
The Journal
Volume 16/1, March 2024

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Contributed Research Articles

Remembering Friedrich "Fritz" Leisch. . . . . . . . . . . . . . . . . . . . . . 5

ebmstate: An R Package For Disease Progression Analysis Under Empirical Bayes Cox
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

bootCT: An R Package for Bootstrap Cointegration Tests in ARDL Models . . . . . . 39

Prediction, Bootstrapping and Monte Carlo Analyses Based on Linear Mixed Models
with QAPE 2.0 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

text2sdg: An R Package to Monitor Sustainable Development Goals from Text . . . . 83

GenMarkov: Modeling Generalized Multivariate Markov Chains in R. . . . . . . . 96

Fitting a Quantile Regression Model for Residual Life with the R Package qris . . . . 114

nortsTest: An R Package for Assessing Normality of Stationary Processes . . . . . . 135

shinymgr: A Framework for Building, Managing, and Stitching Shiny Modules into
Reproducible Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Bayesian Model Selection with Latent Group-Based Effects and Variances with the R
Package slgf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

BMRMM: An R Package for Bayesian Markov (Renewal) Mixed Models . . . . . . . 192

News and Notes

Changes on CRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

R Foundation News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Bioconductor Notes, March 2024 . . . . . . . . . . . . . . . . . . . . . . . . 216



2

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications

regarding this publication should be addressed to the
editors. All articles are licensed under the Creative

Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Mark van der Loo, Statistics Netherlands and Leiden

University, Netherlands

Executive editors:
Simon Urbanek, University of Auckland, New Zealand

Catherine Hurley, Maynooth University, Ireland
Rob Hyndman, Monash University, Australia

Emi Tanaka, Australian National University, Australia

Technical editors:
Mitchell O’Hara-Wild, Monash University, Australia

R Journal Homepage:
http://journal.r-project.org/

Email of editors and editorial board:
r-journal@R-project.org

The R Journal is indexed/abstracted by EBSCO, DOAJ,
Thomson Reuters.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
http://journal.r-project.org/


CONTRIBUTED RESEARCH ARTICLE 3

Editorial
by Mark P.J. van der Loo

On behalf of the editorial board, I am pleased to present Volume 16 Issue 1 of the R Journal.

We would like to welcome our new Associate Editors Jouni Helseke, Christoph Sax,
Thomas Fung, Wenjie Wang, Matthias Templ, Thiyanga Talagala, Xiaoqian Wang, Romain
Lesur, and Ivan Svetunkov to the editorial team.

We also express our gratitude to Simon Urbanek, who worked as editor-in-chief, and
will stay on as executive editor. Simon has not only worked as an editor of the journal but
is also contributing to improving the submission infrastructure. The articles in this issue
have been carefully copy edited by Adam Bartonicek and Harriet Mason. We thank Mitchell
O’Hara-Wild for technical editing work on this issue.

We are deeply saddened that the publication of this issue also marks the passing of
Friedrich ‘Fritz’ Leisch. Fritz was one of the founding fathers of R News, the peer-reviewed
publication that would turn into the journal that you are reading today. The fact that R News
started with just two people, and is now run by more than 30 volunteers is a testimony to
his impact within the R community. As a member of the R Core Team, Fritz also committed
Sweave to R, which must be seen as a visionary and pioneering step towards the reproducible
research workflow for which R is now famous and that supports the publication of this
Journal. For these and all his other contributions, we will forever be grateful. On behalf of
the R Journal team, we extend our deepest condolences to his family, his friends, and others
close to him.

To honour Fritz, the first paper in this issue by Bettina Grün, Kurt Hornik, Torsten
Hothorn, Theresa Scharl, and Achim Zeilis, commemorates Fritz’ work and life.

In this issue

News from CRAN, the R Foundation and Bioconductor are included in this issue.

This issue features 10 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. Supplementary material
with fully reproducible code is available for download from the Journal website. Topics
covered in this issue are the following.

Time Series, Stochastic Processes

• bootCT: An R Package for Bootstrap Cointegration Tests in ARDL Models
• GenMarkov: Modeling Generalized Multivariate Markov Chains in R
• nortsTest: An R Package for Assessing Normality of Stationary Processes

Survival Analyses

• ebmstate: An R Package For Disease Progression Analysis Under Empirical Bayes Cox
Models

• Fitting a Quantile Regression Model for Residual Life with the R Package qris

Statistical Inference

• Prediction, Bootstrapping and Monte Carlo Analyses Based on Linear Mixed Models
with QAPE 2.0 Package

• Bayesian Model Selection with Latent Group-Based Effects and Variances with the R
Package slgf

• BMRMM: An R Package for Bayesian Markov (Renewal) Mixed Models

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=bootCT
https://CRAN.R-project.org/package=GenMarkov
https://CRAN.R-project.org/package=nortsTest
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=QAPE
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=BMRMM


CONTRIBUTED RESEARCH ARTICLE 4

Programming and applications

• text2sdg: An R Package to Monitor Sustainable Development Goals from Text
• shinymgr: A Framework for Building, Managing, and Stitching Shiny Modules into

Reproducible Workflows

Mark P.J. van der Loo
Statistics Netherlands and Leiden University

https://journal.r-project.org
r-journal@r-project.org

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=shinymgr
https://journal.r-project.org
mailto:r-journal@r-project.org


CONTRIBUTED RESEARCH ARTICLE 5

Remembering Friedrich “Fritz” Leisch
by Bettina Grün, Kurt Hornik, Torsten Hothorn, Theresa Scharl, and Achim Zeileis

Abstract This article remembers our friend and colleague Fritz Leisch (1968–2024) who sadly died
earlier this year. Many of the readers of The R Journal will know Fritz as a member of the R Core
Team and for many of his contributions to the R community. For us, the co-authors of this article, he
was an important companion on our journey with the R project and other scientific endeavours over
the years. In the following, we provide a brief synopsis of his career, present his key contributions to
the R project and to the scientific community more generally, acknowledge his academic service, and
highlight his teaching and mentoring achievements.

1 Career

Friedrich Leisch (see Figure 1) was born 1968 in Vienna (Austria) and died after serious illness in 2024
in Vienna. Everyone called him Fritz.

Figure 1: Fritz Leisch at his inaugural lecture at BOKU in 2011. Source: BOKU.

Starting in 1987, Fritz studied Applied Mathematics at Technische Universität Wien (TU Wien),
earning his master’s degree (Dipl.-Ing.) in 1993. Subsequently, he joined the Department of Statistics
and Probability Theory at TU Wien as an assistant professor which he continued to be, with short
intermissions, until 2006. During this time he also defended his doctoral thesis in Applied Mathematics
(Dr.techn.) in 1999 and earned his habilitation (venia docendi) in Statistics in 2005.

In 1995, he visited the Knowledge-Based Engineering Systems Group at the University of South-
Australia in Adelaide on a Kurt Gödel scholarship for postgraduate studies. From 1997 to 2004 he
was a member of the SFB project “Adaptive Information Systems and Modeling in Economics and
Management Science”, coordinated at Wirtschaftsuniversität Wien (WU Wien). From 2002 to 2003
he was assistant professor at the Department of Statistics and Decision Support Systems, Universität
Wien.

In 2006 Fritz moved to Munich, Germany, to become a professor for computational statistics at the
Department of Statistics, Ludwig-Maximilians-Universität München (LMU), see Figure 2. He returned
to Vienna in 2011 to join the BOKU University as head of the Institute of Statistics, see Figure 3.

2 Key contributions

Fritz’ scientific contributions span an impressive range including theoretical and methodological work
(especially in the field of clustering and finite mixture models) over software (mostly related to the R
programming language) to applied work and cooperations (notably in marketing, biotechnology, and
genomics, among many others). In the following sections we try to highlight his key contributions
and scientific legacy.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 6

Figure 2: Computational statistics group at LMU in 2007 (left to right): Sebastian Kaiser, Adrian
Duffner, Manuel Eugster, Fritz Leisch. Source: Carolin Strobl.

Figure 3: Institute of Statistics at BOKU in 2022 (left to right, back to front): Johannes Laimighofer,
Nur Banu Özcelik, Ursula Laa, Fritz Leisch, Bernhard Spangl, Gregor Laaha, Matthias Medl. Robert
Wiedermann, Lena Ortega Menjivar, Theresa Scharl, Melati Avedis. Source: BOKU.

2.1 R Core & CRAN

During his stay in Australia, Fritz had learned about the existence of R. Back in Austria, he and Kurt
started to explore this potentially good news more systematically. They soon stopped further work
on a statistics toolbox they had developed for Octave (Eaton et al., 2024), and switched to R for their
applied work, finding lots of room for further improvement, and thus sending polite emails with
patches and more suggestions to Ross Ihaka and Robert Gentleman. Clearly these were acceptable in
quality but too high in quantity, and it did not take very long that Ross and Robert gave Fritz and Kurt
write access to the R sources (initially in CVS, then moved to SVN), and in 1997, they both officially
became very early members of the R Core Team.

One of the main challenges then was that the functionality provided by R was rather limited.
Contributed extensions for S were available from the Carnegie Mellon University Statlib S Archive1,

1Unfortunately, the Statlib S Archive is currently not available anymore. A snapshot, including many of the
actual source code files, is available on the Internet Archive at https://web.archive.org/web/20000815063825/
http://lib.stat.cmu.edu/S/.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://web.archive.org/web/20000815063825/http://lib.stat.cmu.edu/S/
https://web.archive.org/web/20000815063825/http://lib.stat.cmu.edu/S/


CONTRIBUTED RESEARCH ARTICLE 7

Figure 4: Screenshot of the landing page of the CRAN master site at TU Wien on 1998-01-10, as last
modified by Fritz on 1997-12-09. Source: Internet Archive.

and could typically be ported to R rather easily, but there was no mechanism for conveniently
distributing or actually using these extensions. This fundamentally changed, when in 1997 Fritz and
Kurt implemented the R package management system, using ideas from Debian’s APT (advanced
package tool, https://wiki.debian.org/AptCLI) they had successfully employed for managing their
computer systems. They also set up the Comprehensive R Archive Network (CRAN, https://CRAN.R-
project.org/, see also Hornik, 2012) as a means for redistributing R and its contributed extensions,
and infrastructure for quality assurance of these extensions. These two contributions paved the way
for the amazing growth and success of R through its wealth of high-quality contributed extensions.
See https://stat.ethz.ch/pipermail/r-announce/1997/000001.html for the first announcement of
CRAN, starting with 12 extension packages. Currently, there are more than 21,000. See Figure 4 for
a screenshot2 of the landing page of the CRAN master site at TU Wien, as last modified by Fritz on
1997-12-09.

The first SVN commit by Fritz is from 1997-10-02, the last from 2013-10-04. Overall, there are 651
commits by Fritz, mostly from the early years of R Core, and related to the R package management
and CRAN mirror system, and the addition of the Sweave system (see Section 2.3 for more details).

2.2 DSC & useR! conferences

With establishing CRAN in Vienna at TU Wien, Fritz and Kurt laid the foundation for a special
relationship between Vienna and R that they characterized as a story of “love and marriage” (Hornik
and Leisch, 2002). In the decade after the creation of CRAN a number of seminal R-related meetings
took place in Vienna, co-organized by Fritz as well as several of the co-authors of this paper.

The first workshop on “Distributed Statistical Computing” (DSC) took place from March 19-23,
1999, at TU Wien. The main motivations were bringing together the R Core Team for its first face-to-face
meeting, discussing the roadmap for the release of R 1.0.0, as well as exploring potential synergies
with other environments for statistical computing. There were around 30 participants and about 20
presentations, many of which were relatively short, leaving ample time for discussions (see Figure 5).

2This is from the earliest capture, from 1998-01-10, available on the Internet Archive at https://web.archive.
org/web/19980110082558/http://www.ci.tuwien.ac.at/R/contents.html.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://wiki.debian.org/AptCLI
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://stat.ethz.ch/pipermail/r-announce/1997/000001.html
https://web.archive.org/web/19980110082558/http://www.ci.tuwien.ac.at/R/contents.html
https://web.archive.org/web/19980110082558/http://www.ci.tuwien.ac.at/R/contents.html


CONTRIBUTED RESEARCH ARTICLE 8

Figure 5: Discussions at DSC 1999 (top to bottom, left to right): Thomas Lumley, Fritz Leisch, Luke
Tierney. Peter Dalgaard, Ross Ihaka, Paul Murrell. Brian Ripley, Martin Mächler, Robert Gentleman,
Kurt Hornik. Source: Douglas Bates (DSC 1999 homepage).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 9

Figure 6: Conference dinner at useR! 2006 (left to right): Fritz Leisch, Torsten Hothorn, Tim Hesterberg.
Source: Carolin Strobl (useR! 2006 homepage).

Two more DSC workshops were organized at TU Wien in 2001 and 2003. While meetings focusing
on R development issues (with the R Core Team and everyone else interested) were still an important
part of these conferences, they also saw an increasing number of regular conference presentations on R
packages and their different fields of application (e.g., establishing infrastructure for spatial data). In
2001 there were around 60 participants and about 30 presentations, most with corresponding papers in
the online proceedings (Hornik and Leisch, 2001). In 2003 this increased to more than 150 participants
and about 60 presentations, again with the majority in the online proceedings (Hornik et al., 2003).

The high demand for a platform, where R users from different fields could exchange ideas,
prompted the creation of a new conference series called useR!. The first two installments again took
place in Vienna in 2004 at TU Wien and in 2006 at WU Wien. Torsten Hothorn, David Meyer, and
Achim Zeileis took the lead in the organization with support and advice from Fritz and Kurt in the
background. An important contribution from the R Core Team at the useR! conferences were keynote
lectures highlighting important developments, e.g., a keynote given by Fritz at useR! 2004 on S4 classes
and methods. Both conferences continued the success of the earlier DSC workshops with the number
of participants rising to more than 200 in 2004 and close to 350 in 2006. Similarly, the number of
presentations grew to about 100 in 2004 and more than 150 in 2006.

In addition to the efforts initiated by Fritz and Kurt, another key factor to the success of these
meetings was the city of Vienna with its culture, cafes, wine and beer pubs, etc. (see Hornik and Leisch,
2002, and also Figure 6).

2.3 Sweave & reproducibility

With Sweave (Leisch, 2002), Fritz pioneered what we now can understand as the technical foundation
of reproducible research. Sweave was the main inspiration for knitr (Xie, 2015) which in turn led to
rmarkdown (Xie et al., 2018) and quarto (Scheidegger et al., 2024). All these systems are used today to
generate countless scientific articles, package vignettes, webpages, books, blogs, and much more in a
dynamic and reproducible way.

Of course, Fritz was not the first one going in this direction. The concept of “literate programming”
had been introduced by Knuth (1984), allowing to combine the source code for software and the
corresponding documentation in the same file. The concepts of “tangling”, that is, extracting the code
for compilation, and “weaving”, the process of generating a nicely looking document containing code
next to prosa and formulae, have their roots in the WEB and CWEB systems (Knuth and Levy, 1993). As
these packages were specific to code in Pascal (WEB) and C (CWEB), respectively, and documentation
in LaTeX, Ramsey (1994) introduced his noweb system as a literate programming tool that is agnostic
to the programming language used and also supports HTML in addition to LaTeX and a few other
backends for documentation. The noweb syntax for code chunks is:

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=quarto


CONTRIBUTED RESEARCH ARTICLE 10

Figure 7: Screenshot of the strucchange package vignette, shown in a PDF viewer (right), along with
the vExplorer from Bioconductor for interactive code execution (top left) with output in the active R
graphics window (bottom left). Source: Leisch (2003, Figure 2).

<<code>>=
1 + 2
@

This will look familiar to users of Sweave. From this history, the naming decisions for the software
and its file format can be understood: Sweave is the function that weaves code in S (or R - both
languages still existed side by side at the time) with its output and documentation. And Rnw stands for
files mixing R code with noweb syntax.

Starting in the mid-1990s to the early 2000s, interests shifted from just “literate programming” to
“literate data analysis” (Leisch, 2002; Leisch and Rossini, 2003) as a core ingredient for reproducible
research (Buckheit and Donoho, 1995). The seminal new idea was to have dynamic documents so
outputs of code such as figures and tables could be updated automatically when the underlying data
changed, which was pioneered by the late Günter Sawitzki in his Voyager system (Sawitzki, 1996).

Fritz amalgamated all of this into Sweave which was the first time that the power of dynamic
reporting became easily available in a widely-used programming language for statistics in combination
with the standard textprocessing system LaTeX. This turned out to be a “killer feature” of R at the time
and the basis for further work towards reproducible research (Hothorn and Leisch, 2011; Stodden
et al., 2014).

Sweave was also the basis for R package vignettes (Leisch, 2003) as an addition to the previously
available technical manual pages. The first R package vignette published on CRAN in May 2002 was
in the strucchange package, providing methods for testing, monitoring, and dating structural changes.
The vignette was the Sweave adaptation of an introduction to the package that had been co-authored
by Fritz and published a couple of months earlier in the Journal of Statistical Software (Zeileis et al.,
2002). See Figure 7 for how Fritz used it to illustrate the idea of package vignettes in Leisch (2003) and
that the R code from vignettes can be easily extracted (also interactively), explored, and re-run.

2.4 Clustering & mixture models

Fritz’ theoretical and methodological work focused in particular on clustering and finite mixture
models. Centroid-based partitioning methods as well as finite mixture models allow that their fitting

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=strucchange


CONTRIBUTED RESEARCH ARTICLE 11

algorithm is embedded in a common estimation framework. In this framework, each of the steps is
adapted in a modular way depending on the specific setup, e.g., the distance and centroid determining
method or the component distribution used. Fritz exploited this for the implementation of the packages
flexclust (Leisch, 2006) and flexmix (Leisch, 2004; Grün and Leisch, 2008), contributing to the clustering
tools available for R (see the CRAN Task View Cluster). Both packages provide general infrastructure
for (model-based) clustering and enable rapid prototyping and the simple extension to new variants
taking into account complicated data structures or challenging model specifications (see, for example,
psychomix, Frick et al., 2012).

2.5 Applied work

For many years, Fritz and Kurt actively participated in the Biological Psychiatry working group at
Medizinische Universität Wien. The first paper co-authored by Fritz dates from 2000 (Bailer et al.,
2000), the last from 2023 (Solmi et al., 2023). The joint research was mostly focused on linking genetic
traits to psychiatric disorders and treatment success. This prompted many enhancements in the
classical test infrastructure in base R - in surprising ways to some reviewers, who could not believe
that Fisher’s test really worked for tables with more than two rows or columns. It also established a
strong need for conveniently reporting the results of the statistical analyses to the medical doctors
in the group that went beyond providing annotated transcripts, which Fritz eventually managed to
satisfy by inventing the Sweave system (see Section 2.3).

Fritz also intensively collaborated with Sara Dolnicar to advance data analytic methods for data-
driven market segmentation analysis. They received the Charles R. Goeldner Article of Excellence
Award for their work on extracting stable Winter tourist segments in Austria with bagged clustering
(Dolnicar and Leisch, 2003). They focused on the evaluation of data structure and the selection of
suitable segments based on segment stability as a key criterion (Dolnicar and Leisch, 2010, 2017).
Finally, this joint work resulted in Dolnicar et al. (2018) which provides practical guidance for users
of market segmentation solutions and for data analysts with respect to the technical and statistical
aspects of market segmentation analysis.

As head of the Institute of Statistics, Fritz was involved in various interdisciplinary research
projects covering almost the whole range of core areas of research at BOKU. He was key researcher at
the Austrian Centre of Industrial Biotechnology (acib) (Scharl et al., 2009; Melcher et al., 2017) and
faculty member of the doctoral schools on agricultural genomics and bioprocess engineering. Among
others he contributed to the fields of zoology (Cech et al., 2022), forestry, transportation and tourism
(Taczanowska et al., 2023) as well as chemistry, genomics and wildlife biology (Steiner et al., 2014).

3 Academic service

In addition to the services for the various conferences and proceedings already described above, he
served the scientific community in various ways. In January 2001, he co-created R News which evolved
into The R Journal eight years later. For the journal Computational Statistics he was an associate editor
from 2005 to 2006 before he became editor-in-chief from 2007 to 2011 (see Symanzik et al., 2024, for
more details). Other notable contributions include being editor for the Journal of Statistical Software,
core member of the Bioconductor project for statistical software in bioinformatics, and first secretary
general of the R Foundation for Statistical Computing when it was formed in 2002.

4 Teaching & mentoring

Fritz taught generations of students at bachelor, master, and PhD level and introduced hundreds of
useRs to proper R development in his “Introduction to R Programming” short course. At TU Wien,
LMU, and BOKU, he taught courses in applied statistics, statistical computing and computational
statistics. He had the ability to explain even difficult content in a simple way and to inspire students
with statistics and programming with R. He co-founded the “Munich R Courses” lecture series and
was part of a group aiming to initiate a formal PhD program in statistics at LMU.

Fritz supervised Bettina Grün, Theresa Scharl, Sebastian Kaiser, Manuel Eugster, Christina Yas-
souridis, Rainer Dangl, Weksi Budiaji, Muhammad Atif and Simona Jokubauskaite as his PhD students.
Based on his research, Fritz often discussed the state of and the need for reproducible research and
taught his many students how to avoid the many small and innocent errors that have a tendency to
pile up and invalidate reported statistical results, with potentially devastating consequences, as we all
know.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=flexclust
https://CRAN.R-project.org/package=flexmix
https://CRAN.R-project.org/view=Cluster


CONTRIBUTED RESEARCH ARTICLE 12

5 Odds & ends

Fritz loved cooking, music, motorbike riding, playing cards with his friends, skiing and hiking. A
late afternoon call to his office asking him to go along for a beer in Munich’s English Garden almost
never went unanswered, positively. Back in Vienna at BOKU, colleagues got to know Fritz as a
very structured, thoughtful, calm person who involved everyone, listened to everyone and always
endeavored to balance interests and ensure fairness. He strengthened cooperation and cohesion with
his leadership style. Fritz was a friendly, always modest person who was free of airs and graces
or vanity, despite or perhaps because of his great scientific successes. The R Core Team and the R
community at large miss a contributor, collaborator, teacher, colleague, and friend.

References

U. Bailer, F. Leisch, K. Meszaros, E. Lenzinger, U. Willinger, R. Strobl, C. Gebhardt, E. Gerhard, K. Fuchs,
W. Sieghart, S. Kasper, K. Hornik, and H. N. Aschauer. Genome scan for susceptibility loci for
schizophrenia. Neuropsychobiology, 42(4):175–182, 2000. doi: 10.1159/000026690. [p11]

J. B. Buckheit and D. L. Donoho. WaveLab and reproducible research. In A. Antoniadis and G. Oppen-
heim, editors, Wavelets in Statistics, Lecture Notes in Statistics, pages 55–82. Springer-Verlag, New
York, 1995. doi: 10.1007/978-1-4612-2544-7_5. [p10]

R. M. Cech, S. Jovanovic, S. Kegley, K. Hertoge, F. Leisch, and J. G. Zaller. Reducing overall herbicide
use may reduce risks to humans but increase toxic loads to honeybees, earthworms and birds.
Environmental Sciences Europe, 34(1):44, 2022. doi: 10.1186/s12302-022-00622-2. [p11]

S. Dolnicar and F. Leisch. Winter tourist segments in Austria: Identifying stable vacation styles
using bagged clustering techniques. Journal of Travel Research, 41(3):281–292, 2003. doi: 10.1177/
0047287502239037. [p11]

S. Dolnicar and F. Leisch. Evaluation of structure and reproducibility of cluster solutions using the
bootstrap. Marketing Letters, 21(1):83–101, 2010. doi: 10.1007/s11002-009-9083-4. [p11]

S. Dolnicar and F. Leisch. Using segment level stability to select target segments in data-driven market
segmentation studies. Marketing Letters, 28(3):423–436, 2017. doi: 10.1007/s11002-017-9423-8. [p11]

S. Dolnicar, B. Grün, and F. Leisch. Market Segmentation Analysis: Understanding It, Doing It, and Making
It Useful. Management for Professionals. Springer-Verlag, 2018. doi: 10.1007/978-981-10-8818-6.
[p11]

J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring. GNU Octave Version 9.2.0 Manual: A High-
Level Interactive Language for Numerical Computations, 2024. URL https://www.gnu.org/software/
octave/doc/v9.2.0/. [p6]

H. Frick, C. Strobl, F. Leisch, and A. Zeileis. Flexible Rasch mixture models with package psychomix.
Journal of Statistical Software, 48(7):1–25, 2012. doi: 10.18637/jss.v048.i07. [p11]

B. Grün and F. Leisch. Flexmix version 2: Finite mixtures with concomitant variables and varying and
constant parameters. Journal of Statistical Software, 28(4):1–35, 2008. doi: 10.18637/jss.v028.i04. [p11]

K. Hornik. The Comprehensive R Archive Network. Wiley Interdisciplinary Reviews: Computational
Statistics, 4(4):394–398, 2012. doi: 10.1002/wics.1212. [p7]

K. Hornik and F. Leisch, editors. Proceedings of the 2nd International Workshop on Distributed Sta-
tistical Computing, Vienna, Austria, 2001. URL https://www.R-project.org/conferences/DSC-
2001/Proceedings/. ISSN 1609-395X. [p9]

K. Hornik and F. Leisch. Vienna and R: Love, marriage and the future. In R. Dutter, editor, Festschrift
50 Jahre Österreichische Statistische Gesellschaft, pages 61–70. Österreichische Statistische Gesellschaft,
2002. ISSN 1026-597X. [p7, 9]

K. Hornik, F. Leisch, and A. Zeileis, editors. Proceedings of the 3rd International Workshop on Distributed
Statistical Computing, Vienna, Austria, 2003. URL https://www.R-project.org/conferences/DSC-
2003/Proceedings/. ISSN 1609-395X. [p9]

T. Hothorn and F. Leisch. Case studies in reproducibility. Briefings in Bioinformatics, 12(3):288–300,
2011. doi: 10.1093/bib/bbq084. [p10]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://www.gnu.org/software/octave/doc/v9.2.0/
https://www.gnu.org/software/octave/doc/v9.2.0/
https://www.R-project.org/conferences/DSC-2001/Proceedings/
https://www.R-project.org/conferences/DSC-2001/Proceedings/
https://www.R-project.org/conferences/DSC-2003/Proceedings/
https://www.R-project.org/conferences/DSC-2003/Proceedings/


CONTRIBUTED RESEARCH ARTICLE 13

D. E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984. doi: 10.1093/comjnl/27.
2.97. [p9]

D. E. Knuth and S. Levy. The CWEB System of Structured Documentation. Addison-Wesley, Reading,
1993. [p9]

F. Leisch. Sweave: Dynamic generation of statistical reports using literate data analysis. In W. Härdle
and B. Rönz, editors, COMPSTAT 2002 – Proceedings in Computational Statistics, pages 575–580,
Heidelberg, 2002. Physica Verlag. doi: 10.1007/978-3-642-57489-4_89. [p9, 10]

F. Leisch. Sweave, part II: Package vignettes. R News, 3(2):21–24, October 2003. URL https://CRAN.R-
project.org/doc/Rnews/. [p10]

F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R.
Journal of Statistical Software, 11(8):1–18, 2004. doi: 10.18637/jss.v011.i08. [p11]

F. Leisch. A toolbox for k-centroids cluster analysis. Computational Statistics and Data Analysis, 51(2):
526–544, 2006. doi: 10.1016/j.csda.2005.10.006. [p11]

F. Leisch and A. J. Rossini. Reproducible statistical research. Chance, 16(2):46–50, 2003. doi: 10.1080/
09332480.2003.10554848. [p10]

M. Melcher, T. Scharl, M. Luchner, G. Striedner, and F. Leisch. Boosted structured additive regression
for Escherichia coli fed-batch fermentation modeling. Biotechnology and Bioengineering, 114(2):
321–334, 2017. doi: 10.1002/bit.26073. [p11]

N. Ramsey. Literate programming simplified. IEEE Software, 11(5):97–105, 1994. doi: 10.1109/52.311070.
[p9]

G. Sawitzki. Extensible statistical software: On a voyage to Oberon. Journal of Computational and
Graphical Statistics, 5(3):263–283, 1996. doi: 10.1080/10618600.1996.10474711. [p10]

T. Scharl, I. Voglhuber, and F. Leisch. Exploratory and inferential analysis of gene cluster neighborhood
graphs. BMC Bioinformatics, 10(1):288, 2009. doi: 10.1186/1471-2105-10-288. [p11]

C. Scheidegger, C. Teague, C. Dervieux, J. J. Allaire, and Y. Xie. Quarto: An open-source scientific and
technical publishing system, 2024. URL https://quarto.org/. Version 1.5. [p9]

M. Solmi, T. Thompson, A. Estradé, A. Agorastos, J. Radua, S. Cortese, E. Dragioti, F. Leisch, D. Van-
campfort, L. C. Thygesen, H. Aschauer, M. Schlögelhofer, E. Aschauer, A. Schneeberger, C. G. Huber,
G. Hasler, P. Conus, K. Q. Do Cuénod, R. von Känel, G. Arrondo, P. Fusar-Poli, P. Gorwood, P.-M.
Llorca, M.-O. Krebs, E. Scanferla, T. Kishimoto, G. Rabbani, K. Skonieczna-Żydecka, P. Brambilla,
A. Favaro, A. Takamiya, L. Zoccante, M. Colizzi, J. Bourgin, K. Kamiński, M. Moghadasin, S. See-
dat, E. Matthews, J. Wells, E. Vassilopoulou, A. Gadelha, K.-P. Su, J. S. Kwon, M. Kim, T. Y. Lee,
O. Papsuev, D. Manková, A. Boscutti, C. Gerunda, D. Saccon, E. Righi, F. Monaco, G. Croatto,
G. Cereda, J. Demurtas, N. Brondino, N. Veronese, P. Enrico, P. Politi, V. Ciappolino, A. Pfennig,
A. Bechdolf, A. Meyer-Lindenberg, K. G. Kahl, K. Domschke, M. Bauer, N. Koutsouleris, S. Winter,
S. Borgwardt, I. Bitter, J. Balazs, P. Czobor, Z. Unoka, D. Mavridis, K. Tsamakis, V. P. Bozikas,
C. Tunvirachaisakul, M. Maes, T. Rungnirundorn, T. Supasitthumrong, A. Haque, A. R. Brunoni,
C. G. Costardi, F. B. Schuch, G. Polanczyk, J. M. Luiz, L. Fonseca, L. V. Aparicio, S. S. Valvassori,
M. Nordentoft, P. Vendsborg, S. H. Hoffmann, J. Sehli, N. Sartorius, S. Heuss, D. Guinart, J. Hamilton,
J. Kane, J. Rubio, M. Sand, A. Koyanagi, A. Solanes, A. Andreu-Bernabeu, A. S. J. Cáceres, C. Arango,
C. M. Díaz-Caneja, D. Hidalgo-Mazzei, E. Vieta, J. Gonzalez-Peñas, L. Fortea, M. Parellada, M. A.
Fullana, N. Verdolini, E. Andrlíková, K. Janků, M. J. Millan, M. Honciuc, A. Moniuszko-Malinowska,
I. Łoniewski, J. Samochowiec, Ł. Kiszkiel, M. Marlicz, P. Sowa, W. Marlicz, G. Spies, B. Stubbs,
J. Firth, S. Sullivan, A. E. Darcin, H. Aksu, N. Dilbaz, O. Noyan, M. Kitazawa, S. Kurokawa,
Y. Tazawa, A. Anselmi, C. Cracco, A. I. Machado, N. Estrade, D. De Leo, J. Curtis, M. Berk, P. Ward,
S. Teasdale, S. Rosenbaum, W. Marx, A. V. Horodnic, L. Oprea, O. Alexinschi, P. Ifteni, S. Turliuc,
T. Ciuhodaru, A. Bolos, V. Matei, D. H. Nieman, I. Sommer, J. van Os, T. van Amelsvoort, C.-F.
Sun, T. wei Guu, C. Jiao, J. Zhang, J. Fan, L. Zou, X. Yu, X. Chi, P. de Timary, R. van Winkel, B. Ng,
E. Pena, R. Arellano, R. Roman, T. Sanchez, L. Movina, P. Morgado, S. Brissos, O. Aizberg, A. Mosina,
D. Krinitski, J. Mugisha, D. Sadeghi-Bahmani, F. Sheybani, M. Sadeghi, S. Hadi, S. Brand, A. Er-
razuriz, N. Crossley, D. I. Ristic, C. López-Jaramillo, D. Efthymiou, P. Kuttichira, R. A. Kallivayalil,
A. Javed, M. I. Afridi, B. James, O. J. Seb-Akahomen, J. Fiedorowicz, A. F. Carvalho, J. Daskalakis,
L. N. Yatham, L. Yang, T. Okasha, A. Dahdouh, B. Gerdle, J. Tiihonen, J. I. Shin, J. Lee, A. Mhalla,
L. Gaha, T. Brahim, K. Altynbekov, N. Negay, S. Nurmagambetova, Y. A. Jamei, M. Weiser, and
C. U. Correll. Validation of the Collaborative Outcomes study on Health and Functioning during
Infection Times (coh-fit) questionnaire for adults. Journal of Affective Disorders, 326:249–261, 2023.
doi: 10.1016/j.jad.2022.12.022. [p11]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://quarto.org/


CONTRIBUTED RESEARCH ARTICLE 14

W. Steiner, F. Leisch, and K. Hackländer. A review on the temporal pattern of deer-vehicle accidents:
Impact of seasonal, diurnal and lunar effects in cervids. Accident Analysis & Prevention, 66:168–181,
2014. doi: 10.1016/j.aap.2014.01.020. [p11]

V. Stodden, F. Leisch, and R. D. Peng. Implementing Reproducible Research. Chapman & Hall/CRC, Boca
Raton, 2014. [p10]

J. Symanzik, Y. Mori, and P. Vieu. A memorial for the late Professor Friedrich Leisch. Computational
Statistics, 39, 2024. Forthcoming. [p11]

K. Taczanowska, B. Latosinska, C. Brandenburg, F. Leisch, C. Czachs, and A. Muhar. Lobbying in
social media as a new source of survey bias. Journal of Outdoor Recreation and Tourism, 44(A):100689,
2023. doi: 10.1016/j.jort.2023.100689. [p11]

Y. Xie. Dynamic Documents with R and knitr. Chapman & Hall/CRC, Boca Raton, 2nd edition, 2015.
doi: 10.1201/9781315382487. [p9]

Y. Xie, J. J. Allaire, and G. Grolemund. R Markdown: The Definitive Guide. Chapman & Hall/CRC, Boca
Raton, 2018. doi: 10.1201/9781138359444. [p9]

A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber. strucchange: An R package for testing for structural
change in linear regression models. Journal of Statistical Software, 7(2):1–38, 2002. doi: 10.18637/jss.
v007.i02. [p10]

Bettina Grün
WU Wirtschaftsuniversität Wien
Austria
ORCiD: 0000-0001-7265-4773
Bettina.Gruen@wu.ac.at

Kurt Hornik
WU Wirtschaftsuniversität Wien
Austria
ORCiD: 0000-0003-4198-9911
Kurt.Hornik@R-project.org

Torsten Hothorn
Universität Zürich
Switzerland
ORCiD: 0000-0001-8301-0471
Torsten.Hothorn@R-project.org

Theresa Scharl
BOKU University
Austria
ORCiD: 0000-0001-8850-3312
Theresa.Scharl@boku.ac.at

Achim Zeileis
Universität Innsbruck
Austria
https://www.zeileis.org/
ORCiD: 0000-0003-0918-3766
Achim.Zeileis@R-project.org

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://orcid.org/0000-0001-7265-4773
mailto:Bettina.Gruen@wu.ac.at
https://orcid.org/0000-0003-4198-9911
mailto:Kurt.Hornik@R-project.org
https://orcid.org/0000-0001-8301-0471
mailto:Torsten.Hothorn@R-project.org
https://orcid.org/0000-0001-8850-3312
mailto:Theresa.Scharl@boku.ac.at
https://www.zeileis.org/
https://orcid.org/0000-0003-0918-3766
mailto:Achim.Zeileis@R-project.org


CONTRIBUTED RESEARCH ARTICLE 15

ebmstate: An R Package For Disease
Progression Analysis Under Empirical
Bayes Cox Models
by Rui J. Costa and Moritz Gerstung

Abstract The new R package ebmstate is a package for multi-state survival analysis. It is suitable
for high-dimensional data and allows point and interval estimation of relative transition hazards,
cumulative transition hazards and state occupation probabilities, under clock-forward and clock-
reset Cox models. Our package extends the package mstate in a threefold manner: it transforms
the Cox regression model into an empirical Bayes model that can handle high-dimensional data; it
introduces an analytical, Fourier transform-based estimator of state occupation probabilities for clock-
reset models that is much faster than the corresponding, simulation-based estimator in mstate; and it
replaces asymptotic confidence intervals meant for the low-dimensional setting by non-parametric
bootstrap confidence intervals. Our package supports multi-state models of arbitrary structure, but
the estimators of state occupation probabilities are valid for transition structures without cycles only.
Once the input data is in the required format, estimation is handled automatically. The present
paper includes a tutorial on how to use ebmstate to estimate transition hazards and state occupation
probabilities, as well as a simulation study showing how it outperforms mstate in higher-dimensional
settings.

1 Introduction

Multi-state models based on transition hazard functions are often used in the statistical analysis of
longitudinal data, in particular disease progression data (Hougaard, 1999). The multi-state model
framework is particularly suitable to accommodate the growing level of detail of modern clinical
data: as long as a clinical history can be framed as a random process which, at any moment in time,
occupies one of a few states, a multi-state model is applicable. Another strong point of this framework
is that it can incorporate a regression model, i.e., a set of assumptions on how covariates, possibly
time-dependent ones, affect the risk of transitioning between any two states of the disease. Once
estimated, multi-state models with regression features allow the stratification of patients according to
their transition hazards. In addition, it is possible, under some models, to generate disease outcome
predictions. These come in the form of state occupation probability estimates, meaning estimates of the
probability of being in each state of the disease over a given time frame.

The survival analysis ‘task view’ of the Comprehensive R Archive Network lists seven R packages
that are able to fit general multi-state models and, at the same time, feature some kind of regression
model or algorithm: flexsurv (Jackson, 2016), msm (Jackson, 2011), SemiMarkov (Listwon and
Saint-Pierre, 2015), survival (Therneau, 2015), mstate (de Wreede et al., 2010), mboost (Hothorn et al.,
2020) – as extended by gamboostMSM (Reulen, 2014) – and penMSM (Reulen, 2015). All of them
implement relative risk regression models (as defined in Aalen et al., 2008, p. 133). The only exceptions
are survival, which also fits Aalen’s additive regression model (Aalen, 1989), and flexsurv, which
also implements accelerated failure time models (see, for example, Aalen et al., 2008, p. 443).

Recall that a Cox regression model is a semi-parametric model in which every transition hazard
is assumed to be the product of a baseline hazard function of unspecified form (the non-parametric
component) and an exponential relative risk function (the parametric component) (Aalen et al., 2008, p.
133). Generally, the relative risk regression models implemented in these packages are Cox regression
models. However, some models in flexsurv, as well as those in msm and SemiMarkov, also restrict
the baseline hazards to specific parametric families, i.e. they are fully parametric. In msm and
SemiMarkov, the stronger assumptions regarding the functional form of the hazard are leveraged
to do away with other common assumptions: SemiMarkov drops the usual Markov property to
implement homogeneous semi-Markov models; msm is suitable for panel data, i.e., data in which the
state of each individual is known only at a finite series of times.

Packages penMSM and gamboostMSM are the best suited to deal with higher-dimensional
covariate data. The first of these packages relies on a structured fusion lasso method, while the second
implements (jointly with mboost) a boosting algorithm. Both methods induce sparsity in the number
of non-zero covariate effects, as well as equality among the different transition effects of each covariate,
and are thus especially useful to reduce complicated multi-state models to more interpretable ones.
The remaining packages assume standard, fixed effects relative risk regression models and do not
include regularisation or variable selection features.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=msm
https://CRAN.R-project.org/package=SemiMarkov
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mboost
https://CRAN.R-project.org/package=gamboostMSM
https://CRAN.R-project.org/package=penMSM
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=msm
https://CRAN.R-project.org/package=SemiMarkov
https://CRAN.R-project.org/package=msm
https://CRAN.R-project.org/package=SemiMarkov
https://CRAN.R-project.org/package=SemiMarkov
https://CRAN.R-project.org/package=msm
https://CRAN.R-project.org/package=penMSM
https://CRAN.R-project.org/package=gamboostMSM
https://CRAN.R-project.org/package=mboost


CONTRIBUTED RESEARCH ARTICLE 16

It is also illustrative to order the seven packages mentioned according to how extensive their
analysis workflow is. Packages SemiMarkov and penMSM are intended for the estimation of relative
transition hazards only (i.e., for estimating the impact of covariates on each transition hazard). With the
package mboost (as extended by gamboostMSM) it is also possible to estimate the baseline transition
hazards. Finally, a more complete workflow including estimates of both relative and cumulative
transition hazards, as well as state occupation probabilities, is implemented in flexsurv, msm and
mstate, and has been under implementation in survival (version 3.0 or later).

The present paper provides an introduction to ebmstate, a new R package for multi-state survival
analysis available for download on the Comprehensive R Archive Network (CRAN). The main goal of
ebmstate is to provide an analysis framework for the Cox model that performs better with higher-
dimensional covariate data and is also complete, in the sense of being able to generate point and
interval estimates of relative transition hazards, cumulative transition hazards and state occupation
probabilities, both under clock-forward and clock-reset models. A fundamental characteristic of
ebmstate is that it re-implements and extends the analysis framework of mstate, which is complete in
the sense just mentioned. In fact, to a large extent, our package was built by importing, adapting and
replacing functions from the mstate package. This not only eliminates redundancies, but also makes
our package more accessible to the numerous users of mstate (the three papers associated with mstate
have jointly over 2000 citations).

To improve the performance of mstate’s multi-state Cox model when dealing with higher-
dimensional covariate data, a ridge-type regularisation feature was added. We allow the regression
coefficients of the model to be partitioned into groups, with each group having its own Gaussian prior.
A group can gather, for example, all the regression coefficients for a given transition. Or, within a
given transition, coefficients can be grouped according to the covariate type they refer to (for example,
demographic, clinical or genomic type). The resulting hierarchical Bayes model is empirical in that
a full prior elicitation is not required (the mean and variance hyper-parameters of the Gaussian are
estimated from the data). Model fitting relies on the iterative algorithm introduced by Schall (1991),
which typically converges after a small number of steps. A simulation study showing that Schall’s
algorithm performance compares well with that of other algorithms for ridge penalty optimisation,
including one based on cross-validation, can be found in Perperoglou (2014).

The asymptotic confidence intervals generated by mstate are applicable when the number of
observations is much larger than the number of parameters to be estimated (see section Interval
estimation below). To preserve the completeness of mstate’s framework in higher-dimensional
settings, we therefore implemented non-parametric bootstrap intervals of regression coefficients,
cumulative transition hazards and state occupation probabilities.

The high computational cost implied by the non-parametric bootstrap motivated a third extension
to mstate. We developed an estimator of state occupation probabilities under clock-reset Cox models
that is based on a convolution argument (as in Spitoni et al., 2012) and the Fast Fourier transform
(FFT). At present, the estimation of such probabilities for clock-forward Cox models can be carried out
using the efficient, product-limit based algorithm available in mstate. However, for clock-reset Cox
models, only a simulation-based estimator is available in this package (see also the flexsurv package
for a similar, simulation-based estimator). The FFT estimator in ebmstate was conceived as a faster
alternative to this simulation-based estimator, but its scope is currently restricted to multi-state models
with transition structures that have no cycles, i.e. in which a transition between two states is either
not possible or follows a unique sequence of states. Figure 1 provides a short graphical summary of
ebmstate, with the main inputs – a genomic-clinical data set and an empirical Bayes multi-state Cox
model – and the main outputs – the estimates of relative hazards and state occupation probabilities
(cumulative transition hazards are omitted).

As already mentioned, our empirical Bayes method improves estimator performance in models
with larger numbers of covariates (see section Estimator performance on estimator performance).
Also, as a ridge-type regression method, it can be used as an alternative to the lasso method of
penMSM in two particular cases: when the levels of correlation between covariates are high enough to
compromise the stability of lasso-based covariate selection; or simply to improve prediction accuracy
when interpretability is not essential and the number of covariates is not greater than the number
of observations (Zou and Hastie, 2005). In addition, and perhaps more importantly, ebmstate goes
beyond the regularised estimation of transition hazards offered by penMSM and gamboostMSM:
point and interval estimates of state occupation probabilities under the regularised Cox model can
also be computed.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SemiMarkov
https://CRAN.R-project.org/package=penMSM
https://CRAN.R-project.org/package=mboost
https://CRAN.R-project.org/package=gamboostMSM
https://CRAN.R-project.org/package=msm
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=penMSM
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=penMSM
https://CRAN.R-project.org/package=gamboostMSM


CONTRIBUTED RESEARCH ARTICLE 17

2 Models

A multi-state Cox model is a continuous-time stochastic process with a finite (and usually small) state
space S . To better describe the models implemented in ebmstate, we define the following notation.
We let t denote the time since some initiating event (usually diagnosis or disease onset). For t ∈ [0, ∞),
we define the following random variables: X(t) represents the disease state of the patient, S(t) the
time spent in the current state, and Z⃗ (t) the value of a covariate vector. The realisation of each
component of the process {Z⃗ (t)} is a step function, possibly approximating the evolution in time
of a continuous covariate. In addition, {Z⃗ (t)} is assumed not-adapted to the filtration generated by
{X (t)} (an adapted covariate is one whose path until t is known once {X (u)}, u ≤ t, is known). The
transition hazard rate of a patient from state i to state j (i ̸= j) at time t, conditional on the sojourn
time and the covariate vector, is defined as

αij (t|z, s) := lim
h↓0

1
h

P
[

X(t + h) = j | X(t) = i, S(t) = s, Z⃗(t) = z
]

, s ∈ [0, ∞) , t ∈ [s, ∞) .

Independent right-censoring and left-truncation are assumed throughout (Aalen et al., 2008, p. 57).
The purpose of the present section is to give a (not necessarily exhaustive) description of the scope of
mstate and ebmstate with respect to the multi-state Cox model. Using the terminology in de Wreede
et al. (2011), a Cox model is termed a ‘clock-reset’ model when

αij (t | z, s) = λ
(0)
ij (s) exp

[
β⊺

ij z
]

, (1)

and it is termed a ‘clock-forward’ model when

αij (t | z) = α
(0)
ij (t) exp

[
β⊺

ij z
]

. (2)

In both cases, i, j ∈ S , with i ̸= j; βij is an unknown vector of regression coefficient parameters, and
both λ(0)

ij (·) and α(0)

ij (·) are unknown (baseline hazard) functions, non-negative on R+. When, as in
equation 1, αij (t|z, s) is the same for all t ≥ s, we simplify its notation to λij (s|z). As can be seen
from equations 1 and 2, the ‘clock-reset’ and ‘clock-forward’ models are models for how the transition
hazard rates are affected by time. In the former case, the only relevant time scale is the time s spent
in the current state, whereas in the latter only the time t since the initiating event matters. While the
‘clock-forward’ model is arguably the default one in multi-state survival analysis (Andersen et al., 1993;
Aalen et al., 2008), in some cases the ‘clock-reset’ model is more appropriate. For example, in some
forms of cancer, it can be sensible to assume that the transition hazards from the state of complete
remission depend on the sojourn time, rather than on the time since the initial diagnosis.

2.1 Relative transition hazards

The parametric component of the transition hazard from i to j, written exp
[

β⊺
ij z

]
, is termed the

relative transition hazard. In mstate and ebmstate, estimating the relative transition hazard amounts
to estimating the regression coefficient vector βij . In mstate, these parameters are assumed to be
non-random. With ebmstate, the following prior distributions can be imposed.

Define P as the set of all pairs of states between which a direct transition is possible. Let {βij}, for
all (i, j) ∈ P , be a partition of β, a vector containing the regression coefficients for all direct transitions
allowed. Each βij is further partitioned into {βijk}, for k ∈ {1, 2, ..., nij}. In ebmstate, the most general
model regarding the prior distribution of β makes two assumptions: a) the scalar components of
β are independent and normally distributed; b) the scalar components of βijk have a common (and
undetermined) mean µijk and a common (and also undetermined) variance σ2

ijk .

The purpose of the framework just described is to allow the clustering of covariate effects according
to their prior distribution. If there is no prior knowledge about how this clustering should be done,
a single Gaussian prior can be imposed on all regression coefficients at once. If prior knowledge
allows the grouping of effects according to the transition they refer to, a different Gaussian prior
can be assigned to the coefficients of each transition. Even within each transition, different groups
of coefficients can be assigned different prior distributions. In the analysis of biomedical data, for
example, there can be a split between genes which are known to affect the transition hazard, and other
genes whose effect is unknown.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=ebmstate


CONTRIBUTED RESEARCH ARTICLE 18

2.2 Cumulative transition hazard functions

Our package imports from mstate a Breslow estimator of two types of cumulative transition hazard:
one on a global time scale, defined as

Aij (t | z) :=
∫ t

0
α
(0)
ij (u) exp

[
β⊺

ij z
]

du ,

and another on a sojourn time scale, defined as

Λij(s | z) :=
∫ s

0
λ
(0)
ij (u) exp

[
β⊺

ij z
]

du .

Note that, in either case, the covariate vector is assumed to remain constant.

2.3 State occupation probabilities

By state occupation probability, we mean the probability that a patient in state i at time 0 finds herself
in state j at time t. The estimates of these probabilities can be seen as functionals of the estimated
cumulative transition hazard functions. For this reason, the restriction to models with time-fixed
covariates, which was just seen to be applicable to the estimators of cumulative transition hazards,
carries over to the estimation of state occupation probabilities.

When conditioning on a given covariate path (time-fixed or not), state occupation probability
estimates are not valid unless the covariates are external (Cortese and Andersen, 2010; Aalen et al.,
2008, p. 142). Note that a vector of covariates {Z⃗(u)}u≥0 is said to be external if, for all t ∈ [0, ∞),
each transition hazard at t, conditional on Z⃗(t), is independent of {Z⃗(u)}u>t (i.e. independent of the
future path of the covariate). Otherwise, it is said to be internal (for more details on the distinction
between internal and external covariates, see Kalbfleisch and Prentice, 2002, chapter 6). When one
does not wish (or is not possible due to Z⃗ being internal) to condition on a future covariate path of
the covariate process, the uncertainty introduced by this process needs to be accounted for. This can
be done by extending the state space of the disease process, so that it includes information on the
disease and the covariate process (Andersen et al., 1993, p. 170). For example, to include a dichotomous
transplant covariate (an internal covariate) in a simple survival model with two states, the state space
is expanded from {alive, deceased} to {alive without transplant, alive with transplant, deceased}.
One can then either assume that transplanted patients have a different baseline death hazard or, more
simply, that transplantation scales the death hazard by some constant exp (γ). A similar but more
detailed example can be found in de Wreede et al. (2010, section 2.3.2, ‘model 3’ ).

3 Estimation

In the current section, we present the estimation methods underlying the extensions of mstate imple-
mented in ebmstate.

3.1 Relative and cumulative hazard functions

Let µij, with (i, j) ∈ P (the set of direct transitions allowed), denote a vector whose scalar components
are the parameters µijk, k ∈ {1, 2, ..., nij}. Similarly, let σ2

ij be composed of the parameters
{

σ2
ijk

}
k. The

estimation of β, µ := {µij} and σ2 := {σ2
ij} relies on the restricted maximum-likelihood (REML) type

algorithm described in Perperoglou (2014), and introduced by Schall (1991). The resulting estimate
of β is a maximum a posteriori estimate; the estimates of µ and σ2 are empirical Bayes estimates. In
ebmstate, the estimator based on this algorithm is implemented in the function CoxRFX . The results
of a simulation study showing its consistency are included in the Supporting Scripts and Data (file
ESM_1.html, section 1).

The computation of cumulative hazard rates for given covariate values and an estimated regression
coefficient vector relies on the function msfit_generic, which is essentially a wrapper for the function
mstate::msfit (see section Computing cumulative transition hazard estimates). For the mathematical
details of this computation, we refer therefore the reader to de Wreede et al. (2010).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=ebmstate


CONTRIBUTED RESEARCH ARTICLE 19

3.2 State occupation probabilities

The package mstate includes a simulation-based estimator that can take as input either Âij (· | z)
or Λ̂ij (· | z) to generate estimates of state occupation probabilities under the clock-forward or the
clock-reset model respectively. Another available estimator, an Aalen-Johansen-type estimator based
on product integration, is far more efficient computationally and takes as input Âij (· | z) only. As the
scope of this estimator has been restricted to clock-forward Cox models (Andersen et al., 1993; Aalen
et al., 2008), in our package we implemented a convolution-based estimator as a computationally
efficient alternative (for models with a transition structure that has no cycles).

For convenience, let the sequence of states from 0 to n have the labels 0, 1, 2, ..., n , where 0 is the
initial state by definition, and n is some state that might (eventually) be reached by the process. In
addition, define X0 := X(0) and T0 := 0, and let (Xi, Ti), i ∈ {1, 2, ...}, denote the marked point
process associated with {X(t)}, so that Ti is the time of the ith transition and Xi is the state the process
jumps to at time Ti. The inter-transition times are denoted by τij := Tj − Ti, for j > i. We can write the
probability that a patient in state 0 at time 0 finds herself in state n at time t, conditional on Z⃗(u) = z
for all u ≥ 0, as

P
[

X(t) = n | X(0) = 0 , Z⃗(u) = z, u ≥ 0
]

= P
[

Xn = n, τ0,n < t, τn,n+1 ≥ t − τ0,n|X0 = 0 , Z⃗(u) = z, u ≥ 0
]

.

Recall that λi,i+1 (s | z) denotes the hazard rate of a transition to state i + 1 at time s since arrival
in state i, for a patient that has covariate vector z. The cumulative hazard for the same transition
between sojourn times 0 and s, if the patient’s covariate vector remains constant at z, is represented by
Λi,i+1 (s | z) :=

∫ s
0 λi,i+1 (x | z)dx. Similarly, we let λi (s | z) represent the hazard rate of going to any

state that can be reached directly from i, at time s since arrival in state i, for a patient with covariate
vector z. The cumulative hazard for the same event between sojourn times 0 and s, if the patient’s
covariate vector remains constant at z, is represented by Λi (s | z). The expressions Λ̂i (s | z) and
Λ̂i,i+1 (s | z) denote the Breslow estimators of the cumulative hazards just defined. In what follows, all
references to probabilities, hazard rates and cumulative hazards are to be understood as conditional
on Z⃗(u) = z , for u ≥ 0: this condition is omitted to simplify the notation.

In ebmstate, the function probtrans_ebmstate generates a set of state occupation probability
estimates at equally spaced time points:

{ p̂0n (k)}k :=
{

P̂ [Xn = n, τ0,n < tk, τn,n+1 ≥ tk − τ0,n | X0 = 0]
}

k , k = 0, 1, 2, ..., K ; tk = k × ∆t .

The number K of time intervals is 10, 000 by default and tK is a parameter set by the user. Defining the
functions

qij (k) := P
[

Xj = j, τij ∈ [tk, tk+1) | Xi = i
]

and

ri (k) := P
[
τi,i+1 > tk | Xi = i

]
,

and the finite difference

∆Λ̂i,i+1 (tk) := Λ̂i,i+1 (tk+1)− Λ̂i,i+1 (tk) ,

the algorithm behind probtrans_ebmstate can be described as follows:

1. For j = 1, 2, ..., n, compute

q̂j−1,j (k) := exp
[
−Λ̂j−1 (tk)

]
∆Λ̂j−1,j (tk) (3)

for k = 0, 1, ..., K − 1.

2. For j = 2, 3, ..., n, compute (iteratively)

q̂0j (k) :=
k−1

∑
l=0

q̂j−1,j (k − l − 1) q̂0,j−1 (l) (4)

for k = 0, 1, ..., K − 1.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate


CONTRIBUTED RESEARCH ARTICLE 20

3. Finally, use the estimates obtained in the last iteration of step 2 to compute

p̂0n (k) :=
k−1

∑
l=0

r̂n (k − l − 1) q̂0,n (l) (5)

for k = 0, 1, ..., K, where r̂n (·) := exp
[
−Λ̂n (t(·))

]
.

Substituting := for ≈ and removing the ‘hats’ in definitions 3 to 5, we get the approximate equalities
that justify the algorithm. These approximate equalities are derived in the Supporting Scripts and
Data (file ESM_1.html, section 2).

Apart from probtrans_ebmstate, the function probtrans_fft is also based on the convolution
argument just shown. However, this function makes use of the convolution theorem, i.e., of the fact
that the convolution of two (vectorized) functions in the time domain is equivalent to a pointwise
product of the same functions in the frequency domain. The estimation of state occupation probabilities
is thus simplified to

p̂0n :=F−1 {q̂0,1 · q̂1,2 · ... · q̂n−1,n · r̂n} ,

where F denotes the discrete Fourier transform, q̂j−1,j := F (q̂j−1,j) and r̂n := F (r̂n). Conversion
to and from the frequency domain is carried out using the fast Fourier transform algorithm imple-
mented in the fft function of the base package stats. The Supporting Scripts and Data contain a
short simulation study checking that state occupation probabilities can be accurately estimated with
probtrans_ebmstate and probtrans_fft (see file ESM_1.html, sections 3 and 4).

Figure 2 consists of a grid of plots with estimated curves of state occupation probabilities. It
compares, in terms of speed and accuracy, the estimator in probtrans_fft with an estimator in
mstate::mssample that has the same target, but is simulation-based. Each plot contains a black curve
and a superimposed red curve. The red curves in any given column of the grid are all based on the
same run of a function: columns 1 to 3 are based on runs of mssample with the number of samples n
equal to 100, 1000 and 10.000 respectively, while column 4 is based on a run of probtrans_fft. Each
column in the grid reproduces the same 4 black curves. These are based on a single run of mssample
with n = 100.000 and serve as benchmark. All function runs are based on the same input: a set of
cumulative transition hazard estimates for a multi-state model with the ‘linear’ transition structure
given in the leftmost diagram of figure 3. Plots in a given row refer to the same state of the model.
The running times on top of each column refer to the estimation of red curves. The main conclusion
suggested by this analysis of simulated data is that probtrans_fft is as accurate as mssample with
n = 10.000, but it is almost 100 times faster (columns 3 and 4). With n = 1000, mssample achieves a
good approximation to the true state occupation probabilities, but is still roughly 9 times slower. The
details on how figure 2 and its underlying data were generated are given in the Supporting Scripts
and Data (file ESM_1.html, section 5).

3.3 Interval estimation

Under any model estimated by ebmstate – as in general under a Bayesian model –, one can, if the
sample size is large enough, approximate the posterior by a normal distribution with mean equal
to the maximum a posteriori estimate and covariance matrix equal to the inverse of the generalised
observed Fisher information (see, for example, Gelman et al., 2014, p. 83-84). This approximation
has first-order accuracy and is thus outperformed by Laplace’s method, which has second-order
accuracy (Carlin and Louis, 2009, p. 110-111). However, as Carlin and Louis (2009, p. 112) observe,
“for moderate- to high-dimensional θ (say, bigger than 10), Laplace's method will rarely be of sufficient
accuracy[...]”. Carlin and Louis (2009, p. 244-251) also describe three methods of interval estimation
in empirical Bayes settings, but all of them are designed for fully parametric models. These reasons,
along with the fact that regularised methods such as the one implemented ebmstate are typically used
to fit models with more than a dozen covariates, led us to choose the non-parametric bootstrap as
the interval estimation method in ebmstate. Note that the non-parametric bootstrap can be given a
Bayesian interpretation. Its interval estimates are approximately the same as those of a Bayesian model
that assumes: a) a multinomial distribution for the data; and b) a non-informative Dirichlet prior
distribution for the probability assigned to each category in the multinomial distribution. This is a
specific case of the so-called Bayesian bootstrap (Hastie et al., 2009, p. 272). Further research is needed
to determine the theoretical properties of the non-parametric bootstrap in the present setting, but this
falls beyond the scope of the present paper. Interval estimates of regression coefficients, cumulative
hazards and state occupation probabilities are implemented in the function boot_ebmstate.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=ebmstate


CONTRIBUTED RESEARCH ARTICLE 21

4 Estimator performance

It is a well-documented fact in the statistical literature that standard least-squares or maximum-
likelihood estimators can often be improved by regularisation or shrinkage (see, for example, Sam-
worth, 2012). This improvement comes about when the model dimensionality is high enough that
the bias introduced by regularisation is outweighed by the reduction in the estimator variance. In the
current setting, one might therefore ask: what kind of dimensionality does a semi-parametric, multi-
state Cox model need to have to be outperformed by its empirical Bayes counterpart? A simulation
study we carried out offers a tentative answer to this question, by comparing estimators under both
Cox models for an increasing number of covariates. The study also features a third method, based
on a fully non-parametric model, as a null model method. This was included to give an idea of how
many covariates the empirical Bayes model can deal with before it becomes no better than a simple
non-regressive model.

4.1 Simulation setup

We assessed the performance of all estimators defined by the tuple [a, m, G, n, p(n)], where a ∈
{regression coefficients, relative hazards, state occupation probabilities} is the target of estima-
tion, m ∈ {standard Cox, empirical Bayes Cox, null} is the assumed hazard model, G ∈ {linear,
competing risks, ‘m’ structure} is the transition structure of the model (illustrated in figure 3) and
n ∈ {100, 1000} is the number of patients/disease histories in the training data set; the variable p
denotes the number of coefficients/covariates per transition in the true model and its range depends
on n: p (100) ∈ {10, 40, 70, 100} whereas p (100) ∈ {10, 100, 200, 300, 400, 500}. By ‘relative hazards’
and ‘state occupation probabilities’, we mean here the relative transition hazards of an out-of-sample
patient, and her state occupation probabilities at 7 chosen time points. We generated a batch of 300
independent absolute error observations (‘NA’ estimates included) for each estimator, where each
observation is recorded after training the estimator on a newly simulated data set. Each boxplot in
figures 6 (n = 100) and 7 (n = 1000) is based on one of these batches. As all estimators are vector
estimators, each absolute error is actually an average absolute error, where the average is taken over
the components of the vector.

All training data sets were simulated from clock-reset Cox models. Apart from G (the model
transition structure), n and p, also the true baseline hazards are held fixed within each batch of
300 training data sets. The coefficient vectors used in the simulation are always non-sparse and

are scaled by
√

10
p to keep the log-hazard variance constant when the dimensionality grows. All

covariates are dichotomous and mutually independent. To compute the coefficient errors for the
non-parametric (null) model method, we think of it as a degenerate Cox model in which all regression
coefficient estimates are fixed at zero. The estimation of regression coefficients under the standard Cox
and the empirical Bayes Cox models was performed with survival::coxph and ebmstate::CoxRFX
respectively; the estimation of state occupation probabilities is based on mstate::probtrans for the
null model and on ebmstate::probtrans_fft for both the standard Cox and the empirical Bayes Cox
models.

The reason we did not consider simulation scenarios with more than 500 covariates per transition,
in data sets of 1000 patients, was simply computational cost. For example, generating the data and
error observations for the scenario with n = 1000, p = 100 and G =‘m’ structure took less than one
hour to generate using 20 CPU cores in parallel; the same scenario but with p = 500 took 6.5 days
using 25 CPU cores. More details about the simulation setup can be found in the Supporting Scripts
and Data (file ESM_1.html, section 6, subsection ‘sample script’).

4.2 Missing values

Whenever an estimator was able to compute a valid estimate of its target for each training data set,
i.e., when it did not return any ‘NA’ estimates, its boxplots are based on 300 valid error observations.
This was always the case with non-parametric estimators: the estimates of regression coefficients
and relative hazards of this type of estimators are trivial (fixed at zero and one respectively) and
hence it is also straightforward to compute absolute errors. It also happened that non-parametric
estimators of state occupation probabilities had no ‘NA’ estimates (see file ESM_1.html, section 6,
figure 6.3, in the Supporting Scripts and Data). The situation was similar for the empirical Bayes
Cox model estimators, which showed no more than 5% missing estimates in any of the simulation
scenarios studied (ibid., figures 6.1 and 6.2). However, for the standard Cox model ones, the number
of ‘NA’ estimates depends to a large extent on the number of patients in the data set, as well as on the
dimensionality and transition structure of the model (figures 4 and 5). In data sets of 100 patients, it
fares well in models with fewer than 10 covariates per transition, or in models with up to 40 covariates,

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 22

if the transition structure is linear. Otherwise its failure rates range from roughly 25% to nearly 100%.
In data sets of 1000 patients, the proportion of ‘NA’ estimates is never above 10%, if the transition
structure is linear, but it can climb above 60% for other transition structures.

4.3 Comparison of estimators

With respect to the performance of the three methods studied, the boxplots in figures 6 and 7 suggest
the following conclusions:

• As p/n grows, the empirical Bayes estimators quickly outperform the standard Cox model ones.
They already fare substantially better at p/n = 0.1 for both n = 100 and n = 1000 and for all
estimation targets. At the same time, the relative performance of the empirical Bayes method
with respect to the null model one decreases. At p/n = 0.5, the difference between these two
methods is already rather small for all simulation scenarios.

• The relative performance of the empirical Bayes method with respect to the null method
decreases as the number of co-occurring transition hazards in the model grows. All other things
equal, the empirical Bayes method has the best performance under the ‘linear’ structure model,
which has no competing transitions; it performs less well under the ‘m’ structure transition
model, where two transition hazards can co-occur; and has the worse relative performances
under the ‘competing risks’ model, where three transition hazards co-occur. This trend is clearer
for n = 100 (figure 6) but can also be detected in the relative hazard errors for n = 1000 (figure
7). In any case, the empirical Bayes method seems to be far more robust than the standard Cox
model against increases in the number of co-occurring transition hazards.

• Having as target the regression coefficients or the state occupation probabilities, instead of
relative hazards, makes the empirical Bayes method better in comparison to the null method.
In fact, as p/n grows, the empirical Bayes method is never outperformed by the null method
except in the estimation of relative hazards.

5 Survival analysis workflow

The features of mstate were illustrated in de Wreede et al. (2010) using a simple workflow. The starting
point of this workflow is a data set in ‘long format’. Such data set can be fed into survival::coxph to
obtain estimates of the regression coefficients of a multi-state Cox model. The resulting model fit object
can be passed on to mstate::msfit, along with a vector of covariates of a particular patient, to get
personalised estimates of the cumulative hazard functions. Finally, state occupation probabilities for
the same patient can be estimated if the object created by mstate::msfit is fed into mstate::probtrans.
In this section, we describe how ebmstate extends the scope of this workflow, i.e., how it uses the
packages survival and mstate to generate estimates under a multi-state empirical Bayes Cox model. A
diagram summarising the extension is shown in figure 8. In the Model assessment subsection, we give
some recommendations on how to assess and compare models, but for more detailed tutorials on how
to analyse multi-state data using models defined by transition hazards, we refer the reader to Putter
et al. (2007) and Putter (2011).

The main steps of the ebmstate workflow are here illustrated using a data set of patients with
myelodysplastic syndromes (MDS) which has been described and studied in Papaemmanuil et al.
(2013). A myelodysplastic syndrome is a form of leukemia in which the bone marrow is not able
to produce enough mature blood cells, and which sometimes develops into a cancer of white blood
cells with a quick and aggressive progression, i.e., into acute myeloid leukemia (AML). Figure 9a
illustrates an illness-death type model for MDS patients and also gives a breakdown of the number of
transition events. The conversion to a model with a transition structure that has no cycles (i.e., that
can be handled by our convolution-based estimators) is shown in figure 9b. The data set used for
model estimation, obtained after a number of pre-processing steps, contains the disease history of 576
patients, as well as measurements on 30 covariates. Of these 30 covariates, 11 are mutation covariates
and the remaining are clinical or demographic (see figure 9c). The running time for the estimation
of relative transition hazards does not exceed 10 seconds in a standard laptop computer. The same
holds for the estimation of cumulative transition hazards or state occupation probabilities for a given
patient. The complete R code underlying the data analysis in the current section can be found in the
Supporting Scripts and Data (file ESM_2.html). For running only the R snippets shown below and
reproduce their results, the best option is to use the R script in file ESM_3.R of the Supporting Scripts
and Data.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate


CONTRIBUTED RESEARCH ARTICLE 23

id from to trans Tstart Tstop time status strata ASXL1 DNMT3A [...]
77 1 2 1 0 2029 2029 0 1 0 0 .
77 1 3 2 0 2029 2029 1 2 0 0 .
78 1 2 1 0 332 332 1 1 1 0 .
78 1 3 2 0 332 332 0 2 1 0 .
78 2 4 3 332 1449 1117 1 3 1 0 .

Table 1: A 5-row fragment of the MDS data set (in long format)

5.1 Input data

Table 1 shows a fragment of the MDS data set. The data is in ‘long format’, which means that each
row refers to a period of risk for a given transition and patient. For example, row i tells us that, at
time Tstart[i], patient id[i] entered state from[i], and thereby began to be at risk for transition
trans[i], i.e., at risk of going from state from[i] to state to[i]. If the first transition of patient id[i]
after time Tstart[i] occurs before the last follow-up time for this patient, Tstop[i] records the time
of this transition (regardless of whether the patient moved to state to[i] or not). Otherwise, Tstop[i]
is set to the last follow-up time. The value of status[i] is set to 1 if and only if the first transition of
patient id[i] after Tstart[i] is to state to[i] and occurs before the last follow-up (otherwise it is set
to 0). The value of time[i] is defined simply as Tstop[i]−Tstart[i], and strata[i] is the stratum
of the baseline hazard for transition trans[i] (more about this variable in the following section). For
x ∈ { ASXL1, DNMT3A, . . . }, x[i] denotes the level of covariate x between Tstart[i] and Tstop[i] in
patient id[i]. (In the MDS data set, we assume that the relative hazard of a patient is determined by
her covariate vector at t = 0, i.e., we assume all covariates to be time-fixed.) If a patient enters a new
state, and this state communicates directly with n other states, then, as long as the patient actually
spends time in the new state (i.e. the time of transition is not the same as the last follow-up time), n
rows must be added to the data set, with each row corresponding to a different possible transition.

From table 1, we know that patient 77 entered state 1 (‘MDS’) at time 0 and remained in this state
until time 2029, when she moved to state 3 (‘death before AML’). There are no rows to describe the
evolution of patient 77 after entering state 3, as this state is an absorbing state. As to patient 78, she
remained in state 1 until time 332, and moved from there to state 2 (‘AML’). She lived with AML for
1117 days and moved to state 4 (‘death after AML’) at time 1449.

5.2 Fitting an empirical Bayes Cox model

Once the data is in ‘long format’, the estimation of an empirical Bayes model can be carried out using
the function CoxRFX. A simple example of the first argument of CoxRFX, denoted ‘Z’, is a data frame
gathering the trans, strata and covariate columns of the data in long format:

outcome_covs <- c("id","from","to","trans","Tstart","Tstop","time","status",
"strata")

Z <- mstate_data[!names(mstate_data) %in% outcome_covs]
#(`mstate_data' has the data in long format)

The strata column determines which baseline hazard functions are assumed to be equal. In table 1,
each transition is assumed to have a (potentially) different baseline hazard. The model’s assumptions
regarding how covariates affect the hazard are reflected on the format of the covariate columns of
Z. When the Z argument is the one created in the previous block of code, CoxRFX returns a single
regression coefficient estimate for each covariate. In other words, the impact of any covariate is
assumed to be the same for every transition.

There are however ways of relaxing this assumption. One can replace the ASXL1 column in Z (or
any other covariate column) by several ‘type-specific’ ASXL1 columns: the ASXL1 column specific for
type i would show the mutation status of ASXL1 in rows belonging to transition of type i, and show
zero in all other rows. This would force CoxRFX to estimate a (potentially) different ASXL1 coefficient
for each transition type. This process of covariate expansion by type can be based on any partition
of the set of transitions. When each type corresponds to a single transition, we refer to it simply as
‘covariate expansion by transition’. The output shown below illustrates the effect of expanding the
covariates in ‘mstate_data’ by transition.

# Columns `id' and `trans' from `mstate_data' together with the first
# two expanded covariates (patients 77 and 78):

id trans ASXL1.1 ASXL1.2 ASXL1.3 DNMT3A.1 DNMT3A.2 DNMT3A.3 [...]
77 1 0 0 0 0 0 0 .

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 24

77 2 0 0 0 0 0 0 .
78 1 1 0 0 0 0 0 .
78 2 0 1 0 0 0 0 .
78 3 0 0 1 0 0 0 .

The example code given below shows how to use mstate to expand covariates by transition and
how to create a Z argument that makes CoxRFX estimate a regression coefficient for each covariate for
transitions 1 and 2, and assume a fully non-parametric hazard for transition 3.

# To expand covariates by transition using mstate::expand.covs,
# first set the class of `mstate_data' as
class(mstate_data) <- c("data.frame","msdata")

# then add the transition matrix as attribute:
attr(mstate_data,"trans") <- tmat
#(`tmat' is the output of mstate::transMat)

# Expand covariates by transition:
covariates_expanded_123 <- mstate::expand.covs(

mstate_data,
covs = names(mstate_data)[! names(mstate_data) %in% outcome_covs],
append = F

)

# remove all covariates for transition 3 from `covariates_expanded_123'
# to fit a fully non-parametric model on this transition:
covariates_expanded_12 <- covariates_expanded_123[

!grepl(".3",names(covariates_expanded_123),fixed = T)
]

#argument `Z' of coxrfx
Z_12 <- data.frame(covariates_expanded_12,strata = mstate_data$trans,

trans = mstate_data$trans)

The second argument of CoxRFX (‘surv’) is a survival object that can easily be built by feeding the
outcome variable columns of the data to the function Surv (from the package survival). Whether
CoxRFX fits a clock-forward model or a clock-reset model depends on the kind of survival object:

#argument `surv' for a clock-forward model
surv <- Surv(mstate_data$Tstart,mstate_data$Tstop,mstate_data$status)

#argument `surv' for a clock-reset model
surv <- Surv(mstate_data$time,mstate_data$status)

The argument groups of CoxRFX is a vector whose length equals the number of covariates in the
data. In other words, the length of groups is ncol(Z)-2, since the argument Z must include both the
covariate data and the strata and trans columns. If, for i ̸= j, groups[i]=groups[j] = ‘foo’, this
means that the regression coefficients of the ith and jth covariates of Z both belong to a group named
‘foo’ of coefficients with the same prior. For the Z object built above, the groups argument created
in the following block of code embodies the assumption that all coefficients associated with a given
transition have the same prior distribution. The final line of code fits the empirical Bayes model.

#argument `groups' of coxrfx
groups_12 <- paste0(rep("group",ncol(Z)-2),c("_1","_2"))

#fit random effects model
model_12 <- CoxRFX(Z_12,surv,groups_12,tmat)

Figure 10 shows regression coefficient point estimates for a clock-reset, empirical Bayes model
fitted with the code above. Also shown are 95% non-parametric bootstrap confidence intervals
computed using ebmstate::boot_ebmstate. The x-axis scale is logarithmic to allow estimates to be
read as relative hazards more easily. For example, a mutation in RUNX1 is associated with a twofold
increase in the hazard of progression from MDS to AML, and treatment centre 4 is associated with
a 3-fold increase in the hazard of dying before progressing to AML, when compared to the baseline
value of ‘treatment centre’ (treatment centre = 2 or 5). In covariates that have been log-transformed
(age, platelet count and neutrophil count) or logit-transformed (proportions of myeloblasts and ring
sideroblasts in the bone marrow), the interpretation of estimates is different. For example, an increase

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=survival


CONTRIBUTED RESEARCH ARTICLE 25

in age by a factor of e (≈ 2.72) almost triples the hazard of dying before AML; the same increase in the
ratio bm_blasts/(1− bm_blasts) (where bm_blasts is the proportion of myeloblasts in the bone marrow)
is associated with an increment in the hazard of dying before AML of approximately 16%.

5.3 Computing cumulative transition hazard estimates

The function msfit_generic is the generic function in ebmstate that computes cumulative transition
hazards for a given set of covariate values and an estimated Cox model. It calls a different method
according to the class of its object argument. The default method corresponds to the original
msfit function of the mstate package and is appropriate for objects of class coxph, i.e., objects that
contain the fit of a Cox model with fixed effects. The other available method for msfit_generic,
msfit_generic.coxrfx, is just the original msfit function, (slightly) adapted to deal with objects
generated by CoxRFX. Quite importantly, msfit_generic.coxrfx does not allow the variance of the
cumulative hazards to be computed, as this computation relies on asymptotic results which may not
be valid for an empirical Bayes model. As a result, it only has two other arguments apart from the
object of class coxrfx: a data frame with the covariate values of the patient whose cumulative hazards
we want to compute; and a transition matrix describing the states and transitions in the model (such as
the one that can be generated using transMat from the package mstate). The following block of code
exemplifies how these objects can be built and generates the msfit object containing the cumulative
transition hazard estimates for a sample patient. Note that the object with the patient data must
include a row for each transition, as well as a column specifying the transition stratum of each row of
covariates.

# Build `patient_data' data frame with the covariate values for which
# cumulative hazards are to be computed (covariate values of patient 78):
patient_data <- mstate.data[mstate.data$id == 78,,drop = F][rep(1,3),]
patient_data$strata <- patient_data$trans <- 1:3
patient_data <- mstate::expand.covs(

patient_data,
covs = names(patient_data)[ ! names(patient_data) %in% outcome_covs],
append = T

)
patient_data <- patient_data[ ! grepl(".3",names(patient_data),fixed = T)]

# The `patient_data' data frame has only 3 rows (one for each transition).
# The output below shows its `id' and `trans' columns
# and expanded covariates ASXL1 and DNMT3A:

id trans ASXL1.1 ASXL1.2 DNMT3A.1 DNMT3A.2 [...]
78 1 1 0 0 0 .
78 2 0 1 0 0 .
78 3 0 0 0 0 .

# compute cumulative hazards
msfit_object_12 <- msfit_generic(model_12,patient_data,tmat)

Figure 11 shows three plots of estimated cumulative transition hazards for the sampled patient,
one for each transition in the model, along with 95% non-parametric bootstrap confidence intervals
(computed with ebmstate::boot_ebmstate). Throughout the plotted period, the ‘slope’ of the cumu-
lative hazard (i.e., the hazard rate) for the MDS to AML transition is lower than the one for the MDS to
death transition, and this in turn is lower than the one for the AML to death transition. It should be
recalled that the cumulative hazard estimate is strictly non-parametric for this last transition, i.e., it
is the same for all patients. The central plot of figure 11 suggests that, as time since diagnosis goes
by, the hazard of dying in MDS increases (possibly an effect of age). On the other hand, the hazard
of dying in AML seems to decrease (slightly) with time (rightmost plot). Conclusions regarding the
evolution of the AML hazard are hard to draw, since the confidence intervals for the corresponding
cumulative hazard curve are very wide (leftmost plot).

If an object generated by msfit_generic is fed to plot, and the package mstate is loaded, the
method mstate:::plot.msfit will be called. This is an efficient way of automatically plotting the
cumulative hazard estimates for all transitions, but confidence interval lines (separately estimated)
cannot be added.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate


CONTRIBUTED RESEARCH ARTICLE 26

5.4 Computing state occupation probability estimates

The functions probtrans_mstate, probtrans_ebmstate and probtrans_fft compute estimates of
state occupation probabilities for a given msfit object. All three functions generate objects of
class probtrans that can be fed to the plot.probtrans method from the package mstate. The
first of these functions should only be used for clock-forward models, as it relies on product-
limit calculations. It calls the method probtrans_mstate.default, if the msfit object was gener-
ated by msfit_generic.default, or the method probtrans_mstate.coxrfx, if it was generated by
msfit_generic.coxrfx. Both methods are identical to the function probtrans in the mstate package,
with the reserve that probtrans_mstate.coxrfx does not allow the computation of the variances or
covariances of the state occupation probability estimator.

The functions probtrans_ebmstate and probtrans_fft are the functions in ebmstate for the
computation of state occupation probability estimates under clock-reset models with a transition
structure that has no cycles. When using probtrans_fft (the faster, but somewhat less stable, of
these two functions), three arguments must be supplied: the initial state of the process whose state
occupation probabilities one wishes to compute, the msfit object, and the upper time limit for the
generation of estimates (max_time). Both functions are based on a discrete-time approximation to a
series of convolutions. The default argument nr_steps controls the number of (equally spaced) time
steps used in this approximation. The arguments max_time and nr_steps should be increased until
the estimated curves become stable.

The following line of code computes point estimates of state occupation probabilities for the
sample patient.

probtrans_object_12 <- probtrans_fft("MDS",msfit_object_12, max_time = 4000)

Estimates are shown in figure 12, along with 95% non-parametric, bootstrap confidence intervals.
For this particular patient, the estimated probability of being dead after AML remains below 0.4
throughout a period of 10 years from the MDS diagnosis; if the patient does reach AML, death is
expected to happen quickly thereafter, as reflected in the very low estimates for the probability of
being in AML at any point in time. The following block of code shows how to compute confidence
intervals with boot_ebmstate:

# Creating the object arguments for boot_ebmstate()

# `groups' arguments was already created, but we need to add names to it
names(groups_12) <- names(covariates_expanded_12)

# `mstate_data_expanded' argument (similar to `covariates_expanded' but
# including outcome variables)
mstate_data_expanded <- cbind(
mstate_data[names(mstate_data) %in% outcome_covs],
covariates_expanded_12

)

# create the non-parametric bootstrap confidence intervals
boot_ebmstate_object <- boot_ebmstate(
mstate_data = mstate_data_expanded,
which_group = groups_12,
min_nr_samples = 100,
patient_data = patient_data,
tmat = tmat,
initial_state = "MDS",
time_model = "clockreset",
input_file = NULL,
coxrfx_args = list(max.iter = 200),
probtrans_args = list(max_time = 4000)

)

5.5 Model assessment

For any model fitted with ebmstate, two performance metrics can be easily computed: the concordance
statistic (Harrell et al., 1982; see also the help page of survival::concordance for the definition of
concordance) and the Bayesian Information Criterion (BIC) score (Schwarz, 1978). As an example of
how these two metrics can be obtained and used for model comparison, suppose we wish to compare

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=ebmstate


CONTRIBUTED RESEARCH ARTICLE 27

‘model_12’ fitted above – which consists of a Cox regression including all covariates for transitions 1
and 2 and a fully non-parametric model for transition 3 – with a model that combines Cox regressions
of all covariates for each of the three transitions (denoted ‘model_123’ below). The following code
snippet shows how to fit this second model.

# arguments `groups' and `Z' for fitting a Cox regression model on all transitions
Z_123 <- data.frame(

covariates_expanded_123,
strata = mstate_data$trans,
trans = mstate_data$trans

)
groups_123 <- paste0(rep("group", ncol(Z_123) - 2), c("_1", "_2", "_3"))

# Fit a Cox regression model for all transitions
model_123 <- CoxRFX(Z = Z_123, surv = surv, groups = groups_123)

Running the concordance function in the survival package for each model yields the following output:

> concordance(model_12)
Call:
concordance.coxph(object = model_12)

n= 1210
Concordance= 0.8131 se= 0.01314

concordant discordant tied.x tied.y tied.xy
strata=1 18040 2783 0 1 0
strata=2 37919 9678 0 7 0
strata=3 0 0 1052 0 4

> concordance(model_123)
Call:
concordance.coxph(object = model_123)

n= 1210
Concordance= 0.8168 se= 0.01312

concordant discordant tied.x tied.y tied.xy
strata=1 18041 2782 0 1 0
strata=2 37920 9677 0 7 0
strata=3 784 268 0 4 0

The output shows that modelling transition 3 with a Cox model, instead of a fully parametric one,
has a negligible impact on the overall concordance. However, this is due to the fact that there are
far fewer observations for this transition. The concordance for transition 3 only, which corresponds
to strata 3, is 0.5 under the fully parametric model (i.e., all patients are assigned the same transition
hazard) and considerably higher under the Cox regression (784/(784 + 268) = 0.75). Ideally, the
comparison of models of different complexity should be carried out on a test sample rather than on the
training data. For this purpose, the test data can be input into to the concordance function (argument
newdata). However, in the present case, only 61 patients were ever at risk of dying with AML (i.e. of
undergoing transition 3), and of these only 41 actually died, so we might prefer to keep all patients
in the training data, rather than saving a fraction of them for testing purposes. Such an option will
yield more accurate coefficient estimates, at the expense of not allowing the computation of unbiased
estimates of model performance. If the goal is only to compare models, we can make do without test
data, by using an information score that penalises model complexity, such as the BIC. To facilitate
model comparison, the BIC score is one of the attributes of the model fit object:

> model_12$BIC
[1] 2508.37

> model_123$BIC
[1] 2483.49

The best model is the one with the lowest score, so the choice of ‘model_123’ is confirmed.

6 Discussion

We have shown that ebmstate is suitable for higher-dimensional, multi-state survival analysis, and that
it is both efficient and easy-to-use. To a significant extent, the user-friendliness of ebmstate stems from

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=ebmstate


CONTRIBUTED RESEARCH ARTICLE 28

the fact that it was not built ‘from the ground up’. Instead, we produced a package that is more easily
accessible to the many users of mstate by taking advantage of whichever features of this package
were useful to our method and by eliminating redundancies. The connection between ebmstate
and mstate is based on the fact that the function CoxRFX takes the same type of input and produces
the same type of output as coxph from the package survival, and the function probtrans_fft (or
probtrans_ebmstate) has the same type of input and output as probtrans from mstate (as shown in
figure 8).

We also sought to improve our package’s user-friendliness by making it as efficient as possible. The
reduction of computational cost is based on two features. First, our empirical Bayes method relies on
an expectation-maximisation algorithm that estimates both the parameters and the hyper-parameters
of the model, i.e., no further tuning of the model is required. Second, in ebmstate, the computation
of state occupation probability estimates relies on analytical results rather than on simulation: not
only for clock-forward models, where we import from mstate a product-limit estimator, but also for
clock-reset models, where we implement our own estimator based on a convolution argument and the
fast Fourier transform.

To our knowledge, ebmstate is the first R package to put together a framework for multi-state
model estimation that is complete and suitable for higher-dimensional data. It does so by implementing
point and interval estimators of regression coefficients, cumulative transition hazards and state
occupation probabilities, under regularised multi-state Cox models. In section Estimator performance,
the results of the simulation study suggest that for data sets with 100 patients or more and a ratio
of p (patients) to n (coefficients per transition) greater than 0.1, the standard Cox model estimator is
clearly outperformed by the empirical Bayes one when it comes to the estimation of relative hazards
and state occupation probabilities of an out-of-sample patient, or the regression coefficients of the
model. However, the same study suggests that using an empirical Bayes method instead of a fully
non-parametric one is of limited or no value in settings where p/n ≥ 1. This loss of usefulness
can already happen for p/n ≤ 1/2 when it comes to the estimation of the relative hazards of an
out-of-sample patient, especially for transition structures with multiple competing transitions.

As mentioned in previous sections, ebmstate imports a product-limit estimator from mstate that
targets the state occupation probabilities of patients with time-fixed covariate vectors. However, these
estimators are extendible to models with time-dependent covariates, as long as these are external and
the estimates are conditional on specific covariate paths (Aalen et al., 2008, p. 142). For piecewise
constant covariates, it is likely that such an adaptation could be obtained by combining transition
probability estimates obtained for each period in which the covariates are fixed. While no significant
theoretical obstacles are foreseen in this matter, the computer implementation for more than a single
piecewise constant covariate is likely to be a laborious task. We have left it therefore for future work.

Acknowledgements

The authors are supported by grant NNF17OC0027594 from the Novo Nordisk Foundation. We thank
an anonymous reviewer for their constructive comments and helpful suggestions which led to a
much-improved manuscript.

Supporting Scripts and Data

In the supporting Scripts and Data, the file ‘ESM_1.html’ contains additional simulation results and
theoretical demonstrations. Additional details on the analysis of the MDS data set are given in the file
‘ESM_2.html’. The MDS data set is in files ‘MDS.TPD.20Nov2012.csv’ and ‘mds.paper.clin.txt’. The file
‘ESM_3.R’ contains a simplified R script to run the code snippets in the present paper. The ebmstate
package is available on CRAN.

7 Conflict of interest

The authors have declared no conflict of interest.

References

O. Aalen, O. Borgan, and H. Gjessing. Survival and event history analysis. Springer, 2008. URL
https://link.springer.com/book/10.1007/978-0-387-68560-1. [p15, 17, 18, 19, 28]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=ebmstate
https://CRAN.R-project.org/package=mstate
https://CRAN.R-project.org/package=ebmstate
https://link.springer.com/book/10.1007/978-0-387-68560-1


CONTRIBUTED RESEARCH ARTICLE 29

O. O. Aalen. A linear regression model for the analysis of life times. Statistics in Medicine, 8(8):907–925,
1989. URL https://doi.org/10.1002/sim.4780080803. [p15]

P. Andersen, O. Borgan, R. Gill, and N. Keiding. Statistical Models Based On Counting Processes. Springer,
1993. URL https://link.springer.com/book/10.1007/978-1-4612-4348-9. [p17, 18, 19]

B. Carlin and T. Louis. Bayesian Methods for Data Analysis. CRC Press, 2009. URL https://doi.org/10.
1201/b14884. [p20]

G. Cortese and P. K. Andersen. Competing risks and time-dependent covariates. Biometrical Journal, 52
(1):138–158, 2010. URL https://doi.org/10.1002/bimj.200900076. [p18]

L. C. de Wreede, M. Fiocco, and H. Putter. The mstate package for estimation and prediction in non-
and semi-parametric multi-state and competing risks models. Computer Methods and Programs in
Biomedicine, 99(3):261 – 274, 2010. ISSN 0169-2607. doi: https://doi.org/10.1016/j.cmpb.2010.01.001.
URL http://www.sciencedirect.com/science/article/pii/S0169260710000027. [p15, 18, 22]

L. C. de Wreede, M. Fiocco, and H. Putter. mstate: An R package for the analysis of competing risks
and multi-state models. Journal of Statistical Software, 38(7):1–30, 2011. URL http://www.jstatsoft.
org/v38/i07/. [p17]

A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. Bayesian Data Analysis. CRC Press,
2014. URL https://doi.org/10.1201/b16018. [p20]

J. Harrell, Frank E., R. M. Califf, D. B. Pryor, K. L. Lee, and R. A. Rosati. Evaluating the Yield of Medical
Tests. JAMA, 247(18):2543–2546, 05 1982. ISSN 0098-7484. doi: 10.1001/jama.1982.03320430047030.
URL https://doi.org/10.1001/jama.1982.03320430047030. [p26]

T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements of statistical learning: data
mining, inference, and prediction, volume 2. Springer, 2009. URL https://link.springer.com/book/
10.1007/978-0-387-84858-7. [p20]

T. Hothorn, P. Buehlmann, T. Kneib, M. Schmid, and B. Hofner. mboost: Model-based boosting. R
package version, pages 2.9–3, 2020. URL https://CRAN.R-project.org/package=mboost. [p15]

P. Hougaard. Multi-state models: a review. Lifetime data analysis, 5(3):239–264, 1999. URL https:
//doi.org/10.1023/A:1009672031531. [p15]

C. Jackson. flexsurv: A platform for parametric survival modeling in R. Journal of Statistical Software,
70(8):1–33, 2016. doi: 10.18637/jss.v070.i08. [p15]

C. H. Jackson. Multi-state models for panel data: the msm package for R. Journal of Statistical Software,
38(8):1–29, 2011. URL http://www.jstatsoft.org/v38/i08/. [p15]

J. D. Kalbfleisch and R. L. Prentice. The statistical analysis of failure time data. John Wiley & Sons, 2002.
doi: 10.1002/9781118032985. [p18]

A. Listwon and P. Saint-Pierre. SemiMarkov: An R Package for Parametric Estimation in Multi-State
Semi-Markov Models. Journal of Statistical Software, 66(6):784, 2015. doi: 10.18637/jss.v066.i06. URL
https://hal.archives-ouvertes.fr/hal-00860244. [p15]

E. Papaemmanuil, M. Gerstung, L. Malcovati, S. Tauro, G. Gundem, P. Van Loo, C. J. Yoon, P. Ellis,
D. C. Wedge, A. Pellagatti, et al. Clinical and biological implications of driver mutations in
myelodysplastic syndromes. Blood, 122(22):3616–3627, 2013. URL https://doi.org/10.1182/
blood-2013-08-518886. [p22]

A. Perperoglou. Cox models with dynamic ridge penalties on time-varying effects of the covariates.
Statistics in Medicine, 33(1):170–180, 2014. URL https://doi.org/10.1002/sim.5921. [p16, 18]

H. Putter. Tutorial in biostatistics: Competing risks and multi-state models analyses using the mstate
package. Companion file for the mstate package, 2011. URL https://mirror.las.iastate.edu/CRAN/
web/packages/mstate/vignettes/Tutorial.pdf. [p22]

H. Putter, M. Fiocco, and R. B. Geskus. Tutorial in biostatistics: competing risks and multi-state models.
Statistics in Medicine, 26(11):2389–2430, 2007. URL https://doi.org/10.1002/sim.2712. [p22]

H. Reulen. gamboostmsm. R package version, page 1.1.87, 2014. URL https://CRAN.R-project.org/
package=gamboostMSM. [p15]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://doi.org/10.1002/sim.4780080803
https://link.springer.com/book/10.1007/978-1-4612-4348-9
https://doi.org/10.1201/b14884
https://doi.org/10.1201/b14884
https://doi.org/10.1002/bimj.200900076
http://www.sciencedirect.com/science/article/pii/S0169260710000027
http://www.jstatsoft.org/v38/i07/
http://www.jstatsoft.org/v38/i07/
https://doi.org/10.1201/b16018
https://doi.org/10.1001/jama.1982.03320430047030
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://CRAN.R-project.org/package=mboost
https://doi.org/10.1023/A:1009672031531
https://doi.org/10.1023/A:1009672031531
http://www.jstatsoft.org/v38/i08/
https://hal.archives-ouvertes.fr/hal-00860244
https://doi.org/10.1182/blood-2013-08-518886
https://doi.org/10.1182/blood-2013-08-518886
https://doi.org/10.1002/sim.5921
https://mirror.las.iastate.edu/CRAN/web/packages/mstate/vignettes/Tutorial.pdf
https://mirror.las.iastate.edu/CRAN/web/packages/mstate/vignettes/Tutorial.pdf
https://doi.org/10.1002/sim.2712
https://CRAN.R-project.org/package=gamboostMSM
https://CRAN.R-project.org/package=gamboostMSM


CONTRIBUTED RESEARCH ARTICLE 30

H. Reulen. penmsm. R package version, page 0.99, 2015. URL https://CRAN.R-project.org/package=
penMSM. [p15]

R. J. Samworth. Stein’s paradox. Eureka, 62:38–41, 2012. URL https://citeseerx.ist.psu.edu/
document?repid=rep1&type=pdf&doi=7eebd55f569395544f2b5d367d6aee614901d2c1. [p21]

R. Schall. Estimation in generalized linear models with random effects. Biometrika, 78(4):719–727, 1991.
doi: 10.1093/biomet/78.4.719. URL http://dx.doi.org/10.1093/biomet/78.4.719. [p16, 18]

G. Schwarz. Estimating the dimension of a model. The annals of statistics, pages 461–464, 1978. URL
https://www.jstor.org/stable/2958889. [p26]

C. Spitoni, M. Verduijn, and H. Putter. Estimation and asymptotic theory for transition probabilities
in markov renewal multi-state models. The International Journal of Biostatistics, 8(1), 2012. doi:
doi:10.1515/1557-4679.1375. URL https://doi.org/10.1515/1557-4679.1375. [p16]

T. M. Therneau. A Package for Survival Analysis in S, 2015. URL https://CRAN.R-project.org/
package=survival. version 2.38. [p15]

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005. doi: https://doi.org/10.1111/
j.1467-9868.2005.00503.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
9868.2005.00503.x. [p16]

Rui J. Costa
European Molecular Biology Laboratory
European Bioinformatics Institute (EMBL-EBI)
Hinxton, CB10 1SD
United Kingdom
ruibarrigana@hotmail.com

Moritz Gerstung
aff. 1: European Molecular Biology Laboratory
European Bioinformatics Institute (EMBL-EBI)
Hinxton, CB10 1SD
United Kindom
aff. 2: German Cancer Research Center (DKFZ)
Im Neuenheimer Feld 280
69120 Heidelberg
Germany
moritz.gerstung@dkfz.de

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=penMSM
https://CRAN.R-project.org/package=penMSM
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7eebd55f569395544f2b5d367d6aee614901d2c1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7eebd55f569395544f2b5d367d6aee614901d2c1
http://dx.doi.org/10.1093/biomet/78.4.719
https://www.jstor.org/stable/2958889
https://doi.org/10.1515/1557-4679.1375
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9868.2005.00503.x
mailto:ruibarrigana@hotmail.com
mailto:moritz.gerstung@dkfz.de


CONTRIBUTED RESEARCH ARTICLE 31

Figures

Figure 1: Summary of inputs and outputs of the package ebmstate. The input data set should be one
that violates the assumption – commonly used in survival analysis – that the number of observations
is much larger than the number of parameters to be estimated (a genomic-clinical data set is shown as
a typical example). The input model is a multi-state Cox model defined by a transition structure and a
prior distribution on the regression coefficients. This prior distribution is defined by partitioning the
vector of regression coefficients into groups of regression coefficients, with each group having its own
Gaussian prior with undetermined mean and variance. The outputs of ebmstate include estimates of
the relative transition hazards associated with each covariate, as well as estimates of the probability
that a specific patient (with specific covariate measurements) has of occupying each state of the model
over some time period. Estimates of cumulative transition hazards are omitted from the figure.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 32

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob
ab
ilit
y

0.00
0.05
0.10
0.15
0.20
0.25
0.30

pr
ob
ab
ilit
y

0.0

0.1

0.2

0.3

pr
ob
ab
ilit
y

0.0

0.2

0.4

0.6

0.8

1.0

0 15 30 45 60 75 90
time

pr
ob
ab
ilit
y

0 15 30 45 60 75 90
time

0 15 30 45 60 75 90
time

0 15 30 45 60 75 90
time

mssample, n=100, 
≈1 second

mssample, n=1000, 
≈ 9 seconds

mssample, n=10000, 
≈93 seconds

probtrans_fft, 
≈1 second

state 1

state 2

state 3

state 4

Figure 2: Comparison of running times and estimation accuracy of mssample and probtrans_fft.
Each plot in the grid shows two estimated curves of state occupation probabilities. The black curves
are based on a single run of mstate::mssample with n = 100.000 observations (approximately 17
minutes of running time) and are the same across columns. They serve as benchmark for precision
assessment. In columns 1 to 3 of the grid, the superimposed red curves are based on a run of mssample
with respectively 100, 1000, and 10.000 observations. In the rightmost column, the red curves are
based on a run of probtrans_fft. All functions have as input the same set of cumulative transition
hazards. These were estimated using a non-parametric multi-state model and a data set of 1000
patients generated according to a clock-reset Cox model with a ‘linear’ transition structure (leftmost
diagram of figure 3). Plots in the same row refer to the same state of the model, while those in the
same column refer to the same run of a function. Running times and, where appropriate, number of
simulations (n) are given on top of each column.

1

Linear structure

2

34

1 2

34

1 3

42

5

6

Competing risks ‘m’ structure

Figure 3: Model transition structures. We studied the performance of Cox model estimators, empirical
Bayes Cox model estimators and fully non-parametric estimators with respect to these 3 transition
structures.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 33

regression coefficients                               relative hazards                         state occupation probabilities
‘m

’ s
tr

uc
tu

re
   

   
   

   
   

 c
om

pe
tin

g 
ris

ks
   

   
   

   
   

lin
ea

r s
tr

uc
tu

re
   

   
 

Index

valid
infinite
NA

0.0

0.2

0.4

0.6

0.8

1.0

10 40 70 100
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 40 70 100
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 40 70 100
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 40 70 100
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 40 70 100
covariates per transition

pr
op

or
tio

n
0.0

0.2

0.4

0.6

0.8

1.0

10 40 70 100
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 40 70 100
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 40 70 100
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 40 70 100
covariates per transition

pr
op

or
tio

n

Figure 4: Proportions of valid, infinite and missing (‘NA’) estimates for the standard Cox model
estimators in the simulation study of figure 6 (100 patients per simulated data set).

regression coefficients                               relative hazards                         state occupation probabilities 

‘m
’ s

tr
uc

tu
re

   
   

   
   

   
 c

om
pe

tin
g 

ris
ks

   
   

   
   

   
lin

ea
r s

tr
uc

tu
re

   
   

 

Index

valid
infinite
NA

0.0

0.2

0.4

0.6

0.8

1.0

10 100 200 300 400 500
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 100 200 300 400 500
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 100 200 300 400 500
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 100 200 300 400 500
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 100 200 300 400 500
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 100 200 300 400 500
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 100 200 300 400 500
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 100 200 300 400 500
covariates per transition

pr
op

or
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

10 100 200 300 400 500
covariates per transition

pr
op

or
tio

n

Figure 5: Proportions of valid, infinite and missing (‘NA’) estimates for the standard Cox model
estimators in the simulation study of figure 7 (1000 patients per simulated data set).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 34

regression coefficients                               relative hazards                          state occupation probabilities 

‘m
’ s

tr
uc

tu
re

   
   

   
   

   
 c

om
pe

tin
g 

ris
ks

   
   

   
   

   
lin

ea
r s

tr
uc

tu
re

   
   

 
N

A

10 40 70 100

0
0.

2
0.

4
0.

6
≥

0.
8

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 40 70 100

0
2

4
6

8
≥

10

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 40 70 100

0
0.

25
≥

0.
5

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 40 70 100

0
0.

2
0.

4
0.

6
≥

0.
8

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 40 70 100

0
2

4
6

8
≥

10

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 40 70 100

0
0.

25
≥

0.
5

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 40 70 100

0
0.

2
0.

4
0.

6
≥

0.
8

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 40 70 100

0
2

4
6

8
≥

10

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 40 70 100

0
0.

25
≥

0.
5

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

Figure 6: Performance comparison of standard Cox, empirical Bayes Cox, and fully non-parametric
(null) estimators using training data sets with 100 observations each. In the figure grid there is
a boxplot corresponding to every tuple (a, m, G, p) such that a ∈ {regression coefficients, relative
hazards, state occupation probabilities} is the target of estimation, m ∈ {standard Cox, empirical
Bayes Cox, null} is the hazard model, G ∈ {linear, competing risks, ‘m’ structure} is the transition
structure of the model, and p ∈ {10, 40, 70, 100} is the number of coefficients/covariates per transition.
Each boxplot is based on at most 300 average absolute error observations. Figure 4, together with
figures 6.1 and 6.3 in file ESM_1.html of the Supporting Scripts and Data, show the proportion of
valid, missing and infinite estimates for each estimator. In each simulation scenario, the upper limit of
the plot’s y-axis defines a threshold above which observations are considered very large. Very large
observations were replaced by the y-axis upper limit before the boxplots were built.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 35

regression coefficients                               relative hazards                          state occupation probabilities 

‘m
’ s

tr
uc

tu
re

   
   

   
co

m
pe

tin
g 

ris
ks

   
   

   
   

  
lin

ea
r s

tr
uc

tu
re

   
   

 
N

A

10 100 200 300 400 500

0
0.

2
0.

4
0.

6
³

0.
8

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 100 200 300 400 500

0
2

4
6

8
³

10

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 100 200 300 400 500

0
0.

25
³

0.
5

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 100 200 300 400 500

0
0.

2
0.

4
0.

6
³

0.
8

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 100 200 300 400 500
0

2
4

6
8

³
10

covariates per transition
av

er
ag

e 
ab

so
lu

te
 e

rro
r

N
A

10 100 200 300 400 500

0
0.

25
³

0.
5

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 100 200 300 400 500

0
0.

2
0.

4
0.

6
³

0.
8

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 100 200 300 400 500

0
2

4
6

8
³

10

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

N
A

10 100 200 300 400 500

0
0.

25
³

0.
5

covariates per transition

av
er

ag
e 

ab
so

lu
te

 e
rro

r

Figure 7: Performance comparison of standard Cox, empirical Bayes Cox, and fully non-parametric
(null) estimators using training data sets with 1000 observations each. In the figure grid there is
a boxplot corresponding to every tuple (a, m, G, p) such that a ∈ {regression coefficients, relative
hazards, state occupation probabilities} is the target of estimation, m ∈ {standard Cox, empirical
Bayes Cox, null} is the hazard model, G ∈ {linear, competing risks, ‘m’ structure} is the transition
structure of the model, and p ∈ {10, 100, 200, 300, 400, 500} is the number of coefficients/covariates
per transition. Each boxplot is based on at most 300 average absolute error observations. Figure 5,
together with figures 6.2 and 6.3 in file ESM_1.html of the Supporting Scripts and Data, show the
proportion of valid, missing and infinite estimates for each estimator. In each simulation scenario, the
upper limit of the plot’s y-axis defines a threshold above which observations are considered very large.
Very large observations were replaced by the y-axis upper limit before the boxplots were built.

‘Long-format’ 
data

Cox 
model 

fit Cumulative 
hazard rate
functions

State occupation 
probabilities under 

‘clock-forward’ 
Cox models

coxph

msfit

probtrans

Empirical 
Bayes Cox
model fit

State occupation 
probabilities under 
‘clock-reset’ Cox 

models

CoxRFX
probtrans
_fft

plot.
probtrans

plot.
msfit

Plots of 
cumulative 

hazard rates Plots of state 
occupation 
probabilities

functions from packages survival or mstate

mstate functions incorporated in ebmstate with changes

other ebmstate functions

Figure 8: Extension of the mstate analysis framework by ebmstate. Arrows correspond to functions.
Boxes correspond to inputs or outputs of functions. Functions CoxRFX and probtrans_fft from
ebmstate compute point estimates only. Interval estimates can be obtained using the non-parametric
bootstrap algorithm implemented in the function ebmstate::boot_ebmstate.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 36

MDS
n=576

AML

death

a

MDS AML

death
before AML

b

death
after AML

n=61

n=41n=177

c
covariate minimum maximum mean std  dev data type transformation
ASXL1 (point mutation) 0 1 0.13 0.33 binary (yes/no) none
DNMT3A (point mutation) 0 1 0.09 0.28 binary (yes/no) none
RUNX1  (point mutation) 0 1 0.07 0.26 binary (yes/no) none
SF3B1 (point mutation) 0 1 0.27 0.45 binary (yes/no) none
SRSF2 (point mutation) 0 1 0.14 0.35 binary (yes/no) none
TET2 (point mutation) 0 1 0.25 0.43 binary (yes/no) none
TP53 (point mutation) 0 1 0.05 0.22 binary (yes/no) none
U2AF1 (point mutation) 0 1 0.06 0.23 binary (yes/no) none
del5q mutation 0 1 0.1 0.31 binary (yes/no) none
complex mutations 0 1 0.11 0.31 binary (yes/no) none
other mutations 0 1 0.06 0.24 binary (yes/no) none
age 17 95 67.42 12.61 numeric (years) log
sex 0 1 0.44 0.5 binary (yes/no) none
peripheral blood cytopenias 0 1 0.5 0.5 binary (yes/no) none
hemoglobin level 3.2 17.6 9.88 1.96 numeric (g/dL) none
absolute neutrophil count 0 38.2 3.08 3.65 numeric (count per nanolitre) log
platelet count 5 1478 197 187.32 numeric (count per nanolitre) log
myeloblasts in bone marrow 0.03 0.64 0.07 0.07 numeric (proportion) logit
ring sideroblasts in bone marrow 0.03 0.93 0.17 0.23 numeric (proportion) logit
International Prognostic Scoring System 1 4 1.79 0.84 ordinal (score) none
WHO class RA 0 1 0.18 0.38 binary (yes/no) none
WHO class RARS 0 1 0.13 0.34 binary (yes/no) none
WHO class RCMD 0 1 0.16 0.37 binary (yes/no) none
WHO class RCMD.RS 0 1 0.1 0.3 binary (yes/no) none
WHO class RAEB 0 1 0.23 0.42 binary (yes/no) none
WHO class CMML 0 1 0.1 0.3 binary (yes/no) none
treatment center 1 0 1 0.12 0.33 binary (yes/no) none
treatment center 3 0 1 0.54 0.5 binary (yes/no) none
treatment center 4 0 1 0.28 0.45 binary (yes/no) none
date of diagnosis 15/04/1981 18/01/2012 04/08/2004 NA numeric time since 15/04/1981 

in units of 5 years

Figure 9: a: transition model implied by the data set of patients with myelodysplastic syndromes,
together with transition event numbers; b: conversion to a transition structure without cycles; c:
transformations applied to the MDS covariate data and summary statistics for the data before transfor-
mation. MDS stands for myelodysplastic syndromes; AML stands for acute myeloid leukemia.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 37

relative hazard relative hazard

MDS to AML MDS to death

Figure 10: Point estimates of regression coefficients for the Cox model fitted to the MDS data, along
with 95% non-parametric bootstrap confidence intervals. The x-axis scale is logarithmic so that
coefficient estimates can be read as relative hazard estimates. If γij is the element of β̂ij associated with

a given covariate, exp
(

γij

)
is the estimated relative hazard for this covariate in transition (i, j). In

general, a relative hazard estimate r for a covariate z in transition (i, j) means that a one-unit increase
in z is associated with an r-fold increase in the hazard of this transition. If z was obtained by log-
transformation (as in age, platelet counts and neutrophil counts), a one-unit increase in z corresponds
to scaling the original covariate by e ≈ 2.72. In case z was obtained by logit-transformation (as in bone
marrow blasts and sideroblasts proportions), the same one-unit increase corresponds to scaling the
odds of the original covariate by e.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 38

Figure 11: Point estimates of cumulative transition hazards for a sample patient with MDS (black
curve), along with 95% non-parametric confidence intervals (dashed red lines).

Figure 12: Point estimates of state occupation probabilities for a sample patient with MDS (black
curve), along with 95% non-parametric confidence intervals (dashed red lines).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 39

bootCT: An R Package for Bootstrap
Cointegration Tests in ARDL Models
by Gianmarco Vacca, Maria Zoia, Stefano Bertelli

Abstract The Autoregressive Distributed Lag approach to cointegration or bound testing, proposed
by Pesaran in 2001, has become prominent in empirical research. Although this approach has many
advantages over the classical cointegration tests, it is not exempt from drawbacks, such as possible
inconclusive inference and distortion in size. Recently, Bertelli and coauthors developed a bootstrap
approach to the bound tests to overcome these drawbacks. This paper introduces the R package
bootCT, which implements this method by deriving the bootstrap versions of the bound tests and of the
asymptotic F-test on the independent variables proposed by Sam and coauthors in 2019. As a spinoff,
a general method for generating random multivariate time series following a given VECM/ARDL
structure is provided in the package. Empirical applications showcase the main functionality of the
package.

1 Introduction

Cointegration and error correction are fundamental concepts in the analysis of economic data, insofar
as they provide an appropriate framework for testing economic hypotheses about growth and fluctu-
ation. Several approaches have been proposed in the literature to determine whether two or more
non-stationary time series are cointegrated, meaning they share a common long-run relationship.
There are two basic types of tests for cointegration: single equation tests and VAR-based tests. The
former check the presence of unit roots in cointegration residuals (see, e.g., Engle and Granger, 1987;
Engle and Yoo, 1987; Mackinnon, 1991; Gabriel et al., 2002; Cook, 2006) or test the significance of
the error-correction (EC) term coefficient (Kremers et al., 1992; Maddala and Kim, 1998; Arranz and
Escribano, 2000; Ericsson and MacKinnon, 2002). The latter, such as the Johansen (1991) approach,
tackle the problem of detecting cointegrating relationships in a VAR model. This latter approach,
albeit having the advantage of avoiding the issue of normalization, as well as allowing the detection
of multiple cointegrating vectors, is far from being perfect. In the VAR system all variables are treated
symmetrically, as opposed to the standard univariate models that usually have a clear interpretation
in terms of exogenous and endogenous variables. Furthermore, in a VAR system all the variables are
estimated at the same time, which is problematic if the relation between some variables is flawed, that
is affected by some source of error. In this case a simultaneous estimation process tends to propagate
the error affecting one equation to the others. Furthermore, a multidimensional VAR models employs
plenty of degrees of freedom.
The recent cointegration approach, known as Autoregressive Distributed Lag (ARDL) approach to
cointegration or bound testing, proposed by Pesaran et al. (2001) (PSS), falls in the former strand
of literature. It has become prominent in empirical research because it shows several advantages
with respect to traditional methods for testing cointegration. First, it is applicable also in cases of
mixed order integrated variables, albeit with integration not exceeding the first order. Thus, it evades
the necessity of pre-testing the variables and, accordingly, avoids some common practices that may
prevent finding cointegrating relationships, such as dropping variables or transforming them into
stationary form (see McNown et al., 2018). Second, cointegration bound tests are performed in
an ARDL model that allows different lag orders for each variable, thus providing a more flexible
framework than other commonly employed approaches. Finally, unlike other cointegration techniques,
which are sensitive to the sample size, the ARDL approach provides robust and consistent results for
small sample sizes.
Notably, the ARDL bound testing methodology has quickly spread in economics and econometrics to
study the cointegrating relationships between macroeconomic and financial variables, to evaluate the
long-run impact of energy variables, or to assess recent environmental policies and their impact on
the economy. Among the many applications, see for instance Haseeb et al. (2019); Reda and Nourhan
(2020); Menegaki (2019); Yilanci et al. (2020); Hussain et al. (2019); Abbasi et al. (2021).
The original bound tests proposed by Pesaran et al. (2001) are an F-test for the significance of the
coefficients of all lagged level variables entering the error correction term (Fov), and a t-test for the
coefficient of the lagged dependent variable. When either the dependent or the independent variables
do not appear in the long-run relationship, a degenerate case arises. The bound t-test provides answers
on the occurrence of a degenerate case of second type, while the occurrence of a degeneracy case of
first type can be assessed by testing whether the dependent variable is of integration order I(1). This
type of check violates the spirit and motivation of the bound tests, which are supposed to be applicable
in situations of unknown order of integration for the variables.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 40

Recently, McNown et al. (2018) pointed out how, due to the low power problem of unit root tests,
investigating the presence of a first type degeneracy by testing the integration order of the dependent
variable may lead to incorrect conclusions. Therefore, they suggested checking for its occurrence by
testing the significance of the lagged levels of the independent variables via an extra F-test (Find),
which was also worked out in its asymptotic version (SMK; Sam et al., 2019).
Besides problems in testing the occurrence of degenerate cases, in general, the main drawback of
the bound tests is the occurrence of potentially inconclusive results, if the test statistic lies between
the bounds of the test distribution under the null. Furthermore, the asymptotic distributions of the
statistics may provide a poor approximation of the true distributions in small samples. Finite sample
critical values, even if only for a subset of all possible model specifications, have been worked out
in the literature (see Mills and Pentecost, 2001; Narayan and Smyth, 2004; Kanioura and Turner,
2005; Narayan, 2005), while Kripfganz and Schneider (2020) provided the quantiles of the asymptotic
distributions of the tests as functions of the sample size, the lag order and the number of long-run
forcing variables. However, this relevant improvement does not eliminate the uncertainty related to
the inconclusive regions, or the existence of other critical issues related to the underlying assumptions
of the bound test framework, such as the (weak) exogeneity of the independent variables or the
non-stationarity of the dependent variable.
To overcome the mentioned bound test drawbacks, Bertelli et al. (2022) proposed bootstrapping the
ARDL cointegration test. Inference can always be pursued with ARDL bootstrap tests, unlike what
happens with both the PSS tests and the SMK test on the independent variables. Bootstrap ARDL tests
were first put forward by McNown et al. (2018) in an unconditional ARDL model, which omits the
instantaneous differences of the exogenous variables in the ARDL equation, rather than a conditional
one, as originally proposed by Pesaran et al. (2001). The unconditional model is often used, for
reason of practical convenience, in empirical research. Simulation results in Bertelli et al. (2022) have
highlighted the importance of employing the appropriate specification, especially under degenerate
cases. In fact, it has been pointed out that a correct detection of these cases requires the comparison of
the test outcomes in both the conditional and unconditional settings. Erroneous conclusions, based
exclusively on one model specification, can thus be avoided.
In this paper, bootstrap bound tests, thereby including the bootstrap versions of the Fov, t and Find
bound tests, are carried out in a conditional ARDL model setting. This approach allows to overcome
the problem of inconclusive regions of the standard bound tests. A comparison with the outcomes
engendered by the unconditional ARDL bootstrap tests is nevertheless provided for the Find test, to
avoid erroneous inference in presence of degenerate cases.
The paper is organized as follows. Section 2.2 introduces the theoretical results of the ARDL coin-
tegration bound tests. Section 2.3 details the steps carried out by the bootstrap procedure, which
allows the construction of the (bootstrap) distribution - under the null - for the Fov, t, conditional Find
and unconditional Find tests. Section 2.4 introduces the R package bootCT (Vacca and Bertelli, 2023)
and its functionalities: a method for the generation of random multivariate time series that follow
a user-specified VECM/ARDL structure, with some examples, and the main function that carries
out the aforementioned bootstrap tests, while also computing the PSS and SMK bound tests. The
trade-off between accuracy and computational time of the bootstrap procedure is also investigated,
under several scenarios in terms of sample size and number of replications. Notably, a function that
performs the PSS bound tests is already available in the dynamac package (Jordan and Philips, 2020),
while no R routine has so far been implemented for the SMK test, to the best of our knowledge. Section
2.5 gives some empirical applications that employ the core function of the package and its possible
outputs. Section 2.6 concludes. Appendix 2.7 briefly delves into technical details of the conditional
ARDL model and its possible specifications 1.

2 Cointegration bound tests in ARDL models

The starting point of the approach proposed by Pesaran et al. (2001) is a (K + 1) VAR(p) model

A(L)(zt − µ − ηt) = εt εt ∼ N(0, Σ), A(L) =

IK+1 −
p

∑
j=1

AjL
j

 t = 1, 2, . . . , T. (1)

1The R packages, either used in the creation of bootCT or employed in the analyses presented in this paper,
are magrittr (Bache and Wickham, 2022), gtools (Bolker et al., 2022), pracma (Borchers, 2022), Rcpp (Eddelbuettel,
2013), RcppArmadillo (Eddelbuettel et al., 2023), Rmisc (Hope, 2022), dynamac (Jordan and Philips, 2020), ARDL
(Natsiopoulos and Tzeremes, 2021), aod (Lesnoff et al., 2012), vars and urca (Pfaff, 2008a,b), aTSA (Qiu, 2015),
tseries (Trapletti and Hornik, 2023), reshape2, ggplot2 and stringr (Wickham, 2007, 2016, 2022), tidyverse and
dplyr (Wickham et al., 2019, 2023).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=bootCT
https://CRAN.R-project.org/package=dynamac
https://CRAN.R-project.org/package=bootCT
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=gtools
https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=Rmisc
https://CRAN.R-project.org/package=dynamac
https://CRAN.R-project.org/package=ARDL
https://CRAN.R-project.org/package=aod
https://CRAN.R-project.org/package=vars
https://CRAN.R-project.org/package=urca
https://CRAN.R-project.org/package=aTSA
https://CRAN.R-project.org/package=tseries
https://CRAN.R-project.org/package=reshape2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=dplyr


CONTRIBUTED RESEARCH ARTICLE 41

Here, Aj are square (K + 1) matrices, zt a vector of (K + 1) variables, µ and η are (K + 1) vectors
representing the drift and the trend respectively, and det(A(z)) = 0 for |z| ≥ 1. If the matrix
A(1) = IK+1 − ∑

p
j=1 Aj is singular, the components of zt turn out to be integrated and possibly

cointegrated.
The VECM representation of (1) is given by (see Appendix 2.7.1 for details)

∆zt = α0 + α1t − A(1)zt−1 +
p−1

∑
j=1

Γj∆zt−j + εt. (2)

Now, to study the adjustment to the equilibrium of a single variable yt, given the other xt variables,
the vectors zt and εt are partitioned

zt =

 yt
(1,1)
xt

(K,1)

 , εt =

 εyt
(1,1)
εxt
(K,1)

 . (3)

The matrix A(1), which is assumed to be singular to allow cointegration, is partitioned conformably to
zt as 2

A(1) =


ayy
(1,1)

a′yx
(1,K)

axy
(K,1)

Axx
(K,K)

 . (4)

Under the assumption

εt ∼ N

(
0,


σyy
(1,1)

σ′
yx

(1,K)
σxy
(K,1)

Σxx
(K,K)


)

, (5)

the following holds
εyt = ω′εxt + νyt ∼ N(0, σy.x), (6)

where σy.x = σyy − ω′σxy with ω′ = σ′
yxΣ−1

xx , and νyt is independent of εxt.
Substituting (6) into (2) and assuming that the xt variables are exogenous towards the ARDL parame-
ters (that is, setting axy = 0 in A(1)) yields the system (see Appendix 2.7.1 for details)

∆yt = α0.y + α1.yt − ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt (7)

∆xt = α0x + α1xt + A(x)zt−1 + Γ(x)(L)∆zt + εxt, (8)

where
γ′

y.x,j = γ′
y,j − ω′Γ(x),j (9)

α0.y = α0y − ω′α0x, α1.y = α1y − ω′α1x, (10)

and where the error correction term, ECt−1, expressing the long-run equilibrium relationship between
yt and xt, is given by

ECt−1 = yt−1 − θ0 − θ1t − θ′xt−1, (11)

with

θ0 = µy − θ′µx, θ1 = ηy − θ′ηx, θ′ = −
ã′y.x

ayy
= −

a′yx − ω′Axx

ayy
. (12)

Thus, no cointegration occurs when ãy.x = 0 or ayy = 0 . These two circumstances are referred to
as degenerate case of second and first type, respectively. Degenerate cases imply no cointegration
between yt and xt.
To test the hypothesis of cointegration between yt and xt, Pesaran et al. (2001) proposed an F-test, Fov
hereafter, based on the hypothesis system

H0 : ayy = 0 ∩ ãy.x = 0 (13)

H1 : ayy ̸= 0 ∪ ãy.x ̸= 0. (14)

2If the explanatory variables are stationary Axx is non-singular (rk(Axx) = K), while when they are integrated
but without cointegrating relationship Axx is a null matrix.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 42

Note that H1 covers also the degenerate cases

Hy.x
1 : ayy = 0 , ãy.x ̸= 0 (15)

Hyy
1 : ayy ̸= 0 , ãy.x = 0. (16)

The exact distribution of the F statistic under the null is unknown, but it is limited from above and
below by two asymptotic distributions: one corresponding to the case of stationary regressors, and
another corresponding to the case of first-order integrated regressors. As a consequence, the test is
called bound test and has an inconclusive area. 3

Pesaran et al. (2001) worked out two sets of (asymptotic) critical values: one, {τL,F}, for the case when
xt ∼ I(0) and another, {τU,F}, for the case when xt ∼ I(1). These values vary in accordance with the
number of regressors in the ARDL equation, the sample size and the assumptions made about the
deterministic components (intercept and trend) of the data generating process.
In this regard, Pesaran et al. (2001) introduced five different specifications for the ARDL model,
depending on its deterministic components, which are (see Appendix 2.7.2 for details)

I. No intercept and no trend

∆yt = −ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt, (17)

where ECt−1 = yt−1 − θ′xt−1,

II. Restricted intercept and no trend

∆yt = −ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt, (18)

where ECt−1 = yt−1 − θ0 − θ′xt−1. The intercept extracted from the EC term is αEC
0.y = ayyθ0.

III. Unrestricted intercept and no trend

∆yt = α0.y − ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt, (19)

where ECt−1 = yt−1 − θ′xt−1.

IV. Unrestricted intercept, restricted trend

∆yt = α0.y − ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt, (20)

where ECt−1 = yt−1 − θ1t − θ′xt−1. The trend extracted from the EC term is αEC
1.y = ayyθ1.

V. Unrestricted intercept, unrestricted trend

∆yt = α0.y + α1.yt − ayyECt−1 +
p−1

∑
j=1

γ′
y.x,j∆zt−j + ω′∆xt + νyt, (21)

where ECt−1 = yt−1 − θ′xt−1.

The model in (7) proposed by Pesaran et al. (2001) represents the correct framework in which to carry
out bound tests. However, bound test are often performed in an unconditional ARDL model setting,
specified as

∆yt = α0.y + α1.yt − ayyECt−1 +
p−1

∑
j=1

γ′
j∆zt−j + εyt, (22)

which omits the term ω′∆xt.
Bertelli et al. (2022) have highlighted that bootstrap tests performed in these two ARDL specifications
can lead to contrasting results. To explain this divergence, note that the conditional model makes use
of the following vector in the EC term

ã′y.x = a′yx − ω′Axx (23)

3The knowledge of the rank of the cointegrating matrix is necessary to overcome this impasse.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 43

(divided by ayy, see (12)) to carry out bound tests, while the unconditional one only uses the vector
a′yx, (divided by ayy), since it neglects the term ω′Axx. 4 This can lead to contrasting inference in two
instances. The first happens when a degeneracy of first type occurs in the conditional model, that is

ã′y.x = 0, (24)

because
a′yx = ω′Axx. (25)

In this case, the conditional model rejects cointegration, while the unconditional one concludes the
opposite. The other case happens when a degeneracy of first type occurs in the unconditional model,
that is

a′yx = 0, (26)

but
ã′y.x = ω′Axx ̸= 0. (27)

In this case, the unconditional model rejects cointegration, while the conditional one concludes for
the existence of cointegrating relationships, which are however spurious. Only a comparison of the
outcomes of the Find test performed in both the conditional and unconditional ARDL equation can
help to disentangle this problem. 5

In the following, bootstrap tests are carried out in the conditional ARDL model (7). However, when
a degeneracy of first type occurs in the unconditional model, the outcomes of the Find bootstrap
test performed in both the conditional and unconditional settings are provided. This, as previously
outlined, is performed to avoid the acceptance of spurious long-run relationships among the dependent
variable and the independent variables.

3 The new bootstrap procedure

The bootstrap procedure here proposed focuses on a ARDL model specified as in (17)-(21), depending
on the assumptions on the deterministic components.
The bootstrap procedure consists of the following steps:

1. The ARDL model is estimated via OLS and the related test statistics Fov, t or Find are computed.

2. In order to construct the distribution of each test statistic under the corresponding null, the
same model is re-estimated imposing the appropriate restrictions on the coefficients according
to the test under consideration.

3. Following McNown et al. (2018), the ARDL restricted residuals are then computed. For example,
under Case III, the residuals are

ν̂Fov
yt = ∆yt − α̂0.y −

p−1

∑
j=1

γ̂′
y.x,j∆zt−j − ω̂′∆xt (28)

ν̂t
yt = ∆yt − α̂0.y + ̂̃a′y.xxt−1 −

p−1

∑
j=1

γ̂′
y.x,j∆zt−j − ω̂′∆xt (29)

ν̂Find
yt = ∆yt − α̂0.y + âyyyt−1 −

p−1

∑
j=1

γ̂′
y.x,j∆zt−j − ω̂′∆xt. (30)

Here, the apex ” .̂ ” denotes the estimated parameters. The other cases can be dealt with in a
similar manner.

4. The VECM model

∆zt = α0 − Azt−1 +
p−1

∑
j=1

Γj∆zt−j + εt (31)

is estimated as well (imposing weak exogeneity), and the residuals

ε̂xt = ∆xt − α̂0x + Âxxxt−1 −
p−1

∑
j=1

Γ̂(x)j∆zt−j (32)

4The latter is introduced in the ARDL equation by the operation of conditioning yt on the other variables xt of
the model

5In fact, as ω′Axxxt ≈ I(0), the conclusion that yt ≈ I(0) must hold. This in turn entails that no cointegration
occurs between yt and xt.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 44

are computed. This approach guarantees that the residuals ε̂xt, associated to the variables xt
explained by the marginal model (8), are uncorrelated with the ARDL residuals ν̂.

yt.

5. A large set of B bootstrap replicates are sampled from the residuals calculated as in (28),(29),
(30) and (32). In each replication, the following operations are carried out:

(a) Each set of (T − p) resampled residuals (with replacement) ν̂
(b)
zt = (ν̂

(b)
yt , ε̂

(b)
xt ) is re-centered

(see Davidson and MacKinnon, 2005)

˙̂ν(b)yt = ν̂
(b)
yt − 1

T − p

T

∑
t=p+1

ν̂
(b)
yt (33)

˙̂εb
xit = ε̂

(b)
xit −

1
T − p

T

∑
t=p+1

ε̂
(b)
xit i = 1, . . . , K. (34)

(b) A sequential set of (T − p) bootstrap observations, y∗t , x∗t t = p + 1, . . . , T, is generated
as follows

y∗t = y∗t−1 + ∆y∗t , x∗t = x∗t−1 + ∆x∗t , (35)

where ∆x∗t are obtained from (32) and ∆y∗t from either (28), (29) or (30) after replacing in
each of these equations the original residuals with the bootstrap ones.
The initial conditions, that is the observations before t = p + 1, are obtained by drawing
randomly p observations in block from the original data, so as to preserve the data
dependence structure.

(c) An unrestricted ARDL model is estimated via OLS using the bootstrap observations, and

the statistics F(b),H0
ov , t(b),H0 F(b),H0

ind are computed.

6. The bootstrap distributions of
{

F(b),H0
ov

}B
b=1,

{
F(b),H0

ind
}B

b=1 and
{

t(b),H0
}B

b=1 under the null are
then employed to determine the critical values of the tests. By denoting with M∗

b the ordered
bootstrap test statistic, and with α the nominal significance level, the bootstrap critical values
are determined as follows

c∗α,M = min
{

c :
B

∑
b=1

1{M∗
b>c} ≤ α

}
M ∈ {Fov, Find} (36)

for the F tests and

c∗α,t = max
{

c :
B

∑
b=1

1{t∗b<c} ≤ α

}
(37)

for the t test.
Here, 1{x∈A} is the indicator function, which is equal to one if the condition in subscript is
satisfied and zero otherwise.

The null hypothesis is rejected if the F statistic computed at step 1, Fov or Find, is greater than the
respective c∗α,M, or if the t statistic computed at the same step is lower than c∗α,t.

4 Illustration of the bootCT package

This section describes the main functionalities of the bootCT package. The functions included in
the package are essentially of two types. The function sim_vecm_ardl generates data according to a
given data generating process (DGP), assuming either the presence or the absence of cointegrating
relationships between variables, or degenerate cases. The function boot_ardl tests the presence of
cointegrating relationships employing the Pesaran ARDL bound tests (Fov and t), the SMK bound test
on lagged independent variables (Find), and the novel ARDL bootstrap testing procedure.

4.1 Generating a multivariate time series: the sim_vecm_ardl function

The function sim_vecm_ardl allows to simulate a multivariate time series from a given conditional
ARDL specification for a dependent variable yt and a VAR/VECM specification for the remaining
independent variables xt. In this regard, it represents an interesting addition to extant data generating
procedures for VAR/VECM models. The arguments of this function can be divided into two subgroups.
A group of parameters pertains the VECM model (7) and (8), with Axx identifying the matrix of the
long-run relationships among the xt variables, and Γj’s, j = 1, ..., p − 1 the short-run matrices of the
system variables. Additionally, the parameter ayy weighs the EC term for yt, while a′yx is the parameter

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=bootCT


CONTRIBUTED RESEARCH ARTICLE 45

vector weighting the variables xt in the ARDL equation. The vector a′yx, after conditioning yt on the
other variables (xt, see model 7) becomes ã′y.x = a′yx − ω′Axx.
The second group of parameters concerns the model intercept and trend of the VAR specification, µ

and η, which in the VECM representation become α0 = Aµ + (IK+1 − ∑
p−1
i=1 Γj − A)η and α1 = Aη

and in the conditional ARDL become αEC
0.y = ayy(µy − ã′y.xµx) + γ′

y.x(1)η and aEC
1.y = ayy(ηy − ã′y.xηx).

As explained in Appendix 2.7.2, intercept and trend appear in the error correction (EC) term of the
ARDL equation only when restricted. Accordingly, they both do not appear in the EC in the case I, the
intercept does not appear in the EC term in cases III, IV and V (it is freely set to α0.y) while the trend
appears in the EC term only in the case IV (it is freely set to α1.y for case V). Accordingly, when these
terms are not restricted, they need to be supplied by the user.
The approach used to specify the function inputs offers great control to the user, in terms of generating
specific (conditional) ARDL-based cointegration structures.
The function sim_vecm_ardl takes the following arguments:

• nobs: number of observations to generate;

• case: indicates the conditional ARDL specification in terms of deterministic component (in-
tercept and trend) among the five specifications proposed by Pesaran et al. (2001), given in
(17)-(21).

• sigma.in: covariance matrix, Σ, of the error term εt;

• gamma.in: list of short-run parameter matrices Γj;

• axx.in: cointegrating relationships, Axx, pertaining the independent variables in the marginal
VECM model;

• ayx.uc.in: vector of parameters, as in ayx;

• ayy.in: the ayy term, weighting the EC term in the ARDL equation;

• mu.in: mean vector, µ, in the starting VAR specification, used to define the VECM intercept for
CASE II;

• eta.in: trend vector, η, in the starting VAR specification, used to define the VECM trend for
case IV;

• azero.in: unrestricted intercept of the VECM specification (valid only for cases III, IV and V),
when the intercept is not involved in the EC term;

• aone.in: unrestricted coefficient of the trend in the VECM specification (valid only for case V),
when the trend is not involved in the EC term;

• burn.in: additional observations burn-in observations to be generated. A total of burn.in +
nobs observations are generated, but only the last nobs are kept in the data;

• seed.in: seed number for the generation of εt ∼ N(0, Σ).

If parameter values for mu.in, eta.in, azero.in, or aone.in and case number turn out to be in
contradiction, an error message is displayed.
As output, the function gives out a list containing the data, both in level and first difference, along with
all the parameter values given as input. Additionally, all intermediate transformation of parameters
via VECM transformation or as a by-product of conditioning yt on xt are included in the output.
Figure 1 depicts three-time series, dep_1_0, ind_1_0 and ind_2_0, generated using this function
and affected by a cointegrating relationship, one panel for each case, from I to V. The variable
dep_1_0 represents the dependent variable yt of the ARDL equation, while ind_1_0 and ind_2_0 the
independent ones, x1t and x2t.
The code used to generate the data for case I is the following:

corrm = matrix(c( 0, 0, 0,
0.25, 0, 0,
0.4, -0.25, 0), nrow = 3, ncol = 3, byrow = T)

Corrm = (corrm + t(corrm)) + diag(3)

sds = diag(c(1.3, 1.2, 1))

sigma.in = (sds %*% Corrm %*% t(sds))

gamma1 = matrix(c(0.6, 0, 0.2,
0.1, -0.3, 0,
0, -0.3, 0.2), nrow = 3, ncol = 3,byrow=T)

gamma2= gamma1 * 0.3

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 46

omegat = sigma.in[1, -1] %*% solve(sigma.in[-1, -1])
axx.in = matrix(c( 0.3, 0.5,

-0.4, 0.3), nrow = 2, ncol = 2, byrow = T)
ayx.uc.in = c(0.4, 0.4)
ayy.in = 0.6

data.vecm.ardl_1 =
sim_vecm_ardl(nobs = 200,

case = 1,
sigma.in = sigma.in,
gamma.in = list(gamma1, gamma2),
axx.in = axx.in,
ayx.uc.in = ayx.uc.in,
ayy.in = ayy.in,
mu.in = rep(0, 3),
eta.in = rep(0, 3),
azero.in = rep(0, 3),
aone.in = rep(0, 3),
burn.in = 100,
seed.in = 999)

Additionally, Figure 2 displays other three time series, dep_1_0 (yt), ind_1_0 (x1t) and ind_2_0 (x2t),
when a degeneracy of second type occurs (ayy = 0) in the long-run relationship in the ARDL equation
of dep_1_0 on ind_1_0, ind_2_0. The five panels represents the behavior of these series in the Cases
from I to V. It is worth noting the different scenario implied by these cases: case III depicts a trend for
the yt variable, case IV highlights the inclusion of a trend in the cointegrating relationship, and case V
exhibits a quadratic trend in the yt variable.
Finally, the flowchart in Figure 3 details the internal steps of the function sim_vecm_ardl and the
data generation workflow. There, it is specified how the parameters of the VAR, VECM and ARDL
equation are introduced. Attention is paid on whether the error correction mechanism involves either
intercept or trend (or both) via the internal computation of the parameters θ0 and θ1 (and thus αEC

0.y

and αEC
1.y ). When the EC term does not involve intercept and/or trend, α0 and α1 are supplied by the

user, depending on the case under study.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 47

-10

-5

0

5

10

0 50 100 150 200
time

va
lu

e

variable

dep_1_0

ind_1_0

ind_2_0

CASE I

-10

-5

0

5

10

0 50 100 150 200
time

va
lu

e

variable

dep_1_0

ind_1_0

ind_2_0

CASE II

-10

-5

0

5

10

0 50 100 150 200
time

va
lu

e

variable

dep_1_0

ind_1_0

ind_2_0

CASE III

0

25

50

75

100

0 50 100 150 200
time

va
lu

e

variable

dep_1_0

ind_1_0

ind_2_0

CASE IV

-100

-50

0

50

100

150

0 50 100 150 200
time

va
lu

e

variable

dep_1_0

ind_1_0

ind_2_0

CASE V

Figure 1: Simulated data from the VECM / conditional ARDL specifications, for every case. Made
with ggplot (Wickham, 2016).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot


CONTRIBUTED RESEARCH ARTICLE 48

-120

-80

-40

0

0 50 100 150 200
time

va
lu

e

variable

dep_1_0

ind_1_0

ind_2_0

CASE I

-120

-80

-40

0

0 50 100 150 200
time

va
lu

e

variable

dep_1_0

ind_1_0

ind_2_0

CASE II

-60

-40

-20

0

20

0 50 100 150 200
time

va
lu

e

variable

dep_1_0

ind_1_0

ind_2_0

CASE III

0

100

200

0 50 100 150 200
time

va
lu

e

variable

dep_1_0

ind_1_0

ind_2_0

CASE IV

-1000

0

1000

2000

3000

4000

0 50 100 150 200
time

va
lu

e

variable

dep_1_0

ind_1_0

ind_2_0

CASE V

Figure 2: Simulated data from the VECM / conditional ARDL specifications (degenerate case of type
2, ayy = 0), for every case. Made with ggplot.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot


C
O

N
T

R
IB

U
T

E
D

R
E

SE
A

R
C

H
A

R
T

IC
L

E
49

VAR/VECM input
µ, η, α0, α1, case

VECM/ARDL input
Axx, ayx, ayy, Γj

VECM Intercept and trend

CASE I:
µ = η = 0 → α0 = α1 = 0

CASE II:
µ input, η = 0, α0 = A(1)µ, α1 = 0

CASE III:
η = 0

α0 input, α1 = 0

CASE IV:
α0 input, η input, α1 = A(1)η

CASE V:

α0 input, α1 input

Long-run VECM matrix

A =

[
ayy a′yx
0 Axx

]
.

Short-run VECM
matrices Γj

Γ(1) = IK − ∑
p
j=1 Γj

ARDL Intercept and trend

CASE I:
µ = η = 0 →

θ0 = α0.y = θ1 = α1.y = 0

CASE II:
θ0 ̸= 0 α0.y = 0 (Intercept in EC)

η = 0 → θ1 = α1.y = 0

CASE III:
α0.y = α0y − ω′α0x (θ0 = 0)

η = 0 → θ1 = α1.y = 0

CASE IV:
α0.y = α0y − ω′α0x (θ0 = 0)

θ1 ̸= 0 α1.y = 0 (Trend in EC)

CASE V:
α0.y = α0y − ω′α0x (θ0 = 0)

α1.y = α1y − ω′α1x (θ1 = 0)

Σ input.
Error generation
u′

t ∼ NK+1(0, Σ)

Conditioning
ω′ = σ′

yxΣ−1
xx

ã′y.x = a′yx − ω′Axx

Ã =

[
ayy ã′y.x
0 Axx

]
γy.x,j = γyx − ω′Γ(x),j

Γ̃j =

[
γy.x,j
Γ(x),j

]
νyt = εyt − ω′εxt

Other input:
nobs, burn.in

∆xt via (8)
xt = ∆xt + xt−1

∆yt via (7)
yt = ∆yt + yt−1

Unconditional parameters for ∆xt Conditional parameters for ∆yt

Until nobs+burn.in. Discard burn.in

Figure 3: Flowchart of the sim_vecm_ardl function inner steps. When applying (7) and (8), ytj = 0, ∆ytj = 0, xtj = 0, ∆xtj = 0 for any tj < 1. Boxes denote parameter definitions and
transformations. Circles denote crucial actions, Empty nodes denote function inputs.

T
he

R
JournalVol.16/1,M

arch
2024

ISSN
2073-4859



CONTRIBUTED RESEARCH ARTICLE 50

4.2 Bootstrapping the ARDL bound tests: the boot_ardl function

This function develops the bootstrap procedure detailed previously. As an option in the initial
estimation phase, it offers the possibility of automatically choosing the best order for the lagged
differences of all the variables in the ARDL and VECM models. This is done by using several criteria.
In particular, AIC, BIC, AICc, R2 and R2

adj are used as lag selection criteria for the ARDL model, while
the overall minimum between AIC, HQIC, SC and FPE is used for the lag selection for the VECM.
In particular, the auto_ardl function in the package ARDL (Natsiopoulos and Tzeremes, 2021) selects
the best ARDL order in terms of the short-run parameter vectors γy.x,j, while the VARselect function
in the package vars (Pfaff, 2008a) selects the best VECM order in terms of the short-run parameter
matrices Γ(x),j. Furthermore, the user can input a significance threshold for the retention of single
parameters in the Γj and in the γy.x,j vectors.
The function boot_ardl takes the following arguments:

• data: input dataset. Must contain a dependent variable and a set of independent variables;

• yvar: name of the dependent variable enclosed in quotation marks. If unspecified, the first
variable in the dataset is used;

• xvar: vector of names of the independent variables, each enclosed in quotation marks. If
unspecified, all variables in the dataset except the first are used;

• fix.ardl: vector (j1, . . . , jK), containing the maximum orders of the lagged differences (i.e.,
∆yt−j1 , ∆x1,t−j2 , . . . , ∆x1,t−jK ) for the short term part of the ARDL equation, chosen in advance;

• info.ardl: (alternatively to fix.ardl) the information criterion used to choose the best lag
order for the short term part of the ARDL equation. It must be one between AIC (default), AICc,
BIC, R2, , adjR2;

• fix.vecm: scalar m containing the maximum order of the lagged differences (i.e., ∆zt−m) for the
short term part of the VECM equation, chosen in advance;

• info.vecm: (alternatively to fix.vecm) the information criterion used to choose the best lag
order for the short term part of the VECM equation. Must be one among AIC (default), HQIC, SC,
FPE;

• maxlag: (in conjunction with info.ardl / info.vecm) maximum number of lags for the auto_ardl
function in the package ARDL, and for the VARselect function in the package vars;

• a.ardl: significance threshold for the short-term ARDL coefficients (γy.x,j) in the ARDL model
estimation;

• a.vecm: significance threshold for the short-term VECM coefficients (in Γj) in the VECM model
estimation;

• nboot: number of bootstrap replications;

• case: type of the specification for the conditional ARDL in terms of deterministic components
(intercept and trend) among the five proposed by Pesaran et al. (2001), given in (17)-(21);

• a.boot.H0: probability/ies α by which the critical quantiles of the bootstrap distribution(s) c∗α,Fov
,

c∗α,t and c∗α,Find
must be calculated;

• print: if set to TRUE, shows the progress bar.

boot_ardl makes use of the lag_mts function which produces lagged versions of a given matrix of
time series, each column with a separate order. lag_mts takes as parameters the data included in a
matrix X and the lag orders in a vector k, with the addition of a boolean parameter last.only, which
allows to specify whether only the k-th order lags have to be retained, or all the lag orders from the
first to the k-th.
boot_ardl also acts as a wrapper for the most common methodologies detecting cointegration, offering
a comprehensive view on the testing procedures involved in the analysis. The resulting object, of class
bootCT, contains all the information about

• The conditional ARDL model estimates, and the unconditional VECM model estimates;

• the bootstrap tests performed in the conditional ARDL model;

• the Pesaran, Shin and Smith bound testing procedure (Fov and t-test, when applicable);

• the Sam, McNown and Goh bound testing procedure for Find, when applicable;

• the Johansen rank and trace cointegration tests on the independent variables.

Internally, the bootstrap data generation under the null is executed via a Rcpp function, employing the
Rcpp and RcppArmadillo packages (Eddelbuettel, 2013), so as to greatly speed up computational
times. As explained in the previous section, cointegration tests in the unconditional ARDL model are
performed in order to uncover the presence of spurious cointegrating relationships.
To this end, the function provides

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ARDL
https://CRAN.R-project.org/package=vars
https://CRAN.R-project.org/package=ARDL
https://CRAN.R-project.org/package=vars
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo


CONTRIBUTED RESEARCH ARTICLE 51

• the bootstrap critical values of the Fov, t and Find tests in the conditional model, at level
a.boot.H0, along with the same statistics computed in the conditional model.

• a flag, called fakecoint, that indicates divergence between the outcomes of the Find test per-
formed in both the conditional and unconditional model. In this circumstance, as explained
before, there is no cointegration (see Bertelli et al., 2022).

A summary method has been implemented to present the results in a visually clear manner. It accepts
the additional argument "out" that lets the user choose which output(s) to visualize: ARDL prints the
conditional ARDL model summary, VECM prints the VECM model summary, cointARDL prints the
summary of the bound tests and the bootstrap tests, cointVECM prints the summary of the Johansen
test on the independent variables.
A detailed flowchart showing the function’s workflow is displayed in Figure 4. There, the expressions
"C ARDL" and "UC ARDL" stand for conditional and unconditional ARDL model, respectively.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



C
O

N
T

R
IB

U
T

E
D

R
E

SE
A

R
C

H
A

R
T

IC
L

E
52

case, fix.vecm,
info.vecm, maxlag

data,
xvar, yvar

case, fix.ardl,
info.ardl, maxlag

VECM
Estimate

VECM estimation (either)
Fixed order VARselect()
fix.vecm info.vecm

maxlag

Compute
Find of

UC ARDL

ARDL estimation (either)
Fixed order auto_ardl()
fix.ardl info.ardl

maxlag

C ARDL
Estimate

Johansen test
results on xt

Estimation of the parameters:
A, Γj (j = 1, . . . , p)

α0, α1 based on case.
ε̂xt obtained via (32).

Significant estimates of

Γj filtered via a.vecm

Combine to get

Ã =

[
ayy ã′y.x
0 Axx

]
Γ̃j =

[
γy.x,j
Γ(x),j

]
ω (only in the C ARDL)

(αc
0)

′ = [α0.y α′
0x ], (αc

1)
′ = [α1.y α′

1x ]

Estimation of:
ayy , ay.x , γy.x,j (j = 1, . . . , p)
ω (only in the C ARDL )

α0.y ,α1.y based on case.

Significant estimates of

γy.x,j filtered via a.ardl

PSS/SMG
results in

the C ARDL.
Compute

Fov , t, Find

Null elements of Ã based on H0.
Nullity of αc

0 and
αc

1 based on case.
Combine the residuals

ût = [ν̂∗yt ε̂xt ]

Fov test
H0 : ayy = 0, ãy.x = 0:

Re-estimate ARDL, obtain
ν̂Fov

yt via (28)

t-test
H0 : ayy = 0:

Re-estimate ARDL, obtain
ν̂t

yt via (29)

Find test
H0 : ãy.x = 0:

Re-estimate ARDL, obtain
ν̂Find

yt via (30)

Sample and
center from Û.

Get U(b).

∆y(b)t , ∆x(b)t via (28-29-30-32)

x(b)t = ∆x(b)t + x(b)t−1.

y(b)t = ∆y(b)t + y(b)t−1

ARDL estimation under H0.
Get F(b),H0

ov , t(b),H0 ,
F(b),H0

ind (C) and F(b),H0
ind (UC)

c∗α,T at
level

a.boot.H0.

Decide comparing
Fov, t, Find each to its c∗α,T .

IF Find > c∗α,Find
(C)

AND Find < c∗α,Find
(UC)

→No real cointegration

Based on
case

UC C

UC and C model

b = 1, . . . , B

Figure 4: Flowchart of the boot_ardl function inner steps. Boxes denote parameter definitions and transformations. Diamonds denote function outputs. Dashed diamonds denote

intermediate output (not shown after function call). Empty nodes denote function inputs. The first p + 1 rows of z(b)t are set equal to the first p + 1 rows of the original data. The best
lag order for each difference variable in the ARDL model is determined via auto_ardl(). It is reported as a unique value p in γy.x,j for brevity in the flowchart.

T
he

R
JournalVol.16/1,M

arch
2024

ISSN
2073-4859



CONTRIBUTED RESEARCH ARTICLE 53

4.3 Execution time and technical remarks

In order to investigate the sensitivity of the procedure to different sample sizes and number of
bootstrap replicates, an experiment has been run using a three-dimensional time series of length
T = {50, 80, 100, 200, 500}, generating 100 datasets for each sample size with the sim_vecm_ardl
function (Case II, with cointegrated variables, and 2 lags in the short-run section of the model).
Then, the boot_ardl function has been called

boot_ardl(data = df_sim,
nboot = bootr,
case = 2,
fix.ardl = rep(2, 3),
fix.vecm = 2)

In the code above, bootr has been set equal to B = {200, 500, 1000, 2000}, the number of lags has
been assumed known (fix.ardl and fix.vecm), while default values have been used for every other
argument (such as a.ardl, a.vecm and a.boot.H0).
Table 1 shows the average running time per replication together with the coefficient of variation (%) of
the bootstrap critical values of the Fov test, for each value of T and B, across 100 replications for each
scenario.
Naturally, the running time increases as both sample size and bootstrap replicates increase. However,
it can be noticed how the coefficients of variation tend to stabilize for B ≥ 1000, especially for T > 80,
at the 5% significance level. Therefore, it is recommended a number of bootstrap replicates of at least
B = 1000 for higher sample size, or at least B = 2000 for smaller samples. The analysis has been
carried out using an Intel(R) Core(TM) i7-1165G7 CPU @ 2.80GHz processor, 16GB of RAM.

T B Exec. Time (sec) cv(Fov)(5%) cv(Fov)(2.5%) cv(Fov)(1%)

50 200 23.38 8.648 10.925 13.392
50 500 48.37 6.312 6.952 8.640
50 1000 96.65 4.806 5.613 6.288
50 2000 231.15 4.255 4.226 4.946

80 200 23.46 7.251 8.936 11.263
80 500 50.19 4.998 6.220 7.946
80 1000 143.00 3.882 4.453 5.305
80 2000 255.64 2.912 3.623 4.518

100 200 37.89 7.707 8.583 10.955
100 500 52.86 4.691 5.304 7.557
100 1000 184.51 3.512 4.567 5.695
100 2000 212.65 3.519 3.674 4.185

200 200 35.46 6.644 7.173 10.365
200 500 76.78 4.734 5.355 6.225
200 1000 148.25 3.124 4.177 5.034
200 2000 484.51 2.811 3.361 3.907

500 200 54.47 6.641 8.694 10.414
500 500 133.17 5.137 5.816 6.408
500 1000 271.87 3.905 4.585 5.283
500 2000 561.71 3.221 3.490 4.145

Table 1: Average execution times (in seconds) of the boot_ardl function, for different combinations of
sample size T and bootstrap replicates B. Coefficients of variation (cv) reported for the Fov bootstrap
critical values at level 5%, 2.5% and 1%.

5 Empirical applications

This section provides two illustrative application which highlight the performance of the bootstrap
ARDL tests.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 54

5.1 An application to the German macroeconomic dataset

In the first example, the occurrence of a long-run relationship between consumption [C], income [INC],
and investment [INV] of Germany has been investigated via a set of ARDL models, where each variable
takes in turn the role of dependent one, while the remaining are employed as independent. The models
have been estimated by employing the dataset of Lütkepohl (2005) which includes quarterly data of
the series over the years 1960 to 1982. The data have been employed in logarithmic form. Figure 5
displays these series over the sample period.
Before applying the bootstrap procedure, the order of integration of each series has been analyzed.
Table 2 shows the results of ADF test performed on both the series and their first-differences (k = 3
maximum lags). The results confirm the applicability of the ARDL framework as no series is integrated
of order higher than one.
The following ARDL equations have been estimated:

I First ARDL equation (C | INC, INV):

∆ log Ct = α0.y − ayy log Ct−1 − ay.x1 log INCt−1 − ay.x2 log INVt−1+ (38)
p−1

∑
j=1

γy.j∆ log Ct−j +
s−1

∑
j=1

γx1.j∆ log INCt−j +
r−1

∑
j=1

γx2.j∆ log INVt−j+

ω1∆ log INCt + ω2∆ log INVt + νt.

II Second ARDL equation (INC | C, INV):

∆ log INCt = α0.y − ayy log INCt−1 − ay.x1 log Ct−1 − ay.x2 log INVt−1+ (39)
p−1

∑
j=1

γy.j∆ log INCt−j +
s−1

∑
j=1

γx1.j∆ log Ct−j +
r−1

∑
j=1

γx2.j∆ log INVt−j+

ω1∆ log Ct + ω2∆ log INVt + νt.

III Third ARDL equation (INV | C, INC):

∆ log INVt = α0.y − ayy log INVt−1 − ay.x1 log Ct−1 − ay.x2 log INCt−1+ (40)
p−1

∑
j=1

γy.j∆ log INVt−j +
s−1

∑
j=1

γx1.j∆ log Ct−j +
r−1

∑
j=1

γx2.j∆ log INCt−j+

ω1∆ log Ct + ω2∆ log INCt + νt.

Table 3 shows the estimation results for each ARDL and VECM model. It is worth noting that the
instantaneous difference of the independent variables are highly significant in each conditional ARDL
model. Thus, neglecting these variables in the ARDL equation, as happens in the unconditional
version of the model, may potentially lead to biased estimates and incorrect inference. For the sake of
completeness, also the results of the marginal VECM estimation are reported for each model.
The code to prepare the data, available in the package as the ger_macro dataset, is:

data("ger_macro")
LNDATA = apply(ger_macro[,-1], 2, log)
col_ln = paste0("LN", colnames(ger_macro)[-1])
LNDATA = as.data.frame(LNDATA)
colnames(LNDATA) = col_ln

Then, the boot_ardl function is called, to perform the bootstrap tests. In the code chunk below, Model
I is considered.

set.seed(999)
BCT_res_CONS = boot_ardl(data = LNDATA,

yvar = "LNCONS",
xvar = c("LNINCOME", "LNINVEST"),
maxlag = 5,
a.ardl = 0.1,
a.vecm = 0.1,
nboot = 2000,
case = 3,
a.boot.H0 = c(0.05),
print = T)

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 55

to which follows the call to the summary function

summary(BCT_res_CONS, out = "ARDL")
summary(BCT_res_CONS, out = "VECM")
summary(BCT_res_CONS, out = "cointVECM")
summary(BCT_res_CONS, out = "cointARDL")

The first summary line displays the output in the ARDL column of Table 3 and the second column of
Table 4, Model I. The second line corresponds to the VECM columns of Table 3, Model I - only for the
independent variables. The information on the rank of the Axx in Table 3 is inferred from the third
line. Finally, the fourth summary line corresponds to the test results in Table 4, Model I. A textual
indication of the presence of spurious cointegration is displayed at the bottom of the "cointARDL"
summary, if detected.
In this example, the bootstrap and bound testing procedures are in agreement only for model I,
indicating the existence of a cointegrating relationship. Additionally, no spurious cointegration is
detected for this model. As for models II and III, the null hypothesis is not rejected by the bootstrap
tests, while the PSS and SMG bound tests fail to give a conclusive answer in the Find test.
The running time of the entire analysis is of roughly 11 minutes, using an Intel(R) Core(TM) i7-1165G7
CPU @ 2.80GHz processor, 16GB of RAM.

level variable first difference

Series lag ADF p.value ADF p-value

log Ct

0 -1.690 0.450 -9.750 < 0.01
1 -1.860 0.385 -5.190 < 0.01
2 -1.420 0.549 -3.130 0.030
3 -1.010 0.691 -2.720 0.080

log INCt

0 -2.290 0.217 -11.140 < 0.01
1 -1.960 0.345 -7.510 < 0.01
2 -1.490 0.524 -5.120 < 0.01
3 -1.310 0.587 -3.290 0.020

log INVt

0 -1.200 0.625 -8.390 < 0.01
1 -1.370 0.565 -5.570 < 0.01
2 -1.360 0.570 -3.300 0.020
3 -1.220 0.619 -3.100 0.032

Table 2: ADF preliminary test (null hypothesis: random walk with drift).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 56

6

7

8

1960 1965 1970 1975 1980
DATE

va
lu

e

variable

LNCONS

LNINCOME

LNINVEST

Level Variables (log−scale)

−0.1

0.0

0.1

0.2

1960 1965 1970 1975 1980
DATE

va
lu

e

variable

D_LNCONS

D_LNINCOME

D_LNINVEST

Diff. Variables (log−scale)

Figure 5: log-consumption/investment/income graphs (level variables and first differences). Made
with ggplot.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot


C
O

N
T

R
IB

U
T

E
D

R
E

SE
A

R
C

H
A

R
T

IC
L

E
57

Model I Model II Model III

ARDL VECM ARDL VECM ARDL VECM
∆ log Ct ∆ log INVt ∆ log INCt ∆ log INCt ∆ log Ct ∆ log INVt ∆ log INVt ∆ log Ct ∆ log INCt

log Ct−1
-0.307 ***

(0.055)
0.168 *
(0.081)

-0.0011
(0.0126)

0.1286*
(0.0540)

0.611 .
(0.339)

-0.2727***
(0.0704)

-0.0508
(0.0796)

log INCt−1
0.297 ***
(0.055)

0.124 *
(0.054)

-0.017
(0.014)

-0.183*
(0.079)

-0.491
(0.340)

0.2619***
(0.0681)

0.0464
(0.0772)

log INVt−1
-0.001
(0.011)

-0.152 *
(0.063)

0.016
(0.017)

0.0209
(0.0135)

-0.00107
(0.0142)

-0.1531*
(0.0607)

-0.1212*
(0.060)

∆ log Ct−1
-0.248 **
(0.079)

0.899 *
(0.442)

0.211 .
(0.113)

0.375***
(0.1086)

0.9288*
(0.442)

1.113 *
(0.441)

0.2072 .
(0.1142)

∆ log Ct−2
0.744

(0.431)
0.8049 .
(0.4345)

∆ log INCt−1
-0.1404
(0.1095)

∆ log INCt−2
0.2675**
(0.0958)

0.1522.
(0.0912)

∆ log INVt−1
-0.18

(0.111)
0.035

(0.029)
-0.189 .
(0.1097)

-0.175
(0.1075)

0.0479 .
(0.0282)

∆ log INVt−2
0.049 .
(0.027)

0.0591*
(0.0245)

0.0578*
(0.0223)

0.0562*
(0.0266)

∆ log Ct
0.7070***
(0.1093)

1.8540***
(0.5425)

∆ log INCt
0.471***
(0.074)

-0.445***
(0.4726)

∆ log INVt
0.065**
(0.019)

-0.0230
(0.025)

const. 0.048 ***
(0.013)

0.036
(0.066)

0.033 *
(0.017)

0.002
(0.018)

0.0266 .
(0.0155)

0.023
(0.0666)

-0.056
(0.072)

0.0517**
(0.0157)

0.0378*
(0.0177)

J-test rk(Axx) = 2 rk(Axx) = 2 rk(Axx) = 2

Table 3: Conditional ARDL and VECM results for the consumption/income/investment dataset, along with rank of the Axx matrix via the Johansen (J) test.
Significance codes: (***) 1%; (**) 5%; (.) 10%.

T
he

R
JournalVol.16/1,M

arch
2024

ISSN
2073-4859



CONTRIBUTED RESEARCH ARTICLE 58

PSS / SMG Threshold Outcome

Model Lags Test Boot. Critical Values I(0) 5% I(1) 5% Statistic Boot Bound

I (1,0,0)
Fov 3.79 3.79 4.85 10.75

Y Yt -2.88 -2.86 -3.53 -5.608
Find 4.92 3.01 5.42 15.636

II (1,1,0)
Fov 5.79 3.79 4.85 2.867

N Ut -3.69 -2.86 -3.53 -2.315
Find 7.38 3.01 5.42 3.308

III (1,1,0)
Fov 5.50 3.79 4.85 3.013

N Ut -3.32 -2.86 -3.53 -2.020
Find 6.63 3.01 5.42 4.189

Table 4: Cointegration analysis for the three ARDL equations in the German macroeconomic data. The
optimal number of ARDL lags in the short-run - in the form (y, x1, x2), matching the model definition -
bootstrap critical values, bound test thresholds and test statistics for each test are shown (case III).
The outcome columns draw conclusions on each type of model (bootstrap or bound): Y = cointegrated,
N = not cointegrated, D1 = degenerate of type 1, D2 = degenerate of type 2, U = inconclusive inference.

5.2 An application on Italian Macroeconomic Data

Following Bertelli et al. (2022), the relationship between foreign direct investment [FDI], exports [EXP],
and gross domestic product [GDP] in Italy is investigated. The data of these three yearly variables
have been retrieved from the World Bank Database and cover the period from 1970 to 2020. In the
analysis, the log of the variables has been used and [EXP] and [FDI] have been adjusted using the GDP
deflator. Figure 6 displays these series over the sample period.

4

6

8

1970 1980 1990 2000 2010 2020
YEAR

va
lu

e

variable

LEXP

LFI

LGDP

Level Variables (log−scale)

−1

0

1

1970 1980 1990 2000 2010 2020
YEAR

va
lu

e

variable

D_LEXP

D_LFI

D_LGDP

Diff. Variables (log−scale)

Figure 6: log-GDP/export/investment graphs (level variables and first differences). Made with
ggplot.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot


CONTRIBUTED RESEARCH ARTICLE 59

Table 5 shows the outcomes of the ADF test performed on each variable, which ensures that the
integration order is not higher than one for all variables. Table 6 shows the results of bound and
bootstrap tests performed in ARDL model by taking each variable, in turn, as the dependent one. The
following ARDL equations have been estimated:

I First ARDL equation (GDP | EXP, FDI):

∆ log GDPt = α0.y − ayy log GDPt−1 − ay.x1 log EXPt−1 − ay.x2 log FDIt−1+ (41)
p−1

∑
j=1

γy.j∆ log GDPt−j +
s−1

∑
j=1

γx1.j∆ log EXPt−j +
r−1

∑
j=1

γx2.j∆ log FDIt−j+

ω1∆ log EXPt + ω2∆ log FDIt + νt

. For this model, a degenerate case of the first type can be observed, while the simpler bound
testing procedure does not signal cointegration.

II Second ARDL equation (EXP | GDP, FDI):

∆ log EXPt = α0.y − ayy log EXPt−1 − ay.x1 log GDPt−1 − ay.x2 log FDIt−1+ (42)
p−1

∑
j=1

γy.j∆ log EXPt−j +
s−1

∑
j=1

γx1.j∆ log GDPt−j +
r−1

∑
j=1

γx2.j∆ log FDIt−j+

ω1∆ log GDPt + ω2∆ log FDIt + νt.

For this model, the ARDL bootstrap test indicates absence of cointegration, while the bound
testing approach is inconclusive for the Find test.

III Third ARDL equation (FDI | GDP, EXP):

∆ log FDIt = α0.y − ayy log FDIt−1 − ay.x1 log GDPt−1 − ay.x2 log EXPt−1+ (43)
p−1

∑
j=1

γy.j∆ log FDIt−j +
s−1

∑
j=1

γx1.j∆ log GDPt−j +
r−1

∑
j=1

γx2.j∆ log EXPt−j+

ω1∆ log GDPt + ω2∆ log EXPt + νt.

For this model, the long-run cointegrating relationship is confirmed using both boostrap and
bound testing. No spurious cointegration is detected.

The code to load the data and perform the analysis (e.g. for Model I) is:

data("ita_macro")
BCT_res_GDP = boot_ardl(data = ita_macro,

yvar = "LGDP",
xvar = c("LEXP", "LFI"),
maxlag = 5,
a.ardl = 0.1,
a.vecm = 0.1,
nboot = 2000,
case = 3,
a.boot.H0 = c(0.05),
print = T)

For the sake of simplicity, the conditional ARDL and VECM marginal models outputs included in each
cointegrating analysis is omitted. The summary for the cointegration tests for Model I is called via

summary(BCT_res_GDP, out = "ARDL") # extract lags
summary(BCT_res_GDP, out ="cointARDL") # ARDL cointegration

This empirical application further highlights the importance of dealing with inconclusive inference via
the bootstrap procedure, while naturally including the effect of conditioning in the ARDL model, as
highlighted in Bertelli et al. (2022).

6 Conclusion

The bootCT package allows the user to perform bootstrap cointegration tests in ARDL models by
overcoming the problem of inconclusive inference which is a well-known drawback of standard bound
tests. The package makes use of different functions. The function boot_ardl performs the bootstrap

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=bootCT


CONTRIBUTED RESEARCH ARTICLE 60

No Drift, No Trend Drift, No Trend Drift and Trend

Variable Lag = 0 Lag = 1 Lag = 2 Lag = 3 Lag = 0 Lag = 1 Lag = 2 Lag = 3 Lag = 0 Lag = 1 Lag = 2 Lag = 3

log GDPt 0.99 0.974 0.941 0.796 < 0.01 < 0.01 < 0.01 0.084 0.99 0.99 0.99 0.99
log FDIt 0.572 0.599 0.675 0.725 < 0.01 0.0759 0.3199 0.5174 < 0.01 0.013 0.151 0.46
log EXPt 0.787 0.71 0.698 0.684 0.479 0.288 0.467 0.433 0.629 0.35 0.463 0.379

∆ log GDPt < 0.01 < 0.0164 0.0429 0.0402 < 0.01 0.0861 0.3989 0.4267 < 0.01 < 0.01 0.0166 0.017
∆ log FDIt < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
∆ log EXPt < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.0336 0.0315

Table 5: ADF preliminary test for the second example.

PSS / SMG Threshold Outcome

Model Lags Test Boot. Critical Values I(0) 5% I(1) 5% Statistic Boot Bound

I (1,1,0)
Fov 3.730 4.070 5.190 9.758

D1 Nt -2.020 -2.860 -3.530 -2.338
Find 3.710 3.220 5.620 2.273

II (1,0,0)
Fov 5.400 4.070 5.190 2.649

N Ut -3.380 -2.860 -3.530 -1.889
Find 5.630 3.220 5.620 3.481

III (1,0,0)
Fov 5.360 4.070 5.190 6.716

Y Yt -3.550 -2.860 -3.530 -4.202
Find 6.500 3.220 5.620 7.017

Table 6: Cointegration analysis for the three ARDL equations in the Italian macroeconomic data. The
optimal number of ARDL lags in the short-run - in the form (y, x1, x2), matching the model definition -
bootstrap critical values, bound test thresholds and test statistics for each test are shown (case III).
The outcome columns draw conclusions on each type of model (bootstrap or bound): Y = cointegrated,
N = not cointegrated, D1 = degenerate of type 1, D2 = degenerate of type 2, U = inconclusive inference.

tests, and it acts as a wrapper of both the bootstrap and the standard bound tests, including also the
Johansen test on the independent variables of the model. Finally, it also performs the bound F-test
on the lagged independent variables, so far not available in other extant R packages. The function
sim_vecm_ardl, which allows the simulation of multivariate time series data following a user-defined
DGP, enriches the available procedures for multivariate data generation, while the function lag_mts
provides a supporting tool in building datasets of lagged variables for any practical purpose. Finally,
the use of Rcpp functions gives a technical advantage in terms of computational speed, performing
the bootstrap analysis within an acceptable time frame.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 61

7 Appendix

7.1 Section A - the methodological framework of (conditional) VECM and ARDL models

Expanding the matrix polynomial A(z) about z = 1, yields

A(z) = A(1)z + (1 − z)Γ(z), (44)

where

A(1) = IK+1 −
p

∑
j=1

Aj (45)

Γ(z) = IK+1 −
p−1

∑
i=1

Γizi, Γi = −
p

∑
j=i+1

Aj. (46)

The VECM model (2) follows accordingly, and

α0 = A(1)µ + (Γ(1)− A(1))η, α1 = A(1)η. (47)

Assuming that A(1) is singular and that the variables xt are cointegrated. This entails the following

A(1) =


ayy
(1,1)

a′yx
(1,K)

axy
(K,1)

Axx
(K,K)

 = B
(K+1,r+1)

C′
(r+1,K+1)

=

[
byy b′

yx
bxy Bxx

] [
cyy c′yx
cxy C′

xx

]
=

=

[
byycyy + b′

yxcxy byyc′yx + b′
yxC′

xx
bxycyy + Bxxcxy bxyc′yx + Axx

]
, rk(A(1)) = rk(B) = rk(C), (48)

where B and C are full column rank matrices arising from the rank-factorization of A(1) = BC′ with C
matrix of the long-run relationships of the process and Bxx, Cxx arising from the rank factorization of
Axx = BxxC′

xx, with rk(Axx) = rk(Bxx) = rk(Cxx) = r 6.
By partitioning the vectors α0, α1, the matrix A(1) and the polynomial matrix Γ(L) conformably to zt,
as follows

α0 =

 α0y
(1,1)
α0x
(K,1)

 , α1 =

 α1y
(1,1)
α1x
(K,1)

 (49)

A(1) =


a′(y)

(1,K+1)
A(x)

(K,K+1)

 =


ayy
(1,1)

a′yx
(1,K)

axy
(K,1)

Axx
(K,K)

 , Γ(L) =


γ′

y(L)
(1,K+1)
Γ(x)(L)
(K,K+1)

 =


γyy(L)
(1,1)

γ′
yx(L)
(1,K)

γxy(L)
(K,1)

Γxx(L)
(K,K)

 (50)

, and substituting (6) into (2) yields

∆zt =

[
∆yt
∆xt

]
=

[
α0.y
α0x

]
+

[
α1.y
α1x

]
t −
[

a′(y).x
A(x)

] [
yt−1
xt−1

]
+

[
γ′

y.x(L)
Γ(x)(L)

]
∆zt +

[
ω′∆xt

0

]
+

[
νyt
εxt

]
(51)

, where
α0.y = α0y − ω′α0x, α1.y = α1y − ω′α1x (52)

a′(y).x = a′(y) − ω′A(x), γ′
y.x(L) = γ′

y(L)− ω′Γ(x)(L). (53)

According to (51), the long-run relationships of the VECM turn out to be now included in the matrix[
a′
(y).x

A(x)

]
=

[
ayy − ω′axy a′yx − ω′Axx

axy Axx

]
. (54)

To rule out the presence of long-run relationships between yt and xt in the marginal model, the xt
variables are assumed to be exogenous with respect to the ARDL parameters, that is axy is assumed to
be a null vector. Accordingly, the long-run matrix in (54) becomes

Ã =

[
ayy a′yx − ω′Axx
0 Axx

]
=

[
ayy ã′y.x
0 Axx

]
=

[
byycyy byyc′yx + (b′

yx − ω′Bxx)C′
xx

0 BxxC′
xx

]
. (55)

6If the explanatory variables are stationary Axx is non-singular (rk(Axx) = K), while when they are integrated
but without cointegrating relationship Axx is a null matrix

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 62

After these algebraic transformations, the ARDL equation for ∆yt can be rewritten as in (7).
In light of the factorization (48) of the matrix A(1), the long-run equilibrium vector θ can be expressed
as

θ′ = − 1
ayy

[
byy (byx − ω′Bxx)

]
(1,r+1)

[
c′yx
C′

xx

]
(r+1,K)

, (56)

where ãy.x = ayx − ω′Axx.
Bearing in mind that C′

xx is the cointegrating matrix for the variables xt, the equation (56) leads to the
following conclusion

rk
[

c′yx
C′

xx

]
=

{
r → yt ∼ I(0)
r + 1 → yt ∼ I(1)

, (57)

where r = rk(Axx) and 0 ≤ r ≤ K.

7.2 Section B - Intercept and trend specifications

Pesaran et al. (2001) introduced five different specifications for the ARDL model, which depend on
the deterministic components that can be absent or restricted to the values they assume in the parent
VAR model. In this connection, note that, in light of (47), the drift and the trend coefficient in the
conditional VECM (51) are defined as

αc
0 = Ã(1)(µ − η) + Γ̃(1)η, αc

1 = Ã(1)η, (58)

where Ã(1) is as in (55) and Γ̃(1) =
[

γ′
y.x(1)

Γ(x)(1)

]
.

Accordingly, after partitioning the mean and the drift vectors as

µ′

(1,K+1)
= [ µy

(1,1)
, µ′

x
(1,K)

], η′

(1,K+1)
= [ ηy

(1,1)
, η′x
(1,K)

], (59)

the intercept and the coefficient of the trend of the ARDL equation (7) are defined as

αEC
0.y = e′1αc

0 = ayyµy − ã′y.xµx + γ′
y.x(1)η = ayy(µy − θ′µx) + γ′

y.x(1)η, θ′ = −
ã′y.x

ayy
(60)

αEC
1.y = e′1αc

1 = ayyηy − ã′y.xηx = ayy(ηy − θ′ηx), (61)

where e1 is the K + 1 first elementary vector.
In the error correction term

ECt−1 = yt−1 − θ0 − θ1t − θ′xt−1 (62)

the parameters that partake in the calculation of intercept and trend are

θ0 = µy − θ′µx, θ1 = ηy − θ′ηx. (63)

In particular, these latter are not null only when they are assumed to be restricted in the model
specification.
The five specifications proposed by Pesaran et al. (2001) are

I No intercept and no trend:
µ = η = 0. (64)

It follows that
θ0 = θ1 = α0.y = α1.y = 0. (65)

Accordingly, the model is as in (17).

II Restricted intercept and no trend:
αc

0 = Ã(1)µ, η = 0, (66)

which entails
θ0 ̸= 0 αEC

0.y = ayyθ0, α0.y = θ1 = α1.y = 0. (67)

Therefore, the intercept stems from the EC term of the ARDL equation. The model is specified
as in (18)

III Unrestricted intercept and no trend:

αc
0 ̸= Ã(1)µ, η = 0. (68)

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 63

Thus,
α0.y ̸= 0, θ0 = θ1 = α1.y = 0. (69)

Accordingly, the model is as in (19).

IV Unrestricted intercept, restricted trend:

αc
0 ̸= Ã(1)(µ − η) + Γ̃(1)η αc

1 = Ã(1)η, (70)

which entails
α0.y ̸= 0, θ0 = 0 θ1 ̸= 0 αEC

1.y = ayyθ1 α1.y = 0. (71)

Accordingly, the trend stems from the EC term of the ARDL equation. The model is as in (20).

V Unrestricted intercept, unrestricted trend:

αc
0 ̸= Ã(1)(µ − η) + Γ̃(1)η αc

1 ̸= Ã(1)η. (72)

Accordingly,
α0.y ̸= 0 α1.y ̸= 0, θ0 = θ1 = 0. (73)

The model is as in (21).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 64

References

K. R. Abbasi, M. Shahbaz, Z. Jiao, and M. Tufail. How energy consumption, industrial growth, urban-
ization, and co2 emissions affect economic growth in pakistan? a novel dynamic ardl simulations
approach. Energy, 221:119793, 2021. doi: 10.1016/j.energy.2021.119793. [p39]

M. A. Arranz and A. Escribano. Cointegration testing under structural breaks: A robust extended error
correction model. Oxford Bulletin of Economics and Statistics, 62(1):23–52, 2000. doi: 10.1111/1468-
0084.00158. [p39]

S. M. Bache and H. Wickham. magrittr: A Forward-Pipe Operator for R, 2022. URL https://CRAN.R-
project.org/package=magrittr. R package version 2.0.3. [p40]

S. Bertelli, G. Vacca, and M. Zoia. Bootstrap cointegration tests in ardl models. Economic Modelling,
116:105987, 2022. doi: 10.1016/j.econmod.2022.105987. [p40, 42, 51, 58, 59]

B. Bolker, G. R. Warnes, and T. Lumley. gtools: Various R Programming Tools, 2022. URL https://CRAN.R-
project.org/package=gtools. R package version 3.9.4. [p40]

H. W. Borchers. pracma: Practical Numerical Math Functions, 2022. URL https://CRAN.R-project.org/
package=pracma. R package version 2.4.2. [p40]

S. Cook. The power of single equation tests for cointegration. Applied Economics Letters, 13(5):265–267,
2006. doi: 10.1080/13504850500398534. [p39]

R. Davidson and J. G. MacKinnon. The case against jive. Journal of Applied Econometrics, 21(6):827–833,
2005. doi: 10.1002/jae.873. [p44]

D. Eddelbuettel. Seamless R and C++ Integration with Rcpp. Springer, New York, 2013. doi: 10.1007/978-
1-4614-6868-4. ISBN 978-1-4614-6867-7. [p40, 50]

D. Eddelbuettel, R. Francois, D. Bates, B. Ni, and C. Sanderson. RcppArmadillo: ‘Rcpp’ Integration for
the ‘Armadillo’ Templated Linear Algebra Library, 2023. URL https://CRAN.R-project.org/package=
RcppArmadillo. R package version 0.12.4.0.0. [p40]

R. F. Engle and C. W. Granger. Co-integration and error correction: representation, estimation, and
testing. Econometrica: journal of the Econometric Society, pages 251–276, 1987. doi: 10.2307/1913236.
[p39]

R. F. Engle and B. S. Yoo. Forecasting and testing in co-integrated systems. Journal of Econometrics, 35
(1):143–159, 1987. doi: 10.1016/0304-4076(87)90085-6. [p39]

N. R. Ericsson and J. G. MacKinnon. Distributions of error correction tests for cointegration. The
Econometrics Journal, 5(2):285–318, 2002. doi: 10.1111/1368-423X.00085. [p39]

V. J. Gabriel, Z. Psaradakis, and M. Sola. A simple method of testing for cointegration subject to
multiple regime changes. Economics Letters, 76(2):213–221, 2002. [p39]

M. Haseeb, I. S. Z. Abidin, Q. M. A. Hye, and N. H. Hartani. The impact of renewable energy on
economic well-being of malaysia: Fresh evidence from auto regressive distributed lag bound testing
approach. International Journal of Energy Economics and Policy, 9(1):269, 2019. doi: 10.32479/ijeep.7229.
[p39]

R. M. Hope. Rmisc: Ryan Miscellaneous, 2022. URL https://CRAN.R-project.org/package=Rmisc. R
package version 1.5.1. [p40]

H. I. Hussain, M. A. Salem, A. Z. A. Rashid, and F. Kamarudin. Environmental impact of sectoral
energy consumption on economic growth in malaysia: Evidence from ardl bound testing approach.
Ekoloji Dergisi, (107), 2019. [p39]

S. Johansen. Estimation and hypothesis testing of cointegration vectors in gaussian vector autore-
gressive models. Econometrica: journal of the Econometric Society, pages 1551–1580, 1991. doi:
10.2307/2938278. [p39]

S. Jordan and A. Q. Philips. dynamac: Dynamic Simulation and Testing for Single-Equation ARDL Models,
2020. URL https://CRAN.R-project.org/package=dynamac. R package version 0.1.11. [p40]

A. Kanioura and P. Turner. Critical values for an f-test for cointegration in a multivariate model.
Applied Economics, 37(3):265–270, 2005. doi: 10.1080/00036840412331315051. [p40]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=gtools
https://CRAN.R-project.org/package=gtools
https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=Rmisc
https://CRAN.R-project.org/package=dynamac


CONTRIBUTED RESEARCH ARTICLE 65

J. J. Kremers, N. R. Ericsson, and J. J. Dolado. The power of cointegration tests. Oxford bulletin of
economics and statistics, 54(3):325–348, 1992. doi: 10.1111/j.1468-0084.1992.tb00005.x. [p39]

S. Kripfganz and D. C. Schneider. Response surface regressions for critical value bounds and approxi-
mate p-values in equilibrium correction models 1. Oxford Bulletin of Economics and Statistics, 82(6):
1456–1481, 2020. doi: 10.1111/obes.12377. [p40]

Lesnoff, M., Lancelot, and R. aod: Analysis of Overdispersed Data, 2012. URL https://cran.r-project.
org/package=aod. R package version 1.3.2. [p40]

H. Lütkepohl. New introduction to multiple time series analysis. Springer Science & Business Media, 2005.
doi: 10.1007/978-3-540-27752-1. [p54]

J. G. Mackinnon. Critical values for cointegration tests. In Eds.), Long-Run Economic Relationship:
Readings in Cointegration. Oxford Press, 1991. [p39]

G. S. Maddala and I.-M. Kim. Unit roots, cointegration, and structural change. 1998. doi: 10.1017/
CBO9780511751974. [p39]

R. McNown, C. Y. Sam, and S. K. Goh. Bootstrapping the autoregressive distributed lag test for
cointegration. Applied Economics, 50(13):1509–1521, 2018. doi: 10.1080/00036846.2017.1366643. [p39,
40, 43]

A. N. Menegaki. The ardl method in the energy-growth nexus field; best implementation strategies.
Economies, 7(4):105, 2019. doi: 10.3390/economies7040105. [p39]

T. C. Mills and E. J. Pentecost. The real exchange rate and the output response in four eu accession
countries. Emerging Markets Review, 2(4):418–430, 2001. doi: 10.1016/S1566-0141(01)00027-9. [p40]

P. K. Narayan. The saving and investment nexus for china: evidence from cointegration tests. Applied
economics, 37(17):1979–1990, 2005. doi: 10.1080/00036840500278103. [p40]

P. K. Narayan and R. Smyth. Crime rates, male youth unemployment and real income in australia:
evidence from granger causality tests. Applied Economics, 36(18):2079–2095, 2004. doi: 10.1080/
0003684042000261842. [p40]

K. Natsiopoulos and N. Tzeremes. ARDL: ARDL, ECM and Bounds-Test for Cointegration, 2021. URL
https://CRAN.R-project.org/package=ARDL. R package version 0.1.1. [p40, 50]

M. H. Pesaran, Y. Shin, and R. J. Smith. Bounds testing approaches to the analysis of level relationships.
Journal of applied econometrics, 16(3):289–326, 2001. doi: 10.1002/jae.616. [p39, 40, 41, 42, 45, 50, 62]

B. Pfaff. Var, svar and svec models: Implementation within R package vars. Journal of Statistical
Software, 27(4), 2008a. URL https://www.jstatsoft.org/v27/i04/. [p40, 50]

B. Pfaff. Analysis of Integrated and Cointegrated Time Series with R. Springer, New York, second edition,
2008b. URL https://www.pfaffikus.de. ISBN 0-387-27960-1. [p40]

D. Qiu. aTSA: Alternative Time Series Analysis, 2015. URL https://CRAN.R-project.org/package=aTSA.
R package version 3.1.2. [p40]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2022. URL https://www.R-project.org/. [p]

A. M. Reda and E. Nourhan. Using the ardl bound testing approach to study the inflation rate in egypt.
Economic consultant, (3 (31)):24–41, 2020. doi: 10.46224/ecoc.2020.3.2. [p39]

C. Y. Sam, R. McNown, and S. K. Goh. An augmented autoregressive distributed lag bounds test for
cointegration. Economic Modelling, 80:130–141, 2019. doi: 10.1016/j.econmod.2018.11.001. [p40]

A. Trapletti and K. Hornik. tseries: Time Series Analysis and Computational Finance, 2023. URL https:
//CRAN.R-project.org/package=tseries. R package version 0.10-54. [p40]

G. Vacca and S. Bertelli. bootCT: Bootstrapping the ARDL Tests for Cointegration, 2023. R package version
2.0.0. [p40]

H. Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 21(12):1–20, 2007.
URL http://www.jstatsoft.org/v21/i12/. [p40]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p40, 47]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://cran.r-project.org/package=aod
https://cran.r-project.org/package=aod
https://CRAN.R-project.org/package=ARDL
https://www.jstatsoft.org/v27/i04/
https://www.pfaffikus.de
https://CRAN.R-project.org/package=aTSA
https://www.R-project.org/
https://CRAN.R-project.org/package=tseries
https://CRAN.R-project.org/package=tseries
http://www.jstatsoft.org/v21/i12/
https://ggplot2.tidyverse.org


CONTRIBUTED RESEARCH ARTICLE 66

H. Wickham. stringr: Simple, Consistent Wrappers for Common String Operations, 2022. URL https:
//CRAN.R-project.org/package=stringr. R package version 1.5.0. [p40]

H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, A. Hayes,
L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson,
D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome to the
tidyverse. Journal of Open Source Software, 4(43):1686, 2019. doi: 10.21105/joss.01686. [p40]

H. Wickham, R. François, L. Henry, K. Müller, and D. Vaughan. dplyr: A Grammar of Data Manipulation,
2023. URL https://CRAN.R-project.org/package=dplyr. R package version 1.1.2. [p40]

V. Yilanci, S. Bozoklu, and M. S. Gorus. Are brics countries pollution havens? evidence from a
bootstrap ardl bounds testing approach with a fourier function. Sustainable Cities and Society, 55:
102035, 2020. doi: 10.1016/j.scs.2020.102035. [p39]

Gianmarco Vacca
Department of Economic Policy. Università Cattolica del Sacro Cuore
Largo Gemelli, 1, Milan.
Italy
(0000-0002-8996-5524)
gianmarco.vacca@unicatt.it

Maria Zoia
Department of Economic Policy. Università Cattolica del Sacro Cuore
Largo Gemelli, 1, Milan.
Italy
(0000-0002-8169-781X)
maria.zoia@unicatt.it

Stefano Bertelli
CRO Area, Internal Validation and Controls Department, Operational Risk and ICAAP Internal Systems,
Intesa Sanpaolo, Milan
Viale Stelvio, 55/57, Milan.
Italy
stefano.bertelli@intesasanpaolo.com

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=dplyr
mailto:gianmarco.vacca@unicatt.it
mailto:maria.zoia@unicatt.it
mailto:stefano.bertelli@intesasanpaolo.com


CONTRIBUTED RESEARCH ARTICLE 67

Prediction, Bootstrapping and Monte
Carlo Analyses Based on Linear Mixed
Models with QAPE 2.0 Package
by Alicja Wolny–Dominiak and Tomasz Ża̧dło

Abstract The paper presents a new R package qape for prediction, accuracy estimation of various
predictors and Monte Carlo simulation studies of properties of both predictors and estimators of
accuracy measures. It allows to predict any population and subpopulation characteristics of the
response variable based on the Linear Mixed Model (LMM). The response variable can be transformed,
e.g. to logarithm and the data can be in the cross-sectional or longitudinal framework. Three bootstrap
algorithms are developed: parametric, residual and double, allowing to estimate the prediction
accuracy. Analyses can also include Monte Carlo simulation studies of properties of the methods used.
Unlike other packages, in the prediction process the user can flexibly define the predictor, the model,
the transformation function of the response variable, the predicted characteristics and the method of
accuracy estimation.

1 Introduction

One of the tasks in application of mixed models in the real-life problems is the prediction of random
effects. Then, the predicted values give the possibility for further prediction, e.g. characteristics of
interest such as sum, mean or quantiles or the future value of the response variable for cross-sectional
or longitudinal data.

Three main predictors of these characteristics are proposed in the literature: Empirical Best Linear
Unbiased Predictors - EBLUPs (see e.g. Henderson (1950) and Royall (1976)), PLUG-IN predictors (see
e.g. Boubeta et al. (2016), Chwila and Żądło (2019), Hobza and Morales (2016)) and Empirical Best
Predictors - EBPs (see e.g. Molina and Rao (2010)). Each assumes the LMM to model the response
variable.

The numerous successful applications of these three predictors for cross-sectional and longitudinal
data can be found in the model approach in survey sampling, including the small area estimation. In
paper Fay III and Herriot (1979) the Authors introduce the prediction of the mean income for small
places based on the special case of the LMM model called Fay-Herriot model and the EBLUP. The
analysis of poverty is extended in many works, e.g. in Molina and Rao (2010) and Christiaensen et al.
(2012). In turn, in Battese et al. (1988) the Authors analyse the total crop areas based on survey and
satellite data using EBLUPs. The proposed LMM model is known as the Battese-Harter-Fuller model.
The predictors are also exploited in the subject of experience rating in non-life insurance, see Frees
et al. (1999) and Bühlmann and Gisler (2005), where the longitudinal data are under consideration.
The insurance premium for the next period for every policy in the insurance portfolio is predicted.

A major challenge in this type of prediction is the estimation of the prediction accuracy measure.
Most often it is the Root Mean Squared Error (RMSE), which is given in analytical form or can be e.g.
estimated using bootstrap. A feature of the distribution of the squared prediction error is usually a
very strong positive asymmetry. Because the mean is not recommended as the appropriate measure
of the central tendency in such distributions, the alternative prediction accuracy measure called the
Quantile of Absolute Prediction Errors (QAPE), proposed by Żądło (2013) and Wolny-Dominiak and
Żądło (2020), can be applied.

There is a variety of R packages to calculate the considered predictors together with the accuracy
measure of prediction, usually the RMSE. The package sae, see Molina and Marhuenda (2015), provides
EBLUPs based on Fay-Herriot and Battese-Harter-Fuller models. In turn, the multivariate EBLUP for
Fay-Herriot models is implemented in msae, see Permatasari and Ubaidillah (2021). Several EBLUPs
introduced in Rao and Yu (1994) are implemented in package saery introduced by Lefler et al. (2014),
likewise in JoSAE, see Breidenbach (2018), but with additional heteroscedasticity analysis. The EBP is
provided in the package emdi described in Kreutzmann et al. (2019).

A new package in this area is our proposed package qape. It allows the prediction of flexibly
defined characteristics of the response variable using the above three predictors, assuming an appro-
priate LMM. A novel feature of the package qape, compared to those already in place, is the ability of
bootstrap estimation of the prediction accuracy measures, both the RMSE and QAPE. Three types of
bootstrap procedures are provided: parametric, residual and double.

There are three groups of functions in this package: predictors values calculation, bootstrap

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=sae
https://CRAN.R-project.org/package=msae
https://CRAN.R-project.org/package=saery
https://CRAN.R-project.org/package=JoSAE
https://CRAN.R-project.org/package=emdi
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 68

estimation of RMSE and QAPE measures, and Monte Carlo (MC) analysis of properties of predictors
and prediction accuracy estimators. The prediction is based on a LMM model defined by the user and
allows to predict the population characteristics of the response variable, which can be defined by a
linear combination (in the case of EBLUP), by any R function (e.g. sum) or any function defined by
the user (in the case of the EBP and PLUG-IN predictors). The package allows for full flexibility in
defining: the model, the predicted characteristic, and the transformation of the response variable.

This paper is organized as follows. Firstly, the background of the LMM is presented together
with the theoretical foundations of the prediction including prediction accuracy measures. Then, the
package functionality in the area of prediction is presented and illustrated. A short application based
on radon data, a cross-sectional dataset available in HLMdiag package, to predict three subpopulation
characteristics is shown. Subsequently, the theoretical background of the prediction accuracy measures
estimation based on bootstrap is presented. Implementations of bootstrap algorithms in qape are
briefly introduced. Finally, the procedure of the model-based Monte Carlo simulation study is
discussed. The paper ends with a conclusion.

2 Prediction accuracy measures

We consider the problem of prediction of any given function of the population vector Y of the response
variable:

θ = fθ(Y) (1)

under the LMM. It covers linear combinations of Y (such as one future realization of the response vari-
able or population and subpopulation means and totals) but also other population and subpopulation
characteristics such quantiles and variability measures.

To assess the accuracy of the particular predictor θ̂, firstly, the prediction error is defined as
U = θ̂ − θ. Therefore, the well-known RMSE has the following formula:

RMSE(θ̂) =
√

E(θ̂ − θ)2 =
√

E(U2). (2)

The alternative to the RMSE based on the mean could be the QAPE based on quantiles. It represents
the pth quantile of the absolute prediction error |U|, see Żądło (2013) and Wolny-Dominiak and Żądło
(2020), and it is given by:

QAPEp(θ̂) = inf
{

x : P
(∣∣θ̂ − θ

∣∣ ≤ x
)
≥ p

}
= inf {x : P (|U| ≤ x) ≥ p} (3)

This measure informs that at least p100% of observed absolute prediction errors are smaller than
or equal to QAPEp(θ̂), while at least (1 − p)100% of them are higher than or equal to QAPEp(θ̂).
Quantiles reflect the relation between the magnitude of the error and the probability of its realization.
It means that using the QAPE, it is possible to make a full description of the distribution of prediction
errors instead of using the average (reflected by the RMSE). Furthermore, the MSE is the mean of
positively (usually very strongly) skewed squared prediction errors, where the mean should not be
used as a measure of the central tendency of positively skewed distributions.

The above described accuracy prediction measures RMSE and QAPE can be estimated using the
bootstrap techniques. Their estimators as well as the bootstrap distributions of the prediction errors
based on any (assumed or misspecified) model are provided in qape package, including algorithms
where the parallel computing is used.

In the qape package, the whole prediction process has its own specific procedure, which can be
presented in the following steps.

Procedure 1 The process of prediction, accuracy measures estimation and Monte Carlo simulation
analyses in qape

1. Define the characteristics of the response variable to predict,

2. provide the information on sample and population values,

3. define the LMM,

4. estimate parameters of the LMM,

5. predict the random variable θ using the chosen class of predictors,

6. estimate the prediction accuracy measures RMSE and QAPE using one of the developed boot-
strap algorithms,

7. conduct simulation analyses of properties of predictors and accuracy measures estimators under
any (also misspecified) LMM model.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=HLMdiag
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 69

3 The prediction under LMM

The main functions of the qape package provide the bootstrap estimation of prediction accuracy
measures. However, it must be preceded by the prediction process, including the choice of the LMM
and the predictor.

3.1 The model

Let Y denote the vector of response variables Y1, Y2, ..., YN . Assuming, without a loss of generality,
that only the first n realizations of Yi are observed, Y can be decomposed as Y =

[
YT

s YT
r
]T , where

Ys and Yr are of dimension n × 1 and (N − n)× 1, respectively. In all notations, the subscript "s"
is used for observed realizations of the variable of interest and "r" for the unobserved ones. Two
known matrices of auxiliary variables are also considered, denoted by X and Z, which are associated
with fixed and random effects, respectively. The X matrix is of dimension N × p, and it consists of
p regression variables. It can be decomposed like Y as follows: X =

[
XT

s XT
r
]T , where matrices Xs

and Xr, both known, are of dimension n × p and (N − n)× p, respectively. Similarly, the Z matrix of
dimension N × h can be written as follows: Z =

[
ZT

s ZT
r
]T , where matrices Zs and Zr, both known,

are of dimension n × h and (N − n)× h, respectively.

Then, let LMM(X, Z, ψ) denotes the LMM of the following form (e.g. Rao and Molina (2015), p.
98): 

Y = Xβ + Zv + e
E(e) = 0, E(v) = 0

Var(e) = R(δδδ), Var(v) = G(δδδ)
(4)

The vector of parameters in model (4) is then ψ =
[
βT δδδT

]T , where β is a vector of fixed effects of
dimension p × 1 and δδδ is a vector of variance components. The random part of the model is described
by the known matrix Z, a vector v of random effects of dimension h × 1 and a vector e of random
components of dimension N × 1, where e and v are assumed to be independent. The vector of random
components e will be decomposed similarly to the vector Y, i.e. e =

[
eT

s eT
r
]T .

In the residual bootstrap implemented in qape, there is a need to re-write the LMM model to take
account of the specific structure of data, i.e. the grouping variables taken into account in the random
part of the model. In this case, without a loss of the generality, the LMM model can be written as
follows:

Y = Xβ + Z1v1 + ... + Zlvl + ... + ZLvL + e, (5)

where v1, . . . , vl , . . . , vL are independent vectors of random effects assumed for different divisions
of the Y vector (under different grouping of the data) and Z1, . . . , Zl , . . . , ZL are known matrices of

auxiliary variables associated with random effects. Writing in (5): Z =



Z1 . . . 0 . . . 0
...

. . .
...

0 . . . Zl . . . 0
...

. . .
...

0 . . . 0 . . . ZL

 and

v =
[
vT

1 . . . vT
l . . . vT

L
]T the LMM model is obtained. Let

vl =
[
vT

l1 . . . vT
lk . . . vT

lKl

]T
(6)

be of dimension Kl Jl × 1, where vlk is of dimension Jl × 1 for all k = 1, ..., Kl and Kl is the number
of random effects at the lth level of grouping. Hence, Zl is N × Kl Jl . For example, if the random
regression coefficient model is considered with two random coefficients where both random effects
are subpopulation-specific, where D is the number of subpopulations, then L = 1, K1 = 2 and J1 = D.

3.2 Predictors

In the qape package, in the general case the predicted characteristic is given by any function of
response variables:

θ = fθ(Y). (7)

Under the LMM(X, Z, ψ) model it could be predicted using one of three predictors:

1. Empirical Best Linear Unbiased Predictor (EBLUP),

2. Empirical Best Predictor (EBP) under nested error LMM,

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 70

3. PLUG-IN predictor under the LMM.

The first predictor (EBLUP) allows to predict the linear combination of the response variables:

θ = fθ(Y) = γTY = γT
s Ys + γT

r Yr, (8)

where γ is a vector of weights. In this case, the predicted characteristic θ is basically the linear
combination of the response variable. For example, if one of the elements of γ equals 1 and the rest of
the elements equals 0, then one realization of the response variable is predicted. If all elements in γ
vector equal 1, then θ becomes the sum of all Yi’s in the whole considered population dataset. The
two-stage EBLUP corresponds to the Best Linear Unbiased Predictor (BLUP) introduced in Henderson
(1950) and Royall (1976) as:

θ̂BLUP(δδδ) = γT
s Ys + θ̂r(δδδ), (9)

where the predictor of the linear combination γT
r Yr of unobserved random variables is given by

θ̂r(δδδ) = γT
r Xr β̃(δδδ) + γT

r Zr ṽ(δδδ), where β̃(δδδ) is the Best Linear Unbiased Estimator of β and ṽ(δδδ) is
the Best Linear Unbiased Predictor of v, both presented in (4). As shown by Żądło (2017) p. 8094, if
Cov(er, es) = 0, then the predictor (9) is the BLUP of θ defined as the linear combination (8). Even
if Cov(er, es) ̸= 0, the predictor θ̂r(δδδ) is the Best Linear Unbiased Predictor of the following linear
combination of β and v: γT

r Xrβ + γT
r Zrv. The EBLUP θ̂EBLUP is obtained by replacing the vector of

variance components δδδ in BLUP (9) with the estimator δ̂δδ. If (a) the expectation of the predictor is finite,
(b) δ̂δδ is any even, translation-invariant estimator of δδδ, (c) the distributions of both random effects and
random components are symmetric around 0 (not necessarily normal), the EBLUP remains unbiased,
as proved by Kackar and Harville (1981).

To introduce the second predictor, called EBP, considered e.g. by Molina and Rao (2010), firstly,
the Best Predictor (BP) θ̂BP of characteristic θ(Y) has to be defined. It is computed by minimizing
the Mean Squared Error MSE(θ̂) = E(θ̂ − θ)2 and can be written as θ̂BP = E(θ|Ys). It means that the
conditional distribution of Yr|Ys must be known to compute its value while at least the parameters
of this distribution, denoted by ψ in (4), are unknown. The EBP θ̂EBP is obtained by replacing these
parameters with estimators ψ̂. Its value can be computed according to the Monte Carlo procedure
presented in the supplementary document for this paper.

The last predictor is the PLUG-IN predictor defined as (e.g. Chwila and Żądło (2019)):

θ̂PLUG−IN = θ(
[
YT

s ŶT
r
]T
), (10)

where Ŷr is the vector of fitted values of unobserved random variables under the assumed model (any
model specified by the statistician). Under the LMM and if the linear combination of Y is predicted,
the PLUG-IN predictor is the EBLUP, but generally, it is not optimal. However, it was shown in
simulation studies that it can have similar or even higher accuracy compared to empirical (estimated)
best predictors, where the best predictors minimize the prediction mean squared errors (cf. e.g.
Boubeta et al. (2016), Chwila and Żądło (2019), Hobza and Morales (2016)). Moreover, the PLUG-IN
predictor is less computationally demanding than the EBP.

3.3 Predictors in qape

To deal with the LMM model, the qape package uses the lmer() function from the lme4 package,
see Bates et al. (2015). Assuming (4) and based on Ys, the vector of model parameters ψ = [βT , δδδT ]T

is estimated using the Restricted Maximum Likelihood Method (REML), known to be robust on
non-normality, see e.g Jiang (1996), and ψ̂ is obtained.

In order to obtain the predictor of θ, one of the three qape functions can be applied: EBLUP(),
ebpLMMne() or plugInLMM(). Firstly, the characteristic of response variables of interest has to be defined.
It is actually obvious for EBLUP, which can be used only to predict the population/subpopulation
linear combination (e.g. the sum) by using the argument gamma equivalent to the population vector
of weights γ in (8). For other two predictors, the EBP and the PLUG-IN, the input argument called
thetaFun has to be given (see fθ(.) in (7)). Function thetaFun could define one characteristic or a
vector of characteristics, for example:

> thetaFun1 <- function(x) median(x)
> thetaFun2 <- function(x) c(sum(x), mean(x), sd(x))

Secondly, two groups of input arguments, common to all three predictors, has to be provided:

• group 1 - arguments defining the sample and the population

– YS - values of the dependent variable in the sample (Ys),

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 71

– reg - the population matrix of auxiliary variables named in fixed.part, random.part and
division,

– con - the population 0 − 1 vector with 1s for elements in the sample and 0s for elements
which are not in the sample,

• group 2 - arguments defining the model

– fixed.part - fixed-effects terms declared as in lm4::lmer function,

– random.part - random-effects terms declared as in lm4::lmer function,

– weights - the population vector of weights.

The weights make it possible to include heteroscedasticity of random components in the LMM.

In EBLUP() and plugInLMM() the random-effects terms of the LMM have to be declared as the
input argument random.part. The form of the ebpLMMne predictor, in turn, requires defining in the
ebpLMMne() function the so-called division argument instead of random.part. This input represents
the variable dividing the population dataset into subsets, which are taken into account in the nested
error linear mixed model with ’division’-specific random components (presented in supplementary
document for this paper).

In the process of prediction, it is often necessary to perform data transformation before estimat-
ing the model parameters. An example is the logarithmic scaling of the variable of interest. The
qape package offers the possibility for declaring the argument backTrans to conduct the data back-
transformation. Hence, a very flexible solution is used which allows to use any transformation of the
response variable such that the back-transformation can be defined. This argument (available in R or
defined by the user function) should be the back-transformation function of the already transformed
dependent variable used to define the model, e.g. for log-transformed YS used as the response variable:

> backTrans <- function(x) exp(x)

The main output is the value of predictor thetaP. For each class of predictors, there are two S3
methods registered for existing generic functions print and summary. The full list of output arguments
is presented in detail in the qape-manual file, cf. Wolny-Dominiak and Żądło (2023).

3.4 Radon data and the model

In order to demonstrate the functionality of the package’s main functions, in the following examples
the radon dataset available in HLMdiag package (Loy and Hofmann (2014)) is analyzed. It contains
the results of a survey measuring radon concentrations in 919 owner-occupied homes in 85 counties
of Minnesota (see Figure 1). A study was conducted in 1987-1988 by the Minnesota Department of
Health, showing that indoor radon levels are higher in Minnesota compared to typical levels in the U.S.
In the data, the response variable log.radon (denoted in (11) by log(Yic)) is the radon measurement in
logarithms of picoCurie per liter. The independent variables, on the other hand, are: uranium (x1ic) the
average county-level soil uranium content, basement (x2ic) the 0-1 variable indicating the level of the
home at which the radon measurement was taken - 0 for basement, 1 for the first floor, and county
(denoted by subscript c in (11)) is county ID.

Figure 1: The maps of characteristics of radon concentration in counties in picoCurie per liter. The
gray colour means that the value is NA (Not Available)

In all considered examples, the prediction for the county no. 26 (county == 26) is conducted and
it is assumed that the observations in this county from the first floor (basement == 1) are not available
(see Figure 2).

The radon dataset is widely discussed in the literature. In the paper Nero et al. (1994), the Authors
used an ordinary regression model to predict county geometric means of radon concentration using

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=HLMdiag


CONTRIBUTED RESEARCH ARTICLE 72

Figure 2: The distributions of radon concentration in picoCurie per liter in counties. The red line
indicates county no. 26

surficial soil radium data from the National Uranium Resource Evaluation. In turn, the paper Price
et al. (1996) focuses on the prediction of the geometric mean of radon for each county, but using a
Bayesian approach. For the radon data we use the following model

log(Yic) = β1x1ic + (β2 + v1c)x2ic + β0 + v2c + eic, (11)

where i = 1, 2, . . . , N, c = 1, 2, . . . , C, N = 919 observations, C = 85 counties, β1, β2 and β0 are
unknown fixed effects, v1c and v2c are random effects, eic are random components, v1c, and eic are
mutually independent, v2c and eic are mutually independent too, Cor(v1c, v2c) = ρ, v1c ∼ (0, σ2

v1
),

v2c ∼ (0, σ2
v2
) and eic ∼ (0, σ2

e ). As can easily be seen, the considered model is the random coefficient
model with two correlated county-specific random effects. Its syntax written using the package lme4
notation is as follows:

radon.model <- lmer(log.radon ~ basement + uranium + (basement | county), data = radon)

This and similar LMMs are considered, analyzed, and used for the considered dataset in many
publications, with a good overview presented in Gelman and Hill (2006). In Gelman and Pardoe
(2006), based on their preceding research Price et al. (1996), Lin et al. (1999), Price and Gelman (2005),
a very similar model but with additional multivariate normality assumptions is studied, verified and
chosen as fitting well to the data within a Bayesian framework. The same model as in Gelman and
Pardoe (2006) with its special cases is considered in Cantoni et al. (2021) but within the frequentist
approach. Based on 25 measures of explained variation and model selection, the Authors conclude
that the same model as considered in our paper (with additional normality assumption, however,
which is not used in all cases considered in that paper), "seems the best" (Cantoni et al., 2021, p. 10) for
the radon data. Further tests of the model are presented by Loy (2013), Loy and Hofmann (2015) and
Loy et al. (2017) (see also Cook et al. (2007) for the introduction of the methodology) showing among
others: the normality and homescedasticity of random components, the normality of the distribution
of the random slope but – what is important for our further considerations – the lack of the normality
of the random intercept. Since the problem of choosing and verifying a model for the considered
dataset is widely discussed in the literature, we will focus on the issues that are new in this case,
namely the problem of prediction and estimation of the prediction accuracy as well as the Monte Carlo
analysis of predictors’ properties.

3.5 Example 1

This example shows the prediction procedure in the package qape. In the first step, it is needed to
define all the input arguments that will then be passed to the prediction functions.

> Ypop <- radon$log.radon # the population vector of the dependent variable
> # It is assumed that observations from the first floor
> # in county no. 26 are not available:
> con <- rep(1, nrow(radon))
> con[radon$county == 26 & radon$basement == 1] <- 0
> YS <- Ypop[con == 1] # sample vector of the dependent variable
> reg <- dplyr::select(radon, -log.radon) # the population matrix of auxiliary variables

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 73

> fixed.part <- 'basement + uranium' # the fixed part of the considered model
> random.part <- '(basement|county)' # the random part of the considered model
> # The vector of weights to define
> # the predicted linear combination - the mean for county == 26:
> gamma <-
+ (1 / sum((radon$county == 26))) * ifelse((radon$county == 26), 1, 0)
> estMSE <- TRUE # to include the naive MSE estimator of the EBLUP in the output

Then the functions corresponding to each predictor can be used. First, the EBLUP prediction in
the package qape is presented. As the EBLUP is limited to the linear combination of random variables,
the predicted characteristic is simply the arithmetic mean. To be precise, it is the mean of logarithms of
measurements (instead of the mean of measurements), because the EBLUP can be used only under the
linear (linearized) models. As in the LMM the homescedasticity of random components is assumed,
the input argument weights = NULL is set up.

> myeblup <- EBLUP(YS, fixed.part, random.part, reg, con, gamma, weights = NULL, estMSE)
> # the value of the predictor of the arithmetic mean
> # of logarithms of radon measurements:
> myeblup$thetaP
[1] 1.306916
> myeblup$neMSE # the value of the naive MSE estimator
[1] 0.002292732

Hence, the predicted value of the arithmetic mean of logarithms of radon measurements equals
1.306916 log picoCurie per liter. The estimated root of prediction MSE equals

√
0.002292732 ≈ 0.048

log picoCurie per liter, but – what is important – it is the value of the naive RMSE estimator (as defined
by Rao and Molina, 2015, p. 106), which means that it ignores the decrease of accuracy due to the
estimation of model parameters.

The second part of this example shows the prediction of the arithmetic mean, geometric mean and
median of radon measurements (not logarithm of radon measurements) in county no. 26 with the use
of the PLUG-IN predictor. It requires the setting of two input arguments: thetaFun and backTrans.

> thetaFun <- function(x) {
+ c(mean(x[radon$county == 26]), psych::geometric.mean(x[radon$county == 26]),
+ median(x[radon$county == 26]))
+ }
> backTransExp <- function(x) exp(x) # back-transformation
> myplugin <- plugInLMM(YS, fixed.part, random.part, reg, con, weights = NULL,
+ backTrans = backTransExp, thetaFun)
> # values of the predictor of arithmetic mean, geometric mean
> # and median of radon measurements:
> myplugin$thetaP
[1] 3.694761 4.553745 3.900000

In this case we can conclude that the predicted values of the aritmethmic mean, geometric mean
and median in county no. 26 equal: 3.694761, 4.553745 and 3.9 picoCurie per liter, respectively. The
problem of prediction accuracy estimation will be discussed in the next sections of the paper.

The qape package allows to use the Empirical Best Predictor (EBP) (see the supplementary
document for this paper) as well. It provides predicted values of any function of the variable of
interest, as the PLUG-IN predictor. However, this requires stronger assumptions to be met. The EBP
procedure available in qape package is prepared under the assumption of the normality of the variable
of interest after any transformation. However, in the case of the considered model for logarithms of
radon measurements, the assumption is not met as we mentioned before based on the results presented
in the literature. It can also be verified using normCholTest function (available in qape package) as
follows:

> normCholTest(radon.model, shapiro.test)$p.value
[1] 2.589407e-08

Moreover, due to the fact of very time-consuming iterative procedure used to compute the EBP for the
general case, in the qape package the function ebpLMMne uses a very fast procedure working only for
nested error Linear Mixed Models (see Molina and Rao (2010)).

The prediction of any function of the random variables based on cross-sectional data has been
considered. Its special case, not presented above but widely discussed in the econometric literature,

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 74

is the prediction of one random variable, in this case a radon measurement for one non-observed
owner-occupied home. Furthermore, the qape package is also designed for prediction based on
longitudinal data for current or future periods as shown in examples for the EBLUP, plugInLMM and
ebpLMMne functions in the qape-manual file, cf. Wolny-Dominiak and Żądło (2023).

4 Bootstrap procedures

The qape package provides three main types of bootstrap algorithms: the parametric bootstrap, the
residual bootstrap and the double-bootstrap.

The parametric bootstrap procedure is implemented according to González-Manteiga et al. (2007)
and González-Manteiga et al. (2008) and could be described in the following steps:

1. based on n observations of the dependent and independent variables (Ys, Xs and Zs) estimate ψ
to obtain the vector of estimates ψ̂,

2. generate B realizations y∗(b)i of Yi, under the LMM(X, Z, ψ̂) and multivariate normality of
random effects and random components obtaining

y∗(b) =
[
y∗(b)1 ... y∗(b)i ... y∗(b)N

]T
, where i = 1, 2, ..., N and b = 1, 2, ..., B,

3. decompose the vector y∗(b) as follows
[
y∗(b)T

s y∗(b)T
r

]T
,

4. in the bth iteration (b = 1, 2, ..., B)

(a) compute the bootstrap realization θ∗(b) = θ∗(b)(y∗(b), ψ̂) of random variable θ,

(b) obtain the vector of estimates ψ̂
∗(b) using y∗(b)

s and compute the bootstrap realization of

predictor θ̂ denoted by θ̂∗(b)(y∗(b)
s , ψ̂

∗(b)
) based on LMM(X, Z, ψ̂

∗(b)
),

(c) compute bootstrap realizations of prediction error U∗ denoted by u∗ and for the bth
iteration given by:

u∗(b) = θ̂∗(b)(y∗(b)
s , ψ̂

∗(b)
)− θ∗(b)(y∗(b), ψ̂) = θ̂∗(b) − θ∗(b), (12)

5. compute the parametric bootstrap estimators of prediction accuracy measures: RMSE and QAPE
replacing prediction errors U in (2) and (3) by their bootstrap realizations.

Another possible method to estimate the prediction accuracy measures is the residual bootstrap.
In what follows, we use the notation srswr(A, m) to indicate the outcome of taking a simple random
sample with replacement of size m of rows of matrix A. If A is a vector, it simplifies to a simple random
sample with replacement of size m of elements of A.

To obtain the algorithm of the residual bootstrap, it is enough to replace step 2 of the parametric
bootstrap procedure presented above with the following procedure of the population data generation
based on (5):

• generate B population vectors of the variable of interest, denoted by y∗(b) as

y∗(b) = Xβ̂ + Z1v∗(b)
1 + ... + Zlv

∗(b)
l + ... + ZLv∗(b)

L + e∗(b), (13)

where β̂ is an estimator (e.g. REML) of β, e∗(b) is a vector of dimension N × 1 defined as

srswr(col1≤i≤n êi, N), where êi (i = 1, 2, ..., n) are residuals, v∗(b)
l (for 1, 2, ..., L) is the vector of di-

mension Kl Jl × 1 built from the columns of the matrix: srswr
([

v̂l1 . . . v̂lk . . . v̂lKl

]
, Jl

)
of dimension Jl × Kl , where v̂lk are estimates of elements of random effects vector (6).

The next 3–5 steps in this procedure are analogous to steps in the parametric bootstrap procedure.

In the above-described step, it can be seen that if more than one vector of random effect is assumed
at the lth level of grouping, then the elements are not sampled with replacement independently. In
this case, rows of the matrix formed by these vectors are sampled with replacement.

The residual bootstrap algorithm can also be performed with so-called "correction procedure".
This procedure, which can improve the properties of the residual bootstrap estimators due to the
underdispersion of the uncorrected residual bootstrap distributions, is presented in the supplementary
document for this paper.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 75

5 Bootstrap in qape

Two bootstrap procedures are implemented in separate functions: bootPar() (the parametric bootstrap)
and bootRes() (the residual bootstrap). According to the general Procedure 1, the step preceding the
bootstrap procedure in both functions is the definition of the predictor object. It must be one of the
following: EBLUP, ebpLMMne or plugInLMM. This object has to be passed to bootPar() or bootRes() as
the input parameter predictor. The other input parameters are intuitive: B - the number of bootstrap
iterations and p - order of quantiles in the estimated QAPEs.

The additional input parameter in bootRes() is a logical condition called correction, which makes
it possible to include an additional correction term for both random effects and random components,
presented in the supplementary document for this paper, to avoid the problem of underdispersion of
residual bootstrap distributions.

The main output values in both functions are basically the measures: estRMSE and estQAPE com-
puted based on (2) and (3), respectively, where prediction errors are replaced by their bootstrap
realizations. There is also the output error being the vector of bootstrap realizations of prediction
errors, which is useful e.g. in in-depth analysis of the prediction accuracy and for graphical presenta-
tion of results. To estimate these accuracy measures, we use below the residual bootstrap with the
correction procedure.

As previously stated, our package utilizes the lmer() function from the lme4 package for estimat-
ing model parameters. However, this function has been known to generate convergence warnings
in certain situations, listed for example by Bates et al. (2015) p. 25, when the estimated variances of
random effects are close to zero. Such scenarios may occur when models are estimated for smaller
or medium-sized datasets, when complex variance-covariance structures are assumed, or when the
grouping variable considered for random effects has only a few levels. Although we have not observed
such issues estimating model parameters based on the original dataset required to compute values of
the predictors in previous sections, bootstrapping or Monte Carlo simulations are more complex cases.
This is because, based on the estimates of model parameters, the values of the dependent variables are
generated B times, and then model parameters are estimated in each out of B iterations. Therefore, in
at least some iterations, dependent variable values may be randomly generated giving realizations,
where the variance of the random effect is relatively close to zero. As a result, estimates of model
parameters can be obtained; however, convergence issues implying warnings may occur. In such
cases, there are at least two possible solutions. The first option is to discard iterations with warnings,
which would imply that the dependent variable would not follow the assumed model as required,
but instead only its conditional version with relatively high values of variances of random effects. It
will imply overdispersed bootstrap distribution of random effects, which will affect the bias of the
bootstrap estimators of accuracy measures. The second option is to consider all generated realizations,
despite convergence warnings, as long as the parameters can be estimated for all iterations. We opted
for the latter solution, as argued in Bates et al. (2015) p. 25, who noted that "being able to fit a singular
model is an advantage: when the best fitting model lies on the boundary of a constrained space".

5.1 Example 2

The analyses presented in Example 1 are continued. We extend the previous results to include the
issue of estimating the prediction accuracy of the considered predictors. The use of functions for this
estimation primarily requires an object of class predictor, here "myplugin".

> class(myplugin)
[1] "plugInLMM"

The short chunk of the R code presents the residual bootstrap estimators of the RMSE (estRMSE) and
the QAPE (estQAPE) of the PLUG-IN predictors (plugin) of previously analyzed three characteristics
of radon measurements in county no. 26: the arithmetic mean, geometric mean and median. In this
and subsequent examples we make the computations for relatively high number of iterations allowing,
in our opinion, to get reliable results. These results are also used to prepare Figure 3. However, the
computations are time-consuming. The supplementary R file contains the same chunks of the code
but the number of iterations applied is smaller in order to execute the code swiftly.

> # accuracy measures estimates based on
> # the residual bootstrap with the correction:
> B <- 500 # number of bootstrap iterations
> p <- c(0.75, 0.9) # orders of Quantiles of Absolute Prediction Error
> set.seed(1056)
> residBoot <- bootRes(myplugin, B, p, correction = TRUE)

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=lme4


CONTRIBUTED RESEARCH ARTICLE 76

> # values of estimated RMSEs of the predictor of three characteristics:
> # the arithmetic mean, geometric mean and median of radon measurements, respectively:
> residBoot$estRMSE
[1] 0.1848028 0.2003681 0.2824359
> # values of estimated QAPEs
> # (of order 0.75 in the first row, and of order 0.9 in the second row)
> # of the predictor of three characteristics:
> # the arithmetic mean, geometric mean and median of radon measurements,
> # in the 1st, 2nd and 3rd column, respectively:
> residBoot$estQAPE

[,1] [,2] [,3]
75% 0.1533405 0.2135476 0.2908988
90% 0.2813886 0.3397411 0.4374534

Let us concentrate on interpretations of estimators of accuracy measures for the predictor of
the geometric mean, i.e. the second value of residBoot$estRMSE, and values in the second column
of residBoot$estQAPE. It is estimated that the average difference between predicted values of the
geometric mean and their unknown realizations equals 0.2003681 picoCurie per liter. Furthermore, it
is estimated that at least 75% of absolute prediction errors of the predictor of the geometric mean are
smaller or equal to 0.2135476 picoCurie per liter and at least 25% of absolute prediction errors of the
predictor are higher or equal to 0.2135476 picoCurie per liter. Finally, it is estimated that at least 90%
of absolute prediction errors of the predictor of the geometric mean are smaller or equal to 0.3397411
picoCurie per liter and at least 10% of absolute prediction errors of the predictor are higher or equal to
0.3397411 picoCurie per liter. The distributions of bootstrap absolute prediction errors with values of
estimated RMSEs and QAPEs for the considered three prediction problems are presented in Figure 3.

Figure 3: The histograms of bootstrap absolute prediction errors for myplugin (for PLUG-IN predictors
of the arithmetic mean, geometric mean and median) for B = 500

Since the assumption of normality is not met, the parametric bootstrap should not be used in this
case. For this reason, we do not present the results for this method below, although – but for illustrative
purposes only – they are presented in the supplementary R file. Moreover, these analyses can also
be conducted using bootParFuture() and bootResFuture() functions where parallel computing
algorithms are applied. The input arguments and the output of these functions are the same as in
bootPar() and bootRes(). Examples based on these functions are also included in the supplementary
R file.

6 Bootstrap under the misspecified model in qape

The qape package also allows to use predictors under a model different from the assumed one (e.g. a
simpler or more robust model), but estimate its accuracy under the assumed model. In this case, the
parametric and residual bootstrap procedures are implemented in bootParMis() and bootResMis()
functions. These functions allow to estimate the accuracy of two predictors under the model correctly
specified for the first of them. Of course, it is expected that the estimated accuracy of the first predictor

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 77

will be better than of the second one, but the key issue can be the difference between estimates of
accuracy measures. A small difference, even to the second predictor’s disadvantage, may be treated
by the user as an argument for using the second predictor due to its properties, such as robustness or
simplicity.

The considered functions allow to estimate the accuracy of two predictors, which belong to the
class plugInLMM, under the model used to define the first of them. The remaining arguments are the
same as in bootPar() and bootRes() functions: B - the number of bootstrap iterations, and p - orders
of QAPE estimates to be taken into account.

The output results of bootParMis() and bootResMis() include – similarly to bootPar() and
bootRes() functions – estimates of the RMSEs and QAPEs of both predictors (denoted here by:
estRMSElmm, estRMSElmmMis, estQAPElmm and estQAPElmmMis), and boostrap realizations of their pre-
diction errors (errorLMM and errorLMMmis).

6.1 Example 3

In this example, we study the same accuracy measures as in Example 2, but the aim is to compare the
predictor myplugin and other predictor defined under the misspecified LMM. First, the misspecified
model has to be defined, and a relevant predictor has to be computed.

> fixed.part.mis <- '1'
> random.part.mis <- '(1|county)'
> myplugin.mis <- plugInLMM(YS, fixed.part.mis, random.part.mis, reg, con,
+ weights = NULL, backTrans = backTransExp, thetaFun)

Having two objects: myplugin and myplugin.mis, one can proceed to a comparison by estimating
bootstrap prediction accuracy performed using the residual bootstrap with correction procedure. In
this case, we estimate the prediction accuracy of these two predictors under the model used to define
the first of them.

> set.seed(1056)
> residBootMis <- bootResMis(myplugin, myplugin.mis, B, p, correction = TRUE)
> # residual bootstrap with the correction RMSE estimators
> # of 'plugin' of: arithmetic mean, geometric mean and median
> # of radon measurements in county 26:
> residBootMis$estRMSElmm
[1] 0.1848028 0.2003681 0.2824359
> # residual bootstrap with the correction RMSE estimators
> # of 'plugin.mis' of: arithmetic mean, geometric mean and median
> # of radon measurements in county 26:
> residBootMis$estRMSElmmMis
[1] 0.1919184 0.3192304 0.2762137
> # residual bootstrap with the correction QAPE estimators of order 0.75 and 0.9
> # of 'plugin' of: arithmetic mean, geometric mean and median
> # of radon measurements in county 26:
> residBootMis$estQAPElmm

[,1] [,2] [,3]
75% 0.1533405 0.2135476 0.2908988
90% 0.2813886 0.3397411 0.4374534
> # residual bootstrap with the correction QAPE estimators of order 0.75 and 0.9
> # of 'plugin.mis' of: arithmetic mean, geometric mean and median
> # of radon measurements in county 26:
> residBootMis$estQAPElmmMis

[,1] [,2] [,3]
75% 0.2267062 0.3802836 0.3255197
90% 0.2813787 0.4970726 0.4489399

The results, presented above, were obtained for the same number of bootstrap iterations as in
Example 2 (B = 500). If we compare, under the model defined in plugin, estimated RMSEs of plugin
and plugin.mis predictors of the geometric mean given by 0.2003681 and 0.3192304 picoCurie per
liter, respectively, we can state that the estimated accuracy (measured by RMSE estimators) of the first
predictor is better comparing with the second one. If we are not interested in the average accuracy
measures but in the right tail of the distribution of prediction errors, we can use estimates of QAPE
of order 0.9 to compare the accuracy. The result for the plugin.mis of the geometric mean equals to

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 78

0.4970726 picoCurie per liter, and it is higher comparing with 0.3397411 picoCurie per liter obtained
for plugin for the same prediction problem. Hence, in this case, the accuracy comparison based both
on the RMSE and QAPE leads to the same finding.

In the previous paragraph, we have focused on the results for the case of prediction of the geometric
mean. If the comparison is made for the case of prediction of the arithmetic mean (the first column
of output results) or the median (the third column of output results), we will come to the same
conclusion regarding the estimated accuracy of plugin and plugin.mis as in the case of prediction of
the geometric mean.

Similarly to the residual bootstrap, the parametric bootstrap procedure paramBootMis available in
qape package can be performed. However, in the considered case the normality assumption is not met
(as discussed above) and the procedure is not recommended. The appropriate chunk of the R code is
presented in the supplementary R file, but it is solely intended for illustrative purposes.

7 Monte Carlo simulation analyses

In the previous section, our aim was to estimate the prediction accuracy under correctly specified
or misspecified model. In this section, we do not estimate the accuracy, but we approximate the
true prediction accuracy under the specified model in the Monte Carlo simulation study. The crucial
difference is that in this case, the model parameters used are obtained based on the whole population
dataset, not the sample. If the number of iterations is large enough, we can treat the computed values
of the measures as their true values, which are unknown in practice.

The last step of the analysis in qape package presented in Procedure 1 is the Monte Carlo (MC)
simulation analysis of:

• properties of predictors

• and properties of parametric, residual and double bootstrap estimators of accuracy measures.

The whole Monte Carlo procedure is as follows.

Procedure 2 Model-based Monte Carlo simulation analyses in qape

1. define the population vector of the dependent variable and the population matrix of auxiliary
variables,

2. provide the information on the division of the population into the sampled and non-sampled
part,

3. define θ - the characteristics of the response variable to be predicted,

4. define the predictors θ̂ and accuracy measures estimators which properties are to be assessed,

5. define the model to be used to generate realizations of the values of the dependent variable and
estimate its parameters based on population data,

6. For k=1, 2, ..., K

6.1. generate the population vector of the response variable based on the assumed model,

6.2. based on population data, compute the characteristics θ, denoted by θk,

6.3. based on sample data, estimate the parameters of the LMM,

6.4. based on sample data, compute values of predictors θ̂, denoted by θ̂k,

6.5. based on sample data, estimate the accuracy of θ̂ using bootstrap methods,

7. End For

8. compute accuracy measures of predictors using θ̂k and θk (for k = 1, 2, ..., K),

9. compute accuracy measures of estimators of prediction accuracy measures.

8 Monte Carlo analyses in qape

In order to perform a Monte Carlo (MC) analysis on the properties of predictors, it is necessary
to have access to the entire population data for both dependent and independent variables. The
function mcLMMmis() can be used with the following arguments. Firstly, the population values of
the dependent variable (after a necessary transformation) should be declared as Ypop. By using the
Ypop values, we can estimate the model parameters based on the entire population data (assuming
that they are known). This allows us to generate values of the dependent variable in the simulation

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 79

study that can mimic its distribution in the entire population, not just in the sample. This approach
ensures that our simulation study can be an accurate representation of the random process in the
entire population, resembling the real-world scenario. Secondly, three predictors: predictorLMMmis,
predictorLMM, predictorLMM2, which belong to the class plugInLMM, are to be defined. The first one
is used only to define the (possibly misspecified) model used to generate population values of the
response variables. Accuracy of predictorLMM and predictorLMM2 is assessed in the simulation study.
The next two arguments include the number of MC iterations K and orders p of QAPEs used to assess
the prediction accuracy. Finally, it should be noted that it is possible to modify covariance matrices of
random components and random effects based on the model defined in predictorLMMmis, which are
used tThiso generate values of the dependent variable. It is possible by declaring values of ratioR
and ratioG arguments, which the diagonal elements of covariance matrices of random components
and random effects, respectively, are divided by.

The output of this function covers the following statistics of both predictors computed in the
simulation study: relative biases (rBlmm and rBlmm2), relative RMSEs (rRMSElmm and rRMSElmm2) and
QAPEs (QAPElmm and QAPElmm2). Simulation-based prediction errors of both predictors (errorLMM and
errorLMM2) are also taken into account.

8.1 Example 4

In the example, an MC simulation is carried out assuming the myplugin predictor. The goal is to
approximate the true accuracy of the prediction assuming model (11). Hence, in the package qape, all
input predictor objects in the function mcLMMmis have to be defined as myplugin.

> # input arguments:
predictorLMMmis <- myplugin # to define the model
predictorLMM <- myplugin # which properties are assessed in the simulation study
predictorLMM2 <- myplugin # which properties are assessed in the sim. study

Except that no modification of covariance matrices has to be used.

# diag. elements of the covariance matrix of random components are divided by:
ratioR <- 1
# diag. elements of the covariance matrix of random effects are divided by:
ratioG <- 1

We specify the number of Monte Carlo iterations.

K <- 500 # the number of MC iterations

The analysis is conducted in the object MC.

> set.seed(1086)
> MC <- mcLMMmis(Ypop, predictorLMMmis, predictorLMM, predictorLMM2,
+ K, p, ratioR, ratioG)
> # relative bias of 'predictorLMM'
> # of the arithmetic mean, geometric mean and median in county 26 (in %):
> MC$rBlmm
[1] -1.73208393 -0.04053178 -5.22355236

Results of the relative biases are obtained. It is seen, that under the assumed model the values of the
considered predictor of the geometric mean (the second value of MC$rBlmm) are smaller than possible
realizations of the geometric mean on average by 0.04053178%. In turn, the relative RMSEs are as
follows.

> # relative RMSE of 'predictorLMM'
> # of the arithmetic mean, geometric mean and median in county 26 (in %):
> MC$rRMSElmm
[1] 3.429465 4.665810 7.146678

In the considered case, the average difference between predicted values of the geometric mean and
its possible realizations (the second value of MC$rRMSElmm) equals 4.665810%. It should be noted that
this value can be treated as the true value of the relative RMSE (if the number of iterations is large
enough), not the estimated value obtained in Examples 2 and 3.

Finally, QAPEs of orders 0.75 and 0.9 are considered.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape


CONTRIBUTED RESEARCH ARTICLE 80

> # QAPE of order 0.75 and 0.9 of 'predictorLMM'
> # of the arithmetic mean, geometric mean and median in county 26:
> MC$QAPElmm

[,1] [,2] [,3]
75% 0.1491262 0.1989504 0.2919221
90% 0.2895684 0.2959457 0.4728064

Let us interpret the results presented in the second column of MC$QAPElmm. At least 75% (90%) of
absolute prediction errors of the predictor of the geometric mean are smaller or equal to 0.1989504
(0.2959457) picoCurie per liter and at least 25% (10%) of absolute prediction errors of the predictor
are higher or equal to 0.1989504 (0.2959457) picoCurie per liter. Similar to the values of the rRMSEs
in the previous code chunk, the values can be considered to be true QAPE values, not the estimates
presented in Examples 2 and 3.

In Example 4, the accuracy of one predictor under the model used to define this predictor was
presented. A more complex version of the simulation study, where the properties of two predictors
are studied under the model defined by the third predictor, is presented in the supplementary R file.
What is more, the qape package also allows to use mcBootMis() function to conduct MC analyses of
properties of accuracy measure estimators (estimators of MSEs and QAPEs) of two predictors (which
belong to the class plugInLMM) declared as arguments. The model used in the simulation study is
declared in the first predictor, but the properties of accuracy measures estimators of both predictors are
studied. Output results of mcBootMis() covers simulation results on properties of different accuracy
measures estimators, including the relative biases and relative RMSEs of the parametric bootstrap
MSE estimators of both predictors. The same simulation-based statistics but for parametric bootstrap
QAPE estimators are also included. Other bootstrap methods, including the residual bootstrap with
and without the correction procedure, are also taken into account. The full list of output arguments of
mcBootMis() function are presented in qape-manual file, cf. Wolny-Dominiak and Żądło (2023).

9 Conclusions

The package enables R users to make predictions and assess the accuracy under linear mixed models
based on different methods in a fast and intuitive manner – not only based on the RMSE but also
based on Quantiles of Absolute Prediction Errors. It also covers functions which allow to conduct
Monte Carlo simulation analyses of properties of the methods of users interest. Its main advantage,
compared to other packages, is the considerable flexibility in terms of defining the model (as in the
lme4 package) and the predicted characteristic, but also the transformation of the response variable.

In our opinion, the package is useful for scientists, practitioners and decision-makers in all areas
of research where accurate estimates and forecasts for different types of data (including cross-sectional
and longitudinal data) and for different characteristics play the crucial role. We believe that it will be
of special interest to survey statisticians interested in the prediction for subpopulations with small or
even zero sample sizes, called small areas.

References

D. Bates, M. Mächler, B. Bolker, and S. Walker. Fitting linear mixed-effects models using lme4. Journal
of Statistical Software, 67(1):1–48, 2015. doi: 10.18637/jss.v067.i01. [p70, 75]

G. E. Battese, R. M. Harter, and W. A. Fuller. An error-components model for prediction of county crop
areas using survey and satellite data. Journal of the American Statistical Association, 83(401):28–36,
1988. [p67]

M. Boubeta, M. J. Lombardía, and D. Morales. Empirical best prediction under area-level poisson
mixed models. Test, 25(3):548–569, 2016. [p67, 70]

J. Breidenbach. JoSAE: Unit-Level and Area-Level Small Area Estimation, 2018. URL https://CRAN.R-
project.org/package=JoSAE. R package version 0.3.0. [p67]

H. Bühlmann and A. Gisler. A course in credibility theory and its applications. Springer, 2005. [p67]

E. Cantoni, N. Jacot, and P. Ghisletta. Review and comparison of measures of explained variation and
model selection in linear mixed-effects models. Econometrics and Statistics, 2021. [p72]

L. Christiaensen, P. Lanjouw, J. Luoto, and D. Stifel. Small area estimation-based prediction methods
to track poverty: validation and applications. The Journal of Economic Inequality, 10(2):267–297, 2012.
[p67]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=lme4
https://CRAN.R-project.org/package=JoSAE
https://CRAN.R-project.org/package=JoSAE


CONTRIBUTED RESEARCH ARTICLE 81

A. Chwila and T. Żądło. On properties of empirical best predictors. Communications in Statistics-
Simulation and Computation, pages 1–34, 2019. [p67, 70]

D. Cook, D. F. Swayne, and A. Buja. Interactive and dynamic graphics for data analysis: with R and GGobi,
volume 1. Springer, 2007. [p72]

R. E. Fay III and R. A. Herriot. Estimates of income for small places: an application of james-stein
procedures to census data. Journal of the American Statistical Association, 74(366a):269–277, 1979. [p67]

E. W. Frees, V. R. Young, and Y. Luo. A longitudinal data analysis interpretation of credibility models.
Insurance: Mathematics and Economics, 24(3):229–247, 1999. [p67]

A. Gelman and J. Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge
University Press, Cambridge ; New York, 1st edition edition, Dec. 2006. ISBN 978-0-521-68689-1.
[p72]

A. Gelman and I. Pardoe. Bayesian measures of explained variance and pooling in multilevel (hierar-
chical) models. Technometrics, 48(2):241–251, 2006. [p72]

W. González-Manteiga, M. J. Lombardía, I. Molina, D. Morales, and L. Santamaría. Estimation of the
mean squared error of predictors of small area linear parameters under a logistic mixed model.
Computational Statistics & Data Analysis, 51:2720–2733, 2007. [p74]

W. González-Manteiga, M. J. Lombardía, I. Molina, D. Morales, and L. Santamaría. Bootstrap mean
squared error of small-area eblup. Journal of Statistical Computation and Simulation, 78:443–462, 2008.
[p74]

C. R. Henderson. Estimation of genetic parameters. Biometrics, 6(2):186–187, 1950. [p67, 70]

T. Hobza and D. Morales. Empirical best prediction under unit-level logit mixed models. Journal of
official statistics, 32(3):661–692, 2016. [p67, 70]

J. Jiang. Reml estimation: asymptotic behavior and related topics. The Annals of Statistics, 24(1):255–286,
1996. [p70]

R. N. Kackar and D. A. Harville. Unbiasedness of two-stage estimation and prediction procedures for
mixed linear models. Communications in statistics-theory and methods, 10(13):1249–1261, 1981. [p70]

A.-K. Kreutzmann, S. Pannier, N. Rojas-Perilla, T. Schmid, M. Templ, and N. Tzavidis. The r package
emdi for estimating and mapping regionally disaggregated indicators. Journal of Statistical Software,
91, 2019. [p67]

M. D. E. Lefler, D. M. Gonzalez, and A. P. Martin. saery: Small Area Estimation for Rao and Yu Model,
2014. URL https://CRAN.R-project.org/package=saery. R package version 1.0. [p67]

C. Lin, A. Gelman, P. N. Price, and D. H. Krantz. Analysis of local decisions using hierarchical
modeling, applied to home radon measurement and remediation. Statistical Science, 14(3):305–337,
1999. [p72]

A. Loy. Diagnostics for mixed/hierarchical linear models. PhD thesis, Iowa State University, 2013. [p72]

A. Loy and H. Hofmann. HLMdiag: A suite of diagnostics for hierarchical linear models in R. Journal
of Statistical Software, 56(5):1–28, 2014. URL https://www.jstatsoft.org/article/view/v056i05.
[p71]

A. Loy and H. Hofmann. Are you normal? the problem of confounded residual structures in
hierarchical linear models. Journal of Computational and Graphical Statistics, 24(4):1191–1209, 2015.
[p72]

A. Loy, H. Hofmann, and D. Cook. Model choice and diagnostics for linear mixed-effects models using
statistics on street corners. Journal of Computational and Graphical Statistics, 26(3):478–492, 2017. [p72]

I. Molina and Y. Marhuenda. sae: An R package for small area estimation. The R Journal, 7(1):81–98,
jun 2015. URL https://journal.r-project.org/archive/2015/RJ-2015-007/RJ-2015-007.pdf.
[p67]

I. Molina and J. Rao. Small area estimation of poverty indicators. Canadian Journal of Statistics, 38(3):
369–385, 2010. [p67, 70, 73]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=saery
https://www.jstatsoft.org/article/view/v056i05
https://journal.r-project.org/archive/2015/RJ-2015-007/RJ-2015-007.pdf


CONTRIBUTED RESEARCH ARTICLE 82

A. Nero, S. Leiden, D. Nolan, P. Price, S. Rein, K. Revzan, H. Woolenberg, and A. Gadgil. Statistically
based methodologies for mapping of radon’actual’concentrations: the case of minnesota. Radiation
Protection Dosimetry, 56(1-4):215–219, 1994. [p71]

N. Permatasari and A. Ubaidillah. msae: Multivariate Fay Herriot Models for Small Area Estimation, 2021.
URL https://CRAN.R-project.org/package=msae. R package version 0.1.4. [p67]

P. N. Price and A. Gelman. Should you measure the radon concentration in your home? In Statistics: A
Guide to the Unknown, pages 149–170. Duxbury Press, Belmont, CA, 4th edition edition, Mar. 2005.
ISBN 978-0-534-37282-8. [p72]

P. N. Price, A. V. Nero, and A. Gelman. Bayesian prediction of mean indoor radon concentrations for
minnesota counties. Health Physics, 71(6):922–936, 1996. [p72]

J. N. Rao and I. Molina. Small area estimation. John Wiley & Sons, 2015. [p69, 73]

J. N. Rao and M. Yu. Small-area estimation by combining time-series and cross-sectional data. Canadian
Journal of Statistics, 22(4):511–528, 1994. [p67]

R. M. Royall. The linear least-squares prediction approach to two-stage sampling. Journal of the
American Statistical Association, 71(355):657–664, 1976. [p67, 70]

A. Wolny-Dominiak and T. Żądło. On bootstrap estimators of some prediction accuracy measures of
loss reserves in a non-life insurance company. Communications in Statistics-Simulation and Computa-
tion, pages 1–16, 2020. [p67, 68]

A. Wolny-Dominiak and T. Żądło. qape: Quantile of Absolute Prediction Errors, 2023. URL https:
//CRAN.R-project.org/package=qape. R package version 2.0. [p71, 74, 80]

T. Żądło. On parametric bootstrap and alternatives of mse. In Proceedings of 31st International Conference
Mathematical Methods in Economics, pages 1081–1086, 2013. [p67, 68]

T. Żądło. On prediction of population and subpopulation characteristics for future periods. Communi-
cations in Statistics-Simulation and Computation, 461(10):8086–8104, 2017. [p70]

Alicja Wolny–Dominiak
Department of Statistical and Mathematical Methods in Economics
University of Economics in Katowice
50, 1 Maja Street
40–287 Katowice
Poland
alicja.wolny-dominiak@uekat.pl
web.ue.katowice.pl/woali/

Tomasz Ża̧dło
Department of Statistics, Econometrics and Mathematics
University of Economics in Katowice
50, 1 Maja Street
40–287 Katowice
Poland
tomasz.zadlo@uekat.pl
web.ue.katowice.pl/zadlo/

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=msae
https://CRAN.R-project.org/package=qape
https://CRAN.R-project.org/package=qape
mailto:alicja.wolny-dominiak@uekat.pl
web.ue.katowice.pl/woali/
mailto:tomasz.zadlo@uekat.pl
web.ue.katowice.pl/zadlo/


CONTRIBUTED RESEARCH ARTICLE 83

text2sdg: An R Package to Monitor
Sustainable Development Goals from Text
by Dominik S. Meier, Rui Mata, and Dirk U. Wulff

Abstract Monitoring progress on the United Nations Sustainable Development Goals (SDGs) is
important for both academic and non-academic organizations. Existing approaches to monitoring
SDGs have focused on specific data types; namely, publications listed in proprietary research databases.
We present the text2sdg package for the R language, a user-friendly, open-source package that detects
SDGs in text data using different individual query systems, an ensemble of query systems, or custom-
made ones. The text2sdg package thereby facilitates the monitoring of SDGs for a wide array of text
sources and provides a much-needed basis for validating and improving extant methods to detect
SDGs from text.

1 Introduction

The United Nations Sustainable Development Goals (SDGs) have become an important guideline for
both governmental and non-governmental organizations to monitor and plan their contributions to
social, economic, and environmental transformations. The 17 SDGs cover large areas of application,
from ending poverty and improving health, to fostering economic growth and preserving natural
resources. As the latest UN report (UN, 2022) attests, the availability of high-quality data is still lacking
in many of these areas and progress is needed in identifying data sources that can help monitor work
on these goals. Monitoring of SDGs has typically been based on economic and health data, which are
often difficult and costly to gather (e.g., https://sdg-tracker.org/; https://www.sdgindex.org/).
One attractive alternative that has emerged from recent scientometric efforts is to detect SDGs from
text, such as academic publications. Digitized text represents an attractive resource for monitoring
SDGs across a large number of domains because it is becoming widely available in various types of
documents, such as news articles, websites, corporate reports, and social media posts. In light of this
promise, we developed text2sdg, a freely available, open-source tool to enable the SDG-labeling of
digitized text and facilitate methodological development in this area. In what follows, we first present
some background on existing labeling systems developed to identify SDGs from text, and then provide
an overview of the text2sdg package, showcase its use in a representative case study, and discuss the
promise and limitations of the approach.

2 An overview of SDG labeling systems

The text2sdg package provides a user-friendly way to use any existing or custom-made labeling system
developed to monitor the 17 SDGs in text sources. The package implements six different labeling
systems utilizing different keywords and keyword combination rules, as well as an ensemble model
based on the six systems that was trained on labeled data. In the following, we will first introduce
the six existing labeling systems, namely the Elsevier, Aurora, Auckland, SIRIS, SDGO, and SDSN
systems, before discussing how these systems are combined within the ensemble approach. See table
1 for overview of these labeling systems. We address custom-made labeling systems in a dedicated
section below.

2.1 Individual labeling systems

The most prominent SDG labeling system has been developed by Elsevier. The Elsevier labeling system
was integrated into the Times Higher Education Impact Rankings in 2019, which at the time compared
1,118 universities in their efforts to address the SDGs as measured by the frequency of SDG-related
terms in their academic output. The Elsevier queries consist of a list of expert-vetted keywords that
are combined using logical AND operators, implying that multiple keywords must be met to label a
document as containing a certain SDG. The development of the queries started with an original list of
keywords for each SDG that were iteratively fine tuned to maximize the number of identified papers
closely reflecting the different SDGs. This involved cropping or combining keywords to reduce the
number of irrelevant hits. A detailed report on the initial development of the Elsevier query system
is provided by Jayabalasingham et al. (2019). Since the first version, the Elsevier labeling system
has been iteratively improved, with the latest versions including additional information specific to
academic publications and the Scopus database, such as identifiers of journal names or research areas.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://sdg-tracker.org/
https://www.sdgindex.org/
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg


CONTRIBUTED RESEARCH ARTICLE 84

text2sdg implements the latest version without such additional identifiers to broaden the package’s
applicability beyond the Scopus database (Jayabalasingham et al., 2019).

The Aurora Universities Network’s "Societal Impact and Relevance of Research" working group
started to develop a labeling system in 2017 to increase the visibility of research into the SDGs. Aurora’s
queries were developed with the goal of identifying SDG-related academic publications included in the
Scopus database. Consequently, the syntax of Aurora queries is similar to the Scopus query language
and the Elsevier system. However, in contrast to the Elsevier system, the queries combine keywords in
a more complex fashion, recruiting Boolean (AND, OR) and proximity operators (e.g., w/3, implying
within 3 words). As a result, Aurora’s keywords are more specific, possibly leading to a smaller
number of false positives. The initial version of the Aurora system only included terms that appear in
the SDG policy text of the targets and indicators defined by the United Nations. Subsequent versions
expanded on this by including additional keywords that reflect academic terminology. text2sdg
implements version 5.0 of the Aurora labeling system (Vanderfeesten et al., 2020a). This version
represents an improvement on previous versions based on a survey study (Vanderfeesten et al., 2020b)
and modifications inspired in other efforts, namely those from Elsevier (above) and SIRIS (introduced
below).

The Auckland labeling system (Wang et al., 2023) was developed by the University of Auckland to
better understand how their research output contributes to the SDGs. To construct the queries, they
used text-mining techniques to extract global and local SDG keywords from publication metadata.
These keywords were then sorted according to the number of publications that include the terms and
according to the keywords’ term frequency–inverse document frequency. The top-ranked keywords
were then manually reviewed to only retain keywords that are relevant. The selected keywords were
then combined with those of SDSN and Elsevier as well as UN SDG Indicators to form the final SDG
keyword list. These queries formed the basis for the Auckland queries, which make use of Boolean
(AND, OR) operators and wildcards (e.g., "*").

The SIRIS labeling system (Duran-Silva et al., 2019) was created by SIRIS Academic as part of the
"science4sdgs" project to better understand how science, innovation efforts, and technology related to
the SDGs. The SIRIS queries were constructed in a five-step procedure. First, an initial list of keywords
was extracted from the United Nations official list of goals, targets and indicators. Second, the list was
manually enriched on a basis of a review of SDG relevant literature. Third, a word2vec model that was
trained on a text corpus created from the enriched keyword list was used to identify keywords that
were semantically related to the initial list. Fourth, using the DBpedia API, keywords were added that,
according to the Wikipedia corpus, had a categorical relationship with the initial list. Fifth, and finally,
the keyword list was manually revised. The queries of the SIRIS labeling system primarily consist of
individual keywords that occasionally are combined with a logical AND. text2sdg implements the
only currently available version of the SIRIS labeling system (Duran-Silva et al., 2019) .

The Open Source SDG (OSDG) project combines data from multiple sources to detect SDGs in text.
Instead of developing yet another query system, OSDG’s aim was to re-use and integrate existing
knowledge by combining multiple SDG "ontologies" (i.e., query systems). OSDG has also made use
of Microsoft Academic Graph to improve their results but because our query-based system cannot
implement this procedure, we adopt the simpler ontology initially proposed by OSDG, which we refer
to as "SDGO" in the package. The labeling system was based on central keywords in the SDG United
Nations description (e.g."sanitation" was classified into "SDG6") and then manually expanded with
additional relevant keywords identified from a corpus of already labeled documents. The resulting
keyword list only makes use of the OR operator. text2sdg implements the only currently available
version of these queries (Bautista, 2019).

Finally, the Sustainable Development Solutions Network (SDSN, Sustainable Development Solu-
tions Network (SDSN), 2021) labeling system contains SDG-specific keywords compiled in a collab-
orative effort by several universities from the Sustainable Development Solutions Network (SDSN)
Australia, New Zealand & Pacific Network. This query system was developed to detect SDGs in
large sets of university-related text data, such as course listings or research publications. The authors
used United Nations documents, Google searches, and personal communications as sources for the
keywords. This query system combines keywords with OR operators and does not make use of AND
operators.

All in all, as can be seen in Table 1, the latter systems differ from the former four in the complexity
of their queries: the Elsevier, Aurora, Auckland, and SIRIS systems make use of keyword-combination
queries and other criteria, such as proximity operators, whereas SDGO and SDSN only make use of
keywords.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
http://science4sdgs.sirisacademic.com/
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg


CONTRIBUTED RESEARCH ARTICLE 85

Labeling
system

SDGs covered Query operators Unique keywords per
SDG (mean & SD)

Example query (SDG-01)

Elsevier SDG 1 - SDG 16 OR, AND, wildcards 74.9 (21.7) "extreme poverty"
Aurora SDG 1 - SDG 17 OR, AND, wildcards,

proximity search
89.6 (31.6) ("poverty") W/3 ("chronic*" OR

"extreme")
Auckland SDG 1 - SDG 16 OR, AND, wildcards 183 (46.5) "poverty eradication"
SIRIS SDG 1 - SDG 16 OR, AND 262 (148) ("anti-poverty") AND ("poverty"

OR "vulnerability")
SDGO SDG 1 - SDG 17 OR 245 (236) "absolute poverty"
SDSN SDG 1 - SDG 17 OR 62.6 (16.8) "End poverty"

Table 1: Overview of the labeling systems implemented in text2sdg. Legend: OR—keywords are
combined using logical ORs, implying that only the keywords must be matched to assign an SDG
label; AND—keywords are combined using logical ANDs, implying that multiple keywords must be
matched to assign an SDG label; wildcards—keywords are matched considering different keyword
parts; proximity search—keywords must co-occur within a certain word window to assign an SDG
label.

2.2 The ensemble labeling system

In another publication (Wulff et al., 2023), we evaluated the accuracy of the six labeling systems
implemented by text2sdg and a rival approach (i.e., OSDG Pukelis et al., 2020) using expert-labeled
data sets. These analyses lead to three critical observations. First, the accuracy of SDG classifications
was reasonable for all systems, but varied considerably as a function of the data set. This is because
the systems differ in how liberal or conservative they assign SDGs to texts due to differences in the
types of query operators they employ. Specifically, employing only OR-operators, SDGO and SDSN
were considerably more liberal, whereas the other four systems employing additional operators were
more conservative. In other words, the systems implement different trade-offs between sensitivity (i.e.,
true-positive rate) and specificity (i.e., true-negative rate). As a result, SDGO and SDSN outperformed
the other systems for SDG-rich documents and vice versa. In addition to these differences in accuracy,
we observed critical biases in SDG profiles, with the systems overemphasizing different sets of SDGs,
and strong dependencies between SDG predictions and document length. To address these limitations,
we developed an ensemble model approach that uses the the predictions of the six systems and
document length as inputs to a random forest model. After training with expert-labeled and synthetic
data, the ensemble model showed better out-of-sample accuracy, lower false alarm rates, and smaller
biases than any individual labeling system Wulff et al. (2023). As a result, this ensemble model is also
made available through text2sdg using a dedicated function.

In the following sections, we provide an overview over the text2sdg R package and demonstrate
how its functions can be used to run to detect and analyze SDGs in text.

3 The text2sdg package

3.1 Motivation for text2sdg

Despite the effort put into developing various labeling systems and their great promise in addressing
the SDG-related data scarcity, extant implementations of these approaches are not without shortcom-
ings. First, the labeling systems were mostly developed to be used within academic citation databases
(e.g., Scopus) and are not easily applied to other text sources. Second, existing implementations
lack transparent ways to communicate which features are matched to which documents or how they
compare between a choice of labeling systems. We alleviate these shortcomings by providing an
open-source solution, text2sdg, that lets users detect SDGs in any kind of text using any of the above-
mentioned systems, and ensemble of systems, or even customized, user-made labeling systems. The
package provides a common framework for implementing the different extant or novel approaches
and makes it easy to quantitatively compare and visualize their results.

3.2 Overview of text2sdg package

At the heart of the text2sdg package are the Lucene-style queries that are used to detect SDGs in
text and the ensemble models that build on these queries. The queries map text features (i.e., words
or a combination of words) to SDGs. For example, a text that contains the words "fisheries" and

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg


CONTRIBUTED RESEARCH ARTICLE 86

Function Name Description

detect_sdg identifies SDGs in text using an ensemble model that draws on the six labeling systems
(Elsevier, Aurora, Auckland, SIRIS, SDGO, SDSN).

detect_sdg_systems identifies SDGs in text by using labeling systems (Elsevier, Aurora, Auckland, SIRIS,
SDGO, SDSN).

detect_any similar to detect_sdg but identifies SDGs in text using user-defined queries.
crosstab_sdg crosstab_sdg takes the output of detect_sdg, detect_sdg_systems, or detect_any as input

and determines correlations between either query systems or SDGs.
plot_sdg takes the output of detect_sdg, detect_sdg_systems, or detect_any as input and pro-

duces adjustable barplots illustrating the hit frequencies produced by the different query
systems.

Table 2: Overview of package functions

"marine" would be mapped to SDG 14 (i.e., conserve and sustainably use the oceans, seas and marine
resources for sustainable development) by the Aurora system. To enable the use of such queries in R,
the text2sdg package recruits the corpustools package (Welbers and van Atteveldt, 2021). corpustools
has been built to implement complex search queries and execute them efficiently for large amounts
of text. Based on this, text2sdg provides several functions that implement extant labeling systems,
facilitate the specification of new labeling systems, and analyze and visualize search results. Table 2
gives an overview of the text2sdg core functions.

The main functions of text2sdg are detect_sdg and detect_sdg_systems, which implement the
ensemble model approach (Wulff et al., 2023) and the implemented labeling systems, respectively, to
identify SDGs in texts. The texts are provided to these functions via the text argument as either a
character vector or an object of class "tCorpus" from corpustools. All other arguments are optional.
By default, the detect_sdg_systems function runs only the Aurora, Auckland, Elsevier, and SIRIS
systems, but the set systems can be extended to all six systems using the system argument. The
functions further allow customization of the set of SDGs using the sdgs argument and return a tibble
with one row per hit that has the following columns (and types) (italic column names only present in
the tibble returned by detect_sdg_systems):

• document (factor) - index of element in the character vector or corpus supply for text

• sdg (character) - labels indicating the matched SDGs

• system (character) - the query or ensemble system that produced the match

• query_id (integer) - identifier of query in the query system

• features (character) - words in the document that were matched by the query

• hit (numeric) - running index of matches for each system

Further details on the detect_sdg and detect_sdg_systems functions and their output will be
presented in the next section.

The detect_any function implements the same functionality as detect_sdg_systems, but permits
the user to specify customized or self-defined queries. These queries are specified via the queries
argument and must follow the syntax of the corpustools package (see Practical Considerations section
for more details).

To support the interpretation of SDG labels generated by detect_sdg, detect_sdg_systems and
detect_any, text2sdg further provides the plot_sdg and crosstab_sdg functions. The plot_sdg
function visualizes the distribution of SDG labels identified in documents by means of a customizable
barplot showing SDG frequencies for the different labeling systems. The crosstab_sdg function helps
reveal patterns of label co-occurrences either across SDGs or systems, which can be controlled using
the compare argument.

4 Demonstrating the functionality of text2sdg

To showcase the functionalities of the text2sdg package we analyze the publicly available p3 dataset
of the Swiss National Science Foundation (SNSF) that lists research projects funded by the SNSF. In
addition to demonstrating text2sdg, the case study will permit us to discuss practical issues concerning
the labeling of SDGs, including relevant differences between labeling systems. The data to reproduce
the analyses presented below can be found at https://doi.org/10.5281/zenodo.11060662 (Meier,
2024).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=corpustools
https://CRAN.R-project.org/package=corpustools
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=corpustools
https://CRAN.R-project.org/package=corpustools
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://doi.org/10.5281/zenodo.11060662


CONTRIBUTED RESEARCH ARTICLE 87

4.1 Preparing the SNSF projects data

The SNSF projects data was downloaded from https://data.snf.ch/datasets. As of March 2022,
the p3 database included information on 81,237 research projects. From the data, we removed 54,288
projects where the abstract was absent or not written in English. This left us with a total of 26,949
projects. To ready this data for analysis, we read it using the readr function of the readr package
(Wickham et al., 2021), producing a tibble named projects. A reduced version of this tibble is
included in the text2sdg package and available through the projects object after text2sdg has been
loaded.

4.2 Using detect_sdg and detect_sdg_systems to detect SDGs

To label the abstracts in projects using detect_sdg, we only have to supply the character vector that
includes the abstracts to the text argument of the detect_sdg function. In addition the example below
makes use of the synthetic argument to implement the "equal" (default) and "triple" version of
the ensemble model. As a result, two versions of the ensemble model are run that were trained on
an equal amount of synthetic (non-SDG related) and expert-labeled data and three times the amount
of synthetic than labeled data, respectively. A larger amount of synthetic data in training lowers the
false-positive rate, but also compromises accuracy (cf. Wulff et al., 2023, for more details).

# detect SDGs
> sdgs_ensemble <- detect_sdg(text = projects,
+ synthetic = c("equal","triple"))
Running systems
Obtaining text lengths
Building features
Running ensemble

> head(sdgs_ensemble)
# A tibble: 6 × 4
document sdg system hit
<fct> <chr> <chr> <int>

1 22 SDG-06 Ensemble equal 2539
2 39 SDG-03 Ensemble equal 498
3 39 SDG-07 Ensemble equal 2953
4 39 SDG-08 Ensemble equal 4080
5 41 SDG-13 Ensemble equal 5690
6 41 SDG-13 Ensemble triple 3684

The first two columns of the tibble returned by detect_sdg show the document and SDGs
identified by the model. Further columns show the system producing the hit and a running hit index
for a given system. As the predictions of the six individual labeling systems are used as input for the
ensemble models, they will be computed in the background. The user can access these predictions by
calling attr(sdgs_ensemble,"system_hits"). Alternatively, the user can use the detect_sdg_systems
function, which provides additional options for customization.

As with the detect_sdg function, the detect_sdg_systems function requires a character vector as
input to the text argument. In addition, the example below specifies two optional arguments. First, to
indicate that all six systems should be run, rather than the default of only Aurora, Auckland, Elsevier,
and SIRIS, we supply a character vector of all six systems’ names to the systems argument. Second, we
explicitly set the output argument to “features”, which in contrast to output = “documents” delivers
more detailed information about which keywords that triggered the SDG labels.

# detect SDGs
> sdgs <- detect_sdg_systems(text = projects,
+ systems = c("Aurora", "Elsevier", "Auckland", "SIRIS", "SDSN", "SDGO"),
+ output = "features")
Running Aurora
Running Elsevier
Running Auckland
Running SIRIS
Running SDSN
Running SDGO

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://data.snf.ch/datasets
https://CRAN.R-project.org/package=readr
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg


CONTRIBUTED RESEARCH ARTICLE 88

> head(sdgs)
# A tibble: 6 × 6
document sdg system query_id features hit
<fct> <chr> <chr> <dbl> <chr> <int>

1 1 SDG-01 SDSN 392 sustainable 4
2 1 SDG-02 SDSN 376 maize 3
3 1 SDG-02 SDSN 629 sustainable 8
4 1 SDG-08 SDGO 3968 work 1
5 1 SDG-08 SDSN 812 work 11
6 1 SDG-09 SDSN 483 research 6

The above tibble produced by text2sdg contains for every combination of document, SDG, system,
and query (columns 1 to 4), the query feature (keyword) that triggered the label (column 5), and a
hit index for a given system (column 6). The first row of the tibble thus shows that the query 392
within SDSN labeled document number 1 with SDG-01, because the document included the feature
sustainable, and that this was the fourth hit produced by the SDSN system. It is important to note
that, in other cases, multiple features of a query might be matched, which will result in multiple rows
per combination of document, SDG, system, and query. This can be avoided by setting the output
argument to “documents”, in which case all features’ hits of such combinations will be grouped into a
single row.

4.3 Analyzing the SDG labels

To visualize the distribution of SDG labels across SDGs and systems in the sdgs tibble, we apply
the plot_sdg function. By default, plot_sdg shows a barplot of the number of documents labeled by
each of the SDGs, with the frequencies associated with the different systems stacked on top of each
other. The function counts a maximum of one hit per document-system-SDG combination. Duplicate
combinations resulting from hits by multiple queries or keywords in queries will be suppressed by
default and the function returns a message reporting the number of cases affected.

> plot_sdg(sdgs)
139048 duplicate hits removed. Set remove_duplicates = FALSE to retain duplicates.

0

10000

20000

30000

SDG−0
1

SDG−0
2

SDG−0
3

SDG−0
4

SDG−0
5

SDG−0
6

SDG−0
7

SDG−0
8

SDG−0
9

SDG−1
0

SDG−1
1

SDG−1
2

SDG−1
3

SDG−1
4

SDG−1
5

SDG−1
6

SDG−1
7

F
re

qu
en

cy

Query
system

Auckland

Aurora

Elsevier

SDGO

SDSN

SIRIS

Figure 1: Default plot of distribution of detected SDGs.

The plot produced by plot_sdg (Figure 1) shows considerable differences in the frequency of
different SDGs, with SDGs 3 (“Good Health and Well-Being”) and 9 (“Industry, Innovation And
Infrastructure”) being most frequent and SDGs 5 (“Gender Equality”) and 14 (“Life Below Water”)
being least frequent. Furthermore, there are substantial differences in the number of labels produced
by different systems, with SDSN and SDGO having produced many more labels than the other three
systems.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=text2sdg


CONTRIBUTED RESEARCH ARTICLE 89

To customize the visualization of SDG frequencies, the plot_sdg function provides several ad-
ditional arguments. For instance, by setting sdg_titles to TRUE, the SDG titles will be added to the
annotation of the plot. Other arguments are normalize to show probabilities instead of frequencies,
color to change the filling of bars, and remove_duplicates to eliminate duplicate document-system-
SDG combinations. Furthermore, as plot_sdg is built on ggplot2 (Wickham, 2016), the function can
easily be extended by functions from the ggplot2 universe. To illustrate these points, the code below
generates a plot (Figure 2) that includes SDG titles and separates the results of the different SDG
systems using facets.

> plot_sdg(sdgs,
+ sdg_titles = TRUE) +
+ ggplot2::facet_wrap(~system, ncol= 1, scales = "free_y")
139048 duplicate hits removed. Set remove_duplicates = FALSE to retain duplicates.

SIRIS

SDSN

SDGO

Elsevier

Aurora

Auckland

No 
Pov

er
ty

Zer
o 

Hun
ge

r

Goo
d 

Hea
lth

 A
nd

 W
ell

−B
ein

g

Qua
lity

 E
du

ca
tio

n

Gen
de

r E
qu

ali
ty

Clea
n 

W
at

er
 A

nd
 S

an
ita

tio
n

Affo
rd

ab
le 

And
 C

lea
n 

Ene
rg

y

Dec
en

t W
or

k A
nd

 E
co

no
m

ic 
Gro

wth

In
du

str
y, 

In
no

va
tio

n 
And

 In
fra

str
uc

tu
re

Red
uc

e 
In

eq
ua

liti
es

Sus
ta

ina
ble

 C
itie

s A
nd

 C
om

m
un

itie
s

Res
po

ns
ibl

e 
Con

su
m

pt
ion

 A
nd

 P
ro

du
cti

on

Clim
at

e 
Acti

on

Lif
e 

Belo
w W

at
er

Lif
e 

On 
La

nd

Pea
ce

, J
us

tic
e 

And
 S

tro
ng

 In
sti

tu
tio

ns

Par
tn

er
sh

ips
 F

or
 T

he
 G

oa
ls

0
2000
4000
6000

0

500

1000

1500

0

2000

4000

0

5000

10000

15000

0
5000

10000
15000

0

500

1000

F
re

qu
en

cy

Query
system

Auckland

Aurora

Elsevier

SDGO

SDSN

SIRIS

Figure 2: Distribution of detected SDGs facetted by system.

The separation of systems better illustrates the results of systems that produce fewer hits and
helps compare the results across systems. This reveals, for instance, that in the Elsevier system SDG 3
(“Good Health and Well-Being”) was most prominent, whereas in the Aurora system this was SDG 13
("Climate Action”). These results highlight that the different labeling systems do not necessarily agree
concerning the assignment of SDGs to documents.

To quantify the commonalities and differences between labeling systems, text2sdg provides the
crosstab_sdg function. The function evaluates the level of alignment across either systems (the
default) or SDGs by calculating ϕ coefficients between the vectors of labels. We supply the hits
argument of the function with the sdgs tibble containing the labels produced by detect_sdg. Note
that the function only considers distinct combinations of documents, systems and SDGs, irrespective
of whether the detect_sdg function was run using output = “documents” or output = "features”.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=text2sdg


CONTRIBUTED RESEARCH ARTICLE 90

> crosstab_sdg(sdgs)
Auckland Aurora Elsevier SDGO SDSN SIRIS

Auckland 1.0000000 0.3345247 0.6676524 0.3314806 0.2896650 0.4115387
Aurora 0.3345247 1.0000000 0.3256877 0.1614586 0.1569791 0.3703457
Elsevier 0.6676524 0.3256877 1.0000000 0.2642918 0.2192051 0.3538272
SDGO 0.3314806 0.1614586 0.2642918 1.0000000 0.3722997 0.2244774
SDSN 0.2896650 0.1569791 0.2192051 0.3722997 1.0000000 0.2330684
SIRIS 0.4115387 0.3703457 0.3538272 0.2244774 0.2330684 1.0000000

The output of crosstab_sdg() for the SNSF projects reveals two noteworthy insights. First, the
correspondence between the labels of different systems is rather small, as indicated by ϕ coefficients
that are mostly smaller than 0.4. Second, there are two groups of systems that are more similar to one
another. On the one hand, Elsevier, Auckland, Aurora, and SIRIS, and, on the other hand, SDGO and
SDSN. These groups correspond to differences in query operators, with the former four including
AND operators in their queries, whereas the latter two do not. crosstab_sdg() can also be called with
the output from the ensemble models.

> crosstab_sdg(sdgs_ensemble)
Ensemble equal Ensemble triple

Ensemble equal 1.0000000 0.8127837
Ensemble triple 0.8127837 1.0000000

It can further be informative to analyze the correlations between SDGs. To do this, we set the
compare argument in crosstab_sdg() to "sdgs". The output below shows the result for the first
six SDGs by setting sdgs = 1:6. It can be seen that certain pairs of SDGs—in particular, SDG-01
and SDG-02—co-occur more frequently. These results may provide insights into the co-occurrence
structure of SDGs in the data at hand. However, these results can also highlight the importance of
considering similarities between queries targeting different SDGs.

> crosstab_sdg(sdgs, compare = "sdgs", sdgs = 1:6)
SDG-01 SDG-02 SDG-03 SDG-04 SDG-05 SDG-06

SDG-01 1.00000000 0.47455139 0.04811778 0.07928418 0.14252372 0.16622948
SDG-02 0.47455139 1.00000000 0.10611662 0.06751253 0.09338952 0.17504027
SDG-03 0.04811778 0.10611662 1.00000000 0.18092227 0.10936179 0.04882173
SDG-04 0.07928418 0.06751253 0.18092227 1.00000000 0.11791600 0.07887042
SDG-05 0.14252372 0.09338952 0.10936179 0.11791600 1.00000000 0.04603253
SDG-06 0.16622948 0.17504027 0.04882173 0.07887042 0.04603253 1.00000000

5 Practical considerations

5.1 Specifying user-defined labeling systems

The query systems implemented in text2sdg represent important efforts to systematize the monitoring
of SDGs from text. Nevertheless, these efforts are still relatively young and validations of the systems
are largely missing, creating a need for continued development. text2sdg supports the further
development of new SDG labeling systems by providing the detect_any function. In this section, we
provide additional detail on using this feature of text2sdg.

The detect_any function also uses corpustools as the back-end. This implies that new queries
must be specified to match the syntax of corpustools. The syntax supports standard Boolean operators
(AND, OR, and NOT), wildcard operators, and proximity search. Boolean operators control how
different keywords are combined in a query. For instance, the query "marine OR fisheries" matches text
that contains either of these two words whereas the query "marine AND fisheries" only matches text
that contains both words. Corpustools also allows to specify common query wildcard operators 1. The
wildcard operators ? and ∗ allow the specification of variable word parts. For instance, the question
mark operator ? matches one unknown character or no character at all, e.g., "?ish" would match "fish",
"dish", or "ish". The asterisk operator ∗, by contrast, matches any number of unknown characters, e.g.,
"*ish" would match "fish" but also "Swedish". Both wildcards can be used at the start, within or end

1Note that the meaning of these wildcards differs from regex wildcards.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=corpustools
https://CRAN.R-project.org/package=corpustools


CONTRIBUTED RESEARCH ARTICLE 91

of a term. Proximity search extends a Boolean AND, by requiring that two keywords have no more
than defined distances to one another. For instance, "climate change"∼3 specifies matches in which
"climate" and "change" both occur no more than three words apart. A complete description of the
corpustools syntax is presented in the corpustools vignette and documentation.

To supply a user-defined labeling system to detect_any, the queries must be placed in a data.frame
or tibble that additionally includes a column specifying the labeling system’s name and a column of
SDG labels corresponding to the queries.

• system (character) - name of the labeling systems.

• queries (character) - user-defined queries.

• sdg (integer) - SDGs labels assigned by queries.

The example below illustrates the application of a user-defined labeling system using detect_any.
First, a tibble is defined that includes three rows, one for each of three different queries stored in
the query column. The system is called "my_example_system" in the system column and each of the
queries is assigned SDG-14 in the sdg column. Note that specification of the labeling system need
not be made in R, but can easily be outsourced to a spreadsheet that is then processed into a tibble.
Second, the system is supplied to the system argument of the detect_any function, along with the
texts (here, the SNSF abstracts). The output is analogous to the output of the detect_sdg_systems
function (for brevity, we only show the first three lines of the output).

> # definition of query set
> my_example_system <- tibble::tibble(system = "my_example_system",
+ query = c("marine AND fisheries",
+ "('marine fisheries') AND sea",
+ "?ish"),
+ sdg = c(14,14,14))
> detect_any(text = projects,
+ system = my_example_system)
# A tibble: 591 × 6

document sdg system query_id features hit
<fct> <chr> <chr> <dbl> <chr> <int>

1 6 SDG-14 my_example_system 3 wish 122
2 134 SDG-14 my_example_system 3 wish 18
3 241 SDG-14 my_example_system 3 fish 59

5.2 Applying text2sdg to non-English data

The queries of the labeling systems implemented by text2sdg are in English, implying that texts in
other languages must first be translated to English. We assessed feasibility and whether translation
affects the reliability of SDG labels by making use of back translation with one language we are
most familiar with (German). To this end, we first translated 1,500 randomly selected SNSF project
abstracts from English to German and from German to English and then compared the labels of the
original English and back-translated English abstracts. We carried out the translation using the DeepL
translation engine (www.deepl.com/translator).

Table 3 shows the results of this analysis. Overall, the correlations as measured by the phi-
coefficient are very high. The systems showed correlations above or equal to 0.88, with Elsevier and
Auckland showing the highest value of 0.93. Considering that our analysis involves not only one, but
two translation steps—from German to English and back—these results suggest that text2sdg can be
applied to non-English text, such as German, with very high accuracy. One should note, however, that
the quality of translation may vary across languages and translation engines so additional work is
needed to compare performance across different languages.

Aurora Elsevier Auckland SIRIS SDSN SDGO

0.91 0.93 0.93 0.88 0.91 0.91

Table 3: phi-coefficient between the labels for the original English text and the labels for the back-
translated (English-German-English) English text

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=corpustools
https://CRAN.R-project.org/package=corpustools
https://CRAN.R-project.org/package=text2sdg
https://www.deepl.com/translator
https://CRAN.R-project.org/package=text2sdg


CONTRIBUTED RESEARCH ARTICLE 92

5.3 Estimating the runtime of text2sdg

The analysis of text data can be computationally intense. To provide some guidance on the expected
runtime of text2sdg for data with different numbers of documents and different document lengths, we
carried out several experiments. For this purpose, we first simulated documents by concatenating
10, 100, 1,000, or 10,000 words drawn randomly according to word frequencies in Wikipedia and
combined 1, 10, 100, or 1,000 thus-generated documents into simulated data sets. Then we evaluated
the runtime of text2sdg separately by system for the simulated data sets.

Figure 3 shows the average runtime in seconds across 7,000 repetitions of each combination of
document length and number of documents for each of the labeling systems. The results highlight
noteworthy points. First, runtime is primarily a function of the number of words, irrespective of how
words are distributed across documents. Second, the runtime per words decreases as the number of
words increases, which is due to a constant overhead associated with optimizing the labeling systems’
queries. Third, there are considerable differences in the runtime between systems, which is, in part,
due to the functions’ overhead and, in part, due to differences in number and complexity of queries.
The fastest system is Elsevier, processing 10 million words in roughly one minute; the slowest system
is SIRIS, processing 10 million words in about 40 minutes. Overall, these experiments highlight that
text2sdg can efficiently process large amounts of text, but also that some care should be exercised
when dealing with extremely large or many texts. In such cases, it may be advisable to rely on more
efficient labeling systems, such as Elsevier or SDSN.

4.6

5.5

6.7

12.7

5.5

6.7

12.5

25.7

6.7

12.6

25.6

79.8

12.8

26

80.6

390.9

9

14.1

14.5

15.8

14.1

14.5

15.8

23.4

14.6

15.9

24.2

82.4

16.1

29.9

209.3

2367.4

0.8

1.9

2.2

3.2

1.8

2.2

3.1

4.7

2.2

3.1

4.6

12

3.1

4.6

11.5

62.8

11.8

11.9

12.2

13.7

11.9

12.1

13.8

18.9

12.2

13.8

19

37.3

13.8

19

36.6

160.9

1.9

2.5

3.2

4.3

2.5

3.3

4.2

7.2

3.2

4.2

7.1

17.3

4.1

7

17.4

96.6

0.9

2.2

2.5

3.5

2.2

2.5

3.5

5.8

2.4

3.5

5.7

15

3.5

5.7

13.9

75.6

SIRIS OSDG SDSN

Aurora Elsevier Auckland

10 100 1000 10000 10 100 1000 10000 10 100 1000 10000

1

10

100

1000

1

10

100

1000

Document length

N
um

be
r 

of
 D

oc
um

en
ts

Median Runtime (log seconds)

0 2 4 6

Figure 3: Median runtime as a function of number of documents and document length using 6 different
query systems. Each cell reflects the average runtime of 7,000 runs with numbers reflecting the median
runtime in seconds and color reflecting the logarithm of the median runtime in seconds.

6 Other approaches to detecting SDGs in text

There are a number of other approaches to detecting SDGs in text. First, there are approaches outside
the R ecosystem. One such tool is the European Union’s SDG Mapper (https://knowsdgs.jrc.ec.
europa.eu/sdgmapper) that produces an analysis of SDGs per document using an online interface in
which registered users can upload single documents. Another prominent example is the OSDG tool
developed by the SDG Ai Lab of the United Nations in collaboration with private partners. It can

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://knowsdgs.jrc.ec.europa.eu/sdgmapper
https://knowsdgs.jrc.ec.europa.eu/sdgmapper


CONTRIBUTED RESEARCH ARTICLE 93

detect SDGs in text that is provided through the OSDG website (https://osdg.ai/) or, if granted
access, through an API. The OSDG tool builds on the SDG Ontology (SDGO) that is also implemented
in text2sdg. OSDG additionally leverages a machine learning tool that was trained on expert-labeled
data to make the final predictions (Pukelis et al., 2022). One advantage of OSDG relative to text2sdg is
that it allows to detect SDGs in 15 different languages. This is done by using translation of the input
text into English before passing it through the OSDG workflow. While this is convenient to the user,
the same outcome can be achieved with our package by making use of translation models through, for
example the deeplr R package. As our proof-of-concept above has shown, text2sdg can be used with
non-English text (e.g., German) with very high accuracy by using such an approach.

Second, there are currently, to our knowledge, two other R packages aimed at providing methods
for the automated detection of SDGs in text. The SDGdetector package is based on a custom query
system that was generated by pooling several existing query systems and manual adaptions. The
resulting labeling system permits finer-grained predictions on the level of SDG targets 2. However,
the method is computationally taxing and limited to texts that are shorter than 750 characters or
approximately 150 words. The SDGmapR package builds on publicly available SDG keywords that
are assigned weights that indicate the degree to which a keyword reflects a given SDG. The package
computes SDG weights for each text by adding up the weights of the keywords that were found in the
text. The larger this weight, the larger should be the likelihood that the text is related to a specified
SDG. The advantage of this approach is that it permits customization of the decision boundary (i.e.,
the weight needed to count a text as SDG related). However, the package does not give the user a
binary decision regarding whether a text relates to a given SDG. None of the two packages offers an
ensemble model that can be used to categorize the presence of SDGs as is the case with text2sdg.

7 Discussion

The text2sdg package offers an open and easily accessible way of detecting SDGs in text using both
individual query systems, a state-of-the-art ensemble model that combines queries from extant systems
(Wulff et al., 2023), as well as custom-made queries.

While our package implements several query-based methods to detect SDGs in text as well
as a state-of-the-art ensemble model, the field of detecting SDGs in text is rapidly evolving. Our
aim is to continuously update text2sdg as new open source methods of detecting SDGs in text are
released. Bundling many systems in a coherent API is not only convenient for users, but also helps
catalyze development of new and hopefully more accurate methods by making it easy to compare
the performance of the different systems. We deliberately incorporated functions that allow users to
implement and test their own query systems to facilitate this process. We also encourage others to
contribute to text2sdg by adding new systems or by expanding the existing functionalities to analyse
the output of the systems.

Indeed, although the systems implemented by text2sdg have been shown to achieve high accuracy
(Wulff et al., 2023), it is important to stress that these systems must be further developed to increase
their accuracy for a greater number of document types. Two approaches can help in achieving this.
First, unsupervised methods such as topic models (Grün and Hornik, 2011) or semantic network
analysis (Siew et al., 2019) can help in identifying novel linguistic patterns for the detection of SDGs.
One should note, however, that unsupervised methods are no replacement for top-down, rule-based
methods as implemented by text2sdg, because of the strong requirement to compare results across
data sets, analyses, and time, which require a clear set of benchmarks that are not simply data-
driven. Second, recent transformer based models (Reimers and Gurevych, 2019) could be leveraged to
learn more complex relationships between specific linguistic patterns and SDGs. However, the field
will have to work towards producing more balanced training data before the full potential of these
approaches can be exploited. Moreover, one should note that transformer models are computationally
expensive and often limited to short text due to architecture constraints (Ding et al., 2020). Whether
such developments will emerge and can be ultimately integrated into text2sdg or will represent
alternative approaches remains an open question.

8 Conclusion

In this article, we introduced a new R package, text2sdg, designed to help identify SDGs from text.
The package promises to help detect SDGs in text sources using different existing or custom-made

2Each SDG has several targets that are operationalized with indicators (SDG/targets/indicators). For example
the first target of SDG 1 reads as follows: "By 2030, eradicate extreme poverty for all people everywhere, currently
measured as people living on less than $1.25 a day".

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://osdg.ai/
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=deeplr
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=SDGdetector
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg
https://CRAN.R-project.org/package=text2sdg


CONTRIBUTED RESEARCH ARTICLE 94

labeling systems as well as a high-performance ensemble model that builds on these labeling systems.
Our case study and additional analyses suggest that the approach can handle both sources in English
as well as translations, allows user-friendly use of novel queries, and provides reasonably efficient
performance for analysing large corpora.

References

N. Bautista. Sdg ontology. 2019. URL https://doi.org/10.6084/m9.figshare.11106113.v1. [p84]

M. Ding, C. Zhou, H. Yang, and J. Tang. Cogltx: Applying bert to long texts. Advances in Neural
Information Processing Systems, 33:12792–12804, 2020. [p93]

N. Duran-Silva, E. Fuster, F. A. Massucci, and A. Quinquillà. A controlled vocabulary defining the
semantic perimeter of Sustainable Development Goals, Dec. 2019. URL https://doi.org/10.5281/
zenodo.3567769. [p84]

B. Grün and K. Hornik. topicmodels: An r package for fitting topic models. Journal of statistical software,
40:1–30, 2011. doi: https://doi.org/10.18637/jss.v040.i13. [p93]

B. Jayabalasingham, R. Boverhof, K. Agnew, and L. Klein. Identifying research supporting the united
nations sustainable development goals. Mendeley Data, 1, 2019. URL https://doi.org/10.17632/
87txkw7khs.1. [p83, 84]

D. S. Meier. Descriptions of snsf-funded research projects, Apr. 2024. URL https://doi.org/10.5281/
zenodo.11060662. [p86]

L. Pukelis, N. B. Puig, M. Skrynik, and V. Stanciauskas. Osdg–open-source approach to classify
text data by un sustainable development goals (sdgs). arXiv preprint arXiv:2005.14569, 2020. doi:
https://doi.org/10.48550/arXiv.2005.14569. [p85]

L. Pukelis, N. Bautista-Puig, G. Statulevičiūtė, V. Stančiauskas, G. Dikmener, and D. Akylbekova. Osdg
2.0: a multilingual tool for classifying text data by un sustainable development goals (sdgs), 2022.
URL https://arxiv.org/abs/2211.11252. [p93]

N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv
preprint arXiv:1908.10084, 2019. doi: https://doi.org/10.48550/arXiv.1908.10084. [p93]

C. S. Siew, D. U. Wulff, N. M. Beckage, and Y. N. Kenett. Cognitive network science: A review
of research on cognition through the lens of network representations, processes, and dynamics.
Complexity, 2019, 2019. doi: https://doi.org/10.1155/2019/2108423. [p93]

Sustainable Development Solutions Network (SDSN). Compiled list of sdg keywords, 2021. URL
https://ap-unsdsn.org/regional-initiatives/universities-sdgs/. [p84]

UN. The Sustainable Development Goals Report 2022. United Nations, 2022. [p83]

M. Vanderfeesten, R. Otten, and E. Spielberg. Search Queries for "Mapping Research Output to the
Sustainable Development Goals (SDGs)" v5.0, July 2020a. URL https://doi.org/10.5281/zenodo.
3817445. [p84]

M. Vanderfeesten, E. Spielberg, and Y. Gunes. Survey data of "Mapping Research Output to the
Sustainable Development Goals (SDGs)", May 2020b. URL https://doi.org/10.5281/zenodo.
3813230. [p84]

W. Wang, W. Kang, and J. Mu. Mapping research to the sustainable development goals (sdgs). 2023.
URL https://doi.org/10.21203/rs.3.rs-2544385/v1. [p84]

K. Welbers and W. van Atteveldt. corpustools: Managing, Querying and Analyzing Tokenized Text, 2021.
URL https://CRAN.R-project.org/package=corpustools. R package version 0.4.8. [p86]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p89]

H. Wickham, J. Hester, and J. Bryan. readr: Read Rectangular Text Data, 2021. URL https://CRAN.R-
project.org/package=readr. R package version 2.1.1. [p87]

D. U. Wulff, D. S. Meier, and R. Mata. Using novel data and ensemble models to improve automated
labeling of sustainable development goals. arXiv preprint arXiv:2301.11353, 2023. [p85, 86, 87, 93]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://doi.org/10.6084/m9.figshare.11106113.v1
https://doi.org/10.5281/zenodo.3567769
https://doi.org/10.5281/zenodo.3567769
https://doi.org/10.17632/87txkw7khs.1
https://doi.org/10.17632/87txkw7khs.1
https://doi.org/10.5281/zenodo.11060662
https://doi.org/10.5281/zenodo.11060662
https://arxiv.org/abs/2211.11252
https://ap-unsdsn.org/regional-initiatives/universities-sdgs/
https://doi.org/10.5281/zenodo.3817445
https://doi.org/10.5281/zenodo.3817445
https://doi.org/10.5281/zenodo.3813230
https://doi.org/10.5281/zenodo.3813230
https://doi.org/10.21203/rs.3.rs-2544385/v1
https://CRAN.R-project.org/package=corpustools
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=readr
https://CRAN.R-project.org/package=readr


CONTRIBUTED RESEARCH ARTICLE 95

Dominik S. Meier
University of Basel
Steinengraben 22 4051 Basel
Switzerland
(ORCID: 0000-0002-3999-1388)
dominik.meier@unibas.ch

Rui Mata
University of Basel
Missionsstrasse 60-62 4055 Basel
Switzerland
(ORCID: 0000-0002-1679-906X)
rui.mata@unibas.ch

Dirk U. Wulff
University of Basel
Missionsstrasse 60-62 4055 Basel
Switzerland
(ORCID: 0000-0002-4008-8022)
dirk.wulff@unibas.ch

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

mailto:dominik.meier@unibas.ch
mailto:rui.mata@unibas.ch
mailto:dirk.wulff@unibas.ch


CONTRIBUTED RESEARCH ARTICLE 96

GenMarkov: Modeling Generalized
Multivariate Markov Chains in R
by Carolina Vasconcelos and Bruno Damásio

Abstract This article proposes a new generalization of the Multivariate Markov Chains (MMC) model.
The future values of a Markov chain commonly depend on only the past values of the chain in an
autoregressive fashion. The generalization proposed in this work also considers exogenous variables
that can be deterministic or stochastic. Furthermore, the effects of the MMC’s past values and the
effects of pre-determined or exogenous covariates are considered in our model by considering a
non-homogeneous Markov chain. The Monte Carlo simulation study findings showed that our
model consistently detected a non-homogeneous Markov chain. Besides, an empirical illustration
demonstrated the relevance of this new model by estimating probability transition matrices over the
space state of the exogenous variable. An additional and practical contribution of this work is the
development of a novel R package with this generalization.

1 Introduction

Multivariate Markov chains (MMC) have a wide range of applications, in various fields. Hence, several
studies and generalizations of the MMC models have been made. However, the availability of packages
that allow the estimation and application of these models are scarce, and most of these methods use
algorithms and software that are not broadly available or can only be applied in particular situations.
In the last few years, R software has been gaining importance in the field of statistical computing. This
phenomenon might be because it is free and open-source software, which compiles and runs on a wide
variety of operating systems. Specifically, in R software, there are some available packages related to
Markov chains (MC) and MMC. For example, the march package (Maitre and Emery, 2020; Berchtold
et al., 2020) allows the computation of various Markovian models for categorical data, including
homogeneous Markov chains of any order, MTD models, Hidden Markov models, and Double Chain
Markov Models. Ogier Maitre developed this package with contributions from Andre Berchtold,
Kevin Emery, Oliver Buschor, and Andre Berchtold maintains it. All the models computed by this
package are for univariate categorical data. The markovchain package (Spedicato, 2017) contains
functions and methods to create and manage discrete-time Markov chains. In addition, it includes
functions to perform statistical and probabilistic analysis (analysis of their structural proprieties).
Finally, the DTMCPack package (Nicholson, 2013) contains a series of functions that aid in both
simulating and determining the properties of finite, discrete-time, discrete-state Markov chains. There
are two main functions: DTMC and MultDTMC, which produce n iterations of a Markov Chain(s) based on
transition probabilities and an initial distribution given by the user, for the univariate and multivariate
case, respectively. This last package is the only one available in R for MMC. In general, the work
on MMC models is mostly based on improving the estimation methods and/or making the model
more parsimonious. In this work, we aim to develop a new generalization that considers exogenous
variables. Specifically, the effects of the MMC’s past values and the effects of pre-determined or
exogenous covariates are considered in our model by considering a non-homogeneous Markov chain.
Additionally, we address statistical inference and implement these methods in an R package. The
R package includes three functions: multimtd, multimtd_probit and mmcx. The first two functions
estimate the MTD model for multivariate categorical data, with Chings’s specification (Ching et al.,
2002) and with the Probit specification (Nicolau, 2014), respectively. The last function allows the
estimation of our proposed model, the Generalized Multivariate Markov Chain (GMMC) model. The
R package, GenMarkov, with these three functions is available in the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=GenMarkov.

2 Multivariate Markov chains

Markov chains can be appropriate for representing dependencies between successive observations of
a random variable. However, when the order of the chain or the number of possible values increases,
Markov chains have lack parsimony. In this context, Jacobs and Lewis (1978), Pegram (1980) and
Logan (1981) proposed several models for HOMC. Notwithstanding these developments, the Mixture
Transition Distribution model (Raftery, 1985) proved to be more suitable to model HOMC, which
overshadowed the previously proposed models. Several relevant extensions of the MTD model
emerged: the Multimatrix MTD (Berchtold, 1995, 1996), which allowed modeling the MTD by using a
different m × m transition matrix for each lag, the Infinite-Lag MTD model that assumes an infinite

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=march
https://CRAN.R-project.org/package=markovchain
https://CRAN.R-project.org/package=DTMCPack
https://CRAN.R-project.org/package=GenMarkov
https://CRAN.R-project.org/package=GenMarkov


CONTRIBUTED RESEARCH ARTICLE 97

lag order (l = ∞), which was first considered by Mehran (1989) and later developed by Le et al. (1996)
in a more general context. Finally, the MTD with General State Spaces allowed modeling more general
processes with an arbitrary space state (Martin and Raftery, 1987; Adke and Deshmukh, 1988; Wong
and Li, 2001). Although the MTD model presents a more parsimonious approach to model Markov
chains with order higher than one, it has weaknesses. Namely, when considering more than one data
sequence, one represents the MMC as a HOMC, by expanding the state-space. This approach could
result in a more complex probability transition matrix. Consequently, this can make the estimation
unfeasible as the order, states, and the number of data sequences increase. Additionally, the model
assumes the same transition matrix for each lag. In this setting, Ching et al. (2002) determined an
alternative to handle the unfeasibility of the conventional multivariate Markov chain (MMC) by
proposing a model with fewer parameters. The model developed is essentially the same as the MTD.
However, it considers a different m × m transition matrix for each lag and considers more than one
data sequence. In the proposed multivariate Markov chain model, Ching et al. (2002) assume the
following relationship:

Let x(j)
t be the state vector of the jth sequence at time t. If the jth sequence is in state l at time t then

x(j)
t+1 =

s

∑
k=1

λjkP(jk)x(k)t , for j = 1, 2, . . . , s (1)

where 0 ≤ λjk ≤ 1 for j ≤ s, k ≤ s and ∑s
k=1 λjk = 1 for j = 1, 2, . . . , s. The λjk can be interpreted as

the mixing probability of the jth state to the kth state.

The state probability distribution of the kth sequence at time (t + 1) depends on the weighted

average of P(jk)x(k)t . Here P(jk) is a transition probability matrix from the states in the kth sequence to

the states in the jth sequence and x(k)t is the state probability distribution of the kth sequences at time t.
In matrix form:

x(j)
t+1 ≡


x(1)t+1

...
x(s)t+1

 =


λ11P(11) . . . λ1sP(1s)

...
. . .

...
λs1P(s1) . . . λssP(ss)




x(1)t
...

x(s)t

 ≡ Qxt (2)

where Q is an ms × ms block matrix (s × s blocks of m × m matrices) and xt is a stacked ms column
vector (s vectors, each one with m rows).

The matrices P(jk) can be estimated for each data sequence by counting the transition frequency
from the states in the kth sequence to those in the jth sequence, obtaining the transition frequency
matrix for the data sequence. After normalization, the estimates of the transition probability matrices,
i.e., P̂(jk), are obtained. Regarding the λjk coefficients, the estimation method proposed by Ching et al.
(2002) involves the following optimization problem:

minλmaxi|[
m

∑
k=1

λjk P̂(jk) x̂(k) − x̂(j)]| (3)

s.t.
s

∑
k=1

λjk and λjk ≥ 0

Besides this, different models have been proposed for multiple categorical data sequences. Kijima
et al. (2002) proposed a parsimonious MMC model to simulate correlated credit risks. Siu et al.
(2005) proposed an easy to implement model; however, its applicability was limited by the number
of parameters involved. Ching et al. (2008) proposed a simplified model based on an assumption
proposed in Zhang et al. (2006). Zhu and Ching (2010) proposed a method of estimation based on
minimizing the prediction error with equality and inequality restrictions and Nicolau and Riedlinger
(2014) proposed a new approach to estimate MMC which avoids imposing restrictions on the parame-
ters, based on non-linear least squares estimation, facilitating the model estimation and the statistical
inference. Berchtold (2003) proposed a MTD model for heteroscedastic time series. Lastly, Wang et al.
(2014) proposed a new multivariate Markov chain model to reduce the number of parameters. Thus,
generally, the models used in the published papers were developed by Ching et al. (2002) or were a
consequent generalization of them and addressed the MMC as an end in itself. In Damásio (2013) and
Damásio and Nicolau (2014), a different and innovative concept was proposed: the usage of MMC
as regressors in a certain model. Hence, given that the MMC Granger causes a specific dependent
variable, and taking advantage of the information about the past state interactions between the MMC
categories, it was possible to forecast the current dependent variable more accurately. Other relevant
contributions are related to the optimization algorithm, as in Lèbre and Bourguignon (2008) and Chen
and Lio (2009), and to empirical applications (Ching et al., 2003; Ching and Ng, 2006; Damásio, 2018;

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 98

Damásio and Mendonça, 2019; Damásio and Mendonça, 2020). Also, Damásio and Nicolau (2020)
proposed a new methodology for detecting and testing the presence multiple structural breaks in a
Markov chain occurring at unknown dates. In the vast majority of MMC models’ studies, a positive
correlation between the different data sequences is assumed due to the restrictions imposed. This
aspect means it is always considered that at moment t, an increase in a state probability for a data
sequence has an increasing impact on another data sequence, for time t + 1. Thereupon, if one has
a negative correlation between series, the parameter estimates are forced to be zero. The solution to
this problem is very straightforward; one can relax the assumptions and not assume the constraints.
However, that means the results produced by the model will no longer be probabilities. Raftery and
Tavaré (1994) presented an alternative, by dropping the positivity condition and imposing another set
of restrictions. Ching et al. (2008) also tackled this issue and proposed a method where one splits the
Q matrix into the sum of two other matrices and one represents the positive correlations and another
the negative correlations. Also, in Nicolau (2014), a specification completely free from constraints,
inspired by the MTD model, was proposed, facilitating the estimation procedure and, at the same
time, providing a more accurate specification for Pj(i0|i1, . . . , is). The model was:

Pj(i0|i1, . . . , is) = PΦ
j (i0|i1, . . . , is) :=

Φ(ηj0 + ηj1P(i0|i1) + · · ·+ ηjsP(i0|is))
∑m

k=1 Φ(ηj0 + ηj1P(k|i1) + · · ·+ ηjsP(k|is))
(4)

where nji ∈ R(j = 1, . . . , s; i = 1, . . . , m) and Φ is the (cumulative) standard normal distribution
function.

This specification is denoted as and MTD-Probit model. The log-likelihood is given by:

LL = ∑
i1,i2,...,iis ,i0

ni1,i2,...,iis ,i0 log(PΦ
j (i0|i1, . . . , is)) (5)

and the maximum likelihood estimator is defined, as usual, as η̂ = arg maxnj1,...,njs
LL. The parameters

Pjk(i0|i1), k =1, . . . , s can be estimated in advance, through the consistent and unbiased estimators
proposed by Ching et al. (2002):

P̂jk(i0|i1) =
ni1i0

∑n
i0=1 ni1i0

(6)

This specification can be superior to the MTD because the estimation procedure is easier, and the
standard numerical optimization routines can be easily applied in the absence of constraints. However,
similarly to the standard MTD, the likelihood is not a strictly concave function on the entire parameter
state-space, thus the choice of starting values is still important. Additionally, the model describes
a broader range of possible dependencies since the parameters are not constrained. Moreover, this
proposed model is more accurate than the MTD model. For more details on this, see Nicolau (2014).

Overall, the published work on MMC models was mostly based on improving the estimation
methods and/or making the model more parsimonious. In Damásio (2013) and Damásio and Nicolau
(2014), a different approach was used, and the work developed focused on the usage of MMC as
regressors in a certain model. Notably, it showed that an MMC can improve the forecast of a dependent
variable. In a way, it demonstrated that an MMC can be an end in itself, but it can be an instrument to
reach an end or a purpose. In this work, the opposite will be developed: instead of considering an
MMC as regressors, a model in which a vector with pre-determined exogenous variables is part of
Ft−1 is proposed.

3 Covariates in Markov chain models

Regarding the inclusion of covariates in Markov chains models, Regier (1968) proposed a two-state
Markov chain model, where the transition matrix probabilities were a function of a parameter, q,
that described the tendency of the subject to move from state to state. Kalbfleisch and Lawless
(1985) proposed a panel data analysis method under a continuous-time Markov model that could be
generalized to handle covariate analysis and the fitting of certain non-homogeneous models. This
work overcame the limitations of Bartholomew (1968), Spilerman and Singer (1976) and Wasserman
(1980) methodologies, by developing a new algorithm that provided a very efficient way of obtaining
maximum likelihood estimates. Also, Muenz and Rubinstein (1985) developed a Markov model for
covariates dependence of binary sequences, where the transitions probabilities were estimated through
two logistic regressions that depended on a set of covariates. Essentially, Muenz and Rubinstein
(1985) modeled a non-homogeneous Markov chain through logistic regression, considering only
two states. Islam et al. (2004) developed an extension of this model considering three states, and
Islam and Chowdhury (2006) generalized this approach for HOMC. Additionally, Azzalini (1994)
proposed a model to study the influence of time-dependent covariates on the marginal distribution of

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 99

a binary response in serially correlated binary data, where Markov chains are expressed in terms of
transitional probabilities. Jackson (2011) proposed a Markov model for panel data, which allowed
for the transitions intensities to vary between individuals or constant time-dependent covariates.
Specifically, this work allowed to account for different intensities throughout transitions of states
and include individual-specific covariates. The time-inhomogeneos model proposed is restricted to
piecewise-constant intensities. The implementation of this work is available in the package msm.
More recently, Bolano (2020) proposed an MTD-based approach to handle categorical covariates, that
considers each covariate separately and combines the effects of the lags of the MTD and the covariates
employing a mixture model. Specifically, the model is given by:

P(Xt = k | Xt−1 = i, C1 = c1, . . . , Cl = cl) ≈ θ0aik +
l

∑
h=1

θhdchk (7)

where aik is the transition probability from state i to state k, as in a conventional Markov chains
and dchk is the probability of observing the states k given the modality ch of the covariate h. Lastly,
θ0, . . . , θl are the weights of the explanatory elements of the model.

According to the literature presented, several researchers have proposed methodologies or gen-
eralizations to include covariates in Markov chain models. Primarily for social sciences and health
applications, where the transition probabilities were generally modeled through logistic regression.
However, there has been an increased focus on categorical covariates, opposing continuous covariates
and a lack of approaches to multivariate Markov chain models. Thus, with this work, we aim to tackle
this research gap.

4 Multivariate Markov chains with covariates

4.1 Theoretical model

In this work, a new generalization of Ching et al. (2002) MMC model is presented: the GMMC model,
that is, we will consider exogeneous or pre-determined covariates in the σ - algebra generated by the
available information until t − 1 (Ft−1). These variables can be deterministic or stochastic and do not
necessarily need to be reported at time t. Broadly, the model is given by:

P(Sjt = k|Ft−1) = P(Sjt = k|S1t−1 = i1, S2t−1 = i2, . . . , Sst−1 = is, xt) (8)

We can specify this model as proposed by Ching et al. (2002) with Raftery’s notation:

P(Sjt = i0|S1t−1 = i1, . . . , Sst−1 = is, xt) ≡
λj1P(Sjt = i0|S1t−1 = i1, xt) + · · ·+ λjsP(Sjt = i0|Sst−1 = is, xt) (9)

subject to the usual constraints.

4.2 Estimation and inference

This proposed model is estimated through MLE, similar to the standard MTD model. The log-
likelihood is given by:

LL =
n

∑
t=1

logP(Sjt = i0|S1t−1 = i1, . . . , Sst−1 = is, xt) (10)

Additionally, the probabilities can be estimated through an multinomial logit model. The proof for
consistency and asymptotic distribution is available in the Supplementary Material section.

4.3 Monte Carlo simulation study

A Monte Carlo simulation study was designed to evaluate the dimension and power of the test
parameters of the proposed model. The R statistical environment was used for all computations. This
simulation study was comprised of two parts.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=msm


CONTRIBUTED RESEARCH ARTICLE 100

Table 1: Power and dimension of test assessment

Hypothesis Test

Power H0 : λ11 = 0 λ̂2
11

se(λ̂11)2 ∼ χ2
(1)

H0 : λ12 = 1 (λ̂12−1)2

se(λ̂12)2 ∼ χ2
(1)

Dimension H0 : λ11 = 1 (λ̂11−1)2

se(λ̂11)2 ∼ χ2
(1)

H0 : λ12 = 0 λ̂2
12

se(λ̂12)2 ∼ χ2
(1)

Part I: Detect a non-homogeneous Markov chain

First, we considered two sequences with two and three states. The main goal was to assess if the
model detected the presence of a non-homogeneous Markov chain correctly and if the estimate of
the parameter would correspond to the expected. So, given two sequences, one generated through a
non-homogeneous Markov chain and the other generated through a homogeneous Markov chain, it
would be expected that the parameter associated with the transition probabilities of the first sequence
would be one and the parameter associated with the transition probabilities of the second sequence
would be zero. With this in mind, the transitions probabilities of the first sequence were estimated
through a logistic regression, where parameters of this regression were randomly generated in R, and
the second sequence was generated through a first-order Markov chain. Hence, for both states cases
considered, it was expected that the estimated regression would be:

P(S1t = i0|S1t−1 = i1, S2t−1 = i2, xt−1) =

1 × P(S1t = i0|S1t−1 = i1, xt−1) + 0 × P(S1t = i0|S2t−1 = i2, xt−1) (11)

To assess the test power and dimension, we used the Wald test with the following hypothesis:

The simulation procedure was performed as follows:

1. Generate the values of the coefficients for the probability transition matrix of series S1t randomly;
2. Generate the probability transition matrix of series S2t randomly;
3. Set the initial value of S2t to 1 and simulate the following from the defined probability transition

matrix;
4. In each iteration (of 1000 repetitions),

• Generate Xt ∼ N(2, 25);
• Generate the time-varying probabilities of series S1t through the values of the fixed

coefficients and the lagged variable xt;
• Set the initial values of the series S1t as 1;
• For each period t, simulate the next state of S1t from the probabilities simulated for that

moment;
• Estimate the model through the function mmcx;
• Calculate the Wald test and add to the counter if it is rejected.

Considering two states, the test dimension was at 5.7% with a sample size of 100 observations,
sightly increased with 500 observations, and returned to the expected values in 1000 and 5000 ob-
servations. For a sample size of 100, 500, and 1000 observations, we have low test power. So, when
considering two states, the sample must have at least 5000 observations, or, if that is not possible,
consider a higher significance level when testing for individual significance.

Considering three states, the test dimension was 9.7% for a sample size of 100 observations, 0.2%
for a sample size of 500 observations, and 0.3% for a sample size of 1000. Regarding the test power, we
see similar behavior, for a sample of 100 observations, the test power was 90.5%, and from a sample
of 500 observations, we reach a test power of 100%. Thus, when considering three states, one may
consider a sample of 500 observations without compromising the test power and dimension.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 101

5.
7

7.
6

5.
8 6

5.
7

7.
6

5.
8 6

0%

2%

4%

6%

8%

100 500 1000 5000
Sample size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
ns

 o
f t

he
 n

ul
l h

yp
ot

he
si

s

λjk

0

1

Dimension of test

8.
2

25
.2

46
.6

99
.4

8.
2

25
.2

46
.6

99
.4

0%

25%

50%

75%

100%

100 500 1000 5000
Sample size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
ns

 o
f t

he
 n

ul
l h

yp
ot

he
si

s

λjk

0

1

Power of test

Figure 1: Simulation study results for two-states, displaying the proportion of rejections of the null
hypothesis for two parameter values. Dimension of test remains stable regardless sample size. Power
of test increases with sample size. The proposed model detects the presence of non-homogenenous
Markov Chain.

9.
7

0.
2

0.
3

9.
7

0.
2

0.
3

0%

3%

6%

9%

100 500 1000
Sample size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
ns

 o
f t

he
 n

ul
l h

yp
ot

he
si

s

λjk

0

1

Dimension of test

90
.5

10
0

10
0

90
.5

10
0

10
0

0%

25%

50%

75%

100%

100 500 1000
Sample size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
ns

 o
f t

he
 n

ul
l h

yp
ot

he
si

s

λjk

0

1

Power of test

Figure 2: Simulation study results for three-states, displaying the proportion of rejections of the null
hypothesis for two parameter values. Dimension of test decreases as sample size increases. Power of
test is stable regardless of sample size. The proposed model detects the presence of non-homogenenous
Markov Chain.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 102

1.
8

1.
4

0.
9

0

0.
5

0.
4

0.
2

0.
2

0.
5

0.
4

0.
2

0.
2

1.
8

1.
4

0.
9

00.0%

0.5%

1.0%

1.5%

2.0%

100 500 1000 5000
Sample size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
ns

 o
f t

he
 n

ul
l h

yp
ot

he
si

s

λjk

0.2

0.4

0.6

0.8

Dimension of test

7.
3

6.
5

4.
6

1.
9

9.
2

9.
6

9.
2

9.
712

.6

28
.2

26
.1

27
.6

13
.9

43
.5

69
.5

99
.9

0%

30%

60%

90%

100 500 1000 5000
Sample size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
ns

 o
f t

he
 n

ul
l h

yp
ot

he
si

s

λjk

0.2

0.4

0.6

0.8

Power of test

Figure 3: Simulation study results for persistent states on low values of the parameters (case 1),
displaying the proportion of rejections of the null hypothesis for four parameter values. Dimension
decreases as sample size increases. Power of test increases with sample size. The proposed model has
low power of test when low parameter values are associated with persistent states.

Part II: Detecting Parameters Assigned Values

Secondly, we performed a simulation study where we considered two non-homogeneous Markov
chain with two states. Here, the main goal was to assess if the model correctly detected the parameters
assigned. So, in this case, we started by generating the terms of the model proposed. These terms were
estimated through logistic regression, and the parameters of this regression were randomly generated
in R. Similarly to Part I, we considered a Wald test to assess the power and dimension of the test. The
simulation procedure was performed as follows:

1. Generate the values of the coefficients to calculate the probability transition matrices randomly;
2. In each iteration (of 1000 repetitions),

• Generate {xt} ∼ N(2, 25);
• Generate the probabilities P

(
Sjt|Sst−1, xt−1

)
, with j = 1, 2 and s = 1, 2.

• Set the initial values of the series S1t and S2t as 1;
• For each period t, calculate the probabilities P (S1t|S1t−1, S2t−1, xt−1) and P (S2t|S1t−1, S2t−1, xt−1)

through the assigned values of the λ’s. Considering the calculated probabilities, simulate
the next state for each series, S1t and S2t.

• Estimate the model through the function mmcx;
• Calculate the Wald test and add to the counter if it is rejected.

The probabilities P (S1t|S1t−1, xt−1) and P (S1t|S2t−1, xt−1) presented some differences regarding
its values’ distributions. Specifically, P (S1t|S1t−1, xt−1) had more extreme probabilities values, with
the minimum value being close to 0 and the maximum value being close to 1. And, the probabilities
P (S1t|S2t−1, xt−1) had more moderate values, with the minimum value being, on average, 0.3 and the
maximum value, 0.7. When the probabilities have values close to 1, one says that the states/regimes
are persistent. We calculated the power and dimension of test for each value of λ when the estimated
probabilities are moderate and when they are extreme. Hence, considering equation 1:

P (S1t = i0|S1t−1 = i1, . . . , S2t−1 = i2, xt−1) =

λ11P (S1t = i0|S1t−1 = i1, xt−1) + λ12P (S1t = i0|S2t−1 = is, xt−1) (12)

The parameter λ11 will be associated with more extreme probabilities and λ12 will be associated
with more moderate probabilities.

When the states are persistent and the parameter’s value is low (i.e., 0.2 and 0.4), we have low test
power. By increasing this value, the power of test increases as well. When the states are not persistent,
we do not have a clear pattern regarding the power of test, for a value of the parameter of 0.2, the

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 103

1.
8

2.
5

3.
8

6.
4

0.
2

0.
3

7

10
.3

0.
2

0.
3

7

10
.3

1.
8

2.
5

3.
8

6.
4

0%

3%

6%

9%

100 500 1000 5000
Sample size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
ns

 o
f t

he
 n

ul
l h

yp
ot

he
si

s

λjk

0.2

0.4

0.6

0.8

Dimension of test

5.
7 7.
6

15

25
.6

8.
5

14

20
.9

71
.5

7.
1 8.
7

14
.2

31
.5

5.
3

10
.3

36
.2

59
.9

0%

20%

40%

60%

80%

100 500 1000 5000
Sample size

P
ro

po
rt

io
n 

of
 r

ej
ec

tio
ns

 o
f t

he
 n

ul
l h

yp
ot

he
si

s

λjk

0.2

0.4

0.6

0.8

Power of test

Figure 4: Simulation study results for persistent states on high values of the parameters (case 2),
displaying the proportion of rejections of the null hypothesis for four parameter values. Dimension
and power of test increase as sample size increases. The results point towards a low test power in this
setting.

power of test is still low (although not as low as the first scenario), increases when we have a value of
0.4, decreases when the value is 0.6 and increases again when the value is 0.8. Overall, the estimated
standard errors seem high, leading to low test power. Regarding the test dimension, when we have a
higher weight associated with the non-persistent states, the test dimension converges to 0. However,
when this weight is associated with the persistent states, the test dimension increases with the sample
size, reaching a value of 10% in some cases. Hence, one must use a 10% significance level to perform
statistical inference on the parameters in this situation.

4.4 Software implementation

Regarding the software implementation for each function, for the multimtd function the estimation
method was presented in Berchtold (2001) applied to the multivariate case. For multimtd_probit, a
package for numerical maximization of the log-likelihood, maxLik (Henningsen and Toomet, 2011),
was used. This package performs Maximum Likelihood estimation through different optimization
methods that the user can choose. The optimization methods available are Newton-Raphson, Broyden
- Fletcher - Goldfarb - Shanno, BFGS al- algorithm, Berndt - Hall - Hall - Hausman, Simulated AN-
Nealing, Conjugate Gradients, and Nelder-Mead. Finally, for the mmcx function, a different approach
was used. Unlike the MTD- Probit, the model proposed has equality and inequality restrictions in the
parameters. The maxLik (Henningsen and Toomet, 2011) package only allows one type of restriction
for each Maximum Likelihood estimation, so it was not possible to use this package to estimate
the proposed model with exogenous variables. Hence, the algorithm used was the Augmented La-
grangian method, available in the alabama (Varadhan, 2015) package through the function auglag.
This estimation method for the proposed model is not very common, however, it has been applied to
Markov chain models (Rajarshi, 2013). The GMMC model’s probabilities were estimated through a
Multinomial Logit using rmultinom of the nnet package (Venables and Ripley, 2002).

Additionally, the hessian matrices were also computed, which allowed performing statistical
inference. The maxLik and auglag compute the Hessian matrices with the estimates. For the function
multimtd, since the optimization procedure of Berchtold (2001) was used, the hessian was computed
through the second partial derivatives. The function multi.mtd requires the following elements:

• y, a matrix of the categorical data sequences.

• deltaStop, the delta below which the optimization phases of the parameters stop.

• is_constrained, flag indicating whether the function will consider the usual set of constraints
(usual set: TRUE, new set of constraints: FALSE).

• delta, the amount of change to increase/decrease in the parameters for each iteration of the
optimization algorithm.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=maxLik
https://CRAN.R-project.org/package=maxLik
https://CRAN.R-project.org/package=alabama
https://CRAN.R-project.org/package=nnet


CONTRIBUTED RESEARCH ARTICLE 104

The last three arguments concern the optimization procedure. For more details see Berchtold
(2001). Considering two vectors of two categorical data sequences, s1 and s2, to estimate the model
and obtain the results:

multi.mtd(y=cbind(s1,s2), deltaStop=0.0001, is_constrained=TRUE, delta=0.1)

The function multi.mtd_probit requires the following arguments:

• y, a matrix of the categorical data sequences.
• initial, a vector of the initial values of the parameters.
• nummethod, the numerical maximization method, currently either “NR” (for Newton-Raphson),

“BFGS” (for Broyden-Fletcher-Goldfarb-Shanno), “BFGSR” (for the BFGS algorithm imple-
mented in R), “BHHH” (for Berndt-Hall-Hall-Hausman), “SANN” (for Simulated ANNealing),
“CG” (for Conjugate Gradients), or “NM” (for Nelder-Mead). Lower-case letters (such as “nr”
for Newton-Raphson) are allowed. The default method is “BFGS”. For more details see maxLik
(Henningsen and Toomet, 2011) package.

Considering two vectors of two categorical data sequences, s1 and s2 again, to estimate the model
an obtain the results with BFGS maximization method:

multi.mtd_probit(y = cbind(s1,s2), initial=c(1,1,1), nummethod='bfgs')

Finally, the function mmcx requires the following elements:

• y, a matrix of categorical data sequences.
• x, a matrix of covariates (exogeneous variables).
• initial, a vector of the initial values of the parameters.

Considering two vectors of two categorical data sequences, s1 and s2, and a vector of an exoge-
neous variables, x, to estimate the model and obtain the results:

mmcx(y = cbind(s1,s2), x = cbind(x), initial=c(1,1))

These functions return a list with the parameter estimates, standard errors, z-statistics, p- values,
and the log-likelihood function value for each equation.

The package offers an additional function that allows to obtain the transition probability matrices
of mmcx considering a specific value of x defined by the user. The function is MMC_tpm and requires the
following elements:

• s, a matrix of categorical data sequences.
• x, a matrix of covariates (exogeneous variables).
• value, a single value of x, to condition the probability transition matrices.
• result, a list returned by the function mmcx containing the model’s estimates.

Considering two vectors of two categorical data sequences, s1 and s2, a vector of an exogeneous
variables, x and res the list returned by the function mmcx, to obtain the transition probability matrices:

MMC_tpm(s = cbind(s1,s2), x = cbind(x), value = max(x), result = res)

The function returns an array containing the probability transition matrices, conditioned on a
specific value of x, for each equation.

5 Illustration

Markov chain models are used in interdisciplinary areas, such as economics, business, biology,
and engineering, with applications to predict long-term behavior from traffic flow to stock market
movements, among others. Modeling and predicting stock markets returns is particularly relevant
for investors and policy makers. Since the stock market is a volatile environment, and the returns are
difficult to predict, estimating the set of probabilities that describe these movements, might provide
relevant input. Additionally, incorporating the effect of key macroeconomic variables could provide a
more accurate picture of this specific environment.

The following empirical illustration aims to model stock returns of two indexes as a function of
the interest rate spread, specifically the 10-Year Treasury Constant Maturity Minus 3-Month Treasury
Constant Maturity.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=maxLik


CONTRIBUTED RESEARCH ARTICLE 105

Table 2: Summary statistics of stockreturns dataset

Variable Minimum 1st Quantile Median Mean 3rd Quantile Maximum
spreadt -0.52 0.92 1.54 1.454 2.03 2.97
rt;SP500 -12.765 -0.32 0.07 0.054 0.518 8.968
rt;DJIA -13.842 -0.327 0.071 0.046 0.508 10.764

The interest rate spread is a key macroeconomic variable and provides valuable information
regarding the economy state. Specifically, it has been used to forecast recessions as in Estrella and
Mishkin (1996), Dombrosky and Haubrich (1996), Chauvet and Senyuz (2016), Tian and Shen (2019)
and McMillan (2021). Generically, short-term yields are lower than long-term yields when the economy
is in expansion. On the other hand, short-term yields are higher than long-term yields when the
economy is in recession. The difference between these yields (or, more specifically, the yield curve’s
slope) can be used to forecast the state of the economy. Hence, this indicator might provide relevant
input for investors.

We considered the 5-week-day daily stock returns (rt = 100 × log(Pt/Pt−1), where Pt is the
adjusted close price) of two indexes, S&P500 and DJIA, from November 11th 2011 to September 1st

2021 (2581 observations). Additionally, we considered the interest rate spread (spreadt), the 10-Year
Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity. The data was retrieved from
FRED. Below, we have the descriptive statistics of these variables.

Moreover, to apply the model proposed, it is necessary to have a categorical time series, thus we
applied the following procedure:

Sst =


1, rt ≤ q̂s;0.25

2, q̂s;0.25 < rt < q̂s;0.75

3, rt ≥ q̂s;0.75

where q̂s;α is the estimated quantile of order α of the marginal distribution of rt. Considering this
illustration and the model proposed, we will have two equations:

P(Ssp500,t|Ssp500,t−1, Sdjia,t−1, spreadt−1) =

λ11P(Ssp500,t|Ssp500,t−1, spreadt−1) + λ12P(Ssp500,t|Sdjia,t−1, spreadt−1) (13)

P(Sdjia,t|Ssp500,t−1, Sdjia,t−1, spreadt−1) =

λ21P(Sdjia,t|Ssp500,t−1, spreadt−1) + λ22P(Sdjia,t|Sdjia,t−1, spreadt−1) (14)

In Figures 5 to 8 generate through ggplot2 (Wickham, 2016) and gridExtra (Auguie, 2017), we
have the smoothed conditional probabilities of both series, depending on spreadt−1. The number
of observations is high, and the probabilities varied abruptly in a small time frame, making the
plots hard to read. To simplify, a moving average model (from pracma (Borchers, 2022)) of order 5,
due to the frequency of the data, was adjusted to these probabilities to illustrate how they evolve
throughout time. These plots represent the probabilities associated with the parameters of the general
model proposed, showcasing how these vary throughout time and the main of advantage of this
generalization. Instead of having fixed matrices of transition probabilities, we allow for these to vary
throughout time, depending on the values of spreadt−1. Specifically, Figures 5 and 6 correspond to
the non-homogeneous Markov chain to build the SP&500’s equation and Figures 7 and Figures 8
correspond to the non-homogeneous Markov chain to build DJIA’s equation. We see a similar behavior
within each series regardless of whether it depends on the previous states of S1t or S2t. Additionally,
the scales of the graphs are small, indicating that these probabilities vary around the same set of
values.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=pracma


CONTRIBUTED RESEARCH ARTICLE 106

0.2800

0.2825

0.2850

0.2875

0 200 400 600
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  1

0.30

0.35

0.40

0.45

0 200 400 600
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  2

0.30

0.35

0.40

0 200 400 600
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  3

0.18

0.20

0.22

0.24

0.26

0 500 1000
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  1

0.5625

0.5650

0.5675

0.5700

0 500 1000
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  2

0.175

0.200

0.225

0.250

0 500 1000
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  3

0.24

0.26

0.28

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  1

0.35

0.40

0.45

0.50

0.55

0.60

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  2

0.20

0.25

0.30

0.35

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  3

Figure 5: Estimated conditional probabilities of series 1 (SP500) depending on spreadt−1 and on
series 1 (SP500) previous state: P(Ssp500,t|Ssp500,t−1, spreadt−1). This figure shows the estimated non-
homogeneous Markov chain from which the realized probabilites will be extracted to maximize the
log-likelihood function.

0.26

0.27

0.28

0.29

0.30

0 200 400 600
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  1

0.35

0.40

0 200 400 600
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  2

0.30

0.35

0.40

0 200 400 600
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  3

0.215

0.220

0.225

0.230

0.235

0 500 1000
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  1

0.550
0.555
0.560
0.565
0.570
0.575

0 500 1000
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  2

0.19

0.20

0.21

0.22

0.23

0.24

0 500 1000
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  3

0.250

0.255

0.260

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  1

0.40

0.45

0.50

0.55

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  2

0.20

0.25

0.30

0.35

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  3

Figure 6: Estimated conditional probabilities of series 1 (SP500) depending on spreadt−1 and on
series 2 (DJIA) previous state: P(Ssp500,t|Sdjia,t−1, spreadt−1). This figure shows the estimated non-
homogeneous Markov chain from which the realized probabilites will be extracted to maximize the
log-likelihood function.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 107

0.27

0.28

0.29

0.30

0.31

0.32

0 200 400 600
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  1

0.30

0.35

0.40

0 200 400 600
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  2

0.30

0.32

0.34

0.36

0.38

0 200 400 600
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  3

0.215

0.216

0.217

0 500 1000
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  1

0.51

0.54

0.57

0.60

0 500 1000
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  2

0.175

0.200

0.225

0.250

0.275

0 500 1000
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  3

0.250

0.275

0.300

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  1

0.35

0.40

0.45

0.50

0.55

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  2

0.20

0.25

0.30

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  3

Figure 7: Estimated conditional probabilities of series 2 (DJIA) depending on spreadt−1 and on
series 1 (SP500) previous state: P(Sdjia,t|Ssp500,t−1, spreadt−1). This figure shows the estimated non-
homogeneous Markov chain from which the realized probabilites will be extracted to maximize the
log-likelihood function.

0.2875

0.2900

0.2925

0.2950

0.2975

0 200 400 600
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  1

0.325

0.350

0.375

0.400

0.425

0 200 400 600
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  2

0.30

0.33

0.36

0.39

0 200 400 600
Time

F
ro

m
 s

ta
te

  1
 to

 s
ta

te
  3

0.21

0.22

0.23

0.24

0 500 1000
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  1

0.500

0.525

0.550

0.575

0.600

0.625

0 500 1000
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  2

0.18

0.20

0.22

0.24

0.26

0 500 1000
Time

F
ro

m
 s

ta
te

  2
 to

 s
ta

te
  3

0.24

0.26

0.28

0.30

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  1

0.40

0.45

0.50

0.55

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  2

0.20

0.25

0.30

0 200 400 600
Time

F
ro

m
 s

ta
te

  3
 to

 s
ta

te
  3

Figure 8: Estimated conditional probabilities of series 2 (DJIA) depending on spreadt−1 and on series 2
(DJIA) previous state: P(Sdjia,t|Sdjia,t−1, spreadt−1). This figure shows the estimated non-homogeneous
Markov chain from which the realized probabilites will be extracted to maximize the log-likelihood
function.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 108

The model can be estimated through the mmcx function:

attach(stockreturns)
res <- mmcx(cbind(sp500, djia), spread_1, initial=c(1,1))

#> --------------------------------------------
#> Equation 1
#> Estimate Std. Error t value Pr(>|t|)
#> 1 0.685660 0.171346 4.002 0.000 ***
#> 2 0.314340 0.171346 1.835 0.067 *
#>
#> Log-Likelihood: -2636.355
#> --------------------------------------------
#> --------------------------------------------
#> Equation 2
#> Estimate Std. Error t value Pr(>|t|)
#> 1 0.629993 0.176383 3.572 0.000 ***
#> 2 0.370007 0.176383 2.098 0.036 **
#>
#> Log-Likelihood: -2636.622
#> --------------------------------------------

Considering the first equation, the effect of the probabilities depending on S&P500’s previous state
and the interest rate spread has a higher weight on the overall probability. Also, this estimate is highly
significant, presenting a p-value close to zero. The effect of DJIA’s previous state in S&P500 is lower
but it is also significant for a 10% significance level. In the second equation, the effect of S&P500’s
previous state is higher than DJIA’s and both estimates are highly significant.

One of the advantages of this approach is the possibility to assess the transition probabilities for
specific values of xt, in this case, the interest rate spread. For both series, we calculated the transition
probabilities for this variable’s minimum and maximum value in the sample, which are -0.52 and 2.97,
respectively. To obtain the probability transition matrices for these two cases, the code is the following:

tpm_max <- MMC_tpm(cbind(sp500, djia), spread_1,
value = max(spread_1), result = res)

tpm_min <- MMC_tpm(cbind(sp500, djia), spread_1,
value = min(spread_1), result = res)

library(markovchain)
plot(new('markovchain', transitionMatrix = tpm_max[,,1])) # Generate figure 9
plot(new('markovchain', transitionMatrix = tpm_min[,,1])) # Generate figure 10
plot(new('markovchain', transitionMatrix = tpm_max[,,2])) # Generate figure 11
plot(new('markovchain', transitionMatrix = tpm_min[,,2])) # Generate figure 12

In Figures 10 and 9, we have the transition probabilities network for S&P500, corresponding
to the minimum and maximum value of the spread. The most noticeable difference between these
two networks is regarding the transition probability from the second state to the third state. For the
maximum value of spreadt−1, the transition probability from the second state to the third state is 0.6.
So, when the economy is strong, one might expect to have higher returns, when t − 1 was in the second
state. However, this scenario shifts when considering the minimum value of spreadt−1. The probability
of obtaining higher returns, that is, being in state three, becomes almost evenly distributed, regardless
of the state in t − 1. This indicates the instability of the stock market, when the economy is weaker.
Another difference in these networks, is regarding the transition probability from the third state to the
first state. For the maximum value of spreadt−1, this probability is 0.27 and for the minimum value
increases to 0.44. This is also expected, since when the economy is weaker, the probability of having
lower returns is greater.

Considering the second equation (Figures 11 and 12), corresponding to the DJIA’s returns, we see
a similar behaviour as in S&P500’s networks. The transition probability from the second state to the
third state is higher for the maximum value of spreadt−1 and the transition probability from the third
state to the first state is higher when we consider the minimum value of spreadt−1. Although, the
difference of this last probability between the minimum and maximum value of spreadt−1 is not as big
as in S&P500. Overall, the rest of the probabilities structure, remains the same.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 109

0.29

0.57

0.17

0.45

0.27
0.26

0.18

0.23

0.6

1

2

3

Figure 9: Graphical representation of the transition probability matrix of Series 1: SP500 for the
maximum value of spreadt−1. The highest probability of 0.6 refers to the transition from state 2 to
state 3.

0.28

0.56

0.35

0.29

0.44

0.19

0.25

0.29

0.36

1

2

3

Figure 10: Graphical representation of the transition probability matrix of Series 1: SP500 for the
minimum value of spreadt−1. The highest probability of 0.56 refers to the transition from state 2 to
state 2.

0.28

0.62

0.18
0.44

0.29

0.21

0.17

0.23

0.58

1

2

3

Figure 11: Graphical representation of the transition probability matrix of Series 2: DJIA for the
maximum value of spreadt−1. The probability of 0.58 refers to the transition from state 2 to state 3.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 110

0.31

0.51

0.34

0.31

0.38

0.22
0.27

0.31

0.35
1

2

3

Figure 12: Graphical representation of the transition probability matrix of Series 2: DJIA for the
minimum value of spreadt−1. The highest probability of 0.51 refers to the transition from state 2 to
state 2.

6 Conclusions, limitations and further research

Several proposals for including of exogenous variables in MMC models have been presented. The
main limitations were associated with the high complexity of the models to be developed and esti-
mated. Additionally, most models considered only categorical exogenous variables, existing a lack of
focus on continuous exogenous variables. This work proposes a new approach to include continuous
exogenous variables in Ching et al. (2002) model for multivariate Markov chain. This is relevant
because it allows studying the effect of previous series and exogenous variables on the transition
probabilities. The model is based on Ching et al. (2002) MMC model but considers non-homogeneous
Markov chains. Thus, the probabilities that compose the model are dependent on exogenous variables.
These probabilities are estimated as a usual non-homogeneous Markov chain through a multinomial
logit model. The model parameters are then estimated through MLE, as well as the standard errors.
We developed a package with the estimation function of the model proposed. In this, we consid-
ered the Augmented Lagrangian optimization method for estimating the parameters through MLE.
Additionally, we designed a Monte Carlo simulation study to assess this model’s test power and
dimension. The results showed that the model detected a non-homogeneous Markov chain. Moreover,
an empirical illustration demonstrated the relevance of this new model by estimating the probability
transition matrix for different exogenous variable values. Ignoring the effect of exogenous variables in
MMC means that we would not detect the probabilities’ changes according to the covariates’ values.
In this setting, one would have a limited view of the studied process. Hence, this approach allows
us to understand how a specific variable influences a specific process. The main contributions of this
work are the development of a package with functions for multivariate Markov chains, addressing the
statistical inference in these models and the inclusion of covariates. The limitations are related to the
implementation in R, specifically the optimization algorithm applied is not common for MMC models,
in that sense, it would be beneficial to study new approaches to optimizing the maximum likelihood
function as further research. Additionally, extending this generalization to the MTD-probit model
proposed by Nicolau (2014) would also be relevant, which removes the constraints of the model’s
parameters and allows the model to detect negative effects.

References

S. Adke and S. Deshmukh. Limit Distribution of a High Order Markov Chain. Journal of the Royal Sta-
tistical Society. Series B (Methodological), 50(1):105–108, 1988. URL https://www.jstor.org/stable/
2345812. [p97]

B. Auguie. gridExtra: Miscellaneous Functions for "Grid" Graphics, 2017. URL https://CRAN.R-project.
org/package=gridExtra. R package version 2.3. [p105]

A. Azzalini. Logistic regression for autocorrelated data with application to repeated measures.
Biometrika, 81(4):767–775, 1994. ISSN 00063444. doi: 10.1093/biomet/81.4.767. [p98]

J. Bartholomew. Stochastic Models for Social Processes. The Australian and New Zealand Journal of
Sociology, 4(2):171–172, 1968. doi: https://doi.org/10.1177/144078336800400215. [p98]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://www.jstor.org/stable/2345812
https://www.jstor.org/stable/2345812
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gridExtra


CONTRIBUTED RESEARCH ARTICLE 111

A. Berchtold. Autoregressive Modelling of Markov Chains. Proc. 10th International Workshop on
Statistical Modelling, 104:19–26, 1995. doi: 10.1007/978-1-4612-0789-4_3. [p96]

A. Berchtold. Modélisation autorégressive des chaines de Markov : utilisation d’une matrice différente
pour chaque retard. Revue de Statistique Appliquée, 44(3):5–25, 1996. URL http://www.numdam.org/
item/RSA_1996__44_3_5_0/. [p96]

A. Berchtold. Estimation in the mixture transition distribution model. Journal of Time Series Analysis,
22(4):379–397, 2001. doi: https://doi.org/10.1111/1467-9892.00231. [p103, 104]

A. Berchtold. Mixture transition distribution (MTD) modeling of heteroscedastic time series. Com-
putational Statistics and Data Analysis, 41(3-4):399–411, 2003. ISSN 01679473. doi: 10.1016/S0167-
9473(02)00191-3. [p97]

A. Berchtold, O. Maitre, and K. Emery. Optimization of the mixture transition distribution model using
the march package for R. Symmetry, 12(12):1–14, 2020. ISSN 20738994. doi: 10.3390/sym12122031.
[p96]

D. Bolano. Handling covariates in markovian models with a mixture transition distribution based
approach. Symmetry, 12(4), 2020. ISSN 20738994. doi: 10.3390/SYM12040558. [p99]

H. W. Borchers. pracma: Practical Numerical Math Functions, 2022. URL https://CRAN.R-project.org/
package=pracma. R package version 2.4.2. [p105]

M. Chauvet and Z. Senyuz. A dynamic factor model of the yield curve components as a predictor
of the economy. International Journal of Forecasting, 32(2):324–343, 2016. ISSN 0169-2070. doi:
https://doi.org/10.1016/j.ijforecast.2015.05.007. [p105]

D. G. Chen and Y. L. Lio. A Novel Estimation Approach for Mixture Transition Distribution Model
in High-Order Markov Chains. Communications in Statistics - Simulation and Computation, 38(5):
990–1003, 2009. doi: 10.1080/03610910802715009. [p97]

W. K. Ching and M. K. Ng. Markov Chains: Models, Algorithms and Applications. Springer, 2006. ISBN
9780387293370. doi: 10.1007/0-387-29337-X. [p97]

W. K. Ching, E. S. Fung, and M. K. Ng. A multivariate markov chain model for categorical data
sequences and its applications in demand predictions. IMA Journal of Management Mathematics, 13
(3):187–199, 2002. doi: 10.1093/imaman/13.3.187. [p96, 97, 98, 99, 110]

W. K. Ching, E. S. Fung, and M. K. Ng. A higher-order markov model for the newsboy’s problem. The
Journal of the Operational Research Society, 54(3):291–298, 2003. [p97]

W. K. Ching, M. K. Ng, and E. S. Fung. Higher-order multivariate Markov chains and their applications.
Linear Algebra and its Applications, 428(2-3):492–507, 2008. doi: 10.1016/j.laa.2007.05.021. [p97, 98]

B. Damásio. Multivariate Markov Chains - Estimation, Inference and Forecast. A New Approach: What If We
Use Them As Stochastic Covariates? Master dissertation, Universidade de Lisboa, Instituto Superior
de Economia e Gestão, 2013. URL http://hdl.handle.net/10400.5/6397. [p97, 98]

B. Damásio. Essays on Econometrics: Multivariate Markov Chains. PhD dissertation, Universidade de
Lisboa, Instituto Superior de Economia e Gestão, 2018. URL https://www.repository.utl.pt/
bitstream/10400.5/18128/1/TD-BD-2019.pdf. [p97]

B. Damásio and S. Mendonça. Modelling insurgent-incumbent dynamics: Vector autoregressions,
multivariate Markov chains, and the nature of technological competition. Applied Economics Letters,
26(10):843–849, 2019. doi: 10.1080/13504851.2018.1502863. [p98]

B. Damásio and S. Mendonça. Leader-follower dynamics in real historical time: A markovian test of
non-linear causality between sail and steam (co-)development, mimeo, 2020. [p98]

B. Damásio and J. Nicolau. Combining a regression model with a multivariate Markov chain in
a forecasting problem. Statistics & Probability Letters, 90:108–113, 2014. ISSN 0167-7152. doi:
https://doi.org/10.1016/j.spl.2014.03.026. [p97, 98]

B. Damásio and J. Nicolau. Time inhomogeneous multivariate Markov chains : detecting and testing
multiple structural breaks occurring at unknown dates. REM Working Papers 0136–2020, Instituto
Superior de Economia e Gestão, 2020. URL http://hdl.handle.net/10400.5/20164. [p98]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

http://www.numdam.org/item/RSA_1996__44_3_5_0/
http://www.numdam.org/item/RSA_1996__44_3_5_0/
https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/package=pracma
http://hdl.handle.net/10400.5/6397
https://www.repository.utl.pt/bitstream/10400.5/18128/1/TD-BD-2019.pdf
https://www.repository.utl.pt/bitstream/10400.5/18128/1/TD-BD-2019.pdf
http://hdl.handle.net/10400.5/20164


CONTRIBUTED RESEARCH ARTICLE 112

A. M. Dombrosky and J. Haubrich. Predicting real growth using the yield curve. Economic Review, I
(Q):26–35, 1996. URL https://EconPapers.repec.org/RePEc:fip:fedcer:y:1996:i:qi:p:26-35.
[p105]

A. Estrella and F. S. Mishkin. The yield curve as a predictor of U.S. recessions. Current Issues
in Economics and Finance, 2(Jun), 1996. URL https://www.newyorkfed.org/research/current_
issues/ci2-7.html. [p105]

A. Henningsen and O. Toomet. maxlik: A package for maximum likelihood estimation in R. Computa-
tional Statistics, 26(3):443–458, 2011. doi: 10.1007/s00180-010-0217-1. URL http://dx.doi.org/10.
1007/s00180-010-0217-1. [p103, 104]

M. A. Islam and R. I. Chowdhury. A higher order Markov model for analyzing covariate dependence.
Applied Mathematical Modelling, 30(6):477–488, 2006. ISSN 0307904X. doi: 10.1016/j.apm.2005.05.006.
[p98]

M. A. Islam, S. Arabia, and R. I. Chowdhury. A Three State Markov Model for Analyzing Covariate
Dependence. International Journal of Statistical Sciences, 3(i):241–249, 2004. URL http://www.ru.ac.
bd/stat/wp-content/uploads/sites/25/2019/01/P21.V3s.pdf. [p98]

C. Jackson. Multi-state models for panel data: the msm package for r. Journal of statistical software, 38:
1–28, 2011. doi: 10.18637/jss.v038.i0810.18637/jss.v038.i08. [p99]

P. Jacobs and A. Lewis. Discrete Time Series Generated by Mixtures II : Asymptotic Properties.
Journal of the Royal Statistical Society: Series B (Methodological), 40(2):222–228, 1978. URL https:
//www.jstor.org/stable/2984759. [p96]

J. D. Kalbfleisch and J. F. Lawless. The analysis of panel data under a Markov assumption. Journal of
the American Statistical Association, 80(392):863–871, 1985. ISSN 1537274X. doi: 10.1080/01621459.
1985.10478195. [p98]

M. Kijima, K. Komoribayashi, and E. Suzuki. A multivariate Markov model for simulating correlated
defaults. Journal of Risk, 4, 07 2002. doi: 10.21314/JOR.2002.066. [p97]

N. D. Le, R. D. Martin, and A. Raftery. Modeling Flat Stretches, Brusts, and Outliers in Time Series
Using Mixture Transition Distribution Models. Journal of the American Statistical Association, 91(436):
1504–1515, 1996. doi: 10.1111/j.2517-6161.1985.tb01383.x. [p97]

J. Logan. A structural model of the higher-order Markov process incorporating reversion effects. The
Journal of Mathematical Sociology, 8(1):75–89, 1981. doi: 10.1080/0022250X.1981.9989916. [p96]

S. Lèbre and P. Y. Bourguignon. An EM algorithm for estimation in the mixture transition dis-
tribution model. Journal of Statistical Computation and Simulation, 78(8):713–729, 2008. doi:
10.1080/00949650701266666. [p97]

O. Maitre and K. Emery. march: Markov Chains, 2020. URL https://CRAN.R-project.org/package=
march. R package version 3.3.2. [p96]

R. D. Martin and A. Raftery. Non-Gaussian State-Space Modeling of Nonstationary Time Series:
Comment: Robustness, Computation, and Non-Euclidean Models. Journal of the American Statistical
Association, 82(400):1044–1050, 1987. doi: 10.2307/2289377. [p97]

D. G. McMillan. Predicting gdp growth with stock and bond markets: Do they contain different
information? International Journal of Finance & Economics, 26(3):3651–3675, 2021. doi: https://doi.
org/10.1002/ijfe.1980. [p105]

F. Mehran. Analysis of Discrete Longitudinal Data: Infinite-Lag Markov Models. In Statistical Data
Analysis and Inference, pages 533–541. North-Holland, Amsterdam, 1989. ISBN 978-0-444-88029-1.
doi: https://doi.org/10.1016/B978-0-444-88029-1.50053-8. [p97]

L. R. Muenz and L. V. Rubinstein. Markov Models for Covariate Dependence of Binary Sequences .
Biometrics, 41(1):91–101, 1985. URL http://www.jstor.org/stable/2530646. [p98]

W. Nicholson. DTMCPack: Suite of functions related to discrete-time discrete-state Markov Chains, 2013.
URL https://CRAN.R-project.org/package=DTMCPack. R package version 0.1-2. [p96]

J. Nicolau. A new model for multivariate markov chains. Scandinavian Journal of Statistics, 41(4):
1124–1135, 2014. ISSN 14679469. doi: 10.1111/sjos.12087. [p96, 98, 110]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://EconPapers.repec.org/RePEc:fip:fedcer:y:1996:i:qi:p:26-35
https://www.newyorkfed.org/research/current_issues/ci2-7.html
https://www.newyorkfed.org/research/current_issues/ci2-7.html
http://dx.doi.org/10.1007/s00180-010-0217-1
http://dx.doi.org/10.1007/s00180-010-0217-1
http://www.ru.ac.bd/stat/wp-content/uploads/sites/25/2019/01/P21.V3s.pdf
http://www.ru.ac.bd/stat/wp-content/uploads/sites/25/2019/01/P21.V3s.pdf
https://www.jstor.org/stable/2984759
https://www.jstor.org/stable/2984759
https://CRAN.R-project.org/package=march
https://CRAN.R-project.org/package=march
http://www.jstor.org/stable/2530646
https://CRAN.R-project.org/package=DTMCPack


CONTRIBUTED RESEARCH ARTICLE 113

J. Nicolau and F. I. Riedlinger. Estimation and inference in multivariate Markov chains. Statistical
Papers, 56(4):1163–1173, 2014. ISSN 09325026. doi: 10.1007/s00362-014-0630-6. [p97]

G. Pegram. An Autoregressive Model for Multilag Markov Chains. Journal of Applied Probability, 17(2):
350–362, 1980. doi: 10.2307/3213025. [p96]

A. Raftery. A Model for High-Order Markov Chains. Journal of the Royal Statistical Society: Series B
(Methodological), 47(3):528–539, 1985. ISSN 0035-9246. doi: 10.1111/j.2517-6161.1985.tb01383.x. [p96]

A. Raftery and S. Tavaré. Estimation and Modelling Repeated Patterns in High Order Markov
Chains with the Mixture Transition Distribution Model. Applied Statistics, 43(1):179–199, 1994. doi:
10.2307/2986120. [p98]

M. Rajarshi. Statistical Inference for Discrete Time Stochastic Processes. SpringerBriefs in Statistics, 2013.
ISBN 9783642179792. URL http://www.springer.com/978-81-322-0762-7. [p103]

M. H. Regier. A Two-State Markov Model for Behavioral Change. Journal of the American Statistical
Association, 63(323):993–999, 1968. doi: 10.1080/01621459.1968.11009325. [p98]

T. K. Siu, W. K. Ching, E. S. Fung, and M. K. Ng. On a multivariate Markov chain model for
credit risk measurement. Quantitative Finance, 5(6):543–556, 2005. ISSN 14697688. doi: 10.1080/
14697680500383714. [p97]

G. A. Spedicato. Discrete time markov chains with r. The R Journal, 07 2017. URL https://journal.r-
project.org/archive/2017/RJ-2017-036/index.html. R package version 0.6.9.7. [p96]

S. Spilerman and B. Singer. The Representation of Social Processes by Markov Models. American
Journal of Sociology, 82(1):1–54, 1976. URL https://www.jstor.org/stable/2777460. [p98]

R. Tian and G. Shen. Predictive power of markovian models: Evidence from us recession forecasting.
Journal of Forecasting, 38(6):525–551, 2019. doi: https://doi.org/10.1002/for.2579. [p105]

R. Varadhan. alabama: Constrained Nonlinear Optimization, 2015. URL https://CRAN.R-project.org/
package=alabama. R package version 2015.3-1. [p103]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New York, fourth edition,
2002. URL https://www.stats.ox.ac.uk/pub/MASS4/. ISBN 0-387-95457-0. [p103]

C. Wang, T. Z. Huang, and W. K. Ching. A new multivariate Markov chain model for adding a new
categorical data sequence. Mathematical Problems in Engineering, 2014, 2014. doi: 10.1155/2014/
502808. [p97]

S. Wasserman. Analyzing social networks as stochastic processes. Journal of the American Statistical
Association, 75(370):280–294, 1980. doi: 10.1080/01621459.1980.10477465. [p98]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p105]

C. S. Wong and W. K. Li. On a mixture autoregressive conditional heteroscedastic model. Journal of the
American Statistical Association, 96(455):982–995, 2001. doi: 10.1198/016214501753208645. [p97]

X. Zhang, M. L. King, and R. J. Hyndman. A Bayesian approach to bandwidth selection for multivariate
kernel density estimation. Computational Statistics and Data Analysis, 50(11):3009–3031, 2006. doi:
10.1016/j.csda.2005.06.019. [p97]

D. M. Zhu and W. K. Ching. A new estimation method for multivariate Markov chain model with
application in demand predictions. Proceedings - 3rd International Conference on Business Intelligence
and Financial Engineering, BIFE 2010, pages 126–130, 2010. doi: 10.1109/BIFE.2010.39. [p97]

Carolina Vasconcelos
NOVA Information Management School (NOVA IMS)
Campus de Campolide, 1070-312 Lisboa, Portugal
cvasconcelos@novaims.unl.pt

Bruno Damásio
NOVA Information Management School (NOVA IMS)
Campus de Campolide, 1070-312 Lisboa, Portugal
bdamasio@novaims.unl.pt

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

http://www.springer.com/978-81-322-0762-7
https://journal.r-project.org/archive/2017/RJ-2017-036/index.html
https://journal.r-project.org/archive/2017/RJ-2017-036/index.html
https://www.jstor.org/stable/2777460
https://CRAN.R-project.org/package=alabama
https://CRAN.R-project.org/package=alabama
https://www.stats.ox.ac.uk/pub/MASS4/
https://ggplot2.tidyverse.org
mailto:cvasconcelos@novaims.unl.pt
mailto:bdamasio@novaims.unl.pt


Contributed research article 114

Fitting a Quantile Regression Model for
Residual Life with the R Package qris
Kyu Hyun Kim, Sangwook Kang, and Sy Han Chiou

Abstract In survival analysis, regression modeling has traditionally focused on assessing covariate
effects on survival times, which is defined as the elapsed time between a baseline and event time.
Nevertheless, focusing on residual life can provide a more dynamic assessment of covariate effects, as
it offers more updated information at specific time points between the baseline and event occurrence.
Statistical methods for fitting quantile regression models have recently been proposed, providing
favorable alternatives to modeling the mean of residual lifetimes. Despite these progresses, the lack
of computer software that implements these methods remains an obstacle for researchers analyzing
data in practice. In this paper, we introduce an R package qris (Kim et al., 2022), which implements
methods for fitting semiparametric quantile regression models on residual life subject to right
censoring. We demonstrate the effectiveness and versatility of this package through comprehensive
simulation studies and a real-world data example, showcasing its valuable contributions to survival
analysis research.

1 Introduction

In the analysis of time-to-event data, standard statistical inference procedures often focus on
quantities based on failure time and its relationship with covariates measured at baseline. However,
throughout the follow-up process, inference procedures based on residual life become increasingly
intuitive for assessing the survival of subjects and can offer insights into the effectiveness of treatments
in prolonging the remaining lifetime. As covariates can substantially change over time and models
based solely on baseline covariates have limited potential for long-term prognosis, there is a growing
interest in modeling the remaining lifetime of a surviving subject with updated patient information.
Many efforts have been made to model the mean residual life including proportional mean residual
life models (Maguluri and Zhang, 1994; Oakes and Dasu, 1990, 2003; Chen et al., 2005), additive
mean residual life models (Chen and Cheng, 2006; Chen, 2007; Zhang et al., 2010), and proportional
scaled mean residual life models (Liu and Ghosh, 2008). Given that failure times are usually
right-skewed and heavy-tailed, the mean of the residual life might not be identifiable if the follow-up
time is not sufficiently long. For this reason, quantiles, which are robust under skewed distribution,
have traditionally been used more frequently as alternative summary measures. For example, the
approach on the semiparametric quantile regression model for continuous responses (Koenker and
Bassett Jr, 1978) has been extended to uncensored failure time data (Jung, 1996; Portnoy and
Koenker, 1997; Wei et al., 2006) and censored failure times data (Ying et al., 1995; Portnoy, 2003;
Peng and Huang, 2008; Huang, 2010).

When the outcome variable is the residual life, semiparametric quantile models that apply the
inverse probability of censoring weighting (IPCW) principle to address right-censored observations
have been explored (Jung et al., 2009; Kim et al., 2012; Li et al., 2016). These approaches are
based on non-smooth estimating functions with respect to regression parameters, and the estimates
of the regression parameters are obtained either through zero-crossing of non-smooth estimating
functions using grid search techniques (Jung et al., 2009) or by optimizing non-smooth objective
functions with L1-minimization algorithms (Kim et al., 2012; Li et al., 2016). While these methods
are relatively straightforward to implement, an additional challenge lies in standard error estimation,
which necessitates the computationally intensive use of a multiplier bootstrap method (Li et al.,
2016). Alternatively, Jung et al. (2009) and Kim et al. (2012) utilized the minimum dispersion
statistic and the empirical likelihood method, respectively, to bypass the need to directly estimate
the variance of the regression parameter estimator for hypothesis testing and constructing confidence
intervals. The non-smooth nature of the estimating functions in these approaches precludes the
estimation of variance using the robust sandwich-type variance estimator typically employed in
equation-based estimation methods. To lessen the associated computational burden, an induced
smoothing was proposed (Brown and Wang, 2005), which modifies the non-smooth estimating
equations into smooth ones. Leveraging the asymptotic normality of the non-smooth estimator, the
smooth estimating functions are constructed by averaging out the random perturbations inherent in
the non-smooth estimating functions. The resulting estimating functions become smooth with respect
to the regression parameters, allowing for the straightforward application of standard numerical
algorithms, such as the Newton-Raphson method. Furthermore, these smoothed estimating functions
facilitate the straightforward computation of variances using the robust sandwich-type estimator.
The induced smoothing approach has been employed in fitting semiparametric accelerated failure

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qris


Contributed research article 115

time (AFT) models via the rank-based approach (Johnson and Strawderman, 2009; Chiou et al.,
2021, 2015b; Kang, 2017). Regarding quantile regression, Choi et al. (2018) considered the induced
smoothing approach under a competing-risks setting. All of these methods are based on modeling
event times. Recently, Kim et al. (2023) proposed an induced smoothing estimator for fitting a
semiparametric quantile regression model for residual life.

The availability of published R packages for fitting quantile regression models is somewhat
limited. The rq(), nlrq(), rqss(), and crq() functions in the package quantreg (Koenker, 2022)
are predominantly used and provide various features for fitting linear, nonlinear, non-parametric, and
censored quantile regression models, respectively. The rq() function minimizes non-smooth objective
functions to obtain point estimates of regression coefficients and can accommodate right-censored
survival times by incorporating weights. By redefining survival times as the remaining lifetime at
time t0, one can also obtain a non-smoothed estimator for quantile regression models for residual
life (Kim et al., 2012). On the other hand, the nlrq() function is designed to fit a nonlinear
quantile regression model, while the rqss() function fits additive quantile regression models with
nonparametric terms, including univariate components and bivariate components, using smoothing
splines and total variation regularization techniques (Koenker et al., 1994; Koenker and Mizera,
2004). Furthermore, the crq() function fits a quantile regression model for censored data on the
τ -th conditional quantile function of the response variable. Overall, the quantreg implements three
methods for handling right-censored survival times: Powell (1986)’s estimator, Portnoy (2003)’s
estimator and Peng and Huang (2008)’s estimator. However, none of the implemented methods in
the nlrq(), rqss(), or crq() functions are applicable for handling censored residual life using the
induced smoothing methods. The only function that implements the induced smoothing method is
the aftsrr() function in the package aftgee (Chiou et al., 2021), but it is specifically designed for
fitting semiparametric AFT models, which are not directly applicable to fitting quantile regression
models.

Other R packages that can be used to fit quantile regression models for survival data include the
package ctqr (Frumento, 2021), package Brq (Alhamzawi, 2020), package brms (Bürkner, 2018), and
package cmprskQR (Dlugosz et al., 2019). The ctqr() function in the package ctqr implements the
methods proposed in Frumento (2021) for right or interval-censored failure times with left-truncation.
The Bqr() function in the package Brq implements Bayesian methods based on the asymmetric
Laplace distribution. In the package brms, the brm() function with the family=asym_laplace()
option enables the implementation of full Bayesian inference. The crrQR() function in the package
cmprskQR allows fitting quantile regression models with competing risks. All of these R packages
are designed for fitting quantile regression models for failure times defined from a baseline and are
not applicable to the residual life setting.

The recently developed R package qris (Kim et al., 2022) provides an efficient tool for fitting
semiparametric quantile regression models for residual life subject to right censoring. The qris package
offers three methods for estimating the regression parameters: L1-minimization of non-smooth
objective functions, induced smoothing with a non-iterative approach, and an iterative procedure. For
standard error estimation, the qris package provides two resampling-based approaches: the partial
multiplier bootstrap and the full multiplier bootstrap methods. The partial multiplier bootstrap
method utilizes the robust sandwich-type estimator by incorporating the sample variance of perturbed
estimating functions, while the full multiplier bootstrap method is obtained by considering the
sample variance from the solutions of perturbed estimating functions. To enhance the interpretability
of results, the qris package incorporates graphical visualizations of covariate effects at different
quantiles and base times, utilizing the plotting environment similar to that in the ggplot2 package
(Wickham et al., 2022), thereby allowing for extensive flexibility and customization. The ultimate
goal of creating the qris package is to facilitate the easy incorporation of quantile regression for
residual life into daily routines. The package qris is available on the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=qris.

The rest of the article is organized as follows: Section Semiparametric quantile regression for
residual life introduces a semiparametric regression model for quantiles of residual life and the
estimation methods implemented in the package. Section Package implementation provides details
about computing algorithms. Illustrations of the package using a simulated dataset and the real
data from the North Central Cancer Treatment Group are presented in Section Illustration. Finally,
in Section Conclusion, concluding remarks are provided along with some discussions.

2 Semiparametric quantile regression for residual life

Define T as the potential failure time that is subject to right censoring by C and X as a p × 1 vector
of covariates, where p is the number of covariates, including an intercept. The observed data consists
of n independent copies of (Z, δ, X), where Z = min(T , C), δ = I(T ≤ C), and I(·) is an indicator

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=aftgee
https://CRAN.R-project.org/package=ctqr
https://CRAN.R-project.org/package=Brq
https://CRAN.R-project.org/package=brms
https://CRAN.R-project.org/package=cmprskQR
https://CRAN.R-project.org/package=ctqr
https://CRAN.R-project.org/package=Brq
https://CRAN.R-project.org/package=brms
https://CRAN.R-project.org/package=cmprskQR
https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=qris


Contributed research article 116

function. We also assume T and C are marginally independent. Define the τ -th quantile of the
residual life at t0 > 0 as θτ (t0) that satisfies P (Ti − t0 ≥ θτ (t0) | Ti > t0) = 1 − τ . We consider
the semiparametric quantile regression model for the residual life (Kim et al., 2012, 2023). Given
Ti > t0,

log(Ti − t0) = X⊤
i β0(τ , t0) + ϵi, i = 1, . . . , n, (1)

where β0(τ , t0) is a p × 1 vector of regression coefficients, and ϵi is a random error having zero τ -th
quantile. The quantile regression model for a continuous response (Koenker and Bassett Jr, 1978) is
a special case of Equation (1) when t0 = 0. For ease of notation, we omit τ and t0 in β0(τ , t0) and
θτ (t0) and write β0 and θ. We present different estimation procedures to estimate β0 given τ and
t0 in the following.

2.1 Estimation using non-smooth functions

When there is no censoring, an estimator for β0 in Equation (1) can be obtained by solving the
estimating equation (Kim et al., 2012), where

1
n

n∑
i=0

I [Ti ≥ t0]Xi

{
I
[
log(Ti − t0) ≤ X⊤

i β
]

− τ
}
= 0. (2)

However, Equation (2) cannot be directly used when Ti − t0 is subject to right censoring. The IPCW
technique can be incorporated into Equation (2) to account for the right censoring (Li et al., 2016).
Specifically, in the presence of right censoring, the estimator for β0 in Equation (1) can be obtained
as the root of the following weighted estimating equations:

Ut0 (β, τ ) =
1
n

n∑
i=1

I [Zi ≥ t0]Xi

{
I
[
log(Zi − t0) ≤ X⊤

i β
]

δi

Ĝ(Zi)/Ĝ(t0)
− τ

}
, (3)

where Ĝ(·) is the Kaplan-Meier estimate of the survival function G(·) of the censoring time C

and Ĝ(t) =
∏

i:ti≤t(1 −
∑n

j=1(1 − δj)I(Zj ≤ ti)/
∑n

j=1 I(Zj ≥ ti)). A computational challenge
arises because the exact solution to Equation (3) might not exist due to the non-smoothness in β
caused by the involvement of indicator functions. When the exact solutions do not exist, the root
of Equation (3) can be approximated by minimizing the L1-objective function Lt0 (β, τ ) (Li et al.,
2016),

Lt0 (β, τ ) =
1
n

n∑
i=1

δiI [Zi > t0]

Ĝ(Zi)/Ĝ(t0)

∣∣∣log(Zi − t0) − X⊤
i β

∣∣∣+∣∣∣∣∣M − β⊤
n∑

l=1

−Xl
δlI [Zl > t0]

Ĝ(Zl)/Ĝ(t0)

∣∣∣∣∣+
∣∣∣∣∣M − β⊤

n∑
l=1

2τXlI [Zl > t0]

∣∣∣∣∣ ,
where M > 0 bounds

∣∣∣∣β⊤∑n
i=1 −Xi

δiI [Zi>t0]

Ĝ(Zi)/Ĝ(t0)

∣∣∣∣ and
∣∣β⊤∑n

i=1 2τXiI [Zi > t0]
∣∣ from above. Nu-

merically, the limit M is set to be an extremely large number, and the qris() function uses M = 106.
Denote the resulting estimator to be β̂NS. It has been shown that β̂NS is consistent for β0 and
asymptotically normally distributed (Li et al., 2016).

Despite the well-established asymptotic properties, directly estimating the variance of β̂NS is
impractical because it involves the derivative of non-smooth functions. A multiplier bootstrap
method has typically been employed (Li et al., 2016) to address this difficulty. The multiplier
bootstrap method considers the perturbed version of Ut0 (β, τ ), defined as

U∗
t0 (β, τ ) =

1
n

n∑
i=1

ηiI [Zi ≥ t0]Xi

{
I
[
log(Zi − t0) ≤ X⊤

i β
]

δi

Ĝ∗(Zi)/Ĝ∗(t0)
− τ

}
,

where ηi, i = 1, . . . , n, are independently and identically (iid) generated from a positive random
variable with unity mean and variance, and Ĝ∗(·) is a perturbed version of Ĝ(·), constructed as
Ĝ∗(t) =

∏
i:ti≤t(1 −

∑n
j=1 ηj(1 − δj)I(Zj ≤ ti)/

∑n
j=1 ηjI(Zj ≥ ti)) for a given realization of

ηi. On the other hand, a perturbed L1-objective function, denoted as L∗
t0 (β, τ ), can be similarly

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



Contributed research article 117

constructed, where

L∗
t0 (β, τ ) =

1
n

n∑
i=1

δiI [Zi > t0]

Ĝ∗(Zi)/Ĝ∗(t0)

∣∣∣log(Zi − t0) − X⊤
i β

∣∣∣+∣∣∣∣∣M − β⊤
n∑

l=1

−Xl
δlI [Zl > t0]

Ĝ∗(Zl)/Ĝ∗(t0)

∣∣∣∣∣+
∣∣∣∣∣M − β⊤

n∑
l=1

2τXlηlI [Zl > t0]

∣∣∣∣∣ .
Solving for U∗

t0 (β, τ ) = 0, or equivalently, minimizing L∗
t0 (β, τ ), yields one realization of β̂NS. The

multiplier bootstrap variance is computed as the sample variance of a large number of realizations
of β̂NS.

2.2 Estimation using induced smoothed functions

The regression coefficient in Equation (1) can be more efficiently obtained through the induced
smoothed version of Equation (3). The induced smoothed estimating functions are constructed by
taking the expectation with respect to a mean-zero random noise added to the regression parameters
in Equation (3). Specifically,

Ũt0 (β, τ , H) = Ew{Ut0 (β + H1/2W, τ )}

=
1
n

n∑
i=1

I [Zi > t0]Xi

{
Φ

(
X⊤

i β − log(Zi − t0)√
X⊤

i HXi

)
δi

Ĝ(Zi)/Ĝ(t0)
− τ

}
, (4)

where H = O(n−1), W ∼ N(0, Ip) is a standard normal random vector, Ip is the p × p identity
matrix, and Φ(·) is the cumulative distribution function of a standard normal random variable. A
typical choice for H is to fix it at n−1Ip, while some alternative choices are explored in Chiou et al.
(2015a). Let β̂IS be the solution to Ũt0 (β, τ , H) = 0. Since Equation (4) is a smooth function in β,
the estimator can be obtained using standard numerical algorithms such as the Newton-Raphson
method. Moreover, the induced smoothed estimator for β0 has been shown to be asymptotically
equivalent to its non-smooth counterpart (Kim et al., 2023).

Following the idea in Section Estimation using non-smooth functions, the multiplier bootstrap
procedure can be similarly employed to estimate the variance of β̂IS. The perturbed version of
Equation (4) takes the form of

Ũ∗
t0 (β, τ , H) =

1
n

n∑
i=1

ηiI [Zi > t0]Xi

{
Φ

(
X⊤

i β − log(Zi − t0)√
X⊤

i HXi

)
Ĝ∗(t0)δi

Ĝ∗(Zi)
− τ

}
. (5)

The multiplier bootstrap procedure estimates the variance of β̂IS by calculating the sample variance
of a large number of realizations of β̂IS obtained by repeatedly solving Equation (5).

It has been shown that the asymptotic variance Var(β, τ ) can be decomposed into A(β)⊤V(β)A(β)
(Kim et al., 2023), where the two components, A(β) and V(β), can be estimated separately. Since
Equation (4) is a smooth function in β, the slope matrix, A(β), can be conveniently estimated by
differentiating Ũt0 (β, τ , H) with respect to β. The explicit form of A(β) is as follows:

A(β) =
∂Ũt0 (β, τ , H)

∂β

=
1
n

n∑
i=1

I [Zi > t0]Xi
G(t0)δi

G(Zi)
ϕ

(
Xi

⊤β − log(Zi − t0)√
Xi

⊤HXi

)(
−Xi√

Xi
⊤HXi

)
, (6)

where ϕ(·) is the density function of the standard normal random variable.

The slope matrix, Â(β̂IS), can be evaluated directly by plugging in β̂IS and Ĝ(·). On the other
hand, the variance of the estimating function, V̂(β), can be obtained by a computationally efficient
resampling method motivated by the multiplier bootstrap procedure in Section Estimation using
non-smooth functions. Specifically, we propose estimating V̂(β̂IS) as the simple variance of a large
set of realizations of the perturbed version of Ũt0 (β̂IS, τ , H) presented in Equation (5). We refer to
this procedure as the partial multiplier bootstrapping approach because it utilizes the perturbed
estimating function, similar to the full multiplier bootstrapping approach, but the computation of
Â(β̂IS) and V̂(β̂IS) does not involve the repeated solving of the perturbed estimating equations.
Thus, the partial multiplier bootstrapping approach is expected to be computationally more efficient

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



Contributed research article 118

than the multiplier bootstrap method. A similar procedure and its performance have been studied
in modeling failure times with semiparametric AFT models (Chiou et al., 2014, 2021).

2.3 Iterative procedure in induced smoothing estimation

The induced estimator β̂IS is obtained with a fixed H, as described in Section Estimation using
induced smoothed functions, and its variance is estimated separately. This estimation procedure can
be viewed as a special case of the following iterative procedure, which updates H and β̂IS iteratively.
Specifically, the iterative algorithm utilizes the Newton-Raphson method while sequentially updating
β̂IS and V̂ar(β̂IS) until convergence. Similar iterative algorithms have also been considered previously
in the induced smoothing approach for semiparametric AFT models (Johnson and Strawderman,
2009; Chiou et al., 2014, 2015b; Choi et al., 2018). The iterative procedure is summarized as follows:

Step 1: Set the initial values β̂(0), Σ̂(0) = Ip, and H(0) = n−1Σ̂(0).

Step 2: Given β̂(k) and H(k) at the k-th step, update β̂(k) by

β̂(k+1) = β̂(k) − Â(β̂(k))−1Ũt0 (β̂
(k), τ , H(k)).

Step 3: Given β̂(k+1) and Σ̂(k), update Σ̂(k) by

Σ̂(k+1) = Â(β̂(k+1))−1V̂(β̂(k+1), τ )Â(β̂(k+1))−1.

Step 4: Set H(k+1) = n−1Σ̂(k+1). Repeat Steps 2, 3 and 4 until β̂(k) and Σ̂(k) converge.

The initial value, β̂(0), could be chosen as β̂NS. We define β̂IT and Σ̂IT as the values of β̂(k) and
Σ̂(k) at convergence, and V̂ar(β̂IT) = n−1Σ̂IT. In Step 3, V̂(β̂(k+1), τ ) is obtained using the partial
multiplier bootstrap approach. However, the full multiplier bootstrap approach can also be employed
but would require longer computation times.

3 Package implementation

The main function in the qris package for estimating the regression parameters in the quantile
regression model for residual life is the qris() function. The qris() function is written in C++ and
incorporated into R using the Rcpp (Eddelbuettel et al., 2022a) and RcppArmadillo (Eddelbuettel
et al., 2022b) packages. The synopsis of qris is:

> args(qris)
function (formula, data, t0 = 0, Q = 0.5, nB = 100, method = c("smooth",
"iterative", "nonsmooth"), se = c("fmb",
"pmb"), init = c("rq", "noeffect"), verbose = FALSE,
control = qris.control())

The required argument is formula, which specifies the quantile regression model to be fitted
using the variables in data. The formula assumes that the response variable is a ‘Surv’ object
created by the Surv() function in the survival package (Therneau, 2021). This formula structure
is commonly adopted for handling survival data in R, as seen in functions like survreg() and
coxph() in the survival package. The argument t0 specifies the base time used in defining residual
life. The default value of t0 is set to zero, in which case residual life reduces to a failure time.
The Q argument is used to specify the target quantile of residual life to estimate, with the default
value being set to 0.5 (median). The nB argument specifies the bootstrapping size used in standard
error estimation, with the default value set to 100. The method argument specifies one of the three
estimation methods: "nonsmooth", "smooth", and "iterative", corresponding to the estimating
procedures outlined in Sections Estimation using non-smooth functions, Estimation using induced
smoothed functions, and Iterative procedure in induced smoothing estimation, respectively. Given
the point estimates of the regression parameters, their standard errors can be estimated using one
of two implemented methods: se = "fmb" and se = "pmb". The se = "fmb" method employs a
full-multiplier bootstrapping approach to estimate the variance by the sample variance of large
realizations of β̂. The se = "pmb" method estimates the variance using a robust sandwich variance
estimator and employs the computationally efficient partial multiplier bootstrapping approach
described in Section Estimation using induced smoothed functions. The "fmb" option is available for
all three point estimation methods, whereas the "pmb" option is not available for the "nonsmooth"
point estimation method due to the lack of a closed-form sandwich variance estimator. The init

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival


Contributed research article 119

argument allows users to specify the initial value for estimating regression parameters by either a
p-dimensional numerical vector or a character string. In the latter case, the options init = "rq"
and init = "noeffect" correspond to the point estimate obtained from the rq() function in the
quantreg package and a p-dimensional vector of zeros, respectively. The default value for init is
init = "rq". Among the three methods implemented for point estimation, method = "smooth" and
method = "nonsmooth" are non-iterative, in the sense that point estimation is performed separately
from the estimation of standard errors. On the other hand, method = "iterative" calculates point
estimates and the corresponding standard error estimates simultaneously through iterative updates.
When method = "iterative", users can define specific convergence criteria using qris.control().
The available options in qris.control() are as follows.

> args(qris.control)
function (maxiter = 10, tol = 0.001, trace = FALSE)

The maxiter argument specifies the maximum number of iterations. The default value for
maxiter is ten, as the proposed algorithm typically converges within ten steps based on our
exploration. The convergence tolerance is controlled using the tol argument, which has a default
value of 1e-3. The trace argument takes a logical value and is used to determine whether to
print the result for each iteration. The default setting is trace = FALSE. The ‘qris’ object is fully
compatible with many of R’s generic functions, including coef(), confint(), plot(), predict(),
print(), residuals(), summary(), and vcov().

Among the available S3 methods, a unique feature of the qris package’s S3 plot method, when
applied to a ‘qris’ object, is its ability to automatically update the original object by extending
the range of τ or t0 values. This extension enables the generation of a covariate effect plot over the
newly specified values of τ or t0, providing a comprehensive visualization of the covariate effects
across the extended range. The S3 method for plotting a ‘qris’ object is shown below.

> argsAnywhere(plot.qris)
function (x, t0s = NULL, Qs = NULL, nB = NULL, vari = NULL, byQs = FALSE,

ggextra = NULL, ...)
NULL

The argument x is a ‘qris’ object created using the qris() function. The t0s and Qs arguments are
numeric vectors that enable users to specify the values of t0 or τ for plotting the covariate effect. If
t0s and Qs are not specified, the covariate effects are plotted against τ = 0.1, 0.2, . . . , 0.9 at the base
time (t0) inherited from the ‘qris’ object specified in x. The nB argument is a numerical variable
that controls the sample size for bootstrapping, used to compute standard error estimations based
on the variance estimation specified in the original ‘qris’ object. When nB is specified, the function
calculates standard errors for all combinations of t0 and τ specified in t0s and Qs, computes 95%
confidence intervals accordingly, and includes them in the covariate effect plot. The vari argument
is a character string that allows users to specify the names of the covariates they want to display
in the effect plots. When the vari argument is not specified, all covariates will be included in the
plots by default. The coefficient event plot can be plotted against the specified quantiles by setting
byQs = TRUE or against the specified base times by setting byQs = FALSE. Finally, the ggextra
argument allows users to pass additional graphical parameters to the ggplot2 package, offering
further customization options for the plots. When the plot() function is called, it internally invokes
the qris.extend() function to compute the covariate effects at additional values. The syntax for
the qris.extend() function is provided below:

> args(qris.extend)
function (x, t0s = NULL, Qs = NULL, nB = NULL, vari = NULL)
NULL

The arguments in qris.extend() are inherited from the arguments specified in the plot() function.
To reduce runtime when repeatedly calling the plot(), one can calculate the desired covariate
effects by applying qris.extend() outside of plot() first and then supply the results to plot().
This approach allows for pre-computation of the covariate effects, making it more efficient when
generating multiple plots. Overall, the unique plotting feature in qris provides users with a seamless
and effortless approach to conducting a comprehensive assessment of the covariate effects across
different quantiles or base times.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=qris


Contributed research article 120

4 Illustration

4.1 Simulated data

In this subsection, we present a simple simulation example to validate the implementations in the
proposed qris package. The simulation involves five covariates, denoted as X1, . . . , X5. Among these
covariates, X1 and X4 follow a standard uniform distribution, X2 follows a binomial distribution
with a success probability of 0.5, X3 follows a standard normal distribution, and X5 follows a
standard exponential distribution. We assume that X2, X3, X4, and X5 do not impact the residual
life, meaning their corresponding coefficient values β2, β3, β4, and β5 are zero. The survival time T
is generated from a Weibull distribution with the survival function S(t) = exp{−(ρt)κ} for t > 0,
where κ = 2, and ρ is obtained by solving

ρ−1{(ρt0)
κ − log(1 − τ )}(1/κ) − t0 = exp{β0 + β1X1}, (7)

for a specified t0 and τ . We set the intercept β0 = log(5) and β1 = log(2) at t0 = 0. Given ρ, τ , and
X1, the true values of β0 and β1 can be obtained sequentially from Equation 7 for different t0 > 0.
In our case, the corresponding true values of β0 are approximately 1.411 and 1.219 for t0 = 1 and 2,
respectively. Similarly, the true values of β1 are approximately 0.797 and 0.907 for t0 = 1 and 2,
respectively. The closed-form expression for generating T is then {− log(1 − u)}1/κ/ρ, where u is a
uniform random variable over (0, 1). Given these specifications, we have implemented the data.gen()
function to generate simulation data. The data.gen() function takes four arguments: n, t0, cen,
and Q, representing the sample size, t0, censoring proportion, and τ , respectively. We generate
censoring times C from an independent uniform distribution over (0, c), where c is chosen to achieve
the desired censoring proportions of 10% and 30%. Using the generated dataset, we fit the model
using three different estimation methods: induced smoothing, non-smooth, and iterative-induced
smoothing. All analyses were conducted on a 4.2 GHz Intel(R) quad Core(TM) i7-7700K central
processing unit (CPU) using R 4.3.0 (R Core Team, 2021). The following code demonstrates the
implementation of data.gen() to generate a simulation dataset.

> data.gen <- function(n, t0, cen = .3, Q = .5) {
+ if (!(t0 %in% 0:2))
+ stop("T0 is limited to three specific values: 0, 1, or 2.")
+ if (!(cen %in% c(0, .1, .3)))
+ stop("Censoring is limited to three specific values: 0%, 10%, or 30%.")
+ if (!(Q %in% c(.25, .5)))
+ stop("Q is limited to two specific values: 0.25, or 0.50.")
+ censoring <- Inf
+ if (t0 == 0) {
+ if (cen == .1) censoring <- runif(n, 0, 125.1)
+ if (cen == .3) censoring <- runif(n, 0, 25.49)
+ beta0 <- log(5); beta1 <- log(2)
+ }
+ if (t0 == 1) {
+ if (cen == .1) censoring <- runif(n, 0, 120.8)
+ if (cen == .3) censoring <- runif(n, 0, 23.41)
+ beta0 <- 1.410748; beta1 <- 0.7974189
+ }
+ if (t0 == 2) {
+ if (cen == .1) censoring <- runif(n, 0, 120.6)
+ if (cen == .3) censoring <- runif(n, 0, 26.20)
+ beta0 <- 1.219403; beta1 <- 0.9070615
+ }
+ dat <- data.frame(censoring,
+ Time0 = sqrt(-log(1 - runif(n))),
+ X1 = runif(n),
+ X2 = rbinom(n, 1, .5),
+ X3 = rnorm(n),
+ X4 = runif(n),
+ X5 = rexp(n, 1))
+ rho <- (-log(1 - Q))^0.5 * (((exp(beta0 + beta1 * dat$X1) + t0)^2 - t0^2)^-0.5)
+ dat$Time0 <- dat$Time0 / rho
+ dat$Time <- pmin(dat$Time0, dat$censoring)
+ dat$status <- 1 * (dat$Time0 < dat$censoring)

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qris


Contributed research article 121

+ subset(dat, select = c(Time, status, X1, X2, X3, X4, X5))
+ }
> set.seed(3)
> head(data.gen(200, 0))

Time status X1 X2 X3 X4 X5
1 4.283379 0 0.09137221 0 2.1638425 0.33833437 0.8751895
2 14.797025 1 0.81196535 1 0.8803785 0.82101134 0.3648634
3 5.934559 1 0.60923418 1 0.5051163 0.56536790 0.3997803
4 7.223266 1 0.54550179 1 0.1105902 0.32417202 1.2169470
5 15.128553 1 0.86115736 0 -0.2928586 0.05825095 0.1835962
6 5.135852 1 0.28915525 0 0.7723200 0.94126325 0.3809120

The data.gen() function generates a data.frame containing seven variables. The Time variable
represents the observed survival time, while the status variable serves as the event indicator, taking
the value 1 for observed events and 0 for censored observations. The variables X1, . . ., X5 are
the covariates. The implementation in the data.gen() function generates the Weibull survival
times using the inverse probability integral transform technique. Alternatively, users can use
the rweibull() function with the parameters shape = 2 and scale = 1 / rho to generate these
Weibull survival times directly.

We assess the performance of the proposed implementation across various scenarios, including
three sample sizes (n = 200, 400, 1000), three levels of t0 (0, 1, 2), two censoring proportions
(10% and 30%), and two values of τ (0.25 and 0.50). For a given dataset, we apply the full-
multiplier bootstrapping approach with 200 bootstrap samples to all three available estimating
procedures: method = "nonsmooth", method = "smooth", and method = "iterative". To facilitate
the evaluation process, we create the do_fmb() function to record the coefficient estimates, standard
errors, and computing times for fitting a single simulated dataset generated from data.gen(). The
following is the implementation of the do_fmb() function and the corresponding code to run the
simulation with 200 replications. We present the code and result of the simulation experiments
conducted at three different sample sizes, with t0 values set to 0 and 1, while holding the censoring
proportion at 30% and τ value at 0.5. The results for other simulation scenarios are provided in the
Supplementary Materials.

> do_fmb <- function(n, t0, cen, Q, nB) {
+ dat <- data.gen(n, t0, cen, Q)
+ fm <- Surv(Time, status) ~ X1 + X2 + X3 + X4 + X5
+ stamp <- NULL
+ stamp[1] <- Sys.time()
+ f1 <- qris(fm, data = dat, t0 = t0, Q = Q, nB = nB, method = "smooth", se = "fmb")
+ stamp[2] <- Sys.time()
+ f2 <- qris(fm, data = dat, t0 = t0, Q = Q, nB = nB, method = "nonsmooth", se = "fmb")
+ stamp[3] <- Sys.time()
+ f3 <- qris(fm, data = dat, t0 = t0, Q = Q, nB = nB, method = "iterative", se = "fmb")
+ stamp[4] <- Sys.time()
+ list(smooth = c(f1$coef, f1$std),
+ nonsmooth = c(f2$coef, f2$std),
+ iter = c(f3$coef, f3$std),
+ times = diff(stamp))
+ }
> B <- 200
> set.seed(2)
> sims0_fmb <- mapply(function(n, t0)

+ replicate(B, do_fmb(n, t0 = t0, cen = .3, Q = .5, nB = 200)),
+ n = c(200, 400, 1000), t0 = c(0, 0, 0), SIMPLIFY = F)

> sim1_fmb <- mapply(function(n, t0)
+ replicate(B, do_fmb(n, t0 = t0, cen = .3, Q = .5, nB = 200)),
+ n = c(200, 400, 1000), t0 = c(1, 1, 1), SIMPLIFY = F)

Figure 1 displays violin plots that provide visualizations of the empirical distribution of the
coefficient estimates. As expected, all three estimators exhibit small biases, which are calculated as
the difference between the point estimates (PE) and the true regression coefficients. Furthermore,
the empirical distributions of the PEs demonstrate a normal-like shape, aligning with the asymptotic
properties of the proposed method (Li et al., 2016; Kim et al., 2023). When the sample size is smaller
(e.g., n = 200 and 400), the nonsmooth approach appears to yield slightly larger empirical standard
errors (ESE) compared to the smooth or iterative approaches. However, when n = 1000, the ESEs

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



Contributed research article 122

are similar across all approaches. On the other hand, the comprehensive simulation results presented
in Table 1 of the Supplementary Materials confirm that all coefficient estimates closely approximate
the true regression coefficients. On the other hand, the ESEs and the averaged estimated standard
errors (ASE) are in close agreement for all scenarios, indicating the validity of the variance estimation.
Furthermore, the computation times, which are presented separately in the upper panel of Table 1,
indicate that when employing the full multiplier bootstrapping approach, the nonsmooth approach
demonstrates a slight advantage in terms of computational efficiency over the smooth approach,
while the iterative approach takes 5.1 to 9.5 times longer than the smooth approach. In summary,
the timing results show that the proposed method can yield valid inference results within seconds,
even with large datasets of up to 1000 observations or when using the computationally demanding
full multiplier bootstrapping approach for variance estimation.

method = "smooth" method = "nonsmooth" method = "iterative"

n =
 200

n =
 400

n =
 1000

β0 β1 β2 β3 β4 β5 β0 β1 β2 β3 β4 β5 β0 β1 β2 β3 β4 β5

−0.50

−0.25

0.00

0.25

0.50

−0.50

−0.25

0.00

0.25

0.50

−0.50

−0.25

0.00

0.25

0.50

B
ia

s

(a) t0 = 0

method = "smooth" method = "nonsmooth" method = "iterative"

n =
 200

n =
 400

n =
 1000

β0 β1 β2 β3 β4 β5 β0 β1 β2 β3 β4 β5 β0 β1 β2 β3 β4 β5

−0.50

−0.25

0.00

0.25

0.50

−0.50

−0.25

0.00

0.25

0.50

−0.50

−0.25

0.00

0.25

0.50

B
ia

s

(b) t0 = 1

Figure 1: Comparison of the smooth, nonsmooth and iterative estimators with se = "fmb" under
30% censoring and τ = 0.5.

When t0 = 0, the targeted semiparametric quantile regression model for residual life simplifies to
the standard quantile regression model for survival time. In such cases, existing functions like crq()
from the quantreg package (Koenker, 2022) can be employed. A comparison between the performance
of crq() and our proposed implementation when t0 = 0 is presented in the Supplementary Materials,
where the standard errors of the crq() are obtained from the bootstrap method with 200 bootstrap
samples. Overall, the performance of crq() is comparable to the proposed methods in terms of bias

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=quantreg


Contributed research article 123

Table 1: Runtimes (in seconds) when se = fmb and se = pmb.

t0 = 0 t0 = 1
se method 200 400 1000 200 400 1000

fmb Smooth 0.103 0.174 0.471 0.106 0.178 0.480
Nonsmooth 0.080 0.142 0.472 0.080 0.141 0.468
Iterative 0.981 1.500 2.410 0.985 1.567 2.882

pmb Smooth 0.022 0.052 0.223 0.022 0.053 0.224
Iterative 0.296 0.580 1.407 0.296 0.581 1.435

and standard errors. However, we have occasionally encountered situations where the crq() function
fails to converge, particularly when the sample size is large, as in the case of n = 1000. In the other
extended simulation scenarios outlined in the Supplementary Materials, which encompass various
levels of t0, censoring proportions, and τ , the proposed methods consistently exhibit satisfactory
performance across all settings.

The true potential of the proposed smooth approach lies in its capability for efficient variance
estimation through the implementation of the partial multiplier bootstrapping approach. This
approach eliminates the need for repetitive solving of estimating equations, resulting in improved
computational efficiency in variance estimation. To demonstrate its usefulness, we conducted a
simulation using both the smooth approach and the iterative approach with the partial multiplier
bootstrapping approach (se = "pmb"). This simulation was conducted under the settings of τ = 0.5,
t0 = 0 and 1, and a 30% censoring rate. The do_pmb() function was accordingly modified as follows.

> do_pmb <- function(n, t0, cen, Q, nB) {
+ dat <- data.gen(n, t0, cen, Q)
+ fm <- Surv(Time, status) ~ X1 + X2 + X3 + X4 + X5
+ stamp <- NULL
+ stamp[1] <- Sys.time()
+ f1 <- qris(fm, data = dat, t0 = t0, Q = Q, nB = nB, method = "smooth", se = "pmb")
+ stamp[2] <- Sys.time()
+ f2 <- qris(fm, data = dat, t0 = t0, Q = Q, nB = nB, method = "iterative", se = "pmb")
+ stamp[3] <- Sys.time()
+ list(smooth = c(f1$coef, f1$std),
+ iter = c(f2$coef, f2$std),
+ times = diff(stamp))
+ }
> B <- 200
> set.seed(2)
> sims0_pmb <- mapply(function(n, t0)
+ replicate(B, do_pmb(n, t0 = t0, cen = .3, Q = .5, nB = 200)),
+ n = c(200, 400, 1000), t0 = c(0, 0, 0), SIMPLIFY = F)
> sims1_pmb <- mapply(function(n, t0)
+ replicate(B, do_pmb(n, t0 = t0, cen = .3, Q = .5, nB = 200)),
+ n = c(200, 400, 1000), t0 = c(1, 1, 1), SIMPLIFY = F)

The simulation results obtained using the partial multiplier bootstrapping approach are presented
in Figure 2 and Tables 7 – 12 in the Supplementary Materials, while the computing times are
displayed in the lower panel of Table 1. Overall, the estimation results obtained using se = "pmb"
in Figure 2 closely resemble those in Figure 1 with se = "fmb". As seen in Tables 7 and 8, the ESEs
from the non-iterative and iterative methods are comparable, while the ASEs slightly overestimate
the ESEs when the sample size is small. The gaps are slightly smaller for the iterative method, as
shown in some cases (Johnson and Strawderman, 2009; Kim et al., 2021). The magnitudes of the
differences are not large, and they also become smaller when the sample size reaches n = 1000. More
importantly, the computing times with se = "pmb" show significant speed improvements compared
to when se = "fmb" is used in every case; we observed up to 79% timing improvements.

After confirming the satisfactory performance of the proposed methodologies, we now proceed to
illustrate the application of the init argument. This argument controls the initial values assigned
to the root-finding algorithm’s estimates and the plotting capacity of the qris package. For this
illustrative example, we consider a simpler simulation scenario that involves a single binary covariate.
This simplified simulation can be generated using the revised version of the data.gen() function
provided below.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qris


Contributed research article 124

method = "smooth" method = "iterative"

n =
 200

n =
 400

n =
 1000

β0 β1 β2 β3 β4 β5 β0 β1 β2 β3 β4 β5

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

B
ia

s

(a) t0 = 0

method = "smooth" method = "iterative"

n =
 200

n =
 400

n =
 1000

β0 β1 β2 β3 β4 β5 β0 β1 β2 β3 β4 β5

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

−0.6

−0.3

0.0

0.3

0.6

B
ia

s

(b) t0 = 1

Figure 2: Comparison of the smooth and iterative estimators with se = "pmb" under 30%
censoring and τ = 0.5.

> ## Global parameters
+ rho0 <- .2 * sqrt(log(2))
+ rho1 <- .1 * sqrt(log(2))
> data.gen <- function(n) {
+ dat <- data.frame(censoring = runif(n, 0, 23.41),
+ Time0 = sqrt(-log(1 - runif(n))),
+ X = rbinom(n, 1, .5))
+ dat$Time0 <- ifelse(dat$X > 0, dat$Time0 / rho1, dat$Time0 / rho0)
+ dat$Time <- pmin(dat$Time0, dat$censoring)
+ dat$status <- 1 * (dat$Time0 < dat$censoring)
+ subset(dat, select = c(Time, status, X))
+ }
> set.seed(10)
> head(dat <- data.gen(200))

Time status X
1 6.034713 1 1
2 7.181451 0 1
3 9.993908 0 1

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



Contributed research article 125

4 16.225520 0 1
5 1.993033 0 1
6 5.277471 0 0

The updated data.gen() function returns a data.frame comprising three variables: Time,
status, and X, representing the observed survival time, event indicator, and binary covariate,
respectively. We will first illustrate the usage of the argument init by considering three different
initial values: init = "rq", init = c(1,1), and a random vector init = rnorm(2), all used in
conjunction with the smooth estimator method = "smooth". The following codes provide an example
with different initial values.

> (random <- rnorm(2))
[1] 1.5025446 0.5904095
> f1 <- qris(Surv(Time, status) ~ X, data = dat, t0 = 1, init = "rq", nB = 0)
> f2 <- update(f1, init = c(1, 1))
> f3 <- update(f1, init = random)
> all.equal(f1$coef, f2$coef)
[1] TRUE
> all.equal(f2$coef, f3$coef)
[1] TRUE

The ‘qris’ object, with its call component, is compatible with the update() function, a built-in
function commonly used for updating the attributes of an existing object without requiring redundant
and repetitive code. In the example above, we used the update() function to modify the initial
value specification in f1. We observed that different initial values yield identical point estimates,
thereby affirming the robustness of the proposed method against fluctuations in initial values.

The covariate effects, along with their associated 95% point-wise confidence intervals across
various quantiles or base times, can be visually assessed by applying the generic function plot() to
a ‘qris’ object. We demonstrate this feature using the following qris fit, where the standard errors
are obtained using se = "pmb", t0 = 1, and all other parameters are set to their default values.
We update the qris fit with extended quantiles over 0.4, 0.5, 0.6, 0.7 and plot the covariate effects
against these quantiles using the plot() function.

> fit <- qris(Surv(Time, status) ~ X, data = dat, t0 = 1, se = "pmb")
> fit2 <- qris.extend(fit, Qs = 4:7 / 10)

The extended ‘qris’ fit generated by the qris.extend() function inherits all the attributes from
the original ‘qris’ object and includes additional ggdat components. The following code compares
the components of the returned values from the extended ‘qris’ fit and the original ‘qris’ fit.

> class(fit2)
[1] "qris"
> names(fit)
[1] "call" "coefficient" "data" "formula" "para"
[6] "stderr" "varNames" "vcov"
> setdiff(names(fit2), names(fit))
[1] "ggdat"

Specifically, the extended ‘qris’ fit inherits call, coefficient, para, stderr, varNames, and vcov
from the original ‘qris’ object. The call component is the function call from the original qris() fit,
while coefficient, stderr, and vcov are used to store the point estimates, standard error estimates,
and covariance matrix, respectively. The para component is a list containing the parameters specified
during the fitting of the quantile regression model, and varNames is a character string representing
the variable names in the function call. The newly added values are ggdat and gg. The ggdat is a
data frame containing covariate information generated under the different quantiles and base times
specified in the qris.extend(). Finally, the corresponding covariate effect plot can be generated by
plotting the extended ‘qris’ fit as follows.

> plot(fit2)

The true values of β’s at different quantiles and base times, computed from Equation (7), can
be implemented in the following commands.

> ## Global parameters
> r <- 2:1 * sqrt(log(2)) / 10
> k <- 2
> ## Function to calculate true beta
> trueB <- function(t0, tau) {

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



Contributed research article 126

+ b <- log(1 / r * ((r * t0) ^ k - log(1 - tau))^(1 / k) - t0)
+ c(b[1], b[2] - b[1])
+ }
> ## True beta calculation
> true_Q <- c(t(sapply(4:7 / 10, trueB, t0 = 1)))
> true_t0 <- c(t(sapply(1:3, trueB, tau = .5)))

The following code extends the ‘ggplot’ objects generated by plot.qris() by adding additional
layers of true value curves and incorporating various ggplot options. The resulting figures, Figure 3a
and Figure 3b, present the output based on whether the covariate effects are plotted against
quantiles or base times, respectively. This observed trend aligns with the specifications described
in Equation (7), where increasing τ corresponds to an increasing β0 while keeping ρ and X fixed.
On the other hand, the covariate effect does not change with quantiles but slightly increases with
base times, echoing the model specification where β0 is inversely related to t0 and β1 increases as t0
increases.

> library(ggplot2)
> plot(fit2) + theme(legend.position = "bottom") +
+ geom_line(aes(x = Qs, y = true_Q, col = variable, linetype = "True value")) +
+ scale_linetype_manual(name = "", values = c("True value" = "dotdash"))
> b <- plot(fit2, t0s = 1:3, byQs = F)
> b + theme(legend.position = "bottom") +
+ geom_line(aes(x = t0s, y = true_t0, col = variable,
+ linetype = "True value")) +
+ scale_linetype_manual(name = "", values = c("True value" = "dotdash"))

(a) Plot for Q ∈ {0.4, . . . , 0.7} at t0 = 1 (b) Plot for t0 ∈ {1, . . . , 3} at Q = 0.5

Figure 3: (a) Estimated effects of covariate with the associated 95% pointwise confidence intervals
for quantiles ranging from 0.4 to 0.7 at t0 = 1. Red and blue solid lines are the point estimates of
regression parameters for intercept and covariate X, respectively. Similarly, red and blue dotted lines
are the upper and lower bounds of 95% pointwise confidence intervals for intercept and covariate
X, respectively. (b) Estimated effects of covariate with the associated 95% pointwise confidence
intervals for base times ranging from 1 to 3 at τ = 0.5. Red and blue solid lines are the point
estimates of regression parameters for intercept and covariate X, respectively. Similarly, red and
blue dotted lines are the upper and lower bounds of 95% pointwise confidence intervals for intercept
and covariate X, respectively.

4.2 North Central Cancer Treatment Group Lung Cancer Data

The North Central Cancer Treatment Group Lung Cancer Data records the survival of patients
with advanced lung cancer, along with assessments of the patients’ performance status measured by
both physicians and the patients themselves (Loprinzi et al., 1994). The original objective of the
study was to ascertain whether descriptive information from a patient-completed questionnaire could
offer prognostic insights. The original objective of the study was to determine whether descriptive
information from a patient-completed questionnaire could provide prognostic information. However,

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



Contributed research article 127

for this illustration, we focus on how gender and weight loss affect the quantiles of residual life for
patients diagnosed with advanced lung cancer at different time points. The lung cancer data are
publicly available from the survival package (Therneau, 2021) as lung. The following code displays
the structure of the lung dataset with variables of interest.

> data(cancer, package = "survival")
> str(subset(lung, select = c(time, status, sex, wt.loss)))
'data.frame': 228 obs. of 4 variables:
$ time : num 306 455 1010 210 883 ...
$ status : num 2 2 1 2 2 1 2 2 2 2 ...
$ sex : num 1 1 1 1 1 1 2 2 1 1 ...
$ wt.loss: num NA 15 15 11 0 0 10 1 16 34 ...

The lung data contains 228 patients whose observed survival times in days and censoring status
(1 = censored, 2 = dead) are recorded in the time and the status columns, respectively. Although
the censoring status in this dataset is not recorded in the typical 0-1 fashion, the Surv() function is
still applicable to create the corresponding “Surv" object. The lung data yields a censoring rate
of 27.6% with a median survival time of 310 days. The covariates of interest are gender (sex =
1 if male, sex = 2 if female) and weight loss (wt.loss). In the following, we use the proposed
semiparametric quantile regression models to assess the gender and standardized weight loss effects
on different quantiles of residual life at different base times.

We first model the median residual life (Q = 0.5) when the base time is one month (t0 = 30).
Since the estimated median survival times for combined lung cancers are typically less than one
year, with a range of 8 to 13 months (Siegel et al., 2021), setting the base time at one month
provides insight into how gender and weight loss impact the residual time in early follow-up. In the
following, we obtain the regression coefficient estimates using the induced smoothing functions and
the corresponding variance estimate with the partial multiplier bootstrap approach.

> lung$male <- factor(lung$sex, 1:2, c("Male", "Female"))
> lung$std.wt.loss <- scale(lung$wt.loss)
> fit1 <- qris(Surv(time, status) ~ male + std.wt.loss,
+ data = lung, t0 = 30, Q = .5, nB = 100,
+ method = "smooth", se = "pmb")
> summary(fit1)
Call:
qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 30, Q = 0.5, nB = 100, method = "smooth",
se = "pmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 5.5611 0.0950 58.550 <2e-16 ***
maleFemale 0.4804 0.1805 2.661 0.0078 **
std.wt.loss -0.0731 0.0837 -0.874 0.3824
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Subjects with missing values (in any of the variables relevant for the modeling task) are
automatically removed when qris() is called. The estimated intercept implies that the median
residual life for patients who have survived up to 30 days is exp(5.5611) = 260.1 days for a male with
an average weight loss. More interestingly, the summary shows that the gender effect is statistically
significant at the 0.05 significance level, indicating that a female patient is expected to have a median
residual life at 30 days that is exp(0.4804) = 1.617 times that of a male patient with the same
weight loss. The effect of the weight loss is not statistically significant at the 0.05 level. In addition
to summary(), important statistics such as the coefficient and variance estimates can be extracted
by S3 methods coef() and vcov(), respectively.

> coef(fit1)
(Intercept) maleFemale std.wt.loss
5.56111984 0.48044228 -0.07307635
> vcov(fit1)

(Intercept) maleFemale std.wt.loss
(Intercept) 0.009021459 -0.010944549 -0.003074041
maleFemale -0.010944549 0.032594288 0.002847148
std.wt.loss -0.003074041 0.002847148 0.006998314

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=survival


Contributed research article 128

Moreover, the corresponding 95% Wald-type confidence interval can be printed by applying the
confint() function to the ‘qris’ object.

> confint(fit1)
2.5 % 97.5 %

(Intercept) 5.3749598 5.74727989
maleFemale 0.1265926 0.83429199
std.wt.loss -0.2370390 0.09088626

The update() function can be conveniently applied to update existing ‘qris’ objects. The
following examples update the method and se arguments from fit1. The updated results yield
similar coefficient estimates, but the non-smooth procedure (method = "nonsmooth") yields slightly
greater standard error estimates.

> summary(fit2 <- update(fit1, method = "nonsmooth", se = "fmb"))
Call:
qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 30, Q = 0.5, nB = 100, method = "nonsmooth",
se = "fmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 5.5585 0.1132 49.106 <2e-16 ***
maleFemale 0.4695 0.2015 2.331 0.0198 *
std.wt.loss -0.0668 0.1029 -0.650 0.5159
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(update(fit1, method = "iterative"))
Call:
qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 30, Q = 0.5, nB = 100, method = "iterative",
se = "pmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 5.5605 0.1016 54.712 <2e-16 ***
maleFemale 0.4807 0.1626 2.957 0.0031 **
std.wt.loss -0.0720 0.0903 -0.797 0.4252
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

At a lower (Q = 0.25) and a higher (Q = 0.75) quantiles, the gender effect remains significant
at the 0.05 significance level indicating female patients are associated with longer lower-quantile and
higher-quantile residual life than male patients with the same weight loss. Among these models, we
observed that female patients tend to have higher coefficient estimates when fitting higher-quantile
residual life. While the sign of the estimated regression coefficient for weight loss changes to a
negative value when considering the lower quantile, the effects remain statistically insignificant for
both the lower and higher quantiles.

> summary(update(fit1, Q = 0.25))
Call:
qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 30, Q = 0.25, nB = 100, method = "smooth",
se = "pmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 4.9111 0.1034 47.480 <2e-16 ***
maleFemale 0.4651 0.2041 2.279 0.0227 *
std.wt.loss 0.0543 0.0584 0.930 0.3525
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(update(fit1, Q = 0.75))
Call:

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



Contributed research article 129

qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 30, Q = 0.75, nB = 100, method = "smooth",
se = "pmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 6.0748 0.1063 57.126 <2e-16 ***
maleFemale 0.5237 0.1487 3.522 0.0004 ***
std.wt.loss -0.0171 0.1166 -0.147 0.8835
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We also consider the base time at six months t0 = 180, which enables us to assess gender and
weight loss effects in median residual time at a moderate length of follow-up. The estimated effect for
the gender and weight loss increases as t0 increases from 30 days to 180 days and becomes significant
at the 0.05 significant level. Additionally, the effect of the weight loss seems to be associated with a
shorter survival time after 180 days, with a p-value of 0.0008.

> summary(update(fit1, t0 = 180))
Call:
qris(formula = Surv(time, status) ~ male + std.wt.loss,
data = lung, t0 = 180, Q = 0.5, nB = 100, method = "smooth",
se = "pmb")

qris Estimator
estimate std.Error z.value p.value

(Intercept) 5.2243 0.0912 57.255 <2e-16 ***
maleFemale 0.5821 0.1867 3.117 0.0018 **
std.wt.loss -0.2515 0.0754 -3.337 0.0008 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The ‘qris’ object is designed to be compatible with S3 methods: predict() and residuals()
functions. The following presents the fitted survival times for two hypothetical male and female
patients with no weight loss, as well as the first five residual values for the dataset.

> lung.new <- data.frame(male = c("Male", "Female"), std.wt.loss = 0)
> predict(fit2, newdata = lung.new)

1 2
444.9026 289.4422
> head(residuals(fit2), 5)

1 2 3 4 5
-20.86127 -575.86127 232.44474 -416.82295 -555.82295

To better understand the covariate effects on different quantiles of residual time and across
different base times, we plot the estimated regression coefficients of the intercept, sex, and weight
loss in fit1 and fit2. Figures 4a and 4b display the estimated regression coefficients when method
= "smooth" and method = "nonsmooth", respectively, at different quantiles ranging from 0.2 and
0.5 at t0 = 30 days. The plot.qris() function is currently not available for the iterative estimator.
This is mainly due to an extended computation time involved, as indicated by our simulation results,
and the nature of plotting that necessitates computations across various quantiles or base times. As
expected, the two plots show very similar patterns. We plot the estimated regression coefficients
of the intercept, sex, and weight loss for different quantiles in the range of 0.2 to 0.5 at t0 = 50,
60, 70, and 80 days (Figure 4c), as well as for different base times in the range of 50 to 80 days
at τ = 0.2, 0.3, 0.4, and 0.5 (Figure 4d). The estimation method used is non-iterative induced
smoothed estimation (method = "smooth"). In Figure 4c, the estimated intercept increases as the
quantile increases (for a given base time). The estimated slopes for sex remain largely the same,
but those for weight loss tend to decrease slightly across different quantiles (for a given base time).
These patterns remain consistent for different base times. In Figure 4d, the estimated intercepts
increase as the quantiles increase, but with a given quantile, they remain flat across the different
base times considered. The estimated regression coefficients for the two covariates do not appear to
change significantly for different base times.

> hide <- theme(legend.position = "none")
> plot(fit1, Qs = 2:5 / 10, byQs = TRUE, ggextra = hide)
> plot(fit2, Qs = 2:5 / 10, byQs = TRUE, ggextra = hide)

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



Contributed research article 130

> plot(fit1, Qs = 2:5 / 10, t0s = 5:8 * 10, byQs = TRUE, ggextra = hide)
> plot(fit1, Qs = 2:5 / 10, t0s = 5:8 * 10, byQs = FALSE, ggextra = hide)

(a) method = ”smooth” and se = ”pmb” (b) method = ”nonsmooth” and se = ”fmb”

(c) method = ”smooth” and se = ”pmb” (d) Multiple covariate effect plot against base time

Figure 4: Green, red and blue lines are the point estimates of regression parameters for intercept,
covariate sex and covariate weight loss, respectively. Solid line and dotted line are the point estimates
and the upper and lower bounds of 95% pointwise confidence intervals for each regression coefficient.
(a) method = "smooth" and se = "pmb" (τ = 0.2, 0.3, 0.4, 0.5, t0 = 30) (b) method = "nonsmooth"
and se = "fmb" (τ = 0.2, 0.3, 0.4, 0.5, t0 = 30) (c) method = "smooth" and se = "pmb" against
quantiles (τ = 0.2, 0.3, 0.4, 0.5, t0 = 50, 60, 70, 80) (d) method = "smooth" and se = "pmb" against
base times (τ = 0.2, 0.3, 0.4, 0.5, t0 = 50, 60, 70, 80)

5 Conclusion

The purpose of the qris package is to provide a comprehensive tool for fitting quantile regression
models on residual life for right-censored survival data, with the aim of promoting widespread
dissemination and utilization. This package implements one estimation method based on non-
smooth estimating functions and two estimation methods based on their induced smoothed versions.
The non-smooth estimator is calculated through L1-type minimization while incorporating the
IPCW technique, and its variance is calculated using full multiplier bootstrapping. The first type of
the induced smoothed estimator, a non-iterative version, directly solves estimating functions, and
its variance can be calculated using either the full multiplier bootstrapping or the robust sandwich
form with partial multiplier bootstrapping. As evidenced by the simulation results, this enables
one to substantially reduce computing times without sacrificing estimation accuracy and stability

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qris


Contributed research article 131

compared to the original non-smooth function-based method. The iterative smoothed estimator
has an advantage in obtaining more precise estimates than its non-iterative version, although it
requires longer computing times. For all these methods, estimates of the regression coefficients
and their variances can be calculated at user-defined quantiles and base times, as long as they are
identifiable. Additionally, the package provides features for plotting estimates with associated 95%
confidence intervals against quantiles and base times using the generic plot function. These plots
visualize patterns of estimates at different quantiles and base times, helping users to easily grasp the
overall picture. The package qris and its included functions are verified through illustrations using
simulated data with interpretation of the results demonstrated through a real data application.

Some possible directions for extending our package are as follows. Efforts can be made to
reduce the computational burden associated with variance estimation, which currently accounts
for a significant portion of the computing time. In particular, the iterative-induced smoothed
method employs the partial multiplier bootstrap method to calculate variance estimates in each
iteration. Since this method requires multiple iterations, it is crucial to explore more computationally
efficient variance estimation procedures for each iteration to reduce the currently relatively longer
computation time. One approach is to utilize a closed-form estimation of the mid-part of the
sandwich-type variance, as discussed in Chiou et al. (2014); Choi et al. (2018). Implementing this
direct variance estimation in each iteration is expected to further enhance computation efficiency.
Another direction is to generalize the approaches to allow for the inclusion of sampling weights,
which is useful for bias correction when failure time data are generated from non-random sampling
designs, such as case-cohort designs (Prentice, 1986; Chiou et al., 2015b). The current estimating
functions implemented in the qris package assume that the data are randomly sampled, with sampling
weights set to 1." To the best of our knowledge, there is a lack of model-checking procedures and
model-comparison methods specifically designed for the non-smooth estimator, and a logical next
step would be to develop these procedures for subsequent integration into the package.

References

R. Alhamzawi. Brq: Bayesian Analysis of Quantile Regression Models, 2020. URL https://CRAN.R-
project.org/package=Brq. R package version 3.0. [p115]

B. Brown and Y.-G. Wang. Standard errors and covariance matrices for smoothed rank estimators.
Biometrika, 92(1):149–158, 2005. URL https://doi.org/10.1093/biomet/92.1.149. [p114]

P.-C. Bürkner. Advanced Bayesian multilevel modeling with the R package brms. The R Journal,
10(1):395–411, 2018. doi: 10.32614/RJ-2018-017. [p115]

Y. Chen, N. Jewell, X. Lei, and S. Cheng. Semiparametric estimation of proportional mean
residual life model in presence of censoring. Biometrics, 61(1):170–178, 2005. URL https:
//doi.org/10.1111/j.0006-341X.2005.030224.x. [p114]

Y. Q. Chen. Additive expectancy regression. Journal of the American Statistical Association, 102
(477):153–166, 2007. URL https://doi.org/10.1198/016214506000000870. [p114]

Y. Q. Chen and S. Cheng. Linear life expectancy regression with censored data. Biometrika, 93(2):
303–313, 2006. URL https://doi.org/10.1093/biomet/93.2.303. [p114]

S. Chiou, S. Kang, and J. Yan. Rank-based estimating equations with general weight for accelerated
failure time models: An induced smoothing approach. Statistics in Medicine, 34(9):1495–1510,
2015a. URL https://doi.org/10.1002/sim.6415. [p117]

S. H. Chiou, S. Kang, and J. Yan. Fast accelerated failure time modeling for case-cohort data.
Statistics and Computing, 24(4):559–568, 2014. URL https://doi.org/10.1007/s11222-013-
9388-2. [p118, 131]

S. H. Chiou, S. Kang, and J. Yan. Semiparametric accelerated failure time modeling for clustered
failure times from stratified sampling. Journal of the American Statistical Association, 110(510):
621–629, 2015b. URL https://doi.org/10.1080/01621459.2014.917978. [p115, 118, 131]

S. H. Chiou, S. Kang, and J. Yan. aftgee: Accelerated failure time model with generalized estimating
equations, 2021. URL https://CRAN.R-project.org/package=aftgee. R package version 1.1.6.
[p115, 118]

S. Choi, S. Kang, and X. Huang. Smoothed quantile regression analysis of competing risks. Biometrical
Journal, 60(5):934–946, 2018. URL https://doi.org/10.1002/bimj.201700104. [p115, 118, 131]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=qris
https://CRAN.R-project.org/package=Brq
https://CRAN.R-project.org/package=Brq
https://doi.org/10.1093/biomet/92.1.149.
https://doi.org/10.1111/j.0006-341X.2005.030224.x
https://doi.org/10.1111/j.0006-341X.2005.030224.x
https://doi.org/10.1198/016214506000000870
https://doi.org/10.1093/biomet/93.2.303
https://doi.org/10.1002/sim.6415
https://doi.org/10.1007/s11222-013-9388-2
https://doi.org/10.1007/s11222-013-9388-2
https://doi.org/10.1080/01621459.2014.917978
https://CRAN.R-project.org/package=aftgee
https://doi.org/10.1002/bimj.201700104


Contributed research article 132

S. Dlugosz, L. Peng, R. Li, and S. Shi. cmprskQR: Analysis of competing risks using quantile
regressions, 2019. URL https://CRAN.R-project.org/package=cmprskQR. R package version
0.9.2. [p115]

D. Eddelbuettel, R. Francois, J. Allaire, K. Ushey, Q. Kou, N. Russell, I. Ucar, D. Bates, and
J. Chambers. Rcpp: Seamless R and C++ Integration, 2022a. URL https://CRAN.R-project.
org/package=Rcpp. R package version 1.0.9. [p118]

D. Eddelbuettel, R. Francois, D. Bates, B. Ni, and C. Sanderson. RcppArmadillo: ‘Rcpp’ Integration
for the ‘Armadillo’ Templated Linear Algebra Library, 2022b. URL https://CRAN.R-project.
org/package=RcppArmadillo. R package version 0.11.1.1.0. [p118]

P. Frumento. ctqr: Censored and truncated quantile regression, 2021. URL https://CRAN.R-
project.org/package=ctqr. R package version 2.0. [p115]

Y. Huang. Quantile calculus and censored regression. Annals of Statistics, 38(3):1607, 2010. doi:
10.1214/09-AOS771. [p114]

L. M. Johnson and R. L. Strawderman. Induced smoothing for the semiparametric accelerated
failure time model: Asymptotics and extensions to clustered data. Biometrika, 96(3):577–590,
2009. URL https://doi.org/10.1093/biomet/asp025. [p115, 118, 123]

S.-H. Jung. Quasi-likelihood for median regression models. Journal of the American Statistical
Association, 91(433):251–257, 1996. URL https://doi.org/10.1080/01621459.1996.10476683.
[p114]

S.-H. Jung, J.-H. Jeong, and H. Bandos. Regression on quantile residual life. Biometrics, 65(4):
1203–1212, 2009. URL https://doi.org/10.1111/j.1541-0420.2009.01196.x. [p114]

S. Kang. Fitting semiparametric accelerated failure time models for nested case–control data. Journal
of Statistical Computation and Simulation, 87(4):652–663, 2017. URL https://doi.org/10.1080/
00949655.2016.1222611. [p115]

K. Kim, J. Ko, and S. Kang. Comparison of variance estimation methods in semiparametric
accelerated failure time models for multivariate failure time data. Japanese Journal of Statistics
and Data Science, 4(2):1179–1202, 2021. URL https://doi.org/10.1007/s42081-021-00126-y.
[p123]

K. H. Kim, S. Kang, and S. H. Chiou. qris: Quantile regression model for residual lifetime using
an induced smoothing approach, 2022. URL https://CRAN.R-project.org/package=qris. R
package version 1.0.0. [p114, 115]

K. H. Kim, D. J. Caplan, and S. Kang. Smoothed quantile regression for censored residual life.
Computational Statistics, 38:1001–1022, 2023. URL https://doi.org/10.1007/s00180-022-
01262-z. [p115, 116, 117, 121]

M.-O. Kim, M. Zhou, and J.-H. Jeong. Censored quantile regression for residual lifetimes. Lifetime
Data Analysis, 18(2):177–194, 2012. URL https://doi.org/10.1007/s10985-011-9212-2. [p114,
115, 116]

R. Koenker. quantreg: Quantile regression, 2022. URL https://CRAN.R-project.org/package=
quantreg. R package version 5.87. [p115, 122]

R. Koenker and G. Bassett Jr. Regression quantiles. Econometrica: Journal of the Econometric
Society, pages 33–50, 1978. URL https://doi.org/10.2307/1913643. [p114, 116]

R. Koenker and I. Mizera. Penalized triograms: Total variation regularization for bivariate smoothing.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(1):145–163, 2004.
URL https://doi.org/10.1111/j.1467-9868.2004.00437.x. [p115]

R. Koenker, P. Ng, and S. Portnoy. Quantile smoothing splines. Biometrika, 81(4):673–680, 1994.
URL https://doi.org/10.1093/biomet/81.4.673. [p115]

R. Li, X. Huang, and J. E. Cortes. Quantile residual life regression with longitudinal biomarker
measurements for dynamic prediction. Journal of the Royal Statistical Society. Series C: Applied
Statistics, 65(5):755–773, 2016. URL http://www.jstor.org/stable/44681854. [p114, 116, 121]

S. Liu and S. K. Ghosh. Regression analysis of mean residual life function. Technical report, North
Carolina State University. Dept. of Statistics, 2008. URL https://repository.lib.ncsu.edu/
bitstream/handle/1840.4/3041/mimeo2613.pdf?sequence=1. [p114]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=cmprskQR
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=ctqr
https://CRAN.R-project.org/package=ctqr
https://doi.org/10.1093/biomet/asp025
https://doi.org/10.1080/01621459.1996.10476683
https://doi.org/10.1111/j.1541-0420.2009.01196.x
https://doi.org/10.1080/00949655.2016.1222611
https://doi.org/10.1080/00949655.2016.1222611
https://doi.org/10.1007/s42081-021-00126-y
https://CRAN.R-project.org/package=qris
https://doi.org/10.1007/s00180-022-01262-z
https://doi.org/10.1007/s00180-022-01262-z
https://doi.org/10.1007/s10985-011-9212-2
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=quantreg
https://doi.org/10.2307/1913643
https://doi.org/10.1111/j.1467-9868.2004.00437.x
https://doi.org/10.1093/biomet/81.4.673
http://www.jstor.org/stable/44681854
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/3041/mimeo2613.pdf?sequence=1
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/3041/mimeo2613.pdf?sequence=1


Contributed research article 133

C. L. Loprinzi, J. A. Laurie, H. S. Wieand, J. E. Krook, P. J. Novotny, J. W. Kugler, J. Bartel,
M. Law, M. Bateman, and N. E. Klatt. Prospective evaluation of prognostic variables from
patient-completed questionnaires. North Central Cancer Treatment Group. Journal of Clinical
Oncology, 12(3):601–607, 1994. URL https://doi.org/10.1200/JCO.1994.12.3.601. [p126]

G. Maguluri and C.-H. Zhang. Estimation in the mean residual life regression model. Journal
of the Royal Statistical Society: Series B (Methodological), 56(3):477–489, 1994. URL https:
//doi.org/10.1111/j.2517-6161.1994.tb01994.x. [p114]

D. Oakes and T. Dasu. A note on residual life. Biometrika, 77(2):409–410, 1990. URL https:
//doi.org/10.1093/biomet/77.2.409. [p114]

D. Oakes and T. Dasu. Inference for the proportional mean residual life model. Lecture Notes-
Monograph Series, pages 105–116, 2003. URL http://www.jstor.org/stable/4356266. [p114]

L. Peng and Y. Huang. Survival analysis with quantile regression models. Journal of the
American Statistical Association, 103(482):637–649, 2008. URL https://doi.org/10.1198/
016214508000000355. [p114, 115]

S. Portnoy. Censored regression quantiles. Journal of the American Statistical Association, 98(464):
1001–1012, 2003. URL https://doi.org/10.1198/016214503000000954. [p114, 115]

S. Portnoy and R. Koenker. The gaussian hare and the laplacian tortoise: computability of
squared-error versus absolute-error estimators. Statistical Science, 12(4):279–300, 1997. URL
https://doi.org/10.1214/ss/1030037960. [p114]

J. L. Powell. Censored regression quantiles. Journal of Econometrics, 32(1):143–155, 1986. URL
https://doi.org/10.1016/0304-4076(86)90016-3. [p115]

R. L. Prentice. A case-cohort design for epidemiologic cohort studies and disease prevention trials.
Biometrika, 73(1):1–11, 1986. URL https://doi.org/10.1093/biomet/73.1.1. [p131]

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria, 2021. URL https://www.R-project.org/. [p120]

R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal. Cancer statistics, 2021. CA: A Cancer Journal
for Clinicians, 71(1):7–33, 2021. URL https://doi.org/10.3322/caac.21654. [p127]

T. M. Therneau. survival: Survival analysis, 2021. URL https://CRAN.R-project.org/package=
survival. R package version 3.2-13. [p118, 127]

Y. Wei, A. Pere, R. Koenker, and X. He. Quantile regression methods for reference growth charts.
Statistics in Medicine, 25(8):1369–1382, 2006. URL https://doi.org/10.1002/sim.2271. [p114]

H. Wickham, W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, K. Woo, H. Yutani, and
D. Dunnington. ggplot2: Create elegant data visualisations using the grammar of graphics, 2022.
URL https://CRAN.R-project.org/package=ggplot2. R package version 3.3.6. [p115]

Z. Ying, S.-H. Jung, and L.-J. Wei. Survival analysis with median regression models. Journal of
the American Statistical Association, 90(429):178–184, 1995. URL https://doi.org/10.1080/
01621459.1995.10476500. [p114]

Z. Zhang, X. Zhao, and L. Sun. Goodness-of-fit tests for additive mean residual life model under right
censoring. Lifetime Data Analysis, 16(3):385–408, 2010. URL https://doi.org/10.1007/s10985-
010-9152-2. [p114]

Kyu Hyun Kim
Department of Statistics and Data Science and Department of Applied Statistics
Yonsei University
50 Yonsei-ro, Seodaemun-gu, Seoul
Republic of Korea
kyuhyunkim07@yonsei.ac.kr

Sangwook Kang
Department of Statistics and Data Science and Department of Applied Statistics
Yonsei University
50 Yonsei-ro, Seodaemun-gu, Seoul

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://doi.org/10.1200/JCO.1994.12.3.601
https://doi.org/10.1111/j.2517-6161.1994.tb01994.x
https://doi.org/10.1111/j.2517-6161.1994.tb01994.x
https://doi.org/10.1093/biomet/77.2.409
https://doi.org/10.1093/biomet/77.2.409
http://www.jstor.org/stable/4356266
https://doi.org/10.1198/016214508000000355
https://doi.org/10.1198/016214508000000355
https://doi.org/10.1198/016214503000000954
https://doi.org/10.1214/ss/1030037960
https://doi.org/10.1016/0304-4076(86)90016-3
https://doi.org/10.1093/biomet/73.1.1
https://www.R-project.org/
https://doi.org/10.3322/caac.21654
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.1002/sim.2271
https://CRAN.R-project.org/package=ggplot2
https://doi.org/10.1080/01621459.1995.10476500
https://doi.org/10.1080/01621459.1995.10476500
https://doi.org/10.1007/s10985-010-9152-2
https://doi.org/10.1007/s10985-010-9152-2
mailto:kyuhyunkim07@yonsei.ac.kr


Contributed research article 134

Republic of Korea
kanggi1@yonsei.ac.kr

Sy Han Chiou
Department of Statistics and Data Science
Southern Methodist University
P.O. Box 750332, Dallas, TX
USA
schiou@smu.edu
https: // www. sychiou. com/

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

mailto:kanggi1@yonsei.ac.kr
mailto:schiou@smu.edu
https://www.sychiou.com/


CONTRIBUTED RESEARCH ARTICLE 135

nortsTest: An R Package for Assessing
Normality of Stationary Processes
by Asael Alonzo Matamoros, Alicia Nieto-Reyes, and Claudio Agostinelli

Abstract Normality is the central assumption for analyzing dependent data in several time series
models, and the literature has widely studied normality tests. However, the implementations of
these tests are limited. The nortsTest package is dedicated to fill this void. The package performs
the asymptotic and bootstrap versions of the tests of Epps and Lobato and Velasco and the tests of
Psaradakis and Vavra, random projections and El Bouch for normality of stationary processes. These
tests are for univariate stationary processes but for El Bouch that also allows bivariate stationary
processes. In addition, the package offers visual diagnostics for checking stationarity and normality
assumptions for the most used time series models in several R packages. This work aims to show the
package’s functionality, presenting each test performance with simulated examples and the package
utility for model diagnostic in time series analysis.

1 Introduction

Normality (a set of observations sampled from a Gaussian process) is an essential assumption in various
statistical models. Therefore, developing procedures for testing this assumption is a topic that has
gained popularity over several years. Most existing literature and implementation is dedicated to
independent and identically distributed random variables (D’Agostino and Stephens, 1986); no results
show that these tests are consistent when applied to stationary processes. For this context, several tests
have been proposed over the years, but as far as we know, no R package or consistent implementation
exists.

The proposed nortsTest package provides seven test implementations to check normality of
stationary processes. This work aims to present a review of these tests and introduce the package
functionality. Thus, its novelty lies in being the first package and paper dedicated to the implementa-
tion of normality tests for stationary processes. The implemented tests are: (i) the asymptotic Epps
test, (Epps, 1987) and (Nieto-Reyes et al., 2014), based on the characteristic function and (ii) its sieve
bootstrap approximation (Psaradakis and Vávra, 2020), (iii) the corrected Skewness-Kurtosis (SK) test
implemented by Lobato and Velasco (2004) as an asymptotic test and (iv) by Psaradakis and Vávra
(2020) with a sieve bootstrap approximation, (v) the random projections test proposed by Nieto-Reyes
et al. (2014), which makes use of the tests in (i) and (iii), (vi) the Psadarakis and Vávra test (Psaradakis
and Vávra, 2017) that uses a bootstrap approximation of the Anderson and Darling (1952) test statistic
for stationary linear processes and (vii) a normality test by El Bouch et al. (2022) for multivariate
dependent samples. Tests (i) to (vi) are for univariate stationary processes.

Furthermore, we propose the check_residual() function for checking time-series models’ assump-
tions. This function returns a report for stationarity, seasonality, normality tests and visual diagnostics.
check_residual() supports models from the most used packages for time-series analysis, such as
the packages forecast (Hyndman and Khandakar, 2008) and aTSA (Qiu, 2015) and even functions in
the base R (Team, 2018); for instance, it supports the HoltWinters (stats R package) function for the
Holt and Winters method (Holt, 2004). In addition, the proposed nortsTest package has already been
applied in the literature, see Nieto-Reyes (2021) and Nieto-Reyes (2022).

Section 2 provides the theoretical background, including preliminary concepts and results. Section
3 introduces the normality tests for stationary processes, each subsection introducing a test framework
and including examples of the tests functions with simulated data. Section 4 provides numerical exper-
iments with simulated data and a real-world application: Subsection 4.1 reports a simulation study for
the implemented normality tests and Subsection 4.2 the package’s functionality for model checking in
a real data application. The carbon dioxide data measured in the Malua Loa Observatory (Stoffer, 2020)
is analyzed using a state space model from the forecast package, evaluating the model’s assumptions
using our proposed check_residuals() function. Section 5 discusses the package functionality and
provides our conclusions. Furthermore, we mention our future intended work on the package.

2 Preliminary concepts

This section provides some theoretical aspects of stochastic processes that are a necessary theoretical
framework for the following sections. Shumway and Stoffer (2010) and Tsay (2010) give more details
of the following definitions and results below.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=nortsTest
https://CRAN.R-project.org/package=forecast
https://CRAN.R-project.org/package=aTSA
https://CRAN.R-project.org/package=nortsTest
https://CRAN.R-project.org/package=forecast


CONTRIBUTED RESEARCH ARTICLE 136

For the purpose of this work, T is a set of real values denoted as time, T ⊆ R, for instance T = N

or T = Z, the naturals or integer numbers respectively. We denote by X := {Xt}t∈T a stochastic process
with Xt a real random variable for each t ∈ T. Following this notation, a time-series is just a finite
collection of ordered observations of X (Shumway and Stoffer, 2010). An important measure for a
stochastic process is its mean function µ(t) := E[Xt] for each t ∈ T, where E[·] denotes the usual
expected value of a random variable. A generalization of this measure is the k-th order centered
moment function µk(t) := E[(Xt − µ(t))k] for each t ∈ T and k > 1; with the process variance
function being the second order centered moment, σ2(t) := µ2(t). Other important measures are the
auto-covariance and auto-correlation functions, which measure the linear dependency between two
different time points of a given process. For any t, s ∈ T, they are, respectively,

γ(t, s) := E[(Xt − µ(t))(Xs − µ(s))] and ρ(t, s) :=
γ(t, s)√

µ2(t)
√

µ2(s)
.

Other widely used measure functions for the analysis of processes are the skewness and kurtosis
functions, defined as s(t) := µ3(t)/[µ2(t)]3/2 and k(t) := µ4(t)/[µ2(t)]2 for each t ∈ T, respectively.

A generally used assumption for stochastic processes is stationarity. It has a key role in forecasting
procedures of classic time-series modeling (Tsay, 2010) or as a principal assumption in de-noising
methods for signal theory (Wasserman, 2006).

Definition 1 A stochastic process X is said to be strictly stationary if, for every collection τ =
{t1, t2, . . . , tk} ⊂ T and h > 0, the joint distribution of {Xt}t∈τ is identical to that of {Xt+h}t∈τ .

The previous definition is strong for applications. A milder version of it, which makes use of the
process’ first two moments, is weak stationarity.

Definition 2 A stochastic process X is said to be weakly stationary if its mean function is constant in
time, µ(t) = µ, its auto-covariance function only depends on the difference between times, γ(s, t) =
σ|t − s| for a σ ∈ R, and it has a finite variance function, µ2(t) = µ2 < ∞.

For the rest of this work, the term stationary will be used to specify a weakly stationary process. A
direct consequence of the stationarity assumption is that the previous measure functions get simplified.
Thus, given a stationary stochastic process X, its mean function, k-th order centered moment, for k > 1,
and auto-covariance function are respectively,

µ = E[Xt1 ], µk = E[(Xt1 − µ)k] and γ(h) = E[(Xt1+h − µ)(Xt1 − µ)],

which are independent of t1 ∈ T.

Given a sample x1, . . . , xn, n ∈ N, of equally spaced observations of X, their corresponding
estimators, sample mean, sample k-th order centered moment and sample auto-covariance, are
respectively

µ̂ := n−1
n

∑
i=1

xi, µ̂k := n−1
n

∑
i=1

(xi − µ̂)k and γ̂(h) := n−1
n−h

∑
i=1

(xi+h − µ̂)(xi − µ̂).

A particular case in which stationarity implies strictly stationarity is a Gaussian process.

Definition 3 A stochastic process X is said to be a Gaussian process if for every finite collection
τ = {t1, t2, . . . , tk} ⊂ T, the joint distribution of {Xt}t∈τ has a multivariate normal distribution.

A series of mean zero uncorrelated random variables with finite constant variance is known as
white noise. If additionally, it is formed of independent and identically distributed (i.i.d) normal
random variables, it is known as Gaussian white noise; which is a particular case of stationary Gaussian
process. For the rest of the work, Xt ∼ N(µ, σ2) denotes that the random variable Xt is normally
distributed with mean µ and variance σ2 and χ2(v) denotes the Chi square distribution with v degrees
of freedom.

Other classes of stochastic processes can be defined using collections of white noise, for instance,
the linear process.

Definition 4 Let X be a stochastic process. X is said to be linear if it can be written as

Xt = µ + ∑
i∈Z

ϕiϵt−i,

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 137

where {ϵi}i∈Z is a collection of white noise random variables and {ϕi}i∈Z is a set of real values such
that ∑i∈Z |ϕj| < ∞.

An important class of processes is the auto-regressive moving average (ARMA). Box and Jenkins
(1990) introduced it for time series analysis and forecast, becoming very well-known in the 90s and
early 21st century.

Definition 5 For any non-negative integers p, q, a stochastic process X is an ARMA(p, q) process if
it is a stationary process and

Xt =
p

∑
i=0

ϕiXt−i +
q

∑
i=0

θiϵt−i, (1)

where {ϕi}
p
i=0 and {θi}

q
i=0 are sequences of real values with ϕ0 = 0, ϕp ̸= 0, θ0 = 1 and θq ̸= 0 and

{ϵi}i∈Z is a collection of white noise random variables.

Particular cases of ARMA processes are those known as auto-regressive (AR(p) := ARMA(p, 0))
and mean average (MA(q) := ARMA(0, q)) processes. Additionally, a random walk is a non stationary
AR(1) process satisfying (1) with p = 1, ϕ1 = 1 and q = 0. Several properties of an ARMA process can
be extracted from its structure. For that, the AR and MA polynomials are introduced

AR : ϕ(z) = 1 −
p

∑
i=0

ϕizi and MA : θ(z) =
q

∑
i=0

θizi,

where z is a complex number and, as before, ϕ0 = 0, ϕp ̸= 0, θ0 = 1 and θq ̸= 0. Conditions for
stationarity, order selection and, process behavior are properties studied from these two polynomials.

For modeling volatility in financial data, Bollerslev (1986) proposed the generalized auto-regressive
conditional heteroscedastic (GARCH) class of processes as a generalization of the auto-regressive conditional
heteroscedastic (ARCH) processes (Engle, 1982).

Definition 6 For any p, q ∈ N, a stochastic process X is a GARCH(p, q) process if it satisfies
Xt = µ + σtϵt with

σ2
t = α0 +

p

∑
i=1

αiϵ
2
t−i +

q

∑
i=1

βiσ
2
t−i.

µ is the process mean, σ0 is a positive constant value, {αi}
p
i=1 and {βi}

q
i=1 are non-negative sequences

of real values and {ϵt}t∈T is a collection of i.i.d. random variables.

A more general class of processes are the state-space models (SSMs), which have gained popularity
over the years because they do not impose on the process common restrictions such as linearity
or stationarity and are flexible in incorporating the process different characteristics (Petris et al.,
2007). They are widely used for smoothing (West and Harrison, 2006) and forecasting (Hyndman and
Khandakar, 2008) in time series analysis. The main idea is to model the process dependency with
two equations: the state equation, which models how parameters change over time, and the innovation
equation, which models the process in terms of the parameters. Some particular SSMs that analyze
the level, trend and seasonal components of the process are known as error, trend, and seasonal (ETS)
models. There are over 32 different variations of ETS models (Hyndman et al., 2008). One of them is
the multiplicative error, additive trend-seasonality (ETS(M, A, A)) model.

Definition 7 A SSM process X follows an ETS(M,A,A) model, if the process accepts

Xt = [Lt−1 + Tt−1 + St−1](1 + ϵt)

as innovation equation and

Lt = Lt−1 + Tt−1 + α(Lt−1 + Tt−1 + St−m)ϵt

Tt = Tt−1 + β(Lt−1 + Tt−1 + St−m)ϵt

St = St−m + γ(Lt−1 + Tt−1 + St−m)ϵt,

as state equations. α, β, γ ∈ [0, 1], m ∈ N denotes the period of the series and {ϵt} are i.i.d normal
random variables. For each t ∈ Z, Lt, Tt and St represent respectively the level, trend and seasonal
components.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 138

3 Normality tests for stationary processes

Extensive literature exists on goodness of fit tests for normality under the assumption of independent
and identically distributed random variables, including, among others, Pearson’s chi-squared test
(Pearson and Henrici, 1895), Kolmogorov-Smirnov test (Smirnov, 1948), Anderson-Darling test (An-
derson and Darling, 1952), SK test (Jarque and Bera, 1980) and Shapiro-Wilk test, (Shapiro and Wilk,
1965) and (Royston, 1982). These procedures have been widely used in many studies and applications,
see D’Agostino and Stephens (1986) for further details. There are no results, however, showing that
the above tests are consistent in the context of stationary processes, in which case the independence
assumption is violated. For instance, Gasser (1975) provides a simulation study where Pearson’s
chi-squared test has an excessive rejection rate under the null hypothesis for dependent data. For
this matter, several tests for stationary processes have been proposed over the years. A selection of
which we reference here. Epps (1987) provides a test based on the characteristic function, Hinich (1982)
proposes a similar test based on the process’ spectral density function (Berg et al., 2010, for further
insight). Gasser (1975) gives a correction of the SK test, with several modifications made in Lobato
and Velasco (2004), Bai and Ng (2005) and Psaradakis (2017), which are popular in many financial
applications. Bontemps and Meddahi (2005) constructs a test based on Stein’s characterization of a
Gaussian distribution. Using the random projection method (Cuesta-Albertos et al., 2007), Nieto-Reyes
et al. (2014) build a test that upgrades the performance of Epps (1987) and Lobato and Velasco (2004)
procedures. Furthermore, Psaradakis and Vávra (2017) adapts the Anderson and Darling (1952)
statistic for stationary linear processes approximating its sample distribution with a sieve bootstrap
procedure.

Despite the existing literature, consistent implementations of goodness of fit test for normality of
stationary processes in programming languages such as R or Python are limited. This is not the case
for normality of independent data, the nortest package (Gross and Ligges, 2015) implements tests
such as Lilliefors (Dallal and Wilkinson, 1986), Shapiro-Francia (Royston, 1993), Pearson’s chi-squared,
Cramer von Misses (Anderson, 1962) and Anderson-Darling. For a multivariate counterpart, the
mvnTest package (Pya et al., 2016) implements the multivariate Shapiro-Wilk, Anderson-Darling,
Cramer von Misses, Royston (Royston, 1992), Doornik and Hansen (Doornik and Hansen, 2008),
Henze and Zirkler (Henze and Zirkler, 1990) and the multivariate Chi square test (Vassilly Voinov and
Voinov, 2016). For the case of dependent data, we present here the nortsTest package. Type within
R install.packages("nortsTest", dependencies = TRUE) to install its latest released version from
CRAN. nortsTest performs the tests proposed in Epps (1987), Lobato and Velasco (2004), Psaradakis and
Vávra (2020), Nieto-Reyes et al. (2014), Psaradakis and Vávra (2017) and El Bouch et al. (2022).

Additionally, the package offers visualization functions for descriptive time series analysis and
several diagnostic methods for checking stationarity and normality assumptions for the most used
time series models of several R packages. To elaborate on this, Subsection 3.1 introduces the package
functionality and software and Subsection 3.2 provides an overview of tests for checking stationary
and seasonality. Finally, Subsections 3.3-3.5 present a general framework of each of the implemented
normality tests and their functionality by providing simulated data examples.

3.1 Software

The package works as an extension of the nortest package (Gross and Ligges, 2015), which performs
normality tests in random samples but for independent data. The building block functions of the
nortsTest package are:

• epps.test(), function that implements the test of Epps,

• epps_bootstrap.test(), function that implements a bootstrap approximation of the test of
Epps,

• lobato.test(), function that implements the asymptotic test of Lobato and Velasco,

• lobato_bootstrap.test(), function that implements a bootstrap approximation of the test of
Lobato and Velasco,

• rp.test(), function that implements the random projection test of Nieto-Reyes, Cuesta-Albertos
and Gamboa,

• vavra.test(), function that implements the test of Psaradaki and Vavra, and

• elbouch.test(), function that implements the test of El Bouch, Michel and Comon.

Each of these functions accepts a numeric (numeric) or ts (time series) class object for storing data,
and returns a htest (hypothesis test) class object with the main results for the test. To guarantee the
accuracy of the results, each test performs unit root tests for checking stationarity and seasonality (see
Subsection 3.2) and displays a warning message if any of them is not satisfied.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=mvnTest
https://CRAN.R-project.org/package=nortsTest
https://CRAN.R-project.org/package=nortsTest
https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=nortsTest


CONTRIBUTED RESEARCH ARTICLE 139

For visual diagnostic, the package offers different plot functions based on the ggplot2 package
(Wickham, 2009): the autoplot() function plots numeric, ts and mts (multivariate time series) classes
while the gghist() and ggnorm() functions are for plotting histogram and qq-plots respectively; and
on the forecast package (Hyndman and Khandakar, 2008): ggacf() and ggPacf() for the display of
the auto-correlation and partial auto-correlations functions respectively.

Furthermore, inspired in the function checkresiduals() of the forecast package, we provide
the check_residuals() function to test the model assumptions using the estimated residuals. The
upgrade of our proposal is that, besides providing plots for visual diagnosis (setting the plot option
as TRUE), it does check stationarity, seasonality (Subsection 3.2) and normality, presenting a report
of the used tests and conclusions for assessing the model’s assumptions. An illustration of these
functions is provided in Subsection 4.2, where we show the details of the functions and their utility for
assumptions commonly checked in time series modeling.

3.2 Tests for stationarity

For checking stationarity, the nortsTest package uses unit root and seasonal unit root tests. These tests
work similarly, checking whether a specific process follows a random walk model, which clearly is a
non-stationary process.

Unit root tests

A linear stochastic process X that follows a random walk model is non stationary. Its AR polynomial
is ϕ(z) = 1 − z, whose solution (root) is unique and equal to one. Thus, it is common to test the non
stationarity of a linear process by checking whether its AR polynomial has a unit root (a root equal to
one).

The most commonly used tests for unit root testing are Augmented Dickey-Fuller (Said and Dickey,
1984), Phillips-Perron (Perron, 1988), kpps (Kwiatkowski et al., 1992) and Ljung-Box (Box and Pierce,
1970). In particular, the Ljung-Box test contrasts the null auto-correlation hypothesis of identically
distributed Gaussian random variables, which is equivalent to test stationarity. The uroot.test()
and check_residual() functions perform these tests, making use of the tseries package (Trapletti and
Hornik, 2019).

Seasonal unit root tests

Let X be a stationary process and m its period. Note that for observed data, m generally corresponds
to the number of observations per unit of time. X follows a seasonal random walk if it can be written
as

Xt = Xt−m + ϵt,

where ϵt is a collection of i.i.d random variables. In a similar way, the process X is non-stationary if it
follows a seasonal random walk. Or equivalently, X is non stationary if the seasonal AR(1) polynomial
(ϕm(z) = 1 − ϕzm) has a unit root. The seasonal.test() and check_residuals() functions perform
the OCSB test (Osborn et al., 1988) from the forecast package and the HEGY (Beaulieu and Miron,
1993) and Ch (Canova and Hansen, 1995) tests from the uroot package (de Lacalle, 2019).

3.3 Tests of Epps

The χ2 test for normality proposed by Epps (1987) compares the empirical characteristic function of
the one-dimensional marginal of the process with the one of a normally distributed random variable
evaluated at certain points on the real line. Several authors, including Lobato and Velasco (2004),
Psaradakis and Vávra (2017) and El Bouch et al. (2022), point out that the greatest challenge in the
Epps’ test is its implementation procedure, which we address with the nortsTest package. Other
existing tests based on the empirical characteristic function of the one-dimensional marginal of the
process include Hong (1999) and the references therein. This test differs, however, in that it uses
spectral analysis and derivatives.

Furthermore, Meintanis (2016) reviews on testing procedures based on the empirical characteristic
function. There, it is commented about the random projection test (Nieto-Reyes et al., 2014, and here
below) as a recent development of Epps’ test. In fact, in Nieto-Reyes et al. (2014) the consistency
of Epps test is improved by taking at random the elements at which the characteristic function is
evaluated. Additionally, El Bouch et al. (2022) proposes a sieve bootstrap modification of the Epps’
test. In addition to the classical asymptotic Epps’ test, we include these last two approaches here, and

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=forecast
https://CRAN.R-project.org/package=forecast
https://CRAN.R-project.org/package=nortsTest
https://CRAN.R-project.org/package=tseries
https://CRAN.R-project.org/package=forecast
https://CRAN.R-project.org/package=uroot
https://CRAN.R-project.org/package=nortsTest


CONTRIBUTED RESEARCH ARTICLE 140

in the package, see the Example below and the paragraph before it. Let us provide now the foundation
behind the Epps’ tests.

Let X be a stationary stochastic process that satisfies

∞

∑
t=−∞

|t|k|γ(t)| < ∞ for some k > 0. (2)

The null hypothesis is that the one-dimensional marginal distribution of X is a Gaussian process. The
procedure for constructing the test consists of defining a function g, estimating its inverse spectral
matrix function, minimizing the generated quadratic function in terms of the unknown parameters of
the random variable and, finally, obtaining the test statistic, which converges in distribution to a χ2.

Given N ∈ N with N ≥ 2, let

Λ := {λ := (λ1, . . . , λN) ∈ RN : λi ≤ λi+1 and λi > 0, for i = 1, 2, . . . , N},

and g : R × Λ → Rn be a measurable function, where

g(x, λ) := [cos(λ1x), sin(λ1x), . . . , cos(λN x), sin(λN x)].

Additionally, let gθ : Λ → RN be a function defined by

gθ(λ) := [Re(Φθ(λ1)), Im(Φθ(λ1)), . . . , Re(Φθ(λN)), Im(Φθ(λN))]t ,

where the Re(·) and Im(·) are the real and imaginary components of a complex number and Φθ is
the characteristic function of a normal random variable with parameters θ := (µ, σ2) ∈ Θ, an open
bounded set contained in R × R+. For any λ ∈ Λ, let us also denote

ĝ(λ) :=
1
n

n

∑
t=1

[cos(λ1xt), sin(λ1xt), . . . , cos(λN xt), sin(λN xt)]
t.

Let f (v; θ, λ) be the spectral density matrix of {g(Xt, λ)}t∈Z at a frequency v. Then, for v = 0, it can
be estimated by

f̂ (0; θ, λ) :=
1

2πn

 n

∑
t=1

Ĝ(xt,0, λ) + 2
⌊n2/5⌋

∑
i=1

(1 − i/⌊n2/5⌋)
n−i

∑
t=1

Ĝ(xt,i, λ)

 ,

where Ĝ(xt,i, λ) = (ĝ(λ)− g(xt, λ))(ĝ(λ)− g(xt+i, λ))t and ⌊·⌋ denotes the floor function. The test
statistic general form under H0 is

Qn(λ) := min
θ∈Θ

{Qn(θ, λ)} ,

with
Qn(θ, λ) := (ĝ(λ)− gθ(λ))

tG+
n (λ)(ĝ(λ)− gθ(λ)),

where G+
n is the generalized inverse of the spectral density matrix 2π f̂ (0; θ, λ). Let

θ̂ := arg min
θ∈Θ

{Qn(θ, λ)} ,

be the argument that minimizes Qn(θ, λ) such that θ̂ is in a neighborhood of θ̂n := (µ̂, γ̂(0)). To
guarantee its’ existence and uniqueness, the following assumptions are required. We refer to them as
assumption (A.).

(A.) Let θ0 be the true value of θ under H0, then for every λ ∈ Λ the following conditions are
satisfied.

• f (0; θ, λ) is positive definite.

• Φθ(λ) is twice differential with respect to θ in a neighborhood of θ0.

• The matrix D(θ0, λ) =
∂Φθ(λ)

∂θ|θ=θ0

∈ RN×2 has rank 2.

• The set Θ0(λ) := {θ ∈ Θ : Φθ(λi) = Φθ0 (λi), i = 1, . . . , N} is a finite bounded set in Θ. And θ
is a bounded subset R × R+.

• f (0; θ, λ) = f (0; θ0, λ) and D(θ0, λ) = D(θ,λ) for all θ ∈ Θ0(λ).

Under these assumptions, the Epps’s main result is presented as follows.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 141

Theorem 1 (Epps, 1987, Theorem 2.1) Let X be a stationary Gaussian process such that (2) and (A.)
are satisfied, then nQn(λ) →d χ2(2N − 2) for every λ ∈ Λ.

The current nortsTest version, uses Λ := {lambda/γ̂(0)} as the values to evaluate the empirical
characteristic function, where γ̂(0) is the sample variance. By default lambda = c(1, 2). Therefore,
the implemented test statistic converges to a χ2 distribution with two degrees of freedom. The user
can change these Λ values as desired by simply specifying the function’s lambda argument, as we
show in the Example below.

Example 1 A stationary AR(2) process is drawn using a beta distribution with shape1 = 9 and
shape2 = 1 parameters, and performed the implementation of the test of Epps, epps.test(). At
significance level α = 0.05, the null hypothesis of normality is correctly rejected.

set.seed(298)
x = arima.sim(250,model = list(ar =c(0.5,0.2)),

rand.gen = rbeta,shape1 = 9,shape2 = 1)

# Asymptotic Epps test
epps.test(x)
#>
#> Epps test
#>
#> data: x
#> epps = 22.576, df = 2, p-value = 1.252e-05
#> alternative hypothesis: x does not follow a Gaussian Process

Asymptotic Epps test with random Lambda values as proposed in Nieto-Reyes et al. (2014).

set.seed(298)
epps.test(x, lambda = abs(rnorm(mean = c(1, 2), 2)))
#>
#> Epps test
#>
#> data: x
#> epps = 25.898, df = 2, p-value = 2.379e-06
#> alternative hypothesis: x does not follow a Gaussian Process

Approximated sieve bootstrap Epps test using 1000 repetitions of 250 units.

set.seed(298)
epps_bootstrap.test(x, seed = 298)
#>
#> Sieve-Bootstrap epps test
#>
#> data: y
#> bootstrap-epps = 22.576, p-value < 2.2e-16
#> alternative hypothesis: y does not follow a Gaussian Process

3.4 Tests of Lobato and Velasco

Lobato and Velasco (2004) provides a consistent estimator for the corrected SK test statistic for
stationary processes, see Lomnicki (1961) and Gasser (1975) for further insight. Note that the SK
test is also known as the Jarque-Bera test (Jarque and Bera, 1980), which is already available in several
R packages (Trapletti and Hornik, 2019, for instance). The improvement of this proposal over those
implementations is a correction in the skewness and kurtosis estimates by the process’ auto-covariance
function, resulting in a consistent test statistic under the assumption of correlated data. The test in
Lobato and Velasco (2004) is asymptotic, which is computationally efficient, as opposed to a bootstrap
based test. Psaradakis and Vávra (2020) show that the bootstrap modification of the Lobato and
Velasco’s test is a fair competitor against the original asymptotic test, beating other tests for normality
of the one-dimensional marginal distribution in terms of power. Thus, the package incorporates both
the asymptotic, lobato.test() and its bootstrap version lobato_bootstrap.test().

The general framework for the test is presented in what follows. On the contrary to the test of
Epps, this proposal does not require additional parameters for the computation of the test sample
statistic.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=nortsTest


CONTRIBUTED RESEARCH ARTICLE 142

Let X be a stationary stochastic process that satisfies

∞

∑
t=0

|γ(t)| < ∞. (3)

The null hypothesis is that the one-dimensional marginal distribution of X is normally distributed,
that is

H0 : Xt ∼ N(µ, σ2) for all t ∈ R.

Let kq(j1, j2, . . . , jq−1) be the q-th order cummulant of X1, X1+j1 , . . . , X1+jq−1 . H0 is fulfilled if all the
marginal cummulants above the second order are zero. In practice, it is tested just for the third and
fourth order marginal cummulants. Equivalently, in terms of moments, the marginal distribution is
normal by testing whether µ3 = 0 and µ4 = 3µ2

2. For non-correlated data, the SK test compares the
SK statistic against upper critical values from a χ2(2) distribution (Bai and Ng, 2005). For a Gaussian
process X satisfying (3), it holds the limiting result

√
n
(

µ̂3

µ̂4 − 3µ̂2
2

)
→d N[02, ΣF)],

where 02 := (0, 0)t ∈ R2 and ΣF := diag(6F(3), 24F(4)) ∈ R2x2 is a diagonal matrix with F(k) :=
∑∞

j=−∞ γ(j)k for k = 3, 4 (Gasser, 1975).

The following consistent estimator in terms of the auto-covariance function is proposed in Lobato
and Velasco (2004)

F̂(k) :=
n−1

∑
t=1−n

γ̂(t)[γ̂(t) + γ̂(n − |t|)]k−1,

to build a generalized SK test statistic

G :=
nµ̂2

3

6F̂(3)
+

n(µ̂4 − 3µ̂2)
2

24F̂(4)
.

Similar to the SK test for non-correlated data, the G statistic is compared against upper critical values
from a χ2(2) distribution. This is seen in the below result that establishes the asymptotic properties
of the test statistics, so that the general test procedure can be constructed. The result requires the
following assumptions, denoted by (B.), for the process X.

(B.)

• E[X16
t ] < ∞ for t ∈ T.

• ∑∞
j1=−∞ · · ·∑∞

jq−1=−∞ |kq(j1, . . . , jq−1)| < ∞ for q = 2, 3, . . . , 16.

• ∑∞
j=1

(
E
[

E[(X0 − µ)k|Bj]− µk

]2
)1/2

< ∞ for k = 3, 4, where Bj denotes the σ-field generated

by Xt, t ≤ −j.

• E [Zk]
2 + 2 ∑∞

j=1 E
(
[Zk]

[
(Xj − µ)k − µk

])
> 0 for k = 3, 4, with Zk = (X0 − µ)k − µk.

Note that these assumptions imply that the higher-order spectral densities up to order 16 are
continuous and bounded.

Theorem 2 (Lobato and Velasco, 2004, Theorem 1) Let X be a stationary process. If X is Gaussian
and satisfies (3) then G →d χ2(2), and under assumption (B.), the test statistic G diverges whenever
µ3 ̸= 0 or µ4 ̸= 3µ2

2.

Example 2 A stationary MA(3) process is drawn using a gamma distribution with rate = 3 and
shape = 6 parameters. The lobato.test() function performs the test of Lobato and Velasco to the
simulated data. At significance level α = 0.05, the null hypothesis of normality is correctly rejected.

set.seed(298)
x = arima.sim(250,model = list(ma = c(0.2, 0.3, -0.4)),

rand.gen = rgamma, rate = 3, shape = 6)
# Asymptotic Lobato & Velasco
lobato.test(x)
#>
#> Lobato and Velasco's test

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 143

#>
#> data: x
#> lobato = 65.969, df = 2, p-value = 4.731e-15
#> alternative hypothesis: x does not follow a Gaussian Process

Approximated sieve bootstrap Lobato and Velasco test using 1000 repetitions of 250 units.

lobato_bootstrap.test(x, seed = 298)
#>
#> Sieve-Bootstrap lobato test
#>
#> data: y
#> bootstrap-lobato = 65.969, p-value < 2.2e-16
#> alternative hypothesis: y does not follow a Gaussian Process

3.5 The Random Projections test

The previous proposals only test for the normality of the one-dimensional marginal distribution of
the process, which is inconsistent against alternatives whose one-dimensional marginal is Gaussian.
Nieto-Reyes et al. (2014) provides a procedure to fully test normality of a stationary process using a
Crammér-Wold type result (Cuesta-Albertos et al., 2007) that uses random projections to differentiate
among distributions. In Nieto-Reyes et al. (2014) existing tests for the normality of the one dimensional
marginal are applied to the random projections and the resulting p-values combined using the false
discovery rate for dependent data (Benjamini and Yekutieli, 2001). The nortsTest package improves
on this test by allowing to use the less conservative false discovery rate in Benjamini and Hochberg
(1995).

We show the Crammér-Wold type result below. The result works for separable Hilbert spaces,
however here, for its later application, we restrict it to l2, the space of square summable sequences
over N, with inner product ⟨·, ·⟩.

Theorem 3 (Cuesta-Albertos et al., 2007, Theorem 3.6) Let η be a dissipative distribution on l2 and
Z a l2-valued random element, then Z is Gaussian if and only if

η{h ∈ l2 : ⟨Z, h⟩ has a Gaussian distribution} > 0.

A dissipative distribution (Nieto-Reyes et al., 2014, Definition 2.1) is a generalization of the concept
of absolutely continuous distribution to the infinite-dimensional space. A Dirichlet process (Gelman
et al., 2013) produces random elements with a dissipative distribution in l2. In practice, generate
draws of h ∈ l2 with a stick-breaking process that makes use of beta distributions.

Let X = {Xt}t∈Z be a stationary process. As X is normally distributed if the process X(t) :=
{Xk}k≤t is Gaussian for each t ∈ Z, using the result above, Nieto-Reyes et al. (2014) provides a
procedure for testing that X is a Gaussian process by testing whether the process Yh = {Yh

t }t∈Z is
Gaussian.

Yh
t :=

∞

∑
i=0

hiXt−i = ⟨X(t), h⟩, (4)

where ⟨X(t), h⟩ is a real random variable for each t ∈ Z and h ∈ l2. Thus, Yh is a stationary process
constructed by the projection of X(t) on the space generated by h. Therefore, X is a Gaussian process
if and only if the one dimensional marginal distribution of Yh is normally distributed. Additionally,
the hypothesis of the tests Lobato and Velasco or Epps, such as (2), (3), (A) and (B), imposed on X are
inherited by Yh. Then, those tests can be applied to evaluate the normality of the one dimensional
marginal distribution of Yh. Further considerations include the specific beta parameters used to
construct the distribution from which to draw h and selecting a proper number of combinations to
establish the number of projections required to improve the method performance. All of these details
are discussed in Nieto-Reyes et al. (2014).

Next, we summarize the test of random projections in practice:

1. Select k, which results in 2k independent random projections (by default k = 1).

2. Draw the 2k random elements to project the process from a dissipative distribution that uses a
particular beta distribution. By default, use a β(2, 7) for the first k projections and a β(100, 1) for
the later k.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=nortsTest


CONTRIBUTED RESEARCH ARTICLE 144

3. Apply the tests of Lobato and Velasco to the even projected processes and Epps to the odd
projections.

4. Combine the obtained 2k p-values using the false discover rate. By default, use Benjamini and
Yekutieli (2001) procedure.

The rp.test() function implements the above procedure. The user might provide optional
parameters such as the number of projections k, the parameters of the first beta distribution pars1 and
those of the second pars2. The next example illustrates the application of the rp.test() to a stationary
GARCH(1,1) process drawn using normal random variables.

Example 3 A stationary GARCH(1,1) process is drawn with a standard normal distribution and
parameters α0 = 0, α1 = 0.2 and β1 = 0.3 using the (fGarch package, Wuertz et al., 2017). Note
that a GARCH(1,1) process is stationary if the parameters α1 and β1 satisfy the inequality α1 + β1 < 1
(Bollerslev, 1986).

set.seed(3468)
library(fGarch)
spec = garchSpec(model = list(alpha = 0.2, beta = 0.3))
x = ts(garchSim(spec, n = 300))
rp.test(x)
#>
#> k random projections test.
#>
#> data: x
#> k = 1, p.value adjust = Benjamini & Yekutieli, p-value = 1
#> alternative hypothesis: x does not follow a Gaussian Process

At significance level α = 0.05, the applied random projections test with k = 1 as the number of
projections shows no evidence to reject the null hypothesis of normality.

3.6 The Psaradakis and Vavra’s test

Psaradakis and Vávra (2017) adapted a distance test for normality for a one-dimensional marginal
distribution of a stationary process. Initially, the test was based on the Anderson (1952) test statistic
and used an auto-regressive sieve bootstrap approximation to the null distribution of the sample
test statistic. Later, Psaradakis and Vávra (2020) considered this test as the ultimate normality test
based on the empirical distribution function, and adapted its methodology to a wide range of tests,
including Shapiro-Wilk (Shapiro and Wilk, 1965), Jarque-Bera (Jarque and Bera, 1980), Cramer von
Mises (Anderson, 1962), Epps, and Lobato-Velasco. Their experiments show that the Lobato-Velasco
and Jarque-Bera test’s bootstrap version performs best in small samples.

Although the test is said to be applicable to a wide class of non-stationary processes by transforming
them into stationary by means of a fractional difference operator, no theoretic result was apparently
provided to sustain this transformation. This work restricts the presentation of the original procedure
to stationary processes.

Let X be a stationary process satisfying

Xt =
∞

∑
i=0

θiϵt−i + µ0, t ∈ Z, (5)

where µ0 ∈ R, {θi}∞
i=0 ∈ l2 with θ0 = 1 and {ϵt}∞

i=0 is a collection of mean zero i.i.d random variables.
The null hypothesis is that the one dimensional marginal distribution of X is normally distributed,

H0 : F(µ0 +
√

γ(0)x)− FN(x) = 0, for all x ∈ R,

where F is the cumulative distribution function of X0, and FN denotes the standard normal cumulative
distribution function. Note that if ϵ0 is normally distributed, then the null hypothesis is satisfied.
Conversely, if the null hypothesis is satisfied, then ϵ0 is normally distributed and, consequently, X0.
The considered test for H0 is based on the Anderson-Darling distance statistic

Ad =
∫ ∞

−∞

[Fn(µ̂ +
√

γ̂(0)x)− FN(x)]2

FN(x)[1 − FN(x)]
dFN(x), (6)

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=fGarch


CONTRIBUTED RESEARCH ARTICLE 145

where Fn(·) is the empirical distribution function associated to F based on a simple random sample
of size n. Psaradakis and Vávra (2017) proposes an auto-regressive sieve bootstrap procedure to
approximate the sampling properties of Ad arguing that making use of classical asymptotic inference
for Ad is problematic and involved. This scheme is motivated by the fact that under some assumptions
for X, including (5), ϵt admits the representation

ϵt =
∞

∑
i=1

ϕi(Xt−i − µ0), t ∈ Z, (7)

for certain type of {ϕi}∞
i=1 ∈ l2. The main idea behind this approach is to generate a bootstrap sample

ϵ∗t to approximate ϵt with a finite-order auto-regressive model. This is because the distribution of the
processes ϵt and ϵ∗t coincide asymptotically if the order of the auto-regressive approximation grows
simultaneously with n at an appropriate rate (Bühlmann, 1997). The procedure makes use of the ϵ∗

′
t s

to obtain the X∗′
t s through the bootstrap analog of (7). Then, generate a bootstrap sample of the Ad

statistic, A∗
d , making use of the bootstrap analog of (5).

The vavra.test() function implements Psaradakis and Vávra (2020) procedure. By default, it
generates 1,000 sieve-bootstrap replications of the Anderson-Darling statistic. The user can provide
different test procedures, such as the Shapiro-Wilk, Jarque-Bera, Cramer von Mises, Epps or Lobato-Velasco
test, by specifying a text value to the normality argument. The presented values are Monte Carlo
estimates of the Ad statistic and p.value.

Example 4 A stationary ARMA(1,1) process is simulated using a standard normal distribution and
performs Psaradakis and Vávra procedure using Anderson-Darling and Cramer von Mises test statistics.
At significance level α = 0.05, there is no evidence to reject the null hypothesis of normality.

set.seed(298)
x = arima.sim(250,model = list(ar = 0.2, ma = 0.34))
# Default, Psaradakis and Vavra's procedure
vavra.test(x, seed = 298)
#>
#> Psaradakis-Vavra test
#>
#> data: x
#> bootstrap-ad = 0.48093, p-value = 0.274
#> alternative hypothesis: x does not follow a Gaussian Process

Approximate Cramer von Mises test for the Psaradakis and Vavra’s procedure

vavra.test(x, normality = "cvm", seed = 298)
#>
#> Sieve-Bootstrap cvm test
#>
#> data: x
#> bootstrap-cvm = 0.056895, p-value = 0.49
#> alternative hypothesis: x does not follow a Gaussian Process

3.7 The multivariate kurtosis test

The literature contains some procedures to test the null hypothesis that a multivariate stochastic
process is Gaussian. Those include Moulines et al. (1992), a test based on the characteristic function,
and Steinberg and Zeitouni (1992), a test based on properties of the entropy of Gaussian processes that
does not make use of cumulant computations. According to El Bouch et al. (2022), these tests may
hardly be executable in real time. Consequently, they propose a test based on multivariate kurtosis
(Mardia, 1970). The proposed procedure is for p = 1, 2, and we elaborate on it in what follows. In
Section 6.3 of El Bouch et al. (2022), they suggest to apply random projections for higher dimensions
but they do not investigate the procedure any further.

The p-value of this test is obtained as 2(1 − FN(z)) where, as above, FN denotes the standard
normal cumulative distribution function. There,

z := (B̂p − E[B̂p])/
√

E[(B̂p − E[B̂p])2],

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 146

where

B̂p := n−1
n

∑
t=1

(xt
t Ŝ

−1xt)
2,

and

Ŝ := n−1
n

∑
t=1

xtxt
t .

In El Bouch et al. (2022), there reader can found the exact computations of E[B̂p] and E[(B̂p − E[B̂p])2].

This test is implemented in the elbouch.test() function. By default, the function computes the
univariate El Bouch test. If the user provides a secondary data set, the function computes the bivariate
counterpart.

Example 5 Simulate a two-dimensional stationary VAR(2) process using independent AR(1) and
AR(2) processes with standard normal distributions and apply the bivariate El Bouch test. At signifi-
cance level α = 0.05, there is no evidence to reject the null hypothesis of normality.

set.seed(23890)
x = arima.sim(250,model = list(ar = 0.2))
y = arima.sim(250,model = list(ar = c(0.4,0,.1)))
elbouch.test(y = y,x = x)
#>
#> El Bouch, Michel & Comon's test
#>
#> data: w = (y, x)
#> Z = 0.92978, p-value = 0.1762
#> alternative hypothesis: w = (y, x) does not follow a Gaussian Process

4 Simulations and data analysis

4.1 Numerical experiments

Inspired by the simulation studies in Psaradakis and Vávra (2017) and Nieto-Reyes et al. (2014), we
propose here a procedure that involves drawing data from the AR(1) process

Xt = ϕXt−1 + ϵt, t ∈ Z, for ϕ ∈ {0,±0.25,±0.4}, (8)

where the {ϵt}t∈Z are i.i.d random variables. For the distribution of the ϵt we consider different
scenarios: standard normal (N), standard log-normal (log N), Student t with 3 degrees of freedom (t3),
chi-squared with 10 degrees of freedom (χ2(10)) and gamma with (7, 1) shape and scale parameters
(Γ(7, 1)).

As in Psaradakis and Vávra (2017), m = 1, 000 independent draws of the above process are
generated for each pair of parameter ϕ and distribution. Each draw is taken of length past + n,
with past = 500 and n ∈ {100, 250, 500, 1000}. The first 500 data points of each realization are then
discarded in order to eliminate start-up effects. The n remaining data points are used to compute
the value of the test statistic of interest. In each particular scenario, the rejection rate is obtained by
computing the proportion of times that the test is rejected among the m trials.

Tables 1 and 2 present the rejection rate estimates. For every process of length n, the columns
represent the used AR(1) parameter and the rows the distribution used to draw the process. The
obtained results are consistent with those obtained in the publications where the different tests were
proposed. As expected, rejection rates are around 0.05 when the data is drawn from a standard normal
distribution, as in this case the data is drawn from a Gaussian process. Conversely, high rejection
rates are registered for the other distributions. Low rejection rates are observed, however, for the
χ2(10) distribution when making use of some of the tests. For instance, the Epps and bootstrap Epps
tests, although they consistently tend to 1 when the length of the process, n, increases. Another case
is the El Bouch test. However, this one maintains low rates for large values of |ϕ| when n increases.
Furthermore, for the random projections test, the number of projections used in this study is the
default k = 1, which is by far a lower number than the recommended by Nieto-Reyes et al. (2014).
However, even in these conditions, the obtained results are satisfactory, with the random projection
test having even better performance than the tests of Epps (1987) or Psaradakis and Vávra (2017).

An important aspect in selecting a procedure is its computation time. Thus, for each length of the
process, n, there is an additional column, max.phi, in Tables 1 and 2. Each entry in this column refers to

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 147

Table 1: Part 1. Rejection rate estimates over m = 1, 000 trials of the seven studied goodness of fit test
for the null hypothesis of normality. The data is drawn using the process defined in (8) for different
values of phi and n displayed in the columns and different distributions for epsilont in the rows. phi
in 0, 0.25, 0.4, n in 100, 250. For each test and distribution, max.phi represents the maximum rejection
rate’s running time in seconds among the different values of the AR parameter.

n = 100 n = 250

phi -0.4 -0.25 0.0 0.25 0.4 max.phi -0.4 -0.25 0.0 0.25 0.4 max.phi

Lobato and Velasco
N 0.041 0.044 0.047 0.032 0.035 0.769 0.059 0.037 0.054 0.040 0.037 0.646
logN 1.000 1.000 1.000 1.000 1.000 0.610 1.000 1.000 1.000 1.000 1.000 0.653
t3 0.797 0.853 0.902 0.875 0.829 0.627 0.990 0.994 0.998 0.999 0.983 0.674
chisq10 0.494 0.698 0.770 0.707 0.610 0.620 0.930 0.995 0.998 0.997 0.977 0.657
Gamma(7,1) 0.995 1.000 0.999 0.996 0.988 0.634 1.000 1.000 1.000 1.000 1.000 0.665

Epps
N 0.056 0.051 0.062 0.060 0.063 0.695 0.048 0.058 0.053 0.066 0.063 0.736
logN 0.908 0.917 0.972 0.985 0.984 0.729 1.000 1.000 1.000 0.999 1.000 0.777
t3 0.243 0.291 0.370 0.317 0.248 0.722 0.776 0.872 0.908 0.881 0.780 0.769
chisq10 0.267 0.440 0.548 0.469 0.360 0.699 0.611 0.850 0.930 0.866 0.721 0.739
Gamma(7,1) 0.866 0.961 0.996 0.993 0.965 0.722 1.000 1.000 1.000 1.000 1.000 0.782

Random Projections
N 0.051 0.042 0.045 0.039 0.050 1.301 0.045 0.033 0.046 0.038 0.050 1.905
logN 1.000 1.000 1.000 1.000 1.000 1.330 1.000 1.000 1.000 1.000 1.000 1.906
t3 0.790 0.863 0.879 0.823 0.727 1.320 0.982 0.994 0.995 0.991 0.975 1.949
chisq10 0.589 0.730 0.757 0.640 0.542 1.295 0.957 0.994 0.994 0.969 0.888 1.926
Gamma(7,1) 0.998 1.000 1.000 0.998 0.989 1.308 1.000 1.000 1.000 1.000 1.000 1.963

Psaradakis and Vavra
N 0.052 0.048 0.051 0.058 0.050 17.905 0.061 0.046 0.038 0.051 0.045 22.115
logN 1.000 1.000 1.000 1.000 1.000 17.149 1.000 1.000 1.000 1.000 1.000 21.841
t3 0.700 0.799 0.851 0.780 0.695 17.503 0.960 0.979 0.991 0.977 0.960 22.183
chisq10 0.498 0.673 0.804 0.689 0.550 18.029 0.902 0.983 0.997 0.988 0.933 22.197
Gamma(7,1) 0.989 1.000 1.000 1.000 0.998 18.467 1.000 1.000 1.000 1.000 1.000 22.292

Bootstrap Lobato
N 0.057 0.052 0.047 0.059 0.052 37.141 0.035 0.049 0.048 0.058 0.049 40.532
logN 1.000 1.000 1.000 1.000 1.000 32.509 1.000 1.000 1.000 1.000 1.000 40.793
t3 0.797 0.867 0.899 0.869 0.809 32.755 0.989 0.994 0.996 0.996 0.989 41.158
chisq10 0.567 0.729 0.801 0.745 0.649 32.242 0.942 0.990 1.000 0.994 0.963 40.950
Gamma(7,1) 0.999 1.000 1.000 0.998 0.991 31.763 1.000 1.000 1.000 1.000 1.000 41.277

Bootstrap Epps
N 0.047 0.053 0.048 0.052 0.044 57.749 0.058 0.052 0.053 0.048 0.043 65.367
logN 0.846 0.877 0.963 0.974 0.959 56.756 1.000 1.000 1.000 1.000 0.999 65.968
t3 0.183 0.238 0.313 0.230 0.196 57.350 0.752 0.863 0.913 0.841 0.754 65.699
chisq10 0.252 0.364 0.527 0.450 0.358 56.627 0.596 0.813 0.913 0.854 0.685 65.369
Gamma(7,1) 0.816 0.948 0.993 0.979 0.931 56.986 1.000 1.000 1.000 1.000 1.000 65.315

El Bouch
N 0.040 0.047 0.044 0.033 0.050 0.798 0.040 0.054 0.052 0.061 0.059 1.020
logN 0.990 0.998 0.998 0.995 0.980 0.805 1.000 1.000 1.000 1.000 1.000 1.025
t3 0.833 0.883 0.928 0.886 0.846 0.824 0.996 0.999 0.998 0.998 0.991 1.044
chisq10 0.041 0.152 0.281 0.155 0.046 0.812 0.062 0.386 0.597 0.388 0.065 1.031
Gamma(7,1) 0.833 0.905 0.929 0.898 0.818 0.818 0.993 0.998 0.999 0.995 0.989 1.042

a different distribution and contains the maximum running time in seconds to obtain the rejection rate
among the different values of the AR parameter. That is, for a fix distribution, the rejection rates are
computed for each of the five possibilities of ϕ and the time that it takes recorded. The running time in
the table is the largest among the five. Furthermore, in Table 3 we show the time in seconds that each
studied test takes to check whether a given process is Gaussian. In particular, the table contains the
average running time over 1,000 trials that takes to generate and check a Gaussian AR(1) process with
parameter ϕ = 0.5. This is done for different sample sizes, n ∈ {1000, 2000, 3000, 4000, 5000}. According
to the table, the asymptotic tests (Lobato and Velasco, Epps, random projections and El Bouch) have
similar running times. On the contrary, the bootstrap based tests (Psaradakis and Vavra, Bootstrap
Epps and Lobato and Velasco) have, as expected, higher running times on average. Furthermore,
Tables 1 and 2 show similar results in time performance. There, the maximum running time of the
bootstrap based tests exceeds in more than ten seconds the time obtained with the asymptotic based
tests. It is worth saying that the tables have been obtained with R version 4.3.1 (2023-06-16) and
platform aarch64-apple-darwin20 (64-bit),running under macOS Sonoma 14.2.1.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 148

Table 2: Part 2. Rejection rate estimates over m = 1, 000 trials of the seven studied goodness of fit test
for the null hypothesis of normality. The data is drawn using the process defined in (8) for different
values of phi and n displayed in the columns and different distributions for epsilont in the rows. phi
is in 0, 0.25, 0.4 and n in 500, 1000. For each test and distribution, max.phi represents the maximum
rejection rate’s running time in seconds among the different values of the AR parameter.

n = 500 n = 1,000

phi -0.4 -0.25 0.0 0.25 0.4 max.phi -0.4 -0.25 0.0 0.25 0.4 max.phi

Lobato and Velasco
N 0.041 0.035 0.052 0.035 0.049 0.729 0.048 0.050 0.040 0.062 0.040 1.065
logN 1.000 1.000 1.000 1.000 1.000 0.743 1.000 1.000 1.000 1.000 1.000 1.076
t3 1.000 1.000 1.000 1.000 1.000 0.844 1.000 1.000 1.000 1.000 1.000 1.116
chisq10 0.999 1.000 1.000 1.000 1.000 0.824 1.000 1.000 1.000 1.000 1.000 1.082
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 0.825 1.000 1.000 1.000 1.000 1.000 1.105

Epps
N 0.048 0.046 0.056 0.065 0.050 0.905 0.034 0.038 0.046 0.033 0.059 1.182
logN 1.000 1.000 1.000 1.000 1.000 0.931 1.000 1.000 1.000 1.000 1.000 1.294
t3 0.991 0.994 0.996 0.997 0.985 0.936 1.000 0.998 1.000 1.000 0.999 1.235
chisq10 0.924 0.991 0.999 0.991 0.969 0.917 0.997 1.000 1.000 1.000 1.000 1.202
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 0.873 1.000 1.000 1.000 1.000 1.000 1.239

Random Projections
N 0.044 0.043 0.040 0.040 0.048 2.723 0.021 0.027 0.043 0.043 0.047 4.544
logN 1.000 1.000 1.000 1.000 1.000 2.759 1.000 1.000 1.000 1.000 1.000 4.588
t3 1.000 1.000 1.000 1.000 1.000 2.755 1.000 1.000 1.000 1.000 1.000 4.531
chisq10 1.000 1.000 1.000 1.000 0.998 2.782 1.000 1.000 1.000 1.000 1.000 4.520
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 2.843 1.000 1.000 1.000 1.000 1.000 4.527

Psaradakis and Vavra
N 0.048 0.050 0.045 0.053 0.039 26.957 0.055 0.045 0.047 0.043 0.033 37.993
logN 1.000 1.000 1.000 1.000 1.000 27.209 1.000 1.000 1.000 1.000 1.000 37.282
t3 1.000 1.000 1.000 1.000 1.000 26.599 1.000 1.000 1.000 1.000 1.000 37.642
chisq10 1.000 1.000 1.000 1.000 1.000 27.418 1.000 1.000 1.000 1.000 1.000 37.731
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 27.659 1.000 1.000 1.000 1.000 1.000 38.232

Bootstrap Lobato
N 0.055 0.048 0.053 0.037 0.035 53.110 0.050 0.046 0.067 0.049 0.047 72.528
logN 1.000 1.000 1.000 1.000 1.000 52.632 1.000 1.000 1.000 1.000 1.000 71.845
t3 1.000 1.000 1.000 1.000 1.000 52.763 1.000 1.000 1.000 1.000 1.000 71.454
chisq10 1.000 1.000 1.000 1.000 1.000 52.455 1.000 1.000 1.000 1.000 1.000 73.413
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 53.204 1.000 1.000 1.000 1.000 1.000 72.253

Bootstrap Epps
N 0.051 0.043 0.033 0.043 0.051 78.920 0.055 0.054 0.056 0.044 0.064 101.883
logN 1.000 1.000 1.000 1.000 1.000 78.194 1.000 1.000 1.000 1.000 1.000 101.753
t3 0.979 0.995 0.998 0.996 0.985 79.735 1.000 1.000 1.000 1.000 1.000 100.766
chisq10 0.911 0.986 0.996 0.995 0.945 80.841 0.997 1.000 1.000 1.000 0.998 101.250
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 78.688 1.000 1.000 1.000 1.000 1.000 101.360

El Bouch
N 0.065 0.053 0.047 0.061 0.059 1.419 0.055 0.064 0.051 0.048 0.045 2.467
logN 1.000 1.000 1.000 1.000 1.000 1.435 1.000 1.000 1.000 1.000 1.000 2.500
t3 1.000 1.000 1.000 1.000 1.000 1.453 1.000 1.000 1.000 1.000 1.000 2.492
chisq10 0.100 0.609 0.871 0.609 0.076 1.439 0.176 0.858 0.984 0.865 0.173 2.470
Gamma(7,1) 1.000 1.000 1.000 1.000 1.000 1.444 1.000 1.000 1.000 1.000 1.000 2.483

4.2 Real data application

As an illustrative example, we analyze the monthly mean carbon dioxide, in parts per million (ppm),
measured at the Mauna Loa Observatory, in Hawaii, from March 1958 to November 2018. The carbon
dioxide data measured as the mole fraction in dry air on Mauna Loa constitute the longest record of
direct measurements of CO2 in the atmosphere. This dataset is available in the astsa package (Stoffer,
2020) under the name cardox data and it is displayed in the left panel of Figure 1. The plot’s grid is
created using the cowplot package (Wilke, 2020).

The objective of this subsection is to propose a model to analyze this time series and check the
assumptions on the residuals of the model using our implemented check_residuals() function.
The time series clearly has trend and seasonal components (see left panel of Figure 1), therefore,
an adequate model that filters both components has to be selected. We make use of an ETS model.
For its implementation, we make use the ets() function from the forecast package (Hyndman and
Khandakar, 2008). This function fits 32 different ETS models and selects the best model according
to information criteria such as Akaike’s information criterion (AIC) or Bayesian Information criteria (BIC)
(Chen and Chen, 2008). The results provided by the ets() function are:

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=astsa
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=forecast


CONTRIBUTED RESEARCH ARTICLE 149

Table 3: Average running time in seconds, over 1000 iterations, to compute the null hypothesis of
Gaussianity for each of the studied tests (first column) and different sample sizes, n = 1000 (second
column), n = 2000 (third column), n = 3000 (fourth column), n = 4000 (fifth column) and n = 5000
(sixth column). Each iteration makes use of a Gaussian AR(1) process with parameter phi = 0.5.

tests n = 1000 n = 2000 n = 3000 n = 4000 n = 5000

Lobato and Velasco 0.0010 0.0014 0.0020 0.0026 0.0035
Epps 0.0010 0.0015 0.0021 0.0027 0.0035
Random Projections 0.0026 0.0045 0.0063 0.0082 0.0105
El Bouch 0.0023 0.0046 0.0074 0.0109 0.0152
Psaradakis and Vavra 0.0286 0.0429 0.0565 0.0012 0.0014

Bootstrap Lobato 0.0542 0.0014 0.0019 0.0025 0.0032
Bootstrap Epps 0.0013 0.0018 0.0023 0.0029 0.0037

Figure 1: Left panel: CO2 Levels at Mauna Loa, time-series plot. The cardox data show a positive
tendency and strong seasonality. Right panel: forecast of the next 12 months for the CO2 levels at
Mauna Loa, the model’s predictions capture the time-series behaviour.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 150

library(forecast)
library(astsa)
model = ets(cardox)
summary(model)
#> ETS(M,A,A)
#>
#> Call:
#> ets(y = cardox)
#>
#> Smoothing parameters:
#> alpha = 0.5451
#> beta = 0.0073
#> gamma = 0.1076
#>
#> Initial states:
#> l = 314.4546
#> b = 0.0801
#> s = 0.6986 0.0648 -0.8273 -1.8999 -3.0527 -2.7629
#> -1.2769 0.7015 2.1824 2.6754 2.3317 1.165
#>
#> sigma: 9e-04
#>
#> AIC AICc BIC
#> 3429.637 3430.439 3508.867
#>
#> Training set error measures:
#> ME RMSE MAE MPE MAPE MASE
#> Training set 0.018748 0.3158258 0.2476335 0.005051657 0.06933903 0.152935
#> ACF1
#> Training set 0.09308391

The resulting model, proposed by the ets() function, for analyzing the carbon dioxide data in Mauna
Loa is an ETS[M, A, A] model. The parameters α, β and γ (see Definition 1) have being estimated
using the least squares method. If the assumptions on the model are satisfied, then the errors of
the model behave like a Gaussian stationary process. To check it, we make use of the function
check_residuals(). For more details on the compatibility of this function with the models obtained
by other packages see the nortsTest repository. In the following, we display the results of using
the Augmented Dickey-Fuller test (Subsection 3.1) to check the stationary assumption and the random
projection test with k = 1 projections to check the normality assumption. For the other test options see
the function’s documentation.

check_residuals(model,unit_root = "adf",normality = "rp",
plot = TRUE)

#>
#> ***************************************************
#>
#> Unit root test for stationarity:
#>
#> Augmented Dickey-Fuller Test
#>
#> data: y
#> Dickey-Fuller = -9.8935, Lag order = 9, p-value = 0.01
#> alternative hypothesis: stationary
#>
#>
#> Conclusion: y is stationary
#> ***************************************************
#>
#> Goodness of fit test for Gaussian Distribution:
#>
#> k random projections test.
#>
#> data: y

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=nortsTest


CONTRIBUTED RESEARCH ARTICLE 151

Figure 2: Check residuals plot for the ETS(M,A,A) model. The upper panel shows the residuals
time-series plot, showing small oscillations around zero, which insinuates stationarity. The middle
plots are the residuals histogram (middle-left) and quantile-quantile plot (middle-right), both plots
suggest that the residuals have a normal distribution. The lower panel shows the autocorrelation
functions, for both plots, the autocorrelations are close to zero giving the impression of stationarity.

#> k = 1, p.value adjust = Benjamini & Yekutieli, p-value = 1
#> alternative hypothesis: y does not follow a Gaussian Process
#>
#>
#> Conclusion: y follows a Gaussian Process
#>
#> ***************************************************

The obtained results indicate that the null hypothesis of non stationarity is rejected at significance
level α = 0.01. Additionally, there is no evidence to reject the null hypothesis of normality at sig-
nificance level α = 0.05. Consequently, we conclude that the residuals follow a stationary Gaussian
process, having that the resulting ETS[M, A, A] model adjusts well to the carbon dioxide data in Mauna
Loa.

In the above displayed check_residuals() function, the plot argument is set to TRUE. The resulting
plots are shown in Figure 2. The plot in the top panel and the auto-correlation plots in the bottom panels
insinuate that the residuals have a stationary behavior. The top panel plot shows slight oscillations
around zero and the auto-correlations functions in the bottom panels have values close to zero in every
lag. The histogram and qq-plot in the middle panels suggest that the marginal distribution of the
residuals is normally distributed. Therefore, Figure 2 agrees with the reported results, indicating that
the assumptions of the model are satisfied.

As the assumptions of the model have been checked, it can be used for instance to forecast. The
result of applying the following function is displayed in Figure 1. It presents the carbon dioxide data
for the last 8 years and a forecast of the next 12 months. It is observable from the plot that the model
captures the process trend and periodicity.

autoplot(forecast(model,h = 12),include = 100,
xlab = "years",ylab = "CO2 (ppm)",

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 152

main = "Forecast: Carbon Dioxide Levels at Mauna Loa")

5 Conclusions

For independent data, the nortest package (Gross and Ligges, 2015) provides five different tests for
normality, the mvnormtest package (Jarek, 2012) performs the Shapiro-Wilks test for multivariate
data and the MissMech package (Jamshidian et al., 2014) provides tests for normality in multivariate
incomplete data. To test the normality of dependent data, some authors such as Psaradakis and Vávra
(2017) and Nieto-Reyes et al. (2014) have available undocumented Matlab code, which is almost only
helpful in re-doing their simulation studies.

To our knowledge, no consistent implementation or package of tests for normality of stationary
processes has been done before. Therefore, the nortsTest is the first package to implement normality
tests in stationary processes. This work gives a general overview of a careful selection of tests for
normality in the stationary process, which consists of the most available types of tests. It additionally
provides examples that illustrate each of the test implementations.

For checking the model’s assumptions, the forecast and astsa packages contain functions for visual
diagnostic. Following the same idea, nortsTest provides similar diagnostic methods; it also reports
the results of testing stationarity and normality, the main assumptions for the residuals in time series
analysis.

6 Future work and projects

A further version of the nortsTest package will incorporate additional tests such as Bispectral (Hinich,
1982) and Stein’s characterization (Bontemps and Meddahi, 2005). Further future work will include a
Bayesian version of a residuals check procedure that uses the random projection method. Any future
version under development can be installed from GitHub using the following code.

if (!requireNamespace("remotes")) install.packages("remotes")
remotes::install_github("asael697/nortsTest",dependencies = TRUE)

Acknowledgment

This work was supported by grant PID2022-139237NB-I00 funded by “ERDF A way of making Europe”
and MCIN/AEI/10.13039/501100011033.

References

T. W. Anderson. On the distribution of the two-sample Cramer-von Mises criterion. The Annals
of Mathematical Statistics, 33(3):1148 – 1159, 1962. doi: 10.1214/aoms/1177704477. URL https:
//doi.org/10.1214/aoms/1177704477. [p138, 144]

T. W. Anderson and D. A. Darling. Asymptotic theory of certain goodness of fit criteria based on
stochastic processes. Annals of Mathematical Statistics, 23(2):193–212, 06 1952. doi: 10.1214/aoms/
1177729437. [p135, 138]

J. Bai and S. Ng. Tests for skewness, kurtosis, and normality for time series data. Journal of Business &
Economic Statistics, 23(1):49–60, 2005. doi: 10.1198/073500104000000271. [p138, 142]

J. Beaulieu and J. A. Miron. Seasonal unit roots in aggregate U.S. data. Journal of Econometrics, 55(1):
305 – 328, 1993. ISSN 0304-4076. doi: 10.1016/0304-4076(93)90018-Z. [p139]

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1):289–300, 1995.
ISSN 00359246. URL http://www.jstor.org/stable/2346101. [p143]

Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under
dependency. The Annals of Statistics, 29(4):1165–1188, 2001. ISSN 00905364. URL http://www.jstor.
org/stable/2674075. [p143, 144]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=mvnormtest
https://CRAN.R-project.org/package=MissMech
https://CRAN.R-project.org/package=nortsTest
https://CRAN.R-project.org/package=forecast
https://CRAN.R-project.org/package=astsa
https://CRAN.R-project.org/package=nortsTest
https://CRAN.R-project.org/package=nortsTest
https://doi.org/10.1214/aoms/1177704477
https://doi.org/10.1214/aoms/1177704477
http://www.jstor.org/stable/2346101
http://www.jstor.org/stable/2674075
http://www.jstor.org/stable/2674075


CONTRIBUTED RESEARCH ARTICLE 153

A. Berg, E. Paparoditis, and D. N. Politis. A bootstrap test for time series linearity. Journal of Statistical
Planning and Inference, 140(12):3841 – 3857, 2010. ISSN 0378-3758. doi: 10.1016/j.jspi.2010.04.047.
[p138]

T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3):
307 – 327, 1986. ISSN 0304-4076. doi: 10.1016/0304-4076(86)90063-1. [p137, 144]

C. Bontemps and N. Meddahi. Testing normality: a gmm approach. Journal of Econometrics, 124(1):149
– 186, 2005. ISSN 0304-4076. doi: 10.1016/j.jeconom.2004.02.014. [p138, 152]

G. Box and D. A. Pierce. Distribution of residual autocorrelations in autoregressive-integrated moving
average time series models. Journal of the American Statistical Association, 65(332):1509–1526, 1970.
doi: 10.1080/01621459.1970.10481180. [p139]

G. E. P. Box and G. Jenkins. Time series analysis, forecasting and control. Holden-Day, Inc., USA, 1990.
ISBN 0816211043. URL https://www.wiley.com/en-us/Time+Series+Analysis. [p137]

P. Bühlmann. Sieve bootstrap for time series. Bernoulli, 3(2):123–148, 1997. ISSN 13507265. URL
http://www.jstor.org/stable/3318584. [p145]

F. Canova and B. E. Hansen. Are seasonal patterns constant over time? a test for seasonal stability.
Journal of Business & Economic Statistics, 13(3):237–252, 1995. doi: 10.1080/07350015.1995.10524598.
[p139]

J. Chen and Z. Chen. Extended bayesian information criteria for model selection with large model
spaces. Biometrika, 95(3):759–771, 2008. ISSN 0006-3444. doi: 10.1093/biomet/asn034. [p148]

J. Cuesta-Albertos, E. del Barrio, R. Fraiman, and C. Matrán. The random projection method in
goodness of fit for functional data. Computational Statistics & Data Analysis, 51(10):4814 – 4831, 2007.
ISSN 0167-9473. doi: 10.1016/j.csda.2006.09.007. [p138, 143]

R. B. D’Agostino and M. A. Stephens. Goodness-of-fit techniques. Quality and Reliability Engineering
International, 3(1):71–71, 1986. doi: 10.1002/qre.4680030121. [p135, 138]

G. E. Dallal and L. Wilkinson. An analytic approximation to the distribution of lilliefors’s test statistic
for normality. The American Statistician, 40(4):294–296, 1986. doi: 10.1080/00031305.1986.10475419.
URL https://www.tandfonline.com/doi/abs/10.1080/00031305.1986.10475419. [p138]

J. L. de Lacalle. ‘uroot‘: Unit root tests for seasonal time series, 2019. URL https://CRAN.R-project.org/
package=uroot. ‘R‘ package version 2.1-0. [p139]

J. A. Doornik and H. Hansen. An omnibus test for univariate and multivariate normality. Oxford
Bulletin of Economics and Statistics, 70(s1):927–939, December 2008. doi: 10.1111/j.1468-0084.2008.
URL https://ideas.repec.org/a/bla/obuest/v70y2008is1p927-939.html. [p138]

S. El Bouch, O. Michel, and P. Comon. A normality test for multivariate dependent samples. Signal
Processing, 201:108705, 2022. doi: 10.1016/j.sigpro.2022.108705. [p135, 138, 139, 145, 146]

R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of united
kingdom inflation. Econometrica, 50(4):987–1007, 1982. ISSN 00129682, 14680262. URL http:
//www.jstor.org/stable/1912773. [p137]

T. W. Epps. Testing that a stationary time series is Gaussian. The Annals of Statistics, 15(4):1683–1698,
12 1987. doi: 10.1214/aos/1176350618. [p135, 138, 139, 141, 146]

T. Gasser. Goodness-of-fit tests for correlated data. Biometrika, 62(3):563–570, 1975. ISSN 00063444.
URL http://www.jstor.org/stable/2335511. [p138, 141, 142]

A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin. Bayesian data analysis, third edition.
Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 2013. ISBN 9781439840955.
URL https://books.google.nl/books?id=ZXL6AQAAQBAJ. [p143]

J. Gross and U. Ligges. ‘nortest‘: Tests for normality, 2015. URL https://CRAN.R-project.org/package=
nortest. ‘R‘ package version 1.0-4. [p138, 152]

N. Henze and B. Zirkler. A class of invariant consistent tests for multivariate normality. Communications
in Statistics - Theory and Methods, 19(10):3595–3617, 1990. doi: 10.1080/03610929008830400. URL
https://doi.org/10.1080/03610929008830400. [p138]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://www.wiley.com/en-us/Time+Series+Analysis
http://www.jstor.org/stable/3318584
https://www.tandfonline.com/doi/abs/10.1080/00031305.1986.10475419
https://CRAN.R-project.org/package=uroot
https://CRAN.R-project.org/package=uroot
https://ideas.repec.org/a/bla/obuest/v70y2008is1p927-939.html
http://www.jstor.org/stable/1912773
http://www.jstor.org/stable/1912773
http://www.jstor.org/stable/2335511
https://books.google.nl/books?id=ZXL6AQAAQBAJ
https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=nortest
https://doi.org/10.1080/03610929008830400


CONTRIBUTED RESEARCH ARTICLE 154

M. J. Hinich. Testing for Gaussianity and linearity of a stationary time series. Journal of Time Series
Analysis, 3(3):169–176, 1982. doi: 10.1111/j.1467-9892.1982.tb00339. [p138, 152]

C. C. Holt. Forecasting seasonals and trends by exponentially weighted moving averages. International
Journal of Forecasting, 20(1):5 – 10, 2004. ISSN 0169-2070. doi: 10.1016/j.ijforecast.2003.09.015. [p135]

Y. Hong. Hypothesis testing in time series via the empirical characteristic function: a generalized
spectral density approach. Journal of the American Statistical Association, 94(448):1201–1220, 1999. doi:
10.2307/2669935. [p139]

R. Hyndman and Y. Khandakar. Automatic time series forecasting: The ‘forecast‘ package for ‘R‘.
Journal of Statistical Software, Articles, 27(3):1–22, 2008. ISSN 1548-7660. doi: 10.18637/jss.v027.i03.
[p135, 137, 139, 148]

R. J. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder. Forecasting with exponential smoothing: The
state space approach. Springer, 2008. ISBN 9783540719168. doi: 10.1111/j.1751-5823.2009.00085_17.
[p137]

M. Jamshidian, S. Jalal, and C. Jansen. ‘missmech‘: An ‘R‘ package for testing homoscedasticity,
multivariate normality, and missing completely at random (mcar). Journal of Statistical Software, 56
(6):1–31, 2014. URL http://www.jstatsoft.org/v56/i06/. [p152]

S. Jarek. ‘mvnormtest‘: Normality test for multivariate variables, 2012. URL https://CRAN.R-project.
org/package=mvnormtest. ‘R‘ package version 0.1-9. [p152]

C. M. Jarque and A. K. Bera. Efficient tests for normality, homoscedasticity and serial independence
of regression residuals. Economics Letters, 6(3):255 – 259, 1980. ISSN 0165-1765. doi: 10.1016/0165-
1765(80)90024-5. [p138, 141, 144]

D. Kwiatkowski, P. C. Phillips, P. Schmidt, and Y. Shin. Testing the null hypothesis of stationarity
against the alternative of a unit root: How sure are we that economic time series have a unit root?
Journal of Econometrics, 54(1):159 – 178, 1992. ISSN 0304-4076. doi: 10.1016/0304-4076(92)90104-Y.
[p139]

I. Lobato and C. Velasco. A simple test of normality for time series. Econometric Theory, 20:671–689, 08
2004. doi: 10.1017/S0266466604204030. [p135, 138, 139, 141, 142]

Z. Lomnicki. Tests for departure from normality in the case of linear stochastic processes. Metrika:
International Journal for Theoretical and Applied Statistics, 4(1):37–62, 1961. URL https://EconPapers.
repec.org/RePEc:spr:metrik:v:4:y:1961:i:1:p:37-62. [p141]

K. V. Mardia. Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3):
519–530, 1970. URL http://www.jstor.org/stable/2334770. [p145]

S. G. Meintanis. A review of testing procedures based on the empirical characteristic function. South
African Statistical Journal, 50(1):1–14, 2016. doi: 10.10520/EJC186846. [p139]

E. Moulines, K. Choukri, and M. Sharbit. Testing that a multivariate stationary time-series is Gaussian.
In [1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing, pages 185–188. IEEE, 1992.
doi: 10.1109/SSAP.1992.246818. [p145]

A. Nieto-Reyes. On the non-Gaussianity of the height of sea waves. Journal of Marine Science and Engi-
neering, 9(12), 2021. ISSN 2077-1312. URL https://www.mdpi.com/2077-1312/9/12/1446. [p135]

A. Nieto-Reyes. On the non-Gaussianity of sea surface elevations. Journal of Marine Science and
Engineering, 10(9), 2022. ISSN 2077-1312. doi: 10.3390/jmse10091303. URL https://www.mdpi.com/
2077-1312/10/9/1303. [p135]

A. Nieto-Reyes, J. A. Cuesta-Albertos, and F. Gamboa. A random-projection based test of Gaussianity
for stationary processes. Computational Statistics & Data Analysis, 75:124 – 141, 2014. ISSN 0167-9473.
doi: 10.1016/j.csda.2014.01.013. [p135, 138, 139, 141, 143, 146, 152]

D. R. Osborn, A. P. L. Chui, J. P. Smith, and C. R. Birchenhall. Seasonality and the order of integration
for consumption. Oxford Bulletin of Economics and Statistics, 50(4):361–377, 1988. doi: 10.1111/j.1468-
0084.1988.mp50004002.x. [p139]

K. Pearson and O. M. F. E. Henrici. X. Contributions to the mathematical theory of evolution.-II Skew
variation in homogeneous material. Philosophical Transactions of the Royal Society of London. (A.), 186:
343–414, 1895. doi: 10.1098/rsta.1895.0010. [p138]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

http://www.jstatsoft.org/v56/i06/
https://CRAN.R-project.org/package=mvnormtest
https://CRAN.R-project.org/package=mvnormtest
https://EconPapers.repec.org/RePEc:spr:metrik:v:4:y:1961:i:1:p:37-62
https://EconPapers.repec.org/RePEc:spr:metrik:v:4:y:1961:i:1:p:37-62
http://www.jstor.org/stable/2334770
https://www.mdpi.com/2077-1312/9/12/1446
https://www.mdpi.com/2077-1312/10/9/1303
https://www.mdpi.com/2077-1312/10/9/1303


CONTRIBUTED RESEARCH ARTICLE 155

P. Perron. Trends and random walks in macroeconomic time series: Further evidence from a new
spproach. Journal of Economic Dynamics and Control, 12(2):297 – 332, 1988. ISSN 0165-1889. doi:
10.1016/0165-1889(88)90043-7. [p139]

G. Petris, S. Petrone, and P. Campagnoli. Dynamic linear models with ‘R‘, 2007. ISSN 03067734. [p137]

Z. Psaradakis. Normality tests for dependent data. Working and Discussion Papers WP 12/2017,
Research Department, National Bank of Slovakia, 2017. URL https://ideas.repec.org/p/svk/
wpaper/1053.html. [p138]

Z. Psaradakis and M. Vávra. Normality tests for dependent data: large-sample and bootstrap
approaches. Communications in statistics-simulation and computation, 49(2):283–304, 2020. doi:
10.1080/03610918.2018.1485941. [p135, 138, 141, 144, 145]

Z. Psaradakis and M. Vávra. A distance test of normality for a wide class of stationary processes.
Econometrics and Statistics, 2:50 – 60, 2017. ISSN 2452-3062. doi: 10.1016/j.ecosta.2016.11.005. [p135,
138, 139, 144, 145, 146, 152]

N. Pya, V. Voinov, R. Makarov, and Y. Voinov. ‘mvnTest‘: Goodness of fit tests for multivariate normality,
2016. URL https://CRAN.R-project.org/package=mvnTest. ‘R‘ package version 1.1-0. [p138]

D. Qiu. ‘aTSA‘: Alternative time series analysis, 2015. URL https://CRAN.R-project.org/package=aTSA.
‘R‘ package version 3.1.2. [p135]

J. P. Royston. An extension of Shapiro and Wilk’s W test for normality to large samples. Journal of the
Royal Statistical Society. Series C (Applied Statistics), 31(2):115–124, 1982. ISSN 00359254, 14679876.
URL http://www.jstor.org/stable/2347973. [p138]

J. P. Royston. Approximating the shapiro-wilk W-test for non-normality. Journal of Statistics and
Computing, 2(3):117–119, 1992. URL https://doi.org/10.1007/BF01891203. [p138]

P. Royston. A pocket-calculator algorithm for the Shapiro-Francia test for non-normality: An appli-
cation to medicine. Statistics in Medicine, 12(2):181–184, 1993. doi: 10.1002/sim.4780120209. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780120209. [p138]

S. E. Said and D. A. Dickey. Testing for unit roots in autoregressive-moving average models of
unknown order. Biometrika, 71(3):599–607, 12 1984. ISSN 0006-3444. doi: 10.1093/biomet/71.3.599.
[p139]

S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples). Biometrika,
52(3-4):591–611, 12 1965. ISSN 0006-3444. doi: 10.1093/biomet/52.3-4.591. [p138, 144]

R. Shumway and D. Stoffer. Time series analysis and itts applications: with ‘R‘ examples. Springer Texts in
Statistics. Springer New York, 2010. ISBN 9781441978646. URL https://books.google.es/books?
id=dbS5IQ8P5gYC. [p135, 136]

N. Smirnov. Table for estimating the goodness of fit of empirical distributions. Annals of Mathematical
Statistics, 19(2):279–281, 06 1948. doi: 10.1214/aoms/1177730256. [p138]

Y. Steinberg and O. Zeitouni. On tests for normality. IEEE Transactions on Information Theory, 38(6):
1779–1787, 1992. doi: 10.1109/18.165450. [p145]

D. Stoffer. ‘astsa‘: Applied statistical time series analysis, 2020. URL https://CRAN.R-project.org/
package=astsa. ‘R‘ package version 1.10. [p135, 148]

R. C. Team. ‘R‘: A language and environment for statistical computing. ‘R‘ Foundation for Statistical
Computing, Vienna, Austria, 2018. URL https://www.R-project.org/. [p135]

A. Trapletti and K. Hornik. ‘tseries‘: Time series analysis and computational finance, 2019. URL https:
//CRAN.R-project.org/package=tseries. ‘R‘ package version 0.10-47. [p139, 141]

R. Tsay. Analysis of financial time series. Wiley-Interscience, Chicago, second edition, 2010. ISBN
978-0470414354. doi: 10.1002/0471264105. [p135, 136]

R. M. Vassilly Voinov, Natalie Pya and Y. Voinov. New invariant and consistent chi-squared type
goodness-of-fit tests for multivariate normality and a related comparative simulation study. Commu-
nications in Statistics - Theory and Methods, 45(11):3249–3263, 2016. doi: 10.1080/03610926.2014.901370.
URL https://doi.org/10.1080/03610926.2014.901370. [p138]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://ideas.repec.org/p/svk/wpaper/1053.html
https://ideas.repec.org/p/svk/wpaper/1053.html
https://CRAN.R-project.org/package=mvnTest
https://CRAN.R-project.org/package=aTSA
http://www.jstor.org/stable/2347973
https://doi.org/10.1007/BF01891203
https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780120209
https://books.google.es/books?id=dbS5IQ8P5gYC
https://books.google.es/books?id=dbS5IQ8P5gYC
https://CRAN.R-project.org/package=astsa
https://CRAN.R-project.org/package=astsa
https://www.R-project.org/
https://CRAN.R-project.org/package=tseries
https://CRAN.R-project.org/package=tseries
https://doi.org/10.1080/03610926.2014.901370


CONTRIBUTED RESEARCH ARTICLE 156

L. Wasserman. All of nonparametric statistics. Springer, New York, 2006. ISBN 9780387251455. doi:
10.1007/0-387-30623-4. [p136]

M. West and J. Harrison. Bayesian forecasting and dynamic models. Springer Series in Statistics. Springer
New York, 2006. ISBN 9780387227771. URL https://books.google.nl/books?id=0mPgBwAAQBAJ.
[p137]

H. Wickham. ‘ggplot2‘: Elegant graphics for data analysis. Springer-Verlag New York, 2009. ISBN
978-0-387-98140-6. URL http://ggplot2.org. [p139]

C. O. Wilke. ‘cowplot‘: Streamlined plot theme and plot annotations for ‘ggplot2‘, 2020. URL https:
//CRAN.R-project.org/package=cowplot. ‘R‘ package version 1.1.1. [p148]

D. Wuertz, T. Setz, Y. Chalabi, C. Boudt, P. Chausse, and M. Miklovac. ‘fGarch‘: Rmetrics - autoregressive
conditional heteroskedastic modelling, 2017. URL https://CRAN.R-project.org/package=fGarch. ‘R‘
package version 3042.83. [p144]

Asael Alonzo Matamoros
Aalto University
Department of Computer Science
Eespo, Finland
https://asael697.github.io
izhar.alonzomatamoros@aalto.fi

Alicia Nieto-Reyes
Universidad de Cantabria
Departmento de Mathemáticas, Estadística y Computación
Avd. de los Castros s/n. 39005 Santander, Spain
https://orcid.org/0000-0002-0268-3322
alicia.nieto@unican.es

Claudio Agostinelli
University of Trento
Department of Mathematics
Via Sommarive, 14 - 38123 Povo
https://orcid.org/0000-0001-6702-4312
claudio.agostinelli@unitn.it

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://books.google.nl/books?id=0mPgBwAAQBAJ
http://ggplot2.org
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=fGarch
https://asael697.github.io
mailto:izhar.alonzomatamoros@aalto.fi
https://orcid.org/0000-0002-0268-3322
mailto:alicia.nieto@unican.es
https://orcid.org/0000-0001-6702-4312
mailto:claudio.agostinelli@unitn.it


CONTRIBUTED RESEARCH ARTICLE 157

shinymgr: A Framework for Building,
Managing, and Stitching Shiny Modules
into Reproducible Workflows
by Laurence A. Clarfeld, Caroline Tang, and Therese Donovan

Abstract The R package shinymgr provides a unifying framework that allows Shiny developers to
create, manage, and deploy a master Shiny application comprised of one or more “apps”, where an
“app” is a tab-based workflow that guides end-users through a step-by-step analysis. Each tab in a
given “app” consists of one or more Shiny modules. The shinymgr app builder allows developers to
“stitch” Shiny modules together so that outputs from one module serve as inputs to the next, creating
an analysis pipeline that is easy to implement and maintain. Apps developed using shinymgr can be
incorporated into R packages or deployed on a server, where they are accessible to end-users. Users
of shinymgr apps can save analyses as an RDS file that fully reproduces the analytic steps and can
be ingested into an RMarkdown or Quarto report for rapid reporting. In short, developers use the
shinymgr framework to write Shiny modules and seamlessly combine them into Shiny apps, and
end-users of these apps can execute reproducible analyses that can be incorporated into reports for
rapid dissemination. A comprehensive overview of the package is provided by 12 learnr tutorials.

1 Introduction

The shiny R package allows users to build interactive web apps straight from R, without advanced
knowledge of HTML or JavaScript (Chang et al., 2022). A shiny web app can permit an expedient
analysis pipeline or workflow. Ideally, the pipeline can produce outputs that are fully reproducible
(Peng, 2011; Gentleman and Lang, 2007; Alston and Rick, 2021). Moreover, the pipeline can permit
rapid reporting to convey the results of an analysis workflow to a target audience (Stoudt et al., 2021)
(Figure 1).

shiny applications range from simple to complex, each with an intended purpose developed for
an intended user audience. Several R packages provide a development framework for building
multi-faceted master applications, including shinipsum for prototyping (Fay and Rochette, 2020),
golem (Fay et al., 2021), and rhino (Żyła et al., 2023).

From the developer’s perspective, complex shiny applications can result in many lines of code,
creating challenges for collaborating, debugging, streamlining, and maintaining the overall product.
shiny modules are a solution to this problem. As stated by Winston Chang (shi, 2020), “A shiny module
is a piece of a shiny app. It can’t be directly run, as a shiny app can. Instead, it is included as part of a
larger app . . . Once created, a shiny module can be easily reused – whether across different apps, or
multiple times in a single app.” shiny modules, and modularization in general, are a core element of
agile software development practices (Larman, 2004). Several authors have contributed R packages for
distributing pre-written shiny modules for general use, including the datamods (Perrier et al., 2022),
shiny.reglog (Kosinski, 2022), periscope (Brett and Neuhaus, 2022), shinyauthr (Campbell, 2021), and

Figure 1: Stages of a reproducible workflow, a process that moves an inquiry from raw data to
insightful contribution.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shinipsum
https://CRAN.R-project.org/package=golem
https://CRAN.R-project.org/package=rhino
https://CRAN.R-project.org/package=datamods
https://CRAN.R-project.org/package=shiny.reglog
https://CRAN.R-project.org/package=periscope
https://CRAN.R-project.org/package=shinyauthr


CONTRIBUTED RESEARCH ARTICLE 158

jsmodule (Kim and Lee, 2022) packages.

However, as the number of available modules increases, there is a pressing need for documenting
available shiny modules and easily incorporating them into new workflows. For example, consider a
toy modular-based app that guides a user through an analysis of the famous “Iris Dataset,” which
contains 150 records of 3 species of iris, including measurements of the length and width of the flowers’
sepals and petals (Fisher, 1936). The app, called “Iris Explorer,” consists of 5 tabs to be worked through
in sequence (Figure 2, top).

Tab 1 displays instructions for use, while tab 2 performs a k-means clustering of the data, where k
is specified by the user. The resulting clusters are displayed with two variables of the user’s choosing
as depicted in Figure 2. In tab 3, the user will choose a value n, indicating the number of rows by
which to randomly subset the data, and in tab 4 the user selects a single variable to be plotted as a
bar chart. Finally, in tab 5 the user can save their outputs as an RDS file. This contrived example
includes some key elements of a typical workflow in that the five tabs introduce a dataset, guide the
user through light data wrangling, produce analysis outputs, and offer the ability to save the results.

The app’s blueprint (Figure 2, bottom) identifies the shiny modules in each tab, showing how
outputs from one module can serve as inputs to the next. Note that while this example shows a single
module in each tab with differing inputs/outputs, in the general case tabs can contain an arbitrary
number of shiny modules (including multiple instances of the same module) and each module can
have multiple inputs/outputs.

While two of the shiny modules within the “iris_explorer” app pertain to the iris dataset specifically
(“iris_intro” and “iris_cluster”), the remaining shiny modules (“subset_rows”, “single_column_plot”,
and “save”) may be incorporated into other apps.

Figure 2: Top: The ’iris_explorer’ app guides a user through an analysis of the iris dataset in a tab-
based sequence. Bottom: A blueprint of the ’iris_explorer’ app shows the 5 tabs, each containing a
single module identified by name within blue ovals. Some of the shiny modules require inputs and
generate outputs as identified in gray polygons.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=jsmodule


CONTRIBUTED RESEARCH ARTICLE 159

Developers who utilize the same shiny modules within different apps will naturally be faced with
several questions:

1. Which shiny modules have been written? Are they well documented with unit testing?
2. What are the module’s inputs (arguments) and outputs (returns)?
3. Where are the shiny modules stored?
4. How can shiny modules be combined into a cohesive, well-documented app?
5. How can production-ready apps be deployed for end-users?

Users of an app created with the shinymgr framework may wish to know:

6. Can analysis outputs be saved as a fully reproducible workflow?
7. Can outputs be ingested into a Rmarkdown or Quarto template for rapid reporting?

1.1 Introducing shinymgr

The R package, shinymgr, was developed to meet these challenges (Clarfeld et al., 2024). The shinymgr
package includes a general framework that allows developers to create shiny modules, stitch them
together as individual “apps” that are embedded within the master shiny application, and then deploy
them on a shiny server or incorporate them into R packages. shinymgr was motivated from our
first-hand experience in our work building tools that assist scientists in remote wildlife monitoring
with the R package AMMonitor (Balantic and Donovan, 2020). Dependencies of shinymgr include the
packages DBI (R Special Interest Group on Databases (R-SIG-DB) et al., 2022), reactable (Lin, 2022),
RSQLite (Müller et al., 2022), renv (Ushey, 2023), shiny (Chang et al., 2022), shinyjs (Attali, 2021), and
shinydashboard (Chang and Borges Ribeiro, 2021).

From the developer’s perspective, an “app” consists of an ordered set of tabs, each of which
contain specified shiny modules. shiny modules are the basic element in the shinymgr framework; they
can be used and re-used across different tabs and different apps. Information about each module and
app is stored in a SQLite database (Hipp, 2020). The shinymgr app builder “stitches” shiny modules
together so that outputs from one module serve as inputs to the next, creating an analysis pipeline
that is easy to implement and maintain. When apps are production-ready , developers can deploy a
stand-alone shiny application independent of shinymgr on a server or within an R package. From the
end-user’s perspective, an “app” created with the shinymgr framework consists of an ordered series of
shiny tabs, establishing an analysis. Users can save their inputs and outputs as an RDS file to ensure
full reproducibility. Furthermore, the RDS file may be loaded into an R Markdown (Rmd) or Quarto
(qmd) template for rapid reporting. We are unaware of existing packages that unify the elements of
modularization, documentation, reproducibility, and reporting in a single framework.

We introduce shinymgr in sections 2-4 below. In section 2 we describe how developers can create
apps using the shinymgr framework. In section 3 we describe how developers can deploy a shinymgr
project on a local machine, server, or within an R package. In section 4 describes the end-user
experience, where end-users execute an “app” and store results for reproducibility and reporting. The
package tutorials and cheat sheet are described in section 5. The shinymgr package comes with a series
of learnr (Schloerke et al., 2020) tutorials described at the end of the paper.

2 Developing shinymgr apps

2.1 Setting up shinymgr

The canonical home of shinymgr is https://code.usgs.gov/vtcfwru/shinymgr/ where shinymgr users
may post merge requests and bug fix requests. shinymgr may also be downloaded from CRAN.

install.packages("shinymgr")

The development version can be downloaded with:

remotes::install_gitlab(
repo = "vtcfwru/shinymgr",
auth_token = Sys.getenv("GITLAB_PAT"),
host = "code.usgs.gov",
build_vignettes = FALSE)

Once installed, a new shinymgr project can be created within a parent directory:

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=shinymgr
https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=reactable
https://CRAN.R-project.org/package=RSQLite
https://CRAN.R-project.org/package=renv
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shinyjs
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=learnr
https://code.usgs.gov/vtcfwru/shinymgr/


CONTRIBUTED RESEARCH ARTICLE 160

# set the directory path that will house the shinymgr project
parentPath <- getwd()

# set up raw directories and fresh database
shinymgr_setup(
parentPath = parentPath,
demo = TRUE)

The shinymgr_setup() function produces the following directory structure within the primary
“shinymgr” directory. This structure consists of 3 files that make up the “master” app (global.R, server.R,
and ui.R), and 9 directories. If the argument demo is set to FALSE, these directories will be largely
empty, except for the “modules_mgr” and “database” directories, which will contain shiny modules
for rendering shinymgr’s UI and an empty SQLite database, respectively. If the argument demo is set
to TRUE, each directory will include several demo files as shown, including a pre-populated database.
Here, we highlight a subset of the demo files related to the “iris_explorer” app to guide developers
through the key elements of shinymgr (additional demo files come with package but are omitted here
for clarity).

shinymgr
+-- analyses
| \-- iris_explorer_Gandalf_2023_06_05_16_30.RDS
+-- data
| \-- iris.RData
+-- database
| \-- shinymgr.sqlite
+-- global.R
+-- modules
| +-- iris_cluster.R
| +-- iris_intro.R
| +-- single_column_plot.R
| \-- subset_rows.R
+-- modules_app
| \-- iris_explorer.R
+-- modules_mgr
| +-- add_app.R
| +-- add_mod.R
| +-- add_report.R
| +-- add_tab.R
| +-- app_builder.R
| +-- my_db.R
| +-- new_analysis.R
| +-- new_report.R
| +-- queries.R
| +-- save_analysis.R
| +-- stitch_script.R
| \-- table.R
+-- reports
| \-- iris_explorer
| \-- iris_explorer_report.Rmd
+-- server.R
+-- tests
| +-- shinytest
| | +-- test-iris_explorer-expected
| | | +-- 001.json
| | | +-- 001.png
| | | +-- 002.json
| | | \-- 002.png
| | \-- test-iris_explorer.R
| +-- shinytest.R
| +-- testthat
| | +-- test-iris_cluster.R
| | \-- test-subset_rows.R
| \-- testthat.R
+-- ui.R

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 161

\-- www
+-- dark_mode.css
\-- shinymgr-hexsticker.png

The directory structure produced by shinymgr_setup() includes the following:

• The analyses directory provides the developer an example of a previously run analysis that was
created using the shinymgr framework (an RDS file). An analysis file name includes the app
name (e.g. “iris_explorer”), the name of the person who ran the analysis (e.g. “Gandalf”), and
the date and time of the analysis (e.g., “iris_explorer_Gandalf_2023_06_05_16_30.RDS”).

• The data directory stores RData files that can be used by various shinymgr apps (e.g., “iris.RData”).

• The database directory stores the shinymgr SQLite database, named “shinymgr.sqlite.” The
database is used by the developer to track all shiny modules, their arguments (inputs), returns
(outputs), and how they are combined into shinymgr apps.

• The modules directory stores stand-alone shiny modules. These files are largely written by
the developer with the help of the mod_init() function, and are registered in the database
with the mod_register() function. Four of the example shiny modules listed are used in the
“iris_explorer” app.

• The modules_app directory stores shiny modules that are shinymgr “apps” – the stitching
together of shiny modules into a tab-based layout that provides an analysis workflow (Figure 2
shows the “iris_explorer” app layout). Files within the “modules_app” directory are not written
by hand - instead, they are created with the shinymgr “app builder.”

• The modules_mgr directory stores shiny modules that build the overall shinymgr framework.

• The reports directory provides an example of an RMarkdown (Rmd) template (e.g., “iris_explorer_report.Rmd”),
allowing for rapid reporting by an end-user.

• The tests directory stores both testthat (Wickham, 2011) and shinytest (Chang et al., 2021) code
testing scripts.

• The www directory stores images that may be used by a shiny app.

• In addition to these directories, three files are created for launching the master shinymgr shiny
application:

1. ui.R - This file contains code to set the user interface for the master shinymgr app.

2. server.R - The master server file.

3. global.R - The global.R file is sourced into the server.R file at start-up. It sources all of
the shiny modules within the shinymgr framework so they are available when shinymgr is
launched.

2.2 The shinymgr developer’s portal

Once set-up is complete, the launch_shinymgr() function will launch the shinymgr “Developer’s
Portal” UI, allowing developers to create and test new shinymgr apps.

# launch shinymgr
launch_shinymgr(shinyMgrPath = paste0(parentPath, "/shinymgr"))

The portal is recognizable by the shinymgr logo in the upper left corner (Figure 3). The portal
consists of three main tabs in the left menu. The “Developer Tools” tab is used to create apps, view the
shinymgr database, and register reports, while the “Analysis (beta)” and “Reports (beta)” tabs allow
developers to evaluate apps from the user’s perspective.

The “Developer Tools” section includes 4 tabs for app development: The “Build App” tab allows
the developer to create new shinymgr apps from existing modules using the shinymgr app builder;
the “Database” tab displays the shinymgr database tables, the “Queries” tab contains a set of standard
database queries, and the “Add Reports” tab allows the developer to link a report (Rmd or qmd) to a
given shinymgr app (Figure 3), as described below.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=shinytest


CONTRIBUTED RESEARCH ARTICLE 162

Figure 3: The shinymgr Developer Portal consists of a sidebar panel where developers can create new
shiny modules and new apps, and test-drive analyses and reports from the user’s perspective. The
main panel shows the ’Build App’ tab within the ’Developer Tools’ section.

2.3 The shinymgr database

The shinymgr SQLite database (“shinymgr.sqlite”) is a single file created by the shinymgr_setup()
function. The database tracks all shiny modules, their arguments (inputs), returns (outputs), their
package dependencies and version numbers, how they are combined into an “app,” and any reports
that are associated with apps. The database tables are populated via dedicated shinymgr functions.

The shinymgr database consists of 11 tables in total (Figure 4). These tables are connected to each
other as a typical relational database, with primary keys establishing unique records in each table, and
foreign keys that reference primary keys in other tables (see Appendix A for a full database schema
and the “database” learnr tutorial for additional information).

The “apps,” “appReports,” “reports,” “appTabs,” and “tabs” tables largely store information on
what a user would see when they run an analysis. The table “apps” stores information about apps
such as “iris_explorer.” Apps consist of tabs, which are listed in the “tabs” table. Tabs are linked to
apps via the “appTabs” table. The table “reports” lists any Rmd or qmd files that serve as a report
template, and the table “appReports” links a specific report with a specific app.

The remaining 6 tables in Figure 4 are “modules,” “modFunctionArguments,” “modFunctionRe-
turns,” “modPackages,” “tabModules,” and “appStitching.” These tables largely store information
about shiny modules that a developer creates, i.e., what shiny modules have been written, what are
their arguments and returns, and what packages they use. The “tabModules” table identifies which
tabs call which shiny modules (with a single tab capable of calling multiple shiny modules), and the
“appStitching” table specifies how shiny modules are “stitched” together, i.e., which module returns
are passed in as arguments to downstream shiny modules.

Four of the 11 database tables focus on modules, highlighting that shiny modules are basic building
blocks of any shinymgr app. Developers create new shiny modules with the mod_init() function,
which copies a shinymgr module template (an R file template) that includes a header with key-value

Figure 4: The 11 tables of the shinymgr SQLite database. Lines indicate how the tables are related to
each other.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 163

that describe the module, including the module name, display name, description, citation, notes, and
module arguments and returns (if any). For example, the header of the iris_cluster module is:

#!! ModName = iris_cluster
#!! ModDisplayName = Iris K-Means Clustering
#!! ModDescription = Clusters iris data based on 2 attributes
#!! ModCitation = Baggins, Bilbo. (2023). iris_cluster. [Source code].
#!! ModNotes = Demo module for the shinymgr package.
#!! ModActive = 1
#!! FunctionReturn = returndf !! selected attributes and their assigned clusters !! data.frame

The module code is written beneath the header (see Appendix B for an example). Function calls
within the module code should be written with package::function() notation, making explicit any R
package dependencies. Once the module is completed, unit tests can written and stored in the shinymgr
project’s “tests” directory. The final module file is saved to the “modules” directory and registered into
the database with the mod_register() function. The mod_register() function populates the modules,
“modFunctionArguments”, and “modFunctionReturns” SQLite database tables. Further, it uses the
renv package to identify any package dependencies and inserts them into the modPackages table.
Readers are referred to the “modules” “tests”, and “shinymgr_modules” learnr tutorials that come
with the shinymgr package for more details.

Once modules are registered in the database, the developer can incorporate them into new apps.
As shiny modules and apps in the database represent files that contain their scripts, deleting a module
or an app from the database will delete all downstream database entries as well as (optionally) the
actual files themselves. Deletion of a module will fail if it is being used in other apps. Module updates
can be versioned by creating a new module and then referencing its precursor in the “modules”
database table.

2.4 The shinymgr app builder

Once developers create and register their own stand-alone shiny modules, apps are generated with
shinymgr’s app builder (Figure 5).

Figure 5: The shinymgr Developer Portal layout, showing the app builder in the Developer Tools.

Developers are guided through a process where they design their app from shiny modules they
have registered. The builder then populates the shinymgr database with instructions on how to
construct the app and writes the app’s script based on those instructions. The newly created script is
saved to the “modules_app” directory. Through this structured process, apps produced by the builder
are well-documented and generate highly reproducible analyses. Readers are encouraged to peruse
the tutorial, “apps”, for more information.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 164

The qry_app_flow() function will query the database to return a list of the shiny modules and tabs
included in a specified app, such as “iris_explorer”:

# look at the appTabs table in the database
qry_app_flow("iris_explorer", shinyMgrPath = paste0(getwd(),"/shinymgr"))

fkAppName fkTabName tabOrder fkModuleName modOrder
1 iris_explorer IE_intro 1 iris_intro 1
2 iris_explorer IE_iris_data 2 iris_cluster 1
3 iris_explorer IE_subset_rows 3 subset_rows 1
4 iris_explorer IE_plot_data 4 single_column_plot 1

As shown in Figure 2, this app has 5 tabs, and each tab features a single module. The “Save” tab is
the final tab in all shinymgr apps and is not listed in the query result.

Developers can “beta test” apps prior to deployment by selecting the Analysis (beta) tab in the
Developer’s Portal (Figure 3). They can also create RMarkdown or Quarto report templates that accept
the outputs from an analysis and incorporate them into a report. Report metadata are logged in
the “reports” table of the database, and then linked with a specific app in the “appReports” table.
An end-user will run an analysis and render a report, a process described more fully in the “Using
shinymgr Apps” section below.

To summarize this section, developers use the shinymgr_setup() function to create the directory
structure and underlying database needed to build and run shiny apps with shinymgr. Developers
use the mod_init() and mod_register() functions to create modules and make them available for
inclusion in new apps built with the shinymgr app builder. A developer can create as many shinymgr
projects as needed. In each case, the shinymgr project is simply a fixed directory structure with three
R files (ui.R, server.R, and global.R), and a series of subdirectories that contain the apps and shiny
modules created by the developer, along with a database for tracking everything.

3 Deploying shinymgr projects

Once development is completed, developers can deploy their shinymgr project on a server or within an
R package by copying portions of the shinymgr project to a new location while retaining the original
project for future development. Once deployed, a shinymgr project no longer requires the shinymgr
package or database to be run. Thus, the files and directories to be copied for deployment include
only:

shinymgr
+-- data
+-- global.R
+-- modules
+-- modules_app
+-- modules_mgr
+-- reports
+-- server.R
+-- ui.R
\-- www

The master app files, ui.R, global.R, and server.R, are needed to run the shinymgr framework.

When deploying a shinymgr project within an R package, objects within the data folder should be
copied into the package’s “data” folder. The remaining files should be copied into a directory within
the package’s “inst” folder that will house the master shiny application. Deployment on a server such
as shinyapps.io will require similar adjustments.

After files are copied to the correct location, a few key adjustments are needed. First, the “mod-
ules_app” directory should contain only those apps (and dependent modules and reports) that can be
used by end-users; unused apps, modules, and reports can be deleted. Second, the new.analysis.R
script within the modules_mgr folder will require minor updates to remove dependencies on the
shinymgr database. Third, the ui.R and server.R scripts should be updated to no longer showcase
shinymgr and the Developer’s Portal; rather, it should be customized by the developer to create their
own purpose-driven apps. For example, Figure 6 shows a hypothetical deployment of the master
app titled “Deployed Project” that is based on the shinymgr framework. Notice the absence of the
Developer Tools tab and the absence of references to shinymgr. The “deployment” learnr tutorial
provides more in-depth discussion.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 165

Figure 6: An example of a deployed shinymgr app. The deployed version excludes the Developers
Tools tab and is an example of what the end user sees when using a deployed app.

To summarize this section, deploying the shinymgr framework involves copying key elements
of the shinymgr developer project into package or server directories, updated as needed for use by
end-users. Readers are referred to the “deployment” tutorial for further information.

4 Using shinymgr apps

Apps built with shinymgr can appeal to various types of end-users. When deployed as part of an
R package, end-users would be anyone who uses that package. Apps may also be distributed as
stand-alone scripts, or hosted on a server, as described above. Developers may also use shinymgr to
produce apps for their own use (i.e., the developer is the end-user). Regardless of who the intended
end-user is, this section discusses that user’s experience after the master app is deployed.

Whoever the intended audience for the app, this section discusses how an app can be used after it
has been deployed.

4.1 Reproducible analyses

The final tab in any shinymgr app provides the opportunity to save the analysis itself. Reproducibility
is a core tenet of shinymgr. Therefore, a robust set of metadata are saved as an RDS file to allow
a user to understand and replicate their results. An example of a completed analysis is the file,
“iris_explorer_Gandalf_2023_06_05_16_30.RDS,” which stores a user’s analytic steps for a run of the
“iris explorer” app. The code below reads in this example file, and shows the structure (a list with 23
elements):

rds_filepath <- paste0(getwd(),"/shinymgr/analyses/iris_explorer_Gandalf_2023_06_05_16_30.RDS")
old_analysis <- readRDS(rds_filepath)
str(old_analysis, max.level = 2, nchar.max = 20, vec.len = 15)

List of 23

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 166

$ analysisName : chr "iri"| __truncated__
$ app : chr "iris_explorer"
$ username : chr "Gandalf"
$ mod2-clusters : int 3
$ mod2-xcol : chr "Sepal.Length"
$ mod2-ycol : chr "Petal.Length"
$ mod3-full_table__reactable__pageSize : int 10
$ mod3-resample : 'shinyActionButtonValue' int 1
$ mod3-full_table__reactable__pages : int 15
$ mod3-subset_table__reactable__page : int 1
$ mod3-full_table__reactable__page : int 1
$ mod3-sample_num : int 20
$ mod3-subset_table__reactable__pages : int 2
$ mod3-subset_table__reactable__pageSize: int 10
$ returns :List of 3
..$ data1:List of 1
..$ data2:List of 1
..$ data3:List of 2

$ notes : chr "Thi"| __truncated__
$ timestamp : POSIXct[1:1], format: "202"| __truncated__
$ metadata :List of 6
..$ appDescription: chr "Clu"| __truncated__
..$ mod1 :List of 7
..$ mod2 :List of 7
..$ mod3 :List of 7
..$ mod4 :List of 7
..$ lockfile :List of 2

$ app_code : chr "# T"| __truncated__
$ iris_intro_code : chr "#!!"| __truncated__
$ iris_cluster_code : chr "#!!"| __truncated__
$ subset_rows_code : chr "#!!"| __truncated__
$ single_column_plot_code : chr "#!!"| __truncated__

The list stores a great deal of information:

• analysisName is the name of the analysis and is equivalent to the filename of the RDS file
(without the extension)

• app is the name of the app that produced the saved analysis results.
• username was entered in the “Save” tab when the analysis was performed.
• mod#-value indicate the values of each shiny module’s arguments (inputs), if any exist, at the

time the analysis was saved.
• returns includes values of all outputs (returns) of each module.
• notes were entered in the “Save” tab when the analysis was performed.
• timestamp is the date/time when the analysis was saved.
• metadata includes robust information about each module, including the app description and

the description of each module as it was originally stored in the shinymgr database tables. The
metadata list element also includes an renv “lockfile”: a list that describes the R version and R
package dependencies (including shinymgr) used by the app itself. The lockfile captures the
state of the app’s package dependencies at the time of its creation; in the case of shinymgr, it
contains the dependencies used by the developer who created the app. Each lockfile record
includes the name and version of the package and their installation source.

• *_code attributes with this format contain the source code for the app.

The code list element allows an end user to revisit the full analysis with shinymgr’s rerun_analysis()
function, supplying the file path to a saved shinymgr analysis (RDS file).

rerun_analysis(analysis_path = rds_filepath)

The rerun_analysis() function will launch a shiny app with two tabs (Figure 7); it can only be
run during an interactive R session, with no other shiny apps running.

The first tab is called “The App”, and will be visible when the rerun_analysis() function is called.
It contains a header with the app’s name, a subheading of “Analysis Rerun,” and a fully functioning,
identical copy of the shiny app used to generate the saved analysis. Below that, a disclaimer appears,
indicating the app was produced from a saved analysis. A summary of the analysis is presented on
the second tab that displays the values used to produce the given analysis output.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 167

Figure 7: A screenshot of the rerun_analysis() function, as called on the saved analysis from the
iris_explorer app (RDS file). The active tab, called ’The App’, allows a user to rerun a previously
executed analysis. The ’Analysis Summary’ tab displays the values of all module arguments and
returns, captured when the analysis was saved, along with a detailed description of the app, it’s
modules, the App’s source code, and all package dependencies.

If the rerun_analysis() function fails, it could be due to a change in R and package versions
currently installed on the end-user’s machine. To that end, the lockfile that is included in the metadata
section of the RDS file can be used to restore the necessary R packages and R version with the
restore_analysis() function. This function will attempt to create a self-contained renv R project that
includes all of the packages and the R version used by the developer when the app was created. The
analysis RDS is added to this new project, where the rerun_analysis() function can be attempted
again. Readers are referred to the “analyses” tutorial for further information.

4.2 Rapid reporting

Another important feature of shinymgr is the ability to share results of an analysis with others in a
friendly, readable format with RMarkdown or Quarto. Apps produce an RDS file, which may be passed
into an Rmd or qmd file as a parameterized input. For example, the demo database includes a report
template called “iris_explorer_report.Rmd.” This file, with code shown below, allows users to navigate
to the RDS file produced by the “iris explorer” app and render the rapid report.

---
title: 'Annual Report for Iris Explorer'
output: html_document
params:
user:
label: "User"
value: "Bilbo"
placeholder: "Enter user name"

year:
label: "Year"
value: 2017
input: slider
min: 2010
max: 2018
step: 1
sep: ""

file:
input: file
label: "Choose RDS"
value: ""
multiple: FALSE

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 168

buttonLabel: "Browse to analysis output..."
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
library(knitr)
ps <- readRDS(params$file)
```

This report summarizes an analysis of iris data by
`r params$user` conducted in `r params$year`. Iris
data was clustered into `r ps$'mod2-clusters'` groups
based on `r ps$'mod2-xcol'` and `r ps$'mod2-ycol'`.
A random sample of `r ps$'mod3-sample_num'` records
were collected, with sample sizes shown in the pie
chart below:

```{r}
pie_data <- table(ps$returns$data2$subset_data$cluster)
pie(
x = pie_data,
labels = as.character(pie_data),
col = rainbow(length(pie_data)),
main = "Number of random samples by cluster"

)
legend(
x = "topright",
legend = names(pie_data),
fill = rainbow(length(pie_data))

)

```

Some things to note about this analysis are: `r ps$notes`

Respectfully submitted,

Gandalf

Reports may be run within the deployed version of shinymgr (e.g., left menu of Figure 6), or may
be run directly in R by opening the Rmd file and navigating to the RDS as a file input. Users who run
a report can download it to their local machine as a HTML, PDF, or Word file, where they can further
customize the output.

To summarize this section, users of shinymgr “apps” created with the shinymgr framework are
presented with a series of shiny tabs that establish an analysis workflow. Users can save their inputs
and outputs as an RDS file to ensure full reproducibility. Further, the RDS file may be loaded into an R
Markdown (Rmd) or Quarto (qmd) template for rapid reporting.

5 Tutorials and cheatsheet

with the package. Below is a list of current tutorials, intended to be worked through in order:

Available tutorials:
* shinymgr
- intro : "shinymgr-01: Introduction"
- shiny : "shinymgr-02: Shiny"
- modules : "shinymgr-03: Modules"
- app_modules : "shinymgr-04: App modules"
- tests : "shinymgr-05: Tests"
- shinymgr : "shinymgr-06: shinymgr"
- database : "shinymgr-07: Database"
- shinymgr_modules : "shinymgr-08: shinymgr_modules "
- apps : "shinymgr-09: Apps"

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 169

- analyses : "shinymgr-10: Analyses"
- reports : "shinymgr-11: Reports"
- deployment : "shinymgr-12: Deployment"

The “intro” tutorial gives a general overview. Tutorials 2-5 are aimed at developers who are new
to shiny, while tutorials 6 – 12 focus on the shinymgr package.

Launch a tutorial with the learnr run_tutorial() function, providing the name of the module
to launch. The tutorial should launch in a browser, which has the benefit of being able to print the
tutorial to PDF upon completion:

learnr::run_tutorial(
name = "modules",
package = "shinymgr")

Additionally, the package cheatsheet can be found with:

browseURL(paste0(find.package("shinymgr"), "/extdata/shinymgr_cheatsheet.pdf"))

Contributions are welcome from the community. Questions can be asked on the issues page at
https://code.usgs.gov/vtcfwru/shinymgr/issues.

6 Acknowledgments

We thank Cathleen Balantic and Jim Hines for feedback on the overall package and package tutorials.
shinymgr was prototyped by Therese Donovan at a shiny workshop taught by Chris Dorich and
Matthew Ross at Colorado State University in 2020 (pre-pandemic). We thank the instructors for
feedback and initial coding assistance. Any use of trade, firm, or product names is for descriptive
purposes only and does not imply endorsement by the U.S. Government. The Vermont Cooperative
Fish and Wildlife Research Unit is jointly supported by the U.S. Geological Survey, University of
Vermont, Vermont Fish and Wildlife Department, and Wildlife Management Institute.

7 Bibliography

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://code.usgs.gov/vtcfwru/shinymgr/issues


CONTRIBUTED RESEARCH ARTICLE 170

8 Appendix A

Entity relationship diagram for the shinymgr database, which tracks all components of an apps and
modules (Figure 8). The database consists of 11 tables. Primary keys are referenced with a “pk” prefix,
while foreign keys are referenced with an “fk” prefix. A full description of the database is contained in
the “database” learnr tutorial that comes with the shinymgr package

Figure 8: Entity relationship diagram for the shinymgr database, which tracks all components of an
apps and modules. The database consists of 11 tables. Primary keys are referenced with a ’pk’ prefix,
while foreign keys are referenced with an ’fk’ prefix. A full description of the database is contained in
the ’database’ learnr tutorial that comes with the shinymgr package.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 171

9 Appendix B

Modules in shinymgr are written by developers for their own purposes. The shinymgr::mod_init()
function creates a template for module development. The header is a series of key-value pairs that
the developer fills out (typically after the module code is written and tested). The “iris_cluster”
module is presented below as an example. The module consists of two paired functions: here,
iris_cluster_ui(id) and iris_cluster_server(). The UI is a function with an argument called
id, which is turned into module’s “namespace” with the NS() function. A namespace is simply the
module’s identifier and ensures that function and object names within a given module do not conflict
with function and object names in other modules. The Id’s for each input and output in the UI must
be wrapped in a ns() function call to make explicit that these inputs are assigned to the module’s
namespace. All UI elements are wrapped in a tagList() function, where a tagList allows one to
combine multiple UI elements into a single R object. Readers should consult the “modules,” “tests,”
and “shinymgr_modules” tutorials for additional information.

#!! ModName = iris_cluster
#!! ModDisplayName = Iris K-Means Clustering
#!! ModDescription = Clusters iris data based on 2 attributes
#!! ModCitation = Baggins, Bilbo. (2022). iris_cluster. [Source code].
#!! ModNotes =
#!! ModActive = 1
#!! FunctionReturn = returndf !! selected attributes and their assigned clusters !! data.frame

iris_cluster_ui <- function(id){
# create the module's namespace
ns <- NS(id)

tagList(
sidebarLayout(
sidebarPanel(
# add the dropdown for the X variable
selectInput(
ns("xcol"),
label = "X Variable",
choices = c(
"Sepal.Length",
"Sepal.Width",
"Petal.Length",
"Petal.Width"

),
selected = "Sepal.Length"

),

# add the dropdown for the Y variable
selectInput(
ns("ycol"),
label = "Y Variable",
choices = c(
"Sepal.Length",
"Sepal.Width",
"Petal.Length",
"Petal.Width"

),
selected = "Sepal.Width"

),
# add input box for the cluster number

numericInput(
ns("clusters"),
label = "Cluster count",
value = 3,
min = 1,
max = 9

)

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 172

), # end of sidebarPanel

mainPanel(
# create outputs
plotOutput(
ns("plot1")

)
) # end of mainPanel

) # end of sidebarLayout
) # end of tagList

} # end of UI function

iris_cluster_server <- function(id) {

moduleServer(id, function(input, output, session) {

# combine variables into new data frame
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]

})

# run kmeans algorithm
clusters <- reactive({
kmeans(
x = selectedData(),
centers = input$clusters

)
})

output$plot1 <- renderPlot({
par(mar = c(5.1, 4.1, 0, 1))
plot(
selectedData(),
col = clusters()$cluster,
pch = 20,
cex = 3

)
})

return(
reactiveValues(
returndf = reactive({
cbind(
selectedData(),
cluster = clusters()$cluster

)
})

)
)

}) # end of moduleServer function

} # end of irisCluster function

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 173

References

Modularizing shiny app code, 2020. URL https://shiny.posit.co/r/articles/improve/modules/.
Accessed: 2010-09-30. [p157]

J. M. Alston and J. A. Rick. A beginner’s guide to conducting reproducible research. The Bulletin of
the Ecological Society of America, 102(2):e01801, 2021. doi: https://doi.org/10.1002/bes2.1801. URL
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/bes2.1801. [p157]

D. Attali. shinyjs: Easily Improve the User Experience of Your Shiny Apps in Seconds, 2021. URL https:
//CRAN.R-project.org/package=shinyjs. R package version 2.1.0. [p159]

C. Balantic and T. Donovan. Ammonitor: Remote monitoring of biodiversity in an adaptive framework
with r. Methods in Ecology and Evolution, 11(7):869–877, 2020. doi: https://doi.org/10.1111/2041-
210X.13397. [p159]

C. Brett and I. Neuhaus. periscope: Enterprise Streamlined ’Shiny’ Application Framework, 2022. URL
https://CRAN.R-project.org/package=periscope. R package version 1.0.1. [p157]

P. Campbell. shinyauthr: ’Shiny’ Authentication Modules, 2021. URL https://CRAN.R-project.org/
package=shinyauthr. R package version 1.0.0. [p157]

W. Chang and B. Borges Ribeiro. shinydashboard: Create Dashboards with ’Shiny’, 2021. URL https:
//CRAN.R-project.org/package=shinydashboard. R package version 0.7.2. [p159]

W. Chang, G. Csárdi, and H. Wickham. shinytest: Test Shiny Apps, 2021. URL https://CRAN.R-
project.org/package=shinytest. R package version 1.5.1. [p161]

W. Chang, J. Cheng, J. Allaire, C. Sievert, B. Schloerke, Y. Xie, J. Allen, J. McPherson, A. Dipert,
and B. Borges. shiny: Web Application Framework for R, 2022. URL https://CRAN.R-project.org/
package=shiny. R package version 1.7.3. [p157, 159]

L. Clarfeld, C. Tang, and T. Donovan. shinymgr: A framework for building, managing, and stitching shiny
modules into reproducible workflows., 2024. R package version 1.1.0. [p159]

C. Fay and S. Rochette. shinipsum: Lorem-Ipsum Helper Function for ’shiny’ Prototyping, 2020. URL https:
//cran.r-project.org/web/packages/shinipsum/index.html. R package version 0.1.0. [p157]

C. Fay, S. Rochette, V. Guyader, and C. Girard. Engineering Production-Grade Shiny Apps. Chapman and
Hall/CRC, 2021. doi: https://doi.org/10.1201/9781003029878. [p157]

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2):
179–188, 1936. doi: https://doi.org/10.1111/j.1469-1809.1936.tb02137.x. [p158]

R. Gentleman and D. T. Lang. Statistical analyses and reproducible research. Journal of Computational
and Graphical Statistics, 16(1):1–23, 2007. doi: 10.1198/106186007X178663. URL https://doi.org/
10.1198/106186007X178663. [p157]

R. D. Hipp. SQLite, 2020. URL https://www.sqlite.org/index.html. [p159]

J. Kim and H. Lee. jsmodule: ’RStudio’ Addins and ’Shiny’ Modules for Medical Research, 2022. URL
https://CRAN.R-project.org/package=jsmodule. R package version 1.3.0. [p158]

M. Kosinski. shiny.reglog: Optional Login and Registration Module System for ShinyApps, 2022. URL
https://statismike.github.io/shiny.reglog/. R package version 0.5.2. [p157]

C. Larman. Agile and iterative development: a manager’s guide. Addison-Wesley Professional, 2004. [p157]

G. Lin. reactable: Interactive Data Tables Based on ’React Table’, 2022. URL https://CRAN.R-project.org/
package=reactable. R package version 0.3.0. [p159]

K. Müller, H. Wickham, D. A. James, and S. Falcon. RSQLite: SQLite Interface for R, 2022. URL
https://CRAN.R-project.org/package=RSQLite. R package version 2.2.14. [p159]

R. D. Peng. Reproducible research in computational science. Science, 334(6060):1226–1227, 2011. doi:
10.1126/science.1213847. URL https://www.science.org/doi/abs/10.1126/science.1213847.
[p157]

V. Perrier, F. Meyer, and Z. S. Abeer. datamods: Modules to Import and Manipulate Data in ’Shiny’, 2022.
URL https://CRAN.R-project.org/package=datamods. R package version 1.3.3. [p157]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://shiny.posit.co/r/articles/improve/modules/
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/bes2.1801
https://CRAN.R-project.org/package=shinyjs
https://CRAN.R-project.org/package=shinyjs
https://CRAN.R-project.org/package=periscope
https://CRAN.R-project.org/package=shinyauthr
https://CRAN.R-project.org/package=shinyauthr
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=shinydashboard
https://CRAN.R-project.org/package=shinytest
https://CRAN.R-project.org/package=shinytest
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=shiny
https://cran.r-project.org/web/packages/shinipsum/index.html
https://cran.r-project.org/web/packages/shinipsum/index.html
https://doi.org/10.1198/106186007X178663
https://doi.org/10.1198/106186007X178663
https://www.sqlite.org/index.html
https://CRAN.R-project.org/package=jsmodule
https://statismike.github.io/shiny.reglog/
https://CRAN.R-project.org/package=reactable
https://CRAN.R-project.org/package=reactable
https://CRAN.R-project.org/package=RSQLite
https://www.science.org/doi/abs/10.1126/science.1213847
https://CRAN.R-project.org/package=datamods


CONTRIBUTED RESEARCH ARTICLE 174

R Special Interest Group on Databases (R-SIG-DB), H. Wickham, and K. Müller. DBI: R Database
Interface, 2022. URL https://CRAN.R-project.org/package=DBI. R package version 1.1.3. [p159]

B. Schloerke, J. Allaire, and B. Borges. learnr: Interactive Tutorials for R, 2020. URL https://CRAN.R-
project.org/package=learnr. R package version 0.10.1. [p159]

S. Stoudt, V. N. Vásquez, and C. C. Martinez. Principles for data analysis workflows. PLOS Computa-
tional Biology, 17(3):e1008770, 2021. doi: https://doi.org/10.1371/journal.pcbi.1008770. [p157]

K. Ushey. renv: Project Environments, 2023. URL https://rstudio.github.io/renv/. R package
version 0.17.3. [p159]

H. Wickham. testthat: Get started with testing. The R Journal, 3:5–10, 2011. URL https://journal.r-
project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf. [p161]

K. Żyła, J. Nowicki, L. Siemiński, M. Rogala, R. Vibal, and T. Makowski. rhino: A Framework for Enterprise
Shiny Applications, 2023. https://appsilon.github.io/rhino/, https://github.com/Appsilon/rhino.
[p157]

Laurence A. Clarfeld
Vermont Cooperative Fish and Wildlife Research Unit
302 Aiken Center, University of Vermont
Burlington, VT 05405 USA
ORCiD: 0000-0002-3927-9411
laurence.clarfeld@uvm.edu

Caroline Tang
Queen’s University
Biology Department
116 Barrie St, Kingston, ON K7L 3N6
ORCiD: 0000-0001-7966-5854
17ct24@queensu.ca

Therese Donovan
U.S. Geological Survey, Vermont Cooperative Fish and Wildlife Research Unit
302 Aiken Center, University of Vermont
Burlington, VT 05405 USA
ORCiD: 0000-0001-8124-9251
tdonovan@uvm.edu

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=learnr
https://CRAN.R-project.org/package=learnr
https://rstudio.github.io/renv/
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://orcid.org/0000-0002-3927-9411
mailto:laurence.clarfeld@uvm.edu
https://orcid.org/0000-0001-7966-5854
mailto:17ct24@queensu.ca
https://orcid.org/0000-0001-8124-9251
mailto:tdonovan@uvm.edu


CONTRIBUTED RESEARCH ARTICLE 175

Bayesian Model Selection with Latent
Group-Based Effects and Variances with
the R Package slgf
by Thomas A. Metzger and Christopher T. Franck

Abstract Linear modeling is ubiquitous, but performance can suffer when the model is misspecified.
We have recently demonstrated that latent groupings in the levels of categorical predictors can
complicate inference in a variety of fields including bioinformatics, agriculture, industry, engineering,
and medicine. Here we present the R package slgf which enables the user to easily implement our
recently-developed approach to detect group-based regression effects, latent interactions, and/or
heteroscedastic error variance through Bayesian model selection. We focus on the scenario in which
the levels of a categorical predictor exhibit two latent groups. We treat the detection of this grouping
structure as an unsupervised learning problem by searching the space of possible groupings of
factor levels. First we review the suspected latent grouping factor (SLGF) method. Next, using both
observational and experimental data, we illustrate the usage of slgf in the context of several common
linear model layouts: one-way analysis of variance (ANOVA), analysis of covariance (ANCOVA), a
two-way replicated layout, and a two-way unreplicated layout. We have selected data that reveal the
shortcomings of classical analyses to emphasize the advantage our method can provide when a latent
grouping structure is present.

1 Introduction

Linear models with categorical predictors (i.e., factors) are pervasive in the social, natural, and engi-
neering sciences, among other fields. Conventional approaches to fit these models may fail to account
for subtle latent structures, including latent regression effects, interactions, and heteroscedasticity
within the data. These latent structures are frequently governed by the levels of a factor. Several
examples of such datasets can be found in Franck et al. (2013), Franck and Osborne (2016), Kharrati-
Kopaei and Sadooghi-Alvandi (2007), and Metzger and Franck (2021). Our recent work (Metzger and
Franck, 2021) developed latent grouping factor-based methodology to detect latent structures using
Bayesian model selection. The current work provides an overview of the slgf package that enables
users to easily implement the suspected latent grouping factor (SLGF) methodology, and expands on
the previous work by allowing for more flexible model specification.

Consider Figure 1, which illustrates four relevant data sets analyzed in this paper. In each panel,
the levels of a user-specified factor are found to exhibit a latent grouping structure that partitions
the data into two groups with distinct regression effects (indicated by color-coding) and/or error
variances (filled and open geometry). With the slgf package, the user specifies the factor suspected of
governing this latent structure. The package protects the user against detecting spurious latent group-
ing structures since it can accommodate non-grouped candidate models. It can also accommodate
additional linear model terms of interest. The slgf package then assesses the plausibility of each model
and the corresponding structures via Bayesian model selection. An overview of slgf functionality for
these data follows and full details of each analysis (including candidate models) appear in Section
Using the slgf package. The slgf package focuses on assessing the plausibility of two-group structures
in linear models with categorical predictors using fractional Bayes factors. A discussion comparing
slgf and other R packages that address latent group models is in Section Conclusion.

The top left panel of Figure 1 represents a one-way analysis of variance (ANOVA) study where a
continuous measurement of olfactory function (vertical axis) is modeled as a function of age, where
age is a factor represented in five categories (horizontal axis) (O’Brien and Heft, 1995). We find the
highest posterior model probability (61%) for the model where levels 1, 2, and 3 of the SLGF age have
distinct mean effects and error variances from levels 4 and 5. We call this the smell data set.

The top right panel shows an analysis of covariance (ANCOVA), where the breaking strength
of a starch film (vertical axis) is measured as a function of the SLGF (starch type) and a continuous
measurement of film thickness (horizontal axis) (Furry, 1939). We find the highest posterior model
probability (59%) for the model where potato starch (unshaded gray squares) have a larger error
variance than the shaded points, and, the red points (canna and corn starch) have a distinct slope from
the gray points. We call this the textile data set.

The bottom left panel shows the example described by Meek and Ozgur (1991), where the torque
required to tighten a locknut (vertical axis) was measured as a function of a plating process and a
threading technique. The plating processes analyzed included treatments with cadmium and wax

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 176

Figure 1: Smell data (O’Brien and Heft, 1995, top left), textile data (Furry, 1939, top right), locknut
data (Meek and Ozgur, 1991, bottom left), and bottles data (Ott and Snee, 1973, bottom right). Color
(red/gray) shows latent grouping structure (i.e., group-based regression effects) for smell, textile,
and bottles data, and fill (solid/open geometry) shows group-based variances for smell, textile, and
locknut data.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 177

(CW), heat treating (HT), and phosphate and oil (PO). The threading techniques studied include
bolt and mandrel, the types of fixture on which each locknut was affixed to conduct the test. We
find the highest posterior model probability (85%) for the model where bolt by HT and bolt by PO
measurements have a larger error variance than those from bolt by CW, mandrel by HT, mandrel by
PO, and mandrel by CW. We call this the locknut data.

Finally, in the bottom right panel, the data set of Ott and Snee (1973) represents an unreplicated
two-way layout where six machine nozzles were used to fill bottles on five occasions (horizontal
axis). The weight of each bottle (vertical axis) was measured, and we find the highest posterior model
probability for the structure where nozzle 5 is found to be out of alignment from the others (> 99%).
We call this the bottles data.

The slgf package implements a combinatoric approach that evaluates all possible assignments
of SLGF levels into two groups. We refer to each these assignments as schemes. For example, in the
smell data, the scheme that is visualized assigns age levels 1, 2, and 3 into one group and levels 4 and
5 into the other, denoted {1,2,3}{4,5}. More details on how schemes are established can be found in
Subsection Grouping schemes and model classes.

The user may specify an SLGF for regression effects, another SLGF for error variances, require
them to be the same, or specify no SLGF for one or both of these. For example, the smell data has age
as the SLGF for both. In Subsection Case study 2: textile data, we analyze a data set with distinct
regression and error variance SLGFs.

In this paper, we provide an overview of the slgf package that enables analysis of data sets like
those in Figure 1 via Bayesian model selection. In Section SLGF methodology, we briefly review the
SLGF methodology. In Section Using the slgf package, we illustrate the package functionality for the
four data sets illustrated in Figure 1. For each data set, we will demonstrate the relevant code and
package functionality along with a comparison between the results of a classical approach and our
approach. In Section Conclusion, we summarize the package and its functionality.

2 SLGF methodology

2.1 Model specification

For a thorough review of the SLGF model specification see Metzger and Franck (2021). First consider
the linear model

Y = 1Tα + Wν + Vτ + Uρ + ε, (1)

where 1T is an N × 1 vector of 1s, α is an intercept, ν represents the full SLGF effect with K degrees
of freedom, τ represents the regression effects that do not arise from latent groupings (i.e., all other
regression effects of interest), and the ρ terms indicate statistical interactions between SLGF and other
regression effects; W, V, and U partition the overall model matrix into model matrices corresponding
to the SLGF effects ρ, additional effects τ, and SLGF interactions, respectively; and finally ε represents

an N × 1 vector of errors where ε
iid∼ N(0, Σ) for Σ = σ2 I where I is an N × N identity matrix.

Because a central goal of the SLGF methodology is to compare models with and without latent
grouping structures, we next develop notation to indicate whether model terms in Equation (1) involve
groupings of factor levels or not. If a model contains a one degree of freedom group effect instead
of the full K degree of freedom SLGF effect, we denote the effect ν̃ instead, with corresponding W̃ to
ensure they remain conformable. Similarly, if the interaction ρ is with the group effect rather than
the full SLGF effect, we denote it ρ̃. When there are group-based error variances, we let ε̃ denote the
vector of heteroscedastic errors, where the elements of ε̃ are either N(0, σ2

1 ) or N(0, σ2
2 ) depending on

their membership in group 1 or 2, respectively.

For example, for the smell data in the top left panel of Figure 1, the most probable model can
be represented as Y = 1Tα + W̃ν̃ + ε̃, with a 1 degree of freedom group effect ν̃ (color-coding) and
heteroscedastic error term ε̃ (shading). This model (posterior model probability 0.65) was found
to be far more probable than the ordinary one way analysis of variance model Y = 1Tα + Wν + ε
(posterior model probability less than 0.0001), the model with a 4 degree of freedom mean effect ν
and homoscedastic errors ε. Similarly, the bottles data (bottom right panel) most probable model
is Y = 1Tα + Wν + Ũρ̃ + ε with a 4 degree of freedom nozzle effect ν, an 8 degree of freedom
group-by-nozzle interaction ρ̃, and homoscedastic errors ε.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 178

2.2 Grouping schemes and model classes

Recall schemes are the possible assignments of factor levels to two latent groups. While the schemes
shown in Figure 1 may seem visually obvious, the slgf package considers all possible such assignments
of factor levels into two groups. This (i) obviates the need for the user to specify specific schemes,
and (ii) apportions prior model probabilities commensurately with the actual number of models
corresponding to a SLGF to prevent detection of spurious latent grouping structure. Problems will
differ in the number of schemes under consideration. The package slgf automatically determines the
schemes once the set of candidate models has been established by the user. The minimum number
of levels that can comprise a grouping scheme can be adjusted by the user to lower the number of
candidate models or to avoid creating model effects with too few degrees of freedom to be estimated.
The user may specify the SLGF for regression effects and/or error variances, or neither. These SLGFs
may or may not be different factors. If they are the same, the user may require that the grouping
schemes must be equal or that they may be distinct. For example, in the textile data in the top right
panel of Figure 1, the SLGF is starch for both regression effects and error variances, but the user
should allow for distinct schemes since the variance scheme appears to be {potato}{canna,corn} and
the regression effect scheme appears to be {corn}{canna,potato}.

A model class describes the structure of the model including specification of effects related to the
hidden groups. Model classes may include, for example, the set of models with group-based regression
effects but no group-based variances; or, a single model with no group-based regression effects or
variances. For example, in the smell data represented in top left panel of Figure 1, we consider the
following 62 models comprising six model classes:

1. A single model with a 1 degree of freedom global mean effect and homoscedastic error variance;

2. A single model with a 4 degree of freedom mean effect and homoscedastic error variance;

3. 15 models (corresponding to the 15 possible grouping schemes) with a 1 degree of freedom
global mean effect and group-based heteroscedastic error variances;

4. 15 models with a 4 degree of freedom mean effect and group-based heteroscedastic error
variances;

5. 15 models with a 1 degree of freedom group-based mean effect and homoscedastic error variance;

6. 15 models with a 1 degree of freedom group-based mean effect and group-based error variances.

For our analysis, we specified that the regression effect and variance grouping schemes must be
equivalent, and that one level of the age factor could comprise a group. The user can relax these
specifications as desired.

2.3 Parameter priors

With slgf, the user can choose to implement noninformative priors on the regression effects (default),
or the Zellner-Siow mixture of g-priors on these effects. We first enumerate the noninformative priors.
Let β represent the full set of regression effects. For simplicity, we parametrize on the precision scale
where φ = 1

σ2 and the corresponding precision matrix φIn×n is denoted Φ. For a model mc
s where c

indexes class and s indexes grouping scheme, slgf imposes

P(β, φ|mc
s) ∝ φ (2)

for homoscedastic models, and
P(β, φ1, φ2|mc

s) ∝ φ1 · φ2 (3)

for heteroscedastic models.

Alternatively, in contexts with limited data, such as the two-way unreplicated bottles data in the
bottom right panel of Figure 1, we recommend employing the Zellner-Siow mixture of g-prior (Zellner
and Siow, 1980; Zellner, 1986; Liang et al., 2008), which reduces the minimal training sample size
necessary for the computation of the fractional Bayes factor (see Subsection Fractional Bayes factors
and posterior model probabilities for further detail). We have generally found that in cases where the
number of data points is close to the number of parameters in some of the larger candidate models
(e.g., case study 4, bottles data), the mixture of g-priors approach outperforms the noninformative
priors due to the drastic reduction in the required proportion of the data needed to implement the
fractional Bayes factor approach. For homoscedastic models, recall Φ = ϕI where I is an N × N
identity matrix. Let

P(α, φ|mc
s) ∝ φ (4)

and

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 179

β−α|Φ, g, mc
s ∼ N(0, g(XTΦ−1X)−1). (5)

Next, for heteroscedastic models, first denote Φ̃ as a diagonal precision matrix where the ith diagonal
element is either φ1 or φ2, depending upon the grouping membership of the ith observation. Let

P(α, φ1, φ2|mc
s) ∝ φ1 · φ2 (6)

and

β−α|Φ̃, g, mc
s ∼ N(0, g(XTΦ̃−1X)−1); (7)

In both homoscedastic and heteroscedastic cases,

g ∼ InvGamma
(1

2
,

N
2
)
. (8)

Thus for homoscedastic models, the full prior on all parameters is the product of Equations (4), (5),
and (8). For heteroscedastic models, it is the product of Equations (6), (7), and (8).

2.4 Fractional Bayes factors and posterior model probabilities

Note that if we form a standard Bayes factor for models using improper priors on parameters, the
unspecified proportionality constants associated with the improper priors (Equations 2, 3, 4, and
6) would not cancel one another and the Bayes factor would be defined only up to an unspecified
constant. Thus we invoke a fractional Bayes factor approach (O’Hagan, 1995) to compute well-defined
posterior model probabilities for each model. More details follow.

The slgf package obtains posterior model probabilities through the use of fractional Bayes factors.
Briefly, a Bayes factor is defined as the ratio of two models’ integrated likelihoods. The integrated
likelihood is obtained by integrating parameters out of the joint distribution of data and parameters.
In some cases, this integration is analytic, but in others, it is undertaken with a Laplace approximation;
the corresponding simplified expressions and methods used to optimize them are described in detail
later in this section. In the SLGF context, let M represent the full set of models under consideration,
representing all classes and grouping schemes of interest. Denote θ as the full set of unknown
parameters associated with a model mc

s ∈ M and π(θ|mc
s) as the prior on these parameters given

model mc
s . The parameter vector θ depends on class and scheme of model mc

s . The integrated likelihood
is

P(Y |mc
s) =

∫
Θ

P(Y |θ, mc
s)π(θ|mc

s)dθ,

with Bayes factor comparing models mc
s and mc′

s′

BF =
P(Y |mc

s)

P(Y |mc′
s′ )

.

Since the priors used by the slgf package are improper, π(θ|mc
s) is defined only up to an unspecified

constant. Thus, BF is defined only up to a ratio of unspecified constants. To overcome this issue
and enable improper priors on parameters to be used in the course of Bayesian model selection, the
fractional Bayes factor (O’Hagan, 1995) was developed. A fractional Bayes factor is a ratio of two
fractional marginal model likelihoods, where a fractional marginal likelihood is defined as

qb(Y |mc
s) =

∫
P(Y |θ, mc

s)π(θ|mc
s)dθ∫

P(Y |θ, mc
s)bπ(θ|mc

s)dθ
. (9)

The qb(Y |mc
s) quantity in Equation (9) is the integrated likelihood based on the 1 − b fraction of

the data where the improper prior has been updated to become proper with b fraction of the data.
Thus all normalizing constants are specified. The fractional Bayes factor is thus

FBF =
qb(Y |mc

s)

qb(Y |mc′
s′ )

.

for some fractional exponent 0 < b < 1. Thus we must compute the integrals
∫

P(Y |θ, mc
s)π(θ|mc

s)dθ

and
∫

P(Y |θ, mc
s)

bπ(θ|mc
s)dθ, the numerator and denominator of Equation (9), respectively, for all

mc
s ∈ M. Although O’Hagan (1995) provides several recommendations for choice of b, slgf exclusively

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 180

implements b = m0
N where m0 is the minimal training sample size required for the denominator of

Equation (9) to be proper for all models. If m0 is too small, then the denominator of Equation (9)
diverges. The user must specify m0; if their choice is too low, then slgf increases it until all relevant
integrals converge. For further details, see O’Hagan (1995), p. 101; for recommendations on choosing
m0 in practice, see Subsection Choice of m0.

Next we discuss the technical details on how these integrals are computed via Laplace approx-

imation. Specifically, we will describe how log
(

qb(Y |mc
s)
)

is computed in each case. In the case of

noninformative regression priors for homoscedastic models, β and σ2 are integrated analytically. Let
Ŷ represent the fitted values of mc

s and SSResid the residual sum of squares of this model. We obtain

log
(

qb(Y |mc
s)
)
=

(
− N(1 − b)

2

)
(log π + log(SSResid)) +

(
Nb − 1

2

)
log b + log

 Γ
(

N−P
2

)
Γ
(

Nb−P
2

)

(10)

In the case of noninformative regression priors for heteroscedastic models, both the numerator and
denominator integrals of Equation (9 )must be approximated with a Laplace approximation because
although β can be integrated analytically, σ2

1 and σ2
2 cannot be. The integrals are computed on the

log-scale for numeric stability. Equation (9) on the log-scale simplifies to:

log
(

qb(Y |mc
s)
)
=

N(b − 1)
2

log(2π) +
P + 1

2
log b +

1
2

log
( |H⋆

b |
|H⋆|

)
+ log

(
P(Y |θ⋆)π(θ⋆|mc

s)

P(Y |θ⋆b)bπ(θ⋆b |m
c
s)

)
(11)

where θ⋆ and H⋆ denote the mode and Hessian of P(Y |θ, mc
s)π(θ|mc

s), and θ⋆b and H⋆
b denote the mode

and Hessian of P(Y |θ, mc
s)

bπ(θ|mc
s). These modes and Hessians are computed with optim using the

Nelder-Mead algorithm.

In the Zellner-Siow mixture of g-prior case, α and β−α are integrated analytically. For homoscedas-
tic models, σ2 is as well, and only g is integrated with a Laplace approximation. Again marginal
model likelihoods are computed on the log-scale. The log of the mode of P(Y |g, mc

s)
bπ(θ|mc

s), denoted
g⋆b , is found by solving the closed-form equation (Nb−1−P)

2 log(1 + bg) + Nb−1
2 log(1 + bg(1 − R2))−

3
2 log g − N

2g := 0 with the base R function uniroot where R2 is the coefficient of determination for

mc
s . The Hessian is then evaluated at this solution g⋆b ; the closed-form Hessian of P(Y |g, mc

s)
bπ(θ|mc

s)

evaluated at g⋆ is given by H⋆
b = 1

2

(
((Nb−1)b2(1−R2)2

(1+bg⋆)(1−R2)2 − (Nb−P−1)b2

(1+bg⋆)2 + 3
g⋆2 − 2N

g⋆3

)
. For b = 1, this

expression describes the numerator of Equation (9); see Liang et al. (2008) for further mathematical
details. The Laplace approximation for Equation (9) on the log-scale then is given by:

log
(

qb(Y |mc
s)
)
= log

 Γ
(

N−1
2

)
Γ
(

Nb−1
2

)
+

Nb − 1
2

(log(SSTotal) + log π) +
1
2

log
( |H⋆

b |
|H⋆|

)
+

log

(
P(Y |θ⋆)π(θ⋆|mc

s)

P(Y |θ⋆b)bπ(θ⋆b |m
c
s)

)
.

(12)

For heteroscedastic models, a three-dimensional Laplace approximation is used to integrate σ2
1 , σ2

2 ,

and g. To obtain θ⋆b and θ⋆, we first transform γ1 = log
(

1
σ2

1

)
and γ2 = log

(
1
σ2

2

)
to stabilize the op-

timization. We optimize log P(Y |g, σ2
1 , σ2

2 )
bπ(σ2

1 , σ2
2 , g) = n1b

2 log γ1 +
n2b
2 γ2 − P

2 log g + 1
2 |XTΣ̃X| −

1
2 log | bg+1

bg XT(Σ̃−ZΣ̃)X|− b
2 YT

(
Σ̃ − ZΣ̃ − (Σ̃ − ZΣ̃)X

(
bg+1

bg XTΣ̃X − XT ZΣ̃X
)−1

XT(Σ̃ − ZΣ̃)

)
Y −

3
2 log(g)− N

2g + log(J) using the Nelder-Mead method from optim where ZΣ̃ = Σ̃Z(ZTΣ̃Z)−1ZTΣ̃,

Z = 1T , and log(J) = −(γ1 + γ2) represents the determinant of the log-precision transformation. For
b = 1 these equations yield integrand of the numerator of (9).

With the modes computed, the Hessians of log P(Y |g, σ2
1 , σ2

2 )
bπ(σ2

1 , σ2
2 , g) are calculated with the

function Hessian from the package numDeriv. Finally with the modes and Hessians computed, the
Laplace approximation for Equation (9) is given by:

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=numDeriv


CONTRIBUTED RESEARCH ARTICLE 181

log
(

qb(Y |mc
s)
)
=

Nb − 1
2

log(2π) +
P + 1

2
log(b) +

1
2

log
( |H⋆

b |
|H⋆|

)
+ log

(
P(Y |θ⋆)π(θ⋆|mc

s)

P(Y |θ⋆b)bπ(θ⋆b |m
c
s)

)
.

(13)

For the sake of consistency, all models, even with fully tractable marginal model likelihoods, are
computed with a FBF. Once log-fractional marginal likelihoods have been computed for all models,
we subtract the maximum from this set so that the set of log-fractional marginal likelihoods has been
rescaled to have a maximum of 0. Each value is exponentiated to obtain a set of fractional marginal
likelihoods with maximum 1. This adjustment helps to avoid numerical underflow when computing
posterior model probabilities.

2.5 Choice of m0

The user must specify the argument m0, the minimal training sample size such that all marginal model
likelihoods are well-defined. If prior="flat", then we recommend that the user begins by letting m0
equal the dimension of the improper priors: that is, the number of coefficients in most complex model
under consideration plus the number of variances under consideration. If prior="zs", then m0 can
generally be much smaller (in practice, we have found that m0=2 performs well) as the prior on the
regression effects is proper. If the user’s choice is too low, then ms_slgf will incrementally increase it
by 1 until all marginal model probabilities are numerically stable. If m0 reaches n, corresponding to
100% of data used for training, ms_slgf will terminate and the user should specify a different set of
models.

2.6 Model priors

With this adjusted set of fractional marginal likelihoods, we next consider the priors for the model
space. The function ms_slgf imposes a uniform prior by model class, and for classes containing
multiple models, the prior on each class is uniformly divided among the models it contains. We finally
compute posterior model probabilities for each model:

P(m′|Y) = P(Y |m′)P(m′)

∑
M

P(Y |m)P(m)
. (14)

The prior probability placed on each model can be found in the models$ModPrior vector in output
from ms_slgf.

2.7 Parameter estimation

Our approach provides maximum a posteriori (MAP) estimates for all relevant quantities: β̂, σ̂2 = {σ̂2}
or σ̂2 = {σ̂2

1 , σ̂2
2} in the homoscedasitc and heteroscedastic cases respectively, and g in the Zellner-Siow

mixture of g-prior case.

Because the prior on β is either flat or centered at 0, the MAP estimator is simply the usual
maximum likelihood estimator:

β̂ = arg max
β

P(Y |X, β, Σ) (15)

so that β̂ = (XT X)−1XTY . The variance(s) and g were computed via the base R function optim during
the Laplace approximation stage. For computational efficiency, β is integrated out of P(Y |X, θ)P(θ)
and the variances are estimated on the log-scale, so we let λ̂ := {λ̂} in homoscedastic models or
{λ̂1, λ̂2} in heteroscedastic models. Then

λ̂ = arg max
λ

∫
P(Y |X, β, Σ)P(β)P(Σ)dβ (16)

or,
{λ̂, ĝ} = arg max

λ,g

∫
P(Y |X, β, Σ, g)P(α)P(β−α|Σ)P(g)dβ. (17)

Then, σ̂2 = exp{λ̂} for σ̂2 = {σ̂2} or σ̂2 = {σ̂2
1 , σ̂2

2}. The output values coefficients, variances,
and gs (only if prior="zs") are lists where each element contains the estimates for each model’s β̂, σ̂2,
and ĝ, respectively.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 182

3 Using the slgf package

The function ms_slgf() is the main function of slgf that implements the methodology we have
described. Each argument of ms_slgf() and its output will be illustrated in the case studies found
in Subsections Case study 1: smell data, Case study 2: textile data, Case study 3: locknut data, and
Case study 4: bottles data. The ms_slgf() function requires several inputs to compute and output
posterior model probabilities for all models, schemes, and model classes of interest. The user begins
with a data.frame containing a continuous response, at least one categorical predictor, and any other
covariates of interest. The data.frame cannot contain column names with the character string group,
because ms_slgf() will search for this string when fitting group-based models. The user must first
identify an SLGF for the fixed effects and/or the variance. The user indicates, via the arguments
response, slgf_beta, and slgf_Sigma, character strings corresponding to the response, the suspected
latent fixed effect grouping factor, and the suspected latent variance grouping factors, respectively.
If no latent regression effect structure or variance structure is to be considered, the user may specify
slgf_beta=NA, slgf_Sigma=NA, or both. We note that if the user does not specify any SLGFs, the
model selection is still undertaken through fractional Bayes factors as described previously. If the
user chooses the same categorical variable for both latent grouping factors, the argument same_scheme,
which defaults to FALSE, can indicate whether the grouping schemes for the regression effect and
variance structures must be equivalent.

Next the user determines the model classes they wish to evaluate. The argument usermodels is
a list where each element contains a string of R class formula or character. The user also specifies
which classes should also be considered in a heteroscedastic context via the argument het, which
is a vector of the same length as usermodels, containing an indicator 1 or 0 corresponding to each
model class specified in usermodels where 1 indicates the model will be considered with group-based
variances and 0 indicates it will not. Together the arguments usermodels and het indicate which fixed
effect structures are of interest, and which should be further considered for heteroscedasticity, thus
implicitly creating the full set of model classes considered.

Next the user chooses a prior to place on the regression effects. As described in Subsection
Parameter priors, prior="flat" (the default) implements the noninformative prior and prior="zs"
imposes the Zellner-Siow mixture of g-prior.

Finally the user must specify the minimum number of levels of the SLGF that can comprise a
group, via the arguments min_levels_beta and min_levels_Sigma, which default to 1. The number
of possible grouping schemes increases with the number of levels of the SLGF. To speed up the
computation, the user can increase these arguments and thus reduce the number of candidate models.
Because we partition into two groups, note these arguments may not exceed half the number of
levels of the SLGF. Additionally, when considering data with limited degrees of freedom, increasing
min_levels_beta and/or min_levels_Sigma may be necessary to ensure effects can be computed.

3.1 Case Study 1: smell data

First we revisit the smell data set analyzed by O’Brien and Heft (1995). They measured olfactory acuity
(denoted olf) on a continuous scale as a function of age (agecat), where age groups were divided
into five categorical levels. See Figure 2. We note that levels 4 and 5 of agecat appear to have larger
variance than levels 1, 2, and 3, but standard analysis of variance models assume homoscedasticity.
We first demonstrate how a classical analysis might misrepresent the data. A usual one-way ANOVA
analysis compares the null model, with a single mean, against the alternative model, with 4 degrees of
freedom for the mean effects, with homoscedastic error variance.

% remove smell null model
> smell$agecat <- as.factor(smell$agecat) # coerce agecat to a factor variable
> smell_null <- lm(olf~1, data=smell) # fit a null model with a single mean
> smell_full <- lm(olf~agecat, data=smell) # fit a full model with a 4 agecat effects
> print(smell_null)
Call:
lm(formula = olf ~ 1, data = smell)

Coefficients:
(Intercept)

1.234
> print(smell_full)
Call:
lm(formula = olf ~ agecat, data = smell)

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 183

Figure 2: The smell data (O’Brien and Heft, 1995) is analyzed for group-based means and variances.
We find posterior model probability of 61% for the model with group-based means and variances with
scheme {1,2,3}{4,5}. We also find overall posterior probability of grouping scheme

.

Coefficients:
(Intercept) agecat2 agecat3 agecat4 agecat5

1.31689 0.02824 -0.01075 -0.11580 -0.25728
> anova(smell_null, smell_full) # compare the null and full models
Analysis of Variance Table

Model 1: olf ~ 1
Model 2: olf ~ agecat
Res.Df RSS Df Sum of Sq F Pr(>F)

1 179 7.7585
2 175 5.6197 4 2.1388 16.651 1.395e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> summary(smell_null)$sigma^2
0.04334349
> summary(smell_full)$sigma^2
0.03211259

This approach, which assumes all levels of agecat have equal error variance, favors the model
with a 4 degree of freedom agecat effect. Note we obtain maximum likelihood estimates for the
error variance of σ̂2

full = 0.03211. Based on Figure 2, we suspect this value may overestimate the
error variance for levels 1, 2, and 3, while underestimating that of levels 4 and 5. We also suspect
that the full model may be overly complex, as the means for levels 1, 2, and 3 appear to be plausibly
equivalent. That is, the apparent latent grouping scheme for both regression effects and error variances
is {1,2,3}{4,5}, or equivalently, {4,5}{1,2,3}.

Next, consider the slgf approach. We will consider the classes of models with group-based
means, group-based variances, and both group-based means and variances. We specify dataf=smell
and response="olf", along with slgf_beta="agecat" and slgf_Sigma="agecat" as the suspected
latent grouping factor for both regression effects and variances. We set the minimum number of
levels for a group to 1 with min_levels_beta=1 and min_levels_Sigma=1. Note that fewer grouping

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 184

schemes would be considered if we let these arguments equal 2. For simplicity, since the mean
and variance grouping schemes both visually appear to be {1,2,3}{4,5}, we will restrict the schemes
to be equivalent with same_scheme=TRUE. Via the usermodels argument, we will consider the null
model class olf∼1, the full model class olf∼agecat, and the group-means model class olf∼group,
which will automatically consider all possible grouping schemes. Similarly, we will consider each of
these formulations with the class of both homoscedastic and group-based variances via the argument
het=c(1,1,1). With a relatively large amount of data, we will use the uninformative prior="flat".
Finally we specify a minimal training sample size of m0=9, although if we specify this value to be too
small, ms_slgf() will automatically increase it to the smallest value for which the relevant integrals
converge and/or the necessary optimizations can be performed. We run ms_slgf to obtain the posterior
model probabilties for all 62 models under consideration. We inspect the two most probable models,
with indices 62 and 32, which comprise over 99% of the posterior probability over the model space
considered:

> smell_out <- ms_slgf(dataf=smell, response="olf", lgf_beta="agecat",
min_levels_beta=1, lgf_Sigma="agecat",
min_levels_Sigma=1, same_scheme=TRUE,
usermodels=list("olf~1", "olf~agecat", "olf~group"),
het=c(1,1,1), prior="flat", m0=9)

> smell_out$models[c(1,2),c(1,2,3,5,7)]
Model Scheme.beta Scheme.Sigma FModProb Cumulative

62 olf~group {4,5}{1,2,3} {4,5}{1,2,3} 0.6054935 0.6054935
32 olf~agecat None {4,5}{1,2,3} 0.3878754 0.9933688

The most probable model, as suspected, is olf∼group, indicating group-based means where
Scheme.beta is {4,5}{1,2,3}. Note also Scheme.Sigma indicates group-based heteroscedasticity with
the same scheme. This model received posterior probability of approximately 61%. The next most
probable model also has group-based heteroscedasticity with scheme {4,5}{1,2,3}, but note the model
is olf∼agecat, containing the full model not with group-based mean effects, but rather 4 degrees of
freedom for the agecat effect. By inspecting smell_out$scheme_probabilities_Sigma, we see that
models with variance grouping scheme {4,5}{1,2,3} comprise over 99% of the posterior probability.
By contrast, the models with fixed effect grouping scheme {4,5}{1,2,3} (that is, the homoscedastic
and heteroscedastic versions) comprise 61% of the posterior probability. We find these posterior
probabilities intuitive, easy to interpret quantifications of uncertainty.

The output fields coefficients and variances contain lists with the coefficients and variance(s)
associated with each model. The output field model_fits contains the output from a linear model fit
to the model specification in question, containing the , and Note the most probable model has index
62, so we inspect the 62nd elements of the coefficient and variance lists smell_out$coefficients
and smell_out$variances, which contain the MAP estimates for each model’s regression effects and
variance(s), respectively. The group-based variance estimates are σ̂2

{4,5} = 0.0587 and σ̂2
{1,2,3} = 0.0121.

We contrast these variances against the estimate σ̂2
full = 0.032, which appears to have overestimated

the variance of levels 1, 2, and 3, while simultaneously underestimating that of levels 4 and 5.

> smell_out$coefficients[[62]]
(Intercept) group{4,5}
1.3252211 -0.1940328

> smell_out$variances[[62]]
{4,5} {1,2,3}

0.05868885 0.01211084

3.2 Case study 2: textile data

We reanalyze the breaking strength data set of Furry (1939), also investigated by Metzger and Franck
(2021), to illustrate the additional flexibility of slgf beyond the original work. The breaking strength of
a starch film strength (measured in grams) is analyzed according to the thickness of the film, denoted
film (measured in 10−4 inches), and the type of starch starch used to create the film (canna, corn, or
potato). As usual, we begin by plotting the data to ascertain whether there is a latent grouping factor
present. By inspection we note that the potato films, represented by squares in Figure 3, appear to
have a higher variability than the corn (filled red circles) and canna (filled gray triangles) films.

We first illustrate a typical ANCOVA approach, in which three parallel lines for each level of starch
are fit with a common error variance. This model leads to the fit shown in the center panel of Figure
3. Note only the film thickness effect is statistically significant according to a traditional hypothesis
testing approach with α = 0.05. The residual standard error of this model is σ̂2

ANCOVA = 27126.09.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 185

6 8 10 12 14

40
0

80
0

12
00

16
00

Observed Data

Film Thickness (unit)

B
re

ak
in

g 
S

tr
en

gt
h 

(u
ni

t) Canna
Potato
Corn

6 8 10 12 14

40
0

80
0

12
00

16
00

ANCOVA Model Fit

Film Thickness (unit)

B
re

ak
in

g 
S

tr
en

gt
h 

(u
ni

t)

6 8 10 12 14

40
0

80
0

12
00

16
00

Group−Based Interaction
and Variances Fit

Film Thickness (unit)

B
re

ak
in

g 
S

tr
en

gt
h 

(u
ni

t) Canna
Potato
Corn

Figure 3: The breaking strength data set from Furry (1939) represents the breaking strength of starch
films depending on the thickness of a film coating and the type of starch used to make the film. The
left panel shows the data. The center panel shows an ANCOVA model. The right panel shows the
most probable model (P(m|Y) ≈ 66%) containing a latent group-based interaction between groups
{canna, potato}{corn} (gray points vs. red points) and film thickness, as well as distinct variances
between groups {canna, corn}{potato} (filled points vs. open points).

> textile_ancova <- lm(strength~film+starch, data=textile)
> summary(textile_ancova)

Call:
lm(formula = strength ~ film + starch, data = textile)

Residuals:
Min 1Q Median 3Q Max

-203.63 -99.45 -57.84 56.72 637.61

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 158.26 179.78 0.880 0.383360
film 62.50 17.06 3.664 0.000653 ***
starchcorn -83.67 86.10 -0.972 0.336351
starchpotato 70.36 67.78 1.038 0.304795

We contrast these findings against our methodology with slgf. The following arguments are
input: dataf=textile specifies the data frame; response="strength" specifies the column of textile
that contains the response variable; slgf_beta="starch" and slgf_Sigma="starch" indicate that the
categorical variable starch should be used as the latent grouping factor for both regression effects
and variances; same_scheme=FALSE indicates that the latent regression effect and variance group-
ing structures do not need to be partitioned by the same levels of starch; min_levels_beta=1 and
min_levels_Sigma=1 indicate that a latent group can contain only one level of starch; the user-
models argument indicates that we will consider main effects models strength∼film+starch and
strength∼film+starch+film*starch, and models with group-based regression effects including
strength∼film+group and strength∼film+group+film*group; the argument het=c(1,1,1,1) indi-
cates that each of these four model specifications will also be considered with group-based variances;
prior="flat" places a flat prior on the regression effects; and m0=8 specifies the minimal training
sample size.

> data(textile)
> out_textile <- ms_slgf(dataf = textile, response = "strength",

lgf_beta = "starch", lgf_Sigma = "starch",
same_scheme=FALSE, min_levels_beta=1, min_levels_Sigma=1,
usermodels = list("strength~film+starch", "strength~film*starch",

"strength~film+group", "strength~film*group"),
het=c(1,1,1,1), prior="flat", m0=8)

> out_textile$models[1:5,c(1,2,3,5)]
Model Scheme.beta Scheme.Sigma FModProb

31 strength~film*group {corn}{canna,potato} {potato}{canna,corn} 0.6596667376
8 strength~film*starch None {potato}{canna,corn} 0.3337588991
30 strength~film*group {canna}{corn,potato} {potato}{canna,corn} 0.0018692078

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 186

28 strength~film*group {corn}{canna,potato} {corn}{canna,potato} 0.0010854755
7 strength~film*starch None {corn}{canna,potato} 0.0006831597

Refer to code and output above, where we provide the five most probable models. Note the three
most probable models all have the latent variance grouping scheme {potato}{canna, corn}; again over
99% of the posterior model probability is accounted for by this variance scheme. This visually agrees
with the plot, which shows that the potato starch films seem to have higher variability than the canna
and corn starch films. The regression effect structure is less clear: the most probable model selects
the film*group model, which contains main effects for film and group as well as their interaction,
with scheme {canna}{corn, potato}. We plot this model in the right panel of Figure 3 to illustrate its
plausibility. It does appear that the slope for corn is steeper than that of potato and canna, which can
be contracted into a single level to simplify the model. However, the error variance for potato appears
larger than that of canna and potato, as evidenced by the large spread of square potato points around
the gray line. Thus we assert that the most probable model under our methodology is reasonable
and appropriate. The group standard errors are σ2

{potato} = 57734.046 and σ2
{canna,corn} = 5791.713,

indicating the standard ANCOVA model underestimates the error variance of the potato observations,
and overestimates those of the canna and corn observations.

Finally we illustrate the output scheme_probabilities_beta and scheme_probabilities_Sigma,
which sum up the probabilities for all model specifications associated with each possible grouping
scheme. We see moderately high cumulative probability for models with regression grouping scheme
{corn}{canna,potato}, followed closely be models with no grouping scheme for regression effects:

> out_textile$scheme_probabilities_beta
Scheme.beta Cumulative

2 {corn}{canna,potato} 0.592860983
4 None 0.403632744
1 {canna}{corn,potato} 0.002502435
3 {potato}{canna,corn} 0.001003838

Intuitively, based on the wider spread of the square potato points in Figure 3, we see high cumulative
probability for the variance grouping scheme {potato}{canna,corn}:

> out_textile$scheme_probabilities_Sigma
Scheme.Sigma Cumulative

3 {potato}{canna,corn} 9.975853e-01
2 {corn}{canna,potato} 2.184257e-03
1 {canna}{corn,potato} 2.304323e-04
4 None 1.632320e-08

3.3 Case study 3: locknut data

We consider the two-way replicated layout of Meek and Ozgur (1991), where the torque (torque)
required to tighten a locknut was measured as a function of a plating process (plating) and a threading
method (fixture).

A two-way analysis with an interaction yields the following ANOVA table. The fixture and plating
main effects, along with fixture by plating interaction, are all statistically significant at level α = 0.005.
Additionally, we find σ̂2

Full = 36.58:

> anova(lm(Torque~Fixture+Plating+Fixture*Plating, data=locknut))
Analysis of Variance Table

Response: Torque
Df Sum Sq Mean Sq F value Pr(>F)

Fixture 1 821.4 821.40 22.4563 1.604e-05 ***
Plating 2 2290.6 1145.32 31.3118 9.363e-10 ***
Fixture:Plating 2 665.1 332.55 9.0916 0.0003952 ***
Residuals 54 1975.2 36.58

Upon inspection of Figure 4, we suspect that two latent characteristics are at play. First, based on
the non-parallel lines representing the plating effects, there may be a group-by-plating interaction,
so we will consider slgf_beta="Plating". Note since fixture has only two levels, it is not feasible to
consider group-based effects based on fixture since the one degree of freedom fixture effect would be
equivalent to a group effect.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 187

Figure 4: The most probable model (P(m|Y) ≈ 85%) contains a full fixture by plating interaction effect
with no grouping structure, and group-based variances based on the levels of this interaction with
scheme {bolt*CW, mandrel*CW, mandrel*HT, mandrel*PO}{bolt*HT, bolt*PO} (filled points vs. open
points).

Regarding the variance structure, the variance of the torque amount at levels PO and HT appears
higher, but only for the bolt fixture. This suggests that the levels of the interaction govern the variance
groups; that is, slgf_Sigma="Fixture*Plating". Since this specific variable header does not appear
in the locknut data set, we manually create a new variable with each interaction level by pasting
together the main effect variables:

locknut$Interaction <- paste0(locknut$Fixture, "*", locknut$Plating)

Thus we consider the following model specifications. Liang et al. (2008) (p. 420) note that the
Zellner-Siow mixture of g-prior provides a fully Bayesian, consistent model selection procedure for
small n along with relatively straightforward expressions for the marginal model probabilities. This
approach is implemented by the user with the argument prior="zs":

> data(locknut)
> locknut$Interaction <- paste0(locknut$Fixture, "*", locknut$Plating)
> out_locknut <- ms_slgf(dataf=locknut, response="Torque", same_scheme=FALSE,

lgf_beta="Plating", min_levels_beta=1,
lgf_Sigma="Interaction", min_levels_Sigma=1,
usermodels=list("Torque~Fixture+Plating+Fixture*Plating",

"Torque~Fixture+group+Fixture*group"),
het=c(1,1), prior="zs", m0=2)

This formulation favors the same main and interaction effects favors by the standard model.
However, slgf favors group-based variances with scheme {bolt*HT, bolt*PO}{bolt*CW, mandrel*CW,
mandrel*HT, mandrel*PO} with posterior probability of approximately 85%. This variance structure
was expected based on the relatively larger spread of the open points in Figure 4. As we have
noted previously, the group variance estimates show that the heteroscedastic model overestimates
the variance for some levels of fixture and plating, and underestimates it for others. Since model
‘13‘ was the model probable model, we print these variances, obtaining σ̂2

bolt*HT,bolt*PO ≈ 85.0 and
σ̂2

bolt*CW,mandrel*CW,mandrel*HT,mandrel*PO ≈ 11.6:

> out_locknut$variances[[13]]
{bolt*HT,bolt*PO} {bolt*CW,mandrel*CW,mandrel*HT,mandrel*PO}

85.00448 11.58652

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 188

3.4 Case study 4: bottles data

Finally, we consider the data of Ott and Snee (1973), where a machine with six heads (head) is designed
to fill bottles (weight). The weight of each bottle is measured once over five time points (time) as a
two-way unreplicated layout. A visual inspection of the data (Figure 5, left panel) indicates that one of
the filling heads is behaving distinctly than the other five. There appears to be an interaction between
head and time, but we lack the degrees of freedom to fit such a model. If we were to fit the standard
main effects model, we obtain the clearly inappropriate model fit in the center panel of Figure 5.

Since it appears that head {5} is out of calibration in some way as compared to heads {1,2,3,4,6},
we instead consider the group-based interaction model weight∼time+group:time where ‘head’ is the
regression effect SLGF. For this illustration, we consider only homoscedastic models. In this data-poor
context, we recommend the use of the Zellner-Siow mixture of g-prior by specifying prior="zs" in
the ms_slgf function. The minimal training sample size can be much lower, as this prior is proper. We
inspect the posterior model probabilities of the most probable model and the additive main effects
model:

> bottles_me <- lm(weight~time+heads, data=bottles)
> bottles2 <- data.frame(weight=bottles$weight, time=as.factor(bottles$time),

heads=as.factor(bottles$heads))
> bottles_out <- ms_slgf(dataf=bottles2, response="weight", lgf_beta="heads",

min_levels_beta=1, lgf_Sigma=NA, min_levels_Sigma=NA, same_scheme=FALSE,
usermodels=list("weight~time+group:time", "weight~time+heads"),
het=c(0,0), prior="zs", m0=2)

> bottles_out$models[1:2,c(1,2,4,5)]
Model Scheme.beta Log-Marginal FModProb

5 weight~time+group:time {5}{1,2,3,4,6} -103.168 0.9991932
32 weight~heads+time None -114.726 0.0002158313

The group-based approach overwhelmingly favors the model with a main effect for ‘time‘ along
with the group-based interaction ‘group:time‘ with scheme {5}{1,2,3,4,6}. We also note that the error
variance for the main effects model is σ̂2

ME = 130.1233, while the estimate for the group-based
interaction model is σ̂2

{5}{1,2,3,4,6} = 39.76, suggesting the main effects model seriously overestimates
the error variance and thus may lead to misleading inference on regression effects.

Figure 5: The bottles data set from Ott and Snee (1973) represents fill weights by six machine heads
over five time points. The left panel shows the data, with head 5 appearing to be out of calibration.
The center panel shows a main effects model, with a realistic fit for heads 1, 2, 3, 4, and 6, but not 5.
The right panel shows the most probable group-based interaction (P(m|Y) > 99.9%) with main effects
for time and a group-by-time interaction with scheme {5}{1,2,3,4,6}.

We note that there will be a linear dependency between the group-by-time interaction and the time
main effect for time 5. The NA values can be seen by inspecting the coefficients of the corresponding
model. These effects are not counted in the dimensionality of the model when computing qb(Y |m).

> bottles_out3$coefficients[[5]]
(Intercept) heads2 heads3 heads4

53.24 1.80 4.80 -6.80
heads5 heads6 group{1,2,3,4,6}:time1 group{5}:time1
-8.24 -1.00 14.00 -13.00

group{1,2,3,4,6}:time2 group{5}:time2 group{1,2,3,4,6}:time3 group{5}:time3

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 189

-1.40 20.00 -8.20 4.00
group{1,2,3,4,6}:time4 group{5}:time4 group{1,2,3,4,6}:time5 group{5}:time5

27.40 -11.00 NA NA

4 Conclusion

This manuscript has provided an overview of the slgf package in R, which is available from the
Comprehensive R Archive Network. Source code can be found on Github at https://github.com/
metzger181osu/slgf. The slgf package allows the user to determine whether latent groupings of
categorical predictor’s levels provide a better characterization of the response variable compared
with ordinary linear models that do not account for the suspected latent groupings. This is accom-
plished through the suspected latent grouping factor methodology of Metzger and Franck (2021). The
methodology allows for formal comparisons between ordinary linear models and latent grouping
models, which protects the user from automatically selecting a spurious clustering structure that is
not well supported by the data. We illustrate the ability to detect the lack of a grouping structure in
the simulation studies of Metzger and Franck (2021).

The slgf package allows the user to (i) explore different grouping schemes for fixed effects and
error variances, and (ii) specify entirely separate latent grouping factors for fixed effects and variances.
We illustrate (i) in Case Study 2: Textile data, where the top model shows a different regression line
for corn compared to canna and potato, but the error variance for potato is different from canna and
corn (see Figure 3). To show (ii), we considered the locknut example of Subsection Case study 3:
locknut data, where we considered whether fixture (bolt, mandrel) exhibited a fixed effect latent
grouping structure, and whether interaction (bolt*CW, bolt*HT, bolt*PO, mandrel*CW, mandrel*HT,
mandrel*PO) exhibited a variance latent grouping structure. As described in Subsection Case study
3: locknut data, we found no latent grouping structure for fixed effects, but torque error variance
for bolt*HT and bolt*PO differ from the other interaction levels. The analysis supported no latent
grouping structure for plating.

The slgf package provides functionality to detect plausible underlying cluster structures among
levels of categorical predictors in linear models. This exercise in cluster detection is in some ways
similar to considering a finite mixture model. R packages already exist to fit finite mixture models
using the EM algorithm, such as mixtools (Benaglia et al., 2009). The flexmix package (Gruen and
Leisch, 2023) in particular is notable for its ability to fit mixture models to regression data (including
Gaussian, binomial, and Poisson models). Additionally, the package MultiLCIRT also considers latent
variables for the item response theory setting; see Bartolucci et al. (2014), who use BIC for model
selection rather than fractional Bayes factors.

In contrast to fitting finite mixture models for the purpose of parameter estimation and inference,
slgf assesses the plausibility of cluster structures for small to medium-sized data sets via model
selection. Additionally, slgf can avoid problems with convergence in the EM algorithm that may arise
in small-sample scenarios, particularly when the number of data points is relatively low and the model
being fit (e.g., a two component mixture model) is larger than the actual model generating the data
(e.g., a one component mixture model with no cluster structure).

By contrast, slgf circumvents convergence issues by considering all possible groupings of points
within the user-specified model classes, obtaining integrated likelihoods and posterior model prob-
abilities for each model, and quantifying overall probability of a cluster structure as the sum of all
posterior probabilities for models with two groups by the law of total probability. The slgf package
thus excels in smaller-data settings where assessing the plausibility of a cluster structure is the core
goal, and packages like flexmix will excel in cases where the main goal is to fit specified mixture
models and conduct inference on parameters.

In addition to the basic slgf demonstration shown in Case Study 1: Smell data, we illustrate slgf
functionality for mixtures of g-priors (Liang et al., 2008) and a two way unreplicated layout in Case
Study 4: Bottles data. Mixtures of g-priors have been shown to work well with fractional Bayes factor
methods to reduce the training fraction when sample size is small relative to the number of model
parameters (Metzger and Franck, 2021).

Finally, although the methodology described here and in Metzger and Franck (2021) exclusively
handles two latent groups, we call on any readers with a compelling data set that may exhibit more
than two latent groups to contact the authors so that we might explore a generalization of our method
to more than two groups.

We have provided an overview of functionality that we hope will enable scientists from diverse
fields to access the SLGF methodology of Metzger and Franck (2021) via the slgf package to detect
hidden groupings in the levels of categorical predictors that might impact outcomes of interest across
a wide range of human endeavors.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=slgf
https://github.com/metzger181osu/slgf
https://github.com/metzger181osu/slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=mixtools
https://CRAN.R-project.org/package=flexmix
https://CRAN.R-project.org/package=MultiLCIRT
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=flexmix
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf
https://CRAN.R-project.org/package=slgf


CONTRIBUTED RESEARCH ARTICLE 190

References

F. Bartolucci, S. Bacci, and M. Gnaldi. Multilcirt: An r package for multidimensional latent class
item response models. Computational Statistics & Data Analysis, 71:971–985, 2014. ISSN 0167-9473.
doi: https://doi.org/10.1016/j.csda.2013.05.018. URL https://www.sciencedirect.com/science/
article/pii/S0167947313002053. [p189]

T. Benaglia, D. Chauveau, D. R. Hunter, and D. Young. mixtools: An R package for analyzing finite
mixture models. Journal of Statistical Software, 32(6):1–29, 2009. URL https://www.jstatsoft.org/
v32/i06/. [p189]

C. T. Franck and J. A. Osborne. Exploring Interaction Effects in Two-Factor Studies using the hiddenf
Package in R. The R Journal, 8(1):159–172, 2016. URL https://journal.r-project.org/archive/
2016/RJ-2016-011/index.html. [p175]

C. T. Franck, D. M. Nielsen, and J. A. Osborne. A method for detecting hidden additivity in two-factor
unreplicated experiments. Computational Statistics & Data Analysis, 67(Supplement C):95 – 104, 2013.
ISSN 0167-9473. doi: https://doi.org/10.1016/j.csda.2013.05.002. URL http://www.sciencedirect.
com/science/article/pii/S0167947313001618. [p175]

M. S. Furry. Breaking strength, elongation and folding endurance of films of starches and gelatin used
in textile sizing. Technical Bulletin (United States Department of Agriculture), 674:1–36, 1939. [p175,
176, 184, 185]

B. Gruen and F. Leisch. flexmix: Flexible Mixture Modeling, 2023. URL https://CRAN.R-project.org/
package=flexmix. R package version 2.3-19. [p189]

M. Kharrati-Kopaei and S. M. Sadooghi-Alvandi. A new method for testing interaction in unreplicated
two-way analysis of variance. Communications in Statistics - Theory and Methods, 36(15):2787–2803,
2007. doi: 10.1080/03610920701386851. URL http://dx.doi.org/10.1080/03610920701386851.
[p175]

F. Liang, R. Paulo, G. Molina, M. A. Clyde, and J. O. Berger. Mixtures of g priors for bayesian
variable selection. Journal of the American Statistical Association, 103(481):410–423, 2008. doi: 10.1198/
016214507000001337. URL https://doi.org/10.1198/016214507000001337. [p178, 180, 187, 189]

G. Meek and C. Ozgur. Torque variation analysis. Journal of the Industrial Mathematics Society, 41:1–16,
1991. [p175, 176, 186]

T. A. Metzger and C. T. Franck. Detection of latent heteroscedasticity and group-based regression
effects in linear models via bayesian model selection. Technometrics, 63(1):116–126, 2021. doi:
10.1080/00401706.2020.1739561. URL https://doi.org/10.1080/00401706.2020.1739561. [p175,
177, 184, 189]

R. G. O’Brien and M. W. Heft. New discrimination indexes and models for studying sensory function-
ing in aging. Journal of Applied Statistics, 22:9–27, 1995. [p175, 176, 182, 183]

A. O’Hagan. Fractional bayes factors for model comparison. Journal of the Royal Statistical Society. Series
B (Methodological), 57(1):99–138, 1995. ISSN 00359246. URL http://www.jstor.org/stable/2346088.
[p179, 180]

E. R. Ott and R. D. Snee. Identifying useful differences in a multiple-head machine. Journal of Quality
Technology, 5(2):47–57, 1973. [p176, 177, 188]

A. Zellner. On assessing prior distributions and bayesian regression analysis with g-prior distributions.
In P. Goel and A. Zellner, editors, Bayesian Inference and Decision Techniques: Essays in Honor of Bruno
de Finetti, pages 233–243. Elsevier Science Publishers, Inc., 1986. [p178]

A. Zellner and A. Siow. Posterior odds ratios for selected regression hypotheses. Trabajos de Estadistica
y de Investigacion Operativa, 31(1):585–603, Feb 1980. ISSN 0041-0241. doi: 10.1007/BF02888369. URL
https://doi.org/10.1007/BF02888369. [p178]

Thomas A. Metzger
Department of Statistics, The Ohio State University
1958 Neil Avenue, Columbus, Ohio 43210
United States of America

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://www.sciencedirect.com/science/article/pii/S0167947313002053
https://www.sciencedirect.com/science/article/pii/S0167947313002053
https://www.jstatsoft.org/v32/i06/
https://www.jstatsoft.org/v32/i06/
https://journal.r-project.org/archive/2016/RJ-2016-011/index.html
https://journal.r-project.org/archive/2016/RJ-2016-011/index.html
http://www.sciencedirect.com/science/article/pii/S0167947313001618
http://www.sciencedirect.com/science/article/pii/S0167947313001618
https://CRAN.R-project.org/package=flexmix
https://CRAN.R-project.org/package=flexmix
http://dx.doi.org/10.1080/03610920701386851
https://doi.org/10.1198/016214507000001337
https://doi.org/10.1080/00401706.2020.1739561
http://www.jstor.org/stable/2346088
https://doi.org/10.1007/BF02888369


CONTRIBUTED RESEARCH ARTICLE 191

ORCiD: 0000-0003-3620-1405
metzger.181@osu.edu

Christopher T. Franck
Department of Statistics, Virginia Tech
403E Hutcheson Hall, Blacksburg, VA 24060
United States
(ORCiD: 0000-0003-1251-4378)
chfranck@vt.edu

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

mailto:metzger.181@osu.edu
mailto:chfranck@vt.edu


CONTRIBUTED RESEARCH ARTICLE 192

BMRMM: An R Package for Bayesian
Markov (Renewal) Mixed Models
by Yutong Wu and Abhra Sarkar

Abstract We introduce the BMRMM package implementing Bayesian inference for a class of Markov
renewal mixed models which can characterize the stochastic dynamics of a collection of sequences,
each comprising alternative instances of categorical states and associated continuous duration times,
while being influenced by a set of exogenous factors as well as a ‘random’ individual. The default
setting flexibly models the state transition probabilities using mixtures of Dirichlet distributions and
the duration times using mixtures of gamma kernels while also allowing variable selection for both.
Modeling such data using simpler Markov mixed models also remains an option, either by ignoring
the duration times altogether or by replacing them with instances of an additional category obtained
by discretizing them by a user-specified unit. The option is also useful when data on duration times
may not be available in the first place. We demonstrate the package’s utility using two data sets.

1 Introduction

Markov models (MMs) are widely used for modeling the transition dynamics of categorical state
sequences. Classical Markov renewal models (MRMs) additionally model the state duration times,
when available, where the state transitions follow Markov dynamics and the state duration times follow
a continuous distribution that depends on the immediately preceding and following states (Figure 1).
M(R)Ms have been widely used in different variations (Phelan, 1990; Eichelsbacher and Ganesh, 2002;
Muliere et al., 2003; Alvarez, 2005; Diaconis and Rolles, 2006; Bulla and Muliere, 2007; Etterson et al.,
2007; Bacallado et al., 2009; Li, 2009; Epifani et al., 2014; Siebert and Söding, 2016; Holsclaw et al., 2017;
Sesia et al., 2019). There are also some sparse works on covariate-dependent Markov models (Muenz
and Rubinstein, 1985; Gradner, 1990; Alioum et al., 1998; Islam and Chowdhury, 2006).

The existing literature however focuses very heavily on modeling single sequences. Sarkar et al.
(2018) developed a highly flexible and computationally efficient class of Bayesian Markov mixed
models (BMMMs) for jointly modeling a collection of categorical sequences, each one associated
with an individual as well as a set of time-invariant external covariates (e.g., the sex and genotype
of the associated individual, an experimental condition under which the sequence was generated,
etc.). BMMMs characterize the state transition probabilities using a convex combination of a fixed
covariate-dependent component and a random individual-level component, both being Dirichlet
distributed. They further allow covariate levels with similar effects to be probabilistically clustered
together, allowing automatic selection of the significant covariates, and providing a sophisticated
framework for analyzing data sets having the aforementioned structure.

BMMMs however do not model duration times of the states which are often additionally available
in real-world applications. Recently, Wu et al. (2023) extended BMMMs to Bayesian Markov renewal
mixed models (BMRMMs), allowing for the additional analysis of continuous duration times which,
depending on the application, can either be the duration for which a state persists or the duration
between two consecutive states, i.e., inter-state intervals (ISIs). Specifically, they modeled the duration
times using mixtures of gamma kernels with mixture probabilities being a convex combination a
covariate-dependent effect and an individual-level effect, similar to BMMMs. Covariate levels with
similar influences on mixture probabilities are clustered together in BMRMMs as well, allowing the
selection of the significant covariates. BMRMMs thus holistically model both state transitions and
continuous duration times, painting a comprehensive picture of the underlying stochastic dynamics.

In this article, we describe the R package BMRMM which implements BMMMs and BMRMMs,
collectively referred to henceforth as BM(R)MMs. The BMRMM package runs posterior inference
for categorical state transitions and continuous duration times, if available, via a Markov chain
Monte Carlo (MCMC) algorithm, returning an object containing comprehensive inference results. The
package also includes a suite of plotting functions to display the results graphically. Specifically for
continuous duration times, when available, the package provides users with three different options:
(i) ignore the duration times and model the state transitions alone as a BMMM; (ii) introduce an
additional category by discretizing the continuous duration times by a user-specified unit, and analyze
the appended state transitions as a BMMM; (iii) model the duration as a mixture of gamma kernels
using a BMRMM, as proposed in Wu et al. (2023). Additionally, users can choose to turn off one or
both of the fixed covariate effects and the random individual effects. Overall, the BMRMM package
thus gives users a lot of flexibility in handling their data sets, providing inferences for both Bayesian
Markov renewal or non-renewal models as needed.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=BMRMM
https://CRAN.R-project.org/package=BMRMM


CONTRIBUTED RESEARCH ARTICLE 193

The BMRMM package conveniently includes a synthetic foxp2 data set that describes the labo-
ratory study on the role of the FoxP2 gene implicated in speech deficiencies for adult mice, which is
also the motivating application for the methodology of BMMMs and BMRMMs. Mutations in the
FoxP2 gene have long been associated with severe deficits in vocal communication for mammals
(MacDermot et al., 2005). Mice with and without the mutation singing under various "social contexts"
have thus been studied in many experiments (Fujita et al., 2008; Castellucci et al., 2016; Gaub et al.,
2016; Chabout et al., 2016). The FoxP2 data set (Chabout et al., 2016), e.g., comprises the sequences
of syllables making up the songs as well as the lengths of inter-syllable intervals (ISIs). The data set
foxp2 included in the BMRMM package is taken from the simulation study of Wu et al. (2023). It is
much shorter than the real FoxP2 data set but closely mimics its other aspects and is used in this paper
to demonstrate how to obtain detailed inferences for both syllable transitions and ISI dynamics for a
comprehensive analysis of the vocal repertoire in mice with and without the FoxP2 mutation.

The utility of the BMRMM package goes well beyond the FoxP2 data set. As described above, the
package is designed for scenarios where the data set consists of categorical state sequences associated
with an individual as well as a number of observed covariates where additional data on continuous
duration times may or may not be available. Data sets with such structures are frequently observed
in different areas of scientific research and can potentially benefit from the BMRMM package. For
example, Islam and Chowdhury (2006) analyzed the transitions of different rainfall orders in three
districts of Bangladesh under three covariates, wind speed, humidity, and maximum temperature. In
an education assessment study, Zhang et al. (2019) recorded sequences of writing states, characterized
by keystroke logs, for 257 eighth graders of various genders, races, and socioeconomic statuses.
Combescure et al. (2003) estimated the control states of 371 asthma patients with different body mass
indices (BMIs) and disease severity over a four-year-long study and produced the asthma control data
set, which we will use as an additional example to demonstrate the utility of our package in this paper.
For such data sets, the BMRMM package provides a flexible, sophisticated, and principled way to
model fixed effects of the covariates and random effects of the individuals in both the state transition
dynamics and the distribution of the ISIs.

Other computer programs for Markov models with covariates include MARKOV (Marshall et al.,
1995) and MKVPCI (Alioum and Commenges, 2001). R packages for analyzing discrete Markov
models include markovchain (Spedicato, 2017) and msm (Jackson, 2011). SemiMarkov (Listwon and
Saint-Pierre, 2015) and SMM (Barbu et al., 2018) provide functions for the simulation and estimation
of traditional semi-Markov models. Some R packages provide the inference of hidden semi-Markov
models, such as mhsmm (O’Connell and Højsgaard, 2011) and hhsmm (Amini et al., 2022). Ferguson
et al. (2012) built the msSurv package which provides a nonparametric estimation of semi-Markov
models but does not consider covariates. There are also R packages implementing MRPs in specific
application areas. For example, Kharrat et al. (2019) introduced the Countr package for flexible
regression models based on MRPs. Pustejovsky (2021) developed the ARPobservation for simulating
behavior streams based on alternating renewal processes. Other R packages for categorical data
analysis include catdap (Katsura, 1980) and vcd (Meyer et al., 2022). To our knowledge, there has not
been an R package that implements flexible Bayesian M(R)MMs.

In the following section, we summarize the technical details of BMRMMs. Documentation for the
functions of the BMRMM package is then provided. Next, we demonstrate the usage of our package
in analyzing two different data sets. The final section contains some concluding remarks.

2 The Bayesian Markov (renewal) mixed models

We briefly describe the BM(R)MM methodologies here – more details can be found in Sarkar et al.
(2018) and Wu et al. (2023). Consider specifically a sequence s comprising Ts state instances and
let ys,t denote the state at time t in sequence s. The states ys,t’s come from a set Y = {1, 2, . . . , d0}.
Within a sequence s, there are Ts − 1 duration times (state persistence times or inter-state intervals),
denoted by {τs,t}s0,Ts

s=1,t=2, where τs,t is the duration between the (t − 1)th and tth states in sequence
s, and s0 represents the total number of sequences. Figure 1 presents a graphical summary of the
data structure. Each sequence s is associated with p categorical covariates or factors, denoted by
xs,j ∈ Xj = {1, 2, . . . , dj}, and an individual, denoted by is. Without loss of generality, we assume
that the analyses of the transition probabilities and the duration times distributions both include
all p covariates. Moreover, the analysis of duration times counts the previous state ys,t−1 as an
additional (p + 1)th covariate. In the BMRMM package, users have the flexibility to select particular
covariates for each analysis and exclude the previous state from the analysis of duration times. In their
original definition in Pyke (1961), the duration time τs,t in an MRP was allowed to depend on both the
preceding state ys,t−1 and the following state ys,t. To keep the notation simple and the methodology
easy to understand for a broad audience, we however only include the preceding state ys,t−1 as a
predictor of τs,t in this paper. This analysis can be easily modified to have the pair (ys,t−1, ys,t) as a
predictor instead of just ys,t−1, as was actually done in Wu et al. (2023).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=markovchain
https://CRAN.R-project.org/package=msm
https://CRAN.R-project.org/package=SemiMarkov
https://CRAN.R-project.org/package=SMM
https://CRAN.R-project.org/package=mhsmm
https://CRAN.R-project.org/package=hhsmm
https://CRAN.R-project.org/package=Countr
https://CRAN.R-project.org/package=ARPobservation
https://CRAN.R-project.org/package=catdap
https://CRAN.R-project.org/package=vcd


CONTRIBUTED RESEARCH ARTICLE 194

is xs,1 . . . xs,p ys,1 ys,2 ys,t
τs,2 τs,3 τs,t τs,t+1

ys,t
τs,Ts

ys,Ts

Figure 1: Graphical model showing the data structure: ys,t denotes the observed state at the tth time
location in the sth sequence; τs,t denotes the observed duration times (either state persistence times
or inter-state intervals) between the states ys,t−1 and ys,t; each sequence s is also associated with an
individual is and a set of exogenous time-invariant covariates xs,1, . . . , xs,p. The Markov mixed model
considered in this article analyzes the state transitions ys,t in a collection of sequences; the Markov
renewal mixed model additionally analyzes the duration times τs,t; both models accommodate fixed
effects of the covariates xs,1, . . . , xs,p and random effects of the individuals is.

2.1 Model for state transitions

For a sequence s associated with individual i and covariate levels x1, . . . , xp, the transition probabilities

Pr(ys,t = yt | is = i, xs,1 = x1, . . . , xs,p = xp, ys,t−1 = yt−1) = P(i)
trans,x1,...,xp

(yt | yt−1) are defined as a
convex combination of a fixed covariate effect component λtrans,x1,...,xp (· | yt−1) and a random effect

component λ
(i)
trans:

P(i)
trans,x1,...,xp

(yt | yt−1) = π
(i)
trans,0(yt−1)λtrans,x1,...,xp (yt | yt−1) + π

(i)
trans,1(yt−1)λ

(i)
trans(yt | yt−1). (1)

The coefficients of the convex combination, namely, {π
(i)
trans,0(yt−1), π

(i)
trans,1(yt−1)} are individual-

specific and satisfy π
(i)
trans,1(yt−1) = 1 − π

(i)
trans,0(yt−1).

For each covariate j = 1, . . . , p, it is possible that some covariate levels exert a similar effect on the
transition dynamics. For example, the components λtrans,x1=1,x2,...,xp (· | yt−1) and λtrans,x1=2,x2,...,xp (· |
yt−1) would be equal if levels 1 and 2 of covariate 1 have similar influences on transition dynamics
for fixed levels for covariates 2, . . . , p. A clustering mechanism for covariate levels allows the fixed
component λtrans,x1,...,xp (· | yt−1) to be the same for all levels with a similar influence. In particular,

for covariate j, we construct the partition C(j)
trans = {C(j)

trans,hj
}ktrans,j

hj=1 of its levels, where ktrans,j is the
number of clusters for covariate j and hj represents the cluster index. We introduce latent variables

{ztrans,j,ℓ}
p,dj

j=1,ℓ=1 that indicate the cluster index for the ℓth label of covariate j. Two levels of the
covariate j, ℓ1, ℓ2 ∈ Xj = {1, . . . , dj}, are clustered together if and only if ztrans,j,ℓ1

= ztrans,j,ℓ2 . For
the fixed effects, we then replace the covariate levels x1, . . . , xp’s with cluster indices h1, . . . , hp’s and
present the fixed effect as λtrans,h1,...,hp (· | yt−1).

We set Dirichlet priors for both fixed and individual effect components and let them center around
the same mean vector λtrans,0 to facilitate posterior computation. The probability vector λtrans,0 is also
given a Dirichlet prior with mean λtrans,00 to capture the natural preferences of certain states in Y :

λtrans,h1,...,hp (· | yt−1) ∼ Dir {αtrans,0λtrans,0(1 | yt−1), . . . , αtrans,0λtrans,0(d0 | yt−1)} ,

λ
(i)
trans(· | yt−1) ∼ Dir

{
α
(0)
transλtrans,0(1 | yt−1), . . . , α

(0)
transλtrans,0(d0 | yt−1)

}
,

λtrans,0(· | yt−1) ∼ Dir {αtrans,00λtrans,00(1), . . . , αtrans,00λtrans,00(d0)} .

We present the complete Bayesian hierarchical model for the transition dynamics as

(ys,t | ys,t−1 = yt−1, is = i, ztrans,1,xs,1 = h1, . . . , ztrans,p,xs,p = hp) ∼

Mult
{

P(i)
trans,h1,...,hp

(1 | yt−1), . . . , P(i)
trans,h1,...,hp

(d0 | yt−1)
}

, where

P(i)
trans,h1,...,hp

(· | yt−1) = π
(i)
trans,0(yt−1)λtrans,h1,...,hp (· | yt−1) + π

(i)
trans,1(yt−1)λ

(i)
trans(· | yt−1),

ztrans,j,ℓ ∼ Mult
{

µtrans,j(1), . . . , µtrans,j(dj)
}

, µtrans,j ∼ Dir(αtrans,j, . . . , αtrans,j),

λtrans,h1,...,hp (· | yt−1) ∼ Dir {αtrans,0λtrans,0(1 | yt−1), . . . , αtrans,0λtrans,0(d0 | yt−1)} ,

λ
(i)
trans(· | yt−1) ∼ Dir

{
α
(0)
transλtrans,0(1 | yt−1), . . . , α

(0)
transλtrans,0(d0 | yt−1)

}
,

λtrans,0(· | yt−1) ∼ Dir {αtrans,00λtrans,00(1), . . . , αtrans,00λtrans,00(d0)} ,

π
(i)
trans,0(yt−1) ∼ Beta(atrans,0, atrans,1),

αtrans,0 ∼ Ga(atrans,0, btrans,0), α
(0)
trans ∼ Ga(a(0)trans, b(0)trans).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 195

2.2 Model for continuous duration times

The BMRMM package provides three options for analyzing the duration times: (i) ignore the durations
altogether and only model the transition probabilities of the existing states, (ii) treat the durations as
blocks of a new special category, with a discretization unit specified by users, (iii) model the durations
as a continuous random variable with a flexible mixture of gamma distributions. For the first two
options, we only need to apply the model described in the previous subsection. For the third option,
we need to conduct a separate analysis of the duration times as described below.

Let K denote the number of gamma mixture components in the model for the duration times. We

let P(i)
dur(· | x1, . . . , xp, ys,t−1) denote the mixture probability vector given individual i, covariate levels

x1, . . . , xp, and preceding syllable ys,t−1. The preceding state ys,t−1 can be removed from the formula if
the users do not wish to consider its influence in the inference of the duration times. The distribution
of the continuous duration times, {τs,t}s0,Ts

s=1,t=2, is then modeled as

f (τs,t | is = i, xs,1 = x1, . . . , xs,p = xp, ys,t−1 = yt−1)

= ∑K
k=1 P(i)

dur(k | x1, . . . , xp, yt−1)Ga(τs,t | αk, βk),

where αk and βk denote the shape and rate parameters of the kth gamma mixture component, respec-
tively. We introduce a set of latent variables {zdur,s,t}s0,Ts

s=1,t=2 that represents the index of the mixture
component. If zdur,s,t equals to k, then τs,t follows Ga(αk, βk) distribution, i.e.,

f (τs,t | zdur,s,t = k) ∼ Ga(τs,t | αk, βk),

Pr(zdur,s,t = k | is = i, xs,1 = x1, . . . , xs,p = xp, ys,t−1 = yt−1) = P(i)
dur(k | x1, . . . , xp, yt−1).

Similar to the model for the transition probabilities, the mixture probabilities are a convex combi-
nation of a fixed population-level effect and a random individual-level effect:

P(i)
dur(· | x1, . . . , xp, yt−1) = π

(i)
dur,0(·)λdur,x1,...,xp ,yt−1

(·) + π
(i)
dur,1(·)λ

(i)
dur(·),

where λdur,x1,...,xp ,yt−1
(·) is the baseline component, λ

(i)
dur(·) is the random individual effect, and

{π
(i)
dur,0(k), π

(i)
dur,1(k)}

K
k=1 are individual-specific coefficients such that π

(i)
dur,1(k) = 1 − π

(i)
dur,0(k). Again,

for each covariate r = 1, . . . , p, p + 1 (where the (p + 1)th covariate is the preceding state yt−1), we

construct the partition C(r)dur = {C(r)dur,gr
}kdur,r

gr=1 of its levels, where kdur,r is the number of clusters for

covariate r and gr represents the cluster index. We introduce latent variables {zdur,r,w}
p+1,dr
r=1,w=1 that

indicate the cluster index for the wth label of the rth covariate. We now replace the population-level
effect λdur,x1,...,xp ,yt−1

(·) with λdur,g1,...,gp ,gp+1
(·).

The mixture probability vectors are given Dirichlet priors with the mean vector λdur,0, which itself
centers around a global vector λdur,00:

λdur,g1,...,gp+1
(·) ∼ Dir

{
αdur,0λdur,0(1), . . . , αdur,0λdur,0(K)

}
,

λ
(i)
dur(·) ∼ Dir

{
α
(0)
durλdur,0(1), . . . , α

(0)
durλdur,0(K)

}
,

λdur,0(·) ∼ Dir
{

αdur,00λdur,00(1), . . . , αdur,00λdur,00(K)
}

.

We present the complete Bayesian hierarchical model for the continuous duration times as

(τs,t | zdur,s,t = k) ∼ Ga(τs,t | αk, βk),

(zdur,s,t | is = i, zdur,1,xs,1
= g1, . . . , zdur,p,xs,p = gp, zdur,p+1,ys,t−1

= gp+1) ∼

Mult
{

P(i)
dur,g1,...,gp+1

(1), . . . , P(i)
dur,g1,...,gp+1

(K)
}

, where

P(i)
dur,g1,...,gp+1

(k) = π
(i)
dur,0(k)λdur,g1,...,gp+1

(k) + π
(i)
dur,1(k)λ

(i)
dur(k),

λdur,g1,...,gp+1
(·) ∼ Dir

{
αdur,0λdur,0(1), . . . , αdur,0λdur,0(K)

}
, αdur,0 ∼ Ga(adur,0, bdur,0),

λ
(i)
dur(·) ∼ Dir

{
α
(0)
durλdur,0(1), . . . , α

(0)
durλdur,0(K)

}
, α

(0)
dur ∼ Ga(a(0)dur, b(0)dur),

λdur,0(·) ∼ Dir
{

αdur,00λdur,00(1), . . . , αdur,00λdur,00(K)
}

,

π
(i)
dur,0(k) ∼ Beta(adur,0, adur,1),

αk ∼ Ga(adur,0, bdur,0), βk ∼ Ga(adur,0, bdur,0).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 196

Inference is based on samples drawn from the posterior using a Metropolis-Hastings-within-Gibbs
MCMC algorithm. Most full conditionals are available in closed form and can be directly sampled from.
A Metropolis-Hastings step is however used for updating the discrete valued cluster configurations.
There is, however, no conjugate prior for gamma distributions with unknown shape parameters
(Damsleth, 1975). Recently, Miller (2019) designed a procedure that efficiently approximates the
posterior full conditionals of gamma shape parameters under a gamma prior with another gamma
density. We adopt this approximation in our MCMC algorithm.

3 The BMRMM R package

3.1 Package description

The BMRMM package is developed to implement Bayesian Markov (renewal) mixed models. The
main function BMRMM of the package carries out detailed analyses of the state transitions and their
duration times (if applicable) as described in the previous section. Moreover, the package includes a
number of supplementary functions that use the results of the main function to produce numerical
summaries, visualizations, and diagnostics. Table 1 provides a brief description of all functions.

Function Description

BMRMM Creates a BMRMM object.
summary.BMRMM Summary for an object of class BMRMM and create a BMRMMsummary object.
plot.BMRMMsummary Visualization of a BMRMMsummary object.
hist.BMRMM Returns histograms of duration times for a BMRMM object.
diag.BMRMM Provides MCMC diagnostic plots for a BMRMM object.
model.selection.scores Returns the LPML and WAIC scores of the mixture gamma model.

Table 1: Summary of functions in the BMRMM package.

3.2 The main function BMRMM

The main function is BMRMM which implements the inference for both the state transition probabilities
and the duration times. We summarize the parameters in Table 3 and present the function as follows.

BMRMM(data, num.cov, cov.labels = NULL, state.labels = NULL,
random.effect = TRUE, fixed.effect = TRUE,
trans.cov.index = 1:num.cov, duration.cov.index = 1:num.cov,
duration.distr = NULL, duration.incl.prev.state = TRUE,
simsize = 10000, burnin = simsize/2)

The parameter data specifies the target data set and needs to follow a certain structure. The first
column should list the individual IDs is, followed by p columns for the values of the p associated
covariates xs,j, then two columns for the values of the previous state ys,t−1, the current state ys,t, and
finally a column for duration times τs,t. The package supports one to five categorical covariates that
take on values 1, 2, . . .. The duration times column is optional if the user would like to use BMMM
instead of BMRMM to analyze just the state transitions. This is shown in Table 2. The users can look at
the included simulated data set foxp2 as an example.

Id Covariate 1 . . . Covariate p Previous State Current State State Durations/ISI

Table 2: Columns of the desired input data set.

The number of covariates in the data set is specified by the argument num.cov. The argument
cov.labels is a list of vectors giving the names of covariate levels in the covariate order that is
presented in data while the parameter state.labels is a vector providing the names of the transition
states. The default labels are Arabic numerals.

The random.effect parameter gives users the option to exclude the random individual effects. If
random.effect is set to FALSE, the transition probabilities (and the mixture probabilities for duration
times, if applicable) will only consider the influence of the covariate levels. Similarly, the fixed.effect
parameter allows users to exclude the fixed population effects. The default values for random.effect
and fixed.effect are both TRUE. The covariate indices for the two analyses can be specified by setting

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 197

trans.cov.index and duration.cov.index. We note that indices specified by trans.cov.index and
duration.cov.index refer to the index of the covariate when the first covariate is given index 1, thus
different from its index in data.

Users can define duration.distr in the following three ways.

1. If users set duration.distr to be NULL, which is the default setting, then the duration times will
be ignored and not modeled at all. The BMMM described will be implemented to analyze the
existing state transitions alone.

2. If duration.distr is set as list(`mixDirichlet',unit), the duration times will be used to
construct a new state `dur.state', which will be analyzed along with the original set of
states. The additional argument unit must be defined and acts both as a threshold and as
a block size for duration times. For example, if the unit is set to 5, then for each duration
value greater than 5 units, each block of 5 unit in it will be treated as an instance of a new
'dur.state' state. If there is a state transition from state `a' to `b' with a duration time of 15
seconds and the unit is specified at 5 seconds, then the updated Markov sequence will contain
three consecutive `dur.state' states, i.e., (`a',`dur.state',`dur.state',`dur.state',`b').
Since we adopt the floor operation, a duration time of say 17.68 seconds will also be replaced by
three consecutive instances of 'dur.state' states in this example. The BMMM model will then
be implemented to analyze the resulting appended state transitions.
These first two options may naturally result in loss of information and is therefore not recom-
mended when a detailed analysis of the distribution of the duration times is warranted.

3. If duration.distr is set to be list(`mixgamma',shape,rate), the duration times are modeled
as a continuous random variable using a flexible mixture of gamma kernels, as described for a
BMRMM model. In this case, users can specify the prior shape and rate parameters with the
shape and rate arguments within the definition of duration.distr. We note that shape and
rate must be numeric vectors of the same length.

By default, we consider the previous state ys,t−1 as a covariate when we model the duration times
as continuous variables, i.e., duration.incl.prev.state is set to TRUE. Users can set this parameter to
FALSE if they wish to exclude the previous state when analyzing the duration times. The remaining
parameters simsize and burnin denote the total number of MCMC iterations and the number of
burn-ins, respectively.

Argument Explanation Default value

data the data set to be used following the required format
num.cov an integer giving the number of observed covariates in data
cov.labels a list of vectors giving names of all covariate levels NULL
state.labels a vector giving names of the states NULL
random.effect TRUE if random individual effects are included TRUE
fixed.effect TRUE if fixed population effects are included TRUE
trans.cov.index selects the covariates to analyze for transition probabilities 1:num.cov
duration.cov.index selects the covariates to analyze for duration times 1:num.cov
duration.distr specifies the distribution for duration times NULL
duration.incl.prev.state TRUE if yt−1 acts as a covariate for the analysis of duration times TRUE
simsize number of MCMC iterations 10000
burnin number of burnins of the MCMC algorithm simsize/2

Table 3: Arguments to the BMRMM function.

The BMRMM function returns an object of class BMRMM, which either contains only results.trans
or both of results.trans and results.duration if duration times follow a mixture gamma distri-
bution. For the state transitions, the posterior mean transition probability matrices for each combi-
nation of the covariate levels and each individual are given by results.trans$tp.exgns.post.mean
and results.trans$tp.anmls.post.mean, respectively. Additionally, results.trans$clusters stores
cluster configurations for each covariate from each MCMC iteration. As for duration times, the
fields results.duration$shape.samples and results.duration$rate.samples record the shape and
rate parameters, for each mixture component in every MCMC iteration, respectively. Meanwhile,
results.duration$comp.assignment gives the assignment of the mixture component for each data
point in the last MCMC iteration. Similar to transition probabilities, results.duration$clusters gives
the cluster configurations of the covariates. Other elements of results.trans and results.duration
can be found in the detailed R function description.

3.3 Summarizing BMRMM results

The BMRMM package provides an S3 method for summarizing results of a BMRMM object as follows.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 198

summary.BMRMM(object, delta = 0.02, digits = 2, ...)

The object must be of class BMRMM. The argument delta is associated with local tests for transition
probabilities, which we will explain further. The digit parameter is an integer used for number
formatting, as in the general summary function. The summary.BMRMM function returns an object of class
BMRMMsummary with the following fields.

• trans.global and dur.global

These two fields give the global test results from the inference of transition probabilities and
duration times. Global tests show the significance of the covariates in affecting the state
transitions and duration times. Specifically, for each covariate, the empirical distribution of
the size of the clusters in the stored MCMC iterations is calculated. The null hypothesis that a
covariate is not important is equivalent to the event that all its levels are in the same cluster, or,
in other words, that the cluster size for the covariate is just one.

• trans.probs.mean and trans.probs.sd

The two fields provide the mean and standard deviation for the posterior mean of each transition
type under all combinations of covariate levels, respectively.

• trans.local.mean.diff and trans.local.null.test

The BMRMMsummary object also contains local test results for transition probabilities. Local tests
analyze the differences between the transition probabilities associated with two different levels
of a covariate j, fixing the levels of the other covariates. For every pair of levels of covariate j,
trans.local.mean.diff gives the absolute differences in transition probabilities for each transi-
tion type in the MCMC iterations. The local null hypothesis we test for each transition type is
that this difference is at least the pre-specified value delta. Meanwhile, trans.local.null.test
gives the probability of the null hypothesis that the difference between two covariate levels is
not significant under each transition type.

• dur.mix.params and dur.mix.probs

For each mixture component, dur.mix.params provides the estimates of the gamma shape and
rate parameters from the last MCMC iteration. For every covariate level, users can obtain the
mixture probabilities by calling the field dur.mix.probs, which can be further used to estimate
the length of the duration times.

3.4 Visualizing results with BMRMM plotting functions

The main plotting function of the package, plot.BMRMMsummary, is an S3 method for class BMRMMsummary.
It gives the barplots for global tests as well as heatmaps for the posterior mean and standard deviation
for transition probabilities, local tests for transition probabilities, mixture parameters and probabilities
for duration times. The parameters of plot.BMRMMsummary include x, which must be an object of class
BMRMMsummary and type, which is a single string representing the field of x that needs to be plotted.
The function also takes general plotting arguments such as xlab, ylab, etc.

plot.BMRMMsummary(x, type, xlab = NULL, ylab = NULL, main = NULL, col = NULL, ...)

When duration times are analyzed as continuous variables using mixture gamma distributions,
the users can use the S3 method hist.BMRMM to generate histograms for duration times along with the
estimated posterior distribution. The parameter x is an object of class BMRMM. The argument comp gives
the specific mixture component that the user would like to investigate. When comp is NULL, which is
the default setting, the histogram of all observed duration times is plotted and superimposed with the
posterior mean of the fitted mixture gamma distribution. When comp is a specific integer, we will be
looking at the last MCMC iteration. The histogram for duration times assigned with component comp
will be presented alongside the mixture gamma distribution with the shape and rate parameters from
the last MCMC iteration. Users can refer to the documentation of the general hist function to see the
interpretation for the rest of the parameters.

hist.BMRMM(x, comp = NULL, xlim = NULL, breaks = NULL, main = NULL,
col = 'gray', xlab = 'Duration times', ylab = 'Density', ...)

Finally, users can check the MCMC diagnostics with the traceplots and autocorrelation plots
produced by the function diag.BMRMM. The object parameter should be an object of class BMRMM. For
transition probabilities, users can specify the covariate levels as well as the state transitions they are
interested in by defining cov.combs and transitions, respectively. For duration times, users can
define components, a numeric vector, to obtain the diagnostic plots for shape and rate parameters of
the specific component kernels.

diag.BMRMM(object, cov.combs = NULL, transitions = NULL, components = NULL)

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 199

3.5 Model selection scores for continuous duration times

When the duration times are modeled using mixtures of gamma distributions, model selection can be
performed on the number of mixture components using the function model.selection.scores.

model.selection.scores(object)

The function takes an object as its input, which must be an object of class BMRMM. It returns a list
consisting of the log pseudo marginal likelihood (LPML) (Geisser and Eddy, 1979) and the widely
applicable information criterion (WAIC) (Watanabe and Opper, 2010) scores of the model. Larger
values of LPML and smaller values of WAIC indicate better model fits. They are particularly suitable
for complex Bayesian hierarchical models as they can be easily computed from the MCMC samples.

4 Illustrations on the synthetic FoxP2 data set

The FoxP2 data set records the songs sung by adult male mice of two genotypes, wild type or FoxP2,
denoted by W and F, respectively (Chabout et al., 2016). The mice sang under three social contexts, U
(fresh female urine on a cotton tip placed inside the male’s cage), L (an awake and behaving adult
female placed inside the cage), and A (an anesthetized female placed on the lid of the cage). Each song
comprises a sequence of syllables and continuous inter-syllable intervals (ISIs). The data set can be
used to analyze the effect of the FoxP2 gene on the vocal syntax of mice, in turn providing insights
into the effects of the gene on human vocal communication abilities and related deficiencies. The real
FoxP2 data set originates from the study by Chabout et al. (2016) and requires permission to use. Wu
et al. (2023) simulated a data set that closely mimics the real one. For demonstrating the BMRMM
package, we included in it a shortened version of this synthetic data set which we refer to as the foxp2
data set.

The foxp2 synthetic data set has 17391 rows and 6 columns, which are Id, Genotype, Context,
Prev_State, Cur_State, and Transformed_ISI. The original FoxP2 data set records ISIs in seconds. In
the simulated data set foxp2, following Wu et al. (2023), log(1+ISI) values are used which give a better
model fit.

Id Genotype Context Prev_State Cur_State Transformed_ISI

1 2 2 3 3 0.20197711
1 2 2 3 3 0.06972753
1 2 2 3 3 0.07211320
1 2 2 3 3 0.15790932
1 2 2 3 3 0.06781471
1 2 2 3 3 0.09426236

Table 4: Part of the simulated FoxP2 data set foxp2.

If we are only interested in analyzing the transition probabilities with the covariates genotype and
social contexts, we would use the main function as follows.

R> res.fp2 <- BMRMM(foxp2, num.cov = 2)

If we would like to pick specific covariates for our analyses, we can define trans.cov.index
and duration.cov.index accordingly. For example, if we only want to use context for transition
probabilities and genotype for ISIs, we would run the following.

R> res.fp2 <- BMRMM(foxp2, num.cov = 2,
trans.cov.index = c(2), duration.cov.index = c(1))

If we would like to analyze the ISIs as part of the original state sequence following a mixture
Dirichlet distribution, as was done by Sarkar et al. (2018), the ISIs are replaced by (possibly consecutive)
"silent" states by dividing them into blocks of 250 milliseconds. The BMRMM function can do this by
setting duration.distr as a list with the string 'mixDirichlet' and the argument unit as log(0.25 +
1), based on the log transformation.

R> res.fp2 <- BMRMM(foxp2, num.cov = 2,
duration.distr = list('mixDirichlet', unit = log(0.25+1)))

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 200

In the next example, we would like to analyze the ISIs as continuous variables following a mixture
gamma distribution. For syllable transitions, we use both genotype and context as covariates. For the
ISIs, in addition to these two, we also use the preceding syllable as a covariate.

R> res.fp2 <- BMRMM(data = foxp2, num.cov = 2, state.labels = c('d', 'm', 's', 'u'),
cov.labels = list(c('F', 'W'), c('U', 'L', 'A')),
duration.distr = list('mixgamma', shape = rep(1, 4), rate = rep(1, 4)))

In what follows, we show the results for the last function call. The returned res.fp2 have two parts,
which are named res.fp2$results.trans and res.fp2$results.duration. Now we demonstrate
how we print and visualize the results.

First, we obtain a BMRMMsummary object, sm.fp2, by calling the summary.BMRMM function on the
returned results res.fp2. The global test results for identifying the significant covariates can be
found by calling the fields trans.global and dur.global. The function plot.BMRMMsummary is called
to visualize the global tests using barplots, as presented in Figure 2. We recall that a covariate is
significant when its levels formed more than one cluster with very high posterior probability (the bar
heights). Figure 2 and the printed results suggest that every covariate is significant for the ISIs but
only the social context is significant for the transition probabilities.

R> sm.fp2 <- summary(res.fp2)
R> sm.fp2$trans.global

label_data
cluster_data Context Genotype

1 0 1
3 1 0

R> sm.fp2$dur.global
label_data

cluster_data Context Genotype prev_state
2 0.00 1.00 0.10
3 1.00 0.00 0.90
4 0.00 0.00 0.01

R> plot(sm.fp2, 'trans.global')
R> plot(sm.fp2, 'dur.global')

Context Genotype

1
3

Global Test Results for Transition Probabilities

P
ro

po
rt

io
ns

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Context Genotype prev_state

2
3
4

Global Test Results for Duration Times

P
ro

po
rt

io
ns

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: Results for the simulated foxp2 data set showing the global tests of significance of the
covariates for the state transitions (left) and the ISIs (right). The bars represent the estimated posterior
probabilities of the number of clusters formed by the levels of each covariate.

The plotting function can be called to visualize the posterior transition probabilities under different
combinations of the covariate levels. We show in Figure 3 the heatmaps for the posterior mean and
standard deviation of the transition probabilities for each transition type for the following combinations
of covariates: (F, A) and (W, L).

R> plot(sm.fp2, 'trans.probs.mean')
R> plot(sm.fp2, 'trans.probs.sd')

We also perform the local test to assess the influence of genotype on the transition probabilities by
computing the absolute difference of the transition probabilities between F and W among the thinned
MCMC samples after burn-ins, i.e., |∆λtrans,·,x2 (yt | yt−1)| = |λtrans,1,x2 (yt | yt−1) − λtrans,2,x2 (yt |

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 201

Covariates { F A }
Trans. Probs. Posterior Mean

y_{t}

y_
{t

−
1}

0.2

0.4

0.6

0.8

d m s u

u
s

m
d

0.06

0.1

0.13

0.16

0.08

0.04

0.23

0.07

0.79

0.82

0.61

0.76

0.07

0.04

0.04

0.02

Covariates { F A }
Trans. Probs. Posterior Std

y_{t}

y_
{t

−
1}

0.00

0.01

0.02

0.03

0.04

0.05

d m s u

u
s

m
d

0.02

0.02

0.03

0.04

0.03

0.01

0.05

0.02

0.04

0.02

0.05

0.04

0.03

0.01

0.02

0

Covariates { W L }
Trans. Probs. Posterior Mean

y_{t}

y_
{t

−
1}

0.1
0.2
0.3
0.4
0.5
0.6
0.7

d m s u

u
s

m
d

0.1

0.11

0.15

0.18

0.11

0.08

0.19

0.11

0.74

0.75

0.6

0.68

0.05

0.06

0.06

0.04

Covariates { W L }
Trans. Probs. Posterior Std

y_{t}
y_

{t
−

1}

0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11

d m s u

u
s

m
d

0.07

0.07

0.08

0.09

0.07

0.06

0.09

0.07

0.1

0.09

0.11

0.11

0.05

0.05

0.05

0.04

Figure 3: Results for the simulated foxp2 data set showing the posterior mean and standard deviation
for each transition type for selected covariate combinations, (F, A) (top) and (W, L) (bottom).

yt−1)|. The estimated posterior probability for the null hypothesis is therefore the proportion of times
|∆λtrans,·,x2 (yt | yt−1) ≤ δ| is observed in the MCMC samples, where x2 is the social context and δ is the
user-specific difference threshold delta. The plotting function plot.BMRMMsummary gives the plots for
all local test results if we set the type to be `trans.local.mean.diff' or `trans.local.null.test'.
Here, we show the results of local tests for the covariate 1 (i.e., genotype) with delta equaling the
default value of 0.02, and present the plots in Figure 4. From the figure, we see that the posterior
probabilities of the null hypotheses are generally large for most transition types (e.g., transitions to the
syllable u) regardless of the social context, indicating that genotype does not have a strong influence
on transition probabilities with a fixed context under these transition types.

R> plot(sm.fp2, 'trans.local.mean.diff')
R> plot(sm.fp2, 'trans.local.null.test')

Next, we turn our attention to the ISIs. We first check the fit of our estimated mixture gamma
distribution presented in Figure 5a. We then look further into the shape of each mixture component in
Figure 5b. From the histogram for each component, we see that components 2 and 4 represent longer
ISIs while components 1 and 3 represent shorter ISIs.

R> hist(res.fp2, xlim = c(0,1))
R> for(comp in 1:4) {

hist(res.fp2, comp = comp)
}

We examine the values of mixture parameters and mixture probabilities for each covariate level in
the last MCMC iteration, which provides insights into the influence of the covariate on ISI lengths.

R> sm.fp2$dur.mix.params
shape.k rate.k

Comp 1 29.07 394.30
Comp 2 1.23 1.49
Comp 3 8.46 465.66
Comp 4 3.03 20.13

R> sm.fp2$dur.mix.probs
$Genotype

F W
Comp 1 0.46 0.48
Comp 2 0.19 0.13

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 202

Compare covs { F U } & { W U }
Mean Diff. in Trans. Probs.

y_{t}

y_
{t

−
1}

0.00

0.02

0.04

0.06

0.08

0.10

0.12

d m s u

u
s

m
d

0.02

0.06

0.01

0.12

0.01

0.02

0.07

0.01

0.01

0.01

0.05

0.11

0

0.03

0.03

0.01

Compare covs { F U } & { W U }
Probability for H_0

y_{t}

y_
{t

−
1}

0.2

0.4

0.6

0.8

1.0

d m s u

u
s

m
d

0.18

0.09

0.19

0.06

0.33

0.52

0.1

0.19

0.17

0.13

0.12

0.08

1

0.62

0.65

0.77

Compare covs { F L } & { W L }
Mean Diff. in Trans. Probs.

y_{t}

y_
{t

−
1}

0.00

0.02

0.04

0.06

0.08

d m s u

u
s

m
d

0.03

0.03

0.06

0.07

0.02

0.03

0.04

0.02

0.04

0.08

0.09

0.09

0

0.02

0.01

0

Compare covs { F L } & { W L }
Probability for H_0

y_{t}

y_
{t

−
1}

0.2

0.3

0.4

0.5

0.6

0.7

d m s u

u
s

m
d

0.43

0.35

0.35

0.25

0.32

0.62

0.24

0.38

0.2

0.18

0.12

0.16

0.36

0.69

0.23

0.71

Compare covs { F A } & { W A }
Mean Diff. in Trans. Probs.

y_{t}

y_
{t

−
1}

0.00

0.02

0.04

0.06

0.08

d m s u

u
s

m
d

0.04

0

0.03

0.02

0.03

0.04

0.04

0.04

0.06

0.07

0

0.08

0.02

0.03

0.02

0.02

Compare covs { F A } & { W A }
Probability for H_0

y_{t}

y_
{t

−
1}

0.2
0.3
0.4
0.5
0.6
0.7

d m s u

u
s

m
d

0.44

0.22

0.26

0.23

0.38

0.56

0.13

0.46

0.18

0.18

0.14

0.13

0.27

0.66

0.64

0.79

Figure 4: Results for the simulated foxp2 data set showing local test results for genotypes fixing the
social context, U (top), L (middle), and A (bottom). The averaged absolute difference in transition
probabilities between F and W is presented on the left. The posterior probabilities of the corresponding
null hypotheses are on the right.

Histogram with Posterior Mean

Duration times

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
12

(a) Histogram of ISIs with the estimated poste-
rior mean (red line) of their marginal gamma
mixture density averaged from recorded
MCMC samples.

Component 1

Duration times

D
en

si
ty

0.04 0.10

0
15

Component 2

Duration times

D
en

si
ty

0 2 4 6

0.
0

0.
8

Component 3

Duration times

D
en

si
ty

0.01 0.04

0
60

Component 4

Duration times

D
en

si
ty

0.0 0.3 0.6

0
3

6

(b) Histograms of ISIs for each component of
the gamma mixture model along with the com-
ponent density (red lines) from the last MCMC
iteration.

Figure 5: Results for the simulated foxp2 data set showing the histograms of the ISIs with the estimated
posterior gamma mixture density (left) and the histograms of the ISIs for each mixture component
(right).

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 203

Comp 3 0.10 0.15
Comp 4 0.25 0.24

$Context
U L A

Comp 1 0.58 0.35 0.48
Comp 2 0.14 0.16 0.18
Comp 3 0.08 0.21 0.08
Comp 4 0.20 0.28 0.25

$prev_state
d m s u

Comp 1 0.52 0.52 0.42 0.42
Comp 2 0.13 0.13 0.22 0.17
Comp 3 0.11 0.11 0.10 0.18
Comp 4 0.24 0.24 0.26 0.23

From the mixture probabilities, we see that mice with genotype F have a much higher mixture
probability in component 2 compared to genotype W, which indicates mice with the FoxP2 mutation
require a longer ISI between pronouncing two syllables, a reflection of vocal impairment.

Finally, we check the MCMC diagnostic plots and see if we had good mixing for the parameters.
Here we focus on a specific transition type, u → m, for covariate combination {F, U} and a specific
mixture component (component 2). We show these plots in Figure 6.

R> diag.BMRMM(res.fp2, cov.combs = list(c(1, 1)),
transitions = list(c(4, 2)), components = c(2))

5 Illustrations on the asthma control data set

The BMRMM package is able to analyze duration times in detail which could either be the ISIs, as seen
in the synthetic foxp2 data set, or the state persistence times, as in a traditional semi-Markov model.
To demonstrate the usage of our package in analyzing the state persistence times, we use the asthma
control data set from the ARIA (Association pour la Recherche en Intelligence Artificielle) study of
severe asthmatic patients (Combescure et al., 2003) in France between 1997 and 2001. At each visit,
a chest physician graded the asthma control status of the patient using control scores (Juniper et al.,
1999). The data set contains the sojourn time of the control states as well as three covariates: Asthma
severity, sex, and the body mass index (BMI) of the patients. Saint-Pierre et al. (2003) used a Markov
model with piece-wise constant intensities to model the asthma control evolution and proposed a
regression model for analyzing the effect of covariates. Combescure et al. (2003) used the data set
to assess the relationship between asthma severity and control of asthma. Listwon and Saint-Pierre
(2015) fitted a semi-Markov model for the sojourn times using exponential and Weibull distributions
and analyzed the effect of covariates individually due to complexity. Our BMRMM package is able to
analyze the effect of the three covariates while also incorporating random individual effects exhibited
by different patients on transition dynamics and state duration times.

The asthma data set we use here is from the SemiMarkov package (Listwon and Saint-Pierre,
2015). We have renamed and reordered the columns such that the data set fits the required format.
Specifically, the data set has 928 rows, recording the asthma control states of 371 patients, which is
one of the following three transient states: Optimal control (State 1), sub-optimal control (State 2), and
unacceptable control (State 3). Each state can transit to any other two states and the state duration
times are recorded. The data set also contains three binary covariates of the asthma patients, including
the disease severity (1 if mild-moderate and 2 if severe), BMI (body mass index, 1 if BMI < 25 and 2
otherwise), and sex (1 if women and 2 if men). We display part of the processed data in Table 5, where
Duration is the sojourn time in Prev_State.

We investigate the transition dynamics and state persistence times of the asthma data set using the
BMRMM function. We consider K = 4 mixture components for state persistence times. The choice of K is
derived from running the BMRMM model several times with different K’s and comparing the fitness
of the models using the LPML and WAIC scores.

R> res.asm <- BMRMM(data = asthma, num.cov = 3, state.labels = c(1, 2, 3),
cov.labels = list(c('Mild-Moderate','Severe'),

c('BMI<25','BMI>=25'),
c('Women','Men')),

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 204

0 2000 4000 6000 8000 10000

0.
0

0.
6

Traceplot for Covariates { F U }

Iteration number

P
ro

b(
u−

>
m

)

0 5 10 15 20 25 30

0.
0

0.
6

Lag

A
C

F

Autocorrelation Plot for Covariates { F U }

(a) For transition type u → m under covariates {F, U}.

0 2000 4000 6000 8000 10000

0.
5

1.
5

2.
5

Traceplot for Shape, Comp 2

0 2000 4000 6000 8000 10000

1.
0

2.
0

3.
0

Traceplot for Rate, Comp 2

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Autocorrelation after thin. for Shape, Comp 2

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Lag

A
C

F

Autocorrelation after thin. for Rate, Comp 2

(b) For gamma mixture component 2 shape and rate parameters.

Figure 6: Results for the simulated foxp2 data set showing the MCMC diagnostic plots, including
traceplots and autocorrelation plots.

duration.distr = list('mixgamma', shape = rep(1, 4),
rate = rep(1, 4)))

We name the returned BMRMM object res.asm and obtain the BMRMMsummary object sm.asm by calling
the summary.BMRMM function. As in the FoxP2 application, we first plot the global test results for both
transition probabilities and state persistence times in Figure 7. For the transition probabilities, only the
severity of asthma is significant while for duration times only the preceding state is significant. The
BMI value and the sex are not significant for either transition dynamics or state durations.

R> sm.asm <- summary(res.asm)
R> sm.asm$trans.global

label_data
cluster_data BMI Severity Sex

1 0.96 0.00 1.00
2 0.04 1.00 0.00

R> sm.asm$dur.global

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 205

Id Severity BMI Sex Prev_State Cur_State Duration

2 2 2 1 3 2 0.1533
2 2 2 1 2 2 4.1232
3 2 2 2 3 1 0.0958
3 2 2 2 1 3 0.2300
3 2 2 2 3 1 0.2656
3 2 2 2 1 1 5.4073

Table 5: Part of the asthma data set from the ARIA study of severe asthmatic patients.

BMI Severity Sex

1
2

Global Test Results for Transition Probabilities

P
ro

po
rt

io
ns

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BMI prev_state Severity Sex

1
2
3

Global Test Results for Duration Times

P
ro

po
rt

io
ns

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7: Results for the asthma data set showing the global tests of significance of the covariates for
the state transitions (left) and the state persistence times (right). The bars represent the estimated
posterior probabilities of the number of clusters formed by the levels of each covariate.

label_data
cluster_data BMI prev_state Severity Sex

1 0.88 0.00 0.88 0.99
2 0.12 0.14 0.12 0.01
3 0.00 0.86 0.00 0.00

R> plot(sm.asm, 'trans.global')
R> plot(sm.asm, 'dur.global')

We show the posterior mean and standard deviations of the state transition probabilities for men
and women with severe conditions and BMI ≥ 25 in Figure 8. We see that for severe patients with
BMI ≥ 25, the transition probabilities are similar for men and women. We also take a look at the local
test results for the BMI values fixing the severity of the patients in Figure 9. Though the absolute
differences between the two covariate levels for BMI are small, the probabilities for the null hypotheses
are also small, especially for transitions to state 1 and state 2. This suggests that even though the
influence of BMI on state transitions is not significant globally, it is significant given the severity of
asthma condition regardless of sex.

R> plot(sm.asm, 'trans.probs.mean')
R> plot(sm.asm, 'trans.probs.sd')

Figure 10a presents the histograms of the entire asthma data set, superimposed with the posterior
mean of the mixture gamma distribution. With four components, the estimated mixture gamma fits the
asthma data well. From the histogram for each component, we see from Figure 10b that component 1
and 2 represents shorter state persistence times while components 3 and 4 represent longer durations.

R> hist(res.asm, xlim = c(0,1))
R> for(comp in 1:4) {

hist(res.asm, comp = comp)
}

We investigate the covariates’ influence by examining the mixture probabilities from the last
MCMC iteration. An interesting discovery is that the mixture probabilities for both sexes, BMI levels,
and severity levels are the same, indicating that the levels of these three covariates do not strongly
influence the distributions of state durations. This matches the global test results in Figure 7. If the
preceding state is state 1, which is optimal control for asthma, the state duration time is longer than
that if the previous state is 2 or 3, as there is a lower weight in component 1 and higher weight in

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 206

Covariates { Severe BMI>=25 Men }
Trans. Probs. Posterior Mean

y_{t}

y_
{t

−
1}

0.20

0.25

0.30

0.35

0.40

0.45

1 2 3

3
2

1

0.33

0.35

0.49

0.36

0.42

0.34

0.3

0.23

0.17

Covariates { Severe BMI>=25 Men }
Trans. Probs. Posterior Std

y_{t}

y_
{t

−
1}

0.100

0.105

0.110

0.115

0.120

0.125

0.130

1 2 3

3
2

1

0.12

0.12

0.13

0.13

0.12

0.12

0.11

0.11

0.1

Covariates { Severe BMI>=25 Women }
Trans. Probs. Posterior Mean

y_{t}

y_
{t

−
1}

0.20

0.25

0.30

0.35

0.40

0.45

1 2 3

3
2

1

0.32

0.34

0.49

0.39

0.42

0.34

0.29

0.24

0.17

Covariates { Severe BMI>=25 Women }
Trans. Probs. Posterior Std

y_{t}
y_

{t
−

1}

0.10

0.11

0.12

0.13

0.14

1 2 3

3
2

1

0.13

0.13

0.14

0.14

0.13

0.13

0.13

0.12

0.1

Figure 8: Results for the asthma data set showing the posterior mean and standard deviation
for each transition type for selected covariate combinations, {Severe, BMI ≥ 25, Men} (top) and
{Severe, BMI ≥ 25, Women} (bottom).

Compare covs { Severe BMI<25 M } & { Severe BMI>=25 M }
Mean Diff. in Trans. Probs.

y_{t}

y_
{t

−
1}

0.005

0.010

0.015

0.020

1 2 3

3
2

1

0.006

0.021

0.017

0.005

0.003

0.012

0.011

0.019

0.005

Compare covs { Severe BMI<25 M } & { Severe BMI>=25 M }
Probability for H_0

y_{t}

y_
{t

−
1}

0.10

0.15

0.20

1 2 3

3
2

1

0.077

0.093

0.081

0.089

0.087

0.092

0.114

0.158

0.247

Compare covs { Severe BMI<25 W } & { Severe BMI>=25 W }
Mean Diff. in Trans. Probs.

y_{t}

y_
{t

−
1}

0.005

0.010

0.015

0.020

1 2 3

3
2

1

0.019

0.015

0.007

0.023

0.006

0.001

0.005

0.009

0.007

Compare covs { Severe BMI<25 W } & { Severe BMI>=25 W }
Probability for H_0

y_{t}

y_
{t

−
1}

0.10

0.12

0.14

0.16

0.18

0.20

0.22

1 2 3

3
2

1

0.104

0.118

0.103

0.101

0.09

0.113

0.114

0.16

0.235

Figure 9: Results for the asthma data set showing local test results for BMI fixing asthma severity
condition and sex, men (top) and women (bottom). The averaged absolute difference in transition
probabilities between BMI < 25 and BMI ≥ 25 is presented on the left. The posterior probability of the
null hypothesis is on the right.

components 3 and 4. On the other hand, if the preceding state is 3, which is unacceptable control, then
the state duration time is much shorter, as the mixture probability in component 1 is much higher
when the preceding state is state 3. We present some examples of the diagnostic plots for the asthma
data set in Figure 11.

R> sm.asm$dur.mix.probs
$Severity

Mild-Moderate Severe
Comp 1 0.37 0.37

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 207

Histogram with Posterior Mean

Duration times

D
en

si
ty

0 1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

(a) Histogram of ISIs with the estimated poste-
rior mean (red line) of their marginal gamma
mixture density averaged from recorded
MCMC samples.

Component 1

Duration times

D
en

si
ty

0.2 0.6

0
2

4

Component 2

Duration times

D
en

si
ty

0.0 1.0 2.0

0.
0

1.
2

Component 3

Duration times

D
en

si
ty

4.0 5.0 6.0

0.
0

1.
2

Component 4

Duration times

D
en

si
ty

1.0 2.5 4.0

0.
0

0.
8

(b) Histograms of ISIs for each of the three com-
ponents of the gamma mixture model along
with the component density (red lines) from
the last MCMC iteration.

Figure 10: Results for the asthma data set showing the histograms of ISIs with the estimated posterior
gamma mixture density (left) and histograms of ISIs for each mixture component (right).

Comp 2 0.26 0.26
Comp 3 0.20 0.20
Comp 4 0.17 0.17

$BMI
BMI<25 BMI>=25

Comp 1 0.37 0.37
Comp 2 0.26 0.26
Comp 3 0.20 0.20
Comp 4 0.17 0.17

$Sex
Women Men

Comp 1 0.37 0.37
Comp 2 0.26 0.26
Comp 3 0.20 0.20
Comp 4 0.17 0.17

$prev_state
1 2 3

Comp 1 0.27 0.33 0.51
Comp 2 0.23 0.33 0.23
Comp 3 0.31 0.20 0.09
Comp 4 0.19 0.15 0.17

R> diag.BMRMM(res.fp2, cov.combs = list(c(1, 2, 1)),
transitions = list(c(1, 1)), components = c(3))

6 Conclusion

We presented the BMRMM package which implements both Bayesian Markov mixed models (BMMM)
for analyzing the state transitions and Bayesian Markov renewal mixed models (BMRMM) for addi-
tionally analyzing the duration times (being either state persistence times or inter-state intervals) in a
collection of categorical sequences, using flexible Dirichlet and gamma mixtures, respectively. The
BMRMM takes into account fixed effects of the associated covariates as well as random effects of the
associated individuals while simultaneously selecting the significant covariates separately for the state
transitions and the duration times. The package includes a synthetic foxp2 data set to demonstrate
the data framework and function usages. The package also provides a series of plotting functions for
visualizing the results of the analyses, including various global and local hypotheses tests, MCMC
diagnostics, etc. We are committed to maintaining and further developing the package in the future.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 208

0 2000 4000 6000 8000 10000

0.
0

1.
0

Traceplot for Covariates { Mild−Moderate BMI>=25 W }

Iteration number
P

ro
b(

1−
>

1)

0 5 10 15 20 25 30

0.
0

1.
0

Lag

A
C

F

Autocorrelation Plot for Covariates { Mild−Moderate BMI>=25 W }

(a) For transition type 1 → 1 under covariates {Mild-Moderate, BMI ≥ 25, Women}.

0 2000 4000 6000 8000 10000

0
10

20
30

40

Traceplot for Shape, Comp 3

0 2000 4000 6000 8000 10000

0
2

4
6

8

Traceplot for Rate, Comp 3

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

A
C

F

Autocorrelation after thin. for Shape, Comp 3

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

A
C

F

Autocorrelation after thin. for Rate, Comp 3

(b) For gamma mixture component 3 shape and rate parameters.

Figure 11: Results for the asthma data set showing the MCMC diagnostic plots, including traceplots
and autocorrelation plots.

Future improvements to the package may include more options for the distribution types of transition
probabilities and duration times beyond the currently available mixture Dirichlet and mixture gamma
distributions, respectively.

7 Acknowledgements

We thank two anonymous reviewers very much for their careful review of our work and their
constructive comments that led to significant improvements to both the package and this paper.

References

A. Alioum and D. Commenges. MKVPCI: a computer program for Markov models with piecewise
constant intensities and covariates. Computer Methods and Programs in Biomedicine, 64:109–119, 2001.
URL https://doi.org/10.1016/s0169-2607(00)00094-8. [p193]

A. Alioum, V. Leroy, D. Commenges, F. Dabis, R. Salamon, G. d’Epidémiologie Clinique du SIDA en
Aquitaine, et al. Effect of gender, age, transmission category, and antiretroviral therapy on the pro-
gression of human immunodeficiency virus infection using multistate Markov models. Epidemiology,
9:605–612, 1998. URL https://www.jstor.org/stable/3702781. [p192]

E. E. Alvarez. Estimation in stationary Markov renewal processes, with application to earthquake
forecasting in Turkey. Methodology and Computing in Applied Probability, 7:119–130, 2005. URL
https://doi.org/10.1007/s11009-005-6658-2. [p192]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://doi.org/10.1016/s0169-2607(00)00094-8
https://www.jstor.org/stable/3702781
https://doi.org/10.1007/s11009-005-6658-2


CONTRIBUTED RESEARCH ARTICLE 209

M. Amini, A. Bayat, and R. Salehian. hhsmm: an R package for hidden hybrid Markov/semi-Markov
models. Computational Statistics, 1:1–53, 2022. URL https://doi.org/10.1007/s00180-022-01248-
x. [p193]

S. Bacallado, J. D. Chodera, and V. Pande. Bayesian comparison of Markov models of molecular
dynamics with detailed balance constraint. The Journal of Chemical Physics, 131:1–10, 2009. URL
https://doi.org/10.1063/1.3192309. [p192]

V. S. Barbu, C. Bérard, D. Cellier, M. Sautreuil, and N. Vergne. SMM: An R package for estimation
and simulation of discrete-time semi-Markov models. The R Journal, 10:226–246, 2018. URL
https://doi.org/10.32614/RJ-2018-050. [p193]

P. Bulla and P. Muliere. Bayesian nonparametric estimation for reinforced Markov renewal processes.
Statistical Inference for Stochastic Processes, 10:283–303, 2007. URL https://doi.org/10.1007/s11203-
006-9000-x. [p192]

G. A. Castellucci, M. J. McGinley, and D. A. McCormick. Knockout of Foxp2 disrupts vocal devel-
opment in mice. Nature Scientific Reports, 6:1–14, 2016. URL https://doi.org/10.1038/srep23305.
[p193]

J. Chabout, A. Sarkar, S. Patel, T. Raiden, D. B. Dunson, S. E. Fisher, and E. D. Jarvis. A Foxp2 mutation
implicated in human speech deficits alters sequencing of ultrasonic vocalizations in adult male
mice. Frontiers in Behavioral Neuroscience, 10:1–18, 2016. URL https://doi.org/10.3389/fnbeh.
2016.00197. [p193, 199]

C. Combescure, P. Chanez, P. Saint-Pierre, J. P. Daures, H. Proudhon, P. Godard, et al. Assessment
of variations in control of asthma over time. European Respiratory Journal, 22:298–304, 2003. URL
https://doi.org/10.1183/09031936.03.00081102. [p193, 203]

E. Damsleth. Conjugate classes for gamma distributions. Scandinavian Journal of Statistics, 2:80–84,
1975. URL https://www.jstor.org/stable/4615580. [p196]

P. Diaconis and S. W. Rolles. Bayesian analysis for reversible Markov chains. The Annals of Statistics,
34:1270–1292, 2006. URL https://doi.org/10.1214/009053606000000290. [p192]

P. Eichelsbacher and A. Ganesh. Bayesian inference for Markov chains. Journal of Applied Probability,
39:91–99, 2002. URL https://www.jstor.org/stable/3215920. [p192]

I. Epifani, L. Ladelli, and A. Pievatolo. Bayesian estimation for a parametric Markov renewal model
applied to seismic data. Electronic Journal of Statistics, 8:2264–2295, 2014. URL https://doi.org/10.
1214/14-EJS952. [p192]

M. A. Etterson, B. Olsen, and R. S. Greenberg. The analysis of covariates in multi-fate Markov chain
nest-failure models. Studies in Avian Biology, 34:55–64, 2007. URL https://sora.unm.edu/node/
139709. [p192]

N. Ferguson, S. Datta, and G. Brock. msSurv: An R package for nonparametric estimation of multistate
models. Journal of Statistical Software, 50:1–24, 2012. URL https://doi.org/10.18637/jss.v050.i14.
[p193]

E. Fujita, Y. Tanabe, A. Shiota, M. Ueda, K. Suwa, M. Y. Momoi, and T. Momoi. Ultrasonic vocalization
impairment of Foxp2 (R552H) knockin mice related to speech-language disorder and abnormality
of Purkinje cells. Proceedings of the National Academy of Sciences, 105:3117–3122, 2008. URL https:
//doi.org/10.1073/pnas.0712298105. [p193]

S. Gaub, S. E. Fisher, and G. Ehret. Ultrasonic vocalizations of adult male Foxp2-mutant mice:
behavioral contexts of arousal and emotion. Genes, Brain and Behavior, 15:243–259, 2016. URL
https://doi.org/10.1111/gbb.12274. [p193]

S. Geisser and W. F. Eddy. A predictive approach to model selection. Journal of the American Statistical
Association, 74:153–160, 1979. URL https://doi.org/10.2307/2286745. [p199]

W. Gradner. Analyzing sequential categorical data: Individual variation in Markov chains. Psychome-
trika, 55:263–275, 1990. URL https://doi.org/10.1007/BF02295287. [p192]

T. Holsclaw, A. M. Greene, A. W. Robertson, and P. Smyth. Bayesian nonhomogeneous markov models
via pólya-gamma data augmentation with applications to rainfall modeling. The Annals of Applied
Statistics, 11:393–426, 2017. URL https://doi.org/10.1214/16-AOAS1009. [p192]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://doi.org/10.1007/s00180-022-01248-x
https://doi.org/10.1007/s00180-022-01248-x
https://doi.org/10.1063/1.3192309
https://doi.org/10.32614/RJ-2018-050
https://doi.org/10.1007/s11203-006-9000-x
https://doi.org/10.1007/s11203-006-9000-x
https://doi.org/10.1038/srep23305
https://doi.org/10.3389/fnbeh.2016.00197
https://doi.org/10.3389/fnbeh.2016.00197
https://doi.org/10.1183/09031936.03.00081102
https://www.jstor.org/stable/4615580
https://doi.org/10.1214/009053606000000290
https://www.jstor.org/stable/3215920
https://doi.org/10.1214/14-EJS952
https://doi.org/10.1214/14-EJS952
https://sora.unm.edu/node/139709
https://sora.unm.edu/node/139709
https://doi.org/10.18637/jss.v050.i14
https://doi.org/10.1073/pnas.0712298105
https://doi.org/10.1073/pnas.0712298105
https://doi.org/10.1111/gbb.12274
https://doi.org/10.2307/2286745
https://doi.org/10.1007/BF02295287
https://doi.org/10.1214/16-AOAS1009


CONTRIBUTED RESEARCH ARTICLE 210

M. A. Islam and R. I. Chowdhury. A higher order Markov model for analyzing covariate dependence.
Applied Mathematical Modelling, 30:477–488, 2006. URL https://doi.org/10.1016/j.apm.2005.05.
006. [p192, 193]

C. Jackson. Multi-state models for panel data: the msm package for R. Journal of Statistical Software, 38:
1–28, 2011. URL https://doi.org/10.18637/jss.v038.i08. [p193]

E. Juniper, P. O’byrne, G. Guyatt, P. Ferrie, and D. King. Development and validation of a questionnaire
to measure asthma control. European Respiratory Journal, 14:902–907, 1999. URL https://doi.org/
10.1034/j.1399-3003.1999.14d29.x. [p203]

K. Katsura. catdap, a categorical data analysis program package. Computer Science Monograph, 14, 1980.
URL https://CRAN.R-project.org/package=catdap. [p193]

T. Kharrat, G. N. Boshnakov, I. McHale, and R. Baker. Flexible regression models for count data
based on renewal processes: The Countr package. Journal of Statistical Software, 90:1–35, 2019. URL
https://doi.org/10.18637/jss.v090.i13. [p193]

B. Li. Markov models for Bayesian analysis about transit route origin–destination matrices. Transporta-
tion Research Part B: Methodological, 43:301–310, 2009. URL https://doi.org/10.1016/j.trb.2008.
07.001. [p192]

A. Listwon and P. Saint-Pierre. SemiMarkov: An R package for parametric estimation in multi-state
semi-Markov models. Journal of Statistical Software, 66:1–16, 2015. URL https://doi.org/10.18637/
jss.v066.i06. [p193, 203]

K. D. MacDermot, E. Bonora, N. Sykes, A.-M. Coupe, C. S. Lai, S. C. Vernes, F. Vargha-Khadem,
F. McKenzie, R. L. Smith, A. P. Monaco, et al. Identification of FOXP2 truncation as a novel cause of
developmental speech and language deficits. The American Journal of Human Genetics, 76:1074–1080,
2005. URL https://doi.org/10.1086/430841. [p193]

G. Marshall, W. Guo, and R. H. Jones. MARKOV: A computer program for multi-state Markov
models with covariables. Computer Methods and Programs in Biomedicine, 47:147–156, 1995. URL
https://doi.org/10.1016/0169-2607(95)01641-6. [p193]

D. Meyer, A. Zeileis, and K. Hornik. vcd: Visualizing Categorical Data, 2022. URL https://CRAN.R-
project.org/package=vcd. R package version 1.4-10. [p193]

J. W. Miller. Fast and accurate approximation of the full conditional for gamma shape parameters.
Journal of Computational and Graphical Statistics, 28:476–480, 2019. URL https://doi.org/10.1080/
10618600.2018.1537929. [p196]

L. R. Muenz and L. V. Rubinstein. Markov models for covariate dependence of binary sequences.
Biometrics, 41:91–101, 1985. URL https://doi.org/10.2307/2530646. [p192]

P. Muliere, P. Secchi, and S. G. Walker. Reinforced random processes in continuous time. Stochastic
Processes and their Applications, 104:117–130, 2003. URL https://doi.org/10.1016/S0304-4149(02)
00234-X. [p192]

J. O’Connell and S. Højsgaard. Hidden semi Markov models for multiple observation sequences:
The mhsmm package for R. Journal of Statistical Software, 39:1–22, 2011. URL https://doi.org/10.
18637/jss.v039.i04. [p193]

M. J. Phelan. Bayes estimation from a Markov renewal process. The Annals of Statistics, 18:603–616,
1990. URL https://doi.org/10.1214/aos/1176347618. [p192]

J. E. Pustejovsky. ARPobservation: Simulating recording procedures for direct observation of behavior, 2021.
URL https://CRAN.R-project.org/package=ARPobservation. R package version 1.1. [p193]

R. Pyke. Markov renewal processes: definitions and preliminary properties. The Annals of Mathematical
Statistics, 32:1231–1242, 1961. URL https://www.jstor.org/stable/2237923. [p193]

P. Saint-Pierre, C. Combescure, J. Daures, and P. Godard. The analysis of asthma control under
a Markov assumption with use of covariates. Statistics in Medicine, 22:3755–3770, 2003. URL
https://doi.org/10.1002/sim.1680. [p203]

A. Sarkar, J. Chabout, J. J. Macopson, E. D. Jarvis, and D. B. Dunson. Bayesian semiparametric mixed
effects Markov models with application to vocalization syntax. Journal of the American Statistical
Association, 113:1515–1527, 2018. URL https://doi.org/10.1080/01621459.2018.1423986. [p192,
193, 199]

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://doi.org/10.1016/j.apm.2005.05.006
https://doi.org/10.1016/j.apm.2005.05.006
https://doi.org/10.18637/jss.v038.i08
https://doi.org/10.1034/j.1399-3003.1999.14d29.x
https://doi.org/10.1034/j.1399-3003.1999.14d29.x
https://CRAN.R-project.org/package=catdap
https://doi.org/10.18637/jss.v090.i13
https://doi.org/10.1016/j.trb.2008.07.001
https://doi.org/10.1016/j.trb.2008.07.001
https://doi.org/10.18637/jss.v066.i06
https://doi.org/10.18637/jss.v066.i06
https://doi.org/10.1086/430841
https://doi.org/10.1016/0169-2607(95)01641-6
https://CRAN.R-project.org/package=vcd
https://CRAN.R-project.org/package=vcd
https://doi.org/10.1080/10618600.2018.1537929
https://doi.org/10.1080/10618600.2018.1537929
https://doi.org/10.2307/2530646
https://doi.org/10.1016/S0304-4149(02)00234-X
https://doi.org/10.1016/S0304-4149(02)00234-X
https://doi.org/10.18637/jss.v039.i04
https://doi.org/10.18637/jss.v039.i04
https://doi.org/10.1214/aos/1176347618
https://CRAN.R-project.org/package=ARPobservation
https://www.jstor.org/stable/2237923
https://doi.org/10.1002/sim.1680
https://doi.org/10.1080/01621459.2018.1423986


CONTRIBUTED RESEARCH ARTICLE 211

M. Sesia, C. Sabatti, and E. J. Candès. Gene hunting with hidden Markov model knockoffs. Biometrika,
106:1–18, 2019. URL https://doi.org/10.1093/biomet/asy033. [p192]

M. Siebert and J. Söding. Bayesian Markov models consistently outperform PWMs at predicting
motifs in nucleotide sequences. Nucleic Acids Research, 44:6055–6069, 2016. URL https://doi.org/
10.1093/nar/gkw521. [p192]

G. A. Spedicato. Discrete time Markov chains with R. The R Journal, 9:84–104, 2017. doi: 10.32614/RJ-
2017-036. URL https://doi.org/10.32614/RJ-2017-036. [p193]

S. Watanabe and M. Opper. Asymptotic equivalence of Bayes cross validation and widely applicable
information criterion in singular learning theory. Journal of Machine Learning Research, 11:3571–3594,
2010. URL https://doi.org/10.48550/arXiv.1004.2316. [p199]

Y. Wu, E. D. Jarvis, and A. Sarkar. Bayesian semiparametric Markov renewal mixed models for
vocalization syntax. Biostatistics, 2023. URL https://doi.org/10.1093/biostatistics/kxac050.
To appear. [p192, 193, 199]

M. Zhang, P. W. van Rijn, P. Deane, and R. E. Bennett. Scenario-based assessments in writing:
An experimental study. Educational Assessment, 24:73–90, 2019. URL https://doi.org/10.1080/
10627197.2018.1557515. [p193]

Yutong Wu
Department of Mechanical Engineering
The University of Texas at Austin
204 E Dean Keeton St C2200, Austin, TX 78712-1591
United States
ORCID: 0000-0001-7828-9981
yutong.wu@utexas.edu

Abhra Sarkar
Department of Statistics and Data Sciences
The University of Texas at Austin
2317 Speedway D9800, Austin, TX 78712-1823
United States
ORCID: 0000-0002-6924-8464
abhra.sarkar@utexas.edu

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://doi.org/10.1093/biomet/asy033
https://doi.org/10.1093/nar/gkw521
https://doi.org/10.1093/nar/gkw521
https://doi.org/10.32614/RJ-2017-036
https://doi.org/10.48550/arXiv.1004.2316
https://doi.org/10.1093/biostatistics/kxac050
https://doi.org/10.1080/10627197.2018.1557515
https://doi.org/10.1080/10627197.2018.1557515
mailto:yutong.wu@utexas.edu
mailto:abhra.sarkar@utexas.edu


CONTRIBUTED RESEARCH ARTICLE 212

Changes on CRAN
2024-01-01 to 2024-06-30

by Kurt Hornik, Uwe Ligges, and Achim Zeileis

1 CRAN growth

In the past 6 months, 1060 new packages were added to the CRAN package repository.
405 packages were unarchived, 690 were archived and 7 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:

2000 2010 2020

0
50

00
10

00
0

15
00

0
20

00
0

Year

Number of CRAN Packages

2000 2010 2020

50
10

0
20

0
50

0
10

00
20

00
50

00
20

00
0

Year

Number of CRAN Packages (Log−Scale)

On 2024-06-30, the number of active packages was around 21018.

2 CRAN package submissions

From January 2024 to June 2024 CRAN received 14584 package submissions. For these,
23887 actions took place of which 16756 (70%) were auto processed actions and 7131 (30%)
manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting

auto 4316 1674 3532 383 0 4588 1572 691
manual 2726 140 93 255 179 2881 638 219

These include the final decisions for the submissions which were

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 213

archive publish

auto 4083 (28.7%) 4045 (28.4%)
manual 2692 (18.9%) 3399 (23.9%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

A new team member, Konstanze Lauseker, joined the CRAN submission team. Welcome,
Konstanze. Unfortunately, Victoria Wimmer left the CRAN submission team after processing
4588 incoming submissions. Thanks a lot!

3 CRAN mirror security

Currently, there are 94 official CRAN mirrors, 73 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

4 CRAN Task View Initiative

Currently there are 46 task views (see https://CRAN.R-project.org/web/views/), with
median and mean numbers of CRAN packages covered 104 and 122, respectively. Overall,
these task views cover 4711 CRAN packages, which is about 22% of all active CRAN
packages.

Julia Piaskowski (University of Idaho) joined the team of CRAN Task View Editors,
welcome!

Kurt Hornik
WU Wirtschaftsuniversität Wien
Austria
ORCiD: 0000-0003-4198-9911
Kurt.Hornik@R-project.org

Uwe Ligges
TU Dortmund
Germany
ORCiD: 0000-0001-5875-6167
Uwe.Ligges@R-project.org

Achim Zeileis
Universität Innsbruck
Austria
ORCiD: 0000-0003-0918-3766
Achim.Zeileis@R-project.org

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://CRAN.R-project.org/web/views/
https://orcid.org/0000-0003-4198-9911
mailto:Kurt.Hornik@R-project.org
https://orcid.org/0000-0001-5875-6167
mailto:Uwe.Ligges@R-project.org
https://orcid.org/0000-0003-0918-3766
mailto:Achim.Zeileis@R-project.org


Contributed research article 214

R Foundation News
by Torsten Hothorn

1 Donations and members

Membership fees and donations received between 2024-04-12 and 2024-12-06.

1.1 Donations

Qualitas AG (Switzerland) Keith Chamberlain (United States) Lawrence Freden-
dall (United States) Thomas Hennequin (Netherlands) Calvin Hopper (United States)
Emma Howard (Ireland) Roger Koenker (United Kingdom) Korea R User Group (Ko-
rea, Republic of) Plamen Vladkov Mirazchiyski (Slovenia) David Smith (United States)
Tobias Strapatsas (Germany) Jason Wyse (Ireland)

1.2 Supporting benefactors

Zubin Dowlaty (United States)

1.3 Supporting institutions

Alfred Mueller Analytic Services, München (Germany) Digital Ecology Limited ,
Berkeley (United Kingdom) NIFU Nordic Institute for Studies in Innovation, Research
and Education, Oslo (Norway) Roseburg Forest Products, Springfield (United States)
The University of Auckland, Statistics Department, Auckland (New Zealand) University
of Iowa, Iowa City (United States)

1.4 Supporting members

Douglas Adamoski (Brazil) Vedo Alagic (Austria) Tim Appelhans (Germany) Kristof-
fer Winther Balling (Denmark) Amit Behera (United States) Ashanka Beligaswatte
(Australia) Nathan Bernhardt (United States) Chris Billingham (United Kingdom)
Gordon Blunt (United Kingdom) Robert Carnell (United States) Ivan Maria Castellani
(Italy) William Chiu (United States) Tom Clarke (United Kingdom) Giuseppe Cor-
belli (Italy) Rafael Costa (Brazil) Charles Cowens (United States) Terry Cox (United
States) Alistair Cullum (United States) Robert Daly (Australia) Gergely Daroczi (Hun-
gary) Ajit de Silva (United States) Elliott Deal (United States) Dubravko Dolic (Ger-
many) Serban Dragne (United Kingdom) Mitch Eppley (United States) Guenter Faes
(Germany) David Freedman (United States) Keita Fukasawa (Japan) Anne Catherine
Gieshoff (Switzerland) Spencer Graves (United States) Susan Gruber (United States)
Chris Hanretty (United Kingdom) James Harris (United States) Takehiko Hayashi
(Japan) Kieran Healy (United States) ken ikeda (Japan) Knut Helge Jensen (Nor-
way) Sebastian Jeworutzki (Germany) Brian Johnson (United States) Markus Kainu
(Finland) Christian Kampichler (Netherlands) Katharina Kesy (Germany) An Khuc

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859



Contributed research article 215

(United States) Miha Kosmac (United Kingdom) Sebastian Krantz (Germany) Jan Her-
man Kuiper (United Kingdom) Teemu Daniel Laajala (Finland) Jindra Lacko (Czechia)
Vishal Lama (United States) Bernardo Lares (Venezuela) Rory Lawless (United States)
Thierry Lecerf (Switzerland) Seungdoe Lee (Korea, Republic of) Mauro Lepore (United
States) Andrea Luciani (Italy) David Luckett (Australia) Sharon Machlis (United States)
Mehrad Mahmoudian (Finland) Michal Majka (Austria) Amanuel Medhanie (United
States) Bogdan-Alexandru Micu (Luxembourg) Igor Mikheenko (Russian Federation)
harvey minnigh (Puerto Rico) Guido Möser (Germany) Markus Näpflin (Switzerland)
Mark Niemann-Ross (United States) Jens Oehlschlägel (Germany) Dan Orsholits (Switzer-
land) George Ostrouchov (United States) Jaesung James Park (Korea, Republic of)
Matt Parker (United States) josiah parry (United States) Elgin Perry (United States)
Bill Pikounis (United States) Kelly Pisane (Netherlands) Paul Rayburn (Canada) Ra-
mon Rodriguez-Santana (United States) David Romano (United States) Peter Ruckde-
schel (Germany) Raoul Schorer (Switzerland) Dominic Schuhmacher (Germany) Dejan
Schuster (Germany) Christian Seubert (Austria) Jagat Sheth (United States) Sindri
Shtepani (Canada) David Sides (United States) Rachel Smith-Hunter (United States)
Murray Sondergard (Canada) Matteo Starri (Italy) Marco Steenbergen (Switzerland)
Berthold Stegemann (Germany) ROBERT Szabo (Sweden) Jan Tarabek (Czechia) Tim
Taylor (United Kingdom) Chris Toney (United States) Nicholas Turner (United States)
Philipp Upravitelev (Russian Federation) Mark van der Loo (Netherlands) Frans van
Dunné (Costa Rica) Vincent van Hees (Netherlands) Marcus Vollmer (Germany) Jaap
Walhout (Netherlands) Sandra Ware (Australia) Lim Zhong Hao (Singapore)杨 (Yang)
胡 (Hu) (New Zealand)

Torsten Hothorn
Universität Zürich
Switzerland
ORCiD: 0000-0001-8301-0471
Torsten.Hothorn@R-project.org

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://orcid.org/0000-0001-8301-0471
mailto:Torsten.Hothorn@R-project.org


CONTRIBUTED RESEARCH ARTICLE 216

Bioconductor Notes, March 2024
by Maria Doyle, Bioconductor Community Manager, and Bioconductor Core Developer Team

Abstract We discuss general project news.

1 Introduction

Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data.
The project has entered its twentieth year, with funding for core development and infrastructure
maintenance secured through 2025 (NIH NHGRI 2U24HG004059). Additional support is provided by
NIH NCI, Chan-Zuckerberg Initiative, National Science Foundation, Microsoft, and Amazon. In this
news report, we give some updates on core team and project activities.

2 Software

In October 2023, Bioconductor 3.18 was released*. It is compatible with R 4.3 and includes 2266
software packages, 429 experiment data packages, 920 up-to-date annotation packages, 30 workflows,
and 4 books. Books are built regularly from source, ensuring full reproducibility; an example is the
community-developed Orchestrating Single-Cell Analysis with Bioconductor.

*Note: Bioconductor 3.19 and 3.20 were subsequently released in May and October 2024, respectively. For
details on the latest release, visit the Bioconductor website.

3 Website Redesign

In January 2024, we unveiled the new Bioconductor.org, featuring a cleaner design, improved accessi-
bility, and reorganized content. This redesign, shaped by community feedback, aims to better serve
our global users. Looking ahead, we have identified the need to enhance search functionalities and
improve how Bioconductor content is structured and integrated to support advanced tools, including
AI. Planning is underway, with development expected to begin in 2025, subject to grant outcomes. See
blog post for more details.

4 Community and Impact

4.1 Community Profile

At the end of 2023, the Center for Scientific Collaboration and Community Engagement (CSCCE)
published a Bioconductor Community Profile. This report highlights the impact of Bioconductor’s
first year of CZI EOSS 4 funding, providing insights into our community’s structure, challenges, and
successes. Read the full profile here.

4.2 Outreachy Internships

Bioconductor participated in the Outreachy Internship program for the December 2023 – March 2024
cohort. Interns Chioma Onyido, Ester Afuape, and Peace Sandy from Nigeria contributed to curating
microbiome studies for BugSigDB. They also shared their experiences working on these projects and
engaging with the Bioconductor community in a blog post, which you can read here.

4.3 YERUN Open Science Award

In February 2024, the Bioconductor Community Advisory Board received the YERUN Open Science
Award for advancing open-source software in biomedical research and promoting equitable access to
genomic analysis tools. The €2,000 prize will fund a hackathon focused on AI-assisted translation of
training materials. Learn more in the UL article.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://bioconductor.org
https://bioconductor.org/news/bioc_3_18_release/
https://bioconductor.org/books/release/
https://bioconductor.org/books/release/OSCA/
https://bioconductor.org/news/
https://blog.bioconductor.org/posts/2024-02-01-website-update/
https://zenodo.org/records/8400205
https://blog.bioconductor.org/posts/2024-01-31-OutreachyInternshipJourney/
https://www.ul.ie/research/news/university-of-limerick-researchers-win-european-award-for-commitment-to-open-science


CONTRIBUTED RESEARCH ARTICLE 217

4.4 Bioconductor Leaves Twitter/X

In December 2023, Bioconductor transitioned away from Twitter/X due to concerns about the plat-
form’s alignment with our Code of Conduct. The account is now archived, and we encourage the
community to connect with us on platforms like Mastodon, LinkedIn, YouTube, Slack, and our mailing
lists. Read the full announcement here.

5 Conferences

5.1 BioC2024 Announcement

The annual Bioconductor Conference, BioC2024, will take place in Grand Rapids, Michigan, from
July 24–26, 2024. This event will feature keynote talks, workshops, and opportunities for community
engagement. For more details, visit the conference website here.

5.2 EuroBioC2024 Announcement

The European Bioconductor Conference, EuroBioC2024, will be held in Oxford, UK, from September
4–6, 2024. Join us for discussions, tutorials, and networking with the Bioconductor community in
Europe. More information is available here.

6 Boards and Working Groups Updates

If you are interested in becoming involved with any Bioconductor working group please contact the
group leader(s).

6.1 EDAM Working Group Announcement

Bioconductor has launched an EDAM Working Group in collaboration with EDAM-bio.tools to im-
prove the discoverability of Bioconductor packages through the EDAM ontology, a widely used
bioinformatics vocabulary and classification system. This effort supports greater integration with com-
munities beyond R and platforms like Galaxy and aligns with Bioconductor’s mission of accessibility
and interoperability. The group is submitting a proposal for the ELIXIR BioHackathon 2024, and invites
interested contributors to join the discussion on the Bioconductor Slack in the #edam-collaboration
channel.

7 Using Bioconductor

Start using Bioconductor by installing the most recent version of R and evaluating the commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker images provides a very effective on-ramp for power users to rapidly obtain access to
standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.
• A list of available software linking to pages describing each package.
• A question-and-answer style user support site and developer-oriented mailing list.
• A community slack workspace (sign up) for extended technical discussion.
• The F1000Research Bioconductor gateway for peer-reviewed Bioconductor workflows as well

as conference contributions.
• The Bioconductor YouTube channel includes recordings of keynote and talks from recent

conferences, in addition to video recordings of training courses.

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://bioconductor.org/about/code-of-conduct/
https://blog.bioconductor.org/posts/2023-11-17-twitter-exit/
https://www.bioc2024.bioconductor.org/
https://eurobioc2024.bioconductor.org/
https://workinggroups.bioconductor.org/currently-active-working-groups-committees.html
https://workinggroups.bioconductor.org/currently-active-working-groups-committees.html#edam-collaboration
https://slack.bioconductor.org
https://bioconductor.org/packages/SingleCellExperiment
https://bioconductor.org/help/docker/
https://bioconductor.org
https://bioconductor.org/packages
https://support.bioconductor.org
https://stat.ethz.ch/mailman/listinfo/bioc-devel
https://slack.bioconductor.org
https://f1000research.com/gateways/bioconductor
https://www.youtube.com/user/bioconductor


CONTRIBUTED RESEARCH ARTICLE 218

• Our package submission repository for open technical review of new packages.

Upcoming and recently completed events are browsable at our events page.

The Technical and and Community Advisory Boards provide guidance to ensure that the project
addresses leading-edge biological problems with advanced technical approaches, and adopts practices
(such as a project-wide Code of Conduct) that encourages all to participate. We look forward to
welcoming you!

We welcome your feedback on these updates and invite you to connect with us through the
Bioconductor Slack workspace or by emailing community@bioconductor.org.

Maria Doyle, Bioconductor Community Manager
University of Limerick

Bioconductor Core Developer Team
Dana-Farber Cancer Institute, Roswell Park Comprehensive Cancer Center, City University of New York, Fred
Hutchinson Cancer Research Center, Mass General Brigham

The R Journal Vol. 16/1, March 2024 ISSN 2073-4859

https://github.com/Bioconductor/Contributions
https://bioconductor.org/help/events/
https://bioconductor.org/about/technical-advisory-board/
https://bioconductor.org/about/community-advisory-board/
https://bioconductor.org/about/code-of-conduct/
https://slack.bioconductor.org
mailto:community@bioconductor.org

	Editorial
	In this issue

	Remembering Friedrich ``Fritz'' Leisch
	Career
	Key contributions
	R Core & CRAN
	DSC & useR! conferences
	Sweave & reproducibility
	Clustering & mixture models
	Applied work

	Academic service
	Teaching & mentoring
	Odds & ends

	ebmstate: An R Package For Disease Progression Analysis Under Empirical Bayes Cox Models
	Introduction
	Models
	Relative transition hazards
	Cumulative transition hazard functions
	State occupation probabilities

	Estimation
	Relative and cumulative hazard functions
	State occupation probabilities
	Interval estimation

	Estimator performance
	Simulation setup
	Missing values
	Comparison of estimators

	Survival analysis workflow
	Input data
	Fitting an empirical Bayes Cox model
	Computing cumulative transition hazard estimates
	Computing state occupation probability estimates
	Model assessment

	Discussion
	Conflict of interest

	bootCT: An R Package for Bootstrap Cointegration Tests in ARDL Models
	Introduction
	Cointegration bound tests in ARDL models
	The new bootstrap procedure
	Illustration of the bootCT package
	Generating a multivariate time series: the ```̃'`sim_vecm_ardl function
	Bootstrapping the ARDL bound tests: the ```̃'`boot_ardl function
	Execution time and technical remarks

	Empirical applications
	An application to the German macroeconomic dataset
	An application on Italian Macroeconomic Data

	Conclusion
	Appendix
	Section A - the methodological framework of (conditional) VECM and ARDL models
	Section B - Intercept and trend specifications


	Prediction, Bootstrapping and Monte Carlo Analyses Based on Linear Mixed Models with QAPE 2.0 Package
	Introduction
	Prediction accuracy measures
	The prediction under LMM
	The model
	Predictors
	Predictors in qape
	Radon data and the model
	Example 1

	Bootstrap procedures
	Bootstrap in qape
	Example 2

	Bootstrap under the misspecified model in qape
	Example 3

	Monte Carlo simulation analyses
	Monte Carlo analyses in qape
	Example 4

	Conclusions

	text2sdg: An R Package to Monitor Sustainable Development Goals from Text
	Introduction
	An overview of SDG labeling systems
	Individual labeling systems
	The ensemble labeling system

	The text2sdg package
	Motivation for text2sdg
	Overview of text2sdg package

	Demonstrating the functionality of text2sdg
	Preparing the SNSF projects data
	Using ```̃'`detect_sdg and ```̃'`detect_sdg_systems to detect SDGs
	Analyzing the SDG labels

	Practical considerations
	Specifying user-defined labeling systems
	Applying text2sdg to non-English data
	Estimating the runtime of text2sdg

	Other approaches to detecting SDGs in text
	Discussion
	Conclusion

	GenMarkov: Modeling Generalized Multivariate Markov Chains in R
	Introduction
	Multivariate Markov chains
	Covariates in Markov chain models
	Multivariate Markov chains with covariates
	Theoretical model
	Estimation and inference
	Monte Carlo simulation study
	Software implementation

	Illustration
	Conclusions, limitations and further research

	Fitting a Quantile Regression Model for Residual Life with the R Package qris
	Introduction
	Semiparametric quantile regression for residual life
	Estimation using non-smooth functions
	Estimation using induced smoothed functions
	Iterative procedure in induced smoothing estimation

	Package implementation
	Illustration
	Simulated data
	North Central Cancer Treatment Group Lung Cancer Data

	Conclusion

	nortsTest: An R Package for Assessing Normality of Stationary Processes
	Introduction
	Preliminary concepts
	Normality tests for stationary processes
	Software
	Tests for stationarity
	Tests of Epps
	Tests of Lobato and Velasco
	The Random Projections test
	The Psaradakis and Vavra's test
	The multivariate kurtosis test

	Simulations and data analysis
	Numerical experiments
	Real data application

	Conclusions
	Future work and projects
	Acknowledgment

	shinymgr: A Framework for Building, Managing, and Stitching Shiny Modules into Reproducible Workflows
	Introduction
	Introducing shinymgr

	Developing shinymgr apps
	Setting up shinymgr
	The shinymgr developer's portal
	The shinymgr database
	The shinymgr app builder

	Deploying shinymgr projects
	Using shinymgr apps
	Reproducible analyses
	Rapid reporting

	Tutorials and cheatsheet
	Acknowledgments
	Bibliography
	Appendix A
	Appendix B

	Bayesian Model Selection with Latent Group-Based Effects and Variances with the R Package slgf
	Introduction
	SLGF methodology
	Model specification
	Grouping schemes and model classes
	Parameter priors
	Fractional Bayes factors and posterior model probabilities
	Choice of m0
	Model priors
	Parameter estimation

	Using the slgf package
	Case Study 1: smell data
	Case study 2: textile data
	Case study 3: locknut data
	Case study 4: bottles data

	Conclusion

	BMRMM: An R Package for Bayesian Markov (Renewal) Mixed Models
	Introduction
	The Bayesian Markov (renewal) mixed models
	Model for state transitions
	Model for continuous duration times

	The BMRMM R package
	Package description
	The main function BMRMM
	Summarizing BMRMM results
	Visualizing results with BMRMM plotting functions
	Model selection scores for continuous duration times

	Illustrations on the synthetic FoxP2 data set
	Illustrations on the asthma control data set
	Conclusion
	Acknowledgements

	Changes on CRAN
	CRAN growth
	CRAN package submissions
	CRAN mirror security
	CRAN Task View Initiative

	R Foundation News
	Donations and members
	Donations
	Supporting benefactors
	Supporting institutions
	Supporting members


	Bioconductor Notes, March 2024
	Introduction
	Software
	Website Redesign
	Community and Impact
	Community Profile
	Outreachy Internships
	YERUN Open Science Award
	Bioconductor Leaves Twitter/X

	Conferences
	BioC2024 Announcement
	EuroBioC2024 Announcement

	Boards and Working Groups Updates
	EDAM Working Group Announcement

	Using Bioconductor


