta (recommended for Bernoulli and BK-CUSUM): the expected increase in the log-odds of
failure/hazard rate. Default is log(2), meaning the goal will be a detection of a doubling in the
failure rate;

• time (recommended): time interval for type I error to be determined. Default is the largest
entrytime of subjects in baseline_data;

• alpha (recommended): required type I error to control over the time frame specified in time.
Default is 0.05.

The first two arguments should always be specified. Depending on the number of additional
arguments specified, different functions in the package can be used. Most arguments have default
values, but these may not always be suitable for the desired inspection scheme. Risk-adjusted
procedures can only be constructed if at least formula is specified.

An example where all arguments are specified is provided below, but specifying only baseline_data
and data is sufficient to construct a CGR-CUSUM without risk-adjustment.

assisted_parameters <- parameter_assist(
baseline_data = subset(surgerydat, entrytime < 365),
data = subset(surgerydat, entrytime >= 365 & unit == 1),
formula = ~age + sex + BMI,
followup = 30,
theta = log(2),
time = 365,
alpha = 0.05)

We use data on patients arriving in the first year (entrytime < 365) to determine the target
performance measure. We then construct control charts on the first hospital (unit == 1) using
information on all patients arriving after the first year. Risk-adjustment is performed using the 3
available covariates. We choose to consider patient followup 30 days after surgery and want to detect a
doubling of failure rate. The last two arguments were chosen such that the type I error of the procedure
is restricted to 0.05 within 1 year (on average 1 in 20 hospitals performing according to baseline will be
detected within 1 year).

The parameter_assist function then returns a list of arguments to supply to other functions in
this package:

names(assisted_parameters)

#> [1] "call" "data" "baseline_data" "glmmod"
#> [5] "coxphmod" "theta" "psi" "time"
#> [9] "alpha" "maxtheta" "followup" "p0"

The user can manually feed the determined parameters to other functions in this package. Con-
versely, it is possible to feed the output of the parameter_assist function to the following functions
directly:

• funnel_plot
• bernoulli_control_limit and bernoulli_cusum
• bk_control_limit and bk_cusum
• cgr_control_limit and cgr_cusum

Step 1 was performed in the code above. For Step 2 we feed the output of parameter_assist to
determine control limits for the Bernoulli, BK- and CGR-CUSUM charts.

bernoulli_control <- bernoulli_control_limit(assist = assisted_parameters)
bk_control <- bk_control_limit(assist = assisted_parameters)
cgr_control <- cgr_control_limit(assist = assisted_parameters)

The determined control limits can then be fed to the control chart functions to finish Step 3.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 277

0
2
4
6

380 400 420 440 460
Time

V
al

ue

Bernoulli CUSUMA

0
2
4
6

380 390 400 410 420
Time

V
al

ue

BK−CUSUMB

0
2
4
6

380 390 400 410 420
Time

V
al

ue

CGR−CUSUMC

Hospital 1 control charts

Figure 1: Bernoulli, BK- and CGR-CUSUM charts for hospital 1 in the surgery data set starting from 1
year after the start of the study.

bernoulli_assist <- bernoulli_cusum(assist = assisted_parameters,
h = bernoulli_control$h)

bk_assist <- bk_cusum(assist = assisted_parameters, h = bk_control$h)
cgr_assist <- cgr_cusum(assist = assisted_parameters, h = cgr_control$h)

We plot the control charts using the plot function (see Figure 1). The Bernoulli CUSUM jumps
upward every time a failure is observed 30 days after patient entry and downward every time no
failure is observed at that point. The BK- and CGR-CUSUM make an upward jump directly when a
failure has been observed, and slope downward as long as no failures are happening. The BK- and
CGR-CUSUM cross their respective control limits (the red lines) at approximately the same time after
the start of the study, producing a signal. The Bernoulli CUSUM does so a little while later, producing
a delayed signal.

The run length of the charts (time until control limit is reached) can then be determined using the
runlength function.

runlength(bernoulli_assist, h = bernoulli_control$h)

#> [1] 83

Note that the run length of the charts are determined from the smallest time of entry of subjects
into specified data. The study therefore starts at the moment the first subject has a surgery (in this
case, at day 375).

The funnel plot does not require control limits, therefore steps 2 and 3 can be skipped. We use the
plot function to display the funnel plot.

funnel_assist <- funnel_plot(assist = assisted_parameters)
plot(funnel_assist, label_size = 2) + ggtitle("Funnel plot of surgerydat")

The resulting plot can be seen in Figure 2. The blue shaded regions indicate the 95 and 99 percent
prediction intervals. Each dot represents a hospital, with the colour representing the prediction limits
at which this hospital would be signaled. When a hospital falls outside of a prediction interval, it will
be signaled at that level.

3.3 Manual risk-adjustment

Risk-adjustment models should be estimated on a data set known to have in-control failures, as this
allows the coefficients to be determined as precisely as possible. In real life applications it is not known
in advance which hospitals have had in-control failures. It is therefore common practice to use all
available data to determine risk-adjustment models.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 278

1

2
3 5

6

7

9

10

11

12

13
15

16

18

19

21

22

24

25

26

27

28

29

30
31

32

34

36

37

40

41

42

25

50

75

200 300 400 500 600
Number of outcomes

(R
is

k−
ad

ju
st

ed
)

P
ro

po
rt

io
n

of
 fa

ilu
re

 (
%

)
Prediction interval

0.95

0.99

Detection

in−control

0.95

0.99

Funnel plot of surgerydat

Figure 2: Funnel plot for hospitals over the first year of the surgery data set. Target performance
determined as average over the considered data.

We consider a logistic model to use for risk-adjustment in the discrete time methods (funnel plot
and Bernoulli CUSUM), using all available data of patients with surgeries in the first year of the study.
We use 30 days mortality as outcome for these charts.

baseline_data <- subset(surgerydat, entrytime <= 365)
followup <- 30
glm_risk_model <- glm((survtime <= followup) & (censorid == 1) ~ age + sex + BMI,

data = baseline_data, family = binomial)

Then we estimate a Cox proportional hazards model to use for risk-adjustment in the continuous
time BK- and CGR-CUSUM, using the same baseline data. For this we use the functions Surv and
coxph from the package survival (Terry M. Therneau and Patricia M. Grambsch 2000).

require(survival)
coxph_risk_model <- coxph(Surv(survtime, censorid) ~ age + sex + BMI,

data = baseline_data)

Conversely, we can manually specify a risk-adjustment model:

RA_manual <- list(formula = ~ age + sex + BMI,
coefficients = c(age = 0.003, BMI = 0.02,

sexmale = 0.2))

This is useful for users who do not want to use the package survival for the estimation of the
models.

3.4 The funnel plot function

The funnel_plot function can be used to construct the funnel plot described in Section Funnel plot.
The code below constructs a funnel plot over the first 1 year (ctime = 365) on the simulated data set.
By not specifying ctime the funnel plot is constructed over all data (2 years). By leaving the parameter
p0 empty, the average failure proportion within 30 days is used as baseline failure probability.

funnel <- funnel_plot(data = surgerydat, ctime = 365,
glmmod = glm_risk_model, followup = 30)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival

CONTRIBUTED RESEARCH ARTICLE 279

1

3
5

6

7

9

11

12

13
15

16

18

19

21

22

24

25

26

27

28

30

31

32

34

36

37

40

41

42

43

25

50

75

200 300 400 500
Number of outcomes

(R
is

k−
ad

ju
st

ed
)

P
ro

po
rt

io
n

of
 fa

ilu
re

 (
%

)
Prediction interval

0.95

0.99

Detection

in−control

0.95

0.99

Funnel plot of surgery data at 1 year

Figure 3: Funnel plot of hospitals in the surgery data, using all information known after 1 year of the
study.

Table 2: Summary statistics for the funnel plot.

unit observed expected numtotal p 0.95 0.99
1 105 74.49454 155 0.6724872 worse worse
2 71 80.60038 168 0.4202816 in-control in-control
3 50 68.25903 143 0.3494854 better better
4 76 80.64515 167 0.4496292 in-control in-control
5 70 87.22662 182 0.3828848 better better

The function creates an object of class 'funnelplot'. The plot function can be used on classes in
the success package. This creates a 'gg' object, whose graphical parameters can further be edited by
the user using the package ggplot2 (Wickham 2016).

The resulting plot can be seen in Figure 3. By default, the funnel_plot function will display 95%
and 99% prediction intervals using blue shaded regions. The intervals and fill colour can be changed
using the predlim and col_fill arguments respectively. Additionally, the unit label for detected units
will be displayed in the plot. In the plot function, the size of the labels can be adjusted using the
label_size argument or they can be disabled by setting the unit_label argument to FALSE.

A summary of the funnel plot can be obtained by using the summary function.

head(summary(funnel), 5)

The resulting statistics can be found in Table 2.

3.5 Control limits for CUSUM functions

All CUSUM charts considered in this article require control limits to signal changes in the failure rate.
When the value of a chart exceeds this control limit, a signal is produced. The success package can be
used to determine control limits such that the type I error of the CUSUM procedure is restricted over
some desired time frame. This is achieved by using the *_control_limit functions. We briefly discuss
the underlying three steps of the simulation procedure, meanwhile explaining some key parameters
that are shared across the functions.

• Step 1: Generate n_sim units (hospitals), with subjects at each unit arriving according to a
Poisson process with rate psi over a certain time frame specified by the parameter time. We
therefore expect each unit to represent approximately psi × time subjects. If specified, sample
covariate values for subjects from baseline_data. Generate binary outcomes/survival times for

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=success
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=success

CONTRIBUTED RESEARCH ARTICLE 280

each patient according to the specified baseline (risk-adjustment) model (for details see Manual
risk-adjustment). Note that the simulated units represent the in-control situation.

• Step 2: For each simulated unit, determine the CUSUM chart over the considered time.
• Step 3: Determine the largest possible control limit such that at most a proportion alpha of the

n_sim in-control units would be detected using this control limit. This value then represents a
simulation estimate of the control limit for a procedure with a type I error of alpha over time.

Increasing n_sim will increase the accuracy of the determined control limit, at the cost of increased
computation time. Similarly, increasing time and psi will also increase the computation time. These
parameters however are usually determined by the underlying inspection problem. Changing alpha
does not influence computation time.

All *_control_limit functions have a seed argument that can be used to obtain reproducible
simulation results by setting an initial state for pseudorandom number generation. This makes sure
that the procedure in Step 1 is reproducible, as the final two steps do not involve randomness. The
boolean parameter pb can be used to display a progress bar for Step 2, which can be useful if the
control limit has to be determined at a high accuracy. The h_precision argument can be used to
specify the required number of significant digits in determining the control limit. Choosing a high
value for h_precision is only useful when the constructed CUSUM charts show only very minor
fluctuations or when n_sim is very high, warranting a very accurate determination of the control limit.
The default of two significant digits will suffice in most situations.

3.6 The Bernoulli CUSUM function

The bernoulli_cusum function can be used to construct the Bernoulli CUSUM detailed in Section
Bernoulli cumulative sum (CUSUM) chart. The Bernoulli CUSUM uses the same dichotomized
outcome as the funnel plot. For this reason, the syntax of bernoulli_cusum is quite similar to that
of funnel_plot. In this section we will construct a Bernoulli CUSUM for the ninth hospital in the
simulated data set, again using 30 day post operative survival as outcome and aiming to detect an
increase of the odds ratio to 2.

Determining control limits

The Bernoulli CUSUM produces a signal when the value of the chart exceeds a value h called the
control limit. The bernoulli_control_limit function can be used to determine a control limit such
that the type I error of the Bernoulli CUSUM procedure is restricted over some desired time frame.
Suppose we want to restrict the type I error of the procedure to 0.05 over the time frame of 1 year at a
hospital with an average of 1 patient per day undergoing surgery. We determine the control limit as
follows:

bern_control <- bernoulli_control_limit(
time = 365, alpha = 0.05, followup = 30, psi = 1,
glmmod = glm_risk_model, baseline_data = surgerydat, theta = log(2))

The determined control limit h can then be retrieved by:

bern_control$h

#> [1] 5.56

By default, the control limit is determined using 200 simulated units (hospitals). As the Bernoulli
CUSUM is not very computationally intensive, it is usually possible to determine the control limit
with higher precision by increasing the n_sim argument.

Constructing the chart

After determining the control limit, we can construct the control chart. The bernoulli_cusum function
requires the user to specify one of the following combinations of parameters:

• glmmod & theta
• p0 & theta
• p0 & p1

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 281

0

5

10

0 200 400 600
Time

V
al

ue

Bernoulli CUSUM of Hospital 9

Figure 4: Bernoulli CUSUM for hospital 9 over the study duration. Target performance estimated
from the failure rate of patients treated in the first year of the study.

Only the first option allows for risk-adjustment. The difference between these parametrizations is
described in Section Bernoulli cumulative sum (CUSUM) chart. We construct the Bernoulli CUSUM on
the data of the ninth simulated hospital, aiming to detect whether the odds ratio of failure for patients
is 2 (theta = log(2)). Using the plot function we obtain a 'gg' object (see Figure 4).

Bernoulli <- bernoulli_cusum(
data = subset(surgerydat, unit == 9),
glmmod = glm_risk_model, followup = 30, theta = log(2))

plot(Bernoulli, h = bern_control$h) +
ggtitle("Bernoulli CUSUM of Hospital 9")

The run length of the chart, in Figure 4 visible as the time at which the chart first crosses the red
line, can be found using the runlength function.

3.7 The BK-CUSUM function

The bk_cusum function can be used to construct the BK-CUSUM chart presented in Section Biswas and
Kalbfleisch CUSUM (BK-CUSUM). The chart is no longer constructed using dichotomized outcomes,
therefore leading to faster detections on survival data than discrete time methods.

Determining control limits

The BK-CUSUM produces a signal when the value of the chart exceeds a value h called the control
limit. The bk_control_limit function can be used to determine a control limit such that the type I
error of the BK-CUSUM procedure is restricted over some desired time frame. Suppose we want to
restrict the type I error of the procedure to 0.05 over the time frame of 1 year for a hospital with an
average of 1 patient per day undergoing surgery. The control limit is determined as follows:

BK_control <- bk_control_limit(
time = 365, alpha = 0.05, psi = 1, coxphmod = coxph_risk_model,
baseline_data = surgerydat, theta = log(2))

By default, the control limit is determined on a simulated sample of 200 in-control hospitals. The
BK-CUSUM is not very computationally expensive. It is therefore usually possible to determine the
control limit with higher precision by increasing the n_sim argument.

Constructing the chart

We construct the BK-CUSUM on the data of the ninth hospital aiming to detect a doubling in the
hazard rate of patients (theta = log(2)).

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 282

0

5

10

0 250 500 750
Time

V
al

ue

BK−CUSUM of hospital 9

Figure 5: BK-CUSUM for hospital 9 over the study duration. Target performance estimated from the
failure rate of patients treated in the first year of the study.

BK <- bk_cusum(data = subset(surgerydat, unit == 9), theta = log(2),
coxphmod = coxph_risk_model)

plot(BK, h = BK_control$h) + ggtitle("BK-CUSUM of hospital 9")

The resulting plot is presented in Figure 5. The run length of the chart, visible as the time at which
the chart first crosses the red line, can be found using the runlength function.

When the cumulative baseline hazard is not specified through the argument cbaseh, but a Cox
Risk-adjustment model coxphmod as obtained from coxph is provided, the cumulative baseline hazard
will automatically be determined from this Cox model. When the argument ctimes is left empty,
the chart will only be determined at the times of patient failures, as this is sufficient for detection
purposes and saves computation time. A control limit h can be specified, so that the chart is only
constructed until the value of the chart exceeds the value of the control limit. This is very convenient
when monitoring the quality of care at a hospital. Sometimes it is desirable to only construct the chart
up until a certain time point, for this the argument stoptime can be used. The argument C can be used
to only consider patient outcomes up until C time units after their surgery. Originally the BK-CUSUM
(Biswas and Kalbfleisch 2008) was proposed with C = 365, considering patient outcomes only until 1
year post surgery. Finally, a progress bar can be added using the argument pb.

Suppose a decrease in the failure rate is of interest, we can then construct a lower-sided BK-CUSUM
by specifying a theta value smaller than 0. For example, for detecting a halving of the hazard rate we
can take θ = − log(2), such that eθ = 1

2 .

BK_control_lower <- bk_control_limit(
time = 365, alpha = 0.05, psi = 1, coxphmod = coxph_risk_model,
baseline_data = surgerydat, theta = -log(2))

BK_control_lower <- bk_control_limit(
time = 365, alpha = 0.05, psi = 1, coxphmod = coxph_risk_model,
baseline_data = surgerydat, theta = -log(2))

BKlower <- bk_cusum(data = subset(surgerydat, unit == 9),
theta = -log(2), coxphmod = coxph_risk_model)

plot(BKlower, h = BK_control_lower$h) +
ggtitle("BK-CUSUM of hospital 9 (lower sided)")

The resulting plot can be found in Figure 6 A.

Similarly, when both an increase and decrease of the failure rate are of interest the argument
twosided = TRUE can be used. This produces a two-sided BK-CUSUM (see Figure 6 B). For the
lower-sided BK-CUSUM the control limit must be determined separately.

BKtwosided <- bk_cusum(data = subset(surgerydat, unit == 9),
theta = log(2), coxphmod = coxph_risk_model, twosided = TRUE)

plot(BKtwosided, h = c(BK_control_lower$h, BK_control$h))

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 283

−6

−4

−2

0

0 250 500 750
Time

V
al

ue

Lower sidedA

−5

0

5

10

0 250 500 750
Time

V
al

ue

Two−sidedB
BK−CUSUM of hospital 9

Figure 6: Lower sided (left) and two-sided (right) Bernoulli CUSUM for hospital 9 over the study
duration. Target performance estimated from the failure rate of patients treated in the first year of the
study.

3.8 The CGR-CUSUM function

The cgr_cusum function can be used to construct the CGR-CUSUM detailed in Section Continuous
time Generalized Rapid response CUSUM (CGR-CUSUM). This function has almost the same syntax
as the bk_cusum function. The difference is that the procedure estimates a suitable value for theta
through maximum likelihood estimation, instead of requiring the users to specify such a value a priori.

The maximum likelihood estimate in the CGR-CUSUM can be unstable at early time points, when
not much information is available about subject failure. For this reason, the value of the maximum
likelihood estimate is restricted to eθ̂ ≤ 6 by default. This comes down to believing that the true hazard
ratio at any hospital is always smaller than or equal to 6 times the baseline. To change this belief, the
user can supply the maxtheta parameter to the cgr_cusum and cgr_control_limit functions.

Determining control limits

Similarly to the bk_control_limit function used for the BK-CUSUM, the cgr_control_limit function
can be used to determine the control limit for the CGR-CUSUM chart as follows:

CGR_control <- cgr_control_limit(
time = 365, alpha = 0.05, psi = 1, coxphmod = coxph_risk_model,
baseline_data = surgerydat)

By default the control limit for the CGR-CUSUM is determined on only 20 simulated samples
(due to the computational intensity of the procedure), but we recommend to increase the number of
samples by using the argument n_sim to get a more accurate control limit. This will greatly increase
the computation time. To speed up the procedure it is possible to parallelize the computations of
the CUSUM charts in Step 2 of the simulation procedure (see Control limits for CUSUM functions)
by specifying the number of cores to use to the argument ncores. Additionally, as the simulation
procedure for the CGR-CUSUM can take a lot of time, it is possible to display individual progress bars
for each constructed CUSUM chart by specifying chartpb = TRUE.

Constructing the chart

The CGR-CUSUM for the ninth hospital is created with:

CGR <- cgr_cusum(data = subset(surgerydat, unit == 9),
coxphmod = coxph_risk_model)

plot(CGR, h = CGR_control$h) + ggtitle("CGR-CUSUM of hospital 9")

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 284

0

10

20

30

0 250 500 750
Time

V
al

ue

CGR−CUSUM of hospital 9

Figure 7: CGR-CUSUM for hospital 9 over the study duration. Target performance estimated from the
failure rate of patients treated in the first year of the study.

The resulting plot can be seen in Figure 7. To determine the run length of the procedure (time at
which chart crosses the control limit), use the function runlength.

To construct the control chart up until the time of detection, the parameter h can be specified in the
cgr_cusum function. This allows for continuous inspection, as well as reducing computation time.

Since the CGR-CUSUM is time consuming when the value has to be computed at many time
points, we recommend to leave ctimes unspecified, so that the CGR-CUSUM will only be determined
at the times necessary for detection purposes.

To reduce computing time, we allow users to parallelize the computations across multiple cores.
This can be easily done through the ncores argument. The calculation of the CGR-CUSUM proceeds
through 2 steps. First, the contributions to the cumulative intensity of each subject are determined at
every time point of interest and are stored in a matrix. Afterwards, the value of the chart is computed
by performing matrix operations. When ncores > 1, both steps are automatically parallelized using
functions from the pbapply package (Solymos and Zawadzki 2021). When a value for the control
limit has been specified, only the first step can be parallelized. For small data sets and/or short runs
cmethod = "CPU" can be chosen, thereby recalculating the value of the chart at every desired time point
but not requiring a lot of initialization. For small hospitals and/or short detection times it could be the
preferred method of construction. As the CGR-CUSUM can take long to construct, it is recommended
to display a progress bar by specifying pb = TRUE.

CGR_multicore <- cgr_cusum(data = subset(surgerydat, unit == 9),
coxphmod = coxph_risk_model, ncores = 3, pb = TRUE)

3.9 The interactive plot function

The interactive_plot function can be used to plot multiple CUSUM charts together in one figure,
while allowing the user to interact with the plot. This is achieved by using the package plotly (Sievert
2020). We show how to use these features by plotting some of the CUSUM charts from the previous
Sections together in one figure. We first combine all CUSUM charts into a list, together with the control
limits.

Bernoulli$h <- bernoulli_control$h
BK$h <- BK_control$h
CGR$h <- CGR_control$h
cusum_list <- list(Bernoulli, BK, CGR)
interactive_plot(cusum_list, unit_names = rep("Hosp 9", 3), scale = TRUE)

As charts have different control limits, it is preferable to scale their values by their respective
control limits by specifying scale = TRUE. After scaling, the control limit will be h = 1 for all CUSUM
charts. The resulting plot can be seen in Figure 8. By choosing highlight = TRUE, the user can

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=pbapply

CONTRIBUTED RESEARCH ARTICLE 285

0 200 400 600 800
0

1

2

3
Hosp 9
bercusum
Hosp 9
bkcusum
Hosp 9
cgrcusum

time

va
lu
e

Figure 8: Interactive plot of CUSUM charts for hospital 9.

highlight CUSUM charts by hovering over them. The plotly package allows for many interactive
capabilities with the plot.

4 Application

In Section The R package success we employed a simulated data set to show how to use the success
package. In this Section, we illustrate the use of the success package on a data set based on a clinical
trial for breast cancer conducted by the European Organisation for Research and Treatment of Cancer
(EORTC). Covariates for 2663 patients over 15 treatment centres are available, with patients having
surgery over a span of 61 time units. In addition, the chronological time of surgery and time since
surgery until a combined endpoint are known.

To analyse the data with the success package, we first arrange them in the format presented in
Section The R package success. The outcome of interest is event-free survival. For patients who did
not experience an event during the study period, the observations were censored at the last time the
patients were known to be event-free. We consider the start of the study as the time when the first
patient had surgery. The resulting data was stored in a data.frame called breast which can be loaded
using the data function.

To determine the risk-adjustment models, we consider 36 time units post surgery followup as
outcome. We fit a logistic model to be used for risk adjustment in the funnel plot and Bernoulli
CUSUM, and a Cox model for risk adjustment in the BK- and CGR-CUSUM:

glmmodEORTC <- glm((survtime <= 36) & (censorid == 1) ~ var1 + var2 +
var3 + var4 + var5 + var6 + var7,

data = breast, family = binomial)
phmodEORTC <- coxph(Surv(survtime, censorid) ~ var1 + var2 +

var3 + var4 + var5 + var6 + var7, data = breast)

We then construct the funnel plot and Bernoulli, BK- and CGR-CUSUM for each of the 15 centres
in the data. To make the continuous time charts visually interesting, we determine their values at
every time unit from the start of the study using the argument ctimes.

We then estimate the Poisson arrival rate for each center in the data using the arrival_rate
function.

arrival_rate <- arrival_rate(breast)
arrival_rate

#> 1 2 3 5 4 6 7
#> 0.1568693 0.7127849 0.7922508 0.9657104 0.9676291 1.3067964 1.3870253
#> 8 9 10 11 12 13 14
#> 1.4589466 1.6650555 3.0589682 3.6197173 6.8752701 7.5733827 11.0912301
#> 15
#> 18.2107083

Based on the estimated arrival rate ψ̂ (per time unit), we group the centres into 3 categories:

• Small: Centres 1-5: ψ̂ ≈ 0.9;

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=success
https://CRAN.R-project.org/package=success
https://CRAN.R-project.org/package=success

CONTRIBUTED RESEARCH ARTICLE 286

Table 3: Control limits for the EORTC data. Estimated using a simulation procedure so that the
probability of a type I error within 36 time units is approximately 0.05.

Ber BK CGR
0.9 2.29 3.23 4.90
2.1 2.93 3.89 5.51
11 4.71 6.43 6.49

• Medium: Centres 6-11: ψ̂ ≈ 2.1;
• Large: Centres 12-15: ψ̂ ≈ 11;

For each category, we determine the control limits to use in the CUSUM charts, using the
*_control_limit functions. For this, we restrict the simulated type I error over 60 time units to
0.05.

h <- matrix(0, nrow = 3, ncol = 3,
dimnames = list(c(0.9, 2.1, 11), c("Ber", "BK", "CGR")))

psi <- c(0.9, 2.1, 11)
for(i in 1:3){
h[i,1] <- bernoulli_control_limit(time = 60, alpha = 0.05, followup = 36,

psi = psi[i], n_sim = 300, theta = log(2), glmmod = glmmodEORTC,
baseline_data = breast)$h

h[i,2] <- bk_control_limit(time = 60, alpha = 0.05, psi = psi[i], n_sim = 300,
theta = log(2), coxphmod = phmodEORTC, baseline_data = breast)$h

h[i,3] <- cgr_control_limit(time = 60, alpha = 0.05, psi = psi[i],
n_sim = 300, coxphmod = phmodEORTC, baseline_data = breast)$h

}

The resulting control limits can be found in Table 3.

The columns represent the chart and the rows represent the estimated arrival rate. Using these
control limits, we determine the times of detection for the 15 centres using the runlength function.

times_detection <- matrix(0, nrow = 3, ncol = 15,
dimnames = list(c("Ber", "BK", "CGR"), 1:15))

for(i in 1:5){
times_detection[1,i] <- runlength(EORTC_charts[[i]]$ber, h = h[1,1])
times_detection[2,i] <- runlength(EORTC_charts[[i]]$bk, h = h[1,2])
times_detection[3,i] <- runlength(EORTC_charts[[i]]$cgr, h = h[1,3])

}
for(i in 6:11){
times_detection[1,i] <- runlength(EORTC_charts[[i]]$ber, h = h[2,1])
times_detection[2,i] <- runlength(EORTC_charts[[i]]$bk, h = h[2,2])
times_detection[3,i] <- runlength(EORTC_charts[[i]]$cgr, h = h[2,3])

}
for(i in 12:15){
times_detection[1,i] <- runlength(EORTC_charts[[i]]$ber, h = h[3,1])
times_detection[2,i] <- runlength(EORTC_charts[[i]]$bk, h = h[3,2])
times_detection[3,i] <- runlength(EORTC_charts[[i]]$cgr, h = h[3,3])

}

We determine the centres which were detected by any of the charts, and compare their detection
times.

ceiling(times_detection[,colSums(is.infinite(times_detection)) != 3])

#> 3 5 9 10 11 14
#> Ber 50 Inf 41 45 47 Inf
#> BK Inf 92 Inf 21 25 127
#> CGR 21 112 Inf 16 23 Inf

The columns represent the centre numbers, while the rows represent the CUSUM charts. We find
that the detections by the considered charts do not coincide perfectly with the centres detected by the

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 287

funnel plot (10, 11) at a 5 percent significance level. Comparing the continuous time methods, we see
that centre 5 is detected faster by the BK-CUSUM, while centres 10 and 11 are signaled faster by the
CGR-CUSUM. Centre 14 is only detected by the BK-CUSUM while centre 9 is only detected by the
Bernoulli CUSUM.

An important consideration when comparing detection times between discrete and continuous
time methods is that the discrete time charts inspect the survival probability of patients after 36 time
units, while the continuous time charts inspect overall survival. This means that the Bernoulli CUSUM
might detect a centre with high post operative failure proportions in the 36 time units after surgery.
However, it does not mean that patients necessarily experience failures faster than expected at this
centre as the Bernoulli CUSUM makes no distinction between a patient who has failed 1 time unit or
10 time units post treatment. This could explain why only the Bernoulli CUSUM detects centre 9.

For the continuous time charts it is important to keep in mind that multiple consecutive failures
cause the BK-CUSUM to jump up by log(2) for every failure, independent of the probability of failure
of the patients at that point in time. This can lead to fast detections when many failures are clustered.
The CGR-CUSUM can make smaller or larger jumps, depending on the failure probability for each
patient at the time of death. This could explain why only the BK-CUSUM detects Centre 14. For
centres with low volumes of patients, the maximum likelihood estimate in the CGR-CUSUM might
not converge quickly to an appropriate value therefore causing a delay in detection times. In contrast,
a wrong choice of θ1 in the BK-CUSUM may negatively influence detection times (Gomon et al. 2022).

We take a closer look at the disparities between detection times by visualising the funnel plot as
well as CUSUM charts for all centres in the EORTC data.

unnames <- paste(rep("Centre", 15), 1:15)
ber_EORTC <- lapply(EORTC_charts, FUN = function(x) x$ber)
bk_EORTC <- lapply(EORTC_charts, FUN = function(x) x$bk)
cgr_EORTC <- lapply(EORTC_charts, FUN = function(x) x$cgr)
for(i in 1:5){
ber_EORTC[[i]]$h <- h[1,1]
bk_EORTC[[i]]$h <- h[1,2]
cgr_EORTC[[i]]$h <- h[1,3]

}
for(i in 6:11){
ber_EORTC[[i]]$h <- h[2,1]
bk_EORTC[[i]]$h <- h[2,2]
cgr_EORTC[[i]]$h <- h[2,3]

}
for(i in 12:15){
ber_EORTC[[i]]$h <- h[3,1]
bk_EORTC[[i]]$h <- h[3,2]
cgr_EORTC[[i]]$h <- h[3,3]

}
cols <- palette.colors(6, "Set2")
col_manual <- rep("lightgrey", 15)
col_manual[c(3,5,9,10,11,14)] <- cols
t1 <- interactive_plot(ber_EORTC, unit_names = unnames,

scale = TRUE, group_by = "type",
manual_colors = col_manual)

t2 <- interactive_plot(bk_EORTC, unit_names = unnames,
scale = TRUE, group_by = "type",
manual_colors = col_manual)

t3 <- layout(interactive_plot(cgr_EORTC, unit_names = unnames,
scale = TRUE, group_by = "type",
manual_colors = col_manual))

t0 <- ggplotly(plot(EORTC_funnel))

The resulting plots are shown in Figure 9.

All hospitals detected during the time of the study by the CUSUM charts are highlighted, the
remaining centres are shown in gray. We can clearly see the 36 time unit delay in the Bernoulli CUSUM
charts. The CGR-CUSUM charts have high initial spikes when the first failures are observed. This
happens due to the instability of the maximum likelihood estimate θ̂(t) when only few failures have
been observed. After a sufficient amount of patients have been observed, the CGR-CUSUM makes a
clear distinction between centres with respect to their performance. Part of the centres retain a value
close to zero while for others the value increases over time. In contrast, the BK-CUSUM charts appear

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 288

0 250 500 750

0

10

20

30

0 20 40 60 80
−1

0

1

2

3

0 50 100 150
−1

0

1

2

3

0 50 100 150
−1

0

1

2

Prediction interval
Detection

(0.95,1)

(0.99,1)

(in-control,1)

cgrcusum
Centre 1
Centre 2
Centre 3
Centre 4
Centre 5
Centre 6
Centre 7
Centre 8
Centre 9
Centre 10
Centre 11
Centre 12
Centre 13
Centre 14
Centre 15

Funnel plot Bernoulli CUSUM

BK-CUSUM CGR-CUSUM

Figure 9: (Top left) Funnel plot of breast data. (Top right) Bernoulli, (Bottom left) BK- and (Bottom
right) CGR-CUSUM charts of all 15 centres. Centres not detected by any of the charts are greyed out.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 289

0 50 100 150
0

0.5

1

Centre 5
bercusum
Centre 5
bkcusum
Centre 5
cgrcusum

time

va
lu
e

Figure 10: Bernoulli, BK- and CGR-CUSUM for centre 5 of the breast data.

to be less stable, with centres almost hitting the control limit over the period of the study multiple
times. This could indicate that the value of θ = ln(2) is not suitable for these centres. Only centres 10
(purple) and 11 (lightgreen) were detected by all charts. From the value of the continuous time charts
we can presume that centre 10 had a cluster of failures at the beginning of the study, followed by a
period of (slightly) above average failures. The Bernoulli CUSUM does not provide such insights, as
failures come in 36 time units after surgery. It seems that centre 11 had a high rate of failure from the
start until the end of the study. Centre 9 (dark blue) was only detected by the Bernoulli CUSUM. This
disparity between discrete and continuous time charts mostly happens when the failure proportions at
36 time units post surgery are relatively large, but many patients fail at reasonable times (e.g. around
30 time units post surgery). From a visual inspection of the charts, this seems to be the case for Centre
9. Finally, Centre 5 was only detected by the continuous time CUSUM charts. We display all 3 CUSUM
charts for Centre 5 in Figure 10. The Bernoulli CUSUM only incorporates the information provided by
survival 36 time units after surgery. Because of this, the Bernoulli CUSUM can only be calculated up to
36 time units after the last patient had surgery (in this case, until the 89th time unit). The continuous
time charts can incorporate failures of patients at any point in time, therefore producing signals at later
times. While the BK-CUSUM always rises by ln(2) whenever a failure is observed, the CGR-CUSUM
can make jumps of different sizes, depending on the risk of failure of the observed patient. This causes
a disparity in the times of detection and also in interpretation of the values of the charts. As no patients
had surgery later than 60 time units after the start of the study, the arrival rate after 60 time units is
ψ = 0 for all centres, meaning detections at that point should be taken with a grain of salt.

5 Discussion

The success package implements three CUSUM methods for the inspection of the failure rate in
survival data in continuous time and the funnel plot. Using the parameter_assist function, quality
control charts can also be constructed by users unfamiliar with control chart and survival theory.

We would like to highlight the different type of outcome and purpose of the control charts in
this package. The funnel plot should not be used for the continuous inspection of survival data, as it
can only be used to test for a difference in failure proportion at a fixed point in time. The Bernoulli
CUSUM is closest to the funnel plot, as it uses the same outcome to determine chart values. The
Bernoulli CUSUM is suitable for continuous inspection, but the followup time has a great impact
on the resulting conclusions as well as the choice of the expected increase in hazard ratio theta. In
contrast, the BK-CUSUM can incorporate patient failures at any point in time, but also requires the
specification of theta a priori. The CGR-CUSUM does not have this downside, and as the increase in
failure rate is never known in advance in practical applications, it can lead to quicker detection times.
Finally, the CUSUM charts test different hypotheses, nuancing their interpretation even further: the
Bernoulli and CGR-CUSUM charts can be used to test for a change in the failure rate starting from
some patient, while the BK-CUSUM can be used to test for a sudden change in the failure rate of all
patients.

The funnel plot, Bernoulli CUSUM and BK-CUSUM do not require a lot of computational power,
whereas the computation of the CGR-CUSUM is more sophisticated and can require more time. For
this reason, we provide the user the option to parallelize the computation of this chart. A key part of
CUSUM charts are their control limits, which are mostly determined using simulation studies due to
the lack of analytical results. This can be done using the *_control_limit functions in the success
package. The time required to compute control limits depends on the value of the arrival rate psi and
the proportion of failures in the data. A higher value of psi means more patients have to be accounted

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=success
https://CRAN.R-project.org/package=success

CONTRIBUTED RESEARCH ARTICLE 290

for, and a higher failure proportion means chart values need to be calculated more often. For the breast
cancer data, determining control limits took approximately 10 minutes in total (using a consumer
grade laptop), on a simulated sample of 300 in-control centres.

It is important to determine appropriate control limits for the inspection of survival processes using
CUSUM charts. The chosen value of psi greatly influences the value of the control limit. Heuristically,
this can be compared with the prediction intervals in the funnel plot. As the number of outcomes in a
centre increases, the prediction intervals become narrower. For the CUSUM charts, this is expressed in
the control limit.

6 Acknowledgements

The authors thank the European Organization for Research and Treatment of Cancer for permission to
apply our methods on data based on an EORTC study. The contents of this publication and methods
used are solely the responsibility of the authors and do not necessarily represent the official views of
the EORTC.

References

Anhoej, Jacob. 2021. qicharts: Quality Improvement Charts. https://CRAN.R-project.org/package=
qicharts.

Austin, P. C. 2012. “Generating Survival Times to Simulate Cox Proportional Hazards Models with
Time-Varying Covariates.” Statistics in Medicine 31 (29): 3946–58. https://doi.org/10.1002/sim.
5452.

Biswas, P., and J. D. Kalbfleisch. 2008. “A Risk-adjusted CUSUM in Continuous Time Based on the
Cox Model.” Statistics in Medicine 27: 3452–52. https://doi.org/10.1002/sim.3216.

Cook, David, M Coory, and R Webster. 2011. “Exponentially Weighted Moving Average Charts to
Compare Observed and Expected Values for Monitoring Risk-Adjusted Hospital Indicators.” BMJ
Quality and Safety 20 (May): 469–74. http://dx.doi.org/10.1136/bmjqs.2008.031831.

Cox, D. R. 1972. “Regression Models and Life-Tables.” Journal of the Royal Statistical Society. Series B
(Methodological) 34 (2): 187–220. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x.

Flores, Miguel. 2021. qcr: Quality Control Review. https://CRAN.R-project.org/package=qcr.
Gomon, Daniel, Hein Putter, Rob G. H. H. Nelissen, and Stéphanie van der Pas. 2022. “CGR-

Cusum: A Continuous Time Generalized Rapid Response Cumulative Sum Chart.” Biostatistics.
https://doi.org/10.1093/biostatistics/kxac041.

Grey, Kenith. 2018. ggQC: Quality Control Charts for ’Ggplot’. https://CRAN.R-project.org/package=
ggQC.

Grigg, O. A. 2018. “The STRAND Chart: A Survival Time Control Chart.” Statistics in Medicine 38 (9):
1651–61. https://doi.org/10.1002/sim.8065.

Hubig, Lena. 2019. cusum: Cumulative Sum (CUSUM) Charts for Monitoring of Hospital Performance.
https://CRAN.R-project.org/package=cusum.

Keefe, Matthew J., Justin B. Loda, Ahmad E. Elhabashy, and William H. Woodall. 2017. “Improved
Implementation of the Risk-Adjusted Bernoulli CUSUM Chart to Monitor Surgical Outcome
Quality.” International Journal for Quality in Health Care 29 (3): 343–48. https://doi.org/10.1093/
intqhc/mzx036.

Knoth, Sven. 2021. spc: Statistical Process Control – Calculation of ARL and Other Control Chart Performance
Measures. https://CRAN.R-project.org/package=spc.

Kumar, Matthew. 2018. funnelR: Funnel Plots for Proportion Data. https://CRAN.R-project.org/
package=funnelR.

Scrucca, Luca. 2004. “Qcc: An R Package for Quality Control Charting and Statistical Process Control.”
R News 4/1: 11–17. https://CRAN.R-project.org/package=qcc.

Sievert, Carson. 2020. Interactive Web-Based Data Visualization with R, Plotly, and Shiny. Chapman;
Hall/CRC. https://plotly-r.com.

Solymos, Peter, and Zygmunt Zawadzki. 2021. pbapply: Adding Progress Bar to ’*Apply’ Functions.
https://CRAN.R-project.org/package=pbapply.

Spiegelhalter, D. J. 2005. “Funnel Plots for Comparing Institutional Performance.” Statistics in Medicine
24 (8): 1185–1202. https://doi.org/10.1002/sim.1970.

Steiner, S. H., R. J. Cook, V. T. Farewell, and T. Treasure. 2000. “Monitoring Surgical Performance
Using Risk-Adjusted Cumulative Sum Charts.” Biostatistics 1 (4): 441–52. https://doi.org/10.
1093/biostatistics/1.4.441.

Steiner, S. H., and M. Jones. 2009. “Risk-Adjusted Survival Time Monitoring with an Updating
Exponentially Weighted Moving Average (EWMA) Control Chart.” Statistics in Medicine 29 (4):
444–54. https://doi.org/10.1002/sim.3788.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=qicharts
https://CRAN.R-project.org/package=qicharts
https://doi.org/10.1002/sim.5452
https://doi.org/10.1002/sim.5452
https://doi.org/10.1002/sim.3216
http://dx.doi.org/10.1136/bmjqs.2008.031831
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://CRAN.R-project.org/package=qcr
https://doi.org/10.1093/biostatistics/kxac041
https://CRAN.R-project.org/package=ggQC
https://CRAN.R-project.org/package=ggQC
https://doi.org/10.1002/sim.8065
https://CRAN.R-project.org/package=cusum
https://doi.org/10.1093/intqhc/mzx036
https://doi.org/10.1093/intqhc/mzx036
https://CRAN.R-project.org/package=spc
https://CRAN.R-project.org/package=funnelR
https://CRAN.R-project.org/package=funnelR
https://CRAN.R-project.org/package=qcc
https://plotly-r.com
https://CRAN.R-project.org/package=pbapply
https://doi.org/10.1002/sim.1970
https://doi.org/10.1093/biostatistics/1.4.441
https://doi.org/10.1093/biostatistics/1.4.441
https://doi.org/10.1002/sim.3788

CONTRIBUTED RESEARCH ARTICLE 291

Terry M. Therneau, and Patricia M. Grambsch. 2000. Modeling Survival Data: Extending the Cox Model.
New York: Springer.

Wickham, Hadley. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org.

Wittenberg, Philipp, and Sven Knoth. 2020. vlad: Variable Life Adjusted Display and Other Risk-Adjusted
Quality Control Charts. https://CRAN.R-project.org/package=vlad.

Daniel Gomon
Leiden University
Mathematical Institute
Niels Bohrweg 1
2333CA Leiden, the Netherlands
https://github.com/d-gomon
ORCiD: 0000-0001-9011-3743
d.gomon@math.leidenuniv.nl

Marta Fiocco
Leiden University
Mathematical Institute
Niels Bohrweg 1
2333CA Leiden, the Netherlands
ORCiD: 0000-0001-5588-0277

Hein Putter
Leiden University
Mathematical Institute
Niels Bohrweg 1
2333CA Leiden, the Netherlands
ORCiD: 0000-0001-5395-1422

Mirko Signorelli
Leiden University
Mathematical Institute
Niels Bohrweg 1
2333CA Leiden, the Netherlands
ORCiD: 0000-0002-8102-3356

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=vlad
https://github.com/d-gomon
https://orcid.org/0000-0001-9011-3743
mailto:d.gomon@math.leidenuniv.nl
https://orcid.org/0000-0001-5588-0277
https://orcid.org/0000-0001-5395-1422
https://orcid.org/0000-0002-8102-3356

CONTRIBUTED RESEARCH ARTICLE 292

Changes in R
by Tomas Kalibera and Sebastian Meyer

Abstract We present selected changes in the development version of R (referred to as R-devel, to
become R 4.4) and provide some statistics on bug tracking activities in 2023.

1 Selected changes in R-devel

R 4.4.0 is due to be released around April 2024. The following gives a selection of changes in R-devel,
which are likely to appear in the new release. The summaries below include text contributed by
authors of some of the changes: Peter Dalgaard, Martyn Plummer, Brian Ripley, Deepayan Sarkar and
Luke Tierney.

• The anova() function is used for analysis of variance for linear models and analysis of deviance
for generalized linear models (GLMs). Previously the anova() function behaved differently for
GLMs: it would not show test statistics and p-values by default, instead relying on the user
to specify the required test statistic. Thanks to changes to "family" objects already included
in R 4.3.0, the anova() function can now determine an appropriate default test for comparing
two GLMs ("LRT" for families with a fixed dispersion parameter and "F" for families with free
dispersion) and will show this along with the associated p-value.

• As part of the process of allowing the use of Rao’s score test in connection with glm(), the
confint() method for "glm" objects now allows test = "Rao", as does the underlying profile()
method. To enable this, the code for these functions, and also the corresponding plot() and
pairs() methods, was copied from the MASS package to the R sources before modification.
The pairs() method has also been revised to better handle the case where only a subset of
parameters have been profiled.

• R 4.4.0 will include support for producing single-page HTML reference manuals for an entire
package, similar to the PDF reference manuals currently hosted on CRAN package pages. It
will also include support for a table of contents in HTML help pages, which is controlled by
options("help.htmltoc").

• R 4.3.0 added support for experimenting with alternate object systems by providing the
chooseOpsMethod() generic for resolving method selection for Ops group generics, and the
nameOfClass() generic to allow more flexible class representations to be used in inherits(). In
addition, @ became an internal generic, @<- already was. R 4.4.0 will add internal support for
bare objects by renaming the S4SXP type to OBJSXP and having typeof() return "object" for
generic bare objects. For now, generic bare S4 objects are distinguished by having a special bit
set; it is hoped that this can eventually be dropped.

• R relies on the system libiconv for encoding conversions, especially from UTF-8. Apple replaced
completely its libiconv in macOS 14 with substantial revisions in 14.1 and 14.2: rather than
reporting errors when an exact conversion is not possible, it in almost all cases attempts
‘transliteration’ so for example permille (“‰”) is rendered as “o/oo”.
musl (as used by Alpine Linux) has long substituted “*“, but we now faced converted strings
growing in length. Issues were particularly seen when plotting on pdf() devices and it became
clear many package authors had never looked at their graphical output. That suggested that
transliteration was a safer route, and now R transliterates if the system libiconv has not got
there first and so (except in rare cases and under musl) R will give the same PDF output on all
platforms.

• Rprof(), the sampling profiler in R, now supports profiling in “elapsed” time (a.k.a. wall-clock
time, real-time) on Unix in addition to “cpu” time. When profiling in elapsed time, the time
advances also while R is waiting on I/O, so it may be preferred for some kinds of analysis in
I/O intensive applications. Also, elapsed time profiling is the only one currently supported on
Windows, so it is good to have a matching option on Unix.

• R gained initial support for 64-bit ARM hardware on Windows (macOS and Linux machines
are already supported). It is already possible to build R and recommended packages from
source and they pass their automated checks. Testing and porting of other CRAN packages has
been started, with a number of patches contributed to package maintainers. This effort uses
an experimental LLVM-based toolchain with the new flang compiler, which has been added to
Rtools. In addition to actually supporting 64-bit ARM Windows machines, which are still rare
but emerging, this effort also drives portability improvements of R and R packages. Previously,
a lot of this code explicitly or implicitly assumed GCC compilers and Intel CPUs on Windows.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 293

• The R CMD check utility for package development performs some additional checks on R
documentation (Rd) files. The most prominent addition (in the sense that over 3000 CRAN
packages were affected) is a new note about “lost braces”. In (LaTeX-like) Rd syntax, braces are
used to mark arguments and otherwise group tokens; they must be escaped as \{ and \} to
be included literally in normal text. The new check tries hard to report relevant mistakes, for
example:

– code{...}: missing backslash in front of the macro name
– {1, 2}: in-text set notation, where the braces need escaping or the whole expression needs

to be put inside a math \eqn{}
– \itemize{ ... \item{label}{description} ... }: Rd code meant as a description

list with initial labels; this needs \describe instead of \itemize, otherwise the element
becomes “labeldescription” because an \itemize \item does not take any arguments.

• A new binary infix operator %||% is defined in base. This is the so-called null coalescing operator:
x %||% y expresses “use x if not NULL, otherwise use y”.

• is.atomic(NULL) now returns FALSE and thus behaves according to the R language definition of
an atomic vector (RShowDoc("R-lang"), Section 2.1.1), which covers the six basic types logical,
integer, double, complex, character and raw. For historical reasons (compatibility with S),
is.atomic(NULL) gave TRUE in R < 4.4.0, treating NULL loosely as “any vector of size 0”. Similarly,
NCOL(NULL) returned 1 but now gives 0.

• There is a new startup option --max-connections to set the maximum number of connections
for the R session. It defaults to 128 as before. Values up to 4096 are allowed, but resource
limits may in practice restrict to smaller values. This enables advanced users to configure R in
environments where a large number of connections (e.g., network) is needed.

• R 4.4.0 on recent Windows will use the new Segment Heap allocator provided by the system.
This new allocator has slightly better performance on some applications than the default Low
Fragmentation Heap allocator, with the hope that it would be further improved in future
versions of Windows.

• R makes use of a system libdeflate library if available, in preference to the system libz library.
This can speed up decompressing R objects in lazy-loading databases and other operations.

See the NEWS.Rd file in the R sources for a more complete list; nightly rendered versions are avail-
able at https://CRAN.R-project.org/doc/manuals/r-devel/NEWS.html with RSS feeds at https:
//developer.R-project.org/RSSfeeds.html.

2 Bug statistics for 2023

Summaries of bug-related activities over the past year were derived from the database underlying R’s
Bugzilla system. Overall, 186 new bugs or requests for enhancements were reported, 204 reports were
closed, and 942 comments were added by a total of 120 contributors. The numbers of new reports and
contributors were comparable to 2022, but comments increased by 8% and closures by 20%. Higher
activity in 2023 was driven by a dedicated effort in reviewing and discussing open reports during the
R Project Sprint at the University of Warwick, UK, 30 August to 1 September (Turner and Becker 2023).

Figure 1 shows the monthly numbers of new reports, closures and comments in 2023. Comment
activity was relatively low in July and peaked in September due to the sprint.

The top 5 components reporters have chosen for their reports were “Low-level”, “Misc”, “Lan-
guage”, “Documentation”, and “Accuracy”. 9% of the reports were suggestions for enhancements
that were submitted either in the “Wishlist” component or in a specific component but with severity
level set to “enhancement”.

References

Turner, Heather, and Gabriel Becker. 2023. “R Project Sprint 2023.” The R Journal 15: 299–305.
https://journal.R-project.org/news/RJ-2023-3-sprint.

Tomas Kalibera
R Core Team
Prague, Czechia
ORCiD: 0000-0002-7435-734X
Tomas.Kalibera@R-project.org

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/doc/manuals/r-devel/NEWS.html
https://developer.R-project.org/RSSfeeds.html
https://developer.R-project.org/RSSfeeds.html
https://bugs.R-project.org/
https://bugs.R-project.org/
https://journal.R-project.org/news/RJ-2023-3-sprint
https://orcid.org/0000-0002-7435-734X
mailto:Tomas.Kalibera@R-project.org

CONTRIBUTED RESEARCH ARTICLE 294

N
um

be
r

of
 b

ug
s

0

5

10

15

20

25

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

new closed

N
um

be
r

of
 c

om
m

en
ts

0

50

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 1: Bug tracking activity by month in 2023.

Sebastian Meyer
Friedrich-Alexander-Universität Erlangen-Nürnberg
Erlangen, Germany
ORCiD: 0000-0002-1791-9449
Sebastian.Meyer@R-project.org

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://orcid.org/0000-0002-1791-9449
mailto:Sebastian.Meyer@R-project.org

CONTRIBUTED RESEARCH ARTICLE 295

Changes on CRAN
2023-10-01 to 2023-12-31

by Kurt Hornik, Uwe Ligges, and Achim Zeileis

1 CRAN growth

In the past 3 months, 455 new packages were added to the CRAN package repository.
217 packages were unarchived, 362 were archived and 1 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:

2000 2010 2020

0
50

00
10

00
0

15
00

0
20

00
0

Year

Number of CRAN Packages

2000 2010 2020

50
10

0
20

0
50

0
10

00
20

00
50

00
20

00
0

Year

Number of CRAN Packages (Log−Scale)

On 2023-12-31, the number of active packages was around 20249.

2 CRAN package submissions

From October 2023 to December 2023 CRAN received 7408 package submissions. For these,
12015 actions took place of which 8598 (72%) were auto processed actions and 3417 (28%)
manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting

auto 2489 749 1627 18 0 2352 842 521
manual 1178 73 58 206 75 1380 379 68

These include the final decisions for the submissions which were

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 296

archive publish

auto 2394 (32.9%) 2045 (28.1%)
manual 1162 (16.0%) 1681 (23.1%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

3 CRAN mirror security

Currently, there are 94 official CRAN mirrors, 77 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

4 CRAN Task View Initiative

Currently there are 44 task views (see https://CRAN.R-project.org/web/views/), with
median and mean numbers of CRAN packages covered 104 and 123, respectively. Overall,
these task views cover 4516 CRAN packages, which is about 22% of all active CRAN
packages.

Kurt Hornik
WU Wirtschaftsuniversität Wien
Austria
ORCiD: 0000-0003-4198-9911
Kurt.Hornik@R-project.org

Uwe Ligges
TU Dortmund
Germany
ORCiD: 0000-0001-5875-6167
Uwe.Ligges@R-project.org

Achim Zeileis
Universität Innsbruck
Austria
ORCiD: 0000-0003-0918-3766
Achim.Zeileis@R-project.org

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://CRAN.R-project.org/web/views/
https://orcid.org/0000-0003-4198-9911
mailto:Kurt.Hornik@R-project.org
https://orcid.org/0000-0001-5875-6167
mailto:Uwe.Ligges@R-project.org
https://orcid.org/0000-0003-0918-3766
mailto:Achim.Zeileis@R-project.org

CONTRIBUTED RESEARCH ARTICLE 297

News from the Forwards Taskforce
by Heather Turner

Abstract Forwards is an R Foundation taskforce working to widen the participation of under-
represented groups in the R project and in related activities, such as the useR! conference. This
report rounds up activities of the taskforce during 2023.

1 Accessibility

Di Cook, along with Mitchell O’Hara Wild, co-mentored Abhishek Ulayil on a Google Summer of
Code (GSoC) 2023 project converting past R Journal articles to HTML continuing from work started in
GSoC 2022. Further improvements were made to the R packages written for the conversion, enabling
HTML versions to be created for all articles in the archive.

Di Cook, Heather Turner and Jonathan Godfrey are leading an R Consortium funded project to
begin adding alt text to the figures in the converted HTML articles, to make them fully accessible.

At R Project Sprint 2023, Jonathan Godfrey collaborated with participants on a couple of accessibil-
ity issues, now incorporated BrailleR. Work with Deepayan Sarkar led to improvement in the ability
to extract content of graphics devices, see summary.recordedplot(). Work with Gabriel Becker led to
a working solution to extract recent console output, see the ShowMe(), SessionLog(), and GrabLast()
functions.

2 Community engagement

Kevin O’Brien, Ella Kaye and Heather Turner attended SatRdays London 2023. This
was an opportunity to catch up with community organizers, including Tuli Amutenya and Emmanuel
Olawale Olamijuwon, from Namibia and Eswatini R User Groups respectively, now working in UK.
Ella and Heather gave a talk on Sustainability and EDI in the R Project, giving an overview of their
work as part of Heather’s research fellowship on this topic.

RainbowR, led by Ella Kaye and Hanne Oberman, have increased the frequency of their online
meetups and are now meeting monthly. At the end of November, they launched a pilot buddy scheme
to foster stronger connections between community members, with a plan to pair people up with
buddies every three months.

Also in November, Kevin O’Brien started a monthly community call for organizers of R User
Groups - upcoming meetings can be found on the Global R User Group meetup.

3 Conferences

Julie Josse is on the program committee for useR! 2024 and Forwards have been involved in suggesting
people for keynotes and the organizing/program committees.

Yanina Bellini Saibene co-chaired LatinR 2023 along with Natalia da Silva and Riva Quiroga. This
was the first in-person LatinR since going online in 2020 and the first time R experts from outside
Latin America attended as keynotes and instructors. The conference was attended by 300 people
from 14 different countries and of the 82% who reported their gender, 48% identified themselves as
women. Thanks to sponsor support, scholarships were awarded to 25 participants. As in previous
years, content was presented in Spanish, Portuguese, and English. In future, the conference will
alternate between in-person and online format.

4 R Contribution

Forwards members continue to play an active role in the R Contribution Working Group (RCWG).

Heather Turner and Ella Kaye, have been regular facilitators of the monthly office hours for R
contributors, along with Gabriel Becker. Thanks to the R Consortium, these office hours are now
advertised on the R Contributors Meetup, along with other RCWG events, which has help to sustain
good attendance.

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://forwards.github.io/
https://summerofcode.withgoogle.com/programs/2023/projects/4ygPTJA9
https://CRAN.R-project.org/package=BrailleR
https://www.youtube.com/watch?v=yW6kRqktYQU
https://rainbowr.netlify.app/
https://rainbowr.netlify.app/posts/2023-11-16_introducing-buddies/
https://www.meetup.com/globalr/
https://latin-r.com
https://www.meetup.com/R-Contributors/

CONTRIBUTED RESEARCH ARTICLE 298

Saranjeet Kaur Bhogal continued work on the R Development Guide, with funding remaining
from the Google Season of Docs (GSoD) 2022. This work improved structure and content, based on
reviews by the steering committee.

Several Forwards members were involved in R Project Sprint 2023 (a full report of this event was
published in the R Journal Volume 15/3). One important outcome of the sprint was a new section
in the R Dev Guide on How to contribute new translations using the Weblate interface, which only
existed as a prototype when the translation chapter was added as part of the GSoD 2022 project.

Heather Turner, along with James Tripp, mentored Atharva Shirdhankar on a Google Summer
of Code 2023 project creating the R Dev Container a GitHub Codespace providing a containerised
development environment for editing and compiling the R source code. The prototype proved useful
at the R Project Sprint and further development is planned to improve on the first version.

At LatinR 2023, Pao Corrales gave a lightning talk with María Nanton on contributing translations
to R and they co-organized a translation space. The Spanish translation coverage increased from 40%
to 42% during the event. Heather Turner gave a keynote on Contributing to R at the II Conference of R
in Barcelona in November, where the audience were happy to hear that a Catalan translation has been
started, with initial translations due to be added to R 4.4.0.

5 Social Media

Zane Daz, Ella Kaye, gwynn gebeyehu and Heather Turner gave the Forwards website a long overdue
update, switching from the previous Hugo/blogdown framework to Quarto. This should be easier to
maintain and we hope to add some fresh content in 2024.

6 Changes in Membership

6.1 Previous members

The following members have stepped down:

• Teaching team: Emily Dodwell, Ritwik Mitra
• Community team: Sam Toet
• Conferences team: Yanina Bellini Saibene (co-leader), Noa Tamir (co-leader)
• Surveys team: Andrea Sánchez-Tapia (co-leader), Claudia Huaylla
• On-ramps team: Jyoti Bhogal, Allison Vuong

We thank them for their contribution to the taskforce.

Heather Turner
University of Warwick
Coventry, United Kingdom
https://warwick.ac.uk/heatherturner
ORCiD: 0000-0002-1256-3375
heather.turner@r-project.org

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://contributor.r-project.org/rdevguide/
https://contributor.r-project.org/rdevguide/message-translations.html#how-to-contribute-new-translations
https://github.com/r-devel/r-dev-env
https://hturner.github.io/IIConferenceOfR/
https://warwick.ac.uk/heatherturner
https://orcid.org/0000-0002-1256-3375
mailto:heather.turner@r-project.org

CONTRIBUTED RESEARCH ARTICLE 299

R Foundation News
by Torsten Hothorn

1 Donations and members

Membership fees and donations received between

2023-10-20 and 2024-04-12.

2 Donations

b-data GmbH (Switzerland)

SAS EUREKA MER (France)

Gilberto Camara (Brazil)

Keith Chamberlain (United States)

Giles Dickenson-Jones (Australia)

Shalese Fitzgerald (United States)

Roger Koenker (United Kingdom)

Flavio Lombardo (Switzerland)

Rudolph Martin (United States)

Rees Morrison (United States)

Quintessa Ltd (United Kingdom)

Kem Phillips (United States)

Alexandra Pippitt (United States)

Bruno Rodrigues (Luxembourg)

David Smith (United States)

Rav Vaid (United States)

Alejandro Verri Kozlowski (Argentina)

Yihui Xie (China)

ilustat, Lisbon (Portugal)

Statistik Aargau, Aarau (Switzerland)

3 Supporting institutions

Departement Klinische Forschung, Basel (Switzerland)

Ef-prime, Inc., Tokyo (Japan)

Institute of Botany of the Czech Academy of Sciences, Průhonice (Czechia)

oikostat GmbH, Ettiswil (Switzerland)

4 Supporting members

Richard Abdill (United States)

Douglas Adamoski (Brazil)

Mohammed Almozini (Saudi Arabia)

Tim Appelhans (Germany)

Tim Arbogast (United States)

Michael Blanks (United States)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 300

Emmanuel Blondel (France)

Gordon Blunt (United Kingdom)

Riccardo Bonfichi (Italy)

Tom Boulay (United States)

Tamara Bozovic (New Zealand)

Keith Chamberlain (United States)

Cédric Chambru (Switzerland)

John Chandler (United States)

Michael Chirico (United States)

Tom Clarke (United Kingdom)

Gerard Conaghan (United Kingdom)

Robin Crockett (United Kingdom)

Alistair Cullum (United States)

Brandon Dahl (United States)

Robert Daly (Australia)

Kevin DeMaio (United States)

Anna Doizy (Réunion)

Fraser Edwards (United Kingdom)

Anthony Alan Egerton (Malaysia)

Isaac Florence (United Kingdom)

Neil Frazer (United States)

David Freedman (United States)

Bernd Fröhlich (Germany)

Sven Garbade (Germany)

Jan Marvin Garbuszus (Germany)

Eduardo García Galea (Spain)

Gabriel Gersztein (Brazil)

SUJOY GHOSH (United States)

Anne Catherine Gieshoff (Switzerland)

Pavel Goriacko (United States)

Brian Gramberg (Netherlands)

Spencer Graves (United States)

Krushi Gurudu (United States)

Frank Hafner (United States)

Hlynur Hallgrímsson (Iceland)

Joe Harwood (United Kingdom)

Bela Hausmann (Austria)

Kieran Healy (United States)

Philippe Heymans Smith (Costa Rica)

Adam Hill (United States)

Alexander Huelle (Germany)

Heidi Imker (United States)

Sebastian Jeworutzki (Germany)

JUNE KEE KIM (Korea, Republic of)

Ziyad Knio (United States)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 301

Sebastian Koehler (Germany)

Chris Kuty (United States)

Luca La Rocca (Italy)

Vishal Lama (United States)

Thierry Lecerf (Switzerland)

Thomas Levine (United States)

Eric Lim (United Kingdom)

Baoxiao Liu (Netherlands)

Joseph Luchman (United States)

Mehrad Mahmoudian (Finland)

Gilles Marodon (France)

Daniel McNichol (United States)

Philippe MICHEL (France)

Bogdan-Alexandru Micu (Luxembourg)

Ernst Molitor (Germany)

David Monterde (Spain)

Stefan Moog (Germany)

Keon-Woong Moon (Korea, Republic of)

Steffen Moritz (Germany)

yoshinobu nakahashi (Japan)

Tsubasa Narihiro (Japan)

Maciej Nasinski (Poland)

Dan Orsholits (Switzerland)

Antonio Paez (Canada)

Sermet Pekin (Turkey)

Elgin Perry (United States)

PierGianLuca Porta Mana (Norway)

Fergus Reig Gracia (Spain)

Peter Ruckdeschel (Germany)

Ingo Ruczinski (United States)

Choonghyun Ryu (Korea, Republic of)

John Schmitt (United States)

Raoul Schorer (Switzerland)

Dejan Schuster (Germany)

Ivan Scotti (France)

David Sides (United States)

Rachel Smith-Hunter (United States)

Matteo Starri (Italy)

Harald Sterly (Germany)

Tobias Strapatsas (Germany)

Kai Streicher (Switzerland)

ROBERT Szabo (Sweden)

Jan Tarabek (Czechia)

Koray Tascilar (Germany)

Chris Toney (United States)

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 302

Robert van den Berg (Austria)

Marcus Vollmer (Germany)

Petr Waldauf (Czechia)

Jaap Walhout (Netherlands)

Sandra Ware (Australia)

Fredrik Wartenberg (Sweden)

Sam Waters (United States)

Dieter Wilhelm (Germany)

Nan Xiao (United States)

Matti Zemack (Sweden)

Vaidotas Zemlys-Balevičius (Lithuania)

Lim Zhong Hao (Singapore)

Guangyu Zeng (China)

Torsten Hothorn
Universität Zürich
Switzerland
ORCiD: 0000-0001-8301-0471
Torsten.Hothorn@R-project.org

The R Journal Vol. 15/4, December 2023 ISSN 2073-4859

https://orcid.org/0000-0001-8301-0471
mailto:Torsten.Hothorn@R-project.org

	Editorial
	In this issue

	SIMEXBoost: An R package for Analysis of High-Dimensional Error-Prone Data Based on Boosting Method
	Introduction
	Notation, Models, and Boosting Procedure
	Model
	Boosting Procedure

	A Modified Boosting Method with the Presence of Covariate Measurement Error
	Measurement Error Models
	Boosting with Measurement Error Correction

	Description and Implementation of SIMEXBoost
	Numerical Studies and Demonstration of Programming Code
	Simulation Studies
	Real Data Example

	Discussion

	binGroup2: Statistical Tools for Infection Identification via Group Testing
	Introduction
	Algorithms
	Hierarchical algorithms
	Non-hierarchical algorithms
	Additional considerations

	Identification
	Main functions
	Operating characteristics
	Optimal testing configuration
	Additional functions

	Conclusion
	Acknowledgments

	multiocc: An R Package for Spatio-Temporal Occupancy Models for Multiple Species
	Introduction
	Scientific Background
	The multiocc package
	Example
	Conclusion

	Accessible Computation of Tight Symbolic Bounds on Causal Effects using an Intuitive Graphical Interface
	Introduction
	Graphical user interface
	Specifying the setting by drawing a causal diagram and adding attributes
	Specifying the causal query
	Specifying optional additional constraints
	Computing the symbolic tight bounds on the query under the given constraints

	Programmatic user interface
	Implementation and program overview
	Numeric examples
	A Mediation Analysis
	A Mendelian Randomization Study of the Effect of Homocysteine on Cardiovascular Disease

	Summary and discussion

	singR: An R Package for Simultaneous Non-Gaussian Component Analysis for Data Integration
	Introduction
	Methods
	Linear non-Gaussian Component Analysis
	Simultaneous non-Gaussian component analysis model

	Overview of functions
	Examples
	Example 1. The toy datasets decomposition
	Example 2. MRI data simulation

	Summary
	Acknowledgments
	References

	RobustCalibration: Robust Calibration of Computer Models in R
	Introduction
	An overview of RobustCalibration
	Main functions
	The rcalibration function
	The predict.rcalibration function
	The rcalibration_MS function and the predict_MS.rcalibration_MS function

	Methods and examples
	No-discrepancy calibration
	Gaussian stochastic process models of discrepancy functions
	Scaled Gaussian stochastic process models of discrepancy functions
	Calibration with repeated experiments
	Statistical emulators
	Calibration with multiple sources of observations

	Concluding remarks
	Appendix
	Auxiliary facts
	Likelihood functions and posterior distributions

	glmmPen: High Dimensional Penalized Generalized Linear Mixed Models
	Introduction
	Generalized linear mixed models
	MCECM algorithm
	Monte Carlo E-step
	M-step
	Initialization and convergence

	Tuning parameter selection
	Penalty sequence specification
	Tuning parameter selection strategy
	Optimal tuning parameter selection

	Software
	Data example
	Full model specification
	Penalization and optimal tuning parameter selection
	Examination of output
	Optimization

	Simulations
	Simulation set-up
	Pre-screening performance

	Conclusion

	Unified ROC Curve Estimator for Diagnosis and Prognosis Studies: The sMSROC Package
	Introduction
	The two-stage mixed subjects receiver operating-characteristic curve estimator
	An overview of the package
	Primary functions
	Exploratory data analysis
	Main function
	Summarize and plot functions

	Example 3: the fibrosis dataset
	Conclusions

	Sparse Model Matrices for Multidimensional Hierarchical Aggregation
	Introduction
	The function ModelMatrix
	Model matrix from formula
	Model matrix from hierarchies

	Underlying computations
	Hierarchies automatically from the data
	From hierarchies to dummy matrices

	Two-way computation
	The function HierarchyCompute
	HierarchyCompute with colVar

	Aggregation beyond summation
	Comparisons with comments
	Applications in other R packages
	Conclusion
	Acknowledgements
	References

	openalexR: An R-Tool for Collecting Bibliometric Data from OpenAlex
	Introduction
	OpenAlex

	Implementation of openalexR
	Installation of openalexR
	Polite use
	Examples of use
	The bibliometrics concept
	Bibliometrics dataset
	Most relevant sources
	Most relevant authors and institutions
	Most relevant works
	Snowball search
	N-grams

	Summary
	Acknowledgements
	Supplementary material

	Computer Algebra in R Bridges a Gap Between Symbolic Mathematics and Data in the Teaching of Statistics and Data Science
	Introduction
	Installation

	Introducing caracas
	Symbols
	Linear algebra
	Linear algebra - using reticulate
	Functionality and R syntax provided by caracas
	Algebra and calculus

	Statistics examples
	Example: Linear models
	Example: Logistic regression
	Example: Constrained maximum likelihood
	Example: An auto regression model
	Example: Variance of average of correlated variables

	Further topics
	Integration, limits, and unevaluated expressions
	Documents with mathematical content
	Extending caracas
	Switching back and forth between caracas and reticulate

	Hands-on activities
	Discussion
	Acknowledgements
	References

	A Comparison of R Tools for Nonlinear Least Squares Modeling
	The nls() function
	Scope of our comparison
	Some other CRAN packages for nonlinear modeling
	An illustrative example
	Problem setup

	Estimation of models specified as formulas
	Solution attempts with nlsr
	Solution attempts with minpack.lm
	Solution attempts with gslnls
	Comparison notes for formula-setup solutions

	Functional specification of problems
	Design goals, termination tests, and output objects
	Returned results of nls() and other tools
	When to compute ancillary information

	Jacobian calculation
	Jacobian code in selfStart models

	Bounds constraints on parameters
	Philosophical considerations
	Fixed parameters (masks)

	Stabilization of Gauss-Newton computations
	Programming language

	Data sources for problems
	Feature: Subsetting
	Feature: na.action (missing value treatment)
	Feature: model frame
	Weights on observations
	Weights in returned functions from nls()

	Minor issues with nonlinear least-squares tools
	Interim output from the ``port'' algorithm
	Failure to return the best result achieved

	Estimating models that are partially linear
	Models with indexed parameters
	Tests and use-case examples
	Documentation and resources
	Future of nonlinear model estimation in R
	Acknowledgments
	References

	exvatools: Value Added in Exports and Other Input-Output Table Analysis Tools
	Introduction
	Background methodology
	The international input-output framework
	The demand model
	Value added in trade

	Creating and manipulating input-output matrices
	Usage
	Source data
	Commands for input-output matrix manipulation

	Decomposition of value added in exports
	Methodology: extracting double counting and re-imports
	Usage
	Examples

	Direction (origin and destination) of value added
	Methodology
	Usage
	Example

	Sector and geographic analysis
	Breaking down decompositions
	Extracting data from exvatools objects
	Other useful commands
	Detailed origin of value added
	Detailed final absorption of value added
	Value added induced by final demand

	Summary and conclusions
	References

	PLreg: An R Package for Modeling Bounded Continuous Data
	Introduction
	Power logit regression models
	Power logit distributions
	Power logit regression models

	R code
	R code
	Power logit regression models

	R code
	```̃'`bodyfat_Aeolus data: IID setting
	R code
	R code
	R code
	Simulated data: Inflated PL regression models

	Concluding remarks

	Inference for Network Count Time Series with the R Package PNAR
	Introduction
	Poisson network models
	Inference
	Influenza data

	Extending Linearity
	Standard implementation of testing linearity
	Non-standard implementation of testing linearity
	Revisiting the influenza data
	Computational Speed

	Simulating network count time series
	Conclusion
	Appendix
	Acknowledgments

	SUrvival Control Chart EStimation Software in R: the success Package
	Introduction
	Theory and models
	Terminology
	Mathematical notation
	Funnel plot
	Bernoulli cumulative sum (CUSUM) chart
	Biswas and Kalbfleisch CUSUM (BK-CUSUM)
	Continuous time Generalized Rapid response CUSUM (CGR-CUSUM)
	Choosing control limits

	The R package success
	Input data
	The parameter-assist function
	Manual risk-adjustment
	The funnel plot function
	Control limits for CUSUM functions
	The Bernoulli CUSUM function
	The BK-CUSUM function
	The CGR-CUSUM function
	The interactive plot function

	Application
	Discussion
	Acknowledgements
	References

	Changes in R
	Selected changes in R-devel
	Bug statistics for 2023
	References

	Changes on CRAN
	CRAN growth
	CRAN package submissions
	CRAN mirror security
	CRAN Task View Initiative

	News from the Forwards Taskforce
	Accessibility
	Community engagement
	Conferences
	R Contribution
	Social Media
	Changes in Membership
	Previous members


	R Foundation News
	Donations and members
	Donations
	Supporting institutions
	Supporting members


