
The Journal
Volume 16/3, September 2024

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Contributed Research Articles

Validating and Extracting Information from National Identification Numbers in R: The
Case of Finland and Sweden . . . . . . . . . . . . . . . . . . . . . . . . . . 4

GeoAdjust: Adjusting for Positional Uncertainty in Geostatistial Analysis of DHS Data 15

SIHR: Statistical Inference in High-Dimensional Linear and Logistic Regression Models 27

SNSeg: An R Package for Time Series Segmentation via Self-Normalization . . . . . 46

fmeffects: An R Package for Forward Marginal Effects . . . . . . . . . . . . . . 67

GSSTDA: Implementation in an R Package of the Progression of Disease with Survival
Analysis (PAD-S) that Integrates Information on Genes Linked to Survival in the
Mapper Filter Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Kernel Heaping - Kernel Density Estimation from regional aggregates via measure-
ment error model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

SLCARE: An R Package for Semiparametric Latent Class Analysis of Recurrent Events 134

PubChemR: An R Package for Accessing Chemical Data from PubChem . . . . . . 150

boiwsa: An R Package for Seasonal Adjustment of Weekly Data . . . . . . . . . . 186

News and Notes

Bioconductor Notes, September 2024 . . . . . . . . . . . . . . . . . . . . . . 198

R Foundation News . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201



2

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications

regarding this publication should be addressed to the
editors. All articles are licensed under the Creative

Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Mark van der Loo, Statistics Netherlands and Leiden

University, Netherlands

Executive editors:
Simon Urbanek, University of Auckland, New Zealand

Rob Hyndman, Monash University, Australia
Emi Tanaka, Australian National University, Australia

Technical editors:
Mitchell O’Hara-Wild, Monash University, Australia

R Journal Homepage:
http://journal.r-project.org/

Email of editors and editorial board:
r-journal@R-project.org

The R Journal is indexed/abstracted by EBSCO, DOAJ,
Thomson Reuters.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
http://journal.r-project.org/


CONTRIBUTED RESEARCH ARTICLE 3

Editorial
by Mark P.J. van der Loo

On behalf of the editorial board, I am pleased to present Volume 16 Issue 3 of the R Journal.

In this issue

News from the R Foundation and Bioconductor are included in this issue.

This issue features 10 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. Supplementary material
with fully reproducible code is available for download from the Journal website. Topics
covered in this issue are the following.

Time series

• boiwsa: An R Package for Seasonal Adjustment of Weekly Data
• SNSeg: An R Package for Time Series Segmentation via Self-Normalization

Modeling and Inference

• SIHR: Statistical Inference in High-Dimensional Linear and Logistic Regression Models
• SLCARE: An R Package for Semiparametric Latent Class Analysis of Recurrent Events
• fmeffects: An R Package for Forward Marginal Effects

Geospatial

• GeoAdjust: Adjusting for Positional Uncertainty in Geostatistial Analysis of DHS Data
• Kernel Heaping - Kernel Density Estimation from Regional Aggregates via Measure-

ment Error Model

Applications

• Validating and Extracting Information from National Identification Numbers in R: The
Case of Finland and Sweden

• GSSTDA: Implementation in an R Package of the Progression of Disease with Survival
Analysis (PAD-S) that Integrates Information on Genes Linked to Survival in the
Mapper Filter Function

• PubChemR: An R Package for Accessing Chemical Data from PubChem

Mark P.J. van der Loo
Statistics Netherlands and Leiden University

https://journal.r-project.org
r-journal@r-project.org

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://journal.r-project.org
mailto:r-journal@r-project.org


CONTRIBUTED RESEARCH ARTICLE 4

Validating and Extracting Information
from National Identification Numbers in
R: The Case of Finland and Sweden
by Pyry Kantanen, Erik Bülow, Aleksi Lahtinen, Måns Magnusson, Jussi Paananen, and Leo Lahti

Abstract National identification numbers (NIN) and similar identification code systems are widely
used for uniquely identifying individuals and organizations in Finland, Sweden, and many other
countries. To increase the general understanding of such techniques of identification, openly available
methods and tools for NIN analysis and validation are needed. The hetu and sweidnumbr R packages
provide functions for extracting embedded information, checking the validity, and generating random
but valid numbers in the context of Finnish and Swedish NINs and other identification codes. In
this article, we demonstrate these functions from both packages and provide theoretical context and
motivation on the importance of the subject matter. Our work contributes to the growing toolkit of
standardized methods for computational social science research, epidemiology, demographic studies,
and other register-based inquiries.

1 Introduction

Technical systems for identifying people, organizations, places and other objects are an important
but often overlooked aspect of governance and management tools in modern societies (Dodge and
Kitchin, 2005). Universal and persistent identification numbering systems for natural persons are vital
for facilitating research activities that combine data from different sources, for example in the fields of
epidemiology, population studies and social research (Gissler and Haukka, 2004). Outside the field
of academic research, universal identifiers for natural persons enable work in a multi-disciplinary
and multi-agency context due to greater administrative fluency and bureaucratic effectiveness (Alastalo
and Helén, 2022). This may be useful, for example, in tackling wicked social problems that require
cooperation from professionals from multiple fields, such as social workers, psychologists, police, and
health care professionals.

The hetu and sweidnumbr R packages provide open tools for handling and extracting data from
identification codes for natural persons and juridical persons in the national contexts of Finland and
Sweden. These tools can also be used to handle Finnish and Swedish Business ID codes. Prior R
packages with similar scope include numbersBR for Brazilian identity numbers for individuals, vehi-
cles, and organizations (Freitas, 2018), cprr for Danish “Det Centrale Personregister” (CPR) numbers
(Anhøj, 2019), and generator for generating various types of Personally Identifiable Information (PII),
such as fake e-mail addresses, names and the United States Social Security Numbers (Hendricks, 2015).

Identification code generators and validators are not a novel concept. In the case of Finland,
the handling of identification codes can be seen as a common entry-level task for new computer
science students to familiarize themselves with regular expressions, handling dates, string subsetting
and similar concepts, and examples in various programming languages can easily be found online.
However, in research there is a need for standardized, well documented and reproducible methods.
These requirements are the main reason for developing R packages for handling Finnish and Swedish
identification codes. The packages ensure reproducibility and transparency while also offering
user manuals, semantic versioning and documentation of changes between versions (as outlined by
Wickham and Bryan, 2024).

2 Features of identification number systems

Reliably keeping track of individuals, organizations, objects and flows in a given territory has long
been seen as an important feature of modern governance (Dodge and Kitchin, 2005). Foucault (2009,
115-120) observed a historical pattern where practices first implemented in disciplinary institutions,
such as prisons, military units and schools have spread to influence whole societies. We can see the
results of this development today when alphanumeric identifiers originally assigned to prisoners,
soldiers and students have been transformed into nationwide identification code systems around the
world. Differences in legal, political and historical frameworks in different countries have affected
how these systems are implemented in practice, causing heterogeneity for example in identification
system designs across Europe (Otjacques et al., 2007).

This heterogeneity and linguistic differences seem to contribute to variance in the terminology

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=sweidnumbr
https://CRAN.R-project.org/package=numbersBR
https://CRAN.R-project.org/package=cprr
https://CRAN.R-project.org/package=generator


CONTRIBUTED RESEARCH ARTICLE 5

used when referring to identification code systems. Unique identifier (UID) is an umbrella term that can
be used to refer to unique identifiers for all sorts of things, from books (ISBN), chemicals (CAS) and
legal entities (LEI) to anything imaginable (see Dodge and Kitchin, 2005). In this paper, we are mainly
interested in unique identifiers for natural persons and juridical persons.

Names such as personal identification code (Dodge and Kitchin, 2005), personal identity number
(Alastalo and Helén, 2022) and single identification number (SIN) (Otjacques et al., 2007) are used in
literature as generic terms. Personal identification codes can sometimes be confused with personal
identification numbers (PINs) that refer to numeric or alphanumeric passcodes used for authentication,
for example, to withdraw cash or open a locked mobile phone. On the other hand names such as
personal identity code (PIC) (Digital and Population Data Services Agency, 2022a; Sund, 2012), name
number (Watson, 2010) and personal number (Statistics Sweden, 2016) are used in official translations
to refer to national implementations of NINs; in the mentioned cases, Finnish, Icelandic and Swedish
NINs, respectively. Due to function creep (see Brensinger and Eyal, 2021; Alastalo and Helén, 2022) or
control creep (see Dodge and Kitchin, 2005), historically sector-specific identifiers may also be used as a
de facto NIN. This is the case with the US social security number (SSN) (Brensinger and Eyal, 2021) and
Finnish employee pension card numbers and social security codes (Alastalo and Helén, 2022).

For clarity’s sake, we will be using the generic term national identification number (NIN) to refer to
all identification number systems and their country-specific implementations for natural persons, in
this case, the Finnish personal identity code and the Swedish personal number. For organizations, we will
use the generic term organization identifier when discussing Finnish business IDs (BID) and Swedish
organizational identity numbers (OIN) / Swedish organizational numbers (SON).

All identification systems should strive to be both unique and self-same over time. Self-sameness
refers to a degree of immutability that allows organizations to identify and reidentify a person over
time. A combination of attributes such as name, occupation and address would probably form a
unique identifier even in relatively large crowds, but such attributes might not stay the same over
time. (Brensinger and Eyal, 2021).

According to Alterman (2003), a distinction can be made between biocentric data and indexical data.
The former is biometric data connected to the individual’s physical features whereas the latter has no
distinguishable relation to the individual, physiologically, psychologically, or otherwise. An example
of biocentric data could be a fingerprint or an iris scan and an example of indexical data could be a
randomly assigned number from which nothing can be deduced. 1

For several reasons, many identification numbers are not just random strings. The American
SSN originally contained information about the person’s birth year and where the number was first
registered (Brensinger and Eyal, 2021, 32) whereas Nordic countries’ NINs often contain (or used to
contain) information about the individual, usually birth date and sex (Watson, 2010; Salste, 2021). One
reason for this was to make the code easier to remember (Alastalo and Helén, 2022). Even when sex
and birth date are not biocentric data in the sense as Alterman (2003) defined it, including them takes
Nordic NINs further away from being pure indexical data, thus making them arguably more sensitive
to handle. Table 1 provides a summary of the introduction of NINs in the Nordic countries as well as
information which they contain.

Table 1: Nordic NINs: year introduced and embedded information.

country NIN name introduced characters (n) birth date sex birth place

Sweden personnummer 1947 11 yes yes yes
Iceland kennitala 1950 10 yes no no
Norway fødselsnummer 1964 11 yes yes no
Denmark CPR-nummer 1968 11 yes yes no
Finland henkilötunnus 1968 11 yes yes no

In the Nordic countries, comprehensive national identification number systems were developed
and implemented from the 1940s to the 1960s (Watson, 2010). In Sweden, the personal identity number
(PIN) was introduced in 1947 and it consisted of both date of birth and an additional three-digit birth
number. In 1967 a check digit was added finalizing the design of Swedish PIN (Åke Johansson, 2003;

1Brensinger and Eyal (2021) discuss the concept of dividuals, manufactured objects that represent the living
individual: address, fingerprints, name and so on. These dividuals need to go through the process of disembedding,
standardization and re-embedding to be useful. Disembedding means data gathering (e.g. taking a fingerprint
sample), standardization means making the disembedded transcription into a standardized digital sample that can
be easily compared with other similar samples and re-embedding means linking these standardized records back
to their actual flesh-and-blood counterparts. Without a way to re-embed a huge and well-standardized archive of
fingerprints back to the population, it is essentially useless. This is also a reason why biometric samples such as iris
scans or fingerprints can never replace primary keys in databases.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 6

Statistics Sweden, 2016). The Finnish personal identity code has its roots in specialized employment
pension number introduced in 1962, which was then gradually expanded to cover the whole population
in the form of social security number. In Finland personal identity code was introduced as specialized
employment pension number in 1962, which was gradually expanded to cover the whole population
in the form of social security number. The Finnish PIN was most likely inspired by early iteration of
the Swedish NIN (Alastalo and Helén, 2022). The design has proven to be resilient and with some
minor tweaks, it continues to be used, with the modern iteration being called a personal identity code 2

(Salste, 2021).

Like Finland, other Nordic countries took inspiration from Sweden as well (Krogness, 2011). Table
2 illustrates the structural similarity of NINs in different Nordic countries. Some national variation
does exist. In Norway and Denmark, individual numbers are used to denote the century in the
birth date in addition to differentiating individuals from one another (Furseth and Ljones, 2015; CPR-
kontoret, 2008). Since 2007 the Danish CPR numbers have dropped the check digit in favour of having
an extra individual number to expand the pool of available unique numbers from roughly 500 per day
to 4000-6000 per day (CPR-kontoret, 2008; Jerlach, 2009). All Nordic NIN designs prioritize a shorter
length of 10-11 characters and use a combination of 2-digit years and a century marker or certain
individual number ranges to denote the full year. For example, “52-” from the Finnish number and
“99551” from the Norwegian number translate to 1952 and 1899, respectively. The more unambiguous
Swedish 12-digit variant is used exclusively in automatic data processing systems (ADB, from Swedish
automatisk databehandling) and not in day-to-day interactions.

Table 2: Examples of national identification numbers and their composition in five Nordic countries.
DD: day, MM: month, YY: year, C: century marker, N: individual number / serial number, Q: check
digit or a control character.

country NIN name NIN example NIN structure

Sweden personnummer 610321-3499 YYMMDDCNNNQ
Iceland kennitala 121212-1239 DDMMYYNNQC
Norway fødselsnummer 01129955131 DDMMYYNNNQQ
Denmark CPR-nummer 300280-1178 DDMMYY-NNNN
Finland henkilötunnus 131052-308T DDMMYYCNNNQ

Sweden personnummer (ADB) 196103213499 YYYYMMDDNNNQ

In Finland, the expansion of sector-specific social security numbers and employment pension
numbers to universal NINs in 1969 has contributed to widespread secondary use of different data
sources 3 in public administration, education, and research and development. In Sweden, the NIN
is currently used extensively in all parts of society, not only for taxation. It is used in education, for
military service, in health care and by financial institutions and insurance companies. The role of the
Swedish NIN has also made it central to register-based research (Statistics Sweden, 2016). It could
be argued that the most important feature of NIN systems is the interoperability it enables between
different sectors of society (Alastalo and Helén, 2022).

3 Working with national identification numbers in R

The method of validating and extracting information from identification numbers is manually doable
and simple in principle but in practice becomes unfeasible with datasets larger than a few dozen
observations. The hetu and sweidnumbr packages provide easy-to-use tools for programmatic
handling of Finnish and Swedish personal identity codes and Business ID codes 4. As shown in Table
3, both packages share several core functions and function names.

Both packages utilize R’s efficient vectorized operations, generating and validating over 5 million
personal identity codes or Business Identity Codes in less than 10 minutes on a regular laptop 5.
This can meet the practical upper limit set by the current population of Finland (5.5 million people)
(Official Statistics of Finland (OSF), 2022) and Sweden (10.5 million people) (Statistiska centralbyrån,
2022), providing adequate headroom for the handling of relatively large registry datasets containing
information on people currently alive and deceased.

2In Finnish: henkilötunnus, or hetu for short, hence the name of the package
3Secondary data: Data that has not been collected primarily for a specific research question
4In Finnish: Yritys- ja Yhteisötunnus, or Y-tunnus for short, In Swedish: Organisationsnummer
5Tested on a 2015 Macbook Pro with Intel i5-5257U @ 2.70GHz

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=sweidnumbr


CONTRIBUTED RESEARCH ARTICLE 7

Table 3: Exported functions that are shared between both ‘sweidnumbr‘ and ‘hetu‘. Function alias in
parentheses.

sweidnumbr hetu Description

rpin rpin (rhetu) Generate a vector of random NINs
pin_age pin_age (hetu_age) Calculate age from NIN
luhn_algo hetu_control_char Calculate check digit / control character from NIN
pin_ctrl pin_ctrl (hetu_ctrl) Check NIN validity
pin_date (pin_to_date) pin_date (hetu_date) Extract Birth date from NIN

pin_sex pin_sex (hetu_sex) Extract Sex from NIN
oin_ctrl bid_ctrl Check OIN/BID validity
roin rbid Generate a vector of random OINs/BIDs

4 The hetu package

Printing a data frame containing extracted information in a structured form can be done as follows:

library(hetu)
x <- c("010101A0101", "111111-111C", "290201A010M")
hetu(x)

The hetu() function is the workhorse of the hetu package. Without additional parameters, it
prints out a data frame with all information that can be extracted from Finnish NINs as well as a single
column that indicates if the NIN is valid as a whole or if it has any problems that make it invalid. For
demonstration purposes the 3rd NIN listed below has an invalid date part; the 29th of February would
only be a valid date if the year was a leap year, which we know that 2001 is not. The NIN would be
correct if the year was changed from 2001 to 2000.

hetu sex p.num ctrl.char date day month year century
1 010101A0101 Female 010 1 2001-01-01 1 1 2001 A
2 111111-111C Male 111 C 1911-11-11 11 11 1911 -
3 290201A010M Female 010 M <NA> 29 2 2001 A
valid.pin

1 TRUE
2 TRUE
3 FALSE

The full birth year is constructed by reading the 2-digit year information and the century marker;
in the case of the first-row example, “01” and “A”. “A” means that the person is born in the 2000s,
“-” means the 1900s and “+” means the 1800s. A binary sex classification can be constructed simply
by calculating if the personal number (p.num column) is an odd or an even number: Even numbers
(for example “010”) denote a female and odd numbers (for example “111”) denote a male. The final
character of the NIN is the control character, which is determined by dividing the concatenated
integers (for example 290201010) by 31 and using the remainder as a key to retrieve a value from a list
that includes numbers between 0 and 9 and English alphabets (without letters that might be mixed
with numbers: I, G, O, Q and Z) (Digital and Population Data Services Agency, 2022a; Salste, 2021).

In 2023 there was a reform of the personal identity code seperators. In addition to letter A, letters
B, C, D, E and F also signify that the person was born in 2000s. For 1900s letters Y, X, W, V and U were
added. These new seperators were added to ensure that there are enough personal identity codes. The
change also made the seperator a distinguishing element of the NIN. (Digital and Population Data
Services Agency, 2022b)

The generic way of outputting information found on individual columns is to use the standard
hetu() function with extract-parameter.

hetu("010101A0101", extract = "sex")

[1] "Female"

hetu("010101A0101", extract = "date")

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=hetu


CONTRIBUTED RESEARCH ARTICLE 8

[1] "2001-01-01"

All column names printed out by the hetu() function are valid extract parameters. Most commonly
used columns have wrapper functions that are identical in output:

pin_sex("010101A0101")

[1] "Female"

pin_date("010101A0101")

[1] "2001-01-01"

With the help of imported functions from the lubridate package (Grolemund and Wickham, 2011),
we can calculate ages from NINs not only in years and days but also in months and weeks by using
the pin_age() function. By default, the age is calculated in years at the current date and time but this
end date can also be manually set by using the date parameter.

pin_age("010101A0101", date = "2004-02-01", timespan = "months")

[1] 37

All NINs passed through the hetu() function are checked with 10 different tests to determine
their validity. All tests need to be passed for a NIN to be valid. The results from different tests are
summarized in the valid.pin column of the hetu() function output data frame. The user can print
individual test results with the hetu_diagnostic() function for debugging purposes.

hetu_diagnostic("290201A010M")

hetu is.temp valid.p.num valid.ctrl.char correct.ctrl.char valid.date
1 290201A010M FALSE TRUE TRUE FALSE FALSE

valid.day valid.month valid.year valid.length valid.century
1 TRUE TRUE TRUE TRUE TRUE

When data is inputted manually without validity checks, input errors can creep in. The control
character in Finnish personal identity codes combined with validity checks in the hetu() function can
help to catch the most obvious errors. In the example above we can see that the date is incorrect, but
also the control character is incorrect 6. We can simply try three different dates to see if the input error
is in the day, month or year part, assuming that the personal number and control character parts were
inputted correctly. In this manufactured example the error was in the year part, resulting in the rare
leap day date being the correct one.

example_vector <- c("290201A010M", "280201A010M", "290301A010M", "290200A010M")
columns <- c("valid.p.num", "valid.ctrl.char", "correct.ctrl.char", "valid.date")
hetu_diagnostic(example_vector, extract = columns)

hetu valid.p.num valid.ctrl.char correct.ctrl.char valid.date
1 290201A010M TRUE TRUE FALSE FALSE
2 280201A010M TRUE TRUE FALSE TRUE
3 290301A010M TRUE TRUE FALSE TRUE
4 290200A010M TRUE TRUE TRUE TRUE

The hetu package can generate a large number of personal identity codes with the rpin() function.
The date range of the generated identity codes can be changed with parameters, but it has a hardcoded
lower limit at the year 1860 and an upper limit at the current date. It has been theorized that the
oldest individuals that received a personal identity code in the 1960s were born the in 1850s or 1860s.
Personal identity codes are never assigned beforehand and therefore it is impossible to have valid
personal identity codes that have a future date. (Salste, 2021)

The function can also be used to generate so-called temporary personal identity codes. Temporary
identity codes are never used as a persistent and unique identifier for a single individual but as a

6By validity we mean that the control character itself is an allowed character. By correctness, we mean that the
inputted control character matches the calculated control character

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=lubridate
https://CRAN.R-project.org/package=hetu


CONTRIBUTED RESEARCH ARTICLE 9

placeholder in institutions such as hospitals when a person does not have a Finnish NIN or the NIN is
not known. They can be identified by having a personal number (p.num column in hetu() function
output or NNN as in Table 2) in the range of 900-999.

Below is an example of generating 4 temporary Finnish NINs and checking their validity with the
pin_ctrl() function. Since all NINs are temporary, they do not pass the check validity checks meant
for normal pins if they are not explicitly allowed. A vector with no valid NINs returns a single NA.

set.seed(125)
x <- rpin(n = 4, p.male = 0.25, p.temp = 1.0)
x

[1] "201215-940S" "080854-929H" "241258-9669" "090405A980X"

pin_ctrl(x)

[1] NA

pin_ctrl(x, allow.temp = TRUE)

[1] TRUE TRUE TRUE TRUE

As mentioned earlier, our package also supports similarly generating and checking the validity
of Finnish organization identifiers, or Finnish Business ID (BID) numbers. Despite the name, BIDs
are used not only for companies and businesses but also for other types of organizations and other
juridical persons. Unlike personal identity codes, BIDs do not contain any information about the
company. BIDs consist of a random string of 7 numbers followed by a dash and 1 check digit, a
number between 0 and 9.

In addition, we have added support for the less known and less widely used numbering scheme
for natural persons, Finnish Unique Identification (FINUID) numbers.7 FINUID numbers consist of
8 random numbers and 1 control character that is calculated in the same way as in Finnish NINs.
FINUID numbers are similar to BID numbers in the sense that they do not contain any biocentric
data on the individual or the corporation 8, but unlike BID numbers that are ubiquitous in corporate
documents and public databases, FINUID numbers are mainly used by government authorities in
internal IT systems.

bid_ctrl(c("0000000-0", "0000001-9"))

[1] TRUE TRUE

satu_ctrl("10000001N")

[1] TRUE

The hetu package contains some functions that are not shared with the sweidnumbr package, the
most notable being the hetu() function. These functions are listed and described in Table 4.

Table 4: Functions that are unique to the ‘hetu‘ package and have no equivalent in the ‘sweidnumbr‘
package. Function alias in parentheses.

Function (alias) Description

hetu Finnish personal identification number extraction
pin_diagnostic (hetu_diagnostic) Diagnostics Tool for HETU
satu_control_char FINUID Number Control Character Calculator
satu_ctrl Check FINUID Number validity

Version 1.1.0 of the hetu has been released, which addresses feedback on the earlier version. This
new version implements summary and plot methods for the data frames produced by hetu_diagnostic().
Using the summary methods prints a neat diagnostic of the data frame.

7FINUID in Finnish: sähköinen asiointitunniste (SATU)
8Aside from sole trader/business name companies that are closely related to the individual entrepreneur, the

term “biocentric” is badly suited when talking about corporations and other juridical persons. However, it could
be argued that if the BID number contained information such as the company form, the place of registration or the
date of registration it could be seen as analogous to biocentric information contained in NINs.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=sweidnumbr
https://CRAN.R-project.org/package=hetu


CONTRIBUTED RESEARCH ARTICLE 10

diagnostics <- hetu_diagnostic(example_vector)
summary(diagnostics)

Diagnostics for 4 hetu objects:
Number of valid hetu objects: 1
Number of valid and non-temporary* hetu objects: 1
Number of invalid hetu objects: 3
Number of invalid and non-temporary* hetu objects: 3

* non-temporary: p.num in range [002-899]

4.1 The sweidnumbr package

The sweidnumbr R package has similar functionality as the hetu package, but for Swedish NINs and
with a slightly different syntax. At the time of writing, the package has been downloaded roughly
30 000 times from CRAN 9. The example NINs below are taken from the example published by the
Swedish Tax Authority (The Swedish Tax Agency, 2007).

library(sweidnumbr)
example_pin <- c("640823-3234", "6408233234", "19640823-3230")
example_pin <- as.pin(example_pin)
example_pin

[1] "196408233234" "196408233234" "196408233230"
Personal identity number(s)

Unlike the hetu package, the sweidnumbr takes advantage of a custom S3 class structure. There-
fore the first step is to convert strings with different Swedish NIN formats or numeric variables into
a pin vector using the as.pin() function. The as.pin() function formats all inputted numbers to a
so-called ADB-format 10 with 12 digits and no century marker, which results in less ambiguity and no
need to change the century marker from “-” to “+” when a person turns 100 years old. The pin vector
is an S3 object and can be checked by using the is.pin() function.

is.pin(example_pin)

[1] TRUE

This function only checks that the vector is a pin object, but not if the actual NINs are valid. To
check the Swedish NIN using the control numbers, or check digits, we simply use the pin_ctrl()
function.

pin_ctrl(example_pin)

[1] TRUE TRUE FALSE

Just as in the hetu package we can extract information from the Swedish NIN with specialized
functions. We can now use pin_birthplace(), pin_sex(), and pin_age() to extract information on
county of birth (for NINs assigned before 1990), sex, and age.

pin_sex(example_pin)

[1] Male Male Male
Levels: Male

pin_birthplace(example_pin)

[1] Gotlands län Gotlands län Gotlands län
28 Levels: Stockholm stad Stockholms län Uppsala län ... Born after 31 december 1989

9Source: CRANlogs API, data retrieved at 2022-03-22.
10ADB: Short from the Swedish term automatisk databehandling, meaning automatic data processing (ADP) in English

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=sweidnumbr
https://CRAN.R-project.org/package=sweidnumbr
https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=sweidnumbr
https://CRAN.R-project.org/package=hetu


CONTRIBUTED RESEARCH ARTICLE 11

pin_age(example_pin)

[1] 60 60 60

pin_age(example_pin, date = "2000-01-01")

[1] 35 35 35

As with the hetu R package, we can also generate, or simulate, NINs with the rpin() function.
Shared functions exist also for Swedish organization identifiers, or Swedish organizational numbers
(SON), in the form of as.oin(), is.oin(), and oin_ctrl() functions. Unlike the Finnish BID, the oin
number contains information on the type of organization of a given SON, which can be determined by
using the oin_group() function.

example_oin <- c("556000-4615", "232100-0156", "802002-4280")
oin_group(example_oin)

[1] Aktiebolag
[2] Stat, landsting, kommuner, församlingar
[3] Ideella föreningar och stiftelser
3 Levels: Aktiebolag ... Stat, landsting, kommuner, församlingar

Similar to the rbid() function from the hetu package, we can generate new SONs using the roin()
function from the sweidnumbr package.

set.seed(125)
roin(3)

[1] "776264-6144" "274657-0148" "827230-7631"
Organizational identity number(s)

Due to the national characteristics of Swedish numbering schemes for natural and juridical persons
some functions are unique to the sweidnumbr package. These functions are listed in Table 5.

Table 5: Functions that are unique to the ‘sweidnumbr‘ package and have no equivalent in the ‘hetu‘
package.

Function Description

as.oin Parse organizational identity numbers
as.pin Parse personal identity numbers to ADP format
format_pin Formatting pin
is.oin Test if a character vector contains correct ’oin’
is.pin Parse personal identity numbers to ADP format

oin_group Calculate organization group from ’oin’
pin_birthplace Calculate the birthplace of ’pin’
pin_coordn Check if ’pin’ is a coordination number

5 Discussion

The hetu and sweidnumbr R packages provide free and open-source methods for validating and
extracting data from a large number of Finnish and Swedish national identity numbers (NIN). While
the packages’ target audience most likely mainly consists of Finnish and Swedish users and people
with a particular interest in NIN systems around the world, the packages make a generic contribution
to developing methodologies related to NIN handling in R, and more generally for structured data
in the field of computational humanities (see Mäkelä et al., 2020), epidemiology and demographic
studies (see Gissler and Haukka, 2004). A possible direction for future developments could be to create
more generic class structures or even a completely new R package that could recognize and handle
NIN systems from several different countries around the world.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=sweidnumbr
https://CRAN.R-project.org/package=sweidnumbr
https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=sweidnumbr


CONTRIBUTED RESEARCH ARTICLE 12

The origins of the hetu package can be traced to the early 2010s when one curious individual
wanted to analyze a large number of Finnish NINs that were leaked to the internet by an anonymous
hacker, to identify the source of the leak. The legality and morality of handling such datasets containing
personal information was and is in a grey area at best. As developers of these packages, we cannot
condone such activities, even if they are conducted out of curiosity and not of ill intentions, but we
acknowledge that we cannot prevent our users from doing that either. Both hetu and sweidnumbr
packages are free software with permissive licenses and pre-emptively limiting their use to only “good,
not evil” causes would be problematic as well. 11

We have acknowledged beforehand that random NINs generated with the hetu and sweidnumbr
packages could, theoretically, be used for purposes such as synthetic identity fraud. ˆ[see (Brensinger
and Eyal, 2021, 32 for a short description of synthetic fraud related to American SSNs) On the other
hand it is important to note that such NINs could also be created by hand as information on valid
NINs is readily available e.g. on the Finnish Digital and Population Data Services Agency and Swedish
Tax Authority websites (Digital and Population Data Services Agency, 2022a; The Swedish Tax Agency,
2007). Our package can be useful for many, and it does not make fraudulent activities significantly
easier for malevolent individuals, which is essential in judging the pros and cons of releasing this
software to the public.

Similar data breaches have made people warier about digital services. Privacy concerns can
push Finland, Sweden and other Nordic countries towards redesigning their national identification
numbers to omit some or all of the embedded personal information sometime in the future. For
example, in Finland there has been a project run by the Finnish Ministry of Finance to redesign the
Finnish NIN structure (Valtiovarainministeriö, 2022). However the project was pushed back in 2023
due to parliamentary term coming to end (Valtiovarainministeriö, 2023). At the moment there is no
new information on the state of the project. We will continue to monitor for such policy changes and
make changes to the packages if necessary.

As mentioned earlier, both packages are published under a permissive BSD 2-clause license.
We encourage our users to give feedback on the packages and their materials, report bugs or any
legislative or policy changes related to NIN system implementations, study the source code and
submit improvements to our public code repositories 12 or fork the code to better suit their needs.

6 Acknowledgements

We are grateful to all contributors, in particular Juuso Parkkinen and Joona Lehtomäki for their
support in the initial package development. This work is part of rOpenGov 13 and contributes to the
FIN-CLARIAH research infrastructure for computational humanities. LL, PK and AL were supported
by the Research Council of Finland: decision 358720 (FIN-CLARIAH research infrastructure) and
decision 352604 (Strategic Research Council, YOUNG Despair Research Consortium).

References

M. Alastalo and I. Helén. A code for care and control: The pin as an operator of interoperability in the
nordic welfare state. History of the Human Sciences, 35(1):242–265, 2022. URL https://doi.org/10.
1177/09526951211017731. [p4, 5, 6]

A. Alterman. ”A piece of yourself”: Ethical issues in biometric identification. Ethics and information
technology, 5(3):139–150, 2003. ISSN 1388-1957. [p5]

J. Anhøj. cprr: Functions for Working with Danish CPR Numbers, 2019. URL https://CRAN.R-
project.org/package=cprr. R package version 0.2.0. [p4]

J. Brensinger and G. Eyal. The Sociology of Personal Identification. Sociological Theory, 2021. URL
https://doi.org/10.1177/07352751211055771. OnlineFirst. [p5, 12]

CPR-kontoret. Personnummeret i CPR-systemet, 2008. URL https://cpr.dk/media/12066/
personnummeret-i-cpr.pdf. Accessed: 22.4.2022. [p6]

Digital and Population Data Services Agency. The personal identity code, 2022a. URL https:
//dvv.fi/en/personal-identity-code. Accessed: 2022-01-17. [p5, 7, 12]

11For example, JSON has a license that states that “The Software shall be used for Good, not Evil”. Defining
what is good and evil is at least in part up to everyone’s personal judgment, making the license clause ambiguous.

12https://github.com/rOpenGov/hetu, https://github.com/rOpenGov/sweidnumbr
13https://ropengov.org

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=sweidnumbr
https://CRAN.R-project.org/package=hetu
https://CRAN.R-project.org/package=sweidnumbr
https://doi.org/10.1177/09526951211017731
https://doi.org/10.1177/09526951211017731
https://CRAN.R-project.org/package=cprr
https://CRAN.R-project.org/package=cprr
https://doi.org/10.1177/07352751211055771
https://cpr.dk/media/12066/personnummeret-i-cpr.pdf
https://cpr.dk/media/12066/personnummeret-i-cpr.pdf
https://dvv.fi/en/personal-identity-code
https://dvv.fi/en/personal-identity-code
https://github.com/rOpenGov/hetu
https://github.com/rOpenGov/sweidnumbr
https://ropengov.org


CONTRIBUTED RESEARCH ARTICLE 13

Digital and Population Data Services Agency. Reform of the separators in the personal identity code,
2022b. URL https://dvv.fi/en/reform-of-personal-identity-code. Accessed: 2025-01-08. [p7]

M. Dodge and R. Kitchin. Codes of life: identification codes and the machine-readable world.
Environment and Planning D: Society and Space, 23:851–881, 2005. [p4, 5]

M. Foucault. Security, territory, population: lectures at the Collège de France, 1977-1978. Palgrave
Macmillan, New York, 2009. Editors: Michel Senellart, François Ewald, Alessandro Fontana, Arnold
I. Davidson. [p4]

W. Freitas. numbersBR: Validate, Compare and Format Identification Numbers from Brazil, 2018. URL
https://CRAN.R-project.org/package=numbersBR. R package version 0.0.2. [p4]

J. Furseth and O. Ljones. 50-årsjubilant med behov for oppgradering. Samfunnsspeilet, 2015(1),
2015. URL https://www.ssb.no/befolkning/artikler-og-publikasjoner/50-arsjubilant-med-
behov-for-oppgradering. [p6]

M. Gissler and J. Haukka. Finnish health and social welfare registers in epidemiological research.
Norsk Epidemiologi, 14(1):113–120, 2004. [p4, 11]

G. Grolemund and H. Wickham. Dates and times made easy with lubridate. Journal of Statistical
Software, 40(3):1–25, 2011. URL https://www.jstatsoft.org/v40/i03/. [p8]

P. Hendricks. generator: Generate data containing fake personally identifiable information, 2015. URL
https://CRAN.R-project.org/package=generator. R package version 0.1.0. [p4]

T. Jerlach. Udviklingen på CPR-området i de seneste 20-25 år frem til 2009, April 2009. URL https:
//cpr.dk/media/12060/udviklingen-paa-cpr-omraadet-frem-til-2009.pdf. [p6]

K. J. Krogness. Numbered individuals, digital traditions, and individual rights: civil status registration
in Denmark 1645 to 2010. Ritsumeikan Law Review, 28:87–126, 2011. [p6]

E. Mäkelä, K. Lagus, L. Lahti, T. Säily, M. Tolonen, M. Hämäläinen, S. Kaislaniemi, and T. Nevalainen.
Wrangling with non-standard data, 2020. [p11]

Official Statistics of Finland (OSF). Preliminary population statistics [online publication], March 2022.
URL https://www.stat.fi/en/publication/cktih2lwgb3db0b531gwi04h8. Accessed: 22.4.2022.
[p6]

B. Otjacques, P. Hitzelberger, and F. Feltz. Interoperability of E-Government Information Systems:
Issues of Identification and Data Sharing. Journal of Management Information Systems, 23(4):29–51,
2007. URL https://doi.org/10.2753/MIS0742-1222230403. [p4, 5]

T. Salste. Henkilötunnus – ihmisten koodaaja, 2021. URL https://www.tuomas.salste.net/doc/
tunnus/henkilotunnus.html. Accessed: 2021-12-13. [p5, 6, 7, 8]

Statistics Sweden. Personal identity number, 2016. [p5, 6]

Statistiska centralbyrån. SCB statistikdatabasen. [Elektronisk resurs] : Statistical database, 2022. URL
https://www.scb.se/hitta-statistik/statistik-efter-amne/befolkning/befolkningens-
sammansattning/befolkningsstatistik/pong/tabell-och-diagram/manadsstatistik--
riket/befolkningsstatistik-2022/. Accessed: 22.4.2022. [p6]

R. Sund. Quality of the Finnish Hospital Discharge Register: A systematic review. Scandinavian journal
of Public Health, 40:505–15, 8 2012. doi: 10.1177/1403494812456637. [p5]

The Swedish Tax Agency. Personnummer: Skv 704 ed. 8, 2007. [p10, 12]

Valtiovarainministeriö. Redesign of the personal identity code system lays the foundation for develop-
ment of digital services, 2022. URL https://vm.fi/en/-/redesign-of-the-personal-identity-
code-system-lays-the-foundation-for-development-of-digital-services. Accessed: 2025-01-
08. [p12]

Valtiovarainministeriö. Legislative proposals on digital identity and redesigning the sys-
tem of personal identity codes will not be considered during this parliamentary ses-
sion, 2023. URL https://valtioneuvosto.fi/-/10623/lakiesityksia-digitaalisesta-
henkilollisyydesta-ja-henkilotunnuksen-uudistamisesta-ei-ehdita-kasitella-talla-
istuntokaudella?languageId=en_US. Acessed: 2025-01-08. [p12]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://dvv.fi/en/reform-of-personal-identity-code
https://CRAN.R-project.org/package=numbersBR
https://www.ssb.no/befolkning/artikler-og-publikasjoner/50-arsjubilant-med-behov-for-oppgradering
https://www.ssb.no/befolkning/artikler-og-publikasjoner/50-arsjubilant-med-behov-for-oppgradering
https://www.jstatsoft.org/v40/i03/
https://CRAN.R-project.org/package=generator
https://cpr.dk/media/12060/udviklingen-paa-cpr-omraadet-frem-til-2009.pdf
https://cpr.dk/media/12060/udviklingen-paa-cpr-omraadet-frem-til-2009.pdf
https://www.stat.fi/en/publication/cktih2lwgb3db0b531gwi04h8
https://doi.org/10.2753/MIS0742-1222230403
https://www.tuomas.salste.net/doc/tunnus/henkilotunnus.html
https://www.tuomas.salste.net/doc/tunnus/henkilotunnus.html
https://www.scb.se/hitta-statistik/statistik-efter-amne/befolkning/befolkningens-sammansattning/befolkningsstatistik/pong/tabell-och-diagram/manadsstatistik--riket/befolkningsstatistik-2022/
https://www.scb.se/hitta-statistik/statistik-efter-amne/befolkning/befolkningens-sammansattning/befolkningsstatistik/pong/tabell-och-diagram/manadsstatistik--riket/befolkningsstatistik-2022/
https://www.scb.se/hitta-statistik/statistik-efter-amne/befolkning/befolkningens-sammansattning/befolkningsstatistik/pong/tabell-och-diagram/manadsstatistik--riket/befolkningsstatistik-2022/
https://vm.fi/en/-/redesign-of-the-personal-identity-code-system-lays-the-foundation-for-development-of-digital-services
https://vm.fi/en/-/redesign-of-the-personal-identity-code-system-lays-the-foundation-for-development-of-digital-services
https://valtioneuvosto.fi/-/10623/lakiesityksia-digitaalisesta-henkilollisyydesta-ja-henkilotunnuksen-uudistamisesta-ei-ehdita-kasitella-talla-istuntokaudella?languageId=en_US
https://valtioneuvosto.fi/-/10623/lakiesityksia-digitaalisesta-henkilollisyydesta-ja-henkilotunnuksen-uudistamisesta-ei-ehdita-kasitella-talla-istuntokaudella?languageId=en_US
https://valtioneuvosto.fi/-/10623/lakiesityksia-digitaalisesta-henkilollisyydesta-ja-henkilotunnuksen-uudistamisesta-ei-ehdita-kasitella-talla-istuntokaudella?languageId=en_US


CONTRIBUTED RESEARCH ARTICLE 14

I. Watson. A short history of national identification numbering in Iceland. Bifröst Journal of Social
Science / Tímarit um félagsvísindi, 1:51–89, 2010. ISSN 1670-7796. [p5]

H. Wickham and J. Bryan. R packages (2e), 2024. URL https://r-pkgs.org/introduction.html.
Accessed: 202X-DD-MM. [p4]

Åke Johansson. Från bläckpenna till datorhjärna. Deklarationen 100 år och andra tillbakablickar, 2003.
[p5]

Pyry Kantanen
Department of Computing, University of Turku
Department of Computing, PO Box 20014 University of Turku, Finland
ORCiD: 0000-0003-2853-2765
pyry.kantanen@utu.fi

Erik Bülow
Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg
Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg,
Sweden
ORCiD: 0000-0002-9973-456X
erik.bulow@gu.se

Aleksi Lahtinen
Department of Computing, University of Turku
Department of Computing, PO Box 20014 University of Turku, Finland
ORCiD: 0009-0009-9640-5187
aleksi.l.lahtinen@utu.fi

Måns Magnusson
Department of Statistics Uppsala University Sweden
Department of Statistics Uppsala University
ORCiD: 0000-0002-0296-2719
mans.magnusson@statistik.uu.se

Jussi Paananen
Institute of Biomedicine University of Eastern Finland
Institute of Biomedicine University of Eastern Finland, Finland
ORCiD: 0000-0001-5100-4907
jussi.paananen@uef.fi

Leo Lahti
Department of Computing, University of Turku
Department of Computing, PO Box 20014 University of Turku, Finland
ORCiD: 0000-0001-5537-637X
leo.lahti@utu.fi

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://r-pkgs.org/introduction.html
https://orcid.org/0000-0003-2853-2765
mailto:pyry.kantanen@utu.fi
https://orcid.org/0000-0002-9973-456X
mailto:erik.bulow@gu.se
https://orcid.org/0009-0009-9640-5187
mailto:aleksi.l.lahtinen@utu.fi
https://orcid.org/0000-0002-0296-2719
mailto:mans.magnusson@statistik.uu.se
https://orcid.org/0000-0001-5100-4907
mailto:jussi.paananen@uef.fi
https://orcid.org/0000-0001-5537-637X
mailto:leo.lahti@utu.fi


CONTRIBUTED RESEARCH ARTICLE 15

GeoAdjust: Adjusting for Positional
Uncertainty in Geostatistial Analysis of
DHS Data
by Umut Altay, John Paige, Andrea Riebler, and Geir-Arne Fuglstad

Abstract The R-package GeoAdjust adjusts for positional uncertainty in GPS coordinates and performs
fast empirical Bayesian geostatistical inference for household survey data from the Demographic and
Health Surveys (DHS) Program. DHS household survey data is important for tracking demographic
and health indicators, but is published with intentional positional error to preserve the privacy of the
household respondents. Such jittering has recently been shown to deteriorate geostatistical inference
and prediction, and GeoAdjust is the first software package that corrects for jittering in geostatistical
models containing both spatial random effects and raster- and distance-based covariates. The package
provides inference for model parameters and predictions at unobserved locations, and supports
Gaussian, binomial and Poisson likelihoods with identity link, logit link, and log link functions,
respectively. GeoAdjust provides functions that make model and prior specification intuitive and
flexible for the user, as well as routines for plotting and output analysis.

1 Introduction

The Demographic and Health Surveys (DHS) Program1 implements household surveys to collect
and disseminate nationally representative data about health, population, HIV and nutrition in low-
and middle-income countries. The DHS Program started in 1984, and has been implemented in
overlapping 5-year phases. So far more than 400 surveys have been conducted in over 90 countries.
Standard DHS surveys usually include between 5 000 and 30 000 households. GPS coordinates of
household centres are provided to allow for spatial analyses of the collected demographic and health
data, but the DHS has added intentional positional errors into the published GPS coordinates to
protect the privacy of the survey respondents (Burgert et al., 2013).

The random displacement procedure, or jittering scheme, is publicly known (Burgert et al., 2013),
but traditional geostatistical analyses assume that the locations are known exactly and ignore the
jittering. However, we have recently demonstrated that ignoring the positional error in DHS data may
lead to attenuated estimates of the covariate effect sizes and reduced predictive performance (Altay
et al., 2022b).

While common practice is to ignore jittering, some approaches have been proposed to account
for it. With respect to the error induced in spatial covariates, Warren et al. (2016) proposed regression
calibration for distance-based covariates, and Perez-Heydrich et al. (2013, 2016) proposed using a 5
km moving window (or buffer zone) for raster-based covariates. However, these approaches do not
address the attenuation arising in the covariate effect sizes when replacing the true covariate with a
proxy. With respect to the error induced in the spatial effect, Fanshawe and Diggle (2011) proposed a
Bayesian approach in the limited setting of no covariates and Gaussian observation model. Wilson
and Wakefield (2021) proposed a more complex approach using INLA-within-MCMC (Rue et al., 2009;
Gómez-Rubio and Rue, 2018), which could handle the error induced in both the spatial random effect
and in spatial covariates, but computation time is too extensive for routine use of the approach. None
of the mentioned papers provide an R package for easy application of the methods.

The datasets from DHS are semi-public and one must apply for access. A step-by-step explanation
of the application procedure can be found at https://dhsprogram.com/data/new-user-registration.
cfm. The application requires a brief project description explaining why the data set is needed and
how it will be used. Permission is typically granted within a few days.

With the R package GeoAdjust, we address the need for fast, flexible and user-friendly software
to estimate geostatistical models for DHS data subject to positional uncertainty. GeoAdjust corrects
for the positional uncertainty by adjusting for jittering both in the spatial random effect and the spatial
covariates, and achieves fast inference by combining the computational efficiency of the stochastic
partial differential equations (SPDE) approach (Lindgren et al., 2011) with the autodifferentiation
features of Template Model Builder (TMB) (Kristensen et al., 2016). We use the R-package fmesher
(Lindgren, 2023) for computing the mesh and discretization matrices for the SPDE approach, and the
R-package TMB for easy use of the TMB methodology. GeoAdjust is available on CRAN (R Core
Team, 2022) and can be installed with the command install.packages("GeoAdjust"). While there are

1https://dhsprogram.com

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://dhsprogram.com/data/new-user-registration.cfm
https://dhsprogram.com/data/new-user-registration.cfm
https://CRAN.R-project.org/package=GeoAdjust
https://CRAN.R-project.org/package=GeoAdjust
https://CRAN.R-project.org/package=fmesher
https://CRAN.R-project.org/package=TMB
https://CRAN.R-project.org/package=GeoAdjust
https://dhsprogram.com


CONTRIBUTED RESEARCH ARTICLE 16

other R packages such as SUMMER (Li et al., 2020, 2022) that can perform spatial or spatio-temporal
areal analysis of DHS data, none can account for jittering in geostatistical analysis.

2 Geostatistical inference under jittering

We describe a country of interest as a spatial domain D ⊂ R2, and we assume that C small groups of
households, called clusters, are observed within the country. For clusters c = 1, . . . , C, we denote the
true location by s∗c ∈ D, and we denote the observed (jittered) location, provided by DHS surveys, by
sc ∈ D. Additionally, each cluster has a known classification as urban (U) or rural (R). The urban/rural
designation, Urb[c] ∈ {U, R}, is important since DHS surveys use different jittering mechanisms in
urban and rural clusters. Urban clusters are jittered up to 2 km, and rural clusters are jittered up to
5 km with probability 0.99 and jittered up to 10 km with probability 0.01 (Burgert et al., 2013). The
angle and jittering distance are sampled from uniform distributions, but the boundaries of either the
first or the second administrative level are respected. We denote these known jittering distributions by
πUrb[c](sc|s∗c ), c = 1, . . . , C.

An observation yc is made at each cluster c, and the responses y1, . . . , yC and the observed locations
s1, . . . , sC are modelled jointly as

yc | µc, φ ∼ π(yc | µc, φ), sc|s∗c ∼ πUrb[c](sc|s∗c ), c = 1, . . . , C, (1)

where π(yc | µc, φ) denotes the likelihood of yc given the mean µc and the vector of likelihood param-
eters φ. The intuition is that the observed response yc and the observed location sc are independent
random variables, which differ from the mean µc and the true location s∗c , respectively. The mean is
linked to a linear predictor ηc through a link function g as

g(µc) = ηc.

The package implements the identity link in the case of a Gaussian likelihood, the log-link for Poisson
likelihood, and the logit-link for the binomial likelihood.

We model latent spatial variation in a traditional way as

η(s∗) = x(s∗)Tβ + u(s∗), s∗ ∈ D,

where x(·) is a vector of p spatial covariates, β is a vector of p coefficients, and u(·) is a Matérn
Gaussian random field (GRF). The GRF u(·) is controlled by the three parameters: smoothness ν,
which is fixed to 1, spatial range ρS, and marginal variance σ2

S . The key difference from a standard
geostatistical model is that the mean

µc = g−1(ηc) = g−1(η(s∗c ))

depends on the unknown true location s∗c . This means that we do not know from which pixel to extract
covariates and we do not know at which location to evaluate the GRF.

We choose a uniform prior s∗c ∼ U (D) for the true cluster location, implying that all s∗c compatible
with sc are equally likely a priori, c = 1, . . . , C. In the case of Nigeria, which is the country used
as an example in later sections, compatible refers to all potential true cluster locations lying in the
same second administrative area (admin2) as the observed location and within the maximum jittering
distance. More complicated priors that take population density or urban/rural status into account
are possible, but such rasters would have to be estimated and could be biased and uncertain. Further,
β ∼ Np(0, VIp), where V is a fixed variance, and ρS and σ2

S are assigned penalized complexity (PC)
priors with P(ρS > ρ0) = 0.50 and P(σS > 1) = 0.05 (Fuglstad et al., 2019). We recommend choosing
the median range ρ0 as 10% of the diameter ofD to be able to capture the spatial variability at moderate
distances.

For inference, GeoAdjust treats the unknown true locations as nuisance parameters and integrates
them out,

π(yc, sc|η(·)) =
∫
D

π(yc, sc|η(·), s∗c )π(s∗c ) ds∗c

=
∫
D

π(yc|η(s∗c ))πUrb[c](sc|s∗c )π(s∗c ) ds∗c . (2)

This means that the likelihood of yc is considered to be a mixture distribution over all true locations
s∗c compatible with the observed location sc, where the weighting is informed by the prior and the
known jittering mechanism. In the implementation, the integral is computed numerically using a
integration scheme constructed with rings of integration points centered around the DHS provided

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SUMMER
https://CRAN.R-project.org/package=GeoAdjust


CONTRIBUTED RESEARCH ARTICLE 17

cluster location sc. Hence, Equation (2) is approximated by a finite mixture over potential true
locations. Computational efficiency is achieved by combining the SPDE approach (Lindgren et al.,
2011) to describe u(·) and TMB which allows for fast and flexible autodifferentiation. For details on
the the integration scheme and the inference scheme, we refer to Altay et al. (2022a,b).

3 Package structure and functionality

GeoAdjust handles the technical steps of the method described in the previous section in order to
make the adjustment for jittering widely accessible. Figure 1 illustrates the structure of GeoAdjust,
and how various data inputs are processed through the package workflow. The main functionality
of the package is described below, and is broken down into the three main steps of the workflow
illustrated in Figure 1: input preparation, estimation, and prediction.

3.1 Step 1: Input preparation

Before estimation and prediction, GeoAdjust requires a set of triangular basis functions forming a
‘mesh’ that is necessary for the SPDE approach, and also a separate data structure containing relevant
information about the input datasets and the jittering. GeoAdjust facilitates the preparation of these
inputs via the functions meshCountry and prepareInput. In GeoAdjust, the GRF u(·) is approximated
using the so-called SPDE approach. This requires the construction of a constrained refined Delaunay
triangulation (CRDT), a mesh over the country of interest. The approximated spatial field can then be
projected from the mesh nodes to the cluster centers via projector matrices (Lindgren et al., 2011). The
function meshCountry creates a triangular mesh based on the national borders. It has five arguments:
max.edge is a vector of two values, where its first and second elements represent the largest allowed
triangle edge lengths for the inner and outer mesh, respectively, and offset stands for the extension
distance outside the country borders. A negative value is interpreted as a relative extension, e.g.,−0.08
means an extension of 8%. The argument admin0 is an sf (simple features) object of class MULTIPOLYGON
containing the geometry of the national borders of the country, cutoff is the minimum allowed
distance of the vertices to each other (Lindgren, 2023), and target_crs describes the coordinate
reference system (CRS) that the function operates within. The CRS string is set by the user based on
where on earth the user wishes to do their modeling, since different projections are intended for use in
different parts of the world. See Step 1 in the Nigeria example for a demonstration.

The integration in Equation (2) is performed numerically. To calculate the integrals, we need a set
of integration points around the associated jittered survey cluster centers. GeoAdjust specifies the
cluster center itself as the first integration point and builds either 5 or 10 rings around it, depending
on whether it is located in an urban or a rural stratum, respectively. Each ring contains a set of 15
angularly equidistant ‘primary’ integration points as illustrated in the left panel of Figure 2. The
first 5 rings are called the "inner rings". An additional 5 rings are constructed for the rural cluster
centers, and are called the "outer rings". The primary integration points are assigned equal weight
a priori within any single ring, where the weight for a given ring is determined by the jittering
distribution. Weights of individual points are adjusted, however, for relevant subnational boundaries.
If an observed cluster location is closer to the nearest relevant subnational border than the maximum
jittering distance, a set of secondary integration points are constructed, each with an associated primary
integration point, and the weight of each primary integration point is distributed among the associated
secondary integration points. Zero weight is assigned to any secondary integration points that are
across the border, and weights are then reaggregated to the primary integration points to create the
final integration weights of the primary integration points. Figure 2 shows an example set of primary
and secondary integration points and the corresponding integration weights for a single cluster from
the Kenya 2014 DHS household survey. The supplementary materials of (Altay et al., 2022a) provides
a detailed mathematical explanation of the procedure.

The function prepareInput creates the set of integration points and weights with respect to the
urban/rural strata, and constructs the urban and rural design matrices by extracting the covariate
values at each integration point. Internally, prepareInput function conducts various distance based
calculations and comparisons, all measured in kilometers. Therefore, the measurement unit of the
target_crs must also be in kilometers. The output of prepareInput is a list containing the strata-wise
design matrices and response vectors, together with the sparse matrix components of the SPDE model,
and strata-wise projector matrices. The argument likelihood can be 0 (Gaussian), 1 (Binomial), and 2
(Poisson). For the Gaussian and Poisson likelihoods, the argument response contains a list containing
a vector ys containing observed values, and, for the Binomial likelihood, the argument response
contains a list with a vector ns with the number of trials and a vector ys with the number of successes.
See Step 1 in the Nigeria example for a demonstration.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GeoAdjust
https://CRAN.R-project.org/package=GeoAdjust
https://CRAN.R-project.org/package=GeoAdjust
https://CRAN.R-project.org/package=GeoAdjust
https://CRAN.R-project.org/package=GeoAdjust
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=GeoAdjust


CONTRIBUTED RESEARCH ARTICLE 18

Figure 1: A visual representation of GeoAdjust workflow.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GeoAdjust


CONTRIBUTED RESEARCH ARTICLE 19

Figure 2: Illustration of primary (left) and secondary (right) integration weights for one cluster from
Kenya 2014 DHS household survey.

3.2 Step 2: Estimation

The list returned by the prepareInput function described in the previous section contains elements that
will be processed by TMB in estimateModel. The estimateModel function is a wrapper function built
around C++ code implementing our model in TMB, allowing the user to estimate model parameters
and to use TMB’s autodifferentiation features without needing to know or program in C++. The main
argument of estimateModel is a list called data, referring to the input list that has been created by
prepareInput function. The function also allows different prior choices for the model components,
via its argument called priors.

The priors argument allows the user to specify the parameters of the Gaussian prior for covariate
effect sizes, and of the penalized complexity (PC) priors for the spatial range. These values can be
passed into the function as a list of two elements, namely, beta and range. The element beta needs
to be a vector of length two. The first and the second elements of the vector beta are the mean and
the standard deviation of the Gaussian priors that are assigned for the intercept and the covariate
effect sizes. The element range refers to the a priori median range. Further, the PC priors for marginal
variance and measurement variance are passed as Uspatial, alphaSpatial, UNugget, and alphaNug.
USpatial is the upper alphaSpatial percentile of the marginal standard deviation, and UNugget and
alphaNug are the hyperparameters for the PC-prior on the nugget variance. The hyperparameters
UNugget and alphaNug pass into the function as 1 and 0.05, by default, but they are only used in the
calculations when the likelihood is Gaussian. See Step 2 in the Nigeria example for a demonstration.

Parameter estimation and model fitting via estimateModel integrates out the unknown true
coordinates by computing the contribution of each integration point to the joint negative log-likelihood.
Internally, once the TMB function MakeADFun constructs the core model object (Kristensen, 2022),
estimateModel inputs the objective function and its gradient into the optimization routine, optim.
Afterwards, estimateModel extracts the estimated model parameters from the optimized core model
object, and draws n.sims posterior samples. This includes samples of the intercept, each covariate
effect, and the spatial random effect coefficients for each mesh node as well. The samples for the
intercept and the covariate effect sizes are then used for constructing the 95% credible interval lengths
as the measure of uncertainty corresponding to the estimated parameters.

The function estimateModel returns a list of four elements. The list contains a data frame of the
estimated model parameters, together with the optimized core model object, a matrix containing the
n.sims posterior samples, and information about the type of the likelihood. The core model object
and the posterior draws can then be passed to the function predRes to generate predictions at a set of
prediction locations. The object returned by estimateModel can be printed in a tidy way using print.
See Step 2 in the Nigeria example for a demonstration.

3.3 Step 3: Prediction

Once the model parameters are estimated, the model can be used for predicting the model outcomes
at a new set of locations. The function gridCountry in GeoAdjust helps with the construction of a set
of prediction points. The function creates a SpatRaster of the desired resolution within the bounding
box of the national level shape file, extracts the coordinates of the cell centers and returns them as an
sf class POINT object together with the raster, as the elements of a list.

The gridCountry function has three arguments. The first argument, admin0, should be set to an
sf object of class MULTIPOLYGON containing the national borders. The second argument, res, indicates

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GeoAdjust


CONTRIBUTED RESEARCH ARTICLE 20

the desired resolution of the grid in kilometers, and the last argument is target_crs. Internally,
gridCountry first creates a SpatRaster within the bounding box of the admin0 MULTIPOLYGON, with the
chosen resolution. Afterwards, it extracts the coordinates of the cell centroids and converts them into
an sf class POINT object. The function returns the sf POINT object and the SpatRaster within a list. See
Step 3 in the Nigeria example for a demonstration.

The sf POINT object goes into the function predRes as the prediction locations. Obtaining predic-
tions at a new set of locations with the function predRes requires the optimized core model object,
drawn samples of the parameters and the random effect coefficients, triangular mesh, a list of covariate
rasters, coordinates of the prediction locations and an argument called flag to be passed as inputs.
The argument flag is used for passing the likelihood type into the function. The integers 0, 1 and
2 indicate the Gaussian, binomial and Poisson likelihoods, respectively, and the function deploys
the corresponding link function as outlined before. The package allows the use of any number of
covariates, as long as they are SpatRaster objects. The covariates are passed into the function within a
single list. The function will extract the values from each one of them at the prediction locations and
form a design matrix. The coordinates of the prediction locations has to be an sf POINT object.

Internally, predRes combines the sampled covariate effect sizes and the random effect coefficients
with the design matrix and forms one model per sample, n.sims models in total. Each model predicts
outcomes across the set of prediction locations. Finally, the function calculates the mean, median,
standard deviation, and the upper and lower bounds of 95% credible intervals of predictions for each
prediction point. These results are returned in a matrix with a number of rows equal to the number of
prediction points, and 5 columns. See the Step 3 in the Nigeria example for a demonstration.

The prediction raster will be used by the function plotPred, which internally utilizes geom_raster
from ggplot2, to plot the predictions and the corresponding uncertainty across the country, as demon-
strated in Step 3 of the Nigeria example.

4 Example: Spatial analysis of completion of secondary education in
Nigeria

4.1 Problem description

This example considers spatial analysis of the completion of secondary education among women aged
20–49 years. As demonstrated in Altay et al. (2022b), this is a case where not accounting for jittering
would substantially change the results. The data source is the 2018 DHS survey in Nigeria (NDHS2018)
(National Population Commission - NPC and ICF, 2019), where there are C = 1380 clusters with valid
GPS coordinates inside Nigeria. In these clusters, 15 490 out of 33 193 women aged 20–49 completed
secondary education. We demonstrate how to conduct the geostatistical analysis using GeoAdjust.

We assume a binomial likelihood for the model described in the method section, and assume

yc|rc, nc ∼ Binomial(nc, rc), sc|s∗c ∼ πUrb[c](sc|s∗c ),

rc = r(s∗c ) = logit−1(η(s∗c )),
(3)

where yc is the number of women who completed secondary education, nc is the number of women
interviewed, and rc denotes the risk in cluster c, for c = 1, . . . , C. The spatially varying risk r(·) =
logit−1(η(·)) is modelled through the linear predictor

η(s∗) = β0 + x(s∗)β1 + u(s∗), s∗ ∈ D,

where β0 is the intercept, x(·) is the spatially varying population density, β1 is the coefficient of
population density, and u(·) is the Matérn GRF with known smoothness ν = 1, and unknown range
ρS and marginal variance σ2

S .

There are 774 admin2 areas, which are called local government areas, and, in Nigeria, DHS’s
jittering mechanism does not move the GPS coordinates of a cluster outside its original admin2 area.
The goal of the spatial analysis is to produce estimates of model parameters, and to map spatial
variation in completion of secondary association with associated uncertainties.

4.2 Step 0: Data preprocessing

The population density raster file (‘Nga_ppp_v2c_2015.tif’) can be downloaded from WorldPop (World
Pop, 2022). Further, we need a description of the national (admin0) borders, and the admin2 borders.
Shape files of the administrative levels for different countries can be obtained The Database of Global

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GeoAdjust


CONTRIBUTED RESEARCH ARTICLE 21

600

900

1200

1500

1800

−3800 −3400 −3000 −2600
Easting (km)

N
or

th
in

g 
(k

m
)

500

1000

1500

2000

−4000 −3500 −3000 −2500 −2000
Easting (km)

N
or

th
in

g 
(k

m
)

Figure 3: Nigeria subnational level map (left) and the triangular mesh (right). The red points represent
the jittered cluster centers.

Administrative Areas (GADM)2. Appendix A shows how to load the shape files, and we assume that
admin0 level and admin2 level are stored in the data objects admin0 and admin2, respectively.

The DHS surveys consists of individual level responses together with geographic information
about the associated cluster. The surveys consists of many questions, and extracting the desired 0/1
response require preprocessing steps that are specific to a given response. The R code for pre-processing
the DHS data, administrative borders shape files and the covariate rasters is given in Appendix A. To
ease reading, we assume that the preprocessing steps in Appendix A have been completed and that
the required variables have been stored in a data frame object named nigeria.data. This data object
is used in the following sections and contains:

• clusterID: The identification number that is assigned by DHS to each household cluster center

• long: Longitude coordinate of the corresponding cluster center.

• lat: Latitude coordinate of the corresponding cluster center.

• ys: Number of 20–49 years old women who reported completing their secondary education in
the cluster.

• ns: Total number of 20–49 years old women survey participants in the cluster.

• urbanRuralDHS: Urbanization strata of the cluster.

Further, pointsKM contains the household cluster center coordinates.

4.3 Step 1: Input preparation

In the analysis we use the local coordinate system UTM 37 with km as the length unit. Since the shape
files use a longitude/latitude coordinate reference system, they must be transformed into the local
coordinate system. We construct the triangular mesh using the function meshCountry. We use an offset
of 8% for the external mesh, maximum edge length of 25 km in the internal mesh, and maximum edge
length 50 km in the external mesh, and do not include boundary points closer than 4 km in the mesh.

# Set target geometry
target_crs = "+units=km +proj=utm +zone=37 +ellps=clrk80

+towgs84=-160,-6,-302,0,0,0,0 +no_defs"

# transform admin0 borders into target_crs:
admin0_trnsfrmd = sf::st_transform(admin0, target_crs)

# construct the mesh
mesh.s = meshCountry(admin0= admin0_trnsfrmd,

max.edge = c(25, 50),
offset = -.08, cutoff=4,
target_crs = target_crs)

Figure 3 shows the admin2 borders together with the resulting triangular mesh. We use the
function prepareInput to collect all data required for estimation and to precompute integration points
and integration weights necessary for the method described in the method section.

2https://gadm.org/data.html

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://gadm.org/data.html


CONTRIBUTED RESEARCH ARTICLE 22

# read the covariate raster
library(terra)
r = terra::rast("Nga_ppp_v2c_2015.tif")

inputData = prepareInput(response=list(ys=nigeria.data$ys,ns=nigeria.data$ns),
locObs = pointsKM,
likelihood = 1,
urban = nigeria.data$urbanRuralDHS,
mesh.s = mesh.s,
adminMap = admin2,
covariateData = list(r),
target_crs = target_crs)

Since the likelihood is binomial, we set the argument response to a list containing the number
of trials ns and a list of the number of successes ys for the clusters. Here, ns is (n1, . . . , n1380)

T and
ys is (y1, . . . , y1380)

T. We pass the covariate SpatRaster objects within a list, through the argument
list(terra::rast(r = r)). GeoAdjust allows modelling the data with either one of Gaussian,
binomial or Poisson likelihoods. Accordingly, the likelihood type needs to be passed into the function
via the argument likelihood, by setting it to either 0, 1 or 2, respectively. We set the binomial
likelihood with likelihood = 1.

5 Step 2: Estimation

We estimate the model using the function estimateModel.

# estimating the parameters
est = estimateModel(

data = inputData,
priors = list(beta = c(0,1), range = 114),

USpatial = 1, alphaSpatial = 0.05,
UNugget = 1, alphaNug = 0.05,

n.sims = 1000)

Here we set priors β0, β1
iid∼ N (0, 1) using beta = c(0,1). We choose the prior on marginal

variance σ2
S such that P(σS > 1) = 0.05 through USpatial = 1 and alphaSpatial = 0.05. We use

n.sims = 1000 draws from the estimated posteriors. The median of the prior on range ρS is set to
range = 114 km. The function estimateModel returns a list of four elements: res, obj, draws and
likelihood.

# the output of estimateModel() function:
names(est)
[1] "res" "obj" "draws" "likelihood"

print(est)

GeoAdjust::estimateModel()
----------------------------------
Likelihood : binomial
----------------------------------
parameter estimate 95% CI length
range 69.7677 NA
sigma 2.1462 NA
intercept -1.2998 0.6578
beta1 0.0069 0.0044
----------------------------------

The elements obj and draws are used for prediction in the next section. The element likelihood
indicates the likelihood type (0 is Gaussian, 1 is binomial, and 2 is Poisson) that is used in the model
construction, and res contains the estimated model parameters and the lengths of 95% credible
intervals. The credible interval lengths are calculated as the difference between the 97.5% and 2.5%
percentiles. The result object res does not contain CI_Length values for the range and the marginal
variance, as the inference is empirical Bayesian where these parameters are estimated to fixed values.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GeoAdjust


CONTRIBUTED RESEARCH ARTICLE 23

6 Step 3: Prediction

We grid the country using the function gridCountry with the admin0 boundaries and a resolution of 5
km.

# raster and the prediction coordinates:
predComponents = gridCountry(admin0 = admin0,

res = 5,
target_crs = target_crs)

names(predComponents)
[1] "loc.pred" "predRast"

# the sf multipoint object containing the prediction locations
loc.pred = predComponents[["loc.pred"]]

> print(loc.pred)
Simple feature collection with 80201 features and 0 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: -3803.253 ymin: 565.4467

xmax: -2223.253 ymax: 1825.447
Projected CRS: +units=km +proj=utm +zone=37 +ellps=clrk80 +towgs84=-160,-6,-302,
0,0,0,0 +no_defs
First 10 features:

geometry
1 POINT (-3803.253 1825.447)
2 POINT (-3798.253 1825.447)
3 POINT (-3793.253 1825.447)
4 POINT (-3788.253 1825.447)
5 POINT (-3783.253 1825.447)
6 POINT (-3778.253 1825.447)
7 POINT (-3773.253 1825.447)
8 POINT (-3768.253 1825.447)
9 POINT (-3763.253 1825.447)
10 POINT (-3758.253 1825.447)

predRast = predComponents[["predRast"]]

> print(predRast)
class : SpatRaster
dimensions : 253, 317, 1 (nrow, ncol, nlyr)
resolution : 5, 5 (x, y)
extent : -3805.753, -2220.753, 562.9467, 1827.947

(xmin, xmax, ymin, ymax)
coord. ref. : +proj=utm +zone=37 +ellps=clrk80 +towgs84=-160,-6,-302,0,0,0,
0 +units=km +no_defs

The output shows that the grid cell centroids are 5 km apart and the dimension of the grid is
253× 317. This includes locations that are outside the admin0 boundaries, which will be masked when
plotting the predictions.

We use the function predRes with flag = 1 to indicate the Binomial likelihood, and that the
inverse of the logit needs to be applied to the linear predictor. The argument covariateData contains
a list of one element which is the population density raster. Additionally, we input the objects obj and
draws from the function estimateModel.

predictions = predRes(obj = est[["obj"]] , predCoords = loc.pred,
draws = est[["draws"]],
covariateData = list(r),
mesh.s = mesh.s, flag = 1)

head(predictions)
mean median sd lower upper

[1,] 0.2155746 0.2143489 0.02934076 0.165192003 0.2764130

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 24

600

900

1200

1500

1800

−3800 −3400 −3000 −2600
Easting (km)

N
or

th
in

g 
(k

m
)

0.25

0.50

0.75

pred.

600

900

1200

1500

1800

−3800 −3400 −3000 −2600
Easting (km)

50

100

150

200

cv (%)

Figure 4: Predicted risk (left) and the CVs (right). The red points indicate the example survey cluster
centers.

[2,] 0.3471947 0.2220279 0.33308573 0.001691273 0.9860286
[3,] 0.3442247 0.2269676 0.32558640 0.002292870 0.9839695
[4,] 0.3447684 0.2402942 0.32414517 0.001921544 0.9817542
[5,] 0.3379962 0.2405484 0.31493574 0.002677005 0.9755113
[6,] 0.3329591 0.2317648 0.30754117 0.003479042 0.9637670

dim(predictions)
[1] 80201 5

The result object contains the desired quantities for each grid cell in Nigeria. We use the function
plotPred to plot the predictions and the corresponding uncertainty accross the studied country. The
uncertainty is quantified as the coefficient of variation (CV), which is calculated as σ

µ × 100, where σ

and µ is the standard deviation and mean, respectively, of the predictive distribution.

admin1 = st_read("gadm40_NGA_shp/gadm40_NGA_1.shp")

plotPred(pred = predictions,
predRaster = predRast,
admin0 = admin0,
admin1 = admin1,
admin2 = admin2,
rmPoly = 160,
target_crs = target_crs)

Here we provide predRaster, which is the locations and geography for prediction, and the
predicted values pred. The argument admin0 is used to mask values outside Nigeria, the argument
admin1 is used to plot the first administrative level (admin1) borders, and the argument admin2
together with rmPoly = 160 is used to remove the admin2 area corresponding to the lake, which is
not a real admin2 area, from plotting. The arguments rmPoly and admin2 should be set to NULL if all
admin2 areas should be plotted. Figure 4 shows the resulting predictions and CVs. The function
returns a list containing two ggplot objects, representing the plots for the predictions and uncertainty
across the country of interest.

7 Summary

GeoAdjust allows fast and easy geostatistical analysis of DHS household survey data while accounting
for jittering. The user can take advantage of a novel complex method (Altay et al., 2022a,b) and control
settings without being exposed to complex code. The user also has access to convenient plotting
functions, and the backend uses sf and terra to handle spatial data with information on coordinate
systems and rasters. GeoAdjust is the only package that addresses the positional uncertainty in DHS
data, and has the potential to be extended to combine areal and point referenced data from different
areas involving the both positional uncertainty and geomasking.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GeoAdjust
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=GeoAdjust


CONTRIBUTED RESEARCH ARTICLE 25

References

U. Altay, J. Paige, A. Riebler, and G.-A. Fuglstad. Fast geostatistical inference under positional
uncertainty: Analysing DHS household survey data. arXiv preprint arXiv:2202.11035, 2022a. [p17,
24]

U. Altay, J. Paige, A. Riebler, and G.-A. Fuglstad. Jittering impacts raster- and distance-based geostatis-
tical analyses of DHS data. arXiv preprint arXiv:2202.07442v1, 2022b. [p15, 17, 20, 24]

C. R. Burgert, J. Colston, T. Roy, and B. Zachary. Geographic displacement procedure and georeferenced
datarelease policy for the Demographic and Health Surveys. https://dhsprogram.com/pubs/pdf/
SAR7/SAR7.pdf, 2013. DHS Spatial Analysis Reports No. 7. [p15, 16]

T. Fanshawe and P. Diggle. Spatial prediction in the presence of positional error. Environmetrics, 22(2):
109–122, 2011. [p15]

G.-A. Fuglstad, D. Simpson, F. Lindgren, and H. Rue. Constructing priors that penalize the complexity
of Gaussian random fields. Journal of the American Statistical Association, 114:445–452, 2019. [p16]

V. Gómez-Rubio and H. Rue. Markov chain Monte Carlo with the integrated nested Laplace approxi-
mation. Statistics and Computing, 28(5):1033–1051, 2018. [p15]

K. Kristensen. The comprehensive TMB documentation, 2022. https://kaskr.github.io/adcomp/_book/
Introduction.html. [p19]

K. Kristensen, A. Nielsen, C. W. Berg, H. Skaug, and B. M. Bell. TMB: Automatic differentiation and
Laplace approximation. Journal of Statistical Software, 70(5):1–21, 2016. doi: 10.18637/jss.v070.i05.
[p15]

Z. R. Li, B. D. Martin, T. Q. Dong, G.-A. Fuglstad, J. Paige, A. Riebler, S. Clark, and J. Wakefield.
Space-time smoothing of demographic and health indicators using the r package summer. arXiv
preprint arXiv:2007.05117, 2020. [p16]

Z. R. Li, B. D. Martin, Y. Hsiao, J. Godwin, J. Paige, P. Gao, J. Wakefield, S. J. Clark, G.-A. Fuglstad, and
A. Riebler. SUMMER: Small-Area-Estimation Unit/Area Models and Methods for Estimation in R, 2022.
URL https://CRAN.R-project.org/package=SUMMER. R package version 1.3.0. [p16]

F. Lindgren. fmesher: Triangle Meshes and Related Geometry Tools, 2023. URL https://CRAN.R-project.
org/package=fmesher. R package version 0.1.2. [p15, 17]

F. Lindgren, H. Rue, and J. Lindström. An explicit link between Gaussian fields and Gaussian Markov
random fields: the stochastic differential equation approach (with discussion). Journal of the Royal
Statistical Society, Series B, 73:423–498, 2011. [p15, 17]

National Population Commission - NPC and ICF. Nigeria Demographic and Health Survey 2018 -
final report. http://dhsprogram.com/pubs/pdf/FR359/FR359.pdf, 2019. [p20]

C. Perez-Heydrich, J. Warren, C. Burgert, and M. Emch. Guidelines on the use of DHS GPS data. ICF
International, Calverton, Maryland, 2013. https://dhsprogram.com/pubs/pdf/SAR8/SAR8.pdf/, last
accessed on 2023-03-20. [p15]

C. Perez-Heydrich, J. L. Warren, C. R. Burgert, and M. E. Emch. Influence of Demographic and Health
Survey point displacements on raster-based analyses. Spatial Demography, 4(2):135–153, 2016. [p15]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2022. URL https://www.R-project.org/. [p15]

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models
by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 71(2):319–392, 2009. [p15]

J. L. Warren, C. Perez-Heydrich, C. R. Burgert, and M. E. Emch. Influence of demographic and health
survey point displacements on distance-based analyses. Spatial Demography, 4(2):155–173, 2016.
[p15]

K. Wilson and J. Wakefield. Estimation of health and demographic indicators with incomplete
geographic information. Spatial and Spatio-temporal Epidemiology, 37:100421, 2021. [p15]

World Pop. Open Spatial Demographic Data and Research, 2022. https://hub.worldpop.org/doi/10.
5258/SOTON/WP00648. [p20]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://dhsprogram.com/pubs/pdf/SAR7/SAR7.pdf
https://dhsprogram.com/pubs/pdf/SAR7/SAR7.pdf
https://kaskr.github.io/adcomp/_book/Introduction.html
https://kaskr.github.io/adcomp/_book/Introduction.html
https://CRAN.R-project.org/package=SUMMER
https://CRAN.R-project.org/package=fmesher
https://CRAN.R-project.org/package=fmesher
http://dhsprogram.com/pubs/pdf/FR359/FR359.pdf
https://dhsprogram.com/pubs/pdf/SAR8/SAR8.pdf/
https://www.R-project.org/
https://hub.worldpop.org/doi/10.5258/SOTON/WP00648
https://hub.worldpop.org/doi/10.5258/SOTON/WP00648


CONTRIBUTED RESEARCH ARTICLE 26

Umut Altay
Department of Mathematical Sciences, Norwegian University of Science and Technology
Trondheim, Norway
umut.altay@ntnu.no

John Paige
Department of Mathematical Sciences, Norwegian University of Science and Technology
Trondheim, Norway
john.paige@ntnu.no

Andrea Riebler
Department of Mathematical Sciences, Norwegian University of Science and Technology
Trondheim, Norway
andrea.riebler@ntnu.no

Geir-Arne Fuglstad
Department of Mathematical Sciences, Norwegian University of Science and Technology
Trondheim, Norway
geir-arne.fuglstad@ntnu.no

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

mailto:umut.altay@ntnu.no
mailto:john.paige@ntnu.no
mailto:andrea.riebler@ntnu.no
mailto:geir-arne.fuglstad@ntnu.no


CONTRIBUTED RESEARCH ARTICLE 27

SIHR: Statistical Inference in
High-Dimensional Linear and Logistic
Regression Models
by Prabrisha Rakshit, Zhenyu Wang, Tony Cai, and Zijian Guo

Abstract We introduce the R package SIHR for statistical inference in high-dimensional generalized
linear models with continuous and binary outcomes. The package provides functionalities for con-
structing confidence intervals and performing hypothesis tests for low-dimensional objectives in
both one-sample and two-sample regression settings. We illustrate the usage of SIHR through sim-
ulated examples and present real data applications to demonstrate the package’s performance and
practicality.

1 Introduction

In many applications, it is common to encounter regression problems where the number of covariates
p exceeds the sample size n. Much progress has been made in point estimation and support recovery
in high-dimensional generalized linear models (GLMs), as evidenced by works such as Bühlmann
and van de Geer (2011); Negahban et al. (2009); Huang and Zhang (2012); Tibshirani (1996); Fan and
Li (2011); Zhang (2010); Sun and Zhang (2012); Belloni et al. (2011); Meinshausen and Yu (2009). In
addition to estimation, van de Geer et al. (2014); Javanmard and Montanari (2014); Zhang and Zhang
(2014) have proposed methods to correct the bias of penalized regression estimators and construct
confidence intervals (CIs) for individual regression coefficients of the high-dimensional linear model.
This debiased approach has sparked a rapidly growing research area focused on CI construction and
hypothesis testing for low-dimensional objectives in high-dimensional GLMs.

The current paper presents the R package SIHR, which constructs confidence intervals and
conducts hypothesis testing for various transformations of high-dimensional regression parameters
for both continuous and binary outcomes. We consider the high-dimensional GLMs: for 1 ≤ i ≤ n,

E(yi | Xi·) = f (Xᵀ
i·β), with f (z) =

{
z for linear model;
exp (z)/ [1 + exp (z)] for logistic model;

(1)

where yi ∈ R and Xi· ∈ Rp denote respectively the outcome and the measured covariates of the i-th
observation and β ∈ Rp denotes the high-dimensional regression vector. Throughout the paper, define
Σ = EXi·X

ᵀ
i· and assume β to be a sparse vector with its sparsity level denoted as ‖β‖0. In addition to

the one-sample setting, we examine the statistical inference methods for the following two-sample
regression models,

E(y(k)i | X(k)
i· ) = f (X(k)ᵀ

i· β(k)) with k = 1, 2 and 1 ≤ i ≤ nk, (2)

where y(k)i ∈ R and X(k)
i· ∈ Rp denote respectively the outcome and the measured covariates in

the k-th sample, f (·) is the pre-specified link function defined as in (1), and β(k) ∈ Rp denotes the
high-dimensional regression vector in k-th sample.

The R package SIHR consists of five main functions LF(), QF(), CATE(), InnProd(), and Dist()
implementing the statistical inferences for five different quantities correspondingly.

1. LF(), abbreviated for linear functional, implements the inference approach for xᵀnewβ in Cai
et al. (2021a,b), with xnew ∈ Rp denoting a loading vector. With xnew = ej as a special case, LF()
infers about the regression coefficient β j (van de Geer et al., 2014; Javanmard and Montanari,
2014; Zhang and Zhang, 2014, e.g.). When xnew denotes a future observation’s covariates, LF()
makes inference for the conditional mean of the outcome for the individual. See the usage of
LF() in the section Linear functional.

2. QF(), abbreviated for quadratic functional, makes inference for βᵀG AβG, following the proposal
in Guo et al. (2019, 2021b); Cai and Guo (2020). βG is the subvector of β with indices restricted
to the pre-specified index set G ∈ {1, . . . , p} and A ∈ R|G|×|G|, with |G| denoting cardinality of
G, is either a pre-specified submatrix or the unknown ΣG,G. βᵀG AβG can be viewed as a total
measure of effects of all the variables in the group G. See the section Quadratic functional for
the usage.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=SIHR


CONTRIBUTED RESEARCH ARTICLE 28

3. CATE(), abbreviated for conditional average treatment effect, is to make inference for f (xᵀnewβ(2))−
f (xᵀnewβ(1)), see Cai et al. (2021a) for detailed discussion. This difference measures the discrep-
ancy between conditional means, closely related to the conditional average treatment effect for
the new observation with covariates xnew. We demonstrate its usage in the section Conditional
average treatment effect.

4. InnProd(), abbreviated for inner product, implements the statistical inference for β
(1)ᵀ
G Aβ

(2)
G

with A ∈ R|G|×|G|, which was proposed in Guo et al. (2019); Ma et al. (2022). The inner product
measures the similarity between the high-dimensional vectors β(1) and β(2), which is useful in
capturing the genetic relatedness in the GWAS applications (Guo et al., 2019; Ma et al., 2022).
The usage is detailed in the section Inner product.

5. Dist(), short-handed for distance, makes inference for the weighted distance γᵀ
G AγG with

γ = β(2) − β(1). The distance measure is useful in comparing different high-dimensional
regression vectors and constructing a generalizable model in the multisource learning problem
Guo et al. (2023). See the section Distance for its usage.

There are a few other R packages for high-dimensional inference. The packages hdi and SSLasso
(available at http://web.stanford.edu/~montanar/sslasso/code.html) implement the coordinate
debiased Lasso estimators proposed in van de Geer et al. (2014) and Javanmard and Montanari
(2014), respectively. These functions provide debiased estimators of β along with their standard error
estimators. These existing packages enable confidence interval construction and hypothesis testing
for linear transformations of β, but not the quadratic form or inner products implemented in QF(),
InnProd(), and Dist(). Even for the linear transformation, their implementation requires debiasing p
regression parameters. In contrast, our R package SIHR is computationally more efficient as it directly
performs a single debiasing for the pre-specified linear transformation.

The DoubleML package focuses on estimating low-dimensional parameters of interest, such as
causal or treatment effect parameters, in the presence of high-dimensional nuisance parameters that
can be estimated using machine learning methods, while our package aims to estimate arbitrary linear
and weighted quadratic combinations of the coefficient vector in high-dimensional regression. The
selective inference is implemented by the R package selectiveInference. They focus on parameters
based on the selected model, while we focus on fixed parameters independent of the selected models.

In the remainder of this paper, we review the inference methods in Section Methodological back-
ground and introduce the main functions of the package in Section Usage of the package, accompanied
by illustrative examples. Then, a comparative analysis is conducted in Section Comparative analysis.
Finally, we demonstrate the application of our proposed methods to real data in Section Real data
applications.

2 Methodological background

We briefly review the penalized maximum likelihood estimator of β in the high-dimensional GLM (1),
defined as:

β̂ = arg min
β∈Rp

`(β) + λ
p

∑
j=2

‖X·j‖2√
n
|β j|, (3)

with X·j denoting the j-th column of X, and

`(β) =


1
n ∑i=1

(
yi − Xᵀ

i·β
)2 for linear model

− 1
n ∑n

i=1 yi log
[

f (Xᵀ
i·β)

1− f (Xᵀ
i·β)

]
− 1

n ∑n
i=1 log

(
1− f (Xᵀ

i·β)
)

for GLM with binary outcome.
.

(4)
To facilitate the methodological discussion, we take the first column of X set as the constant 1 and
hence does not include a penalty on β1 in the above equation (3). In the penalized regression (3), we
do not penalize the intercept coefficient β1 and the tuning parameter λ �

√
log p/n is chosen by

cross-validation. The penalized estimators have been shown to achieve the optimal convergence rates
and satisfy desirable variable selection properties (Meinshausen and Bühlmann, 2006; Bickel et al.,
2009; Zhao and Yu, 2006; Wainwright, 2009). However, these estimators are not ready for statistical
inference due to the non-negligible estimation bias induced by the penalty term (van de Geer et al.,
2014; Javanmard and Montanari, 2014; Zhang and Zhang, 2014).

In section Linear functional for GLM, we propose a unified inference method for xᵀnewβ under
linear and logistic outcome models. We also discuss inferences for quadratic functionals βᵀG AβG and
βᵀGΣG,GβG in section Quadratic functional for GLM. In the case of the two-sample high-dimensional
regression model (2), we develop the inference method for conditional treatment effect ∆(xnew) =

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=hdi
http://web.stanford.edu/~montanar/sslasso/code.html
https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=DoubleML
https://CRAN.R-project.org/package=selectiveInference


CONTRIBUTED RESEARCH ARTICLE 29

f (xᵀnewβ(2))− f (xᵀnewβ(1)) in section Conditional average treatment effects; we consider inference for

β
(1)ᵀ
G Aβ

(2)
G and β

(1)ᵀ
G ΣG,Gβ

(2)
G in section Inner product of regression vectors and γᵀ

G AγG and γᵀ
GΣG,GγG

with γ = β(2) − β(1) in section Distance of regression vectors.

2.1 Linear functional for linear model

To illustrate the main idea, we start with the linear functional for the linear model, which will be
extended to a unified version in the section Linear functional for GLM. For the linear model in (1), we
define εi = yi − Xᵀ

i·β and rewrite the model as yi = Xᵀ
i·β + εi for 1 ≤ i ≤ n.

Given the vector xnew ∈ Rp, a natural idea for the point estimator is to use the plug-in estimator
xᵀnew β̂ with the initial estimator β̂ defined in (3). However, the bias xᵀnew(β̂− β) is not negligible. The
work Cai et al. (2021a) proposed the bias-corrected estimator as,

x̂ᵀnewβ = xᵀnew β̂ + ûᵀ
1
n

n

∑
i=1

Xi·
(

yi − Xᵀ
i· β̂
)

, (5)

where the second term on the right hand side in (5) is the estimate of negative bias −xᵀnew(β̂− β), and
the projection direction û is defined as

û = arg min
u∈Rp

uᵀΣ̂u subject to: ‖Σ̂u− xnew‖∞ ≤ ‖xnew‖2µ0 (6)∣∣∣xᵀnewΣ̂u− ‖xnew‖2
2

∣∣∣ ≤ ‖xnew‖2
2µ0, (7)

where Σ̂ = 1
n ∑n

i=1 Xi·X
ᵀ
i· and µ0 �

√
log p/n. The bias-corrected estimator x̂ᵀnewβ satisfies the

following error decomposition,

x̂ᵀnewβ− xᵀnewβ = ûᵀ
1
n

n

∑
i=1

Xᵀ
i·εi︸ ︷︷ ︸

asymp. normal

+
(

Σ̂û− xnew

)ᵀ
(β− β̂)︸ ︷︷ ︸

remaining bias

. (8)

The constrained optimization problem in (6) and (7) is designed to minimize the error on the right-
hand side of the above equation: the first constraint in (6) controls the "remaining bias" term in the
above equation while the objective function in (6) is used to minimize the variance of the "asymp.
normal" term. Importantly, the second constraint in (7) ensures the standard error of the "asymp.
normal" term always dominates the "remaining bias" term. Based on the asymptotic normality, we
construct the CI for xᵀnewβ as

CI =
(

x̂ᵀnewβ− zα/2

√
V̂, x̂ᵀnewβ + zα/2

√
V̂
)

with V̂ =
σ̂2

n
ûᵀΣ̂û,

where σ̂2 = 1
n ∑n

i=1(yi − Xᵀ
i· β̂)

2, and zα/2 denotes the upper α/2 quantile for the standard normal
distribution.

Remark 1 It has been shown in Cai et al. (2021a) that the remaining bias term in (8) becomes negligible in
comparison to the variance of the asymptotic normal term when the sample size is relatively large. However, for
applications with a given sample size, we may also enlarge the standard error by a certain factor (e.g., 1.1) to
accommodate the bias component in (8).

2.2 Linear functional for GLM

In this subsection, we generalize the inference method specifically for the linear model in Linear
functional for linear model to GLM in (1). Given the initial estimator β̂ defined in (3), the key step is to
estimate the bias xᵀnew(β̂− β). We can propose a generalized version of the bias-corrected estimator
for xᵀnewβ as

x̂ᵀnewβ = xᵀnew β̂ + ûᵀ
1
n

n

∑
i=1

ω(Xᵀ
i· β̂)

(
yi − f (Xᵀ

i· β̂)
)

Xi·, (9)

where the projection direction û is defined in the following (10) and ω : R → R denotes a weight
function specified in the following Table 1 associated with different link functions.

In Table 1, we consider different GLM models and present the link function f (·), its derivative
f ′(·), and the corresponding weight function ω(·). Note that there are two ways of specifying the
weights w(z) for logistic regression, where the linearization weighting was proposed in Guo et al.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 30

Model Outcome Type f (z) f ′(z) ω(z) Weighting

linear Continuous z 1 1

logistic Binary ez

1+ez
ez

(1+ez)2
(1+ez)2

ez Linearization

logistic_alter Binary ez

1+ez
ez

(1+ez)2 1 Link-specific

Table 1: Definitions of the functions ω and f for different GLMs.

(2021b) for logistic regression while the link-specific weighting function was proposed in Cai et al.
(2021b) for general link function f (·). The projection direction û ∈ Rp in (9) is constructed as follows:

û = arg min
u∈Rp

uᵀ
[

1
n

n

∑
i=1

ω(Xᵀ
i· β̂) f ′(Xᵀ

i· β̂)Xi·X
ᵀ
i·

]
u subject to:∥∥∥∥∥ 1

n

n

∑
i=1

ω(Xᵀ
i· β̂) f ′(Xᵀ

i· β̂)Xi·X
ᵀ
i·u− xnew

∥∥∥∥∥
∞

≤ ‖xnew‖2µ0∣∣∣∣∣xᵀnew
1
n

n

∑
i=1

ω(Xᵀ
i· β̂) f ′(Xᵀ

i· β̂)Xi·X
ᵀ
i·u− ‖xnew‖2

2

∣∣∣∣∣ ≤ ‖xnew‖2
2µ0.

(10)

It has been established that x̂ᵀnewβ in (9) is asymptotically unbiased and normal for the linear model

(Cai et al., 2021a), the logistic model (Guo et al., 2021a; Cai et al., 2021b). The variance of x̂ᵀnewβ can be
estimated by V̂, defined as

V̂ = ûᵀ
[

1
n2

n

∑
i=1

(
ω(Xᵀ

i· β̂)
)2

σ̂2
i Xi·X

ᵀ
i·

]
û with : (11)

σ̂2
i =


1
n ∑n

j=1

(
yj − Xᵀ

j· β̂
)2

, for linear model

f (Xᵀ
i· β̂)(1− f (Xᵀ

i· β̂)), for logistic regression with f (z) = exp(z)/[1 + exp(z)]
. (12)

Based on the asymptotic normality, the CI for xᵀnewβ is:

CI =
(

x̂ᵀnewβ− zα/2

√
V̂, x̂ᵀnewβ + zα/2

√
V̂
)

.

Subsequently, for the binary outcome case, we estimate the case probability P(yi = 1 | Xi· = xnew) by

f (x̂ᵀnewβ) and construct the CI for f (xᵀnewβ), with f (z) = exp(z)/[1 + exp(z)], as:

CI =
(

f
(

x̂ᵀnewβ− zα/2

√
V̂
)

, f
(

x̂ᵀnewβ + zα/2

√
V̂
))

.

2.3 Quadratic functional for GLM

We now move our focus to inference for the quadratic functional QA = βᵀG AβG, where G ⊂ {1, . . . , p}
and A ∈ R|G|×|G| denotes a pre-specified matrix of interest. Without loss of generality, we set
G = {1, 2, · · · , |G|}. With the initial estimator β̂ defined in (3), the plug-in estimator β̂ᵀG Aβ̂G has the
following estimation error,

β̂ᵀG Aβ̂G − βᵀG AβG = 2β̂ᵀG A(β̂G − βG)− (β̂G − βG)
ᵀA(β̂G − βG).

The last term in the above decomposition (β̂G − βG)
ᵀA(β̂G − βG) is the higher-order approximation

error under regular conditions; thus the bias of β̂ᵀG Aβ̂G mainly comes from the term 2β̂ᵀG A(β̂G − βG),
which can be expressed as 2 xᵀnew(β̂− β) with xnew = (β̂ᵀG A, 0)ᵀ. Hence the term can be estimated
directly by applying the linear functional approach in section Linear functional for GLM. Utilizing this
idea, Guo et al. (2021b, 2019) proposed the following estimator of QA,

Q̂A = β̂ᵀG Aβ̂G + 2 ûᵀA

[
1
n

n

∑
i=1

ω(Xᵀ
i· β̂)

(
yi − f (Xᵀ

i· β̂)
)

Xi·

]
, (13)

where ûA is the projection direction defined in (10) with xnew = (β̂ᵀG A, 0ᵀ)ᵀ. Since QA is non-negative

if A is positive semi-definite, we truncate Q̂A at 0 and define Q̂A = max
(

Q̂A, 0
)

. We further estimate

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 31

the variance of the Q̂A by

V̂A(τ) = 4ûᵀA

[
1

n2

n

∑
i=1

ω2(Xᵀ
i· β̂)σ̂

2
i Xi·X

ᵀ
i·

]
ûA +

τ

n
, (14)

where σ̂2
i is defined in (12) and the term τ/n with τ > 0 (default value τ = 1) is introduced as an

upper bound for the term (β̂G − βG)
ᵀA(β̂G − βG). Then given a fixed value of τ, we construct the CI

for QA as CI(τ) =
(

max
(

Q̂A − zα/2

√
V̂A(τ), 0

)
, Q̂A + zα/2

√
V̂A(τ)

)
.

Now we turn to the estimation of QΣ = βᵀGΣG,GβG where the matrix ΣG,G is unknown and
estimated by Σ̂G,G = 1

n ∑n
i=1 XiGXᵀ

iG. Decompose the error of the plug-in estimator β̂ᵀGΣ̂G,G β̂:

β̂ᵀGΣ̂G,G β̂− βGΣG,GβG = 2 β̂ᵀGΣ̂G,G(β̂G − βG) + βᵀG(Σ̂G,G − ΣG,G)βG − (β̂G − βG)
ᵀΣ̂G,G(β̂G − βG).

The first term β̂ᵀGΣ̂G,G(β̂G − βG) is estimated by applying linear functional approach in Linear func-
tional for GLM with xnew = (β̂ᵀGΣ̂G,G, 0)ᵀ; the second term βᵀG(Σ̂G,G − ΣG,G)βG can be controlled
asymptotically by central limit theorem; and the last term (β̂G − βG)

ᵀΣ̂G,G(β̂G − βG) is negligible due
to high-order bias. Guo et al. (2021b) proposed the following estimator of QΣ

Q̂Σ = β̂ᵀGΣ̂G,G β̂G + 2 ûᵀΣ

[
1
n

n

∑
i=1

ω(Xᵀ
i· β̂)

(
yi − f (Xᵀ

i· β̂)
)

Xi·

]
,

where ûΣ is the projection direction constructed in (10) with xnew = (β̂ᵀGΣ̂G,G, 0)ᵀ. We introduce the
estimator Q̂Σ = max(Q̂Σ, 0) and estimate its variance as

V̂Σ(τ) = 4ûᵀΣ

[
1

n2

n

∑
i=1

ω2(Xᵀ
i· β̂)σ̂

2
i Xi·X

ᵀ
i·

]
ûΣ +

1
n2

n

∑
i=1

(
β̂ᵀGXi,GXᵀ

i,G β̂G − β̂ᵀGΣ̂G,G β̂G

)2
+

τ

n
, (15)

where σ̂2
i is defined in (12) and the term τ/n with τ > 0 is introduced as an upper bound for the term

(β̂G − βG)
ᵀΣ̂G,G(β̂G − βG). Then, for a fixed value of τ, we can construct the CI for QΣ as

CI(τ) =
(

max
(

Q̂Σ − zα/2

√
V̂Σ(τ), 0

)
, Q̂Σ + zα/2

√
V̂Σ(τ)

)
. (16)

2.4 Conditional average treatment effects

The inference methods developed for one sample can be generalized to make inferences for conditional
average treatment effects (CATE). From a causality viewpoint, we consider the data set {(Xi·, yi, Di)}
for i = 1, . . . , n, where Di ∈ {1, 2} indicates the treatment assigned to the i-th observation. For a
new observation with covariates Xi· = xnew, we define CATE as ∆(xnew) = E(yi|Xi·, Di = 2) −
E(yi|Xi·, Di = 1).

We group observations {i : Di = k} into the k-th data sample {(X(k)
i· , y(k)i } for k = 1, 2, where

1 ≤ i ≤ nk and n1 + n2 = n. Subsequently, we rewrite E(yi|Xi·, Di = k) as E[y(k)i |X
(k)
i = xnew] for

k = 1, 2. Using the GLM model outlined in (2), the CATE can be formulated as

∆(xnew) = E[y(2)i |X
(2)
i = xnew]−E[y(1)i |X

(1)
i = xnew] = f (xᵀnewβ(2))− f (xᵀnewβ(1)).

Following (9), we construct the bias-corrected point estimators of ̂xᵀnewβ(1) and ̂xᵀnewβ(2), together

with their corresponding variances V̂(1) and V̂(2) as (11). For the first sample (X(1)
i , y(1)i ), where

1 ≤ i ≤ n1, we use the methods described in equations (9) and (11) to compute the bias-corrected

point estimator ̂xᵀnewβ(1) and the variance estimator V̂(1), respectively. Similarly, for the second sample

(X(2)
i , y(2)i ), where 1 ≤ i ≤ n2, we apply the same procedures to derive the point estimator ̂xᵀnewβ(2)

and the variance estimator V̂(2).

The paper Cai et al. (2021a) proposed to estimate ∆(xnew) by ∆̂(xnew) as follows,

∆̂(xnew) = f ( ̂xᵀnewβ(2))− f ( ̂xᵀnewβ(1)).

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 32

Its variance can be estimated with delta method by:

V̂∆ =

(
f ′( ̂xᵀnewβ(1))

)2
V̂(1) +

(
f ′( ̂xᵀnewβ(2))

)2
V̂(2).

Then we construct the CI for ∆(xnew) as

CI =
(

∆̂(xnew)− zα/2

√
V̂∆, ∆̂(xnew) + zα/2

√
V̂∆

)
.

2.5 Inner product of regression vectors

The paper Guo et al. (2019); Ma et al. (2022) have investigated the CI construction for β
(1)ᵀ
G Aβ

(2)
G ,

provided with a pre-specified submatrix A ∈ R|G|×|G| and the set of indices G ⊂ {1, . . . , p}. With β̂(1)

and β̂(2) denoting the initial estimators fitted on first and second data sample via (3), respectively, the

plug-in estimator β̂
(1)ᵀ
G Aβ̂

(2)
G admits the following bias,

β̂
(1)ᵀ
G Aβ̂

(2)
G − β

(1)ᵀ
G Aβ

(2)
G = β̂

(2)ᵀ
G A

(
β̂
(1)
G − β

(1)
G

)
+ β̂

(1)ᵀ
G A

(
β̂
(2)
G − β

(2)
G

)
−
(

β̂
(1)
G − β

(1)
G

)ᵀ
A
(

β̂
(2)
G − β

(2)
G

)
.

The key step is to estimate the components β̂
(2)ᵀ
G A

(
β̂
(1)
G − β

(1)
G

)
and β̂

(1)ᵀ
G A

(
β̂
(2)
G − β

(2)
G

)
, since the

last term (β̂
(1)
G − β

(1)
G )ᵀA(β̂

(2)
G − β

(2)
G ) is negligible due to high-order bias. We propose the following

bias-corrected estimator for β
(1)ᵀ
G Aβ

(2)
G

̂
β
(1)ᵀ
G Aβ

(2)
G = β̂

(1)ᵀ
G Aβ̂

(2)
G +ûᵀ1

1
n1

n1

∑
i=1

ω(X(1)ᵀ
i· β̂(1))

(
y(1)i − f (X(1)ᵀ

i· β̂(1))
)

X(1)
i·

+ ûᵀ2
1

n2

n2

∑
i=1

ω(X(2)ᵀ
i· β̂(2))

(
y(2)i − f (X(2)ᵀ

i· β̂(2))
)

X(2)
i· .

(17)

Here û1 represents the projection direction computed in (10), using the first sample data and xnew =

(β̂
(2)ᵀ
G A, 0)ᵀ. Similarly, û2 is the projection direction derived from the second sample data, using

xnew = (β̂
(2)ᵀ
G A, 0)ᵀ. The corresponding variance of

̂
β
(1)ᵀ
G Aβ

(2)
G , when A is a known positive definite

matrix, is estimated as
V̂A(τ) = V̂(1) + V̂(2) +

τ

min(n1, n2)
,

where V̂(k) is computed as in (11) for the k-th regression model (k = 1, 2) and the term τ/ min(n1, n2)

with τ > 0 is introduced as an upper bound for the term (β̂
(1)
G − β

(1)
G )ᵀA(β̂

(2)
G − β

(2)
G ).

We also consider the case of unknown A = ΣG,G. As a natural generalization, the quan-

tity β
(1)ᵀ
G ΣG,Gβ

(2)
G is well defined if the two regression models in (2) share the design covariance

matrix Σ = EX(1)
i· X(1)ᵀ

i· = EX(2)
i· X(2)ᵀ

i· . We follow the above procedures by replacing A with
Σ̂G,G = 1

n1+n2
∑n1+n2

i=1 Xi,GXᵀ
i,G where X is the row-combined matrix of X(1) and X(2). The variance of

̂
β
(1)ᵀ
G ΣG,Gβ

(2)
G is now estimated as

V̂Σ(τ) = V̂(1) + V̂(2) +
1

(n1 + n2)2

n1+n2

∑
i=1

(
β̂
(1)ᵀ
G Xi,GXᵀ

i,G β̂
(2)
G − β̂

(1)ᵀ
G Σ̂G,G β̂

(2)
G

)2
+

τ

min(n1, n2)
.

We then construct the CI for β
(1)ᵀ
G Aβ

(2)
G as

CI(τ) =


(

̂
β
(1)ᵀ
G Aβ

(2)
G − zα/2V̂A(τ),

̂
β
(1)ᵀ
G Aβ

(2)
G + zα/2V̂A(τ)

)
if A is specified(

̂
β
(1)ᵀ
G ΣG,Gβ

(2)
G − zα/2V̂Σ(τ),

̂
β
(1)ᵀ
G ΣG,Gβ

(2)
G + zα/2V̂Σ(τ)

)
A = ΣG,G is unknown.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 33

2.6 Distance of regression vectors

We denote γ = β(2) − β(1) and its initial estimator γ̂ = β̂(2) − β̂(1). The quantity of interest is the
distance between two regression vectors γᵀ

G AγG, given a pre-specified submatrix A ∈ R|G|×|G| and
the set of indices G ∈ {1, . . . , p}. The bias of the plug-in estimator γ̂ᵀ

G Aγ̂G is:

γ̂ᵀ
G Aγ̂G − γᵀ

G AγG = 2 γ̂ᵀ
G A

(
β̂
(2)
G − β

(2)
G

)
− 2 γ̂ᵀ

G A
(

β̂
(1)
G − β

(1)
G

)
− (γ̂G − γG)

ᵀ A (γ̂G − γG) .

The key step is to estimate the error components γ̂ᵀ
G A

(
β̂
(1)
G − β

(1)
G

)
and γ̂ᵀ

G A
(

β̂
(2)
G − β

(2)
G

)
in the

above decomposition. We apply linear functional techniques twice here, and propose the bias-corrected
estimator:

γ̂ᵀ
G AγG = γ̂ᵀ

G Aγ̂G − 2 ûᵀ1
1

n1

n1

∑
i=1

ω(X(1)ᵀ
i· β̂(1))

(
y(1)i − f (X(1)ᵀ

i· β̂(1))
)

X(1)
i·

+ 2 ûᵀ2
1

n2

n2

∑
i=1

ω(X(2)ᵀ
i· β̂(2))

(
y(2)i − f (X(2)ᵀ

i· β̂(2))
)

X(2)
i· ,

(18)

where û1 and û2 are the projection directions defined in (10) with xnew =
(
γ̂ᵀ

G A, 0
)ᵀ but on two differ-

ent sample data respectively. The second term on right-hand-side of (18) is to estimate −2 xᵀnew(β̂
(1)
G −

β
(1)
G ) and the third term on right-hand-side of (18) is to estimate −2 xᵀnew(β̂

(2)
G − β

(2)
G ).

To maintain non-negativity of distance, we define γ̂ᵀ
G AγG = max

{
γ̂ᵀ

G AγG, 0
}

and estimate its
corresponding asymptotic variance as

V̂A(τ) = 4 V̂(1) + 4 V̂(2) +
τ

min(n1, n2)
,

where V̂(k) is computed as in (11) for the k-th regression model (k = 1, 2) and the term τ/ min(n1, n2)
with τ > 0 is introduced as an upper bound for the term (γ̂G − γG)

ᵀA(γ̂G − γG). With asymptotic
normality, we construct the CI for γᵀ

G AγG as

CI(τ) =
(

max
(

γ̂ᵀ
G AγG − zα/2

√
V̂A(τ), 0

)
, γ̂ᵀ

G AγG + zα/2

√
V̂A(τ)

)
.

We further consider the unknown matrix A = ΣG,G and construct the point estimator ̂γ>G ΣG,GγG

in a similar way as outlined in (18). In this case, the submatrix A is substituted with Σ̂G,G, where
Σ̂G,G = 1

n1+n2
∑n1+n2

i=1 Xi,GXᵀ
i,G with X as the row-combined matrix of X(1) and X(2). Its corresponding

asymptotic variance is

V̂Σ(τ) = 4 V̂(1) + 4 V̂(2) +
1

(n1 + n2)2

n1+n2

∑
i=1

(
γ̂ᵀ

GXi,GXᵀ
i,Gγ̂G − γ̂ᵀ

GΣ̂G,Gγ̂G

)2
+

τ

min(n1, n2)
.

Next we present the CI for γᵀ
GΣG,GγG.

CI(τ) =
(

max
(

̂γᵀ
GΣG,GγG − zα/2

√
V̂Σ(τ), 0

)
, ̂γᵀ

GΣG,GγG + zα/2

√
V̂Σ(τ)

)
.

3 Usage of the package

The SIHR package contains a set of functions for conducting inference for various transformations
of high-dimensional regression vectors, such as linear and quadratic functions. We summarize the
functions and their corresponding objectives in the following Table 2.

3.1 Linear functional

The function LF(), shorthanded for Linear Functional, performs inference for xᵀnewβ, under the high-
dimensional model (1), where xnew is a given vector. A typical LF() code snippet looks like:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SIHR


CONTRIBUTED RESEARCH ARTICLE 34

Function Inference Objective Description

LF() xᵀnewβ

Generates a LF object which includes the bias-corrected estima-
tor of xᵀnewβ in high-dimensional GLM and the corresponding
standard error, which are further used to construct CI and
conduct hypothesis testing related to xᵀnewβ.

QF() βᵀG AβG

Generates a QF object which includes the bias-corrected esti-
mator of βᵀG AβG in high-dimensional GLM, for A ∈ R|G|×|G|

and index set G ∈ {1, . . . , p}, and computes the correspond-
ing standard error, which are further used to construct CI and
conduct hypothesis testing related to βᵀG AβG.

CATE() f (xᵀnewβ(2))− f (xᵀnewβ(1))

Generates a CATE object which includes the bias-corrected
estimator of f (xᵀnewβ(2))− f (xᵀnewβ(1)) in high-dimensional
GLMs and the corresponding standard error, which are further
used to construct CI and conduct hypothesis testing related to
f (xᵀnewβ(2))− f (xᵀnewβ(1)).

InnProd() β
(1)ᵀ
G Aβ

(2)
G

Generates an InnProd object which includes the bias-corrected

estimator of β
(1)ᵀ
G Aβ

(2)
G in high-dimensional GLMs, for A ∈

R|G|×|G| and index set G ∈ {1, . . . , p}, and computes the cor-
responding standard error, which are further used to construct

CI and conduct hypothesis testing related to β
(1)ᵀ
G Aβ

(2)
G .

Dist() γᵀ
G AγG with γ = β(2) − β(1)

Generates a Dist object which includes the bias-corrected esti-
mator of γᵀ

G AγG in high-dimensional GLMs, for A ∈ R|G|×|G|

and index set G ∈ {1, . . . , p}, and the corresponding stan-
dard error, which are further used to construct CI and conduct
hypothesis testing related to γᵀ

G AγG.

ci() —- Input object (LF/ QF/ CATE/ InnProd/ Dist), returns CI.

summary() —-

Input object (LF/ QF/ CATE/ InnProd/ Dist), computes and
returns a list of summary statistics, including plug-in estima-
tor, bias-corrected estimator together with associated standard
error and p-value.

Table 2: Functions of SIHR, which perform statistical inference for low-dimensional objectives in
high-dimensional GLM for continuous and binary outcomes.

LF(X, y, loading.mat, model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE, intercept.loading = FALSE, beta.init = NULL, lambda = NULL,
mu = NULL, prob.filter = 0.05, rescale = 1.1, verbose = FALSE)

In the following we provide descriptions of the various arguments of the LF function :

• X is the design matrix of dimension n× p and y is the response vector of length n.

• loading.mat is the matrix of loading vectors where each column corresponds to a new future
observation xnew. It is designed to allow for taking multiple xnew’s as input, thereby saving the
computational time of constructing the initial estimator multiple times.

• model (default = "linear") specifies which high-dimensional regression model to be fitted, the
choices being c("linear", "logistic", "logistic_alter"), where "linear" corresponds to
the linear model and "logistic" and "logistic_alter" correspond to the logistic regression; see
Table 1.

• intercept (default = TRUE) is a logical argument that specifies whether an intercept term should
be fitted while computing the initial estimator in (3).

• intercept.loading (default = FALSE) is a logical argument that specifies whether the intercept
term should be included for defining the objective xᵀnewβ. Specifically, setting intercept.loading
= TRUE prepend a column of 1’s to the matrix loading.mat.

• beta.init (default = NULL) allows the user to supply the initial estimator β̂ of the regression
vector. If beta.init is left as NULL, the initial estimator β̂ in (3) is computed using function
cv.glmnet in glmnet.

• lambda (default = NULL) denotes the scaled tuning parameter λ used for computing the initial
estimator β̂ in (3) which can either be pre-specified or can be set to NULL whence LF uses the
function cv.glmnet in glmnet to compute the tuning parameter.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=glmnet


CONTRIBUTED RESEARCH ARTICLE 35

• mu (default = NULL) denotes the tuning parameter µ0 in (10). When mu is set as NULL, it is
computed as the smallest µ0 such that (10) has a finite solution.

• prob.filter (default = 0.05) is specific to model = "logistic". From Table 1, observe that
model = "logistic" sets the weight for i-th individual as 1

P(yi=1|Xi·)·(1−P(yi=1|Xi·))
which can

blow up if the estimated probabilities P(yi | Xi·) are very close to 0 or 1. We discard those
samples for which the estimated probability lies outside [prob.filter, 1− prob.filter] before
proceeding with the algorithm.

• rescale (default = 1.1) denotes the factor used to enlarge the standard error to account for the
finite sample bias, as pointed out in Remark 1.

• verbose (default = FALSE) is a logical argument that specifies whether intermediate message(s)
should be printed, the projection direction be returned.

Remark 2 The structure of the loading.mat is designed so that each column corresponds to a future obser-
vation xnew. This matrix structure optimizes computational efficiency by allowing the debiasing algorithm to
process multiple linear functionals simultaneously; that is, when loading.mat contains multiple columns, the
LF() function only requires computing the initial estimator β̂ in (3) once. Specifically, when loading.mat
is set as the identity matrix of dimension p, where p represents the number of covariates, the LF() function
conducts inference for all p individual regression coefficients concurrently.

Next, we provide an example to illustrate the usage of LF() in the linear regression model.

Example 1. For 1 ≤ i ≤ n with n = 100, the covariates Xi· are independently generated from the
multivariate normal distribution with mean µ = 0p and covariance Σ = Ip with p = 120, where Ip
is an identity matrix of dimension p. The regression vector β ∈ Rp is generated as β1 = 0.5, β2 = 1
and β j = 0 if 3 ≤ j ≤ p. The outcome is generated as yi = Xᵀ

i·β + εi with independently generated
standard normal εi.

n <- 100; p <- 120
mu <- rep(0,p); Cov <- diag(p)
beta <- rep(0,p); beta[c(1,2)] <- c(0.5, 1)
X <- MASS::mvrnorm(n, mu, Cov)
y <- X %*% beta + rnorm(n)

We now generate two observations x(1)new, x(2)new and apply the LF() function to construct the point

estimators of x(1)ᵀnew β and x(2)ᵀnew β, together with their standard error estimates.

loading1 <- c(1, 1, rep(0, p-2))
loading2 <- c(-0.5, -1, rep(0, p-2))
loading.mat <- cbind(loading1, loading2)
Est <- LF(X, y, loading.mat, model = 'linear')

Having fitted the model, we have two following functions ci() and summary(). We first report the

95% CIs for x(1)ᵀnew β and x(2)ᵀnew β, where the true values x(1)ᵀnew β = 1.5 and x(2)ᵀnew β = −1.25 are contained in
the corresponding CIs.

ci(Est)
#> loading lower upper
#>1 1 1.167873 1.8753934
#>2 2 -1.544138 -0.7995375

Then, we apply the summary() function to return a list of the summary statistics, including the plugin
estimator, bias-corrected estimator, the standard error for the bias-corrected estimator and the p-value
corresponding to the hypothesis testing H0 : xᵀnewβ = 0 vs H1 : xᵀnewβ 6= 0. It is observed that the
bias-corrected estimators are closer to the true values compared to the plug-in estimators.

summary(Est)
#>Call:
#>Inference for Linear Functional
#>
#>Estimators:
#> loading est.plugin est.debias Std. Error z value Pr(>|z|)
#> 1 1.268 1.522 0.1805 8.430 0.000e+00 ***
#> 2 -1.033 -1.172 0.1900 -6.169 6.868e-10 ***

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 36

3.2 Quadratic functional

For a given index set G ⊂ {1, . . . , p}, the function QF(), abbreviated for Quadratic Functional, con-
ducts inference for βᵀG AβG if A ∈ R|G|×|G| is the submatrix pre-specified or βᵀGΣG,GβG under the
high-dimensional regression model (1). The function QF() can be called with the following arguments.

QF(X, y, G, A = NULL, model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE, beta.init = NULL, split = TRUE, lambda = NULL, mu = NULL,
prob.filter = 0.05, rescale = 1.1, tau = c(0.25, 0.5, 1), verbose = FALSE)

In the function QF(), the parameters X, y, model, intercept, beta.init, lambda, mu, prob.filter,
rescale maintain the same definitions as in the LF() function. In the following, we primarily focus on
elaborating the additional arguments introduced for the QF() function.

• G ⊂ {1, . . . , p} is the set of indices of interest.

• A is the matrix in the quadratic form, of dimension |G| × |G|. If A is specified, it will conduct
inference for βᵀG AβG; otherwise, if left NULL, it will turn to βᵀGΣG,GβG.

• split (default = TRUE) indicates whether we conduct sample splitting. When split=FALSE, the
initial estimator of regression coefficients in (3) is computed using one half of the sample while
the remaining half is used for bias correction in (13). When split=TRUE, the full data is used for
computing both the initial estimator and conducting the bias correction.

• tau.vec (default = c(0.25,0.5,1)) allows the user to supply a vector of possible values for τ
used in (14) and (15).

In the following, we illustrate the usage of QF() in the linear regression model.

Example 2. For 1 ≤ i ≤ n, with n = 200, the covariates Xi· are generated from multivariate normal
distribution with mean µ = 0p and covariance Σ ∈ Rp×p, with p = 150, where Σj,k = 0.5|j−k| for
1 ≤ j, k ≤ p. The regression coefficients β is constructed as β j = 0.2 for 25 ≤ j ≤ 50 and β j = 0
otherwise. We generate the outcome following the model yi = Xᵀ

i·β + εi with εi generated as the
standard normal.

n <- 200; p <- 150
mu <- rep(0,p)
Cov <- matrix(0, p, p)
for(j in 1:p) for(k in 1:p) Cov[j,k] <- 0.5^(abs(j-k))
beta <- rep(0, p); beta[25:50] <- 0.2
X <- MASS::mvrnorm(n, mu, Cov)
y <- X%*%beta + rnorm(n)

We apply the QF() function to obtain the point estimator of βᵀGΣG,GβG with G = {40, . . . , 60} along
with the standard error estimator.

test.set <- c(40:60)
Est <- QF(X, y, G = test.set, A = NULL, model = "linear", split = FALSE)

We run the function ci() that outputs the CIs for QΣ corresponding to different values of τ. With
the default τ = c(0.25, 0.5, 1), we obtain three different CIs for βᵀGΣG,GβG; see (16). Note that the true
value βᵀGΣG,GβG = 1.16 belongs to all of these constructed CIs.

ci(Est)
#> tau lower upper
#>1 0.25 0.8118792 1.466422
#>2 0.50 0.8046235 1.473677
#>3 1.00 0.7905648 1.487736

Subsequently, we employ the summary() function to yield the bias-corrected and plug-in estimators,
alongside the standard errors for the debiased estimator across different values of τ. Additionally, it
provides the p-values for the hypothesis testing H0 : QΣ = 0 versus H1 : QΣ > 0.

summary(Est)
#> Call:
#> Inference for Quadratic Functional
#>
#> tau est.plugin est.debias Std. Error z value Pr(>|z|)
#> 0.25 0.904 1.139 0.1670 6.822 8.969e-12 ***
#> 0.50 0.904 1.139 0.1707 6.674 2.486e-11 ***
#> 1.00 0.904 1.139 0.1779 6.405 1.504e-10 ***

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 37

Similarly to the LF() case, our proposed bias-corrected estimator effectively corrects the plugin
estimator’s bias, where the true value is 1.16.

3.3 Conditional average treatment effect

The function CATE(), shorthanded for Conditional Average Treatment Effect, conducts inference for
∆(xnew) = f (xᵀnewβ(2))− f (xᵀnewβ(1)) under the high-dimensional regression model (2). This function
can be implemented as follows:

CATE(X1, y1, X2, y2, loading.mat, model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE, intercept.loading = FALSE, beta.init1 = NULL, beta.init2 = NULL,
lambda = NULL, mu = NULL, prob.filter = 0.05, rescale = 1.1, verbose = FALSE)

The majority of the arguments remain consistent with those of the LF() function. We will highlight the
new parameters specific to the CATE() function.

• X1 and y1 respectively denote the design matrix and the response vector for the first sample of
data, while X2 and y2 denote those for the second sample of data.

• beta.init1 (default = NULL) is the initial estimator in (3) for the first sample, while beta.init2
(default = NULL) is for the second sample. If left as NULL, they are computed using cv.glmnet in
glmnet.

• lambda (default = NULL) represents the common tuning parameter λ for computing the initial
estimators beta.init1 and beta.init2. If left as NULL, cv.glmnet in glmnet is employed for its
computation, done separately for each sample.

• mu (default = NULL) represents the common tuning parameter µ0 in (10) for computing the
projection directions for the two samples. When unspecified and left as NULL, it is computed as
the smallest µ0 such that (10) has a finite solution, done separately for each sample.

We consider the logistic regression case to illustrate CATE() with the argument model = "logistic_alter".

Example 3. In the first group of data, the covariates X(1)
i· , for 1 ≤ i ≤ n1 with n1 = 100, follow

multivariate normal distribution with µ = 0p and covariance Σ(2) = Ip; in the second group of data,

the covariates X(2)
i· , for 1 ≤ i ≤ n2 with n2 = 180, follow multivariate normal distribution with µ = 0p

and covariance Σ(2) ∈ Rp×p with p = 120 and Σ(2)
j,k = 0.5|j−k| for 1 ≤ j, k ≤ p. We generate the binary

outcomes following the model y(k)i ∼ Bernoulli( f (X(k)ᵀ
i· β(k))) with f (z) = exp(z)/[1 + exp(z)] for

k = 1, 2. See the following code for details of β(1) and β(2).

n1 <- 100; n2 <- 180; p <- 120
mu1 <- mu2 <- rep(0,p)
Cov1 <- diag(p)
Cov2 <- matrix(0, p, p)
for(j in 1:p) for(k in 1:p) Cov2[j,k] <- 0.5^(abs(j-k))
beta1 <- rep(0, p); beta1[c(1,2)] <- c(0.5, 0.5)
beta2 <- rep(0, p); beta2[c(1,2)] <- c(1.8, 1.8)
X1 <- MASS::mvrnorm(n1, mu1, Cov1); val1 <- X1%*%beta1
X2 <- MASS::mvrnorm(n2, mu2, Cov2); val2 <- X2%*%beta2
y1 <- rbinom(n1, 1, exp(val1)/(1+exp(val1)))
y2 <- rbinom(n2, 1, exp(val2)/(1+exp(val2)))

We then employ the function CATE() to obtain point estimator of ∆(xnew) and the associated standard
error estimator. By setting model = "logistic_alter", we set the weight w(.) = 1 in (9). See Table 1.

loading.mat <- c(1, 1, rep(0, p-2))
Est <- CATE(X1, y1, X2, y2,loading.mat, model = "logistic_alter")

Having fitted the model, it allows for method ci() and summary() as LF() does. We mainly demon-
strate the ci() function and first construct confidence interval for xᵀnew(β(2) − β(1)) and observe that
95% CI covers the true value 2.6.

ci(Est)
#> loading lower upper
#>1 1 1.614269 4.514703

If we further specify the argument probability as TRUE for the logistic regression, ci() yields the CI
for f (xᵀnewβ(2))− f (xᵀnewβ(1)) whose true value is 0.2423.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=glmnet


CONTRIBUTED RESEARCH ARTICLE 38

ci(Est, probability = TRUE)
#> loading lower upper
#>1 1 0.1531872 0.5086421

3.4 Inner product

The function InnProd(), shorthanded for Inner Product, conducts inference for β
(1)ᵀ
G Aβ

(2)
G with

A ∈ R|G|×|G| where G denotes the prespecified index set. When the matrix A is not specified, the

default inference target becomes β
(1)ᵀ
G ΣG,Gβ

(2)
G .

InnProd(X1, y1, X2, y2, G, A = NULL, model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE, beta.init1 = NULL, beta.init2 = NULL, split = TRUE, lambda = NULL,
mu = NULL, prob.filter = 0.05, rescale = 1.1, tau = c(0.25,0.5,1), verbose = FALSE)

The arguments of InnProd() are similarly defined as for the function CATE(), and we mainly highlight
the new arguments in the following.

• G is the pre-specified index set, a subset of {1, · · · , p}.
• A is the matrix in the inner product form. If the matrix A is specified, it will conduct inference for

β
(1)ᵀ
G Aβ

(2)
G ; otherwise, it will turn to β

(1)ᵀ
G ΣG,Gβ

(2)
G where Σ is the common design covariance

matrix corresponding to the two samples.

In the following code, we demonstrate the use of InnProd() in the linear regression.

Example 4. In the first group of data, the covariates X(1)
i· , for 1 ≤ i ≤ n1 with n1 = 200, follow

multivariate normal distribution with µ = 0p and covariance Σ(1) = Ip; in the second group of data,

the covariates X(2)
i· , for 1 ≤ i ≤ n2 with n2 = 260, follow multivariate normal distribution with µ = 0p

and covariance Σ(2) ∈ Rp×p with p = 120 and Σ(2)
j,k = 0.5|j−k| for 1 ≤ j, k ≤ p. We generate following

the model y(k)i = X(k)ᵀ
i· β(k) + ε

(k)
i with standard normal error ε

(k)
i for k = 1, 2.

n1 <- 200; n2 <- 260; p <- 120
mu1 <- mu2 <- rep(0,p)
Cov1 <- diag(p)
Cov2 <- matrix(0, p, p)
for(j in 1:p) for(k in 1:p) Cov2[j,k] <- 0.5^(abs(j-k))
beta1 <- rep(0, p); beta1[1:10] <- 0.5
beta2 <- rep(0, p); beta2[3:12] <- 0.4
X1 <- MASS::mvrnorm(n1, mu1, Cov1)
X2 <- MASS::mvrnorm(n2, mu2, Cov2)
y1 <- X1%*%beta1 + rnorm(n1)
y2 <- X2%*%beta2 + rnorm(n2)

After preparing the data, we utilize the InnProd function to build a debiased estimator and its

associated standard error for β
(1)ᵀ
G β

(2)
G with A = I|G| and G = {1, 2, . . . , 20}.

test.set <- c(1:20)
A <- diag(length(test.set))
Est <- InnProd(X1, y1, X2, y2, G = test.set, A, model = "linear")

Having fitted the model, it allows for method ci() and summary() as QF() does. Note that the true

value β
(1)ᵀ
G β

(2)
G = 1.6 is included in the following CIs with default values τ ∈ {0.25, 0.5, 1}.

ci(Est)
#> tau lower upper
#> 1 0.25 0.7432061 2.490451
#> 2 0.50 0.7128181 2.520839
#> 3 1.00 0.6520422 2.581615

3.5 Distance

The function Dist(), shorthanded for Distance, is designed to perform inference for the quadratic
form γᵀ

G AγG, where γ = β(2)− β(1) and the index set G ⊂ {1, . . . , p}. The matrix A can either be a pre-
specified submatrix in R|G|×|G| or the covariance matrix ΣG,G within the context of high-dimensional

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 39

regression models.

Dist(X1, y1, X2, y2, G, A = NULL, model = c("linear", "logistic", "logistic_alter"),
intercept = TRUE, beta.init1 = NULL, beta.init2 = NULL, split = TRUE, lambda = NULL,
mu = NULL, prob.filter = 0.05, rescale = 1.1, tau = c(0.25,0.50,1), verbose = FALSE)

The arguments of Dist() are similarly defined as for the function CATE(), and we mainly highlight the
new arguments in the following.

• G is the pre-specified index set, a subset of {1, · · · , p}.
• A is the matrix in the inner product form. If the matrix A is specified, it will conduct inference for

γᵀ
G AγG; otherwise, it will turn to γᵀ

GΣG,GγG where Σ is the common design covariance matrix
corresponding to the two samples.

In the following example, we demonstrate the application of the Dist() function within a linear
regression context.

Example 5. For the first group of data, the covariates X(1)
i· , for each 1 ≤ i ≤ n1 where n1 = 220,

are drawn from a multivariate normal distribution with mean µ = 0p and covariance Σ(1) = Ip.

In the second group of data, the covariates X(2)
i· , for each 1 ≤ i ≤ n2 with n2 = 180, also follow

multivariate normal distribution with mean µ = 0p and covariance Σ(2) ∈ Rp×p with p = 100 and

Σ(2)
j,k = 0.5|j−k| for 1 ≤ j, k ≤ p. The regression coefficients β(1) and β(2) are generated in the following

code. Outcomes for both groups are then generated according to the model y(k)i = X(k)ᵀ
i· β(k) + ε

(k)
i

where ε
(k)
i is a standard normal error for k = 1, 2.

n1 <- 220; n2 <- 180; p <- 100
mu <- rep(0,p); Cov <- diag(p)
beta1 <- rep(0, p); beta1[1:2] <- c(0.5, 1)
beta2 <- rep(0, p); beta2[1:10] <- c(0.3, 1.5, rep(0.08, 8))
X1 <- MASS::mvrnorm(n1, mu, Cov)
X2 <- MASS::mvrnorm(n2, mu, Cov)
y1 <- X1%*%beta1 + rnorm(n1)
y2 <- X2%*%beta2 + rnorm(n2)

Next we employ the Dist() function to construct a debiased estimator for γᵀ
GΣG,GγG with G =

{1, . . . , 10}, alongside the corresponding estimated standard error.

test.set <- c(1:10)
Est <- Dist(X1, y1, X2, y2, G = test.set, A = NULL, model = "linear", split = FALSE)

Having fitted the model, it allows for methods ci() and summary() as QF() does. Here, the true value
is γᵀ

GΣG,GγG = 0.3412. Similar to the previous instances, we note that the bias-corrected estimator
effectively corrects the bias of the plugin estimator. Depending on the τ values, we obtain various
CIs, all of which encompass the true value. It is important to mention that in case of negative lower
boundaries, they will be truncated at 0 for τ = 0.5 and τ = 1.

ci(Est)
#> tau lower upper
#>1 0.25 0.028202 0.6831165
#>2 0.50 0.000000 0.7196383
#>3 1.00 0.000000 0.7926819

summary(Est)
#> Call:
#> Inference for Distance
#>
#> tau est.plugin est.debias Std. Error z value Pr(>|z|)
#> 0.25 0.4265 0.3557 0.1671 2.129 0.03327 *
#> 0.50 0.4265 0.3557 0.1857 1.915 0.05547 .
#> 1.00 0.4265 0.3557 0.2230 1.595 0.11070

4 Comparative analysis

In this section, we perform a comparative analysis of SIHR compared to existing methods in numerical
simulations. Initially, we compare our approach to traditional plug-in Lasso estimators, implemented

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SIHR


CONTRIBUTED RESEARCH ARTICLE 40

by glmnet, to demonstrate the effectiveness of bias correction. Subsequently, we will compare our
method against other inference techniques implemented by hdi and SSLasso (available at http:
//web.stanford.edu/~montanar/sslasso/code.html). We aim to demonstrate that our proposed
method ensures a unified guarantee of coverage across a wider range of settings while also significantly
enhancing computational efficiency.

Throughout this section, we evaluate the performance of our LF() estimator using synthetic data,
generated as follows. For 1 ≤ i ≤ n,

Xi·
iid∼ N (0p, Ip), yi ∼

{
N (Xᵀ

i·β, 1), for linear model;
Bernoulli(Xᵀ

i·β), for logistic model
, where β = (0.5, 0.75, 0.25, 0p−3).

The sample size n varies across {200, 400} with the number of covariates fixed as p = 300. The
loading is set as xnew = (1, 0.75, 0.5, 0p−3)

ᵀ, making our inference target xᵀnewβ = 1.1875. All results
summarized here are based on 500 simulation rounds.

4.1 Effectiveness of bias correction

We compare the bias-corrected estimator x̂ᵀnewβ, as defined in (9), against the plug-in Lasso estimator
xᵀnew β̂, where β̂ represents the Lasso estimator in (3) implemented by glmnet with a tuning parameter
selected through the package’s built-in cross-validation.

Figure 1 reports the performance for logistic regression with n = 400 and displays histograms of
500 point estimates for the plug-in Lasso and the debiased estimates outputted by SIHR. The target
xᵀnewβ = 1.1875 is highlighted with red vertical lines. It is evident that the plug-in Lasso estimators
exhibit significant bias and are not suitable for inference, whereas our bias-corrected estimators
effectively correct this bias.

Bias 0.054

0

25

50

75

100

0.5 1.0 1.5

F
re

qu
en

cy

SIHR

Bias 0.559

0

25

50

75

100

0.5 1.0 1.5

F
re

qu
en

cy

Plug−in Lasso

Figure 1: Comparison of the debiased estimates output by SIHR and plug-in Lasso estimates for
xᵀnewβ in the logistic model with n = 400. The upper panel shows the bias-corrected point estimates
derived using our package SIHR, while the lower panel features the plug-in point estimates from
the glmnet package. Red vertical lines indicate the target value xᵀnewβ = 1.1875. Biases between this
target and the empirical means of the estimates are highlighted for each method.

4.2 Comparison with other inference methods

We compare the performance of the SIHR package with existing softwares, including R packages hdi
and SSLasso. The performance metrics include the empirical coverage, averaged length of confidence
intervals, and averaged computational time (in seconds). All metrics are reported as the average of
500 simulation rounds. The confidence intervals based on hdi and SSLasso are defined as follows:

CIα(xnew) =
(

xᵀnew β̃− zα/2(xᵀnewṼxnew)1/2, xᵀnew β̃ + zα/2(xᵀnewṼxnew)1/2
)

,

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=hdi
http://web.stanford.edu/~montanar/sslasso/code.html
http://web.stanford.edu/~montanar/sslasso/code.html
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=hdi
https://CRAN.R-project.org/package=hdi


CONTRIBUTED RESEARCH ARTICLE 41

where β̃ denotes the debiased estimator and Ṽ denotes the estimated covariate matrix of β̃, outputted
by hdi and SSLasso. Note that SSLasso only provides inference for linear regression models.

Coverage and Length As shown in Table 3, the CIs based on SIHR achieve desired coverage across
various scenarios, and the lengths decrease with larger sample sizes. In contrast, the coverage of CIs
from hdi and SSLasso may be slightly undercovered, especially when n = 200.

Computation Efficiency We examine the computational efficiency of these methods and report the
average computation time in the "Time" column, measured in seconds. The SIHR package demon-
strates notable computational efficiency, with an average processing time of under 10 seconds. In
comparison, using the algorithm in hdi with parameters n = 400 and p = 300 requires approximately
8 minutes. This significant difference stems from the fact that the hdi algorithm is not tailored for in-
ferring linear functionals and separately implementing p bias correction steps, one for each regression
coefficient, while SIHR only implements a single bias correction step.

Linear Logistic

n Method Cov Len Time Cov Len Time

200

SIHR 0.94 0.47 3 0.94 0.94 3

hdi 0.90 0.38 211 0.91 0.80 213

SSLasso 0.83 0.34 17 - - -

400

SIHR 0.96 0.34 12 0.96 0.74 14

hdi 0.94 0.27 475 0.89 0.56 489

SSLasso 0.94 0.29 38 - - -

Table 3: Comparison of methods implemented by packages SIHR, hdi, SSLasso in both linear and
logistic models with n ∈ {200, 400}. The columns labeled "Cov" and "Len" denote the empirical
coverage and the length of the confidence intervals over 500 simulation runs, respectively; "Time"
indicates the average computation time in seconds. The columns titled "Linear" and "Logistic" refer to
the regression model applied. According to the experimental design, a valid inference method should
achieve a coverage rate of approximately 0.95.

5 Real data applications

5.1 Motif regression

We showcase the application of the LF() function in motif regression analysis, which investigates
the impact of motif matching scores on gene expression levels, as discussed in the literature (Beer
and Tavazoie, 2004; Conlon et al., 2003; Das et al., 2004; Yuan et al., 2007). Motifs are specific DNA
sequences bound to transcription factors, playing crucial roles in controlling transcription activities,
such as gene expressions (Yuan et al., 2007). The matching score of a motif measures its prevalence,
reflecting how prominently a motif appears in the upstream regions of genes. These matching scores
are recognized for their effectiveness in predicting gene expression levels. Our goal is to quantitatively
assess the association between these matching scores and gene expression, elucidating the underlying
biological mechanisms. In this analysis, we work with a dataset that includes the expression levels of
n = 2587 genes, where matching scores of p = 666 motifs are observed on each gene. The structure of
the data is organized as follows: for 1 ≤ i ≤ 2587,

• yi : the expression level of gene i;
• Xi,j : the matching score of the j-th motif on gene i, for 1 ≤ j ≤ 666.

Below, we display several observations of the response variable along with the first four covariates
out of a total of 666.

colnames(X) <- paste0("X",1:ncol(X))
head(cbind(y, X[,1:4]))
#> y X1 X2 X3 X4
#> YAL002W 0.51 1.1595129 1.573024 1.239862 1.144537
#> YAL003W -3.06 1.9581497 1.928997 1.228753 1.118513
#> YAL007C -1.86 1.3047351 1.617691 1.299527 1.126370
#> YAL025C -1.54 0.8057353 1.487356 1.395147 1.003005
#> YAL034C 1.00 0.8886961 1.860788 1.569881 1.316531
#> YAL035W -2.05 1.3377646 1.152577 1.532653 1.012072

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=hdi
https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=hdi
https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=hdi
https://CRAN.R-project.org/package=hdi
https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=SIHR
https://CRAN.R-project.org/package=hdi


CONTRIBUTED RESEARCH ARTICLE 42

We seek to investigate the relationships between the matching scores of individual motifs (X·,j for
1 ≤ j ≤ 666) and gene expression levels (y). Our objective is to access the significance of these
associations. For this purpose, the LF() function from the package SIHR is utilized to compute 95%
confidence intervals for the 666 regression coefficients.

p <- ncol(X)
loading.mat <- diag(p)
Est <- LF(X, y, loading.mat, model='linear')
ci(Est)

We then summarize and visualize the resulting 666 confidence intervals in Figure 2. The results reveal
that 25 of these intervals, highlighted in blue, lie entirely above zero, indicating a positive association
between the matching scores of these specific motifs and gene expression levels. Conversely, 23
intervals, marked in green, fall completely below zero, suggesting a negative influence of these motifs
on gene expression levels. Overall, these results demonstrate that 48 motifs out of the total have a
statistically significant influence on gene expression, offering valuable insights into the regulatory
mechanisms involved.

−0.6

−0.3

0.0

0.3

0.6

0 200 400 600

Motifs

R
eg

re
ss

io
n 

C
oe

fs

Figure 2: Motif: Constructed CIs for the 666 regression coefficients. Motifs represented by blue CIs
indicate a significant positive association with gene expression levels, whereas those with green CIs
demonstrate significant negative associations.

5.2 Fasting glucose level data

We have illustrated the application of the LF() function in a linear regression context. We now
demonstrate its use on another real application in a logistic regression setting. In this study, we
examine the impact of polymorphic genetic markers on glucose levels in a stock mice population.
The data, accessible at https://wp.cs.ucl.ac.uk/outbredmice/heterogeneous-stock-mice/, uses
fasting glucose levels, dichotomized at 11.1 mmol/L, as the response variable —an important indicator
for type-2 diabetes. Specifically, glucose levels below 11.1 mmol/L are considered normal and labeled
as yi = 0, while levels above 11.1 mmol/L are classified as high, indicating pre-diabetic or diabetic
conditions, and labeled as yi = 1.

The dataset initially comprises 10, 346 polymorphic genetic markers for a sample size n = 1, 269.
Given the large number of markers and the significant correlation among some of them, we implement
a selection criterion to ensure the maximum absolute correlation among the markers does not exceed
0.75. After filtering, we narrow down to a subset of 2, 341 genetic markers. Additionally, we include
"gender" and "age" as baseline covariates. To prepare for the analysis, both the genetic markers and
baseline covariates are standardized. To sum up, the data structure is organized as follows: for
i = 1, . . . , 1269:

• yi : binary indicator of whether the fasting glucose level is above 11.1 mmol/L

• Xi,j : genetic marker j for mouse i with j = 1, . . . , 2341

• Xi,2342 : gender of mouse i

• Xi,2343 : age of mouse i

Below, we display several observations of the response variable along with the first four covariates out
of a total of 2343.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SIHR
https://wp.cs.ucl.ac.uk/outbredmice/heterogeneous-stock-mice/


CONTRIBUTED RESEARCH ARTICLE 43

head(cbind(y, X[,1:4]))
#> y rs3674785_G rs13475705_A rs13475706_G rs3684358_C
#> A048005080 1 0.184158 -0.5697056 0.6063887 -0.3444252
#> A048006555 0 -1.258413 -0.5697056 -0.9113771 1.1272098
#> A048007096 0 0.184158 1.5137423 -0.9113771 -0.3444252
#> A048010273 1 -1.258413 -0.5697056 -0.9113771 1.1272098
#> A048010371 0 0.184158 -0.5697056 0.6063887 -0.3444252
#> A048011287 0 0.184158 1.5137423 -0.9113771 -0.3444252

Given the real dataset, we aim to investigate the association of each polymorphic marker (X·,j for
1 ≤ j ≤ 2341) with fasting glucose levels (y) and determine the statistical significance of each
association. We employ the function LF() configured with model = "logistic" to compute confidence
intervals for the initial 2341 regression coefficients, which correspond to all polymorphic markers, as
demonstrated in the following code:

p <- ncol(X)
loading.mat <- diag(p)[,-c(2342,2343)]
Est <- LF(X, y, loading.mat, model='logistic')
ci(Est)

We then visualize the obtained 2341 confidence intervals in Figure 3. It reveals that 13 genetic markers
display CIs exclusively above 0 (marked in blue), signifying a significant positive correlation with
fasting glucose levels. Conversely, 16 markers exhibit CIs entirely below 0 (marked in green), denoting
a significant negative correlation with fasting glucose levels. These results showcase that 29 genetic
markers out of the total have a statistically significant impact on glucose levels.

−10

−5

0

5

10

15

0 500 1000 1500 2000

Polymorphic Genetic Markers

R
eg

re
ss

io
n 

C
oe

fs

Figure 3: Glucose: Constructed CIs for the first 2341 regression coefficients. Genetic markers repre-
sented by blue CIs indicate a significant positive association with the fasting glucose level, whereas
those with green CIs demonstrate significant negative associations.

6 Conclusion

There has been significant recent progress in debiasing inference methods for high-dimensional GLMs.
This paper highlights the application of advanced debiasing techniques in high-dimensional GLMs
using the R package SIHR. The package provides tools for estimating bias-corrected point estimators
and constructing CIs for various low-dimensional objectives in both one- and two-sample regression
settings. Through extensive simulations and real-data analyses, we demonstrate the practicality and
versatility of the package across diverse fields of study, making it an essential addition to the literature.

7 Acknowledgement

Prabrisha Rakshit and Zhenyu Wang contributed equally to this work and are considered co-first
authors. Dr. Tony Cai’s research was supported in part by NSF grant DMS-2015259 and NIH grants
R01-GM129781 and R01-GM123056. Dr. Zijian Guo’s research was supported in part by NSF grants
DMS-1811857 and DMS-2015373 and NIH grants R01-GM140463 and R01-LM013614. Dr. Zijian Guo is
grateful to Dr. Lukas Meier for sharing the motif regression data used in this paper.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SIHR


CONTRIBUTED RESEARCH ARTICLE 44

References

M. A. Beer and S. Tavazoie. Predicting gene expression from sequence. Cell, 117(2):185–198, 2004.
[p41]

A. Belloni, V. Chernozhukov, and L. Wang. Square-root lasso : pivotal recovery of sparse signals via
conic programming. Biometrika, 98(4):791–806, 2011. [p27]

P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of lasso and dantzig selector. The
Annals of statistics, 37(4):1705–1732, 2009. [p28]

P. Bühlmann and S. van de Geer. Statistics for high-dimensional data: methods, theory and applications.
Springer Science & Business Media, 2011. [p27]

T. Cai, T. Tony Cai, and Z. Guo. Optimal statistical inference for individualized treatment effects in
high-dimensional models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 83
(4):669–719, 2021a. [p27, 28, 29, 30, 31]

T. T. Cai and Z. Guo. Semisupervised inference for explained variance in high dimensional linear
regression and its applications. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
82(2):391–419, 2020. [p27]

T. T. Cai, Z. Guo, and R. Ma. Statistical inference for high-dimensional generalized linear models with
binary outcomes. Journal of the American Statistical Association, pages 1–14, 2021b. [p27, 30]

E. M. Conlon, X. S. Liu, J. D. Lieb, and J. S. Liu. Integrating regulatory motif discovery and genome-
wide expression analysis. Proceedings of the National Academy of Sciences, 100(6):3339–3344, 2003.
[p41]

D. Das, N. Banerjee, and M. Q. Zhang. Interacting models of cooperative gene regulation. Proceedings
of the National Academy of Sciences, 101(46):16234–16239, 2004. [p41]

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association, 96:1348–1360, 2011. [p27]

Z. Guo, W. Wang, T. T. Cai, and H. Li. Optimal estimation of genetic relatedness in high-dimensional
linear models. Journal of the American Statistical Association, 114:358–369, 2019. [p27, 28, 30, 32]

Z. Guo, P. Rakshit, D. S. Herman, and J. Chen. Inference for the case probability in high-dimensional
logistic regression. The Journal of Machine Learning Research, 22(1):11480–11533, 2021a. [p30]

Z. Guo, C. Renaux, P. Bühlmann, and T. Cai. Group inference in high dimensions with applications to
hierarchical testing. Electronic Journal of Statistics, 15(2):6633–6676, 2021b. [p27, 29, 30, 31]

Z. Guo, X. Li, L. Han, and T. Cai. Robust inference for federated meta-learning. arXiv preprint
arXiv:2301.00718, 2023. [p28]

J. Huang and C.-H. Zhang. Estimation and selection via absolute penalized convex minimization and
its multistage adaptive applications. Journal of Machine Learning Research, 13(Jun):1839–1864, 2012.
[p27]

A. Javanmard and A. Montanari. Confidence intervals and hypothesis testing for high-dimensional
regression. The Journal of Machine Learning Research, 15(1):2869–2909, 2014. [p27, 28]

R. Ma, Z. Guo, T. T. Cai, and H. Li. Statistical inference for genetic relatedness based on high-
dimensional logistic regression. arXiv preprint arXiv:2202.10007, 2022. [p28, 32]

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the lasso.
The annals of statistics, 34(3):1436–1462, 2006. [p28]

N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-dimensional data.
Annals of Statistics, 37(1):246–270, 2009. [p27]

S. Negahban, B. Yu, M. J. Wainwright, and P. K. Ravikumar. A unified framework for high-dimensional
analysis of m-estimators with decomposable regularizers. In Advances in Neural Information Processing
Systems, pages 1348–1356, 2009. [p27]

T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99(4):879–898, 2012. [p27]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 45

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 58(1):267–288, 1996. [p27]

S. van de Geer, P. Bühlmann, Y. Ritov, and R. Dezeure. On asymptotically optimal confidence regions
and tests for high-dimensional models. The Annals of Statistics, 42:1166–1202, 2014. [p27, 28]

M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using `1-
constrained quadratic programming (lasso). IEEE transactions on information theory, 55(5):2183–2202,
2009. [p28]

Y. Yuan, L. Guo, L. Shen, and J. S. Liu. Predicting gene expression from sequence: a reexamination.
PLoS computational biology, 3(11):e243, 2007. [p41]

C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics,
38(2):894–942, 2010. [p27]

C.-H. Zhang and S. S. Zhang. Confidence intervals for low dimensional parameters in high dimensional
linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(1):217–242,
2014. [p27, 28]

P. Zhao and B. Yu. On model selection consistency of lasso. The Journal of Machine Learning Research, 7:
2541–2563, 2006. [p28]

Prabrisha Rakshit
Rutgers, The State University of New Jersey
USA
prabrisha.rakshit@rutgers.edu

Zhenyu Wang
Rutgers, The State University of New Jersey
USA
zw425@stat.rutgers.edu

Tony Cai
University of Pennsylvania
USA
tcai@wharton.upenn.edu

Zijian Guo
Rutgers, The State University of New Jersey
USA
zijguo@stat.rutgers.edu

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

prabrisha.rakshit@rutgers.edu
zw425@stat.rutgers.edu
tcai@wharton.upenn.edu
zijguo@stat.rutgers.edu


CONTRIBUTED RESEARCH ARTICLE 46

SNSeg: An R Package for Time Series
Segmentation via Self-Normalization
by Shubo Sun, Zifeng Zhao, Feiyu Jiang, and Xiaofeng Shao

Abstract T

1 Introduction

Time series segmentation, also known as change-point estimation in time series, has become increas-
ingly popular in various fields such as statistics, bioinformatics, climate science, economics, finance,
signal processing, epidemiology, among many others. As a result, numerous methods have been
proposed to address different types of change-point estimation problems under various settings. This
in turn leads to the development of many R packages for their implementation.

Here, we list some commonly used and influential packages for change-point analysis in the
R programming language. The package strucchange (Zeileis et al., 2002) employs algorithms pro-
posed by Zeileis et al. (2003) to identify structural changes in linear regression models. The package
changepoint (Killick and Eckley, 2014) provides numerous methods for estimating change-points in
a univariate time series, containing the Binary Segmentation (BS) and the pruned exact linear time
(PELT) algorithm as described in Killick et al. (2012), and the segment neighbourhoods algorithm
in Auger and Lawrence (1989). The package mosum (Meier et al., 2021) executes the moving sum
(MOSUM) procedure introduced by Eichinger and Kirch (2018) for univariate time series. It can
implement MOSUM with a single bandwidth parameter and also allows multiple bandwidths via
either bottom-up merging or localized pruning. The package cpss (Wang and Zou, 2023) focuses on
change-point estimation in various generalized linear models utilizing the sample-split strategy pro-
posed by Zou et al. (2020). We note that there are also packages targeting nonparametric distributional
changes, e.g. the package ecp (James and Matteson, 2014) and cpm (Ross, 2015).

However, the aforementioned methods, as well as their implementation packages, are subject to
certain limitations when applied to change-point estimation in multivariate time series. First, most
packages only provide functions to detect specific types of changes (e.g. mean or variance). Although
it may be possible to modify these functions to cover other types of changes (e.g. quantiles), such a
generalization is usually not easy and requires non-trivial effort. This means that for the same dataset,
different methods or substantial modifications to the existing codes may be required for estimating
different types of changes, which may incur inconvenience of implementation for practitioners. Second,
many packages implement methods that assume temporal independence among data, which may not
be realistic in practice, and thus may suffer from issues such as false positive detections.

Recently, Zhao et al. (2022) have developed a new framework called self-normalization based
change-point estimation (SNCP) to overcome the above limitations. The most appealing feature of
SNCP is its versatility as it allows for change-point estimation in a broad class of parameters (such as
mean, variance, correlation, quantile and their combinations) in a unified fashion. The basic idea of
SNCP is to augment the conventional cumulative sum (CUSUM) statistics with the technique called
self-normalization (SN). SN is originally introduced by Shao (2010) for confidence interval construction
of a general parameter in the stationarity time series setting, and is later extended to change-point
testing by Shao and Zhang (2010). It can bypass the issue of bandwidth selection in the consistent
long-run variance estimation. See Shao (2015) for a review. SNCP is fully nonparametric, robust to
temporal dependence and applicable universally for various parameters of interest for a multivariate
time series. Furthermore, based on a series of carefully designed nested local-windows, SNCP can
isolate each true change-point adaptively and achieves the goal of multiple change-point estimation
with respectable detection power and estimation accuracy.

In this paper, we introduce the R package SNSeg (Sun et al., 2023), which implements the SNCP
framework in Zhao et al. (2022) for univariate and multivariate time series segmentation. This is
achieved by the functions SNSeg_Uni() and SNSeg_Multi(), respectively. Another contribution of
this paper is to extend the SNCP framework to change-point estimation in the mean vector of a
high-dimensional time series. Since SNCP is only applicable to fixed-dimensional time series, a new
procedure based on U-statistics (Wang et al., 2022), termed as SNHD, is proposed by modifying
the original SNCP in Zhao et al. (2022). The implementation of SNHD is available through the
function SNSeg_HD(). Graphical options are also allowed for plotting the estimated change-points and
associated test statistics.

The rest of the paper is organized as follows. We first provide the background of SN based
statistics and the SNCP/SNHD procedures for change-point estimation in Section 2.2. In Section

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SNSeg


CONTRIBUTED RESEARCH ARTICLE 47

2.3, we demonstrate the core functions of the package SNSeg by various examples of change-point
estimation problems. Additional simulation results and comparison with existing packages are
provided in Section 2.4. Section 2.5 concludes.

2 SNCP Framework

This section gives necessary statistical backgrounds of SNCP in change-point estimation problems.
We first demonstrate how an SN based CUSUM test statistic works for estimating a single change-
point, and then introduce the nested local-window based SNCP algorithm for multiple change-point
estimation. The extension of SNCP to change-point estimation in high-dimensional mean problem
is also provided and we term the related algorithm as SNHD. The issue of how to choose tuning
parameters is also discussed.

2.1 Single Change-Point Estimation

Let {Yt}n
t=1 be a sequence of multivariate time series of dimension p, which is assumed to be fixed

for now. We aim to detect whether there is a change-point in the quantities {θt}n
t=1 defined by

θt = θ(Ft) ∈ Rd, where Ft denotes the distribution function of Yt, and θ(·) is a general functional such
as mean, variance, auto-covariance, quantiles, etc. More specifically, if there is no change-point, then

θ1 = · · · = θn. (1)

Otherwise, we assume there is an unknown change-point k∗ ∈ {1, · · · , n− 1} defined by

θ1 = · · · = θk∗ 6= θk∗+1 = · · · = θn, (2)

and our interest is to recover the location k∗.
The above setting allows for at most one change-point in {θt}n

t=1. A commonly used statistic for
testing the existence of change-points is based on the CUSUM process, defined by

Dn(k) =
k(n− k)

n3/2

(
θ̂1,k − θ̂k+1,n

)
, k ∈ {1, 2, · · · , n− 1}, (3)

where for any 1 ≤ a < b ≤ n, θ̂a,b = θ(F̂a,b) estimates the model parameter with F̂a,b being the
empirical distribution of {Yt}b

t=a. For example, when θ(·) is the mean functional, it can be shown that

Dn(k) =
1√
n

k

∑
t=1

(Yt − Ȳ), Ȳ = n−1
n

∑
t=1

Yt.

The CUSUM process in (3) sequentially compares the estimates before and after a time point k, and
its norm is expected to attain the maximum when k = k∗. Intuitively, if (1) holds, then Dn(k) should
fluctuate around zero; otherwise if (2) holds, then θ̂1,k and θ̂k+1,n are consistent estimators for θ1 and
θn, respectively at k = k∗, and the resulting contrast ‖Dn(k∗)‖ would be most informative about the
change signal ∆n = θk∗+1 − θk∗ . Therefore, it is natural to estimate the change-point location via

k̃ = arg max
k=1,··· ,n−1

‖Dn(k)‖2. (4)

However, analyzing the asymptotic distribution of CUSUM process {Dn(bnrc)}r∈[0,1] for time series
data is difficult, as it typically depends on a nuisance parameter called long-run variance (Newey
and West, 1987; Andrews, 1991). As mentioned before, the estimation of long-run variance is quite
challenging even in a stationary time series, let alone the scenario when a change-point is present.

To bypass this issue, Zhao et al. (2022) propose to estimate the change-point via the self-normalized
version of (4), i.e.

k̂ = arg max
k=1,··· ,n−1

Tn(k), Tn(k) = Dn(k)′V−1
n (k)Dn(k), (5)

where

Vn(k) =
k

∑
i=1

i2(k− i)2

n2k2 (θ̂1,i − θ̂i+1,k)
⊗2 +

n

∑
i=k+1

(n− i + 1)2(i− k− 1)2

n2(n− k)2 (θ̂i,n − θ̂k+1,i−1)
⊗2, (6)

is defined as the self-normalizer of Dn(k) with a⊗2 = aa> for a vector a. The self-normalizer Vn(k) is
proportional to long run variance, which gets canceled out in the limiting null distribution of Tn(k).
Thus, the testing/estimation of a single change-point is completely free of tuning parameters.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 48

In practice, we may not know whether the series {θt}n
t=1 contains a change-point or not, so a

testing step is called for prior to the estimation step. Formally speaking, given a pre-specified threshold
Kn, we declare the existence of a change-point when

SNn := max
k=1,··· ,n−1

Tn(k) > Kn,

and then estimate the single change-point via (5). Otherwise, if SNn is below the threshold Kn, we
declare no change-points.

2.2 Multiple Change-Point Estimation

Section 2.2.1 introduces how SNCP works in the single change-point setting. In this section, we
further discuss its implementation for multiple change-point estimation. Compared with the single
change-point setting, the main difficulty of multiple change-point estimation lies in how to isolate one
change-point from another. In SNCP, this is achieved by a nested local-window approach.

We first introduce some notations. Assume there are m0 ≥ 0 unknown number of change-points
with k0 = 0 < k1 < · · · < km0 < n = km0+1 that partition Yt into m0 + 1 stationary segments with
constant quantity of interest θ(i) in the ith segment, for i = 1, · · · , m0 + 1. In other words,

θt = θ(i), ki−1 + 1 ≤ t ≤ ki, for i = 1, · · · , m0 + 1.

Similar to the single change-point estimation framework, for 1 ≤ t1 < k < t2 ≤ n, we define an SN
based test statistic

Tn(t1, k, t2) = Dn(t1, k, t2)
′V−1

n (t1, k, t2)Dn(t1, k, t2), (7)

where Dn(t1, k, t2) =
(k−t1+1)(t2−k)
(t2−t1+1)3/2 (θ̂t1,k − θ̂k+1,t2 ), Vn(t1, k, t2) = Ln(t1, k, t2) + Rn(t1, k, t2) and

Ln(t1, k, t2) =
k

∑
i=t1

(i− t1 + 1)2(k− i)2

(t2 − t1 + 1)2(k− t1 + 1)2 (θ̂t1,i − θ̂i+1,k)
⊗2,

Rn(t1, k, t2) =
t2

∑
i=k+1

(t2 − i + 1)2(i− 1− k)2

(t2 − t1 + 1)2(t2 − k)2 (θ̂i,t2 − θ̂k+1,i−1)
⊗2.

Here Tn(t1, k, t2) plays the same role as Tn(k) in (5), except for the fact that it is defined on the
subsample {Yt}t2

t=t1
. In other words, Tn(t1, k, t2) = Tn(k) if t1 = 1 and t2 = n.

We now combine the SN framework with a nested local-window segmentation algorithm in Zhao
et al. (2022) for multiple change-point estimation. For each k, instead of using the global statistic
Tn(1, k, n) which is computed with all observations, we compute a maximal SNCP test statistic based on
a collection of nested windows covering k. Specifically, we fix a small trimming parameter ε ∈ (0, 1/2)
and define the window size h = bnεc. For each k = h, · · · , n− h, we define the nested local-window
set H1:n(k) as

H1:n(k) = {(t1, t2)|t1 = k− j1h + 1, j1 = 1, · · · , bk/hc; t2 = k + j2h, j2 = 1, · · · , b(n− k)/hc.} (8)

Note that for k < h and k > n− h, we have H1:n(k) = ∅. In Figure 1, we plot a graphical illustration
of the nested local-windows in H1:n(k), where local windows are constructed by combining every pair
of the red left bracket [ and the blue right bracket ].

Figure 1: Graphical illustration of the nested local-windows in H1:n(k). Each pair of the red left bracket
[ and the blue right bracket ] represents a local-window in H1:n(k).

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 49

For each k = 1, · · · , n− 1, based on its nested local-window set H1:n(k), we define a maximal SN
test statistic such that

T1,n(k) = max
(t1,t2)∈H1:n(k)

Tn(t1, k, t2), (9)

where we set max(t1,t2)∈∅ Tn(t1, k, t2) = 0.

Intuitively, with a sufficiently small trimming ε, the nested local-window framework ensures
that for a true change-point location, say k∗, there exists some local window set denoted by (t∗1 , t∗2)
containing k∗ as the only change-point. In other words, k∗ is isolated by the interval (t∗1 , t∗2) so that the
procedure in the single change-point scenario as Section 2.2.1 can be applied. This suggests that for at
least one pair of (t1, t2) in H1:n(k), Tn(t1, k∗, t2) is large. The detection power is further enhanced by
taking the maximum of these test statistics.

Based on the maximal test statistic T1,n(k) and a pre-specified threshold Kn, SNCP proceeds
as follows. Starting with the full sample {Yt}n

t=1, we calculate T1,n(k), k = 1, · · · , n. Given that
maxk=1,...,n Tn(k) ≤ Kn, SNCP declares no change-point. Otherwise, SNCP sets k̂ = arg maxk=1,...,n T1,n(k)

and we recursively perform SNCP on the subsample {Yt}k̂
t=1 and {Yt}n

t=k̂+1
until no change-point

is declared. Denote Ws,e =
{
(t1, t2)

∣∣s ≤ t1 < t2 ≤ e
}

and Hs:e(k) = H1:n(k)
⋂

Ws,e, which is the
nested window set of k on the subsample {Yt}e

t=s. Define the subsample maximal SN test statistic
as Ts,e(k) = max

(t1,t2)∈Hs:e(k)
Tn(t1, k, t2). Algorithm 1 states the formal description of SNCP in multiple

change-points estimation.

We note that SNCP shares some similarity with binary segmentation (BS) in the sense that both
algorithms search for change-points in a sequential fashion. However, they are also quite different. In
particular, the SN test statistic in SNCP is computed over a set of nested local-windows instead of
over a single interval. In contrast, in the classical change-point literature, BS is usually coupled with a
global CUSUM statistic computed over the entire dataset [1, n]. As is documented in the literature
(Shao, 2010), the main drawback of BS with CUSUM statistic is its power loss under non-monotonic
change, which is caused by the use of the global CUSUM statistic coupled with the sequential search.
However, due to the use of the nested local-window based SN test statistic, SNCP does not suffer from
this power loss phenomenon as long as ε is chosen to be smaller than the minimum spacing between
two change-points. On the other hand, due to the sequential search nature, both SNCP and BS may
encounter the multiple testing problem. In addition, their power may be lesser compared to a global
search algorithm, such as dynamic programming or PELT, which is again due to the sequential nature
of the search algorithm.

As pointed out by a referee, another way of interpreting our method is to view SNCP as the test
statistic and BS as the search algorithm. Therefore, the use of BS is not necessarily problematic when
there are multiple change-points in the data and it depends on what test statistics BS is combined with.
This points to a potentially interesting research direction, which is to develop locally adaptive test
statistic that can accommodate multiple change-points and combine it with BS.

Algorithm 1: SNCP procedures for multiple change-point estimation

Input: Time series {Yt}n
t=1, threshold Kn, window size h = bnεc

Output: Estimated change-points k̂ = (k̂1, · · · , k̂m̂)

Initialization: SNCP(1, n, Kn, h), k̂ = ∅
Procedure: SNCP(s, e, Kn, h)
if e− s + 1 < 2h then

stop
else

k̂∗ = arg maxk=s,··· ,e Ts,e(k);
if Ts,e(k̂∗) ≤ Kn then

stop
else

k̂ = k̂ ∪ k̂∗;
run SNCP(s, k̂∗, Kn, h) and SNCP(k̂∗ + 1, e, Kn, h);

end
end

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 50

2.3 Multiple Change-Point Estimation for High-Dimensional Mean

In this section, we modify the SNCP framework in Section 2.2.2 to design a new algorithm called
SNHD for multiple change-point estimation in the mean vector of a high-dimensional time series.

Different from the subsample test statistic Tn(t1, k, t2) used in SNCP for a low-dimensional time
series, SNHD is designed based on the high-dimensional U-statistic proposed by Wang et al. (2022).
Given a p-dimensional time series {Yt}n

t=1, we define the subsample contrast statistic as

DU
n (t1, k, t2) = ∑

t1≤j1,j3≤k
j1 6=j3

∑
k+1≤j2,j4≤t2

j2 6=j4

(Yj1 −Yj2 )
>(Yj3 −Yj4 ). (10)

Note that DU
n (t1, k, t2) is a two-sample U-statistic estimating the squared L2-norm of the difference

between the means of {Yt}k
t=t1

and {Yt}t2
t=k+1 (up to some normalizing constant), and therefore targets

dense changes in high-dimensional mean. The statistic in (10) is only applicable to high-dimensional
time series with temporal independence, and in the presence of temporal dependence, a trimming
parameter needs to be introduced to alleviate the bias due to serial dependence; see Wang et al. (2022).
Define the self-normalizer as

VU
n (t1, k, t2) =

1
n

[ k−2

∑
t=t1+1

DU
n (t1, t, k)2 +

t2−2

∑
t=k+2

DU
n (k + 1, t, t2)

2
]
. (11)

The subsample SNHD test statistic at time point k, in the same spirit as (9), is defined as

TU
1,n(k) = max

(t1,t2)∈H1:n(k)
TU

n (t1, k, t2), TU
n (t1, k, t2) = DU

n (t1, k, t2)
2/VU

n (t1, k, t2), (12)

where H1:n(k) is the nested local-window set defined in (8). With a pre-specified threshold KU
n , a

change-point is detected at k̂ = arg maxk=1,··· ,n TU
1,n(k) if maxk=1,··· ,n TU

1,n(k) is above KU
n . For multiple

change-point estimation, SNHD proceeds similarly as SNCP in Algorithm 1.

2.4 Choice of Trimming Parameter ε and Threshold Kn

For practical implementation of SNCP and SNHD, there are still two tuning parameters that one has to
choose, namely the trimming parameter ε and the change-point detection threshold Kn. The choice of
ε reflects one’s belief of the minimum (relative) spacing between two consecutive change-points. This
is usually set to be a small constant such as 0.05, 0.10, 0.15. The theoretical validity of our approach
requires the minimum spacing between change-points to be of order O(n), and opting for an overly
small value of ε may result in sub-optimal performance in finite sample as the nested local-window
may not contain sufficient observations. On the other hand, an overly large value of ε may increase the
potential risk of under-estimating change-points if ε is larger than the minimum spacing between two
true change-points. In practice, we recommend using 0.05 as a default value when no prior knowledge
of minimum spacing between change-points is available.

A nice feature of using SN is that the limiting distributions for SNCP or SNHD under the no
change-point scenario are pivotal and furthermore reflect the impact of the choice of ε, see Theorem
3.1 in Zhao et al. (2022), and Section S.2.9 in Zhao et al. (2021), respectively. Since Kn and KU

n are used
to balance one’s tolerance of type-I and type-II errors, this implies that we can choose Kn and KU

n as
the q× 100% quantiles (i.e. the critical value) of the limiting null distribution with q typically set as 0.9,
0.95, 0.99. The threshold value Kn also increases with the dimension of the quantity θ, and we refer to
Table 1 in Zhao et al. (2022) for details. In the SNSeg package, we offer users a wide range of ε and q
to choose from. Details are given in the following section.

In Section 2.4.1, we further conduct a sensitivity analysis, which suggests that the performance of
SNCP in general is robust w.r.t. the choice of (ε, Kn).

3 The SNSeg Package

In this section, we introduce the functions within the SNSeg package for multiple change-point
estimation. In particular, SNSeg_Uni() in Section 2.3.1 implements the SNCP procedure of change-
point estimation for a univariate time series with changes in a single or multiple parameters, such as
mean, variance, auto-correlations, quantiles or even their combinations. It can also be implemented
for detecting change-points in other quantities, with a user-defined function as input. The function
SNSeg_Multi() in Section 2.3.2 utilizes the SNCP algorithm for change-point estimation in mean or
covariance matrix of a multivariate time series. In Section 2.3.3, the function SNSeg_HD() estimates

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 51

change-points in mean of a high-dimensional time series using the SNHD procedure. In addition to
these major functions for change-point estimation, we further introduce max_SNsweep() in Section
2.3.4, which helps obtain the SN test statistics and create a segmentation plot based on the output of
the above functions. Followed by the graphical options, the function SNSeg_estimate() generates
parameter estimates within each segment separated by the estimated change-points.

3.1 SNCP for Univariate Time Series

For a univariate time series, change-point estimation in a single or multiple functionals can be
implemented through the function SNSeg_Uni(). This function is also capable of detecting change-
points associated with the change in correlation between bivariate time series. The R code is given
as:

SNSeg_Uni(ts, paras_to_test, confidence = 0.9, grid_size_scale = 0.05,
grid_size = NULL, plot_SN = TRUE, est_cp_loc = TRUE)

It takes the following input arguments.

• ts: Input time series {Yt}n
t=1, i.e., a univariate time series expressed as a numeric vector with

length n. However, when the argument paras_to_test is specified as bivcor, which stands for
the correlation between bivariate time series, the input ts must be an n× 2 matrix.

• paras_to_test: The parameters that SNCP aims to examine, which are presented as a string,
a number, a combination of both, or a user-defined function that defines a specific functional.
Available options of paras_to_test include:

– "mean": The function performs change-point estimation on the mean of the time series.

– "variance": The function performs change-point estimation on the variance.

– "acf": The function performs change-point estimation on the autocorrelation of order 1.

– "bivcor": The function performs change-point estimation on the bivariate correlation.

– A numeric quantile value within the range (0,1): The function performs change-point
estimation on the quantile level specified by the numeric value.

– A vector containing characters "mean", "variance", "acf", and one or more numerical
quantile levels. Therefore, SNSeg_Uni() is capable of estimating change-points in either a
single parameter or a combination of multiple parameters.

– A user-defined R function that returns a numeric value. Existing functions in R such
as mean() and var() can also be used. This option provides additional flexibility for the
users to define a specific functional that they are interested in and is not covered by
our built-in options. The input argument paras_to_test should possess the form of
function(ts){...}.

• confidence: A numeric value that specifies the confidence level of the SN test. Available choices
of confidence levels contain 0.9, 0.95, 0.99, 0.995 and 0.999. It automatically obtains the
threshold (Kn, the critical value) corresponding to the input confidence level. The default value
of confidence is set at 0.9.

• grid_size_scale: A numeric value that specifies the trimming parameter ε and only in use if
grid_size = NULL. Available choices include 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5. The default value of grid_size_scale is 0.05.

– In the function, any input less than 0.05 will be set to exactly 0.05 and similarly, any input
greater than 0.5 will be set to 0.5. In such case, a warning that "Detected the grid_size_scale
is greater than 0.5" or "less than 0.05" will be generated.

• grid_size: A numeric value that specifies the local window size h. It should be noted that
h = bn× εc, i.e., grid_size= bn× grid_size_scalec. By default, the value of grid_size is set
to NULL, and the function computes the critical value Kn using the argument grid_size_scale.
However, users have the option to set the grid_size manually, in which case the function com-
putes the corresponding grid_size_scale via dividing grid_size by n, and then determines
the critical value using this computed grid_size_scale value.

• plot_SN: A Boolean value that specifies whether to plot the time series or not. The default
setting is TRUE.

• est_cp_loc: A Boolean value that specifies whether to plot a red vertical line for each estimated
change-point. The default setting is TRUE.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 52

The function SNSeg_Uni() provides users with flexibility by allowing them to select parameter
types that they want to target at. Additionally, users can specify the window size or choose an
appropriate value for ε to achieve the desired theoretical critical value. However, if ε happens to be
larger than the true minimum spacing between change-points, the function carries the risk of missing
some of them. This limitation also applies to the functions SNSeg_Multi() and SNSeg_HD(). In practice,
we suggest ε = 0.05 with no prior knowledge. If the calculated trimming parameter ε by any of
the two arguments falls within the range [0.05, 0.5], but is not in the pre-specified set of available
values for grid_size_scale, the function performs a linear interpolation by identifying two nearest
grid_size_scale that are below and above the calculated ε and then computes the weighted average
of the corresponding critical values Kn. The resulting interpolated value is used as the final critical
value for the SN test.

When called, SNSeg_Uni() returns an S3 object of class SNSeg_Uni containing the following entries.

• ts: The input time series ts.

• paras_to_test: The parameter(s) examined in change-point estimation.

• grid_size: A numeric value of the local window size h.

• SN_sweep_result: A list of n matrices where the kth matrix stores the SN test statistic Tn(t1, k, t2)
computed for all (t1, t2) ∈ H1:n(k) as in (9). In particular, the kth matrix consists of four columns:
1. the SN test statistic Tn(t1, k, t2) computed via (7); 2. the location k; 3. the left endpoint t1; and
4. the right endpoint t2.

• est_cp: A numeric vector containing the locations of the estimated change-points.

• confidence: The confidence level of the SN test.

• critical_value: The critical value of the SN test given ε and the confidence level.

It is worth noting that the output of the function SNSeg_Uni() can serve as an input of the function
max_SNsweep() (to be described in Section 2.3.4) to generate a segmentation plot for SN test statistics,
and the same also holds for functions SNSeg_Multi() and SNSeg_HD(). Additionally, S3 objects of class
SNSeg_Uni are supported by print(), summary() and plot() functions. The S3 function print() can
be used to display the estimated change-points, summary() presents information such as change-point
locations and other details listed in the output of SNSeg_Uni(), and plot() facilitates the generation
of time series segmentation plots, providing an alternative option to the argument plot_SN = TRUE
for users. These functions can also be applied to outputs of functions SNSeg_Multi() and SNSeg_HD(),
which will be introduced below.

To illustrate, in the following, we present examples demonstrating multiple change-point estima-
tion in both single and multiple parameters.

Example 1: variance change in univariate time series

We start with the example of the change-point model (V1) in Section S.2.5 in the supplement of
Zhao et al. (2022), where two variance changes occur at k = 400 and 750, respectively. Specifically,

(V1) : Yt =


0.5Yt−1 + εt, t ∈ [1, 400],
0.5Yt−1 + 2εt, t ∈ [401, 750],
0.5Yt−1 + εt, t ∈ [751, 1024],

where εt is a sequence of i.i.d. N(0, 1) random variables.

We set grid_size_scale at ε = 0.05, which corresponds to a grid_size of b0.05 ∗ 1024c = 51,
and set confidence at 90%. Subsequently, we visualize the input time series by setting plot_SN as
TRUE, and generate an SN test statistics segmentation plot using the max_SNsweep() function (to be
introduced in Section 2.3.4).

# Generate model (V1)
set.seed(7)
ts <- MAR_Variance(reptime = 1, type = "V1") # generate model (V1)
par(mfcol = c(2, 1), mar = c(4, 2.5, 2.5, 0.5))

# SNCP in the change of variance
result1 <- SNSeg_Uni(ts, paras_to_test = "variance", confidence = 0.9,

grid_size_scale = 0.05, grid_size = NULL, plot_SN = TRUE,
est_cp_loc = TRUE)

# Segmentation plot for SN-based test statistics
SNstat1 <- max_SNsweep(result1, plot_SN = TRUE, est_cp_loc = TRUE, critical_loc = TRUE)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 53

The estimated locations of the change-points k̂, the local window size h, and the critical value Kn used
can be accessed using the following commands:

result1$est_cp
[1] 411 748
result1$grid_size
[1] 51
result1$critical_value
[1] 141.8941

The estimated change-point locations are k̂ = 411 and 748 with a local window size of h = 51 and
critical value of Kn = 141.8941 when setting the trimming parameter to ε = 0.05 and the confidence
level to 90%. It is clear that the estimated change-points align closely with the true change-points,
which demonstrates the accuracy of the SNCP procedure. The above outputs can also be obtained via
the S3 methods summary() and print(), and are shown in the following commands:

# S3 method: print
print(result1)
#> The detected change-point location(s) are 411,748
# S3 method: summary
summary(result1)
#> There are 2 change-points detected at 90th confidence level based on the change in
#> the single variance parameter.
#>
#> The critical value of SN-based test is 141.8941189
#>
#> The detected change-point location(s) are 411,748 with a grid_size of 51

Figure 2 displays segmentation plots for the input time series and the SN test statistics regarding
the changes in univariate variance. It reveals that the SN statistics associated with the detected
change-points surpass the critical value, and can be deemed as plausible changes. The upper plot (SN
segmentation plot of the time series) can also be achieved through the command plot(result1).

0 200 400 600 800 1000

−
6

−
2

2
4

6

SN Segmentation plot for Univariate Variance

Time

0 200 400 600 800 1000

0
2
0
0

6
0
0

SN Test Statistic Segmentation Plot

Time

Figure 2: An example of simulated time series of model (V1). The upper panel illustrates the detection
of change-points for the input time series, and the lower panel displays the segmentation of the SN
test statistics using the estimated change-points. The detected change-point locations are indicated by
a red vertical line and the critical value is represented by a blue horizontal line.

In addition to the summary statistics and SN based segmentation plots, the function SNSeg_estimate()
provides parameter estimates within each segment that is separated by the estimated change-points.
To illustrate this, we apply the following command to the same example.

SNSeg_estimate(SN_result = result1)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 54

# output
$variance
[1] 1.438164 5.065029 1.341965

attr(,"class")
[1] "SNSeg_estimate"

We can also manually specify the value of grid_size to calculate the critical value Kn and estimate
change-points. The function SNSeg_Uni() is applied to the same time series, with the only difference
being that the window size h is set to 102, which corresponds to grid_size_scale=0.1, instead of
NULL. We further set confidence at 90%. The estimated change-points and the critical value Kn can be
obtained using the following commands:

# SNCP in the change of variance with a different grid_size and confidence level
result2 <- SNSeg_Uni(ts, paras_to_test = "variance", confidence = 0.9,

grid_size_scale = 0.05, grid_size = 102, plot_SN = FALSE,
est_cp_loc = FALSE)

result2$est_cp
[1] 411 744
result2$grid_size
[1] 102
result2$critical_value
[1] 111.1472

Note that since grid_size is not NULL, the argument grid_size_scale = 0.05 will be ignored
by the function SNSeg_Uni(). Interestingly, though we use quite different window size h = 102,
the estimated change-points are almost the same as before, which suggests the robustness of SNCP.
The critical value differs from the previous example, due to the variation in the window size h (or
equivalently ε). In other words,the threshold Kn used in SNCP reflects the influence of the chosen
window size h (or ε), which makes the change-point detection more robust and accurate.

Example 2: second moment change in univariate time series with a user-defined function

In addition to the built-in parameter choices, the function SNSeg_Uni() allows users to customize
the input parameter using their own function.

For instance, if users are interested in examining changes in the second moment, they can create
a function that yields the mean square as a numeric value and designate this function to the input
argument for paras_to_test.

To illustrate, we consider the model (V1) from Example 1. The function SNSeg_Uni() is utilized
with the default input configuration, except that we now assess the change in the second moment
of the data. The specified paras_to_test, along with the execution time and the resultant estimated
change-points, can be acquired using the following commands:

# define a function for paras_to_test
# change in 2nd moment
second_moment <- function(ts){
result <- mean(ts^2)
return(result)

}
start.time <- Sys.time()
result.general <- SNSeg_Uni(ts, paras_to_test = second_moment, confidence = 0.9,

grid_size_scale = 0.05, grid_size = NULL,
plot_SN = FALSE, est_cp_loc = TRUE)

end.time <- Sys.time()
as.numeric(difftime(end.time,start.time)) # execution time (in minutes)
result.general$est_cp # change-point estimates

# Output
> as.numeric(difftime(end.time,start.time)) # execution time (in minutes)
[1] 1.083779
> result.general$est_cp # change-point estimates
[1] 411 749

As evident from the above results, SNCP detected two change-points at k̂ = 411, 749 when
examining changes in the second moment. The estimated change-points are close to the locations of
the true change-point locations, 400 and 750, respectively.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 55

To illustrate the computational efficiency of the built-in choices of paras_to_test (i.e., "mean",
"variance", etc.) another example is given to detect changes in variance but using the user-defined
functional var(), which is then compared with the built-in option paras_to_test = "variance" in
terms of the execution time. The comparison result can be accessed using the following commands:

start.time <- Sys.time()
result1 <- SNSeg_Uni(ts, paras_to_test = "variance", confidence = 0.9,

grid_size_scale = 0.05, grid_size = NULL, plot_SN = TRUE,
est_cp_loc = TRUE)

end.time <- Sys.time()
difftime(end.time,start.time) # built-in parameter time

# user defined variance
paras_to_test <- function(ts){
var(ts)

}
start.time <- Sys.time()
result.general <- SNSeg_Uni(ts, paras_to_test = paras_to_test, confidence = 0.9,

grid_size_scale = 0.05, grid_size = NULL,
plot_SN = FALSE, est_cp_loc = TRUE)

end.time <- Sys.time()
difftime(end.time,start.time) # general functional parameter time
c(result1$est_cp,result.general$est_cp)

# output
> difftime(end.time,start.time) # built-in parameter time
Time difference of 4.702668 secs
> difftime(end.time,start.time) # general functional parameter time
Time difference of 1.154525 mins
> result1$est_cp # built-in parameter estimate
[1] 411 748
> result.general$est_cp # general functional estimate
[1] 411 748

Both methods can accurately estimate change-points, but utilizing the built-in parameter signif-
icantly reduces computation time compared to using user-defined function. The former method
optimizes efficiency by leveraging the linear structure of variance calculation and is implemented
via dynamic programming with the cumsum() function. In contrast, the latter method, employing
a user-defined function, does not utilize the linear structure of variance (since it takes a general
functional as an input which may not have a specific structure) and instead recursively calculates all
subsample variances, leading to redundant calculations and increased computational time.

Example 3: multiple-parameter change in univariate time series

In addition to identifying changes in a single parameter, SNSeg_Uni() also allows for estimating
change-points by simultaneously combining information across multiple parameters. This can be
done by modifying the paras_to_test argument. For example, users can specify paras_to_test =
c("mean", "acf", 0.6, 0.9) to simultaneously detect changes in mean, autocorrelation, 60% and
90% quantile of the input time series.

We consider the simulated univariate time series of model (MP1) in Section 4.4 of Zhao et al. (2022),
where the true change-points are located at k = 333 and 667. In particular,

(MP1) : Yt =


Xt, t ∈ [1, 333]
F−1 (Φ (Xt)) , t ∈ [334, 667]
Xt, t ∈ [668, 1000],

where {Xt}n
t=1 follows an AR(1) process with Xt = 0.2Xt−1 +

√
1− ρ2εt, εt is a sequence of i.i.d.

N(0, 1) random variables, Φ(·) denotes the CDF of N(0, 1), and F(·) denotes a mixture of a truncated
normal and a generalized Pareto distribution (GPD). In particular, F(x) = 0.5F1(x) + 0.5F2(x), where
F1(x) = 2Φ(x), x ≤ 0 is a standard normal distribution truncated at 0 and F2(x) = 1− (1 + ξ(x −
µ)/σ)−1/ξ

+ is a GPD distribution with the location parameter µ = 0, scale parameter σ = 2 and tail
index ξ = 0.125. Note that F−1(q) = Φ−1(q) for q ≤ 0.5 and F−1(q) 6= Φ−1(q) for q > 0.5.

To showcase the versatility of SNCP, we first detect change-points based on the 90% quantiles,
where we set the grid_size_scale at 0.1 and confidence at 0.9.

set.seed(7)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 56

require(truncnorm)
require(evd)
mix_GauGPD <- function(u, p, trunc_r, gpd_scale, gpd_shape) {

# function for generating a mixture of truncated normal + GPD
indicator <- (u < p)
rv <- rep(0, length(u))
rv[indicator > 0] <- qtruncnorm(u[indicator > 0] / p, a = -Inf, b = trunc_r)
rv[indicator <= 0] <- qgpd((u[indicator <= 0] - p) / (1 - p), loc = trunc_r,

scale = gpd_scale, shape = gpd_shape)
return(rv)

}

# Generate model (MP1)
n <- 1000
cp_sets <- c(0, 333, 667, 1000)
rho <- 0.2
ts <- MAR(n, 1, rho) * sqrt(1 - rho ^ 2) # generate AR(1)
trunc_r <- 0
p <- pnorm(trunc_r)
gpd_scale <- 2
gpd_shape <- 0.125
ts[(cp_sets[2] + 1):cp_sets[3]] <-

mix_GauGPD(u = pnorm(ts[(cp_sets[2] + 1):cp_sets[3]]), p, trunc_r, gpd_scale, gpd_shape)

# SNCP in the change of 90% quantile
result_q9 <- SNSeg_Uni(ts, paras_to_test = c(0.9), confidence = 0.9,

grid_size_scale = 0.1, plot_SN = FALSE, est_cp_loc = FALSE)
# Output
result_q9$est_cp
[1] 332 667
result_q9$grid_size
[1] 100
result_q9$critical_value
[1] 110.9993

As observed, the estimated change-points take place at k̂ = 332 and 667, which are close to the
locations of the true change-points. We can further use SNCP to examine if there is any change in the
variance for the same time series.

# SNCP in the change of variance
result_v <- SNSeg_Uni(ts, paras_to_test = c('variance'), confidence = 0.9,

grid_size_scale = 0.1, plot_SN = FALSE, est_cp_loc = FALSE)
# Output
result_v$est_cp
[1] 329 665
result_v$grid_size
[1] 100
result_v$critical_value
[1] 110.9993

The estimated change-points in variance take place at k̂ = 329 and 665, which are close to the
estimated change-points in the 90% quantile. To reconcile the two sets of estimated change-points, we
can further examine changes in variance the 90% quantile simultaneously using SNCP, which gives a
final estimate of 331 and 667.

# SNCP in the change of variance and 90% quantile
result_q9v <- SNSeg_Uni(ts, paras_to_test = c(0.9, 'variance'), confidence = 0.9,

grid_size_scale = 0.1, plot_SN = TRUE, est_cp_loc = TRUE)
# Output
result_q9v$est_cp
[1] 331 667
result_q9v$grid_size
[1] 100
result_q9v$critical_value
[1] 167.4226

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 57

For practitioners, how to further identify which component(s) in “paras_to_test” changes is an
interesting question. A natural strategy is as follows. For each detected change-point τ̂, we first
construct a local window centered around it, e.g. [τ̂ − εn, τ̂ + εn], where the local window should
only contain a single change-point (with high probability). Within the local window, we then apply
SNSeg_Uni() for each parameter in “paras_to_test” and test if it changes.

3.2 SNCP for Multivariate Time Series

The SN based change-point estimation for multivariate time series can be implemented via the function
SNSeg_Multi(). In particular, SNSeg_Multi() allows change-point detection in multivariate means or
covariance matrix of the input time series. The R code is given as:

SNSeg_Multi(ts, paras_to_test = "mean", confidence = 0.9, grid_size = NULL,
grid_size_scale = 0.05, plot_SN = FALSE, est_cp_loc = TRUE)

The input arguments of confidence, grid_size, grid_size_scale and est_cp_loc are the same
as those in the function SNSeg_Uni(), and the difference lies in ts, plot_SN and paras_to_test.

• ts: Input time series {Yt = (Yt1, · · · , Ytp)}n
t=1 as a matrix, i.e., a multivariate time series

represented as a matrix with n rows and p columns, where each column is a univariate time
series. The dimension p for ts should be at least 2.

• paras_to_test: A string that specifies the parameter that SNCP aims to examine. Available
options of paras_to_test include:

– "mean": The function performs change-point estimation on the mean of the multivariate
time series.

– "covariance": The function performs change-point estimation on the covariance matrix
of the multivariate time series.

• plot_SN: A Boolean value that specifies whether to generate time series segmentation plot or
not. SNSeg_Multi returns a plot for each individual time series if plot_SN = TRUE.

When necessary, the function SNSeg_Multi() applies the same linear interpolation rule as SNSeg_Uni()
to determine the critical value for the SN test. When called, SNSeg_Multi() returns an S3 object of class
SNSeg_Multi comprising the grid_size, SN_sweep_result, est_cp, confidence and critical_value,
which have already been described in the context of the function SNSeg_Uni(). It also generates plots
for each time series when plot_SN = TRUE. Similar to SNSeg_Uni, S3 objects of class SNSeg_Multi are
also supported by print(), summary() and plot() functions.

Example 4: mean change in multivariate time series

We consider model (M2) in Section 4.2 of Zhao et al. (2022), which is generated by

(M2) : Yt =


−3/
√

5 + Xt, t ∈ [1, 75], [526, 575],
0 + Xt, t ∈ [76, 375], [426, 525], [576, 1000],
3/
√

5 + Xt, t ∈ [376, 425].

where Xt is a 5-dimensional VAR(1) process with Xt = 0.5Xt−1 + εt, and εt is a sequence of i.i.d.
N(0, I5) random vectors.

The five true change-points occur at k = 75, 375, 425, 525 and 575. We analyze it by examining
the change in multivariate means using grid_size_scale at 0.05 and confidence at 0.9. The code
implementation is as follows:

# Generate model (M2)
set.seed(7)
d <- 5
n <- 1000
cp_sets <- c(0, 75, 375, 425, 525, 575, 1000)
mean_shift <- c(-3, 0, 3, 0, -3, 0) / sqrt(d)
rho_sets <- 0.5
sigma_cross <- list(diag(d))
ts <- MAR_MTS_Covariance(n, 1, rho_sets, cp_sets = c(0, n), sigma_cross)[[1]] # generate VAR(1)
no_seg <- length(cp_sets) - 1

for (index in 1:no_seg) { # Mean shift
tau1 <- cp_sets[index] + 1
tau2 <- cp_sets[index + 1]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 58

ts[, tau1:tau2] <- ts[, tau1:tau2] + mean_shift[index]
}

par(mfrow=c(2,3))
# SNCP in the change of multivariate mean
result_multimean <- SNSeg_Multi(ts, paras_to_test = "mean", confidence = 0.9,

grid_size_scale = 0.05, plot_SN = TRUE,
est_cp_loc = TRUE)

# Output
result_multimean$est_cp
[1] 80 373 423 526 576
result_multimean$grid_size
[1] 50
result_multimean$critical_value
[1] 415.8649

The estimated change-points are k̂ = 80, 373, 423, 526 and 576 with a window size h = 50 and
a critical value of 415.8649. This result again closely aligns with the true change-point locations.
The output of SNSeg_Multi() also allows for the use of function max_SNsweep() for plotting the
segmentation of the SN test statistics. The code implementation is as follows:

SNstat_multimean <- max_SNsweep(result_multimean, plot_SN = TRUE, est_cp_loc = TRUE,
critical_loc = TRUE)

plot(ts[1, ], main = 'SN Segmentation Plot for the First Time Series')
abline(v = result_multimean$est_cp, col = 'red')

Figure 3 plots the associated SN test statistics and estimated change-points. For illustration, we
also plot the first time series {Yt,1}n

t=1 along with the estimated change-points.

0 200 400 600 800 1000

−
4

−
2

0
2

4

SN Segmentation Plot for the First Time Series

Index

0 200 400 600 800 1000

0
4
0
0

8
0
0

1
2
0
0

SN Test Statistic Segmentation Plot

Time

Figure 3: The segmentation of the SN test statistics using the estimated change-points. The detected
change-point locations are indicated by a red vertical line and the critical value is represented by a
blue horizontal line.

3.3 SNHD for High-Dimensional Time Series

The function SNSeg_HD() is specifically designed to estimate change-points in the mean functional of
high-dimensional time series. The R code is given as:

SNSeg_HD(ts, confidence = 0.9, grid_size_scale = 0.05, grid_size = NULL,
plot_SN = FALSE, est_cp_loc = TRUE, ts_index = c(1:5)

Its input arguments are the same as the function SNSeg_Multi() except for the followings:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 59

• ts: The dimension of the input time series ts should be at least 10 to ensure a decent finite
sample performance of the asymptotic theory.

• plot_SN: A Boolean value that specifies whether to return a plot for individual time series.

• ts_index: A positive integer or a vector of positive integers that specifies which individual time
series to plot given plot_SN = TRUE. The default value is c(1:5), and under the default setting,
the function will plot the first 5 time series.

When called, SNSeg_HD() returns an S3 object of class SNSeg_HD containing grid_size, SN_sweep_result,
est_cp, confidence and critical_value that are similar to those described by SNSeg_Uni() and
SNSeg_Multi(). It also generates a plot for the time series specified by the argument ts_index when
plot_SN = TRUE. Additionally, S3 objects of class SNSeg_HD are supported by plot(), summary() and
print() functions. Similar to the core function SNSeg_HD(), the plot() method incorporates the option
ts_index, enabling users to visualize the desired time series.

Example 5: mean change in high-dimensional time series

We generate high-dimensional time series data based on the following simulation setting:

(HD) : Yt = µi + Xt, τi−1 + 1 ≤ t ≤ τi, i = 1, 2, · · · , 6,

where Xt is a sequence of i.i.d. N(0, I100) random vectors and the five change-points are evenly located
at (τ1, τ2, · · · , τ5) = (100, 200, · · · , 500), with τ0 = 0 and τ6 = 600. We set µ1 = 0100, θi = µi+1 − µi,
θi = (−1)i(1>5 , 0>95)

> ×
√

4/5 for i = 1, 2, · · · , 5. We apply SNSeg_HD() to analyze this time series with
grid_size_scale set at 0.05 and confidence set at 0.9.

# Generate model (HD)
set.seed(7)
p <- 100
n <- 600
cp_sets <- c(0, 100, 200, 300, 400, 500, 600)
mean_shift <- c(0, sqrt(4 / 5), 0, sqrt(4 / 5), 0, sqrt(4 / 5))
ts <- matrix(rnorm(n * p, 0, 1), n, p)
no_seg <- length(cp_sets) - 1
for (index in 1:no_seg) { # Mean shift

tau1 <- cp_sets[index] + 1
tau2 <- cp_sets[index + 1]
ts[tau1:tau2, 1:5] <- ts[tau1:tau2, 1:5] + mean_shift[index]

}

# SNHD for high-dimensional means
par(mfrow=c(2,2))
result_hd <- SNSeg_HD(ts, confidence = 0.9, grid_size_scale = 0.05,

plot_SN = TRUE, est_cp_loc = TRUE,
ts_index = c(1:4))

# Output
result_hd$est_cp
[1] 105 203 302 397 500

Figure 4 plots the first four individual time series and the estimated change-points as requested by
the argument ts_index = c(1:4). As observed in the example, SNSeg_HD() successfully detects all
the change-points in this high-dimensional time series. This result demonstrates the effectiveness and
feasibility of using SN algorithms for change-point detection in high-dimensional time series.

3.4 Generate the SN Test Statistics

As discussed in Section 2.2, the success of SNCP and SNHD depends on the local SN test statistic
T1:n(k) and TU

1,n(k) for k = 1, · · · , n. To facilitate further analysis, the function maxSNsweep() allows
the users to compute and plot these test statistics along with the identified change-points. The R code
is given as:

max_SNsweep(SN_result, plot_SN = TRUE, est_cp_loc = TRUE, critical_loc = TRUE)

It takes the following arguments:

• SN_result: A list generated as the output of the functions SNSeg_Uni(), SNSeg_Multi(), or
SNSeg_HD().

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 60

0 100 200 300 400 500 600

−
3

−
1

0
1

2
3

SN Segmentation plot for Time Series 1

Time

0 100 200 300 400 500 600

−
2

0
1

2
3

4

SN Segmentation plot for Time Series 2

Time

0 100 200 300 400 500 600

−
2

0
1

2
3

4

SN Segmentation plot for Time Series 3

Time

0 100 200 300 400 500 600

−
2

0
2

4

SN Segmentation plot for Time Series 4

Time

Figure 4: An example of estimating changes in high-dimensional mean for model (HD). The detected
change-point locations are indicated by a red vertical line for the first 4 time series.

• plot_SN: A Boolean value that specifies whether to return an SN test statistics segmentation
plot.

• est_cp_loc: A Boolean value that specifies whether to plot a red vertical line for each estimated
change-point.

• critical_loc: A Boolean value that specifies whether to plot a blue horizontal line for the
critical value Kn or KU

n used in the SN test.

When called, max_SNsweep() returns the maximal SN test statistic, namely T1,n(k) or TU
1,n(k), for each

time point k. In addition, it can provide a segmentation plot based on these SN test statistics. Users are
able to determine whether to mark the change-point locations and the critical value on the plot.

As an illustration of max_SNsweep(), suppose we apply SNSeg_Uni() to estimate change-points
and save the output as result1. The following code can be used to generate the SN test statistic T1:n(k)
for each k = 1, · · · , n and in addition the segmentation plot, which is already given in the lower panel
of Figure 2.

SNstat1 <- max_SNsweep(result1, plot_SN = TRUE, est_cp_loc = TRUE, critical_loc = TRUE)

As delineated in Section 2.3.1, 2.3.2 and 2.3.3, functions SNSeg_Uni(), SNSeg_Multi(), and SNSeg_HD()
serve as the foundation for the SNSeg_estimate() function, which facilitates the computation of pa-
rameter estimates for individual segments separated by the identified change-points. When called,
SNSeg_estimate() returns an S3 object of class "SNSeg_estimate" containing the parameter estimate
of each segment. The R code is given as:

SNSeg_estimate(SN_result)

It takes the following argument:

• SN_result: an S3 object with class "SNSeg_Uni", "SNSeg_Multi" or "SNSeg_HD". The input of
SN_result must be the output from one of the functions in SNSeg_Uni(), SNSeg_Multi() and
SNSeg_HD().

We refer back to Example 1 for an illustration of its use.

4 Additional Numerical Results

This section provides additional numerical results of SNSeg. In Section 2.4.1, we conduct a sensitivity
analysis of SNSeg_Uni() across various input parameters. Section 2.4.2 compares with other popular
change-point estimation packages. In Section 2.4.3. we demonstrate the usefulness of employing
multiple parameters and contrasts it with detecting changes in a single parameter. We also provide
brief explanations and recommendations on the selection of quantiles.

In this section, we measure the accuracy of change-point estimation by counting the difference
between the number of estimated change-points and true values m̂ − mo, the Hausdorff distance

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 61

dH , and adjusted Rand index (ARI). The Hausdorff distance is defined as follows. Denote the
set of true change-points as τo and the set of estimated change-points as τ̂, we define d1(τo, τ̂) =
maxτ1∈τ̂ minτ2∈τo |τ1 − τ2| and d2(τo, τ̂) = maxτ1∈τo minτ2∈τ̂ |τ1 − τ2|, where d1(τo, τ̂) measures the
over-segmentation error of τ̂ and d2(τo, τ̂) measures the under-segmentation error of τ̂. The Haus-
dorff distance is dH(τo, τ̂) = max{d1(τo, τ̂), d2(τo, τ̂)}. The ARI is originally proposed in Morey and
Agresti (1984) as a measure of similarity between two different partitions of the same observations for
evaluating the accuracy of clustering. Under the change-point setting, we calculate the ARI between
partitions of the time series given by τ̂ and τo. Ranging from 0 to 1, a higher ARI indicates more
coherence between the two partitions by τ̂ and τo and thus more accurate change-point estimation.
We further note that all numerical results in this section are implemented on a laptop with 1.7 GHz
12th Gen Intel Core i7 CPU and 64 GB of RAM.

4.1 Sensitivity analysis of SNCP

We first examine the performance variations resulted from choices of the trimming parameter ε and
threshold Kn (reflected by the confidence level q) when multiple change-points exist. Specifically, we
generate the data according to model (SA):

(SA) : n = 1200, ρ = 0.5, Yt =

{
0 + Xt, t ∈ [1, 150], [301, 450], [601, 750], [901, 1050]
δ + Xt, t ∈ [151, 300], [451, 600], [751, 900], [1051, 1200],

where {Xt}n
t=1 is generated from a unit-variance AR(1) process with Xt = Xt−1/2 +

√
3εt/2, and {εt}

is i.i.d. N(0, 1). We vary δ ∈ {
√

3,
√

6} to compare the results under low and high signal-to-noise
ratios.

Table 1: Sensitivity analysis of ε and q for time series model (SA) with δ ∈ {
√

3,
√

6}. δ: magnitude of
change in (SA); q: confidence level of SNCP; ε: trimming parameter (the value of grid_size_scale);
m̂−mo: the difference between the estimated number and the true number of change-points; ARI:
Average Adjusted Rand Index; d1: Average over-segmentation error; d2: Average under-segmentation
error; dH : Average Hausdorff distance. The average time is presented in units of seconds. The optimal
result is bolded for each comparison metric.

m̂−mo
δ (q, ε) ≤ −3 −2 −1 0 1 2 ≥ 3 ARI d1 d2 dH time(s)

√
3

0.90, 0.05 0 1 89 882 27 1 0 0.933 1.12 2.18 2.18 1.59
0.95, 0.05 0 26 175 788 11 0 0 0.918 1.01 3.38 3.38 1.59
0.90, 0.08 0 33 195 772 0 0 0 0.911 0.97 3.65 3.65 0.59
0.95, 0.08 16 85 302 597 0 0 0 0.880 0.92 5.92 5.92 0.59
0.90, 0.10 0 4 58 938 0 0 0 0.931 1.02 1.75 1.75 0.36
0.95, 0.10 0 24 120 856 0 0 0 0.919 0.99 2.74 2.74 0.36
0.90, 0.12 0 4 130 866 0 0 0 0.933 0.77 2.17 2.17 0.24
0.95, 0.12 1 14 159 826 0 0 0 0.926 0.76 2.69 2.69 0.24
0.90, 0.15 1000 0 0 0 0 0 0 0.002 0.00 49.98 49.98 0.13
0.95, 0.15 1000 0 0 0 0 0 0 0.001 0.00 50.01 50.01 0.13

√
6

0.90, 0.05 0 0 4 964 31 1 0 0.965 0.77 0.60 0.77 1.60
0.95, 0.05 0 0 11 968 21 0 0 0.965 0.66 0.79 0.79 1.60
0.90, 0.08 0 0 16 984 0 0 0 0.963 0.58 0.77 0.77 0.67
0.95, 0.08 0 2 48 950 0 0 0 0.958 0.57 1.17 1.17 0.67
0.90, 0.10 0 0 2 998 0 0 0 0.961 0.62 0.65 0.65 0.37
0.95, 0.10 0 0 8 992 0 0 0 0.961 0.62 0.72 0.72 0.37
0.90, 0.12 0 0 34 966 0 0 0 0.958 0.59 0.95 0.95 0.25
0.95, 0.12 0 0 34 966 0 0 0 0.958 0.59 0.95 0.95 0.25
0.90, 0.15 1000 0 0 0 0 0 0 0.000 0.00 50.01 50.01 0.16
0.95, 0.15 1000 0 0 0 0 0 0 0.000 0.00 50.01 50.01 0.16

We vary ε ∈ {0.05, 0.08, 0.10, 0.12, 0.15} and q ∈ {0.90, 0.95}, and study how they affect the
performance of SNCP. The numerical result over 1000 replications is summarized in Table 1 for
reader’s convenience. From the table, we find that as long as the window size ε is smaller than the
minimum spacing εo = 0.125, the performance of SNCP is quite robust and stable across the choices
of ε and q. However, SNCP fails to detect changes with the window size ε = 0.15 > εo, highlighting
the importance of selecting an appropriate value for ε. Furthermore, we find that the execution time
increases with diminishing values of ε, while no discernible disparity in execution time is found across

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 62

various thresholds.

We also briefly study the execution time of SNCP using SNSeg_Uni() across multiple model
parameters including mean, variance, autocorrelation (ACF), 90% quantile, and a multi-parameter
scenario with both variance and 90% quantile. For model (V1) from Example 1 and (MP1) from
Example 3, Table 2 presents the averaged execution time over 100 replications of SBSeg_Uni(). The
execution time of SNCP varies in the order of mean, variance, ACF, and quantile, progressing from the
lowest to the highest. Notably, the multi-parameter scenario requires a longer runtime compared to
the single-parameter cases.

Table 2: Execution time (in seconds) of SNCP for different parameters when applied to the models
(V1) and (MP1) averaged over 100 replications.

Model mean variance ACF quantile multi-parameter
V1 1.75 5.86 8.83 17.80 31.83

MP1 1.68 5.82 8.52 16.56 31.06

4.2 Comparison: SNCP vs BinSeg, PELT, MOSUM and ECP

We next compare SNCP with BinSeg, PELT, MOSUM and ECP in terms of the accuracy of change-point
estimates, especially when data exhibits temporal dependence. BinSeg and PELT are implemented by
the package changepoint (the functions cpt.mean() and cpt.var(), respectively), MOSUM utilizes the
package mosum (the function mosum()), and ECP adopts the package ecp (the function e.divisive()).
For SNCP, we set the trimming parameter ε = 0.05 and confidence level q = 0.9, adhering to its
default configuration. The input parameters for other methods are also chosen as default values. In
particular, the default thresholds for MOSUM and ECP are based on critical values of asymptotic null
distribuions under confidence level 0.95; while that for BinSeg and PELT are non-asymptotic. For the
bandwidth parameter G that requires manual selection in the function mosum() for MOSUM, we let
G=100. This choice aligns with the recommendation in Section 3.5 from Eichinger and Kirch (2018) that
G should be half the minimal distance between two change-points. In the case of model (M) below,
this minimum distance is 200. The details can be found in the Appendix.

We first compare the performance of all methods under the no change-point scenario, where
the time series is stationary with no change-point. We simulate a stationary univariate time series
{Yt}n=1000

t=1 from a unit-variance AR(1) process Yt = ρYt−1 +
√

1− ρ2εt where {εt} is i.i.d. N(0, 1). We
vary ρ ∈ {0, 0.4, 0.7} to investigate the robustness of SNCP (and other methods) against false positives
(i.e. type-I error) under different levels of temporal dependence.

The experiment is repeated 1000 times for each ρ, and the results are documented in Table 3. In
general, under their respective default settings, all methods provide satisfactory type-I error control
when there is no temporal dependence (ρ = 0) whereas MOSUM and ECP are prone to produce false
positives when dependence is moderate (ρ = 0.4). Under strong temporal dependence (ρ = 0.7), all
tests exhibit high false-positive rates and SNCP is the most robust option.

Table 3: Number of change-points detected by each method when there is no change-point. A higher
value of ρ indicates a stronger temporal dependence. The optimal method is bolded for each ρ.

n = 1000 ρ = 0 ρ = 0.4 ρ = 0.7
m̂ 0 1 ≥ 2 0 1 ≥ 2 0 1 ≥ 2

SNCP 910 82 8 884 111 5 744 210 46
BinSeg 1000 0 0 963 35 2 558 240 202
PELT 1000 0 0 943 30 27 152 66 782

MOSUM 954 43 3 292 330 378 7 16 977
ECP 952 24 24 145 72 783 0 0 1000

We further examine their power performance under model (M):

(M) : n = 1000, ρ ∈ {0, 0.4, 0.7}, Yt =

{
Xt, t ∈ [1, 200], [401, 600], [801, 1000]
2 + Xt, t ∈ [201, 400], [601, 800].

Here {Xt}n
t=1 is generated from a unit-variance AR(1) process that Xt = ρXt−1 +

√
1− ρ2εt, and {εt}

is i.i.d. N(0, 1). The true change-points occur at 200, 400, 600 and 800. Table 4 summarizes the results

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 63

over 1000 replications.

From the table, we observe that in the absence of temporal dependence (ρ = 0), all the methods
perform well, with PELT being the most effective. It should be noted that, due to the use of self-
normalizer, SNCP may experience some decrease in estimation accuracy compared to other methods.
When the dependence is moderate at ρ = 0.4, SNCP demonstrates robust performance, while other
competing methods tend to overestimate the number of change-points. With stronger dependence
(ρ = 0.7), SNCP exhibits the best performance based on the distribution of m̂ − mo along with
dH and ARI, while all the other methods severely overestimate the number of change-points. In
terms of the computational speed, we find that BinSeg, PELT, and MOSUM are more efficient than
SNCP. Consequently, we recommend employing SNCP for change-point estimation when data exhibit
moderate or strong dependence, while opting for BinSeg or PELT in cases with no or weak dependence.

Here, we only compare the results under mean shifts, and we refer the interested readers to
Zhao et al. (2022) for results in other settings. Broadly speaking, our findings indicate that the SNCP
exhibits greater robustness to temporal dependence compared to competing methods. However,
it’s worth noting that other methods might demonstrate superior performance in instances where
temporal dependence is weak. For instance, BinSeg, PELT, and MOSUM are adept at handling frequent
change-points with fast computational speed.

We note that the unsatisfactory performance associated with BinSeg, PELT, MOSUM and ECP
in the presence of strong temporal dependence is to be expected since these methods are developed
for time series with temporal independence. To accommodate temporal dependence, some of these
above-mentioned methods offer choices to modify their built-in penalty, which may avoid the over-
segmentation and under-segmentation issues with some proper choice of tuning parameters. In
addition, we further acknowledge that there exist several R packages such as AR1seg (Levy Leduc,
2014), EnvCpt (Killick et al., 2021) or fastcpd (Li and Zhang, 2024), which contain change-point
detection methods allowing for temporal dependence.

Table 4: Performance of different methods for the time series model (M). ρ: The strength of temporal
dependence; m̂−mo: the difference between the estimated number and the true number of change-
points; ARI: Average Adjusted Rand Index; d1: Average over-segmentation error; d2: Average
under-segmentation error; dH : Average Hausdorff distance. The average time is presented in units of
seconds. The optimal result is bolded for each comparison metric.

m̂−mo
ρ Method ≤ −3 −2 −1 0 1 2 ≥ 3 ARI d1 d2 dH time (s)

ρ = 0

SNCP 0 0 0 991 9 2 0 0.983 4.13 3.42 4.13 6.85
BinSeg 0 0 0 961 39 0 0 0.988 3.83 3.26 3.83 0.01
PELT 0 0 0 999 1 0 0 0.994 1.73 1.69 1.73 0.11

MOSUM 0 0 0 993 7 0 0 0.992 3.09 2.09 3.09 0.00
ECP 0 0 0 937 56 7 0 0.984 7.04 2.24 7.04 46.85

ρ = 0.4

SNCP 0 0 0 972 27 1 0 0.956 8.10 5.73 8.10 5.78
BinSeg 0 0 0 744 256 0 0 0.963 15.16 5.60 15.16 0.00
PELT 0 0 0 862 109 29 0 0.964 14.03 3.81 14.03 0.05

MOSUM 0 0 0 779 199 20 2 0.959 38.19 4.81 38.19 0.00
ECP 0 0 0 170 184 217 429 0.828 87.05 4.14 87.05 54.62

ρ = 0.7

SNCP 0 2 59 865 69 4 1 0.934 17.83 23.69 29.74 6.01
BinSeg 0 0 0 201 799 0 0 0.930 55.11 11.30 55.11 0.00
PELT 0 0 0 104 162 195 539 0.867 99.50 8.95 99.50 0.06

MOSUM 0 0 0 209 414 281 96 0.909 126.3 11.06 126.3 0.00
ECP 0 0 0 1 0 1 998 0.537 146.4 8.31 146.4 92.2

4.3 Single vs Multiple Parameters

As outlined in Section 2.3.1, the function SNSeg_Uni() enables users to examine changes in either a
single parameter or multiple parameters. We first provide a simple example which shows that using
multiple parameters may not necessarily be significantly inferior to using a single parameter, in terms
of change-point estimates. This observation holds true even when the change solely stems from the
single parameter. For example, we consider model (M) with ρ = 0.4 from Section 2.4.2, which is solely
driven by mean changes.

Table 5 summarizes the numerical results over 1000 replications. For clarity, we specify these
cases using names beginning with "SN". For instance, SNM denotes SNCP for estimating changes in a
single mean, SNMQ20 represents SNCP for estimating changes in both mean and the 20% quantile,

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 64

Table 5: Performance of SNCP based on a single parameter and multiple parameters for (M). Beginning
with "SN", M, V, Q20 represent mean, variance and 20% quantile, respectively. m̂−mo: the difference
between the estimated number and the true number of change-points; ARI: Average Adjusted Rand
Index; d1: Average over-segmentation error; d2: Average under-segmentation error; dH : Average
Hausdorff distance. The average time is presented in units of seconds. The optimal result is bolded for
each comparison metric.

m̂−mo
Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 ARI d1 d2 dH time (s)

(M)
SNM 0 0 0 972 28 0 0 0.969 8.54 6.40 8.54 1.49

SNMQ20 0 0 3 958 39 0 0 0.967 9.71 7.33 10.25 28.6
SNMV 0 0 3 934 62 1 0 0.963 12.53 8.06 13.11 18.2

and SNMV targets the mean and variance changes simultaneously. From the table, we find that all
three methods yield rather similar results, albeit mild overestimation by SNMV. This indicates that
introducing additional parameters does not necessarily hinder the performance of SNCP.

We then provide another example that examining multiple parameters can outperform examining
a single parameter. Specifically, we compare the performance of SNCP based on a single variance or
quantile (90% or 95%) and their multi-parameter combination under the setting (MP1) from Example 3.
Recall that for (MP1), the change originates from the upper quantiles and the actual change-points take
place at 333 and 667. The numerical result of (MP1) over 1000 replications is taken from Table 5 of Zhao
et al. (2022), and summarized in Table 6 here for readers’ convenience. Similar to Table 5, we specify
the parameter settings using names beginning with "SN". For instance, SNV denotes the change in a
single variance, SNQ90 represents the change in the 90% quantile, and SNQ90V targets the variance
and 90% quantile changes simultaneously. We observe that for (MP1), SNQ90 and SNQ95 performs
well with a high estimation accuracy since the change of (MP1) originates from upper quantiles. By
integrating changes in variance and quantiles, improvements are observed across estimation accuracy,
ARI, and Hausdorff distance dH . Notably, the combined-parameter setting SNQ90,95V achieves the
optimal performance compared to all the other parameter configurations.

Table 6: Performance of SNCP based on the change in a single parameter and multiple parameters
for (MP1). Q90, Q95, V represent the change in the 90th and the 95th quantile as well as the variance
respectively. m̂−mo: the difference between the estimated number and the true number of change-
points; ARI: Average Adjusted Rand Index; d1: Average over-segmentation error; d2: Average
under-segmentation error; dH : Average Hausdorff distance. The optimal result is bolded for each
comparison metric.

m̂−mo
Model Method ≤ −3 −2 −1 0 1 2 ≥ 3 ARI d1 d2 dH

(MP1)

SNQ90 0 10 132 805 50 3 0 0.839 3.25 7.26 7.85
SNQ95 0 5 100 820 73 2 0 0.868 3.16 5.70 6.62
SNV 0 2 110 832 54 2 0 0.869 2.45 5.47 6.06

SNQ90,95 0 3 82 850 62 3 0 0.878 3.01 4.88 5.67
SNQ90V 0 0 56 869 70 5 0 0.891 3.04 3.95 4.77
SNQ95V 0 2 64 861 68 5 0 0.889 2.92 4.30 5.14

SNQ90,95V 0 2 48 882 66 2 0 0.894 2.95 3.79 4.58

Overall, our findings illustrate that employing multiple parameters does not always diminish
performance of SNCP compared to using a single parameter, even when the change is primarily driven
by a single parameter. Nevertheless, it is important to recognize that incorporating prior information
on change types can enhance the effectiveness of SNCP.

Another aspect that is of interest is the choice of quantile for SNCP. As delineated in Section 2.3.1,
the SNSeg_Uni() function provides users with the capability to assess variations in either a single or
multiple quantiles. Particularly for practitioners, an appropriate selection of the quantile becomes
pivotal when the true quantile that may change remains unknown. Table 6 for model (MP1) also offers
valuable insights in this regard. Given that (MP1) experiences changes in upper quantiles, the usage
of the 90% or the 95% quantile yields satisfactory results. Furthermore, the application of both 90%
and 95% quantiles in combination results in an improvement compared to utilizing a single quantile.

Consequently, in cases where the specific quantile that is changing is unknown, we recommend
users visually inspect their time series for signals such as peaks or troughs to assess the potential range
of quantiles where changes might occur, and further employ multiple quantiles within this range

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 65

for more robust change-point estimation. In other words, if one knows that the change happens in a
specific range of the distribution (for example, the upper tail), we recommend he/she target several
quantiles in this range (for example, targeting 90%, 95%) simultaneously, instead of picking only one
quantile. In practice, it is seldom that only a particular quantile changes, while the other quantile
levels near this quantile exhibit no change. Hence, testing several quantiles together can boost power
and estimation accuracy to the best degree.

5 Summary

In this paper, we introduced the R package SNSeg, which provides implementations of the SN-based
procedures for change-points estimation in univariate, multivariate, and high-dimensional time series.
We described the main functions of the package, namely SNSeg_Uni(), SNSeg_Multi(), SNSeg_HD(),
which enable the detection of change-points in a single or multiple parameter(s) of the time series.
Furthermore, we presented examples demonstrating the usage of the package, including visualizing
both the time series data and the segmentation plots of the SN test statistics, as well as the computation
of parameter estimates within the segments that are separated by the estimated change-points.

The SNSeg package offers a comprehensive set of tools to effectively identify change-points in
time series data. We hope the availability of SNSeg on CRAN can help facilitate the analysis and
understanding of temporal patterns and dynamics for both researchers and practitioners.

References

D. W. Andrews. Heteroskedasticity and autocorrelation consistent covariance matrix estimation.
Econometrica, pages 817–858, 1991. [p47]

I. E. Auger and C. E. Lawrence. Algorithms for the optimal identification of segment neighborhoods.
Bulletin of mathematical biology, 51(1):39–54, 1989. [p46]

B. Eichinger and C. Kirch. A mosum procedure for the estimation of multiple random change points.
Bernoulli, 24(1):526–564, 2018. [p46, 62]

N. A. James and D. S. Matteson. ecp: An R package for nonparametric multiple change point analysis
of multivariate data. Journal of Statistical Software, 62(7):1–25, 2014. [p46]

R. Killick and I. A. Eckley. changepoint: An R package for changepoint analysis. Journal of Statistical
Software, 58(3):1–19, 2014. [p46]

R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a linear computational
cost. Journal of the American Statistical Association, 107(500):1590–1598, 2012. [p46]

R. Killick, C. Beaulieu, S. Taylor, and H. Hullait. Package ‘envcpt’. 2021. [p63]

C. Levy Leduc. Package r ar1seg (available on the cran). 2014. [p63]

X. Li and X. Zhang. fastcpd: Fast change point detection in r. arXiv preprint arXiv:2404.05933, 2024.
[p63]

A. Meier, C. Kirch, and H. Cho. mosum: A package for moving sums in change-point analysis. Journal
of Statistical Software, 97(8):1–42, 2021. [p46]

L. C. Morey and A. Agresti. The measurement of classification agreement: An adjustment to the rand
statistic for chance agreement. Educational and Psychological Measurement, 44(1):33–37, 1984. [p61]

W. K. Newey and K. D. West. A simple, positive semi-definite, heteroskedasticity and autocorrelation-
consistent covariance matrix. Econometrica, 55:703–708, 1987. [p47]

G. J. Ross. Parametric and nonparametric sequential change detection in R: The cpm package. Journal
of Statistical Software, 66(3):1–20, 2015. [p46]

X. Shao. A self-normalized approach to confidence interval construction in time series. Journal of the
Royal Statistical Society: Series B, 72(3):343–366, 2010. [p46, 49]

X. Shao. Self-normalization for time series: a review of recent developments. Journal of the American
Statistical Association, 110:1797–1817, 2015. [p46]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 66

X. Shao and X. Zhang. Testing for change points in time series. Journal of the American Statistical
Association, 105(491):1228–1240, 2010. [p46]

S. Sun, Z. Zhao, F. Jiang, and X. Shao. SNSeg: Self-Normalization(SN) Based Change-Point Estimation
for Time Series, 2023. URL https://CRAN.R-project.org/package=SNSeg. R package version 1.0.0.
[p46]

G. Wang and C. Zou. cpss: an package for change-point detection by sample-splitting methods. Journal
of Quality Technology, 55:61–74, 2023. [p46]

R. Wang, C. Zhu, S. Volgushev, and X. Shao. Inference for change points in high-dimensional data via
selfnormalization. The Annals of Statistics, 50(2):781–806, 2022. [p46, 50]

A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber. strucchange: An r package for testing for structural
change in linear regression models. Journal of Statistical Software, 7(2):1–38, 2002. [p46]

A. Zeileis, C. Kleiber, W. Krämer, and K. Hornik. Testing and dating of structural changes in practice.
Computational Statistics & Data Analysis, 44(1–2):109–123, 2003. [p46]

Z. Zhao, F. Jiang, and X. Shao. Segmenting time series via self-normalization. arXiv preprint
https://arxiv.org/pdf/2112.05331v1.pdf, 2021. [p50]

Z. Zhao, F. Jiang, and X. Shao. Segmenting time series via self-normalisation. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 84(5):1699–1725, 2022. [p46, 47, 48, 50, 52, 55, 57, 63,
64]

C. Zou, G. Wang, and R. Li. Consistent selection of the number of change-points via sample-splitting.
Annals of Statistics, 48(1):413, 2020. [p46]

Shubo Sun
University of Miami
Herbert Business School
Coral Gables, FL, USA
sxs3935@miami.edu

Zifeng Zhao
University of Notre Dame
Mendoza College of Business
Notre Dame, IN, USA
zifeng.zhao@nd.edu

Feiyu Jiang
Fudan University
School of Management
Shanghai, China
jiangfy@fudan.edu.cn

Xiaofeng Shao
University of Illinois at Urbana-Champaign
Department of Statistics
Champaign, IL, USA
xshao@illinois.edu

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SNSeg
mailto:sxs3935@miami.edu
mailto:zifeng.zhao@nd.edu
mailto:jiangfy@fudan.edu.cn
mailto:xshao@illinois.edu


CONTRIBUTED RESEARCH ARTICLE 67

fmeffects: An R Package for Forward
Marginal Effects
by Holger, Christian A. Scholbeck, Christian Heumann, Bernd Bischl, and Giuseppe Casalicchio

Abstract Forward marginal effects have recently been introduced as a versatile and effective model-
agnostic interpretation method particularly suited for non-linear and non-parametric prediction
models. They provide comprehensible model explanations of the form: if we change feature values
by a pre-specified step size, what is the change in the predicted outcome? We present the R package
fmeffects, the first software implementation of the theory surrounding forward marginal effects. The
relevant theoretical background, package functionality and handling, as well as the software design
and options for future extensions are discussed in this paper.

1 Introduction

A growing number of disciplines are adopting black box machine learning (ML) models to make
predictions, including medicine (Rajkomar et al., 2019; Boulesteix et al., 2020), psychology (Dwyer
et al., 2018), economics (Mullainathan and Spiess, 2017; Athey and Imbens, 2019), or the earth sciences
(Dueben and Bauer, 2018). Although one can often observe a superior predictive performance of black
box models (such as neural networks, gradient boosting, random forests, or support vector machines)
over intrinsically interpretable models (such as generalized linear or additive models), their lack of
transparency or interpretability is considered a major drawback (Breiman, 2001). This has been a major
driver in the development of model-agnostic explanation techniques, which are often referred to by
the umbrella terms of interpretable ML (Molnar, 2022) or explainable artificial intelligence (Kamath
and Liu, 2021).

Marginal effects (MEs) (Williams, 2012) have been a mainstay of model interpretations in many
applied fields such as econometrics (Greene, 2019), psychology (McCabe et al., 2022), or medical
research (Onukwugha et al., 2015). MEs explain the effect of features on the predicted outcome in
terms of derivatives w.r.t. a feature or forward differences in prediction. They are typically averaged to
an average marginal effect (AME) for an entire data set, which serves as a global (scalar-valued) feature
effect measure (Bartus, 2005). To explain feature effects for non-linear models, Scholbeck et al. (2024)
introduced a unified definition of forward marginal effects (FMEs), a non-linearity measure (NLM) for
FMEs, and the conditional average marginal effect (cAME). The NLM is an auxiliary model diagnostic
to avoid interpreting local changes in prediction as linear effects. The cAME aims to describe the model
via regional FME averages for subgroups with similar FMEs, which can, for instance, be found by
recursive partitioning (RP). FMEs, therefore, represent a means to explain models on a local, regional,
and global level.

Contributions: We present the R package fmeffects, the first software implementation of the
theory surrounding FMEs, including the NLM and the cAME. The user interface only requires a pre-
trained model and an evaluation data set. The package is designed according to modular principles,
making it simple to maintain and extend. This paper introduces the relevant theoretical background
of FMEs, demonstrates the usage of the package in the context of a practical use case, and explains the
software design.

2 Background on forward marginal effects

FMEs can be used for model explanations on the local, regional (also referred to as semi-global), and
global level. These differ with respect to the region of the feature space that the explanation refers to.
The local level explains a model/prediction for single observations, the regional level for a certain
subspace (or subgroups of observations), and the global level for the entire feature space. Increasing
the scope of the explanation requires increasing amounts of aggregations of local explanations (see the
illustration by Scholbeck et al. (2020) of aggregations of local explanations to global ones for various
methods). This can be problematic for non-parametric models where local explanations can be highly
heterogeneous due to non-linear effects or interactions.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=fmeffects


CONTRIBUTED RESEARCH ARTICLE 68

2.1 Notation

Let f̂ : X → R be the prediction function of a learned model where X ⊂ Rp denotes the feature space.
While our definition naturally covers regression models, for classification models, we assume that
f̂ returns the score or probability for a predefined class of interest. A subspace of the feature space
is denoted by X[ ] ⊆ X . The random feature vector is denoted by1 X = (X1, . . . , Xp). Observations
are denoted by x = (x1, . . . , xp) ∈ X . A set of feature indices is denoted by S ⊆ {1, . . . , p}. We often
index (random) vectors as xS or XS. We denote set complements by −S = {1, . . . , p} \ S. With slight
abuse of notation, we represent the partitioning of a vector into two arbitrary but disjoint groups by
x = (xS, x−S), regardless of the order of features. For a single feature of interest, the set S is replaced
by an integer index j. We usually assume an evaluation data set D =

Ä
x(i)
än

i=1
, with x(i) ∈ X , which

may consist of both training and test data.

2.2 Forward marginal effects

The FME can be considered a basic, local unit of interpretation. Given an observation x, it tells us how
the prediction changes if we change a subset of feature values xS by a vector of step sizes hS.

FMEx,hS = f̂ (xS + hS, x−S)− f̂ (x) for continuous features xS

Scholbeck et al. (2024) introduced an observation-specific categorical FME whose definition is congru-
ent with the FME for continuous features. The categorical FME corresponds to the change in prediction
when replacing xj by the reference category cj:

FMEx,cj = f̂ (cj, x−j)− f̂ (x) for categorical xj

Note that this definition of a categorical ME differs from the one that is typically found in fields like
econometrics (Williams, 2012), where we set xj to a reference category for all observations and then
record the change in prediction resulting from changing the reference category to another category.

Furthermore, it is common to globally average MEs to an average marginal effect (AME) to
estimate the expected local effect. For FMEs, this corresponds to:

AMED,hS = ¤�EX
[
FMEX,hS

]
=

1
n

n

∑
i=1

î
f̂
Ä

x(i)
S + hS, x(i)

−S

ä
− f̂

Ä
x(i)
äó

(1)

Note that for categorical feature changes and observations where xj = cj, the FME equals 0. In the
fmeffects package, the categorical AME only consists of observations whose observed feature value
differs from the selected category. This approach is motivated by our goal to explain the effects of
changing feature values on the predicted outcome. For instance, in Fig. 11, we demonstrate the effect of
rainfall on the daily number of bike rentals in Washington D.C. by switching each non-rainy day’s
precipitation status to rainfall. Considering all observations, including rainy days, would obfuscate
the interpretation we desire from our model. However, it is important to remember that every AME
comprises a different set of points.

2.3 Step size selection

The selection of step sizes is determined by contextual and data-related considerations (Scholbeck
et al., 2024). First, the FME allows us to investigate the model according to specific research questions.
For instance, we might be interested in the effects of a specific change in a patient’s body weight on
the predicted individual disease risk. Often, we are interested in an interpretable or intuitive step size.
In the case of body weight, typically expressed in kilograms, we could use a 1kg change (for instance,
instead of 1g) as a natural increment. Without contextual information, we could use a unit change as a
reasonable default; or dispersion-based measures such as one standard deviation, percentages of the
interquartile range, or the mean/median absolute deviation.

2.4 Non-linearity measure

For continuous features, we can consider xS + hS a continuous transition of feature values. The
associated change in prediction may be misinterpreted as a linear effect. This is counteracted by the

1Bold letters denote vectors.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 69

NLM, which corresponds to a continuous coefficient of determination R2 between the prediction
function and the linear secant that intersects x and (xS + hS, x−S) (see Fig. 1). The continuous transition
through the feature space is first parameterized as a fraction t ∈ [0, 1] of the multivariate step size hS:

γ(t) =

Ö
x1
...

xp

è
+ t ·



h1
...

hs
0
...
0


, t ∈ [0, 1]

The value of the linear secant gx,hS (t) corresponds to:

gx,hS (t) =



x1 + t · h1
...

xs + t · hs
...

xp

f̂ (x) + t · FMEx,hS


The mean prediction f̂mean on the interval t ∈ [0, 1] is given by:

f̂mean =

∫ 1
0 f̂ (γ(t))

∣∣∣∣∣∣ ∂γ(t)
∂t

∣∣∣∣∣∣
2

dt∫ 1
0

∣∣∣∣∣∣ ∂γ(t)
∂t

∣∣∣∣∣∣
2

dt

=
∫ 1

0
f̂ (γ(t)) dt

The NLM compares the squared deviation between the prediction function and the linear secant to the
squared deviation between the prediction function and the mean prediction:

NLMx,hS = 1−

∫ 1
0

Ä
f̂ (γ(t))− gx,hS (t)

ä2 ∣∣∣∣∣∣ ∂γ(t)
∂t

∣∣∣∣∣∣
2

dt∫ 1
0

Ä
f̂ (γ(t))− f̂mean

ä2 ∣∣∣∣∣∣ ∂γ(t)
∂t

∣∣∣∣∣∣
2

dt
∈ (−∞, 1]

Fig. 2 illustrates the setting for multivariate feature changes. The NLM can be approximated via
numerical integration, e.g., via Simpson’s rule.

FME

−5

0

5

0.5 1.0 1.5
x

y

Figure 1: Illustration by Scholbeck et al. (2024) of a univariate FME (blue) given the prediction function
(black) and linear secant (orange, dashed). The NLM indicates how well the secant can explain
the prediction function (inversely proportional to the purple area) compared to how well the most
uninformative baseline model (the average prediction) can explain the prediction function.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 70

x1
−10 −5 0 5 10

x2

−10

−5

0

5

10

y

−20

−10

0

10

−10

−5

0

5

0% 25% 50% 75% 100%

t

y

model secant

Figure 2: Illustration of the multivariate NLM by Scholbeck et al. (2024). Left: An exemplary bivariate
prediction function and two points to compute an FME. Consider an observation x = (−5,−5) and
step size vector hS = (10, 10). We create the shortest path through the feature space to reach the point
(5, 5), which consists of directly proportional changes in both features. Above the path, we see the
linear secant (orange, dashed) and the non-linear prediction function (black). Right: The multivariate
change in feature values can be parameterized as a percentage t of the step size hS. The deviation
between the prediction function and the linear secant, as well as the deviation between the prediction
function and mean prediction, both correspond to a line integral.

The NLM indicates how well the linear secant can explain the prediction function, compared to
the baseline model of using the mean prediction. A value of 1 indicates perfect linearity, where the
linear secant is identical to the prediction function. For a value of 0, the mean prediction can explain
the prediction function to the same degree as the secant. For negative values, the mean prediction
better explains the prediction function than the linear secant (severe non-linearity).

It is, therefore, easiest to interpret FMEs with NLM values close to 1. Although every FME always
represents the exact change in prediction, an FME with a low NLM value does not fully describe
the behavior of the model in that specific locality. In contrast, an FME with an NLM close to 1 is a
sufficient descriptor of the (linear) model behavior. In other words, the NLM serves as an auxiliary
diagnostic tool, indicating trust in how well the FME describes the local change in prediction.

2.5 Conditional average marginal effect

To receive a global model explanation akin to a beta coefficient in linear models, local FMEs can be
averaged to the AME. Mehrabi et al. (2021) define an aggregation bias as drawing false conclusions
about individuals from observing the entire population. Given a data set D, the conditional average
marginal effect (cAME) estimator applies to a subgroup of n[ ] observations, denoted by D[ ]:

cAMED[ ],hS =
¤�

EX[ ]

î
FMEX[ ],hS

ó
=

1
n[ ]

∑
i : x(i)∈D[ ]

î
f̂
Ä

x(i)
S + hS, x(i)

−S

ä
− f̂

Ä
x(i)
äó

(2)

Although this estimator can be applied to arbitrary subgroups, we aim to find subgroups with
cAMEs that counteract the aggregation bias. Desiderata for such subgroups include within-group effect
homogeneity, between-group effect heterogeneity, full segmentation, non-congruence, confidence,
and stability (Scholbeck et al., 2024). In other words, we aim to partition the data into subgroups
that explain variability in the FMEs. A viable option to partition D is to run RP on D with FMEs as
the target. For instance, in fmeffects, both rpart (Therneau and Atkinson, 2019) and ctree() from
partykit (Hothorn and Zeileis, 2015) are supported to find subgroups.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=partykit


CONTRIBUTED RESEARCH ARTICLE 71

3 Related work

3.1 Model-agnostic interpretations

The basic mechanism behind model-agnostic methods is to probe the model with different feature
values, a methodology similar to a model sensitivity analysis (Scholbeck et al., 2020, 2023). The basis of
explaining models is to determine the direction and magnitude of the effect of features on the predicted
outcome (Casalicchio et al., 2019; Scholbeck et al., 2020, 2024). The individual conditional expectation
(ICE) (Goldstein et al., 2015), partial dependence (PD) (Friedman, 2001), accumulated local effects
(ALE) (Apley and Zhu, 2020), Shapley values (Štrumbelj and Kononenko, 2010; Lundberg and Lee,
2017; Covert et al., 2020) and local interpretable model-agnostic explanations (LIME) (Ribeiro et al.,
2016) are some of the most popular model-agnostic explanation methods for ML models. Notably,
counterfactual explanations (Wachter et al., 2018) represent the reverse of the FME, indicating the
smallest necessary change in feature values to reach a targeted prediction.

FMEs complement the literature by allowing for a unique combination of local, regional, and
global model explanations. Furthermore, while most methods (including the ICE, PD, ALE, or
Shapley values) provide explanations in terms of prediction levels, FMEs provide explanations in
terms of prediction changes. LIME is based on training a local and interpretable surrogate model
whose coefficients can also provide an interpretation in terms of prediction changes. Scholbeck et al.
(2024) highlighted differences between both approaches: notably, while surrogate models introduce
additional uncertainty connected with the estimation of the surrogate, FMEs are motivated by the goal
of stable and comprehensible model insight. Furthermore, locally estimated FMEs can be aggregated
within subgroups and entire data sets for regional and global explanations. Around the same time,
regional aggregations have also been introduced for ICE curves, for example (Britton, 2019; Herbinger
et al., 2022; Molnar et al., 2024).

3.2 Relationship between individual conditional expectation and forward marginal ef-
fect

Scholbeck et al. (2024) illustrated a relationship between the ICE / PD and the FME / AME. In general,
the FME can be seen as the difference between two locations on an ICE. The AME corresponds to the
difference between two locations on the PD only for a function that is linear in the feature of interest.
Therefore, the following relationship between the ICE and FME is worth noting here. The ICE can be
considered a one-way sensitivity function that indicates the effects of varying a set of features indexed
by S while the remaining ones are kept constant:

ICEx,S(x∗S) = f̂ (x∗S, x−S)

For an instance x, the prediction after increasing xS by hS is also a value of the ICE:

FMEx,hS = f̂ (xS + hS, x−S)− f̂ (x)

= ICEx,S(xS + hS)− ICEx,S(xS)

3.3 Related work on marginal effects

MEs have a long history in applied statistics and the Stata programming language (StataCorp, 2023).
Initially implemented by Bartus (2005), the margins() command is now fully integrated into Stata and
provides comprehensive capabilities for various computations and visualizations of statistical models
such as (generalized) linear models (Williams, 2012). MEs are typically defined in terms of derivatives
of the model w.r.t. a feature. For instance, this variant is the default approach to interpret models in
econometrics (Greene, 2019). The FME is the less commonly used definition (Scholbeck et al., 2024;
Mize et al., 2019). Note that—in contrast to forward differences—derivatives are not suitable to explain
piecewise constant prediction functions such as tree-based models.

In recent years, MEs have gained traction in the R community. The R package margins (Leeper,
2018) was the first port of Stata’s margins() command to R. Other packages related to MEs include
ggeffects (Lüdecke, 2018) and marginaleffects (Arel-Bundock, 2023). In particular, marginaleffects
can also return FMEs (although under different terminology). Our package, fmeffects, mainly differs
from marginaleffects in two aspects:

Implementing new theory surrounding FMEs: The fmeffects package is the first software imple-
mentation of the theory surrounding model-agnostic FMEs as introduced by Scholbeck et al.
(2024). Although packages such as marginaleffects support the computation of FMEs and

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=margins
https://CRAN.R-project.org/package=ggeffects
https://CRAN.R-project.org/package=marginaleffects


CONTRIBUTED RESEARCH ARTICLE 72

other quantities, fmeffects is specifically designed for FMEs with unique features such as
implementations of the NLM, the cAME via RP, and novel visualization methods.

Model-agnostic black box interpretations: It follows that fmeffects is targeted at model-agnostic
explanations of non-linear or intransparent models. Whereas existing theory on MEs (and
packages such as marginaleffects) focuses on classical statistical modeling in combination with
statistical inference (see, for instance, Breiman (2001) comparing statistical modeling culture with
ML), FMEs (and thus fmeffects) are comparable to methods and software from the literature on
interpretable ML such as the ICE, PD, ALE, or LIME. This does not imply that marginaleffects
cannot be used for black box interpretations. As mentioned in the previous point, it also
supports the computation of FMEs, e.g., in combination with mlr3, but the focus of fmeffects
lies on the interpretation of black box models through a specialized and targeted range of novel
capabilities.

4 Advantages and limitations of forward marginal effects

4.1 Advantages

Although the ICE and the FME are closely related, the latter provides several novel ways to generate
insights into the model:

• Univariate changes in feature values: FMEs are comparable to ICE curves for univariate
changes in feature values. In certain scenarios, however, they may provide more comprehensible
visualizations of effects for individual instances (see Fig. 4 for an example).

• Bivariate changes in feature values: The ICE and PD also provide insight into the sensitivity
of the model prediction for variations in two features, which is visualized as a heatmap (see Fig.
7). However, it is difficult to visually compare the ICE of many different observations (which
correspond to heatmaps as well). Although the ICE provides insight into a larger variation
in feature values, while the FME only considers a single tuple of changes in feature values,
bivariate FMEs can be easily compared visually (see Fig. 6).

• Higher-order changes in feature values: If we evaluate the sensitivity of the prediction for
changes in more than two feature values, virtually every visualization method breaks down.
In this case, FMEs still provide comprehensible model explanations that can be aggregated in
various ways (see Fig. 10).

• Local fidelity assessment: The locally restricted change in feature values for the FME facilitates
evaluations of the fidelity of the model explanation (e.g., via the NLM). In other words, the NLM
allows us to describe how well the FME summarizes the local shape of the prediction function
in a single value. See Fig. 8 for a visualization of NLM values for different observations.

• Comprehensible regional explanations: Although regional explanations have been first pro-
posed in the context of grouping ICE curves (Herbinger et al., 2022; Britton, 2019), they more
easily apply to scalar model explanations such as FMEs. Essentially, a regional model expla-
nation represents a group of observations or a subspace of the feature space where model
explanations are relatively homogeneous. Such groupings are easily achievable via RP or other
techniques that do not require functional target values such as ICEs.

• Avoiding extrapolation: The ICE is computed on the entire feature range (see, e.g., Fig. 4),
which is likely to result in model extrapolations. By its nature, the FME is typically used with
small step sizes relative to the feature range, which naturally avoids model extrapolations.

4.2 Limitations

• Step size selection: The step size fundamentally influences effects and the model interpretation.
Although FMEs for different step sizes can be computed and visualized in an exploratory
manner, some level of prior reasoning about what step sizes to use is recommended.

• Decision tree instability for cAME: Although not a shortcoming of the FME itself, subgroups
found by RP to compute cAMEs are subject to a high variance. This may be counteracted by
stabilizing the split search, e.g., by considering statistical significance of tree splits or resorting
to different algorithms to find subgroups.

• Non-linearity assessment for proportional feature changes: For multi-dimensional feature
changes, the NLM only considers equally proportional changes in all features.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=mlr3


CONTRIBUTED RESEARCH ARTICLE 73

5 On causal interpretations and avoiding model extrapolations

Note that model-agnostic techniques, including FMEs, explain associations between the target and
the features within the model. In the absence of additional assumptions, such associations cannot be
interpreted as causes and effects (Molnar et al., 2022). For instance, increasing the value of a feature x1
may always be accompanied by an increase in the target, but it may be the target y that causes x1 to
increase. Another typical scenario is the presence of confounding factors that influence both y and x1.
Finally, x1 may only (or also) influence a mediator x2, which in turn influences y.

This does not, however, make model interpretations obsolete. More importantly, as highlighted
by Adadi and Berrada (2018), model interpretations can be used to gain knowledge, debug, audit, or
justify the model and its predictions. Throughout this paper, we will model the effects of environmental
influences on the number of daily bike rentals in Washington, D.C. For our estimated model, a drop
in humidity by 10 percentage points has a considerable effect on the predicted number of daily bike
rentals (see Fig. 5). This effect cannot be assumed to be causal, as humidity is physically influenced by
the outside temperature, which will also affect people’s choice to rent a bike. Here, temperature is a
confounder that influences both humidity and daily bike rentals. However, the business renting out
bikes can still use the associations found by a model with a good predictive performance to control
the optimal number of bikes at their disposal. This is conditional on the model’s ability to accurately
predict the target for the given feature vector, requiring us to avoid model extrapolations, which
correspond to predictions within areas of the feature space where the model has not seen much or
any training data. This issue is closely linked to the multivariate distribution of the training data; in
our example, a change in humidity is likely to be accompanied by a change in temperature as well,
which we somewhat circumvent (depending on the magnitude of the step size) when making isolated
changes to humidity. One may disregard this issue and deliberately predict in areas of the feature
space the model has not seen during training. The resulting FMEs will still be valid model descriptions
but, as explained above, they are likely to be bad descriptions of the data generating process.

Model extrapolations negatively impact many model-agnostic interpretation methods (Hooker,
2004b,a, 2007; Hooker et al., 2021; Molnar et al., 2022). For example, Apley and Zhu (2020) demon-
strated how PD plots suffer from extrapolation issues and introduced ALE plots as a solution to this
problem. Scholbeck et al. (2024) illustrated the perils of model extrapolations for FMEs specifically
and discussed possible options. One option in particular is also implemented in fmeffects: points
outside the multivariate envelope (meaning the Cartesian product of all observed feature ranges) of
the training data can be excluded from the analysis. This directly relates to the selection of small step
sizes relative to the feature range, as large step sizes will result in a point falling outside the envelope.

When using extrapolation prevention methods, note that we consider different sets of points
for different step sizes, which differs from the usage of MEs in other contexts (see, for instance, the
package marginaleffects for a comparison). The exclusion of points only impacts aggregations of
FMEs, i.e., the cAME and AME. As discussed in the section on Forward marginal effects, this also
affects the computation of categorical AMEs. In Eq. (1) and Eq. (2), the AME and cAME are formulated
as estimators of the expected global or regional (concerning a subspace) effects. The fewer observations
we are considering for an average, the larger the variance of the estimate.

6 User interface and package handling

6.1 Local explanations

The fme() function is the central user interface. It mainly requires a pre-trained model and a data set
(see section Design and options for extensions for details). Further control parameters include a list of
features and step sizes, whether to compute NLM values for each FME, and an extrapolation detection
method. The fme() function initiates the construction and computations of a ForwardMarginalEffect
object without requiring the user to know R6 (Chang, 2021) syntax.

For this use case, we train a random forest from the randomForest package (Liaw and Wiener, 2002)
on the bike sharing data set (Fanaee-T, 2013) using mlr3. Note that models trained via tidymodels
and caret are also supported, as well as models trained via lm(), glm(), and gam(). We aim to predict
and explain the daily bike rental demand in Washington, D.C., based on features such as the outside
temperature, wind speed, or humidity. We first train the model:

> library(fmeffects)
> data(bikes, package = "fmeffects")
> library(mlr3verse)
> library(mlr3extralearners)
> forest = lrn("regr.randomForest")

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=tidymodels
https://CRAN.R-project.org/package=caret


CONTRIBUTED RESEARCH ARTICLE 74

> task = as_task_regr(x = bikes, id = "bikes", target = "count")
> forest$train(task)

Then, we simply pass the trained model, evaluation data, and remaining parameters to the
fme() function. It returns a ForwardMarginalEffect object, which can be analyzed via summary() and
visualized via plot() (see Fig. 3). Here, the outside temperature is raised by 5 degrees Celsius ceteris
paribus. To avoid overplotting values, each hexagon represents a local average of FMEs. Users can
easily access the data used by all plot functions to implement their own visualizations.

Let us single out the observation with the largest associated FME. This observation corresponds
to a single day with a recorded temperature of 8 degrees Celsius. Increasing the temperature by 5
degrees Celsius on this particular day results in 2563 additional predicted bike rentals. We plot such
model explanations for the entire data set and average FMEs to receive a global model explanation.
The AME—the global average of FMEs—is 304: an increase in temperature by 5 degrees Celsius results
in an average increase of 304 predicted daily bike rentals.

> effects.univariate.temp = fme(
+ model = forest,
+ data = bikes,
+ features = list("temp" = 5),
+ ep.method = "envelope")

> summary(effects.univariate.temp)

Forward Marginal Effects Object

Step type:
numerical

Features & step lengths:
temp, 5

Extrapolation point detection:
envelope, EPs: 48 of 731 obs. (7 %)

Average Marginal Effect (AME):
304.1722

> plot(effects.univariate.temp)

AME

−2000

−1000

0

1000

2000

0 10 20 30
temp

F
M

E

Count

5

10

Figure 3: Plot of univariate FMEs for feature ‘temp’ and step size 5. Each hexagon represents a local
FME average. The horizontal value represents the observed feature value of ‘temp’. Each observation’s
‘temp’ value is moved according to the arrow’s direction and length. The vertical value of each hexagon
indicates the FME value associated with that feature change. The horizontal bar indicates the AME.
The shade of the hexagon implies how many observations it contains. A smoothing function facilitates
interpretations by modeling an approximate pattern of FMEs across the feature range.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 75

Let us take a moment to compare the FME plot with the combined ICE and PD plot generated by the
R package iml (Molnar et al., 2018) (see Fig. 4). This is one of the most popular and established model-
agnostic ways to interpret predictive models (Molnar, 2022). The ICE is a local model explanation and
represents the prediction for an observation where only the features of interest are varied (in this case,
only ‘temp’). The PD is the average of ICEs (in the univariate case, the vertical average) and indicates
the global, average prediction when a subset of features is varied for all observations. Although we
can see a rough trajectory of the feature influence on local and average predictions, it is difficult to
pinpoint the exact effects of changing ‘temp’ on the prediction for single observations. Furthermore,
ICE curves are more likely to be subject to model extrapolations, a result of predicting in areas where
the model was not trained on a sufficient amount of data.

2000

4000

6000

8000

0 10 20 30
temp

P
re

di
ct

ed
 ta

rg
et

ICE

PD

Figure 4: An ICE and PD plot for feature ‘temp’ generated by the R package iml. Each solid blue curve
(an ICE) represents predictions for a single instance while only ‘temp’ varies. The dashed black curve
(the PD) is the vertical average of ICEs and represents the average, isolated influence of ‘temp’.

FMEs allow for positive or negative step sizes. For instance, let us investigate the effects of an
isolated drop in humidity by 10 percentage points. We can observe an AME of 103 additional predicted
bike rentals a day. Individual effects tend to be larger the higher the humidity on that particular day.

> effects.univariate.humidity = fme(
+ model = forest,
+ data = bikes,
+ features = list("humidity" = -0.1),
+ ep.method = "envelope")

> summary(effects.univariate.humidity)

Forward Marginal Effects Object

Step type:
numerical

Features & step lengths:
humidity, -0.1

Extrapolation point detection:
envelope, EPs: 1 of 731 obs. (0 %)

Average Marginal Effect (AME):
102.9158

> plot(effects.univariate.humidity)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=iml


CONTRIBUTED RESEARCH ARTICLE 76

AME

−500

0

500

1000

1500

0.3 0.6 0.9
humidity

F
M

E

Count

5

10

15

Figure 5: Univariate FMEs for a drop in humidity by 10 percentage points. Especially for high
humidity values, the drop results in a considerable increase in predicted daily bike rentals.

In many applications, we are interested in interactions of features on the prediction. Until now, we
only analyzed the univariate effects of ‘temp’ and ‘humidity’ on the predicted amount of bike rentals.
However, potential interactions between features may exist. We evaluate an increase in temperature
by 5 degrees Celsius and a simultaneous drop in humidity by 10 percentage points (see Fig. 6). For a
bivariate change in feature values, the two arrows depict the direction and magnitude of the feature
change in the respective variable. As in the univariate case, we plot local averages within hexagons to
avoid overplotting values. The location of the hexagon is determined by the observations’ observed
feature values in the provided data set. Its color indicates the FME associated with the bivariate feature
change. An increase in the outside temperature by 5 degrees Celsius and a simultaneous drop in
humidity by 10 percentage points is associated with an AME of 403. The univariate AMEs roughly
add up to the bivariate AME, indicating that, on average, there is no additional interaction between
both feature changes on the prediction.

> effects.bivariate = fme(
+ model = forest,
+ data = bikes,
+ features = list("temp" = 5, "humidity" = -0.1),
+ ep.method = "envelope")

> summary(effects.bivariate)

Forward Marginal Effects Object

Step type:
numerical

Features & step lengths:
temp, 5
humidity, -0.1

Extrapolation point detection:
envelope, EPs: 49 of 731 obs. (7 %)

Average Marginal Effect (AME):
403.0714

> plot(effects.bivariate)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 77

0.25

0.50

0.75

1.00

0 10 20
temp

hu
m

id
ity

FME

−1000

0

1000

2000

Figure 6: Visualizing bivariate FMEs for an increase in ‘temp’ by 5 degrees Celsius and a simultaneous
drop in ‘humidity’ by 10 percentage points. FMEs are highly heterogeneous. We can see mostly positive
effects, especially for observations with combinations of medium ‘temp’ and ‘humidity’ values.

Let us repeat the same procedure as for univariate feature changes and compare the FME plot to
an alternative option, the bivariate PD plot (see Fig. 7). As opposed to the novel visualization with
FMEs, the PD plot only visualizes the average, global effect of changing both features on the predicted
amount of bike rentals. It does not inform us about the distribution of observed feature values, thus
not allowing us to evaluate the effects of increasing one feature and decreasing another simultaneously.

0.00

0.25

0.50

0.75

1.00

0 10 20 30
temp

hu
m

id
ity

ŷ

3000

3500

4000

4500

5000

5500

Figure 7: A bivariate PD plot (created via the R package iml), visualizing the global interaction
between ‘temp’ and ‘humidity’ on the predicted amount of bike rentals. Plugging in medium to large
values for ‘temp’ and low to medium values for ‘humidity’, ceteris paribus, results in more predicted
bike rentals on average. As opposed to bivariate FMEs, we cannot investigate multiple local effects,
nor can we see the actual distribution of observed feature values. As a result, we cannot evaluate the
effects of increasing one feature and decreasing another simultaneously.

Let us now proceed to investigate non-linearity. Non-linearity can be visually assessed for ICE
curves (see Fig. 4), but it is hard to quantify and would be somewhat meaningless for a large variation
in the feature of interest. Furthermore, for bivariate or higher-dimensional changes in feature values,
we lose any option for visual diagnoses of non-linearity. In contrast, the NLM can be computed for
FMEs with continuous step sizes, regardless of dimensionality. The average non-linearity measure
(ANLM) is 0.34, indicating that the linear secant, on average, is a bad descriptor of the FME.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 78

> effects.bivariate.nlm = fme(
+ model = forest,
+ data = bikes,
+ features = list("temp" = 5, "humidity" = -0.1),
+ ep.method = "envelope",
+ compute.nlm = TRUE)

> effects.bivariate.nlm

Forward Marginal Effects Object

Features & step lengths:
temp, 5
humidity, -0.1

Average Marginal Effect (AME):
403.0714

Average Non-Linearity Measure (ANLM):
0.34

> plot(effects.bivariate.nlm, with.nlm = TRUE)

0.25

0.50

0.75

1.00

0 10 20
temp

hu
m

id
ity

FME

−1000

0

1000

2000

0.25

0.50

0.75

1.00

0 10 20
temp

hu
m

id
ity

NLM

0.0

0.5

1.0

Figure 8: Adding NLM computations to the FME plot. Each hexagon in the left and right plots
represents a local average of FME and NLM values, respectively.

Fig. 8 simply contrasts FME values with the corresponding NLM values. In this case, we can see both
non-linear FMEs (whiter NLM) and linear FMEs (deep blue-colored NLM). We could now, for instance,
focus on interpreting linear FMEs. All FMEs depicted in Fig. 9 have an NLM of 0.9 or higher, meaning
that they almost fully describe the model prediction for proportional changes in ‘temp’ and ‘humidity’.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 79

0.4

0.6

0.8

1.0

0 10 20
temp

hu
m

id
ity

FME

−1000
−500
0
500
1000
1500
2000

Figure 9: Visualizing FMEs with an NLM ≥ 0.9.

An advantage of FMEs is their ability to provide comprehensible model insight even when
exploring higher-order feature changes. Let us factor in a third feature change, now simultaneously
reducing windspeed by 5 miles per hour, and visualize the distribution of FME and NLM values.
We can see that in addition to an increase in temperature and a decrease in humidity, a decrease in
windspeed further boosts the average number of predicted daily bike rentals.

> effects.trivariate.nlm = fme(
+ model = forest,
+ data = bikes,
+ features = list("temp" = 5, "humidity" = -0.1, "windspeed" = -5),
+ ep.method = "envelope",
+ compute.nlm = TRUE)

> summary(effects.trivariate.nlm)

Forward Marginal Effects Object

Step type:
numerical

Features & step lengths:
temp, 5
humidity, -0.1
windspeed, -5

Extrapolation point detection:
envelope, EPs: 117 of 731 obs. (16 %)

Average Marginal Effect (AME):
515.2608

Average Non-Linearity Measure (ANLM):
0.31

> plot(effects.trivariate.nlm, with.nlm = TRUE)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 80

AME: 515.2608

0

20

40

60

80

−1000 0 1000 2000 3000
FME (temp = 5 | humidity = −0.1 | windspeed = −5)

ANLM: 0.5516

0

50

100

0.00 0.25 0.50 0.75 1.00
NLM (temp = 5 | humidity = −0.1 | windspeed = −5)

Figure 10: Adding a third feature change, a drop in windspeed by 5 miles per hour, and visualizing
the distribution of FME and NLM values. For the NLM plot, negative NLMs are binned as 0. It follows
that the ANLM value in the plot differs from the raw ANLM in the summary output.

So far, we have only evaluated changes in continuous features. In many applications, we are
concerned with switching categories of categorical features, a way of counterfactual thinking inherent
to the human thought process. Note that despite the allure of switching categories of categorical
features, one needs to be aware of potential model extrapolations. To illustrate this, we switch each
non-rainy day’s precipitation status to rainfall. Rainfall has an average isolated effect of lowering daily
rentals by 699 bikes (see Fig. 11).

> effects.categ = fme(
+ model = forest,
+ data = bikes,
+ features = list("weather" = "rain"))

> summary(effects.categ)

Forward Marginal Effects Object

Step type:
categorical

Feature & reference category:
weather, rain

Extrapolation point detection:
none, EPs: 0 of 710 obs. (0 %)

Average Marginal Effect (AME):
-699.4915

> plot(effects.categ)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 81

AME: −699.4915

0

25

50

75

−1500 −1000 −500 0
FME (category: rain, feature: weather)

Figure 11: Distribution of categorical FMEs resulting from switching each non-rainy day’s precipitation
status to rain. On average, rainfall lowers predicted bike rentals by 699 bikes per day.

6.2 Regional explanations

In our examples, we can see highly heterogeneous local effects. The more heterogeneous FMEs are,
the less information the AME carries. In many practical applications, we are interested in compactly
describing the behavior of the predictive model across the feature space, akin to a beta coefficient in
a linear model. This is where regional explanations come into play. We aim to find subgroups with
more homogeneous FME values, thereby describing the behavior of the model not in terms of a global
average but in terms of multiple regional averages (cAMEs).

In fmeffects, this can be achieved by further processing the ForwardMarginalEffect object con-
taining FMEs (and optionally NLM values) using the came() function. This returns a Partitioning
object (in this case, an object of the class "PartitioningCTREE", a subclass of the abstract class
"Partitioning", see later section on Design and options for extensions).

For the univariate change in temperature by 5 degrees Celsius, we decide to search for precisely 2
subgroups2 (for a description of this algorithm, see the following section on Design and options for
extensions). A summary of the created object informs us about the number of observations, cAME,
and standard deviation (SD) of FMEs inside the root node and leaf nodes (the found subgroups). We
succeeded in finding subgroups with lower SDs while maintaining an appropriate sample size. The
root node SD of 620 can be successfully split down to 442 and 369 within the subgroups. By visualizing
the tree, we can see how the data was partitioned. For cooler outside temperatures equal to or lower
than ≈ 16 degrees Celsius, we can observe a positive cAME of 730 additional bike rentals per day. On
warmer days with a temperature above ≈ 16 degrees Celsius, the model predicts 205 less bike rentals
a day when the outside temperature increases by 5 degrees.

> subspaces = came(effects = effects.univariate.temp, number.partitions = 2)
> summary(subspaces)

PartitioningCtree of an FME object

Method: partitions = 2

n cAME SD(fME)
683 304.1722 620.4775 *
372 729.8519 441.6201
311 -205.0011 368.8368
---
* root node (non-partitioned)

AME (Global): 304.1722

> plot(subspaces)

2This value is to be set by the user depending on how many regional explanations are to be found. Alternatively,
we can search for a pre-defined SD of FMEs inside the terminal nodes. How many subgroups can be found depends
on the data and predictive model.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 82

≤  15.774151 >  15.774151

temp

n = 372
cAME = 729.85

SD(FME) = 441.62

n = 311
cAME = −205

SD(FME) = 368.84

0

50

100

150

−2000 −1000 0 1000 2000
FME

0

50

100

150

−2000 −1000 0 1000 2000
FME

Figure 12: Using a decision tree to find subgroups of observations with more homogeneous FMEs
of increasing ‘temp’ by 5 degrees Celsius. Each leaf node visualizes one subgroup, the number of
observations, the cAME, and the SD of FMEs indicating FME homogeneity.

6.3 Global explanations

When to search for regional explanations thus depends on the heterogeneity of local effects. The ame()
function provides an appropriate summary for the entire model. It uses a default step size of 1 or 0.01
for small feature ranges. For categorical FMEs, it uses every observed category as a reference category.
Alternatively, custom step sizes and subsets of features can be used. The summary() function prints a
compact model summary of each feature, a default step size, the AME, the SD of FMEs, 25% and 75%
quantiles of FMEs, as well as the number of observations left after excluding extrapolation points (EPs).
A large dispersion indicates heterogeneity of FMEs and thus a small fidelity of the AME and possible
benefits from searching for subgroups with varying cAMEs. A different workflow can, therefore,
also consist of starting with the table generated by ame() and deciding which feature effects can be
described by AMEs and which might be better describable by subgroups and cAMEs. If this has been
unsuccessful, we can resort to local model explanations. Recall our example from the previous section
on Regional explanations where we split FMEs associated with increasing temperature by 5 degrees
Celsius. From the ame() summary, we see that ‘temp’ has a relatively large SD in relation to its AME
(here calculated with a step size of 1), and the interquartile range indicates a wide spread of FMEs
from -21 in the 25% quantile up to 107 in the 75% quantile, which makes it a promising candidate to
find subgroups with more homogeneous FMEs.

> ame.results = ame(model = forest, data = bikes)
> summary(ame.results)

Model Summary Using Average Marginal Effects:

Feature step.size AME SD 0.25 0.75 n
1 season winter -894.4673 456.3625 -1248.2476 -586.5656 550
2 season spring 141.6627 557.8672 -242.9194 652.8917 547
3 season summer 538.4263 627.8606 45.0598 1196.3612 543
4 season fall 493.7475 581.3166 8.7096 1101.5087 553
5 year 0 -1890.8318 641.3168 -2377.7961 -1496.2576 366
6 year 1 1785.563 508.6759 1412.6724 2183.8292 365
7 holiday no 165.2367 213.3036 72.5637 194.7954 21
8 holiday yes -122.4971 141.9902 -189.0043 -22.1315 710
9 weekday Sunday 107.3675 199.4931 -33.8124 218.4856 626
10 weekday Monday -127.8842 232.482 -260.735 23.9211 626
11 weekday Tuesday -110.9437 219.9664 -216.2248 29.4189 626

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 83

12 weekday Wednesday -16.5913 204.4574 -113.3341 118.8563 627
13 weekday Thursday 27.4835 189.9021 -85.0117 140.1993 627
14 weekday Friday 53.982 194.2184 -65.3866 170.0411 627
15 weekday Saturday 110.8837 191.1073 -7.7049 231.8014 627
16 workingday no -41.222 115.1556 -126.4856 45.9121 500
17 workingday yes 42.5305 154.5266 -67.1033 134.7876 231
18 weather misty -236.5115 327.3365 -442.211 -71.8195 484
19 weather clear 368.2611 325.1541 145.7027 459.1031 268
20 weather rain -699.4915 362.8458 -943.5127 -454.9041 710
21 temp 1 56.6478 167.5781 -21.1847 106.6103 731
22 humidity 0.01 -20.3705 58.2372 -35.0143 8.289 731
23 windspeed 1 -24.3256 73.3227 -50.7023 12.0791 731

7 Design and options for extensions

The fmeffects package is built on a modular design for improved maintainability and future exten-
sions. Fig. 13 provides a visual overview of the core design. The greatest emphasis is placed on the
strategy and adapter design patterns (Gamma et al., 1994). Simply put, the strategy pattern decouples
the source code for algorithm selection at runtime into separate classes. We repeatedly implement
this pattern throughout the package by creating abstract classes whose subclasses implement spe-
cific functionalities. The adapter design pattern (also called a “wrapper”) creates an interface for
communication between two classes.

• "Predictor": An abstract class that implements the adapter pattern to accommodate future
implementations of storing a predictive model. "PredictorMLR3", "PredictorParsnip", and
"PredictorCaret" are subclasses that store an mlr3, parsnip (Kuhn and Vaughan, 2023) (part of
tidymodels), or caret model object. This allows users of fmeffects to use numerous predictive
models such as random forests, gradient boosting, support vector machines, or neural networks.
"PredictorLM" stores models returned by lm(),glm(),or gam(). The package can be extended
with novel model types by implementing a new subclass that stores the model, data, target, and
is able to return predictions.

• "AverageMarginalEffects": A class to compute AMEs for each feature in the data (or a subset of
features). Internally, a new "ForwardMarginalEffect" object is used to compute and aggregate
FMEs. For convenience, we implement a wrapper function ame() to facilitate object creation
and to initiate computations without requiring user input in the form of R6 syntax.

• "ForwardMarginalEffect": The centerpiece class of the package. It keeps access to a Predictor,
stores important information to create FMEs, and after the computations are completed, stores
results and gives access to visualization methods. For convenience, the wrapper function fme()
can be used.

• "FMEPlot": An abstract class for code decoupling of different plot categories into distinct classes.
Subclasses include "FMEPlotUnivariate", "FMEPlotBivariate", "FMEPlotHigherOrder",
"FMEPlotCategorical".

• "ExtrapolationDetector": Identifies (and excludes) EPs. The current implementation supports
the method “envelope”, excluding points outside the multivariate envelope of the training data.

• "NonLinearityMeasure": For the NLM, we need to approximate three line integrals, e.g., via
Simpson’s 3/8 rule. The general definition of Simpson’s 3/8 rule for a univariate function f(x)
and integration interval [a, b] corresponds to:∫ b

a
f (x) ≈ b− a

8

ï
f (a) + 3 f

Å
2a + b

3

ã
+ 3 f

Å
a + 2b

3

ã
+ f (b)

ò
(3)

We make use of a composite Simpson rule, which divides up the interval [a, b] into n subintervals
of equal size and approximates each subinterval with Eq. (3).

• "Partitioning": An abstract class, allowing for various implementations of finding subgroups
for cAMEs. For convenience, the wrapper function came() can be used. The current im-
plementation supports RP via the rpart and partykit (CTREE algorithm) packages (classes
"PartitioningRPart" and "PartitioningCTREE").
We believe there are two criteria that should guide this process: FME homogeneity within each
subgroup and the number of subgroups. A low number of subgroups is generally preferred. In
certain applications, we may want to search for a predefined number of subgroups, akin to the
search for a predefined number of clusters in clustering problems. Many RP algorithms do not
support searching for a number of subgroups, which is what the "Pruner" class is intended for.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=parsnip


CONTRIBUTED RESEARCH ARTICLE 84

computes NLM

finds EPs

Partitioning
(Abstract) Superclass

PartitioningRpart
Subclass

PartitioningCtree
Subclass

growTree()

growTree()

growTree() // abstract

PartitioningPlot
Class

plot()

Predictor
(Abstract) Superclass

PredictorMLR3
Subclass

PredictorCaret
Subclass

predict()

predict()

ForwardMarginalEffect
Class

ExtrapolationDetector
Class

computeEP()compute()
plot()

gets predictions

FMEPlotUnivariate
Subclass

FMEPlotBivariate
Subclass

plot()

plot()

FMEPlotCategorical
Subclass

plot()

FMEPlot
(Abstract) Superclass

plot() // abstract

NonLinearityMeasure
Class

nlmCompute()

plots FMEs

Pruner
Class

prune()

plots tree structure

prunes tree

partitions FMEs

fme(...)

came(...)

AverageMarginalEffects
Class

compute()

ame(...)

contains FMEs 
for each feature 

predict() // abstract
PredictorParsnip

Subclass

predict()

Subclass

plot()

FMEPlotHigherOrder

PredictorLM
Subclass

predict()

Figure 13: Design overview of the fmeffects package, including methods that implement the main
functionality of each class. Classes may contain more methods than depicted. Blue boxes indicate
wrapper functions to instantiate objects of the respective class.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 85

• "Pruner": To receive a predefined number of subgroups for arbitrary RP algorithms, we follow a
two-stage process: grow a large tree by tweaking tree-specific hyperparameters and then prune
it back to receive the desired number of subgroups. A "Partitioning" subclass is implemented
such that it can first grow a large tree, e.g., with a low complexity parameter for rpart. Then
"Pruner" iteratively computes the SD of FMEs for each parent node of the current terminal
nodes and removes all terminal nodes of the parent with the lowest SD.

• "PartitioningPlot": Decouples visualizations of the separation of D into subgroups from
specific implementations of the "Partitioning" subclass. Here, we make use of a dependency
on partykit for a tree data structure. This allows visualizations of any partitioning with the same
methods. The package ggparty (Borkovec and Madin, 2019) creates tree figures that illustrate
the partitioning, descriptive statistics for each terminal node, and histograms of FMEs (and
optionally NLM values).

8 Conclusion

This paper introduces the R package fmeffects, the first software implementation of the theory sur-
rounding FMEs. We showcase the package functionality with an applied use case and discuss design
choices and implications for future extensions. FMEs are a versatile model-agnostic interpretation
method and give us comprehensible model explanations in the form of: if we change x by an amount
h, what is the change in predicted outcome ŷ? FMEs equip stakeholders, including those without ML
expertise, with the ability to understand feature effects for any model. We therefore hope that this
package will work towards a more widespread adoption of FMEs in practice.

Software development is an ongoing process. As the theory surrounding FMEs evolves, so should
the fmeffects package. As noted by Scholbeck et al. (2024), possible directions for future research
include the development of techniques to better quantify extrapolation risk for the selection of step
sizes; furthermore, the subgroup search for cAMEs is subject to uncertainties, which may be able to be
quantified; and lastly, we may be able to spare computations by searching for representative FMEs,
similar to prototype observations that are representative of clusters of observations (Tan et al., 2019).
Future performance improvements may also be made via parallel computing, which at this point is
only implemented for NLM computations.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ggparty


CONTRIBUTED RESEARCH ARTICLE 86

References

A. Adadi and M. Berrada. Peeking inside the black-box: A survey on explainable artificial intelligence
(XAI). IEEE Access, 6:52138–52160, 2018. URL https://doi.org/10.1109/access.2018.2870052.
[p73]

D. W. Apley and J. Zhu. Visualizing the effects of predictor variables in black box supervised learning
models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(4):1059–1086, 2020.
URL https://doi.org/10.1111/rssb.12377. [p71, 73]

V. Arel-Bundock. marginaleffects: Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis Tests,
2023. URL https://CRAN.R-project.org/package=marginaleffects. R package version 0.11.1.
[p71]

S. Athey and G. W. Imbens. Machine learning methods that economists should know about. Annual
Review of Economics, 11(1):685–725, 2019. URL https://doi.org/10.1146/annurev-economics-
080217-053433. [p67]

T. Bartus. Estimation of marginal effects using margeff. The Stata Journal, 5(3):309 – 329, 2005. [p67, 71]

M. Borkovec and N. Madin. ggparty: ’ggplot’ Visualizations for the ’partykit’ Package, 2019. URL
https://CRAN.R-project.org/package=ggparty. R package version 1.0.0. [p85]

A.-L. Boulesteix, M. N. Wright, S. Hoffmann, and I. R. König. Statistical learning approaches in
the genetic epidemiology of complex diseases. Human Genetics, 139(1):73–84, 2020. URL https:
//doi.org/10.1007/s00439-019-01996-9. [p67]

L. Breiman. Statistical modeling: The two cultures (with comments and a rejoinder by the author).
Statistical Science, 16(3):199 – 231, 2001. URL https://doi.org/10.1214/ss/1009213726. [p67, 72]

M. Britton. Vine: Visualizing statistical interactions in black box models. arXiv, 2019. URL https:
//doi.org/10.48550/arXiv.1904.00561. [p71, 72]

G. Casalicchio, C. Molnar, and B. Bischl. Visualizing the feature importance for black box models.
In M. Berlingerio, F. Bonchi, T. Gärtner, N. Hurley, and G. Ifrim, editors, Machine Learning and
Knowledge Discovery in Databases, pages 655–670. Springer International Publishing, Cham, 2019.
URL https://doi.org/10.1007/978-3-030-10925-7_40. [p71]

W. Chang. R6: Encapsulated Classes with Reference Semantics, 2021. URL https://CRAN.R-project.org/
package=R6. R package version 2.5.1. [p73]

I. C. Covert, S. Lundberg, and S.-I. Lee. Understanding global feature contributions with additive im-
portance measures. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. [p71]

P. D. Dueben and P. Bauer. Challenges and design choices for global weather and climate models
based on machine learning. Geoscientific Model Development, 11(10):3999–4009, 2018. URL https:
//doi.org/10.5194/gmd-11-3999-2018. [p67]

D. B. Dwyer, P. Falkai, and N. Koutsouleris. Machine learning approaches for clinical psychology
and psychiatry. Annual Review of Clinical Psychology, 14(1):91–118, 2018. URL https://doi.org/10.
1146/annurev-clinpsy-032816-045037. [p67]

H. Fanaee-T. Bike Sharing Dataset. UCI Machine Learning Repository, 2013. URL https://doi.org/
10.24432/C5W894. [p73]

J. H. Friedman. Greedy function approximation: A gradient boosting machine. Ann. Statist., 29(5):
1189–1232, 2001. URL https://doi.org/10.1214/aos/1013203451. [p71]

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley Professional, 1st edition, 1994. [p83]

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black box: Visualizing statistical
learning with plots of individual conditional expectation. Journal of Computational and Graphical
Statistics, 24(1):44–65, 2015. URL https://doi.org/10.1080/10618600.2014.907095. [p71]

W. Greene. Econometric Analysis. Pearson International, 8th edition, 2019. [p67, 71]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://doi.org/10.1109/access.2018.2870052
https://doi.org/10.1111/rssb.12377
https://CRAN.R-project.org/package=marginaleffects
https://doi.org/10.1146/annurev-economics-080217-053433
https://doi.org/10.1146/annurev-economics-080217-053433
https://CRAN.R-project.org/package=ggparty
https://doi.org/10.1007/s00439-019-01996-9
https://doi.org/10.1007/s00439-019-01996-9
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.48550/arXiv.1904.00561
https://doi.org/10.48550/arXiv.1904.00561
https://doi.org/10.1007/978-3-030-10925-7_40
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R6
https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/10.1146/annurev-clinpsy-032816-045037
https://doi.org/10.24432/C5W894
https://doi.org/10.24432/C5W894
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1080/10618600.2014.907095


CONTRIBUTED RESEARCH ARTICLE 87

J. Herbinger, B. Bischl, and G. Casalicchio. Repid: Regional effect plots with implicit interaction
detection. In G. Camps-Valls, F. J. R. Ruiz, and I. Valera, editors, Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research,
pages 10209–10233. PMLR, 2022. [p71, 72]

G. Hooker. Diagnosing extrapolation: Tree-based density estimation. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, page 569–574,
New York, NY, USA, 2004a. Association for Computing Machinery. [p73]

G. Hooker. Discovering additive structure in black box functions. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pages 575–580,
New York, NY, USA, 2004b. ACM. URL http://doi.acm.org/10.1145/1014052.1014122. [p73]

G. Hooker. Generalized functional ANOVA diagnostics for high-dimensional functions of dependent
variables. Journal of Computational and Graphical Statistics, 16(3):709–732, 2007. URL https://doi.
org/10.1198/106186007X237892. [p73]

G. Hooker, L. Mentch, and S. Zhou. Unrestricted permutation forces extrapolation: Variable importance
requires at least one more model, or there is no free variable importance. Statistics and Computing, 31
(6):82, 2021. URL https://doi.org/10.1007/s11222-021-10057-z. [p73]

T. Hothorn and A. Zeileis. partykit: A modular toolkit for recursive partytioning in R. Journal of
Machine Learning Research, 16(118):3905–3909, 2015. [p70]

U. Kamath and J. Liu. Introduction to interpretability and explainability. In Explainable Artificial
Intelligence: An Introduction to Interpretable Machine Learning, pages 1–26. Springer International
Publishing, Cham, 2021. URL https://doi.org/10.1007/978-3-030-83356-5_1. [p67]

M. Kuhn and D. Vaughan. parsnip: A Common API to Modeling and Analysis Functions, 2023. URL
https://CRAN.R-project.org/package=parsnip. R package version 1.1.1. [p83]

T. J. Leeper. margins: Marginal effects for model objects, 2018. URL https://CRAN.R-project.org/
package=margins. R package version 0.3.23. [p71]

A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18–22, 2002. URL
https://CRAN.R-project.org/doc/Rnews/. [p73]

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Proceedings of
the 31st International Conference on Neural Information Processing Systems, NIPS’17, page 4768–4777,
Red Hook, NY, USA, 2017. Curran Associates Inc. [p71]

D. Lüdecke. ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open
Source Software, 3(26):772, 2018. URL https://doi.org/10.21105/joss.00772. [p71]

C. J. McCabe, M. A. Halvorson, K. M. King, X. Cao, and D. S. Kim. Interpreting interaction effects in
generalized linear models of nonlinear probabilities and counts. Multivariate Behavioral Research, 57
(2-3):243–263, 2022. URL https://doi.org/10.1080/00273171.2020.1868966. [p67]

N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias and fairness in
machine learning. ACM Comput. Surv., 54(6), 2021. URL https://doi.org/10.1145/3457607. [p70]

T. D. Mize, L. Doan, and J. S. Long. A general framework for comparing predictions and marginal
effects across models. Sociological Methodology, 49(1):152–189, 2019. URL https://doi.org/10.1177/
0081175019852763. [p71]

C. Molnar. Interpretable Machine Learning. 2nd edition, 2022. URL https://christophm.github.io/
interpretable-ml-book. [p67, 75]

C. Molnar, B. Bischl, and G. Casalicchio. iml: An R package for interpretable machine learning. JOSS,
3(26):786, 2018. URL https://doi.org/10.21105/joss.00786. [p75]

C. Molnar, G. König, J. Herbinger, T. Freiesleben, S. Dandl, C. A. Scholbeck, G. Casalicchio, M. Grosse-
Wentrup, and B. Bischl. General pitfalls of model-agnostic interpretation methods for machine
learning models. In A. Holzinger, R. Goebel, R. Fong, T. Moon, K.-R. Müller, and W. Samek, editors,
xxAI - Beyond Explainable AI. xxAI 2020. Lecture Notes in Computer Science, vol 13200, Cham, 2022.
Springer. URL https://doi.org/10.1007/978-3-031-04083-2_4. [p73]

C. Molnar, G. König, B. Bischl, and G. Casalicchio. Model-agnostic feature importance and effects with
dependent features: A conditional subgroup approach. Data Mining and Knowledge Discovery, 38(5):
2903–2941, 2024. URL https://doi.org/10.1007/s10618-022-00901-9. [p71]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

http://doi.acm.org/10.1145/1014052.1014122
https://doi.org/10.1198/106186007X237892
https://doi.org/10.1198/106186007X237892
https://doi.org/10.1007/s11222-021-10057-z
https://doi.org/10.1007/978-3-030-83356-5_1
https://CRAN.R-project.org/package=parsnip
https://CRAN.R-project.org/package=margins
https://CRAN.R-project.org/package=margins
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.21105/joss.00772
https://doi.org/10.1080/00273171.2020.1868966
https://doi.org/10.1145/3457607
https://doi.org/10.1177/0081175019852763
https://doi.org/10.1177/0081175019852763
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.21105/joss.00786
https://doi.org/10.1007/978-3-031-04083-2_4
https://doi.org/10.1007/s10618-022-00901-9


CONTRIBUTED RESEARCH ARTICLE 88

S. Mullainathan and J. Spiess. Machine learning: An applied econometric approach. Journal of Economic
Perspectives, 31(2):87–106, 2017. URL https://doi.org/10.1257/jep.31.2.87. [p67]

E. Onukwugha, J. Bergtold, and R. Jain. A primer on marginal effects—part I: Theory and formulae.
PharmacoEconomics, 33(1):25–30, 2015. URL https://doi.org/10.1007/s40273-014-0210-6. [p67]

A. Rajkomar, J. Dean, and I. Kohane. Machine learning in medicine. New England Journal of Medicine,
380(14):1347–1358, 2019. URL https://doi.org/10.1056/NEJMra1814259. [p67]

M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should I trust you?": Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 1135–1144, New York, NY, USA, 2016. Association for Computing
Machinery. URL https://doi.org/10.1145/2939672.2939778. [p71]

C. A. Scholbeck, C. Molnar, C. Heumann, B. Bischl, and G. Casalicchio. Sampling, intervention, predic-
tion, aggregation: A generalized framework for model-agnostic interpretations. In P. Cellier and
K. Driessens, editors, Machine Learning and Knowledge Discovery in Databases, volume 1167 of Com-
munications in Computer and Information Science, pages 205–216. Springer International Publishing,
Cham, 2020. URL https://doi.org/10.1007/978-3-030-43823-4_18. [p67, 71]

C. A. Scholbeck, J. Moosbauer, G. Casalicchio, H. Gupta, B. Bischl, and C. Heumann. Position
paper: Bridging the gap between machine learning and sensitivity analysis. arXiv, 2023. URL
https://doi.org/10.48550/arXiv.2312.13234. [p71]

C. A. Scholbeck, G. Casalicchio, C. Molnar, B. Bischl, and C. Heumann. Marginal effects for non-
linear prediction functions. Data Mining and Knowledge Discovery, 38(5):2997–3042, 2024. URL
https://doi.org/10.1007/s10618-023-00993-x. [p67, 68, 69, 70, 71, 73, 85]

StataCorp. Stata: Release 18. College Station, TX: StataCorp LLC., 2023. [p71]

E. Štrumbelj and I. Kononenko. An efficient explanation of individual classifications using game
theory. Journal of Machine Learning Research, 11(1):1–18, 2010. [p71]

P.-N. Tan, A. Karpatne, M. Steinbach, and V. Kumar. Introduction to Data Mining: Global Edition. Pearson,
2019. [p85]

T. Therneau and B. Atkinson. rpart: Recursive Partitioning and Regression Trees, 2019. URL https:
//CRAN.R-project.org/package=rpart. R package version 4.1-15. [p70]

S. Wachter, B. Mittelstadt, and C. Russell. Counterfactual explanations without opening the black box:
Automated decisions and the GDPR. Harvard Journal of Law and Technology, 31(2):841–887, 2018.
[p71]

R. Williams. Using the margins command to estimate and interpret adjusted predictions and marginal
effects. Stata Journal, 12(2):308–331(24), 2012. [p67, 68, 71]

Holger
Ludwig-Maximilians-Universität in Munich
Germany
hbj.loewe@gmail.com

Christian A. Scholbeck
Ludwig-Maximilians-Universität in Munich
Munich Center for Machine Learning (MCML)
Germany
https://orcid.org/0000-0001-6607-4895
christian.scholbeck@stat.uni-muenchen.de

Christian Heumann
Ludwig-Maximilians-Universität in Munich
Germany
christian.heumann@stat.uni-muenchen.de

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://doi.org/10.1257/jep.31.2.87
https://doi.org/10.1007/s40273-014-0210-6
https://doi.org/10.1056/NEJMra1814259
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/978-3-030-43823-4_18
https://doi.org/10.48550/arXiv.2312.13234
https://doi.org/10.1007/s10618-023-00993-x
https://CRAN.R-project.org/package=rpart
https://CRAN.R-project.org/package=rpart
hbj.loewe@gmail.com
https://orcid.org/0000-0001-6607-4895
christian.scholbeck@stat.uni-muenchen.de
christian.heumann@stat.uni-muenchen.de


CONTRIBUTED RESEARCH ARTICLE 89

Bernd Bischl
Ludwig-Maximilians-Universität in Munich
Munich Center for Machine Learning (MCML)
Germany
bernd.bischl@stat.uni-muenchen.de

Giuseppe Casalicchio
Ludwig-Maximilians-Universität in Munich
Munich Center for Machine Learning (MCML)
Germany
giuseppe.casalicchio@stat.uni-muenchen.de

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

bernd.bischl@stat.uni-muenchen.de
giuseppe.casalicchio@stat.uni-muenchen.de


CONTRIBUTED RESEARCH ARTICLE 90

GSSTDA: Implementation in an R
Package of the Progression of Disease
with Survival Analysis (PAD-S) that
Integrates Information on Genes Linked
to Survival in the Mapper Filter Function
by Miriam Esteve, Raquel Bosch-Romeu, Antonio Falco, Jaume Fores, and Joan Climent

Abstract GSSTDA is a new package for R that implements a new analysis for trascriptomic data, the
Progression Analysis of Disease with Survival (PAD-S) by Fores-Martos et al. (2022), which allows
to identify groups of samples differentiated by both survival and idiosyncratic biological features.
Although it was designed for transcriptomic analysis, it can be used with other types of continu-
ous omics data. The package implements the main algorithms associated with this methodology,
which first removes the part of expression that is considered physiological using the Disease-Specific
Genomic Analysis (DSGA) and then analyzes it using an unsupervised classification scheme based
on Topological Data Analysis (TDA), the Mapper algorithm. The implementation includes code to
perform the different steps of this analysis: data preprocessing by DSGA, the selection of genes for
further analysis and a new filter function, which integrates information about genes related to survival,
and the Mapper algorithm for generating a topological invariant Reeb graph. These functions can be
used independently, although a function that performs the entire analysis is provided. This paper
describes the methodology and implementation of these functions, and reports numerical results using
an extract of real data base application.

1 Introduction

This paper presents the implementation of Progression Analysis of Disease with Survival (PAD-S)
(Fores-Martos et al. (2022)) a new analysis, based on Progression Analysis of Disease (PAD), whose
main novelty is that it integrates information on genes linked to survival. The PAD, that was developed
by Nicolau et al. (2011), allows a set of transcriptomic data samples to be summarised in a combinatorial
graph whose nodes are subsets of the samples. In this analysis, data pre-processed using the Disease-
Specific Genomic Analyses (DSGA) is subjected to the Mapper algorithm. Although both DSGA and
PAD were initially used with microarray data, they can be used on other types of continuous omics
data. This extends to PAD-S as well.

This DSGA is a mathematical analysis for trascriptomic data that isolates the component of data
relevant to disease by defining a transformation that measures the extent to which diseased tissue
samples deviates from healthy tissue samples (Nicolau et al. (2007)). On the other hand, Mapper is a
Topological Data Analysis tool (Carlsson (2009)). TDA is intended to find the topological structure
of the data using tools for algebraic topology and computational geometry. Two of its approaches
is persistent homology (Edelsbrunner and Harer (2022)) and Mapper (Singh et al. (2007); Lum et al.
(2013)). Persistent homology adopts concepts from abstract algebra in order to extract characteristics in
the data, such as the presence of higher-dimensional holes and the number of connected components.
Mapper however was designed as a visualization method although it can also be considered as an
unsupervised classification methodology. It allows to simplify and visualize the information of high
dimensional data sets into a combinatorial or complex simplicial graph, which is called the dataset
skeleton. To do so, it employs preassigned guiding functions called filters. Mapper has been applied
in biological and biomedical research. It has been used successfully to study aortic stenosis, where
through the construction of Mapper graph is able to identify disease subtypes with a higher resolution
than standard approaches (Casaclang-Verzosa et al. (2019)). Another application in the clinic has been
its use in asthma, where clinical examination and biochemical and cellular parameters in biological
samples are introduced as input for Mapper in order to identify subgroup of healthy patients and
subgroups of asthmatic patients (Hinks et al. (2015)). In addition, it has also been used in other
cases to analyze omics data, such as single-cell RNA sequencing data to study cell differentiation and
development (Rizvi et al. (2017)) or to study breast cancer using RNA sequencing data (Mathews et al.
(2019)).

The PAD, using DSGA and Mapper and developing an own filter function and a way to select
the most relevant genes for Mapper, puzzles out the geometry characteristics of the data that are

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 91

obscured when using cluster analysis and deliver a simple representation of the trascriptomic data set.
Our new analysis, the PAD-S, integrates in its new filter function information about the relationship
between gene expression level and survival and also uses this information to select the genes to be
used in Mapper. This adapted filter function aims to capture the expected survival associated with
each patient from the information obtained from the survival analyses.

Mapper performs clustering by strata of different value ranges of this filter function, an then, it
is determined if there is a relationship between clusters of different strata, obtaining a topological
invariant Reeb graph. As PAD-S filtering function captures the expected survival of each individual,
we obtain a graph that captures the shape of the data along the values of the “survival”. In this graph,
in addition to possible clusters of interest, it is possible to study structures that appear in the graph,
such as branches or loops, that can uncover underlying biological patterns. This could show new
relevant groups of patients with good or bad prognosis and specific biological characteristics not
detected by other types of analysis.

In PAD-S, this ability of Mapper is strengthened by DSGA preprocessing, as it facilitates only
the portion of gene expression that is not present in healthy tissue to be used in clustering, thus
streamlining data processing and enhancing the extraction of biologically relevant information. In
turn, gene selection allows the results to meet the proposed objectives in the most efficient way by
selecting the most relevant survival-related genes or that have greater variability. This could lead to
the identification of potential biomarkers.

In the landscape of omics data analysis methods, PAD-S stands out for its unique approach rooted
in TDA. Mapper can be defined as an atypical unsupervised classification method and, like PCA
and traditional clustering, it is not necessary to have prior knowledge of the data and the possible
subgroups that form it. However, the Mapper’s approach provides a holistic view of the data, allowing
for the identification of data subsets, non-linear relationships and intricate patterns reflected in the
structures of the graph that may be missed by these methods.

Many methods for analysis of omics data are nowadays available in Bioconductor, a collection of
almost 1000 packages for the analysis and comprehension of high-throughput biological data, in R
packages such as: rtracklayer (Lawrence et al., 2009), for interacting with multiple genome browsers
(UCSC) and manipulating annotation tracks in various formats (GFF, BED, bedGraph, BED15, WIG,
BigWig and 2bit); Rsubread (Liao et al., 2019), for read mapping, read counting, SNP calling, structural
variant detection and gene fusion discovery; or survcomp (Schroder et al., 2011), for performance
assessment and comparison of survival models; scMappR (Sokolowski et al., 2021), for providing
experimentally relevant cell-type specific information to a list of differentially expressed genes (DEG).
Regarding the availability of the R implementation of the analyses used in this study, in GitHub, we
can find implementations of the Mapper algorithm, Mapper [https://github.com/peekxc/Mapper] or
TDAMapper [https://github.com/paultpearson/TDAmapper]. No implementations found in CRAN
repository. In relation to the DSGA, the implementation provided by the developers is no longer
available.

In this paper, we introduce a new package in R, called GSSTDA which is the implementation of
the already presented Progression Analysis of Disease with Survival (PAD-S). In particular, GSSTDA
includes a complete set of baseline functions, covering DSGA method and Mapper tool applying
the filter function with information on survival-related genes. We make PAD-S available as a R
package, with options for DSGA only, filtering function with selection of genes, Mapper only, or
a combination of the three. GSSTDA is available as free software, under the GNU General Public
License version 3, and can be downloaded from the Comprehensive R Archive Network (CRAN) at
https://cran.r-project.org/web/packages/GSSTDA, including supplementary material as data sets
or vignettes to replicate all the results presented in this paper. In addition, GSSTDA is hosted on an
open source repository on GitHub at https://github.com/MiriamEsteve/GSSTDA.

The functions included in the GSSTDA package are summarized in 1. This table comprises two
columns divided into four subsections: three of them correspond to the three stages of the Gene
Structure Survival using Topological Data Analysis and one to the full analysis. The first column is the
name of the functions and the second one is the description of the functions.

The paper is organized as follows. The following subsection Background summaries the three
parts of the methodology in the GSSTDA package: DSGA, gene selection and mapper process. Section
Data structure describes the structure of the functions, the results and briefly explains which data
are used to illustrate the package. Section Basic functions of the package presents the basic methods
explained in Background. Finally, Section Conclusion concludes.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=rtracklayer
https://CRAN.R-project.org/package=Rsubread
https://CRAN.R-project.org/package=survcomp
https://CRAN.R-project.org/package=scMappR
https://github.com/peekxc/Mapper
https://github.com/paultpearson/TDAmapper
https://CRAN.R-project.org/package=GSSTDA
https://CRAN.R-project.org/package=GSSTDA
https://CRAN.R-project.org/package=GSSTDA
https://cran.r-project.org/web/packages/GSSTDA
https://CRAN.R-project.org/package=GSSTDA
https://github.com/MiriamEsteve/GSSTDA
https://CRAN.R-project.org/package=GSSTDA
https://CRAN.R-project.org/package=GSSTDA


CONTRIBUTED RESEARCH ARTICLE 92

Table 1: GSSTDA package functions

Function Description

‘dsga‘ For ‘dsga object‘. It allows the calculation of the ‘disease
component‘ of a expression matrix which consists of, through
linear models, eliminating the part of the data that is considered
normal or healthy and keeping only the component that is due to
the disease. It is intended to precede other techniques like
classification or clustering. For more information see
@Nicolau2007.

‘results_dsga‘ For ‘dsga object‘. It calculates the 100 genes with the highest
variability in the matrix disease component between samples and
use them to draw the heat map.

‘gene_selection‘ For ‘gene_selection object‘. It fittings a Cox proportional hazard
model to each gene, then it makes a selection of genes according to
both: their variability within the database and their relationship
with survival. Subsequently, with the genes selected, it calculates
the values of the filtering functions for each patient. The filter
function allows to summarise each vector of each individual in a
single data. This function takes into account the survival
associated with each gene. In particular, the implemented filter
function performs the vector magnitude in the Lp-norm (as well as
k powers of this magnitude) of the vector resulting of weighting
each element of the column vector by the Z score obtained in the
cox proportional hazard model.

‘mapper‘ For ‘mapper object‘. It condenses the information of
high-dimensional data sets into a combinatory graph or simplicial
complex that is referred to as the skeleton of the data set. This
implementation is the mapper of one dimension, i.e. using only
one filter function value.

‘plot_mapper‘ For ‘mapper object‘. It produces an interactive network plot using
visNetwork function from the mapper results.

‘gsstda‘ For ‘gsstda object‘. It integrate the three parts of the process: the
preprocessing of the data [dsga process], the gene selection and
the filter function [gene selection process], and the mapper
algorithm [mapper process].

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 93

2 Background

2.1 DSGA: Disease-Specific Genomic Analysis

In PAD-S analysis the first step is use the DSGA method to transform the original data. DSGA was
first developed for transcriptome array data although it can be used for other continuous omics data
such as methylation data. It is intended to precede other techniques like clustering. DSGA methods
obtains the amount of deviation that is present in a diseased sample compared to healthy control
tissues, by isolating and separating the disease component (Dc) from the normal-component (Nc)
portion of the data. This method involves three steps: (i) Flat construction (ii) Healthy State Model
(HSM) construction, and (iii) Disease component computation for the original data set.

Flat constuction

The flat construction reduces or smooth characteristics of the data that are idiosyncratic to each normal
or healthy tissue sample. The data used in this step is filtering with the healthy or normal tissue
samples and is organized by columns. This matrix is denote as N. The R normal tissue gene expression
vectors, denoted as N1, N2, ..., NR, are computed as flattened vectors of the form N̂1, N̂2, ..., N̂R. The
flattened vector N̂i is calculated by fitting a 0-intercept least-squares linear model from all other
Ni-normal tissue vectors N1, N2, ..., Ni−1, Ni+1, ..., NR as predictor variables, that is,

N̂i =
R

∑
j=1
j 6=i

β j Nj.

In this equation, N̂i is the i-th flat vector and β j is the coefficient associated with normal tissue
sample Nj. Then, after carrying out this step separately for each healthy tissue sample, we obtain the
flat matrix in which each column represents a flatted healthy tissue sample as:

N̂ =
[
N̂1, N̂2, ..., N̂R

]
.

This flat data matrix N̂ could be expressed as the sum of a signal matrix N̂true and a noise matrix.
In the next step, a singular value decomposition will be applied to denoise it. The estimated matrix
N̂true is the so-called Healthy State Model.

Healthy State Model (HSM) generation

Healthy State Model (HSM) computation describes, predicts, and quantitatively captures the function-
ing of health systems. In this step, the singular value decomposition (SVD) of the flat data matrix N̂ is
performed. In the implementation presented in this article, a different method developed by Gavish
and Donoho (2014) is used for the selection of the number of singular values than in the original
DSGA, which allows the process to be automated.

In Gavish and Donoho (2014), it is assumed that the number of rows in the matrix to be decomposed
must be smaller than the number of columns. This is not true for the flat data matrix N̂ obtained in
the previous step, an `-by-R matrix, as we assume a larger number of genes (`) than healthy tissue
samples (R). For this reason, in this section we work with the transpose matrix N̂T , an R-by-` matrix,
and so R < `.

Following this method, the matrix N̂T can be expressed as the sum of a signal matrix and a noise
matrix:

N̂T = N̂T
true + γN̂T

noise,

where N̂T is the transpose flat matrix; N̂T
true is an underlying low-rank matrix that contains the true

signal; N̂T
noise is a noise matrix in which entries are assumed to be a sample of i.i.d. random variables

extracted from a Gaussian distribution, with zero mean and unit variance; and γ is a parameter that
indicates the magnitude of the noise.

In the DSGA, the estimation of N̂true corresponds to the previously introduced HSM. Our aim is to
estimate it using a truncated SVD of N̂T which is the default way of estimating it.

The singular value decomposition of the transpose of the flat matrix is denoted as:

N̂T = UDVT ,

where D is a diagonal matrix in which the elements of the diagonal are the singular values of N̂T

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 94

σ1, σ2, ...σR, with R being the number of rows of N̂T , ordered from high to low; and U and VT are
matrices containing the left and right singular vectors in columns and rows, respectively.

As mentioned above, N̂T
true can be estimated by truncated SVD. One option to carry out this

truncated SVD is to determine a hard threshold from which singular values in D are selected. This
threshold depends on γ:

N̂T
true ' HSMT = UDγVT .

For rectangular matrices with known γ the optimal hard threshold for singular value selection is:

τ = λ(β)
√
`γ,

where:

• ` is the number of columns of the matrix N̂T .
• β is the aspect ratio of our input matrix N̂T , that is, β = R

` , with R and ` being the number of
rows and colums respectively.

• λ(β) is obtained through the following expression:

λ(β) =

(
2(β + 1) +

8β

(β + 1) + (β2 + 14β + 1)1/2

)1/2
.

On the other hand, for rectangular matrices with unknown γ the optimal hard threshold for
singular value selection is:

τ = ω(β)σmed,

where σmed is the median of the values {σ1, σ2, ...σR} and ω(β) is defined by:

ω(β) =
λ(β)

µβ
.

λ(β) has already been defined above. µβ is found by computing numerically the upper bound of the
following definite integral in the range [(1− β)2, (1 + β)2]:

∫ µβ

(1−β)2

[(
(1 +

√
β)2 − t

) (
t− (1−

√
β)2)]1/2

2πtβ
dt =

1
2

.

Only those singular values larger than the threshold obtained by the respective method will be
kept. It is important to note that γ is not known or predetermined in standard analyses. Nevertheless,
our package is intentionally designed to enable users to assess the impact of varying γ values, guided
by external insights or theoretical assumptions about noise levels.

As already introduced, the estimation of N̂true, the new de-noised matrix, is the Healthy State
Model (HSM). To construct it assume we need a diagonal matrix termed Dγ = diag(σ∗1 , . . . , σ∗R) which
is obtained from D = diag(σ1, . . . , σR) by using that equation:

σ∗i =

{
σi if σi > τ,
0 otherwise.

So, the HSM is defined as:
N̂T

true ' UDγVT ,

HSM ' N̂true.

Disease component

The computation of the disease vectors for each sample in the original data set is applied. The original
matrix including healthy and disease samples is expressed as O. Then, for each Oi data vector present
in O, a zero-intercept linear model is fitted to the columns of the HSM matrix, i.e,

Oi = ∑
k

η
(i)
k HSMk + εi

where η
(i)
k are the coefficients obtained from the best approximation of the column space of the matrix

HSM to Oi and εi is its corresponding residual. The estimation of η
(i)
k aims to minimize the error

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 95

between disease vectors and the projection of the observed disease vectors onto the HSM. Least squares
regression is used in our package but other options such as ridge regression could also be employed
adapting the estimation method based on data complexity and considerations like multicollinearity
and regularization needs.

Now, considering the matrix
ODSGA = [ε1 · · · εp],

we remove the portion of each sample that best mimics the expression patterns of healthy tissues
and remain with the vector of residuals that carry out the information about how much each gene of a
particular sample deviates from the values observed in healthy tissues.

2.2 Selection of the genes

Once the disease component matrix ODSGA has been constructed, the next step consists of the selection
of genes for downstream analysis. The gene selection procedure is based on the variability of the
expression of each gene across the ODSGA matrix and the degree of association of each gene with
either disease-free or overall survival.

Associations between the levels of the expression of each gene with survival are computed employ-
ing univariate Cox proportional hazard models using the vectors corresponding to the pathological
tissue samples of the original expression matrix. The Z-scores derived from the Cox proportional
hazard models fits representing the degree of association of each gene with survival are then stored
in the vector Zcox. While it is often essential to check compliance with the proportional hazards
assumption, we believe it is not for the PAD-S analysis, as the Z scores are merely used as weights.

The standard deviation of each gene in the pathological tissue samples is then calculated using the
ODSGA matrix. The vector of standard deviations is then stored as Osd. To avoid values between 1 and
−1, +1 is added to all positive values in vectors Zcox and Osd, and −1 is added to all negative values
of vector Zcox. The element-wise product between Zcox and Osd matrices is computed. Two methods
of gene selection are proposed. In the first of them, the top and bottom n genes of the distribution of
this product are selected for further analysis. In the other option, the n genes with the highest absolute
value of this product are chosen.

Then, the ODSGA matrix is filtered keeping the selected genes. This matrix constitute the input for
the Mapper algorithm.

2.3 Mapper

Mapper (Singh et al. (2007), Lum et al. (2013)) is a tool derived from TDA that allows to condense
high-dimensional data sets into a combinatorial graph capturing the shape of the data. Some of its
properties is that it is insensitivity to metric, noise robustness and it allows multiscale representations
(Carlsson (2009)).

This section explains (i) the PAD-S filter function that needs to be applied before Mapper, (ii) the
the One Dimensional Mapper Algorithm itself and (iii) the different options for selecting the optimal
number of clusters that can be used in the cluster step.

Filter function in PAD-S

To use the Mapper, a filter function denoted as f is required. This function summarizes each point in
our data set denoted by X to R.

f : X → R.

The selection of this filter function is of particular relevance and must be adapted to the nature of
the problem under study. While more than one filter function can be used, resulting in a multi-
dimensional mapper, the PAD-S methodology employs a single filter function to focus analysis on
survival-associated gene expressions, simplifying the computational model, enhancing interpretability
for clinical decision-making, and ensuring robustness through theoretical and empirical validation.
This choice ensures a targeted analysis that is directly relevant to the biological and clinical questions
at hand. The mapper developers suggest using density estimators, eccentricity, or graph Laplacians as
filter functions (Singh et al. (2007)), although any function deemed appropriate can be used. In PAD
analysis the filter function of choice was the vector of magnitude in the Lp norm, as well as k powers
of this magnitude:

f (Oi
DSGA) = f (Oi

DSGA; p, k) =

[
∑
r
|g(i)r |p

]k/p

.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 96

where Oi
DSGA denotes the i-th column vector of our disease component matrix (corresponding to

individual i), which contains the values of each selected gene in that sample with coordinates g(i)r .
Note that if k = 1 and p = 2, the function simply computes the standard (Euclidean) vector magnitude
of each column.

In PAD-S analysis the filter function takes account the magnitude of the association between the
expression level of a particular gene and survival. In particular the filter function is defined as follows:

f (Oi
DSGA; p, k) =

[
∑
r
|zr · g(i)r |p

]k/p

,

where zr is the z-value derived from the Cox proportional hazard models analysis and g(i)r the i-th
disease component value (corresponding to individual i) for r-th feature.

Note that in this case, to avoid values between 1 and −1, +1 is added to all positive values in
vectors Zcox and Oi

DSGA, and −1 is added to all negative values of both vectors. Therefore, the amount
of deviation of each gene to the HSM is multiplied by the degree of association of this particular gene
with survival.

The One Dimensional Mapper Algorithm

In PAD-S methodology, the Mapper is subsequently applied on ODSGA using its filter function defined
in the previous section Filter function in PAD-S.

In addition, Mapper requires the use of a specific distance metric and clustering type for the clus-
tering step. To this end, the GSSTDA package implementation allows choosing between correlation
and Euclidean distances as distance metrics and among single linkage, average linkage, complete
linkage or k-medioids as clustering methods.

Once the values of the filter function have been calculated, the range of filter function values is
divided into overlapping intervals. Subsequently, for each interval, the clustering of the individuals
that have a value of the filter function that is within that interval is performed. After clustering each
interval, the graph is constructed. Each cluster is a node and those that share at least one individual
are joined by an edge. This is possible because the intervals are overlapping.

The output graph G = G(V, E) is then defined putting each cluster as a node (or vertex) of the
nodes that share samples are connected with an edge.

Methods for the identification of the optimal number of clusters

Two different options for the selection of the optimal number of clusters are offered in the package
presented. One of them is the method originally used in Mapper, which is also the one used by the
PAD analysis. It selects the number of clusters by constructing a histogram of the cluster edge lengths
using k bins. An empty interval is usually generated in this histogram. The edge length of the start of
this interval is chosen. The clusters with a greater edge length than this one are chosen. In addition to
this method, the option of using the Silhouettes (Rousseeuw (1987)) method is also available.

In this method, the first step is as follows. For a particular data point x included in cluster Ci we
first define a(x) as the average distance of data point x to all other points y in the cluster. Thus,

a(x) =
1

|Ci| − 1 ∑
y∈Ci
j 6=i

d(x, y).

Then, b(x) is defined as the minimum mean difference of point x to any other cluster C of which x
is not a member, as the average distance from x to all points y in C where C 6= Ci.

b(x) = min
1≤k≤`
k 6=i

1
|Ck| ∑

y∈Ck

d(x, y).

The cluster which has the minimum average distance to point x is said to be the neighbor cluster of x.

In the context of our analysis, the function d(x, y) represents the distance measure used to quantify
the similarity between data points x and y in our dataset. This distance metric is critical for clustering
and analyzing the structure of the data. Specifically, d(x, y) could be any metric that suits the nature
of the data and the specific requirements of the analysis, such as Euclidean, Manhattan, or cosine
similarity. In this manuscript, unless otherwise specified, we use the Euclidean distance, which is

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GSSTDA


CONTRIBUTED RESEARCH ARTICLE 97

defined as

d(x, y) =

√
n

∑
i=1

(xi − yi)2,

where xi and yi are the components of vectors x and y respectively. This choice is motivated by its
geometric interpretability and computational efficiency in handling numerical data typical in omics
studies.

The concept of Silhouette for point x is defined by

s(x) =
b(x)− a(x)

max{a(x), b(x)} , if |Ci > 1|,

that is, if the number of elements in the cluster is larger than 1. When a particular cluster Ci contains
only a single object, it is unclear how a(x) should be defined, and therefore we set the silhouette to 0.

s(x) = 0, if |Ci| = 1.

The average of the s(x) values of all points grouped in a particular cluster Ci, i.e.

si =
1
|Ci| ∑

x∈Ci

s(x)

indicates how well grouped are the members of this cluster, whereas the average of all data points

s =
1

| ∪i Ci| ∑
x∈∪iCi

s(x)

indicates how well the available data points have been clustered in general.

To select the optimum number of clusters within each interval of the filter function, the average
silhouette values s are computed for all possible partitions from 2 to n− 1, where n is the number of
samples within a specific interval. Then the n that produces the highest value of s and that exceeds a
specific threshold is selected as the optimum number of clusters. The threshold of 0.25 for s has been
chosen based on standard practice, recognizing it as a moderate value that reflects adequate separation
and cohesion within clusters, which is crucial for ensuring both statistical significance and biological or
clinical relevance of the clusters. If a different threshold is considered, it should be adjusted based on
the study’s specific objectives and the dataset’s characteristics, with higher thresholds used for stronger
delineation between clusters and lower thresholds suitable for exploratory analyses or overlapping
data categories. To implement an alternative threshold, one should: 1) Analyze the distribution of
silhouette scores for various thresholds to understand the impact on cluster structures, 2) Validate the
stability and validity of these clusters using additional internal metrics, 3) Consult with domain experts
to align the threshold with biological or clinical importance, and 4) Conduct a sensitivity analysis
to ensure robustness of the results. If no partition produces an s exceeding the chosen threshold, all
samples are then assigned to a unique cluster, facilitating the clear identification of distinct groupings
within the data.

3 Data structure

Data are managed as a regular R matrix in the GSSTDA functions. The main functions of the
GSSTDA package are dsga(), gene_selection(), mapper() and gsstda(), which return structured ob-
jects named dsga_object, gene_selection_object, mapper_object and GSSTDA_object, respectively.
These objects contain fields with relevant information such as the genes selected for the mapper
algorithm or the arguments introduced by the user in the function call.

The main fields of the all objects are the following:

• full_data: Matrix containing normalized gene expression data. The columns correspond to the
patients and the rows to the genes.

• survival_time: Numerical vector of the same length as the number of columns of full_data.
In addition, the patients must be in the same order as in full_data. For the patients whose
sample is pathological should be indicated the time between the disease diagnosis and event
(death, relapse or other). If the event has not occurred it should be indicated the time until the
end of follow-up. Patients whose sample is from healthy tissue must have an NA value.

• survival_event: Numerical vector of the same length as the number of columns of full_data.
Patients must be in the same order as in full_data. For the the patients with pathological
sample should be indicated whether the event has occurred (1) or not (0). Only these values are

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GSSTDA


CONTRIBUTED RESEARCH ARTICLE 98

valid and healthy patients must have an NA value.
• case_tag: Character vector of the same length as the number of columns of full_data. Patients

must be in the same order as in full_data. It must be indicated for each patient whether its
sample is from pathological or healthy tissue. One value should be used to indicate whether the
patient’s sample is healthy and another value should be used to indicate whether the patient’s
sample is pathological. The user will then be asked which one indicates whether the patient is
healthy. Only two values are valid in the vector in total.

3.1 Data set

# We load the data
data("full_data")
data("survival_time")
data("survival_event")
data("case_tag")

We illustrate all the functions presented in this paper resorting to a single data set (full_data) with
its corresponding vectors (survival_time, survival_event and case_tag) available in the GSSTDA
package. The original data are from the study GSE42568 available in https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE42568. This data was processed normalizing the genes expression. We
carry out background correction, summarizing, and quantile normalization of data set using the fRMA
method implemented in the fRMA package. Our data set consists of 20,825 genes and 121 patients.
Compliant with CRAN publication requirements, which necessitate demonstrating our package’s
functionality on a manageable subset of data, we have strategically reduced the number of genes in our
dataset to 4165. This ensures that our analysis remains computationally feasible while maintaining a
representative sample. The examples were executed in the posit (RStudio Cloud) environment, which
has a system configuration including 3.75 GB RAM, Intel Xeon E5-2673 v3 @ 2.40 GHz processor, and
Ubuntu 20.04 operating system. The calculations were completed in 78 seconds, demonstrating the
package’s efficiency. The dataset thus includes gene expression profiling from 104 breast cancer and
17 normal breast biopsies, exemplifying the package’s utility across typical clinical samples without
compromising the integrity and representativeness of the results. The first four patients and their ten
genes are shown below for the four data sets:

GSM1045191 GSM1045192 GSM1045193 GSM1045194

A1BG 5.769 5.912 5.829 5.868
A1BG-AS1 5.340 5.417 4.986 5.059
A1CF 4.732 4.780 4.870 5.780
A2M 11.053 10.794 5.897 11.029
A2M-AS1 5.410 5.223 5.063 4.740

A2ML1 4.375 4.680 4.888 4.629
A2MP1 4.712 6.083 6.943 6.452
A4GALT 6.791 7.086 7.562 7.604
A4GNT 4.456 4.331 4.720 4.966
AA06 4.990 5.903 5.741 5.886

Vectors Extract of the values

‘survival_time‘ NA NA NA 99.417 24.805 99.023 13.339 73.101 8.279 70.242 80.46
‘survival_event‘ NA NA NA 0 1 0 1 0 1 0 0
‘case_tag‘ NT NT NT T T T T T T T T

4 Basic functions of the package

In this section, we introduce the main functions of the library related to Gene Structure Survival using
Topological Data Analysis.

4.1 DSGA object

The basic model of Disease-Specific Genomic Analysis that we explained in subsection DSGA: Disease-
Specific Genomic Analysis can be implemented in R using the function dsga():

dsga_object <- dsga(full_data, survival_time, survival_event, case_tag, gamma)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GSSTDA
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42568
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42568
https://CRAN.R-project.org/package=fRMA


CONTRIBUTED RESEARCH ARTICLE 99

The minimum arguments of this function are full_data, survival_time, survival_event and
case_tag, which were explained in the previous section Data structure. The parameter gamma is
optional. It indicates the magnitude of the noise assumed in the flat data matrix for the generation
of the Healthy State Model. If it takes the value NA the magnitude of the noise is assumed to be
unknown. We recommend using the default value NA. Additionally, the function requests the following
information from the user at runtime:

• Enter “yes” if the columns are the patients and the row the genes or “no” in other cases. In the
“no” case, the library will automatically change the columns and rows to fulfill this condition.

• Enter which is the tag of the patients whose sample is from healthy tissue that is stored in the
case_tag vector. It is also possible to introduce it in the function as a parameter.

This function returns an object composed of:

• normal_space: The matrix with the normal space (linear space generated from normal tissue
samples).

• matrix_disease: The disease component matrix that contains the disease component of all
patients (dsga_object[["matrix_disease_component"]]).

As an example, using data and vectors from subsection Data structure, we next process the genes
expression using the suitable code as follows. Results are returned as an dsga object, as explained in
section Data structure.

dsga_object <- dsga(full_data = full_data,
survival_time = survival_time,
survival_event = survival_event,
case_tag = case_tag)

dsga_information <- results_dsga(
matrix_disease_component = dsga_object[["matrix_disease_component"]],
case_tag = case_tag)

The DSGA information are plotted using results_dsga() function (see Figure 1).

print(dsga_information)

#> [1] "CPB1" "AGR3" "BMPR1B" "ANKRD30A" "CP" "CEACAM6"
#> [7] "ADH1B" "CXCL13" "COL11A1" "CHI3L1" "CYP4Z1" "AGR2"
#> [13] "CD36" "CLIC6" "CYP4X1" "C19orf33" "AREG" "APOD"
#> [19] "ADIPOQ" "BEX1" "AGTR1" "CALML5" "CLDN8" "CYP4B1"
#> [25] "CRISP3" "DACH1" "CXCL14" "AFF3" "CYP2B7P" "CAPN8"
#> [31] "COMP" "CLSTN2" "CCL19" "CFB" "CYP2T1P" "CSTA"
#> [37] "AZGP1" "CRISPLD1" "CLGN" "ANXA3" "CGA" "CHGB"
#> [43] "CXCL9" "AKR1C2" "ACTG2" "ALOX15B" "AQP3" "CLCA2"
#> [49] "COL2A1" "CXCL11" "CA12" "C15orf48" "CA2" "CYP4Z2P"
#> [55] "ASPN" "AR" "CHRDL1" "AKR1C1" "BBOX1" "ABCA8"
#> [61] "CYP4F8" "CT83" "CXCL10" "ABAT" "CEACAM5" "ADAMTS15"
#> [67] "ANLN" "CLDN1" "CPE" "DCLK1" "CELSR1" "COL10A1"
#> [73] "CFD" "CNTNAP2" "CLDN11" "APOBEC3B" "ALDH3B2" "C16orf54"
#> [79] "CDO1" "ANKRD30B" "COL14A1" "ARHGAP36" "CECR2" "BAMBI"
#> [85] "CCND1" "ADGRG6" "AKR1C3" "ABCC13" "C16orf89" "CCL8"
#> [91] "CNKSR3" "DCD" "CCL5" "CEP55" "CST6" "ARNT2"
#> [97] "BEX5" "COL4A5" "CLEC3A" "ARMT1"

4.2 Gene selection object

The basic model of gene selection that we explained in subsection Selection of the genes can be
implemented in R using the function gene_selection(). Furthermore, this function for convenience
calculates the filter function values for mapper. It uses the filter function developed for the PAD-S:

gene_selection_object <- gene_selection(data, gen_select_type, percent_gen_select)

The fields of the gene_selection() are the following:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 100

Figure 1: Heatmap of the disease component matrix (result of the ‘dsga‘ function) after selecting the
100 genes with the highest variability between samples. Each column represents a patient sample and
each row represents a gene. The color scale reflects the values of the disease component, with warmer
colors indicating higher expression values than in healthy tissue and cooler colors indicating lower
expression. Key: ‘NT‘ stands for ‘Non-Tumor‘ – representing normal breast biopsy samples; ‘T‘ stands
for ‘Tumor‘ – representing breast cancer biopsy samples. In addition, the result of the hierarchical
clustering of the samples using the euclidean distance and the complete method is included. This
visualization aids in distinguishing between the disease component profiles of tumor and non-tumor
samples, highlighting the difference between the two types after preprocessing with DSGA.

• gen_select_type: Options on how to select the genes to be used in the mapper:

– Abs: The genes with the highest absolute value are chosen.
– Top_Bot: Half of the selected genes are those with the highest value (positive value,

i.e. worst survival prognosis) and the other half are those with the lowest value (negative
value, i.e. best prognosis). “Top_Bot” default option.

• percent_gen_select: Percentage (from zero to one hundred) of genes to be selected to be used
in mapper. 10 is the default option.

• data: The data argument could be two options:

– dsga_object: This is use if dsga() function was previously executed.
– data_object: Create a object data_object with the require information (see following R

example).

This function returns a gene_selection object composed of:

• cox_all_matrix: A matrix with the results of the application of proportional hazard models:
the regression coefficients, the odds ratios, the standard errors of each coefficient, the Z values
and the p-values for each Z value)

• genes_selected: A vector with the name of the selected genes,
• genes_disease_ component: The matrix of disease components with only the rows of the

selected genes.
• filter_values: The vector of the values of the filter function.

We introduce two distinct options for data input when utilizing our analytical package. These
input methods are designed to accommodate different data structures and user preferences, ensuring
flexibility and accessibility for a variety of research needs.

First option: dsga_object

The first option for data input involves using a predefined object type, dsga_object. This object
is specifically tailored for users who have pre-processed their data using the Disease-Specific Ge-
nomic Analysis (DSGA) method. The dsga_object contains all necessary attributes and methods

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 101

for subsequent analysis steps within our package, ensuring that users can seamlessly integrate their
DSGA-processed data.

As an example, we next create a gene_selection object for the first option of data input:

dsga_object <- dsga(full_data = full_data,
survival_time = survival_time,
survival_event = survival_event,
case_tag = case_tag)

gene_selection_object <- gene_selection(data = dsga_object,
gen_select_type = "Top_Bot",
percent_gen_select = 10)

Second option: data_object

The second option allows users to input their data as a generic data_object. This approach is intended
for users who may have their data prepared in different formats or who require a more general input
method that does not depend on the specific preprocessing steps like those required by the DSGA.
The data_object should contain all the necessary data fields, such as gene expression data, survival
data, and any other relevant clinical parameters, formatted in a way that can be directly utilized by
our package.

The example of the second option of data input is:

# Create data object
data_object <- list(full_data = full_data,

survival_time = survival_time,
survival_event = survival_event,
case_tag = case_tag)

class(data_object) <- "data_object"

#Select gene from data object
gene_selection_object <- gene_selection(data = data_object,

gen_select_type = "Top_Bot",
percent_gen_select = 10)

Each of these input options is designed to provide the flexibility needed to handle diverse data
types and preprocessing techniques. This ensures that our package can be effectively used in various
scenarios, catering to both advanced users with specific preprocessing needs and those seeking more
general data input methods.

4.3 Mapper object

The basic model of mapper that we explained in subsection Mapper can be implemented in R using
the function mapper():

mapper_object <- mapper(data,
filter_values,
num_intervals,
percent_overlap,
distance_type,
clustering_type,
num_bins_when_clustering,
linkage_type,
optimal_clustering_mode,
silhouette_threshold)

The fields of the mapper object are the following:

• data: Input matrix with which the analysis is performed. The user is asked whether the columns
correspond to patients or features. In GSSTDA, this matrix corresponds to the matrix of disease
components with only the rows of the selected genes. It can be any other matrix to which
mapper is to be applied.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 102

• filter_values: Vector obtained after applying the filtering function to the input matrix, i.e, a
vector with the filtering function values for each included sample.

• num_intervals: Number of intervals used to create the first sample partition based on filtering
values. “5” is the default option.

• percent_overlap: Percentage of overlap between intervals. Expressed as a percentage. “40” is
the default option.

• distance_type: Type of distance to be used for clustering.

– correlation: “correlation” is the default option.
– euclidean

• clustering_type: Type of clustering method.

– hierarchical: “hierarchical” is the default option.
– PAM: “PAM” (“partition around medoids”) option.

• num_bins_when_clustering: Number of bins to generate the histogram employed by the stan-
dard optimal number of cluster finder method. Parameter not necessary if the optimal_clustering_mode
option is “silhouette” or the clustering_type is “PAM”. “10” is the default option.

• linkage_type: Linkage criteria used in hierarchical clustering. Only necessary for hierarchical
clustering.

– single: Single-linkage clustering. “single” is the default option.
– complete: Complete-linkage clustering.
– average: Average linkage clustering (or UPGMA).

• optimal_clustering_mode: Method for selection optimal number of clusters. It is only necessary
if the chosen type of algorithm is “hierarchical”. In this case, choose between “standard” (the
method used in the original mapper article) or “silhouette”. In the case of the “PAM” algorithm,
the method will always be “silhouette”.

• silhouette_threshold: Minimum value of s that a set of clusters must have to be chosen as
optimal. Within each interval of the filter function, the average silhouette values s are computed
for all possible partitions from 2 to n− 1, where n is the number of samples within a specific
interval. The n that produces the highest value of s and that exceeds a specific threshold is
selected as the optimum number of clusters. If no partition produces an s exceeding the chosen
threshold, all samples are then assigned to a unique cluster. We recommend to use the default
value of 0.25.

This function returns a mapper object which contains:

• interval_data: The values of the intervals.
• sample_in_level: The samples included in each interval.
• clustering_all_levels: The information about the cluster to which the individuals in each

interval belong.
• node_samples: A list including the individuals contained in each detected node.
• node_sizes: Their size.
• node_average_filt: The average of the filter function values of the individuals of each node.
• adj_matrix: The adjacency matrix linking the nodes.

As an example, using results of dsga() and gene_selection(), we next process the mapper()
using the suitable code as follows:

The information obtained from the mapper object are showed using print:

print(mapper_object)

#> $interval_data
#> $interval_data$Level_1
#> [1] 612.7152 627.1164
#>
#> $interval_data$Level_2
#> [1] 621.3959 635.6971
#>
#> $interval_data$Level_3
#> [1] 629.9766 644.2778
#>
#> $interval_data$Level_4
#> [1] 638.5573 652.8585

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 103

#>
#> $interval_data$Level_5
#> [1] 647.1381 661.4393
#>
#> $interval_data$Level_6
#> [1] 655.7188 670.0200
#>
#> $interval_data$Level_7
#> [1] 664.2995 678.6007
#>
#> $interval_data$Level_8
#> [1] 672.8802 687.1814
#>
#> $interval_data$Level_9
#> [1] 681.4609 695.7622
#>
#> $interval_data$Level_10
#> [1] 690.0417 704.4429
#>
#>
#> $sample_in_level
#> $sample_in_level$Level_1
#> [1] "GSM1045193" "GSM1045217" "GSM1045302"
#>
#> $sample_in_level$Level_2
#> [1] "GSM1045192" "GSM1045217" "GSM1045288"
#>
#> $sample_in_level$Level_3
#> [1] "GSM1045192" "GSM1045194" "GSM1045221"
#>
#> $sample_in_level$Level_4
#> [1] "GSM1045194" "GSM1045211" "GSM1045225" "GSM1045243" "GSM1045250"
#> [6] "GSM1045282"
#>
#> $sample_in_level$Level_5
#> [1] "GSM1045211" "GSM1045213" "GSM1045225" "GSM1045242" "GSM1045243"
#> [6] "GSM1045250" "GSM1045282" "GSM1045285" "GSM1045293" "GSM1045301"
#>
#> $sample_in_level$Level_6
#> [1] "GSM1045203" "GSM1045206" "GSM1045209" "GSM1045212" "GSM1045213"
#> [6] "GSM1045214" "GSM1045224" "GSM1045227" "GSM1045237" "GSM1045241"
#> [11] "GSM1045242" "GSM1045248" "GSM1045255" "GSM1045264" "GSM1045266"
#> [16] "GSM1045274" "GSM1045285" "GSM1045293" "GSM1045301"
#>
#> $sample_in_level$Level_7
#> [1] "GSM1045200" "GSM1045201" "GSM1045203" "GSM1045206" "GSM1045209"
#> [6] "GSM1045218" "GSM1045222" "GSM1045227" "GSM1045229" "GSM1045232"
#> [11] "GSM1045233" "GSM1045237" "GSM1045239" "GSM1045240" "GSM1045241"
#> [16] "GSM1045244" "GSM1045252" "GSM1045255" "GSM1045257" "GSM1045259"
#> [21] "GSM1045264" "GSM1045269" "GSM1045270" "GSM1045276" "GSM1045278"
#> [26] "GSM1045294" "GSM1045298" "GSM1045305" "GSM1045306"
#>
#> $sample_in_level$Level_8
#> [1] "GSM1045191" "GSM1045195" "GSM1045196" "GSM1045197" "GSM1045198"
#> [6] "GSM1045199" "GSM1045200" "GSM1045201" "GSM1045204" "GSM1045205"
#> [11] "GSM1045207" "GSM1045210" "GSM1045216" "GSM1045218" "GSM1045219"
#> [16] "GSM1045222" "GSM1045228" "GSM1045231" "GSM1045232" "GSM1045233"
#> [21] "GSM1045238" "GSM1045239" "GSM1045240" "GSM1045245" "GSM1045246"
#> [26] "GSM1045252" "GSM1045254" "GSM1045257" "GSM1045258" "GSM1045259"
#> [31] "GSM1045260" "GSM1045261" "GSM1045263" "GSM1045267" "GSM1045270"
#> [36] "GSM1045271" "GSM1045275" "GSM1045280" "GSM1045283" "GSM1045284"
#> [41] "GSM1045287" "GSM1045296" "GSM1045298" "GSM1045300" "GSM1045303"
#> [46] "GSM1045306" "GSM1045309"
#>

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 104

#> $sample_in_level$Level_9
#> [1] "GSM1045191" "GSM1045195" "GSM1045196" "GSM1045197" "GSM1045198"
#> [6] "GSM1045199" "GSM1045202" "GSM1045204" "GSM1045205" "GSM1045208"
#> [11] "GSM1045215" "GSM1045220" "GSM1045228" "GSM1045231" "GSM1045235"
#> [16] "GSM1045236" "GSM1045246" "GSM1045249" "GSM1045253" "GSM1045256"
#> [21] "GSM1045258" "GSM1045260" "GSM1045262" "GSM1045265" "GSM1045267"
#> [26] "GSM1045268" "GSM1045271" "GSM1045273" "GSM1045277" "GSM1045279"
#> [31] "GSM1045280" "GSM1045281" "GSM1045286" "GSM1045289" "GSM1045290"
#> [36] "GSM1045291" "GSM1045292" "GSM1045295" "GSM1045297" "GSM1045299"
#> [41] "GSM1045304" "GSM1045307" "GSM1045309" "GSM1045310"
#>
#> $sample_in_level$Level_10
#> [1] "GSM1045202" "GSM1045215" "GSM1045220" "GSM1045223" "GSM1045226"
#> [6] "GSM1045230" "GSM1045234" "GSM1045235" "GSM1045236" "GSM1045247"
#> [11] "GSM1045249" "GSM1045251" "GSM1045256" "GSM1045262" "GSM1045265"
#> [16] "GSM1045268" "GSM1045272" "GSM1045273" "GSM1045277" "GSM1045279"
#> [21] "GSM1045286" "GSM1045289" "GSM1045291" "GSM1045292" "GSM1045297"
#> [26] "GSM1045304" "GSM1045307" "GSM1045308" "GSM1045310" "GSM1045311"
#>
#>
#> $clustering_all_levels
#> $clustering_all_levels$Level_1
#> GSM1045193 GSM1045217 GSM1045302
#> 1 2 2
#>
#> $clustering_all_levels$Level_2
#> GSM1045192 GSM1045217 GSM1045288
#> 1 1 1
#>
#> $clustering_all_levels$Level_3
#> GSM1045192 GSM1045194 GSM1045221
#> 1 1 1
#>
#> $clustering_all_levels$Level_4
#> GSM1045194 GSM1045211 GSM1045225 GSM1045243 GSM1045250 GSM1045282
#> 1 1 1 1 1 1
#>
#> $clustering_all_levels$Level_5
#> GSM1045211 GSM1045213 GSM1045225 GSM1045242 GSM1045243 GSM1045250 GSM1045282
#> 1 1 1 1 1 1 1
#> GSM1045285 GSM1045293 GSM1045301
#> 1 1 1
#>
#> $clustering_all_levels$Level_6
#> GSM1045203 GSM1045206 GSM1045209 GSM1045212 GSM1045213 GSM1045214 GSM1045224
#> 1 1 2 3 4 5 6
#> GSM1045227 GSM1045237 GSM1045241 GSM1045242 GSM1045248 GSM1045255 GSM1045264
#> 7 4 2 7 3 2 3
#> GSM1045266 GSM1045274 GSM1045285 GSM1045293 GSM1045301
#> 5 8 4 3 9
#>
#> $clustering_all_levels$Level_7
#> GSM1045200 GSM1045201 GSM1045203 GSM1045206 GSM1045209 GSM1045218 GSM1045222
#> 1 1 1 1 1 1 1
#> GSM1045227 GSM1045229 GSM1045232 GSM1045233 GSM1045237 GSM1045239 GSM1045240
#> 1 1 1 1 1 1 1
#> GSM1045241 GSM1045244 GSM1045252 GSM1045255 GSM1045257 GSM1045259 GSM1045264
#> 1 1 1 1 1 1 1
#> GSM1045269 GSM1045270 GSM1045276 GSM1045278 GSM1045294 GSM1045298 GSM1045305
#> 1 1 1 1 1 1 1
#> GSM1045306
#> 1
#>
#> $clustering_all_levels$Level_8

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 105

#> GSM1045191 GSM1045195 GSM1045196 GSM1045197 GSM1045198 GSM1045199 GSM1045200
#> 1 1 1 1 1 1 1
#> GSM1045201 GSM1045204 GSM1045205 GSM1045207 GSM1045210 GSM1045216 GSM1045218
#> 1 1 1 1 1 1 1
#> GSM1045219 GSM1045222 GSM1045228 GSM1045231 GSM1045232 GSM1045233 GSM1045238
#> 1 1 1 1 1 1 1
#> GSM1045239 GSM1045240 GSM1045245 GSM1045246 GSM1045252 GSM1045254 GSM1045257
#> 1 1 1 1 1 1 1
#> GSM1045258 GSM1045259 GSM1045260 GSM1045261 GSM1045263 GSM1045267 GSM1045270
#> 1 1 1 1 1 1 1
#> GSM1045271 GSM1045275 GSM1045280 GSM1045283 GSM1045284 GSM1045287 GSM1045296
#> 1 1 1 1 1 1 1
#> GSM1045298 GSM1045300 GSM1045303 GSM1045306 GSM1045309
#> 1 1 1 1 1
#>
#> $clustering_all_levels$Level_9
#> GSM1045191 GSM1045195 GSM1045196 GSM1045197 GSM1045198 GSM1045199 GSM1045202
#> 1 1 1 1 1 1 1
#> GSM1045204 GSM1045205 GSM1045208 GSM1045215 GSM1045220 GSM1045228 GSM1045231
#> 1 1 1 1 1 1 1
#> GSM1045235 GSM1045236 GSM1045246 GSM1045249 GSM1045253 GSM1045256 GSM1045258
#> 1 1 1 1 1 1 1
#> GSM1045260 GSM1045262 GSM1045265 GSM1045267 GSM1045268 GSM1045271 GSM1045273
#> 1 1 1 1 1 1 1
#> GSM1045277 GSM1045279 GSM1045280 GSM1045281 GSM1045286 GSM1045289 GSM1045290
#> 1 1 1 1 1 1 1
#> GSM1045291 GSM1045292 GSM1045295 GSM1045297 GSM1045299 GSM1045304 GSM1045307
#> 1 1 1 1 1 1 1
#> GSM1045309 GSM1045310
#> 1 1
#>
#> $clustering_all_levels$Level_10
#> GSM1045202 GSM1045215 GSM1045220 GSM1045223 GSM1045226 GSM1045230 GSM1045234
#> 1 1 1 1 1 1 2
#> GSM1045235 GSM1045236 GSM1045247 GSM1045249 GSM1045251 GSM1045256 GSM1045262
#> 1 1 1 1 1 1 1
#> GSM1045265 GSM1045268 GSM1045272 GSM1045273 GSM1045277 GSM1045279 GSM1045286
#> 1 1 1 1 1 1 1
#> GSM1045289 GSM1045291 GSM1045292 GSM1045297 GSM1045304 GSM1045307 GSM1045308
#> 1 1 1 1 1 1 1
#> GSM1045310 GSM1045311
#> 1 1
#>
#>
#> $node_samples
#> $node_samples$Node_1
#> [1] "GSM1045193"
#>
#> $node_samples$Node_2
#> [1] "GSM1045217" "GSM1045302"
#>
#> $node_samples$Node_3
#> [1] "GSM1045192" "GSM1045217" "GSM1045288"
#>
#> $node_samples$Node_4
#> [1] "GSM1045192" "GSM1045194" "GSM1045221"
#>
#> $node_samples$Node_5
#> [1] "GSM1045194" "GSM1045211" "GSM1045225" "GSM1045243" "GSM1045250"
#> [6] "GSM1045282"
#>
#> $node_samples$Node_6
#> [1] "GSM1045211" "GSM1045213" "GSM1045225" "GSM1045242" "GSM1045243"
#> [6] "GSM1045250" "GSM1045282" "GSM1045285" "GSM1045293" "GSM1045301"

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 106

#>
#> $node_samples$Node_7
#> [1] "GSM1045203" "GSM1045206"
#>
#> $node_samples$Node_8
#> [1] "GSM1045209" "GSM1045241" "GSM1045255"
#>
#> $node_samples$Node_9
#> [1] "GSM1045212" "GSM1045248" "GSM1045264" "GSM1045293"
#>
#> $node_samples$Node_10
#> [1] "GSM1045213" "GSM1045237" "GSM1045285"
#>
#> $node_samples$Node_11
#> [1] "GSM1045214" "GSM1045266"
#>
#> $node_samples$Node_12
#> [1] "GSM1045224"
#>
#> $node_samples$Node_13
#> [1] "GSM1045227" "GSM1045242"
#>
#> $node_samples$Node_14
#> [1] "GSM1045274"
#>
#> $node_samples$Node_15
#> [1] "GSM1045301"
#>
#> $node_samples$Node_16
#> [1] "GSM1045200" "GSM1045201" "GSM1045203" "GSM1045206" "GSM1045209"
#> [6] "GSM1045218" "GSM1045222" "GSM1045227" "GSM1045229" "GSM1045232"
#> [11] "GSM1045233" "GSM1045237" "GSM1045239" "GSM1045240" "GSM1045241"
#> [16] "GSM1045244" "GSM1045252" "GSM1045255" "GSM1045257" "GSM1045259"
#> [21] "GSM1045264" "GSM1045269" "GSM1045270" "GSM1045276" "GSM1045278"
#> [26] "GSM1045294" "GSM1045298" "GSM1045305" "GSM1045306"
#>
#> $node_samples$Node_17
#> [1] "GSM1045191" "GSM1045195" "GSM1045196" "GSM1045197" "GSM1045198"
#> [6] "GSM1045199" "GSM1045200" "GSM1045201" "GSM1045204" "GSM1045205"
#> [11] "GSM1045207" "GSM1045210" "GSM1045216" "GSM1045218" "GSM1045219"
#> [16] "GSM1045222" "GSM1045228" "GSM1045231" "GSM1045232" "GSM1045233"
#> [21] "GSM1045238" "GSM1045239" "GSM1045240" "GSM1045245" "GSM1045246"
#> [26] "GSM1045252" "GSM1045254" "GSM1045257" "GSM1045258" "GSM1045259"
#> [31] "GSM1045260" "GSM1045261" "GSM1045263" "GSM1045267" "GSM1045270"
#> [36] "GSM1045271" "GSM1045275" "GSM1045280" "GSM1045283" "GSM1045284"
#> [41] "GSM1045287" "GSM1045296" "GSM1045298" "GSM1045300" "GSM1045303"
#> [46] "GSM1045306" "GSM1045309"
#>
#> $node_samples$Node_18
#> [1] "GSM1045191" "GSM1045195" "GSM1045196" "GSM1045197" "GSM1045198"
#> [6] "GSM1045199" "GSM1045202" "GSM1045204" "GSM1045205" "GSM1045208"
#> [11] "GSM1045215" "GSM1045220" "GSM1045228" "GSM1045231" "GSM1045235"
#> [16] "GSM1045236" "GSM1045246" "GSM1045249" "GSM1045253" "GSM1045256"
#> [21] "GSM1045258" "GSM1045260" "GSM1045262" "GSM1045265" "GSM1045267"
#> [26] "GSM1045268" "GSM1045271" "GSM1045273" "GSM1045277" "GSM1045279"
#> [31] "GSM1045280" "GSM1045281" "GSM1045286" "GSM1045289" "GSM1045290"
#> [36] "GSM1045291" "GSM1045292" "GSM1045295" "GSM1045297" "GSM1045299"
#> [41] "GSM1045304" "GSM1045307" "GSM1045309" "GSM1045310"
#>
#> $node_samples$Node_19
#> [1] "GSM1045202" "GSM1045215" "GSM1045220" "GSM1045223" "GSM1045226"
#> [6] "GSM1045230" "GSM1045235" "GSM1045236" "GSM1045247" "GSM1045249"
#> [11] "GSM1045251" "GSM1045256" "GSM1045262" "GSM1045265" "GSM1045268"
#> [16] "GSM1045272" "GSM1045273" "GSM1045277" "GSM1045279" "GSM1045286"

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 107

#> [21] "GSM1045289" "GSM1045291" "GSM1045292" "GSM1045297" "GSM1045304"
#> [26] "GSM1045307" "GSM1045308" "GSM1045310" "GSM1045311"
#>
#> $node_samples$Node_20
#> [1] "GSM1045234"
#>
#>
#> $node_sizes
#> Node_1 Node_2 Node_3 Node_4 Node_5 Node_6 Node_7 Node_8 Node_9 Node_10
#> 1 2 3 3 6 10 2 3 4 3
#> Node_11 Node_12 Node_13 Node_14 Node_15 Node_16 Node_17 Node_18 Node_19 Node_20
#> 2 1 2 1 1 29 47 44 29 1
#>
#> $node_average_filt
#> $node_average_filt$Node_1
#> [1] 612.8152
#>
#> $node_average_filt$Node_2
#> [1] 619.2167
#>
#> $node_average_filt$Node_3
#> [1] 628.0636
#>
#> $node_average_filt$Node_4
#> [1] 637.1298
#>
#> $node_average_filt$Node_5
#> [1] 649.4243
#>
#> $node_average_filt$Node_6
#> [1] 654.6199
#>
#> $node_average_filt$Node_7
#> [1] 667.8046
#>
#> $node_average_filt$Node_8
#> [1] 669.0753
#>
#> $node_average_filt$Node_9
#> [1] 663.2821
#>
#> $node_average_filt$Node_10
#> [1] 662.3884
#>
#> $node_average_filt$Node_11
#> [1] 662.0506
#>
#> $node_average_filt$Node_12
#> [1] 662.4023
#>
#> $node_average_filt$Node_13
#> [1] 663.1383
#>
#> $node_average_filt$Node_14
#> [1] 663.8281
#>
#> $node_average_filt$Node_15
#> [1] 658.3845
#>
#> $node_average_filt$Node_16
#> [1] 672.296
#>
#> $node_average_filt$Node_17
#> [1] 680.2087

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 108

#>
#> $node_average_filt$Node_18
#> [1] 688.619
#>
#> $node_average_filt$Node_19
#> [1] 693.9702
#>
#> $node_average_filt$Node_20
#> [1] 697.2491
#>
#>
#> $adj_matrix
#> Node_1 Node_2 Node_3 Node_4 Node_5 Node_6 Node_7 Node_8 Node_9 Node_10
#> Node_1 1 0 0 0 0 0 0 0 0 0
#> Node_2 0 1 1 0 0 0 0 0 0 0
#> Node_3 0 0 1 1 0 0 0 0 0 0
#> Node_4 0 0 0 1 1 0 0 0 0 0
#> Node_5 0 0 0 0 1 1 0 0 0 0
#> Node_6 0 0 0 0 0 1 0 0 1 1
#> Node_7 0 0 0 0 0 0 1 0 0 0
#> Node_8 0 0 0 0 0 0 0 1 0 0
#> Node_9 0 0 0 0 0 0 0 0 1 0
#> Node_10 0 0 0 0 0 0 0 0 0 1
#> Node_11 0 0 0 0 0 0 0 0 0 0
#> Node_12 0 0 0 0 0 0 0 0 0 0
#> Node_13 0 0 0 0 0 0 0 0 0 0
#> Node_14 0 0 0 0 0 0 0 0 0 0
#> Node_15 0 0 0 0 0 0 0 0 0 0
#> Node_16 0 0 0 0 0 0 0 0 0 0
#> Node_17 0 0 0 0 0 0 0 0 0 0
#> Node_18 0 0 0 0 0 0 0 0 0 0
#> Node_19 0 0 0 0 0 0 0 0 0 0
#> Node_20 0 0 0 0 0 0 0 0 0 0
#> Node_11 Node_12 Node_13 Node_14 Node_15 Node_16 Node_17 Node_18 Node_19
#> Node_1 0 0 0 0 0 0 0 0 0
#> Node_2 0 0 0 0 0 0 0 0 0
#> Node_3 0 0 0 0 0 0 0 0 0
#> Node_4 0 0 0 0 0 0 0 0 0
#> Node_5 0 0 0 0 0 0 0 0 0
#> Node_6 0 0 1 0 1 0 0 0 0
#> Node_7 0 0 0 0 0 1 0 0 0
#> Node_8 0 0 0 0 0 1 0 0 0
#> Node_9 0 0 0 0 0 1 0 0 0
#> Node_10 0 0 0 0 0 1 0 0 0
#> Node_11 1 0 0 0 0 0 0 0 0
#> Node_12 0 1 0 0 0 0 0 0 0
#> Node_13 0 0 1 0 0 1 0 0 0
#> Node_14 0 0 0 1 0 0 0 0 0
#> Node_15 0 0 0 0 1 0 0 0 0
#> Node_16 0 0 0 0 0 1 1 0 0
#> Node_17 0 0 0 0 0 0 1 1 0
#> Node_18 0 0 0 0 0 0 0 1 1
#> Node_19 0 0 0 0 0 0 0 0 1
#> Node_20 0 0 0 0 0 0 0 0 0
#> Node_20
#> Node_1 0
#> Node_2 0
#> Node_3 0
#> Node_4 0
#> Node_5 0
#> Node_6 0
#> Node_7 0
#> Node_8 0
#> Node_9 0

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 109

#> Node_10 0
#> Node_11 0
#> Node_12 0
#> Node_13 0
#> Node_14 0
#> Node_15 0
#> Node_16 0
#> Node_17 0
#> Node_18 0
#> Node_19 0
#> Node_20 1
#>
#> $n_sizes
#> [1] 20
#>
#> $average_nodes
#> [1] 9.7
#>
#> $standard_desviation_nodes
#> [1] 14.78655
#>
#> $number_connections
#> [1] 16
#>
#> $proportion_connections
#> [1] 0.08421053
#>
#> $number_ramifications
#> [1] 7
#>
#> attr(,"class")
#> [1] "mapper_object"

In addition, the mapper information are plotted using plot_mapper() function (see Figure 2).
Hovering the mouse over each node in the interactive graph displays the number of samples that form
the node.

To show more clearly the resizing options provided by plot_mapper(), the same graph is shown
by varying the values of the function parameters (see Figure 3):

plot_mapper(mapper_object, trans_node_size = TRUE, exp_to_res = 1/1.5)

4.4 GSSTDA object

The analysis of gsstda() function consists of the three previous parts, i.e., a preprocessing of the data
{dsga()], the gene selection and the filter function [gene_selection()], and the mapper algorithm
[mapper()]. So, this function integrates the explained functions above. Results are returned as an
gsstda object, which is composed by all the results of dsga(), gene_selection() and mapper()
functions.

The basic model of GSSTDA (dsga + gene selection + mapper) can be implemented in R using the
function gsstda():

gsstda_object <- gsstda(full_data, survival_time, survival_event, case_tag,
gamma, gen_select_type, percent_gen_select,
num_intervals, percent_overlap, distance_type,
clustering_type, num_bins_when_clustering,
linkage_type, optimal_clustering_mode,
silhouette_threshold)

This function returns a gsstda object composed of:

• normal_space: The matrix with the normal space (linear space generated from normal tissue
samples).

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 110

Figure 2: Mapper result graph. Mapper visualization depicting clusters of samples based on gene
expression profiles along the value of the filter function, with nodes representing clusters and edges
indicating overlap, facilitating the identification of nodes of different gene expression patterns and
survival. The intensity of the color within each node reflects the average level of filter function
within the cluster, aiding in the characterization of biological significance. Low filter function values,
represented in blue, are associated with better survival. High values, in red, are associated with worse
survival. Additionally, annotation allows for the identification of a cluster of interest, assisting in the
extraction of insight into potential biomarkers or gene expression patterns associated with specific
sample groups. The default option used in this case resizes the node sizes as No.samples1/2.

Figure 3: Mapper result graph after varying the parameter exp_to_res to 1/1.5 (No.samples1/1.5). This
way the resizing of the node size is smoother.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 111

• matrix_disease_components: The matrix of the disease components (the transformed full_data
matrix from which the normal component has been removed).

• cox_all_matrix: A matrix with the results of the application of proportional hazard models for
each gene.

• genes_selected: The genes selected for gene_selection().
• genes_disease_component: The matrix of the disease components with information from these

genes only.
• mapper_object: The mapper object explained in the subsection Mapper object.

As an example, using arguments of dsga() and gene_selection(), we next process the gsstda()
using the suitable code as follows:

gsstda_object <- gsstda(full_data = full_data,
survival_time = survival_time,
survival_event = survival_event,
case_tag = case_tag,
gen_select_type = "Top_Bot",
percent_gen_select = 10,
num_intervals = 10,
percent_overlap = 40,
distance_type = "correlation",
clustering_type = "hierarchical",
linkage_type = "single")

The information obtained from the GSSTDA object are showed using print for dsga and mapper
information. In addition, the mapper information obtained by GSSTDA object are plotted using
plot_mapper() function (see Figure 2).

5 Conclusions

The GSSTDA package allows transcriptomic data to be analysed (although it could be used for other
types of omics data) integrating the information related on the degree of association of each gene with
survival through the use of a specific feature selection procedure and a new adapted filter function.
This allows to obtain a graph reflecting groups of samples that are not only differentiated by similarity
in expression pattern but also by similarity in survival.

Specifically, this package is the implementation of the Progression Analysis of Disease with
Survival. This methodology pre-processes the data using the DSGA which isolates the part of the
expression that is considered pathological. This allows only this part to be used in further analysis.
The genes to be used in the Mapper analysis are then selected on the basis of their association with
survival. This information is also integrated into the filter function. Using the values of this filter
function and the data processed through the DSGA, this information is condensed into a graph using
the Mapper algorithm. One of the advantages of using Mapper over classical clustering techniques is
that it has been shown in numerous applications to reveal aspects of the data that classical clustering
does not detect.

In the broad field of oncology, the study of survival is essential, and omics sciences are increasingly
important. GSSTDA allows the integration of both, so it could be useful in any oncological pathology
and the results obtained can contribute to the development of personalized medicine. It can aid in the
identification of prognostic biomarkers, therapeutic targets, or molecular subtypes. As has been done
in this work with survival, any function of the data that reflects a clinical or biological characteristic of
interest could be used as a filtering function so that the applications of possible adaptations of this
package could be numerous.

Additionally, the combined use of our package with other analytical tools could show its versa-
tility and potential for interdisciplinary research collaborations. Concrete examples or case studies
demonstrating the application of the package in the analysis of real-world data sets and the discovery
of novel biological insights can further illustrate its practical value and impact on biomedical research.

Several functions have been implemented in the GSSTDA package: for processing the data using
DSGA method, selecting the genes and calculating the values of the new filter function taking into
account the association of each gene with survival, and generating a topological invariant Reeb
graph applying the Mapper algorithm. The package provides a function to perform the full PAD-S
analysis but also allows the DSGA and Mapper analyses, which can have numerous applications, to
be performed independently.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GSSTDA
https://CRAN.R-project.org/package=GSSTDA


CONTRIBUTED RESEARCH ARTICLE 112

Throughout the paper, we have also shown how to organize the data, use the available functions,
and interpret the results. In particular, to illustrate the different functions implemented in the package,
we applied all of them on a common empirical example so that results can easily be compared. In this
way, we believe that the GSSTDA package is a valid self-contained R package for grouping transcrip-
tomics data samples according to their survival and gene expression by integrating information on
genes linked to survival in the process of gene selection and in the Mapper filter function from the
popular topological technique: Topological Data Analysis.

Diving into potential future directions for expanding this R package, an array of promising avenues
beckon. Initially, existing functionalities could be improved by refining data preprocessing algorithms,
optimizing parameter selection methods, and bolstering computational efficiency to accommodate
larger datasets more adeptly. Another possible parallel option is to explore new alternatives to carry
out these processes and adapt them to other types of omics data. To complement its applications,
functions that allow exploring the results obtained could be integrated into the package.Exploring
integrative strategies for analyzing multi-omics data stands out as another compelling trajectory,
offering deeper insights into biological mechanisms and disease pathology. Adapting the method to
other problems by modifying the feature selection process and the filtering function represents another
possible direction for future work. Additionally, fostering community engagement and collaboration
will be pivotal for nurturing ongoing growth and evolution, inviting users to contribute feedback,
suggestions, and innovative applications to enrich the package’s capabilities and impact. Through
these concerted efforts, the aim is to equip researchers with a versatile and robust toolkit for exploring
complex biological datasets and advancing biomedical research.

6 Acknowledgments

R. Bosch-Romeu, A. Falco and M. Esteve thank the grant TED2021-129347B-C22 funded by Ministerio
de Ciencia e Innovación/ Agencia Estatal de Investigación. Additionally, R. Bosch-Romeu and A.
Falco gratefully acknowledges the financial support from CEU Cardenal Herrera University and
Santander under a predoctoral grant, from Scientific Foundation of the Spanish Association Against
Cancer under a predoctoral grant, and the Spanish Ministry of Science, Innovation and Universities
under grant Ayudas para la Formación de Profesorado Universitario FPU 2022 (FPU 22/02810).

References

G. Carlsson. Topology and data. Bulletin of the American Mathematical Society, 46(2):255–308, 2009. [p90,
95]

G. Casaclang-Verzosa, S. Shrestha, M. J. Khalil, J. S. Cho, M. Tokodi, S. Balla, M. Alkhouli, V. Badhwar,
J. Narula, J. D. Miller, et al. Network tomography for understanding phenotypic presentations in
aortic stenosis. JACC: Cardiovascular Imaging, 12(2):236–248, 2019. [p90]

H. Edelsbrunner and J. L. Harer. Computational topology: an introduction. American Mathematical
Society, 2022. [p90]

J. Fores-Martos, B. Suay-Garcia, R. Bosch-Romeu, M. C. Sanfeliu-Alonso, A. Falco, and J. Climent.
Progression analysis of disease with survival (pad-s) by survmap identifies different prognostic
subgroups of breast cancer in a large combined set of transcriptomics and methylation studies.
bioRxiv, pages 2022–09, 2022. [p90]

M. Gavish and D. L. Donoho. The optimal hard threshold for singular values is 4/
√

3. IEEE Transactions
on Information Theory, 60(8):5040–5053, 2014. [p93]

T. S. Hinks, X. Zhou, K. J. Staples, B. D. Dimitrov, A. Manta, T. Petrossian, P. Y. Lum, C. G. Smith, J. A.
Ward, P. H. Howarth, et al. Innate and adaptive t cells in asthmatic patients: relationship to severity
and disease mechanisms. Journal of allergy and clinical immunology, 136(2):323–333, 2015. [p90]

M. Lawrence, R. Gentleman, and V. Carey. rtracklayer: an r package for interfacing with genome
browsers. Bioinformatics, 25(14):1841, 2009. [p91]

Y. Liao, G. K. Smyth, and W. Shi. The r package rsubread is easier, faster, cheaper and better for
alignment and quantification of rna sequencing reads. Nucleic acids research, 47(8):e47–e47, 2019.
[p91]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=GSSTDA


CONTRIBUTED RESEARCH ARTICLE 113

P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson, M. Alagappan, J. Carlsson, and
G. Carlsson. Extracting insights from the shape of complex data using topology. Scientific reports, 3
(1):1236, 2013. [p90, 95]

J. C. Mathews, S. Nadeem, A. J. Levine, M. Pouryahya, J. O. Deasy, and A. Tannenbaum. Robust and
interpretable pam50 reclassification exhibits survival advantage for myoepithelial and immune
phenotypes. NPJ Breast Cancer, 5(1):30, 2019. [p90]

M. Nicolau, R. Tibshirani, A.-L. Børresen-Dale, and S. S. Jeffrey. Disease-specific genomic analysis:
identifying the signature of pathologic biology. Bioinformatics, 23(8):957–965, 02 2007. ISSN 1367-4803.
doi: 10.1093/bioinformatics/btm033. URL https://doi.org/10.1093/bioinformatics/btm033.
[p90]

M. Nicolau, A. J. Levine, and G. Carlsson. Topology based data analysis identifies a subgroup of breast
cancers with a unique mutational profile and excellent survival. 10.1073/pnas.1102826108, 2011.
[p90]

A. H. Rizvi, P. G. Camara, E. K. Kandror, T. J. Roberts, I. Schieren, T. Maniatis, and R. Rabadan. Single-
cell topological rna-seq analysis reveals insights into cellular differentiation and development.
Nature biotechnology, 35(6):551–560, 2017. [p90]

P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics, 20:53–65, 1987. [p96]

M. S. Schroder, A. C. Culhane, J. Quackenbush, and B. Haibe-Kains. survcomp: an r/bioconductor
package for performance assessment and comparison of survival models. Bioinformatics, 27(22):
3206–3208, 2011. [p91]

G. Singh, F. Mémoli, G. E. Carlsson, et al. Topological methods for the analysis of high dimensional
data sets and 3d object recognition. PBG@ Eurographics, 2:091–100, 2007. [p90, 95]

D. J. Sokolowski, M. Faykoo-Martinez, L. Erdman, H. Hou, C. Chan, H. Zhu, M. M. Holmes, A. Gold-
enberg, and M. D. Wilson. Single-cell mapper (scmappr): using scrna-seq to infer the cell-type
specificities of differentially expressed genes. NAR Genomics and Bioinformatics, 3(1):lqab011, 2021.
[p91]

Miriam Esteve
Universidad Cardenal Herrera-CEU
Department of Matematicas, Fisica y Ciencias Tecnologicas, 03203 Carmelitas, 3 (Elche), Spain
ORCiD: 0000-0002-5908-0581
miriam.estevecampello@uchceu.es

Raquel Bosch-Romeu
Universidad Cardenal Herrera-CEU
Department of Matematicas, Fisica y Ciencias Tecnologicas, San Bartolome 55, Alfara del Patriarca (Valencia),
Spain
ORCiD: 0000-0001-9126-3241
raquel.boschromeu@uchceu.es

Antonio Falco
Universidad Cardenal Herrera-CEU
Department of Matematicas, Fisica y Ciencias Tecnologicas, ESI International Chair at CEU UCH, 03203
Carmelitas, 3 (Elche) Spain
ORCiD: 0000-0001-6225-0935
afalco@uchceu.es

Jaume Fores
Universidad Cardenal Herrera-CEU
Department of Matematicas, Fisica y Ciencias Tecnologicas, San Bartolome 55, Alfara del Patriarca (Valencia),
Spain
ORCiD: 0000-0002-9025-4877
fores.martos.jaume@gmail.com

Joan Climent
Universidad Cardenal Herrera-CEU

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://doi.org/10.1093/bioinformatics/btm033
https://orcid.org/0000-0002-5908-0581
mailto:miriam.estevecampello@uchceu.es
https://orcid.org/0000-0001-9126-3241
mailto:raquel.boschromeu@uchceu.es
https://orcid.org/0000-0001-6225-0935
mailto:afalco@uchceu.es
https://orcid.org/0000-0002-9025-4877
mailto:fores.martos.jaume@gmail.com


CONTRIBUTED RESEARCH ARTICLE 114

Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los
Alimentos (PASAPTA), C/ Tirant lo Blanc, 7. 46115, Valencia
ORCiD: 0000-0002-8927-6614
joan.climentbataller@uchceu.es

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://orcid.org/0000-0002-8927-6614
mailto:joan.climentbataller@uchceu.es


CONTRIBUTED RESEARCH ARTICLE 115

Kernel Heaping - Kernel Density
Estimation from regional aggregates via
measurement error model
by Lorena Gril, Laura Steinkemper, Marcus Groß, and Ulrich Rendtel

Abstract The phenomenon of “aggregation” often occurs in the regional dissemination of information
via choropleth maps. Choropleth maps represent areas or regions that have been subdivided and
color-coded proportionally to ordinal or scaled quantitative data. By construction discontinuities at
the boundaries of rigid aggregation areas, often of administrative origin, occur and inadequate choices
of reference areas can lead to errors, misinterpretations and difficulties in the identification of local
clusters. However, these representations do not reflect the reality. Therefore, a smooth representation
of georeferenced data is a common goal. The use of naive non-parametric kernel density estimators
based on aggregates positioned at the centroids of the areas result also in an inadequate representation
of reality. Therefore, an iterative method based on the Simulated Expectation Maximization algorithm
was implemented in the Kernelheaping package. The proposed approach is based on a partly Bayesian
algorithm treating the true unknown geocoordinates as additional parameters and results in a corrected
kernel density estimate.

1 Introduction

The data represented by area aggregates do not offer the precise geocoordinates, but they rather refer
to areas, usually of varying sizes, such as states, provinces, municipalities, electoral districts, ZIP codes
or other statistical spatial references. These data are mostly displayed by choropleth maps. On the one
hand, the reason for this type of presentation is that data were not collected at a more granular level.
For example, election results can only be traced back to the corresponding constituency in order to
maintain election secrecy of the voters. On the other hand, the data with precise geoinformation are
often aggregated due to privacy reasons of the participants of a survey or a census survey. Here, data
aggregation is a simple strategy of data anonymization. One drawback of choropleth maps are strong
variations of the distribution density at the borders of the reference areas which make it difficult to
identify regional clusters and lead to misinterpretations of choropleth maps. The representation of
data as aggregates leads to the fact that this underlies the specific areal map base. In the so-called
support problem, one would like to construct a map based on a different area system which is not
hierarchically nested in the original area system. For example, we want aggregates for administrative
districts, but we only have access to aggregates at the ZIP code level. It is by no means obvious how
the original total numbers are distributed across the preferred areas.

From the statistical point of view, both problems could be addressed with a solid methodological
input. The first step is to search for statistical tools that solve the above problems, given full access
to the geocoordinates of each observation. A good candidate is the two-dimensional kernel density
estimate, which provides a smooth regional distribution of the variable of interest without discontinu-
ities. Moreover, the kernel density is not linked to a specific reference areas. However, to construct a
kernel density estimate, we need to know the original geocoordinates. When using aggregated data
by means of a naive kernel density estimator, which allocates all observations at the centroids of the
respective area, the kernel density estimates are biased and give often a dismal spiky representation of
the reality, depending on the used bandwidth. The knowledge of exact geocoordinates solves also
the change of support problem. We consider the measurement of the area to which the observation
belongs as an imperfect measurement of the exact geocoordinate. In a standard measurement error
situation, only limited knowledge of the measurement process is available. Therefore, identifying
assumptions must be made in order to draw conclusions about the true value, e.g. the independence
of the measurement error from the true value. In the case of aggregation, however, the measurement
process is known. This knowledge opens a lane for the standard statistical approach in situations with
latent, i.e. unobserved, data: the EM algorithm. However, to account for the aggregation process,
the algorithm is extended by a statistical simulation concept. The so-called Stochastic Expectation
Maximisation Algorithm (SEM) was proposed by Celeux et al. (1996).

The proposed algorithm delivers a kernel density estimation which takes the measurement errors,
i.e. the aggregation process, into account. As a by-product of the algorithm, we obtain simulated
geocoordinates that are consistent with the final density estimate. With these artificial coordinates the

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 116

computation of aggregates in any arbitrary area system can be done without additional effort, so that
the support change problem can be solved immediately.

In addition to aggregation, there are other ways in which measurement errors can affect the
observed variable. Carroll and Stefanski (1990) introduced the deconvolution kernel density estimator
which utilizes the property of the characteristic function. Thereby, the density of the measurement
error process is known, so the Fourier inversion theorem can be applied. In addition, Delaigle (2014)
introduced a kernel-based method for dealing with heteroscedastic errors in this context. Basulto-Elias
et al. (2021) applied bivariate kernel deconvolution to panel data. In the context of differential privacy,
Farokhi (2020) introduced a deconvoluting kernel density estimator to remove the effect of privacy-
preserving additive noise. Despite the possibility of using this method, the use of SEM by drawing
pseudo-samples is more intuitive in the context of population aggregation and leads to the proposed
implementation in the case of aggregation as a measurement error.

This paper is dedicated to the R package Kernelheaping providing a partly Bayesian algorithm,
which treats the true unknown values as additional parameters and estimates the aggregation parame-
ters to give a corrected kernel density estimate proposed by Groß and Rendtel (2016) and Groß et al.
(2016). In Groß and Rendtel (2016) and Walter et al. (2022) the kernel heaping method is proposed
based on one-dimensional survey data, i.e. asymmetric rounding occurring in self-reported survey an-
swers such as income, weight or height due to social desirability. An extension to the two-dimensional
case was published in Groß et al. (2016) reversing the rounding respectively aggregation process by
using a measurement error model. This method was applied to Berlin register data of residents for
deriving density estimates of ethnic minorities and aged people as well as a simulation study was
made.

By the development and implementation of this approach, further relevant articles could be
published. In the article by Rendtel and Ruhanen (2018), the need of childcare in Berlin is analyzed.
For this purpose, first a good representation of the population below 18 was obtained by the above
mentioned kernel heaping method. Then, a demand analysis was made comparing children’s living
area to actual geocoordinates of kindergartens, schools and pediatrician’s offices. In addition, high
density areas of newborns were considered in temporal context. In the context of mobile phone data
Hadam et al. (2020) compared user density estimates based on grid cell counts and on the kernel
heaping algorithm. A special feature here are the strong size differences of the observed grid cells,
which make visual comparisons difficult. The already mentioned change of support problem was
discussed in the article by Groß et al. (2020) on the basis of student resident numbers in ZIP areas.
However, for planning purposes the aggregates were needed on municipality districts which are in a
non-hierarchical relationship to the ZIP areas. Rendtel et al. (2021) showed, apart from choropleth
maps, a smooth representation of the spatial and temporal spread of the Corona pandemic. This is
a central topic of epidemiological research and also in the interest of public media. The temporally
spatially animated kernel density maps, which were created using the kernel heaping algorithm, show
soft transitions in the corresponding counties and thus clusters of COVID-19 infections in Germany
can be better identified. In contrast, the choropleth maps give a rather unstable impression of the
development of the pandemic. The spatio-temporal animated maps can be found here. In an article
by Erfurth et al. (2021) election results of the 2016 Berlin House of Representatives election were
analyzed. The evaluation is based on a local voter register with known anonymized addresses. Some
modifications respectively extensions of the basic method proposed by Groß et al. (2016) were made.
A boundary correction was introduced to eliminate the underestimation of the kernel density estimate
at the boundaries of the population, and uninhabited areas are also taken into account. In addition,
an algorithm for the calculation of local percentages is adapted. The extensions to the algorithm are
already implemented in the Kernelheaping package.

2 Statistical Method

In this section, first the multivariate kernel density estimation is introduced. Then the main idea,
namely the use of the Stochastic Expectation Maximization algorithm in combination with aggregated
data, is presented. Often, however, one faces boundaries in relation to georeferenced data, either
uninhabited or unobserved areas, which makes an extension with a boundary correction unavoidable.
As a result, the SEM algorithm must also be adapted. The method can also be used to calculate
proportions, which makes a further extension of the algorithm necessary.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 117

2.1 Multivariate Kernel Density Estimation

The multivariate kernel density estimation (KDE) is a non-parametric approach to estimate the
probability distribution of a continuous variables. This popular method produces smooth density
estimates and can be seen as an improvement of traditional histograms. For the case presented here
with respect to geocoordinates, it is sufficient to consider X = {X1, X2, . . . , Xn} a sample of size n from
a bivariate random variable, i.e. Xi = (Xi1, Xi2) as longitude and latitude coordinates, with unknown
density f (x). The kernel density estimator at point x is given by

f̂H(x) =
1

n|H|
n

∑
i=1

K
(

H−1(x− Xi)
)

, (1)

where K(·) is a multivariate kernel function, H denotes a symmetric positive definite bandwidth
matrix and | · | denotes the determinant. In this setting, the kernel function K(·) is the multivariate
Gaussian kernel.
The choice of bandwidth H is very important for the performance of a KDE. Several bandwidth
selecting approaches have been discussed in the literature, see Izenman (1991) and Silverman (1986).
The plug-in approach of Wand and Jones (1994) is used hereafter as a bandwidth selector due to
computational efficiency as seen in the simulation study. The performance of f̂H is measured by the
Mean Integrated Squared Error MISE(H) = IE

∫ 2
R( f̂H(x)− f (x))2dx. Thus, the optimal bandwidth

in the space of symmetric and positive definite 2× 2 matrices H would be the one that minimizes
the MISE. Since the optimal bandwidth does not have a closed-form solution, asymptotic analysis is
used. Additionally, since the true density is unknown, a data-driven approach is used to iteratively
estimate the bandwidth matrix. For bivariate kernels, under the assumptions (A1) the density f has
all second-order partial derivatives bounded, continuous and squared integrable; (A2) the kernel K is
the bivariate Gaussian kernel; (A3) all entries of H and n−1|H|−1/2 tend to 0 for n→ ∞; Duong and
Hazelton (2003) stated

MISE(H) =AMISE(H) + o(n−1|H|−1/2 + tr2(H))

AMISE(H) =n−1|H|−1/2R(K) + 1/4µ2(K)2(vechT H)ψ4(vechH),

where R(K) =
∫

R2 K(x)2dx, µ2(K)I =
∫

R2 xxTK(x)dx, with µ2(K) < ∞, vech is the vector half
operator and ψ4 =

∫
R2 vech(2D2 f (x)− dgD2 f (x))vechT(2D2 f (x)− dgD2 f (x))dx with D2 f (x) being

the Hessian matrix of f and dgA being matrix A with all of its non-diagonal elements set to zero. The
plug-in method further states explicitly ψ4 by a function ψr and makes use of the tractability of AMISE
by seeking to estimate HAMISE = arg minH∈H AMISE(H). An pilot estimation of ψr is plugged in to
obtain an estimate of ψ4. Hence, an estimate of the AMISE(H) is obtained that can be numerically
minimized to give the plug-in bandwidth Ĥ.
A detailed review of automatic or data-driven bandwidth selection methods is given by Heidenreich
et al. (2014).

2.2 SEM algorithm for the estimation of densities based on aggregated data

For aggregated data, however, using a naive multivariate KDE returns an unrealistic representation of
the reality. The proposed approach needs as an input aggregated data as well as the predefined cen-
troids, i.e. midpoints of the areas, and the corresponding absolute value of the aggregate. Furthermore,
the grid size corresponds to the specified discretization of the geocoordinates. Let xg, g = 1, . . . , G
be the geocoordinates of the G grid points with ∆1 and ∆2 be the distance between two grid points
in the direction of longitude and latitude. For each grid point it have to be determined in which of
the A areas it lies. This divides the grid points into A subsets Ga = {xg|g = 1, . . . , G, xg ∈ a}, where
a = 1, . . . , A corresponds to the areas. Note that the subdivision is disjoint, i.e. the set of grid points
G = ∪A

a=1Ga. The midpoints of the area a are denoted by Wa, and the total number of observed values
by Na for a = 1, . . . , A.

Step 0 Initialize of burn-in B, sample size R, grid size and corresponding subsets Ga with respect to all
areas a.

Step 1 Calculate the naive KDE f̂ (0) using equation 1 and Gaussian Kernel from the sample s(0),
which contains Na times the midpoint Wa, a = 1, . . . , A. Additionally, set the bandwidth

parameters h(0)1 and h(0)2 sufficiently large such that no spikes occur in the estimation. The
bandwidth parameter are chosen in relation to the grid size and the amount of areas, i.e.

h(0)i =
(

∆i
A

)2
, i = 1, 2.

Step 2 Draw a sample s(t) consisting of Na grid points of the set Ga, a = 1, . . . , A. The sampling

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 118

procedure is with replacement and the sampling weights of each grid point xg is proportional
to f̂ (t−1)(xg). Thus, the sampling is proportional size with respect to the preceding density
estimate.

Step 3 Calculate f̂ (t) using equation 1 and Gaussian Kernel from the sample s(t) using smoothing

parameters h(t)1 and h(t)2 obtained by the plug-in estimator of Wand and Jones (1994).

Step 4 Repeat Step 2 and Step 3 B+R times.

Step 5 Calculate the final density estimate f̂ (x) by

f̂ (x) =
1
R

R

∑
r=1

f̂ (B+r)(x).

2.3 Boundary correction of kernel density estimation

The KDE of bounded maps raises the question of how to handle the boundaries, since a part of
the estimate may be outside the region of interest. As the KDE should not cover areas outside the
boundary, a possible approach proposed by Jones (1993) is to restrict the kernel function to the area
within the boundary denoted by S . The rescaling factors w controlling the areas within the boundaries
can by calculated for each point x by

wx =
∫
S

1
|H|K

(
H−1(x− y)

)
dy.

Hence, the rescaled KDE f̂rs(x) at each point x is

f̂rs(x) =
1

N|H| ∑
xs∈S

1
wx

K
(

H−1(x− xs)
)

. (2)

In the case of geocoordinates, the set of grid points lying in settled area S are denoted by GS and ∆G
the area of control of a grid point. The rescaling factors wx at each geocoordinate x = (x1, x2) by using
the Gaussian Kernel can be approximated by

wx ≈ ∑
xs∈S

1
|H|K

(
H−1(x− xs)

)
∆G

=
∆G√
2π

1
h1h2

∑
(xs1,xs2)∈GS

exp

{
− 0.5

(
(x1 − xs1)

2

h1
+

(x2 − xs2)
2

h2

)}
. (3)

2.4 SEM algorithm for kernel density estimation with boundary correction

Step 0 Initialize burn-in B, sample size R, grid size, Ga|S grid points lying in area a, a = 1, . . . , A and
restricted to settled area S .

Step 1 Determine sample set s(0) consisting of Na times Wa, a = 1, . . . , A, whereas Wa ∈ S must hold.

Determine h(0)1 and h(0)2 sufficiently large and rescaling factors w(0)
x for all grid points x ∈ GS

using equation 3. Calculate KDE f̂ (0)rs according to equation 2 for x ∈ GS .

Step 2 Draw a sample s(t) consisting of Na grid points of the set Ga|S , a = 1, . . . , A. The sampling pro-
cedure is with replacement and the sampling weights of each grid point xs ∈ S is proportional

to f̂ (t−1)
rs (xs).

Step 3 Calculate f̂ (t)rs using equation 2 and Gaussian Kernel from the sample s(t). Calculate the smooth-

ing parameters h(t)1 and h(t)2 obtained by the plug-in estimator of Wand and Jones (1994) and

recalculate the correction weights w(t)
x according equation 3.

Step 4 Repeat Step 2 and Step 3 B+R times.

Step 5 Calculate the final density estimate f̂rs(x) by

f̂rs(x) =
1
R

R

∑
r=1

f̂ (B+r)
rs (x).

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 119

2.5 Estimation of local proportions

Proportions of the population with a certain characteristic are often geographically expressed by
choropleth maps. Proportion means a percentage of the total population with a certain characteristic
on the overall population, e.g. the proportion of voters of a certain party among all voters. The
calculation based on the choropleth maps is the number of persons with the characteristic in the area a
divided by all persons in the area a for a = 1, . . . , A. In terms of density estimation, let fP and fC be
the density of the entire population and the density of the population with a certain characteristic,
respectively. Let NP and NC be the total number of people in the population or the number of people
with a certain characteristic, respectively, with NP ≥ NC. Let x = (x1, x2) be a coordinate in the
observed map. The local proportion of the people with a certain characteristic within a rectangle of
size ∆x1 × ∆x2 is obtained by

r(x) =
NC fC(x)(∆x1 × ∆x2 )

NP fP(x)(∆x1 × ∆x2 )
=

NC fC(x)
NP fP(x)

.

A non-parametric estimator of the local ratio is the Nadaraya-Watson estimator r̂NW showing to be
the ratio of two KDE with equal smoothing factor

r̂NW =
NC f̂C(x)
NP f̂P(x)

, (4)

where f̂C and f̂P are the KDE with respect to the entire population and the population with a certain
characteristic, see Härdle (1990).

2.6 SEM algorithm estimating local proportions

For the sampling phase of the SEM algorithm the sample of the persons with the characteristic of

interest is a subsample of the population sample, i.e. s(t)P ⊂ s(t)C . For the calculation of the joint

smoothing parameter we take the smaller sample, i.e. the sample s(t)C . This results in larger smoothing
parameters and therefore more stable ratios in equation 4.

Step 0 Initialize burn-in B, sample size R, grid size, and corresponding subsets Ga with respect to all
areas a.

Step 1 Calculate the naive KDEs f̂ (0)P and f̂ (0)C using equation 1 and Gaussian Kernel from the samples

s(0)P and s(0)C , which contains of NP,a respectively NC,a times the the midpoint Wa, a = 1, . . . , A.

Additionally, set the bandwidth parameters h(0)1 and h(0)2 sufficiently large such that no spikes
occur in the estimation.

Step 2 Draw a sample s(t)P consisting of NP,a grid points of the set Ga, a = 1, . . . , A. The sampling
procedure is with replacement and the sampling weights of each grid point xg is proportional

to f̂ (t−1)
P (xg).

Then, take a subsample s(t)C from s(t)P consisting of NC,a grid points. The subsampling is propor-

tional to f̂ (t−1)
C (xg).

Step 3 Calculate f̂ (t)P and f̂ (t)C using equation 1 and Gaussian Kernel from the sample s(t)P respectively

s(t)C using the joint smoothing parameters h(t)1 and h(t)2 for the sample s(t)C obtained by the plug-in
estimator of Wand and Jones (1994).

Step 4 Repeat Step 2 and Step 3 B+R times. After the burn-in phase, i.e. after B replications, compute
for the (B + r)th sample the ratio

f̂ B+r
C|P (x) =

f̂ B+r
C (x)

f̂ B+r
P (x)

for all grid points.

Step 5 Calculate the final density estimate f̂C|P(x) for all grid points by

f̂C|P(x) =
1
R

R

∑
r=1

f̂ (B+r)
C|P (x).

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 120

3 Functions in the Kernelheaping package

Tabel 1 gives an overview of significant functions within Kernelheaping package. The original idea is
based on one-dimensional survey data that is rounded or summarized into classes. The method has
been extended to a two or three dimensional application. The main functions used in the following
case study are shown in bold.

Univariate Methods

createSim.Kernelheaping() Creates one dimensional sample data from a given
distribution and rounds these data.

dheaping() Smooth KDE on heaped data based on the same
rounding value.

dclass() Smooth KDE on data in different sized heaping classes.

Multivariate Methods

dbivr() Insert two dimensional heaped data, both coordinates
need to be heaped by the same rounding value. Returns
a smooth KDE based on heaped data.

dshapebivr() Aggregated population data based on area system
provided as shape file is represented smoothly by an
iterative 2D KDE method.

dshapebivrProp() Aggregated overall population data and data with a
specific characteristic based on area system provided as
shape file is represented as smooth local proportions
by an iterative 2D KDE method.

toOtherShape() Aggregates the pseudo-samples obtained by dshapebivr()
on another area system provided by the user.

dshape3dProp() Several different aggregated observations based
on an area system is smoothly represented by a 3D KDE.

Table 1: Overview of the functions in the Kernelheaping package

4 Case Study

The first part of the case study concentrates on the standard form of bivariate kernel density esti-
mation and in the second part the focus lies in calculating proportions. The third part focuses on
identifying regions with the highest density. The kernel heaping algorithm utilizes various packages
providing tools to generate plots, maps or nested functions. The packages fields, ggplot2, RColor-
Brewer, dplyr, terra, sp, sf, patchwork, rmapshaper and Kernelheaping are needed to execute the
code by using the install.packages() and library() functions in R.

Data from the Office of Statistics Berlin-Brandenburg and from Open Street Map are used in the
following examples. Spatially, the focus is on the lowest administrative planning levels of Berlin,
the so-called LORs (German abbreviation for Lebensweltlich orientierte Räume). Berlin is therefore
subdivided into 447 LORs, which are characterized by a high degree of internal homogeneity. The
shape file of Berlin LORs is available at https://www.statistik-berlin-brandenburg.de/opendata/
RBS_OD_LOR_2015_12.zip.

4.1 Part 1: Bivariate kernel density estimation

To illustrate the bivariate kernel density estimation, we focus on the density of elderly individuals
between the age of 65 and 80 in the lowest administrative areas (LORs) of Berlin. The dataset
of Berlin’s population can be downloaded from https://www.statistik-berlin-brandenburg.de/
opendata/EWR201512E_Matrix.csv. The first step involves loading the data for the LORs. The CSV
(comma-separated values) dataset, referred to as data in the code below, contains information from the
Berlin Residents’ Registration Office such as gender, age group, migration background and nationality.
The key variable in the dataset is RAUMID, which is used to identify the specific LORs. Additionally,
there is a shapefile named Berlin that encompasses the administrative units’ shapes. A shapefile
is a two-dimensional data format that is commonly used for geospatial vector data. Geographical
objects within a shapefile can be represented and displayed in various forms, such as points, lines,
or, in our specific case, as polygons. Once the two datasets are loaded in the R workspace, the Berlin

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://www.statistik-berlin-brandenburg.de/opendata/RBS_OD_LOR_2015_12.zip
https://www.statistik-berlin-brandenburg.de/opendata/RBS_OD_LOR_2015_12.zip
https://www.statistik-berlin-brandenburg.de/opendata/EWR201512E_Matrix.csv
https://www.statistik-berlin-brandenburg.de/opendata/EWR201512E_Matrix.csv


CONTRIBUTED RESEARCH ARTICLE 121

shapefiles need to be georeferenced via the command st_transform, using the world geodetic system
1984 (WGS 84) as a spatial reference.

setwd("~/Downloads")
# Load data matrix with population numbers
data <- read.csv2("EWR201512E_Matrix.csv")
# Load shape file of Berlin
Berlin <- read_sf("RBS_OD_LOR_2015_12/RBS_OD_LOR_2015_12.shp")
Berlin <- st_transform(Berlin, CRS("+proj=longlat +datum=WGS84"))

To prepare plotting the chorpleth map, the data used in our analysis is added to the Berlin dataset.
Note that you have to be careful to assign the correct values to the respective LORs. In this case, the
order of the data is the same as the order of the given polygons. This allows us to compute the density
of individuals over 65 years old and below 80. To create a plot by using the package ggplot2, the
visualisation of the LORs is done by geom_sf. In Figure 1 the choropleth map of the total number of
inhabitants between 65 and 80 is shown. Choropleth maps assume a homogeneous distribution within
each LOR and represent discrete color levels, resulting in discontinuities at the area boundaries. Each
LOR respectively polygon can be filled either with the absolute number of people between the age of
65 and 80 (E_E65U80) or the density over all areas (E_E65U80density).

# Add the population data to the shape file
Berlin$E_E65U80 <- data$E_E65U80
Berlin$E_E65U80density <- Berlin$E_E65U80 / sum(Berlin$E_E65U80)

# Plot Density of the population data as choropleth map
ggplot(Berlin) +
geom_sf(data = Berlin, mapping = aes(fill = E_E65U80density)) +
ggtitle("Proportion of Inhabitants between 65 and 80 years by LOR",

"Choropleth Map") +
scale_fill_gradientn(colours = c("#FFFFFF", "#5c87c2", "#19224e"), "Density") +
xlab("Longitude")+ylab("Latitude")+
coord_sf()

Figure 1: Choroleth map of the proportion of inhabitants between 65 and 80 years by LOR in Berlin

As the discontinuities at the boundaries reflect an unrealistic scenario, the kernel heaping algorithm
is applied to the data. First the data must be prepared for this application. One of the input variables
of the dshapebivr, which is used to evaluate the proposed approach, are the centroids of each LOR.
Therefore, the Berlin data of type sf is converted to a Large SpatialPolygonsDataFrame. The lapply
function allows in an easy way to obtain from each polygon the centroids, and the number of people
between 65 and 80 years in the form of a data matrix. The midpoint of the ith polygon out of the 447 are
given at Berlin@polygons[[i]]@Polygons[[1]]@labpt and the total number of people in this certain
age are given in data$E_E65U80[i]. In this case, the function being used is function(x) x@lapt,

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 122

which obtains the midpoint of each polygon. Additionally, the total number of peoples between 65
and 80 are added to the data matrix.

# Create data frame with midpoint of areas and counts per area
Berlin.shp <- as_Spatial(Berlin)
dataIn <- lapply(Berlin.shp@polygons, function(x) x@labpt) %>%
do.call(rbind, .) %>% cbind(data$E_E65U80)

head(dataIn)
[,1] [,2] [,3]

[1,] 13.34749 52.50644 562
[2,] 13.35580 52.51386 24
[3,] 13.35870 52.50350 639
[4,] 13.36822 52.50211 261
[5,] 13.36617 52.50796 120
[6,] 13.38190 52.51102 282

The result of this procedure is stored in the data matrix dataIn. Considering the calculated table,
it can be deduced that the first two columns represent the latitude and longitude of the midpoint
coordinate of each polygon and the third column represents the total number of people of the observed
age group in the area.

The most important component of this code is the function dshapebivr of the package Kernel-
heaping, which iteratively calculates the bivariate kernel density with respect to the people in a certain
age range using the SEM algorithm. The function needs as an input the data frame obtained in the last
step as well as the shapefile Berlin.shp. In the case study, the gridsize for evaluating the KDE is set
to 325. Furthermore, it is important to choose an adequate number of burn-in iterations and further
sample iterations for the kernel heaping function to yield accurate results. The proposed algorithm
requires a few steps to converge to a realistic kernel density. In this case, the first 5 burn-in iterations
are ignored, and the average of the last 10 iterations is calculated and returned as an estimate. The
adaptive parameter controls whether an adaptive smoothing factor is applied for boundary correction.
In this case, it is set to FALSE, indicating that no further smoothing is utilized. The parameter boundary
refers to the adjustment of the kernel density estimation near the boundaries. Jones (1993) emphasizes
the significance of this correction: "If a probability density function has bounded support, kernel
density estimates often overspill the boundaries and are consequently especially biased at and near
these edges." Therefore, correcting the density close to boundaries can reduce the induced bias. The
bandwidth matrix H is computed by the plug-in method proposed by Wand and Jones (1994).

# Use aggregated data to obtain KDE
est <- dshapebivr(data = dataIn, burnin = 5, samples = 10,

adaptive = FALSE, shapefile = Berlin.shp,
gridsize = 325, boundary = TRUE)

The result of the algorithm was stored in the data list est. In est$Mestimate the averaged KDEs
over the sampling phase is stored. The KDEs in the algorithm are calculated by the function kde
of the package ks. In est$resultDensity and est$resultX the matrices with estimated density for
each iteration respectively true latent values X of the estimated geocoordinates are stored. The input
shapefile Berlin.shp and data matrix dataIn are also stored in est. The grid points needed to evaluate
the KDE can be found in est$gridx and est$gridy. Additionally, the values for sample size, burn-in
and adaptive are stored in est.

In order to plot the result, the data frame Kdata with all combinations of grid points with respect
to their longitude and latitude coordinates as well as the corresponding density estimation obtained
by the proposed algorithm is needed. The function expand.grid creates a data frame from all combi-
nations of the supplied variables. Then the normed density per grid cell is added to the data frame.
Additionally, the function filter ensures that only grid points with positive densities are included
in the data frame. The data Kdata can now be visualized using the ggplot2 package, which provides
various options for graphical representations.

# Prepare KDE as data frame for plot
Kdata <- data.frame(expand.grid(long = est$Mestimates$eval.points[[1]],

lat = est$Mestimates$eval.points[[2]]),
Density = est$Mestimates$estimate %>% as.vector) %>%

filter(Density > 0)
Kdata$Density <- Kdata$Density*(est$gridx[2] - est$gridx[1])*
(est$gridy[2] - est$gridy[1])

# Plot KDE obtained by aggregated data

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 123

ggplot(Kdata) +
geom_raster(aes(long, lat, fill = Density)) +
ggtitle("Density of Inhabitants between 65 and 80 Years",

"obtained by using Kernel Heaping Algorithm") +
scale_fill_gradientn(colours = c("#FFFFFF", "#5c87c2", "#19224e"))+
xlab("Longitude")+ylab("Latitude")+
geom_sf(data = Berlin, fill = NA) +
coord_sf()

Figure 2 illustrates the bivariate density of elderly inhabitants by using the proposed approach.
The impact of kernel heaping becomes evident when comparing Figure 2 with the conventional
choropleth maps commonly used in official statistics shown in Figure 1. Figure 1 appears unrealistic
compared to Figure 2 due to the abrupt color shifts at the boundaries of the regions. The discrete color
display obscures information, i.e. regional concentrations within the districts remain hidden.

Figure 2: Bivariate density of the number of inhabitants between 65 and 80 years in Berlin obtained by
the SEM algorithm

4.2 Part 2: Creating spatial maps for proportions

This section focuses on creating maps which calculate proportions using data of individuals with a
Turkish migration background within the population with migration background of Berlin.

To ensure that only settled areas are considered, it is necessary to exclude unsettled regions such
as parks, lakes or forests. The corresponding shape files for uninhabited areas can be downloaded
from http://download.geofabrik.de/europe/germany/berlin.html. Similar to the previous section,
the shape file containing the LORs of Berlin is uploaded in R. Additionally, land use data BerlinN
and water areas BerlinWater are loaded in R. Land use characterizes what an area is used for, e.g.,
residential, commercial activities, agriculture, education, recreation, etc. and water areas refers to areas
with rivers, lakes etc. The residential areas are then exempted from BerlinN and further divided into
green areas and other areas, to distinguish between different land uses within the unsettled regions.

# Load Berlin shape files
Berlin <- read_sf("RBS_OD_LOR_2015_12/RBS_OD_LOR_2015_12.shp")
Berlin <- st_transform(Berlin, CRS("+proj=longlat +datum=WGS84"))

# Load shape files of green area, water areas and others
BerlinN <- read_sf("berlin-latest-free.shp/gis_osm_landuse_a_free_1.shp")
BerlinWater <- read_sf("berlin-latest-free.shp/gis_osm_water_a_free_1.shp")

BerlinN <- BerlinN[!(BerlinN$fclass == "residential"), ]
BerlinGreen <- BerlinN[(BerlinN$fclass %in% c("forest", "grass", "nature_reserve",

"park", "cemetery","allotments",

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

http://download.geofabrik.de/europe/germany/berlin.html


CONTRIBUTED RESEARCH ARTICLE 124

"farm", "meadow","orchard",
"vineyard","heath")), ]

BerlinOther <- BerlinN[!(BerlinN$fclass %in% c("forest", "grass", "nature_reserve",
"park", "cemetery","allotments",
"farm", "meadow","orchard",
"vineyard","heath")), ]

After reading in the shape file corresponding to the unsettled areas by using read_sf, the data
is again transformed into WGS84 system by st_transform. Additionally, to reduce the complexity
of the polygons, they are simplified by the Ramer-Douglas-Peucker algorithm using ms_simplify.
The algorithm decimates a curve consisting of line segments to a similar curve with fewer points.
This is done for this case study due to computational efficiency. Since the data extend beyond the
area of Berlin, i.e. the data reach as far as Brandenburg, the data must be restricted to Berlin using
st_intersection. The functions dshapebivr and dshapebivrProp require a single shape file as input
data and therefore water, nature and other shape files are united by bind_rows and transformed into a
Large SpatialPolygonsDataFrame using as_Spatial.

# Simplify the uninhabited areas for computational purpose
BerlinGreen <- st_transform(
rmapshaper::ms_simplify(BerlinGreen, keep = 0.001, keep_shapes=FALSE),

CRS("+proj=longlat +datum=WGS84"))
BerlinOther <- st_transform(

rmapshaper::ms_simplify(BerlinOther, keep = 0.001, keep_shapes=FALSE),
CRS("+proj=longlat +datum=WGS84"))

BerlinWater <- st_transform(
rmapshaper::ms_simplify(BerlinWater, keep = 0.001, keep_shapes=FALSE),

CRS("+proj=longlat +datum=WGS84"))

BerlinOther <- st_intersection(BerlinOther, Berlin)
BerlinGreen <- st_intersection(BerlinGreen, Berlin)
BerlinWater <- st_intersection(BerlinWater, Berlin)

BerlinUnInhabitated <- bind_rows(BerlinWater, BerlinGreen, BerlinOther)
BerlinUnInhabitated <- as_Spatial(BerlinUnInhabitated)

The differences between the simplified polygons and the original one strongly depend on the
parameters. However, also small changes can achieve run time reductions. In Figure 3 the polygons
with respect to the water areas of Berlin are plotted. It can be seen that the tuning parameter was
chosen to large, hence it had a significant impact on the areas. For to enhance the readability, the code
for Figure 3 is not provided.

Figure 3: Original data of the water areas in Berlin (left) based on polygons and simplified polygons
using Ramer-Douglas-Peucker algorithm with a tolerance value of 0.002 (right)

The data for this application contains the total number of migrants in Berlin are uploaded in
R. The CSV file can be found under https://www.statistik-berlin-brandenburg.de/opendata/
EWRMIGRA201512H_Matrix.csv. At this stage, the key variable RAUMID is converted into a character

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://www.statistik-berlin-brandenburg.de/opendata/EWRMIGRA201512H_Matrix.csv
https://www.statistik-berlin-brandenburg.de/opendata/EWRMIGRA201512H_Matrix.csv


CONTRIBUTED RESEARCH ARTICLE 125

variable. Additionally, as the length of the variable RAUMID is between 7 and 8, all variables are
transformed to the length of 8. Therefore, the leading digits of variables of length 7 in the RAUMID is
padded with a 0 to ensure consistent formatting. Finally, the number of migrants can be sorted in
ascending order based on the RAUMID.

Similar to the first part, a data matrix is determined to connect the midpoints of the polygons with
the corresponding total number of Turkish migrants. Therefore, the longitude and latitude information
of the midpoints are connected with the corresponding number of Turkish migrants as well as the
total number of migrants. Note that in this application the Large SpatialPolygonsDataFrame called
Berlin.shp is used to determine the midpoints of each LOR.

# Load data frame with migrant data
BerlinMigration <- read.csv2("EWRMIGRA201512H_Matrix.csv")
BerlinMigration$RAUMID <- as.character(BerlinMigration$RAUMID)
BerlinMigration$RAUMID[nchar(BerlinMigration$RAUMID) == 7] <-
paste0("0", BerlinMigration$RAUMID[nchar(BerlinMigration$RAUMID) == 7])

BerlinMigration <- BerlinMigration[order(BerlinMigration$RAUMID), ]

# Add proportion of Turkish mirgants to shape file
Berlin$turkDensity <- BerlinMigration$HK_Turk / BerlinMigration$MH_E

In Figure 4 the proportion of Turkish migrants with respect to all migrants is shown as a chorophlet
map. Note that in the KDE evaluation using SEM algorithm the unsettled areas have been excluded.
However, when visualizing the proportions of migrants using choropleth maps, these areas are not
excluded. Therefore, in Figure 4 the intersections between the visualized proportions of migrants and
unsettled areas are displayed. This is an additional disadvantage of the common used chorpleth map.
In dark green Berlin’s Green areas (forests, parks, etc.), in blue Berlin’s Water Areas (rivers, lakes, etc.)
and in grey Berlin’s other unsettled areas are visualized.

# Plot proportions of Turkish mirgants as choropleth map
ggplot() +
geom_sf(data = Berlin, mapping = aes(fill = turkDensity)) +
ggtitle("Proportion of Turks in Population with Migration Background",

subtitle = "Choropleth Map") +
scale_fill_gradientn(colours = c("#FFFFFF", "coral1"), "Density") +
geom_sf(fill = "grey20", alpha = .25,color = NA,

data = BerlinOther) +
geom_sf(fill = "darkolivegreen3", color = NA,

data = BerlinGreen, alpha = 0.25) +
geom_sf(fill = "deepskyblue3",color = NA,

data = BerlinWater, alpha = 0.25) +
xlab("Longitude")+ ylab("Latitude")+
coord_sf()

# Create data frame with midpoint of areas, counts of overall population
# and Turkish population per area
dataTurk <- cbind(t(sapply(1:length(Berlin.shp@polygons),

function(x) Berlin.shp@polygons[[x]]@labpt)),
BerlinMigration$HK_Turk, BerlinMigration$MH_E)

The function dshapebivrProp shares many similarities with dshapebivr as both are used to esti-
mate kernel density for data classified in polygons by using SEM algorithm based on heaped data. Most
of the parameters used in dshapebivrProp are the same as in dshapebivr. However, dshapebivrProp
specifically focuses on estimating the density proportions. Additionally, in this application uninhabited
areas are removed using the parameter deleteShapes.

# Use aggregated data to obtain local proportions
EstTurk <- dshapebivrProp(data = dataTurk, burnin = 5, samples = 10,

adaptive = FALSE, deleteShapes = BerlinUnInhabitated,
shapefile = Berlin.shp, gridsize = 325, boundary = TRUE,
numChains = 4, numThreads = 4)

The output EstTurk is similar to the output est of the function dshapebivr in Part 1. EstTurk
consist of input information such as shapefile, burnin, sample, deleteShape etc. Most important
is, however, Mestimate the corrected KDE using the proposed approach.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 126

Figure 4: Choropleth map of the proportion of Turkish people in the population with migration
background per LOR

For visualizing the KDE, all grid points are obtained by getting all combinations of longitude and
latitude coordinates using expand.grid. Again, negative proportion values are filter out. In Figure
5 the KDE using the proposed approach of the proportions of Turkish migrants with respect to all
migrants are visualized. As uninhabited areas are excluded from the estimation, in comparison to
the choropleth map in Figure 4, no values occur in these areas as well as smooth transitions of the
proportions are visible.

# Prepare local proportions as data frame for plot
gridBerlin <- expand.grid(long = EstTurk$Mestimates$eval.points[[1]],

lat = EstTurk$Mestimates$eval.points[[2]])
KdataTurk <- data.frame(gridBerlin,

Proportion = EstTurk$proportions %>% as.vector) %>%
filter(Proportion > 0)

# Plot local proportions obtained from aggregated data
ggplot() +

geom_tile(data = KdataTurk, aes(long, lat, fill = Proportion)) +
ggtitle("Proportion of Turks in Population with Migration Background",

"obtained by using Kernel Heaping Algorithm") +
scale_fill_gradientn(colours = c("#FFFFFF", "coral1"), "n") +
geom_sf(fill = "grey20", alpha = .25,color = NA,

data = BerlinOther) +
xlab("Longitude")+ ylab("Latitude")+
geom_sf(fill = "darkolivegreen3", color = NA,

data = BerlinGreen, alpha = .25) +
geom_sf(fill = "deepskyblue3",color = NA,

data = BerlinWater, alpha = .25) +
xlab("Longitude")+ ylab("Latitude")+
coord_sf()

4.3 Part 3: Identification of high density areas

In the final part, the focus lies on the identification of high-density regions using the example of
different migration groups in Berlin.

Similar to the previous part, the centers of the polygons are linked with the total number of Arabic,
former Soviet Union, and Polish migrants. The bivariate kernel density by the proposed approach is
then evaluated using dhapebivr with similar input parameters as in Part 1.

# Create data frame with midpoint of areas, counts of overall population

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 127

Figure 5: Kernel Density of the Proportion of Turkish people in the population with migration
background using proposed approach

# and Arabic, former Soviet and Polish population per area
dataArab <- cbind(t(sapply(1:length(Berlin.shp@polygons),

function(x) Berlin.shp@polygons[[x]]@labpt)),
BerlinMigration$HK_Arab)

dataSU <- cbind(t(sapply(1:length(Berlin.shp@polygons),
function(x) Berlin.shp@polygons[[x]]@labpt)),
BerlinMigration$HK_EheSU)

dataPol <- cbind(t(sapply(1:length(Berlin.shp@polygons),
function(x) Berlin.shp@polygons[[x]]@labpt)),
BerlinMigration$HK_Polen)

# Use aggregated data to obtain local propotions
EstArab <- dshapebivr(data = dataArab, burnin = 5, samples = 10, adaptive = FALSE,

shapefile = Berlin.shp, gridsize = 325, boundary = TRUE)
EstSU <- dshapebivr(data = dataSU, burnin = 5, samples = 10, adaptive = FALSE,

shapefile = Berlin.shp, gridsize = 325, boundary = TRUE)
EstPol <- dshapebivr(data = dataPol, burnin = 5, samples = 10, adaptive = FALSE,

shapefile = Berlin.shp, gridsize = 325, boundary = TRUE)

To identify "hot spots" or regions with significantly higher density than others, a predetermined
quantile needs to be established. In this case, we set the visquantile to 0.95. This means that in 95
percent of the grid points the estimate of the percentage is lower than the given value.

The data is prepared in the same manner as in the previous two parts.

# prepare local proportions as data frame for plot
# Plot only high density regions
Visquantile <- 0.95
KdataArab <-

data.frame(gridBerlin, Density = EstArab$Mestimates$estimate %>% as.vector) %>%
filter(Density > 0) %>%
filter(Density > quantile(Density, Visquantile)) %>%
mutate(Density = "Arabian countries")

KdataSU <-
data.frame(gridBerlin, Density = EstSU$Mestimates$estimate %>% as.vector) %>%

filter(Density > 0) %>%
filter(Density > quantile(Density, Visquantile)) %>%
mutate(Density = "Former Soviet Union")

KdataPol <-
data.frame(gridBerlin, Density = EstPol$Mestimates$estimate %>% as.vector) %>%

filter(Density > 0) %>%

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 128

filter(Density > quantile(Density, Visquantile)) %>%
mutate(Density = "Poland")

# Plot local proportions by aggregated data
ggplot() +

geom_sf(data = Berlin) +
geom_tile(aes(long, lat, fill = Density), data = KdataArab, alpha = 0.6) +
geom_tile(aes(long, lat, fill = Density), data = KdataSU, alpha = 0.6) +
geom_tile(aes(long, lat, fill = Density), data = KdataPol, alpha = 0.6) +
ggtitle("Hotspots of Inhabitants with different Migration Background",

"obtained by using Kernel Heaping Algorithm") +
geom_sf(fill = "grey20", alpha = .25,color = NA,

data = BerlinOther) +
xlab("Longitude")+ ylab("Latitude")+
geom_sf(fill = "darkolivegreen3", color = NA,

data = BerlinGreen, alpha = .25) +
geom_sf(fill = "deepskyblue3",color = NA,

data = BerlinWater, alpha = .25) +
xlab("Longitude")+ ylab("Latitude")+

coord_sf()

The result is a hot spot map displaying the density of former Soviet Union in green, Arab in red,
and Polish migrants in blue visualized in Figure 6. By employing standard bivariate kernel density
estimation, proportions estimation and hotspot identification techniques, it is possible to address the
limitations of choropleth maps. The new resulting maps exhibit enhanced visual representation due
to the incorporation of kernel heaping. This approach effectively highlights regional concentrations
within the life-oriented regions (LORs) and hotspots can be identified.

Figure 6: Hot spots of migrants from the former Soviet Union as well as Arab, and Polish migrants
constructed from the Kernel density estimates.

5 Robustness analysis based on a simulation study

In order to validate the method based on different data structures, sample data points in the form of
coordinates have been randomly generated with various spreads, i.e. sample data were generated from
a mixture of 111 normal distributions with different standard deviations. For each of the 111 midpoints
with varying the standard deviation, 800 coordinates were generated. The standard deviation varies
from 3 · 10−4.8 · I2, for highly agglomerated data, 3 · 10−4.55 · I2, for large agglomeration clusters,
to 3 · 10−3 · I2, for nearly uniformly distributed data. Additionally, a combination of these three
standard deviations each associated with 37 midpoints has been used for data generation and named
CNMD. Since green areas, water areas and uninhabited areas in Berlin are known, those points that

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 129

were randomly placed in one of these areas or fell outside of Berlin were excluded. Each setting
has been randomly simulated 500 times. Figure 7 shows the data variations and is intended to
represent the highly agglomerated data (3 · 10−4.8 · I2), less agglomerated data (3 · 10−4.55 · I2), nearly
equally distributed data (3 · 10−3 · I2) and data resulting from the combination of 3 different standard
deviations (CNMD).

Figure 7: Different data generation processes by using Gaussian Mixture distribution with various
variances

Based on these data structures, the randomly drawn sample points have been aggregated to a
wide range of area systems, i.e. from districts with 12 areas, and Prognosis areas with 60 areas to
Zip codes with 193 areas and Lifeworld-oriented spaces with 442 areas. Based on aggregated data,
the kernel heaping method aiming for a smooth representation is applied. For the comparison of
two densities over the considered domain, the Root Mean Integrated Squared Error (RMISE) is used,
which is defined for the true density f and the estimated density f̂H as

RMISE( f , f̂H) =
1
G

G

∑
g=1

( f (xg)− f̂H(xg))
2∆G .

Figure 8 shows the information loss for different variants of the data structures on the horizontal
axis, as well as aggregation error and simulated smoothing error by kernel heaping as separated
plots. The information loss is determined by normalizing the considered error by the sampling
error, which occurs through drawing samples from the known mixture of normal distributions.
The aggregation of the sampling data points on area systems with fewer areas highly increases the
aggregation error. Additionally, the data structure is influential. The kernel heaping algorithm uses
the aggregated information to generate a smooth density through the SEM algorithm. This smooth
density drastically reduces the loss of information which is enhanced by the smoothing effect of the
algorithm. Nevertheless, for highly agglomerated data the effect is less because highly agglomerated
data clusters cannot be reconstructed, i.e. when multiple clusters have been aggregated into one area.
The simulation study shows that an information loss between 25% and 50% can be improved with
respect to RMISE, depending on the underlying data structure.

Figure 8: Information Loss by Normed Root Mean Integrated Squared Error with respect to the
Sampling Error for Aggregation processes as well as Kernel Heaping compared to true density for
different area systems and data gerneration processes.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 130

The computation time depends strongly on the grid used to evaluate the kernel density. The finer
the grid, the longer the computation time. To generate a 100× 100 meter grid over Berlin, which has
an extension of 45 km in north-south direction and 38 km in east-west direction, the area has to be
divided into 450 and 380 grid cells per direction, respectively. As the number of grid cells decreases,
the computation time decreases. In general, as the number of areas on which the aggregation is based
increases, the computation time increases, as seen in the table 2. The data structure on which the
aggregation is based plays a minor role and causes the results to vary by a few seconds. Note that a
burn-in phase of 5 iterations and a sampling phase of 10 iterations are used. The computations are
based on a 12th Gen Intel(R) Core(TM) i5-12500, 3000 MHz, 6 cores processor.

Number of Areas 12 60 96 100 138 193 373 442
100m × 100m 270.99 282.96 304.64 277.95 287.09 316.71 309.90 301.75
200m × 200m 62.02 62.87 69.86 64.09 64.41 70.34 70.33 67.95
500m × 500m 14.33 13.98 14.78 14.45 15.01 14.46 14.73 15.11

Table 2: Overview of the mean computation time (in seconds) for different area systems and grid sizes

5.1 Kernel Heaping under different Bandwidth selectors

An automatic bandwidth selection via the plug-in bandwidth by Wand and Jones (1994) is implemented
in the Kernelheaping package. The calculation of the KDE in each iteration step is based on the kde()
function of the ks package, which offers other automatic bandwidth calculation methods besides
the plug-in bandwidth. In addition to the plug-in bandwidth, the biased cross-validation (BCV)
bandwidth matrix selector by Stephan R. Sain and Scott (1994), the smoothed cross-validation (SCV)
bandwidth selector by Duong and Hazelton (2005) and the least-squares cross-validation (LSCV)
bandwidth selector by Bowman (1984) are evaluated. Instead of minimizing AMISE(H) by an plug-in
approach, cross-validation based approaches attempt to minimize the MISE by using data for KDE
computation and evaluation of its performance. To avoid dependencies the data for computation is
not used for evaluation. The least-squares cross validation selector uses a leave-one-out approach and
numerical minimization. The biased cross validation combines the plug-in approach with the idea of
cross validation. By considering to minimize the AMISE(H) an estimation of φ4 is modified by an
leave-out-diagonals approach. For details see Stephan R. Sain and Scott (1994). Note that there are
two BCV estimates, where the first is used in this simulation. The smoothed cross-validation can be
viewed as a combination of the LSCV and BCV Duong and Hazelton (2005).

Figure 9: Information Loss by Normed Root Mean Integrated Squared Error for Aggregation process
and Kernel Heaping using different bandwidth selectors under selected area systems and different
data generation processes

In Figure 9 the information loss based on the normed RMISE for different automatic bandwidth
selectors is compared with the information loss of the aggregation process. As before, sample data
from a Gaussian mixture distribution have been aggregated to three selected area systems. Based
on the aggregated data the kernel heaping algorithm is applied with different automatic bandwidth
selectors on a 500× 500 meter grid. The plug-in bandwidth selector which used in the Kernelheaping
is compared to the BCV, LSCV and SCV. Expect from nearly equally distributed data combined with the
LSCV, the kernel heaping algorithm could reduce the information loss. The LSCV bandwidth selector
performed worse followed by the BCV. The plug-in bandwidth selector and the SCV bandwidth

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 131

selector perform similarly well in the context of the global error measure. Nevertheless, the mean
computation time of the SCV is approximately 3.6 times higher compared to the plug-in bandwidth
selector. For school planning regions, for example, the mean computation time of the CNMD setting is
15.75 seconds for the plug-in selector compared to 56.52 seconds for the SCV selector. Note that the
computation time for LSCV is 112.40 seconds and for BCV 332.53 seconds. Hence, compared to these
automatic bandwidth selectors the plug-in bandwidth is very efficient. The computations are based
on a 12th Gen Intel(R) Core(TM) i5-12500, 3000 MHz, 6 cores processor.

6 Summary

The Kernelheaping package is a useful tool for representing georeferenced data, which are given only
as aggregates, by realistic kernel density estimates. Among the two dimensional cases shown, the
implementation in R can be used for one dimensional rounding effects as well as three dimensional
data established in the function dshape3dprop(). The focus in the case studies lied in two dimensional
aggregations of population data, and in particular in the handling on shape files, etc., which are
essential for georeferenced data. The function toOtherShape also handles the support problem, i.e.
the change between non-hierarchical area systems. Since the basic idea behind the algorithm is the
aggregation of populations, and the drawing of pseudo-samples reflects the drawing of a simulated
population, the algorithm can only be meaningfully applied to integer non-negative values. In addition
to the use of exemplary data of the population between 65 and 80 and people with a migration
background, a simulation was conducted. It was demonstrated that the performance of the algorithm
depends on both the underlying data structure and the size of the aggregation areas. Furthermore, the
efficient use of the plug-in bandwidth was shown in comparison to CV-based methods.

7 Acknowledgement

Parts of this work was supported by the collaborative project AnigeD under funding reference number
16KISA097.

References

G. Basulto-Elias, A. Carriquiry, and K. e. a. De Brabanter. Bivariate kernel deconvolution with panel
data. Sankhya B, 83:122–151, 2021. [p116]

A. W. Bowman. An alternative method of cross-validation for the smoothing of density estimates.
Biometrika, 71(2):353–360, 1984. ISSN 00063444. URL http://www.jstor.org/stable/2336252.
[p130]

R. J. Carroll and L. A. Stefanski. Approximate quasi-likelihood estimation in models with surrogate
predictors. Journal of the American Statistical Association, 85(411):652–663, 1990. ISSN 01621459. URL
http://www.jstor.org/stable/2290000. [p116]

G. Celeux, D. Chauveau, and J. Diebolt. Stochastic versions of the EM algorithm: an experimental
study in the mixture case. Journal of Statistical Computation and Simulation, 55(4):287–314, nov 1996.
doi: 10.1080/00949659608811772. [p115]

A. Delaigle. Nonparametric kernel methods for curve estimation and measurement errors. Proceedings
of the International Astronomical Union, 10:28 – 39, 2014. URL https://api.semanticscholar.org/
CorpusID:125933456. [p116]

T. Duong and M. Hazelton. Plug-in bandwidth matrices for bivariate kernel density estimation. Journal
of Nonparametric Statistics, 15(1):17–30, 2003. doi: 10.1080/10485250306039. [p117]

T. Duong and M. L. Hazelton. Cross-validation bandwidth matrices for multivariate kernel density
estimation. Scandinavian Journal of Statistics, 32(3):485–506, 2005. doi: https://doi.org/10.1111/j.
1467-9469.2005.00445.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9469.
2005.00445.x. [p130]

K. Erfurth, M. Groß, U. Rendtel, and T. Schmid. Kernel density smoothing of composite spatial data
on administrative area level. AStA Wirtschafts- und Sozialstatistisches Archiv, 16(1):25–49, dec 2021.
doi: 10.1007/s11943-021-00298-9. [p116]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

http://www.jstor.org/stable/2336252
http://www.jstor.org/stable/2290000
https://api.semanticscholar.org/CorpusID:125933456
https://api.semanticscholar.org/CorpusID:125933456
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9469.2005.00445.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9469.2005.00445.x


CONTRIBUTED RESEARCH ARTICLE 132

F. Farokhi. Deconvoluting kernel density estimation and regression for locally differentially private
data. Scientific Reports, 10(1), Dec. 2020. ISSN 2045-2322. doi: 10.1038/s41598-020-78323-0. [p116]

M. Groß and U. Rendtel. Kernel Density Estimation for Heaped Data. Journal of Survey Statistics and
Methodology, 4(3):339–361, sep 2016. doi: 10.1093/jssam/smw011. [p116]

M. Groß, U. Rendtel, T. Schmid, S. Schmon, and N. Tzavidis. Estimating the Density of Ethnic
Minorities and Aged People in Berlin: Multivariate Kernel Density Estimation Applied to Sensitive
Georeferenced Administrative Data Protected via Measurement Error. Journal of the Royal Statistical
Society Series A: Statistics in Society, 180(1):161–183, feb 2016. doi: 10.1111/rssa.12179. [p116]

M. Groß, A.-K. Kreutzmann, U. Rendtel, T. Schmid, and N. Tzavidis. Switching Between Different
Non-Hierachical Administrative Areas via Simulated Geo-Coordinates: A Case Study for Student
Residents in Berlin. Journal of Official Statistics, 36(2):297–314, jun 2020. doi: 10.2478/jos-2020-0016.
[p116]

S. Hadam, T. Schmid, and J. Simm. Kleinräumige Prädiktion von Bevölkerungszahlen basierend
auf Mobilfunkdaten aus Deutschland. In Schriftenreihe der ASI - Arbeitsgemeinschaft Sozialwis-
senschaftlicher Institute, pages 27–44. Springer Fachmedien Wiesbaden, 2020. doi: 10.1007/978-3-658-
31009-7_3. [p116]

N. Heidenreich, A. Schindler, and S. Sperlich. Bandwidth selection for kernel density estimation: a
review of fully automatic selectors. AStA Advanced Statistical Analysis, 97:403 – 433, 2014. [p117]

W. Härdle. Applied nonparametric regression. Cambridge University Press, Cambridge, 1990. [p119]

A. Izenman. Recent Developments in Nonparametric Density Estimation. Journal of the American
Statistical Association, 86(413):205–224, 1991. ISSN 0943-4062. [p117]

M. C. Jones. Simple boundary correction for kernel density estimation. Statistics and Computing, 3(3):
135–146, sep 1993. doi: 10.1007/bf00147776. [p118, 122]

U. Rendtel and M. Ruhanen. Die Konstruktion von Dienstleistungskarten mit Open Data am Beispiel
des lokalen Bedarfs an Kinderbetreuung in Berlin. AStA Wirtschafts- und Sozialstatistisches Archiv, 12
(3-4):271–284, nov 2018. doi: 10.1007/s11943-018-0235-y. [p116]

U. Rendtel, A. Neudecker, and L. Fuchs. Ein neues Web-basiertes Verfahren zur Darstellung der
Corona-Inzidenzen in Raum und Zeit. AStA Wirtschafts- und Sozialstatistisches Archiv, 15(2):93–106,
jun 2021. doi: 10.1007/s11943-021-00288-x. [p116]

B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London, 1986. [p117]

K. A. B. Stephan R. Sain and D. W. Scott. Cross-validation of multivariate densities. Journal of the
American Statistical Association, 89(427):807–817, 1994. doi: 10.1080/01621459.1994.10476814. [p130]

P. Walter, M. Groß, T. Schmid, and K. Weimer. Iterative Kernel Density Estimation Applied to Grouped
Data: Estimating Poverty and Inequality Indicators from the German Microcensus. Journal of Official
Statistics, 38:599–635, 2022. doi: 10.2478/jos-2022-0027. [p116]

M. P. Wand and C. Jones. Multivariate plug-in bandwidth selection. Computational Statistics, 9(2):
97–116, 1994. ISSN 0943-4062. [p117, 118, 119, 122, 130]

Lorena Gril
Freie Universität Berlin, FB Wirtschaftswissenschaft
Garystr. 21, D-14195 Berlin
Germany
lorena.gril@fu-berlin.de

Laura Steinkemper
Freie Universität Berlin, FB Wirtschaftswissenschaft
Garystr. 21, D-14195 Berlin
Germany
steinkel98@zedat.fu-berlin.de

Marcus Groß
INWT Statistics GmbH

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

lorena.gril@fu-berlin.de
steinkel98@zedat.fu-berlin.de


CONTRIBUTED RESEARCH ARTICLE 133

Hauptstr.8, D-10827 Berlin
Germany
Marcus.Gross@inwt-statistics.de

Ulrich Rendtel
Freie Universität Berlin, FB Wirtschaftswissenschaft
Garystr. 21, D-14195 Berlin
Germany
Ulrich.Rendtel@fu-berlin.de

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

Marcus.Gross@inwt-statistics.de
Ulrich.Rendtel@fu-berlin.de


CONTRIBUTED RESEARCH ARTICLE 134

SLCARE: An R Package for
Semiparametric Latent Class Analysis of
Recurrent Events
by Qi Yu and Limin Peng

Abstract Recurrent event data frequently arise in biomedical follow-up studies. The concept of
latent classes enables researchers to characterize complex population heterogeneity in a plausible
and parsimonious way. This article introduces the R package SLCARE, which implements a robust
and flexible algorithm to carry out Zhao, Peng, and Hanfelt (2022)’s latent class analysis method for
recurrent event data, where semiparametric multiplicative intensity modeling is adopted. SLCARE
returns estimates for non-functional model parameters along with the associated variance estimates
and p values. Visualization tools are provided to depict the estimated functional model parameters
and related functional quantities of interest. SLCARE also delivers a model checking plot to help
assess the adequacy of the fitted model.

1 Introduction

Recurrent event data frequently arise in biomedical follow-up studies where the event of interest, such
as infection or hospitalization, occurs repeatedly over time. The event recurrence often demonstrates
different patterns across individuals. To accommodate such heterogeneity, many regression methods
have been developed with implementation available as R packages. To name a few, analyses based on
the proportional intensity model (Andersen and Gill, 1982) can be carried out with function coxph()
from R package survival (Therneau, 2023) or cph() from R package rms (Harrell Jr, 2023). Fitting Wang
et al. (2001) ’s method based on a multiplicative intensity model is implemented by function reReg()
from R package reReg (Chiou et al., 2023). Modeling the gap time between recurrent events, Clement
and Strawderman (2009) proposed conditional generalized estimating equation, and developed R
package condGEE implementing this approach. Fine et al. (2004) ’s temporal regression strategy can
be applied to regress the mean function of recurrent events through using function tpr() from R
package tpr (Yan and Fine, 2004).

More recently, viewing the observed data as a manifestation of latent classes or subgroups, Zhao
et al. (2022) proposed a semiparametric latent class analysis (LCA) method to help reveal more realistic
heterogeneity structure of recurrent event data that may not be adequately captured by a single
regression model. Zhao et al. (2022) adopted latent variable mixture modeling (LVMM) while avoiding
stringent parametric assumptions commonly imployed in LCA literature. Note that several R packages
are available for fitting LVMM for data types other than recurrent event data. For example, R package
flexmix (Grün and Leisch, 2008) delivers a general tool for tackling finite mixtures of regression
models, such as the standard linear model and the generalized linear model, with the expectation-
maximization (EM) algorithms. R package lcmm (Proust-Lima et al., 2017) allows for fitting joint
mixture models with longitudinal and single time-to-event outcomes based on the Newton-Raphson
algorithm. However, none of these packages offer options to conduct LCA oriented to recurrent event
outcomes.

In this paper, we introduce the R package SLCARE, which delivers robust and flexible imple-
mentation of Zhao et al. (2022) ’s LCA method for recurrent event data and is available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=SLCARE and
Github at https://github.com/qyxxx/SLCARE. The package SLCARE offers a user-friendly software
for conducting LCA of recurrent event data in R with the core function SLCARE(). The function
SLCARE() enables a variety of options for specifying and estimating the flexible semiparametric latent
class model of Zhao et al. (2022) . For example, the number of latent classes can be pre-specified
or chosen based on an entropy-based measure. Users can opt to built-in or customized initializer.
Algorithm convergence criterion can be set through specifying the maximum number of iterations or
the minimum change in parameter estimates. The function SLCARE() also provides visual tools to aid
in result presentation and interpretation as well as model checking upon ggplot2 plotting environment
(Wickham, 2016).

The remainder of this paper is organized as follows. Next section describes the methodological
background for the R package SLCARE, including model assumptions, estimation procedure and
algorithm, inference, and model evaluation. In the third section, we elaborate the structure of the
package. The utility of the package is illustrated via simulated data examples in Section 4. A real
application is presented in Section 5. We conclude with a few remarks in the last section.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=reReg
https://CRAN.R-project.org/package=condGEE
https://CRAN.R-project.org/package=tpr
https://CRAN.R-project.org/package=flexmix
https://CRAN.R-project.org/package=lcmm
https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=SLCARE
https://github.com/qyxxx/SLCARE
https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=SLCARE


CONTRIBUTED RESEARCH ARTICLE 135

2 Methodological background

2.1 Recurrent event data and notation

For subject i, let T(j)
i denote time to the jth recurrent event (i = 1, . . . , n, j = 1, 2, . . .). The underlying

counting process of recurrent events is defined as N∗i (t) = ∑∞
j=1 I(T(j)

i ≤ t) ,representing the number
of events occurred before or at time t for subject i, where I(·) denotes the indicator function. Suppose
the observation of subject i is ended at time Ci. Then the observed counting process is given by

Ni(t) = N∗i (min(t, Ci)) = ∑∞
j=1 I(T(j)

i ≤ min(t, Ci)) (i = 1, . . . , n). Let Z̃i be a p-dimensional vector of
time-independent covariates for subject i. The observed data consist of {Ni(t), Ci, Z̃i}n

i=1.

2.2 Models and assumptions

Suppose the whole population consists of K latent classes, and assume that how covariates are related
to the intensity function of recurrent events are the same within each latent class while being allowed
to vary across different latent classes. Zhao et al. (2022) proposed a latent class multiplicative intensity
model, which assumes that N∗i (t) is a nonstationary Poisson process with the intensity function,

λi(t) =
K

∑
k=1

I(ξi = k)× λ0(t)×Wi × η0,k × exp(Z̃>i β̃0,k) (1)

where I(·) denotes the indicator function, ξi denotes the unobserved latent class membership, λ0(t) is
an unspecified, continuous, nonnegative baseline intensity function shared by all latent classes, Wi is
a positive subject-specific latent variable independent of (ξi, Z̃i, Ci). The latent variable Wi plays the
same role as individual frailty reflecting more or less frequent occurrences of recurrent events. Here
η0,k is a positive number that captures the class-k scale shift from the baseline intensity function, and
β̃0,k is the regression coefficient that represents the class-k covariate effects on the intensity function.
For the identifiability of λ0(t) and η0,k, it is assumed that E(Wi|Z̃i, ξi = k) = 1 for k = 1, . . . , K and∫ ν∗

0 λ0(u)du = 1, where ν∗ is a predetermined constant. As commented in Zhao et al. (2022), one may
choose ν∗ to be slightly smaller than the upper bound of Ci’s support. A different choice of ν∗ only
results in a scale shift to λ0(t) and has no influence on the regression coefficients, β̃0,k’s.

Zhao et al. (2022) modeled the distribution of the latent class membership ξi by a logistic regression
model:

P(ξi = k|Z̃i) = pk(α0, Z̃i)
.
=

exp(Z̃>i α0,k)

∑K
k=1 exp(Z̃>i α0,k)

, k = 1, · · · , K (2)

where α0 = (α>0,1, . . . , α>0,K)
> with α0,1 = 0p×1.

2.3 Estimation and inference procedures

Estimation procedure

Let Zi = (1, Z̃>i )> and β0,k = (log η0,k, β̃>0,k)
>. By the model assumptions stated in Section 2, the

following equalities hold:

E[I(ξi = k)Zi{
N∗i (Ci)

µ0(Ci)
− exp(Z>i β0,k)}] = 0, k = 1, . . . , K, (3)

E[Z̃i{I(ξi = k)−
exp(Z̃>i α0,k)

∑K
k=1 exp(Z̃>i α0,k)

}] = 0, k = 1, . . . , K, (4)

where µ0(t) =
∫ t

0 λ0(s)ds, representing the cumulative baseline intensity function.

Equalities in (3) and (4) cannot be directly used to construct estimating equations for α0 and β0,k’s
because ξi’s are not observable and µ0(·) is unknown. Adapting the principle of conditional score
(Stefanski and Carroll, 1987) for handling missing covariates, Zhao et al. (2022) proposed to address
the unobserved I(ξi = k) by substituting it with τik

.
= E[I(ξi = k)|Zi, Ci, Di], where Di

.
= Ni(Ci),

capturing the number of the observed recurrent events from subject i.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 136

First, it follows from the definition that

τik =
P(Di = di|ξi = k, Zi, Ci)P(ξi = k|Zi, Ci)

∑K
l=1 P(Di = di|ξi = l, Zi, Ci)P(ξi = l|Zi, Ci)

. (5)

As implied by model (2) and the assumption that Ci ⊥ (N∗i (·), ξi)|Zi,

P(ξi = k|Zi, Ci) = pk(α0, Z̃i) =
exp(Z̃>i α0,k)

∑K
l=1 exp(Z̃>i α0,l)

(6)

and

P(Di = di|ξi = k, Zi, Ci) (7)

=
∫ ∞

0

{exp(Z>i β0,k)w · µ0(Ci)}di

di!
exp{− exp(Z>i β0,k)w · µ0(Ci)} · fW(w)dw,

where fW(·) denotes the density function of frailty W. Combining the results in (5)-(7), τik can be
explicitly expressed as a function of α0

.
= (α>0,1 . . . , α>0,K)

>, β0
.
= (β>0,1, . . . , β>0,k)

> and µ0(·), which is
denoted by τik(α0, β0, µ0).

In addition, Zhao et al. (2022) proposed a Nelson-Aalen type estimator of µ0(·), given by

µ̂(t) = exp{Ĥ(t)} with Ĥ(t) = −
∫ ν∗

t

∑n
i=1 dNi(s)

∑n
i=1 I(Ci ≥ s)Ni(s)

. (8)

Replacing I(ξi = k) and µ0(·) by τik(α, β, µ̂) and µ̂(·) respectively in the empirical counterparts of
(3)-(4) then leads to the following estimating equations:

n1/2S1,n(α, β, µ̂) = 0, (9)

n1/2S2,n(α, β, µ̂) = 0, (10)

where Sj,n(α, β, µ̂) = (Sj,n,1(α, β, µ̂)>, · · · , Sj,n,K(α, β, µ̂)>)> (j = 1, 2) with

S1,n,k(α, β, µ) =
1
n

n

∑
i=1

τik(α, β, µ)Zi{
N∗i (Ci)

µ̂(Ci)
− exp(Z>i βk)}, k = 1, . . . , K; (11)

S2,n,k(α, β, µ) =
1
n

n

∑
i=1

Z̃i{τik(α, β, µ)−
exp(Z̃>i αk)

∑K
j=1 exp(Z̃>i αj)

}, k = 1, . . . , K. (12)

Solving equations (9) and (10) renders estimators of α0 and β0, denoted by α̂ and β̂. Detailed
derivations of estimating equations as well as the asymptotic properties of α̂ and β̂ can be found in
Zhao et al. (2022) .

Estimation algorithm

Based on the result in (8) and estimating equations in (9), and (10), we propose the following algorithm
to obtain α̂ and β̂, the parameter estimates for models (1) and (2).

Step 1: Compute µ̂(·) based on formula (8). Let Liter = 0 and set initial values of α0 and
β0 as α̂∗ and β̂∗ respectively. Calculate τ̂∗ik

.
= τik(α̂

∗, β̂∗, µ̂) based on equations (5), (6) and
(7).
Step2: Repeat in the loop:

(i) Solve estimating equations (9) and (10) with τik(α, β, µ̂) fixed as τ̂∗ik. De-
note the solutions by α̌ and β̌.

(ii) α̂∗ := α̌; β̂∗ := β̌; τ̂∗ik := τik(α̂
∗, β̂∗, µ̂). Increase Liter by 1.

(iii) If max (‖ β̌−β̂∗

β̂∗
‖∞, ‖ α̌−α̂∗

α̂∗ ‖∞) is smaller than a pre-specified threshold

value or Liter is greater than a pre-specified maximum number of iteration,
then exit the loop. Here ‖ · ‖∞ denotes the L∞ norm and the fraction
between vectors α and β is component-wise fraction.

End repeat loop.
Return α̌ and β̌ as the final estimates for α0,and β0 (i.e., α̂ and β̂).

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 137

Algorithm implementation

In the following, we present some details related to the algorithm implementation, such as how to
set initial values, α̂∗ and β̂∗, and how to solve the estimating equations involved in the presented
algorithm.

Setting initial values for the estimation algorithm The function SLCARE() in package SLCARE
allows users to specify the initial values, α̂∗ and β̂∗, by their own choice. Unless users manually specify
the initial values, SLCARE() implements an automated initializer, which obtains α̂∗ and β̂∗ through the
following procedure:

Step 1: Perform K-means clustering (Lloyd, 1982) of the observed covariates and number
of recurrent events, i.e., {Z̃i, Ni(Ci)}n

i=1, with R function kmeans(), and divide all subjects
into K group, where K stands for the number of latent classes. Denote the assigned group
membership for subject i by Gi(∈ {1, . . . , K}).
Step 2: Obtain α̂∗, the initial estimate for α0, as the regression coefficients from fitting the
multinomial regression of {Gi}n

i=1 on covariates {Z̃i}n
i=1.

Step 3: Obtain β̂∗, the initial estimate of β0, as (β̂∗>1 , . . . , β̂∗>K ), where β̂∗>k is the regression
coefficient estimate from fitting Wang et al. (2001) ’s multiplicative intensity model to the
subset with Gi = k using reReg() from R package reReg (Chiou et al., 2023).

Specifying the distribution of frailty W The SLCARE() function allows users to specify the distri-
bution of frailty W. While Zhao et al. (2022) ’s method allows the frailty distribution to be a general
parametric distribution, the implementation by SLCARE() confines to settings where W = 1 or W
follows a distribution that is parameterized as Gamma(k, k). These choices of frailty distributions
cover a variety of density forms.

Solving estimating equations In Step 2(i) of the presented algorithm, an updated estimate for β0,

β̌, is obtained from solving equations, ∑n
i=1 τ̂ik · Zi ·

{
N∗i (Ci)
µ̂(Ci)

− exp(Z>i βk)
}

= 0, k = 1, . . . , K. As
suggested by Zhao et al. (2022), we solve these equations by fitting a ‘pseudo’ weighted Poisson

regression model to an augmented dataset which includes responses, { N∗i (Ci)
µ̂(Ci)

}n
i=1, and covariates,

{Zi}n
i=1, along with weights τ̂ik. SLCARE performs such Poisson regression with R function glm.fit()

from R package stats.

Meanwhile, in Step 2(i) of the presented algorithm, an updated estimate for α0, α̌, is obtained by

solving equations, 1√
n ∑n

i=1 Z̃i

{
τ̂ik −

exp(Z̃>i αk)

∑K
j=1 exp(Z̃>i αj)

}
= 0, k = 2, · · · , K. To solve these equations, we

use an alternative and yet equivalent approach that fits weighted multinomial regression model on
an augmented dataset, which consists of nK response-covariate pairs, {(1, Z̃i), . . . , (K, Z̃i)}n

i=1 with
weight τ̂ik assigned to the pair (k, Z̃i) (k = 1, . . . , K). SLCARE implements the weighted multinomial
regression with function multinom() from R package nnet (Venables and Ripley, 2002).

Determination of the number of latent classes Zhao et al. (2022) proposed to determine K, the
number of latent classes, based on a relative entropy measure (Ramaswamy et al., 1993). That is, upon
fitting models (1) and (2) that assume M latent classes, the corresponding relative entropy measure is
defined as

Entropy(M) = 1− ∑n
i=1 ∑M

k=1−τ̂ik log(τ̂ik)

n log(M)
(13)

where τ̂ik = τik(α̂, β̂, µ̂) (k = 1, . . . , M). By definition, Entropy(M) is bounded between 0 and 1 with a
larger value indicating a better fit to the data (Celeux and Soromenho, 1996). Following the rationale,
one may choose K as the maximizer of Entropy(·) over a sequence of candidate values for K. Given a
pre-specified K, the value of Entropy(K) can be generated by S3 method print(x, type = "Entropy").

Model checking Zhao et al. (2022) proposed a graphical method for checking the overall fit of models
(1) and (2). The key idea is to compare the observed recurrent events Di

.
= Ni(Ci) versus the expected

number of recurrent events under models (1)-(2). Specifically, models (1) and (2) imply E{Ni(Ci)|Zi} =
E{N∗i (Ci)|Zi} = ∑K

k=1 τik · µ0(Ci) exp(Z>i β0,k). Then the expected number of recurrent events under
the assumed models can be approximated by

D̂i
.
=

K

∑
i=1

τ̂ik · µ̂(Ci) · exp(Z>i β̂k). (14)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=reReg
https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=nnet


CONTRIBUTED RESEARCH ARTICLE 138

Therefore, in the scatter plot of D̂i versus Di, a major departure from the identity line Di = D̂i may
suggest a lack-of-fit of the assumed models. Model checking plot can be generated by S3 method
plot(x, type = "ModelChecking").

Class-specific mean function of recurrent events To help illustrate heterogeneity in recurrent event
occurrence across different latent classes, SLCARE computes crude estimates for the class-specific
mean functions of recurrent events. Specifically, the crude estimate for the class-specific mean function
of recurrent event is computed as

∑n
i=1 I(ξ̂i = k)∑K

j=1 τ̂ij · µ̂(t) exp(Z>i β̂ j)

∑n
i=1 I(ξ̂i = k)

, k = 1, . . . , K, (15)

where ξ̂i = arg max1≤k≤K τ̂ik. A plot of the estimated mean functions stratified by latent groups can
be generated by S3 method plot(x, type = "EstMeans").

3 Package structure

The main function of R package SLCARE is SLCARE(). The dataset imported to function SLCARE()
should take the long format, where each row corresponds to one time point of a subject at which
a recurrent event is observed or censored. With a dataset coded in the wide format, where each
row contains the timing information of all recurrent events observed or censored within one subject,
users may convert such a dataset into the required long format by using function pivot_longer()
from package tidyr (Wickham et al., 2023) or function melt() from package reshape2 (Wickham,
2007). In addition to allowing users to specify initial parameter estimates manually, SLCARE() offers
a default initializer that implements the informative selection of initial values described in Section
Estimation procedure. The built-in initializer performs K-means clustering of the observed data using
function kmeans() from package stats and fitting multiplicative intensity models using reReg() from
package reReg. When solving the estimating equations involved in the iterative estimation algorithm,
SLCARE() performs weighted Poisson regression using glm.fit() from package stats and weighted
multinomial regression using multinom() from package nnet. After running SLCARE(), model fitting
results can be easily extracted from the output with S3 methods summary(), print(), predict(), and
plot(). Graphical results generated by SLCARE() are presented via ggplot2 environment and are fully
customizable.

Table 1 lists the main function SLCARE(), corresponding S3 methods and other functions called by
this function, along with brief descriptions of their purposes.

Table 1: An overview of the main function and imported functions in SLCARE

FUNCTION PURPOSE

SLCARE() Conduct LCA with recurrent events data based on semiparametric
multiplicative intensity modeling.

summary() Generic function; used to summarize estimates for model parameters
along with the associated variance estimates and p values.

print() Generic function; used to initial estimates for the estimation algorithm

convergence criterion, latent class membership probability and
predicted number of recurrent events.

predict() Generic function; used to predict the posterior number of recurrent events.
plot() Generic function; used to generate cumulative baseline intensity function

estimated mean function, model checking plot.

reReg() Imported from package reReg; used to find an initial estimate for β0.
multinom() Imported from package nnet; used to find an initial estimate for α0;

used to solve the estimating equation to update the estimate for α0.
kmeans() Imported from package stats; used to find initial estimates for α0 and β0.
glm.fit() Imported from package stats; used to solve the estimating equation to

update the estimate for β0.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=reshape2
https://CRAN.R-project.org/package=reReg
https://CRAN.R-project.org/package=nnet
https://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLE 139

4 Illustrations

The package SLCARE is designed to conduct LCA of recurrent events data based on semiparametric
multiplicative intensity modeling (Zhao et al., 2022). The main function SLCARE() has function
arguments that enable flexible model specification and method implementation. In the below, we
illustrate the use of SLCARE() through simulated datasets.

4.1 Input dataset

An input dataset for SLCARE() is a data frame containing time to recurrent events or censoring along
with time-independent covariates of interest. The input dataset should take the long format, where
each row contains the information in one time interval in which a recurrent event is observed or
censored. As such, multiple rows in the dataset may correspond to one subject. As mentioned in
Section Package structure, a dataset in the wide format data can be readily converted into the long
format required by SLCARE() with the use of function pivot_longer() from package tidyr or function
melt() from package reshape2.

The package SLCARE has a build-in dataset, SimData, which is a simulated dataset perturbed
from a real dataset. SimData contains 48 subjects. For each subject, SimData contains values for the
following six variables: id, which is the unique identifier for each subject; start, which records the
starting time in minutes of the counting process interval; stop, which records the ending time in
minutes of the counting process interval. If the subject entered the study at time zero, this column
represents the time in minutes from the baseline visit to the occurrence of event or censoring; event,
which indicates whether a recurrent event is observed (event = 1) or not (event = 0) at the end of the
counting process interval; x1, which is a binary covariate; x2, which is a continuous covariate. Below
we display how the data from one example subject are recorded in SimData:

#> # A tibble: 3 x 6
#> # Groups: id [1]
#> id start stop event x1 x2
#> <chr> <dbl> <int> <int> <int> <dbl>
#> 1 G052 0 1950 1 1 0.444
#> 2 G052 1950 2580 1 1 0.444
#> 3 G052 2580 7085 0 1 0.444

As shown above, subject G052 experienced two current events at time 1950 and time 2580 before the
censoring time 7085. The time-independent covariates, x1 and x2, remain unchanged across different
time points within the same subject.

4.2 Command line and function arguments

The LCA of recurrent event data outlined in Section Methodological background can be carried out
with a single command line SLCARE(). SLCARE() provides flexible function arguments, which are
shown below:

#> function (formula = "x1 + x2", alpha = NULL, beta = NULL, data = data,
#> id_col = "id", start_col = "start", stop_col = "stop", event_col = "event",
#> K = NULL, gamma = 0, max_epochs = 500, conv_threshold = 0.01,
#> boot = NULL)
#> NULL

At minimum, SLCARE() requires the following three arguments:

data: a dataframe with the format similar to SimData.
K: pre-determined number of latent classes.
formula: a string containing the covariates of interest in data.

The optional arguments of SLCARE() are:

alpha: initial estimate for α0 in the estimation procedure. The default is NULL, which
represents the initial estimate for α0 resulted from the automated initializer described in
Section Estimation and inference procedures.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=reshape2
https://CRAN.R-project.org/package=SLCARE


CONTRIBUTED RESEARCH ARTICLE 140

beta: initial estimate for β0 in the estimation procedure. The default is NULL, which
represents the initial estimate for α0 resulted from the automated initializer described in
Section Estimation and inference procedures.
id_col: name of the column that includes subject identifiers.
start_col: name of the column that records the start time of each at-risk time interval.
stop_col: name of the column that records the start time of each at-risk time interval.
event_col: name of the column that indicates whether a recurrent event is observed or
not (i.e, 1=observed; 0=otherwise).
gamma: parameter that indicates the distribution of frailty W. The default is 0 which
indicates model (1) holds without the subject-specific frailty (i.e., W = 1); gamma = k
indicates that W follows the Gamma(k, k) distribution.
max_epochs: maximum number of iterations for the estimation algorithm.
conv_threshold: convergence threshold for the estimation algorithm.
boot: number of bootstrap replicates used to obtain the standard error estimation. The
default is NULL which indicates bootstrap is not conducted.

4.3 Output and illustration with a sample dataset

The following code is used to perform LCA of the recurrent event dataset SimData with two latent
classes (i.e., K = 2), 20 bootstrap replicates, and covariates x1 and x2.

set.seed(0)
model1 <- SLCARE(formula = "x1 + x2", data = SimData,

id_col = "id", start_col = "start", stop_col = "stop",
event_col = "event", K=2, boot = 20)

The default output/print of SLCARE() includes parameter estimates and the associated variance
estimates and p-values, along with the model’s relative entropy measure. The same results can also be
obtained using the generic method summary(model1, digits = 3), which allows for manually setting
the minimum number of significant digits.

model1

#> Call:
#> SLCARE(formula = "x1 + x2", data = SimData, id_col = "id", start_col = "start",
#> stop_col = "stop", event_col = "event", K = 2, boot = 20)
#>
#> Coefficients for Beta:
#> (intercept) x1 x2
#> class1 3.21 -0.2350 -4.933
#> class2 2.41 -0.0413 0.309
#>
#> Std. Errors for Beta:
#> (intercept) x1 x2
#> class1 0.216 0.278 0.813
#> class2 0.142 0.105 0.352
#>
#> P. Values for Beta:
#> (intercept) x1 x2
#> class1 4.81e-50 0.398 1.28e-09
#> class2 1.85e-64 0.693 3.80e-01
#>
#> Coefficients for Alpha:
#> x1 x2
#> class1 0.00 0.00
#> class2 -0.71 4.81
#>
#> Std. Errors for Alpha:
#> x1 x2
#> class1 0.000 0.00
#> class2 0.928 1.88
#>

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 141

#> P. Values for Alpha:
#> x1 x2
#> class1 NaN NaN
#> class2 0.444 0.0106
#>
#> Relative Entropy: 0.539

Recall that in model (2), α0,1 = 0, indicating that class1 is used as the reference group for
evaluating the odds ratio of being in another latent class. The numbers in the row corresponding to
class2 represent covariate effects on the log odds ratio of belonging to class2 versus class1.

These results are also can be extracted separately with the generic method function print(model1,
type = "Est"), print(model1, type = "SE"), print(model1, type = "PValue"), and print(model1,
type = "Entropy").

Initial estimates for the estimation algorithm

Unless manually specifying the arguments alpha and beta, SLCARE() implements the automated
initializer described in Section Estimation and inference procedures. The resulting initial estimates
for β0 and α0 can be found through the following generic method function print():

print(model1, type = "Init")

#> $beta
#> (intercept) x1 x2
#> class1 2.01630 0.09073593 -0.45944133
#> class2 2.56397 -0.24415627 0.06202144
#>
#> $alpha
#> x1 x2
#> class1 0.0000000 0.000000
#> class2 0.5386871 2.985595

Convergence criterion

SLCARE() provides arguments to control the termination of the iterative estimation procedure. By
default, max\_epochs=500 and conv_threshold=0.01. This means that the iterations would stop when
the number of iterations reaches 500 or the magnitude of the change in parameter estimates is below
0.01. In addition, users are allowed to check the change in parameter estimates in the last iteration
using the following code:

print(model1, type = "ConvergeLoss")

#> [1] 0.00909132

If the output is greater than the pre-determined convergence threshold, users may consider
increasing the maximum number of iterations and/or setting a larger convergence threshold.

Latent class membership probability

SLCARE() generates output on the estimated probability that a subject belong to different latent classes.
The following are the example code and output in the case where one is interested in the class
membership probabilities of the 8th to 10th subjects in SimData.

print(model1, type = "ClassProb")[8:10,]

#> # A tibble: 3 x 3
#> # Groups: ID [3]
#> ID class1 class2
#> <chr> <dbl> <dbl>
#> 1 G052 9.94e- 1 0.00610
#> 2 UOM043 5.33e- 1 0.467
#> 3 G064 4.20e-22 1

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 142

Predicted number of recurrent events

SLCARE() computes the predicted number of recurrent events for each subject according to equation
(14). The code to extract such a result for the 8th to 10th subjects in SimData is shown below, along with
the corresponding output:

predict(model1)[8:10,]

#> ID PosteriorPrediction
#> 8 G052 2.231237
#> 9 UOM043 2.892228
#> 10 G064 13.333784

Note that SLCARE() returns the estimated numbers of recurrent events as float rather than integer.
Users may use the argument integer = TRUE in the genetic function preduct() to round those
numbers to integers.

predict(model1, integer = TRUE)[8:10,]

#> ID PosteriorPrediction
#> 8 G052 2
#> 9 UOM043 2
#> 10 G064 13

Model checking plot

SLCARE() generates a model checking plot following the procedure described in Section Methodologi-
cal background via ggplot2 environment. The following shows the S3 method for plotting a model
checking plot:

plot(model1, type = "ModelChecking")

0

5

10

15

0 5 10 15
observed

pr
ed

ic
te

d

Model Checking Plot

Figure 1: Predicted numbers of events versus the observe numbers of events.

Estimated cumulative baseline intensity function

By equation (8), SLCARE() calculates µ̂(t), which is an estimates for µ0(t), cumulative baseline intensity
function. A plot of µ̂(t) versus t can be generated with the following code:

plot(model1, type = "mu0")

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLE 143

0.00

0.25

0.50

0.75

1.00

0 2000 4000 6000
t

E
st

im
at

ed
 C

um
ul

at
iv

e 
B

as
el

in
e 

In
te

ns
ity

 F
un

ct
io

n

Estimated Cumulative Baseline Intensity Function Plot

Figure 2: Estimated cumulative baseline intensity function.

Evaluation of µ̂(t) at specific time points, for example, t = 100, 1000 and 5000, can be obtained by
the following command:

model1$est_mu0(c(100, 1000, 5000))

#> [1] 0.06086907 0.17089670 0.70936436

Estimated mean function plot

Estimated mean function plots are useful for describing and comparing the expected number of
recurrent events across different latent groups over time. SLCARE() computes the estimated mean
function over time according to equation (15), which can be plotted with the following code:

plot(model1, type = "EstMeans")

0.0

2.5

5.0

7.5

10.0

12.5

0 2000 4000 6000
t

E
st

im
at

ed
 M

ea
n 

F
un

ct
io

n

class

1

2

Estimated Mean Function Plot

Figure 3: Estimated mean function for two latent classes.

5 A real application

We apply SLCARE to a dataset from a randomized phase III clinical trial FFCD 2000-05 conducted
between 2002 and 2007 in patients diagnosed with advanced colorectal cancer (Ducreux et al., 2011).

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SLCARE


CONTRIBUTED RESEARCH ARTICLE 144

The dataset is publicly available in frailtypack package (Rondeau et al., 2012) and is also included
in the SLCARE package. One recurrent event of interest is the appearance of new colorectal lesions.
The colorectal lesion is the region in a colon that has suffered damage through colorectal cancer. The
appearance of new colorectal lesions indicates colorectal cancer progression. The main interest of our
analysis is to explore the heterogeneity in the recurrence patterns of colorectal lesions.

To address this interest, we extract the dataset colorectalSLCARE from the colorectal dataset.
The dataset ‘colorectalSLCARE is arranged in the long format, consisting of 150 patients and 289
records.

Each record stores the value of the six variables described as follows. Variable id is the unique
patient identifier. Variable time0 is the start time (in years) of the recurrent event interval. Variable
time1 records the interval end time (in years) of the detection of new colorectal lesions or terminal
event (death or right-censoring). Variable new.lesions = 1 indicates that the appearance of a new
colorectal lesion is observed and new.lesions = 0 indicates that a terminal event is observed. The
other two variables represent covariates of interest: (1) treatment, which is coded as treatment =
1 if the patient received a combination chemotherapy and as treatment = 0 if the patient received
sequential chemotherapy; (2) previous resection indicator, which is coded as prev.resection = 1 if
the patient had a previous resection and as prev.resection = 0 otherwise.

The construction and the structure of the colorectalSLCARE dataset are presented below.

data("colorectal", package = "SLCARE")
colorectalSLCARE <- colorectal |>
dplyr::select(id, time0, time1, new.lesions, treatment, prev.resection) |>
dplyr::mutate(id = paste0("patient", id), treatment = as.numeric(treatment) -1,

prev.resection = as.numeric(prev.resection) -1)
str(colorectalSLCARE, vec.len = 3)

#> 'data.frame': 289 obs. of 6 variables:
#> $ id : chr "patient1" "patient2" "patient3" ...
#> $ time0 : num 0 0 0 0.525 ...
#> $ time1 : num 0.71 1.282 0.525 0.921 ...
#> $ new.lesions : int 0 0 1 1 0 1 0 1 ...
#> $ treatment : num 0 1 0 0 0 1 1 0 ...
#> $ prev.resection: num 0 0 0 0 0 1 1 0 ...

We fit models (1) and (2) to the dataset colorectal_SLCARE with T(j)
i corresponding to time to the

j-th detection of new colorectal lesions. We consider three candidate distributions for W, the frailty
term in model (1), which are W = 1 and Gamma(r, r), r = 1, 3. For each candidate fW(·), we calculate
the relative entropy measure Entropy as described in Section Estimation and inference procedures
using the command illustrated in Section Illustrations. The results are presented in Table 2.

Table 2: Real data example: Relative entropy calculated with different choices of K and fW(w).

K = 2 K = 3

Gamma(1,1) 0.785 0.788
Gamma(3,3) 0.802 0.793
W = 1 0.462 0.459

As shown in Table 2, the maximum relative entropy is achieved with the combination of K = 2
and Gamma(3, 3). Therefore, we set K = 2 and select fW(·) as the density of Gamma(3, 3) for the rest
of the analysis.

set.seed(66)
finalmodel <- SLCARE(formula = "treatment + prev.resection", data = colorectalSLCARE,

id_col = "id", start_col = "time0", stop_col = "time1", event_col = "new.lesions",
K = 2, gamma = 3, boot = 200)

summary(finalmodel, digits = 3)

#> Call:
#> SLCARE(formula = "treatment + prev.resection", data = colorectalSLCARE,
#> id_col = "id", start_col = "time0", stop_col = "time1", event_col = "new.lesions",
#> K = 2, gamma = 3, boot = 200)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=frailtypack
https://CRAN.R-project.org/package=SLCARE


CONTRIBUTED RESEARCH ARTICLE 145

#>
#> Coefficients for Beta:
#> (intercept) treatment prev.resection
#> class1 1.696 -0.415 -0.493
#> class2 0.811 0.691 0.494
#>
#> Std. Errors for Beta:
#> (intercept) treatment prev.resection
#> class1 0.34 0.281 0.277
#> class2 0.48 0.887 0.703
#>
#> P. Values for Beta:
#> (intercept) treatment prev.resection
#> class1 6.26e-07 0.140 0.0751
#> class2 9.11e-02 0.436 0.4823
#>
#> Coefficients for Alpha:
#> treatment prev.resection
#> class1 0.0 0.0
#> class2 -12.3 -11.7
#>
#> Std. Errors for Alpha:
#> treatment prev.resection
#> class1 0.00 0.00
#> class2 3.96 1.26
#>
#> P. Values for Alpha:
#> treatment prev.resection
#> class1 NaN NaN
#> class2 0.00196 1.51e-20
#>
#> Relative Entropy: 0.802

Based on the results from fitting models (1) and (2), we classify patients into two groups according
to the modal class assignment rule, i.e., ξ̂i = arg max1≤k≤K τ̂ik. Table 3 (generated by R package table1
(Rich, 2023)) summarizes the characteristics of the resulting two groups, Class 1 of size 127 and Class 2
of size 23. Comparing the total number of the observed colorectal lesions, captured by Ni(Ci), we note
that patients belong to Class 1 tend to experience more colorectal lesions as compared to those belong
to Class 2. There is also notable separation in covariates treatment and prev.resection. That is, over
50% patients in Class 1 received combination chemotherapy in contrast to 0% patients in Class 2 on
combination chemotherapy, and over 70% patients in Class 1 has previous resection, while all patients
in Class 2 did not have resection in the past. These observations are consistent with the estimation
results for α0 (see model summary), which suggest that patients receiving combination chemotherapy
or with previous resection are much less likely to be classified to Class 2. These observations entail
a plausible characterization of the two latent classes. That is, Class 1 consists of patients with more
aggressive progression that incurs more intensive past or ongoing treatment, while Class 2 is featured
by relatively mild disease that requires less complicated treatment regimens.

We next examine the covariate effects within each latent class. The coefficient estimates presented
in model summary indicate a reasonable direction of how treatment and prev.resection influence
the intensity of lesion recurrence. That is, combination chemotherapy or previous resection may help
reduce the risk of lesion recurrence. However, the estimated effects which conform to our intuition are
associated with p values that do not reach statistical significance.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=table1


CONTRIBUTED RESEARCH ARTICLE 146

Table 3: Real data example: Characteristics of the two latent classes.

Class 1 Class 2 P-value

(N=127) (N=23)
observed.events

Mean (SD) 1.02 (0.988) 0.391 (0.583) <0.001
Median [Min, Max] 1.00 [0, 4.00] 0 [0, 2.00]

treatment
sequential chemotherapy 54 (42.5%) 23 (100%) <0.001
combination chemotherapy 73 (57.5%) 0 (0%)

prev.resection
no 37 (29.1%) 23 (100%) <0.001
yes 90 (70.9%) 0 (0%)

In Figure 4, we plot the average estimated mean function of experiencing new colorectal lesions for
the two latent classes. Figure 4 shows that Class 1 is associated with a lower frequency of experiencing
new colorectal lesions than Class 2. Such a distinction may be contributed by the underlying difference
in disease severity between the two latent classes, which is also manifested by the different distributions
of receiving combination chemotherapy and having previous resection between these two classes
demonstrated in Table 3.

0

1

2

3

0 1 2 3 4
t

E
st

im
at

ed
 M

ea
n 

F
un

ct
io

n

class

1

2

Estimated Mean Function Plot

Figure 4: Real data example: Estimated mean function of experiencing new colorectal lesions for two
classes.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 147

0

1

2

3

4

5

0 1 2 3 4 5
observed

pr
ed

ic
te

d

Model Checking Plot

Figure 5: Real data example: Predicted numbers of new colorectal lesions versus the observed numbers
of new colorectal lesions.

We further check the overall fit of the latent class models adopted by SLCARE() to the colorectalSLCARE
dataset using the model checking plot described in Section Methodological background. As shown
in Figure 5, the dots representing the predicted and the observed numbers of new colorectal lesions
are generally balanced around the 45-degree line when there are two observed colorectal lesions.
However, over-prediction and under-prediction are noted when the observed number of of colorectal
lesions is one or three respectively. These observations may suggest a moderate lack-of-fit of the fitted
model to this colorectical dataset.

6 Discussion

The R package SLCARE provides an easy-to-use software to conduct latent class analysis of recurrent
events based on a flexible semiparametric multiplicative intensity modeling proposed by Zhao et al.
(2022). A practical automated initializer is embedded in SLCARE to help users set initial estimates in
an informative way. SLCARE provides a single command line function to implement full analysis
with optional arguments for model customization. SLCARE also provides visualization tools for
result summary and model evaluation with ggplot2 plotting environment.

The R package SLCARE is maintained in both Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=SLCARE and Github at https://github.com/qyxxx/SLCARE.
There are several interesting directions to further improve this package. For example, computational
speed may be improved with more efficient coding. A new option may be added to perform automated
selection of K and frailty distribution. Such updates of package SLCARE will be made available at
CRAN and Github.

References

P. K. Andersen and R. D. Gill. Cox’s regression model for counting processes: a large sample study.
The annals of statistics, 1982. URL https://www.jstor.org/stable/2240714. [p134]

G. Celeux and G. Soromenho. An entropy criterion for assessing the number of clusters in a mixture
model. Journal of Classification, 1996. URL https://doi.org/10.1007/BF01246098. [p137]

S. H. Chiou, G. Xu, J. Yan, and C.-Y. Huang. Regression modeling for recurrent events possibly with
an informative terminal event using R package reReg. Journal of Statistical Software, 2023. URL
https://doi.org/10.18637/jss.v105.i05. [p134, 137]

D. Y. Clement and R. L. Strawderman. Conditional GEE for recurrent event gap times. Biostatistics,
2009. URL https://doi.org/10.1093/biostatistics/kxp004. [p134]

M. Ducreux, D. Malka, J. Mendiboure, P.-L. Etienne, P. Texereau, D. Auby, P. Rougier, M. Gasmi,
M. Castaing, M. Abbas, et al. Sequential versus combination chemotherapy for the treatment of

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=SLCARE
https://CRAN.R-project.org/package=SLCARE
https://github.com/qyxxx/SLCARE
https://CRAN.R-project.org/package=SLCARE
https://www.jstor.org/stable/2240714
https://doi.org/10.1007/BF01246098
https://doi.org/10.18637/jss.v105.i05
https://doi.org/10.1093/biostatistics/kxp004


CONTRIBUTED RESEARCH ARTICLE 148

advanced colorectal cancer (ffcd 2000–05): an open-label, randomised, phase 3 trial. The lancet
oncology, 2011. URL https://doi.org/10.1016/S1470-2045(11)70199-1. [p143]

J. Fine, J. Yan, and M. Kosorok. Temporal process regression. Biometrika, 2004. URL https://doi.org/
10.1093/biomet/91.3.683. [p134]

B. Grün and F. Leisch. FlexMix version 2: Finite mixtures with concomitant variables and varying
and constant parameters. Journal of Statistical Software, 2008. URL https://doi.org/10.18637/jss.
v028.i04. [p134]

F. E. Harrell Jr. rms: Regression Modeling Strategies, 2023. URL https://CRAN.R-project.org/package=
rms. R package version 6.6-0. [p134]

S. Lloyd. Least squares quantization in PCM. IEEE transactions on information theory, 1982. URL
https://doi.org/10.1109/TIT.1982.1056489. [p137]

C. Proust-Lima, V. Philipps, and B. Liquet. Estimation of extended mixed models using latent
classes and latent processes: The R package lcmm. Journal of Statistical Software, 2017. URL
https://doi.org/10.18637/jss.v078.i02. [p134]

V. Ramaswamy, W. S. DeSarbo, D. J. Reibstein, and W. T. Robinson. An empirical pooling approach
for estimating marketing mix elasticities with PIMS data. Marketing science, 1993. URL https:
//doi.org/10.1287/mksc.12.1.103. [p137]

B. Rich. table1: Tables of Descriptive Statistics in HTML, 2023. URL https://CRAN.R-project.org/
package=table1. R package version 1.4.3. [p145]

V. Rondeau, Y. Marzroui, and J. R. Gonzalez. frailtypack: an R package for the analysis of correlated
survival data with frailty models using penalized likelihood estimation or parametrical estimation.
Journal of Statistical Software, 2012. URL https://doi.org/10.18637/jss.v047.i04. [p144]

L. A. Stefanski and R. J. Carroll. Conditional scores and optimal scores for generalized linear
measurement-error models. Biometrika, 1987. URL https://doi.org/10.1093/biomet/74.4.703.
[p135]

T. M. Therneau. A Package for Survival Analysis in R, 2023. URL https://CRAN.R-project.org/
package=survival. R package version 3.5-3. [p134]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. 2002. URL https://www.stats.ox.
ac.uk/pub/MASS4/. [p137]

M.-C. Wang, J. Qin, and C.-T. Chiang. Analyzing recurrent event data with informative cen-
soring. Journal of the American Statistical Association, 2001. URL https://doi.org/10.1198/
016214501753209031. [p134, 137]

H. Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 2007. URL
http://www.jstatsoft.org/v21/i12/. [p138]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. URL
https://ggplot2.tidyverse.org. [p134]

H. Wickham, D. Vaughan, and M. Girlich. tidyr: Tidy Messy Data, 2023. URL https://CRAN.R-
project.org/package=tidyr. R package version 1.3.0. [p138]

J. Yan and J. Fine. Estimating equations for association structures. Statistics in medicine, 2004. URL
https://doi.org/10.1002/sim.1650. [p134]

W. Zhao, L. Peng, and J. Hanfelt. Semiparametric latent class analysis of recurrent event data. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 2022. URL https://doi.org/10.1111/
rssb.12499. [p134, 135, 136, 137, 139, 147]

Qi Yu
Emory University
Department of Biostatistics and Bioinformatics
1518 Clifton Rd. NE, Atlanta, GA 30322, USA
ORCiD: 0009-0007-7585-1183
qi.yu2@emory.edu

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://doi.org/10.1016/S1470-2045(11)70199-1
https://doi.org/10.1093/biomet/91.3.683
https://doi.org/10.1093/biomet/91.3.683
https://doi.org/10.18637/jss.v028.i04
https://doi.org/10.18637/jss.v028.i04
https://CRAN.R-project.org/package=rms
https://CRAN.R-project.org/package=rms
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.18637/jss.v078.i02
https://doi.org/10.1287/mksc.12.1.103
https://doi.org/10.1287/mksc.12.1.103
https://CRAN.R-project.org/package=table1
https://CRAN.R-project.org/package=table1
https://doi.org/10.18637/jss.v047.i04
https://doi.org/10.1093/biomet/74.4.703
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://www.stats.ox.ac.uk/pub/MASS4/
https://www.stats.ox.ac.uk/pub/MASS4/
https://doi.org/10.1198/016214501753209031
https://doi.org/10.1198/016214501753209031
http://www.jstatsoft.org/v21/i12/
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=tidyr
https://doi.org/10.1002/sim.1650
https://doi.org/10.1111/rssb.12499
https://doi.org/10.1111/rssb.12499
https://orcid.org/0009-0007-7585-1183
mailto:qi.yu2@emory.edu


CONTRIBUTED RESEARCH ARTICLE 149

Limin Peng
Emory University
Department of Biostatistics and Bioinformatics
1518 Clifton Rd. NE, Atlanta, GA 30322, USA
ORCiD: 0000-0002-8042-3112
lpeng@emory.edu

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://orcid.org/0000-0002-8042-3112
mailto:lpeng@emory.edu


CONTRIBUTED RESEARCH ARTICLE 150

PubChemR: An R Package for Accessing
Chemical Data from PubChem
by Selcuk Korkmaz, Bilge Eren Yamasan, and Dincer Goksuluk

Abstract Chemical data is a cornerstone in the fields of chemistry, pharmacology, bioinformatics,
and environmental science. The PubChemR package provides a comprehensive R interface to the
PubChem database, which is one of the largest and most complete repositories of chemical data. This
package simplifies the process of querying and retrieving chemical information, including compound
structures, properties, biological activities, and more, directly from within R. By leveraging PubChemR,
users can programmatically access a wealth of chemical data, which is essential for research and
analysis in the chemical sciences. The package supports various functionalities such as searching by
chemical identifiers, downloading chemical structures, and retrieving bioassay results, among others.
PubChemR is designed to be user-friendly, providing a intuitive experience for R users ranging from
academic researchers to practitioners across various scientific disciplines. This paper presents the
capabilities of PubChemR, demonstrates its use through practical examples, and discusses its potential
impact on chemical data analysis.

1 Introduction

Chemical data serves as a foundational element in a wide spectrum of scientific research fields, from
pharmacology and medicinal chemistry to materials science and environmental studies. The ability
to access, query, and manipulate chemical information efficiently is essential for researchers and
practitioners who rely on data-driven methodologies to advance their work. PubChem, hosted by
the National Center for Biotechnology Information (NCBI), stands as one of the largest publicly
available repositories of chemical data, offering free access to an abundance of information on chemical
substances, compounds, and biological activities (Wang et al., 2009; Chen et al., 2009; Li et al., 2010;
Wang et al., 2012; Kim et al., 2016).

The PubChemR package for R provides a comprehensive interface to the PubChem database,
allowing users to programmatically retrieve and utilize chemical data within the R environment
(Korkmaz et al., 2024). This integration facilitates a more streamlined workflow for scientists who use
R for statistical analysis, data visualization, and computational modeling. By utilizing the PubChemR
package, users can perform a variety of tasks such as searching for chemical substances, fetching
compound properties, and obtaining assay data for bioactivity analysis.

Among the extensive range of R packages used in scientific research, webchem (Szöcs et al., 2020)
and ChemmineR (Cao et al., 2008) have been important for accessing chemical databases. Chem-
mineR provides tools for cheminformatics in R, enabling detailed handling and analysis of chemical
data. webchem supports access to multiple chemical databases. Additionally, other notable pack-
ages like rcdk, ChemmineOB, BridgeDbR, RMassBank, and rgoslin offer robust functionalities for
chemical data manipulation and analysis. The rcdk package interfaces with the Chemistry Devel-
opment Kit (CDK), providing molecular structure parsing and descriptor calculation (Guha, 2007).
ChemmineOB interfaces with OpenBabel for chemical format conversions and molecular property
calculations (Horan and Girke, 2024). BridgeDbR facilitates identifier mapping across biological
databases, enhancing data integration (Leemans et al., 2024). RMassBank supports the creation and
handling of mass spectrometry databases, crucial for compound identification (Stravs et al., 2013).
rgoslin ensures accurate lipid nomenclature in lipidomics studies (Kopczynski et al., 2020).

However, when it comes to direct interaction with the PubChem database, these packages have
limitations, often requiring users to work through complex API documentation or use additional tools.
To address these issues, PubChemR, designed specifically for the PubChem database, complements
the functionalities of these packages. It simplifies accessing chemical data from PubChem, using
functions that make API interactions more straightforward. Users can retrieve data easily by calling
these functions with the right parameters. Unlike webchem, which works with various databases,
and ChemmineR, which covers a wide range of cheminformatics tasks, PubChemR is focused solely
on PubChem, allowing for more efficient and targeted data interactions.

Here, we introduce PubChemR, detailing its functionality, design principles, and potential use
cases. We will demonstrate how PubChemR can be utilized to enhance research workflows and
provide examples of its application in real-world scenarios. By the end of this paper, readers will be
equipped with the knowledge to integrate PubChemR into their data analysis toolkit, unlocking the
potential to drive forward chemical and biological research with the power of R.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=webchem
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://CRAN.R-project.org/package=webchem
https://CRAN.R-project.org/package=rcdk
https://www.bioconductor.org/packages/release/bioc/html/ChemmineOB.html
https://www.bioconductor.org/packages/release/bioc/html/BridgeDbR.html
https://www.bioconductor.org/packages/release/bioc/html/RMassBank.html
https://www.bioconductor.org/packages/release/bioc/html/rgoslin.html
https://CRAN.R-project.org/package=rcdk
https://www.bioconductor.org/packages/release/bioc/html/ChemmineOB.html
https://www.bioconductor.org/packages/release/bioc/html/BridgeDbR.html
https://www.bioconductor.org/packages/release/bioc/html/RMassBank.html
https://www.bioconductor.org/packages/release/bioc/html/rgoslin.html
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=webchem
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR


CONTRIBUTED RESEARCH ARTICLE 151

Figure 1: Interfacing the PubChem’s PUG-REST database with the PubChemR package through URL
syntax: utilizing queries as function arguments

2 Design

The design of PubChemR is driven by the need for a seamless and intuitive interface for R users to
access the vast chemical data available in the PubChem database. Our design principles focus on
simplicity, efficiency, and robustness:

• Simplicity: The package is designed to minimize the complexity of interacting with the Pub-
Chem API. Functions are named and structured to be self-explanatory, allowing users to
intuitively understand their purposes.

• Efficiency: Considering the extensive size of the PubChem database, we optimized PubChemR
for speed and minimal resource consumption. Our design includes efficient handling of API
calls and data processing.

• Robustness: The package is designed to handle a wide range of user queries, from simple
compound searches to complex data extractions. Exception handling and error reporting are
integral, ensuring users are informed of issues in their queries or data processing.

3 Implementation

The implementation of PubChemR involved several key steps:

• API Integration: We integrated the PubChem API using R’s HTTP client capabilities. This
involved mapping the PubChem’s RESTful services into R functions.

• Data Processing: The raw data from PubChem API calls are processed and transformed into
user-friendly R data structures such as data frames and lists.

• Function Development: Each function in PubChemR corresponds to a specific type of query or
data retrieval from the PubChem database, with parameters allowing for flexible and targeted
searches.

• Testing and Validation: We performed rigorous testing to ensure accuracy and efficiency using
the testthat package for unit testing each function. This approach helps us define and verify
expected behavior, catch errors, and integrate well with our workflow, thereby maintaining
high code quality and reliability.

4 Use cases

The PubChemR package interfaces with the PubChem database through URL syntax, with each query
within this syntax serving as an argument in the designated function (Figure 1).

The functions in PubChemR are designed with flexibility in mind, allowing users to specify the
type of information they need and the format in which they wish to receive it. For instance, data can
be returned as R objects like data frames or lists, ready for analysis.

PubChemR pacakage can be installed from CRAN (The Comprehensive R Archive Network) and
loaded as follow:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR


CONTRIBUTED RESEARCH ARTICLE 152

# install.packages("PubChemR", repos = "http://cran.us.r-project.org")
library("PubChemR")

The package is currently in a state of active development. The latest version in development can
be accessed via GitHub (https://github.com/selcukorkmaz/PubChemR). This paper was composed
utilizing PubChemR version 2.1.

Most functions in the package require three main arguments; domain, namespace, and identifier.

1. Domain: This represents the primary classification within the PubChem system that dictates the
type of data being accessed. Examples of domains include “substance,” “compound,” “assay,” “gene,”
and others. Each domain encapsulates specific types of scientific data, such as chemical compounds or
genetic information.

2. Namespace: Within each domain, the namespace further specifies the method or criteria for
querying the data. It acts as a sub-category within the domain that allows for more refined searches.
For instance, in the compound domain, namespaces can be specific identifiers like “cid” for compound
ID, or “name” for the compound’s common name, among others.

3. Identifier: These are the actual data values used to perform the query. Identifiers can be vector
of positive integers (e.g. cid, sid, aid) or strings (e.g. name, smiles, source, inchikey, formula). They are
the key pieces of information that pinpoint the exact record or set of records to be retrieved from the
database.

Additionally, the optional arguments “operation” and “searchtype” play crucial roles in refining
the scope and focus of data queries. The “operation” argument specifies the type of data processing or
retrieval task that should be performed on the identified records. For instance, operations can range
from fetching complete data records to retrieving specific properties or summaries of compounds,
genes, or assays. This flexibility allows users to access both broad overviews and detailed attributes of
database entries according to their research needs. Meanwhile, the “searchtype” argument defines the
method of search being employed. It could be a structured search, such as substructure or similarity
search, which is essential for identifying compounds with particular chemical structures or features.
These optional arguments enhance the API’s versatility, enabling researchers to tailor queries more
precisely and retrieve data that best fits their experimental and analytical requirements. For more
detailed information, please refer to the official documentation at https://pubchem.ncbi.nlm.nih.
gov/docs/pug-rest.

Table 1 provides detailed information about four key arguments: “domain,” “searchtype,” “names-
pace,” and “operation.” This table is designed to help users understand how to effectively utilize these
components to customize queries within the PubChemR package.

domain searchtype namespace operation

substance - sid, sourceid/<source
id>, sourceall/<source
name>, name, <xref>,
listkey

record, synonyms, sids,
cids, aids,
assaysummary,
classification, <xrefs>,
description

compound <structure search> =
{substructure,
superstructure,
similarity,
identity}/{smiles,
inchi, sdf, cid} <fast
search> = {fastidentity,
fastsimilarity_2d,
fastsimilarity_3d,
fastsubstructure,
fastsuperstruc-
ture}/{smiles, smarts,
inchi, sdf, cid},
fastformula

cid, name, smiles,
inchi, sdf, inchikey,
formula, <structure
search>, <xref>, listkey,
<fast search>

record, <compound
property>, synonyms,
sids, cids, aids,
assaysummary,
classification, <xrefs>,
description,
conformers

assay - aid, listkey,
type/<assay type>,
sourceall/<source
name>, target/<assay
target>,
activity/<activity
column name>

record, concise, aids,
sids, cids, description,
targets/<target type>,
<doseresponse>,
summary,
classification

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://github.com/selcukorkmaz/PubChemR
https://CRAN.R-project.org/package=PubChemR
https://pubchem.ncbi.nlm.nih.gov/docs/pug-rest
https://pubchem.ncbi.nlm.nih.gov/docs/pug-rest


CONTRIBUTED RESEARCH ARTICLE 153

domain searchtype namespace operation

gene - geneid, genesymbol,
synonym

summary, aids,
concise, pwaccs

protein - accession, gi, synonym summary, aids,
concise, pwaccs

pathway - pwacc summary, cids,
geneids, accessions

taxonomy - taxid, synonym summary, aids
cell - cellacc, synonym summary, aids

Table 1: Overview of key arguments in the PubChemR package

In the following sections, we will explore each function in detail, examining the parameters they
accept, the type of data they return, and providing examples to illustrate their use. These examples
will serve as a guide for users to understand how to effectively utilize the PubChemR package to
access and manipulate chemical and biological data for their specific needs.

First, we will concentrate on three primary functions, each focusing on a specific domain: get_compounds
to retrieve compound data, get_substances to extract substance data, and get_assays to fetch assay
data. These functions are capable of handling multiple queries simultaneously and return a Pub-
ChemInstanceList class. This is a specialized class specifically created for these functions to manage
the complex PubChem data efficiently. After utilizing each of these functions, we will employ the
instance function. This function is designed to retrieve detailed information about a compound from
a PubChemInstanceList. It provides comprehensive details about the specific compound, including
its instance details (i.e., slots). Finally, we will implement the retrieve function with the relevant
slots to extract specific data elements from the compound data. This approach ensures that we can
precisely access the required information from the vast amount of data available, thereby enhancing
the efficiency and effectiveness of our data analysis process.

Next, we will fetch a variety of compound properties, such as molecular weight, chemical formula,
isomeric SMILES, and more, using the get_properties function. Additionally, we will focus on two
functions for downloading data from the PubChem database: get_sdf and download. The get_sdf
function is specifically designed to download chemical structure data in the widely recognized
Structure Data File (SDF) format. The download function streamlines the process of accessing and
downloading content from the PubChem database.

Finally, we will introduce two new functions: get_pug_rest and get_pug_view. The get_pug_rest
function provides a direct and efficient method for accessing a wide range of chemical data. In contrast,
the get_pug_view function is designed to offer access to detailed summary reports and additional
information that is not usually included in the primary PubChem Substance, Compound, or BioAssay
records.

4.1 Retrieve Compund Information

The get_compounds function allows R users to retrieve compound information from the PubChem
database. This function specifically targets retrieving compound-related information. This specialized
focus is crucial for users who require direct and efficient access to detailed compound data, a common
need in various fields of chemical research and analysis. Below, we will demonstrate how to retrieve
compound data using different namespaces:

a. Retrieving Compound Information by Name: The get_compounds function simplifies the
process of retrieving detailed compound information by using common compound names. This
feature is particularly beneficial in scenarios where the specific CIDs of compounds are unknown or
in educational contexts where common names are more frequently used. It simplifies the process of
data retrieval for users who may not be familiar with the technical identifiers of compounds but are
well-versed with their common or commercial names.

Consider the following example where the get_compounds function is employed to fetch data for
compounds using their common names:

compounds <- get_compounds(identifier = c("aspirin", "caffeine", "glucose"), namespace = "name")
compounds

#>
#> An object of class 'PubChemInstanceList'
#>

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=PubChemR


CONTRIBUTED RESEARCH ARTICLE 154

#> Number of instances: 3
#> - Domain: Compound
#> - Namespace: Name
#> - Identifier(s): aspirin, caffeine, ... and 1 more.
#>
#> * Run 'instance(...)' function to extract specific instances from the complete list, and
#> 'request_args(...)' to see all the requested instance identifiers.
#> * See ?instance and ?request_args for details.

The request_args function can be executed to view all the requested instance identifiers:

request_args(object = compounds)

#> $namespace
#> [1] "name"
#>
#> $identifier
#> [1] "aspirin" "caffeine" "glucose"
#>
#> $domain
#> [1] "compound"
#>
#> $operation
#> NULL
#>
#> $options
#> NULL
#>
#> $searchtype
#> NULL

To retrieve detailed information about a specific compound (e.g. aspirin), we can use the instance
function on the result:

compound_aspirin <- instance(object = compounds, .which = "aspirin")
compound_aspirin

#>
#> An object of class 'PubChemInstance'
#>
#> Request Details:
#> - Domain: Compound
#> - Namespace: Name
#> - Identifier: aspirin
#>
#> Instance Details:
#> - id (1): [<named list>] id
#> - atoms (2): [<named list>] aid, element
#> - bonds (3): [<named list>] aid1, aid2, order
#> - coords (1): [<unnamed list>]
#> - charge (1): [<unnamed numeric>]
#> - props (23): [<unnamed list>]
#> - count (10): [<named numeric>] heavy_atom, atom_chiral, atom_chiral_def, atom_chiral_undef, ...
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The instance function retrieves detailed information about the specific compound, including
its various components (known as slots). In this example, the compound has seven slots: id, atoms,
bonds, coords, charge, props, and count. To extract specific data elements from the compound data,
we can use the retrieve function with the relevant slots. For example, using the props slot extracts
detailed properties of the compound, including information such as label, name, data type, release,
value, implementation, version, software, and source. This comprehensive information covers various
physical, chemical, and structural properties of the compound.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 155

retrieve(object = compound_aspirin, .slot = "props", .to.data.frame = TRUE)

#> # A tibble: 23 x 11
#> Identifier label name datatype release value implementation version software
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 aspirin Comp~ Cano~ 5 2025.0~ 1 <NA> <NA> <NA>
#> 2 aspirin Comp~ <NA> 7 2025.0~ 212 E_COMPLEXITY 3.4.8.~ Cactvs
#> 3 aspirin Count Hydr~ 5 2025.0~ 4 E_NHACCEPTORS 3.4.8.~ Cactvs
#> 4 aspirin Count Hydr~ 5 2025.0~ 1 E_NHDONORS 3.4.8.~ Cactvs
#> 5 aspirin Count Rota~ 5 2025.0~ 3 E_NROTBONDS 3.4.8.~ Cactvs
#> 6 aspirin Fing~ SubS~ 16 2025.0~ 0000~ E_SCREEN 3.4.8.~ Cactvs
#> 7 aspirin IUPA~ Allo~ 1 2025.0~ 2-ac~ <NA> 2.7.0 Lexiche~
#> 8 aspirin IUPA~ CAS-~ 1 2025.0~ 2-ac~ <NA> 2.7.0 Lexiche~
#> 9 aspirin IUPA~ Mark~ 1 2025.0~ 2-ac~ <NA> 2.7.0 Lexiche~
#> 10 aspirin IUPA~ Pref~ 1 2025.0~ 2-ac~ <NA> 2.7.0 Lexiche~
#> # i 13 more rows
#> # i 2 more variables: source <chr>, parameters <chr>

b. Retrieving Compound Information by CID: The get_compounds function can be used to ex-
tract detailed compound data utilizing CIDs. This feature is particularly advantageous for researchers
who require precise and comprehensive data on specific compounds. By inputting a vector of CIDs,
users can quickly access a vast amount of information for their research needs.

Here’s an illustrative example demonstrating the use of get_compounds to obtain data for a set of
compounds using their CIDs:

compounds <- get_compounds(identifier = c(2244, 305), namespace = "cid")
compounds

#>
#> An object of class 'PubChemInstanceList'
#>
#> Number of instances: 2
#> - Domain: Compound
#> - Namespace: CID
#> - Identifier(s): 2244, 305
#>
#> * Run 'instance(...)' function to extract specific instances from the complete list, and
#> 'request_args(...)' to see all the requested instance identifiers.
#> * See ?instance and ?request_args for details.

Similarly, we can use the instance function on the result to retrieve detailed information about
CID 2244:

compound_2244 <- instance(object = compounds, .which = 2244)
compound_2244

#>
#> An object of class 'PubChemInstance'
#>
#> Request Details:
#> - Domain: Compound
#> - Namespace: CID
#> - Identifier: 2244
#>
#> Instance Details:
#> - id (1): [<named list>] id
#> - atoms (2): [<named list>] aid, element
#> - bonds (3): [<named list>] aid1, aid2, order
#> - coords (1): [<unnamed list>]
#> - charge (1): [<unnamed numeric>]
#> - props (23): [<unnamed list>]
#> - count (10): [<named numeric>] heavy_atom, atom_chiral, atom_chiral_def, atom_chiral_undef, ...
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 156

Similar to the previous section, we can use the retrieve function with the element names (i.e. slots)
mentioned above to extract specific data sections.

c. Advanced Search with SMILES: In cheminformatics, the Simplified Molecular Input Line Entry
System (SMILES) is a widely-used method for representing chemical structures. The get_compounds
function package adeptly handles queries based on SMILES strings, enabling users to search for
compounds by their structural characteristics. The main advantage of using SMILES is their precise
representation of molecular structures, unlike CIDs or chemical names that can be ambiguous or
inapplicable.

Consider the following example where the get_compounds function is used to search for com-
pounds using their SMILES strings:

compounds_by_smiles <- get_compounds(identifier = c("CC(=O)OC1=CC=CC=C1C(=O)O",
"CN1C=NC2=C1C(=O)N(C(=O)N2C)C"),

namespace = "smiles")
compounds_by_smiles

#>
#> An object of class 'PubChemInstanceList'
#>
#> Number of instances: 2
#> - Domain: Compound
#> - Namespace: SMILES
#> - Identifier(s): CC(=O)OC1=CC=CC=C1C(=O)O, CN1C=NC2=C1C(=O)N(C(=O)N2C)C
#>
#> * Run 'instance(...)' function to extract specific instances from the complete list, and
#> 'request_args(...)' to see all the requested instance identifiers.
#> * See ?instance and ?request_args for details.

In this example, compounds_by_smiles object is a PubChemInstanceList containing data for com-
pounds that correspond to the provided SMILES strings. The strings “CC(=O)OC1=CC=CC=C1C(=O)O”
and “CN1C=NC2=C1C(=O)N(C(=O)N2C)C” represent the molecular structures of aspirin and caffeine,
respectively. The function returns a PubChemInstanceList where each element contains comprehensive
information about these compounds.

Let’s only access data for CC(=O)OC1=CC=CC=C1C(=O)O using the instance function.

compound_smiles <- instance(object = compounds_by_smiles, .which = "CC(=O)OC1=CC=CC=C1C(=O)O")
compound_smiles

#>
#> An object of class 'PubChemInstance'
#>
#> Request Details:
#> - Domain: Compound
#> - Namespace: SMILES
#> - Identifier: CC(=O)OC1=CC=CC=C1C(=O)O
#>
#> Instance Details:
#> - id (1): [<named list>] id
#> - atoms (2): [<named list>] aid, element
#> - bonds (3): [<named list>] aid1, aid2, order
#> - coords (1): [<unnamed list>]
#> - charge (1): [<unnamed numeric>]
#> - props (23): [<unnamed list>]
#> - count (10): [<named numeric>] heavy_atom, atom_chiral, atom_chiral_def, atom_chiral_undef, ...
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

Finally, we can utilize the retrieve function to access data in each slot of the compound_smiles
object, as demonstrated earlier.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 157

4.2 Retrieve Substance Information

The get_substances function is for researchers looking to explore the extensive substance records
in the PubChem database. PubChem’s definition of substances encompasses a broad spectrum
of chemical entities, ranging from unique samples of individual chemical compounds to complex
mixtures. These substances often manifest in diverse forms, including but not limited to different salts,
isotopes, complexes, or combinations of various compounds.

The get_substances function is designed to meet the specific requirements of accessing a wide
range of substance records. It uses unique substance identifiers (SIDs) for each substance in PubChem,
allowing users to easily and accurately retrieve detailed information. This feature is especially
important in situations where understanding the differences between various forms or versions of a
compound is critical, such as in drug research, managing chemical databases, or meeting regulatory
standards.

In the following example, we will retrieve substance data for three substances using their SIDs:

• Aspirin (SID: 103164874): Aspirin, also known as acetylsalicylic acid, is widely used as an
analgesic to relieve pain, reduce fever, and act as an anti-inflammatory medication. As a
substance, it encompasses various forms and preparations of aspirin available from different
sources.

• Caffeine (SID: 403385742): Caffeine is a central nervous system stimulant commonly found
in coffee, tea, and various energy drinks. As a substance, it includes different sources and
formulations of caffeine beyond its pure chemical structure.

• Glucose (SID: 403435554): Glucose is a simple sugar that serves as a primary energy source for
living organisms. As a substance, it includes various forms and sources of glucose, providing
detailed information beyond the pure compound.

Using the get_substances function, we can access detailed records for these substances in the
PubChem database by providing their SIDs.

substances <- get_substances(identifier = c(103164874, 403385742, 403435554),
namespace = "sid")

substances

#>
#> An object of class 'PubChemInstanceList'
#>
#> Number of instances: 3
#> - Domain: Substance
#> - Namespace: SID
#> - Identifier(s): 103164874, 403385742, ... and 1 more.
#>
#> * Run 'instance(...)' function to extract specific instances from the complete list, and
#> 'request_args(...)' to see all the requested instance identifiers.
#> * See ?instance and ?request_args for details.

Next, let’s fetch detailed substance information for glucose (SID: 403435554). First, we need to run
the instance function to see the slots that contain substance data:

instance(object = substances, .which = 403435554)

#>
#> Substance Data from PubChem Database
#>
#> Request Details:
#> - Domain: Substance
#> - Namespace: SID
#> - Identifier: 403435554
#>
#> Number of substances retrieved: 1
#>
#> Substances contain data within following slots;
#> - sid (2): [<named numeric>] id, version
#> - source (1): [<named list>] db

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 158

#> - xref (3): [<unnamed list>]
#> - compound (2): [<unnamed list>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The output shows four slots that contain substance data for glucose. We can retrieve data from
each slot using the retrieve function. For example, we can extract detailed compound information,
such as the compound ID, atom IDs and elements, charges, bond details, and coordinates for molecular
structure visualization:

retrieve(object = substances, .which = 403435554, .slot = "compound", .to.data.frame = FALSE)

#> $Identifier
#> [1] 403435554
#>
#> [[2]]
#> [[2]]$id
#> type
#> 0
#>
#> [[2]]$atoms
#> [[2]]$atoms$aid
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#>
#> [[2]]$atoms$element
#> [1] 8 8 8 8 8 6 6 8 6 6 6 6 1 1 1 1
#>
#>
#> [[2]]$bonds
#> [[2]]$bonds$aid1
#> [1] 6 7 7 8 9 9 10 10 10 11 11 11 12 12 12 12
#>
#> [[2]]$bonds$aid2
#> [1] 5 6 13 7 4 8 3 9 16 2 10 15 1 7 11 14
#>
#> [[2]]$bonds$order
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#>
#>
#> [[2]]$coords
#> [[2]]$coords[[1]]
#> [[2]]$coords[[1]]$type
#> [1] 1 3
#>
#> [[2]]$coords[[1]]$aid
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#>
#> [[2]]$coords[[1]]$conformers
#> [[2]]$coords[[1]]$conformers[[1]]
#> [[2]]$coords[[1]]$conformers[[1]]$x
#> [1] -1.1936 0.3873 2.0000 2.0000 -2.0000 -1.1936 -0.3873 0.3873 1.1936
#> [10] 1.1936 0.3873 -0.3873 -0.9849 -0.9129 -0.1439 1.7192
#>
#> [[2]]$coords[[1]]$conformers[[1]]$y
#> [1] -0.4492 -1.3794 -0.4492 1.3794 0.9143 1.3794 0.9143 1.3794 0.9143
#> [10] 0.0144 -0.4492 0.0144 0.8106 0.3182 -0.7429 0.3168
#>
#> [[2]]$coords[[1]]$conformers[[1]]$style
#> [[2]]$coords[[1]]$conformers[[1]]$style$annotation
#> [1] 6 5 6 5
#>
#> [[2]]$coords[[1]]$conformers[[1]]$style$aid1
#> [1] 7 10 11 12

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 159

#>
#> [[2]]$coords[[1]]$conformers[[1]]$style$aid2
#> [1] 13 16 15 14
#>
#>
#>
#>
#>
#>
#> [[2]]$charge
#> [1] 0
#>
#>
#> [[3]]
#> [[3]]$id
#> [[3]]$id$type
#> [1] 1
#>
#> [[3]]$id$id
#> cid
#> 5793

Besides SIDs, the function supports additional namespaces such as sourceid, sourceall, name, xref,
and listkey. This flexibility enables researchers to access substance records from a range of perspectives,
depending on their available data or specific requirements.

4.3 Retrieve Assay Information

The get_assays function is another key function for researchers needing detailed biological assay
information from the PubChem database. These assays, essential for drug discovery, toxicology, and
pharmacology, measure biological activities of substances. The function simplifies accessing this data,
crucial for bioinformatics and cheminformatics (Korkmaz, 2020; Yamasan and Korkmaz, 2024). It
enables customized queries in the PubChem database, allowing users to explore a wide range of assay
data, including drug efficacy and toxicity. Its versatility in handling different parameters facilitates a
specific data retrieval approach.

The utility of the get_assays function extends across multiple research scenarios. In drug dis-
covery, It enables researchers to explore assays related to potential drug compounds, aiding in the
comprehension of their efficacy and safety profiles. In toxicological studies, the function is key in
acquiring insights into the toxic effects of diverse substances.

In the field of scientific research, particularly in areas such as pharmacology, toxicology, and
biochemistry, researchers frequently encounter specific assays that are of interest to their studies.
These assays are often identified by their Assay IDs (AIDs), which are referenced in scientific literature
or various databases. The get_assays function provides a direct and efficient means for researchers to
access comprehensive information about these particular assays.

Utilizing the get_assays function, researchers can input a vector of AIDs to retrieve detailed data
about each corresponding assay. This functionality is especially beneficial for those who need to
analyze and interpret assay data as part of their research projects or for educational purposes.

Consider the following practical example where we retrieve assay data from PubChem using their
AIDs.

First, we use the get_assays function to retrieve data for the specified assays. The identifier
parameter is a vector of AIDs (485314, 485341, 504466, 624202, and 651820), and the namespace
parameter specifies that the identifiers are AIDs.

assays <- get_assays(identifier = c(485314, 485341, 504466, 624202, 651820),
namespace = "aid")

assays

#>
#> An object of class 'PubChemInstanceList'
#>
#> Number of instances: 5
#> - Domain: Assay

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 160

#> - Namespace: AID
#> - Identifier(s): 485314, 485341, ... and 3 more.
#>
#> * Run 'instance(...)' function to extract specific instances from the complete list, and
#> 'request_args(...)' to see all the requested instance identifiers.
#> * See ?instance and ?request_args for details.

The output shows that the assays object is of class ‘PubChemInstanceList’ and contains data for 5
assays identified by their AIDs. It includes information about the number of instances (5 in this case),
the domain (Assay), the namespace (AID), and the specific identifiers. The output also provides hints
on how to proceed further.

Now, we can use the instance function to extract specific instances from the complete list. For
example, the following code extracts the detailed data for the assay with identifier 485314 from the list
of assays:

assay_485314 <- instance(object = assays, .which = 485314)
assay_485314

#>
#> An object of class 'PubChemInstance'
#>
#> Request Details:
#> - Domain: Assay
#> - Namespace: AID
#> - Identifier: 485314
#>
#> Instance Details:
#> - aid (2): [<named numeric>] id, version
#> - aid_source (1): [<named list>] db
#> - name (1): [<unnamed character>]
#> - description (3): [<unnamed character>]
#> - protocol (1): [<unnamed character>]
#> - comment (4): [<unnamed character>]
#> - xref (4): [<unnamed list>]
#> - results (23): [<unnamed list>]
#> - revision (1): [<unnamed numeric>]
#> - target (1): [<unnamed list>]
#> - activity_outcome_method (1): [<unnamed numeric>]
#> - dr (1): [<unnamed list>]
#> - grant_number (1): [<unnamed character>]
#> - project_category (1): [<unnamed numeric>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The output provides a detailed view of the assay_485314 object, which is of class ‘PubChemInstance’.
It includes both request details and instance details

The output also notes that we can use the retrieve function with the element names above
to extract data from the corresponding list. For example, we can retrieve the results of the assay,
providing detailed data on the outcomes observed during the assay:

retrieve(object = assays, .which = 485314, .slot = "results")

#> # A tibble: 41 x 8
#> Identifier tid name description type unit ac tc
#> <dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 485314 1 Phenotype Indicates type~ 4 254 <NA> <NA>
#> 2 485314 2 Potency Concentration ~ 1 5 TRUE <NA>
#> 3 485314 3 Efficacy Maximal effica~ 1 15 <NA> <NA>
#> 4 485314 4 Analysis Comment Annotation/not~ 4 254 <NA> <NA>
#> 5 485314 5 Curve_Description A description ~ 4 254 <NA> <NA>
#> 6 485314 6 Fit_LogAC50 The logarithm ~ 1 254 <NA> <NA>
#> 7 485314 7 Fit_HillSlope The Hill slope~ 1 254 <NA> <NA>

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 161

#> 8 485314 8 Fit_R2 R^2 fit value ~ 1 254 <NA> <NA>
#> 9 485314 9 Fit_InfiniteActivity The asymptotic~ 1 15 <NA> <NA>
#> 10 485314 10 Fit_ZeroActivity Efficacy at ze~ 1 15 <NA> <NA>
#> # i 31 more rows

By following these steps and using the retrieve function, we can access detailed and specific data
from the assay records in PubChem. This comprehensive approach allows researchers to gather all
necessary information about assays, aiding in their analysis and research activities.

4.4 Retrieve Property Information

The get_properties is another important function for researchers who require access to specific
chemical property data from the PubChem database. This function is designed with the aim of
simplifying the process of querying PubChem for a variety of compound properties, such as molecular
weight, chemical formula, isomeric SMILES, and more. It is particularly useful for those in need of
detailed chemical information across a range of compounds.

The get_properties function allows users to specify a set of properties and the identifiers of the
compounds for which these properties are required. The function then queries the PubChem database
and retrieves the requested data.

Consider the following practical application of the get_properties function:

First, we use the get_properties function to retrieve specific properties for several compounds
identified by their names:

props <- get_properties(
properties = c("MolecularWeight", "MolecularFormula", "InChI"),
identifier = c("aspirin", "caffeine", "glucose"),
namespace = "name"

)

In this example, the properties parameter specifies that we want to retrieve the molecular weight,
molecular formula, and InChI for each compound. The identifier parameter lists the common names
of the compounds (aspirin, caffeine, and glucose), and the namespace parameter indicates that these
identifiers are compound names. The function fetches the specified properties from the PubChem
database.

To extract the properties for a specific compound, such as aspirin, we can use the retrieve
function:

retrieve(instance(props, "aspirin"), .slot = NULL)

#> # A tibble: 1 x 6
#> Identifier CID MolecularFormula MolecularWeight InChI InChIKey
#> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 aspirin 2244 C9H8O4 180.16 InChI=1S/C9H8O4/c1~ BSYNRYM~

This tibble shows the identifier (aspirin), CID (2244), molecular formula (C9H8O4), molecular
weight (180.16), InChI, and InChIKey.

To combine the properties of all compounds into a single data frame, we set .combine.all as TRUE:

retrieve(props, .combine.all = TRUE)

#> # A tibble: 3 x 6
#> Identifier CID MolecularFormula MolecularWeight InChI InChIKey
#> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 aspirin 2244 C9H8O4 180.16 InChI=1S/C9H8O4/c1~ BSYNRYM~
#> 2 caffeine 2519 C8H10N4O2 194.19 InChI=1S/C8H10N4O2~ RYYVLZV~
#> 3 glucose 5793 C6H12O6 180.16 InChI=1S/C6H12O6/c~ WQZGKKK~

This tibble shows the identifier, CID, molecular formula, molecular weight, InChI, and InChIKey
for aspirin, caffeine, and glucose.

To return only the selected properties for all compounds, we can specify the properties using the
.slot argument. The output will be a tibble with only the molecular weight and molecular formula
for each compound:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 162

retrieve(props, .combine.all = TRUE,
.slot = c("MolecularWeight", "MolecularFormula"))

#> Identifier MolecularWeight MolecularFormula
#> 1 aspirin 180.16 C9H8O4
#> 2 caffeine 194.19 C8H10N4O2
#> 3 glucose 180.16 C6H12O6

There are 40 compound properties that we can fetch from the PubChem:

property_map(type = "all")

#> [1] "MolecularFormula" "MolecularWeight"
#> [3] "CanonicalSMILES" "IsomericSMILES"
#> [5] "InChI" "InChIKey"
#> [7] "IUPACName" "XLogP"
#> [9] "ExactMass" "MonoisotopicMass"
#> [11] "TPSA" "Complexity"
#> [13] "Charge" "HBondDonorCount"
#> [15] "HBondAcceptorCount" "RotatableBondCount"
#> [17] "HeavyAtomCount" "IsotopeAtomCount"
#> [19] "AtomStereoCount" "DefinedAtomStereoCount"
#> [21] "UndefinedAtomStereoCount" "BondStereoCount"
#> [23] "DefinedBondStereoCount" "UndefinedBondStereoCount"
#> [25] "CovalentUnitCount" "Volume3D"
#> [27] "ConformerModelRMSD3D" "ConformerModelRMSD3D"
#> [29] "XStericQuadrupole3D" "YStericQuadrupole3D"
#> [31] "ZStericQuadrupole3D" "FeatureCount3D"
#> [33] "FeatureAcceptorCount3D" "FeatureDonorCount3D"
#> [35] "FeatureAnionCount3D" "FeatureCationCount3D"
#> [37] "FeatureRingCount3D" "FeatureHydrophobeCount3D"
#> [39] "EffectiveRotorCount3D" "ConformerCount3D"

The type argument in the property_map function determines the method of searching within the
available properties. Setting type = "contain" will retrieve all properties that include the strings
specified in the properties argument. In the following example, we fetch properties for a range of CIDs
from 2244 to 2260. The properties argument includes the keywords “mass” and “molecular”, and the
propertyMatch argument is set to type = "contain". This setup ensures that the function retrieves
any properties containing the specified keywords.

props <- get_properties(
properties = c("mass", "molecular"),
identifier = 2244:2260,
namespace = "cid",
propertyMatch = list(
type = "contain"

)
)
retrieve(props, .combine.all = TRUE, .to.data.frame = TRUE)

#> # A tibble: 17 x 6
#> Identifier CID MolecularFormula MolecularWeight ExactMass MonoisotopicMass
#> <int> <dbl> <chr> <chr> <chr> <chr>
#> 1 2244 2244 C9H8O4 180.16 180.04225~ 180.04225873
#> 2 2245 2245 C21H27N5O7S 493.5 493.16311~ 493.16311939
#> 3 2246 2246 C40H52O4 596.8 596.38656~ 596.38656014
#> 4 2247 2247 C28H31FN4O 458.6 458.24818~ 458.24818979
#> 5 2248 2248 C17H35N5O6 405.5 405.25873~ 405.25873385
#> 6 2249 2249 C14H22N2O3 266.34 266.16304~ 266.16304257
#> 7 2250 2250 C33H35FN2O5 558.6 558.25300~ 558.25300038
#> 8 2251 2251 C10H13N5O13P3-3 504.16 503.97227~ 503.97227148
#> 9 2252 2252 C10H16N2O4 228.24 228.11100~ 228.11100700
#> 10 2253 2253 C10H16N2O4 228.24 228.11100~ 228.11100700

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 163

#> 11 2254 2254 C30H44O16S2-2 724.8 724.20707~ 724.20707766
#> 12 2255 2255 C30H46O16S2 726.8 726.22272~ 726.22272772
#> 13 2256 2256 C8H14ClN5 215.68 215.09377~ 215.0937732
#> 14 2257 2257 C22H20N3O9+3 470.4 470.11995~ 470.11995422
#> 15 2258 2258 C22H17N3O9 467.4 467.09647~ 467.09647913
#> 16 2259 2259 C22H14O9 422.3 422.06378~ 422.06378202
#> 17 2260 2260 C44H62N2O12 811.0 810.43027~ 810.43027542

Moreover, we can extract properties that start or end with specific strings. In the following example,
we fetch properties that start with the word “molecular.” Here, the type parameter is set to "start",
and the .ignore.case parameter is set to TRUE to make the search case-insensitive.

props <- get_properties(
properties = "molecular",
identifier = 2244:2260,
namespace = "cid",
propertyMatch = list(
type = "start",
.ignore.case = TRUE

)
)
retrieve(props, .combine.all = TRUE, .to.data.frame = TRUE)

#> # A tibble: 17 x 4
#> Identifier CID MolecularFormula MolecularWeight
#> <int> <dbl> <chr> <chr>
#> 1 2244 2244 C9H8O4 180.16
#> 2 2245 2245 C21H27N5O7S 493.5
#> 3 2246 2246 C40H52O4 596.8
#> 4 2247 2247 C28H31FN4O 458.6
#> 5 2248 2248 C17H35N5O6 405.5
#> 6 2249 2249 C14H22N2O3 266.34
#> 7 2250 2250 C33H35FN2O5 558.6
#> 8 2251 2251 C10H13N5O13P3-3 504.16
#> 9 2252 2252 C10H16N2O4 228.24
#> 10 2253 2253 C10H16N2O4 228.24
#> 11 2254 2254 C30H44O16S2-2 724.8
#> 12 2255 2255 C30H46O16S2 726.8
#> 13 2256 2256 C8H14ClN5 215.68
#> 14 2257 2257 C22H20N3O9+3 470.4
#> 15 2258 2258 C22H17N3O9 467.4
#> 16 2259 2259 C22H14O9 422.3
#> 17 2260 2260 C44H62N2O12 811.0

This output indicates that “MolecularFormula” and “MolecularWeight” are the properties available
in PubChem that start with the word “molecular.”

Next, we extract properties that end with the word “mass.” Here, the type parameter is set to
"end", and the .ignore.case parameter is set to TRUE to make the search case-insensitive.

props <- get_properties(
properties = "mass",
identifier = 2244:2260,
namespace = "cid",
propertyMatch = list(
type = "end",
.ignore.case = TRUE

)
)
retrieve(props, .combine.all = TRUE, .to.data.frame = TRUE)

#> # A tibble: 17 x 4
#> Identifier CID ExactMass MonoisotopicMass
#> <int> <dbl> <chr> <chr>

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 164

#> 1 2244 2244 180.04225873 180.04225873
#> 2 2245 2245 493.16311939 493.16311939
#> 3 2246 2246 596.38656014 596.38656014
#> 4 2247 2247 458.24818979 458.24818979
#> 5 2248 2248 405.25873385 405.25873385
#> 6 2249 2249 266.16304257 266.16304257
#> 7 2250 2250 558.25300038 558.25300038
#> 8 2251 2251 503.97227148 503.97227148
#> 9 2252 2252 228.11100700 228.11100700
#> 10 2253 2253 228.11100700 228.11100700
#> 11 2254 2254 724.20707766 724.20707766
#> 12 2255 2255 726.22272772 726.22272772
#> 13 2256 2256 215.0937732 215.0937732
#> 14 2257 2257 470.11995422 470.11995422
#> 15 2258 2258 467.09647913 467.09647913
#> 16 2259 2259 422.06378202 422.06378202
#> 17 2260 2260 810.43027542 810.43027542

This output indicates that “ExactMass” and “MonoisotopicMass” are the properties available in
PubChem that end with the word “mass.”

Finally, to return all available properties of the requested compounds, set properties = NULL and
the propertyMatch argument to type = “all”.

props <- get_properties(
properties = NULL,
identifier = 2244:2260,
namespace = "cid",
propertyMatch = list(
type = "all"

)
)
retrieve(props, .combine.all = TRUE)

#> # A tibble: 17 x 41
#> Identifier CID MolecularFormula MolecularWeight CanonicalSMILES
#> <int> <dbl> <chr> <chr> <chr>
#> 1 2244 2244 C9H8O4 180.16 CC(=O)OC1=CC=CC=C1C(=O)O
#> 2 2245 2245 C21H27N5O7S 493.5 CC1(C(N2C(S1)C(C2=O)NC(=O)~
#> 3 2246 2246 C40H52O4 596.8 CC1=C(C(CC(C1=O)O)(C)C)C=C~
#> 4 2247 2247 C28H31FN4O 458.6 COC1=CC=C(C=C1)CCN2CCC(CC2~
#> 5 2248 2248 C17H35N5O6 405.5 CC(C1CCC(C(O1)OC2C(C(C(C(C~
#> 6 2249 2249 C14H22N2O3 266.34 CC(C)NCC(COC1=CC=C(C=C1)CC~
#> 7 2250 2250 C33H35FN2O5 558.6 CC(C)C1=C(C(=C(N1CCC(CC(CC~
#> 8 2251 2251 C10H13N5O13P3-3 504.16 C1=NC(=C2C(=N1)N(C=N2)C3C(~
#> 9 2252 2252 C10H16N2O4 228.24 CC(C)(C)C1=C(C(=O)NO1)CC(C~
#> 10 2253 2253 C10H16N2O4 228.24 CC(C)(C)C1=C(C(=O)NO1)CC(C~
#> 11 2254 2254 C30H44O16S2-2 724.8 CC(C)CC(=O)OC1C(C(C(OC1OC2~
#> 12 2255 2255 C30H46O16S2 726.8 CC(C)CC(=O)OC1C(C(C(OC1OC2~
#> 13 2256 2256 C8H14ClN5 215.68 CCNC1=NC(=NC(=N1)Cl)NC(C)C
#> 14 2257 2257 C22H20N3O9+3 470.4 C1=CC(=C(C=C1C(=C2C=CC(=O)~
#> 15 2258 2258 C22H17N3O9 467.4 C1=CC(=C(C=C1C(=C2C=CC(=O)~
#> 16 2259 2259 C22H14O9 422.3 C1=CC(=C(C=C1C(=C2C=CC(=O)~
#> 17 2260 2260 C44H62N2O12 811.0 CCC(C(=O)NCC=CC=C(C)C(C(C)~
#> # i 36 more variables: IsomericSMILES <chr>, InChI <chr>, InChIKey <chr>,
#> # IUPACName <chr>, XLogP <dbl>, ExactMass <chr>, MonoisotopicMass <chr>,
#> # TPSA <dbl>, Complexity <dbl>, Charge <dbl>, HBondDonorCount <dbl>,
#> # HBondAcceptorCount <dbl>, RotatableBondCount <dbl>, HeavyAtomCount <dbl>,
#> # IsotopeAtomCount <dbl>, AtomStereoCount <dbl>,
#> # DefinedAtomStereoCount <dbl>, UndefinedAtomStereoCount <dbl>,
#> # BondStereoCount <dbl>, DefinedBondStereoCount <dbl>, ...

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 165

4.5 Download SDF Data

The get_sdf function is designed specifically for downloading chemical structure data in the widely
recognized Structure Data File (SDF) format. This format is essential in the exchange of chemical
structure information, encompassing comprehensive details such as molecular structure, associated
properties, and extended chemical data. The primary function of get_sdf is to facilitate the retrieval
of SDF files for specific compounds using their unique CID from the PubChem database.

To obtain an SDF file for a particular compound, users can execute the get_sdf function with the
compound’s CID as the identifier. For instance, to download the SDF file for a compound with CID
2244, the following code is used:

get_sdf(identifier = 2244, namespace = "cid")

This code triggers the download of the SDF file for the specified compound, saving it in a temporary
folder with a unique, time-stamped file name. Furthermore, users can define the path and file_name
arguments to customize the download.

4.6 Download Data with Different Formats

The download function simplifies the process of accessing and downloading content from the PubChem
database. This function is especially significant for researchers who need to retrieve various types of
chemical data in different formats for their work. At its core, the download function serves to fetch data
from the PubChem database using a specified identifier, and then save this data in a chosen format to
a user-defined location on the local file system. The function supports a wide range of output formats,
including JSON, XML, SDF and PNG.

For example, to download a JSON file for the compound “aspirin” and save it to a folder named
“Compound” in the current directory, one would use the following code:

download( filename = "Aspirin", outformat = "json", path = tempdir(),
identifier = "aspirin", namespace = "name", domain = "compound", overwrite = TRUE)

This flexibility in specifying parameters makes the download function particularly useful for
diverse research requirements, from simple data retrievals to complex queries.

4.7 Accessing and Exploring Chemical Data with PUG REST Service

The get_pug_rest function is designed to provide easy and efficient access to the extensive chemical
data in PubChem. This function highlights the advanced capabilities of the Power User Gateway
(PUG) REST service provided by PubChem (Kim et al., 2015, 2018). It stands out for users who require
programmatic interaction with PubChem’s extensive database, simplifying the otherwise complex
process of data retrieval and analysis. By leveraging the PUG REST service, get_pug_rest provides
a direct and efficient pathway for accessing a vast array of chemical data, making it an important
resource for researchers in various fields who rely on accurate and extensive chemical information for
their work. This function is essential for modern computational chemistry, providing access to big
data and efficient data processing, which are crucial for advancing research and development in the
chemical sciences.

PUG REST is a simple way to access PubChem’s data and services, designed for use in scripts,
web page JavaScript, and third-party applications. This interface is a simpler and more user-friendly
alternative to the complex XML and SOAP envelopes used by other PUG versions. Its design is based
on the PubChem identifier system, which includes SID for substances, CID for compounds, and AID
for assays, making targeted data retrieval easier. The request architecture in PUG REST is logically
segmented into three core components: input (identifiers), operation (actions on identifiers), and
output (the format on the PubChem API side).

Overall, the get_pug_rest function meets various user needs with different input methods, opera-
tions, and outputs, allowing users to customize their queries to the PubChem database in numerous
ways.

1. Retrieving Chemical Structure Information: Users can request detailed information about
chemical structures using different identifiers like SIDs, CIDs, or common names. The get_pug_rest
function provides a way to access this information efficiently through PubChem’s PUG REST service.
For instance, the following R code demonstrates how to retrieve chemical structure information using
an SID:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 166

chemical_structure <- get_pug_rest(identifier = "10000",
namespace = "sid",
domain = "substance",
output = "JSON")

chemical_structure

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Substance
#> - Namespace: SID
#> - Operation: <NULL>
#> - Identifier: 10000
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

This code requests detailed information about the chemical structure associated with the SID
“10000”, which corresponds to the compound dihydroergotamine. The get_pug_rest function sends a
query to the PubChem database, specifying the identifier type (namespace), the domain of interest, and
the output format for the response from the PubChem API. The result, stored in the chemical_structure
object, contains comprehensive data about the substance, including its structural details, which can
then be utilized for further analysis or research.

Upon execution, the chemical_structure_result object contains detailed information about the
substance with SID 10000. Now, we use pubChemData function to access the chemical structure data.

chemical_structure_result <- pubChemData(chemical_structure)

The output is a nested list structure, and here is a breakdown of the key components:

SID and Version: The identifier (SID) and its version are provided:

chemical_structure_result$PC_Substances[[1]]$sid

#> id version
#> 10000 7

This indicates that the substance has SID 10000 and is on version 7.

Source Database: Information about the source database is included:

chemical_structure_result$PC_Substances[[1]]$source$db$name

#> [1] "KEGG"

The substance is sourced from the KEGG database, and its KEGG ID is “C07798”:

chemical_structure_result$PC_Substances[[1]]$source$db$source_id

#> str
#> "C07798"

Synonyms: Various synonyms for the substance are listed:

chemical_structure_result$PC_Substances[[1]]$synonyms

#> [1] "511-12-6" "C07798" "Dihydroergotamine"

These include its CAS (Chemical Abstracts Service) number “511-12-6”, its KEGG ID “C07798”,
and its common name “Dihydroergotamine”.

Comments: Additional comments provide links to related substances:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 167

chemical_structure_result$PC_Substances[[1]]$comment

#> [1] "Same as: <a href=\"http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid=96024534\">D07837</a>"

This indicates that SID 10000 is the same as another substance with SID 96024534.

Cross-references (Xrefs): Cross-references to other identifiers and databases:

chemical_structure_result$PC_Substances[[1]]$xref

#> [[1]]
#> regid
#> "C07798"
#>
#> [[2]]
#> rn
#> "511-12-6"
#>
#> [[3]]
#> dburl
#> "http://www.genome.jp/kegg/"
#>
#> [[4]]
#> sburl
#> "http://www.genome.jp/dbget-bin/www_bget?cpd:C07798"

This includes references to the KEGG and its associated URLs.

Compound Information: The compound section details atomic and bonding information. The
atoms and their elements:

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$atoms$aid

#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
#> [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$atoms$element

#> [1] 8 8 8 8 8 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
#> [39] 6 6 6 6 6 1 1 1

Atoms are identified by their atomic number, indicating elements like oxygen (8), nitrogen (7),
carbon (6), and hydrogen (1).

Bonding information includes atom pairs and bond order:

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$bonds$aid1

#> [1] 1 1 2 3 4 5 6 6 6 7 7 7 8 8 9 9 9 10 10 11 12 12 13 13 15
#> [26] 15 17 17 17 17 18 18 19 20 20 21 22 22 23 23 23 26 28 28 31 33 35 35 36 39
#> [51] 40 41 42

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$bonds$aid2

#> [1] 11 13 11 14 16 27 11 14 15 12 16 21 13 27 18 32 38 31 34 12 19 44 14 30 16
#> [26] 26 18 20 25 45 29 46 24 22 33 24 28 31 25 27 32 35 29 34 36 37 39 40 37 41
#> [51] 42 43 43

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$bonds$order

#> [1] 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2
#> [39] 1 1 1 1 1 2 1 1 2 1 2 1 2 2 1

Coordinates: The coordinates of the atoms provide spatial information about the structure:

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 168

chemical_structure_result$PC_Substances[[1]]$compound[[1]]$coords[[1]]$conformers

#> [[1]]
#> [[1]]$x
#> [1] 27.2047 28.3501 25.1187 31.8384 21.7294 28.4024 30.6466 24.3766 24.0201
#> [10] 19.4272 28.3618 29.5069 26.0652 26.0652 29.5419 30.6873 21.7236 22.8806
#> [19] 29.5069 20.5784 31.7917 20.5784 22.8806 31.7977 21.7236 29.5361 22.8806
#> [28] 21.7178 22.8689 26.0595 19.4272 24.0201 19.4330 21.7178 30.6699 18.2878
#> [37] 18.2878 25.1712 30.6582 31.8150 31.7975 32.9487 32.9428 29.4778 20.5667
#> [46] 24.1194
#>
#> [[1]]$y
#> [1] -12.4990 -11.8386 -15.4207 -15.1577 -12.4814 -14.4798 -13.1652 -12.4230
#> [9] -16.4548 -20.4226 -13.1593 -12.4990 -13.1593 -14.4857 -15.1460 -14.4915
#> [17] -16.4548 -17.1210 -11.1785 -17.1095 -12.5107 -18.4418 -14.4740 -11.1843
#> [25] -15.1285 -16.4665 -13.1418 -19.1019 -18.4535 -11.7451 -19.1019 -15.1285
#> [33] -16.4492 -20.4226 -17.1327 -18.4418 -17.1095 -17.1210 -18.4535 -16.4782
#> [41] -19.1196 -17.1444 -18.4649 -13.8253 -15.7888 -17.9275
#>
#> [[1]]$style
#> [[1]]$style$annotation
#> [1] 6 5 5 6 6 5 5
#>
#> [[1]]$style$aid1
#> [1] 11 12 13 15 17 18 23
#>
#> [[1]]$style$aid2
#> [1] 2 44 30 26 45 46 27

These coordinates allow for visualization and further spatial analysis of the chemical structure.

2. Performing Structure Searches: The function facilitates searches like substructure or similarity
searches and faster synchronous searches for identity, similarity, substructure, and superstructure.
These faster searches typically return results in a single call, significantly improving efficiency for
users who require quick access to chemical structure data.

For example, to perform a fast identity search, the following R code is used:

structure_search <- get_pug_rest(identifier = "5793",
namespace = "cid",
domain = "compound",
operation = "cids",
searchtype = "fastidentity",
options = list(identity_type = "same_connectivity"),
output = "JSON")

structure_search

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Compound
#> - Namespace: CID
#> - Operation: cids
#> - Identifier: 5793
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

This code initiates a search using the CID “5793” to find all compounds with the same connectivity.
The search results are returned in list object.

The output from this search provides a list of CIDs that match the criteria:

structure_search_result <- pubChemData(structure_search)
length(structure_search_result$IdentifierList$CID)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 169

#> [1] 348

head(structure_search_result$IdentifierList$CID)

#> [1] 5793 206 6036 18950 64689 66371

The output contains a comprehensive list of CIDs that have the same connectivity as the original
compound with CID 5793, referring to acetaminophen, a commonly used analgesic and antipyretic
agent. This indicates that all these compounds have the same atomic connectivity but might differ in
other aspects such as stereochemistry or charge states. This fast identity search is particularly useful
for researchers looking to quickly find all compounds with the same basic structure, which can then
be further analyzed for properties, activities, or potential as drug candidates.

3. Accessing BioAssay Data: The function provides a gateway to comprehensive BioAssay records,
including detailed descriptions, datasets, concise readouts, and target information. This is particularly
useful for researchers who need to analyze biological activities of compounds.

For example, to retrieve concise data such as the active concentration readout, the following R
code can be used:

bioassay_data <- get_pug_rest(identifier = "504526",
namespace = "aid",
domain = "assay",
operation = "concise",
output = "CSV")

bioassay_data

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Assay
#> - Namespace: AID
#> - Operation: concise
#> - Identifier: 504526
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

The output provides a detailed dataset which includes the Activity Outcome, Target Accession,
and other relevant information for each assay result.

bioassay_data_result <- pubChemData(bioassay_data)
head(bioassay_data_result)

#> AID SID CID Activity.Outcome Target.Accession Target.GeneID
#> 1 504526 103061373 6619281 Active NA NA
#> 2 504526 103904139 2971528 Active NA NA
#> 3 504526 103904144 4969604 Inactive NA NA
#> 4 504526 104169543 49842897 Active NA NA
#> 5 504526 104169544 49842896 Active NA NA
#> 6 504526 104169545 1077725 Inactive NA NA
#> Activity.Value..uM. Activity.Name
#> 1 3.6 IC50
#> 2 31.4 IC50
#> 3 50.0 IC50
#> 4 5.1 IC50
#> 5 34.6 IC50
#> 6 50.0 IC50
#> Assay.Name
#> 1 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)
#> 2 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)
#> 3 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)
#> 4 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)
#> 5 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 170

#> 6 A Cell Based HTS Approach for the Discovery of New Inhibitors of Respiratory syncytial virus (RSV) using synthesized compounds (6)
#> Assay.Type PubMed.ID RNAi
#> 1 Confirmatory NA NA
#> 2 Confirmatory NA NA
#> 3 Confirmatory NA NA
#> 4 Confirmatory NA NA
#> 5 Confirmatory NA NA
#> 6 Confirmatory NA NA

The bioassay_data dataframe contains several columns, each providing specific information about
the assay results. For example:

• AID (Assay Identifier): This column contains the unique identifier for the assay, which in this
case is “504526” for all rows, indicating that all data pertains to the same assay.

• SID (Substance Identifier) and CID (Compound Identifier): These columns list the identifiers for the
substances and compounds tested in the assay.

• Activity.Outcome: This column indicates whether the substance or compound was found to be
“Active” or “Inactive” in the assay.

• Target.Accession: This column would typically contain the accession numbers for the protein
targets involved in the assay. An accession number is a unique identifier assigned to a protein
sequence record. In the given dataset, all entries show “NA”, indicating that specific target
accession numbers are not provided for these assay results.

• Target.GeneID: This column would contain the GeneID, a unique identifier for genes provided
by the NCBI Gene database. Similar to the Target.Accession column, all entries in this dataset
show “NA”, suggesting that no specific gene identifiers are associated with these assay results.

• Activity.Value..uM.: This column shows the concentration at which the activity was measured,
usually given in micromolar (uM). For example, values range from 0.22 uM to 50.00 uM, with
“IC50” indicating the concentration at which 50% inhibition is observed.

• Activity.Name: This column typically indicates the type of activity measured, in this case, “IC50”
for inhibitory concentration.

• Assay.Name: This column provides a detailed description of the assay. For example, all entries
describe a cell-based high-throughput screening (HTS) approach for discovering new inhibitors
of Respiratory Syncytial Virus (RSV) using synthesized compounds.

• Assay.Type: This column indicates the type of assay, with all entries marked as “Confirmatory,”
suggesting these are follow-up tests to initial screenings.

• PubMed.ID and RNAi: These columns are included but contain “NA,” indicating no specific
PubMed reference or RNA interference information is provided for these entries.

The concise format of this dataset allows researchers to quickly assess the activity outcomes of
various substances and compounds tested in the assay. For instance, the dataset shows that compounds
with SIDs 103061373, 103904139, and others are active against RSV at specific concentrations, while
others are inactive, providing valuable insights into potential therapeutic candidates.

4. Gene and Protein Data Retrieval: To retrieve gene and protein data, the get_pug_rest function
can be employed to access detailed information about genes and proteins, which is crucial for genetic
and molecular biology research. This can be done by retrieving concise bioactivity data for a specific
gene or protein, using gene IDs or protein accession numbers.

Here is an example of how to retrieve concise bioactivity data for a specific gene:

geneData <- get_pug_rest(identifier = "13649",
namespace = "geneid",
domain = "gene",
operation = "concise",
output = "CSV")

geneData

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Gene
#> - Namespace: DomainSpecific

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 171

#> - Operation: concise
#> - Identifier: 13649
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

The output for this function provides a dataframe with information on bioactivity data related
to the gene ID “13649”. This gene ID corresponds to the epidermal growth factor receptor (EGFR)
gene in mice. This gene encodes a transmembrane glycoprotein that is a member of the protein kinase
superfamily. The encoded protein is a receptor for members of the epidermal growth factor family.
Mutations, amplifications, or misregulations of EGFR or family members are implicated in various
cancers. (ATIF)

geneData_result <- pubChemData(geneData)
head(geneData_result)

#> AID SID CID Activity.Outcome Target.Accession
#> 1 66438 103250953 25017867 Active Q01279
#> 2 66438 103432098 454217 Active Q01279
#> 3 69721 103358917 135512509 Unspecified Q01279
#> 4 69721 103358918 135434086 Unspecified Q01279
#> 5 69721 103358919 135455949 Unspecified Q01279
#> 6 69722 103253186 5328592 Unspecified Q01279
#> Activity.Value..uM. Activity.Name
#> 1 0.01 Effective concentration
#> 2 0.22 Effective concentration
#> 3 22.70 IC50
#> 4 36.90 IC50
#> 5 11.30 IC50
#> 6 100.00 IC50
#> Assay.Name
#> 1 Inhibition of epidermal growth factor binding in C3H10T1/2 cells
#> 2 Inhibition of epidermal growth factor binding in C3H10T1/2 cells
#> 3 Inhibition of Epidermal growth factor receptor mediated mitogenesis of NIH3T3 cells
#> 4 Inhibition of Epidermal growth factor receptor mediated mitogenesis of NIH3T3 cells
#> 5 Inhibition of Epidermal growth factor receptor mediated mitogenesis of NIH3T3 cells
#> 6 Inhibition of epidermal growth factor receptor (EGFR-mediated tyrosine autophosphorylation in mouse fibroblasts.
#> Assay.Type PubMed.ID RNAi
#> 1 Confirmatory 1597853 NA
#> 2 Confirmatory 1597853 NA
#> 3 Confirmatory 9748366 NA
#> 4 Confirmatory 9748366 NA
#> 5 Confirmatory 9748366 NA
#> 6 Confirmatory 8027985 NA

This data provides researchers with detailed insights into the bioactivity of different substances
tested in relation to a specific gene. The availability of target accession numbers and detailed assay
descriptions makes it easier to understand the context and significance of each entry in the dataset.
This information is crucial for advancing genetic and molecular biology research by understanding
the effects of various substances on specific genes and proteins.

To retrieve concise bioactivity data for the specified protein with the accession number “Q01279”
(which corresponds to the EGFR in mice), use the following R code:

protein_data <- get_pug_rest(identifier = "Q01279",
namespace = "accession",
domain = "protein",
operation = "concise",
output = "CSV")

protein_data

#>
#> An object of class 'PugRestInstance'
#>

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 172

#> Request Details:
#> - Domain: Protein
#> - Namespace: DomainSpecific
#> - Operation: concise
#> - Identifier: Q01279
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

protein_data_result <- pubChemData(protein_data)
head(protein_data_result)

#> AID SID CID Activity.Outcome Target.GeneID
#> 1 415759 103294831 5289418 Active 13649
#> 2 1527521 312367127 71496458 Active 13649
#> 3 1527521 440227038 139593668 Inconclusive 13649
#> 4 69724 103399893 11349700 Active 13649
#> 5 69730 103379682 10500718 Active 13649
#> 6 106697 103166416 689033 Unspecified 13649
#> Activity.Value..uM. Activity.Name
#> 1 NA
#> 2 0.081 IC50
#> 3 NA IC50
#> 4 0.110 IC50
#> 5 1.000 IC50
#> 6 46.200 IC50
#> Assay.Name
#> 1 Inhibition of EGFR in mouse HER14 cells assessed as inhibition of EGF-stimulated ERK2 activation by immunoblotting
#> 2 Inhibition of wild type EGFR in mouse BAF3 cells assessed as reduction in cell proliferation incubated for 72 hrs by Celltiter-Glo luminescent cell viability assay
#> 3 Inhibition of wild type EGFR in mouse BAF3 cells assessed as reduction in cell proliferation incubated for 72 hrs by Celltiter-Glo luminescent cell viability assay
#> 4 Inhibition of epidermal growth factor receptor tyrosine kinase (EGFR TK)
#> 5 Inhibition of epidermal growth factor receptor phosphorylation in BaF3 mouse lymphoid cells.
#> 6 Inhibition of EGF-dependent mouse keratinocyte MK cell proliferation
#> Assay.Type PubMed.ID
#> 1 Other 9139660
#> 2 Confirmatory 31689114
#> 3 Confirmatory 31689114
#> 4 Confirmatory 14640561
#> 5 Confirmatory 11462983
#> 6 Confirmatory 10090785

This data provides researchers with detailed insights into the bioactivity of different substances
tested in relation to a specific protein. The availability of target gene IDs and assay information makes
it easier to understand the context and significance of each entry in the dataset.

5. Pathway Information: The function offers access to detailed pathway information, essential
for bioinformatics and molecular biology research. It provides a list of pathways involving a specific
protein. For example, P00533 is the accession number for the human EGFR, which is a protein involved
in the regulation of cell growth, survival, proliferation, and differentiation.

To retrieve pathway information for protein accession P00533:

pathway_data <- get_pug_rest(identifier = "P00533",
namespace = "accession",
domain = "protein",
operation = "pwaccs",
output = "JSON")

pathway_data

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Protein
#> - Namespace: DomainSpecific

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 173

#> - Operation: pwaccs
#> - Identifier: P00533
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

The output provides a list of pathways:

pathway_data_result <- pubChemData(pathway_data)
head(pathway_data_result$InformationList$Information[[1]]$PathwayAccession)

#> [1] "PathBank:SMP0000472" "PathBank:SMP0000473" "PathBank:SMP0000474"
#> [4] "PathBank:SMP0000475" "PathBank:SMP0000476" "PathBank:SMP0063810"

This information provides a comprehensive list of pathways involving the specified protein, which
is essential for understanding its biological roles and interactions. Each pathway entry includes the
database source and the specific pathway identifier.

6. Taxonomy Data: The function enables researchers to access detailed taxonomy information,
aiding in biological and environmental research. It provides summaries of taxonomy data for given
taxonomic identifiers. For example, Taxonomy ID 2697049 corresponds to Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2):

taxonomy_data <- get_pug_rest(identifier = c("2697049"),
namespace = "taxid",
domain = "taxonomy",
operation = "summary",
output = "JSON")

taxonomy_data

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Taxonomy
#> - Namespace: DomainSpecific
#> - Operation: summary
#> - Identifier: 2697049
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

The output provides detailed taxonomy summaries:

taxonomy_data_result <- pubChemData(taxonomy_data)
taxonomy_data_result$TaxonomySummaries$TaxonomySummary

#> [[1]]
#> [[1]]$TaxonomyID
#> [1] 2697049
#>
#> [[1]]$ScientificName
#> [1] "Severe acute respiratory syndrome coronavirus 2"
#>
#> [[1]]$CommonName
#> [1] ""
#>
#> [[1]]$Rank
#> [1] "no rank"
#>
#> [[1]]$RankedLineage
#> Species
#> "Severe acute respiratory syndrome-related coronavirus"
#> Genus

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 174

#> "Betacoronavirus"
#> Family
#> "Coronaviridae"
#> Order
#> "Nidovirales"
#> Class
#> "Pisoniviricetes"
#> Phylum
#> "Pisuviricota"
#> Kingdom
#> "Orthornavirae"
#> Superkingdom
#> "Viruses"
#>
#> [[1]]$Synonym
#> [1] "2019-nCoV"
#> [2] "COVID-19 virus"
#> [3] "HCoV-19"
#> [4] "Human coronavirus 2019"
#> [5] "SARS-2"
#> [6] "SARS2"
#> [7] "SARS-CoV2"
#> [8] "Severe acute respiratory syndrome coronavirus 2"

This information includes taxonomy ID, scientific name, common name, ranks, ranked lineages,
and synonyms for the specified taxa. This detailed taxonomy data is essential for various research
applications, including evolutionary studies and disease research.

7. Cell Line Information: The function is also useful in accessing detailed information about
various cell lines, vital for cellular biology and pharmacology research. For example, CHEMBL3308376
corresponds to the HeLa cell line:

cell_line_data <- get_pug_rest(identifier = c("CHEMBL3308376"),
namespace = "cellacc",
domain = "cell",
operation = "summary",
output = "JSON")

cell_line_data

#>
#> An object of class 'PugRestInstance'
#>
#> Request Details:
#> - Domain: Cell
#> - Namespace: DomainSpecific
#> - Operation: summary
#> - Identifier: CHEMBL3308376
#>
#> NOTE: Run getter function 'pubChemData(...)' to extract raw data retrieved from PubChem Database.
#> See ?pubChemData for details.

The output provides detailed cell line summaries:

cell_line_data_result <- pubChemData(cell_line_data)
cell_line_data_result$CellSummaries$CellSummary

#> [[1]]
#> [[1]]$CellAccession
#> [1] "CVCL_0030"
#>
#> [[1]]$Name
#> [1] "HeLa"
#>
#> [[1]]$Sex

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 175

#> [1] "Female"
#>
#> [[1]]$Category
#> [1] "Cancer cell line"
#>
#> [[1]]$SourceTissue
#> [1] "uterine cervix"
#>
#> [[1]]$SourceTaxonomyID
#> [1] 9606
#>
#> [[1]]$SourceOrganism
#> [1] "Homo sapiens (human)"
#>
#> [[1]]$Synonym
#> [1] "HELA" "Hela" "He La"
#> [4] "He-La" "HeLa-CCL2" "Henrietta Lacks cells"
#> [7] "Helacyton gartleri"

This information includes cell accession number, name, sex, category, source tissue, source taxon-
omy ID, source organism, and synonyms for the specified cell lines.

4.8 Enhancing Chemical Data Access with PUG View Service

The get_pug_view function is designed to provide access to detailed summary reports and additional
information not typically found in primary PubChem Substance, Compound, or BioAssay records. It
utilizes the PUG View service, a REST-style web service of PubChem (Kim et al., 2019), to generate
comprehensive reports for individual PubChem records (Figure 2). The primary aim of get_pug_view
is to offer a different approach from the PUG REST service, focusing on delivering complete summary
reports rather than smaller bits of information. This function supports various data formats and record
types, making it a versatile tool for users needing comprehensive information from the PubChem
database. Key aspects include:

Flexible Data Retrieval: Users can choose between obtaining an index (summary or table of
contents) or full data retrieval, catering to both overview and detailed information requirements. This
flexibility allows users to access just the right amount of data they need for their specific research
purposes.

Diverse Record Types: The function is capable of accessing a wide range of records, including
compounds, substances, bioassays, patents, genes, proteins, pathways, taxonomies, and cell lines. This
broad capability ensures that users can retrieve comprehensive data across various scientific domains
using their respective identifiers or names.

Annotations and Detailed Information: The get_pug_view function can retrieve specific types
of information, such as experimental properties, safety and hazard labeling, and more. This feature
is particularly valuable for users needing in-depth annotations and detailed descriptions across
PubChem’s extensive databases.

Comprehensive Reports: It provides detailed summaries that encompass chemical properties,
biological activities, safety information, patents, and literature references. This comprehensive report-
ing is crucial for researchers who require a holistic view of PubChem records for their studies and
analyses.

In summary, the get_pug_view function offers in-depth and comprehensive reports that facilitate
advanced research and development activities. By leveraging the PUG View service, it enables efficient
access to detailed and annotated data, enhancing the user’s ability to make informed decisions based
on extensive PubChem records.

The get_pug_view function finds its application in various scenarios, making it a crucial resource
in chemical data analysis:

1. Full Data Record: For researchers requiring comprehensive data of compounds, substances, or
bioassays, get_pug_view provides detailed reports including experimental properties, safety informa-
tion, and more.

We will initialize the retrieval of comprehensive data for the compound with ID 2244 (Aspirin)
from PubChem using the following code chunk:

full_record_2244 <- get_pug_view(annotation = "data",

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 176

Figure 2: Using the PubChemR package to access PubChem’s PUG-View database, with queries in
URL syntax serving as function arguments

identifier = "2244",
domain = "compound",
output = "JSON")

full_record_2244

#>
#> PUG View Data from PubChem Database
#>
#> Request Details:
#> - Domain: Compound
#> - Annotation: data
#> - Identifier: 2244
#>
#> Pug View Details:
#> - RecordType (1): [<unnamed character>]
#> - RecordNumber (1): [<unnamed numeric>]
#> - RecordTitle (1): [<unnamed character>]
#> - Section (20): [<unnamed list>] Structures, Chemical Safety, ... and 18 more.
#> - Reference (246): [<unnamed list>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The resulting object contains extensive information about the compound, including various
sections and references.

We can extract the record type, record number, and record title to confirm that the record pertains
to a chemical compound, to identify the specific compound ID for Aspirin, and to verify that Aspirin is
the common name for the compound with ID 2244. Moreoveer, retrieve function can be used to show
detailed information about the references, including reference number, source name, source ID, name,
description, URL, and license URL. Each reference provides insights into various aspects related to
the compound Aspirin, sourced from databases like the Australian Industrial Chemicals Introduction
Scheme (AICIS), CAMEO Chemicals, CAS Common Chemistry, and others. These references include
descriptions of the chemical properties, regulatory information, safety data, and links to the original
sources for further details.

To access the specific sections within the retrieved data, we use the following code:

sections <- retrieve(object = full_record_2244, .slot = "Section")
sections

#>
#> PUG View Data Sections
#>
#> Request Details:
#> - Record Type: CID
#> - Record Number: 2244
#> - Record Title: Aspirin

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 177

#>
#> Section Details:
#> - Number of available sections: 20
#> - Section headings: Structures, Chemical Safety, ... and 18 more.
#>
#> NOTE: Run getter function 'section()' to extract section data. To list available sections, run 'sectionList()'.
#> See ?section and ?sectionList for details.

This code retrieves the sections available within the full record of Aspirin. The output indicates
that there are 20 sections available, with headings such as Structures, Chemical Safety, and others.

Now, we can employ the sectionList function to display all sections available in the “sections”
object:

sectionList(object = sections)

#> # A tibble: 20 x 2
#> SectionID Headings
#> <chr> <chr>
#> 1 S1 Structures
#> 2 S2 Chemical Safety
#> 3 S3 Names and Identifiers
#> 4 S4 Chemical and Physical Properties
#> 5 S5 Spectral Information
#> 6 S6 Related Records
#> 7 S7 Chemical Vendors
#> 8 S8 Drug and Medication Information
#> 9 S9 Pharmacology and Biochemistry
#> 10 S10 Use and Manufacturing
#> 11 S11 Identification
#> 12 S12 Safety and Hazards
#> 13 S13 Toxicity
#> 14 S14 Associated Disorders and Diseases
#> 15 S15 Literature
#> 16 S16 Patents
#> 17 S17 Interactions and Pathways
#> 18 S18 Biological Test Results
#> 19 S19 Taxonomy
#> 20 S20 Classification

The “SectionID” column contains unique identifiers for each section, labeled S1 through S20. The
“Headings” column provides descriptive titles for these sections, indicating the type of information
contained within each.

The sections listed are:

1. Structures: Details on the structural information of Aspirin.

2. Chemical Safety: Information related to the safety measures and regulations for handling
Aspirin.

3. Names and Identifiers: Various names and identifiers associated with Aspirin.

4. Chemical and Physical Properties: Data on the chemical and physical properties of Aspirin.

5. Spectral Information: Spectral data related to Aspirin.

6. Related Records: Records related to Aspirin.

7. Chemical Vendors: Information about vendors that supply Aspirin.

8. Drug and Medication Information: Details on the use of Aspirin as a drug or medication.

9. Pharmacology and Biochemistry: Information on the pharmacological and biochemical prop-
erties of Aspirin.

10. Use and Manufacturing: Data on the use and manufacturing processes of Aspirin.

11. Identification: Identification information for Aspirin.

12. Safety and Hazards: Safety hazards associated with Aspirin.

13. Toxicity: Toxicological information about Aspirin.

14. Associated Disorders and Diseases: Disorders and diseases associated with Aspirin.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 178

15. Literature: References to literature involving Aspirin.

16. Patents: Patent information related to Aspirin.

17. Interactions and Pathways: Biological interactions and pathways involving Aspirin.

18. Biological Test Results: Results from biological tests conducted on Aspirin.

19. Taxonomy: Taxonomic information related to Aspirin.

20. Classification: Classification information for Aspirin.

These sections provide a comprehensive overview of various aspects of Aspirin. Now, we will
focus on detailed data from the first section, “Structures,” with the section ID “S1”.

First, we assign the section to an object using the section function and then examine its contents:

s1 <- section(object = sections, .id = "S1")

The output provides an overview of the “Structures” section:

s1

#>
#> PUG View Data Sections (Structures)
#>
#> Request Details:
#> - Record Type: CID
#> - Record Number: 2244
#> - Record Title: Aspirin
#>
#> Section Details:
#> - TOCHeading (1): [<unnamed character>]
#> - Description (1): [<unnamed character>]
#> - Section (3): [<unnamed list>] 2D Structure, 3D Conformer, ... and 1 more.
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.
#>
#> NOTE: Run getter function 'section()' to extract section data. To list available sections, run 'sectionList()'.
#> See ?section and ?sectionList for details.

Next, we list the sub-sections within the “Structures” section. The output shows the available
sub-sections:

sectionList(object = s1)

#> # A tibble: 3 x 2
#> SectionID Headings
#> <chr> <chr>
#> 1 S1 2D Structure
#> 2 S2 3D Conformer
#> 3 S3 Crystal Structures

This breakdown allows us to see that the “Structures” section contains detailed depictions of
Aspirin, including 2D structures, 3D conformers, and crystal structures. Each sub-section can be
further explored to gain more specific information about the molecular structure of Aspirin.

2. Accessing Specific Headings: Users can retrieve data under specific headings for targeted
information, such as boiling points or viscosity measurements.

First, we initiate the retrieval of data for a specific heading using the get_pug_view function,
focusing on the “Boiling Point” heading within the “heading” domain.

specific_headings <- get_pug_view(annotation = "annotations",
identifier = "Boiling Point",
domain = "heading",
output = "JSON",
headingType = "Compound")

specific_headings

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 179

#>
#> PUG View Data from PubChem Database
#>
#> Request Details:
#> - Domain: DomainSpecific (heading)
#> - Annotation: annotations
#> - Identifier: Boiling%20Point
#>
#> Pug View Details:
#> - Annotation (1000): [<unnamed list>]
#> - Page (1): [<unnamed numeric>]
#> - TotalPages (1): [<unnamed numeric>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The function call returns data from the PubChem database, specifying details about the request, in-
cluding the domain, annotation type, identifier, and the number of annotations retrieved. It highlights
that 1000 annotations were fetched, spread across multiple pages.

Next, we utilize the retrieve function to extract the “Annotation” slot from the specific_headings
object. By displaying the annotations, we gain insight into the structure and content of the data. Each
annotation includes the source name, source ID, compound name, description, URLs, and detailed
data related to the boiling point, complete with references and specific values.

annotation <- retrieve(specific_headings, .slot = "Annotation", .to.data.frame = FALSE)
annotation[[1]]

#> $SourceName
#> [1] "Hazardous Substances Data Bank (HSDB)"
#>
#> $SourceID
#> [1] "30"
#>
#> $Name
#> [1] "NITROGLYCERIN"
#>
#> $Description
#> [1] "The Hazardous Substances Data Bank (HSDB) is a toxicology database that focuses on the toxicology of potentially hazardous chemicals. It provides information on human exposure, industrial hygiene, emergency handling procedures, environmental fate, regulatory requirements, nanomaterials, and related areas. The information in HSDB has been assessed by a Scientific Review Panel."
#>
#> $URL
#> [1] "https://pubchem.ncbi.nlm.nih.gov/source/hsdb/30"
#>
#> $LicenseURL
#> [1] "https://www.nlm.nih.gov/web_policies.html"
#>
#> $Data
#> $Data[[1]]
#> $Data[[1]]$TOCHeading
#> type #TOCHeading
#> "Compound" "Boiling Point"
#>
#> $Data[[1]]$Description
#> [1] "PEER REVIEWED"
#>
#> $Data[[1]]$Reference
#> [1] "O'Neil, M.J. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc., 2001., p. 1185"
#>
#> $Data[[1]]$ExtendedReference
#> $Data[[1]]$ExtendedReference[[1]]
#> $Data[[1]]$ExtendedReference[[1]]$Citation
#> [1] "O'Neil, M.J. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc., 2001., p. 1185"
#>
#> $Data[[1]]$ExtendedReference[[1]]$Matched
#> PCLID

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 180

#> 900133450
#>
#>
#>
#> $Data[[1]]$Value
#> $Data[[1]]$Value$StringWithMarkup
#> $Data[[1]]$Value$StringWithMarkup[[1]]
#> String
#> "Explodes at 218 °C"
#>
#>
#>
#>
#> $Data[[2]]
#> $Data[[2]]$TOCHeading
#> type #TOCHeading
#> "Compound" "Boiling Point"
#>
#> $Data[[2]]$Description
#> [1] "PEER REVIEWED"
#>
#> $Data[[2]]$Reference
#> [1] "Weast, R.C. (ed.) Handbook of Chemistry and Physics. 69th ed. Boca Raton, FL: CRC Press Inc., 1988-1989., p. C-291"
#>
#> $Data[[2]]$ExtendedReference
#> $Data[[2]]$ExtendedReference[[1]]
#> $Data[[2]]$ExtendedReference[[1]]$Citation
#> [1] "Weast, R.C. (ed.) Handbook of Chemistry and Physics. 69th ed. Boca Raton, FL: CRC Press Inc., 1988-1989., p. C-291"
#>
#> $Data[[2]]$ExtendedReference[[1]]$Matched
#> PCLID
#> 900017161
#>
#>
#>
#> $Data[[2]]$Value
#> $Data[[2]]$Value$StringWithMarkup
#> $Data[[2]]$Value$StringWithMarkup[[1]]
#> String
#> "BOILING POINT: 125 °C @ 2 MM HG"
#>
#>
#>
#>
#>
#> $ANID
#> [1] 2
#>
#> $LinkedRecords
#> $LinkedRecords$CID
#> [1] 4510

This step reveals detailed information about various compounds, including their boiling points.
For instance, it might display data such as “NITROGLYCERIN” from the “Hazardous Substances Data
Bank (HSDB)” with specific boiling point details like “Explodes at 218 °C.”

3. Literature and Publication Data: The function can be used to retrieve literature associated with
a compound, aiding in academic research and publication review.

In the given example, we are querying the PubChem database for literature information related to
the compound with identifier “1234” in the compound domain. The identifier “1234” corresponds to
the compound Gallopamil. Gallopamil is a pharmaceutical compound used primarily as a calcium
channel blocker, which is useful in treating cardiovascular conditions such as angina pectoris and
hypertension.

By running the get_pug_view function with the identifier “1234”, we retrieve various details about

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 181

Gallopamil, including references to related literature.

literature <- get_pug_view(annotation = "literature",
identifier = "1234",
domain = "compound",
output = "JSON")

literature

#>
#> PUG View Data from PubChem Database
#>
#> Request Details:
#> - Domain: Compound
#> - Annotation: literature
#> - Identifier: 1234
#>
#> Pug View Details:
#> - RecordType (1): [<unnamed character>]
#> - RecordNumber (1): [<unnamed numeric>]
#> - AllURL (1): [<unnamed character>]
#> - Subheadings (15): [<unnamed list>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

The following code provides a URL, which directs to the PubMed search page for the specified
compound. This link is valuable for researchers seeking detailed literature information related to the
compound identified by CID 1234.

retrieve(literature, .slot = "AllURL")

#> # A tibble: 1 x 1
#> value
#> <chr>
#> 1 https://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pubmed&term=%22Gallop~

4. 3D Protein Structures: The get_pug_view function allows access to detailed 3D protein structure
information associated with specific compounds. These 3D structures provide critical insights into the
molecular interactions, mechanisms of action, and potential binding sites of compounds, which are
essential for understanding their biological effects. Access to such detailed structural data aids in drug
design, understanding enzyme mechanisms, and studying protein-ligand interactions. The visual
representation of these structures, along with associated metadata like MMDB (Molecular Modeling
Database) and PDB (Protein Data Bank) IDs, URLs for accessing detailed pages, and descriptions of
the structures, further enhances the utility of this function in scientific research and development.

The following code retrieves a list of 3D protein structures associated with Aspirin (ID:2244):

list_3d_proteins <- get_pug_view(annotation = "structure",
identifier = "2244",
domain = "compound",
output = "JSON")

list_3d_proteins

#>
#> PUG View Data from PubChem Database
#>
#> Request Details:
#> - Domain: Compound
#> - Annotation: structure
#> - Identifier: 2244
#>
#> Pug View Details:
#> - RecordType (1): [<unnamed character>]
#> - RecordNumber (1): [<unnamed numeric>]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 182

#> - URL (1): [<unnamed character>]
#> - NumberOfStructures (1): [<unnamed numeric>]
#> - Structures (8): [<unnamed list>]
#>
#> NOTE: Run getter function 'retrieve()' with element name above to extract data from corresponding list.
#> See ?retrieve for details.

This code fetches detailed information about the 3D protein structures related to Aspirin. The
output includes several components.

First, the URL for the data is retrieved:

retrieve(list_3d_proteins, .slot = "URL")

#> # A tibble: 1 x 1
#> value
#> <chr>
#> 1 https://www.ncbi.nlm.nih.gov/sites/entrez?LinkName=pccompound_structure&db=pc~

This output provides the URL to the PubChem page that contains detailed information about the
3D structures of Aspirin. This URL can be visited to explore further details visually and interactively.

Next, the number of 3D structures available is retrieved:

retrieve(list_3d_proteins, .slot = "NumberOfStructures")

#> # A tibble: 1 x 1
#> value
#> <dbl>
#> 1 8

The output indicates that there are 8 different 3D structures available for Aspirin.

Finally, details of each structure are retrieved:

list_3d_proteins_structures <- retrieve(list_3d_proteins, .slot = "Structures", .to.data.frame = FALSE)

This code outputs a list of details for each 3D structure, including the MMDB ID, PDB ID, URLs
for accessing and visualizing the structures, descriptions, and taxonomic information. For example,
one of the structures is described as “Cryo-EM structure of aspirin-bound ABCC4,” with the MMDB
ID 230639 and PDB ID “8J3W.” The structure is associated with Homo sapiens (human) as indicated
by the taxonomy information.

list_3d_proteins_structures[[1]]

#> $MMDB_ID
#> [1] 230639
#>
#> $PDB_ID
#> [1] "8J3W"
#>
#> $URL
#> [1] "https://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=230639"
#>
#> $ImageURL
#> [1] "https://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbimage.fcgi?small=t&id=230639"
#>
#> $Description
#> [1] "Cryo-EM structure of aspirin-bound ABCC4"
#>
#> $Taxonomy
#> $Taxonomy$ID
#> [1] 9606
#>
#> $Taxonomy$Name
#> [1] "Homo sapiens"

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 183

5. NCBI LinkOut Records: The get_pug_view function is capable of listing all LinkOut records
for substances, compounds, or assays, which is beneficial for tracking external resources and databases
linked to specific chemical entities. This functionality is especially useful for researchers who need to
access a wide array of related data from different external sources.

Here is an example of how the LinkOut records can be retrieved for identifier “1234”:

ncbi_linkouts <- get_pug_view(annotation = "linkout",
identifier = "1234",
domain = "compound",
output = "JSON")

Next, the retrieved data can then be accessed as follows:

retrieve(ncbi_linkouts, .slot = "ObjUrl", .to.data.frame = FALSE)

#> $Url
#> [1] "http://partnersolution.ingenuity.com/?cid=97ae3f91eab87a&p1=EntrezPubChem&p2=GV&s=&ipaUri=%2Fpa%2Fapi%2Fv2%2Fgeneview%3Fapplicationname%3DEntrezPubChem%26geneId%3DING:qkb%26geneidtype%3Dingenuity"
#>
#> $SubjectType
#> [1] "molecular interactions"
#>
#> $Category
#> [1] "Chemical Information"
#>
#> $Attribute
#> [1] "subscription/membership/fee required"
#>
#> $Provider
#> Name NameAbbr
#> "Ingenuity Pathways Analysis" "Ingenuity"
#> Id Url
#> "5628" "http://www.ingenuity.com"

The extracted data includes information such as the URL of the external resource, the subject type,
the category of information, attributes indicating if a subscription or fee is required, and the provider’s
details. For instance, the URL “http://partnersolution.ingenuity.com/?cid=97ae3f91eab87a&p1=
EntrezPubChem&p2=GV&s=&ipaUri=%2Fpa%2Fapi%2Fv2%2Fgeneview%3Fapplicationname%3DEntrezPubChem%
26geneId%3DING:qkb%26geneidtype%3Dingenuity” points to a resource provided by Ingenuity Path-
ways Analysis, categorized under “Chemical Information” and related to “molecular interactions”.
This URL requires a subscription or membership for access.

Such detailed LinkOut records facilitate the exploration of interconnected data across various plat-
forms, enabling researchers to efficiently gather comprehensive information related to their chemical
entities of interest.

5 Discussion

5.1 Related Packages

Several R packages provide access to chemical data and tools for cheminformatics, each with its unique
focus and capabilities:

• ChemmineR: A comprehensive cheminformatics toolkit for R, offering functionalities for com-
pound data processing and analysis. It includes tools for compound classification, similarity
searching, and structure-activity relationship modeling.

• webchem: Designed for retrieving chemical information from various web sources, this package
facilitates automated queries and integrates data into R objects for further analysis, focusing on
structured data retrieval and usage.

• rcdk: An R interface to the CDK, allowing users to manipulate and analyze chemical data. This
package supports molecular structure parsing, descriptor calculation, and fingerprint generation,
making it invaluable for computational chemistry, drug discovery, and bioinformatics research.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

http://partnersolution.ingenuity.com/?cid=97ae3f91eab87a&p1=EntrezPubChem&p2=GV&s=&ipaUri=%2Fpa%2Fapi%2Fv2%2Fgeneview%3Fapplicationname%3DEntrezPubChem%26geneId%3DING:qkb%26geneidtype%3Dingenuity
http://partnersolution.ingenuity.com/?cid=97ae3f91eab87a&p1=EntrezPubChem&p2=GV&s=&ipaUri=%2Fpa%2Fapi%2Fv2%2Fgeneview%3Fapplicationname%3DEntrezPubChem%26geneId%3DING:qkb%26geneidtype%3Dingenuity
http://partnersolution.ingenuity.com/?cid=97ae3f91eab87a&p1=EntrezPubChem&p2=GV&s=&ipaUri=%2Fpa%2Fapi%2Fv2%2Fgeneview%3Fapplicationname%3DEntrezPubChem%26geneId%3DING:qkb%26geneidtype%3Dingenuity
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://CRAN.R-project.org/package=webchem
https://CRAN.R-project.org/package=rcdk


CONTRIBUTED RESEARCH ARTICLE 184

• ChemmineOB: An interface with OpenBabel for chemical format conversions and molecu-
lar property calculations, enhancing cheminformatics workflows by offering easy access to
OpenBabel’s powerful functions directly from R.

• BridgeDbR: Provides access to the BridgeDb framework, facilitating identifier mapping across
different biological databases and supporting a wide range of identifier types, which is particu-
larly useful in systems biology, genomics, and metabolomics studies.

• RMassBank: Tailored for the creation and handling of mass spectrometry databases, provid-
ing tools for building, querying, and managing MassBank records essential for compound
identification and annotation in MS experiments.

• rgoslin: An R package for the systematic annotation of lipid species using the GOSlin format,
supporting the conversion of lipid names to a structured format and ensuring consistency and
accuracy in lipidomics studies.

PubChemR, in comparison, is designed specifically to interface with the PubChem database,
providing a focused approach for accessing chemical data within this database through R. While
ChemmineR and webchem offer broad functionalities and access to multiple sources, PubChemR
specializes in efficient and targeted data interactions with PubChem, making it particularly suitable
for users who predominantly rely on PubChem for their chemical data needs.

In the Python ecosystem, libraries such as PubChempy (Swain, 2017), ChemSpiPy (Swain, 2018),
and CIRpy (Swain, 2016) offer functionalities similar to those described here. PubChemPy, like
PubChemR, provides a direct interface with the PubChem database for accessing chemical molecules
and their properties, supporting various chemical searches, standardization, format conversions,
depiction, and property retrieval. ChemSpiPy offers easy access to the ChemSpider web service,
enabling chemical searches, downloads, and property retrieval. CIRpy interfaces with the Chemical
Identifier Resolver (CIR) by the Computer-Aided Drug Design (CADD) Group at the National Cancer
Institute (NCI), simplifying the conversion of chemical identifiers and calculation of properties, along
with supporting diverse file format downloads.

5.2 Usage Policy of PUG REST Service

Please note that PUG REST is not intended for handling very large volumes of requests, such as those
numbering in the millions. To prevent overloading the PubChem servers, it is requested that any script
or application limit the request rate to no more than five requests per second. This measure helps
ensure the stability and reliability of the service for all users. For more information on request volume
limitations and automated rate limiting (throttling), please refer to PubChem’s dynamic request throt-
tling documentation (https://pubchem.ncbi.nlm.nih.gov/docs/dynamic-request-throttling).

In some cases, a 503 HTTP status code may be returned when the server is temporarily unable to
service the request due to maintenance downtime or capacity issues. If this occurs, it is advisable to try
the request again later. This status code indicates that the server is currently overloaded or undergoing
maintenance, and retrying the request after some time should allow it to be processed successfully.

5.3 Furter Research

The primary contribution of PubChemR is its facilitation of direct access to PubChem’s chemical data
through the R programming environment. This functionality addresses a specific need for researchers
who rely on R for data analysis and representation, allowing for more straightforward integration of
chemical data into their workflows However, the effectiveness of PubChemR is closely tied to the
quality and comprehensiveness of the PubChem database. Inaccuracies or gaps in the PubChem data
directly impact the outputs of PubChemR, which is an important consideration for users relying on
this tool for research or data analysis. As PubChem’s database is dynamic and continually updated,
keeping PubChemR synchronized with these updates is critical for maintaining its accuracy and
relevance.

While PubChemR currently focuses on accessing PubChem data and does not include data
analysis functions, future enhancements could potentially explore these areas. For instance, more
sophisticated data analysis capabilities within the package itself could be developed, enabling users to
perform preliminary analysis within the same framework. Another possible direction could be the
integration with other chemical databases, expanding the range of accessible data. Additionally, im-
proving the user interface for greater ease of use and better data visualization capabilities could make
the tool more accessible to a wider range of users with varying levels of expertise in R programming.
These are potential directions for future research and development, although there are no immediate
plans to implement these features.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://www.bioconductor.org/packages/release/bioc/html/ChemmineOB.html
https://www.bioconductor.org/packages/release/bioc/html/BridgeDbR.html
https://www.bioconductor.org/packages/release/bioc/html/RMassBank.html
https://www.bioconductor.org/packages/release/bioc/html/rgoslin.html
https://CRAN.R-project.org/package=PubChemR
https://www.bioconductor.org/packages/release/bioc/html/ChemmineR.html
https://CRAN.R-project.org/package=webchem
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://pubchem.ncbi.nlm.nih.gov/docs/dynamic-request-throttling
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR


CONTRIBUTED RESEARCH ARTICLE 185

6 Summary

PubChemR represents a significant advancement in accessing chemical data through the R program-
ming environment. It offers a straightforward, effective, and easy-to-use way to access information
from the PubChem database, improving how users can get chemical data. PubChemR combines
practical features with user-friendly design, making it a useful tool for researchers in various scientific
areas. As it continues to receive updates and enhancements, PubChemR will keep up with changes in
chemical data and computational technology.

References

Y. Cao, A. Charisi, L.-C. Cheng, T. Jiang, and T. Girke. Chemminer: a compound mining framework
for r. Bioinformatics, 24(15):1733–1734, 2008. [p150]

B. Chen, D. Wild, and R. Guha. Pubchem as a source of polypharmacology. Journal of chemical
information and modeling, 49(9):2044–2055, 2009. [p150]

R. Guha. Chemical informatics functionality in r. Journal of Statistical Software, 18:1–16, 2007. [p150]

K. Horan and T. Girke. ChemmineOB: R interface to a subset of OpenBabel functionalities, 2024. URL
https://www.bioconductor.org/packages/release/bioc/html/ChemmineOB.html. R package ver-
sion 1.42.0. [p150]

S. Kim, P. A. Thiessen, E. E. Bolton, and S. H. Bryant. Pug-soap and pug-rest: web services for
programmatic access to chemical information in pubchem. Nucleic acids research, 43(W1):W605–
W611, 2015. [p165]

S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker,
et al. Pubchem substance and compound databases. Nucleic acids research, 44(D1):D1202–D1213,
2016. [p150]

S. Kim, P. A. Thiessen, T. Cheng, B. Yu, and E. E. Bolton. An update on pug-rest: Restful interface for
programmatic access to pubchem. Nucleic Acids Research, 46(W1):W563–W570, 2018. [p165]

S. Kim, P. A. Thiessen, T. Cheng, J. Zhang, A. Gindulyte, and E. E. Bolton. Pug-view: programmatic
access to chemical annotations integrated in pubchem. Journal of cheminformatics, 11(1):1–11, 2019.
[p175]

D. Kopczynski, N. Hoffmann, B. Peng, and R. Ahrends. Goslin: a grammar of succinct lipid nomencla-
ture. Analytical Chemistry, 92(16):10957–10960, 2020. [p150]

S. Korkmaz. Deep learning-based imbalanced data classification for drug discovery. Journal of chemical
information and modeling, 60(9):4180–4190, 2020. [p159]

S. Korkmaz, B. E. Yamasan, and D. Goksuluk. PubChemR: Interface to the ’PubChem’ Database for Chemical
Data Retrieval, 2024. URL https://CRAN.R-project.org/package=PubChemR. R package version 2.0.
[p150]

C. Leemans, E. Willighagen, A. Bohler, and L. Eijssen. BridgeDbR: Code for Using BridgeDb Identifier
Mapping Framework From Within R, 2024. URL https://www.bioconductor.org/packages/release/
bioc/html/BridgeDbR.html. R package version 2.14.0. [p150]

Q. Li, T. Cheng, Y. Wang, and S. H. Bryant. Pubchem as a public resource for drug discovery. Drug
discovery today, 15(23-24):1052–1057, 2010. [p150]

M. A. Stravs, E. L. Schymanski, H. P. Singer, and J. Hollender. Automatic recalibration and processing
of tandem mass spectra using formula annotation. Journal of Mass Spectrometry, 48(1):89–99, 2013.
[p150]

M. Swain. CIRpy: Python wrapper for the NCI Chemical Identifier Resolver, 2016. URL https://github.
com/mcs07/CIRpy. [p184]

M. Swain. PubChemPy: Python wrapper for the PubChem PUG REST API, 2017. URL https://github.
com/mcs07/PubChemPy. [p184]

M. Swain. ChemSpiPy-A Python wrapper for the ChemSpider API, 2018. URL https://github.com/
mcs07/ChemSpiPy. [p184]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://CRAN.R-project.org/package=PubChemR
https://www.bioconductor.org/packages/release/bioc/html/ChemmineOB.html
https://CRAN.R-project.org/package=PubChemR
https://www.bioconductor.org/packages/release/bioc/html/BridgeDbR.html
https://www.bioconductor.org/packages/release/bioc/html/BridgeDbR.html
https://github.com/mcs07/CIRpy
https://github.com/mcs07/CIRpy
https://github.com/mcs07/PubChemPy
https://github.com/mcs07/PubChemPy
https://github.com/mcs07/ChemSpiPy
https://github.com/mcs07/ChemSpiPy


CONTRIBUTED RESEARCH ARTICLE 186

E. Szöcs, T. Stirling, E. R. Scott, A. Scharmüller, and R. B. Schäfer. webchem: an r package to retrieve
chemical information from the web. Journal of Statistical Software, 93:1–17, 2020. [p150]

Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H. Bryant. Pubchem: a public information
system for analyzing bioactivities of small molecules. Nucleic acids research, 37(suppl_2):W623–W633,
2009. [p150]

Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, Z. Zhou, L. Han, K. Karapetyan, S. Dracheva, B. A.
Shoemaker, et al. Pubchem’s bioassay database. Nucleic acids research, 40(D1):D400–D412, 2012.
[p150]

B. E. Yamasan and S. Korkmaz. Binding activity classification of anti-sars-cov-2 molecules using deep
learning across multiple assays. Balkan Medical Journal, 41(3):186, 2024. [p159]

Selcuk Korkmaz
Trakya University
Department Biostatistics
Edirne, Türkiye
ORCiD: 0000-0003-4632-6850
selcukkorkmaz@trakya.edu.tr

Bilge Eren Yamasan
Trakya University
Department Biophysics
Edirne, Türkiye
ORCiD: 0000-0002-6525-2503
berenyamasan@trakya.edu.tr

Dincer Goksuluk
Erciyes University
Department Biostatistics
Kayseri, Türkiye
ORCiD: 0000-0002-2752-7668
dincergoksuluk@erciyes.edu.tr

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://orcid.org/0000-0003-4632-6850
mailto:selcukkorkmaz@trakya.edu.tr
https://orcid.org/0000-0002-6525-2503
mailto:berenyamasan@trakya.edu.tr
https://orcid.org/0000-0002-2752-7668
mailto:dincergoksuluk@erciyes.edu.tr


CONTRIBUTED RESEARCH ARTICLE 186

boiwsa: An R Package for Seasonal
Adjustment of Weekly Data
by Tim Ginker

Abstract This article introduces the R package boiwsa for the seasonal adjustment of weekly data
based on the discounted least squares method. It provides a user-friendly interface for computing
seasonally adjusted estimates of weekly data and includes functions for creation of country-specific
prior adjustment variables, as well as diagnostic tools to assess the quality of the adjustments. The
utility of the package is demonstrated through two case studies: one based on US data of gasoline
production characterized by a strong trend-cycle and dominant intra-yearly seasonality, and the
other based on Israeli data of initial unemployment claims with two seasonal cycles (intra-yearly and
intra-monthly) and the impact of two moving holidays.

1 Introduction

Policymakers and industry practitioners have long utilized weekly and other high-frequency data for
timely updates on the state of various sectors of economic activity. Seasonal adjustment is a crucial
component of this analysis as it facilitates the economic interpretation of data variations by allowing
researchers to analyze these changes separately from the periodic fluctuations introduced by seasonal
factors.

This article presents the R package boiwsa for seasonal adjustment of weekly data based on the
discounted least squares regression (DWR) introduced by Harrison and Johnston (1984). It provides
a user-friendly interface for computing seasonally adjusted estimates of weekly data and includes
functions for the creation of country-specific prior adjustment variables, as well as diagnostic tools to
assess the quality of the adjustments. This equips practitioners with the ability to perform seasonal
adjustments on their weekly data, thereby facilitating informed decision-making across a diverse array
of applications.

Although attempts to develop procedures for the seasonal adjustment of weekly data date back
to the early 20th century (Crum, 1927), the volume of literature addressing this challenge remains
relatively limited (for the latest review of the available methodology, see Proietti and Pedregal, 2023).
Moreover, while there has been notable growth in the number of high-frequency indicators requiring
seasonal adjustment, the associated open-source software is less advanced and more intricate than
the easily accessible and user-friendly tools commonly available for monthly and quarterly data (see
Evans et al., 2021; Hyndman and Killick, 2024).

The seasonal adjustment of high-frequency data presents multiple challenges due to its unique
characteristics, which limit the straightforward application of conventional statistical methodologies.
Most seasonal adjustment approaches generally encompass two primary steps: detrending and
smoothing the cycle sub-series to compute the seasonal components. For instance, with monthly
data, an initial application of a wide filter calculates and eliminates the trend. Subsequently, the
detrended values are independently smoothed for each month, starting from January and progressing
sequentially, to derive the seasonal components.

However, implementing a similar procedure on high-frequency data is not always feasible due to
its potential for varying periodicity, presence of multiple seasonal cycles, and the moving window
problem. For example, the number of weeks in a year varies between 52 and 53. Additionally,
weekly data may exhibit multiple cycles, such as intra-monthly and intra-yearly patterns. As a result,
commonly used methods like X-13 ARIMA-SEATS, which work well for data with a single and fixed
seasonal period, cannot be directly applied on weekly data.

To illustrate the challenge associated with the moving window problem, we constructed an
artificial unobserved daily series underlying the observed weekly data. This synthetic daily data
exhibits a simple monthly seasonal pattern characterized by a linear decrease from 100 to 0 over the
course of a month. Consider the first six months of 2023, as depicted in Figure 1. The black line
represents the daily data, while, without loss of generality, each blue window corresponds to the first
week of a month. Additionally, the green triangles denote the observed weekly averages derived from
the black line. It becomes evident that each week aligns with a different portion of the intra-monthly
cycle. As a result, even though the underlying daily seasonal pattern is constant, weekly aggregation
produces a complex and evolving seasonality. Consequently, in this case, any method assuming a
constant number of periods in a seasonal cycle and estimating a seasonal index for each would yield
biased estimates.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=boiwsa


CONTRIBUTED RESEARCH ARTICLE 187

Figure 1: Illustration of the moving window challenge.

Currently, a number of software tools for the seasonal adjustment of weekly data are in various
stages of development. One such program is the MoveReg weekly seasonal adjustment method
developed by the U.S. Bureau of Labor. This program can be executed using EViews or SAS, and its
methodology is well documented and straightforward to implement. However, it is not available as
open-source code. There are also some promising R packages currently under development, with the
most advanced being Ecce Signum (McElroy and Livsey, 2022)1. This package offers a method (in the
Business Formation Statistics illustration) for the seasonal adjustment of weekly data that is based on
the fractional airline model (FAM). However, it is worth mentioning a number of limitations associated
with the aforementioned implementation of FAM. First, it implicitly assumes that the data must be
differenced to eliminate a trend, which may not necessarily be present in the data. Second, similar
to MoveReg, it is tailored to handle solely the intra-yearly cycle, a characteristic that could potentially
restrict its applicability to data characterized by a substantial intra-monthly cycle, as presented in the
application to the weekly unemployment claims in Israel.

Other software programs, occasionally employed for the seasonal adjustment of weekly data, rely
on the Seasonal-Trend decomposition using Loess (STL), developed by Cleveland et al. (1990). A recent
extension by Bandara et al. (2024) introduced the concept of Multiple Seasonal-Trend decomposition
using Loess (MSTL), thereby extending its application to time series featuring multiple seasonal cycles.
It’s important to note that both STL and MSTL decompositions are fundamentally based on the cycle
subseries smoothing. They assume a constant number of seasonal factors in each cycle, and thus are
unable to address the moving window problem discussed earlier. Additionally, these methods lack
the capability to effectively account for trading day and moving holiday effects.

Finally, several studies suggest the utilization of forecasting models for the decomposition of time
series, such as Prophet (Taylor and Letham, 2018) or TBATS (De Livera et al., 2011). However, these
methods have been observed to yield less accurate decompositions (Bandara et al., 2024).

The paper is organized as follows. Section 2 outlines our methodology. In Section 3, we provide
examples of how to use the boiwsa package, which is illustrated through two cases. The first example
is based on US gasoline production data, which exhibits a strong trend-cycle and dominant intra-yearly
seasonality. The second example is based on Israeli data of initial unemployment claims, where the
level is relatively stable, but there are two seasonal cycles - intra-yearly and intra-monthly - and a
pronounced effect of two moving holidays. 4 concludes.

2 Methodology

In this section, we describe our methodology. Our approach aligns closely with the locally-weighted
least squares procedure introduced by Cleveland et al. (2014) that is implemented in the MoveReg
program, albeit with several adjustments. First, in order to simplify the adjustment process, and
facilitate automation, instead of first-differencing, we opt to extract the trend component using
Friedman’s SuperSmoother, implemented through the stats::supsmu() function (R Core Team, 2024).
Second, we incorporate a variation of DWR to enable the seasonal component to evolve dynamically
over time. Unlike the weight structure proposed by Cleveland et al. (2014), our DWR implementation
involves a single hyperparameter controlling the weight decay rate. In addition, DWR can be modified
so that a different discount factor is applied to each model parameter. Although it is reasonable for
weekly data to use the same discount factor for all parameters, future applications on higher frequency
data could benefit from allowing each seasonal component to evolve at a different speed.

1The package is available on GitHub. See https://github.com/tuckermcelroy/sigex

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=boiwsa
https://github.com/tuckermcelroy/sigex


CONTRIBUTED RESEARCH ARTICLE 188

We consider the following decomposition model of the observed series yt:

yt = Tt + St + Ht + Ot + It, (1)

where Tt represents the trend component, St the seasonal component, Ht the holiday and trading-
day effects, Ot and It the outlier and irregular components respectively, and t denotes the date of the
last day within a given week.

The seasonal component is specified using trigonometric variables as follows

St =
K

∑
k=1

(
α

y
k sin(

2πkDy
t

ny
t

) + β
y
k cos(

2πkDy
t

ny
t

)

)
+

L

∑
l=1

(
αm

l sin(
2πlDm

t
nm

t
) + βm

l cos(
2πlDm

t
nm

t
)

)
, (2)

where K and L define the number of yearly and monthly pairs of trigonometric variables, Dy
t and

Dm
t are the day of the year and the day of the month, and ny

t and nm
t are the number of days in the

given year or month2 (Pierce et al., 1984). Thus, the seasonal adjustment procedure takes into account
the existence of two cycles, namely intra-yearly and intra-monthly.

Similarly to the X-11 method (Ladiray and Quenneville, 2001), our procedure employs an iterative
approach to estimate the different components. The seasonal adjustment algorithm comprises eight
steps, which are detailed below:

• Step 1: Estimation of trend (T(1)
t ) using stats::supsmu().

• Step 2: Estimation of the Seasonal-Irregular component:

yt − T(1)
t = St + Ht + Ot + It.

• Step 2* (Optional): Searching for additive outliers using the method proposed by Findley et al.
(1998).

• Step 2** (Optional): Identifying the optimal number of trigonometric variables in (2).

• Step 3: Calculation of seasonal factors, along with other potential factors such as Ht or Ot, is done
through DWR on the seasonal-irregular component extracted in Step 2. In this application, the
discounting rate decays over the years. For each year t and the observed year τ, a geometrically
decaying weight function is represented as: wt = r|t−τ|, where r ∈ (0, 1]. Several important
points are worth mentioning. First, when r = 1, the method simplifies to ordinary least squares
regression with constant seasonality. On the contrary, smaller values of r permit a more rapid
rate of change in the seasonal component. However, it is advised against setting it below 0.5 to
prevent overfitting. In addition, the choice of r affects the strength of revisions in the seasonally
adjusted data, with higher values of r leading to potentially stronger revisions. Second, our
methodology differs from the conventional one-way discounting, enabling the inclusion of
future observations in the computation of seasonal factors. This approach circumvents the
limitations of the forecasting methods discussed in Bandara et al. (2024). Finally, the choice of
year-based discounting is driven by the fact that in traditional discount-weighted regression,
even with a conservative choice of r = 0.95, in weekly data, observations separated by more
than 2 years would carry nearly negligible weight. Therefore, the use of year-based discounting
prevents an overly rapid decay which may potentially lead to unstable estimates of the seasonal
component.

• Step 4: Estimation of the trend (T(2)
t ) from the seasonally and outlier adjusted series using

stats::supsmu().

• Step 5: Estimation of the Seasonal-Irregular component:

yt − T(2)
t = St + Ht + Ot + It

• Step 6: Computing the final seasonal factors (and possibly other factors such as Ht or Ot) using
DWR, as in step 3.

• Step 7: Estimation of the final seasonally adjusted series:

yt − St − Ht

2Note that ny
t is either 365 or 366, depending on leap year, and that nm

t is either 28, 29, 30, or 31.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 189

• Step 8: Computing the final trend (T(3)
t ) estimate from the seasonally and outlier adjusted series

using stats::supsmu().

3 Use of boiwsa

In this section, we illustrate the use of our package and its key functionalities through two examples3.
The package is available on GitHub4, and via the Comprehensive R Archive Network (CRAN)5. The
first example is based on the data with a strong trend-cycle and dominant intra-yearly seasonality. The
second example is based on the data where the level is relatively stable, but there are two seasonal
cycles - intra-yearly and intra-monthly - and a pronounced effect of two moving holidays.

3.1 Example 1: Gasoline production in the US

Our first example uses the data on US finished motor gasoline product copied from the fpp2 package
(Hyndman, 2023), which is presented in Figure 2 below. For convenience, it is stored as a data.frame
with two columns: one with the series to be adjusted, stored as a numeric vector, and the second with
the dates stored as a vector of class Date.

library(dplyr)
library(ggplot2)
library(boiwsa)

ggplot() +
geom_line(
aes(
x = gasoline.data$date,
y = gasoline.data$y

),
color = "royalblue"

) +
theme_bw() +
ylab("Barrels per day (millions)") +
xlab("Year")

7

8

9

1990 2000 2010
Year

B
ar

re
ls

 p
er

 d
ay

 (
m

ill
io

ns
)

Figure 2: Weekly gasoline production in the US, February 2, 1991 to January 20, 2017.

Once users have their data loaded, they can use the boiwsa function to perform weekly seasonal
adjustment. The following code shows the application of the package using automatic model selection.

3The example code utilizes dplyr (Wickham et al., 2023), ggplot2 (Wickham et al., 2024), and gridExtra (Auguie,
2017)

4See https://github.com/timginker/boiwsa
5See https://cran.r-project.org/package=boiwsa

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=fpp2
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=gridExtra
https://github.com/timginker/boiwsa
https://cran.r-project.org/package=boiwsa


CONTRIBUTED RESEARCH ARTICLE 190

res <- boiwsa(
x = gasoline.data$y,
dates = gasoline.data$date

)

In general, the procedure can be applied with minimum interventions and requires only the
series to be adjusted (x argument) and the associated dates (dates argument) provided in a date
format. Unless specified otherwise (i.e., my.k_l = NULL), the procedure automatically identifies the
best number of trigonometric variables in (2) to model the intra-yearly (K) and intra-monthly (L)
seasonal cycles based on the Akaike Information Criterion corrected for small sample sizes (AICc).
The information criterion can be adjusted through the ic option. Like other software, there are three
options: “aic”, “aicc”, and “bic”. The weighting decay rate is specified by r. By default r = 0.8 which
is similar to what is customary in the literature (Harvey, 1990). For the full list of arguments and their
description, see Table 1 below.

Table 1: Input arguments for boiwsa

Input argument Description

x Numeric vector with series to be seasonally adjusted
dates Vector of class "Date", containing the data dates
r Defines the rate of decay of the weights. Should be between zero and one. By default is set to 0.8
auto.ao.search Boolean. Search for additive outliers
out.threshold t-statistic threshold in outlier search. By default is set to 3.8 as suggested by Findley (1998)

ao.list Vector with user-specified additive outliers in a date format
my.k_l Numeric vector defining the number of yearly and monthly trigonometric variables. If NULL, is found automatically using the information criteria (AICc)
H Matrix with holiday/working day factors or other user-defined preadjustments
ic Information criterion used in the automatic search for the number of trigonometric regressors. There are three options: aic, aicc, and bic. aicc is set as default
method Decomposition type: additive or multiplicative (log transformation)

In addition, the procedure automatically searches for additive outliers (AO) using the method de-
scribed in Appendix C of Findley et al. (1998). To disable the automatic AO search, set auto.ao.search
= F. To add user-defined AOs, use the ao.list option. As suggested by Findley et al. (1998), the
t-statistic threshold for outlier search is by default set to 3.8. However, since high-frequency data are
generally more noisy (Proietti and Pedregal, 2023), it could be advantageous to consider setting a
higher threshold by adjusting the out.threshold argument.

The boiwsa function returns a list object containing the results. The seasonally adjusted series
is stored in a vector called sa. The estimated seasonal factors are stored as sf. In addition, the user
can see the number of trigonometric terms chosen in automatic search (my.k_l) and the position
of additive outliers (ao.list) found by the automatic routine. For the full list of outputs and their
description, see Table 2.

Table 2: Output values for boiwsa

Value Description

sa Numeric vector with seasonally adjusted series
x Numeric vector with series to be seasonally adjusted
my.k_l Number of trigonometric variables used to model the seasonal pattern
sf Estimated seasonal effects. Note that these contain the seasonal effects represented by the trigonometric variables as well as the user-defined preadjustments in H
hol.factors Estimated holiday effects or other user-defined variables supplied in H

out.factors Estimated outlier effects
beta DWR coefficients for the last year
trend Final trend estimate (T_t^(3))
ao.list Additive outlier dates
m lm object. Unweighted OLS regression on the full sample

After the seasonal adjustment, we can plot the adjusted data to visualize the seasonal pattern:

plot(res)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 191

7

8

9

1990 2000 2010
 

Original (blue) and Seasonally adjusted (green)

7.0
7.5
8.0
8.5
9.0

1990 2000 2010
 

Trend

−0.6
−0.4
−0.2

0.0
0.2
0.4

1990 2000 2010
 

Seasonal

Figure 3: Weekly gasoline production in the US, February 2, 1991 to January 20, 2017.

To assess the quality of the adjustment, we can plot the autoregressive spectrum of the original
and seasonally adjusted data, as illustrated in the code below:

# spectrum of the original series (after detrending)
spec0 <- spec.ar((res$x - res$trend), order = 60, plot = F)
# spectrum of the seasonally adjusted series (after detrending)
spec1 <- spec.ar((res$sa - res$trend), order = 60, plot = F)

# plot
ggplot() +
geom_line(aes(x = spec0$freq, y = spec0$spec, color = "orig")) +
geom_line(aes(x = spec0$freq, y = spec1$spec, color = "sa")) +
geom_vline(xintercept = 1:2 / 4.34, linetype = "dashed") +
geom_text(aes(x = 1:2 / 4.34, label = "

Intra-monthly cycle peaks", y = 0.5 * max(spec0$spec)), colour = "black", angle = 90) +
geom_vline(xintercept = (1:3) / 52.1775, linetype = "dashed") +
geom_text(aes(x = 3 / 52.1775, label = "

First three intra-yearly cycle peaks", y = 0.5 * max(spec0$spec)), colour = "black", angle = 90) +
scale_color_manual(
name = "",
values = c("orig" = "#31a354", "sa" = "#3182bd"),
labels = c("Original", "Seasonally adjusted")

) +
theme_bw() +
theme(legend.position = "bottom") +
theme(legend.text = element_text(size = 11)) +
ylab(" ") +
xlab("Frequency")

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 192

 In
tr

a−
m

on
th

ly
 c

yc
le

 p
ea

ks

 In
tr

a−
m

on
th

ly
 c

yc
le

 p
ea

ks

 F
irs

t t
hr

ee
 in

tr
a−

ye
ar

ly
 c

yc
le

 p
ea

ks

0.0

2.5

5.0

7.5

10.0

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

 

Original Seasonally adjusted

Figure 4: Autoregressive spectrum of weekly gasoline production in the US.

In spectral analysis, it is customary to remove the trend component prior to conducting the analysis.
This step prevents the trend from obscuring the peaks associated with the seasonal component. If this
pre-processing step is omitted, particularly in a time series with a strong trend, the resulting spectrum
will predominantly display peaks at the beginning of the axes, thereby complicating the identification
of seasonal peaks. Additionally, to compute the spectrum, the number of lags is set to 60. Finally,
the first three yearly cycle peaks and the two monthly peaks are marked using vertical lines. Figure
4, which can also be generated using boiwsa::plot_spec, illustrates that the series originally had a
single intra-yearly seasonal cycle, but this component was completely removed by the procedure.

We can also inspect the output to check if the number of trigonometric terms chosen by the
automatic procedure matches our visual findings:

print(res)

#>
#> number of yearly cycle variables: 12
#> number of monthly cycle variables: 0
#> list of additive outliers: 1998-03-28

As can be seen, the number of yearly terms, K, is 12 and the number of monthly terms is zero,
which is consistent with the observed spectrum.

3.2 Example 2: Initial unemployment claims in Israel

In this subsection, we present our second example that is based on Israeli data. The data has no
obvious trend but has two pronounced seasonal cycles, intra-yearly and intra-monthly. Moreover,
there is a strong impact of two moving holidays and a working day effect.

The series under consideration is the weekly number of initial registrations at the Israeli Employ-
ment Service. Due to a prolonged period of structural change associated with the COVID-19 crisis,
we limit our sample to January 11, 2014, to January 4, 2020. It is worth noting that addressing such
events in the context of high-frequency data presents a significant challenge. Furthermore, given
the duration of the COVID-19 crisis, the standard methods of incorporating outlier variables, which
are also available in our package, appear to be incapable of providing a satisfactory solution in this
context.

Registration and reporting at the Employment Service are mandatory prerequisites for individuals
seeking to receive an unemployment benefit. Therefore, applicants are expected to register promptly
after their employment has been terminated. Given that most employment contracts conclude toward
the end of the month, an increased number of applications is anticipated at the beginning of the month,
leading to an intra-monthly seasonal pattern. Additionally, as can be seen in Figure 5 below, on an
annual basis, three distinct peaks are observed, with the final one occurring in August. This peak is
closely tied to seasonal workers, leading to the creation of an intra-yearly cycle.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 193

0

5000

10000

15000

2014 2016 2018 2020
Year

N
um

be
r 

of
 c

la
im

s 
pe

r 
w

ee
k

Figure 5: Weekly number of initial unemployment claims in Israel, January 11, 2014 to January 4, 2020.

Furthermore, each year, there are two weeks in which the activity plunges to nearly zero due to the
existence of two moving holidays associated with Rosh Hashanah and Pesach. Moreover, a working
day effect is expected, which leads to a reduced number of applications in weeks with fewer working
days. These effects are captured and modeled through additional variables generated by the dedicated
functions in boiwsa.

To generate a working day variable, we use the boiwsa::simple_td function, designed to aggregate
the count of full working days within a week and normalize it. This function requires two parameters:
the data dates and a data.frame object containing information about working days. The data.frame
should be in a daily frequency and contain two columns: “date” and “WORKING_DAY_PART”. For a
complete working day, the “WORKING_DAY_PART” column should be assigned a value of 1, for a
half working day 0.5, and for a holiday, the value should be set to 0.

Moving holiday variables can be created using the boiwsa::genhol function. These variables are
computed using the Easter formula in Table 2 of Findley et al. (1998), with the calendar centering to
avoid bias, as indicated in the documentation. In the present example, the impact of each holiday
is concentrated within a single week, resulting in a noticeable drop and subsequent increase in the
number of registrations during the following week. To account for this effect, we employ dummy
variables that are globally centered. These dummy variables are created using a custom function -
boiwsa::my_rosh, which is created for this illustrative scenario.

The code below illustrates the entire process based on the boiwsa::lbm dataset: creation of
working day adjustment variables using the boiwsa::simple_td function; creation of moving holiday
variables using the dedicated functions, and adding the combined input into the boiwsa::boiwsa
function.

# creating an input for simple_td
dates_il %>%
select(DATE_VALUE, ISR_WORKING_DAY_PART) %>%
`colnames<-`(c("date", "WORKING_DAY_PART")) %>%
mutate(date = as.Date(date)) -> df.td

# creating a matrix with a working day variable
td <- simple_td(dates = lbm$date, df.td = df.td)

# generating the Rosh Hashanah and Pesach moving holiday variables
rosh <- my_rosh(
dates = lbm$date,
holiday.dates = holiday_dates_il$rosh

)
# renaming (make sure that all the variables in H have distinct names)
colnames(rosh) <- paste0("rosh", colnames(rosh))

pesach <- my_rosh(
dates = lbm$date,
holiday.dates = holiday_dates_il$pesah,
start = 3, end = -1

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=boiwsa


CONTRIBUTED RESEARCH ARTICLE 194

)
colnames(pesach) <- paste0("pesach", colnames(pesach))

# combining the prior adjustment variables in a single matrix
H <- as.matrix(cbind(rosh[, -1], pesach[, -1], td[, -1]))
# running seasonal adjustment routine
res <- boiwsa(
x = lbm$IES_IN_W_ADJ,
dates = lbm$date,
H = H,
out.threshold = 3.8

)

Subsequently, we can visually examine the results of the procedure presented in Figure 6 below:

plot(res)

0

5000

10000

15000

2014 2016 2018 2020
 

Original (blue) and Seasonally adjusted (green)

6750
7000
7250
7500

2014 2016 2018 2020
 

Trend

−5000

0

5000

10000

2014 2016 2018 2020
 

Seasonal

Figure 6: Weekly number of initial unemployment claims in Israel: Original, Seasonally adjusted, and
the decomposition with ‘out.threshold=3.8‘.

As we can see in the plot, the procedure has successfully eliminated the annual and monthly
seasonal cycles, along with the influences of moving holidays. Nevertheless, it’s notable that a few
pronounced declines emerge in the seasonally adjusted series from 2016 onward. As previously
mentioned, weekly data often contain more noise, potentially prompting the inclusion of outlier
variables where they might not be necessary. This inclusion could introduce bias to the seasonal
component, consequently leading to the observed distortions.

While the suitability of the approach depends on the specific application, it appears that the
recommended outlier threshold of 3.8, typically suggested for monthly data, might be insufficiently
conservative for the weekly series. Consequently, a careful examination of the identified outliers is
strongly advised. To tackle this issue, one possible solution involves raising the out.threshold, as
demonstrated in the code and Figure summarizing the results below.

res <- boiwsa(
x = lbm$IES_IN_W_ADJ,
dates = lbm$date,
H = H,
out.threshold = 5

)

plot(res)

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 195

0

5000

10000

15000

2014 2016 2018 2020
 

Original (blue) and Seasonally adjusted (green)

6600
6800
7000
7200
7400
7600

2014 2016 2018 2020
 

Trend

−5000

0

5000

10000

2014 2016 2018 2020
 

Seasonal

Figure 7: Weekly number of initial unemployment claims in Israel: Original, Seasonally adjusted, and
the decomposition with ‘out.threshold=5‘.

Following a thorough visual examination of the seasonally adjusted data, we can now move for-
ward with the spectrum diagnostics. As illustrated in Figure 8 below, corroborating our initial analysis
of potential underlying seasonal patterns, it becomes evident that the data has two distinct seasonal
cycles. Additionally, it is noteworthy that our procedure successfully removed the corresponding
peaks, thereby highlighting its effectiveness.

plot_spec(res)

 In
tr

a−
m

on
th

ly
 c

yc
le

 p
ea

ks

 In
tr

a−
m

on
th

ly
 c

yc
le

 p
ea

ks

 F
irs

t t
hr

ee
 in

tr
a−

ye
ar

ly
 c

yc
le

 p
ea

ks

0e+00

1e+08

2e+08

3e+08

0.0 0.1 0.2 0.3 0.4 0.5
Frequency

 

Original Seasonally adjusted

Figure 8: Autoregressive spectrum of a weekly number of initial unemployment claims in Israel.

4 Summary

The package boiwsa is developed to equip practitioners with the ability to perform seasonal adjust-
ments on the weekly data, thereby facilitating informed decision-making across a diverse array of
applications. It provides a user-friendly interface for computing seasonally adjusted estimates of
weekly data and includes functions for the creation of country-specific prior adjustment variables, as
well as diagnostic tools to assess the quality of the adjustments. The empirical applications presented
in this paper demonstrate it’s functionality and ability to perform under various practical scenarios.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=boiwsa


CONTRIBUTED RESEARCH ARTICLE 196

Acknowledgments

I would like to thank the editor and two anonymous referees for their remarks and suggestions that
helped improve the paper and the package. I’m grateful to Karsten Webel for his review and advice. I
would also like to thank Ariel Mantzura, Eyal Argov, Daniel Rosenman, and Ramsis Gara for their
valuable suggestions and discussions. The views expressed in this paper are those of the author and
do not necessarily reflect the views of the Bank of Israel.

References

B. Auguie. gridExtra: Miscellaneous Functions for “Grid” Graphics, 2017. URL https://CRAN.R-project.
org/package=gridExtra. R package version 2.3. [p189]

K. Bandara, R. J. Hyndman, and C. Bergmeir. MSTL: A seasonal-trend decomposition algorithm for
time series with multiple seasonal patterns. International Journal of Operational Research, 2024. In
press. [p187, 188]

R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning. STL: A seasonal-trend decomposition.
Journal of Official Statistics, 6(1):3–73, 1990. [p187]

W. P. Cleveland, T. D. Evans, and S. Scott. Weekly Seasonal Adjustment - A Locally-weighted
Regression Approach. Economic working papers, Bureau of Labor Statistics, 2014. [p187]

W. L. Crum. Weekly fluctuations in outside bank debits. The Review of Economic Statistics, 9(1):30–36,
1927. [p186]

A. M. De Livera, R. J. Hyndman, and R. D. Snyder. Forecasting time series with complex seasonal
patterns using exponential smoothing. Journal of the American Statistical Association, 106(496):1513–
1527, 2011. URL https://doi.org/10.1198/jasa.2011.tm09771. [p187]

T. D. Evans, B. C. Monsell, and M. Sverchkov. Review of Available Programs for Seasonal Adjustment
of Weekly Data. In Proceedings of the Joint Statistical Meetings. American Statistical Association, 2021.
[p186]

D. F. Findley, B. C. Monsell, W. R. Bell, M. C. Otto, and B.-C. Chen. New capabilities and methods of
the X-12-arima seasonal-adjustment program. Journal of Business & Economic Statistics, 16(2):127–152,
1998. ISSN 07350015. URL https://doi.org/10.2307/1392565. [p188, 190, 193]

P. J. Harrison and F. R. Johnston. Discount weighted regression. The Journal of the Operational Research
Society, 35(10):923–932, 1984. ISSN 01605682, 14769360. URL https://doi.org/10.2307/2582135.
[p186]

A. C. Harvey. Forecasting, structural time series models and the Kalman filter. Cambridge University Press,
1990. [p190]

R. Hyndman. fpp2: Data for "Forecasting: Principles and Practice" (2nd Edition), 2023. URL https:
//CRAN.R-project.org/package=fpp2. R package version 2.5. [p189]

R. J. Hyndman and R. Killick. CRAN Task View: Time Series Analysis, 2024. URL https://CRAN.R-
project.org/view=TimeSeries. Version 2024-10-02. [p186]

D. Ladiray and B. Quenneville. Seasonal adjustment with the X-11 method. Springer New York, NY, 2001.
[p188]

T. S. McElroy and J. A. Livsey. Ecce Signum: An R Package for multivariate signal extraction and
time series analysis. arXiv preprint arXiv:2201.02148, 2022. URL https://doi.org/10.48550/arXiv.
2201.02148. [p187]

D. A. Pierce, M. R. Grupe, and W. P. Cleveland. Seasonal adjustment of the weekly monetary aggregates:
A model-based approach. Journal of Business & Economic Statistics, 2(3):260–270, 1984. ISSN 07350015.
URL https://doi.org/10.2307/1391708. [p188]

T. Proietti and D. J. Pedregal. Seasonality in High Frequency Time Series. Econometrics and Statistics,
27:62–82, 2023. URL https://doi.org/10.1016/j.ecosta.2022.02.001. [p186, 190]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2024. URL http://www.R-project.org/. ISBN 3-900051-07-0. [p187]

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gridExtra
https://doi.org/10.1198/jasa.2011.tm09771
https://doi.org/10.2307/1392565
https://doi.org/10.2307/2582135
https://CRAN.R-project.org/package=fpp2
https://CRAN.R-project.org/package=fpp2
https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/view=TimeSeries
https://doi.org/10.48550/arXiv.2201.02148
https://doi.org/10.48550/arXiv.2201.02148
https://doi.org/10.2307/1391708
https://doi.org/10.1016/j.ecosta.2022.02.001
http://www.R-project.org/


CONTRIBUTED RESEARCH ARTICLE 197

S. J. Taylor and B. Letham. Forecasting at scale. The American Statistician, 72(1):37–45, 2018. URL
https://doi.org/10.7287/peerj.preprints.3190v2. [p187]

H. Wickham, R. François, L. Henry, K. Müller, and D. Vaughan. dplyr: A Grammar of Data Manipulation,
2023. URL https://CRAN.R-project.org/package=dplyr. R package version 1.1.4. [p189]

H. Wickham, W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, K. Woo, H. Yutani, D. Dun-
nington, T. van den Brand, and P. Posit. ggplot2: Create Elegant Data Visualisations Using the Grammar
of Graphics, 2024. URL https://cran.r-project.org/package=ggplot2. R package version 3.5.1.
[p189]

Tim Ginker
Bank of Israel
Bank of Israel. POB 780, 91007, Jerusalem, Israel
ORCiD: 0000-0002-7138-5417
timginker@gmail.com

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://doi.org/10.7287/peerj.preprints.3190v2
https://CRAN.R-project.org/package=dplyr
https://cran.r-project.org/package=ggplot2
https://orcid.org/0000-0002-7138-5417
mailto:timginker@gmail.com


CONTRIBUTED RESEARCH ARTICLE 198

Bioconductor Notes, September 2024
by Maria Doyle, Bioconductor Community Manager, and Bioconductor Core Developer Team

Abstract We discuss general project news.

1 Introduction

Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data.
The project has entered its twentieth year, with funding for core development and infrastructure
maintenance secured through 2025 (NIH NHGRI 2U24HG004059). Additional support is provided by
NIH NCI, Chan-Zuckerberg Initiative, National Science Foundation, Microsoft, and Amazon. In this
news report, we give some updates on core team and project activities.

2 Software

In May 2024, Bioconductor 3.19 was released*. It is compatible with R 4.4 and includes 2300 software
packages, 430 experiment data packages, 926 up-to-date annotation packages, 30 workflows, and
5 books. Books are built regularly from source, ensuring full reproducibility; an example is the
community-developed Orchestrating Single-Cell Analysis with Bioconductor.

*Note: Bioconductor 3.20 was subsequently released in October 2024. For details on the latest release, visit
the Bioconductor website.

3 Community and Impact

3.1 Outreachy Internships

We participated in the May-August 2024 Outreachy Internship program, during which intern Scholas-
tica Urua contributed to the Microbiome Study Curation project. Scholastica reflected on her experience
in a blog post, available here. Her work was recognized with the award for best Microbiome Virtual
International Forum MicroTalk. The recording of her talk can be viewed on YouTube.

3.2 Bioconductor Athena Award

In July 2024, Beatriz Calvo-Serra was honoured as the inaugural recipient of the Bioconductor Athena
Award. Beatriz was a passionate contributor to computational biology and an active member of the
Bioconductor community. For more details, see this blog post.

4 Conferences

4.1 BioC2024 Recap

The annual BioC conference was held July 24-26 2024 at the Van Andel Institute in Grand Rapids,
Michigan. Over 350 participants took part, with 116 attending in person and 240 joining virtually,
allowing participants from regions as far away as Latin America, Africa, and Asia to be part of
the event. This year’s conference also marked our first time in the Mid-West US, highlighting the
expanding reach and diversity of our community. See recap blog post here

4.2 EuroBioC2024 Recap

The European Bioconductor Conference (EuroBioC2024), held in Oxford in September 2024, welcomed
over 100 in-person attendees. Highlights included keynote talks and workshops. Community-driven
events like EuroBioC continue to foster collaboration and innovation. See recap blog post here.

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://bioconductor.org
https://bioconductor.org/news/bioc_3_19_release/
https://bioconductor.org/books/release/
https://bioconductor.org/books/release/OSCA/
https://bioconductor.org/news/
https://blog.bioconductor.org/posts/2024-08-15-OutreachyInternshipExperience/
https://www.youtube.com/watch?v=tGwTAxmvEYc&list=PLLOHGJKpTq6pG03Az_I80ZUReMYVmwqB9&index=5
https://blog.bioconductor.org/posts/2024-07-29-athena-award/
https://blog.bioconductor.org/posts/2024-08-12-bioc2024-recap/
https://blog.bioconductor.org/posts/2024-09-20-eurobioc2024-recap/


CONTRIBUTED RESEARCH ARTICLE 199

4.3 BioCAsia 2024 Registration Open

Registration for BioCAsia 2024 is now open! The conference will take place on November 7–8, 2024, in
Sydney, Australia, fostering collaboration among the bioinformatics community in the Asia-Pacific
region. A Conference Access Award is available to assist presenters and participants with registration
fees.

5 Boards and Working Groups Updates

5.1 Annual Call for CAB and TAB Nominations

In July 2024, Bioconductor opened its annual call for nominations to the Community Advisory Board
(CAB) and Technical Advisory Board (TAB). These boards play a vital role in guiding Bioconductor’s
technical development, community outreach, and long-term viability. The nomination period closed
on August 31, 2024, and we thank everyone who applied or shared the call within their networks. For
more information on the CAB and TAB, visit:

• Community Advisory Board (CAB)
• Technical Advisory Board (TAB)

If you are interested in becoming involved with any Bioconductor working group please contact
the group leader(s).

6 Using Bioconductor

Start using Bioconductor by installing the most recent version of R and evaluating the commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker images provides a very effective on-ramp for power users to rapidly obtain access to
standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.
• A list of available software linking to pages describing each package.
• A question-and-answer style user support site and developer-oriented mailing list.
• A community slack workspace (sign up) for extended technical discussion.
• The F1000Research Bioconductor gateway for peer-reviewed Bioconductor workflows as well

as conference contributions.
• The Bioconductor YouTube channel includes recordings of keynote and talks from recent

conferences, in addition to video recordings of training courses.
• Our package submission repository for open technical review of new packages.

Upcoming and recently completed events are browsable at our events page.

The Technical and and Community Advisory Boards provide guidance to ensure that the project
addresses leading-edge biological problems with advanced technical approaches, and adopts practices
(such as a project-wide Code of Conduct) that encourages all to participate. We look forward to
welcoming you!

We welcome your feedback on these updates and invite you to connect with us through the
Bioconductor Slack workspace or by emailing community@bioconductor.org.

Maria Doyle, Bioconductor Community Manager
University of Limerick

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://biocasia2024.bioconductor.org/
https://bioconductor.org/about/community-advisory-board/
https://bioconductor.org/about/technical-advisory-board/
https://workinggroups.bioconductor.org/currently-active-working-groups-committees.html
https://bioconductor.org/packages/SingleCellExperiment
https://bioconductor.org/help/docker/
https://bioconductor.org
https://bioconductor.org/packages
https://support.bioconductor.org
https://stat.ethz.ch/mailman/listinfo/bioc-devel
https://slack.bioconductor.org
https://f1000research.com/gateways/bioconductor
https://www.youtube.com/user/bioconductor
https://github.com/Bioconductor/Contributions
https://bioconductor.org/help/events/
https://bioconductor.org/about/technical-advisory-board/
https://bioconductor.org/about/community-advisory-board/
https://bioconductor.org/about/code-of-conduct/
https://slack.bioconductor.org
mailto:community@bioconductor.org


CONTRIBUTED RESEARCH ARTICLE 200

Bioconductor Core Developer Team
Dana-Farber Cancer Institute, Roswell Park Comprehensive Cancer Center, City University of New York, Fred
Hutchinson Cancer Research Center, Mass General Brigham

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 201

R Foundation News
by Torsten Hothorn

1 Donations and members

Membership fees and donations received between 2024-12-06 and 2025-03-26.

#Donations

Gilberto Camara (Brazil) James Curran (New Zealand) Joseph Luchman (United States)
Rudolph Martin (United States) Riccardo Martinelli (Italy) The University of Auckland,
Statistics Department (New Zealand) Kem Phillips (United States) Fergus Reig Gracia (Spain)
Thomas Stadler (Switzerland) Sebastiano Trevisani (Italy) iOMEDICO, Freiburg (Germany)

#Supporting benefactors

b-data GmbH, Winterthur (Switzerland) #Supporting institutions

Institute of Botany of the Czech Academy of Sciences, Pruhonice (Czechia) oikostat
GmbH, Ettiswil (Switzerland)

#Supporting members

Richard Abdill (United States) Michael Blanks (United States) Pina Brinker (Germany)
Ivan Maria Castellani (Italy) Keith Chamberlain (United States) Cédric Chambru (Switzer-
land) John Chandler (United States) Michael Chirico (United States) Gerard Conaghan
(United Kingdom) Brandon Dahl (United States) Dan Dediu (Spain) Kevin DeMaio (United
States) Anna Doizy (Réunion) Fraser Edwards (United Kingdom) Martin Elff (Germany)
Isaac Florence (United Kingdom) Neil Frazer (United States) Bernd Fröhlich (Germany) Sven
Garbade (Germany) Jan Marvin Garbuszus (Germany) Eduardo García Galea (Spain) Brian
Gramberg (Netherlands) Spencer Graves (United States) Krushi Gurudu (United States)
Frank Hafner (United States) Joe Harwood (United Kingdom) Philippe Heymans Smith
(Costa Rica) Adam Hill (United States) Alexander Huelle (Germany) ken ikeda (Japan) Heidi
Imker (United States) Sebastian Jentschke (Norway) JUNE KEE KIM (Korea, Republic of)
Ziyad Knio (United States) Chris Kuty (United States) Caleb Lareau (United States) Thomas
Levine (United States) Baoxiao Liu (Netherlands) Philippe MICHEL (France) Ernst Molitor
(Germany) David Monterde (Spain) Stefan Moog (Germany) Keon-Woong Moon (Korea, Re-
public of) Steffen Moritz (Germany) yoshinobu nakahashi (Japan) Tsubasa Narihiro (Japan)
Sermet Pekin (Turkey) PierGianLuca Porta Mana (Norway) Ingo Ruczinski (United States)
Choonghyun Ryu (Korea, Republic of) Dejan Schuster (Germany) Harald Sterly (Germany)
Kai Streicher (Switzerland) Robert van den Berg (Austria) Petr Waldauf (Czechia) Fredrik
Wartenberg (Sweden) Nan Xiao (United States) Yihui Xie (China) Agnieszka Zawiejska
(Poland) Vaidotas Zemlys-Balevičius (Lithuania) Guangyu Zeng (China)

Torsten Hothorn
Universität Zürich
Switzerland
ORCiD: 0000-0001-8301-0471
Torsten.Hothorn@R-project.org

The R Journal Vol. 16/3, September 2024 ISSN 2073-4859

https://orcid.org/0000-0001-8301-0471
mailto:Torsten.Hothorn@R-project.org

	Editorial
	In this issue

	Validating and Extracting Information from National Identification Numbers in R: The Case of Finland and Sweden
	Introduction
	Features of identification number systems
	Working with national identification numbers in R
	The package
	The sweidnumbr package

	Discussion
	Acknowledgements

	GeoAdjust: Adjusting for Positional Uncertainty in Geostatistial Analysis of DHS Data
	Introduction
	Geostatistical inference under jittering
	Package structure and functionality
	Step 1: Input preparation 
	Step 2: Estimation
	Step 3: Prediction

	Example: Spatial analysis of completion of secondary education in Nigeria
	Problem description
	Step 0: Data preprocessing
	Step 1: Input preparation

	Step 2: Estimation
	Step 3: Prediction 
	Summary

	SIHR: Statistical Inference in High-Dimensional Linear and Logistic Regression Models
	Introduction
	Methodological background
	Linear functional for linear model
	Linear functional for GLM
	Quadratic functional for GLM
	Conditional average treatment effects
	Inner product of regression vectors
	Distance of regression vectors

	Usage of the package
	Linear functional
	Quadratic functional
	Conditional average treatment effect
	Inner product
	Distance

	Comparative analysis
	Effectiveness of bias correction
	Comparison with other inference methods

	Real data applications
	Motif regression
	Fasting glucose level data

	Conclusion
	Acknowledgement

	SNSeg: An R Package for Time Series Segmentation via Self-Normalization
	Intro
	SNCP Framework
	Single Change-Point Estimation
	Multiple Change-Point Estimation
	Multiple Change-Point Estimation for High-Dimensional Mean
	Choice of Trimming Parameter  and Threshold Kn

	The SNSeg Package
	SNCP for Univariate Time Series
	SNCP for Multivariate Time Series
	SNHD for High-Dimensional Time Series
	Generate the SN Test Statistics 

	Additional Numerical Results
	Sensitivity analysis of SNCP
	Comparison: SNCP vs BinSeg, PELT, MOSUM and ECP
	Single vs Multiple Parameters

	Summary

	fmeffects: An R Package for Forward Marginal Effects
	Introduction
	Background on forward marginal effects
	Notation
	Forward marginal effects
	Step size selection
	Non-linearity measure
	Conditional average marginal effect

	Related work
	Model-agnostic interpretations
	Relationship between individual conditional expectation and forward marginal effect
	Related work on marginal effects

	Advantages and limitations of forward marginal effects
	Advantages
	Limitations

	On causal interpretations and avoiding model extrapolations
	User interface and package handling
	Local explanations
	Regional explanations
	Global explanations

	Design and options for extensions
	Conclusion

	GSSTDA: Implementation in an R Package of the Progression of Disease with Survival Analysis (PAD-S) that Integrates Information on Genes Linked to Survival in the Mapper Filter Function
	Introduction
	Background
	DSGA: Disease-Specific Genomic Analysis
	Selection of the genes
	Mapper

	Data structure
	Data set

	Basic functions of the package
	DSGA object
	Gene selection object
	Mapper object
	GSSTDA object

	Conclusions
	Acknowledgments

	Kernel Heaping - Kernel Density Estimation from regional aggregates via measurement error model
	Introduction
	Statistical Method
	Multivariate Kernel Density Estimation
	SEM algorithm for the estimation of densities based on aggregated data
	Boundary correction of kernel density estimation
	SEM algorithm for kernel density estimation with boundary correction
	Estimation of local proportions
	SEM algorithm estimating local proportions

	Functions in the Kernelheaping package
	Case Study
	Part 1: Bivariate kernel density estimation
	Part 2: Creating spatial maps for proportions
	Part 3: Identification of high density areas

	Robustness analysis based on a simulation study
	Kernel Heaping under different Bandwidth selectors

	Summary
	Acknowledgement

	SLCARE: An R Package for Semiparametric Latent Class Analysis of Recurrent Events
	Introduction
	Methodological background
	Recurrent event data and notation
	Models and assumptions
	Estimation and inference procedures

	Package structure
	Illustrations
	Input dataset
	Command line and function arguments
	Output and illustration with a sample dataset

	A real application
	Discussion

	PubChemR: An R Package for Accessing Chemical Data from PubChem
	Introduction
	Design
	Implementation
	Use cases
	Retrieve Compund Information
	Retrieve Substance Information
	Retrieve Assay Information
	Retrieve Property Information
	Download SDF Data
	Download Data with Different Formats
	Accessing and Exploring Chemical Data with PUG REST Service
	Enhancing Chemical Data Access with PUG View Service

	Discussion
	Related Packages
	Usage Policy of PUG REST Service
	Furter Research

	Summary

	boiwsa: An R Package for Seasonal Adjustment of Weekly Data
	Introduction
	Methodology
	Use of boiwsa
	Example 1: Gasoline production in the US
	Example 2: Initial unemployment claims in Israel

	Summary
	Acknowledgments

	Bioconductor Notes, September 2024
	Introduction
	Software
	Community and Impact
	Outreachy Internships
	Bioconductor Athena Award

	Conferences
	BioC2024 Recap
	EuroBioC2024 Recap
	BioCAsia 2024 Registration Open

	Boards and Working Groups Updates
	Annual Call for CAB and TAB Nominations

	Using Bioconductor

	R Foundation News
	Donations and members


