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Editorial
by Mark P.J. van der Loo

On behalf of the editorial board, I am pleased to present Volume 16 Issue 4 of the R Journal.

In this issue

News from CRAN, RForwards, and Bioconductor are included in this issue.

This issue features 10 contributed research articles relating to R packages on a diverse
range of topics. All packages are available on CRAN. Supplementary material with fully
reproducible code is available for download from the Journal website. Topics covered in
this issue are the following.

Time series and Survival Analyses

• Disaggregating Time-Series with Many Indicators: An Overview of the DisaggregateTS
Package

• survivalSL: an R Package for Predicting Survival by a Super Learner

Modeling and Inference

• IRTest: An R Package for Item Response Theory with Estimation of Latent Distribution
• Canonical Correlation Analysis of Survey Data: The SurveyCC R Package
• LMest: An R Package for Estimating Generalized Latent Markov Models
• MultiStatM: Multivariate Statistical Methods in R
• Calculating Standardised Indices Using SEI

Computational Statistics

• GPUmatrix: Seamlessly harness the power of GPU computing in R
• Splinets – Orthogonal Splines for Functional Data Analysis

Graphics

• UpAndDownPlots: An R Package for Displaying Absolute and Percentage Changes

Mark P.J. van der Loo
Statistics Netherlands and Leiden University

https://journal.r-project.org
r-journal@r-project.org
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survivalSL: an R Package for Predicting
Survival by a Super Learner
by Camille Sabathe and Yohann Foucher

Abstract The R package survivalSL contains a variety of functions to construct a super learner in
the presence of censored times-to-event and to evaluate its prognostic capacities. Compared to the
available packages, we propose additional learners, loss functions for the parameter estimations, and
user-friendly functions for evaluating prognostic capacities and predicting survival curves from new
observations. We performed simulations to describe the value of our proposal. We also detailed
its usage by an application in multiple sclerosis. Because machine learning is increasingly being
used in predictive studies with right-censoring, we believe that our solution can be useful for a large
community of data analysts, beyond this clinical application .

1 Introduction

In clinical practice, the prediction of the probability that a subject will experience an event is often of
interest. For instance, for patients with multiple sclerosis under first-line treatment, the prediction of
disease progression would result in the early identification of non-responders and help in deciding
the switch to second-line treatment. However, the time-to-disease progression is often not observable
for all subjects because of a lack of follow-up, i.e., right-censoring.

Several regressions can be used for prediction from right-censored data. The most popular is
probably the proportional hazards (PH) model (Cox, 1972). The corresponding baseline hazard
function can be obtained by assuming parametric distributions (Andersen et al., 1985), nonparametric
estimators (Lin, 2007) or other flexible approaches such as splines (Rosenberg, 1995). Penalized PH
models have also been proposed, particularly useful for high-dimensional data (Goeman, 2009). The
accelerated failure times (AFT) approach also constitutes an alternative to the PH assumption (Wei,
1992).

In parallel to these regression-based methods, machine learning is increasingly used. Support-
vector machines (Shivaswamy et al., 2007), neural networks (Faraggi and Simon, 1995), or even
random forests (Ishwaran et al., 2008) have been successfully developed for censored time-to-event
data. Ensemble learning allows us to combine regressions and algorithms by minimizing the cross-
validated loss function (Breiman, 1996). SL was first proposed by van der Laan et al. (2007) and van
der Laan and Dudoit (2003) from the theory of unified loss-based estimation.

Polley et al. (2011) and Polley and van der Laan (2011) extended the SL to right-censored data.
Two R-based solutions are available on GitHub repositories. The SuperLearner-Survival repository
is related to the work by Golmakani and Polley (2020). It allows us to obtain the linear predictor of
a PH regression. The survSuperLearner package was developed by Westling (2021) with additional
learners: several parametric PH models (Exponential, Weibull, log-logistic, and piecewise constant
hazard), generalized additive Cox regression, and random survival forest.

In this paper, we aim to extend these solutions by i) additional learners (accelerated failure times,
neural networks, penalized regressions), ii) several loss functions for the estimation of the parameters
(Brier score, negative binomial log-likelihood, etc.) and iii) user-friendly S3 methods for evaluating the
predictive capacities, as well as predicting survival curves from new observations (Section 1). In the
second section, we propose a simulation-based study to compare the performances of our proposal
with that of the alternative solutions. In the third section, we detail its usage by an application in
multiple sclerosis. Finally, we discuss the strengths, weaknesses and perspectives of our solution.

2 Methods

2.1 Notations

For a subject i in a sample of N independent subjects (i = 1, ..., N), we denoted the time-to-event
by T?

i . Right-censoring leads the observation of Ti = min(T?
i , Ci), where Ci is the censoring time.

Let Di = 1
{

T?
i ≤ Ci

}
be the event indicator. The survival function at time t for a subject with the

characteristics Zi at baseline is defined by S(t | Zi) = P(T?
i > t | Zi).

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 5

2.2 Definition of the super learner

Let Ssl(.) be the survival function obtained by the SL such as Ssl(t | Zi) = ∑M
m=1 wm × Sm(t | Zi),

where Sm(.) is the survival function obtained by its mth learner (m = 1, ..., M), and w = (w1, ..., wM)
are the corresponding weights with respect to ∑M

1 wm = 1 and 0 ≤ wm ≤ 1. The estimations of the
learners and the weights can be obtained by respecting the following steps (Polley and van der Laan,
2010):

1. Estimate the M models or algorithms on the entire sample as usual. The procedure of estimation
can be different for each model. For instance, a parametric model may be fitted by maximizing
the full likelihood, a Cox regression by maximizing the partial likelihood and estimating the
baseline survival function with Breslow method, or a random survival forest by maximizing the
between-node survival differences according to the log-rank statistic.

2. By using the M models or algorithms estimated in the step #1 (m = 1, ..., M), predict the values
Ŝm(u | Zi) for each subject i = 1, ..., N and for a vector of U times (u = u1, ..., uU) and stack the
values in a 3-dimensional array of size (N × U × M).

3. Split the sample into a training and validation sample according to a V-fold cross-validation,
i.e., V-equal size and randomly selected groups. Let T(v) be the vth training sample and V(v)
be the corresponding validation sample (v = 1, .., V).

4. For the vth fold, estimate the M models or algorithms from T(v). The learners based on
the estimation of hyperparameters should be tuned for each of the V folds. Note that this
tunning step is often based on cross-validation and should be performed for each of the V
folds. Regarding the corresponding computational burden, a compromise consists of using the
hyperparameters estimated at the step #1 (Le Borgne et al., 2021).

5. Compute the corresponding predicted survival rates for the individuals of the validation sample
V(v) and the U times.

6. Stack the predictions S̃m(u | Zi) obtained in the step #5 in a 3-dimensional array of size (N × U
× M).

7. Determine the loss function L(w | τ) for quantifying the gap of the predictions S̃sl(τ | Zi) =
∑M

m=1 wmS̃m(τ | Zi) and the observations (Ti, Di) for a prognostic up to τ. The loss functions
available in the package are listed in the next subsection.

8. Estimate the weights w by minimizing the loss function for a prognostic up to a time τ:

ŵ = arg min
w

L(w | τ)

9. Combine ŵm with Ŝm(u | Zi) to obtain the final super learner:

Ŝsl(t | Zi) =
M

∑
m=1

ŵmŜm(t | Zi)

2.3 Available loss functions for estimating the weights

Several loss functions L(w | τ) are available in the package. The Brier score (BS) for right-censored
data and a prediction at time τ is defined by:

BS(w | τ) =
1
N ∑

i

[
S̃sl(τ | Zi)

21{Ti ≤ τ, Di = 1}
Ĝ(Ti)

+
(1− S̃sl(τ | Zi))

21{Ti > τ}
Ĝ(τ)

]
where Ĝ(u) = P(Ci > u) is the survival function of the censoring time (van Houwelingen et al., 2012).
The corresponding τ-restricted integrated BS is RIBS(w | τ) =

∫ τ
0 BS(u)du. The integrated BS equals

RIBS(w | max(T?
i )). We also considered the negative binomial log-likelihood (BLL), which is defined

for a prognostic at time τ as follows:

BLL(w | τ) =
1
N ∑

i

[
log(1− S̃sl(τ | Zi))1{Ti ≤ τ, Di = 1}

Ĝ(Ti)
+

log(S̃sl(τ | Zi))1{Ti > τ}
Ĝ(τ)

]
We also proposed the corresponding integrated and τ-restricted integrated versions. Additionally, we
implemented the concordance index (CI) as defined by Uno et al. (2011):

CI(w | τ) =
∑i ∑j 1{Tj < Ti, S̃sl(τ | Zj) > S̃sl(τ | Zi)}Dj

∑i ∑j 1{Tj < Ti}Dj
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Finally, we considered the area under the time-dependent ROC curve, i.e., the sensitivity (SE) against
one minus the specificity (SP) at each threshold η (Hung and Chiang, 2010):

SEη(w | τ) =
∑i Di1{Ti ≤ τ, S̃sl(τ | Zi) > η}/(1− Ĝ(Ti))

∑i Di1{Ti ≤ τ}/(1− Ĝ(Ti))

SPη(w | τ) =
∑i 1{Ti > τ, S̃sl(τ | Zi) ≤ η}

∑i 1{Ti > τ}

2.4 Available learners

Several models or algorithms are proposed in the survivalSL package:

• Parametric AFT models. They can be considered with Weibull, Gamma or generalized Gamma
distributions (flexsurv package). The parameters are estimated by likelihood maximization.

• Parametric PH models. They can be considered with Exponential or Gompertz distributions
(flexsurv package). The parameters are estimated by likelihood maximization.

• Spline-based PH models. We considered the spline-based survival model proposed by Royston
and Parmar (2002). To estimate the baseline distribution, it involves one hyperparameter: the
number of internal knots of the natural cubic spline, with a default grid search k = {1, 2, 3, 4}.
The parameters are estimated by likelihood maximization (flexsurv package).

• Semi-parametric PH models. It corresponds to a PH model (coxph function of the survival
package) with a non-parametric baseline hazard function estimated by using the Breslow
estimator (Lin, 2007). This approach can be used with or without a forward selection of
covariates by using the AIC.

• Penalized PH models. For high-dimensional data and/or covariate selection, three penalties
can be used for the previous semiparametric PH model: Lasso, Ridge, or Elastic-Net (glmnet
package). The quantitative covariates are transformed with B-splines to relax the log-linear
assumption. The hyperparameters λ of the Lasso regression allows for selection of the covariates,
while it allows for the shrinkage of the regression coefficients in the Ridge regression. The
Elastic-Net allows the two penalties. By default, we implemented the grid search proposed by
Simon et al. (2011) for λ and {0.1, 0.2, ..., 0.9} for α. The Lasso penalization corresponds to α = 0,
while the Ridge penalization corresponds to α = 1.

• Random survival forests. This ensemble tree method extends Breiman’s random forest
framework to right-censored data (Ishwaran et al., 2008). It allows estimation of the cumulative
hazard function in each node by using the nonparametric estimator of survival proposed by
Aalen (1978). It involves three hyperparameters (randomSRC package): number of covariates
to test for splitting the node, minimal number of events per terminal node, and number of
trees. The default grid search is mtry = {1, 2, ..., 2 + 0.5× number of covariates}, nodesize =
{2, 4, 6, 10, 20, 30, 50, 100} and ntree = 500, respectively.

• Survival neural networks. We implemented the method proposed by Biganzoli et al. (1998).
It allows using the nnet package for estimating a feed forward neural network model for partial
logistic regression. It involves four hyperparameters: the length of the time intervals, the
number of units in the hidden layer, the weight decay, the maximum number of iterations,
and the maximum allowable number of weights. The optimal combination is estimated by
cross-validation and the previous possible loss functions. The default grid search is composed
by inter = 1, size = {2, 4, 6, 8, 10}, decay = {0.001, 0.01, 0.02, 0.05}, maxit = 100, and MaxNWts
= 10000, respectively.

3 Simulations

3.1 Design

We simulated 1000 data sets for each scenario. The times-to-event were generated from Weibull
distributions with PH assumption. The censoring times were generated from uniform distributions
to obtain a 40% censoring rate. We studied two sample sizes for learning (200 and 500), while the
validation samples were composed of 500 subjects. We proposed two contrasting scenarios (Figure ??
in Appendix):

• A simple scenario with 6 independent covariates, 2 were continuous and 4 qualitative. Among
them, 1 continuous and 2 qualitative covariates were associated with the times-to-event distri-
bution without any log-linearity issue.

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 7

• A complex scenario with 23 correlated covariates: 12 continuous covariates (several nonlinear
relationships, two effects were step functions, two were quadratic functions, five were log-linear),
11 qualitative covariates and 1 interaction.

We compared our proposed SL with each included learner, the perfectly specified PH model
(i.e., the model used to generate the times-to-event, the only estimation consisting of the regression
coefficients), and the SL obtained by the survSuperLearner package (Westling, 2021). We decided to
use the package proposed by Westling (2021) as a comparator because it includes additional learners
compared to the functions proposed by Golmakani and Polley (2020). The SL weights were estimated
by minimizing the integrated BS (IBS) for all the methods.

In the SL proposed by Westling (2021), we included the 5 possible learners: the PH model with the
Breslow estimator, the Exponential PH model, the random survival forests, the Lasso PH model and
the PH model with the univariate selection of covariates (p < 0.05). We used the default grid of the
hyperparameters.

In our proposed SL, we included the 7 possible learners: the PH model with the Breslow estimator,
the same model with forward selection based on AIC minimization, the Elastic-Net PH model with
B-splines on quantitative covariates, the random survival forest, the Exponential PH model, the
Gamma distribution-based AFT model, and the survival neural network. Note that we did not
consider the Weibull PH model since it was used for data generation. We used the default grid of the
hyperparameters.

3.2 Results of the simple scenario

Figure 1 presents the distributions of the IBS over the learning (on the left) and validation samples
(on the right). The related R code is available in Appendix. Consider the situation where N = 200 for
learning and N = 500 for validation (the first two plots on the top). The perfectly specified model
had the lower IBS. This result was expected since it constitutes the gold standard to reach by the
other methods. The Elastic-Net PH regression outperformed all the other approaches in the learning
samples. This result explained the important weight of this method, approximately 25% in our SL,
as illustrated in Figure 5 in Appendix. Nevertheless, this apparent result was not observed in the
validation samples, illustrating overfitting.

In both the learning and the validation samples, our proposed SL, the PH model with the Breslow
estimator, and the same model with forward selection based on the AIC had the best performances,
higher than that of the SL proposed by Westling (2021).

The survival neural network and the PH model with an Exponential distribution were associated
with larger values of the IBS in both the learning and the validation samples. Comparatively, the
results were closed across the other methods. In the validation samples, the highest variability of the
IBS was observed for the survival neural network.

When N = 500 in both the learning and the validation samples (the two bottom plots of Figure 1),
the results were close. However, one can note that the means and variances of the IBS were lower.

Results of the complex scenario

The related R code is available in Appendix. As illustrated in Figure 2, regarding the results in
the validation samples, our proposed SL and the Elastic-Net PH regression outperformed the other
models/algorithms. More precisely, the mean of the IBS was lower for the Elastic-Net PH model for a
learning sample size of 200. The value of our proposed SL was close. When N = 500 for learning, the
mean of the IBS was lower for our SL, but that of the Elastic-Net PH model was close. Nevertheless,
regardless of the sample size for learning, our SL was associated with lower variance in the IBS.

Among the other differences compared to the simple context, the random survival forests and
the survival neural networks performed better than the other model-based predictors, except the
Elastic-Net PH model.

In both the learning and the validation samples, and regardless the sample size for learning, our
proposed SL had slightly higher performances compared to the results of the SL proposed by Westling
(2021).

3.3 Running times

We further explored the time required to estimate a SL depending on the sample size and the number
of predictors. For this purpose, we simulated data according to the complex scenario (Figure ?? in
Appendix). We used a 20-fold cross-validation, tested sample sizes from 500 to 3500, and reduced
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Figure 1: Simulation results in the simple context.
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Figure 2: Simulation results in the complex context.
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Figure 3: Running times according to the sample size and the number of covariates. Results obtained
for a MacBook Pro 2.6 GHz Intel Core i7 6 cores.

the number of predictors from 22 to 4. The results are illustrated by Figure 3. If we considered 20
predictors, the running times increased exponentially from 0.10 (N = 500) to 3.23 hours (N = 3500).
For 10 predictors, the times increased from 0.06 to 1.67 hours.

4 Usage

4.1 The main functions of the package

The survivalSL function fits the SL. It is mainly based on the following arguments:

• formula: A formula object, with the response on the left, and the predictors on the right. The
response must be a survival object as returned by the Surv function..

• methods: The names of the learners included in the SL. At least two models/algorithms must be
included. The complete list of candidates is described in Table 1.

• data: The data frame in which to look for the variables related to the follow-up time, the event
indicator, and the covariates.

• metric: The loss function used to estimate the weights of the learners.

• pro.time: The prognostic time used for the Brier score, the negative binomial log-likelihood or
the corresponding restricted versions.

• cv: The number of cross-validated samples to estimate the weights of the learners.

• param.tune: Optional list to define the grid search of the hyperparameter(s) or to set the value(s)
of the hyperparameter(s). If NULL, the default grid is used.

• seed: A numeric value for random seed for reproducibility. The default is NULL.

Note that a method based on hyperparameters can be used several times with different values
of hyperparameters. When the hyperparameters are specified by the user, the argument param.tune
must be a list with their value(s) and name(s). For a user-friendly manipulation of the resulting sltime
object, we proposed several S3 methods listed in Table 2. They allow for evaluating the calibration
and discrimination capacities, or predicting survival curves. These functions can be applied to new
data sets. Similar S3 methods are available for other learners (LIB_AFTgamma, LIB_COXlasso, etc.).

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859
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Table 1: List of possible learners (#: Breslow’s estimation of the baseline hazard function). The last
column lists the learners included in the survSuperLearner proposed by Westling (2021). This package
additionally considers generalized additive Cox regression and piecewise constant hazard regression.

Name Description Westling

LIB_COXall Proportional hazards (PH) model with all covariates (#) Yes
LIB_COXaic PH model with covariate selection by AIC minimization (#) No
LIB_COXen PH model with B-spline for the quantitative covariates and

Elastic-Net penalization (#, hyperparameters: alpha and lambda)
Yes

LIB_COXlasso PH model with B-spline for the quantitative covariates and Lasso
penalization (#, hyperparameter: lambda)

Yes

LIB_COXridge PH model with B-spline for the quantitative covariates and Ridge
penalization (#, hyperparameter: lambda)

Yes

LIB_AFTgamma Accelerated failure times (AFT) model with Gamma distribution No
LIB_AFTggamma AFT model with generalized Gamma distribution No
LIB_AFTllogis AFT model with log-logistic distribution No
LIB_AFTweibull AFT model with Weibull distribution Yes
LIB_PHexponential Parametric PH model with Exponential distribution Yes

LIB_PHgompertz Parametric PH model with Gompertz distribution Yes
LIB_PHspline PH model with natural cubic spline as baseline distribution

(hyperparameters: k)
No

LIB_RSF Random survival forest (hyperparameters: nodesize, mtry and
ntree)

Yes

LIB_PLANN One-layer survival neural network (hyperparameters: n.nodes,
decay, batch.size and epochs)

No

Table 2: List of S3 functions applicable to an sltime object

Function Description

plot.sltime To obtain a calibration plot.
predict.sltime To predict the survival probabilities from the SL and the included learners.
summary.sltime To obtain metrics describing the prognostic capacities of the SL and the included learners.
print.sltime To print the learners and their weights

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859
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4.2 Application to multiple sclerosis

This section is not intended to propose guidelines for data analysis. It only consists of illustrating the
use of the survivalSL package. Beside the present application, a recent work proposed recommenda-
tions for implementing such a SL (Phillips et al., 2023).

The following application is related to the prediction of the time to disease progression from
prognostic factors collected one year after the initiation of a first-line treatment, which is the baseline
of the cohort (T? = 0). We also compared the prognostic capacities of the obtained SL with those of
the modified Rio score (Sormani et al., 2013).

Data description. We detailed the implementation of the previous function with an application
based on the OFSEP cohort, which was composed of 1300 simulated patients with multiple sclerosis.
The simulations were performed from the observed cohort to obtain the present shared data set which
complies with the General Data Protection Regulation of the European Union. More precisely, the
prognostic factors were first simulated one by one, i.e., using the factors already simulated to obtain
the next one. These simulations were based on linear or logistic models for continuous or categorical
factors, respectively. Finally, the time to disease progression was simulated by a Weibull PH model,
which explains why it was not considered among the learners.

library("survivalSL")
data(dataOFSEP); head(dataOFSEP)

#> time event age duration period gender relapse edss t1 t2 rio
#> 1 2.1195051 1 34 1113 0 1 1 low 0 0 1
#> 2 0.8160995 1 37 1296 0 1 1 high 1+ 0 1
#> 3 1.9709546 1 33 995 1 1 0 low 0 0 0
#> 4 2.5881311 1 35 858 1 1 0 low 0 0 0
#> 5 1.4726224 1 31 759 1 0 2+ miss 1+ 0 2
#> 6 1.6970962 1 40 1642 1 1 0 high 0 0 0

The first two columns of the dataOFSEP table correspond to the time to disease progression (time)
and the event indicator equals 1 for patients with events and 0 for right-censored patients. The time to
disease progression was defined by the minimum among the time to first relapse, the time to increase
of Expanded Disability Status Scale (EDSS), and the time to switch for inefficacy. The EDSS ranges
from 0 to 10 (the higher levels of disability) and is based on an examination by a neurologist.

The other columns were the available predictors one year after the initiation of first-line therapy.
The third and fourth columns were two quantitative predictors: patient age (in years) and disease
duration (in days). The other columns were qualitative predictors: calendar period (1 if between 2014
and 2018, and 0 otherwise), gender (1 if women), diagnosis of relapse since treatment initiation (1 if
at least one event, and 0 otherwise), and EDSS level (miss if missing, low if level between 0 and 2, and
high otherwise). The variables t1 and t2 were related to the lesions observed from magnetic resonance
imaging, namely, the new gadolinium-enhancing T1 lesion (miss if missing, 1+ if at least one lesion,
and 0 otherwise) and the new T2 lesion (1 if at least one lesion, and 0 otherwise), respectively.

The last column corresponded to the modified Rio score, i.e., the sum of the relapses (0 for none,
1 for one event, and 2 for at least 2 events) and the new T2 lesion (0 for none, and 1 for at least one
lesion) observed since the treatment initiation (Sormani et al., 2013). We transformed the categorical
predictors into binary variables.

dataOFSEP$relapse.1 <- 1*(dataOFSEP$relapse=="1")
dataOFSEP$relapse.2 <- 1*(dataOFSEP$relapse=="2+")
dataOFSEP$edss.1 <- 1*(dataOFSEP$edss=="low")
dataOFSEP$edss.2 <- 1*(dataOFSEP$edss=="high")
dataOFSEP$t1.1 <- 1*(dataOFSEP$t1=="0")
dataOFSEP$t1.2 <- 1*(dataOFSEP$t1=="1+")

Super learner training. We randomly selected two-thirds of the sample to train the SL, and the
other third was further used for validation in the next subsection. We set the seed to ensure the results
replicability.

set.seed(117)
dataOFSEP$train <- 1*rbinom(n=dim(dataOFSEP)[1], size=1, prob=2/3)
dataTRAIN <- dataOFSEP[dataOFSEP$train==1,]
dataVALID <- dataOFSEP[dataOFSEP$train==0,]
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We fitted the SL with the following learners: PH model with Gompertz baseline hazard function,
AFT model with generalized Gamma distribution, Elastic-Net PH model with nonparametric baseline
hazard function (Breslow estimator) and B-spline transformations of the quantitative variables, and
random survival forest. We used the default grids to estimate the hyperparameters. The weights were
estimated to minimize the concordance index at 2 years with a 30-fold cross-validation. Note that
851 patients were included in the training sample, and 651 events were observed. In such a situation,
Phillips et al. (2023) recommended at least 20 folds.

.f <- Surv(time, event) ~ age + duration + period + gender +
relapse.1 + relapse.2 + edss.1 + edss.2 + t1.1 + t1.2

sl1 <- survivalSL(formula=.f, metric="uno_ci", data=dataTRAIN,
methods=c("LIB_COXen", "LIB_PHspline", "LIB_AFTggamma", "LIB_RSF"),
cv=30, optim.local.min=TRUE, show_progress=FALSE, seed=117)

print(sl1, digits=4)

#> The contribution of the learners:
#>
#> leaners weights
#> 1 LIB_COXen 0.1775
#> 2 LIB_PHspline 0.2519
#> 3 LIB_AFTggamma 0.3039
#> 4 LIB_RSF 0.2667
#>
#> Minimum of the 30-fold CV of the metric uno_ci:0.6851.

Moreover, the package allows the user to propose a more precise grid for the hyperparameter-
based methods. For instance for the spline-based PH model, the user may precise his/her own grid
search:

.tune <- vector("list",4)

.tune[[2]] <- list(k=1:6)
sl2 <- survivalSL(formula=.f, metric="uno_ci", data=dataTRAIN,

methods=c("LIB_COXen", "LIB_PHspline", "LIB_AFTggamma", "LIB_RSF"),
cv=30, optim.local.min=TRUE, param.tune=.tune, show_progress=FALSE, seed=117)

print(sl2, digits=4)

#> The contribution of the learners:
#>
#> leaners weights
#> 1 LIB_COXen 0.2486
#> 2 LIB_PHspline 0.3340
#> 3 LIB_AFTggamma 0.1773
#> 4 LIB_RSF 0.2401
#>
#> Minimum of the 30-fold CV of the metric uno_ci:0.684.

On a MacBook Pro 2.6 GHz Intel Core i7 6 cores, the running times to estimate sl1 and sl2 were
11.0 and 13.2 minutes, respectively. Note that the optional argument related to the definition of the
grid may be used to estimate the hyperparameters from the entire sample and use the related values
in each fold of the steps #4 and #5 of the super learner estimation. This strategy may be associated
with overfitting, but an important decrease in the computation time and the fluctuation of the results.
Indeed, regarding the random allocation of the individuals in the folds at the steps #1 (for estimating
the learners from the entire training sample) and #3 (for estimating the prediction matrix includes
in the loss function), the results depend on the generating pseudo random numbers. To illustrate
this fluctuation, the sl2 estimation was performed for several seeds in Appendix. The weights of the
learners significantly varied but the predictive performances of the super learners were stable.

Super learner validation. We further studied the prognostic capacities of this algorithm, always
up to 2 years. First, we observed that the metrics between the training and validation samples were
close, illustrating the absence of overfitting.

rbind(train = summary(sl2, method="sl", pro.time=2, digits=4)$metrics,
test = summary(sl2, newdata=dataVALID, method="sl",

pro.time=2, digits=4)$metrics)
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Figure 4: Calibration plot at 2 years for the validation sample.

#> p_ci uno_ci auc bs ibs ribs bll ibll ribll ll
#> train 0.7463 0.7444 0.8056 0.1838 0.0813 0.0840 0.5487 NaN NaN -465.7561
#> test 0.6737 0.6713 0.7036 0.2170 0.0924 0.0969 0.6232 NaN NaN -595.7444

The user may also want to evaluate the prognostic capacities of the Elastic-Net PH model since it
mainly contributes to the SL. It illustrates a marginal increase of the prognostic capacities related to
the SL:

rbind(train = summary(sl2, method="LIB_COXen", pro.time=2, digits=4)$metrics,
test = summary(sl2,newdata=dataVALID, method="LIB_COXen",

pro.time=2, digits=4)$metrics)

#> p_ci uno_ci auc bs ibs ribs bll ibll ribll ll
#> train 0.6782 0.6762 0.7204 0.1990 0.0875 0.0903 0.5843 0.2780 0.2921 -566.8255
#> test 0.6620 0.6588 0.6874 0.2201 0.0929 0.0974 0.6296 0.2952 0.3146 -664.7764

As illustrated by Figure 4, which is simply obtained by applying the plot.sltime function to the
sl2 object, the calibration of the SL was acceptable for patients of the validation sample. It represents
the observed survival and the related 95% confidence intervals, which are respectively obtained by the
Kaplan and Meier estimator and the Greenwood formula, against the mean of the predicted values,
for individuals stratified into groups of the same size according to the percentiles of the predicted
values. The identity line is usually included for reference.

plot(sl2, newdata=dataVALID, cex.lab=0.70,
cex.axis=0.70, n.groups=5, pro.time=2, col=2)

The predict.sltime function returns predicted survival probabilities. With this function, one can
also investigate the calibration by comparing the mean of the predictions of the patients included in
the validation sample and the observed relapse-free survival, as illustrated in Figure 6 (Appendix).
The SL did not improve the discrimination capacities offered by the modified Rio score for a prognostic
up to 2 years after the treatment initiation (Figure 7 in Appendix).
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5 Conclusion

The present paper introduced the survivalSL package to estimate a SL from right-censored data, to
evaluate its prognostic capacities, and to predict survival curves for new individuals. The solution
allows a larger set of learners (models or algorithms) and several loss functions to estimate their
contributions. The user can define a grid for estimating the hyperparameters by cross-validation, or
even fix their values.

The simulation study illustrated the SL performances. More precisely, in a simple context (several
independent covariates, respect of the log-linearity assumption, no interaction), its performances are
equivalent to more simple PH models. In contrast, in a complex context, the performances of the
simple PH models decreased, and the SL resulted in the best performances: both the means and the
variances of the loss functions were comparatively small relative to other methods considered.

We illustrated the usage of the package for predicting the non-response of patients with multiple
sclerosis treated with a first-line therapy. The S3 methods allow a simple evaluation of the prognostic
capacities, which can be compared with those of existing scoring systems. In this simple application,
comparable to the simple scenario of the simulation study, the SL did not result in higher prognostic
capacities compared to the Elastic-net PH model or even the existing modified Rio score.

As machine learning is increasingly being used in predictive studies, we believe that our proposal
will be useful for a large community of data analysts. Nevertheless, we can point to three limitations.
Firstly, even if we considered many learners, the current version of the package does not allow the
users to include their own algorithms or models. An important perspective of development is to
integrate this functionality. Secondly, one can also note that the estimation of learners and their weights
assume non-informative censoring. Introducing the inverse probability of censoring weighting (IPCW)
method, to correct for dependent censoring, would be of great interest, but challenging for some
learners such as neural networks or random survival forests.
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7 Bug reports

To improve future versions of the package, you can report errors at the following address:

https://github.com/chupverse/survivalSL/issues
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8 Supplementary materials

8.1 R code to perform the simulations of the simple scenario

library(survivalSL)

# definition of the parameters related to the simulated data
n.valid <- 500 # sample size for validation
n.learn <- 500 # sample size for training

n <- n.valid + n.learn # overall sample size

max.time <- 50 # maximum follow-up time

mean.x <- 0; sd.x <- 1 # normal distribution of the quantitative predictors
proba.x <- .5 # proportion of the binary predictors

a <- 2; b <- .05 # Weibull baseline distribution of the PH model
beta <- c(log(1.8), log(1.8), log(1.3), 0, 0, 0) # regression coefficients

# simulation of the training and validation samples
x1 <- rnorm(n, mean.x, sd.x)
x2 <- rbinom(n, 1, proba.x)
x3 <- rbinom(n, 1, proba.x)
x4 <- rnorm(n, mean.x, sd.x)
x5 <- rbinom(n, 1, proba.x)
x6 <- rbinom(n, 1, proba.x)
x <- cbind(x1, x2, x3, x4, x5, x6) # matrix of the potential predictors

u <- runif(n, 0, 1)
times <- 1/b*((-exp(-1*(x %*% beta))*(log(1-u)))**(1/a)) # time to event

censoring <- runif(n, min=0, max=max.time)

status <- ifelse(times <= censoring, 1, 0) # event status
obs.times <- ifelse(times <= censoring, times, censoring) # follow-up times

data <- cbind(obs.times, status, as.data.frame(x))

data.simul <- list(data[1:n.valid,], data[(n.valid+1):n,])

# definition of the grid search related to the hyperparameters

slres <- survivalSL(
formula=Surv(obs.times, status) ~ x1 + x2 + x3 + x4 + x5 + x6,
methods=c("LIB_COXen", "LIB_COXall", "LIB_RSF", "LIB_PLANN",

"LIB_AFTgamma", "LIB_PHexponential"),
metric="ibs", data=data.simul[[1]], show_progress=FALSE, cv=10)

# loss functions estimated from training sample (Figure 1)
summary(slres)

# from validation sample (Figure 1)
summary(slres, newdata=data.simul[[2]])
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8.2 R code to perform the simulations of the complex scenario

library(survivalSL)

# definition of the parameters related to the simulated data
n.valid <- 500 # sample size for validation
n.learn <- 200 # sample size for training
n <- n.valid + n.learn # overall sample size

max.time <- 50 # maximum follow-up time

b0.t <- (-0.4) # intercept related to the predictors' distribution
b1.t <- log(2) # slope related to the predictors' distribution

a <- 2; b <- .05 # Weibull baseline distribution of the PH model
b1.o <- 0.69 # regression coefficients of the PH model

# simulation of the training and validation samples
.x1 <- rnorm(n, 0, 1)
.x2 <- rnorm(n, b0.t + b1.t * .x1, 1)
.x3 <- rnorm(n, b0.t - b1.t * .x1 - b1.t * .x2, 1)
.x4 <- rnorm(n, b0.t + b1.t * .x3, 1)
.x5 <- rnorm(n, 0, 1)
.x6 <- 1 * (rnorm(n, 0, 1) > 0.66)
.x7 <- 1 * (rnorm(n, b0.t - b1.t * .x5, 1) > (-0.40))
.x8 <- rnorm(n, b0.t - b1.t * .x6, 1)
.x9 <- 1 * (rnorm(n, b0.t + b1.t * .x7, 1) > (-0.80))
.x10 <- rnorm(n, b0.t + b1.t * .x8, 1)
.x11 <- rnorm(n, 0, 1)
.x12 <- 1 * (rnorm(n, b0.t + b1.t * .x9, 1) > (0.84))
.x13 <- 1 * (rnorm(n, b0.t + b1.t * .x10, 1) > (-0.09))
.x14 <- rnorm(n, b0.t - b1.t * .x12 - b1.t * .x11, 1)
.x15 <- rnorm(n, b0.t - b1.t * .x12, 1)
.x16 <- 1 * (rnorm(n, 0, 1) > (-0.66))
.x17 <- 1 * (rnorm(n, b0.t - b1.t * .x16, 1) > (-0.92))
.x18 <- rnorm(n, 0, 1)
.x19 <- 1 * (rnorm(n, 0, 1) > (0.66))
.x20 <- 1 * (rnorm(n, 0, 1) > (0.66))
.x21 <- rnorm(n, 0, 1)
.x22 <- 1 * (rnorm(n, 0, 1) > (0.66))

data.obs <- data.frame(x1=.x1, x2=.x2, x3=.x3, x4=.x4, x5=.x5, x6=.x6,
x7=.x7, x8=.x8, x9=.x9, x10=.x10, x11=.x11, x12=.x12, x13=.x13,
x14=.x14, x15=.x15, x16=.x16, x17=.x17, x18=.x18, x19=.x19,
x20=.x20, x21=.x21, x22=.x22)

bx <- b0.t + b1.t*data.obs$x1 - b1.t*data.obs$x3 + b1.t*data.obs$x5 -
b1.t*data.obs$x7 + b1.t*data.obs$x9 - b1.t*data.obs$x11 +
b1.t*data.obs$x13 - b1.t*data.obs$x15 - b1.t*data.obs$x17 +
b1.t*data.obs$x19 - b1.t*data.obs$x21

pr.t <- (exp(bx) / (1 + exp(bx)))
data.obs$t.obs <- rbinom(n, 1, prob = pr.t)

bx <- b1.o*(data.obs$x2>-0.40) - b1.o*data.obs$x3 +
b1.o*0.5*(data.obs$x3^2) + b1.o*data.obs$x6 + b1.o*data.obs$x7 +
b1.o*data.obs$x10 + b1.o*0.5*(data.obs$x11^2) - b1.o*data.obs$x14 -
b1.o*(data.obs$x15>-0.57) + b1.o*data.obs$x18 + b1.o*data.obs$x19 +
b1.o*data.obs$t.obs + b1.o*0.5*data.obs$t.obs*data.obs$x18

u <- runif(n,0,1)
times <- 1/b*((-exp(-bx)*(log(1-u)))**(1/a))

censoring <- runif(n, min=0, max=max.time)
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status <- ifelse(times <= censoring, 1, 0)
obs.time <- ifelse(times <= censoring, times, censoring)

data <- cbind(obs.time, status, data.obs)

data.simul <- list(data[1:n.valid,], data[(n.valid+1):n,])

slres <- survivalSL(
formula=Surv(obs.time, status) ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 +
x10 + x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22,
data=data.simul[[1]], metric="ibs", cv=10, show_progress=FALSE,
methods=c("LIB_COXen", "LIB_COXall", "LIB_RSF", "LIB_PLANN",

"LIB_AFTgamma", "LIB_PHexponential"))

# loss functions estimated from training sample (Figure 2)
summary(slres)

# from validation sample (Figure 2)
summary(slres, newdata=data.simul[[2]])

8.3 Fluctuation of the results according to the seed

We estimate three additional SL with 3 alternative initializations of the pseudo-random number
generator.

sl2.1 <- survivalSL(formula=.f, data=dataTRAIN, metric="uno_ci",
methods=c("LIB_COXen", "LIB_PHspline", "LIB_AFTggamma", "LIB_RSF"),
cv=30, optim.local.min=TRUE, param.tune=.tune, show_progress=FALSE, seed=118)

sl2.2 <- survivalSL(formula=.f, data=dataTRAIN, metric="uno_ci",
methods=c("LIB_COXen", "LIB_PHspline", "LIB_AFTggamma", "LIB_RSF"),
cv=30, optim.local.min=TRUE, param.tune=.tune, show_progress=FALSE, seed=119)

sl2.3 <- survivalSL(formula=.f, data=dataTRAIN, metric="uno_ci",
methods=c("LIB_COXen", "LIB_PHspline", "LIB_AFTggamma", "LIB_RSF"),
cv=30, optim.local.min=TRUE, param.tune=.tune, show_progress=FALSE, seed=120)

rbind(
seed.121 = summary(sl2, newdata=dataVALID, method="sl", pro.time=2, digits=4),
seed.122 = summary(sl2.1, newdata=dataVALID, method="sl", pro.time=2, digits=4),
seed.123 = summary(sl2.2, newdata=dataVALID, method="sl", pro.time=2, digits=4),
seed.124 = summary(sl2.3, newdata=dataVALID, method="sl", pro.time=2, digits=4))

#> metrics method pro.time ROC.precision
#> seed.121 data.frame,10 "sl" 2 numeric,99
#> seed.122 data.frame,10 "sl" 2 numeric,99
#> seed.123 data.frame,10 "sl" 2 numeric,99
#> seed.124 data.frame,10 "sl" 2 numeric,99

rbind(
seed.121 = sl2$weights$values,
seed.122 = sl2.1$weights$values,
seed.123 = sl2.2$weights$values,
seed.124 = sl2.3$weights$values)

#> [,1] [,2] [,3] [,4]
#> seed.121 0.2486286 0.3339517 0.17734499 0.2400747
#> seed.122 0.2713981 0.3002995 0.17599652 0.2523059
#> seed.123 0.1721614 0.5182388 0.08864614 0.2209536
#> seed.124 0.2427707 0.2397718 0.27035706 0.2471004
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Figure 5: Weight distribution among 50 randomly estimated super learners.

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 19

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time after the first anniversary of the treatment in years

D
is

ea
se

 p
ro

gr
es

si
on

 fr
ee

 s
ur

vi
va

l

Observed survival
95% confidence interval
Mean of the predictions

Figure 6: Observed relapse-free survival of the OFSEP validation sample (Kaplan-Meier estimator)
compared to the mean of the individual predictions.

plot(survfit(Surv(time, event) ~ 1, data = dataVALID),
ylab="Disease progression free survival",
xlab="Time after the first anniversary of the treatment in years",
cex.lab = 0.8, cex.axis=0.8)

.pred.matrix <- predict(sl2, newdata=dataVALID,
newtimes = seq(0, 6, by=0.05))$predictions$sl

.pred <- apply(.pred.matrix, MARGIN=2, FUN="mean")

lines(x=seq(0, 6, by=0.05), y=.pred, col=2)

legend("bottomleft", c("Observed survival", "95% confidence interval",
"Mean of the predictions"), col=c(1, 1, 2), lty=c(1,2,1), cex=0.8)
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Figure 7: ROC curve of the SL (line in red) compared to the sensitivity and specificity of the modified
Rio score (points in blue) for a prognostic up to 2 years in the OFSEP validation sample.

library("RISCA")

.pred <- predict(sl2, newdata=dataVALID)

dataVALID$sl <- 1 - .pred$predictions$sl[,sum(.pred$times<2)]

roc.sl <- roc.time(times="time", failures="event", variable="sl",
confounders=~1, data=dataVALID, pro.time=2,
precision=seq(0.1, 0.9, by=0.01))

# Note: “confounders=~1” for usual time-dependent ROC curves,
# i.e., without considering confounder (doi:10.1177/0962280217702416)

roc.rio <- roc.time(times="time", failures="event", variable="rio",
confounders=~1, data=dataVALID, pro.time=2)

plot(roc.sl, col=2, type="l", xlab="1-Specificity", ylab="Sensitivity",
cex.lab=0.8, cex.axis=0.8)

points(x=1-roc.rio$table$sp, y=roc.rio$table$se, col=4)

legend("bottomright", legend=
paste("AUC =", round(roc.sl$auc, 3)), cex=0.8 )
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IRTest: An R Package for Item Response
Theory with Estimation of Latent
Distribution
by Seewoo Li

Abstract Item response theory (IRT) models the relationship between respondents’ latent traits and
their responses to specific items. One key aspect of IRT is the assumption about the distribution of
the latent variables, which can influence parameter estimation accuracy. While a normal distribution
has been conventionally assumed, this may not always be appropriate. When the assumption of
normality is violated, latent distribution estimation (LDE) can enhance parameter estimation accuracy
by accommodating non-normal characteristics. Despite there being several methods proposed for LDE
in IRT, there is a lack of software designed to handle their implementations. This paper introduces
IRTest, a software program developed for IRT analysis that incorporates LDE procedures. It outlines
the statistical foundation of LDE, details the functionalities of IRTest, and provides examples of IRT
analyses to demonstrate the software’s applications.

1 Introduction

Item response theory (IRT) is a widely used statistical framework for modeling the probabilistic
relationship between examinees’ latent traits (i.e., ability parameters) and their responses to specific
items (de Ayala, 2009; Hambleton et al., 1991; van der Linden, 2016). These latent traits, an essen-
tial component of IRT, typically represent unobservable human characteristics in educational and
psychological assessments, such as academic ability, depression severity, or extroversion levels.

In the estimation process of IRT models, particularly when using marginal maximum likelihood
(MML), the latent trait’s distribution can impact parameter estimation (Woods, 2015). MML is obtained
by marginalizing a joint likelihood with respect to the latent variable, and any misspecification
in the latent distribution can lead to biased parameter estimates. It is also worth noting that IRT
necessarily assumes that the latent variables of interest are continuous. In some cases, a discrete latent
distribution may better reflect observed data, such as in located latent class (LLC) models (see Clogg,
1981; Follmann, 1988; Haberman, 2005; McCutcheon, 1987; Xu and von Davier, 2008).

The conventional assumption of normality in latent distributions has been questioned, and em-
pirical evidence and potential drawbacks of violating this assumption have been addressed (Dudley-
Marling, 2020; Li, 2022; Mislevy, 1984; Sass et al., 2008; Seong, 1990; Woods and Lin, 2009). Previous
studies have identified factors that can result in a skewed and/or bimodal latent distribution (Harvey
and Murry, 1994; Ho and Yu, 2015; Woods, 2015; Yadin, 2013): disparities between high-achieving and
low-achieving groups, the presence of an extreme group, difficulties of test items, and an innate human
tendency to be inclined to one side of a latent ability scale. Potential problems of this assumption being
violated include biases in parameter estimates and errors in ensuing decision-making processes. In
this case, latent distribution estimation (LDE) can effectively reduce the biases in parameter estimates
by capturing non-normal characteristics of the latent distribution.

Several methods have been proposed for LDE: the empirical histogram method (EHM: Bock and
Aitkin, 1981; Mislevy, 1984), a mixture of two normal components (2NM: Li, 2021; Mislevy, 1984),
the Ramsay-curve method (RCM: Woods, 2006b), the Davidian-curve method (DCM: Woods and Lin,
2009), the log-linear smoothing method (LLS: Casabianca and Lewis, 2015; Xu and von Davier, 2008),
and the kernel density estimation method (KDM: Li, 2022).

IRTest is an R package for unidimensional IRT analyses which aims to handle LDE in IRT. IRTest
is available from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/
package=IRTest. In IRTest, the model-fitting functions estimate the latent distribution through MML
estimation using the EM algorithm (MML-EM: Bock and Aitkin, 1981). Along with the conventional
method of assuming normality, five LDE methods (EHM, 2NM, DCM, LLS, and KDM) are currently
available as model-fitting procedures. Extensions of these methods to multidimensional settings will
be updated in accordance with advancements in theoretical research, as the current lack of research in
this area necessitates ongoing development.

Currently, there are not many software programs to implement LDE, and their choices of LDE
methods are somewhat limited since LDE may not be one of their main concerns. Most of them offer
only EHM which may be the most straightforward way to carry out LDE (e.g., BILOG-MG, Zimowski
et al., 2003; flexMIRT, Cai, 2022), some software programs such as RCLOG (Woods, 2006a), LLSEM
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(Casabianca and Lewis, 2011), and sirt (Robitzsch, 2024) focus on one particular LDE method, and
mirt (Chalmers, 2012) is equipped with EHM and DCM.

This paper details the statistical foundation of IRTest and its implementation. The remainder of
this paper is organized as follows: Section 2 explains the basic statistical concepts of the IRT parameter
estimation and the LDE procedure within the MML-EM framework. Section 3 discusses the LDE
methods. Section 4 validates IRTest by comparing it with existing packages. Section 5 demonstrates
the IRTest implementations. Lastly, Section 6 presents a discussion on the package.

2 LDE in IRT

This section provides a brief overview of the statistical aspects of LDE in IRT, and specific LDE methods
will be discussed in detail in the next section. The objectives of this section are 1) to introduce the basic
concepts of IRT, 2) to summarize the role of the latent distribution within the estimation process, and
3) to explain how LDE can enhance parameter estimation accuracy.

IRT is a statistical framework widely used in educational and psychological measurement to
analyze how examinees’ responses to test items reflect their underlying traits. IRT models offer
mathematical functions to estimate the probability of examinees’ responses based on item parameters
and their ability levels. Among the estimation methods, MML is often preferred over conditional
maximum likelihood (CML) and joint maximum likelihood (JML) for its versatility in model selection
and statistical consistency of estimation. MML incorporates the latent distribution when integrating
out the latent variable from the joint likelihood.

Statistically, LDE extends the normality assumption models by adding distribution parameters.
While the marginal likelihood of the normality assumption models is dependent only on item parame-
ters, LDE incorporates both item and distribution parameters in the marginal likelihood. It is worth
noting that some LDE methods may not follow the maximum likelihood estimation (MLE) approach.
Instead, they may utilize another index to estimate distribution parameters.

2.1 IRT models

Most IRT models follow a monotonically increasing probabilistic form and specify a functional
relationship between item parameters and ability parameters. This section presents five well-known
and widely-used IRT models, all of which are available in IRTest. For brevity, the discussion is mainly
focused on three-parameter logistic model (3PLM: Birnbaum, 1968) and generalized partial credit
model (GPCM: Muraki, 1992), since 3PLM can be reduced to one-parameter logistic model (1PLM:
Rasch, 1960) or two-parameter logistic model (2PLM: Birnbaum, 1968) and GPCM can be reduced to
partial credit model (PCM: Masters, 1982). The former handles dichotomous item responses and the
latter handles polytomous item responses.

More than one model can be applied to item response data. For example, when analyzing a test of
dichotomous items, the 2PLM can be applied to short-answer items, while the 3PLM can be applied
to multiple-choice items. This differentiation allows researchers to reflect the differences in guessing
behaviors observed between the two types of items. Also, the pair of one dichotomous response
model and one polytomous response model could be used for a mixed-format test that comprises both
dichotomous and polytomous items (Baker and Kim, 2004).

Three-parameter logistic model (3PLM) Let u ∈ {0, 1} be a dichotomous item response, θ be the
ability parameter of an examinee, and a, b, and c (0 < c < 1) be the item discrimination, difficulty, and
guessing parameters, respectively. The item response function of the 3PLM can be expressed as,

Pr(u = 1 | θ, a, b, c) = c + (1− c)
exp (a(θ − b))

1 + exp (a(θ − b))
, (1)

where u = 1 indicates the correct response of the examinee. The probability ranges from c to 1 because
of the guessing parameter determining the lower bound. Given the nature of dichotomous items,
1− Pr(u = 1 | θ, a, b, c) represents the probability of an incorrect response. The model reduces to the
2PLM when c = 0, and to the 1PLM when c = 0 and the same a value is assumed across all items.

Generalized partial credit model (GPCM) The GPCM can be regarded as a polytomous form of
the 2PLM. Let u ∈ {0, 1, . . . , M} (M ≥ 2) be a polytomous item response, bv (v = 1, 2, . . . , M) be the
boundary parameters, and the rest be the same as previously defined. The item response function of
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the GPCM can be expressed as,

Pr(u = k | θ, a, b1, . . . , bM) =
exp ∑k

v=0 (a(θ − bv))

∑M
m=0 exp ∑m

v=0 (a(θ − bv))
, (2)

where exp ∑0
v=0 (a(θ − bv)) = 1 for notational convenience. Equation (2) represents the probability of

providing a response of u = k. The GPCM reduces to the PCM when the same a value is assumed
across all items. When M = 1, they are reduced to their dichotomous counterparts: the 1PLM and the
2PLM, respectively.

2.2 Role of the latent distribution

In the implementation of MML-EM, quadrature schemes are used to numerically approximate the
integral with respect to the latent variable (Baker and Kim, 2004; Bock and Aitkin, 1981). A quadrature
scheme transforms a continuous latent variable θ into a discrete variable θ∗; the domain of θ is divided
into non-overlapping Q grids, each of which is assigned to a certain value of θ∗ called a quadrature
point. Typically, quadrature points are set to the middle of the grids. The default option of IRTest is
to set quadrature points from −6 to 6 with an increment of 0.1, resulting in 121 quadrature points.
Within the estimation functions of IRTest, the range and q arguments determine the range and the
number of quadrature points, respectively. The corresponding probability mass function (PMF) of the
latent variable can be expressed as,

A
(

θ∗q
)
=

g
(

θ∗q
)

∑Q
q=1 g

(
θ∗q
) , (3)

where g(θ) is the probability density function (PDF) of the latent variable and θ∗q is the qth quadrature
point (q = 1, 2, . . . , Q) (Baker and Kim, 2004). In this paper, the term latent distribution indicates either
g(θ) or A(θ∗) depending on the context.

The marginal log-likelihood of the model is the quantity to be maximized in the estimation
procedure, which can be expressed as follows (Baker and Kim, 2004):

log L =
N

∑
j=1

log
∫

θ
Lj(θ)g(θ) dθ

≈
N

∑
j=1

log
Q

∑
q=1

Lj

(
θ∗q
)

A
(

θ∗q
)

.

(4)

In the equation above, the integral is approximated by the summation to facilitate the EM algorithm.

The quantity Lj

(
θ∗q
)

is the jth examinee’s (j = 1, 2, . . . , N) likelihood for their item responses given
that their ability parameter is θ∗q .

Equation (4) shows that the latent distribution is one of the components of the marginal log-
likelihood. Consequently, the specification of the latent distribution influences the value of the
marginal log-likelihood of a model, potentially impacting the accuracy of parameter estimates.

Additionally, the latent distribution plays a role in model identification and affects the convergence
of the MML-EM procedure. In IRTest, a scale is assigned to the latent variable by setting the mean and
standard deviation of the latent distribution to 0 and 1, respectively. Meanwhile, for LDE methods such
as LLS and DCM, where a hyperparameter determines the number of distributional parameters, the
MML-EM procedure may not converge with a small sample size and a large number of distributional
parameters.

2.3 LDE in the MML-EM procedure

The decomposition of the marginal log-likelihood would help explicate the separate estimation of the
item and distribution parameters, which can be expressed as follows (Li, 2021):

log L ≈
Q

∑
q=1

N

∑
j=1

γjq log Lj

(
θ∗q
)
+

Q

∑
q=1

N

∑
j=1

γjq log A
(

θ∗q
)
−

Q

∑
q=1

N

∑
j=1

γjq log γjq

= log Litem + log Ldistribution − (constant).

(5)
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The quantity γjq = E
(

Prj

(
θ∗q
))

, calculated through Bayes’ theorem in the expectation-step (E-
step) of the EM algorithm, represents the expected probability of jth examinee’s ability parameter
belonging to the qth grid (see Baker and Kim, 2004). Then, in the maximization-step (M-step), the
item and distribution parameters are estimated. Since γjq is a function of the latent distribution,
precise specification of the latent distribution would enhance the accuracy of γjq. Thus, the parameter
estimates are implicitly affected by the latent distribution through γjq.

In equation (5), regarding γjq as a constant, the Lj

(
θ∗q
)

in the first term depends only on item

parameters, while the A
(

θ∗q
)

in the second term depends only on distribution parameters. This
probabilistic independence allows the separate estimation of the item and distribution parameters,
from which a selection of estimation methods of the distribution parameters may emerge.

To elaborate more on the second term of equation (5), it can be rewritten and simplified as,

log Ldistribution =
Q

∑
q=1

N

∑
j=1

γjq log A
(

θ∗q
)

=
Q

∑
q=1

f̂q log A
(

θ∗q
)

,

(6)

where fq is an unknown true frequency at the qth grid and f̂q = E
(

fq
)
= ∑N

j=1 γjq is the expected
frequency at the qth grid by the definition of γjq. In the E-step, the latent distribution is involved in
calculating f̂q, then, in the M-step, the distribution parameters are estimated and updated by using
the quantity f̂q. This E and M cycle iterates until the algorithm converges. The estimated parameters
in the last iteration would be the final output, and the corresponding distribution of the final output
becomes the estimated latent distribution.

Unlike the item parameter estimation being aligned with the MLE approach of the MML-EM
procedure, the distribution parameters are not always estimated by maximizing equation (6). With
the MLE approach still being the dominant choice, different approaches, such as minimizing the
approximate mean integrated squared error (Li, 2022), can be applied to estimate distribution parameters,
which is discussed in the next section. In all case, every strategy for the estimation of distribution
parameters utilizes γjq in its estimation procedure.

3 LDE methods

In principle, almost every density estimation method can be used for LDE in IRT. However, existing
studies have selectively inspected and developed some methods that would enhance the effectiveness
of practical applications of IRT and/or benefit the researchers working on IRT. This section focuses on
four LDE methods to highlight their methodological diversity. The choice and order of the methods in
this section are not intended to imply any superiority of one method over the other.

At the time of writing this article, there is a lack of research comparing LDE methods. Given that
comparing models in meaningful ways is crucial for practical applications, further studies examining
the evaluation criteria of LDE methods would be beneficial for practitioners to select the most suitable
method for their analyses.

3.1 Empirical histogram method (EHM)

One simple LDE strategy would be to directly employ the outputs obtained from the E-step. EHM
does this by simply calculating the expected probabilities for each grid of the quadrature scheme,
which can be considered either as the normalized expected sample size or nonparametric maximum
likelihood estimates (Bock and Aitkin, 1981; Laird, 1978; Mislevy, 1984). The entire estimation process
can be easily portrayed in the form of an equation as follows:

Âq = E
(

Aq
)
=

∑N
j=1 E

(
Prj

(
θ∗q
))

N
=

∑N
j=1 γjq

N
=

f̂q

N
, (7)

where Aq denotes A
(

θ∗q
)

for notational brevity. It can be seen that the estimates are simply the

expected frequencies f̂q’s divided by the total population N. EHM can be implemented in the
estimation functions of IRTest by specifying the argument as latent_dist=”EHM”.

Alternatively, the MLE solution can be derived in the following manner using Lagrangian multi-
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pliers. With Lagrangian multipliers, the quantity to be maximized becomes,

L =
Q

∑
q=1

f̂q log Aq − λ

(
Q

∑
q=1

Aq − 1

)
, (8)

where the second term is introduced from the constraint for a proper distribution (i.e., ∑q Aq = 1).
Differentiating L with respect to Aq and equating it to zero yields

∂L
∂Aq

=
f̂q

Aq
− λ = 0. (9)

Then, Aq =
f̂q
λ for all q = 1, 2, . . . , Q, which results in λ = N by the constraint. This shows that

Âq =
f̂q
N maximizes the likelihood L.

In addition to its simplicity and expediency, EHM has been shown to be effective in reducing
biases in parameter estimates when the normality assumption is violated. However, the performance
of EHM could be limited to some extent when it fails to screen out the random noise of the data,
thereby producing less accurate parameter estimates (Li, 2021; Woods, 2015; Woods and Lin, 2009). To
address this issue, some methods incorporate smoothing procedures to alleviate the impacts of the
random noise, which are addressed later in this section.

3.2 Two-component normal mixture distribution (2NM)

The 2NM is made up of two normal components added up together to form a single distribution.
As a natural extension of the normality assumption, the 2NM could be thought of as a non-normal
distribution caused by two different latent groups where each group is assumed to follow a normal
distribution. The addition of a normal component imparts flexibility to the 2NM to reflect bimodality
and skewness of the latent distribution. The 2NM method can be implemented in the estimation
functions of IRTest by specifying the argument as latent_dist=”2NM”.

Letting τ = [π, µ1, µ2, σ1, σ2]
′

be the vector of five original parameters of the 2NM, the PDF of the
2NM can be expressed as follows (Li, 2021):

g(θ | τ) = π × φ(θ | µ1, σ1) + (1− π)× φ(θ | µ2, σ2), (10)

where φ(θ) is a normal component.

Proportionality holds when A
(

θ∗q
)

in equation (6) is substituted with g(θ∗q | τ), resulting in

log Ldistribution ∝ ∑Q
q=1 f̂q log g(θ∗q | τ). The MLE results for the 2NM parameters can be obtained

by introducing another EM algorithm. In this paper, this additional optimization algorithm would be
referred to as the secondary EM algorithm nested in the M-step of the primary EM algorithm.

To estimate the 2NM parameters, another quantity ηq is calculated in the E-step of the secondary
EM algorithm, which represents the expected probability of θq belonging to the first normal component.
With the quantity ηq, the likelihood of the M-step of the secondary EM algorithm can be expressed as
follows (Li, 2021):

log Ldistribution ∝
Q

∑
q=1

f̂qηq log
[
πφ(θq | µ1, σ1)

]
+

Q

∑
q=1

f̂q(1− ηq) log
[
(1− π)φ(θq | µ2, σ2)

]
.

(11)

The closed-form solution for the 2NM parameters can be obtained by differentiating the likelihood
with respect to each parameter and setting the first derivatives equal to zero (Li, 2021):

π̂ =
∑Q

q=1 f̂qηq

∑Q
q=1 f̂q

=
∑Q

q=1 f̂qηq

N
, (12)

µ̂1 =
∑Q

q=1 f̂qηqθ∗q

∑Q
q=1 f̂qηq

, (13)
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µ̂2 =
∑Q

q=1 f̂q(1− ηq)θ∗q

∑Q
q=1 f̂q(1− ηq)

, (14)

σ̂2
1 =

∑Q
q=1 f̂qηq

(
θ∗q − µ̂1

)2

∑Q
q=1 f̂qηq

, (15)

and

σ̂2
2 =

∑Q
q=1 f̂q(1− ηq)

(
θ∗q − µ̂2

)2

∑Q
q=1 f̂q(1− ηq)

. (16)

Both advantages and disadvantages of the 2NM method stem from the parametric nature of
the 2NM. The parameters of the 2NM render the estimated latent distribution interpretable. Also,
the reparameterization of the 2NM parameters offers an inherent way to fix the mean and variance
of the latent distribution to constants (see Li, 2021), which is a typical way to assign a scale to the
latent variable in the MML-EM procedures. On the other hand, compared with its nonparametric
counterparts, the flexibility of the 2NM is limited to some extent. For example, the 2NM is incapable
of forming a wiggly-shaped distribution.

3.3 Davidian-curve method (DCM)

DCM uses a semi-nonparametric distribution, where the hyperparameter h = 1, 2, . . . , 10 determines
the complexity of the density (Woods and Lin, 2009). When h = 1, the distribution reduces to the
normal distribution. In general, the search for an optimal hyperparameter involves balancing the
flexibility of the latent distribution with the prevention of overfitting. DCM can be implemented in the
estimation functions of IRTest by specifying the argument as latent_dist=”DC”.

In DCM, the latent distribution can be expressed as follows:

g(θ | h, m) = {Ph(θ)}2 ϕ(θ) =

{
h

∑
k=0

mkθk

}2

ϕ(θ), (17)

where m = [m0, m1, . . . , mh]
′

is a vector of coefficients, Ph is a polynomial of order h, ϕ is the standard
normal distribution, and mh 6= 0 (Woods and Lin, 2009; Zhang and Davidian, 2001). The following
constraint guarantees that the function is a proper distribution (Zhang and Davidian, 2001):

E
(

Ph(Z)2
)
= E

(
(mZ)2

)
= m

′
E
(

ZZ
′
)

m

= m
′
Mm

= m
′
B
′
Bm

= c
′
c

= 1.

(18)

In the constraint above, Z ∼ N(0, 1), Z =
[
1, Z1, Z1, . . . , Zh

]′
, M = E

(
ZZ

′
)

, B
′
B = M by eigenvalue

decomposition, and c = Bm is a h + 1 dimensional vector. By applying a polar coordinate trans-
formation of c, the constraint is always satisfied (see Woods and Lin, 2009; Zhang and Davidian,
2001).

As DCM follows the MLE approach, the quantity to be maximized for LDE can be expressed as,

log Ldistribution ∝
Q

∑
q=1

f̂q log


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[
B−1c

]′


(
θ∗q
)0(

θ∗q
)1

...(
θ∗q
)h





2

ϕ
(

θ∗q
)


. (19)

Since the elements of B−1 are constants, the latent distribution is estimated by finding c that maximizes
the likelihood above.
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In the implementation of DCM, ten models are typically fitted according to each value of the
hyperparameter (h = 1, 2, . . . , 10). Then, the best model is selected by Hannan-Quinn (HQ) criterion
(Hannan and Quinn, 1979):

HQ = −2 log L + 2p (log (log N)) , (20)

where N is the total number of examinees and p is the number of parameters to be estimated. Focusing
on whether HQ criterion selects h = 1 or not, this model selection procedure in DCM can be used to
examine the normality of the latent distribution (Woods and Lin, 2009).

This paper does not go into details of LLS (Casabianca and Lewis, 2015; Xu and von Davier, 2008)
because of the similarities between DCM and LLS: both of them take the MLE approach for parameter
estimation, and the hyperparameter h determines the number of distribution parameters to control
the degree of smoothing.

3.4 Kernel density estimation method (KDM)

KDM is a nonparametric method for conducting the LDE procedure, and it can be implemented in the
estimation functions of IRTest by specifying the argument as latent_dist=”KDE”. In general, a kernel
function is assigned to every observation to be stacked up all together and form a density function. In
the context of LDE in IRT, the former statement means that f̂q kernels are assigned to θ∗q , which can be
expressed as,

g(θ | h) = 1
Nh

Q

∑
q=1

f̂qK

(
θ − θ∗q

h

)
, (21)

where K(·) is a kernel function and h is a hyperparameter often referred to as the bandwidth. The
following discussion assumes the Gaussian kernel for K(·) as a general default choice (Gramacki, 2018;
Silverman, 1986).

KDM takes a different approach from the previously discussed methods in carrying out the LDE
procedure. Instead of the log-likelihood (log Ldistribution), the approximate mean integrated squared
error (AMISE) is used, which is the Tayor-series approximation of the mean integrated squared error:

AMISE(ĝh) =
1

2Nh
√

π
+

h4

4
R
(

g′′
)
. (22)

In the equation above, ĝh is the estimated latent distribution using the bandwidth h and R(g′′) =∫
g′′(x) dx. Note that this is a simplified version of AMISE by the adoption of the Gaussian kernel.

To find h that minimizes equation (22), another equation is obtained by differentiating AMISE with
respect to h and equating it to 0 (Gramacki, 2018; Silverman, 1986; Wand and Jones, 1995):

hAMISE =
[
2N
√

πR
(

g′′
)]− 1

5 . (23)

Unfortunately, this solution cannot be immediately employed in estimating the bandwidth, because
R(g′′) still depends on the unknown density g(θ). For the details of the methods that deal with this
situation, refer to Silverman (1986), Gramacki (2018), Sheather (2004), and Wand and Jones (1995).
Utilizing the built-in R function stats::density() for the KDM procedure, the default option of
IRTest is bandwidth=”SJ-ste”, a recommended method for bandwidth estimation (Jones et al., 1996;
Sheather and Jones, 1991). Other available options for the bw argument of the stats::density() can
also be passed to the bandwidth argument of IRTest.

On the one hand, KDM and DCM are similar in that their hyperparameters determine the degree
of smoothing. On the other hand, once the γjq is calculated and treated as a constant, the hyperpa-
rameter of KDM is the only parameter to influence the LDE results, whereas the LDE results of DCM
depends on both the hyperparameter and the corresponding h + 1 density parameters. The absence
of distribution parameter in KDM, except for the hyperparameter (bandwidth) itself, allows KDM
to estimate the hyperparameter in a single model-fitting procedure, thereby obviating the need for a
model selection process. Compared with other methods having a model selection step, this advantage
may decrease computation time and expedite the analysis (Li, 2022).

4 Package validation

This section examines and validates the estimation performance of IRTest by comparing its results
with those from mirt (Chalmers, 2012) and ltm (Rizopoulos, 2006). mirt and ltm are among the widely
used R packages for IRT analyses. To this end, a dataset of ten dichotomous items and 1,000 examinees
is generated using the 2PLM and under a right-skewed latent distribution, which is used throughout
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Table 1: Item parameters and their estimates

parameter IRTest::IRTest_Dich() IRTest::IRTest_Poly() mirt::mirt() ltm::ltm()

Item discrimination parameter (a)
Item1 0.82 0.9264 0.9264 0.9263 0.9263
Item2 1.26 1.0174 1.0174 1.0174 1.0174
Item3 1.88 1.7614 1.7614 1.7613 1.7614
Item4 1.41 1.3730 1.3730 1.3729 1.3729
Item5 2.33 1.7300 1.7300 1.7296 1.7301
Item6 1.34 1.2904 1.2904 1.2903 1.2903
Item7 1.19 1.2593 1.2593 1.2592 1.2593
Item8 1.15 1.3579 1.3579 1.3578 1.3579
Item9 2.42 2.1221 2.1221 2.1218 2.1221
Item10 2.31 1.7667 1.7667 1.7665 1.7668

Item difficulty parameter (b)
Item1 1.23 1.1484 1.1484 1.1482 1.1481
Item2 -0.72 -0.7642 -0.7642 -0.7645 -0.7645
Item3 -0.19 -0.1788 -0.1788 -0.1791 -0.1791
Item4 -0.14 -0.1565 -0.1565 -0.1568 -0.1568
Item5 -1.16 -1.2970 -1.2970 -1.2975 -1.2973
Item6 0.14 0.2154 0.2154 0.2151 0.2151
Item7 0.29 0.2619 0.2619 0.2616 0.2616
Item8 1.28 1.1198 1.1198 1.1196 1.1195
Item9 0.12 0.2919 0.2919 0.2916 0.2916
Item10 -0.96 -0.9906 -0.9906 -0.9909 -0.9909

this section.

The following functions are used to fit the models: IRTest::IRTest_Dich() and IRTest::IRTest_Poly()
from IRTest, mirt::mirt() from mirt, and ltm::ltm() from ltm. The standard normal latent distri-
bution, the 2PLM, and 61 quadrature points are applied to all functions, and the rest of the options
are set to the default. Note that IRTest::IRTest_Poly() can also be applied to binary data, but with
lower computational efficiency compared to IRTest::IRTest_Dich().

Table 1 shows the item parameters and their estimates. The result shows that the parameter esti-
mates from IRTest are almost identical to those from mirt and ltm. For example, the root mean square
error (RMSE) of the a (item discrimination) parameter estimates between IRTest::IRTest_Dich() and
mirt::mirt() is 2.04×10−4, and that between IRTest::IRTest_Dich() and ltm::ltm is 0.29×10−4.
Similarly, the RMSE of the b (item difficulty) parameter estimates between IRTest::IRTest_Dich() and
mirt::mirt() is 3.23×10−4, and that between IRTest::IRTest_Dich() and ltm::ltm() is 3.21×10−4.
This shows that the estimates from the four functions are practically identical.
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Figure 1: Estimated latent distributions from IRTest and mirt

To validate the LDE procedures of IRTest, the estimated latent distributions of IRTest are compared
with those estimated from mirt, using EHM and DCM. The hyperparameter h of DCM is set to h = 3
for an illustrative purpose by considering the complexity of the true distribution and the size of the
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data. Total 121 quadrature points are used for the MML-EM procedure. Integrated squared error (ISE),
one of the widely used criterion in comparing two distributions, is used as an index to measure the
closeness of the estimated distributions of IRTest and mirt (for the usages of ISE, see Jones, 1991):

ISE
(

ĝ IRTest, ĝ mirt
)
=
∫ ∞

−∞

(
ĝ(θ) IRTest − ĝ(θ)mirt

)2
dθ

≈
Q

∑
q=1

(
ĝ
(

θ∗q
) IRTest

− ĝ
(

θ∗q
)mirt

)2
∆θ∗,

(24)

where ∆θ∗ is the distance between quadrature points, and ĝ IRTest and ĝ mirt are the estimated latent
distributions of IRTest and mirt, respectively. In equation (24), the integral is approximated by the
summation using the quadrature scheme of the MML-EM procedure.

Figure 1 illustrates the estimated latent distributions from both packages and the true latent
distribution. Note that values outside of |θ| ≤ 4 are truncated for visualization, but they are included
in the ISE calculation. The figure shows that the estimated distribution of IRTest (blue line) and the
one from mirt (red line) closely resemble each other. The ISE values for EHM and DCM are 0.0107 and
0.0009, respectively, which numerically validate the similarities of the estimated distributions of the
two packages.

5 Implementations of IRTest

The primary purpose of this section is to demonstrate the usages of IRTest with examples. Section 5.1
provides an example using a simulated dataset. In doing so, it illustrates the effect of LDE when the
normality assumption is violated. Section 5.2 performs an IRT analysis using the Generic Conspiracist
Beliefs Scale (GCBS) data (Brotherton et al., 2013) available from the Open-Source Psychometric Project
at http://openpsychometrics.org/_rawdata/GCBS.zip.

5.1 The effect of LDE

This section illustrates the effect of LDE by showing an improvement in estimation accuracy. To
this end, an artificial item response dataset is generated from a non-normal latent distribution. The
parameters of this dataset are used as the true values in evaluating errors.

Data generation Using the function IRTest::DataGeneration(), a dataset of 40 dichotomous items
and 2,000 respondents is generated by

Alldata <- IRTest::DataGeneration(N = 2000,
nitem_D = 40,
latent_dist = "2NM",
d = 1.414,
sd_ratio = 2,
prob = 2/3)

simulated_data <- Alldata$data_D
true_item <- Alldata$item_D
true_theta <- Alldata$theta

where simulated_data is the item response matrix, true_item is the item parameter matrix, and
true_theta is the vector of ability parameters. The 2PLM is employed in generating the dataset, and a
2NM distribution is employed to simulate a non-normal latent distribution (latent_dist = "2NM")
with its parameters being d = 1.414, sd_ratio = 2, and prob = 2/3 (for the reparameterization of
the 2NM, see Li, 2021, 2024).

The highly skewed distribution is chosen to clearly demonstrate the effect of LDE, which is likely
to be rare in practice (see Figure 2). Therefore, cautions are needed in interpreting and understanding
the magnitude of the effect.

Model fitting The function IRTest::IRTest_Dich() is applied to the dichotomous data for the
model-fitting, and an LDE method is specified by latent_dist argument. Two types of ability parame-
ter estimates are illustrated: expected a posteriori (EAP) and maximum likelihood estimate (MLE). Note
that MLE is also used to abbreviate maximum likelihood estimation. In IRTest, estimation methods of
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ability parameters are determined by specifying the argument ability_method, where the default op-
tion is EAP. Either a model-fitting function (e.g., IRTest::IRTest_Dich()) or IRTest::factor_score()
can be used to estimate ability parameters.

model_normal <- IRTest::IRTest_Dich(data = simulated_data,
latent_dist = "Normal")

model_KDM <- IRTest::IRTest_Dich(data = simulated_data,
latent_dist = "KDE")

theta_eap_normal <- IRTest::factor_score(model_normal)
theta_mle_normal <- IRTest::factor_score(model_normal, ability_method = "MLE")
theta_eap_KDM <- IRTest::factor_score(model_KDM)
theta_mle_KDM <- IRTest::factor_score(model_KDM, ability_method = "MLE")

Among these two models, model_normal assumes normality, whereas model_KDM estimates the
latent distribution using KDM during the MML-EM procedure. KDM is arbitrarily selected for
illustrative purposes.

Estimated latent distribution IRTest provides two ways to draw a density curve of the estimated la-
tent distribution. The first is to use plot(), and the second is to use IRTest::latent_distribution().
The plot() can be considered as a shortcut for using IRTest::latent_distribution(). Note that
IRTest::latent_distribution() is a PDF, and, thus, can only be applied to LDE methods that esti-
mate a PDF. For example, since EHM (or LLS) estimates a PMF, a message will be printed without evalu-
ated density values if an EHM-based (or LLS-based) object is passed to IRTest::latent_distribution().
The plot() can be utilized in all cases.

The following code can be an example for utilizing IRTest::latent_distribution(), where
IRTest::dist2() is a density function of the 2NM and stats::dnorm() is the built-in function for a
normal distribution.

density_plot <- ggplot2::ggplot() +
ggplot2::stat_function(fun = IRTest::dist2,

args = list(d = 1.414, sd_ratio = 2, prob = 2/3),
linewidth = 1,
mapping = aes(color = "True")) +

ggplot2::stat_function(fun = stats::dnorm,
linewidth = 1,
mapping = aes(color = "Normal")) +

ggplot2::stat_function(fun = IRTest::latent_distribution,
args = list(model_KDM),
linewidth = 1,
mapping = aes(color = "KDM"))
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Figure 2: The true, normal, and estimated latent distributions

Figure 2 is drawn with a slight addition of aesthetic codes to the object density_plot. It shows
the density curves of the true latent distribution, the standard normal distribution, and the estimated
latent distribution. Notably, even with the discrepancies between the true distribution (green line) and
the standard normal distribution (red line), the estimated distribution (blue line) almost recovered the
shape of the true latent distribution.
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Table 2: RMSEs from the normality assumption model and KDM

Normal KDM

a 0.181 0.123
b 0.124 0.079
EAP 0.272 0.252
MLE 0.285 0.272

Parameter estimates Differences in parameter estimates caused by the LDE procedure are portrayed
in Figure 3, where the x-axis represents the true values (parameters) and the y-axis shows the corre-
sponding errors. It shows that the parameter estimates from KDM (blue dots) are generally located
closer to the “Error = 0” line than those from the normality assumption model (red dots), which
indicates that the estimates from KDM are more accurate on average. RMSE is used as an evaluation
criterion to assess the accuracy of the parameter estimates, where the lower RMSE indicates higher
accuracy. Table 2 shows that, for all types of parameters, estimates from the KDM model are more
accurate with lower RMSE values than those from the normality assumption model. Especially, the
considerable amounts of decreases in RMSEs for â and b̂ substantiates the effectiveness of LDE in
enhancing the estimation accuracy of item parameters, where the magnitudes in the RMSE reduction
are originated from the highly skewed latent distribution. As stated in Section 2.2, the results show
that the appropriate specification of the latent distribution can have a positive impact on the accuracy
of parameter estimates.
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Figure 3: Differences in the errors of the item parameter estimates caused by LDE

5.2 An empirical example

This section performs an IRT analysis using the GCBS data. Along with the data analysis, one of
the objectives of the section is to illustrate the usages of the functions of IRTest, such as those for
calculating reliability coefficients and item/test information.

Data The GCBS data contains responses from 15 polytomous items and 2,391 respondents, where
each item has five categories scored from one to five. The data can be loaded in the following manner.

data_GCBS <- read.csv("data/data_GCBS.csv")

There are 108 missing values in the data. IRTest uses a full-information maximum likelihood
(FIML) approach in handling missing data.

Model selection DCM and KDM are used in performing LDE for illustrative purposes, where the
DCM’s h is the hyperparameter indicating the complexity of the latent distribution. The PCM, GPCM,
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and graded response model (GRM: Samejima, 1969) are available IRT models of IRTest::IRTest_Poly(),
where the default is the GPCM. Models are fitted as follows:

# Davidian-curve method
DCMs <- list()
for(i in 1:10){

DCMs[[i]] <- IRTest::IRTest_Poly(data = data_GCBS, latent_dist = "DC", h = i)
}
names(DCMs) <- paste0("DC", 1:10)

# kernel density estimation method
KDM <- IRTest::IRTest_Poly(data = data_GCBS, latent_dist = "KDE")

A model-selection step is required for DCM: the “best-DCM” can be selected by the HQ criterion
(Hannan and Quinn, 1979) presented in equation (20). After ten models are fitted, the best model
can be selected with the function IRTest::best_model() (stats::anova() can also be used). The
IRTest::best_model() function uses a specific criterion to determine the best model, with options
including "logLik", "deviance", "AIC", "BIC", and "HQ". The default is criterion = "HQ".

do.call(what = IRTest::best_model, args = DCMs)

#> The best model: DC8
#>
#> HQ
#> DC1 91232.30
#> DC2 91236.40
#> DC3 91237.18
#> DC4 91220.93
#> DC5 91217.55
#> DC6 91210.21
#> DC7 91209.33
#> DC8 91207.85
#> DC9 91209.87
#> DC10 91213.24

The result indicates that DC8 is the best DCM.

The DC8 and KDM can also be compared by the function IRTest::best_model().

IRTest::best_model(DCMs$DC8, KDM, criterion = "logLik")

#> The best model: KDM
#>
#> logLik
#> DCMs$DC8 -45433.63
#> KDM -45433.02

The rest of this section looks into the details of KDM by following the model-comparison result.

Summary of the model A brief summary of the model-fitting results can be printed with summary().
It presents the convergence status, model-fit indices, and the number of parameters and items. Also, it
displays a cursory shape of the estimated latent distribution.

summary(KDM)

#> Convergence:
#> Successfully converged below the threshold of 1e-04 on 63rd iterations.
#>
#> Model Fit:
#> log-likeli -45433.02
#> deviance 90866.05
#> AIC 91018.05
#> BIC 91457.48
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#> HQ 91177.92
#>
#> The Number of Parameters:
#> item 75
#> dist 1
#> total 76
#>
#> The Number of Items: 15
#>
#> The Estimated Latent Distribution:
#> method - KDE
#> ----------------------------------------
#>
#> @ @ .
#> @ @ @ @
#> . @ @ @ @ @
#> . @ @ @ @ @ @ .
#> @ @ @ @ @ @ @ @
#> . @ @ @ @ @ @ @ @ @ @
#> . @ @ @ @ @ @ @ @ @ @ @ .
#> . @ @ @ @ @ @ @ @ @ @ @ @ @ @ .
#> . @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ .
#> +---------+---------+---------+---------+
#> -2 -1 0 1 2

Alternatively, the shape of the estimated latent distribution can be easily visualized by the plot()
function which produces a ggplot-class object. Figure 4 shows the estimated latent distribution of
the GCBS data which is left-skewed. Figure 4 is produced by adding aesthetic codes to plot() and
the standard normal distribution. If a PDF is estimated, additional arguments in plot() are passed to
ggplot2::stat_function() of ggplot2 (Wickham, 2016). Otherwise, if a PMF is estimated (e.g., EHM
or LLS), they are passed to ggplot2::geom_line() of ggplot2.
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Figure 4: Estimated latent distribution for the GCBS data

Parameter estimates Users can access to item parameter estimates and corresponding standard
errors with stats::coef() and IRTest::coef_se(), respectively.

stats::coef(KDM)

#> a b_1 b_2 b_3 b_4
#> Item1 0.9689201 -0.76302183 -0.391283148 -0.855328244 0.3535741
#> Item2 1.0789839 -0.53792382 0.009783414 0.005704736 0.7242562
#> Item3 0.7387147 1.67238829 0.366676394 0.966121767 1.3765605
#> Item4 1.3101921 -0.13464756 0.161325353 0.204687878 1.3519716
#> Item5 0.7816865 -0.54657035 -0.191682964 -0.831793749 0.7254415
#> Item6 1.1236494 -0.46965441 -0.187144001 -0.214049525 0.6453753
#> Item7 1.1752710 -0.07562134 0.301472014 0.146375779 0.9623761
#> Item8 0.6667551 1.54879257 -0.087408217 0.644569978 0.3019026
#> Item9 1.0243926 0.53049910 0.622129709 0.614778365 1.3307188
#> Item10 0.5422634 -0.67411059 -0.728342737 -1.374793623 0.4975367
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#> Item11 1.0969859 -0.85223166 -0.647107727 -0.193551333 0.7969608
#> Item12 1.6043792 -0.13515994 0.138427510 0.313100514 0.9981246
#> Item13 0.8859117 1.15644479 0.243555061 1.098831006 1.3876873
#> Item14 1.0693468 -0.36458700 -0.054602648 -0.080358875 0.8726474
#> Item15 0.8699800 -2.01564618 -1.551317019 -1.872535217 -0.6573178

IRTest::coef_se(KDM)

#> a b_1 b_2 b_3 b_4
#> Item1 0.03678565 0.08584960 0.08654712 0.08019167 0.05779205
#> Item2 0.03966144 0.06329931 0.06584207 0.06508447 0.06232969
#> Item3 0.03208946 0.11778055 0.10831653 0.11904930 0.13613987
#> Item4 0.04714700 0.05119141 0.05476176 0.05471713 0.06194283
#> Item5 0.03074447 0.09686522 0.09959919 0.09509046 0.07449349
#> Item6 0.04106021 0.06583399 0.06718341 0.06322656 0.05630556
#> Item7 0.04324230 0.05617174 0.06338652 0.06467895 0.06362815
#> Item8 0.02800753 0.12930642 0.12010949 0.12179173 0.12290590
#> Item9 0.04025272 0.06541014 0.07425989 0.08161815 0.09079149
#> Item10 0.02420022 0.15487167 0.14764212 0.13523579 0.09904333
#> Item11 0.04013028 0.07370413 0.06734274 0.05764279 0.05617594
#> Item12 0.05686980 0.04318188 0.04603551 0.04652548 0.04914336
#> Item13 0.03648830 0.09029916 0.08542261 0.09660685 0.11458529
#> Item14 0.03930729 0.06541102 0.06780640 0.06541428 0.06253578
#> Item15 0.03830840 0.16985780 0.13629512 0.10927582 0.06689059

Likewise, IRTest::factor_score() returns ability parameter estimates (IRTest::factor_score()$theta)
and their standard errors (IRTest::factor_score()$theta_se) which are not printed here for their
lengths being 2397.

IRTest::factor_score(KDM, ability_method = "EAP")
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Figure 5: Item response functions of Item 4, 10, 12, and 15

Plotting item response functions Figure 5 shows item response functions of the four items (Item 4,
10, 12, and 15) by using IRTest::plot_item(). For example, a plot of the item response function of
Item 11 can be drawn with IRTest::plot_item(x = KDM, item.number = 11).

Reliability coefficient Among various types of IRT reliability coefficients, IRTest applies those
discussed by Green et al. (1984) and May and Nicewander (1994). The coefficient from Green et al.
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(1984) is calculated on the latent variable θ scale, and the one from May and Nicewander (1994) is
calculated on the summed-score scale. May and Nicewander (1994)’s approach has an advantage of
providing reliability coefficients for individual items. The function IRTest::reliability() returns
the coefficients mentioned above: item reliability coefficients, and test reliability coefficients on the θ
scale and the summed-score scale.

IRTest::reliability(KDM)

#> $summed.score.scale
#> $summed.score.scale$test
#> test reliability
#> 0.9293983
#>
#> $summed.score.scale$item
#> Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8
#> 0.5039295 0.5248032 0.3818564 0.5740997 0.4227400 0.5468987 0.5526063 0.3795133
#> Item9 Item10 Item11 Item12 Item13 Item14 Item15
#> 0.4929443 0.2898281 0.5196563 0.6437762 0.4386300 0.5232466 0.4021941
#>
#>
#> $theta.scale
#> test reliability
#> 0.9159476

Item and test information functions In IRTest, IRTest::inform_f_item() and IRTest::inform_f_test()
evaluate item and test information, respectively. Figure 6 visually illustrates how each item contributes
to the test information and how item information functions are added up all together to form the
test information function. The test information function is drawn with a black line and the item
information functions are colored.
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Figure 6: Item and test information functions

6 Discussion

While some may not find the magnitude of biases resulting from the deviations from the normality
assumption particularly significant in the context of IRT, LDE remains an appealing option. Within
IRT, increasing the number of items and respondents may require additional time and resources to
improve parameter estimation accuracy. Meanwhile, an appropriate usage of LDE would increase
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the estimation accuracy with the cost of adding a few distribution parameters. Therefore, unless
the addition of distribution parameters compromises the model-data fit significantly, LDE can be a
reasonable strategy for reducing estimation biases.

Although the current literature on LDE in IRT lacks clear guidelines on how and when to imple-
ment the LDE procedure, practitioners may choose to start with either KDM or DCM, even when there
is limited or no information available about the shape of the latent distribution. Both approaches not
only perform well in estimating non-normal latent distributions, but also effectively recover normal
distributions when the normality assumption holds (Li, 2022; Woods and Lin, 2009).

The IRTest package offers the choice of LDE methods for conducting IRT analyses, and its functions
utilize the estimated latent distribution for the subsequent analyses. IRTest is actively being updated,
and some potential enhancements can be made for a better application of the package, which may
include expanding the range of available IRT models, decreasing computation time, and imposing
constraints on parameters. User feedback would also guide a way for the package maintenance and
enhancement. Yet, there is much more to explore in the field of LDE beyond what has already been
studied. Thus, further research on LDE is expected to provide valuable guidance to both package
users and the developer.
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Additional features

Analysis of continuous response data Continuous item responses, ranging from 0 to 1, are often
encountered in test datasets. Such item responses can also be handled by the IRTest package with
IRTest::IRTest_Cont(). All features of IRTest presented in this paper are applicable to continuous
item responses. An example code is shown below:

# Generating a continuous item response data
data <- IRTest::DataGeneration(N = 1000, nitem_C = 10)$data_C

# Analysis
model_continuous <- IRTest::IRTest_Cont(data)

Analysis of mixed-format data An IRT analysis of mixed-format data can also be conducted with
IRTest::IRTest_Mix(). The difference between IRTest::IRTest_Mix() and IRTest::IRTest_Dich()
(or IRTest::IRTest_Poly()) is that IRTest::IRTest_Mix() requires two separate data: one for di-
chotomous items and the other for polytomous items. An example code is shown below:

model_mixed.format <- IRTest::IRTest_Mix(data_D = dichotomous_data,
data_P = polytomous_data,
model_D = rep(c("2PL", "3PL"), each = 5),
model_P = "GPCM")

In this case, the 2PLM is applied to the first five dichotomous items, the 3PLM is applied to the
rest of the dichotomous items, and the GPCM is applied to the polytomous items. The rest are the
same with IRTest::IRTest_Dich() and IRTest::IRTest_Poly().

The IRTest::IRTest_Dich() can also take a vector for the argument model to apply multiple IRT
models to different types of items.

Item-fit statistic An item-fit statistic can be calculated with IRTest::item_fit(). Currently, Bock
(1960)’s χ2 and Yen (1981)’s Q1 are available.
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Splinets – Orthogonal Splines for
Functional Data Analysis
by Rani Basna, Hiba Nassar, and Krzysztof Podgórski

Abstract This study introduces an efficient workflow for functional data analysis in classification
problems, utilizing advanced orthogonal spline bases. The methodology is based on the flexible
Splinets package, featuring a novel spline representation designed for enhanced data efficiency. The
focus here is to show that the novel features make the package a powerful and efficient tool for
advanced functional data analysis. Two main aspects of spline implemented in the package are
behind this effectiveness: 1) Utilization of Orthonormal Spline Bases – the workflow incorporates
orthonormal spline bases, known as splinets, ensuring a robust foundation for data representation;
2) Consideration of Spline Support Sets – the implemented spline object representation accounts for
spline support sets, which refines the accuracy of sparse data representation. Particularly noteworthy
are the improvements achieved in scenarios where data sparsity and dimension reduction are critical
factors. The computational engine of the package is the dyadic orthonormalization of B-splines
that leads the so-called splinets – the efficient orthonormal basis of splines spanned over arbitrarily
distributed knots. Importantly, the locality of B-splines concerning support sets is preserved in the
corresponding splinet. This allows for the mathematical elegance of the data representation in an
orthogonal basis. However, if one wishes to traditionally use the B-splines it is equally easy and
efficient because all the computational burden is then carried in the background by the splinets.
Using the locality of the orthogonal splinet, along with implemented algorithms, the functional data
classification workflow is presented in a case study in which the classic Fashion MINST dataset is
used. Significant efficiency gains obtained by utilization of the package are highlighted including
functional data representation through stable and efficient computations of the functional principal
components. Several examples based on classical functional data sets, such as the wine data set,
showing the convenience and elegance of working with Splinets are included as well.

1 Introduction
In functional data analysis (FDA), it is often desired that functions considered are continuous or even
differentiable up to a certain degree . From this perspective, spline functions given over a set of
knots form convenient finite-dimensional functional spaces. There exist many R-packages that handle
splines, see (Perperoglou et al., 2019). However, none of them consistently treat splines as elements
of functional spaces and provide convenient functionally represented orthogonal bases. The recent
package, Splinets (Basna et al., 2025), approaches splines exactly like this by using an object that
represents a set of functional splines and provides efficient orthogonal bases as such objects. This
focus on the functional form of splines and functional analysis approach to them makes Splinets
particularly suitable for functional data analysis. Care was taken to make this functional treatment
efficient by first accounting for support sets of spline, then using efficient and novel orthogonal bases.

While the locality of the representation, expressed by the support sets, makes the package suitable
for the analysis of data distributed sparsely over their domain, its most important feature is a direct
access to orthogonal spline bases. The B-spline bases, (de Boor, 1978; Schumaker, 2007), are available as
well, and efficiency is achieved by explicitly using the support in implemented algebra and calculus of
splines. However, there is a fundamental problem with the B-splines that introduces a computational
burden to functional decomposing – the B-splines are not orthogonal. Since any basis in a Hilbert space
can be orthogonalized, it is to the point of considering orthonormalization of the B-splines, (Nguyen,
2015; Goodman, 2003; Cho and Lai, 2005). In (Liu et al., 2022), a new natural orthogonalization method
for the B-splines has been introduced and an efficient dyadic algorithm has been proposed for this
purpose. The orthogonalization was argued to be the most appropriate since it, firstly, preserves most
from the original structure of the B-splines and, secondly, obtains computational efficiency both in the
basis element evaluations and in the spectral decomposition of a functional signal.

The main engine of the package is a new orthogonalization method of he B-splines described in
(Liu et al., 2022). The method is fundamentally different from and superior to one-sided and two-sided
orthogonalization discussed in (Mason et al., 1993) that are also implemented in the package. Since
the constructed basis spreads a net of splines rather than a sequence of them, the term splinet was
coined when referring to such a base. It is formally shown that the splinets, similarly to the B-splines,
feature a locality due to the small size of the total support, an example of such a splinet spanned
on irregularly placed knots is shown in Figure 1 (Left). The figure shows the splinet on the dyadic
graph. Using the dyadic presentation with different levels allows for a better insight into the structure
of the data and connects to the dyadic algorithm used for generation of the graph, see (Liu et al.,
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Figure 1: Splinets - the orthogonal cubic spline bases presented on dyadic levels: (Left) A splinet made
on irregularly spaced knots on an interval, not a complete dyadic case; (Right) Periodic splinet on
regularly spaced knots presented on circular dyadic levels, a complete dyadic case of 48 O-splines.

2022). However, the presentation of the basis elements on a single coordinate linearly is also possible
and perhaps more natural from the interpretational point of view, see also comparison of the two
graphical representation shown in Figure 3. The dyadic graphical format finds its root in the dyadic
algorithm used for orthogonalization of the B-splines, see (Liu et al., 2022). Here, it is used mostly for
its visualization value. Beyond splines defined on a subset of real line one can also consider splines
defined on a circle, i.e. periodic splines, see (Nassar and Podgórski, 2025). These are also implemented
in the package, as shown in Figure 1 (Right) but the focus here is on the functional data on the real line.
The following code shows how one can easily access both splinets and their graphical representation

xi <- c(-0.1, 0.0, 0.03, 0.05, 0.09, 0.36, 0.38, 0.49, 0.56, 0.62,
0.63, 0.77, 0.79, 0.85, 0.86, 0.865, 0.91, 0.945, 0.95, 1.1) # Knots

so <- splinet(xi) # Orthonormal basis
plot(so$os)
N <- 4 # Number of levels in the dyadic structure
k <- 3 # Spline degree
n_knots <- 2^N * 3 - 1 # Number of internal knots in the dyadic case
pxi <- seq(0, 1, length.out = n_knots + 2) # Knots
pso <- splinet(xi, periodic = TRUE) # Periodic orthonormal basis
plot(pso$os)

Our goal is to demonstrate that all these features of the Splinets package make it a powerful
and effective tool for functional data analysis (FDA). Not only does the package allow for standard
methods to be easily implemented, but it also facilitates the exploration of new methodologies that
are specific to the choice of splines as functional spaces for analysis. In fact, the workflow for the
classification problem is presented in this paper to demonstrate the capabilities of the Splinets package
in various aspects of functional data. The approach is used in a case study of classifying images.

The organization of the material is as follows. The paper starts with the Taylor expansion based
functional representation of splines used in the package implementation. A discussion of the impor-
tance of the spline space selection for the data at hand follows. The knot selection is highlighted in this
discussion. Once a proper spline space is chosen, the projection to the space becomes the main tool in
the data analysis as it produces the isometry between functional spaces and Euclidean spaces. Thus a
presentation of the projection of functions to the space of splines by means of the developed spline
bases is discussed next. Applications of these basic methods to perform a standard functional analysis
through some classical data sets illustrate the methodology. The most advanced implementation of the
FDA is presented in the final section, where the workflow for the classification problem is elaborated
and applied through a case study based on the fashion MNIST data.
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Figure 2: Examples of splines for non-equally spaced knots (left) and equally spaced knots (right).
In the top graphs, we see individual splines while in the bottom ones random spline samples are
generated around the top one by the random spline generator function implemented in the package.
The vertical dashed lines in all figures are placed at the locations of the knots.

2 Splinets implementation
The splines can be represented in a variety of ways. In Qin (2000), a general matrix representation
was proposed that allows for efficient numerical processing of the operations on the splines. This
was utilized in Zhou et al. (2008) and Redd (2012) to represent and orthogonalize B-splines that were
implemented in the R-package orthogonalsplinebasis (Redd, 2022). In our approach, we propose
to represent a spline in a different way. Namely, we focus on the values of the derivatives at knots
and the support of a spline. The goal is to achieve better numerical stability as well as to utilize the
discussed efficiency of base splines having support only on a small portion of the considered domain.
In fact, there are three sources of the efficiency and computational stability of the package Splinets:

Taylor expansion representation Representing a spline by the matrix of the derivatives at the knots
makes use the local Taylor expansion.

Sparse domains Implementing partial support sets for splines as well as the spline algebra and
calculus that is based on support sets.

Efficient orthogonal bases Using the dyadic algorithm to orthogonalize the B-splines and utilize
them in the projection methods.

The first two features are implemented in the "Splinets" class, the third one is programmed through
an algorithm of intelligent orthogonalization of B-splines. The efficiency and stability of the repre-
sentation based on the local Taylor expansions is mathematically justifiable since the matrix of the
derivatives at the knots translate directly to the function behaviour locally between knots. However,
we did not explicitly compare computational efficiency with other spline implementations because
these features are unique and, to our best knowledge, they are not covered in other packages. Some
details are given in what follows, while the topic is more completely elaborated in (Podgórski, 2021).

In the following code, a random sample of splines is generated using spline generator implemented
in the package. The result is shown in Figure 2 and demonstrates that the knot distribution is
fundamental in shaping geometry of functional spaces. The difference in the nature of the two linear
functional spaces is obvious: in the left graphs we see more focus on the localized variability and
detail, the capacity that is lacked in splines in the right-hand side. From the analyst point of view, the
challenge is to choose a space that matches geometrical characteristics observed in the data.

n <- 20 # Number of knots
k <- 3 # Degree of splines
set.seed(10)
xi <- sort(rbeta(n + 2, 2, 5)) # Randomly distributed knots
xi[1] <- 0
xi[n + 1] <- 1
S <- matrix(rnorm((n + 2) * (k + 1)), ncol = (k + 1)) # Random matrix of derivatives
spl <- construct(xi, k, S) # A spline object with corrected derivatives matrix
plot(spl)
y <- rspline(spl, 10) # Random spline generator
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plot(y)
xi2 <- seq(0, 1, by = 1 / (n + 1))
spl2 <- construct(xi2, k, S) # Another spline object
plot(spl2)
y2 <- rspline(spl2, 10) # Another random sample
plot(y2)

The implementation of a sparse domain is a novel feature not present, as far as we know, in other
spline implementations. The numerical gains are obvious since we avoid numerical evaluations of
operations that are known to be zero. In this sense it is similar to the packages for sparse matrices,
where zero terms are omitted in the matrix representations. The benefits for sparse functional data is
illustrated in Figure 4- (Bottom-right). Additional efficiency in handling functional basis with locality
features such as B-splines and splinets lies in using the sparse domain feature. Indeed, the elements of
such bases are non-zero only on small portions of the domain and in evaluating the projection to the
spline spaces is significantly faster if the unnecessary operations on zeros are omitted.

Finally, the package implements, for the first time, an innovative orthogonalization through
the numerical efficiency of the dyadic algorithm. The orthogonal bases obtained in the process are
discussed in more detail further in the paper while the algorithm itself and its computational benefits
have been demonstrated in (Liu et al., 2022).

2.1 Splines with zero-boundary conditions at the endpoints
Splines are piecewise polynomials of a given degree with continuous derivatives up to the degree
(exclusive) at the points they interconnect, which are called internal knots. The domain of a spline will
be called its range and is assumed in the paper to be a closed finite interval. Additional knots called
the initial knots and the terminal knots are located at the beginning and the end of the spline range,
respectively. For a given set of knots, the space of splines is finite-dimensional, with the inner product
of the Hilbert space of the square-integrable functions.

It is worth mentioning two extensions of functional spaces that are handled by the package. The
first are splines that do not have full support over the entire range of the considered domain. This
can be of special utility for the sparse functional data, i.e. the functional data that are nonzero only
on a small number of locations. A good example of such data are mass spectra in proteomics or
metabolomics analyses. The implementation of the "splinet" object allows specifying a support of
functional spline to be only on a union of disjoint intervals inside of the entire range of domain. The
second generalization extends beyond the splines since the Splinets object can be used to represent
any piecewise polynomial function of a given degree. All the relevant functions work properly even
if the smoothness at the knots is not preserved.

Due to the continuity requirements, the behaviour of a spline between two given knots is nec-
essarily affected by the form of polynomials at the neighboring between-knots subintervals. Since
the between-knots intervals with terminal knots have only one neighboring between-knots interval,
the influence of values over other intervals is not the same. To mitigate this biased terminal knots
effect, it is natural and, as it will be seen, also mathematically elegant to introduce the zero boundary
conditions at the terminal knots for all the derivatives except the highest degree one. It can be shown
that to remove the zero boundary effect, one has to consider splines over the knots obtained through
extending by a certain number of knots from both ends of the complete set of knots. More specifically,
the number of knots that have to be added at each end is equal to the degree of the splines. Often the
knots are added by replicating the terminal knots although there are some serious disadvantages of
such an approach.

The splines involve knots at which the polynomials smoothly connect. A set of such knots is
represented as a vector ξ of n + 2 ordered values. As already mentioned, there are two alternatives, but
in a certain sense equivalent, requirements on the behaviour of a spline at the endpoints of its range.
In the first, no boundary conditions are imposed. The main problem in this unrestricted approach is
that the polynomials at both ends of the considered range do not ‘sense’ the same restrictions from
the neighbors as the polynomial residing further from both endpoints. This is due to the fact that
at the endpoints the ‘neighbors’ are only present from one side. Another approach, favored in this
work, is by putting zero boundary restrictions on the derivatives at the endpoints. This approach
is mathematically equivalent to the first one in a limiting sense, when the k initial knots and the k
terminal knots converge to the beginning and the end of the range, respectively. Moreover and most
importantly, the approach is structurally elegant and thus easier to implement. For all these reasons, it
is used in our package. However, the main object of the package which is "splinets".

We impose on a spline and all its derivatives of the degree smaller than the spline degree the
value of zero at both the endpoints of the range. In this case, if we consider knots ξ = (ξ0, . . . , ξn+1) it
is important to assume that n ≥ k, in order to have enough knots to define at least one non-zero spline
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with the 2k zero-boundary conditions at the endpoints. Indeed, if n = k− 1, then we have k + 1-knots
yielding k between knot intervals. On each such interval, a spline is equal to a polynomial of degree
k. The dimension of the space of such piecewise polynomial functions is k(k + 1). However, at each
internal knot, there are k equations to make derivative up to degree k (excluding) continuous. This
reduces the initial unrestricted polynomials dimension by (k− 1)k dimensions to 2k, but there are 2k
equations for the derivatives to be zero at the endpoints. We conclude that the dimension of the spline
space is eventually reduced to zero, meaning that there is only a function trivially equal to zero in this
space. From now on Sξ

k stands for the n− k + 1 dimensional space of the k-smoothed splines with the
zero boundary conditions at the terminal knots of in the ordered knots given in vector ξ. When the
dependence on either k or ξ or both is not important, they will be dropped from the notation.

The fundamental fact that we use here is that for a given degree , say k, and a vector of knot points
ξ = (ξ0, . . . , ξn+1), a spline S ∈ S is uniquely defined by the values of the first 0, . . . , k derivatives
at the knots. The values of derivatives at the knots allow for the Taylor expansions at the knots but
they cannot be taken arbitrarily due to the smoothness at the knots. The matrix of the derivative
values is the main component of an object belonging to our main class in the package. For any spline
function S ∈ Sξ

k , we consider sj = (s0j, . . . , sn+1j) is an n + 2-dimensional vector (column) of values of
the jth-derivative of S, j = 0, . . . , k, at the knots given in vector ξ = (ξ0, . . . , ξn+1) that, as a general
convention for all vectors (also the convention in R, is treated as a (n + 2)× 1 column matrix. These
columns are kept in a (n + 2)× (k + 1) matrix

S := [s0 s1 . . . sk] (1)

More specifically, the main object "Splinets" implemented through the S4 system for the OOP in
R is defined through setClass function with the following slots

representation(knots = "vector", degree = "numeric", equid = "logical", type =
"character", supp = "list", der = "list", taylor = "matrix", epsilon = "numeric")

which represents a collection of splines, all built over the same knots given in knots, of the degree
k given in degree. Further supp is the list of matrices having row-wise pairs of the endpoints of the
intervals, the union of which constitutes the support set of a particular spline, and the flag equid
informs about the equally placed knots, for which the computation can be significantly accelerated.
The matrices of the derivatives at the knots inside the support sets are given in the list der of matrices,
where an element in the list refers to a particular spline in our collection and the length of the list
corresponds to the number of splines in the object. Descriptions of other fields are given in the Splinets
package but are not crucial for this presentation.

Consequently, the above object corresponds to a spline function S of degree k over knots in
ξ = (ξ0, . . . , ξn+1) that is identified as

S = {k, ξ, I , s0, s1, . . . , sk} ,

where I = {(i1, i1 + m1 + 1), . . . , (iN , iN + mN + 1)} is a sequence of ordered pairs of indexes in
{1, . . . , n + 2} representing the intervals, the union of which is the support of a spline, i.e. the minimal
closed set outside of which spline vanishes.

3 Spline spaces for FDA
One of the fundamental aspects of functional data analysis is the decision in which functional space the
functional data (FD) in hand are assumed to be located. FD are not observed as continuous objects, but
high-frequency sampling and mathematical efficiency enable us to see these data as samples of curves,
surfaces, or anything else varying over a continuum. The fundamental step in FDA is to convert
this discrete recorded data to a truly functional form, which allows each function to be evaluated at
any value of its continuous argument. In order to utilize the topology of such data for dimension
reduction, one must perform data conversion. Typically, one represents a functional object as a linear
combination of a suitably chosen basis functions. For this purpose, one of the standard bases such
as trigonometric, wavelet, or polynomial is typically chosen. Then the efficiency is accomplished by
using smoothing through regression or roughness penalty for estimating the coefficients of the basis
expansions.

One can argue that the spline bases with their flexibility that comes from the knot selection and
the degree of splines make these spaces ideal for efficiency in retrieving the functional structure of
a studied model, see also (Basna et al., 2022). The splines involve knots at which the polynomials
smoothly connect. A set of such knots is represented as a vector ξ of n + 2 ordered values. In this
work, we consider the zero-boundary version of splines by putting zero boundary restrictions on the
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derivatives at the endpoints. This approach is mathematically equivalent to the first one in a limiting
sense, when the k initial knots and the k terminal knots converge to the beginning and the end of
the range, respectively. Moreover and most importantly, the approach is structurally elegant and
thus easier to implement. For all these reasons, it is used in our package. The central object of the
package is "splinets", which represents a sequence of splines and holds it in the object by coefficients
of the Taylor expansion of the function at the knots, which uniquely defines a spline using a matrix of
derivatives at the knots.

The fundamental feature of the package and of the approach to FDA are the efficient orthogonal
bases, the so-called splinets, which allow for a very efficient data representation. These bases that
were introduced in (Liu et al., 2022) are discussed next.

3.1 Splinets – orthonormal bases of splines
The direct approach to building splines requires a lot of care and often can be cumbersome. A
more efficient approach is through functional bases of splines. There are many possible choices of
such bases but the most popular are the B-splines. Despite having many advantages, the B-splines
do not constitute an orthogonal basis, which is a computational problem as the projection to the
non-orthogonal bases adds to the numerical complexity. This challenge occurs in implementing
the orthogonal projection operator discussed in the next subsection. On the other hand, using the
orthogonality of the splinet allows an efficient representation of the data also in B-splines because the
matrix conversion from one basis to another is sparse. The main feature of the package is to implement
an optimal orthogonalization of the B-splines into the orthogonal bases called splinets introduced in
Liu et al. (2022). The graphical presentation of the spline basis visually benefits from organizing them
in the form of a dyadic net that corresponds to the dyadic orthogonalization procedure applied to the
B-splines, the technical definition of the dyadic net and further details can be found in Liu et al. (2022).
However, this dyadic net representation is used mostly for the visualization and one can equally use
the sequential representation if preferred. The package facilitates simple switching between the two
representations. In Figure 3, one can see B-spline basis in the left graphs and the corresponding splinet
in the right. In the top graphs, we use the sequential graphical presentation and in the bottom ones
the dyadic form that allows for a better inspection of the basis functions.

The orthonormalized bases implemented in this package are obtained by one of the following three
orthogonalization procedures applied to B-splines. The first one is simply the Gram-Schmidt orthogo-
nalization performed on the B-splines ordered by their locations, the second one is a symmetric (with
respect to the knot locations) version of the Gram-Schmidt, and, finally, the dyadic orthogonalization
into a splinet which is our preferred method. We will not discuss the first two orthonormalization
methods as they have been included in the package mostly because of historical reasons. In the object
representation of collections of splines, i.e. in the "Splinets" class, the field type specifies which of the
orthonormal basis one deals with. The function splinet() is generating the proper basis as illustrated
the code that creates the B-splines, the corresponding splinet and the graphical illustration shown in
Figure 3

k <- 3 # Degree of splines
N <- 5 # Number of layers
n <- k * 2^N - 1 # Number of knots
set.seed(2)
xi <- cumsum(runif(n + 2, min = 0.2)) # Random knots
so <- splinet(xi, k) # Evaluation of the B-splines and the splinet
plot(so$bs, type = "dyadic") # B-splines on the dyadic net
plot(so$os) # Splinet on the dyadic net

One can observe that splinet() is returning a list of two Splinets objects, so$bs and so$os build
over the ordered knots xi. The first object represents the basis of the standard cubic B-splines and
is thus not orthogonal. The second one represents the recommended orthonormal basis, which is
referred to as a cubic splinet. In Figure 3 (Right), one can see the splinet obtained from the B-splines
given in the right-hand side.

3.2 Projection to space of splines
Splines with a given knot selection constitute finite-dimensional subspaces of the Hilbert space of
square-integrable functions. Thus, any such function can be projected orthogonally into the space of
splines defined by a particular set of knots. Functional data analysis typically begins by projecting
discretized data onto such a finite-dimensional functional space, making the projection a fundamental
operation in statistical analysis. Projections can also serve as a smoothing step, and various methods
are available for this purpose.
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Figure 3: Cubic spline bases presented graphically in the sequential form (top) and on the dyadic net (bottom).
The case of n = k2N − 1 = 95, k = 3, N = 5 which is the number of layers in the dyadic structure seen in the
figures. (Left): The B-spline basis; (Right): The corresponding splinet.

In the package, orthogonal projection is implemented via the function project(). Since functional
data may be represented in different ways, the actual projection depends on the input format, especially
how the inner product with a spline is evaluated numerically. The input to project() can either be
Splinets objects or a matrix with two columns representing the arguments and values of discretized
functional data.

The output of the function is a list with three components:

projsp$coeff A matrix of coefficients for the decomposition in the selected basis;

projsp$basis The Splinets object representing the selected basis;

projsp$sp The Splinets object representing the projection of the input data.

Additional details—such as the knots, degree, and basis type—can be retrieved from projsp$basis.
Many algebraic operations on splines are more efficiently performed on the coefficient matrix rather
than directly on the Splinets objects. The matrix projsp$coeff can be used for such tasks, while
linear combinations of projsp$basis yield the corresponding functional forms.

To highlight the simplicity and utility of Splinets, we apply it to mass spectrometry data in a basic
numerical example. This class of data is particularly suited to the package due to its sparse nature and
the computational advantages of localized spline bases. We consider a low-resolution SELDI-TOF mass
spectrum available from the National Cancer Institute, Center for Cancer Research, Clinical Proteomics
Program (https://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp, accessed 2024-05-26).
For related work using such data, see Petricoin et al. (2002).

In Figure 4, we present flexible ways of representing the original signal by different Splinets objects.
From these simple illustrations, one can see dramatic reduction from the original 15154 dimension of
the data to three different 200 dimensional spline representations that emphasize different and subtle
feature in the data. The focus here is on the efficiency and flexibility by showing that 200 dimensional
spline spaced can be molded toward particular features of interest. We conclude that even without
any in-depth FDA, one can get a significant simplification and dimension reduction of the data at the
data representation level. In this work, we show that also advanced FDA can be easily implemented
with the help of the package.

The simplicity of using the Splinets package can be seen again in the following code examples.
If the Ovarian data and the Splinets package are loaded, then the projection to splines with equally
spaced knots is simply obtained by

xi1 <- seq(min(Ovarian\$ms), max(Ovarian\$ms), length.out = 200) # Equally spaced knots
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Figure 4: An ovarian cancer tissue low-resolution SELDI-TOF mass spectrum (in orange) and its various represen-
tations as Splinet-objects in approximately 200 dimensional spline spaces: (Top-Left) The original sample (orange)
consisting of 15154 values; (Top-Right) The projection (navy-blue) to the spline space spanned on 200 equally spaced
knots; (Bottom-Left) The projection (red) to the spline space spanned on 200 non-equally spaced knots with their
locations chosen by the spectrum; (Bottom-Right) The projection to the splines with a sparse domain obtained by
specifying five importance regions, with the graph above each of the five support intervals drawn by a different
color.

so1 <- splinet(xi1) # Orthogonal basis of splines
OvSpl1 <- project(as.matrix(Ovarian), basis = so1\$os) # Projection to the basis

the projection to the data driven choice of knots by

wghts <- abs(Ovarian\$Intensity)/sum(abs(Ovarian\$Intensity)) # Knot selection weights
xi2 <- sort(sample(Ovarian\$ms, 200, prob = wghts)) # Random knots
so2 <- splinet(xi2) # Orthogonal basis of splines
OvSpl2 <- project(as.matrix(Ovarian), basis = so2\$os) # Projection to the basis

and the representation by a spline OvSpl4 with a sparse domain with five interval components, which
requires a bit more coding, is presented only on the graphs while the code is available in the package
vignette at https://ranibasna.github.io/R-Splinets/articles/MassSpectrometry.html.

The omission of the first group of knots from the support is due to its noisy character that typically is
not of interest in the mass-spectrometry data analysis.

The package provides a plot method for Splinet objects, so all the plots from Figure 4 can be simply
obtained through:

plot(Ovarian\$ms, Ovarian\$Intensity, type = "h")
lines(OvSpl1\$sp)
lines(OvSpl2\$sp)
lines(OvSpl3)

The complete code, which facilitates experimentation, demonstrates data analysis, performs the
classification procedure, and allows for the recreation of all figures and results, is available as R
files with comments. The R code is provided in the supplementary materials on the GitHub page
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https://github.com/ranibasna/R-Splinets with the accompanied package site https://ranibasna.
github.io/R-Splinets/index.html.

In the discussion of the projection to the spline spaces, we discuss four different types of the
projection: embedding, basis decomposition, spline projection, and discretized data projection. This
functionality is illustrated by a numerically simulated example.

Embedding a spline into higher-dimensional spaces of splines. The first function that we discuss is an
embedding rather than a projection. One of the most interesting aspects of spline spaces is their agility
attributed to different choices of the knots. Yet, when employing splines for functional data analysis,
the focus is typically on splines with a fixed, often equally spaced, set of knots, rather than exploring
this adaptability. In the proposed package, we provide tools to thoroughly explore the properties of
splines under various knot choices. Any spline remains a spline of the same degree when considered
on a set of knots larger than the original. However, this changes the Splinets object representation
of the refined spline. It is thus important to have a function that embeds a given spline into a larger
space of splines defined on a refined set of knots. In the package, the function refine() allows splines
from smaller spaces to be conveniently represented in larger, more refined spaces.

Basis decomposition. The simplest projection obtained through project() is also not, strictly speaking,
a projection but rather a decomposition of a Splinets object into coefficients in the given basis. If sp is
a Splinets object, then the code

bdsp <- project(sp)
bdsp2 <- project(sp, type = "bs")

have as its main output the matrices of coefficients aji, such that the jth input-spline Sj that is in the
input sp has the form

Sj =
n−k+1

∑
i=1

ajiBi,

where j indexes the input splines, n is the number of the internal knots (the knots not including the
two endpoints of the domain), k is the degree of splines, and Bi’s are the elements of the selected basis
of splines controlled by the input type, so in the above example it is either the splinet (bdsp) or the
B-spline basis (bdsp2). The bases are built on the same knots as the input spline.

Projecting splines. The projection of Splinets-objects over a given set of knots to the space of splines
over a different set of knots is obtained through the orthogonal projection:

bdsp <- project(sp, knots)
bdsp2 <- project(sp, knots, type = "bs")

The results are represented in the spline space built over knots, and thus the Splinets-object in the
output representing the projection spline satisfies bdsp$bs@knots = knots. Namely, if Sj is the input
Splinets-object, then the output is denoted as PSj, where P is the orthogonal projection to the space
spanned by the spline basis constructed from the second set of knots:

PSj =
n−k+1

∑
i=1

ajiBi, (Sj − PSj) ⊥ PSj, (2)

where Bi are elements of the specified spline basis, and knots can differ from sp@knots.

This is an extension of the previous case since the output functions may belong to a different
space than the input functions. The output is obtained by embedding both the input splines and the
projection space to the space of splines that contains both built over the union of the two sets of knots.

Projecting discretized functional data. The function project() works also when the input is not a spline
object but discretized functional data. This is the most important projection for FDA. In this case,
the input is a matrix having in the first column a set of arguments and in the remaining ones the
corresponding values of a sample of functional data. The input data are treated as piecewise constant
functions with the value over two subsequent arguments equal to the value in the input corresponding
to the left-hand side argument. In this way, the discretized data are viewed as functions, and their
inner products with any spline are well defined. Consequently, the projection PSj of the functional
data in Sj satisfies (2), if Sj represents the discretized datum as a piece-wise constant function.

3.3 Spectral decomposition of the wine dataset – an example of FDA
We use the Splinets R package to perform Functional Principal Component Analysis (FPCA) on
a wine dataset that includes 124 samples, with absorbance measurements taken across 256 wave
numbers in the mid-infrared spectrum (4000 to 400 cm−1). These spectral characteristics capture
key aspects of the chemical composition of the wines, such as alcohol content and sugar content.
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Figure 5: Left: One sample of the data (blue curve), the data projected onto splinets (yellow curve) built
over a set of selected knots, with the location of the knots indicated by vertical dashed lines, and the
data decomposed using only the first eigenfunction (orange curve); Right: the first three eigenfunctions
scaled by the square roots of their corresponding eigenvalues.

The wine dataset is provided by Professor Marc Meurens of the Université Catholique de Louvain
(Benoudjit et al., 2004). To initiate the analysis, we project the discrete data onto orthogonal spline bases
using the project() function. This step transforms the discrete absorbance values into a functional
representation utilizing a selected set of knots.

WineProj <- project(WineData, knots) # Project wine data into the spline space.

It is assumed here that the WineData data object is processed. The preprocessing steps of the
data can be found at the wine data example package vignette page https://ranibasna.github.io/R-
Splinets/articles/FunctionalPrincipalValueDecomposition.html.

The use of an orthogonalized functional basis provides significant computational advantages,
reducing the complexity of performing FPCA on the functional data. By projecting the data onto
an orthogonal basis, we benefit from simplifying the process of finding the functional principal
components. This is because, in an orthogonal basis, the functional principal components can be
efficiently derived by performing PCA on the projection coefficients.

Without orthogonality of the basis (like in the B-spline case), doing so would not be correct. The
functional principal components can be computed as a linear combination of the eigenvectors and the
spline basis.

Sigma <- cov(WineProj\$coeff) # Covariance matrix of the projection coefficients
Spect <- eigen(Sigma) # Spectral decomposition of the covariance
EigenSp <- lincomb(WineProj\$basis, t(Spect\$vec)) # Functional eigenfunctions

The extracted principal components enable the identification of significant spectral differences
between the samples, offering a more interpretable and efficient representation. The plot() function
is then used to visualize both the original and projected data, as well as the principal components. The
detailed plotting code can be found at wine data example package vignette page https://ranibasna.
github.io/R-Splinets/articles/FunctionalPrincipalValueDecomposition.html.

This approach, leveraging the flexibility and efficiency of the Splinets package, provides a
robust framework for analyzing functional wine spectra, ensuring that essential spectral features
are preserved without overfitting. Figure 5 (Left) shows a sample from the dataset, comparing the
original wine data (blue curve), the data projected onto splinets over the selected knots (yellow curve),
and the data decomposed and reconstructed using only the first eigenfunction (orange curve). The
vertical dashed lines indicate the locations of the selected knots. Figure 5 (Right) shows the first three
eigenfunctions scaled by the square roots of their respective eigenvalues.

4 Classification problem - a case study using Splinets
The package Splinets provides a comprehensive toolbox to analyze functional data. However, for a
specific goal, one has to form a workflow that assures all steps have been performed to form the final
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conclusions following the analysis. Here, we introduce a workflow for the classification problems. The
focus here is on functional data that have a one-dimensional domain. In the future, we plan to extend
the analytical tools to functional data with domains in higher dimensions such as images, movies,
etc. For this reason, we have chosen a classic data set of images; however, our approach to their
two-dimensional nature involves converting them into functions of one argument; for a more detailed
discussion of the 2D extensions see (Basna et al., 2024). Before introducing the actual workflow, we
explain the fundamentals of our methodology, highlighting the innovations that are specific to our use
of spline spaces.

4.1 Methodology
In our approach to the classification of functional data, we first search for a suitable functional space
of splines that captures important features of the data while maintaining a low dimensionality. These
two seemingly opposing goals—fidelity and parsimony—must be balanced to ensure both efficiency
and precision.

The main idea is to place knots in locations where the reduction in total squared error of the data
approximation by 0-degree splines is largest. One implementation of this idea is available in the ddk
package, written in R and accessible on GitHub: https://github.com/ranibasna/ddk, as discussed
in (Basna et al., 2022).

For classification, spline spaces are selected separately for each class. The training data are then
projected into the respective spaces, and these projections are referred to as functional data points.
Functional principal component analysis (FPCA) is performed on the functional data points for each
class in the training set. Specifically, the means are calculated for each class, and the centered data is
decomposed into eigenvalues and eigenfunctions, yielding a spectral decomposition for each class
separately.

This process involves estimating the eigenvalues λi1 > λi2 > · · · > λini for the ith class, along
with the corresponding set of eigenfunctions ei1, ei2, . . . , eini , where ni is the number of eigenfunctions
for class i, and i = 1, 2, . . . , K, with K representing the number of classes. A validation method is used
to determine the optimal number of eigenvalues and eigenfunctions. Theoretical validation of the
spectral decomposition is through Karhune-Loève’s representation of the functional data which states
that a function in each class is sampled independently from the following model

Xi(t) = µi(t) +
∞

∑
k=1

√
λkiZkieki(t), i = 1, . . . , K, (3)

where Zki’s, mean-zero variance-one variables that are uncorrelated within a class and independent
between classes.

Subsequently, each original discretized data point, say xl , from a test set is projected onto all K
spline spaces based on the original knot selection per class. Thus one obtains K functional data points
fli, i = 1, . . . , K. The core principle of classification is to determine how closely the fli test data point
matches the projection to the eigenspaces for a given class. The mathematical techniques used in
this process for image data include feature extraction, dimensionality reduction, and classification
algorithms, which are used to obtain meaningful information from functional data points and classify
them efficiently. Let us describe this classification procedure in some further detail.

The first step involves computing the mean for each of the ten classes using our training data sets.
For a given class such a mean function of all elements in the training set belonging to the ith class is
denoted by µ̂i and is viewed as an estimated value of µi. It is obtained by projection of the averaged
data per class into a space of splines that has been determined by the knot selection process specifically
for the mean.

For each original data point xl in the test set, one evaluates its representations fli, i = 1, . . . , K in
the spline spaces corresponding to each class. Our objective is to assess the proximity to each of the K
classes by projecting fli− µ̂i onto the eigenspaces (the space spanned by eigenfunctions) corresponding
to that class. Thus, we obtain K distinctive projections. We denote them by f̂l1, f̂l2, . . . , f̂lK . Explicitly,

f̂li = µ̂i +
ni

∑
j=1
〈 fli − µ̂i, êji〉êji, i = 1, . . . , K (4)

where 〈·〉 stands for the inner product in the functional spaces, i.e. integral over the product of two
functions, and êij are estimates of eigenfunctions eij obtained in the training phase and discussed
above. Formally, we obtain the following spectral decompositions

fli = f̂li + ε̂ li,
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where ε̂ li is the residual of the projection. If the functional point xl belongs to the ith class and µ̂i and
êij are approximately equal to the true values, we would have based on (3):

ε̂ li ≈
∞

∑
j=ni+1

√
λkiZkieji(t),

which should be rather small in the squared norm ‖ · ‖ of the functional spaces. Indeed, we have

‖ε̂ li‖2 ≈

∥∥∥∥∥∥
∞

∑
j=ni+1

√
λkiZkieji

∥∥∥∥∥∥
2

=
∞

∑
j=ni+1

λkiZ
2
ki

and thus

E(‖ε̂ li‖2) ≈
∞

∑
j=ni+1

λki,

which can be made small as long as the selection of ni targets values so that ∑∞
j=1 λji ≈ ∑ni

j=1 λji.

On the other hand, if xl does not belong to the ith class, the residual ε̂ li should be large, given that
the classes are sufficiently distinguished by projections to the eigenspaces of their largest eigenvectors.
This justifies the following classification rule

I(xl) = arg min
i=1,...,K

‖ε̂ li‖ = arg min
i=1,...,K

‖xl − f̂li‖, (5)

where I(xl) stands for the chosen class and xl is treated as a piecewise constant function. One can
enhance the outcome of classification by providing the squared normalized distances

(
wl

1, . . . , wl
K

)
=

(
‖xl − f̂l1‖2, . . . , ‖xl − f̂lK‖2

)
∑K

i=1 ‖xl − f̂li‖2
. (6)

Remark 1. This rule may be improved to account for the classes that differ not by eigenvectors but by
the corresponding eigenvalues. Namely, one could consider the path of residuals over an increasing
number of eigenvectors and consider the sizes of the residuals along this path. We do not investigate
this enhancement of the proposed classification.

Having outlined the classification procedure, the pivotal role of selecting the appropriate eigenval-
ues/eigenfunctions for each class becomes evident. These hyper-parameters have a great impact on
our classification results. To enhance our classification’s precision, we ascertain the ideal number of
eigenvalues or eigenfunctions. Using the validation set technique, our primary objective is to identify
the optimal count of eigenvalues/eigenfunctions.

4.2 Workflow
We describe, step-by-step, the workflow for the above-described methodology and, along with this,
we perform these steps on the well-known Fashion MNIST dataset. The data set consists of a training
set of 60,000 examples and a test set of 10,000 examples of Zalando’s article images. The test dataset
is divided into two distinct subsets: the validation dataset and the test dataset. Each data entry is
represented by a grayscale image of 28× 28 pixels. The problem can be viewed as a classification
problem on the 784-dimensional Euclidean space. Items belong to one of 10 types of clothing, such as
shoes, dresses, etc. The name of each class and its corresponding label are: 0 – T-shirt/top, 1 – Trouser, 2
– Pullover, 3 – Dress, 4 – Coat, 5 – Sandal, 6 – Shirt, 7 – Sneaker, 8 – Bag, 9 – Ankle boot.

1. Data preparation: In this segment of the workflow, the package Splinets is not used but the way
we represent and preprocess our data plays a critical role in subsequent analyses and outcomes.
The remaining steps of the workflow assume that the data represent discretized functions, i.e. are
matrices of columns representing arguments and values of the functional data. Two variants of
this format are allowed: one with the common arguments for all data points, where the vector of
arguments stands as the last column; the second one allows different arguments for different data
points, in which the input should be a list of two-column matrices, with the vector of the arguments
as the first column and the vector of the corresponding values as the second one. We note that in the
second case, it is allowed to have a varying number of rows in the elements of the list.
Once the data are properly formatted, it should be divided into three parts. The first and largest part
(typically at least 50% of the data) constitutes the training data, and the remaining are split into two,
the validation and testing. Alternatively, one can perform training and cross-validation on a data set
of size, for example, 75%, and test the approach on the remaining testing portion of the data.
Example: (Fashion MNIST dataset). For the Fashion MNIST dataset, we deal with two-dimensional
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Figure 6: One- and two-dimensional representation of a T-shirt . Left: original image with the Hilbert curve laid
over; Middle: column-major order representation; Right: Hilbert curve representation.

images, and transforming the data to one dimension is a critical process in which information will be
lost. One of the tasks, we settled with the analysis of this data set is to compare different approaches
to this transformation process. For this reason, we elucidate our approaches to data representation
and transformation.
Images are typically represented as matrices of pixels, where the value of each matrix element
indicates the color and intensity of the respective part of the image. The matrices need to be
transformed into vector form. A prevailing approach for such a transformation involves stacking
the image’s columns (or rows) consecutively to create a vectorized representation. However, this
technique often neglects the local spatial correlations existing between image pixels, ensuring only
the preservation of vertical (or horizontal) correlations.
To more effectively retain these local correlations, we turn to the Hilbert curve transformation. A
Hilbert curve is a continuous fractal space-filling curve that traverses every point in a square grid
sized to any 2-power magnitude. For a detailed discussion of Hilbert curves, we refer to (Bader,
2012). Hilbert curves are particularly interesting for their ability to group pixels locally, see also
R-package gghilbertstrings on CRAN (Valdez, 2021). The additional materials accompanying the
paper show the explicit definition of the Hilbert curve used for our data obtained from the R-code of
the Hilbert space-filling algorithm. This specific case of the Hilbert curve is shown in Figure 6 (Left)
laid over the picture of a shirt.
Given that our image dimensions do not align with a 2-power magnitude, we have implemented
zero padding, adjusting the image to a 25 × 25 pixel matrices. Figure 6 presents two illustrative
examples from the MNIST dataset: a shirt and a boot. The middle illustrations provide vectorized
representations of these items, derived from consecutively stacking image columns. The right-
hand-side depictions visualize vectors formed through the Hilbert space-filling curve. It is easy to
notice that the locality-preserving properties of Hilbert’s curve make the vectorization based on it
a better choice in comparison to the column-wise vectorization. We also see that the Hilbert curve
vectorization lead to more sparse data which could be accounted for using disjoint-interval domains
featured by the package, which would lead to more efficient computations. However, this aspect
of the data has not been implemented as we did not face any major computational burden in our
studies.

2. Projection into spline spaces built on selected knots: In this step, we consider K distinct third-
degree data-driven splinet bases, each built on knots specifically chosen for the corresponding class
among the K available. The number of knots for each class, as well as their placement, is determined
using the DDK algorithm to effectively capture changes in the data. We then project the discrete
training data points onto these splinets, constructed based on the class-specific knots. We considered
separated spaces for the mean discrete data and the centered discrete data. We note that since the
knots for the mean data are a subset of the knots for the centered data, the projections of the means
are in the space of the projections of the centered data. However, they are not the same as their
projections of the centered data space.
These projections establish an isomorphism between the Euclidean vectors made of coefficients of the
projection and the space of splines into which the original data have been projected. More specifically,
if Ni is the number of knots chosen of the ith class and k is the degree of the splines, then the splines
spanned on these knots constitute a Ni − k− 1-dimensional Hilbert space with Ni − k− 1 elements
of the corresponding splinet so that

xl
proj7−→ fli

isom←→ ali ∈ RNi−k−1, (7)

where xl is either the original centered discrete data point, fli is the corresponding functional
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Figure 7: Fitting the centered ‘T-shirt’ by a spline with selected knots marked by vertical dotted lines.

data point when projected on the knots selected for the ith class, ali is the vector of coefficients
corresponding to the splinet expansion of fli. This isomorphism allows us to perform the next part
of the analysis simply by doing standard multivariate analysis on ali’s. The projection process is
facilitated using the project() functions in the R-Splinets package. Other functions of the package
assist exploration and visualization of various features of fli’s.
Example: (Fashion MNIST dataset, cont.). The original images that were transformed through the
Hilbert curve transform to the 1D discrete data are next projected to spline spaces, where the number
of knots for the respective classes are

(N1, N2, N3, N4, N5, N6, N7, N8, N9, N10) = (106, 78, 100, 86, 94, 100, 106, 78, 128, 102).

Considering the number of knots and since we consider the third degree splines the dimension of
the spline spaces are to be computed and put here according to the formula (Ni − 4). We note the
initial dimension reduction from 784 to the reported values of the given knot numbers in the classes.
Additional further dimension reduction will be achieved through FPCA later on in the workflow. We
see the projection of the ‘T-Shirt’ mean and an example of a centered ‘T-Shirt’ in Figure 7 (Top-Middle).
The locations of knots for these two cases are shown by vertical dashed lines.

3. FPCA on training data: To facilitate the classification procedure in the next step but also to gain a
deeper understanding of the complexity of the data, the FPCA is performed within each class of the
functional data points of the training set. In this task, one utilizes the isometry given in (7), and first
the sample covariance matrix Σi is evaluated

Σi = a.ia>.i − a.i a.i
>,

where averaging · is made within the class i of the training data. One simply applies cov() on the
matrix of column vectors ali’s. Then the spectral decomposition of Σi into eigenvalues and eigenvec-
tors is performed using eigen() of the R - base package. The obtained eigenvectors correspond to
eigenfunctions through the isometry.
Example: (Fashion MNIST dataset, cont.). This rather standard step when performed on cloth image
classes is illustrated in Figure 8. The first three eigenfunctions of ‘T-shirts’ scaled by the square roots
of the respective eigenvalues are shown in the (top-left) graph and projections to the spaces based on
3 and 20 eigenfunctions are presented in the remaining graphs including the projection of ‘Boots’ to
the ‘T-Shirt’ space, the (bottom-right) graph.

4. Determining the significant eigenfunctions: In this step, the classification procedure (5) as a func-
tion of the number of considered eigenfunctions is implemented. Then the number ni of the eigen-
functions for the ith class is based on its accuracy on the validation data set. In Figure 8 (Bottom), we
see the illustration of the classification principle. There are shown approximation of two data points,
a ‘T-Shirt’ (Left), and a ‘Boot’ (Right), based on the projection to 20 eigenvalues in the ’T-Shirt spline
space. It can be seen clearly that the approximation of ’T-shirt’ is better than the approximation of
‘Boot’. The functional L2-norm of the functional spaces can be utilized to measure the approximation.
The approach to data classification relies on projecting the data into a subspace defined by a set
of numbers ni, i = 1, . . . , K, of eigenfunctions of the distinct classes. We can see from (4) and
the classification rule (5) that if ni’s are taken too big, then it may result in overfitting of the data
and a smaller dimension reduction, on the other hand, if the values are too small the precision of
distinguishing the features in the data of different classes may be not sufficient. In this framework,
the numbers of eigenfunctions for individual classes are of paramount significance and are treated as
hyper-parameters. The ni’s, i = 1, . . . , K are chosen through the following cross-validation procedure.
From the training data, from each class, we exclude at random 10%-data points, denoted by Ci,
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Figure 8: The spectral decomposition of the training data. Top-Left: The first three eigenfunctions for the ‘T-shirt’
class scaled by the square roots of the respective eigenvalues, Top-Right: Two approximations of the centered
functional ‘T-shirt’ data point (NavyBlue-Dashed Line): 1) by the first three eigenfunctions (Blue-DottedDashed Line) ;
2) by the first twenty eigenfunctions (Orange-ThinSolid Line), Bottom-Left: The same approximation but centered
around the ‘T-Shirt’ class mean µ̂1 (Red-ThickSolid Line), Bottom-Right: Projection of a ’Boot’ data point to the
’T-Shirt’ spectrum with 20 eigenfunctions after centering around the ’T-Shirt’ class mean, the ‘Boot’ data point
(Black-Rough Line) vs. its projection (Orange-Solid Line).

i = 1, . . . , K. Consider the remaining 90% for the ith class and build spectral decomposition of
the data as explained in the previous step. Set the initial vector of numbers of the eigenvalues
n0 = (n0

1, . . . , n0
10) in each class. For example, we can set it to zero to start with the classification

based only on the mean µ̂i, i.e. the closest mean decides for the class to which a data point belongs to.
Let the classification distances (evaluated through (6)) for a given discrete data point x be denoted by

w(x, n0) = w(x; n0
1, . . . , n0

10).

Evaluate classification success rate through

s(n0) =

(
∑x∈C1

w1(x, n0)

|C1|
, . . . ,

∑x∈CK
wK(x, n0)

|CK |

)
.

where |Ci| is the number of elements in Ci, or through the classification accuracy rate

a(n0) =

(
#{x ∈ C1; I(x, n0) = 1}

|C1|
, . . . ,

#{x ∈ CK ; I(x, n0) = K}
|CK |

)
.

Small values in s or large values in a indicate good classification. Thus, taking averages of these two
vectors can be used to assess the overall quality of a classification rule. Since the accuracy a is more
interpretable, we focus on it and denote the average of its entries by ā.
In general, the function n 7→ ā(n) is a non-convex function of K arguments, and our goal is to find
its optimum when evaluated over the validation data set. We adopt a simple iterative marginal
gradient method, where we increase by one that coordinates in n that produces the large increase
in ā. Allow for a specific number of negative increases L and conclude with the location nopt of
the maximum over-searched path. The number L is a hyperparameter and is data-specific. The
algorithm is repeated by a number of random initial knot distributions and the final result is the
maximum over these runs.
Example: (Fashion MNIST dataset, cont.). In Figure 9 (Top), the different trajectories of the accuracy
obtained for randomly picked n0 are shown in thin-lines. The procedure was run on the validation
set of the functional using the classification procedure (5) (also used in the next step of the workflow).
The baseline for the performance is made of the rates of correct classification per class when it is
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Figure 9: Optimization of the accuracy function in the validation phase (Step 4). Top: The trajectory of the average
accuracy along the initial optimization path (thick-line) together with subsequently chosen random samples of the
initial n0 that are shown in thin-lines; Bottom: The class-wise accuracies (thin-lines) against the average accuracy
(thick-line). ‘Pullovers’ (green line) and ‘Shirts’ (yellow line) are notoriously difficult to classify.

only based on the distance of a data point from the spline projection of the mean, i.e. ‖x− µ̂i‖, so no
eigenfunctions are considered. The obtained rates of correct classification rates per class are

(0.67, 0.88, 0.33, 0.73, 0.66, 0.75, 0.23, 0.80, 0.76, 0.86)

with the overall average performance of 66% of correct classification. From this, one sees that
‘Pullover’ and ‘Shirt’ seem to be difficult to classify. Overall accuracy is assessed using the approach
as described above with random starting vector n0 of the initial allocation of the numbers of the
eigenvalues in the class and searching for the optimal allocation. The procedure is illustrated in
Figure 9 (Top), where several subsequent trajectories of the total accuracy are presented by the
thin-lines against the initial selection, the thick-line. In Figure 9 (Bottom), the trajectories of the
classwise accuracies and the average accuracies based on the above optimization procedure are
presented. They lead to the following numbers of significant eigenvectors (8, 4, 5, 6, 4, 8, 2, 4, 5, 6) for
the ten cloth classes and, with this choice, the average accuracy in the validation process is 78.5%.
We conclude that the original dimension of 784 vectors has been reduced more than tenfold (based
on the total number 52 of all eigenfunctions). However, we also see that ‘Pullovers’ (y and ‘Shirt’
remain hard to classify, with the latter being properly classified less than 40% of the time. The final
classification based on the obtained sizes of the functional spaces is performed on the testing data set
in the next step.

5. Testing the classification procedure: This step is essentially repeating on the testing data set, most
of the workflow except the validation steps used for the knot selection and deciding for the number
of eigenfunctions. Thus for each data point xl in the testing sets, one projects it to ten functional
spaces obtaining splines fli, i = 1, . . . , K. Those in turn are used to evaluate the classification rule (5)
and decide on the class of the object. In fact, in the algorithm, the following convenient representation
of the squared distance between a discrete data point xl and its approximation f̂li given in (4) is used

‖xl − f̂li‖2 = ‖xl‖2 − ‖ fli‖2 + ‖ fli − µ̂i‖2 −
ni

∑
j=1

∣∣∣〈 fli − µ̂i, êji〉
∣∣∣2 .

The results are compared with actual class memberships and summarized in the confusion matrix
and other standard measurements of efficiency.
Example: (Fashion MNIST dataset, cont.). The leading example illustrating the workflow is using
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Hilbert curve approach to transform from two-dimensional images to one-dimensional discrete data
points. The classification method (5) with optimally chosen numbers of eigenvectors was performed
through all testing data points and several characteristics have been evaluated. The average accuracy
(over all classes) is 77.0%, which is close to the one in the cross-validation step and the classwise
accuracies are

(73.4%, 89.1%, 52.3%, 87.7%, 72.0%, 91.7%, 32.9%, 82.2%, 94.5%, 92.9%),

which are also consistent with the results in the cross-validation experiment seen in Figure 9 (Bottom).
Another important summary is to report the averaged normalized distances w̄, of the elements of
the class to their projection to that class and they are

(0.049, 0.049, 0.053, 0.046, 0.047, 0.051, 0.060, 0.033, 0.042, 0.030).

We observe expected negative correlations with the accuracies. The values are significantly lower
from 0.1 (the case that the distance does not differentiate between classes) and are a major improve-
ment over the original relative distances to the spaces.

6. Final evaluation and conclusions: This part depends on the goal for which the classification proce-
dure has been used and thus is case-specific. One may need simply a classification method and its
accuracy, then little is needed beyond the details shared in the previous step. It is also recommended
to examine the statistics of misclassified data points and the features of these points as expressed
by FPCA. This may give insight into the reasons for failing to identify data points properly and, in
consequence, give an idea of how the classification can be further improved. If classification needs to
be applied to some data without labels, then the classification should be run on it and summarized.
This workflow can also serve as a benchmark to compare various classification methods. Then a
comparison and a discussion should be carried out through reporting confusion matrices, along with
other pertinent evaluation metrics. Again checking which data points have been misclassified can be
important to see if a hybrid classification method could further improve the success rate.
Example: (Fashion MNIST dataset, cont.). In our illustrative example, the goal was to show the
workflow and the corresponding methodology. Since we focused on a single method, it is natural to
present here more detailed characteristics of the method and comment on the obtained outcomes. It
is clear that the method performs poorly in classifying ‘Shirts’ and, somewhat better, ‘Pullovers’. We
observe that a ‘Shirt’ is often classified as a ‘T-Shirt’ and a ‘Coat’. Additionally, a ‘Pullover’ is often
classified as a ‘Coat’. Generally, it seems that the main responsibilities for the misclassifications are
the classes: ‘T-shirt’, ‘Pullover’, ‘Coat’, and ‘Shirt’.
To improve on the method one could try to use a lower degree of splines that could help due to
the noisiness of the Hilbert curve data points. By just looking at the data, it appears that the first-
degree splines should suffice. Improving the search for an optimal number of eigenfunctions could
be another possible source of improvement. We have seen that the performance from the validation
step carries over to the testing results. Thus, enhancing the validation process should lead to more
accurate classification results. Nevertheless, it seems that the achieved performance will be hard
to significantly improve unless the full 2D character of the data is considered. This is planned in a
future 2D extension of the spline-based method for the FDA.

Table 1: Confusion matrix

TARGET
PREDICT. T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Boot

T-shirt 73.4% 0.8% 4.5% 4.6% 0.8% 0.0% 25.5% 0.0% 2.2% 0.1%
Trouser 0.1 89.1% 0.3% 1.7% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
Pullover 1.8% 0.5% 52.3% 1.5% 10.4% 0.0% 8.6% 0.0% 0.7% 0.0%
Dress 12.1% 8.7% 2.0% 87.7% 8.4% 0.0% 8.9% 0.0% 1.2% 0.0%
Coat 0.3% 0.6% 20.2% 1.7% 72.0% 0.0% 17.9% 0.0% 0.2% 0.0%
Sandal 0.7% 0.0% 0.0% 0.1% 0.0% 91.7% 0.0% 9.2% 1.0% 3.3%
Shirt 5.0% 0.1% 17.5% 1.8% 6.8% 0.0% 32.9% 0.0% 0.0% 0.0%
Sneaker 0.0% 0.0% 0.0% 0.0% 0.0% 4.7% 0.0% 82.2% 0.1% 3.7%
Bag 6.6% 0.2% 3.0% 0.8% 1.4% 0.4% 6.2% 0.0% 94.5% 0.0%
Boot 0.0% 0.0% 0.2% 0.1% 0.1% 3.2% 0.0% 8.6% 0.1% 92.9%

4.3 Comparing different 1D-methods functional methods
We employ the proposed workflow to investigate how different methods of data preparation influence
the efficiency of our classification method. Our main goal is to assess the impact on the efficiency of
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Figure 10: Confusion matrix for S1, S2, and S3 from right to left.

two factors: the Hilbert curve-based transformation method and the data targeted knots selection.

(that can be obtained, for example, by using DDK described in Basna et al. (2022)). We put forward
three distinct scenarios to be examined using our established workflow:

S1: Hilbert curve transformation with 100 data-driven knot selections.

S2: By-row data with 100 data-driven knot selections.

S3: By-row data with 100 equidistant knots.

This choice ensures both the validity and fairness of our comparisons, thus enhancing the reliability
and interpretability of our results.

The choice of these scenarios stems largely from our belief that the data targeted knot selection
method leads to a more efficient dimension reduction, especially in the context of sparse data. As
evidenced in Figure 6, the pixel distribution in the by-row data does not exhibit sparsity. This suggests
that we might not see significant performance gains if we were to deploy the data based knot selection
methodology on it. However, the introduction of the Hilbert curve transformation imparts a noticeable
sparsity in the data’s curvature.

As detailed above, we project the data into a subspace spanned by a number of eigenfunctions.
For each scenario, we chose a number of eigenfunctions that achieved the highest accuracy on
the validation data set. The validation phase of the analysis suggests that the optimal number of
eigenvalues for S1, S2, and S3 are 15, 10, and 15, respectively. After the testing phase, we carry the
classification problem described earlier across the three scenarios. To evaluate the performance of our
classification model, we define the following metrics

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP
TP + FP

, Recall =
TP

TP + FN
, F1 = 2

Precision× Recall

Precision + Recall
,

where TP, TN , FP, FN are true positives, true negatives, false positives and false negatives, respectively.
Table 2 presents the outcomes obtained from analyzing the classification problem within the three
suggested scenarios.

Table 2: Accuracy, Precision, Recall and F1 Score of the classification problem in each scenario.

Scenario 1 Scenario 2 Scenario 3
Accuracy 78.6% 69.44% 73.6%
Precision 79.22% 71.3% 74.1%

Recall 78.5% 69.4% 73.9%
F1 78.74% 69.8% 73.6%

The results from the first scenario (S1) clearly demonstrate its superior performance, affirming
our proposition. To further understand the algorithm’s misclassifications, we provide the confusion
matrix for each scenario in Figure 10. The confusion matrix illustrates the comparison between the
true labels and the predicted labels of the test dataset. The confusion matrices show the uncertainty
mostly between the classes 0,2,4,6 in the fashion image dataset, as discussed in the previous section .
This makes sense because t-shirts, pullovers, coats, and shirts look similar and might be confusing.

In the absence of the Hilbert curve transformation, it is observed that the classification performance
of the data-driven knot selection approach alone is the least accurate among the three scenarios. This
is consistent with expectations given that the data exhibits a dense and non-sparse format with highly
repetitive patterns. The equidistant knot selection classification strategy shows a modest increment
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in the accuracy results. However, the application of data-driven knot selection on the transformed
data significantly improves the accuracy of the results. It is important to note that our aim is not to
outperform or compete with state-of-the-art machine learning and deep learning methodologies in
image classification. Although our method may not achieve the the optimal accuracy levels that can
be seen in the convolution neural network approach, it does reach a commendable accuracy rate of
approximately 80%. This is comparable to simpler neural networks, such as decision tree classifiers
and MLP classifiers. For further benchmarking of machine learning algorithm classifiers on the
Fashion MNIST dataset, see (Xiao et al., 2017). The implementation of the Hilbert curve transformation
highlights the effectiveness of the data-driven method for representing data in a functional format,
resulting a noticeable increase in accuracy by 5− 6%. This enhancement is attributed to the efficient
representation of locality features in the data through the chosen basis, ensuring the preservation of
space curvature.

There are two notable observations to consider. First, the data-driven knot selection method
demonstrates superior performance compared to the traditional equidistance method, especially when
handling sparse data that exhibits distinct spatial dependencies. This difference in performance can be
observed by comparing the class-wise accuracy between S1, S2, and S3. Second, leveraging the 2D
characteristics of the images has a positive impact on the performance of Functional Principal Compo-
nent Analysis (FPCA) when combined with the data-driven knot selection method. A transformation
such as the Hilbert curve, can reveal the two-dimensional characteristics of the original image by
preserving the locality relationships among the pixels. More precisely, in the flattened one-dimensional
vector, consecutive elements (pixels) were likely neighbors in the original two-dimensional space.
It also creates a sparser representation of the image, which makes it more amenable to our method.
Therefore, when we apply our FPCA data-driven analysis techniques to this one-dimensional vector,
these techniques approximately analyze the local neighborhoods of the original two-dimensional
image. This enhancement suggests, as expected, that considering the 2D structure of the images
contributes to improved results and should be further investigated.

5 Summary
We have presented tools from the Splinets-package that facilitate an efficient analysis of functional
data. The benefits using the orthogonal basis implemented in the package are illustrated both by
a simple example of the FPCA performed on the classical wine data set and by a more advanced
workflow for classification of functional data. This workflow is designed to enhance the efficiency of
dimension reduction while retaining functional dependencies in the data’s characterizing features,
which may not necessarily be local. The workflow was benchmarked on the Fashion MNIST data set.
The findings from this example emphasize the pivotal importance of the data’s two-dimensional nature
in the functional principal component analysis approach. The Hilbert curve proved to be the most
efficient and it is partially due to its capacity of capturing dependencies beyond one dimension. These
observations suggest that adopting the method further toward two-dimensional analysis, for example,
by considering gradient images or, even better, two-dimensional FPCA may lead to significant gains
in the efficiencies.
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Disaggregating Time-Series with Many
Indicators: An Overview of the
DisaggregateTS Package
by Luke Mosley, Kaveh Salehzadeh Nobari, Giuseppe Brandi, and Alex Gibberd

Abstract Low-frequency time-series (e.g., quarterly data) are often treated as benchmarks for interpo-
lating to higher frequencies, since they generally exhibit greater precision and accuracy in contrast to
their high-frequency counterparts (e.g., monthly data) reported by governmental bodies. An array
of regression-based methods have been proposed in the literature which aim to estimate a target
high-frequency series using higher frequency indicators. However, in the era of big data and with
the prevalence of large volumes of administrative data-sources there is a need to extend traditional
methods to work in high-dimensional settings, i.e., where the number of indicators is similar or
larger than the number of low-frequency samples. The package DisaggregateTS includes both clas-
sical regressions-based disaggregation methods alongside recent extensions to high-dimensional
settings. This paper provides guidance on how to implement these methods via the package in R, and
demonstrates their use in an application to disaggregating CO2 emissions.

1 Introduction

Economic and administrative data, such as recorded surveys and consensus, are often disseminated by
international governmental agencies at low or inconsistent frequencies, or irregularly-spaced intervals.
To aid the forecasting of the evolution of the dynamics of these macroeconomic and socioeconomic
indicators, as well as their comparison with higher resolution indicators provided by international
agencies, statistical agencies rely on signal extraction, interpolation and temporal distribution ad-
justments of the low-frequency data to provide high precision and uninterrupted historical data.
Although, temporal distribution, interpolation and benchmarking are closely associated with one
another, this article and its respective package (DisaggregateTS, Mosley and S. Nobari, 2024), expend
particular attention to interpolation and temporal distribution (disaggregation) techniques, where
the latter is predicated on regression-based methods1. These regression-based temporal distribution
techniques rely on high-frequency indicators to estimate (relatively) accurate high-frequency data
points. With the prevalence of large volume of high-frequency administrative data, a great body
of literature pertaining to statistical and machine learning methods has been dedicated to taking
advantage of these additional resources for forecasting purposes (see Fuleky, 2019, for an overview
of macroeconomic forecasting in the presence of big data). Additionally, one may wish to utilize
these abundant indicators to generate high-frequency estimates of low-frequency time-series with
greater precision. However, in high-dimensional linear regression models where the number of
dimensions surpass that of the observations, consistent estimates of the parameters is not possible
without imposing additional structure (see Wainwright, 2019). Hence, this article and the package
DisaggregateTS adapt recent contributions in high-dimensional temporal disaggregation (see Mosley
et al., 2022) to extend previous work within this domain (see the package tempdisagg Sax et al., 2023,
and its corresponding article Sax and Steiner (2013)) to high-dimensional settings.

As noted by Dagum and Cholette (2006), time-series data reported by most governmental and
administrative agencies tend to be of low-frequency and precise, but not particularly timely, whereas
their high-frequency counterparts seldom uphold the same degree of precision.

The aim of temporal distribution techniques is to generate high-frequency estimates that can track
shorter term movements, than directly observable with the direct low-frequency observations. While
interpolation problems are generally encountered in the context of stock series, where say, the quarterly
value of the low-frequency series must coincide with the value of third month of the high-frequency
data (of the same quarter), temporal distribution problems often concern flow series, where instead
the value of the low-frequency quarterly series must agree with the sum (or weighted combination) of
the values of the high-frequency months in that quarter. The latter approach is generally accomplished
by identifying and taking advantage of a number of high-frequency indicators which are deemed to
behave in a similar manner to the low-frequency series, and by estimating the high-frequency series
through a linear combination of such indicators.

In the last few decades, a significant number of articles have been published within this domain—

1See Dagum and Cholette (2006) for an overview of benchmarking, interpolation, temporal distribution and
calendarization techniques.
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Figure 1: Quarterly and monthly simulated stock data

see Dagum and Cholette (2006) for a detailed review of these techniques. Notable studies within
this context include the additive regression-based benchmarking methods of Denton (1971) and
Chow and Lin (1971), Chow and Lin (1976), as well as those proposed by Fernández (1981) and
Litterman (1983) in the presence of highly persistent error processes. More recently these methods
have been extended to the high-dimensional setting by Mosley et al. (2022), where prior information
on the structure of the linear regression model is used to enable estimation, and better condition
the regression problem. Specifically, this is accomplished by “least absolute shrinkage and selection
operator” (LASSO hereafter) proposed by Tibshirani (1996), which in principle selects an appropriate
model by penalizing the coefficients (in scale) of the high-dimensional regression, in effect discarding
the irrelevant indicators from the model. In what follows, we demonstrate how to apply these methods
using DisaggregateTS to easily estimate high-frequency series of interest.

The remainder of the paper is organized as follows: Section 2 presents the methodologies behind
key temporal disaggregation techniques included in the DisaggregateTS package, along with their
extensions to high-dimensional settings. Section 3 introduces the DisaggregateTS package and
highlights its key functions. Sections 4 and 5 provide examples based on simulations (using a
function in the package that generates synthetic data) and empirical data to demonstrate the package’s
functionality. Finally, Section 6 concludes the paper.

2 Sparse temporal disaggregation

2.1 Classical regression-based techniques

The data in figures 1 and 2 are generated using the TempDisaggDGP() function from the Disaggre-
gateTS package, representing simulated stock and flow data. For the simulated stock data (Figure
1, each quarter’s low-frequency data should match the first month’s value of the corresponding
high-frequency series, denoted with red dots. For the simulated flow data (Figure 2, the quarterly
figures should equal the sum of the sub-quarterly values

Suppose we observe a low-frequency series, say, quarterly GDP, encoded as the vector yq ∈ Rn,
containing n quarterly observations. We desire to disaggregate this series to higher frequencies
(say monthly), where the disaggregated series is denoted ym ∈ Rp, with p = 3n. Furthermore, we
wish that the disaggregated series be temporally consistent without exhibiting any jumps between
quarters (see Section 3.4 of Dagum and Cholette, 2006, for examples of such inconsistencies between
the periods). The challenge is to identify an approach that distributes the variation between each
observed quarterly point to the monthly level. A method that has been extensively studied in the
literature concerns finding high-frequency (e.g., monthly) indicator series that are thought to exhibit
similar inter-quarterly movements as the low-frequency variable of interest. Let us denote a set of
p observations from these d indicators as the matrix Xm ∈ Rp×d. A classical approach to provide
high-frequency estimates is the regression-based temporal disaggregation technique proposed by
Chow and Lin (1971) whereby the unobserved monthly series ym are assumed to follow the regression:
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Figure 2: Quarterly and monthly simulated flow data

ym = Xmβ + um, um ∼ N(0m, Vm) (1)

where β ∈ Rd is a vector of regression coefficients to be estimated (noting that Xm may contain
deterministic terms) and um ∈ Rp is a vector of residuals. Chow and Lin (1971) assume that um
follows as AR(1) process of the form ut = ρut−1 + εt with εt ∼ N(0, σ2) and |ρ| < 1. The assumption
of stationary residuals allows for a cointegrating relationship between ym and Xm when they are
integrated of the same order. Thus, the covariance matrix has a well-known Toeplitz structure as
follows:

Vm =
σ2

1− ρ2


1 ρ · · · ρp−1

ρ 1 · · · ρp−2

...
...

. . .
...

ρp−1 ρp−2 · · · 1

 (2)

where ρ and σ are unknown parameters that need to be estimated. The dependent variable ym in (1) is
unobserved, hence the regression is premultiplied by the n× p aggregation matrix C, where:

C = In ⊗ (1, 1, 1)

=


1 1 1 0 0 0 0 · · · 0
0 0 0 1 1 1 0 · · · 0
...

...
...

. . .
. . .

. . .
...

...
0 · · · 0 0 0 0 1 1 1


n×p

(3)

where ⊗ is the Kronecker operator, and the vector of ones in (3) is used for flow data (e.g., GDP), such
that the sum of the monthly GDPs coincides with its quarterly counterpart2. The premultiplication
yields the quarterly counterpart of (1):

Cym = CXmβ + Cum, Cum ∼ N(C0m, CVmC>). (4)

The GLS estimator for β is thus expressed as follows:

β̂ = arg min
β∈Rd

{∥∥∥V−
1
2

q (yq − Xqβ)
∣∣∣2
2

}
(5)

=
(

X>q V−1
q Xq

)−1
X>q V−1

q yq (6)

where Xq = CXm, yq = Cym and Vq = CVmC>. Note that estimating β requires the knowledge
of the unknown parameters σ and ρ in Vm which are unknown. We employ the profile-likelihood
maximization technique of Bournay and Laroque (1979), which involves first estimating β̂ and Vq

2For alternative aggregations see Quilis (2018) and Sax et al. (2023). For instance, if quarterly values correspond
to averages of monthly values, then the vector in equation (3) assumes the form (0.33, 0.33, 0.33).
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conditional on a given value of ρ, and maximizing the log-likelihood function by conducting a grid
search over ρ ∈ (−1, 1) for the autoregressive parameter. However, in practical applications, including
well-known implementations such as the tempdisagg package and the Gretl econometric software
Cottrell and Lucchetti (2023), the grid search is often restricted to ρ ∈ [0, 1), reflecting a non-negative
constraint on the autoregressive parameter. Our method is specifically designed to search within
ρ ∈ [0, 1), reflecting this non-negative constraint.

Chow and Lin (1971) show the optimal solution is obtained by:

ŷm = Xm β̂ + V̂mCV̂−1
q
(
yq − Xq β̂

)
, (7)

where Xm β̂ is the conditional expectation of ym given Xm and the estimate of the monthly residuals are
obtained by disaggregating the quarterly residuals yq − Xq β̂ to attain temporal consistency between
ŷm and y.

Other variants of the regression-based techniques include those proposed by Denton (1971),
Fernández (1981), Litterman (1983), and Cholette (1984), with the latter two addressing scenarios
where ym and Xm are not cointegrated. Although these traditional techniques are included in the
DisaggregateTS package, a comprehensive overview of different temporal disaggregation techniques
and distribution matrices can be found in Table 2 of Sax and Steiner (2013). The tempdisagg package
implements several standard methods for temporal disaggregation, each with distinct approaches for
estimating high-frequency series. These include the Denton, Denton-Cholette, Chow-Lin, fernández,
and Litterman methods. As summarized in Table 2 of Sax and Steiner (2013), Denton and Denton-
Cholette focus on movement preservation, while regression-based methods like Chow-Lin, fernández,
and Litterman perform generalized least squares regressions on the low-frequency series using one or
more high-frequency indicators. We have implemented the Chow-Lin method with a non-negative
autoregressive parameter, constrained within the range [0, 1), following the approach of Bournay and
Laroque (1979) and Cottrell and Lucchetti (2023). This offers flexibility in different disaggregation
scenarios.

2.2 Extension to high-dimensional settings

The shortcoming of Chow and Lin (1971) becomes evident in data-rich environments, where the num-
ber of indicators d� n surpass that of the time-stamps for the low-frequency data. Let us once again
recall the GLS estimator (6). When d < n and the columns of X>q V−1

q Xq are independent, the estimator
is well-defined. However, when d > n, the matrix is rank-deficient - i.e., rank(X>q V−1

q Xq) ≤ min(n, d),
the matrix X>q V−1

q Xq has linearly dependent columns, and thus is not invertible. In moderate dimen-
sions, where d ≈ n, X>q V−1

q Xq has eigenvalues close to zero, leading to high variance estimates of
β̂.

Mosley et al. (2022) resolve this problem by adding a regularizing penalty (e.g., `1 regularizer)
onto the GLS cost function (5):

β̂(λn | ρ) = arg min
β∈Rd

{∥∥∥V−
1
2

q (yq − Xqβ)
∥∥∥2

2
+ λn‖β‖1

}
. (8)

Unlike the GLS estimator (6), the regularized estimator corresponding to the cost function (8) is a
function of λn and the autoregressive parameter ρ. Henceforth, it is important to nominate the most
suitable λn and ρ to correctly recover the parameters. In (8), we denote the estimator as β̂(λn | ρ) to

highlight that the solution paths of the estimator for different values of λn, say, λ
(1)
n , λ

(2)
n , · · · , λ

(k)
n are

generated for (i.e. conditional on) a fixed ρ. The solution paths are obtained using the LARS algorithm
proposed by Efron et al. (2004), the benefits of which have been extensively discussed in Mosley et al.
(2022).

LASSO estimators inherently exhibit a small bias, such that ‖β̂‖2
2 ≤ ‖β∗‖2

2, where β∗ denotes
the true coefficient vector. To alleviate this issue, Mosley et al. (2022) further follow Belloni and
Chernozhukov (2013), by performing a refitting procedure using least squares re-estimation. The
latter entails generating a new n× d(l) sub-matrix X′q, where d(l) ≤ d from the original n× d matrix

Xq, with X′q corresponding to the columns of Xq supported by β̂(λ
(l)
n | ρ), for solutions l = 1, · · · , k

obtained from the LARS algorithm3. We then perform a usual least squares estimation on (yq, X′q) to

obtain debiased solution paths for each λ
(l)
n .

Finally, Mosley et al. (2022) choose the optimal estimate from β̂(λ1
n | ρ), · · · , β̂(λk

n | ρ) using the
Bayesian Information Criterion (BIC hereafter) proposed by Schwarz (1978). The motivation for nomi-

3noting the LARS algorithm produces solutions evaluated at a series of {λl}k
l=1 points.
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nating this statistic over resampling methods, such as cross-validation or bootstrapping techniques,
stems from the small sample size in the low-frequency observations. The optimal regularization is
chosen conditional on ρ according to

λ̂n(ρ) = arg min
λn(ρ)∈{λ(1)

n (ρ),··· ,λ(k)
n (ρ)}

{
−2L

(
β̂(λn | ρ), σ̂2

)
+ log(n)Kλn(ρ)

}
, (9)

where Kλn(ρ) = |{r : (β̂(λn | ρ)r 6= 0)}| is the degrees of freedom and L(β̂(λn | ρ), σ̂2) is the log-
likelihood function of the GLS regression (6), which in the presence of Gaussian errors, is given by:

L(β̂, σ̂2) = −n
2

log(2π)− n
2

log(σ2)− 1
2

log(|S|)− 1
2σ2 (yq − Xqβ)>(yq − Xqβ), (10)

where |S| is the determinant of the Toeplitz matrix S depending on ρ, such that Vq = σ2S (recalling
that Vq = CVmC>).

3 The package

In this Section, we showcase the main functions that has been included in the DisaggregateTS package.
Following Sax et al. (2023), we first introduce the main function of the package and it its features, and
subsequently we will showcase other functions that allow the practitioner to conducting simulations
and analyses.

3.1 Functions

The main function of the package which performs the sparse temporal disaggregation method pro-
posed by Mosley et al. (2022) is disaggregate(). This function is of the following form:

disaggregate(Y, X, aggMat, aggRatio, method, ...)

where the first argument of the function, Y, corresponds to the n× 1 vector of low-frequency series
yq that we wish to disaggregate, and the second argument, X, is the p× d matrix of high-frequency
indicator series Xm. In the event that there is no input X, the disaggregation matrix Xm is replaced with
an n× 1 vector of ones.

The argument aggMat coincides with the aggregation matrix C in (3), and it has been set to "sum"
by default, rendering it suitable for flow data. Alternative options include "first", "last" and
"average". The aggregation (distribution) matrices that are utilized in this function are summarized
in table 2 of Sax et al. (2023).

The argument aggRatio has been set to 4 by default, which represents the ratio of annual to
quarterly data. In general, this argument should be set to the ratio of the high-frequency to low-
frequency series. For instance, in the examples considered in the preceding Sections, we had considered
quarterly data as the low-frequency series, and monthly data as its high-frequency counterpart. Thus,
in this setting aggRatio = 3. At first glance, the presence of the aggRatio argument may seem
redundant. However, if n ≥ nl × aggRatio, then extrapolation is done up to n.

Finally, the argument method refers to the method of disaggregation under consideration. This
argument has been set to "Chow-lin" method by default, which is the classical regression-based
disaggregation technique introduced in Section 2.1. Other classical low-dimensional options include
"Denton", "Denton-Cholette", "fernandez", and "Litterman", where these techniques have been
extensively discussed in Dagum and Cholette (2006) and Sax and Steiner (2013). The main contribution
of this package stems from the "spTD" and "adaptive-spTD" options pertaining to sparse temporal
disaggregation and adaptive sparse temporal disaggregation, which are Mosley et al. (2022)’s high-
dimensional extension of the regression-based techniques proposed by Chow and Lin (1971). In a
high-dimensional regression, the adaptive LASSO is relevant when, for instance, the columns of the
design matrix X exhibit multicollinearity, and the Irrepresentability Condition (IC hereafter) is violated
(see Zou, 2006, for details). In such settings, the regularization parameter λ does not satisfy the oracle
property, which can lead to inconsistent variable selection. The adaptive counterpart of the regularized
GLS cost function (8), can be expressed as follows:

β̂(λn | ρ) = arg min
β∈Rd

∥∥∥V−
1
2

q (yq − Xqβ)
∥∥∥2

2
+ λn

d

∑
j=1

|β j|
|β̂init,j|

 , (11)

where β̂init,j is an initial estimator, predicated on β̂(ρ̂) from the regularized (LASSO) temporal disag-
gregation. See Mosley et al. (2022), for the details of the proposed methodology, and Zou (2006) and
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Van de Geer et al. (2011) to yield variable selection consistency using the OLS estimator and LASSO as
β̂init,j when the IC condition is violated.

The second main function of the DisaggregateTS package is TempDisaggDGP(), which generates
synthetic data that can be used for conducting simulations using the disaggregate() function. The
main arguments of this function are as follows:

TempDisaggDGP(n_l, n, aggRatio, p, beta, sparsity, method, aggMat, rho, ...)

where the first argument corresponds to the size of low-frequency series and n to that of the
high-frequency series. Moreover, aggRatio and aggMat are defined as before, in turn representing the
ratio of the high-frequency to low-frequency series, as well as the aggregation matrix (3). A minor
difference in the DGP function is that if n ≥ nl × aggRatio, then the last n− aggRatio× nl columns
of the aggregation matrix are set to zero, such that Y is observed only up to nl . Argument p sets the
dimensionality of high-frequency series (set to 1 by default), beta which has been set to 1 by default is
the positive and negative elements of the coefficient vector, sparsity is the sparsity percentage of the
coefficient vector, and rho is the autocorrelation of the error terms, which has been set to 0 by default.
Finally, the method argument determines the data generating process of the error terms, corresponding
to methods discussed earlier in this Section.

A number of optional arguments included in the function determine the mean vector and the
standard deviation of the design matrix, as well as options such a setting seed for running the
simulations, where the design matrix and the coefficient vectors are fixed.

In what follows, we showcase a simple example of the function and its respective outputs:

# Generate low-frequency quarterly series and its high-frequency monthly counterpart
SynthethicData <- TempDisaggDGP(n_l = 2,

n = 6,
aggRatio = 3,
p = 6,
beta = 0.5,
sparsity = 0.5,
method = 'Chow-Lin',
rho = 0.5)

In the example above, we generate low-frequency series yq ∈ R2 corresponding to two quarters,
and consequently, its high-frequency monthly counterpart ym ∈ R6. It is further assumed that the
data is generated using six monthly indicators - i.e., X6×6

m , with a coefficient vector β ∈ R6, where
β j ∈ {−0.5, 0,+0.5}. Since, the sparsity argument is set to 0.5, only half of β’s elements are non-zero.
Finally, the error vector um is assumed to follow the AR(1) structure of Chow and Lin (1971), with an
autocorrelation parameter of ρ = 0.5.

4 Simulations

In this Section, we show a simulation exercise to demonstrate the implementation of the temporal
disaggregation method via the DisaggregateTS package.

4.1 Classical setting

We start by simulating the dependent variable Y ∈ R17 and the set of high-frequency exogenous
variables X ∈ R68×5 by using the command:

# Set seed for reproducibility
set.seed(27)
# Generate low-frequency yearly series and its high-frequency quarterly counterpart
n_l <- 17 # The number of low-frequency data points - annual
n <- 68 # The number of high-frequency (quarterly) data points.
p_sim <- 5 # The number of the high-frequency exogenous variables.
rho_sim <- 0.8 # autocorrelation parameter
Sim_data <- TempDisaggDGP(n_l,

n,
aggRatio = 4,
p = p_sim,
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Figure 3: Temporal disaggregated and interpolated observations for the estimation under the classical
setting. The plot is built using the snippet code provided in this subsection. As we used the setting
aggMat = sum, the sum of every four disaggregated observations corresponds to an actual low-
frequency observation.

rho = rho_sim)
Y_sim <- matrix(Sim_data$Y_Gen) # Extract the simulated dependent low-frequency variable
X_sim <- matrix(Sim_data$X_Gen) # Extract the simulated dependent
# (low-frequency) variable
Y_sim_HF_obs <- matrix(Sim_data$y_Gen) # HF simulated observations

In this example, we are generating a set of low-frequency data, i.e. 17 annual datapoints and a set
of high-frequency (quarterly) exogenous variables that we want to use to infer the high-frequency
counterpart of the low-frequency data. We now want to temporally disaggregate the low-frequency
time series by using the information encapsulated in the high-frequency time series. In this case,
since the number of time observations is larger than the number of exogenous variables, we can
use standard methodologies to estimate the temporal disaggregation model. To do so, we use the
disaggregate() function setting method="Chow-Lin". The code is as follows:

C_sparse_SIM <- disaggregate(Y_sim,
X_sim,
aggMat = "sum",
aggRatio = 4,
method = "Chow-Lin")

C_sparse_SIM$beta_Est

#> 1 x 1 Matrix of class "dgeMatrix"
#> [,1]
#> [1,] 0.3193439

Y_HF_SIM <- C_sparse_SIM$y_Est[ ,1] # Extract the temporal disaggregated
# dependent variable estimated through the function disaggregate()

We show in Figure 3 the results, where we depict the high-frequency observation computed via
standard interpolation and estimated through the Chow-Lin temporal disaggregation method.
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Figure 4: Temporal disaggregated and interpolated observations for the estimation under the high-
dimensional setting. The plot is built using the snippet code provided in this subsection. As we used
the setting aggMat = sum, the sum of every four disaggregated observations corresponds to an actual
low-frequency observation.

4.2 High-dimensional setting

We now repeat the simulation experiment in a high-dimensional setting, where the number of temporal
observations is lower than the number of exogenous variables. In this case, standard methods like
Chow-Lin cannot be applied. To do so, we simulate the dependent variable Y ∈ R17 as before, but
now the set of high-frequency exogenous variables is of dimension X ∈ R68×100. Similarly, as before,
we can use the following command:

# Generate low-frequency yearly series and its high-frequency quarterly counterpart
set.seed(27)
n_l <- 17 # The number of low-frequency data points
n <- 68 # The number of high-frequency data points - quarterly
p_sim <- 100 # The number of the high-frequency exogenous variables.
rho_sim <- 0.8 # autocorrelation parameter
Sim_data <- TempDisaggDGP(n_l,

n,
aggRatio = 4,
p = p_sim,
rho = rho_sim)

Y_sim <- matrix(Sim_data$Y_Gen) #Extract the simulated dependent
# (low-frequency) variable
X_sim <- Sim_data$X_Gen #Extract the simulated exogenous variables - high-frequency

In this case, we cannot use a standard technique, and we need to estimate a sparse model to
overcome the curse of dimensionality. The disaggregate() function can handle the high-dimensional
setting by choosing the method to be "spTD" or "adaptive-spTD". In the following example, we use
the latter:

As we can see from both Figures 3 and 4, the standard interpolation cannot reproduce the fluctua-
tions of the data, making the result overly smooth. On the other hand, the temporal disaggregation
methods demonstrate fluctuations in line with the actual observations. We remark that the degree
of success in recovering the short-term fluctuations depends considerably on the setting, and as one
may expect, performance is not as strong in the high-dimensional scenario where the estimator must
simultaneously search for appropriate indicators and estimate the parameters.
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We would in general caution against throwing sets of non-curated (i.e. possibly irrelevant) indi-
cators into any of the Chow-Lin methods. Instead, we recommend that where possible, indicators
that are designed to track the outcome of interest are used, e.g., we may wish to benchmark (align)
monthly flash-indicators of GDP against more reliable yearly/quarterly observations, in this case,
the flash estimates can be used as an indicator within a standard Chow-Lin approach. If there is a
larger set of indicators which practitioners find hard to decide amongst, that is all indicators could
be feasible from the practitioner view, then we recommend users may try the model-selection based
"spTD", and "adaptive-spTD" routines. In some settings, use of the classical Chow-Lin procedure
becomes impossible due to the lack of low-frequency responses, in such settings it is necessary to
either apply regularization or perform model-selection.

To conclude the simulation exercise, we present a set of statistics from 1,000 simulations for both
the linearly interpolated and temporally disaggregated time series across the two simulation settings.
The results are summarized in Table 1. As it can be observed, the temporally disaggregated time
series provides a much better representation of the real data’s level of dispersion, while interpolation
consistently underestimates it. In terms of MSE and MAE, the findings are mixed: for the classic
case, temporal disaggregation shows lower values for both metrics, whereas in the high-dimensional
setting, the opposite trend is observed.

Table 1: Mean and standard deviation (in parentheses) of key statistical measures for the high-
frequency simulated observations, temporal disaggregated observations, and interpolated obser-
vations across 1000 Monte Carlo simulations. MAE and MSE are computed with respect to the
high-frequency simulated observations.

Statistic Classical_Obs Classical_Temporal_Disaggregation Classical_Interpolation HighDim_Obs HighDim_Temporal_Disaggregation HighDim_Interpolation

Standard Deviation 2.716 (0.258) 2.888 (0.597) 1.488 (0.321) 10.089 (0.888) 8.478 (1.696) 4.18 (0.817)
Kurtosis 2.897 (0.519) 2.902 (0.527) 2.689 (0.694) 2.898 (0.558) 2.890 (0.523) 2.892 (0.772)
MSE - (-) 2.405 (1.733) 5.158 (0.977) - (-) 104.463 (28.519) 86.095 (16.258)
MAE - (-) 1.185 (0.386) 1.809 (0.178) - (-) 8.136 (1.101) 7.403 (0.735)

5 Empirical application

In this Section, we show how temporal disaggregation can be used in a real-world problem.

The urgent need to address climate change has propelled the scientific community to explore
innovative approaches to quantify and manage greenhouse gas (GHG) emissions. Carbon intensity, a
crucial metric that measures the amount of carbon dioxide equivalent emitted per unit of economic
activity (e.g. sales), plays a pivotal role in assessing the environmental sustainability of industries,
countries, and global economies. By focusing on emissions per unit of economic output, carbon
intensity accounts for the fact that larger organizations or economies may naturally produce more
emissions simply due to scale. This allows for a fair comparison of sustainability performance across
different entities, regardless of size. Accurate and timely carbon accounting and the development
of robust measurement frameworks are essential for effective emission reduction strategies and the
pursuit of sustainable development goals. While carbon accounting frameworks offer valuable insights
into emissions quantification, they are not without limitations. One of those limitations is the frequency
with which this information is released, generally at an annual frequency, while most companies’
economic indicators are made public on a quarterly basis. This is a perfect example in which temporal
disaggregation can be used to bridge the gap between data availability and prompt economic and
financial analyses. In this application, the variable of interest is the GHG emissions for IBM between Q3
2005 and Q3 2021, at annual frequency, resulting in 17 datapoints, i.e. Y ∈ R17. For the high-frequency
data, we used the balance sheet, income statement, and cash flow statement quarterly data between
Q3 2005 and Q3 2021, resulting in 68 datapoints for the 128 variables. We remove variables that have a
pairwise correlation higher than 0.99, resulting in a filtered dataset with 112 variables, i.e. X ∈ R68×112.
In this example, we employed the adaptive LASSO method (method = "adaptive-spTD") as a way to
select the best variables that can be used to recover the high-frequency observations and we applied
the aggMat = "sum" aggregation method. The rationale for using this method, in conjunction with
aggRatio = 4 is to ensure that the disaggregated quarterly carbon intensity values are consistent
with the overall annual figures as the goal is to break down the emissions and sales data such that
the sum of the quarterly carbon intensities equals the yearly total. The adaptive LASSO procedure
select only seven non-zero coefficients, which are Actual sales per employee, trailing 12-month net
sales, Enterprise value, Current liabilities, total liabilities and equity, total line of credit and net debt.
Actual sales per employee, trailing 12-month net sales and Enterprise value indicate company sales
and size, both linked to the company’s economic activity, operational intensity, and commitment to
sustainability, and hence potential emissions. Current liabilities and total liabilities and equity reflect
the company’s financial position and operational scale, both of which might influence emissions. Total
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Figure 5: Temporal disaggregated and interpolated GHG emissions observations. In this example, we
used the setting aggMat = sum, so the sum of the quarterly disaggregated GHG sums to the actual
annual observation.

line of credit and net debt highlight the company’s ability to borrow, which could impact investment in
emissions-reducing projects. We show the results in Figure 5 alongside a linear interpolation method.

As it is possible to observe from the plot, the interpolated data do not fluctuate as we would expect
from real GHG emissions, as the method is not conditional on the variability of the high-frequency
variables. In this respect, the temporal disaggregated observations show more realistic dynamics. This
result can then be used to compute the GHG intensity, computing the ratio between GHG emissions
and the sales for the corresponding quarter.

6 Summary

In this paper, we have given an overview of the key functionality for the DisaggregateTS R package.
The package builds on features of the existing tempdisagg package allowing the user to easily apply
the regularized Chow-Lin type procedure of Mosley et al. (2022) and compare this with classical
methods based on interpolation via smoothing (e.g. Denton, 1971), or the Fernández (1981) and
Fernández (1981) methods in the case where series are not co-integrated. The package may be
extended in future to allow cross-sectional constraints, the disaggregation of panel time-series data,
and the accommodation of factor (latent-variable) structures in the temporal-disaggregation problem.

It is important to point out that when performing disaggregation, one should be careful to select
an appropriate set of indicator time-series, and not purely rely on the model-selection procedures
deployed here. Whilst these methods can help pick from a set of indicators, there is still room for them
to pick irrelevant/spurious series, especially given the short nature of the aggregate series. To this end,
we do not recommend just relying on one method alone, but rather a user deploy several methods of
disaggregation. The user should then attempt to obtain some form of (potentially qualitative) external
validation of the resultant series in their application of choice. One should always remember, that as
the high-frequency series is not observed, there can be no direct empirical validation of the methods
other than at the aggregate scale.
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LMest: An R Package for Estimating
Generalized Latent Markov Models
by Fulvia Pennoni, Silvia Pandolfi, and Francesco Bartolucci

Abstract We provide a detailed overview of the updated version of the R package LMest, which
offers functionalities for estimating Markov chain and latent or hidden Markov models for time series
and longitudinal data. This overview includes a description of the modeling structure, maximum-
likelihood estimation based on the Expectation-Maximization algorithm, and related issues. Practical
applications of these models are illustrated using real and simulated data with both categorical and
continuous responses. The latter are handled under the assumption of the Gaussian distribution given
the latent process. When describing the main functions of the package, we refer to potential applicative
contexts across various fields. The LMest package introduces several key novelties compared to
previous versions. It now handles missing responses under the missing-at-random assumption and
provides imputed values. The implemented functions allow users to display and visualize model
results. Additionally, the package includes functions to perform parametric bootstrap for inferential
procedures and to simulate data with complex structures in longitudinal contexts.

1 Introduction

Markov chain (MC) and latent or hidden Markov (HM) models are gaining increasing attention due
to possibility of handling the temporal structure of many observed phenomena (Meyn and Tweedie,
2012; Mor et al., 2021). In particular, with only one categorical response, an MC model allows studying
the initial distribution of this response variable and its conditional distribution given the previous
response. On the other hand, HM models offer a practical model-based dynamic clustering and
classification method (Bouveyron et al., 2019). This class of models finds application in the analysis
of time-series (Ephraim and Merhav, 2002; Zucchini et al., 2016) and longitudinal data (Wiggins,
1973; Bartolucci et al., 2013, 2022). The model formulation involves the introduction of a sequence
of individual and time specific discrete latent (hidden) variables. This results in a hidden process
assumed to follow a Markov chain of first order. The states of this chain correspond to latent clusters or
subpopulations of individuals with similar latent characteristics. The approach can handle responses
of different types, whether continuous or categorical. In the latter case, the conditional distribution of
these variables is freely parameterized on the basis of conditional response probabilities.

In this article we provide a practical introduction to MC and HM models through an overview
of the LMest package, focusing in particular on the new features of this package compared to the
previous versions, such as the one illustrated in Bartolucci et al. (2017). The package allows analyzing
time-series and longitudinal data by the models at issues. In the longitudinal context, recurring
measurements over time on possibly multiple characteristics are taken on several sampling units (e.g.,
individuals), in such a way that it is possible to describe the evolution of these characteristics over
time.

The package in its updated version 3.2.5 is available on CRAN at LMest and it is also described
with detailed vignettes, including applicative examples. Each function is well documented in the help
provided within the package, and several datasets from surveys and other sources are included in the
package in both wide and long formats.

The current version of the package has the following features, which were also present in the
previous versions:

• it is designed to estimate different model formulations, such as MC, HM, and mixed HM models,
through the Expectation-Maximization (EM) algorithm (Dempster et al., 1977);

• it allows the estimation of the effect of covariates under different parameterizations and model
specifications;

• model selection procedures using the Akaike Information Criterion (AIC, Akaike, 1973) and
the Bayesian Information Criterion (BIC, Schwarz, 1978) are included, relying on different
parameter initialization strategies;

• functions to produce local and global decoding are implemented to perform dynamic clustering;
• standard errors for the parameter estimates are obtained either through exact computation or

reliable approximations of the observed information matrix; parametric bootstrap procedures
(Davison and Hinkley, 1997) are also available for different model specifications;

• in order to increase the computational efficiency, Fortran routines are used to perform numerical
operations.
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Some important extensions have been introduced in the most recent version of the package. The
features of these new functions can be summarized as follows:

• in addition to categorical data, the package can handle continuous data, assuming a Gaussian
distribution for the response variables conditional on the latent process. It also accommo-
dates missing responses, drop-out, and intermittent missingness under the missing-at-random
assumption (MAR, Little and Rubin, 2020);

• when dealing with continuous outcomes, covariates may be included under different model
specifications, similar to the approach used for categorical outcomes;

• simulations from almost all the available model specifications may be carried out through a
suitable method;

• data in long format can be provided as input, and the model specification follows the common
R style; formulas for the response variables, as well as for the initial and transition probabilities
can be specified using the package Formula (Zeileis and Croissant, 2010);

• parameter estimates can be graphically displayed to enhance the interpretation of the results.

Overall, the current version of the package offers great flexibility in model formulation and estimation.

In the following sections, after covering the main theoretical aspects of the models, we provide an
overview of the LMest software package through examples using univariate and multivariate data
with and without missing values. The package uses the S3 object-oriented system, defining three main
classes of objects. We use both synthetic and real data to illustrate the models, where the synthetic
data are generated using functions available within the package. These data are similar to those used
in previous applied works published in the authors’ research articles or by other researchers in the
field. However, we prefer to use simulated versions because the original data are not always publicly
available. Additionally, using such data allows us to incorporate specific features that are useful for
illustrating certain functions of the package. When describing the data, we will refer to potential
real-world applications to characterize the research questions of interest, thereby better motivating the
adopted models. Specifically:

• the MC model is used to analyze longitudinal data about labor market careers after graduation;

• the HM model for categorical longitudinal responses is adopted to examine the customer’s
purchase behavior over time;

• the HM model for continuous time-series data is used to discover financial market phases;

• the HM model for continuous longitudinal responses is used to investigate the state progression
of illness in patients after treatment and the progression of students performance in different
types of school.

In the R examples we use set.seed(x) both when we generate the data and fit the models so that
all the output can be replicated. The code for replicability of the simulated data can be provided upon
request.

In the following we introduce the models, examples, and codes in an expository style to demon-
strate the use of specific functions of LMest. More details about MC and HM models are provided in
Bartolucci et al. (2013, 2014b). The remainder of the paper is structured as follows: the next section
presents the MC model, while the third section introduces the HM model for categorical longitudinal
data. The fourth section presents the HM model for continuous responses, which allows for missing
values and individual covariates. Finally, the fifth section provides a summary, mentions some of
other similar packages, and discusses additional issues related to future package extensions.

2 Markov chain model

In the following we first illustrate the assumptions of the MC model for categorical responses and
then an application based on a longitudinal categorical response and covariates.

2.1 Model assumptions

In the context of longitudinal data, the MC model is referred to as the transition model (Anderson,
1954) since it is of interest to estimate the transition between states of the stochastic process. With
only one categorical response variable, let Yi = (Yi1, . . . , YiT)

′ denote the vector of such variables for
individual i, with i = 1, . . . , n, where Yit has k categories labeled from 1 to k. Let xit denote the vector
of individual covariates available at the t-th time occasion for individual i, with t = 1, . . . , T.
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The main assumption of the model is that, for t = 3, . . . , T, Yit is conditionally independent of
Yi1, . . . , Yi,t−2 given Yi,t−1 when a first-order dependence structure is formulated. Moreover, in its basic
version, the model is characterized by initial and transition probabilities that, for every i = 1, . . . , n,
are denoted by

πu = p(Yi1 = u), u = 1, . . . , k

and
πuv = p(Yit = v|Yi,t−1 = u), t = 2, . . . , T, u, v = 1, . . . , k,

respectively.

In presence of individual time-fixed and time-varying covariates, the initial and transition prob-
abilities are denoted as πi,u = p(Yi1 = u|xi1), u = 1, . . . , k, and πit,uv = p(Yit = v|Yi,t−1 = u, xit),
t = 2, . . . , T, u, v = 1, . . . , k, respectively. Note that these probabilities are now individual specific, and
their dependence on the vector of covariates is formulated on the basis of multinomial logit models
(Azzalini, 1994). In particular, for the initial probabilities we have

log
πi,u
πi,1

= β0u + x′i1β1u, u = 2, . . . , k. (1)

Note that, as a reference category, the multinomial logit model in (1) has the first state. For the
transition probabilities we assume

log
πit,uv
πit,uu

= γ0uv + x′itγ1uv, t = 2, . . . , T, u, v = 1, . . . , k, u 6= v, (2)

where the logits have, as reference state, that corresponding to the row of the transition matrix. In the
above expressions, βu = (β0u, β′1u)

′ and γuv = (γ0uv, γ′1uv)
′ are parameter vectors to be estimated.

Denoting by θ the vector of all model parameters, the log-likelihood can be defined as

`(θ) =
n

∑
i=1

f (yi1, . . . , yiT |xi1, . . . xiT),

where f (yi1, . . . , yiT |xi1, . . . xiT) is the probability of the observed vector of response variables for unit
i and yit is a realization of Yit. Under the assumptions formulated for the MC model, and in presence
of individual covariates, this probability may be expressed as

f (yi1, . . . , yiT |xi1, . . . xiT) = πi,yi1

T

∏
t=2

πit,yi,t−1yit .

For the basic MC model without covariates, explicit formulas are available for the maximum
likelihood estimation of the parameters. Under more complex models, for example when individual
covariates are included as in Equations (1) and (2), an iterative algorithm, such as the Newton-Raphson
or the Fisher-scoring, is required to maximize the above log-likelihood. As is well known, at each
step of these algorithms, the parameter vector is updated by adding to its current value the inverse
of the observed or expected information matrix, which is multiplied by the score vector, that is, the
vector of the first derivatives of `(θ). These steps are performed until a suitable convergence criterion
is satisfied. The corresponding asymptotic standard errors can be obtained in the usual way from the
diagonal elements of the information matrix; see Bartolucci et al. (2014b) for more details.

Finally note that, although we illustrate the MC model only for the case of balanced longitudinal
data, this model can obviously be applied also to unbalanced data, when we have a specific number
of observations Ti for each individual i. However, for this aim, it is convenient to use the function of
LMest for HM models under a specific constraint, as will be clarified in the following.

2.2 Application to longitudinal data with covariates

The present example illustrates an application of the MC model with a univariate categorical response
and time-fixed covariates. The data provided within the package, named data_employment_sim, are
simulated supposing they come from a survey context, where interviews are conducted among a
nationally representative sample of graduates about their employment status after graduation; for
analyses of similar data see Bartolucci and Pennoni (2011). In this scenario, the binary response
variable (emp) is recorded for three time occasions corresponding to one, two, and three years after
graduation. Individual covariates, which are assumed to be time-fixed, are the geographical location
of the university where individuals graduated, assuming the country is divided into two main areas
(area: 1 for South, 2 for North), the grade at graduation categorized into three levels (grade: 1 for low,
2 for medium, and 3 for high), and the indicator for parents’ educational university qualification (edu:
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1 for university degree, 0 otherwise). In simulating these data, we set the sample size equal to n = 585,
and we consider T = 3 time occasions.

According to the simulated context, analyzing such data with the MC model allows us to identify
the employment patterns immediately after graduation and evaluate trends over time. Additionally,
the research question is whether the probability of employment in the first period after graduation
depends on the geographical area or on the final degree grade. Then, we can explore if and how family
background influences the probability of employment.

The type of data structures that can be given in input to the estimation function is in long format,
that is, a data frame with one row for each combination of unit i and time occasion t, with i = 1, . . . , n
and t = 1, . . . , T, so that the total number of rows of this object is nT. All columns should have names;
one column must correspond to the unit identifier, typically named with id, and another column must
correspond to the time occasions, typically named with time.

The data stored in the long format can be described by the usual summary() method after they
have been prepared by function lmestData(), as follows:

data("data_employment_sim")
dt <- lmestData(responsesFormula = emp ~ area + grade + edu,

id = "id", time = "time",
data = data_employment_sim)

In particular, the frequency distribution of the response variable for each wave is reported below:

summary(dt, dataSummary = "responses", varType = rep("d", ncol(dt$Y)))

#>
#> Data Info:
#> ----------
#>
#> Observations: 585
#> Time occasions: 3
#> Variables: 1
#>
#>
#> Proportion:
#> ----------
#>
#> time emp
#> 1:585 0:0.411396
#> 2:585 1:0.588604
#> 3:585
#>
#> Proportion by year:
#> ----------
#>
#>
#> Time = 1
#>
#> time emp
#> 1:585 0:0.4615385
#> 1:0.5384615
#>
#> Time = 2
#>
#> time emp
#> 2:585 0:0.4034188
#> 1:0.5965812
#>
#> Time = 3
#>
#> time emp
#> 3:585 0:0.3692308
#> 1:0.6307692
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To estimate an MC model with covariates we can use the lmestMc() function. In this example,
the interest is in estimating the effect, on the employment at the first interview, of the area where the
students graduated and of their grade, and in evaluating the impact of the parent’s educational level
only for the periods following the first interview. Accordingly, covariates area and grade are included
in responsesFormula argument so as to affect the initial probabilities, while edu is included in the
parameterization of the transition probabilities. The covariates for initial and transition probabilities
are separated by the symbol “|”. Note that we use the Formula package for all formula operators
(Zeileis and Croissant, 2010). Moreover, the argument index is required, which is a character vector to
specify the name of the unit identifier (first element) and that of the time occasions (second element).
Standard errors for the parameter estimates are provided by setting out_se = TRUE as in the following:

mod1 <- lmestMc(responsesFormula = emp ~
as.factor(area) + as.factor(grade) | as.factor(edu),
index = c("id", "time"),
data = dt, out_se = TRUE,
output = TRUE, seed = 345)

Note that, in the above code, the data object dt returned by the lmestData() function can be directly
passed to the estimation function. The tolerance level to check convergence of the EM algorithm and
the maximum number of iterations of this algorithm are set by default as tol = 10ˆ-8 and maxit =
1000.

Using option output = TRUE, the lmestMc() function also returns the subject-specific estimated
initial probabilities, collected in object Piv, and the estimated subject- and time-specific transition
probabilities, collected in PI. To summarize these results, it is convenient to calculate suitable averages
of these probabilities. Provided that the estimation output is stored in object mod1, for the initial
probabilities we have:

print(round(colMeans(mod1$Piv), 3))

#> 0 1
#> 0.462 0.538

These estimates indicate that the 46% of individuals is unemployed at the beginning of the period of
observation, that is, one year after graduation.

The array PI containing the estimates of the transition probabilities has dimension 2× 2× 585× 3,
where 2 is the number of response categories, 585 is the sample size, and 3 is the number of time
occasions. The averaged transition probabilities, over all individuals and time occasions, are computed
as follows starting from object mod1 where such probabilities are stored:

print(round(apply(mod1$PI[,,,2:3], c(1,2), mean), 3))

#> category
#> category 0 1
#> 0 0.761 0.239
#> 1 0.088 0.912

From these results we observe that unemployed individuals have a probability close to 0.76 of
remaining without a job between two successive time occasions. Employed individuals have a higher
persistence in the same employment status. The probability to find a job from one wave to another is
around 0.24.

A summary of the output of the lmestMc() function including parameter estimates can be printed
using the summary() method:

summary(mod1)

#> Call:
#> lmestMc(responsesFormula = emp ~ as.factor(area) + as.factor(grade) |
#> as.factor(edu), data = dt, index = c("id", "time"), out_se = TRUE,
#> output = TRUE, seed = 345)
#>
#> Coefficients:
#>
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#> Be - Parameters affecting the logit for the initial probabilities:
#> logit
#> 2
#> (Intercept) -0.4576
#> as.factor(area)2 0.4382
#> as.factor(grade)2 0.1536
#> as.factor(grade)3 1.6676
#>
#> Standard errors for Be:
#> logit
#> 2
#> (Intercept) 0.1681
#> as.factor(area)2 0.1847
#> as.factor(grade)2 0.1988
#> as.factor(grade)3 0.2529
#>
#> p-values for Be:
#> logit
#> 2
#> (Intercept) 0.006
#> as.factor(area)2 0.018
#> as.factor(grade)2 0.440
#> as.factor(grade)3 0.000
#>
#> Ga - Parameters affecting the logit for the transition probabilities:
#> logit
#> 1 2
#> (Intercept) -1.6015 -2.1789
#> as.factor(edu)1 2.1834 -2.6251
#>
#> Standard errors for Ga:
#> logit
#> 1 2
#> (Intercept) 0.1257 0.1423
#> as.factor(edu)1 0.3128 1.0141
#>
#> p-values for Ga:
#> logit
#> 1 2
#> (Intercept) 0 0.00
#> as.factor(edu)1 0 0.01

Note that the summary() method also returns the standard errors for the parameter estimates and
the corresponding significance level when option out_se = TRUE is included in the main estimation
function. The argument Be returned by the function provides the estimated regression parameters
of the logistic model for the probability of belonging to category 1 (employed) versus category 0
(unemployed) at the first interview. For interpretation, a higher degree grade positively affects the
employment probability one year after graduation. Specifically, the log-odds ratios is equal to 0.154
for those with a medium grade and 1.668 for those with a high grade, with respect to individuals
with a low grade, all the other covariates held fixed. Moreover, the log-odds ratio for area is positive,
indicating that, at the beginning of the study, individuals who graduated from a university located in
the North of the country are more likely to be employed than those who graduated from a university
located in the South, with other covariates held constant.

Regarding the estimates referred to the transition probabilities reported in the output Ga, we
may conclude that, apart for the intercept, a higher level of parents’ education positively affects the
probability of transition from the first to the second category (being employed after the first interview).
In terms of odds ratio, we have

round(exp(mod1$Ga[2,1]), 3)

#> [1] 8.877

compared to individuals with low educated parents. Moreover, having highly educated parents has a
negative effect on the transition from the second to the first category:
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round(exp(mod1$Ga[2,2]),3)

#> [1] 0.072

3 Hidden markov models for categorical data

We outline the main notation and assumptions of the HM models useful to understand the output of
the illustrated estimation functions of the LMest package.

3.1 Model assumptions

For a sample of n individuals and Ti time occasions, let Yit, i = 1, . . . , n, t = 1, . . . , Ti, be the observable
vector of response variables with elements Yijt, j = 1, . . . , r, where r denotes the number of response
variables. Note that the number of time occasions Ti is specific for each individual i. In this way,
we allow for unbalanced panels that may be due to a different number of time occasions for every
individual. Let also Ui = (Ui1, . . . , UiTi )

′ denote the latent process for each individual i that affects the
distribution of the response variables and assumed to follow a first-order Markov chain with a certain
number of latent (or hidden) states equal to k. The Markov properties of Uit are the same as those
illustrated in Section 2.1. However, here we use the notation Uit, which stands for “unobserved”, to
emphasize that it is latent/hidden, whereas Yit in Section 2.1 is observable. The response variables are
conditionally independent given this latent process; this assumption is referred to as local independence.
It means that the latent process fully explains the underlying phenomenon together with possible
covariates that may be time-fixed or time-varying.

The HM model is characterized by two components: the measurement (sub)model, which describes
the conditional distribution of the response variables given the latent process, and the structural or
latent (sub)model, which describes the distribution of the latent process. When dealing with categor-
ical outcomes, the formulation of the measurement (sub)model without covariates is based on the
parameters

φjy|u = p(Yijt = y|Uit = u), j = 1, . . . , r, t = 1, . . . , Ti, u = 1, . . . , k, y = 0, . . . , lj − 1, (3)

where lj corresponds to the number of response categories of the j-variable in Yit.

Regarding the latent (sub)model, the typical assumption is that the latent Markov chain is of
first order and, for the initial and transition probabilities, we can use the same notation previously
adopted for the MC model that now is formulated with reference to the latent variables rather than
the observable variables. More precisely, we introduce the initial and transition probabilities

πu = p(Ui1 = u), u = 1, . . . , k,

πuv = p(Uit = v|Ui,t−1 = u), t = 2, . . . , Ti, u, v = 1, . . . , k.

Note that, in the basic version of the HM model, the transition probabilities are assumed to be time
homogeneous to reduce the number of free parameters. However, this assumption can be relaxed if it
proves to be too restrictive.

When available, individual explanatory variables, collected in the vectors xit, may be included in
the measurement model, so as to account for the unobserved heterogeneity between units, or in the
latent model, so that they affect the initial and transition probabilities of the Markov chain. In the latter
case, these probabilities may be defined on the basis of the same multinomial logit parameterizations
adopted for the MC model; see in particular Equations (1) and (2). The parameterization of the transi-
tion probabilities in Equation (2) is referred to as paramLatent = "multilogit" in the corresponding
argument of the estimation function lmest() and is illustrated with an application to health related
data in Bartolucci et al. (2017).

In order to make the model more parsimonious, an alternative differential logit parameterization
can be used for the transition probabilities, denoted as paramLatent = "difflogit". Such a parame-
terization relies on logits based on the difference between two vectors of parameters, for t = 2, . . . , Ti:

log
πit,uv
πit,uu

= γ0uv + x′it(γ1v − γ1u), u, v = 1, . . . , k, u 6= v, (4)

where γ11 = 0 to ensure model identifiability; see Bartolucci et al. (2015) for an example of application
of this parameterization.

The LMest package also allows including individual covariates in the measurement model through
a suitable parameterization of the conditional distribution of the response variables given the latent
states; see Bartolucci et al. (2017). This formulation can only be used for univariate data by setting

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=LMest
https://CRAN.R-project.org/package=LMest


CONTRIBUTED RESEARCH ARTICLE 81

argument modManifest = "LM" in the lmest() function. It is also possible to indicate an alternative
model specification by setting the option modManifest = FM, which relies on the assumption that the
latent process has a distribution given by a mixture of AR(1) processes with common variance and
specific correlation coefficients. See Bartolucci et al. (2014a) for an illustration of this model; see also
Pennoni and Vittadini (2013).

3.2 Maximum likelihood inference

We illustrate maximum likelihood estimation in the general case in which covariates are available and
are included in the distribution of the latent process. In this case, for a sample of n independent units,
the model log-likelihood has the following expression:

`(θ) =
n

∑
i=1

f (yi1, . . . , yiTi |xi1, . . . , xiTi ),

where θ is the vector of all free model parameters and f (yi1, . . . , yiTi |xi1, . . . , xiTi ) corresponds to the
manifest distribution, that is, the probability of the responses provided by subject i given the covariates.
This manifest probability has expression

f (yi1, . . . , yiTi |xi1, . . . , xiTi ) =
k

∑
u1=1
· · ·

k

∑
uTi=1

πi,u1

Ti

∏
t=2

πit,ut−1ut

Ti

∏
t=1

f (yit|ut), (5)

where f (yit|u) refers to the conditional distribution of the response variables for unit i at time occasion
t given the latent process that, in the case of categorical response variables, is freely parameterized by
the conditional response probabilities in Equation (3).

In order to compute f (yi1, . . . , yiTi |xi1, . . . , xiTi ) while avoiding the sum in Equation (5), which has
a computational cost that exponentially increases in Ti, we rely on the Baum and Welch recursion
(Baum and Petrie, 1966) that is described in Bartolucci et al. (2013), among others. The above log-
likelihood function can be maximized by the EM algorithm based on the complete-data log-likelihood
(Baum et al., 1970; Dempster et al., 1977). The EM algorithm is characterized by a series of iterations
consisting of two steps, named E- and M-step, which are repeated until convergence. The E-step
computes the conditional expected value of the complete-data log-likelihood given the current value
of the parameters and the observed data. The M-step consists in maximizing this expected value
so as to update the model parameters. The convergence of the EM algorithm is assessed on the
basis of a suitable convergence criterion relying on the relative log-likelihood difference between two
consecutive iterations. From this iterative algorithm we obtain an estimate of θ, denoted by θ̂.

For HM models, initialization of the estimation algorithm is an important issue as the model
log-likelihood is typically multimodal. The LMest package allows performing a multi-start initializa-
tion strategy, based on both deterministic and random rules, which is aimed at suitably exploring
the parameter space so as to increase the chance to reach the global maximum of the model log-
likelihood. With some differences, this is done by functions lmest() and lmestSearch(); the latter
will be illustrated in the following.

Once the parameter estimates are computed, standard errors may be obtained in the usual way
on the basis of the observed information matrix. This matrix is provided by LMest using either the
exact computation method proposed in Bartolucci and Farcomeni (2015) or the numerical method of
Bartolucci and Farcomeni (2009), depending on the complexity of the model of interest. The package
also provides the bootstrap() method to obtain standard errors by a parametric bootstrap procedure,
that is, by drawing samples from the estimated model and computing the maximum likelihood
estimates for every bootstrap sample. The standard errors are obtained by computing, in a suitable
way, the standard deviation of the empirical distribution so obtained; see among others, Visser and
Speekenbrink (2022). An alternative nonparametric bootstrap procedure can also be used, based on
drawing a large number of samples with replacement from the observed data.

Selection of the number of states is performed according to information criteria such as AIC
(Akaike, 1973) and BIC (Schwarz, 1978). They are defined as follows:

AIC = −2`(θ̂) + 2 #par,

BIC = −2`(θ̂) + log(n) #par,

where `(θ̂) denotes the maximized log-likelihood of the model of interest, n is the sample size, and
#par denotes the number of free parameters to be estimated. Other criteria, such as those based on
entropy may be used; see, among others, Bacci et al. (2014).

Once the number of states is selected, dynamic clustering is performed by assigning every unit to
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a latent state at each time occasion by means of the estimated posterior probabilities of the Uit. These
probabilities are directly provided by the EM algorithm and are defined as

âit,u = p(Uit = u|yi1, . . . , yiTi , xi1, . . . , xiTi ), t = 1, . . . , Ti, u = 1, . . . , k, (6)

b̂it,uv = p(Ui,t−1 = u, Uit = v|yi1, . . . , yiTi , xi1, . . . , xiTi ), t = 2, . . . , Ti, u, v = 1, . . . , k.

Prediction of the latent states of every unit i at each time occasion t is known as local decoding
and it is obtained as the value of u that maximizes the posterior probabilities in Equation (6). As an
alternative to the local decoding, the global decoding may be performed, which is based on the Viterbi
algorithm (Viterbi, 1967; Juang and Rabiner, 1991) to obtain the prediction of the latent trajectories of a
unit across time, that is, the a posteriori most likely sequence of hidden states. The package provides
the lmestDecoding() method to perform both local and global decoding based on the different model
specifications, as illustrated in the following sections. Additional details on the model formulations,
backward and forward recursions, and estimation can be found in Bartolucci et al. (2013).

3.3 Application to longitudinal data with covariates

As an illustration of the LMest package for estimation of HM models with multivariate responses
and covariates, we consider simulated data provided in the package, named data_market_sim. These
data refer to a hypothetical marketing context where a sample of n = 200 customers of four different
brands is observed along with the price of each transaction, defined for T = 5 occasions, in Euros per
purchase within the following ranges: [0.1, 10], (10, 30], (30, 60], (30, 100], (100, 500]. For a similar
application see, among others, Paas et al. (2007); Bassi et al. (2021). Accordingly, we consider r = 2
response variables (items), the first variable with l1 = 4 categories, one for each brand, and the second
variable with l2 = 5 categories, one for each range of price. The initial part of the dataset, in long
format, is displayed below:

data("data_market_sim")
head(data_market_sim)

#> id time brand price age income
#> 1 1 1 2 2 34 25
#> 2 1 2 0 2 35 25
#> 3 1 3 1 0 36 25
#> 4 1 4 2 2 37 25
#> 5 1 5 3 1 38 25
#> 6 2 1 1 3 35 27

The research questions in this context concern the evolution of customer’s purchase behavior
over time by exploring market segments, while also considering the role of socio-demographic
characteristics defined by the available individual covariates. In particular, we include age, as time-
varying continuous covariate, and income of the customer at the time of the first purchase, as time-fixed
continuous covariate.

As already mentioned, the package provides function lmestSearch(), which searches for the
global maximum of the log-likelihood of different models and selects the optimal number of hidden
states. This function combines deterministic and random initializations with a rather wide tolerance
level. Moreover, starting from the best solution obtained from these preliminary runs, a final run
is performed, with a smaller tolerance level, in order to increase the chance of reaching the global
maximum. The argument nrep can be provided to set the number of random initializations for each
number of hidden states. The range of states to be considered may be specified in argument k as
a vector of integers. Generally, model selection is performed by estimating the multivariate HM
model without covariates, which is specified within the model formula, indicated in the argument
responsesFormula, with ~ NULL stating that there are no predictors for the two response variables as
follows:

hmm <- lmestSearch(responsesFormula = brand + price ~ NULL,
latentFormula = ~ NULL,
version = "categorical",
index = c("id", "time"),
data = data_market_sim,
k = 1:4, fort = TRUE,
seed = 12345)
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By adding the optional fort = TRUE argument, a faster estimation procedure is achieved using
Fortran routines. The summary() method returns the estimation results, displaying the AIC and BIC
values for the sequence of estimated hidden states:

summary(hmm)

#> Call:
#> lmestSearch(responsesFormula = brand + price ~ NULL, latentFormula = ~NULL,
#> data = data_market_sim, index = c("id", "time"), k = 1:4,
#> version = "categorical", seed = 12345, fort = TRUE)
#>
#> states lk np AIC BIC
#> 1 -2811.001 7 5636.003 5659.091
#> 2 -2520.131 17 5074.263 5130.334
#> 3 -2445.538 29 4949.075 5044.727
#> 4 -2434.262 43 4954.524 5096.352

In this case, the BIC, used by default for model selection, supports a model with three hidden
states. Once the model is selected, we estimate the parameters of the latent model with covariates
by fixing the parameter values of the conditional response probabilities obtained under the model
chosen above. In this way, the estimated subpopulations are held fixed. These conditional response
probabilities are displayed below:

Psi <- hmm$out.single[[3]]$Psi
print(round(Psi, 2))

#> , , item = 1
#>
#> state
#> category 1 2 3
#> 0 0.69 0.08 0.10
#> 1 0.10 0.45 0.12
#> 2 0.17 0.40 0.08
#> 3 0.05 0.07 0.70
#> 4 NA NA NA
#>
#> , , item = 2
#>
#> state
#> category 1 2 3
#> 0 0.30 0.04 0.00
#> 1 0.43 0.19 0.05
#> 2 0.10 0.64 0.05
#> 3 0.12 0.11 0.30
#> 4 0.04 0.02 0.60

From these results, we notice that the three states may represent distinct customer segments that
can be labeled as follows: low-cost market segment (1st), ordinary segment (2nd), and luxury segment
(3rd). These segments are described in more detail in the following.

Function lmest() estimates the HM model with covariates that can affect the latent structure in
various ways. In the following, we assume that age and income may influence only the transition
probabilities, and do not affect the composition of the market segments at the beginning of the survey.
This can be set through the latentFormula argument, which includes age + income in the parameteri-
zation of the transition probabilities. For the initial probabilities, we ignore the effects of covariates
and estimate only the intercept of the multinomial logit by including NULL in the formula before the
symbol “|”. Note that this formulation is the same as the one expressed in Equation (1) but without the
vector of covariates, whereas for the transition probabilities we consider the parametrization defined
in Equation (4) obtained by including the argument paramLatent = "difflogit". Moreover, as an
input to the lmest() function, we also use the optional arguments parInit, which is a list of initial
model parameters that also includes argument fixPsi = TRUE to avoid estimation of the conditional
response probabilities. In this way, the EM algorithm is performed to estimate the parameters of
the structural model while these probabilities are kept fixed at the value displayed above. The same
arguments can be used to require the estimation of an MC model for unbalanced data as a constrained
version of an HM model with a number of states equal to the number of response categories.
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The HM model with three hidden states and fixed conditional response probabilities, chosen as
described above, is estimated as follows:

mod2 <- lmest(responsesFormula = brand + price ~ NULL,
latentFormula = ~ NULL | age + income,
k = 3, data = data_market_sim,
index = c("id", "time"),
parInit = list(Psi = Psi, fixPsi = TRUE),
paramLatent = "difflogit",
seed = 12345)

The print() method provides an overview of the estimation results including the maximum
log-likelihood, number of free parameters, and AIC and BIC values that can be used for model
selection.

print(mod2)

#>
#> Basic Latent Markov model with covariates in the latent model
#> Call:
#> lmest(responsesFormula = brand + price ~ NULL, latentFormula = ~NULL |
#> age + income, data = data_market_sim, index = c("id", "time"),
#> k = 3, paramLatent = "difflogit", parInit = list(Psi = Psi,
#> fixPsi = TRUE), seed = 12345)
#>
#> Available objects:
#> [1] "lk" "Be" "Ga" "Psi" "Piv"
#> [6] "PI" "np" "k" "aic" "bic"
#> [11] "lkv" "n" "TT" "paramLatent" "ns"
#> [16] "yv" "Lk" "Bic" "Aic" "call"
#> [21] "data"
#>
#> Convergence info:
#> LogLik np k AIC BIC n TT
#> -2444.437 12 3 4912.874 4952.454 200 5

The estimated HM model has a maximum log-likelihood of -2,444.437 with 12 parameters so that
AIC and BIC indexes are equal to 4,912.874 and 4,952.454, respectively.

The plot() method associated with lmest() provides a variety of displays. For example, a plot of
the estimated conditional response probabilities can be obtained as:

par(mar = c(5,4,4,2) + 0.1)
plot(mod2, what = "CondProb")

as shown in Figure 1. According to the simulated context, from this figure we observe that the 1st state
(low-cost segment), which includes the highest frequency of customers at the first time occasion (39%),
is related to those who primarily purchase products of the first brand (category 0 of item 1) with low
prices (categories 0 and 1 of item 2). Customers in the 2nd state (ordinary segment), corresponding
to around 30% of all customers, tend to buy products of the second and third brands with medium
prices. On the other hand, customers in the 3rd state (luxury segment) tend to purchase products of
brand four (category 3 of item 1) with relatively high prices (categories 3 and 4 of item 2). This state
includes around 31% of customers at the beginning of the period of observation.

The averaged estimated transition probabilities may be obtained by the following command:

print(round(apply(mod2$PI[,,,2:5], c(1,2), mean), 3))

#> state
#> state 1 2 3
#> 1 0.092 0.486 0.422
#> 2 0.028 0.878 0.093
#> 3 0.000 0.106 0.894

A plot showing the corresponding path diagram of the estimated transition matrix can be obtained
as
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State 1: Averaged initial probabilities = 0.386
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State 2: Averaged initial probabilities = 0.297
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State 3: Averaged initial probabilities = 0.317
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Figure 1: Plot of the estimated conditional response probabilities: on the left side there is item 1 (brand),
and on the right side item 2 (price), respectively. The top, middle, and bottom panels correspond to
the estimates for the 1st state (low-cost segment), 2nd state (ordinary segment), and 3rd state (luxury
segment), respectively.
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Figure 2: Path diagram of averaged estimated transition probabilities: nodes represent hidden states,
and arrows are present when the estimated transition probability between two states is not null.
Self-arrows indicate persistence in the same state if estimated. The reported numbers refer to the
estimated values of the transition probability matrix.

par(mar = c(2,1,5,1))
plot(mod2, what = "transitions")

as illustrated in Figure 2. From the results shown in this figure, we observe that customers have
a fairly high probability of persistence in the 2nd and 3rd state from one time period to the next,
as the estimated diagonal elements of the transition probability matrix are fairly high (0.88 and
0.89, respectively). This suggests that these two market segments are quite stable across customers
over years. Conversely, the highest estimated probabilities outside of the main diagonal refer to the
transition from the 1st state (low-cost segment) to the 2nd state (ordinary) and from the 1st to the
3rd (luxury). This shows that customers of the 1st segment have a greater tendency to change their
behavior over time.

The summary() method returns the main estimation results:

summary(mod2)

#> Call:
#> lmest(responsesFormula = brand + price ~ NULL, latentFormula = ~NULL |
#> age + income, data = data_market_sim, index = c("id", "time"),
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#> k = 3, paramLatent = "difflogit", parInit = list(Psi = Psi,
#> fixPsi = TRUE), seed = 12345)
#>
#> Coefficients:
#>
#> Be - Parameters affecting the logit for the initial probabilities:
#> logit
#> 2 3
#> (Intercept) -0.2604 -0.196
#>
#> Ga0 - Intercept affecting the logit for the transition probabilities:
#> logit
#> (Intercept) 2 3
#> 1 -3.2126 -3.9261
#> 2 1.4353 -2.8156
#> 3 -5.4099 -1.5630
#>
#> Ga1 - Regression parameters affecting the logit for the transition probabilities:
#> logit
#> 2 3
#> age 0.0836 0.0897
#> income 0.0563 0.0674
#>
#> Psi - Conditional response probabilities:
#> , , item = 1
#>
#> state
#> category 1 2 3
#> 0 0.6875 0.0816 0.1031
#> 1 0.1000 0.4512 0.1216
#> 2 0.1674 0.4010 0.0759
#> 3 0.0450 0.0663 0.6993
#> 4 NA NA NA
#>
#> , , item = 2
#>
#> state
#> category 1 2 3
#> 0 0.3016 0.0353 0.0000
#> 1 0.4344 0.1895 0.0505
#> 2 0.1033 0.6407 0.0489
#> 3 0.1172 0.1113 0.2981
#> 4 0.0436 0.0232 0.6025

The output Ga contains the estimated parameters affecting the distribution of the transition prob-
abilities based on the difflogit parameterization. More in detail, Ga0 refers to the intercepts, while
Ga1 refers to the regression coefficients. Each column of Ga1 can be interpreted as a general measure
of attraction of the corresponding state. From these results, we observe that the estimated effects
of the age and income of the customer are relatively small for each logit. Both covariates have a
positive impact, indicating that as age or income increases, the probability of moving to more valuable
segments also increases, while holding other parameters constant. Thus, older customers or those
with higher income are more likely to move to higher-value segments.

4 Hidden markov models for continuous data assuming a conditional
gaussian distribution

In this section, we illustrate the main notation used for HM models for continuous outcomes and
discuss how to handle missing responses under the MAR assumption (Little and Rubin, 2020). We
also illustrate the inclusion of covariates in both the latent and measurement models. Finally, we
introduce three examples of the application of these models using the appropriate functions of the
LMest package.

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=LMest


CONTRIBUTED RESEARCH ARTICLE 87

4.1 Model assumptions and inference

When dealing with continuous outcomes, let Yit = (Yi1t, . . . , Yirt)
′ denote the vector of r continuous

response variables measured at time t for subject i. As usual, under the local independence assumption,
the response vectors Yi1, . . . , YiTi are assumed to be conditionally independent given the latent process
Ui. Moreover, for the measurement model, we assume a conditional Gaussian distribution, that is,

Yit|Uit = u ∼ N(µu, Σu), u = 1, . . . , k. (7)

The parameters of the measurement (sub)model are the conditional means µu, u = 1, . . . , k, which
are state specific, and the variance-covariance matrices Σu, which may be assumed to be constant
across states under the assumption of homoschedasticity, that is, Σ1 = · · · = Σk = Σ. This assumption,
which reduces the number of estimated parameters and may be reasonable in many applied contexts,
is adopted in the LMest package.

The parameters of the latent (sub)model are again the initial and transition probabilities of the
Markov chain, as specified in the previous sections. As usual, when individual covariates collected in
vectors xit are available, they may be included in the distribution of the latent variables, so as to affect
the initial and transition probabilities. It is also possible to assume that individual covariates affect
the distribution of the response variables given the latent process, thereby accounting for unobserved
heterogeneity. The latter formulation is based on the assumption that

E(Yit|Uit = u, xit) = αu + x′itβ, u = 1, . . . , k,

which naturally extends to the multivariate case.

The manifest distribution may be expressed with a formula that closely recalls the one used in
Equation (5) for HM models for categorical responses, but with f (yit|u) that here denotes the density
of the multivariate Gaussian distribution based on assumption in Equation (7), possibly dependent
on the covariates. Maximum likelihood estimation is carried out as illustrated in Section 3.2 through
the EM algorithm and its extended version when individual covariates are included in the model.
The LMest package can also handle missing values in the response variables. When the outcomes
are continuous, we consider two different types of missing pattern under the MAR assumption:
partially missing outcomes at a given time occasion and completely missing outcomes, that is, when
individuals do not respond at one or more time occasions (intermittent pattern). Following Pandolfi
et al. (2023), in the presence of missing responses, it is convenient to partition each response vector
Yit as (Yo

it, Ym
it )
′, where Yo

it is the (sub)-vector of observed variables, and Ym
it refers to the missing data.

The conditional mean vectors and variance-covariance matrix may be decomposed into observed and
missing components as follows:

µu =

(
µo

u
µm

u

)
, Σu =

(
Σoo

u Σom
u

Σmo
u Σmm

u

)
,

where, for instance, Σom
u is the block of Σu collecting covariances between each observed and missing

response. In this way, for the observed responses, we have that:

Yo
it|Uit = u ∼ N(µo

u, Σoo
u ), u = 1, . . . , k.

The manifest distribution of the responses is now expressed with reference to the observed data. Model
inference is carried out using an extended version of the EM algorithm based on suitable recursions, as
illustrated in Pandolfi et al. (2023). In particular, at the E-step the algorithm also computes additional
expected values arising from the MAR assumption for the missing observations. Under this model
formulation, it is also possible to perform a type of multiple imputation, which allows us to predict
the missing responses either conditionally or unconditionally on the predicted states. Within the
LMest package, when the missing data are dealt with under the MAR assumption, the unconditional
prediction of the missing responses is performed by computing

ỹit =
k

∑
u=1

âit,uE(Yit|yo
it, u),

where âit,u = p(Uit|yo
i1, . . . , yo

iTi
, xi1, . . . , xiTi ) and E(Yit|yo

it, u) are posterior expected values computed
at the E-step.

Finally, both local and global decoding may be performed as usual. In this context, it is important
to note that the prediction of the latent states is also carried out for units with missing responses.
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4.2 Application to time-series

This section illustrates an application of the HM model to multivariate time-series data; for more
details, see Pennoni et al. (2022). Specifically, we use real data from Yahoo Finance, covering S&P 500
Index (SP500TR) and Intel stock prices (INTC). These data are sourced from the R package quantmod
(Ryan and Ulrich, 2022). The dataset includes the closing prices for each trading day from March to
August 2022. For the following application, we then compute the percentage returns based on these
closing prices.

The analysis of financial time-series data is typically focused on identifying market phases asso-
ciated with the volatility of returns. In this context, latent states are referred to as regimes, and it is
valuable to detect any abrupt and persistent changes in these regimes.

require(quantmod)
SP500_22 <- getSymbols("^SP500TR",

env = NULL,
from = "2022-03-01",
to = "2022-08-31",
periodicity = "daily")

dim(SP500_22)

#> [1] 127 6

INCT_22 <- getSymbols("INTC",
env = NULL,
from = "2022-03-01",
to = "2022-08-31",
periodicity = "daily")

sp_sreturns <- dailyReturn(SP500_22)*100
intc_sreturns <- dailyReturn(INCT_22)*100

data_fin <- cbind(1, 1:length(sp_sreturns), sp_sreturns, intc_sreturns)

names(data_fin) <- c("id", "time", "SP", "INCT")
head(round(data_fin, 3))

#> id time SP INCT
#> 2022-03-01 1 1 -1.304 -1.515
#> 2022-03-02 1 2 1.868 4.378
#> 2022-03-03 1 3 -0.513 -1.923
#> 2022-03-04 1 4 -0.786 0.292
#> 2022-03-07 1 5 -2.951 -0.811
#> 2022-03-08 1 6 -0.721 -0.378

data_fin[which.min(data_fin$SP),]

#> id time SP INCT
#> 2022-05-18 1 56 -4.016448 -4.617124

data_fin[which.min(data_fin$INCT),]

#> id time SP INCT
#> 2022-07-29 1 105 1.431582 -8.562069

The two series are displayed in Figure 3 and 4, while descriptive statistics are reported in the
following:

#> Index SP INCT
#> Min. :2022-03-01 Min. :-4.01645 Min. :-8.5621
#> 1st Qu.:2022-04-13 1st Qu.:-0.89097 1st Qu.:-1.8511
#> Median :2022-05-31 Median :-0.06888 Median :-0.1265
#> Mean :2022-05-30 Mean :-0.05265 Mean :-0.2769
#> 3rd Qu.:2022-07-16 3rd Qu.: 1.09352 3rd Qu.: 1.1456
#> Max. :2022-08-30 Max. : 3.05815 Max. : 6.9401
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Figure 3: Observed percentage returns of Standard and Poor’s 500 Index from March to August 2022
(127 days).
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Figure 4: Observed percentage returns of Intel stock from March to August 2022 (127 days).
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We can easily estimate the HM model for continuous data with three hidden states, assuming they
may represent bear, bull, and intermediate market regimes. The function of the package that can be
used to estimate this model is lmestCont(); the basic version of the model, without covariates, can be
specified by setting the argument responsesFormula = SP + INCT ~ NULL.

As for the other estimation functions, the argument index is required to specify the name of the unit
identifier and the indicator of the time occasions. The model can be fitted with the constraint of time-
homogeneity, by setting the argument modBasic = 1, which ensures that the transition probabilities
do not depend on t. Argument tol = 10ˆ-6 is used to set the tolerance level for the convergence of
the algorithm; by default, this is set to tol = 10ˆ-10. We can also specify maxit, which is an integer
that sets the maximum number of EM iterations; by default, this is set to 5,000.

mod3 <- lmestCont(responsesFormula = SP + INCT ~ NULL,
data = data_fin,
index = c("id", "time"),
k = 3, modBasic = 1, tol = 10^-6)

A summary of the estimation results is obtained with the summary() method:

summary(mod3)

#> Call:
#> lmestCont(responsesFormula = SP + INCT ~ NULL, data = data_fin,
#> index = c("id", "time"), k = 3, modBasic = 1, tol = 10^-6)
#>
#> Coefficients:
#>
#> Initial probabilities:
#> est_piv
#> [1,] 1
#> [2,] 0
#> [3,] 0
#>
#> Transition probabilities:
#> state
#> state 1 2 3
#> 1 0.1265 0.2715 0.6020
#> 2 0.0389 0.9610 0.0001
#> 3 0.5113 0.0001 0.4887
#>
#> Mu - Conditional response means:
#> state
#> item 1 2 3
#> SP -2.5609 0.2353 0.6531
#> INCT -2.9240 -0.0996 1.1140
#>
#> Si - Variance-covariance matrix:
#> [,1] [,2]
#> [1,] 1.5253 1.7211
#> [2,] 1.7211 4.3718

This summary output shows the estimated initial and transition probabilities of the three latent
states, the estimated cluster means, and the variance-covariance matrix. The three states represent
different market regimes that can be interpreted according to the estimated means as follows: the
1st state identifies negative returns, the 2nd state corresponds to positive returns for S&P 500 (SP)
and negative for Intel stock (INCT), and the 3rd state identifies positive returns for both. The main
transitions are from the 1st to the 2nd state (0.272), from the 1st to the 3rd (0.602) state, and from the
3rd to the 1st state (0.511).

The contour plot of the estimated overall density, with weights given by the estimated marginal
probabilities of the latent states, is shown in Figure 5. It is obtained by the plot() method using the
argument what = "density" as follows:

plot(mod3, what = "density")
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Figure 5: Estimated density surface of the bivariate distribution of Standard and Poor’s 500 Index and
Intel stock prices observed from March to August 2022 (127 days)

The density regions of each estimated component (regime), represented as a contour plot, can be
visualized by setting the argument components = c(1, 2, 3). The resulting plot is shown in Figure 6.

par(mar = c(3,4,2,2), oma = c(0,1,0,1))
plot(mod3, what = "density", components = c(1,2,3))

In the context of financial time-series, a relevant issue is path prediction, that is, finding the
most likely sequence of latent states for a given unit on the basis of the observed values. As already
mentioned, both local and global decoding are implemented in the lmestDecoding() method, which
allows us to predict the sequence of latent states for a sample unit on the basis of the output of the
different estimation functions, as follows:

deco3 <- lmestDecoding(mod3)

Object deco3 contains the local (object Ul) and global (object Ug) decoding (obtained through the
Viterbi algorithm). For example, for the local decoding, we have:

deco3$Ul

#> [1] 1 3 3 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [38] 1 3 1 3 3 1 3 3 3 1 3 1 3 1 3 3 3 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 3
#> [75] 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#> [112] 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2

These sequences can be depicted as follows:

data_fin$Ul <- deco3$Ul
plot(data_fin$Ul, ylab="State")

From Figure 7 we can observe distinct periods characterized by different market regimes, as
indicated by the decoded state sequence. Initially, a neutral market regime is observed, followed by
alternating bullish and bearish market regimes, and finally, a neutral market regime predominates
during the last period.

4.3 Application to longitudinal data with missing values and covariates in the latent
(sub)models

Data provided in the package, named data_heart_sim, are simulated from a hypothetical observa-
tional retrospective study designed to assess the progression of health states of individuals after
treatment. The dataset includes observations on systolic and diastolic blood pressure (variables sap
and dap in mmHg) and heart rate (variable hr in bpm), as well as covariates such as fluid administra-
tion (variable fluid in ml/kg/h), gender (variable gender: 1 for male, 2 for female), and age (variable
age in years). Note that fluid is a time-varying covariate. The initial part of the dataset is as follow:
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Figure 6: Estimated density surfaces for each hidden state (component) represented as contour levels
of Standard and Poor’s 500 Index and Intel stock prices observed from March to August 2022 (127
days).
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Figure 7: Predicted sequence of hidden states from March to August 2022 (127 days) under the HM
model with k = 3 estimated for Standard and Poor’s 500 Index and Intel stock prices.
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data("data_heart_sim")
head(data_heart_sim)

#> id time sap dap hr fluid gender age
#> 1 1 1 117 67 75 2800 1 56
#> 2 1 2 111 69 93 1750 1 56
#> 3 1 3 102 60 108 2320 1 56
#> 4 1 4 123 78 105 2600 1 56
#> 5 1 5 102 57 99 1700 1 56
#> 6 1 6 86 60 96 2210 1 56

We assume that these measurements are recorded daily after a particular surgery for up to six
days, so that T = 6, and some patients have missing records for one or more outcomes. The number
of patients is n = 125. Missing responses are denoted with NA in the data provided to the estimation
function. Note that the package does not support missing values in the covariates, which should be
imputed separately. The data are simulated to include a proportion of missing values of around 15%.

We estimate an HM model with three hidden states, including covariates that affect both the initial
and transition probabilities, and where missing data are handled under the MAR assumption. This
model is specified using the full set of responses through the function lmestCont() as follows:

mod4 <- lmestCont(responsesFormula = sap + dap + hr ~ NULL,
latentFormula = ~ fluid + as.factor(gender) + age,
data = data_heart_sim,
index = c("id", "time"),
k = 3, miss.imp = FALSE)

Note that it is possible to specify how to deal with missing responses by setting the logical
argument miss.imp. The MAR assumption is adopted if this argument is set to FALSE (the default
value). Otherwise, missing outcomes are imputed using the imp.mix() function from the package mix
(Schafer, 2024) before starting the estimation.

The following command provides a summary of the estimation results:

summary(mod4)

#> Call:
#> lmestCont(responsesFormula = sap + dap + hr ~ NULL, latentFormula = ~fluid +
#> as.factor(gender) + age, data = data_heart_sim, index = c("id",
#> "time"), k = 3, miss.imp = FALSE)
#>
#> Coefficients:
#>
#> Be - Parameters affecting the logit for the initial probabilities:
#> logit
#> 2 3
#> (Intercept) -0.0348 0.0258
#> fluid 0.0003 0.0001
#> as.factor(gender)2 -0.4704 0.3428
#> age -0.0290 -0.0096
#>
#> Ga - Parameters affecting the logit for the transition probabilities:
#> , , logit = 1
#>
#> logit
#> 2 3
#> (Intercept) -2.1318 -2.3075
#> fluid -0.0007 0.0001
#> as.factor(gender)2 2.1343 0.0536
#> age -0.0047 0.0076
#>
#> , , logit = 2
#>
#> logit
#> 2 3
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#> (Intercept) -0.9958 -1.9856
#> fluid -0.0025 -0.0001
#> as.factor(gender)2 4.3148 2.4297
#> age -0.0493 -0.0641
#>
#> , , logit = 3
#>
#> logit
#> 2 3
#> (Intercept) -2.2754 -2.4416
#> fluid 0.0008 0.0007
#> as.factor(gender)2 0.3736 -1.9600
#> age -0.0700 -0.0342
#>
#>
#> Mu - Conditional response means:
#> state
#> 1 2 3
#> sap 101.0068 104.9304 127.5081
#> dap 61.9488 66.9759 73.6769
#> hr 74.2144 102.1859 83.0373
#>
#> Si - Variance-covariance matrix:
#> [,1] [,2] [,3]
#> [1,] 197.0381 55.0938 12.7835
#> [2,] 55.0938 107.8801 21.0515
#> [3,] 12.7835 21.0515 123.8274

Considering the estimated conditional means under the HM model with k = 3 latent states, we
observe that these states are ordered increasingly according to the values of the estimated means for
both systolic (sap) and diastolic (dap) blood pressure. The estimated regression parameters related to
the initial probabilities are stored in object Be. The log-odds ratio for gender is positive for the 3rd
state and negative for the 2nd, indicating that females are more likely to be in the 3rd and 1st states
one day after surgery, holding other covariates constant.

The output Ga refers to the estimated regression parameters on the transition probabilities. For
example, the values in the 1st column of Ga[„3] measure the influence of each covariate on the
transition from the 3rd to the 1st state. For females, the probability of this transition is higher than for
males and age has a negative effect on this transition.

Parametric bootstrap standard errors for the parameter estimates can be obtained using the
bootstrap() method by specifying, as input argument, the object returned by the call of lmestCont().
The number of bootstrap samples can be specified through argument B. The call is as follows:

boot <- bootstrap(mod4, B = 20)

Results of function bootstrap() include the average of bootstrap estimates and the standard errors
for the model parameters. For example, the estimated standard errors for the regression parameters
affecting the logits on initial and transition probabilities can be obtained as

round(boot$seBe, 3)

#> logit
#> 2 3
#> (Intercept) 0.014 0.031
#> fluid 0.000 0.000
#> as.factor(gender)2 0.206 0.402
#> age 0.012 0.011

round(boot$seGa, 3)

#> , , logit = 1
#>
#> logit
#> 2 3
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#> (Intercept) 0.011 0.036
#> fluid 0.000 0.001
#> as.factor(gender)2 0.099 0.520
#> age 0.015 0.026
#>
#> , , logit = 2
#>
#> logit
#> 2 3
#> (Intercept) 4.240 0.705
#> fluid 0.006 0.004
#> as.factor(gender)2 4.477 2.196
#> age 0.159 0.301
#>
#> , , logit = 3
#>
#> logit
#> 2 3
#> (Intercept) 0.031 0.042
#> fluid 0.004 0.001
#> as.factor(gender)2 0.245 0.629
#> age 0.318 0.069

4.4 Application to longitudinal data with imputed missing values and covariates in the
measurement (sub)model

We examine data collected by the Minnesota Department of Education for all Minnesota schools
during the period 2008-2010, as illustrated in Roback and Legler (2021). The dataset is available in the
GitHub repository at the link provided in the following chunk.

urlfile <- "https://raw.githubusercontent.com/proback/BeyondMLR/master/data/chart_wide_condense.csv"

data <- read.csv(url(urlfile))
n <- nrow(data); TT <- 3
data_school <- data.frame(id = rep(1:n, each = TT), time = rep(1:TT, n),

chart = rep(data$charter, each = TT),
sped = rep(data$schPctsped, each = TT),
math = c(t(data[,c("MathAvgScore.0",

"MathAvgScore.1", "MathAvgScore.2")])))

The final part of the dataset in long format is displayed in the following:

round(tail(data_school), 3)

#> id time chart sped math
#> 1849 617 1 1 0.105 NA
#> 1850 617 2 1 0.105 NA
#> 1851 617 3 1 0.105 651.4
#> 1852 618 1 1 0.455 NA
#> 1853 618 2 1 0.455 NA
#> 1854 618 3 1 0.455 631.2

The data refer to 618 schools, and the aim is to compare student performance in charter schools
versus public schools by analyzing Minnesota Comprehensive Assessment average math scores from
6th to 8th graders in each school. The response variable (math) is recorded at three time occasions
corresponding to years 2008, 2009, and 2010. Type of school (chart: coded as 1 for a charter school,
and 0 for a public school), and the proportion of special education students in a school (sped), based on
2010 figures, are time-fixed covariates. In this example, we investigate the effects of the two covariates
on the test performance, specifically examining whether there are differences between charter and
public schools.

We observe that the school with id 618 has missing records for the math scores at both the first and
second occasions. Additionally, there are 121 missing math scores out of a total of 1,854 records.
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table(complete.cases(data_school$math))

#>
#> FALSE TRUE
#> 121 1733

We estimate an HM model with two latent states, handling missing values through imputation, and
accounting for the effect of covariates on the measurement model. This is done using the lmestCont()
function with the following options:

mod5 <- lmestCont(responsesFormula = math ~ chart + sped,
data = data_school,
index = c("id", "time"),
k = 2, miss.imp = TRUE)

The summary output presents the estimated model parameters, including the following details:

summary(mod5)

#> Call:
#> lmestCont(responsesFormula = math ~ chart + sped, data = data_school,
#> index = c("id", "time"), k = 2, miss.imp = TRUE)
#>
#> Coefficients:
#>
#> Initial probabilities:
#> est_piv
#> [1,] 0.1652
#> [2,] 0.8348
#>
#> Transition probabilities:
#> , , time = 2
#>
#> state
#> state 1 2
#> 1 0.9233 0.0767
#> 2 0.0130 0.9870
#>
#> , , time = 3
#>
#> state
#> state 1 2
#> 1 0.7419 0.2581
#> 2 0.0085 0.9915
#>
#>
#> Al - Intercepts:
#>
#> state [,1]
#> 1 644.8250
#> 2 656.8341
#>
#> Be - Regression parameters:
#> [,1]
#> [1,] -2.8784
#> [2,] -12.8279
#>
#> Si - Variance-covariance matrix:
#> [,1]
#> [1,] 24.0767

The estimated intercepts, collected in object Al, indicate that the 1st state corresponds to lower
performing schools. Additionally, the analysis reveals a negative effect of attending a non-charter
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public school on the average math score, while controlling for the percentage of special education
students. Covariate sped has also a negative effect on the math score. Specifically, an increase of 1% in
the proportion of special education students at a school is associated with a decrease of 12.83 points in
the estimated mean math scores.

From the estimated initial probabilities, we infer that, in 2008, around 17% of schools belong to
the 1st state. The two estimated transition matrices indicate a significant increase in the average math
score from 2009 to 2010, as evidenced by the transition probability from the 1st to the 2nd state, which
is 0.26.

The output collected in mod5 also includes an object named Yimp, which is an array of dimension
n× T× k containing the imputed data. For instance, the imputed values for unit 618 at the first and
second time occasion are 662.966 and 661.465, respectively.

round(mod5$Yimp[618,,], 3)

#> [1] 662.966 661.465 631.200

5 Discussion

The LMest package is designed for Markov chain (MC) and hidden Markov (HM) models. It includes
functions for maximum likelihood estimation of various versions of these models, both with and
without covariates, and under different constraints. In particular, the package allows analyzing
longitudinal and time-series data through MC models for univariate categorical responses and HM
models for both categorical and continuous responses, so covering a wide range of applications.

The primary features of the models at issue, and of HM models in particular, are the great flexibility
and the capability of performing dynamic model-based clustering with each cluster corresponding to
a support point of the Markov chain. HM models are estimated using the Expectation-Maximization
(EM) algorithm. Given that the likelihood is often multimodal, the package provides appropriate
criteria to assess the convergence and choose different sets of starting values for the model parameters.
Moreover, in order to optimize computational efficiency, the Fortran language is used for many
numerical operations. The package also includes functions for simulating data from different versions
of the HM models, as well as for displaying and visualizing parameter estimates. Parametric bootstrap
can also be applied to provide standard errors for the parameters estimates, offering an alternative to
using the information matrix.

In addition to the previous features, the LMest package also allows estimation of a model for
longitudinal categorical data based on a mixture of latent AR(1) processes to dynamically account for
unobserved heterogeneity. Each mixture component has a specific mean and correlation coefficient,
but these components share a common variance. Therefore this model is based on a continuous
latent process and is tailored for univariate data, in which the response variable has an ordinal
nature. As another extension, it is possible to estimate mixed HM models (van de Pol and Langeheine,
1990) through function lmestMixed(), which is formulated to account for additional sources of time-
fixed dependency in the data. The parameters of the latent process can vary across different latent
subpopulations defined by an additional latent variable.

It is worth mentioning that, within the package, it is possible to handle intermittent, entirely
or partially, missing values in the responses under the missing-at-random assumption and the EM
algorithm for parameter estimation is suitable adapted also for providing an imputation of the missing
responses. Weighted maximum likelihood can also be performed, which can be useful in many
applied contexts, such as when longitudinal survey data are analyzed. In this case, individual survey
weights (Kaplan and Ferguson, 1999), which refer to the probability of each unit being sampled in
the reference population, are available; see among others, Pennoni and Genge (2020) and Pennoni
and Nakai (2023). By using suitable weights, it is also possible to carry out causal inference with
observational longitudinal data (Robins, 1997), in a potential outcome framework (Rubin, 1974), on
the basis of a propensity score method. For applications of this type see Bartolucci et al. (2016, 2023)
and Pennoni et al. (2023).

As alternative packages to LMest, we mention march (Maitre et al., 2020), which provides tools
for fitting discrete-time Markov chains, semi-Markov chains, and higher-order models. Moreover,
we mention the mstate package (Putter et al., 2007) designed for modeling and analyzing multi-state
models, which are generalizations of Markov chains, useful in the context of survival analysis, and the
ctmcd package (Pfeuffer, 2024), which provides methods for parameter estimation, simulation, and
detailed analysis of continuous-time Markov models.

For the HM model, it is also worth considering the depmixS4 package (Visser and Speekenbrink,
2022). LMest and depmixS4 differ from others packages mainly in how covariates are parameterized
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in the latent and the manifest models. Additionally, depmixS4 can handle a more general class
of distributional assumptions when covariates are included in the measurement model. We also
highlight the recent proposal of Turner (2024) with the eglhmm package, which allows us to estimate
extended generalized linear HM models for data conforming to various distributions. Another
available package of interest is msm (Christopher H. Jackson, 2011), which is designed for estimating
continuous-time Markov and HM models for longitudinal data. It provides both maximum likelihood
estimation and Bayesian inference under various models, including multi-state models. Additionally,
the HiddenMarkov package (Harte, 2021) offers tools for modeling time series data and supports
various distributions for the observations, including Gaussian and Poisson distributions. Lastly,
package seqHMM (Helske and Helske, 2019) is designed for fitting HM models and mixture HM
models specifically for social sequence data and other types of categorical data.

The extensive development and availability of packages for HM models on CRAN highlights the
broad applicability across diverse fields of such models. Their flexibility and robustness in handling
various types of data, combined with their capability to uncover underlying unobserved processes,
demonstrate the popularity of these models and their value among researchers and practitioners.
Finally, as possible extension of the LMest package we consider that to handle informative missing
data, as in the case of dropout from a longitudinal study. As described in Pandolfi et al. (2023), dropout
can be accounted for by considering an absorbing state, which allows modeling survival time without
specifying a separate survival model component. This extension will be included in future updates of
the package. The package will also be extended to allow for variable selection, as recently proposed in
Pennoni et al. (2024), where a greedy search algorithm is implemented to identify the most important
response variables. Other forthcoming extensions include functions to estimate models for data with
a multilevel structure, as proposed in Bartolucci et al. (2011), additional parameterizations for the
covariates affecting the latent (sub)model, as described in Bartolucci et al. (2024b), and methods for
dealing with compositional data, as proposed in Bartolucci et al. (2024a).
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Calculating Standardised Indices Using
SEI
by Sam Allen and Noelia Otero

Abstract Standardised indices are measurements of variables on a standardised scale. The standardised
scale facilitates comparisons between different variables, and its probabilistic interpretation means
the indices are effective for risk management and decision making. Standardised indices have
become popular in weather and climate settings, for example within operational drought monitoring
systems, and have also been applied in other contexts, such as to energy variables. To facilitate their
implementation in practice, the SEI package in R allows the flexible calculation of standardised indices.
This paper discusses the theory underlying well-known standardised indices, outlines the general
framework to construct them, and provides implementation details for the SEI package. Two case
studies are presented whereby standardised indices are applied to climate and energy variables.

1 Introduction

Monitoring the values of a variable over time allows practitioners to not only identify long term
patterns in the variables of interest, but also to analyse abnormal situations with potentially adverse
socio-economic consequences. However, it can be difficult to compare time series of variables defined
on different scales. For example, different spatial regions have different climates, meaning a rainfall
event that is impactful at one location may not be at another. Similarly, energy demand will depend
on the local climate, as well as on installed energy capacities. To account for this, it is convenient to
transform variables onto the same, standardised scale. The resulting standardised variables are often
referred to as standardised indices.

Well-known examples of standardised indices include the Standardised Precipitation Index (SPI)
(McKee et al., 1993) and Standardised Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano
et al., 2010), which are ubiquitously used to monitor hydrometeorological droughts (Begueria et al.,
2014). The framework used to construct the SPI and SPEI is simple and interpretable, framing
the observed values in terms of their similarity to past values. As such, while other methods of
standardisation exist, this framework has also been used to construct many other weather and climate
indices.

This includes, for example, a Standardised Runoff Index (Shukla and Wood, 2008), a Standardised
Streamflow Index (Vicente-Serrano et al., 2012), a Standardised Groundwater Index (Bloomfield and
Marchant, 2013), and a Standardised Temperature Index (Zscheischler et al., 2014). Multivariate
extensions of these standardised indices have also been proposed (Erhardt and Czado, 2018). Hao
et al. (2019), for example, define a Standardised Compound Event Index, which is used by Li et al.
(2021) to construct a Standardised Compound Drought and Heat Index. Outside of a weather and
climate context, Allen and Otero (2023) introduced analogues of the SPI and SPEI that can be used to
monitor energy supply and demand. This general framework for constructing standardised indices
can be applied to any variable of interest, not just those previously considered in the literature.

There are several benefits to these standardised indices. The indices are easy to interpret, and are
defined on a scale with a probabilistic interpretation, making them useful tools for risk management
and decision making. Standardised indices therefore provide an appealing framework with which to
define shortages, or droughts, in the variable of interest. Since the standardisation can be performed
separately in different conditions, for example in different seasons and locations, these shortages can
be defined in a relative sense, allowing their intensity in the different conditions to be compared. As
summarised by Zargar et al. (2011), standardised indices provide a “pragmatic way to assimilate large
amounts of data into a quantitative information that can be used in applications such as drought
forecasting, declaring drought levels, contingency planning and impact assessment.”

As a result, several software packages have been developed to apply standardised indices in
practice. The SCI package (Gudmundsson and Stagge, 2016) in the programming language R provides
the functionality to calculate several standardised climate indices. The SPEI package (Beguería
and Vicente-Serrano, 2023), also in R, contains more comprehensive functionality for the SPI and
SPEI, and the standard-precip package (Nussbaumer, 2021) has transferred this functionality to the
programming language Python (Python, 2017). The spei package (Vonk, 2017) in Python additionally
allows computation of the SPI and SPEI, as well as the Standardised Runoff and Groundwater Indices,
while the climate-indices package in Python also provides functionality to compute the SPI, SPEI, and
other drought indices. The developmental package standaRdized (Maetens, 2019) can also be used
for this purpose, while the SPIGA package (Ayala-Bizarro and Zuniga-Mendoza, 2016) in R allows
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the SPI to be calculated using genetic algorithms.

However, existing software packages are limited in their flexibility, with functionality typically
restricted to particular standardised indices (generally the SPI and SPEI), and particular assumptions
about the reference data or parametric distributions used to calculate the indices (see next section
for details). In this paper, we introduce the SEI R package, which seeks to assimilate the advantages
of these various packages to provide a flexible and comprehensive software package with which to
calculate standardised indices. In particular, the package is not designed solely for climate indices,
and is therefore applicable in much broader generality. The package can handle variables defined on
any time scale and with any (possibly non-stationary) underlying distribution, permits user-specified
reference data when calculating the indices, and additionally provides plot capabilities to visualise the
resulting standardised indices.

The following section provides theoretical background on standardised indices and describes the
general formula to construct them. Section 3 discusses diagnostic checks that confirm the standardis-
ation was appropriate, while Section 4 demonstrates how the SEI package can be used to calculate
standardised indices in practice. Two applications are then presented in Section 5, whereby the SEI
package is used to calculate standardised energy indices based on time series of renewable energy
production, as well as standardised wind speed indices. Section 6 concludes the paper and discusses
possible extensions to the package.

2 How to construct standardised indices

There is no unique way to define standardised indices. However, several widely-adopted indices
are constructed using the same, simple procedure. Using this procedure, standardised indices are
straightforward to calculate, can be defined on any timescale, and behave in a relative sense, meaning
they can readily be compared for different variables, spatial regions, or points in time.

The general approach is to choose a univariate variable X that measures the quantity of interest, and
then to estimate X’s distribution: in the SPI, X represents the precipitation accumulation aggregated
over the time scale of interest, which is usually assumed to follow a gamma distribution; in the SPEI, X
represents the difference between precipitation and evapotranspiration, which is usually assumed to
follow a log-logistic distribution; in the standardised temperature index, X represents the temperature,
which is usually assumed to follow a normal distribution. More complicated variables have also been
considered. Hao et al. (2019), for example, consider X to be the probability of a simultaneously hot
and dry event, as derived from a copula analysis.

The distribution of X is typically estimated from an archive of realisations, x1, . . . , xn. These could
represent precipitation accumulations in different months, for example, or energy demand on different
days. It is common to make parametric assumptions about the distribution, as in the examples above,
though non- and semi-parametric density estimation methods could also be employed. The choice of
distribution is discussed in detail in the following section. In any case, the distributional assumptions
must be verified when the index is calculated.

Let F denote the distribution function of X, and let F̂ denote an estimate of F obtained from
x1, . . . , xn. If F is continuous, then the probability integral transform (PIT) F(X) will be standard
uniformly distributed. Hence, this transformation provides a convenient approach with which to
standardise a (possibly new) random observation X∗ (with realisation denoted x∗): the PIT value
F̂(x∗) denotes the relative position of the observation x∗ within the distribution F̂. If x∗ is large relative
to F̂, then the PIT value will be close to one; if x∗ is small relative to F̂, then the PIT value will be close
to zero.

This PIT variable F̂(X∗) is bounded between 0 and 1, with values intrinsically linked to probabilities.
This therefore itself provides a standardised index of sorts. This PIT variable can also be rescaled
using 2F̂(X∗)− 1 to get an index that is centred at zero and bounded between -1 and 1, though it is
more common to use the Gaussian quantile function Φ−1 to transform F̂(X∗). In this case, if X∗ is
identically distributed to X, and F̂ is a good approximation of F, then the standardised index will
follow a standard normal distribution.

That is, for any variable of interest, the probability integral transform can be used to define three
different types of standardised indices:

• Normal indices: Φ−1(F̂(X∗))
• Probability indices: F̂(X∗)
• Bounded indices: 2F̂(X∗)− 1

All three types of indices can be calculated from observations of the variable X and an estimate
of its distribution F. Since they are defined as increasing functions of PIT values, these standardised
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indices all quantify the relative position of an observation x∗ within the previously observed sample
x1, . . . , xn, making them easy to interpret.

In practice, it is most common to use normal indices, though one could argue that probability and
bounded indices have a more direct probabilistic interpretation. For example, if we observe the 90th

percentile of X, then (assuming F is correctly estimated) the corresponding normal index will be 1.28,
the 90th percentile of the standard normal distribution, whereas the probability index will be 0.9, and
the bounded index will be 0.8. Similarly, for the 10th percentile of X, the normal index will be -1.28,
the probability index will be 0.1, and the bounded index will be -0.8. For the median of X, the normal
and bounded indices will be zero, whereas the probability index will be 0.5.

The general framework can therefore be summarised as follows.

• Estimate F from the observations x1, . . . , xn.
• Check that the estimate F̂ correctly fits the data.
• Apply F̂ to an observation x∗ (or several observations).
• Transform F̂(x∗) so that the index is on the desired scale.

The probabilistic interpretation of these standardised indices has made them a useful tool when
analysing shortages and excesses of the variable X. This was first proposed by McKee et al. (1993)
in the context of hydrometeorological droughts, and Allen and Otero (2023) demonstrate that the
same framework can be employed to define droughts in energy systems. In this case, droughts are
defined when the standardised index exceeds or falls below a relevant threshold. Different classes of
droughts can be defined using different thresholds, with a more severe drought corresponding to a
more extreme threshold.

Following McKee et al. (1993), it is most common to study three categories of droughts, typically
labelled “Moderate”, “Severe”, and “Extreme” droughts. These often correspond to the thresholds 1,
1.5, and 2 of the normal standardised indices, respectively, though the thresholds 1.28, 1.64, and 1.96
are also often used, which correspond to quantiles of the standard normal distribution. This assumes
that a drought is defined as an exceedance of a threshold, though the negative of these values could
analogously be used when interest is on values that fall below a threshold. Table 1 gives corresponding
threshold values for the other two types of indices.

Table 1: Possible thresholds used to define droughts when using each of the three types of standardised
indices. Values are shown for droughts defined when the index falls below (left) and exceeds (right)
the threshold.

Index Type Extreme Severe Moderate Moderate Severe Extreme

Normal (normal) -1.96 -1.64 -1.28 1.28 1.64 1.96
Probability (prob01) 0.025 0.05 0.1 0.9 0.95 0.975
Bounded (prob11) -0.95 -0.9 -0.9 0.8 0.9 0.95

The SEI package allows the computation of all three types of indices, and additionally allows
drought occurrences and characteristics to be computed from a time series of standardised indices.

3 The choice of distribution

3.1 Stationary distribution estimation

The construction of standardised indices relies on an estimate of the distribution function F. This has
led to much debate about what distributional assumptions are most appropriate. Consider the SPI,
for example. McKee et al. (1993) initially introduced the SPI using the gamma distribution to model
F. However, Guttman (1999) argued that the Pearson III distribution is more appropriate, due to the
additional flexibility afforded by an extra parameter, while results in Stagge et al. (2015) suggest the
Weibull distribution fits the monthly precipitation accumulations in their study better than alternative
parametric choices. Russo et al. (2013) also consider using non-stationary distributions that include
parameters that depend on time, while Li et al. (2015) incorporate additional covariates based on other
climate variables. In reality, there is generally no true parametric distribution underlying the data, and
the optimal assumptions will change depending on the data under consideration.

As an alternative, it has been argued (e.g. Erhardt and Czado, 2018; Hao et al., 2019; Allen and
Otero, 2023) that the choice of a parametric distribution can be circumvented by using the empirical
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distribution function of the observations,

F̂n(x) =
1
n

n

∑
i=1

1{xi ≤ x}, (1)

where 1{·} is equal to one if the statement inside the brackets is true, and zero otherwise. It is
common to rescale F̂n(x) so that it is never equal to zero or one, thereby ensuring that the (normal)
standardised indices are real-valued; for example, using (nF̂n(x) + 1)/(n + 2). The empirical distribu-
tion function returns a standardised index that can only take on n + 1 possible values. This is not an
issue in practice if n is large, but can become problematic with smaller sample sizes, particularly when
interest is on extreme events.

Allen and Otero (2023) propose the use of semi-parametric density estimation methods, which
provide a compromise between parsimonious parametric distributions and the empirical distribution
function. For example, kernel density estimators estimate the density function f corresponding to F
using

f̂ (x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
,

where K is a kernel function, and h > 0 is a smoothing parameter called the bandwidth. The SEI
package provides functionality to perform kernel density estimation using a Gaussian kernel. Non- and
semi-parametric density estimation methods are considerably more flexible than parametric methods,
though they require more data to accurately model F. Further details about density estimation methods
can be found, for example, in Silverman (2018).

Table 2: Distributions available in SEI, and their supports.

Distribution Argument Code Support

Empirical "empirical" range(x1, . . . , xn)
Kernel density estimation "kde" (−∞, ∞)

Normal "norm" (−∞, ∞)
Log-normal "lnorm" [0, ∞)

Logistic "logis" (−∞, ∞)
Log-logistic "llogis" [0, ∞)
Exponential "exp" [0, ∞)

Gamma "gamma" [0, ∞)
Weibull "weibull" [0, ∞)

Table 2 lists the distributions currently available in the SEI package for estimating F. The choice of
distribution should align with the variable of interest. For example, if interest is on precipitation, then
we should not choose a distribution that assigns positive probability density to negative values, such
as the normal distribution. Conversely, if interest is on temperature (in Celsius), then we should not
choose a distribution that has support [0, ∞), such as the exponential distribution. Table 2 addition-
ally contains the support of the available distributions; the support of the empirical distribution is
determined by the archive of observations x1, . . . , xn.

3.2 Non-stationary distribution estimation

In many practical applications, the variable of interest may be non-stationary. For example, several
weather variables have exhibited strong temporal trends in recent decades as a result of changes in
the climate. If these trends are ignored when estimating the distribution F, then the resulting index
values may be misleading: if the variable is increasing in time, then larger index values will generally
occur for later observations, meaning extreme events, as defined using the standardised indices, will
be clustered in time.

This could be circumvented by estimating F using an adaptive subset of the observations x1, . . . , xn
that accounts for these trends, rather than using all available data. For example, F̂ could be constructed
from a moving window that only considers (or assigns higher weight to) the most recent observations,
so that the standardised indices, as well as the corresponding drought and extreme events, are defined
in terms of the recent climate. This would require estimating a separate distribution for each new
observation x∗, but provides an example of how the data used to construct standardised indices affects
their interpretation.

Alternatively, the trends could be accounted for by estimating F as a function of time, so that time
is included as a predictor in the distribution (Russo et al., 2013). The distribution could similarly be
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made to depend on other predictor variables (Li et al., 2015). For example, precipitation accumulations
are strongly influenced by changes in the temperature. By incorporating temperature as a predictor
within the distribution of precipitation, the PIT values would quantify how extreme a precipitation
observation is, given the corresponding temperature. The problem of estimating the distribution of
the observations x1, . . . , xn then becomes estimating the conditional distribution of the observations
given corresponding realisations of a set of predictor variables.

There are many ways to estimate this conditional distribution (see e.g. Kneib et al., 2023), but
one flexible and general approach is the Generalized Additive Models for Location, Scale and Shape
(GAMLSS) framework (Rigby and Stasinopoulos, 2005). Several recent studies have proposed to
construct standardised indices from non-stationary distributions estimated using GAMLSS (e.g. Wang
et al., 2015; Rashid and Beecham, 2019; Shao et al., 2022). The general approach is to choose a parametric
distribution and then assume that its location, scale and shape parameters depend additively (but
possibly non-linearly) on the set of predictor variables. GAMLSS is a well-known framework for
which many resources are available, to which readers are referred for further details. The SEI package
allows non-stationary distributions to be implemented to construct standardised indices by calling
functions from the gamlss R package (Stasinopoulos and Rigby, 2008; Stasinopoulos et al., 2017).

Incorporating predictors into standardised indices implicitly assumes that the impacts associated
with the variable of interest are somehow mitigated by the predictors. For example, a society’s
capability to deal with hydrometeorological droughts typically becomes better as these events become
more common, so that an unusually low precipitation event today leads to a lower impact than it
would have done 50 years ago, say; instead, a yet more extreme precipitation event is required to
generate the same impact. Including time, or other relevant predictors, within the distribution F
allows this information to be incorporated into the standardised indices. Conversely, if we cannot
assume that the predictors help to mitigate the impacts associated with the variable being monitored,
then there is little reason to include it as a predictor when constructing standardised indices.

3.3 Checking distribution fit

Regardless of the method used to estimate F, it is necessary to check that the estimated distribution
fits the data. Several goodness-of-fit tests exist for this purpose. The SEI package implements the
Kolmogorov-Smirnov test (Massey Jr, 1951) applied to the PIT values F̂(x1), . . . , F̂(xn). If the distribu-
tion fits the data, these PIT values should resemble a sample from a standard uniform distribution.
The Kolmogorov-Smirnov test statistic then calculates the maximum difference between the empirical
distribution function of the PIT values and the distribution function of the standard uniform distribu-
tion. If this statistic is close to zero, then it suggests that the hypothesised distribution fits the data
well.

The fit of the distribution could also be visualised graphically by plotting the distribution of the
PIT values and checking whether they resemble a sample from a standard uniform distribution; a
histogram of these values should therefore be flat, up to sampling variation, for example. Similarly,
the corresponding normal standardised indices should resemble a sample from a standard normal
distribution. An example of how this can be checked using the SEI package is presented in Section 5.

4 Package functionality

The SEI package is designed to facilitate the computation of standardised indices. The package is
available on CRAN (CRAN.R-project.org/package=SEI) and a developmental version is available
on GitHub (github.com/noeliaof/SEI). In this section, we demonstrate the functionality of the SEI
package when implementing standardised indices in practice.

4.1 Standardised indices

The principal function in the SEI package is std_index(), which takes a time series or vector x_new as
an input, and returns a time series or vector of corresponding standardised index values.

std_index(
x_new,
x_ref = x_new,
dist = "empirical",
preds_new = NULL,
preds_ref = preds_new,
method = "mle",
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Figure 1: Histogram of values sampled from a gamma distribution, and corresponding standardised
values.

return_fit = FALSE,
index_type = "normal",
gr_new = NULL,
gr_ref = gr_new,
timescale = NULL,
moving_window = NULL,
window_scale = NULL,
agg_period = NULL,
agg_scale = NULL,
agg_fun = "sum",
rescale = NULL,
rescale_fun = "sum",
ignore_na = FALSE,
n_thres = 10,
na_thres = 10,
lower = -Inf,
upper = Inf,
cens = index_type,
...

)

The input x_new must be either a vector or an xts time series object. The argument x_ref is similarly
a vector or time series, containing the archive x1, . . . , xn of past observations that are used to estimate
the distribution F. This distribution is then applied to each value in x_new, which therefore correspond
to realisations of X∗ in the previous section. The default is that x_ref = x_new, in which case the
standardised indices are calculated in-sample.

As a very simple example, consider a vector of observations drawn from a gamma distribution.
These can be converted to (normal) standardised indices as follows.

x <- rgamma(1000, shape = 2, scale = 1)
x_std <- std_index(x)

Histograms of the raw and standardised values are displayed in Figure 1. While the raw values
are heavily skewed, the standardised values closely resemble a standard normal distribution.

plot_raw <- plot_sei(x, type = "hist", title = "Raw")
plot_std <- plot_sei(x_std, type = "hist", title = "Standardised")
grid.arrange(plot_raw, plot_std, nrow = 1)

The argument index_type in std_index() specifies which type of standardised index should be
constructed from the estimated distribution. This must be one of "normal" (the default), "prob01", or
"prob11", corresponding respectively to the definitions of normal, probability, and bounded standard-
ised indices defined in the previous section.

The dist argument specifies how the distribution F will be estimated from x_ref. The default
is to use the empirical distribution of x_ref (Equation 1). To accurately estimate F, the empirical
distribution requires a sufficiently large archive, and a warning is therefore returned if the length of
x_ref is smaller than 100. An error message is returned if the distribution support does not align with
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the data; for example, if a distribution with support [0, ∞) is chosen while the data contains negative
values.

Information about the distribution fit, including estimated parameters and goodness-of-fit statistics,
can be returned by setting return_fit = TRUE; the default is return_fit = FALSE. If return_fit =
TRUE, the output of std_index() is a list containing the time series of standardised indices (si), the
estimated distribution parameters (params), and a named vector containing properties of the model
fit (fit); this includes the number of observations used to estimate the distribution, the number and
percentage of NA values in the data, the Akaike Information Criterion (AIC) value, and the p-value of
the Kolmogorov-Smirnov test that the distribution correctly fits the data; a small p-value provides
evidence to suggest that the distribution does not fit the data.

The distribution fitting is performed using fit_dist(), which is essentially a wrapper for fitdist()
in the fitdistrplus package, along with extensions that are relevant for the construction of standardised
indices. The fit_dist() function is also exported by SEI, and further details can be found on the
associated help page. Parameters of the distributions (if any) are estimated by default using maximum
likelihood estimation, though many other estimation techniques, including method of moments and
method of L-moments, can be employed by changing the method argument. Other arguments to
fitdist() can be specified as variable arguments ....

4.2 Non-stationary distributions

The default is to estimate a non-stationary distribution from the data in x_ref. However, non-stationary
distributions can be estimated via the GAMLSS framework by inputting a data frame of predictor
variables in preds_ref. This data frame should have the same number of rows as the length of
x_ref, with each column representing a separate predictor variable. Similarly, preds_new should be
a data frame containing the same predictor variables as preds_ref (with the same column names),
but with rows corresponding to the entries of x_new. The std_index() function then estimates the
non-stationary distribution by calling gamlss() from the gamlss package. The model assumes that the
location parameter of the distribution depends linearly on all predictors in preds_ref. Relationships
between the predictors and other distribution parameters, as well as other optional arguments to
gamlss(), can again be applied using ....

For example, consider observations drawn from a normal distribution whose mean and standard
deviation both increase over time.

N <- 1000
t <- seq(10, 20, length.out = N)
x <- rnorm(N, mean = t, sd = exp(t/10))

The underlying distribution of these values can be estimated both with and without including a
trend in the location and scale parameters of the distribution. Note that sigma.formula is an optional
argument to gamlss() that allows the scale parameter of the distribution to depend on predictors.

preds <- data.frame(t = t)
# standardised indices without trend
si_st <- std_index(x, dist = "norm")
# standardised indices with trend in mean
si_nst <- std_index(x, dist = "norm", preds_new = preds)
# standardised indices with trend in mean and sd
si_nst2 <- std_index(x, dist = "norm", preds_new = preds, sigma.formula = ~ t)

Figure 2 displays the time series of standardised indices corresponding to these values under
three different assumptions: there is no trend, there is a linear trend in the mean but not the standard
deviation of the distribution, and there is a trend in both the mean and standard deviation. When
the trend is not included, higher index values unsurprisingly occur at higher time points, and the
variation of the indices also increases in time. If a trend is included in the mean of the distribution,
then the standardised indices do not increase in time, but still become more variable. If a trend is
included in both the mean and the standard deviation, then the index values become stationary.

4.3 Grouping

Rather than estimating one distribution across all observations, whether dependent on predictors
or not, the variable of interest may have a distribution that changes in different subsets of the data.
These subsets could correspond to different seasons, for example. Standardised indices corresponding
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Figure 2: Standardised indices corresponding to a time series of values drawn from a non-stationary
normal distribution. Results are shown when the estimated normal distribution does and does not
include a trend.

to different distributions can be derived from std_index() via the gr_new and gr_ref arguments.
These should be factor vectors of the same length as x_new and x_ref respectively, with each factor
corresponding to a different subset of the data from which a distribution should be estimated. The
values in x_ref are stratified according to gr_ref, and a separate distribution is estimated from each
subset; the values in x_new are then stratified according to gr_new, and the distribution corresponding
to each factor level is applied to the subset of values in x_new that correspond to the same level. The
factor levels in x_new and x_ref should therefore be the same. In particular, x_new should not contain
any levels that are not also present in x_ref, since in this case there would be no data in x_ref from
which to estimate the relevant distribution. This returns an error.

Non- and semi-parametric distributions can flexibly adapt to situations where the shape of the
distribution changes within the different subsets of the data. However, if a large number of factor
levels are present in x_ref and x_new, then the amount of data to estimate the distributions can become
small. To counteract this, the dist argument in std_index() can be a vector of the same length as
the number of levels in gr_ref. The first element of dist denotes the distribution to be fit to the data
corresponding to the first factor of gr_ref, and so on. Currently, for non-stationary distributions, the
predictors do not depend on the grouping, and thus the same relationship between the variable of
interest and the predictors must be assumed for each subset.

4.4 Censoring

The theory underlying standardised indices in Section 2 relies on the variable of interest being continu-
ous, and the distributions available in SEI are therefore also all continuous. However, standardised
indices may also be informative when the variable of interest is not continuous. A particular example
is when the variable is censored; that is, it is bounded either above or below (or both), with positive
probability of being exactly equal to the boundary points. Precipitation, for example, is censored below
at zero.

Depending on how they are used, the definition of standardised indices may need to be adjusted
to account for the censoring. This has been considered, for example, by Stagge et al. (2015). How to
deal with censored variables is discussed in detail in the appendix. Censored data can be handled in
SEI using the lower, upper, and cens arguments in std_index(): lower and upper specify the lower
and upper bounds of the data, respectively, while cens determines the method used to address the
censoring. The available methods are outlined in the appendix.

4.5 Time series manipulations

The remaining arguments of std_index() are only applicable when x_new and x_ref are time series,
rather than vectors, since they all involve manipulations based on the date of the data. For example,
the argument moving_window can be used to calculate standardised indices using a moving window. In
this case, x_ref is updated for each observation in x_new so that it contains the previous moving_window
(an integer) observations in the time series; the indices are therefore determined relative to recently
observed values. The argument window_scale specifies the timescale that moving_window refers to.
For example, setting moving_window = 10 and window_scale = "days" would calculate standardised
indices using a moving window of length 10 days.

If moving_window is specified but window_scale = NULL, then it is assumed that the units of
moving_window correspond to the timescale of x_new. If the time difference between consecutive
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observations is consistent throughout the time series, then this can be determined automatically within
std_index(). Alternatively, and more robustly, it can be specified by the user using the timescale
argument. This (and window_scale) must be one of "mins", "hours", "days", "weeks", "months", or
"years".

If the original time series contains, say, hourly data, but the time series of standardised indices
is desired on a different timescale, then the rescale argument can be used to rescale the data. This
must also be one of the timescales listed above. By default, std_index() assumes the sum of the
values should be returned when rescaling. For example, if interest is on precipitation accumulations,
then converting hourly data to daily data will return the daily aggregations. However, alternative
rescaling could also be performed using the rescale_fun argument, which is a function specifying
what operation to perform over the aggregated data. If rescale_fun = "mean" or rescale_fun =
"max", for example, then the daily (or weekly, monthly, etc) mean or maximum would be provided,
respectively, in place of the hourly data.

Similarly, the agg_period argument can be used to aggregate data across multiple time steps.
Like moving_window and window_scale, agg_period is an integer representing the number of previous
time steps over which the data should be aggregated, while agg_scale specifies the timescale of the
aggregation period, which is by default assumed to be the timescale of the data. The argument agg_fun
represents the function used to aggregate the data over the aggregation period.

This differs from rescale in the following way. If we want to convert a time series of daily
observations to a time series of weekly indices, then we can use rescale = "weeks" (and timescale =
"days"). On the other hand, if we set agg_period = 1 and agg_scale = "weeks", then we get a daily
time series of weekly aggregated data.

To perform the rescaling, std_index() calls one of the xts functions apply.daily, apply.weekly,
apply.monthly, apply.quarterly, and apply.yearly, alongside the argument rescale_fun. To per-
form the aggregation, std_index() uses the function aggregate_xts(), which is additionally exported
by SEI.

aggregate_xts(
x,
agg_period = 1,
agg_scale = c("days", "mins", "hours", "weeks", "months", "years"),
agg_fun = "sum",
timescale = c("days", "mins", "hours", "weeks", "months", "years"),
na_thres = 10

)

The interpretation of the arguments is equivalent to in the discussion above: x represents the
xts time series to be aggregated, agg_period and agg_scale are the length and time scale of the
aggregation period, agg_fun is the function used in the aggregation, and timescale is the time scale
of x. The final argument na_thres represents the maximum proportion of values that can be missing
(i.e. NA) in the aggregation period, before the aggregation itself returns NA. For example, if 23 hours of
precipitation accumulations are missing on one day so that only one hourly accumulation is available,
this sole observation is not representative of the daily accumulation. By default, NA is returned if more
than 10% of the values in the aggregation period are missing.

4.6 Plotting standardised indices

To visualise the indices, SEI includes the plot_sei() function.

plot_sei(
x,
type = c("ts", "hist", "bar"),
title = NULL,
lab = "Std. Index",
xlims = NULL,
ylims = NULL,
n_bins = 30

)

The argument x is either a vector or an xts time series object that contains the index values to
be displayed. This function can either be used to plot a time series of the values (type = "ts"), a
histogram (type = "hist"), or a bar plot (type = "bar"). If type = "hist", the function is essentially a
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wrapper for geom_histogram() in ggplot2. The histogram and bar plot both display the distribution of
the values in x. The histogram is particularly useful when superimposing a density onto the histogram,
while the bar plot is also made available since it can be more robust when the data in x is bounded.
Here, n_bins can be used to specify the number of bins in the plot.

Additional aspects of the plot can be specified using title, lab, xlims and ylims. For the time
series plot, lab refers to the label of the y-axis, whereas it corresponds to the x-axis label of the
histogram and bar plot.

4.7 Drought definitions

Having obtained a time series of standardised indices, one might wish to perform an analysis of
shortages, or droughts, in the variable of interest. As discussed, this can be achieved using standardised
indices with the definitions of droughts in Table 1. To facilitate such analyses, the get_drought()
function takes a time series or vector x as input, and outputs a dataframe containing information
regarding drought occurrences and characteristsics.

get_drought(
x,
thresholds = c(1.28, 1.64, 1.96),
exceed = TRUE,
cluster = 0,
lag = NULL

)

The argument thresholds is a vector containing the thresholds used to define the droughts; by
default, these correspond to the 90th, 95th, and 97.5th percentiles of a standard normal distribution.
It is also assumed by default that a drought is defined when the standardised indices exceed these
thresholds. This can be specified using the exceed argument. If a drought should instead correspond
to an instance where the indices fall below the given thresholds, exceed should be FALSE.

When defining meteorological droughts, it is often common to introduce a lag such that the
drought does not end when the standardised index no longer exceeds the drought threshold, but
rather when the index falls below a lower threshold (such as zero for the SPI) (e.g. McKee et al., 1993).
This accounts for cases where there are small fluctuations in the index around the drought threshold,
classing this as one persistent drought rather than several shorter droughts. This can be implemented
in SEI by specifying the lag argument, which is a numeric value denoting the weaker threshold to use
when lagging the indices.

Alternatively, these fluctuations could be avoided by clustering together drought events separated
by a small number of days (e.g. Otero et al., 2022a). The number of days between which drought
events should be clustered can be specified via the cluster argument in get_drought(). The default
is to not cluster droughts.

As an example, consider the previous time series of standardised indices corresponding to a
random sample from a gamma distribution.

head(get_drought(x_std))

#> x ins occ dur mag
#> 1 -0.2014850 0 0 0 0.000000
#> 2 -1.1811958 0 0 0 0.000000
#> 3 0.2943859 0 0 0 0.000000
#> 4 -2.5128493 0 0 0 0.000000
#> 5 1.6555924 2 1 1 1.655592
#> 6 0.1456071 0 0 0 0.000000

The output is a dataframe containing the original vector or time series, as well as four additional
columns: the intensity (ins), which corresponds to the category of drought, a higher value referring
to a more severe drought category; the occurrence (occ), which corresponds to the intensity being
higher than zero; the duration (dur), which provides the number of consecutive time steps that are in
a drought state; and the drought magnitude (mag), which is the sum of all indices within the drought
event (see McKee et al., 1993, for details). If only one threshold is used to define a drought, rather
than the three used in Table 1, then the intensity is equivalent to the occurrence, and is therefore not
returned.
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Figure 3: Time series of 2019 renewable energy production in Germany at hourly, daily, and weekly
time scales.

5 Applications

5.1 Renewable energy production

Consider an application of standardised indices to renewable energy production in Europe. Hourly
time series of wind and solar power generation are publicly available for 27 European countries at
https://researchdata.reading.ac.uk/275/ (see Bloomfield et al., 2020, for details). A subset of this
data corresponding to production in 2019 can be accessed from SEI using

data("data_supply", package = "SEI")
head(data_supply)

#> date country PWS
#> 1 2019-01-01 00:00:00 Austria 0.07823861
#> 2 2019-01-01 01:00:00 Austria 0.05330285
#> 3 2019-01-01 02:00:00 Austria 0.06773745
#> 4 2019-01-01 03:00:00 Austria 0.09971320
#> 5 2019-01-01 04:00:00 Austria 0.18676895
#> 6 2019-01-01 05:00:00 Austria 0.29001299

The dataframe data_supply contains a POSIXct time series of dates, along with the corresponding
country and wind and solar power production (PWS). The units of the production are Gigawatt hours
(GWh).

For concision, we restrict attention here to renewable energy production in Germany.

de_supply_h <- subset(data_supply, country == "Germany")
de_supply_h <- xts::xts(de_supply_h$PWS, de_supply_h$date) # convert to xts

This can be rescaled from hourly to daily or weekly time series using xts functionality.

de_supply_d <- xts::apply.daily(de_supply_h, "sum") # daily data
de_supply_w <- xts::apply.weekly(de_supply_h, "sum") # weekly data

These time series of renewable energy production in Germany can be visualised using the
plot_sei() function. Figure 3 demonstrates that all three time series display the same patterns,
though the weekly time series removes the hourly and daily fluctuations.

lab <- "Renewable Energy Production (GWh)"
plot_h <- plot_sei(de_supply_h, lab = lab, title = "Hourly")
plot_d <- plot_sei(de_supply_d, lab = lab, title = "Daily")
plot_w <- plot_sei(de_supply_w, lab = lab, title = "Weekly")
grid.arrange(plot_h, plot_d, plot_w, nrow = 1)

The raw renewable energy production values can be transformed to a standardised index using
std_index().

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859

https://researchdata.reading.ac.uk/275/
https://CRAN.R-project.org/package=SEI
https://CRAN.R-project.org/package=xts


CONTRIBUTED RESEARCH ARTICLE 113

−3

−2

−1

0

1

2

3

jan apr jul okt
Date

S
R

E
P

I

Hourly

−3

−2

−1

0

1

2

3

apr jul okt
Date

S
R

E
P

I

Daily

−3

−2

−1

0

1

2

3

apr jul okt
Date

S
R

E
P

I

Weekly

Figure 4: Time series of 2019 SREPI values in Germany at hourly, daily, and weekly time scales.

srepi_h <- std_index(de_supply_h)
srepi_d <- std_index(de_supply_d)
srepi_w <- std_index(de_supply_w, dist = "kde")

Following, Allen and Otero (2023), we refer to this as the standardised renewable energy produc-
tion index (SREPI). Time series of hourly, daily, and weekly SREPI values are presented in Figure
4.

lab <- "SREPI"
ylims <- c(-3, 3)
plot_h <- plot_sei(srepi_h, lab = lab, ylims = ylims, title = "Hourly")
plot_d <- plot_sei(srepi_d, lab = lab, ylims = ylims, title = "Daily")
plot_w <- plot_sei(srepi_w, lab = lab, ylims = ylims, title = "Weekly")
grid.arrange(plot_h, plot_d, plot_w, nrow = 1)

In this case, the reference data x_ref is assumed to be the input time series itself, meaning the
indices are calculated relative to this input data. By default, std_index() returns normal indices
(rather than probability or bounded indices), and estimates the distribution of the renewable energy
production using the empirical distribution. This returns a warning for the weekly data, since there
are fewer than 100 weekly production values in the time series. Instead, for weekly data, we estimate
the distribution of production values using kernel density estimation (dist = "kde"). Alternative
distributions could be implemented by changing the dist argument in std_index().

While these indices are created by standardising the respective hourly, daily, and weekly time
series of raw production values, they could all be obtained from the original hourly time series by
specifying the rescale argument in std_index().

z <- std_index(de_supply_h, rescale = "days")
all.equal(srepi_d, z)

#> [1] TRUE

By default, the plot_sei() function displays the time series of input values. However, by specify-
ing type = "hist" (rather than the default type = "ts"), this function can additionally be used to plot
a histogram of the input values. An example of this for the daily data production and corresponding
SREPI values is presented in Figure 5. As discussed in Section 3, such a plot can be used to validate
the distributional assumptions made when calculating the indices. While the raw renewable energy
production follows a heavily skewed distribution, the SREPI values resemble a sample from a standard
normal distribution, suggesting the empirical distribution function is appropriate in this example. If
probability or bounded indices were used, then the histogram of SREPI values should be flat, rather
than normal. This is illustrated in Figure 6.

Finally, the SEI package additionally allows shortages or drought characteristics of the time series
to be assessed. In this case, an energy supply drought could occur if the renewable energy production is
low compared to previously observed values (Allen and Otero, 2023). This corresponds to a low SREPI.
As in Table 1, we define three categories of droughts, each defined using increasing thresholds of the
SREPI. The function get_drought() can then be used to obtain a time series of drought occurrences,
intensities, durations, and magnitudes.

thresholds <- qnorm(c(0.1, 0.05, 0.025)) # -1.28, -1.64, -1.96
drought_df <- get_drought(srepi_d, thresholds, exceed = F)
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Figure 6: Histogram of 2019 daily renewable energy production and SREPI values in Germany, where
the indices are probability and bounded indices.

From the dataframe drought_df, it is straightforward to analyse the properties of these drought
events. For example, we can list the frequency that a moderate, severe, or extreme drought event
occurs

num_ev <- table(drought_df$ins)
names(num_ev) <- c("None", "Moderate", "Severe", "Extreme")
print(num_ev)

#> None Moderate Severe Extreme
#> 330 18 9 8

we could display the relative frequency of drought durations

table(drought_df$dur[drought_df$dur > 0])

#>
#> 1 2 3
#> 11 3 6

or we could calculate the average drought magnitude

mean(drought_df$mag[drought_df$mag != 0])

#> [1] 2.985504

These are just simple examples of analyses that could be performed using the output of get_drought().
For a more thorough analysis, readers are referred to Allen and Otero (2023).

5.2 Wind speed

Consider now a second application of standardised indices to weather and climate variables. While
standardised indices are most commonly used to construct the SPI and SPEI, they can also be applied
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Figure 7: Daily, weekly and monthly time series of average wind speed in Germany between 2017 and
2019.

to other climate variables (see Section 1 for examples). In this section, we use the framework dis-
cussed herein to define standardised wind speed indices. Monitoring wind speed is crucial in many
applications, including aviation safety, renewable energy planning, and the design and insurance of
infrastructure.

Hourly estimates of near-surface (10m) wind speed are publicly available for several European
countries between 1979 and 2019 (Hersbach et al., 2023). As in Otero et al. (2022b), we aggregate these
wind speeds to get daily nationwide averages. Consistent with the previous application to renewable
energy production, the analysis is restricted to Germany, and this subset of data is available from SEI.
For clarity of visualisation, the following analysis is limited to the three year period between 2017 and
2019.

data("data_wind_de", package = "SEI")
data_wind_de <- subset(data_wind_de, format(date, "%Y") >= 2017)
head(data_wind_de)

#> date wsmean
#> 13881 2017-01-01 3.461528
#> 13882 2017-01-02 3.479744
#> 13883 2017-01-03 5.391327
#> 13884 2017-01-04 6.801471
#> 13885 2017-01-05 3.822558
#> 13886 2017-01-06 2.101849

As before, the data can be rescaled using xts functionality to obtain time series of the weekly and
monthly average wind speed in Germany. We label the resulting daily, weekly, and monthly time
series de_wind_d, de_wind_w, and de_wind_m, respectively, all of which are xts objects. These time
series are displayed using plot_sei() in Figure 7.

lab <- "Wind speed (m/s)"
ylims <- c(0, 8)
plot_ws_d <- plot_sei(de_wind_d, lab = lab, ylims = ylims, title = "Daily")
plot_ws_w <- plot_sei(de_wind_w, lab = lab, ylims = ylims, title = "Weekly")
plot_ws_m <- plot_sei(de_wind_m, lab = lab, ylims = ylims, title = "Monthly")
grid.arrange(plot_ws_d, plot_ws_w, plot_ws_m, nrow = 1)

The raw data can be transformed to a time series of standardised indices using std_index(). As
discussed, constructing standardised indices requires estimating the distribution of the variable of
interest. While we argue that the empirical distribution provides a flexible means to achieve this, we
demonstrate in this application how the SEI package allows parametric distributions to be used for
this purpose.

Various distributions can be fit to the daily wind speeds using the fit_dist() function. Consider,
for example, a gamma distribution, log-normal distribution, and Weibull distribution.

out_gamma <- fit_dist(data_wind_de$wsmean, dist = "gamma")
out_lnorm <- fit_dist(data_wind_de$wsmean, dist = "lnorm")
out_weibull <- fit_dist(data_wind_de$wsmean, dist = "weibull")

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859

https://CRAN.R-project.org/package=SEI
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=SEI


CONTRIBUTED RESEARCH ARTICLE 116

2 4 6 8
Wind speed (m/s)

D
en

si
ty

Gamma

2 4 6 8
Wind speed (m/s)

D
en

si
ty

Log−normal

2 4 6 8
Wind speed (m/s)

D
en

si
ty

Weibull

Figure 8: Distribution of daily wind speeds in Germany between 2017 and 2019, along with estimated
gamma, log-normal, and Weibull densities.

The three distributions can be compared with respect to their AIC, which is output from fit_dist().

aic_vec <- c(out_gamma$fit['aic'],
out_lnorm$fit['aic'],
out_weibull$fit['aic'])

names(aic_vec) <- c("Gamma", "Log-normal", "Weibull")
print(aic_vec)

#> Gamma Log-normal Weibull
#> 3278.268 3231.083 3443.914

The AIC provides a measure of distributional fit whilst also accounting for model complexity, with
a smaller value indicating a better bit. The AIC values above suggest that the log-normal distribution
provides the best fit to the data, while the Weibull distribution provides the worst fit.

This can be verified by looking at p-values corresponding to the Kolmogorov-Smirnov test.

ksp_vec <- c(out_gamma$fit['ks_pval'],
out_lnorm$fit['ks_pval'],
out_weibull$fit['ks_pval'])

names(ksp_vec) <- c("Gamma", "Log-normal", "Weibull")
print(round(ksp_vec, 4))

#> Gamma Log-normal Weibull
#> 0.0047 0.1127 0.0000

The null hypothesis is that the sample of data has been drawn from the parametric distribution. The
Kolmogorov-Smirnov test is rejected at the 0.5% level for both the gamma and Weibull distributions,
providing evidence to suggest that these distributions do not accurately describe the data. On the
other hand, there is insufficient evidence to reject the null hypothesis that the wind speed data was
drawn from a log-normal distribution.

The fit of the three distributions to the data is presented in Figure 8. The plot_sei() function can
be used to plot histograms of the daily wind speeds. Since plot_sei() returns a ggplot2 object, the
estimated density functions can be added to the histograms. For example, for the gamma distribution

x <- seq(0, 9, length.out = length(de_wind_d))
xlab <- "Wind speed (m/s)"
pars_gam <- out_gamma$params

plt_gam <- plot_sei(de_wind_d, type = "hist", lab = xlab, title = "Gamma") +
geom_line(aes(x = x, y = dgamma(x, pars_gam[1], pars_gam[2])), col = "blue")

Finally, the adequacy of the distributions can also be visualised by plotting a histogram of the
standardised indices obtained using the three distributions. The standardised indices can be calculated
using the std_index() function, with the dist argument corresponding to the distribution of interest.
When probability indices are used (index_type = "prob01"), plotting a histogram of the indices is
equivalent to displaying the probability integral transform (PIT) histogram commonly used to assess
the fit of probabilistic models.
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Figure 9: Distribution of standardised wind speed indices (SWSI) constructed using the gamma,
log-normal, and Weibull distributions. The standard normal density is displayed in blue.
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Figure 10: Normal quantile-quantile (qq) plots showing the fit of the standard normal distribution to
the distribution of SWSI values.

sei_ws_gam <- std_index(de_wind_d, dist = "gamma")
sei_ws_lnorm <- std_index(de_wind_d, dist = "lnorm")
sei_ws_weib <- std_index(de_wind_d, dist = "weibull")

Histograms of the standardised indices, constructed using plot_sei(), are displayed in Figure 9.
Similarly to before, a standard normal distribution is superimposed onto the histograms.

As expected, no parametric distribution fits the data perfectly. The standardised wind speed
indices constructed using a log-normal distribution appear closer to a standard normal distribution,
and this is reinforced by quantile-quantile plots in Figure 10, which compare the quantiles of the
SWSI values to the quantiles of a standard normal distribution. This supports the conclusion that the
log-normal distribution provides a more accurate fit to the daily wind speed data, which also agrees
with previous studies that use this distribution when modelling wind speed (e.g. Kollu et al., 2012;
Baran and Lerch, 2015).

Having constructed these wind speed indices, it would be straightforward to conduct an analysis
of wind droughts (or extreme wind speeds) using the get_drought() function in SEI, akin to how
renewable energy production droughts were studied in the previous application. This is omitted here
for concision, but could be analysed in more detail in the future.

6 Summary

This paper documents the SEI package in R, which provides comprehensive functionality to calculate
time series of standardised indices. Standardised indices are projections of variables onto an inter-
pretable and probabilistically meaningful scale, and they have become popular tools when monitoring
variables of interest over time, particularly in the context of drought analysis. While there is no
unique way to define standardised indices, several widely-adopted indices are constructed using the
same, simple procedure. We outline this general framework for constructing standardised indices,
and reiterate that this approach can be applied to any variable of interest, not just those previously
considered in the literature.

The SEI package converts a time series of observations to a time series of standardised indices.
The package allows the time series to be aggregated and rescaled to different time scales, provides plot
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capabilities to visualise the resulting indices, and offers a range of distributions with which to calculate
the indices, including flexible non-parametric and non-stationary methods. The package additionally
allows users to define and analyse shortages, or droughts, of the variable under consideration. Two
examples are presented in Section 5 whereby the package is employed to calculate standardised
indices to monitor shortages in renewable energy production, and to calculate standardised wind
speed indices.

The package has been designed to facilitate applications of standardised indices in practice. While
standardised indices have received considerable attention within the field of climate science, such
indices would also be relevant in several other domains. The SEI package is applicable in broad
generality, though the package could also be extended in light of more recent extensions of standardised
indices that have been proposed in the literature. For example, the package currently only considers
indices corresponding to univariate variables, though multivariate extensions have also been studied
in the literature (e.g. Erhardt and Czado, 2018; Hao et al., 2019). Similarly, functionality could also be
added to automatically implement methods that remove seasonality and temporal dependence in the
data (Erhardt and Czado, 2018).

Moreover, while the package extends existing packages by providing flexible density estimation
methods, alternative such methods could also be made available, particularly methods that are
appropriate when estimating the distribution of bounded variables. Non-stationary distribution
estimation is currently only available for parametric distributions via the GAMLSS framework, and
further extensions could therefore incorporate non-parametric distributional regression methods such
as isotonic distributional regression (Henzi et al., 2021). Finally, the functionality of the package could
be transferred to software packages in other programming languages, facilitating the implementation
of standardised indices in monitoring systems that have not been designed in R.
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8 Appendix: Censored data

The definition of standardised indices relies on the well-known result that if X is a continuous random
variable with cumulative distribution function F, then the probability integral transform F(X) is
uniformly distributed between zero and one. If the random variable X is not continuous, then the PIT
will generally not be uniformly distributed. This becomes an issue when calculating standardised
indices. Of particular interest is the case when the variable X is censored; that is, the distribution
of X has a point mass at the boundary (or boundaries) of its support, but is continuous otherwise.
Precipitation, for example, is censored below at zero.

While standardised indices for censored variables can be defined as in Section 2, Stagge et al.
(2015) remark that the resulting indices may be misleading. For example, if X denotes daily precipi-
tation accumulations and no precipitation occurs on 90% of days in the time series, then F(0) = 0.9.
The (normal) standardised index value corresponding to a precipitation of zero would therefore be
Φ−1(0.9) = 1.28, the threshold often used to define excessively large values of a variable, despite
zero precipitation clearly not being extreme; similarly, if the smallest precipitation value attains a
standardised index of 1.28, then the system will never enter a drought state according to the drought
definitions typically employed in practice, regardless of what precipitation occurs.

To circumvent this, Stagge et al. (2015) propose to replace the PIT values corresponding to zero
precipitation events with an alternative constant, chosen such that the resulting standardised indices
“maintain statistical interpretability”. In particular, they propose to choose the constant so that the
mean of the standardised indices is the same as it would be if X were continuous (zero, in the case of
normal indices).

We can formalise this as follows. Suppose we are interested in a random variable X that is censored
below at some value a, precipitation accumulations being a particular example with a = 0. While
standardised indices are typically defined using F(X), we want to introduce a real-valued constant c
and define an adapted variable, F̃(X), such that

F̃(X) =

{
F(X), X > a,
c, X = a.

Note that for X > a, F(X) can also be written as F(X) = F(a) + (1− F(a))F(X | X > a), which is
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equivalent to the expression given in Equation 4 of Stagge et al. (2015).

For probability standardised indices (index_type = 'prob01'), the constant should be chosen
such that E[F̃(X)] = 1/2, since the expectation E of a standard uniform random variable is equal to
one half. We have

E[F̃(X)] = E[F(X) | X > a]P(X > a) + cP(X = a).

Since F(X) | X > a is uniformly distributed between P(X = a) and 1, the first expectation is equal to
(P(X = a) + 1)/2. Rearranging gives that E[ ˜F(X)] = 1/2 when c = P(X = a)/2. Hence, probability
indices at the censored values should be replaced with c = P(X = a)/2.

This is also the case for bounded standardised indices (index_type = 'prob11'). In this case,
we want to choose c such that E[2 ˜F(X)− 1] = 0, which is exactly the same requirement as for the
probability indices. Using analogous arguments, if X is censored above at some value b (rather than
below at some value a), then the probability and bounded indices at the censored values should be
replaced with c = 1− P(X = b)/2.

The constant proposed by Stagge et al. (2015) Equation 3 is a sample estimate of P(X = a)/2.
However, since the Gaussian inverse function Φ−1 is a non-linear function, for an arbitrary random
variable Y generally E[Φ−1(Y)] 6= Φ−1(E[Y]). Hence, normal standardised indices will generally not
have expectation zero when the constant c is chosen as above; this is also highlighted by Figure 1b in
Stagge et al. (2015), where the mean of the normal standardised indices with their proposed censoring
methodology is generally not zero.

Instead, we propose an alternative constant when normal standardised indices are used, which
results in a mean index value equal to zero. We now want to find the constant c such that

E[Φ−1(F̃(X))] = E[Φ−1(F(X)) | X > a]P(X > a) + Φ−1(c)P(X = a) = 0.

Since F and Φ−1 are increasing functions, we have that

E[Φ−1(F(X)) | X > a] = E[Φ−1(F(X)) | Φ−1(F(X)) > Φ−1(F(a))],

which is just the expectation of a normal distribution truncated below at l = Φ−1(F(a)) = Φ−1(P(X =
a)). This is therefore equal to

φ(l)
1−Φ(l)

,

where φ is the probability density function of the standard normal distribution. Similarly, P(X > a) =
P(Φ−1(F(X)) > l) = 1−Φ(l). Rearranging the above equality then yields

c = Φ
[
−φ(l)

P(X = a)

]
,

and the normal indices at the censored values should therefore be replaced with Φ−1(c) = −φ(l)/P(X =
a). If X is instead bounded above at b, then the constant c becomes

c = Φ
[

φ(u)
P(X = b)

]
,

where u = Φ−1(1− P(X = b)).
In practice, we observe a sample of realisations of the variable X. The terms P(X = a) and

P(X = b) can be estimated from a sample using the relative number of realisations that are censored,
and these can then be used to determine the constant c. Note that since these terms have been
calculated on a population level, the sample mean of the standardised indices will generally not be
exactly zero (or 1/2 for probability indices), but it will be close to zero in large enough samples.

Variables could also be censored both below at a and above at b. For example, the fraction of cloud
cover over a domain is bounded between a = 0 and b = 1, with positive probability of taking on
either of the boundary values. In this case, we must choose how to assign values at both boundary
points. This adds an extra degree of freedom, since there are infinite combinations of two points that
would lead to the standardised indices having mean zero (or mean one half for probability indices). A
second criterion could be introduced, such as the variance of the indices being equal to one (or 1/12).
However, such calculations go beyond the scope of this paper, and we therefore leave this for future
work.

To implement censoring within the SEI package, the arguments lower and upper to the functions
std_index() and get_pit() allow the user to indicate that the data is censored below at a (lower)
and/or above at b (upper). The argument cens then specifies the method used to deal with censoring.
This can be one of four options: if cens = 'none', then no censoring is performed, i.e. F̃ = F; if cens
= 'prob', then the approach above is used that results in the probability indices having mean equal to
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1/2, which is essentially the same as the original approach proposed by Stagge et al. (2015); if cens
= 'normal', then the approach above is used that results in the normal indices having mean equal
to zero; alternatively, cens can be a single numeric value, allowing the user to manually specify the
constant c. As discussed above, we recommend using cens = 'prob' when working with probability
or bounded standardised indices, and cens = 'normal' when normal standardised indices are used.
If the variable is bounded both below and above (i.e. lower and upper are both finite), then cens must
be a numeric vector of length two, specifying the constants at which to assign values at the lower and
upper boundary points, respectively.
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MultiStatM: Multivariate Statistical
Methods in R
by György Terdik and Emanuele Taufer

Abstract The package MultiStatM presents a vectorial approach to multivariate moments and cu-
mulants. Functions provided concern algorithms to build set partitions and commutator matrices,
multivariate d-Hermite polynomials; theoretical vector moments and vector cumulants of multivariate
distributions and their conversion formulae. Applications discussed concern multivariate measures of
skewness and kurtosis; asymptotic covariances for d-variate Hermite polynomials and multivariate
moments and cumulants; Gram-Charlier approximations.

1 Introduction and background

The package MultiStatM (Terdik and Taufer (2024)) provides a set of tools such as set partitions,
commutator matrices and vector Hermite polynomials which are needed in developing general
computational and conversion formulae for multivariate moments and cumulants of any order.
Applications are provided for theoretical moments and cumulants of some important symmetric
and skew-symmetric multivariate distributions; measures of multivariate skewness and kurtosis;
asymptotic covariance formulae for vector Hermite polynomials; last but not least, estimation functions
for all theoretical results discussed are provided. All the methods implemented in MultiStatM are
discussed in detail in Terdik (2021).

A careful study of the cumulants is a necessary and typical part of nonlinear statistics. Dealing
with cumulants for multivariate distributions is made complicated by the index notations: McCullagh
(2018) provides quite an elegant approach using tensor methods; however, tensor methods are not
very well known and computationally not so simple. Kollo (2008) and Móri et al. (1994) provide
formulae for cumulants in terms of matrices; however, retaining a matrix structure for all higher-order
cumulants leads to high-dimensional matrices with special symmetric structures which are quite hard
to follow notionally and computationally. Cumulant matrices, with special attention to the third and
fourth order, are ubiquitous in the literature. The use of decompositions and approximations allow for
dimensionality reduction and find several statistical applications; see Loperfido (2015) and Loperfido
(2017) for analysis and discussion of skewness and kurtosis matrices and their applications.

MultiStatM offers an alternative method, which we believe is simpler to follow: the higher-order
cumulants of the same degree for some random d-vector X are collected together and kept as a vector
(see Terdik (2003)). In order to do so, a particular differential operator on a multivariate function, called
the T-derivative, is introduced. Although the tensor product of Euclidean vectors is not commutative,
it has the advantage of permutation equivalence and allows one to obtain general formulae for
cumulants and moments of any order. Methods based on a matrix approach do not provide this type
of result; see also Ould-Baba et al. (2015), which goes at most up to the sixth-order moment matrices,
whereas there is no such limitation in our derivations and formulae. The vectorial approach has also
been advocated by Holmquist (1996) and Chacón and Duong (2015); for further discussion, one can
see also Kolda and Bader (2009) and Qi (2006).

More formally, with the symbol ⊗ denoting the Cartesian tensor product, consider the operator
D⊗λ , which we refer to as the T-derivative; see Jammalamadaka et al. (2006) for details. For any
function φ(λ), the T-derivative is defined as

D⊗λ φ(λ) = vec

((
∂φ(λ)

∂λ′

)′)
= φ(λ)⊗ ∂

∂λ
. (1)

If φ is k-times differentiable, its k-th T-derivative is simply D⊗k
λ φ(λ) = D⊗λ

(
D⊗k−1

λ φ(λ)
)

. When φ is
the characteristic function of some random d-vector, k-times application of the T-derivative will allow
to retrieve the so-called multivariate T-moments vector of order k, which lists all moments of the same
order and has dimension dk. In the same way, multivariate T-cumulants and T-Hermite polynomials
can be derived. MultiStatM aims at exploiting the advantages of this method for multivariate analysis
and dealing with the high-dimensionality implied by this approach.

We could not find any R (R Core Team (2023)) package using this approach although there is
a partial overlapping between functions in MultiStatM and functions that can be found in other R
packages; when this happens, the functions in MultiStatM provide useful generalizations.

The package arrangements (Lai (2020)) provides, among other things, all possible partitions of a
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set (or an integer) in lexicographical order. In MultiStatM all possible partitions in terms of partition
matrices together with information about types, sizes and groups of partitions are given. Furthermore
MultiStatM provides other partition functions which produce indecomposable partitions, partitions
that bring to a closed graph, partitions in only two groups.

The package matrixcalc (Novomestky (2021)) provides the commutation, elimination and du-
plication matrices for Cartesian tensor products of two vectors, which are particular cases of those
provided in the package MultiStatM. Furthermore, in MultiStatM a commutator matrix for any
T-product of vectors of any size is given; also, a fast algorithm to produce a symmetrizer of T-products
of vectors is implemented (see Holmquist (1996)). One of the problems of commutators matrices is
their high-dimensionality which can become soon quite cumbersome; on the other hand, commutator
matrices are useful if one needs to work with linear combinations of matrices. To deal with the
high-dimensionality issue, index versions of the commutators are also provided (more details below).

The package calculus (Guidotti (2022)) dealing with high dimensional numerical and symbolic
calculus provides, up to a given order, the list of all symbolic entries of the multivariate Hermite
polynomials with given covariance matrix used here. MultiStatM does not deal with single symbolic
expressions rather provides full numerical evaluation of multivariate T-Hermite polynomials suitable
for immediate use in further formulas and applications.

kStatistics (Di Nardo and Guarino (2022a)) gives string expressions for converting single entries
of multivariate cumulants or moments which need to be joined and evaluated for numerical computa-
tions, for details and examples see Di Nardo and Guarino (2022b). This differs to a large degree from
the formulae provided in MultiStatM which are always in numerical form and ready for applications;
for example, conversion of multivariate moments to multivariate cumulants and viceversa, given any
list of (numerical) multivariate moments up to order r, or multivariate cumulants up to order r are
provided.

In MultiStatM, exploiting the conversion formulae and some results on uniform spherical and
folded multivariate normal distributions due to Jammalamadaka et al. (2021b) and Terdik (2021),
the multivariate moments and cumulants of any order of the multivariate skew normal and its
generalization (Azzalini and Dalla Valle (1996) , Arellano-Valle and Genton (2005)) are provided.
The package sn (Azzalini (2022)) provides moments and cumulants of any order for the univariate
skew-normal and the skew-t distributions; statistical methods are provided for data fitting and model
diagnostics, in the univariate and the multivariate case. In MultiStatM random numbers generator
for multivariate skew distributions are provided also.

The package moments (Komsta and Novomestky (2022)) deals with functions to calculate, cu-
mulants, Pearson’s kurtosis, Geary’s kurtosis and skewness; tests related to them from univariate
data. However the multivariate approach is not considered. The packages mpoly (Kahle (2013)) and
orthopolynom (Novomestky (2022)) deal with Hermite polynomials in the univariate case.

MultiStatM provides some common measures of cumulant-based multivariate skewness and
kurtosis (Mardia (1970), Móri et al. (1994)) which are provided in a number of packages, for example
MaxSkew (Franceschini and Loperfido (2017a)), MultiSkew (Franceschini and Loperfido (2017b)) and
Kurt (Franceschini and Loperfido (2021)). Indeed the vectorial approach provides a unifying frame-
work for several cumulant-based skewness and kurtosis indexes, as discussed in Jammalamadaka et al.
(2021b) where, beyond the above mentioned ones, indexes proposed by Malkovich and Afifi (1973),
Kollo (2008), Koziol (1987), Koziol (1989) and others are discussed. When going higher than the fourth
order, the vectorial approach shows it full power; see Jammalamadaka et al. (2021a) for an application
in deriving the asymptotic variances of skewness and kurtosis vectors and indexes which require
cumulants up to the 8-th order. Below, exploiting MultiStatM applications to the construction of new
measures of multivariate skewness and kurtosis and derivation of Gram-Charlier approximation to
densities will be presented.

As far as non R-universe is concerned, the proprietary software Mathematica (Inc.) provides
partial overlapping of the multivariate methods discussed in MultiStatM. There, functions to compute,
numerically and symbolically, multivariate moments and cumulants of common distributions and
general conversion functions from moments to cumulants and viceversa are available. Most of the
multivariate distributions discussed in MultiStatM however are not available there. Mathematica also
provides several functions for univariate Hermite polynomials which however need to be adapted for
the multivariate case based on the T-derivative approach.

2 Package features

MultiStatM imports arrangements, MASS (Venables and Ripley (2002)), Matrix (Bates et al. (2024)),
mvtnorm (Genz and Bretz (2009)) and stats. We discuss here some examples on the use of the functions;
considerations about timing, objects size and algorithms will be collected in Section 4.
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2.1 Set partitions

MultiStatM provides several functions dealing with set partitions. Such functions provide some basic
tools used to build the multivariate formulae for moments and cumulants in the following sections.

Generally a set of N elements can be split into a set of disjoint subsets, i.e. it can be partitioned.
The set of N elements will correspond to set 1 : N = {1, 2, . . . , N}. If K = {b1, b2, . . . , br} where each
bj ⊂ 1 : N, then K is a partition provided ∪bj = 1 : N, each bj is non-empty and bj ∩ bi = ∅ (the empty
set) is disjoint whenever j 6= i. The subsets bj, j = 1, 2, . . . , r are called the blocks of K. We will call r
(the number of the blocks in partition K), the size of K, and denote it by |K| = r, and a partition with
size r will be denoted by K{r}. Let us denote the set of all partitions of the numbers 1 : N by PN .

Consider next a partition K{r} = {b1, b2, . . . , br} ∈ PN , with size r. Denote the cardinality kj of a
block in the partition K{r}, i.e. kj = |bj|. The type of a partition K{r} is l = [l1, . . . , lN ], if K{r} contains
exactly lj blocks with cardinality j. The type l is with length N always. A partition with size r and
type l will be denoted by K{r|l}. It is clear that lj ≥ 0, and ∑j jlj = N, and ∑j lj = r. Naturally, some
lj’s are zero. A block constitutes a row vector of entries 0’s and 1’s with length N. The places of 1’s
correspond to the elements of the block. A partition matrix collects the rows of its blocks, it is an r× N
matrix with column-sums 1.

The basic function is PartitionTypeAll which provides complete information on the partition of
a set of N elements, namely:

• S_N_r: a vector with the number of partitions of size r=1, r=2, etc. (Stirling numbers of the
second kind); S_N_r[r] denotes the number of partition matrices of size r.

• Part.class: the list of all possible partitions given as partition matrices. This list is enumerated
according to S_N_r[r], r = 1, 2, . . . N, such that the partition matrices with size R are listed from
∑r<RS_N_r[r] + 1 up to ∑r≤RS_N_r[r]. The order of the partition matrices within a fixed size is
called canonical.

• S_r_j: a list of vectors of number of partitions with given types grouped by partitions of size
r=1, r=2, etc.; an entry is the number of partitions with that type.

• eL_r: a list of partition types with respect to partitions of size r=1, r=2, etc. ; since a partition
type is a row vector with length N this list includes matrices of types (row vectors), the number
of rows are the length of vectors of S_r_j of a given size r.

Example 1. Consider the case where N=4 and run the following

PTA <- PartitionTypeAll(4)

S_N_r provides the number of partitions with r=1 to r=4 blocks:

PTA$S_N_r

#> [1] 1 7 6 1

From the results above we see that there are: 1 partition of 1 block (r=1); 7 partitions of two
blocks (r=2); 6 partitions of 3 blocks and 1 partition of 4 blocks. All the partition matrices are listed in
Part.class, for example the first partition matrix of size 2 among 7 is

PTA$Part.class[[2]]

#> [,1] [,2] [,3] [,4]
#> [1,] 1 1 1 0
#> [2,] 0 0 0 1

The second partition matrix of size 3 is

PTA$Part.class[[10]]

#> [,1] [,2] [,3] [,4]
#> [1,] 1 0 1 0
#> [2,] 0 1 0 0
#> [3,] 0 0 0 1
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etc.. If one interested in the number of partitions with different types for r=2 then consider the list
S_r_j, i.e.

PTA$S_r_j[[2]]

#> [1] 4 3

That is, for partitions with r=2 blocks, there are 2 possible types with 4 and 3 partitions each. These
types will show up in the list eL_r:

PTA$eL_r

#> [[1]]
#> [1] 0 0 0 1
#>
#> [[2]]
#> [,1] [,2] [,3] [,4]
#> [1,] 1 0 1 0
#> [2,] 0 2 0 0
#>
#> [[3]]
#> [1] 2 1 0 0
#>
#> [[4]]
#> [1] 4 0 0 0

From PTA$eL_r[[2]] we see that there are two types of partition with r=2: the first is of type
[1, 0, 1, 0] = (l1 = 1, l2 = 0, l3 = 1, l4 = 0) with 4 partitions and the second is of type [0, 2, 0, 0] =
(l1 = 0, l2 = 2, l3 = 0, l4 = 0) with 3 partitions.

Another general function in this class is Partitions which has a Type argument in order to specify
the type of partition to compute: 2Perm which provides the permutation of N elements according to a
partition matrix L; Diagram which provides the list of partition matrices indecomposable with respect
to L, representing diagrams without loops; Indecomp, which provides the list of all indecomposable
partitions with respect to a partition matrix L; Pairs, which provides the list of partitions dividing into
pairs the set of N elements.

2.2 Commutators, symmetrizer and selection matrices

The Commutators family of functions produce commutators and selection matrices. The use of ma-
trices allows to use linear combinations to represent problems such as the permutation of powers
of T-products or the selection of certain elements in a vector. On the other hand, the size of these
matrices can quickly become quite important. To deal with this issues an option for sparse matrices is
always provided; also, a corresponding Indx group of functions which give equivalent results to the
corresponding functions in the group Matr is provided.

Two general functions in this family are CommutatorMatr and CommutatorIndx, both with a Type
argument selected from: Kmn, Kperm, Mixing, Moment. Kmn produces a commutation matrix, with usual
notation Km·n, of dimension mn×mn such that, given a matrix A m× n, Km·n vec A = vec A′ (see
Terdik (2021), p.8) while Kperm produce any permutation of Kronecker products of vectors of any
length.

Example 2. Consider the product of vectors a1 ⊗ a2 ⊗ a3 of dimensions d1 to d3 respectively.

CommutatorMatr(Type="Kperm",c(3,1,2),c(d1,d2,d3)) produces a3 ⊗ a1 ⊗ a2.

a1 <- c(1, 2)
a2 <- c(2, 3, 4)
a3 <- c(1, 3)
x <- a1 %x% a2 %x% a3
c(CommutatorMatr(Type = "Kperm", c(3, 1, 2), c(2, 3, 2)) %*% x)

#> [1] 2 3 4 4 6 8 6 9 12 12 18 24

a3 %x% a1 %x% a2
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#> [1] 2 3 4 4 6 8 6 9 12 12 18 24

The same result can be obtained by using CommutatorIndx

x[CommutatorIndx(Type = "Kperm", c(3, 1, 2), c(2, 3, 2))]

#> [1] 2 3 4 4 6 8 6 9 12 12 18 24

Note that in the example above CommutatorMatr produces the matrix Kp of dimension 12 × 12
by which y = Kpx, while CommutatorIndx produces the permutation py of 1:12 such that y = x[py].
Recall that from computational point of view CommutatorIndx is always preferable however, if working
with linear combinations of matrices, like in Example 3 and in Section 3.1 and the discussion leading to
formulae (10) and (11), the use of CommutatorMatr is unavoidable. For this reason MultiStatM offers
both possibilities. The idea of avoiding the use of commutator, selection (and symmetrizer) matrices
can be traced back to Chacón and Duong (2015).

The Elimination and Qplication matrices- related functions respectively eliminate and restore
duplicated or q-plicated elements in powers of T-products. For examples of applications of these
functions we defer to Section 2.4.

The symmetrizer matrix, a dn × dn matrix for the symmetrization of a T-product of n vectors with
the same dimension d which overcomes the difficulties arising from the non commutative property
of the Kronecker product, and simplifies considerably the computation formulae for multivariate
polynomials and their derivatives (see Holmquist (1996) for details). The symmetrizer for a T-product
of q vectors of dimension d is defined as

Sd1q =
1
q! ∑

p∈Pq

Kp (2)

where Pq is the set of all permutations of the numbers 1 : q and Kp is the commutator matrix for the
permutation p ∈ Pq, (i.e. the CommutatorMatr with Type="Kperm" of the package). For an application
of the symmetrizer via SymMatr with d-variate Hermite polynomials, see formula (4) and Example
3. We defer to Section 4 for a discussion about computational time and memory allocation of these
matrices.

2.3 Multivariate T-Hermite polynomials

Consider a Gaussian vector X of dimension d with E X = 0 and Σ = Cov(X) = E XX′ and define the
generator function

ψ(X; a) = exp
(

a′X− 1
2

a′Σa
)

= exp
(

a′X− 1
2

κ⊗′2 a⊗2
) (3)

where a is a d-vector of constants and κ⊗2 = vec Σ. The vector Hermite polynomials is defined via the
T-derivative of the generator function, viz.

Hn(X) = D⊗n
a ψ(X; a)

∣∣
a=0.

For example one has
H1(X) = X, H2(X) = X⊗2 − κ⊗2 .

Note that the multivariate T-Hermite polynomial Hn(X) is a vector of dimension dn which contains
the n-th order polynomials of the vector X⊗n. For example the entries of H2(X) are the second order
Hermite polynomials H2(Xi, Xj), i, j = 1, 2, . . . d; for d = 2

H2(X) =
(
(X2

1 − σ11), (X1X2 − σ12), (X2X1 − σ21), (X2
2 − σ22)

)′
.

Note that Hn(X) is n-symmetric, i.e. H2(X) = Sd1n H2(X) where Sd1n is the symmetrizer defined in
(2). From this one can get useful recursion formulae

Hn(X) = Sd1n

(
Hn−1(X)⊗ X− (n− 1)Hn−2(X)⊗ κ⊗2

)
. (4)

For further details, consult Terdik (2021), Section 4.5.
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The definition of the d-variate Hermite polynomial requires the variance-covariance matrix Σ

of the vector X. HermiteN and HermiteN2X with Type=c("Univariate","Multivariate") compute
respectively the univariate and d-variate Hermite polynomials and their inverses up to a given order N
evaluated at x for a given covariance matrix Sig2. By default Sig2=Id.

Example 3. Consider a vector x of dimension d = 2 and compute the Hermite polynomials up to
order N=3 with identity variance matrix I2; HermiteN(x,3,Type="Multivariate") will contain the list
of d-variate Hermite polynomials up to order 3 at value x.

x <- c(1, 2)
HN <- HermiteN(x, 3, Type = "Multivariate")

Retrieve the third Hermite polynomial

HN[[3]]

#> [1] -2 0 0 3 0 3 3 2

Use now the symmetrizer in matrix form to verify formula (4) with n = 2. Note that in this case
κ⊗2 = vec I2.

k2 <- c(1, 0, 0, 1)
c(SymMatr(2, 3) %*% (kronecker(HN[[2]], x) - (3 - 1) * kronecker(HN[[1]], k2)))

#> [1] -2 0 0 3 0 3 3 2

2.4 Multivariate T-moments and T-cumulants

Multivariate moments and cumulants of all orders of a random vector X in d-dimensions, with mean
vector µ and covariance matrix Σ can be obtained by applying the T-derivative respectively to the
characteristic function and the log of the CF. More formally, let λ a d-vector of real constants; φX(λ)
and ψX(λ) = log φX(λ) denote, respectively, the characteristic function and the cumulant function of
X. Then the k-th order moments and cumulants of the vector X are obtained as

µ⊗X,k = (−i)kD⊗k
λ φX(λ)

∣∣
λ=0.

κ⊗X,k = Cumk(X) = (−i)kD⊗k
λ ψX(λ)

∣∣
λ=0.

Note that µX,k = E X⊗k is a vector of dimension dk that contains all possible moments of order k
formed by X1, . . . , Xd. This approach has the advantage of being straightforwardly extendable to
any k-th order moment. An analogous discussion can be done for cumulants. Note that one has
κX,2 = vec Σ. MultiStatM contains functions which obtains moments from cumulants and vice-
versa as well as functions which provide theoretical moments and cumulants for some important
multivariate distributions.

The Cum2Mom and Mom2Cum either for the univariate or multivariate cases provide conversion
formulae for cumulants from moments and viceversa given any list of moments (or cumulants).

Example 4. Consider the case of the 2-variate standard normal distribution with unit mean vector
and covariance matrix with unit elements on the main diagonal and off-diagonal elements equal to 0.5;
in this case the first four moments are given in the vector mu below

mu <- list(
c(1, 1), c(2, 1.5, 1.5, 2), c(4, 3, 3, 3, 3, 3, 3, 4),
+c(10, 7, 7, 6.5, 7, 6.5, 6.5, 7, 7, 6.5, 6.5, 7, 6.5, 7, 7, 10)

)
cum <- Mom2Cum(mu, Type = "Multivariate")
cum

#> [[1]]
#> [1] 1 1
#>
#> [[2]]
#> [1] 1.0 0.5 0.5 1.0
#>
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#> [[3]]
#> [1] 0 0 0 0 0 0 0 0
#>
#> [[4]]
#> [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Getting back to moments

Cum2Mom(cum, Type = "Multivariate")

#> [[1]]
#> [1] 1 1
#>
#> [[2]]
#> [1] 2.0 1.5 1.5 2.0
#>
#> [[3]]
#> [1] 4 3 3 3 3 3 3 4
#>
#> [[4]]
#> [1] 10.0 7.0 7.0 6.5 7.0 6.5 6.5 7.0 7.0 6.5 6.5 7.0 6.5 7.0 7.0
#> [16] 10.0

If one wishes to select only the distinct moments from the vector of third moments, then

r.mu <- mu[[3]][EliminIndx(2, 3)]
r.mu

#> [1] 4 3 3 4

Note that EliminIndx (and EliminMatr) does not correspond to the function unique, rather it
individuates the distinct elements from the symmetry of the Kronecker product. Here the values 4
and 3 could appear to be duplicates however in general they could be different. This allows to recover
the whole vector when needed by using QplicIndx (or QplicMatr)

mu3 <- r.mu[QplicIndx(2, 3)]
mu3

#> [1] 4 3 3 3 3 3 3 4

The MomCum functions provide theoretical moments and cumulants for some common multivariate
distributions: Skew-normal, Canonical Fundamental Skew-normal (CFUSN), Uniform distribution
on the sphere, central folded Normal distribution (univariate and multivariate); for detail on the
multivariate formulae used see Jammalamadaka et al. (2021b). Some more details on the multivariate
distributions considered are reported in the list below.

• A d-vector U having uniform distribution on the sphere Sd−1. Moments and cumulants of
all orders are provided for U by the function MomCumUniS; the function EVSKUniS can compute
moments and cumulants (up to the 4th order), skewness, and kurtosis of U (Type="Standard")
and its modulus (Type="Modulus"). Recall that any d-vector, say W, has a spherically symmetric
distribution if that distribution is invariant under the group of rotations in Rd. This is equivalent
to saying that W has the stochastic representation W = RU where R is a non negative random
variable. Moments and cumulants of W can be obtained by its stochastic representation as
discussed in Jammalamadaka et al. (2021b), Theorem 1 and Lemma 1. Furthermore a d-vector X
has an elliptically symmetric distribution if it has the representation

X = µ + Σ1/2W,

where µ ∈ Rd, Σ is a variance-covariance matrix and W is spherically distributed. Hence the
cumulants of X are just constant times the cumulants of W except for the mean i.e.

Cumm (X) =
(

Σ1/2
)⊗m

Cumm (W) .
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• If Z denotes a d-vector with d-variate standard normal distribution, the function MomCumZabs
provides the moments and cumulants of |Z| respectively in the univariate (Type="univariate")
and multivariate case (Type="Multivariate").

• The multivariate skew-normal distribution introduced by Azzalini and Dalla Valle (1996), whose
marginal densities are scalar skew-normals. A d-dimensional random vector X is said to have
a multivariate skew-normal distribution, SNd (µ, Ω, α) with shape parameter α if it has the
density function

2ϕ (X; µ, Ω)Φ
(
α′ (X− µ)

)
, X ∈ Rd,

where ϕ (X; µ, Ω) is the d-dimensional normal density with mean µ and correlation matrix
Ω; here ϕ and Φ denote the univariate standard normal density and the cdf. For a general
formula for cumulants, see Jammalamadaka et al. (2021b), Lemma 4. For this distribution are
available the functions MomCumSkewNorm, which computes the theoretical values of moments
and cumulants up to the r-th order and EVSKSkewNorm which gives mean vector, covariance,
skewness and kurtosis vectors and other features.

• Arellano-Valle and Genton (2005) introduced the CFUSN distribution (cf. their Proposition
2.3), to include all existing definitions of skew-normal distributions. The marginal stochastic
representation of X with distribution CFUSNd,m (∆) is given by

X = ∆ |Z1|+
(
Id − ∆∆′

)1/2 Z2,

where ∆, is the d×m skewness matrix such that ‖∆a‖ < 1, for all ‖a‖ = 1, and Z1 ∈ N (0, Im)
and Z2 ∈ N (0, Id) are independent (Proposition 2.2. Arellano-Valle and Genton (2005)). A
simple construction of ∆ is ∆ = Λ

(
Im+Λ′Λ

)−1/2 with some real matrix Λ with dimensions d×
m. The CFUSNd,m (µ, Σ, ∆) can be defined via the linear transformation µ+Σ1/2X. For a general
formula for cumulants, see Jammalamadaka et al. (2021b), Lemma 5. For this distributions
MomCumCFUSN provides moments and cumulants up to the r-th order.

Example 5. For a skew-normal distribution with α = (10, 5, 0) and correlation function Ω =
diag(1, 1, 1) the third moments and cumulants are

alpha <- c(10, 5, 0)
omega <- diag(3)
MSN <- MomCumSkewNorm(r = 3, omega, alpha, nMu = TRUE)
round(MSN$Mu[[3]], 3)

#> [1] 1.568 0.073 0.000 0.073 0.570 0.000 0.000 0.000 0.711 0.073 0.570 0.000
#> [13] 0.570 0.996 0.000 0.000 0.000 0.355 0.000 0.000 0.711 0.000 0.000 0.355
#> [25] 0.711 0.355 0.000

round(MSN$CumX[[3]], 3)

#> [1] 0.154 0.077 0.000 0.077 0.039 0.000 0.000 0.000 0.000 0.077 0.039 0.000
#> [13] 0.039 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
#> [25] 0.000 0.000 0.000

As another example, for the uniform distribution on the sphere, the kurtosis vector is:

EVSKUniS(3, Type = "Standard")$Kurt.U

#> [1] -1.2 0.0 0.0 0.0 -0.4 0.0 0.0 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 0.0
#> [16] 0.0 0.0 0.0 0.0 0.0 -0.4 0.0 0.0 0.0 -0.4 0.0 0.0 0.0 -0.4 0.0
#> [31] -0.4 0.0 0.0 0.0 0.0 0.0 -0.4 0.0 0.0 0.0 -1.2 0.0 0.0 0.0 -0.4
#> [46] 0.0 0.0 0.0 0.0 0.0 -0.4 0.0 -0.4 0.0 0.0 0.0 -0.4 0.0 0.0 0.0
#> [61] -0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.4 0.0 -0.4 0.0 -0.4 0.0 0.0
#> [76] 0.0 -0.4 0.0 0.0 0.0 -1.2

2.5 Analyzing multivariate skewness and kurtosis

A complete picture of multivariate skewness is provided by the third-order T-cumulant (skewness
vector) of a standardized X; set Y = Σ−1/2(X− µ), then the skewness vector is

κ⊗Y,3 = Cum3 (Y) =
(

Σ−1/2
)⊗3

κ⊗X,3. (5)

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 131

A definition of skewness which is invariant under shifting and orthogonal transformations or,
in other words affine invariant, is provided by the total skewness of X, i.e. the square norm of the
skewness vector:

γ1,d = ‖κ⊗Y,3‖
2 = β1,d (6)

where β1,d is Mardia’s multivariate skewness index (Mardia, 1970) which coincides with the total
skewness γ1,d since the third-order central moments and third-order cumulants are equal. Móri et al.
(1994) (MRSz’s) skewness vector can also be recovered from the skewness vector as

b(Y) =
(
vec′ Id ⊗ Id

)
κ⊗Y,3. (7)

Note that vec′ Id ⊗ Id is a matrix of dimensions d× d3, which contains d unit values per-row, whereas
all the others are 0; as a consequence, b(Y) does not take into account the contribution of cumulants
of the type Cum3(Xj, Xk, Xl), where all the three indices j, k, l are different from each other. The
corresponding scalar measure of multivariate skewness is b(Y) = ‖b(Y)‖2.

The fourth-order T-cumulant of the standardized X, i.e. κ⊗Y,4 = H4(Y), will be called kurtosis
vector of X; its square norm will be called the total kurtosis of X,

γ2,d = ‖κ⊗Y,4‖
2. (8)

Mardia’s kurtosis index β2,d = E (Y′Y)2 ( Mardia (1970)) is related to the kurtosis vector by the formula

β2,d =
(
vec′ Id2

)
κ⊗Y,4 + d(d + 2).

A consequence of this is that Mardia’s measure does not depend on all the entries of κ⊗Y,4 which has
d(d + 1)(d + 2)(d + 3)/24 distinct elements, while β2,d includes only d2 elements among them. We
note that if X is Gaussian, then κ⊗Y,4 = 0. Note that Koziol (1989), for Y and an independent copy
Ỹ, considered E(Y′Ỹ)4 as an index of kurtosis which is the next higher degree analogue of Mardia’s
skewness index β1,d. Note that (see Jammalamadaka et al. (2021b))

E(Y′Ỹ)4 = γ2,d + 6β2,d − d2.

Móri et al. (1994) define what we will call the MRS kurtosis matrix

B(Y) = E
(
YY′YY′

)
− (d + 2)Id,

which can be expressed in terms of the kurtosis vector as (note also that tr B(Y) = β2,d),

vec B(Y) =
(
Id2 ⊗ vec′ Id

)
κ⊗Y,4.

B(Y) got a prominent role in multivariate statistics due to invariant coordinate selection (Tyler et al.
(2009)), model-based clustering (Peña et al. (2010)), and multivariate outlier detection (Archimbaud
et al. (2018)). For further connections between κ⊗Y,3, κ⊗Y,4 and other measures of skewness and kurtosis,
see Terdik (2021), Section 6 and Jammalamadaka et al. (2021b). For Malkovich and Afifi (1973), where
directional measures of multivariate skewness and kurtosis measures are proposed, one can refer
to MaxSkew, Kurt and Loperfido (2015) for discussions and applications; see also Arevalillo and
Navarro (2020) and Arevalillo and Navarro (2021).

For examples on computing skewness and kurtosis measures with MultiStatM and relate tests
see the following sections.

2.6 Estimation

Estimating functions starting from a vector of multivariate data are available: multivariate Hermite
polynomials, moments, cumulants, skewness and kurtosis vectors, Mardia’s skewness and kurtosis
indexes, MRSz’s skewness vector and kurtosis matrices. The Estimation family of functions include
SampleEVSK, SampleGC, SampleHermiteN, SampleKurt, SampleSkew, SampleMomCum, see the examples in
this and the next section for their application.

The basic estimation method relies on sample averages: given a random sample of d-vectors
X1, . . . , Xn, for any function g let

ĝ(X) =
1
n

n

∑
i=1

g(Xi). (9)

To estimate moments of any order k = 1, . . . , r the function SampleMomCum sets g(Xi) = X⊗k
i in (9), while

cumulants are obtained from moments via the function Mom2Cum. Options for centering, i.e. (Xi − X̄)
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or scaling (default), i.e. S−1/2(Xi − X̄), where X̄ and S are the usual sample estimates of mean and
variance, are provided. For any sample X1, . . . , Xn the mean zero and identity covariance matrix data
Zi = S−1/2(Xi − X̄) can always be obtained using MultiStatM::MVStandardize.

d-variate Hermite polynomials of any order k = 1, . . . , N are evaluated at standardized data points
setting g(Xi) = Hk(Xi) in (9). The estimators in terms of standard Hermite polynomials proved to be
useful for finding the asymptotic distribution of skewness and kurtosis estimates, see Jammalamadaka
et al. (2021a). For estimation of skewness and kurtosis vectors, see Terdik (2021) (6.20), p. 331 and
(6.28), p. 340. Formulae for evaluating the variance of estimators are also available. For example
SampleVarianceSkewKurt provides estimates of the covariance matrix of the data-estimated skewness
and kurtosis vectors; see (Terdik (2021), (6.13) and (6.22)).

MultiStatM does not make use of multivariate k-statistics in estimation. For these one can use
kStatistics; for tutorials see Di Nardo and Guarino (2022b) and Smith (2020).

Example 6. Consider a multivariate data vector of dimension d = 3 and n = 1000 from the
multivariate skew-normal distribution of Example 5. The estimated first four cumulants are listed in
the object EsMSN obtained by SampleEVSK; the corresponding theoretical values are in the object ThMSN
obtained by MomCumSkewNorm.

data <- rSkewNorm(1000, omega, alpha)
EsMSN <- SampleEVSK(data)
ThMSN <- EVSKSkewNorm(omega, alpha)

Compare the distinct elements of the estimated skewness vector and the theoretical ones using
EliminIndx.

EsMSN$estSkew[EliminIndx(3, 3)]

#> [1] 0.790429655 0.357724043 0.031067380 0.154002615 -0.009734398
#> [6] -0.082597779 0.143721128 -0.017830889 -0.018768106 0.107639050

ThMSN$SkewX[EliminIndx(3, 3)]

#> [1] 0.68927167 0.34463583 0.00000000 0.17231792 0.00000000 0.00000000
#> [7] 0.08615896 0.00000000 0.00000000 0.00000000

If one wishes to recover the estimated univariate skewness and kurtosis of the univariate compo-
nents X1, X2 and X3 of X, then, using UnivMomCum,

EsMSN$estSkew[UnivMomCum(3, 3)]

#> [1] 0.7904297 0.1437211 0.1076391

EsMSN$estKurt[UnivMomCum(3, 4)]

#> [1] 1.2226382 0.1742616 0.1123743

An estimate of Mardia’s skewness index is provided together with the p-value under the null
hypothesis of normality. The theoretical value of Mardia’s skewness can be recovered from the element
SkewX.tot in the object ThMSN.

SampleSkew(data, Type = "Mardia")

#> $Mardia.Skewness
#> [1] 1.138013
#>
#> $p.value
#> [1] 2.291446e-35

ThMSN$SkewX.tot

#> [1] 0.9279208
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The MRSz skewness vector and index are provided together with the p-value for the skewness
index under the null hypothesis of normality. The theoretical value, for the distribution at hand, can
be computed using formula (7).

SampleSkew(data, Type = "MRSz")

#> $MRSz.Skewness.Vector
#> [1] 0.8618345 0.4826771 0.1208755
#>
#> $MRSz.Skewness.Index
#> [1] 0.9903467
#>
#> $p.value
#> [1] 2.506388e-21

c(t(c(diag(3)) %x% diag(3)) %*% ThMSN$SkewX)

#> [1] 0.8615896 0.4307948 0.0000000

3 Applications

3.1 Weighted measures of multivariate skewness and kurtosis

The skewness and kurtosis vectors, respectively Hq(Y), q = 3, 4, contain dq elements, which are
not all distinct. Just as the covariance matrix of a d-dimensional vector contains only d(d + 1)/2
distinct elements, a simple computation shows that Hq(Y) contains (d+q−1

q ) distinct elements. To
avoid duplicated information, it makes sense to work only with these distinct elements of the cumulant
vector. The selection of distinct elements can be accomplished via linear transformations and through
the so-called elimination matrix which we denote here as E+

d,q. The linear transformation

Hq,D (Y) = E+
d,qHq (Y) (10)

contains only the distinct values of Hq(Y) and has covariance matrix

CHq,D = E+
d,qCHq E+>

d,q . (11)

Given the availability of explicit formulae for the covariance matrices, it is natural to consider the
weighted skewness and kurtosis measures based on κY⊗ ,q,D = E+

d,qκY⊗ ,q, q = 3, 4 the third and fourth
order cumulant vectors with distinct elements, respectively; denote these as β1,T,d (skewness) and
β2,T,d (kurtosis); then

βq−2,T,d =
∥∥∥C−1/2

Hq,D
κY⊗ ,q,D

∥∥∥2
, q = 3, 4. (12)

The corresponding sample versions, bq−2,T,d, q = 3, 4, are simply obtained by replacing the cumulant
vectors and the covariance with their estimated versions. See Jammalamadaka et al. (2021a) for
detailed results about their asymptotic distributions which, under mild conditions are non-central χ2

distributions with (d+q−1
q ) degrees of freedom and non-centrality parameter βq−2,T,d, q = 3, 4.

Since the distribution of b1,T,d with estimated covariance matrix is asymptotically a χ2 with (d+2
3 )

degrees of freedom either in the Gaussian or in the more general case of elliptically symmetric multi-
variate distributions, a consistent test for elliptical symmetry can be based on b1,T,d with the estimated
covariance CH3,D . Under the alternative hypothesis of asymmetry, the asymptotic distribution will
involve a non-centrality parameter β1,T,d.

Example 7. Suppose we have 3-variate data from a normal distribution with unknown mean
and covariance matrix. We want to estimate b1,T,d from formula (12). Since we are considering the
skewness vector H3(Y), without loss of generality we can consider a null mean vector and Σ = Id.
Hence, in order to compute the covariance matrix of H3(Y) we use HermiteCov12:

d <- 3
Cov <- diag(d)
CovH3 <- HermiteCov12(Cov, 3)

From formula (11) one can use EliminMatr to compute the covariance (and its inverse) of the
distinct vectors elements of Y as
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ME <- EliminMatr(3, 3)
CovH3D <- ME %*% CovH3 %*% t(ME)
InvCovH3D <- solve(CovH3D)

Given a sample of data, compute b1,T,3. First estimate the skewness vector,

x <- MASS::mvrnorm(150, rep(0, d), diag(d))
EH3 <- SampleHermiteN(x, 3)

As a second step obtain the skewness vector with only distinct elements

EH3D <- EH3[EliminIndx(d, 3)]

In the third step we estimate b1,T,3

b1T <- EH3D %*% InvCovH3D %*% EH3D
b1T

#> [,1]
#> [1,] 0.0709763

If we compare b1,T,3 with Mardia’s skewness index b1,3,

b1 <- SampleSkew(x, Type = "Mardia")$Mardia.Skewness
b1

#> [1] 0.4258578

We note that b1,3 = 6 · b1,T,3. This fact was already noted and formalized in Jammalamadaka et al.
(2021a), i.e. Mardia’s index can also be seen to be equivalent, up to a constant, to the weighted index
b1,T,d for the Gaussian case.

One can also build a weighted indexes for more general cases, e.g. for an elliptically symmetric
distribution, by computing the covariance matrices for H3(Y) and H4(Y) using the results of Theorem
1 in Jammalamadaka et al. (2021a) and the functions provided in MultiStatM.

3.2 A multivariate Gram-Charlier density

The Gram-Charlier expansion expresses the density function of a random variable in terms of its
cumulants (see e.g. Brenn and Anfinsen (2017) and Section 4.7 in Terdik (2021)).

Given a d-vector from some distribution with density fX (x) having mean 0 and covariance matrix
Σ, under appropriate moment conditions, the density can be expanded into a Gram-Charlier series as
follows

fX (x) =

(
1 +

∞

∑
k=3

1
k!
(
Bk
(
0, 0, κY,3, . . . κY,k

))>Hk

(
Σ−1/2 (x− µ)

))
ϕ (x; 0, Σ) (13)

with ϕ denoting the d-variate standard normal density function and Bk indicating the (complete)
T-Bell polynomial of k-th order (see, e.g. Terdik (2021), Section 1.4.2 and Section 4.7). The polynomials
B3, B4, and B5 have the following simple forms

B3

(
0, 0, κ⊗Y,3

)
= κ⊗Y,3,

B4

(
0, 0, κ⊗Y,3, κ⊗Y,4

)
= κ⊗Y,4,

B5

(
0, 0, κ⊗Y,3, κ⊗Y,4, κ⊗Y,5

)
= κ⊗Y,5.

Using the above results and considering only the first few order terms in the expansion (13), one can
provide an approximation to fX (x):

fX (x) =

(
1 +

4

∑
k=3

1
k!

κ>Y,kHk

(
Σ−1/2(x− µ)

))
ϕ (x, 0, Σ) +O (14)
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where O includes the remaining terms. Starting from d-variate data, a Gram-Charlier approximation
to an unkonw multivariate density can be constructed using the multivariate function for cumulants
and Hermite polynomials provided in MultiStatM. In the package, the function SampleGC is available
in order to estimate the truncated Gram-Charlier density for k from 3 to 8. For higher order generalized
multivariate Bell polynomials see kstatistics. SampleGC can estimate directly the needed cumulants
from the data or use a given list of cumulants to evaluate the Gram-Charlier density at the given data.
If large data is used it will be more efficient to estimate the needed cumulants using SampleMomCum
and then evaluate the density at the points needed for analysis; note that in (14) Σ refers to X while
the higher order cumulants are computed for the standardized data Y. These aspects can be handled
efficiently with SampleMomCum which provides options for centering and scaling of the data.

Example 8. For n = 500 randomly generated data from a bivariate skew-normal distribution with
α = (4, 12) and correlation function Ω = diag(1, 1), the Gram-Charlier approximation (for k = 4 and
k = 6) is evaluated: a) using the cumulants estimated from data; b) using the true cumulants of the
given skew-normal. For this distribution the mean can be computed as

√
2/π Ωα (1 + α′Ωα)−1/2.

alpha <- c(4, 12)
omega <- diag(2)
set.seed(1234)
X <- rSkewNorm(500, omega, alpha)
X <- X - sqrt(2 / pi) * c(omega %*% alpha) / c(sqrt(1 + alpha %*% omega %*% alpha))

For k all the needed cumulants (in proper form as argument for SampleGC) can be efficiently
estimated using (e.g. k = 4)

EC <- SampleMomCum(X, r = 4, centering = TRUE, scaling = FALSE)

The theoretical cumulants (up to any order) can be obtained using MomCumSkewNorm.

TC <- MomCumSkewNorm(r = 4, omega, alpha, nMu = FALSE)

Compare directly the theoretical and data-estimated skewness and kurtosis vectors (use only the
distinct values) in the code below

EC$estCum.r[[3]][EliminIndx(2, 3)]

#> [1] 0.215266065 -0.007213623 0.032072834 0.207076236

TC$CumX[[3]][EliminIndx(2, 3)]

#> [1] 0.006830064 0.020490192 0.061470576 0.184411729

EC$estCum.r[[4]][EliminIndx(2, 4)]

#> [1] -0.028502396 0.047460791 0.010992685 0.001601845 0.010988540

TC$CumX[[4]][EliminIndx(2, 4)]

#> [1] 0.001133494 0.003400482 0.010201445 0.030604334 0.091813003

In order to produce the plots in Figure 1, the Gram-Charlier approximation with k = 4 (and k = 6)
are evaluated using the estimated cumulants and the true ones; for example:

fy4 <- SampleGC(X, cum = EC$estCum.r)

Figure 1 shows the contours of true skew-normal density and the Gram-Charlier densities based
on the estimated and true cumulants for the cases k = 4 and k = 6. The approximation, as expected,
appears to improve when true cumulants are used and k is larger.
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Figure 1: Contour plots of the skew-normal true density (left), the Gram-Charlier approximation with
estimated cumulants (center) and the Gram-Charlier approximation with true cumulants (right). Case
with k = 4 (first row) and k = 6 (second row).
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4 Computational details

One of the basic functions of MultiStatM is PartitionTypeAll (Section 2.1) whose algorithm to
generate all partitions of the set 1 : N is based on the recursive generation of inclusive and exclusive
partition matrices as described in Terdik (2021), section 1.4. For example, the number of partitions
of a given type S_r_j and eL_r - see Section 2.1 produced by PartitionTypeAll are exploited in
conversion formulae from moments to cumulants and viceversa. Recall that the conversion formula
from moments to cumulants (Terdik (2021), Section 3.4)) is given by

µ⊗n = ∑
K∈Pn

K−1
p(K)

⊗
∏

bj∈K
κ⊗|bj |

= Sd1n

 n

∑
r=1

∑
∑ lj=r,∑ jlj=n

n!

∏n
j=1 lj!(j!)lj

⊗
∏

j=1:n−r+1
κ
⊗lj

j

 (15)

where the summation is over all partitions K = {b1, b2, . . . , bk} of 1 : n; |bj| denotes the cardinality of
block bj. The simpler second formula, exploiting the symmetrizer matrix, derives from symmetry of
µ⊗n .

As far as the formula from cumulants to moments (Terdik (2021), Section 3.4) is concerned,

κ⊗n = Sd1n

 n

∑
r=1

(−1)r−1(r− 1)! ∑
∑ lj=r,∑ jlj=n

⊗
∏

j=1:n−r+1

1
lj!

(
1
j!

µ⊗j

)lj

 . (16)

One can also use T-Bell polynomials Bn, and incomplete T-Bell polynomial Bn,r (see, e.g. Section 1.4.2
and Section 4.7 in Terdik (2021)) to show the structure of partitions in (15) as

µ⊗n = Sd1n Bn
(
κ⊗1 , κ⊗2 , . . ., κ⊗n

)
(17)

and in (16),

κ⊗n = Sd1n

n

∑
r=1

(−1)r−1 (r− 1)!Bn,r
(
µ⊗1 , . . ., µ⊗n

)
. (18)

Consider now the symmetrizer matrix (Section 2.2), note that, by definition, its computation requires
q! operations; in the package, the computational complexity is overcome by exploiting the Chacón
and Duong (2015) efficient recursive algorithms for functionals based on higher order derivatives and
the prime factorization theorem. Note however that even though the computational requirements are
greatly reduced, the symmetrizer is a square matrix of dimension dn where d is the vector dimension
and n the power of the Kronecker products. Since SymMatr produces essentially sparse matrices, the
option useSparse=T,F can be selected (F is the default). Overall however, if the use of matrices is not
strictly necessary, the function SymIndx will directly produce a symmetrized version of the T-product
of vectors. Table 1 reports the computational times as well as memory allocation of the objects created.
Computation times are approximate and obtained on a desktop computer with an Intel-Core-i7-7700
CPU at 3.60GHz and 16GB RAM. From the table it can be noted that using sparse matrices can be
much faster and more efficient in terms of memory allocation. The use of SymIndx should be the
standard way however, as it much less demanding in terms of memory allocation. Recall Example 3
for an instance where the use of SymMatr is preferable. The numerical results are in line with those of
Chacón and Duong (2015).

In general the functions of the group Indx should be used wherever possible, as they are typically
much faster than the corresponding Matr group since the former avoids constructing possibly large
matrices. All code in MultiStatM wherever possible, exploits the Indx group of functions.

Table 1: Approximate memory allocation (in Kb or Mb) and computational times in secs (s) or mins
(m) of SymMatr and SymIndx under different settings. For d = 3, n indicates the power of the Kronecker
products.

Function n Time Object size

SymMatr() 4 0.003s 55Kb
useSparse=F 6 0.720s 4Mb

8 9.2m 344Mb

SymMatr() 4 0.03s 9Kb
useSparse=T 6 0.12s 0.4Mb

8 0.46s 25Mb
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Function n Time Object size

Symindx() 4 0.06 0.6Kb
6 0.02 0.6Kb
8 0.06 52Kb

A further discussion is needed for CommutatorMatr with Type="Kperm" (Section 2.2) which pro-
duces permutations of any T-products of vectors of any dimensions: beyond the considerations
concerning using useSparse=T or not, when using CommutatorMatr with Type="Kperm", the dimen-
sions of the vectors in the argument may have a large impact on computing time.

Recall that CommutatorMatr with Type="Kperm" produces a permutation perm of vectors of dimen-
sions specified in dims. As an example consider the case of the product of n = 8 vectors all with the
same dimension d; using dims <- d instead of dims <- c(d,d,d,d,d,d,d,d) will require much less
computing time. In the evaluation below

CommutatorMatr(Type = "Kperm", perm = c(2, 4, 6, 1, 3, 8, 5, 7), dims = 3)

requires approximately 2.11 seconds while

CommutatorMatr(Type = "Kperm", perm = c(2, 4, 6, 1, 3, 8, 5, 7),
dims = c(3, 3, 3, 3, 3, 3, 3, 3))

requires approximately 1326.47 seconds.
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Canonical Correlation Analysis of Survey
Data: The SurveyCC R Package
by Raul Cruz-Cano, Aaron Cohen, and Erin Mead-Morse

Abstract Classic Canonical Correlation Analysis (CCA) is a popular statistical method that allows
for the analysis of the associations between two sets of variables. However, currently it cannot be
applied following the published methodological documentation to data sets collected using complex
survey design (CSD), which includes factors, such as replicate weights, clusters, and strata, that are
critical for the accurate calculation of the statistical significance of any correlation. To close this gap,
we have developed the Survey CC algorithm and implemented it in an R package. We describe the
theoretical foundations of our algorithm and provide a detailed report of the options of the function
that performs it. Moreover, the application of our newly developed method to several national survey
data sets shows the differences in conclusions that can be reached if the CSD elements are not taken
into consideration during the calculation of the statistical significance of the canonical correlations.

1 Introduction

Classical Canonical Correlation Analysis (CCA) is a popular exploratory statistical method that allows
for the analysis of relationships between two sets of variables, offering several advantages over
other statistical techniques, including the ability to limit the probability of committing Type I errors
when examining more than two variables (Hair et al., 2019). CCA has been applied to diverse fields,
including ecology (Gittins, 2012), neuroscience (Zhuang and Yang, 2020), biomedical imaging (Correa
et al., 2008), human geography (Clark, 1975), effect of work place regulations (Borland et al., 1991),
illicit drug use (Leo and Wulfert, 2013) and tobacco use (Morris et al., 2018).

Current methods for CCA inference and interval estimation, however, depend on simple random
sampling, and are, therefore, inaccurate when data is collected using a complex survey design (CSD).
Or, they are based on methods that cannot be applied following the published CSD methodological
documentation, hence, leading to results without practical significance. To overcome these issues, we
will employ our recently developed, innovative Survey CC method.

Using CCA, investigators study the extent and nature of the correlation between two sets of
variables, X = {X1, X2, ..., Xp} and Y = {Y1, Y2, . . . , Yq} (Hotelling, 1936). As described by (Clark,
1975), without loss of generality, it is assumed that p ≥ q and that each and every variable in X and
Y have been standardized to have a mean zero and a variance equal to one. CCA is used to explore
sample correlations between X and Y observed on the same experimental units by analyzing the
coefficients, A1 = (a1, a2, . . . , ap)T and B1 = (b1, b2, . . . , bq)T , which maximize the correlation between
linear combinations of the variables X and Y subject to Var(XA1) = Var(YB1) = 1.

The “classic” canonical correlation can be defined as (Hotelling, 1936):

ρ1 = maxA1,B1 Corr(XA1, YB1) = maxA1,B1

Cov(XA1, YB1)√
Var(XA1) ·Var(YB1)

(1)

subject to Var(XA1) = AT
1 XT XA1 = BT

1 YTYB1 = 1, as described by (Hardoon and Shawe-Taylor,
2011). These linear combinations, U1 = XA1 and V1 = YB1, are called the first canonical variates.
Their correlation, ρ1, is the first canonical correlation, and the coefficients A1 and B1 are the first
canonical coefficients.

The first canonical coefficients in each set will help to identify variables from X and Y that are
associated with each other. Variables with a strong positive relationship will have coefficients with
large magnitudes and similar signs (positive or negative), whereas inverse relationships will have
coefficients with opposing signs. The coefficients’ magnitudes are commonly examined to determine
which variables are the most relevant as variables with small coefficients will have weak relationships.

The process can be duplicated to identify the coefficients, A2 and B2, that maximize the correlation,
ρ2, subject to Var(XA2) = Var(YB2) = 1, with the additional constraint that the new canonical
variates, U2 = XA2 and V2 = YB2, are uncorrelated with the first pair of canonical variates. This
process can be repeated q times. These secondary canonical correlations are important because not
all the significant relationships that exist among variables can be expressed in the first canonical
correlation.

Many researchers base their conclusions regarding the relationships among the variables examined
in a CCA on the canonical coefficients associated with statistically significant canonical correlations
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(Boedeker and Henson, 2020) (Hill and Lewicki, 1997), hence, tools able to accurately estimate their
p-values are necessary. For example, (Travis and Lagrosen, 2014) limited their conclusions to the
information inferred from the first set of canonical coefficients because only the first canonical corre-
lation had a significant p-value. In (Stowe et al., 1980), three canonical correlations have statistically
significant p-values, hence all three sets of canonical coefficients are studied.

For the sample cross-correlation matrix,
( SXX SXY

SYX SYY

)
, canonical correlations can be calculated by

finding the descending-ordered square roots of the matrix eigenvalues M = S−1
YYSYXS−1

XXSXY . The
canonical coefficients for Y are the corresponding q eigenvectors, and the elements of eigenvector i are
the canonical coefficients Bi. Correlations between canonical variates and original variables (called
canonical factor loadings) offer information that is complementary to canonical coefficients and, hence,
are preferred by some researchers (Meredith, 1964).

2 Weighted CCA

Broadly speaking, when data sets have been collected using CSD methods, two main types of factors
are used to account for the fact that the sample is not a simple random sample:

• Survey weights are used to create a synthetic sample for which the distribution of covariates is
similar to the population under study, i.e., they help to account for unequal selection probability
(Hahs-Vaughn et al., 2011), leading to correct population parameter estimates (Lewis, 2016).

• Repetition weights, clusters, and strata are CSD elements essential to consider the nonindepen-
dence among the sampling units derived from the complex sampling design utilized to gather
the data (Hahs-Vaughn et al., 2011). Hence, they are used during the calculation of standard
errors to accurately estimate confidence intervals and p-values for any hypothesis tested.

Standard statistical methods that ignore structures, such as clustering or stratification, can give
seriously misleading results (Holt et al., 1980). Analyzing a stratified sample as if it were a simple
random sample tends to overestimate the standard errors, whereas analyzing a clustered sample as if
it were a simple random sample tends to underestimate the standard errors, and analyzing the data
without taking into consideration the survey weights will lead to incorrect point estimates (Lumley,
2004). Examples of how intracluster correlations can severely affect the effective sample size can be
found in (Killip et al., 2004).

From (Winship and Radbill, 1994), we know that the formulas for weighted covariance and
variance for two variables, X1 and X2, are:

Weighted Cov(X1, X2) =
∑n

i=1 Wi(Xi1 − X̄1)(Xi2 − X̄2)

∑n
i=1 Wi

(2)

Weighted Var(X1) =
∑n

i=1 Wi(Xi1 − X̄1)
2

∑n
i=1 Wi

(3)

where W is the vector that stores the survey weight for each of the n subjects in the sample.

If we choose Aj and Bj, such that WeightedVar(Uj) = WeightedVar(Vj) = 1, then substituting (2)
and (3) into (1) reduces the weighted canonical correlation to

Weighted ρj = maxAj ,Bj

∑n
i=1 Wi((XAj)i(YBj)i)

∑n
i=1 Wi

(4)

It can be proven that the q canonical coefficients Aj are the q eigenvectors of:

|(XTdiag(W)Y) · (YTdiag(W)Y)−1 · (YTdiag(W)X) · (XTdiag(W)X)−1 − λ2 I| = 0 (5)

The q canonical coefficients Bj can be found similarly. As in the classic CCA, the q eigenvalues,
λ, are the weighted canonical correlations; hence, parameters A and B are not needed to find the
weighted canonical variates and correlations, as this calculation derives their values.

Modern statistical software, including SAS 9.4 software’s PROC CANCORR (SAS, 2012), Stata’s
canon command (StataCorp, 2023b), and R’s cancor() function in the candisc package, apply these
formulas and are able to consider survey weights in their calculations of weighted canonical cor-
relations and their corresponding p-values according to the methods Wilks’ lambda, Pillai’s trace,
and Hotelling-Lawley trace (Caliński et al., 2006) and Roy’s largest root (Johnstone, 2009). However,
these programs are unable to account for other factors, such as clusters and strata. As mentioned
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previously, ignoring these complex survey design elements will lead to different estimates of p-values
for weighted canonical correlations.

The SAS macro presented in (Nelson et al., 2020) accounts for the CSD factors by calculating
a design-effect adjusted weight for each variable. The way in which these calibrated weights are
calculated tends to result in design-effect adjusted sample sizes large enough to consistently provide
trivially significant results, i.e., statistically significant p-values for canonical correlations regardless
of their magnitude and practical meaning. The authors of this algorithm provide a recommendation
to ameliorate this problem but their advice requires the user to choose a random variable as the
dependent variable, hence leading to inconsistent results that are influenced by this selection. In
contrast, our proposed algorithm leads to the same degrees of freedom recommended for linear
regression models outlined in the complex surveys’ guidelines.

3 Complex survey design CCA

The proposed Survey CC method is based on three well-known ideas related to data collected using
CSD: (1) the survey weights are sufficient to calculate correct parameter estimates, e.g., the canonical
coefficients; (2) the linear combination of variables in a complex survey data set follows the same CSD
structure as the original variables; and (3) the p-values for a simple linear regression coefficient and a
correlation using the same two variables are equal.

In the case of (3), due to the linearization of the variance estimator used by survey::svyglm(), the
p-value for the slope of the regression of Uj on Vj will not be equal to the p-value for the regression of
Vj on Uj, as would be the case if there were no CSD elements. We addressed this issue by calculating
both p-values and then selecting the largest of them, i.e., we took a conservative approach for the test
of the hypothesis H0 : ρj = 0 (Nelson et al., 2020).

Survey CC step-by-step methodology:

1. Select variable sets, X and Y, from existing data sets.
2. Include survey weights in the calculation of the weighted canonical coefficients and correlations

to find their point estimates.
3. For each j canonical correlation where 1 ≤ j ≤ q:

(a) Use weighted canonical coefficients to calculate weighted canonical variates, Uj and Vj.
(b) Perform a simple linear regression of Uj on Vj that includes all complex survey design ele-

ments (e.g., survey weights, cluster, and strata) to find the p-values for their corresponding
rj canonical correlation

(c) Perform a simple linear regression of Vj on Uj that includes all complex survey design ele-
ments (e.g., survey weights, cluster, and strata) to find the p-values for their corresponding
rj canonical correlation

(d) Compare the p-values of the linear regression models in the previous two steps and select
the largest.

In practice, existing computational CCA procedures that consider survey weights can be used
to identify weighed canonical coefficients, which, in turn, can be used to calculate the weighted
canonical variates. Once these canonical variates have been identified, given that they are just linear
combinations of the original variables, p-values for canonical correlations can be estimated using
complex survey linear regression procedures, as linear regression survey procedures in modern
statistical software can include not only survey weights but also information regarding the repetition
weights, clusters, and strata from the original data set. The values required for these CSD factors are
provided in the user guides, codebooks, and manuals of the surveys that would be examined by the
users of our package. In other words, the users of our package will not need to determine these values;
they will be able to find these values using the help materials provided by the institutions that conduct
the surveys and make them available to the public.

A further advantage of our Survey CC algorithm is that it will allow the assessment of the statistical
significance of each canonical correlation, and hence the conclusions that might be drawn from the
associated canonical coefficients or loadings, to be done separately. The reason is that a byproduct of
the proposed algorithm are the p-values for each individual rj canonical correlation (i.e., H0 : ρj = 0),
whereas current software tests the hypothesis H0 : ρj = ρj+1 = · · · = ρq−1 = ρq = 0. This sequential
testing approach followed by the classic statistical methods has been criticized ?. Because the effective
sample size might change for each canonical correlation depending on the canonical coefficients and
the CSD factors, a larger correlation magnitude might not imply a smaller p-value, therefore secondary
canonical correlations might be statistically significant even if the first one is not.

This difference on the hypotheses being tested also implies that Survey CC should be considered
an alternative to the existing CCA methods, not an improvement on them. Moreover, this also
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means that the p-values produced by Survey CC are not directly comparable to those provided by the
classic statistical methods. Therefore, when it is mentioned that these statistical tests lead to different
conclusions, it refers to the interpretation that a general scientist with basic training in statistics would
give to the p-values, not to the formal interpretation that should be strictly given to them.

4 The R package

The package SurveyCC extends the functionality of candisc::cancor() by calculating the test statis-
tics, degrees of freedom and p-values necessary to estimate and interpret the statistical significance of
the canonical correlations according to the methods of Wilks’ lambda, Pillai’s trace, and Hotelling-
Lawley trace (Caliński et al., 2006). The statistics for these secondary canonical correlations were, up
until now, unavailable to the users of Stata’s canon and SAS PROC CANCORR. In R, the repeated
application of the function p.asym() in the CCP package, once for each of these classic methods, is
needed as candisc::cancor() provides by the default only the results for the Wilks’ lambda test. It is
worth noting that the existing statistical software uses an F-distribution to calculate the p-values for
these methods, while those provided by SurveyCC are based on a χ2 distribution. This difference leads
to slightly different results from those provided by the existing CCA commands. Using a different
distribution makes the information provided by SurveyCC complementary, instead of redundant, to
that provided by the existing CCA commands.

Roy’s largest root test statistics are also provided by SurveyCC. Our implementation is based on
the idea described in (Johnstone, 2009), which posits the use of the first canonical correlation as a
test statistic for all secondary canonical correlations and simply changing the degrees of freedom of
the F-distribution used to assess it. Other existing CCA functions provide the Roy’s largest root test
statistics only for the first canonical correlation. Additionally, we found in the examples included in
this paper and countless preliminary experiments, that Roy’s largest root p-value was smaller than
the rest of those calculated by SurveyCC. We hypothesize that this difference might be due to the
upper-bound method used by Johnstone (2009), which is the base of our programming work for
this test. Although this might limit the usefulness of this statistic, we decided to include it in our
calculations and leave it to the user to determine how much importance to give to the results of this
method.

Moreover, SurveyCC implements the proposed Survey CC algorithm described in the previous
section. The results of the Survey CC algorithm appears in the tables displayed by surveycc() as
Complex Survey CC. As mentioned previously, the core idea of the algorithm is to calculate the
correlations among the canonical variates and their corresponding statistical significance via an
equivalent sequence of univariate linear regressions. This transformation allows the user to take
advantage of the existing theoretical and computational resources that integrate the CSD elements into
these regression models (Valliant and Dever, 2018). Hence, SurveyCC can include the same complex
design elements as survey::svyglm(). Indeed, for the main function surveycc(), one of the main
required inputs is a survey::svydesign() or survey::svrepdesign() object (see section 4.1 below).
The Statistic for our algorithm is the coefficient for independent variable in the univariate linear
regression model and, given that the variances of the canonical variates have been setup to be 1, it is
equal to the corresponding canonical correlation. The other values in the results table for SurveyCC,
i.e. df1, df2, Chi-Sq/F and p-val, are those provided by R for the coefficient estimate in simple linear
regression model (for more information see the help material for survey::svyglm() in the survey
package).

Beside the p-value corresponding to the Survey CC, surveycc() also provides statistics for the case
in which only the survey weights are taken into consideration, while the rest of the complex survey
design elements are ignored. This additional set of results, which are listed as Weighted Survey CC,
allows the user to appreciate the effect that the elements, which are dispensable to obtain correct point
estimates, affect the calculation of the statistical significance of the correlations.

The units and variables graphs (Gittins, 2012) can be drawn by candisc::cancor(), further com-
plementing the information listed by the existing canonical correlation commands. The variables
graph uses the first and second canonical coefficients for each the variables in the original data as
coordinates in a 2-dimensional graph. This graph allows the user to see the associations that might
exist among the variables in the original data set by studying their positions around the unit circle.
Variables in opposite sides are expected to have inverse relationships, i.e., when one increases the
other decreases, while variables close to each other should have positive relationships, i.e., when
one increases/decreases, the other also increases/decreases. The distance from the origin can be
interpreted as a direct proportional measure of the strength of these relationships. The units graph
is created by multiplying the values of the original variables of each observation by the canonical
coefficients of the two canonical correlations selected by the user and then using the resulting values
as coordinates in a two-dimensional plane described by the corresponding canonical variates. The
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units graphs serves to identify possible clusters among the observations in the data set that share
characteristics which might not have been apparent in the original variables (Cruz-Cano and Lee, 2014)
and identify observations that might be considered outliers. For example, in a units graph, samples
from grassland vegetation in a small area in North Wales formed three distinct clusters based on the
community (limestone, neutral, and fertile grassland) to which they belonged (Gittins, 2012).

The SurveyCC package is currently available in the Comprehensive R Archive Network (CRAN):
https://cran.r-project.org/web/packages/SurveyCC/index.html.

4.1 Syntax

The SurveyCC package has one main user-facing function, surveycc(). The arguments for this
function are as follows:

• design_object
• var.x, var.y
• howmany
• dim1, dim2
• selection

The first item, the design object, needs to be created by using the survey functions svydesign()
or svrepdesign(). This object will contain the actual data set, but will also keep track of all CSD
characteristics, such as cluster, strata, etc. Note that, even if the data does not have a complex survey
design structure, the design object still needs to be created and passed in (see “Simple Example”
below).

The var.x and var.y arguments specify the names of the first and second sets of variables,
respectively. These both should be character vectors, and the names should exactly match the desired
variable names in the data set.

The howmany argument is a positive integer specifying how many canonical correlations one wants
to test for. Note that this always must be between 1 and the cardinality of the largest set of variables
(i.e., var.x or var.y).

The selection argument specifies if the effective sample size should simply be the number of
observations/rows, or whether it should be based on the sum of the weights in the survey design
object. Specifying selection = "FREQ" will result in the weight information being used, selection =
ROWS will result in the number of rows being used. The effective sample size is used in the calculation
of p-values and hence included in the result tables.

4.2 Output

The output of the call to surveycc() in R is a list with the following structure:

• Stats.cancor

– Stats.cancor.1
– Stats.cancor.2
– . . .

• cc_object

The first item in this list is another list named Stats.cancor, and it contains a data frame for each
canonical correlate (the number being obtained from the argument howmany). Each data frame is the
table of test results, including the results of the new Survey CC method.

The second item in this list is another list named cc_object, which is actually the output from
the call to cancor() in the candisc package. It is beyond the scope of the present article to describe
everything in the cancor() output as it is already done extensively in its help files, but special attention
should be paid to the object cc_object$coef, which gives the actual canonical variate coefficient
estimates. This will be explored in some of the examples below.

The SurveyCC package contains a plotting method for the surveycc object. Simply pass the saved
object to plot(), along with two arguments, dim1 and dim2, which specify which variates to use as
axes in the plots. The values must both be positive integers, cannot equal each other, and must be ≤
howmany. Please see the PATH example below (PATH Study Wave 1 Adult Questionnaire Example) for
an example of this.
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5 Examples

In this section we present four examples to illustrate different aspects of SurveyCC being exalted.
Although all the data sets mentioned in this section are publicly available, we have also included them
as supplementary files for the convenience of the readers who would like to run the code provided in
this document.

These data sets are:

• Simple Automobile data set: This example shows that surveycc() can deal with data sets
without CSD factors and provide information about the statistical significance of the secondary
canonical correlations, which is currently difficult to obtain using exiting CCA software. In the
past it has been used as an example for other canonical correlation packages (StataCorp, 2023a).
The data set is available at https://www.stata-press.com/data/r17/auto.

• 2007-2010 National Health and Nutrition Examination Survey: This case illustrates the ap-
plication of SurveyCC to study a survey that includes a complete set of CSD factors (survey
weights, cluster and strata). The data set is available at https://wwwn.cdc.gov/nchs/nhanes/
Default.aspx. The creation of this data set required merging of the 2007-2008 and 2009-2010
surveys according to the specifications provided in the National Health and Nutrition Examina-
tion Survey:Estimation Procedures, 2007–2010 Data Evaluation and Methods Research of the CDC’s
National Center for Health Statistics.

• PATH Study Wave 1 Adult Questionnaire: This example is based on a national survey data set
with replicate weights instead of cluster and strata for standard error estimation. This data set is
available at https://www.icpsr.umich.edu/web/NAHDAP/studies/36231/datadocumentation.
To reduce the PATH data set to a size that would not impede the installing of SurveyCC
by persons with little memory space in their computers or unreliable or slow internet connec-
tions, we provide a subset of PATH Wave I Adult Questionnaire data set that can be downloaded
from the PATH Study website. Only the rows that have no missing values for the variables used
in the example, i.e., only the rows that are in fact used during the CCA calculations, were kept.

• 2021 National Youth Tobacco Survey: The last of our national survey examples presents a case
in which the surveycc() handles a larger set of variables and leads to conclusions different
from those obtained if only the classic statistical tests are applied. The data set is available at
https://www.cdc.gov/tobacco/data_statistics/surveys/nyts/data/index.html.

We recommend to the readers who want to replicate the results listed in this manuscript running
the reproducibility scripts provided in the supplementary files as they include ancillary commands,
e.g., library, needed for the correct execution of our examples.

5.1 Simple Automobile Example

The first of our examples serves to show how surveycc() can handle cases in which no CSD factors
exist and the user might only be interested in examining the statistical significance of the secondary
canonical correlations. For this purpose, we examine the relationships among several measures related
to different models of automobiles. One group of variables express the size of the automobile (length,
weight, headroom, and trunk size) while the others are related to the performance of it (displacement
in cubic centimeters, miles per gallon, gear ratio, and turn ratio).

Simple Automobile Example Setup

As previously mentioned, it is necessary to create the CSD object using the survey package, which is
then passed into the main function of the current package, surveycc(). This is the case even if, as in
the present example, there are no CSD factors in the data set (see the design_object in the code below).
Notice that the only necessary information for the creation of a survey design object is ids, set to ~ 1
here.

In addition to the CSD object, we define vectors for each set of variables, as well as an indicator
of the desired number of canonical variates for which that statistical significance must be reported.
These objects are all passed into the surveycc() function.

# Simple example
design_object <-
survey::svydesign(
ids = ~1,
data = auto
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)
var.x <- c("length", "weight", "headroom", "trunk")
var.y <- c("displacement", "mpg", "gear_ratio", "turn")
howmany <- 3
out.auto <- surveycc(design_object = design_object, var.x = var.x,
var.y = var.y, howmany = howmany, selection = "FREQ")

Simple Automobile Example Results

Here surveycc() is used to estimate canonical correlations p-values for the Simple example.

See the output of the saved out.auto object below for the tables containing all statistics, degrees of
freedom, test statistics, and p-values.

out.auto

#> $Stats.cancor
#> $Stats.cancor$Stats.cancor.1
#> Statistic df1 df2 Chi-Sq/F p-val
#> Wilks' Lambda 0.08973 16 NA 165.42306 0
#> Pillai's Trace 1.01956 15 NA 73.52406 0
#> Hotelling-Lawley Trace 8.93344 16 NA 581.68905 0
#> Roy's Greatest Root 0.89792 4 69 151.74255 0
#> Weighted Survey CC 0.94759 73 72 27.56469 0
#> Complex Survey CC 0.94759 73 72 27.56469 0
#>
#> $Stats.cancor$Stats.cancor.2
#> Statistic df1 df2 Chi-Sq/F p-val
#> Wilks' Lambda 0.87907 9 NA 9.82963 0.36445
#> Pillai's Trace 0.12163 8 NA 9.58017 0.38553
#> Hotelling-Lawley Trace 0.13677 9 NA 10.08844 0.34337
#> Roy's Greatest Root 0.89792 4 69 151.74255 0.00000
#> Weighted Survey CC 0.34003 73 72 2.76224 0.00728
#> Complex Survey CC 0.34003 73 72 2.76224 0.00728
#>
#> $Stats.cancor$Stats.cancor.3
#> Statistic df1 df2 Chi-Sq/F p-val
#> Wilks' Lambda 0.99399 4 NA 1.95328 0.74435
#> Pillai's Trace 0.00601 3 NA 1.95903 0.74329
#> Hotelling-Lawley Trace 0.00603 4 NA 1.94751 0.74541
#> Roy's Greatest Root 0.89792 4 69 151.74255 0.00000
#> Weighted Survey CC 0.06338 73 72 0.60644 0.54613
#> Complex Survey CC 0.06338 73 72 0.60644 0.54613
#>
#>
#> $cc_object
#>
#> Canonical correlation analysis of:
#> 4 X variables: length, weight, headroom, trunk
#> with 4 Y variables: displacement, mpg, gear_ratio, turn
#>
#> CanR CanRSQ Eigen percent cum scree
#> 1 0.94759 0.897924 8.796670 98.46902 98.47 ******************************
#> 2 0.34003 0.115619 0.130734 1.46343 99.93
#> 3 0.06338 0.004017 0.004033 0.04514 99.98
#> 4 0.04470 0.001998 0.002002 0.02241 100.00
#>
#> Test of H0: The canonical correlations in the
#> current row and all that follow are zero
#>
#> CanR LR test stat approx F numDF denDF Pr(> F)
#> 1 0.94759 0.08973 15.1900 16 202.27 <2e-16 ***
#> 2 0.34003 0.87907 0.9863 9 163.21 0.4534
#> 3 0.06338 0.99399 0.1026 4 136.00 0.9814
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#> 4 0.04470 0.99800 0.1381 1 69.00 0.7113
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> attr(,"class")
#> [1] "surveycc" "list"

Notice that Stats.cancor does not include the canonical coefficients and hence it would not be
useful to draw conclusions about the relationships among the sets of variables included in the CCA.
To see the canonical correlations and coefficient estimates one would save the output of the function
call, and then refer to the sub-object cc_object:

out.auto$cc_object$coef

#> $X
#> Xcan1 Xcan2 Xcan3 Xcan4
#> length -0.009477879 0.144140174 -0.0329362330 -0.0211707964
#> weight -0.001016175 -0.003663031 0.0009582644 -0.0006830296
#> headroom -0.035113185 -0.370142988 -1.5361072863 0.0440329417
#> trunk 0.002282333 -0.034273898 0.2135491362 0.3252799822
#>
#> $Y
#> Ycan1 Ycan2 Ycan3 Ycan4
#> displacement -0.005370441 -0.01254983 -0.019129726 0.0005364212
#> mpg 0.046148112 -0.04127765 -0.068339793 -0.2478094648
#> gear_ratio -0.032958321 1.02797976 -3.659566938 1.0311435250
#> turn -0.079392663 0.31126673 -0.003303379 -0.2240488108

Simple Automobile Example Conclusion

In this example the weighted Survey CC provides accurate results, because weights (equal to 1 in the
case of simple random sampling) are the only survey design factor. For the first canonical correlation,
all methods conclude that it is statistically significant and hence it is reasonable to assume that the
conclusions drawn might be true, i.e., a positive relationship between the headroom of the cars
(negative coefficient -0.0351) and its turn ratio (negative coefficient -0.0794) but a negative one with its
MPG (positive coefficient 0.0461) are likely to exist. The second canonical coefficients represent the
negative association that exist between the headroom (negative coefficient -0.3701) and the gear ratio
(positive coefficient 1.0279) combined with the turn ratio (positive coefficient 0.3112).

Although the p-values for the Survey CC method and most of those provided by the classic
tests led to the same conclusions for the first (statistically significant) and third canonical correlation
(not statistically significant), different conclusions are reached for the second canonical correlation.
Considering all these results together can help the user of the commands to reach a more informed
judgment about the robustness of their conclusions.

5.2 2007-2010 National Health and Nutrition Examination Survey (NHANES) Example

The Survey CC method was applied to the 2007-2010 NHANES data set to evaluate the existing
relationship between select demographic factors (ridageyr: Age in years, at the time of the screening
interview, and indhhin2: the estimated total household income) and body measurements related
to obesity (bmxbmi: BMI, bmxwaist: Waist circumference, bpxpls: Resting pulse per minute, bpxsy1:
Systolic blood pressure, and bpxdi1: Diastolic blood pressure) for people between 45 and 64 years old,
which is the age group with the largest proportion of persons with undiagnosed diabetes, considering
the appropriate CSD factors (survey weights, cluster and strata). Although many other demographic
factors such are race/ethnicity and education would be considered in a serious study about the
relationship between demography and body measure, the purpose of this example is to present a
relatively simple case that includes CSD factors such as cluster, strata and survey weights.

NHANES Example Setup

As previously mentioned, it is necessary to create the CSD object using the survey package, which is
then passed into the main function of the current package, surveycc().
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reducedNHANESdata <- NHANESdata %>%
dplyr::filter(ridageyr <= 64 & ridageyr >= 45)

design_object <-
survey::svydesign(
id = ~sdmvpsu,
weights = ~wtmec4yr,
strata = ~sdmvstra,
nest = TRUE,
data = reducedNHANESdata

)
var.x <- c("bmxwaist", "bmxbmi", "bpxpls", "bpxdi1", "bpxsy1")
var.y <- c("ridageyr", "indhhin2")
out.NHANES <- surveycc(design_object, var.x = var.x, var.y = var.y,

howmany = 2, selection = "ROWS")

NHANES Example Results

Here surveycc() is used to estimate canonical correlations p-values for the NHANES example. Notice
that the specification of the CSD elements was adapted from the section Sample Code webpage from the
Tutorials tab of NHANES website https://wwwn.cdc.gov/nchs/nhanes/tutorials/samplecode.aspx.

See the output of the saved out.NHANES object below for the tables containing all statistics, degrees
of freedom, test statistics, and p-values.

out.NHANES

#> $Stats.cancor
#> $Stats.cancor$Stats.cancor.1
#> Statistic df1 df2 Chi-Sq/F p-val
#> Wilks' Lambda 0.89351 10 NA 131.69647 0
#> Pillai's Trace 0.10680 9 NA 125.23226 0
#> Hotelling-Lawley Trace 0.11884 10 NA 138.63868 0
#> Roy's Greatest Root 0.10384 5 1160 26.88222 0
#> Weighted Survey CC 0.30978 1165 1164 8.80881 0
#> Complex Survey CC 0.30978 1165 31 7.11893 0
#>
#> $Stats.cancor$Stats.cancor.2
#> Statistic df1 df2 Chi-Sq/F p-val
#> Wilks' Lambda 0.99704 4 NA 4.46159 0.34713
#> Pillai's Trace 0.00296 3 NA 4.46091 0.34721
#> Hotelling-Lawley Trace 0.00297 4 NA 4.46227 0.34704
#> Roy's Greatest Root 0.10384 4 1161 33.63175 0.00000
#> Weighted Survey CC 0.05603 1165 1164 1.95003 0.05141
#> Complex Survey CC 0.05603 1165 31 2.05636 0.04825
#>
#>
#> $cc_object
#>
#> Canonical correlation analysis of:
#> 5 X variables: bmxwaist, bmxbmi, bpxpls, bpxdi1, bpxsy1
#> with 2 Y variables: ridageyr, indhhin2
#>
#> CanR CanRSQ Eigen percent cum scree
#> 1 0.30978 0.09597 0.10615 97.119 97.12 ******************************
#> 2 0.05603 0.00314 0.00315 2.881 100.00 *
#>
#> Test of H0: The canonical correlations in the
#> current row and all that follow are zero
#>
#> CanR LR test stat approx F numDF denDF Pr(> F)
#> 1 0.309784 0.90120 12.3766 10 2318 <2e-16 ***
#> 2 0.056033 0.99686 0.9134 4 1160 0.4553
#> ---
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#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> attr(,"class")
#> [1] "surveycc" "list"

NHANES Example Conclusion

Similarly to the ‘Simple Automobile Example’ above, we can save the output of surveycc() to extract
the canonical coefficients themselves (one could also directly apply the candisc::cancor() function,
as is done internally in the present package).

out.NHANES$cc_object$coef

#> $X
#> Xcan1 Xcan2
#> bmxwaist -0.070475488 0.022913764
#> bmxbmi 0.129348798 -0.171143233
#> bpxpls 0.007807571 -0.034438475
#> bpxdi1 0.054467924 -0.010895040
#> bpxsy1 -0.051782536 0.009062863
#>
#> $Y
#> Ycan1 Ycan2
#> ridageyr -0.17278878 0.05291342
#> indhhin2 0.02498235 0.07249308

The canonical coefficients from CCA are shown in the above output. In the first set of canonical
variables, we will focus on the coefficients with the greatest magnitudes: bmxbmi (first set) and ridageyr
(second set). The results show an opposite relationship between Age (negative canonical coefficient
-0.1728) and BMI (positive canonical coefficient 0.1294); that is, BMI decreases as age increases for
people ages 45-64 years. This correlation is considered statistically significant regardless of the method
and has been observed in previous studies such as (Yang et al., 2021), (Amies-Cull et al., 2022), (Sun
et al., 2022) and (Jarrett et al., 2009). The dominant second canonical coefficients express a negative
association between a combined increase in age (positive canonical coefficient 0.0529) and an increase
in income (positive canonical coefficient 0.0725) and a decrease in BMI (negative canonical coefficient -
0.1712). In other words, increases in income and age are associated with decreases in BMI. The negative
relationship between income and BMI in adults has been seen before in the literature, especially among
women (Garcia Villar and Quintana-Domeque, 2009).

Studying the results of this section, the conclusion about the statistical significance of the second
canonical correlation would be different depending on whether a classic test or the Survey CC method
is used for this purpose. For example, Wilks’ lambda p-value is 0.3471 and Pillai’s trace p-value is
0.3472, both leading to the conclusion that it is not statistically significant. In contrast, Survey CC,
which accounts for the complex survey design elements, leads to the opposite conclusion that the
correlation is statistically significant (p= 0.048).

5.3 PATH Study Wave 1 Adult Questionnaire Example

This example includes material about how the variables and units graphs can be used to examine the
associations between certain smoking- and drinking-related variables. The evaluation of the statistical
significance of the canonical correlations takes in to consideration the replicate weights needed for
their accurate calculation. Once again, a serious examination between smoking and drinking alcohol
would require a larger number of variables but given the purpose of this manuscript, we believe
that it is acceptable to present this preliminary analysis to further illustrate how surveycc() can help
researchers extract information from national survey data sets with replicate weights. Moreover, it is
important to notice that on occasion the classic statistical tests and the proposed Survey CC method
lead to the same conclusions as is the case presented in this subsection.

The smoking variables are:

• R01_AC1022: In past 30 days, number of days smoked cigarettes.
• R01_AE1022: In past 30 days, number of days used an e-cigarette.
• R01_AG1022CG: Number of days smoked cigarillos in past 30 days.

The variables related to alcohol drinking are:
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• R01_AX0075: Number of days drank one or more drinks of an alcoholic beverage in past 30 days.
• R01_AX0076: Number of alcoholic drinks usually consumed each day on days drank in past 30

days.

PATH Study Example Setup

As previously mentioned, it is necessary to create the CSD object using the survey package, which is
then passed into the main function of the current package, surveycc().

In addition to the CSD object, we also define here vectors for each set of variables, as well as an
indicator for how many canonical variates we want. These objects are all passed into the surveycc()
function.

design_object <-
survey::svrepdesign(
id = ~PERSONID,
weights = ~R01_A_PWGT,
repweights = "R01_A_PWGT[1-9]+",
type = "Fay",
rho = 0.3,
data=reducedPATHdata,
mse = TRUE
)

var.x <- c("R01_AC1022", "R01_AE1022", "R01_AG1022CG")
var.y <- c("R01_AX0075", "R01_AX0076")
howmany <- 2
out.PATH <- surveycc(design_object, var.x, var.y, howmany = howmany,
selection = "ROWS")

PATH Study Example Results

Here surveycc() is used to estimate canonical correlations p-values for the PATH Study example.
Notice that the specification of the CSD elements in the function survey::svrepdesign() comes
directly from the Population Assessment of Tobacco and Health (PATH) Study [United States] Public-
Use Files ICPSR Public-Use Files User Guide. These files can be found at the PATH Study website
https://www.icpsr.umich.edu/web/NAHDAP/studies/36231. See the output of the saved out.PATH
object below for the output table containing all statistics, degrees of freedom, test statistics, and
p-values.

out.PATH

#> $Stats.cancor
#> $Stats.cancor$Stats.cancor.1
#> Statistic df1 df2 Chi-Sq/F p-val
#> Wilks' Lambda 0.93636 6 NA 9.47145 0.14875
#> Pillai's Trace 0.06395 5 NA 9.33935 0.15537
#> Hotelling-Lawley Trace 0.06763 6 NA 9.60680 0.14222
#> Roy's Greatest Root 0.05866 3 128 2.65880 0.05106
#> Weighted Survey CC 0.24187 131 130 1.15077 0.25194
#> Complex Survey CC 0.24187 131 98 1.13501 0.25914
#>
#> $Stats.cancor$Stats.cancor.2
#> Statistic df1 df2 Chi-Sq/F p-val
#> Wilks' Lambda 0.99471 2 NA 1.76100 0.41458
#> Pillai's Trace 0.00529 1 NA 1.76162 0.41445
#> Hotelling-Lawley Trace 0.00532 2 NA 1.76036 0.41471
#> Roy's Greatest Root 0.05866 2 129 4.01935 0.02026
#> Weighted Survey CC 0.07375 131 130 0.79444 0.42839
#> Complex Survey CC 0.07375 131 98 0.89128 0.37496
#>
#>
#> $cc_object
#>
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Figure 1: SurveyCC plot for the PATH example

#> Canonical correlation analysis of:
#> 3 X variables: R01_AC1022, R01_AE1022, R01_AG1022CG
#> with 2 Y variables: R01_AX0075, R01_AX0076
#>
#> CanR CanRSQ Eigen percent cum scree
#> 1 0.24187 0.058499 0.062134 91.911 91.91 ******************************
#> 2 0.07375 0.005439 0.005469 8.089 100.00 ***
#>
#> Test of H0: The canonical correlations in the
#> current row and all that follow are zero
#>
#> CanR LR test stat approx F numDF denDF Pr(> F)
#> 1 0.241867 0.93638 1.4145 6 254 0.2093
#> 2 0.073748 0.99456 NaN 2 NaN NaN
#>
#> attr(,"class")
#> [1] "surveycc" "list"

PATH Study Example Conclusion

Notice how the p-values for all tests are statistically insignificant, hence, the same conclusions are
reached regardless of the method used. This might be especially true for national survey data sets since
they have sample sizes so large that p-values for all tests might be considered statistically significant.

In this example the plotting method is demonstrated, using the following code:

par(mfrow = c(1,2))
dim1 <- 1
dim2 <- 2
plot(out.PATH, dim1 = dim1, dim2 = dim2)

The variables graph in Figure 1 shows that the number of cigarillo-smoking days in past 30 days
(R01_AG1022CG) and the number of alcoholic drinks usually consumed each drinking day in past 30
days (R01_AX0076) lie on opposite sites of the unit circle and hence it should be expected that when one
increases the other one should be expected to decrease. On the other hand, both variables are extremely
close inside a unit circle, so this association is not strong and more work would be needed to explore it.
Also, Figure 1 shows that, in this example, observation 131 is a unit that has an extraordinary value in
the new two-dimensional plane described by the canonical variates, and may be an outlier.

5.4 2021 National Youth Tobacco Survey (NYTS) Example

This example also shows how yet another national survey with CSD elements can be handled by
the surveycc() function further demonstrating its versatility. For illustrative purposes, the proposed
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Survey CC method was applied to the 2021 NYTS data set to evaluate the relationships of multiple
tobacco and/or e-cigarette product use with measures of exposure to e-cigarette Internet marketing
and perceived addiction to various tobacco products relative to cigarettes among Asian Americans
(n=1150). In this case SurveyCC handles a larger set of variables, providing evidence of its potential
usefulness in a real-life research scenario. The definitions of the variables in this example is provided
in a supplementary file. The detailed examination of the canonical structure produced by these
commands is beyond the scope of this manuscript and more appropriate for a paper focused on
tobacco and nicotine research.

NYTS Example Setup

As previously mentioned, it is necessary to create the CSD object using the survey package, which is
then passed into the main function of the current package, surveycc().

In addition to the CSD object, here we define vectors for each set of variables, as well as an indicator
for the desired number of canonical variates we want. These objects are all passed into the surveycc()
function.

design_object <-
survey::svydesign(
ids = ~psu2,
nest = TRUE,
strata = ~v_stratum2,
weights = ~finwgt,
data = reducedNYTS2021data

)
var.x <- c("qn9", "qn38", "qn40", "qn53", "qn54", "qn64", "qn69",

"qn74","qn76", "qn78", "qn80", "qn82", "qn85", "qn88",
"qn89")

var.y <- c("qn128", "qn129", "qn130", "qn131", "qn132", "qn134")
howmany <- 3
out.NYTS <- surveycc(design_object = design_object, var.x = var.x,
var.y = var.y, howmany = howmany, selection = "ROWS")

NYTS Example Results

Here surveycc() is used to estimate canonical correlations p-values for the NYTS example. Notice
that the specification of the CSD elements in the function survey::svrepdesign() were adapted from
the document Guide to weighting harmonized NYTS data for the 1999 and 2000 survey years available at
Integrated Public Use Microdata Series (IPUMS) NYTS [https://www.ipums.org/projects/ipums-nyts].

See the output of the saved out.NYTS object below for the output table containing all statistics,
degrees of freedom, test statistics, and p-values:

out.NYTS

#> $Stats.cancor
#> $Stats.cancor$Stats.cancor.1
#> Statistic df1 df2 Chi-Sq/F p-val
#> Wilks' Lambda 0.88398 90 NA 143.58266 0.00029
#> Pillai's Trace 0.12173 89 NA 142.94303 0.00032
#> Hotelling-Lawley Trace 0.12495 90 NA 144.22768 0.00025
#> Roy's Greatest Root 0.03663 15 1134 2.87474 0.00018
#> Weighted Survey CC 0.19387 1149 1148 1.56828 0.11709
#> Complex Survey CC 0.19387 1149 75 1.51094 0.13501
#>
#> $Stats.cancor$Stats.cancor.2
#> Statistic df1 df2 Chi-Sq/F p-val
#> Wilks' Lambda 0.91759 70 NA 102.88481 0.00641
#> Pillai's Trace 0.08509 69 NA 102.56555 0.00679
#> Hotelling-Lawley Trace 0.08692 70 NA 103.20553 0.00604
#> Roy's Greatest Root 0.03663 14 1135 3.08280 0.00010
#> Weighted Survey CC 0.17412 1149 1148 1.91871 0.05527
#> Complex Survey CC 0.17412 1149 75 1.86544 0.06603
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#>
#> $Stats.cancor$Stats.cancor.3
#> Statistic df1 df2 Chi-Sq/F p-val
#> Wilks' Lambda 0.94624 52 NA 68.54747 0.06171
#> Pillai's Trace 0.05482 51 NA 68.44115 0.06277
#> Hotelling-Lawley Trace 0.05570 52 NA 68.65328 0.06066
#> Roy's Greatest Root 0.03663 13 1136 3.32286 0.00005
#> Weighted Survey CC 0.14872 1149 1148 2.02639 0.04296
#> Complex Survey CC 0.14872 1149 75 2.02187 0.04676
#>
#>
#> $cc_object
#>
#> Canonical correlation analysis of:
#> 15 X variables: qn9, qn38, qn40, qn53, qn54, qn64, qn69, qn74, qn76, qn78, qn80, qn82, qn85, qn88, qn89
#> with 6 Y variables: qn128, qn129, qn130, qn131, qn132, qn134
#>
#> CanR CanRSQ Eigen percent cum scree
#> 1 0.19387 0.037585 0.039053 30.904 30.90 ******************************
#> 2 0.17412 0.030317 0.031265 24.741 55.64 ************************
#> 3 0.14872 0.022118 0.022618 17.898 73.54 *****************
#> 4 0.11860 0.014066 0.014267 11.290 84.83 ***********
#> 5 0.10631 0.011301 0.011430 9.045 93.88 *********
#> 6 0.08762 0.007678 0.007737 6.123 100.00 ******
#>
#> Test of H0: The canonical correlations in the
#> current row and all that follow are zero
#>
#> CanR LR test stat approx F numDF denDF Pr(> F)
#> 1 0.193869 0.88276 1.58342 90 6355.7 0.0003999 ***
#> 2 0.174117 0.91724 1.40840 70 5384.0 0.0144608 *
#> 3 0.148720 0.94591 1.21872 52 4382.5 0.1358675
#> 4 0.118602 0.96731 1.05132 36 3345.3 0.3859128
#> 5 0.106305 0.98111 0.98695 22 2266.0 0.4776264
#> 6 0.087625 0.99232 0.87743 10 1134.0 0.5539335
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> attr(,"class")
#> [1] "surveycc" "list"

NYTS Example Conclusion

The importance of our proposed Survey CC method is shown in all three tables produced by surveycc,
which compare the p-values obtained using the classic tests available in the existing statistical software
that consider only survey weights (weighted CCA) against those obtained using our newly developed
method, Survey CC, which incorporates the remaining complex survey design elements. For the
Asian-Americans in this data set, the Survey CC method results in different conclusions regarding
the significance of the first canonical correlation and the relationships that can be inferred from the
examination of canonical coefficients. For example, in the tables Stats.cancor\$Stats.cancor.1 and
Stats.cancor\$Stats.cancor.2 the classic tests lead to p-values smaller then 0.05, e.g., Wilks’ Lambda
has p-value=0.00029, Pillai’s Trace has p-value=0.00032, Hotelling-Lawley Trace has p-value=0.00025
and Roy’s Greatest Root has p-value=0.00018 for the first canonical correlation, while the Survey CC
method does the opposite (p-value=0.11709 taking into consideration only the survey weights and
p-value=0.13501 considering all CSD factors).

6 Conclusions

The inclusion of all complex survey design elements, i.e., survey weights, cluster, strata, etc., is essential
for the accurate calculation of any statistical significance, including that of canonical correlations. The
incorporation of design elements is important as CCA is a multivariate method that it is especially
suitable to study problems that involve sets of variables, such as those presented as examples in
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this manuscript. Our proposed function surveycc() allows the user not only to address this issue
but to test the statistical significance of each canonical correlation separately instead of a canonical
correlation and all those that come after it. Consideration of these results with those from classic
statistical tests allows the user of surveycc() to obtain a complete and accurate assessment of the
statistical significance of each of the canonical correlations and hence of the conclusions obtained from
the examination of the canonical structure.

Moreover, an example with simple random sample data, i.e., devoid of complex survey design
elements, showed that surveycc() can be useful and provide additional information compared to the
existing CCA R, Stata and SAS commands, even if the user is not examining national survey data,
as it provides necessary information for assessing the statistical significance of secondary canonical
correlations using different methods. As seen in the examples included in this manuscript, the
examination of the secondary canonical coefficients leads to insights about the relationships that
exist among the variables included in the problem not provided by the first canonical coefficients.
Therefore, the accurate evaluation of the statistical significance of the corresponding secondary
canonical correlations is essential to determine the validity of the conclusions drawn from these
analyses. Also, the ability to provide the variables and units graphs makes SurveyCC a complement
to the existing CCA packages in R.

The results of our examples show the limited usefulness of the upper limit of the Largest Root
statistic as proposed in (Johnstone, 2009), which is a limitation of the current implementation of our
package. For the secondary canonical correlations, it consistently provided p-values significantly
smaller than those of all the other methods, making its interpretation exceedingly difficult. Another
limitation of our package is that, in all national survey examples, the option FREQ led to sample sizes
so large that all methods provided a p-value of <0.0001 for all canonical correlations. These trivially
significant results are due to the same issues present in (Nelson et al., 2020). Although national survey
data sets include a large number of subjects, when the option FREQ is omitted, the sample sizes are not
always large enough to make all statistical tests lead to a small p-values, especially when examining
sub-populations of interest, as shown in the last example presented in Section 5 of this paper. The user
of our command should keep these issues in mind and refrain from declaring a canonical correlation
statistically significant based solely on these criteria. Also, this paper focuses on introducing the
Survey CC algorithm and the SurveyCC package, but it does not cover any preprocessing steps that
may be required for proper analysis of specific datasets, such as adjustments to survey weights when
analyzing a population subdomain. Finally, to our knowledge our method Survey CC is the first to
incorporate CSD factors into the calculation of the statistical significance of all canonical correlations
using the exact adjustments provided in the methodological documentation of the surveys being
studied, but there might be other ways to combine or modify existing statistical procedures to reach
this same objective.

We presented several examples coming from a diverse set of national surveys that show the
versatility of the command surveycc() and its ability to work appropriately for a diverse group of
national data sets. Given the wealth of information contained in these surveys, an examination of
the survey data that appropriately accounts for their complex design is essential. Our package can
become an important tool in this process through the accurate examination of the canonical correlations
statistical significance. In addition to the national surveys listed in this manuscript, we expect our
package to be able to handle data sets such as the Behavioral Risk Factor Surveillance System, the
Medical Expenditures Panel Survey, the Health Information National Trends Survey, the Tobacco Use
Supplement to the Current Population Survey, and other national and international surveys produced
using complex survey design.

In conclusion, our package SurveyCC can help to extract accurate information about the relation-
ships between sets of variables and the statistical significance of those relationships in data sets created
using complex survey design, hence having the potential to help researchers interested in using this
type of data sets to address scientific questions.
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GPUmatrix: Seamlessly harness the
power of GPU computing in R
by César Lobato-Fernández, Juan A. Ferrer-Bonsoms, and Angel Rubio

Abstract GPUs are invaluable for data analysis, particularly in statistics and linear algebra, but
integrating them with R has been challenging due to the lack of transparent, easily maintainable
packages that don’t require significant code alterations. Recognizing this gap, we’ve developed
the GPUmatrix package, now available on CRAN, which emulates the Matrix package’s behavior,
enabling R to harness the power of GPUs for computations with minimal code adjustments. GPUmatrix
supports both single (FP32) and double (FP64) precision data types and includes support for sparse
matrices, ensuring broad applicability. Designed for ease of use, it requires only slight modifications
to existing code, leveraging the Torch or Tensorflow R packages for GPU operations. We’ve validated
its effectiveness in various statistical and machine learning tasks, including non-negative matrix
factorization, logistic regression, and general linear models, and provided a comparative analysis of
GPU versus CPU performance, highlighting significant efficiency gains.

1 Introduction

R(R Core Team, 2022) is a programming language broadly used in statistics and computational biology.
R is part of a collaborative and open project where users can publish packages that extend its base
configuration. CRAN (Comprehensive R Archive Network) and Bioconductor are repositories where
R packages are stored after passing strict code quality criteria.

Graphics Processing Units (GPUs) perform computations in parallel, making them exceptionally
powerful for tasks involving large amounts of data processing. At the hardware level, GPUs consist
of many processing cores that can execute thousands of threads simultaneously. These threads are
organised into groups called warps (in NVIDIA GPUs) or wavefronts (in AMD GPUs), which typically
contain 32 or 64 threads. All threads within a warp operate in lockstep, following the Single Instruction,
Multiple Thread (SIMT) model. This means that each thread executes the same instruction at the same
time, but on different data elements, enabling massive parallelism and high throughput for suitable
tasks.

While the SIMT architecture excels at parallel execution, it presents challenges when threads
within a warp need to follow different execution paths due to conditional statements or branching.
Matrix operations are particularly well suited to GPUs due to their regular computational patterns
and minimal branching. Operations such as matrix multiplication, element-wise arithmetic and linear
algebra computations involve applying the same operation to large data sets, which fits perfectly with
the SIMT execution model. This makes matrix computations highly efficient on GPUs, leading to
significant performance gains in applications such as machine learning, scientific simulation and data
analysis.

Statistical and machine learning methods are mostly based on linear algebra operations. Using a
GPU for these operations greatly increases the computational power. Since R is a language designed
for these types of methods, adapting it to use the GPU would result in a significant computational
improvement.

There have been previous attempts to exploit the power of the GPU using R packages. Some
of these have been method-specific - such as cuRnet (Bonnici et al., 2018) for graph analysis, qrpca
(de Souza et al., 2022) for PCA analysis, rgtsvm (Wang et al., 2017) for support vector machines,
xgboost (Chen and Guestrin, 2016) for extreme grading boosting, and gputools (Buckner et al., 2009)
for microarray analysis. gpuR (Determan, 2017), on the other hand, provided “GPU-enabled functions
in a simple and accessible way”. gpuMagic (Wang and Morgan, 2022), allows users to compile R
functions in OpenCL and run the code on the GPU. None of these are currently available on CRAN or
Bioconductor except gpuMagic and xgboost.

torch (Falbel and Luraschi, 2023) and tensorflow (Allaire and Tang, 2022) are other GPU-enabled
packages for R that target machine learning methods whose workhorse are tensor-like objects, a
generalization of the concepts of scalar, vector, and matrix. These packages provide the functionality
of the Python packages PyTorch and Tensorflow respectively. Both are available on CRAN and are
GPU enabled. Both are maintained by developers from RStudio (RStudio Team, 2020) (now Posit).
Both packages represent a rather complex learning process for the standard R user as they focus on
machine learning rather than linear algebra and the syntax is reminiscent of its ‘’Pythonic” origins.

Here we present GPUmatrix which, by including methods for most statistical and linear algebra
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functions, allows the full functionality of R to be used for GPU computation with almost no learning
for the user, making it very easy to adapt to existing programs. GPUmatrix uses either Torch or
Tensorflow internally to perform the computations.

The paper is organized as follows: in the first section we give a general description of the package,
its objects and features. In the second section we show several statistical applications of the package
and their respective performance improvements. The third section contains the results of the compari-
son of the speed of the operations and functions using either CPUs or GPUs. In the last section we
discuss these results.

2 Overall Description

GPUmatrix is based on the S4 object structure provided by R, and mimics the behavior of the Matrix
package (Bates et al., 2023). It implements sparse matrices and float (Schmidt, 2017) data types
(from Matrix and float packages) as part of the gpu.matrix objects. It includes casting operations i.e
conversions from one object type to a different one between gpu.matrix objects, Matrix -including
sparse-, float32, and the default matrix objects in R.

For a list of all available methods, see Tables T2, T3 and T4 in the package vignette. These include
the standard operations on matrices (sum, difference, inverse, standard matrix product, Hadamard
product, etc.), access to matrix elements (entry, rows, columns, submatrices, etc.), matrix factorizations
(qr, svd, chol, lu, etc.), algorithms for sorting, computing the fft of a vector, etc. GPUmatrix also
includes operations from the matrixStats package (Bengtsson, 2022) (rowMedians, rowMaxs, etc.)

Installing GPUmatrix itself is straightforward. It depends on the installation of either torch or
tensorflow, which is more involved. In turn, if GPU processing is required, torch and tensorflow
depend on specific versions of CUDA (not necessarily identical). In the GPUmatrix vignette we have
included a brief explanation on how to install these packages.

GPUmatrix requires either torch or tensorflow to be installed. GPUmatrix can be used if any of
them is installed. For this reason, neither of them are strictly required(if the other is available) an we
have included no dependencies between GPUmatrix and torch or tensorflow.

2.1 Examples of Use

The GPUmatrix package is based on S4 objects in R and we have added a constructor function
that similar to the default matrix() constructor in R for CPU matrices. The constructor function is
gpu.matrix() and takes the same parameters as matrix():

library(GPUmatrix)

#> Torch tensors allowed

#> Your Torch installation does not have CUDA tensors available. Please check the Torch requirements and installation if you want to use CUDA tensors.

#R matrix initialization
m <- matrix(c(1:10)+40,5,2)
#Show CPU matrix
m

#> [,1] [,2]
#> [1,] 41 46
#> [2,] 42 47
#> [3,] 43 48
#> [4,] 44 49
#> [5,] 45 50

#GPU matrix initialization
Gm <- gpu.matrix(c(1:10)+40,5,2)
#Show GPU matrix
Gm

#> GPUmatrix
#> torch_tensor
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#> 41 46
#> 42 47
#> 43 48
#> 44 49
#> 45 50
#> [ CPUDoubleType{5,2} ]

Although the indexing of tensors in both torch and tensorflow is 0-based, the indexing of GPUma-
trix objects is 1-based, making it as close as possible to working with native R matrices and more
convenient for the user. In the previous example, a normal R CPU matrix called m and its GPU
counterpart Gm are created. Just like regular matrices, the created GPU matrices allow for indexing
their elements and assigning values to them. The concatenation operators rbind() and cbind() work
independently of the type of matrices being concatenated, resulting in a gpu.matrix():

Gm[c(2,3),1]

#> GPUmatrix
#> torch_tensor
#> 42
#> 43
#> [ CPUDoubleType{2,1} ]

Gm[,2]

#> GPUmatrix
#> torch_tensor
#> 46
#> 47
#> 48
#> 49
#> 50
#> [ CPUDoubleType{5,1} ]

Gm2 <- cbind(Gm[c(1,2),], Gm[c(3,4),])
Gm2

#> GPUmatrix
#> torch_tensor
#> 41 46 43 48
#> 42 47 44 49
#> [ CPUDoubleType{2,4} ]

Gm2[1,3] <- 0
Gm2

#> GPUmatrix
#> torch_tensor
#> 41 46 0 48
#> 42 47 44 49
#> [ CPUDoubleType{2,4} ]

It is also possible to initialize the data with NaN values:

Gm3 <- gpu.matrix(nrow = 2,ncol=3)
Gm3[,2]

#> GPUmatrix
#> torch_tensor
#> nan
#> nan
#> [ CPUDoubleType{2,1} ]

Gm3[1,2] <- 1
Gm3
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Table 1: Cast options from other packages. If back cast is TRUE, then it is possible to convert a
gpu.matrix to this object and vice versa. If is FALSE, it is possible to convert these objects to gpu.matrix
but not vice versa.

MatrixClass Package DataTypeDefault SPARSE BackCast

matrix base float64 FALSE TRUE
data.frame base float64 FALSE TRUE
integer base float64 FALSE TRUE
numeric base float64 FALSE TRUE
dgeMatrix Matrix float64 FALSE FALSE

ddiMatrix Matrix float64 TRUE FALSE
dpoMatrix Matrix float64 FALSE FALSE
dgCMatrix Matrix float64 TRUE FALSE
float32 float float32 FALSE FALSE
torch_tensor torch float64 Depends of tensor type TRUE

tensorflow.tensor tensorflow float64 Depends of tensor type TRUE

#> GPUmatrix
#> torch_tensor
#> nan 1 nan
#> nan nan nan
#> [ CPUDoubleType{2,3} ]

Gm3[1,3] <- 0
Gm3

#> GPUmatrix
#> torch_tensor
#> nan 1 0
#> nan nan nan
#> [ CPUDoubleType{2,3} ]

These examples demonstrate that, contrary to standard R, subsetting a gpu.matrix —even when
selecting only one column or row— still results in a gpu.matrix. This behavior is analogous to using
drop=FALSE in standard R. The default standard matrices in R have limitations. The only allowed
numeric data types are int and float64. It neither natively allows the creation or handling of sparse
matrices. To make up for this lack of functionality, other R packages hosted in CRAN have been
created to manage these types.

2.2 Cast from other packages

GPUmatrix allows for compatibility with sparse matrices and different data types such as float32. For
this reason, casting operations between different matrix types from multiple packages to GPUmatrix
type have been implemented (Table 1).

There are two functions for casting to create a gpu.matrix: as.gpu.matrix()** and the gpu.matrix()
constructor itself. Both have the same input parameters for casting: the object to be cast and extra
parameters to create a GPUmatrix.

Create ‘Gm’ from ‘m’ matrix R-base:

m <- matrix(c(1:10)+40,5,2)
Gm <- gpu.matrix(m)
Gm

#> GPUmatrix
#> torch_tensor
#> 41 46
#> 42 47
#> 43 48
#> 44 49
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#> 45 50
#> [ CPUDoubleType{5,2} ]

Create ‘Gm’ from ‘M’ with Matrix package:

library(Matrix)
M <- Matrix(c(1:10)+40,5,2)
Gm <- gpu.matrix(M)
Gm

#> GPUmatrix
#> torch_tensor
#> 41 46
#> 42 47
#> 43 48
#> 44 49
#> 45 50
#> [ CPUDoubleType{5,2} ]

Create ‘Gm’ from ‘mfloat32’ with float package:

library(float)
mfloat32 <- fl(m)
Gm <- gpu.matrix(mfloat32)
Gm

#> GPUmatrix
#> torch_tensor
#> 41 46
#> 42 47
#> 43 48
#> 44 49
#> 45 50
#> [ CPUFloatType{5,2} ]

Interestingly, GPUmatrix returns a float32 data type matrix if the input is a float matrix. It is
also possible to a gpu.matrix create ‘Gms’ type sparse from ‘Ms’ type sparse dgCMatrix, dgeMatrix,
ddiMatrix or dpoMatrix with Matrix package:

Ms <- Matrix(sample(0:1, 10, replace = TRUE), nrow=5, ncol=2, sparse=TRUE)
Ms

#> 5 x 2 sparse Matrix of class "dgCMatrix"
#>
#> [1,] 1 1
#> [2,] . 1
#> [3,] . 1
#> [4,] . .
#> [5,] . 1

Gms <- gpu.matrix(Ms)
Gms

#> GPUmatrix
#> torch_tensor
#> [ SparseCPUFloatType{}
#> indices:
#> 0 0 1 2 4
#> 0 1 1 1 1
#> [ CPULongType{2,5} ]
#> values:
#> 1
#> 1
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#> 1
#> 1
#> 1
#> [ CPUFloatType{5} ]
#> size:
#> [5, 2]
#> ]

2.3 Data type and sparsity

The data types allowed for GPUmatrix are: float64, float32, int, bool or logical, complex64 and
exclusively in torch complex32. We can create a GPU matrix with a specific data type using the
dtype** parameter of the gpu.matrix()** constructor function. It is also possible change the data
type of a previously created GPU matrix using the dtype()** function. The same applies to GPU
sparse matrices, we can create them from the constructor using the sparse** parameter, which will
return Boolean value of TRUE/FALSE depending on whether we want the resulting matrix to be sparse
or not. We can also modify the sparsity of an existing GPU matrix with the functions to\_dense()**,
if we want it to change it from sparse to dense, and to\_sparse()**, if we want it to go from dense to
sparse.

Creating a float32 matrix:

Gm32 <- gpu.matrix(c(1:10)+40,5,2, dtype = "float32")
Gm32

#> GPUmatrix
#> torch_tensor
#> 41 46
#> 42 47
#> 43 48
#> 44 49
#> 45 50
#> [ CPUFloatType{5,2} ]

Creating a non sparse matrix with data type float32 from a sparse matrix type float64:

Ms <- Matrix(sample(0:1, 10, replace = TRUE), nrow=5, ncol=2, sparse=TRUE)
Gm32 <- gpu.matrix(Ms, dtype = "float32", sparse = F)
Gm32

#> GPUmatrix
#> torch_tensor
#> 1 0
#> 1 0
#> 1 1
#> 0 1
#> 1 0
#> [ CPUFloatType{5,2} ]

Convert Gm32 in sparse matrix Gms32:

Gms32 <- to_sparse(Gm32)
Gms32

#> GPUmatrix
#> torch_tensor
#> [ SparseCPUFloatType{}
#> indices:
#> 0 1 2 4 2 3
#> 0 0 0 0 1 1
#> [ CPULongType{2,6} ]
#> values:
#> 1
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#> 1
#> 1
#> 1
#> 1
#> 1
#> [ CPUFloatType{6} ]
#> size:
#> [5, 2]
#> ]

Convert data type Gms32 into float64:

Gms64 <- Gms32
dtype(Gms64) <- "float64"
Gms64

#> GPUmatrix
#> torch_tensor
#> [ SparseCPUDoubleType{}
#> indices:
#> 0 1 2 4 2 3
#> 0 0 0 0 1 1
#> [ CPULongType{2,6} ]
#> values:
#> 1
#> 1
#> 1
#> 1
#> 1
#> 1
#> [ CPUDoubleType{6} ]
#> size:
#> [5, 2]
#> ]

2.4 GPUmatrix functions

Arithmetic and comparison operators

GPUmatrix supports all of the basic arithmetic operators in R: +, -, *, \ˆ{}, /, \%*\% and \%\%. Its usage
is the same as for basic R matrices, and it allows compatibility with other matrix objects from the
packages mentioned above.

(Gm + Gm) == (m + m)

#> [,1] [,2]
#> [1,] TRUE TRUE
#> [2,] TRUE TRUE
#> [3,] TRUE TRUE
#> [4,] TRUE TRUE
#> [5,] TRUE TRUE

(Gm + M) == (mfloat32 + Gm)

#> [,1] [,2]
#> [1,] TRUE TRUE
#> [2,] TRUE TRUE
#> [3,] TRUE TRUE
#> [4,] TRUE TRUE
#> [5,] TRUE TRUE

(M + M) == (mfloat32 + Gm)
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Table 2: Mathematical operators that accept a gpu.matrix as input.

MathematicalOperators Usage

log log(Gm)
log2 log2(Gm)
log10 log10(Gm)
cos cos(Gm)
cosh cosh(Gm)

acos acos(Gm)
acosh acosh(Gm)
sin sin(Gm)
sinh sinh(Gm)
asin asin(Gm)

asinh asinh(Gm)
tan tan(Gm)
atan atan(Gm)
tanh tanh(Gm)
atanh atanh(Gm)

sqrt sqrt(Gm)
abs abs(Gm)
sign sign(Gm)
ceiling ceiling(Gm)
floor floor(Gm)

cumsum cumsum(Gm)
cumprod cumprod(Gm)
exp exp(Gm)
expm1 expm1(Gm)

#> [,1] [,2]
#> [1,] TRUE TRUE
#> [2,] TRUE TRUE
#> [3,] TRUE TRUE
#> [4,] TRUE TRUE
#> [5,] TRUE TRUE

As seen in the previous examples, the comparison operators (==, !=, \textgreater{}, \textless{},
\textgreater{=}, \textless{=}) also work following the same dynamic of the arithmetic operators.

Math operators

Similarly to arithmetic operators, mathematical operators follow the same operation they would
perform on regular matrices of R. Gm is a gpu.matrix variable (Table 2).

Complex operators

There are certain functions only applicable to numbers of complex type. In R these functions are
grouped as complex operators and all of them are available for GPUmatrix matrices with the same
functionality as in R base. Gm is a gpu.matrix variable (Table 3).

Other functions

In the manual, we can find a number of functions that can be applied to gpu.matrix type matrices.
Most of these functions are from base R and can be applied to gpu.matrix matrices in the same way
they would be applied to regular R matrices. There are other functions from other packages like Matrix
or matrixStats, which have been implemented due to their widespread use within the R community,
such as rowVars or colMaxs. The output of these functions, which originally produced R default
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Table 3: Complex operators that accept a gpu.matrix with complex type as input.

MathematicalOperators Usage

Re Re(Gm)
Im Im(Gm)
Conj Conj(Gm)
Arg Arg(Gm)
Mod Mod(Gm)

matrix type objects, will now return gpu.matrix type matrices when the input type of the function is
gpu.matrix.

library(GPUmatrix)
m <- matrix(c(1:10)+40,5,2)
Gm <- gpu.matrix(c(1:10)+40,5,2)

head(tcrossprod(m),2)

#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 3797 3884 3971 4058 4145
#> [2,] 3884 3973 4062 4151 4240

head(tcrossprod(Gm),2)

#> GPUmatrix
#> torch_tensor
#> 3797 3884 3971 4058 4145
#> 3884 3973 4062 4151 4240
#> [ CPUDoubleType{2,5} ]

Gm <- tail(Gm,3)
rownames(Gm) <- c("a","b","c")
tail(Gm,2)

#> GPUmatrix
#> torch_tensor
#> 44 49
#> 45 50
#> [ CPUDoubleType{2,2} ]
#> rownames: b c

colMaxs(Gm)

#> [1] 45 50

There is a wide variety of functions implemented in GPUmatrix, and they are adapted to be used
just like regular R matrices.

2.5 Using GPUMatrix on CPU

In the GPUmatrix constructor, when using torch, we can specify the location of the matrix, i.e., we
can decide to host it on the GPU or in RAM memory to use it with the CPU. As a package, oriented
towards algebraic operations in R using the GPU, it is hosted on the GPU by default, but it allows the
same functionalities to be used with the CPU. To do this, we use the device attribute of the constructor
and assign it the value "cpu".

#GPUmatrix initialization with CPU option
Gm <- gpu.matrix(c(1:10)+40,5,2,device="cpu")
#Show CPU matrix from GPUmatrix
Gm
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#> GPUmatrix
#> torch_tensor
#> 41 46
#> 42 47
#> 43 48
#> 44 49
#> 45 50
#> [ CPUDoubleType{5,2} ]

Notice that instead of CUDADoubleType, now the object is CPUDoubleType.

The standard distribution of R includes a version of basic linear algebra subprograms (BLAS)
that is not multithreaded and not fully optimized for present computers. R can be modified to use
non-standard BLAS libraries such as OpenBlas, Intel MKL or Accelerate. Switching from Standard R
to R using MKL implies changing the default behavior of R and there can be side-effects. For example,
some standard packages such as igraph do not work in this case.

The standard BLAS is so slow, that we excluded it from the comparison. We have compared the
CUDA-GPU (using GPUmatrix) with base R using Intel MKL (MKL-R).

Torch also runs on the CPU and its backend is MKL. Therefore, the performance between using
MKL-R or using the GPUMatrix library on the CPU should be similar. The only differences would be
related to the overhead from translating the objects or the different versions of the MKL library.

Interestingly, the standard R matrix operations are indeed slightly slower than using the GPUMa-
trix package -perhaps owing to a more recent version of the MKL library- (Fig 2), especially in
element-wise operations, where MKL-R does not seem to exploit the multithreaded implementation
of the Intel MKL BLAS version and Torch does.

In addition, MKL-R does not provide acceleration for float32 -since base R does not include this
type of variable-. The multiplication of float32 matrices on MKL-R is, in fact, much slower than
multiplying float64 matrices (data not shown). Torch and Tensorflow do include MKL for float32
and there is an improvement in the performance (they are around about twice faster that the float64
counterparts).

3 Examples of Statistical Applications

The main advantage of GPUmatrix is its versatility: R code needs only minor changes to adapt it to
work in the CPU. We are showing here three statistical applications where its advantages are more
apparent.

3.1 Non negative factorization of a matrix

The non-negative factorization (NMF) of a matrix is an approximate factorization were an initial matrix
V is approximated by the product of two matrices W and H so that,

Vm×n ≈ Wm×kHk×n

We have implemented our own non-negative matrix factorization (NMF) function using Lee and
Seung(Lee and Seung, 1999) multiplicative update rules.

These rules are

Wn+1
[i,j] ← Wn

[i,j]

(
V
(
Hn+1)T

)
[i,j](

WnHn+1
(
Hn+1

)T
)
[i,j]

and

Hn+1
[i,j] ← Hn

[i,j]

(
(Wn)T V

)
[i,j](

(Wn)T WnHn
)
[i,j]

to update the W and H respectively.

The implemented function is NMFgpumatrix. This function operates in the same way with basic
R matrices as with GPUmatrix matrices, and it does not require any additional changes beyond
initializing the input matrix as a GPUmatrix. Indeed, the input matrices W, H, and V can be either
gpu.matrix or R base matrices interchangeably. Figure 1 shows that using GPUmatrix boosts the
performance using both GPU and CPU. This improvement is especially apparent with float32 matrices.
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Non negative factorization

Figure 1: Computation time (in seconds) of non-negative factorization for MKL-R (i.e. R with the
optimized MKL BLAS library, solid green), solid lines for CPU, dashed lines for GPU with CUDA,
pink lines for GPUmatrix with float64, and blue lines for GPUmatrix with float32. Time shown in
y-axis is in logarithmic scale. All calculations are performed on square matrices. The x-axis represents
the number of rows in the matrices. The internal size of the factorization is 10.
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Conjugate Gradient for Logistic Regresion

Figure 2: Computation time (in seconds) of the logistic regression using the conjugate gradient method
for MKL-R (i.e. R with the optimized MKL BLAS library, solid green), solid lines for CPU, dashed
lines for GPU with CUDA, pink lines for GPUmatrix with float64, and blue lines for GPUmatrix with
float32. Time shown in y-axis is in logarithmic scale. The calculations are performed on random
matrices whose size are n x (n/100). Therefore, the leftmost part of the graph shows the computing
time for a 10,000 x 100 matrix and the rightmost part a 50,000 x 500 matrix.

3.2 Logistic regression of large models

Logistic regression is a widespread statistical analysis technique that is the “first to test” method
for classification problems where the outcome is binary. R-base implements it in the glm function.
However, glm can be very slow for big models and, in addition, does not accept sparse coefficient
matrices as input. In this example, we have implemented a logistic regression solver that accepts as
input both dense or sparse matrices.

The developed function performs the logistic regression using the Conjugate Gradient method
(CG) Figure 2. This method has shown to be very effective for logistic regression of big models (Minka,
2003). The code is general enough to accommodate standard R matrices, sparse matrices from the
Matrix package and, more interestingly, GPUmatrices from the GPUmatrix package.

We would like to stress several points here. Firstly, the conjugate gradient is an efficient technique
that outperforms glm.fit in this case. Secondly, this code runs on matrix, Matrix or GPUmatrix objects
without the need of carefully selecting the type of input. Thirdly, using the GPUmatrix accelerates the
computation time two-fold if compared to standard R (and more than ten fold if compared to glm.fit
function)

We have tested the function also using a sparse input. In this case, the memory requirements are
much smaller. However, there are no advantages in execution time (despite the sparsity is 90 %). Torch
(and Tensorflow) for R only provides a type of sparse matrices: the “coo” coding where each element
is described by its position (i and j) and its value. Matrix (and torch and tensorflow for Python) include
other storage models (column compressed format, for example) where the matrix computations can
be better optimized. It seems that there is still room for improvement in the sparse matrix algebra in
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Figure 3: Computation time (in seconds) of the logistic regression using the conjugate gradient method
in a sparse matrix. Solid green for MKL-R dense case (i.e. the computation is performed without any
consideration of the sparsity of the matrix). Solid lines for CPU, dashed lines for GPU with CUDA,
pink lines for GPUmatrix dense with float64, blue lines for GPUmatrix dense with float32, yellow
lines for GPUmatrix sparse with float32, orange lines for GPUmatrix sparse with float64. Violet line,
using Matrix package(that implicitly considers the matrix to be sparse). Time shown in y-axis is in
logarithmic scale. The calculations are performed on random matrices whose size are n x (n/100).
Therefore, the leftmost part of the graph shows the computing time for a 10,000 x 100 matrix and the
rightmost part a 50,000 x 500 matrix.
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Torch for R.

Sparse Matrix -that includes the column compressed form- performs extraordinary well in this
case Figure 3. Despite Matrix is single-threaded, it is roughly ten times faster than GPUmatrix in
sparse matrices.

3.3 General Linear Models

One of the most frequently used functions in R is glm, that stands for generalized linear models. In
turn, glm relies on the glm.fit. This function uses the iteratively reweighted least squares algorithm
to provide the solution of a generalized linear model. glm.fit, subsequently, calls a C function to do
the “hard work” for solving the linear models, including the least squares solution of the intermediate
linear systems.

Since glm.fit calls a C function is not easy to develop a “plug-in” substitute using GPUmatrix.
Specifically, the qr algorithm in torch or tensorflow for R and in the C function (that is similar to base R)
substantially differ: in torch the function returns directly the Q and R matrices whereas the C function
called by glm.fit returns a matrix and several auxiliary vectors that can be used to reconstruct the Q
and R matrices.

One side-effect of the dependency of base glm on a C function is that, even if R is compiled to use
an optimized linear algebra library, the function does not exploit that and the execution time is much
longer than expected for this task.

In order to ameliorate this problem, there are other packages (fastlm and speedglm) that mimic
the behavior of the base glm. fastlm relies on using multithreaded RcppEigen functions to boost
the performance. On the contrary, speedglm is written in plain R and the performance is increased
especially if R runs using an optimized BLAS library.

We have used speedglm as starting point for our glm implementation in the GPU since all the
code is written in R and includes no calls to external functions. Specifically, the most time-consuming
task for large general linear models, is the solution of the intermediate least squares problems. In the
GPUmatrix implementation, we used most of the code of speed.glm. The only changes are casts on
the matrix of the least squares problem and the corresponding independent term to solve the problem
using the GPU. Timing results of the last section show that GPUglm outperforms speed.glm for large
models.

The following script illustrates how to use the GPUglm function in toy examples.

# Standard glm

counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
glm.D93 <- glm(counts ~ outcome + treatment, family = poisson())
summary(glm.D93)

#>
#> Call:
#> glm(formula = counts ~ outcome + treatment, family = poisson())
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 3.045e+00 1.709e-01 17.815 <2e-16 ***
#> outcome2 -4.543e-01 2.022e-01 -2.247 0.0246 *
#> outcome3 -2.930e-01 1.927e-01 -1.520 0.1285
#> treatment2 1.338e-15 2.000e-01 0.000 1.0000
#> treatment3 1.421e-15 2.000e-01 0.000 1.0000
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for poisson family taken to be 1)
#>
#> Null deviance: 10.5814 on 8 degrees of freedom
#> Residual deviance: 5.1291 on 4 degrees of freedom
#> AIC: 56.761
#>
#> Number of Fisher Scoring iterations: 4
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# Using speedglm
library(speedglm)
sglm.D93 <- speedglm(counts ~ outcome + treatment, family = poisson())
summary(sglm.D93)

#> Generalized Linear Model of class 'speedglm':
#>
#> Call: speedglm(formula = counts ~ outcome + treatment, family = poisson())
#>
#> Coefficients:
#> ------------------------------------------------------------------
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 3.045e+00 0.1709 1.781e+01 5.427e-71 ***
#> outcome2 -4.543e-01 0.2022 -2.247e+00 2.465e-02 *
#> outcome3 -2.930e-01 0.1927 -1.520e+00 1.285e-01
#> treatment2 -5.309e-17 0.2000 -2.655e-16 1.000e+00
#> treatment3 -2.655e-17 0.2000 -1.327e-16 1.000e+00
#>
#> -------------------------------------------------------------------
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> ---
#> null df: 8; null deviance: 10.58;
#> residuals df: 4; residuals deviance: 5.13;
#> # obs.: 9; # non-zero weighted obs.: 9;
#> AIC: 56.76132; log Likelihood: -23.38066;
#> RSS: 5.2; dispersion: 1; iterations: 4;
#> rank: 5; max tolerance: 2e-14; convergence: TRUE.

# GPU glm
library(GPUmatrix)
gpu.glm.D93 <- GPUglm(counts ~ outcome + treatment, family = poisson())
summary(gpu.glm.D93)

#> Generalized Linear Model of class 'summary.GPUglm':
#>
#> Call: glm(formula = ..1, family = ..2, method = "glm.fit.GPU")
#>
#> Coefficients:
#> ------------------------------------------------------------------
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 3.045e+00 0.1709 1.781e+01 5.427e-71 ***
#> outcome2 -4.543e-01 0.2022 -2.247e+00 2.465e-02 *
#> outcome3 -2.930e-01 0.1927 -1.520e+00 1.285e-01
#> treatment2 2.049e-15 0.2000 1.025e-14 1.000e+00
#> treatment3 2.099e-15 0.2000 1.050e-14 1.000e+00
#>
#> -------------------------------------------------------------------
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> ---
#> null df: 8; null deviance: 10.58;
#> residuals df: 4; residuals deviance: 5.13;
#> # obs.: 9; # non-zero weighted obs.: 9;
#> AIC: 56.76132; log Likelihood: -23.38066;
#> RSS: 5.2; dispersion: 1; iterations: 4;
#> rank: 5; max tolerance: 2.28e-14; convergence: TRUE.

Results are identical in this test. Figure 4 compares the timing of the implementation using
speedglm, glm and the implementation of glm in GPUmatrix. GPUmatrix outperforms speedglm with
R-MKL. This is especially apparent for float32 matrices.
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Figure 4: Computation time (in seconds) of general linear model using *speedglm* function with
MKL-R matrix (i.e. R with the optimized MKL BLAS library, solid green), solid black line for glm
function, solid lines for CPU, dashed lines for GPU with CUDA, pink lines for GPUmatrix with
float64, and blue lines for GPUmatrix with float32. Time shown in y-axis is in logarithmic scale. The
calculations are performed on random matrices whose size are n x (n/10). Therefore, the leftmost part
of the graph shows the computing time for a 1,000 x 100 matrix and the rightmost part a 10,000 x 1000
matrix.
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4 Performance comparison

We have compared the computation time for different matrix functions, different precision types and
running the operations either on the GPU or on the CPU (using both GPUmatrix and R with MKL as
linear algebra library).

The functions that we tested are * (Hadamard or element-wise product of matrices), exp, (exponen-
tial of each element of a matrix), rowMeans (means of the rows of a matrix), \%*\% (standard product of
matrices), solve (inverse of a matrix) and svd (singular value decomposition of a matrix).

These functions were tested on square matrices whose row sizes are 500, 700, 1000, 1400, 2000,
2800 and 4000.

Figure 5 compares the different computational architectures, namely, CPU -standard R matrices
running on MKL on FP64-, CPU64 -GPUmatrix matrices computed on the CPU with FP64-, CPU32
-similar to the previous using FP32-, GPU64 -GPUmatrix matrices stored and computed on the GPU
with FP64- and GPU32 -identical to the previous using FP32-.

It is important to note that the y-axis is in logarithmic scale. For example, the element-wise product
of a matrix on GPU32 is around five times faster than the same operation on CPU. The results show
that the GPU is particularly effective for element-wise operations (Hadamard product, exponential of
a matrix). For these operations, it is easier to fully utilize the huge number of cores of a GPU. R-MKL
seems to use a single core to perform element-wise operations. The torch implementation is much
faster, but not as much as using the GPU. rowMeans is also faster on the GPU than on the CPU. In
this case, the GPUmatrix CPU implementation is on par with the GPU. When the operations become
more complex, as in the standard product of matrices and computing the inverse, CPU and GPU
(using double precision) are closer to each other. However, GPU32 is still much faster than its CPU32
counterpart. Finally, it is not advisable -in terms of speed- to use the GPU for even more complex
operations such as the SVD. In this case, GPU64 is the slowest method. GPU32 hardly stands up the
comparison with CPU32.

Regarding sparse matrices, Torch or Tensorflow for R have very limited support for them. In
many cases, it is necessary to cast the sparse matrix to a full matrix and perform the operations on
the full matrix. However, there are two operations that do not require this casting: element-wise
multiplication of matrices and multiplication of a sparse matrix and a full matrix. We created four
sparse matrices. The size of two of them (small ones) is 2,000 x 2,000. The fraction of nonzero entries is
0.01 and 0.001. The size of the other two (large ones) is 20,000 x 20,000. The fraction of non-null entries
is also 0.01 and 0.001. Figure 6 shows the results for these matrices. The element-wise multiplication is
faster using GPUmatrix. On the contrary, the time to multiply a sparse and a full matrices is similar
using Matrix and GPUmatrix. As mentioned earlier, the implementation of sparse operations in torch
or tensorflow for R is far from perfect, probably, because the only storage mode is “coo” in their
respective R packages.

5 Discusion

GPUmatrix is an R package that facilitates the use of GPUs for linear algebra operations. It relies
heavily on either the torch or tensorflow packages. GPUmatrix will work as long as torch or tensorflow
work. Currently, the R implementation of these packages lags behind their Python counterparts.
For example, in the case of sparse matrices, only the coo sparse tensor implementation is allowed,
although compressed row and column formats are readily available in Python torch. Nevertheless, we
have shown that GPUmatrix is a convenient package for easily integrating GPU computations into R
programs.

GPUmatrix, like any software that performs a computation on the GPU, has some drawbacks.
There is a large overhead associated with moving data from main memory to GPU memory. For
simple operations with small objects, the time required to move the object can be greater than the
computation itself. We have taken special care to avoid unnecessary movements from CPU to GPU
memory and vice versa. In some cases – an operation with a matrix in the CPU and a matrix in the
GPU – this overhead is unavoidable. In this case, we favored the GPU memory and the result will be a
GPU matrix.

GPUmatrix also introduces some overhead due to casting objects from one type to another. These
considerations lead to an important question: when is it worth using the GPU for linear algebra
operations? The answer, of course, is that it depends. Here are some factors that affect the answer to
this question.

It depends on the size of the operations and the type of operations. GPU is faster (and compensates
the burden of moving the data from the CPU to the GPU memory) only when the operations are
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Figure 5: Computation time (in seconds) where MKL-R solid green, solid lines for CPU, dashed lines
for GPU with CUDA, pink lines for GPUmatrix with float64 and blue lines for GPUmatrix with float32.
All calculations are performed on square matrices. The x-axis represents the number of rows in the
matrices. The operations are the element-wise or Hadamard product of two matrices, the exponential
of each element of a matrix, the mean of the rows of a matrix, the standard matrix product, the inverse
of a matrix, and the singular value decomposition of a matrix (SVD).
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Figure 6: Computation time (in seconds) for the Matrix package (solid violet), yellow lines for
GPUmatrix with float32, orange lines for GPUmatrix with float64, solid lines for CPU and dashed lines
for GPU with CUDA. Time shown in y-axis is in logarithmic scale. The small model is a random square
matrix of size 2,000 x 2,000. The proportion of non-zero elements is either 0.001 or 0.01. The large
model is a 20,000 x 20,000 matrix with the same proportion of non-zero elements. The element-wise
multiplication is performed on the sparse matrix. The right panel shows the time required to multiply
these matrices by dense matrices whose sizes are 2,000 x 500 and 20,000 x 500, respectively.

performed on large matrices (each dimension is at least in the hundreds or even the thousands
of elements). It also depends on the nature of the operations. Element-wise operations are easily
parallelized. However, more complex algorithms such as the SVD factorizations are much harder to
implement in parallel, so the improvement from using the GPU is small (if any).

Of course, it also depends on the relative performance of the CPU and GPU. We tested GPUmatrix
on several systems (Computer 1: i7-10700 plus RTX 2080Ti, Computer 2: i7-11700 plus RTX 3060 Ti,
Computer 3: i9-10940X and RTX A4000). Only results for Computer 1 are shown. These desktops can
be considered mid-range to high-end in terms of both GPU and CPU. Computer 3 has an i9 processor
with 14 cores. Although the graphics card is slightly better for this computer - unless using FP32 - the
CPU is generally faster than the GPU in this case. In Computer 2, the RTX3060Ti is particularly fast
with FP32 operations, and this definitely affects its performance.

One of the key points is that GPUs excel at FP32 operations. In the case of a CPU, FP32 operations
are about twice as fast as FP64. In the case of GPUs, this gain theoretically skyrockets to 32 times
faster (for the NVIDIA 2080Ti and the A4000) or even 64 times faster (for the 3060Ti). In practice, these
factors are smaller, closer to 10 or 20. Still, the difference is huge, especially when compared to the
CPU. If the operations can be done in FP32, then the GPU is usually the fastest method regardless of
the type of operation.

Another crucial point is the linear algebra library installed on the CPU. The standard R library
does not take advantage of multiple cores, and all operations run in a single thread. OpenBlas, Intel
MKL, or Accelerate (for Mac OS) are popular substitutes to enhance the standard linear algebra library.
Using these libraries requires tweaking the R installation, and in some cases there may be unwanted
side effects. In addition, although OpenBlas (in Linux) and Accelerate accept FP32 data as input and
speed up about two times compared to FP64 data, the Microsoft R implementation of MKL does not
include any speedup for FP32. In fact, FP32 data from the float package is forced to use single-threaded
operations. As a result, CPU operations for FP32 are even slower than for FP64 and therefore, these
results were not included.

Torch is the default backbone for GPUmatrix, although Tensorflow can also be used. An advantage
of Torch is that operations can be performed on either the GPU or the CPU. Torch implements a
very efficient version of MKL on the CPU. Even if a GPU is not available, using GPUmatrix makes it
possible to use MKL (even for FP32 data) without changing standard R. Since the standard R library is
unchanged, there are no problems with packages that depend on specific functions of it. Operations on
torch tensors are slightly faster than on tensorflow tensors (data not shown). Surprisingly, performing
the operations on either CPU64 or CPU32 (i.e., using the GPUmatrix package) is slightly faster than
using the CPU with R-MKL optimization.
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GPUmatrix stands “on the shoulders of giants”. As long as either torch or tensorflow is prop-
erly installed and GPU enabled, GPUmatrix will take advantage of it. Since these packages are the
workhorses of Rstudio, they will be maintained for the foreseeable future, guaranteeing the function-
ality of GPUmatrix. GPUmatrix is a first approach to filling the gap of harnessing GPU power in R
programs. It is easy to use and allows seamless use of GPU power with little change to the standard
code.
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7 Summary

To see more available functions, check the GPUmatrix package on CRAN.
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UpAndDownPlots: An R Package for
Displaying Absolute and Percentage
Changes
by Antony Unwin

Abstract UpAndDown plots display the ups and downs of sector changes that make up an overall
change between two time points. They show percentage changes by height and absolute changes
by area. Most alternative displays only show percentage changes. UpAndDown plots can visualise
changes in indices, in consumer markets, in stock markets, in elections, showing how the changes for
sectors or for individual components contribute to the overall change. Examples in this paper include
the UK’s Consumer Price Index, Northern Ireland population estimates, and the German car market.

1 Introduction

There are many situations when overall percentage changes between two time points are broken
down by subgroups. When share indices go up or down, news reports refer to which sectors and
shares moved most. Governments produce many official indices, for instance the Consumer Price
Index or CPI, and readers want to know what has driven the overall change in the index, which
components have changed most. When companies study the consumer markets they supply, such
as energy or cars, they are particularly interested in how well their own products have done and
how their market shares have moved. When changes are discussed for a country as a whole, then
people usually want to know what changes occurred in the individual regions. In all these cases, the
percentage changes of the components are generally considered first, although the importance of a
particular component, how much it makes up of an index or market, is also highly relevant. A small
company which leaps in value, say an IT startup, may be a positive surprise, but it does not move the
stock market the way a smaller change for a big company like Microsoft or Apple can. The same goes
for fringe products in a consumer market. A specialist chocolate bar may double its sales thanks to a
promotional campaign without selling nearly as many additional bars as would match a 1% increase
in Mars bar sales. Percentage changes for subgroups are often displayed using lengths, with one bar
for each sector and all bars having the same width.

1.1 UpAndDown plots

Only displaying percentage changes ignores how important those changes might be. UpAndDown
plots use bar heights to represent percentage change and bar widths to display the initial contributions
of sectors. Bar areas then represent absolute changes, so that amounts can be compared as well as
percentages. Plotting in this way means that the length of the horizontal axis represents the sum of the
individual sector contributions at the first time point, rather like a horizontal stacked barchart of no
width.

It turns out that area in these examples has a valuable conservation property: if the bar rectangle
for a sector is split up horizontally into subsectors and individual bars drawn for these, then the
total area of the bars for the subsectors equals the area of the original bar for the whole sector. This
means that you can drill down across UpAndDown plots. Displays of multiple levels are consistent, a
valuable property when interpreting them.

A new package is required for drawing UpAndDown plots because of the need to draw bars whose
width depends on the value of a variable. Flexible as it is, ggplot2 does not offer this functionality
directly. UpAndDownPlots is based on ggplot2, adding the capability to handle hierarchies as well
as tools for ordering and sorting the plots.

1.2 Related graphics

UpAndDown plots use both length and area to represent changes. Length is preferable, as Cleveland
and McGill (1987) discussed long ago, but area has been used effectively in several displays, especially
for different kinds of mosaicplot (Hofmann, 2003) and for treemaps (Shneiderman, 1992). Area is
necessary together with length in UpAndDown plots because two different values are displayed.

Two early examples of area-bar charts or sky-line charts can be found in Karsten (1923). One,
of average income by occupation, even includes a second level. These examples only have positive
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lengths, but Brinton (1939) includes an example in a chapter on area-bar charts of negative values:
price distortion by company sales volume. Some recent examples of area-bar charts can be found in
MacKay (2009).

Doubledecker plots (Hofmann, 2008), a version of mosaicplots, are used for displaying proportions
in subgroups by shading the appropriate height of a bar representing the whole group. All bars are the
same height and bar widths show the subgroup size. Doubledecker plots are not suitable for datasets
with negative values or values of over 100%. Proportions are highlighted as part of a whole. Usually
there are small gaps between the bars to separate the subgroups. UpAndDown plots could be used for
these kind of data, but the upper limit of 100% would not be emphasized. On the other hand they
would be effective for data sets with low percentage rates such as rare diseases or unemployment
rates where the upper limit is not relevant. Treemaps are useful for displaying overall structure but
can only show negative values using colour, e.g., as with treemap (Tennekes, 2023).

Some demographers have used the term Skyline plots to refer to plots of population size over
time, where the size is often constant over periods of time (Pybus et al., 2000). These plots generally
have no vertical lines, the heights are never negative, and they may include uncertainty intervals.
UpAndDown plots can look similar, but include vertical lines, the heights can be negative, and the
horizontal axis represents shares not time.

The data structure discussed so far has assumed that only two fixed time points are considered, an
initial base point and a final point. There may be several time points over a longer period and then
a display of a succession of changes is wanted. Time series graphics could be used, possibly with
line thickness representing amounts. For seasonal data, such as ice-cream, there might be interest in
monthly changes, differences to the same month last year or differences to year-to-date last year.

1.3 Outline of article

The type of data that can be visualised by UpAndDown plots is discussed first, including what
classification hierarchies can arise. The next section presents the mathematics underlying the plots
and shows how a particular version of the plot can be used to display changes in brand shares in
a market. There is a section on using the package and one on varying UpAndDown plots using
different orderings of levels, different sortings within the levels, and colour. There are three detailed
applications with annotated code snippets to show how the package can be applied in practice. A
summary section concludes the paper.

2 What kind of data can be visualised in an UpAndDown plot?

To display changes between two time points, data are needed for both end points for all items.
The simplest example is a consumer market in which performance is measured by unit sales. An
UpAndDown plot can be drawn if there is a complete list of the products in the market and the unit
sales of the products at the initial and end time points are available. All products are treated equally
and have the same weight. There are two main advantages of UpAndDown plots. They show both
percentage and absolute changes for each product and they allow the user to drill down through
classifications to show changes within levels as well as across levels.

More complicated examples involve unequal weightings and multiple grouping variables. Share
indices are commonly constructed by weighting share prices by the numbers of issued shares, i.e. it
is the company capitalisations that make up the index not the raw share prices. UpAndDown plots
display the changes in capitalisations. As long as the numbers of shares do not change (because
of a rights issue or a company buyback plan) the percentage change in a company’s capitalisation
will be the same as the percentage change in share price. A further weighting variant arises with
governmental or other indices that are weighted sums of components. The CPI is an example. An
individual component’s contribution to the percentage change in the index depends on the weighted
value at the first time point not just on the weight.

Sometimes a set of components is changed, for instance when the CPI is redefined or when
stocks are removed from a financial index and others added or when new products are introduced
into a consumer market, for example a new chocolate bar. In all these situations it is not easy to
make comparisons at the component level, as corrective adjustments are necessary. UpAndDown
plots display changes and the changes must be for comparable data (or for data that has been made
comparable). The CPI uses chaining to maintain consistency (ONS, 2014).
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2.1 Multiple classification levels and nesting

Subgroups and components can be hierarchical (nested), as in the CPI, which has Sector, Subsector,
and Component levels, or have no predetermined order. The Northern Ireland Statistics and Research
Agency produces population estimates (NISRA, 2019). They look at population over time broken down
by four classifications: age (four groups), gender (two), LGD2014_name (Local Government Districts
or LGDs, eleven), and area_name (District Electoral Areas or DEAs, eighty). Each DEA is a subarea
of one LGD, so those two are nested (or form a hierarchy) while the others do not. If both levels of a
nesting are to be plotted, then the higher level must come first.

If levels form a complete hierarchy, as with the CPI, then there is only one possible ordering of
levels, but many different orderings are possible within the levels. With a partial hierarchy, as with the
Northern Ireland data, and assuming the three levels to be plotted were gender, LGD2014_name and
area_name, then the ordering of the levels would have to have gender either first or last, keeping the
nested levels together. If there is no nesting and p classification variables then there are p! orderings of
the levels and, again, many different orderings within the levels. In these situations it makes sense to
order consistently within the levels. Suppose age and then gender are plotted for the Northern Ireland
data. Plotting male and then female for the three youngest age groups, but female and then male for
the oldest age group would just be confusing.

An additional, unusual form of nesting is “double-nesting”, where one grouping variable is
separately nested in each of two other variables. This can arise with car sales, if models are nested in
both market segment and manufacturer. Suppose there are 3 sectors and 5 manufacturers, where each
manufacturer offers several models across the sectors. There is a hierarchical relationship between
sectors and models (each model is in only one sector) and another between manufacturers and models
(each model is produced by only one manufacturer). The model level should then be placed last.

The package’s ud_prep function includes a function that checks what kind of nesting, if any, exists
in the data. It also checks that the ordering of levels specified by the user is permissible, and calculates
the relevant statistics. One of the package vignettes discusses nesting and includes plot examples.

2.2 Dataset structure

An UpAndDown plot dataset must contain at least two numeric variables representing the item values
at the start and end points. There should be at least one classification variable defining the groups. If
items are not equally weighted, then there has to be a weight variable. There is no need to provide
differences or percentage changes, as the package calculates these from the data as required. The
CPIuk dataset includes component index values for August 2017 and August 2018, three classification
variables (Sector, Subsector, and Component), and a weighting variable. The AutoSalesX dataset for
the German car market includes sales in 2017 and 2018, the three classification variables of Sector,
Segment, and Manufacturer, and no weighting variable. Here is an example taking the first few lines
of AutoSalesX.

#> Sector Segment Manufacturer sales17 sales18
#> 1 Car Compact ALFA ROMEO 1171 1008
#> 2 Car Compact AUDI 49820 45901
#> 3 Car Compact BMW 86843 82332
#> 4 Car Compact CITROEN 8390 6308
#> 5 Car Compact DACIA 31920 32659
#> 6 Car Compact FIAT 14187 8181

3 Mathematics of UpAndDown plots

All the bars in a barchart of percentage changes have the same width. In an UpAndDown plot each
bar for a sector has a width proportional to the sector’s importance at the initial time point. This
allows users to drill down consistently to study changes within sectors. The key property is that area is
conserved, i.e., that the sum of the areas of subsector bars equals the area of the sector’s bar. Consider
a dataset of sales of cars and vans. If the cars subsector goes up by 10% and the vans subsector by 20%,
how much would the combined sector of cars and vans together change? If nine times more cars than
vans were sold last year then it would be 11%. UpAndDown plots display changes for sectors and
subsectors appropriately. Regardless of how the sectors are broken down or grouped, the total area
remains constant. Other plots commonly in use cannot manage this. Area conservation can be shown
as follows.
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Assume an index is made up of m components with weight wi for component i and values vi1 and
vi2 recorded at two time points, t1 and t2.

The index value at time tj is

Tj =
m

∑
i=1

wi ∗ vij

The overall absolute change over the interval (t1, t2) is

C =
m

∑
i=1

wi ∗ (vi2 − vi1) = T2 − T1

and the overall percentage change is

pC = 100 ∗ C
T1

The corresponding overall and percentage changes for the individual components are

ci = (vi2 − vi1)

and
pci = 100 ∗ ci

vi1

3.1 Area conservation

A single bar with the overall percentage change, y = 100 ∗ T2−T1
T1

, as height and last year’s index value
as width would have an area of

100 ∗ (T2 − T1)

Individual bars can be drawn for each component i with widths wi ∗ vi1, the components’ contributions
to the index value at time t1, so that their total width is

m

∑
i=1

wi ∗ vi1 = T1

the same as the width of the single bar for the whole index. If the individual bars are drawn with
heights pci, the percentage changes for the components, then the area of each bar is

ai = (wi ∗ vi1) ∗ pci = 100 ∗ wi ∗ (vi2 − vi1)

the weighted absolute change for component i. The sum of the areas of the m individual bars is

m

∑
i=1

ai = 100 ∗
m

∑
i=1

wi ∗ (vi2 − vi1) = 100 ∗ (T2 − T1)

the same as the area of the bar for the whole index.

3.2 Scales

The default vertical scale for an UpAndDown plot depends on the largest positive and negative
percentage changes. Sometimes there are small components with very large percentage changes that
are not of major importance and the resulting scale masks the details of the rest of the display. One
way to get round this is to limit the scale using the vscale option in the ud_plot function. This will trim
any bars with larger heights at that value. (Using the ggplot2 option ylim would exclude components
with larger heights.) Any large percentage changes still stand out, but no longer affect the bulk of the
display.

3.3 Change of baseline and market share change

UpAndDown plots are drawn by default with a baseline of 0 marking no change. In some cases, it is
more informative to use an alternative baseline, such as the overall market change. With that choice,
the plot emphasizes which components performed better than the market and which performed worse.
Area is still conserved if the baseline is set differently to 0, as all bar widths remain as they were and
all heights are changed by the same amount.
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If the baseline is set at the overall percentage change y%, then the area representing the total
market change is 0. The sum of the areas representing the components’ changes is

m

∑
i=1

(wi ∗ vi) ∗ (pci − y) = 100 ∗ (T2 − T1)− y ∗
m

∑
i=1

(wi ∗ vi) = 0

The baseline influences the look of the graphic and also the interpretations of the heights and areas
of the bars. Using the default baseline of 0 means that a bar’s height represents the percentage change
between t1 and t2 while the bar’s area represents the absolute change. If the overall percentage change
is used as the baseline then a bar’s height represents the percentage change relative to the overall
change and the bar’s area represents the absolute change relative to the overall absolute change. In
fact there is more to it than that. The bar’s area is proportional to the component’s share change.

In consumer markets there can be more interest in changes in market share than in absolute
changes. Given sales for brand i of vij in period j, the size of the market is Tj = ∑m

i=1 vij and the market
share of brand i is

sij =
vij

Tj

while the change in market share between the two periods is

si2 − si1 =

(
vi2
T2

− vi1
T1

)
=

vi1
T2

(
vi2
vi1

− T2
T1

)
If the baseline of each brand’s bar is set to be the overall change in sales in the market, T2−T1

T1
, then a

bar going up shows a performance better than the market and means a gain in market share while a
bar going down indicates a performance worse than the market and means a loss in market share. The
height of the bar of brand i is the performance difference compared with the market(

vi2 − vi1
vi1

)
−

(
T2 − T1

T1

)
=

(
vi2
vi1

− T2
T1

)
and the area of the bar is

vi1 ∗
(

vi2
vi1

− T2
T1

)
which is T2 times the change in market share, so the bar areas using the baseline of overall changes in
sales represent the market share changes. The height of a rectangle in the UpAndDown plot shows the
percentage brand change less the market percentage change, while the area of the rectangle reflects the
change in a brand’s market share. There is an application to the German car market in §8.

4 The package

The UpAndDownPlots package is available on CRAN (Unwin, 2024b). There are two main functions,
ud_prep and ud_plot. ud_prep prepares the data for plotting. First it checks the input parameters
and data. It then calculates the statistics needed for sorting, and sorts the (at most) three levels of
classification. There are five sorting options that may be chosen at each level and an option as to
whether they should be displayed in reverse or not. ud_plot draws the plot. After checking the input
parameters, it calculates the cumulative statistics needed for drawing bars with different widths. The
layered structure of ggplot2 is used to draw a barchart layer for each of the levels specified. Two plots
are prepared, a horizontal plot to display increases going upwards and decreases going downwards,
and a vertical one, so that labels can be added to the bars of one of the levels. Finally, a dataset
combining the statistics derived for drawing the plots and the original data is constructed.

Three further functions are included: ud_colours to allow the user to specify the colours used
in plots; sort5 to draw a set of plots for one level of changes to compare the outputs of the five
sorting methods available; dgroup to compare the effects of different grouping variables by drawing
a one-level plot for each one. The package help covers the functions in detail and there are several
illustrative vignettes.

Three datasets are included: NIpop provides Northern Ireland population estimates over seven
years from 2011 to 2017 by age, gender, Local Government District, and District Electoral Area; CPIuk
provides Consumer Price Index values for the UK from 2017 and 2018 by Sector, Subsector, and
Component; AutoSales (and the cleaned subset AutoSalesX) provide data from the German car market
for the years 2017 and 2018 by Sector, Segment, ModelSeries, Manufacturer, and Model.
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4.1 Drawing an UpAndDown plot

Drawing a plot with several layers is easy in ggplot2 (Wickham, 2022), provided the layers are
independent of one another. In UpAndDown plots they are not. Each level adds more detail,
conditional on the higher levels already specified.

Ordering, sorting, and arranging are key elements in UpAndDown plots. They determine how
attractive and informative a plot is. The classifying variables are ordered either by definition (as
with a fully nested hierarchy) or to display particular conditional groupings. Classification variable
categories are sorted to support comparisons between them. Finally, the graphic layers comprising the
plot are arranged to convey the information as effectively as possible.

There are seven steps in preparing and drawing an UpAndDown plot:

1. Order the grouping levels, respecting any nestings that exist.
2. Calculate the statistics at each level that are used for sorting within levels.
3. Sort each level, respecting the natural orders of any grouping variables (e.g., age).
4. Calculate the data needed for drawing bars in levels. As bars have different widths, the bases

for them are calculated cumulatively from left to right. The values will depend on how the level
has been sorted.

5. Decide whether to fill the bars of one level with colour and define an appropriate colour palette
if the default does not suit.

6. Prepare individual graphic layers. Given the order within a level and the colour choices across
levels, each layer can be drawn.

7. Choose in which order to draw the levels. The default is to draw the levels in grouping order
(drawFrom=“BigToSmall”) but the software allows the reverse order (“SmallToBig”). Layers
drawn last are more visible. Layers with filled bars may cover information in other layers if not
drawn first.

Although drawing more than three levels is not currently offered, as plots become overloaded,
it would be possible. Statistic calculations and sortings of bars could be carried out for any number
of levels. There are three possible alternative graphics for each individual layer, one with grey-filled
bars, one with colour-filled bars and one with transparent bars. These would be prepared in step 6 to
provide all options needed to put the layers together in step 7.

5 Varying UpAndDown plots

By default, an UpAndDown plot includes a red dotted line to indicate the overall percentage change.
Using this as the baseline for the bars gives the plot a different interpretation, covered in §3.3. Other
variants can be drawn by reordering classification levels and using colour. Drawing more than one
level of subdivision on the same plot requires choosing suitable shading and transparency to keep the
different levels perceptually separated. It is usually most effective to draw the lowest level first, but it
can depend on which features are to be emphasized. As so often with graphics, the exception proves
the rule. In principle, when there are few groups at each level, more levels could be displayed, but this
can become confusing and the software is currently restricted to displaying at most three levels.

5.1 Orderings of UpAndDown plots

The same data can give rise to many different UpAndDown plots and it is worth choosing carefully
from amongst a selection of versions, as different information will be conveyed by each display,
sometimes more effectively, sometimes less. Figure 1 shows the Consumer Price Index in the default
order provided by the UK Office for National Statistics. Figure 2 shows the index ordered by percentage
changes of sectors and by percentage changes of components within sectors.

The individual categories of a level can be ordered in several ways using the R package UpAndDownPlots:

• orig original, as components arise in the dataset. Consistent orderings are important when
comparing plots.

• base by initial size (bar width). This orders in terms of the initial importance of the components,
emphasizing how the biggest and smallest changed.

• final by final size. This orders in terms of the final importance of the components.
• perc by ascending percentage change (bar height). Which components went up and which went

down? Which components had the biggest relative change?
• abs by ascending absolute change (bar area). Which components had the biggest absolute

change?
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Other orderings could be considered too, using properties of the components, or even just an
alphabetic ordering. They can be calculated in advance and used to order the dataset before applying
the functions in the package. Setting the sort option to orig retains an ordering calculated in advance.
This was done for the plot on the right of Figure 6, so that it could be sorted by the size of the changes
in market share.

If the components are grouped into higher levels as with the CPI’s subsector classification, then the
components can be sorted by their subsector and then, within that, by one of the five approaches listed
already. It is usually best to use the same sorting for each subsector for consistency of interpretation. A
different situation arises when the variables defining the levels do not form a hierarchy. For instance,
in the car sales dataset vehicles are split by Sector and by Manufacturer. A display could have a
top level of Manufacturer and then split by Sector or order the levels the other way round. There is
no nested hierarchy and however the top level is ordered, it is best to have the lower level ordered
the same way for each top level grouping. Having the lower level consistently ordered for each top
level category makes comparisons easier. A possible lower level ordering would be to take whatever
ordering you would use if the lower level were the top level.

If inconsistent lower level orderings are desired, then it is best to define the required nested
hierarchy by renaming the lower level categories accordingly. For the cars data this would mean
using new classifications car_VW, car_Mercedes, van_VW etc if you split on Sector first, or VW_car,
VW_van, Mercedes_car etc if you split on Manufacturer first.

If there is a percentage change of zero then a bar has no height or area, but the width shows its
size. If a new component is introduced after the initial time, for instance a new car, then there is no
initial weight and an infinitely tall bar. Cases like this must be excluded and a note should be added to
the display.

5.2 Colour in UpAndDown plots

The default is to fill the bars of the top level with grey and draw transparent unfilled bars with either
blue or brown borders on top. The percentage change for the whole system is marked with a red
dotted line. Different colours may be used to fill bars for one of the levels drawn. In that case the
top level bars are not filled with grey. Colour schemes are helpful in distinguishing sectors and
particularly informative when associated with different groups (e.g., for political parties, as in Chapter
26 of Unwin (2024a)). Colours are specified in the function ud_colours and the default colour choices
can be changed there as required. The help page for ud_plot gives the details.

5.3 Limitations of UpAndDown plots

UpAndDown plots are designed for comparing changes between two time points. They have not been
extended to handle changes over several time points.

Cases with missing data have to excluded. Cases with initial values of 0 cannot be handled as any
positive value at the end time point will give an infinite percentage change. Examples might be a new
model of car, a new chocolate bar or even a new political party. Cases with very low initial values
and high final ones can also lead to very high percentage changes, which then have to be trimmed as
described in §3.2. Redefinitions of classification variables (e.g., in the car market when SUVs became
common) or reclassifications of items (e.g., deciding a car now belongs to a different group) can cause
problems. These are typical issues for any dataset involving data over time and are not restricted to
UpAndDown plots.

All three applications in the following sections include large numbers of individual items or
components. This means that plots of the full dataset have to be drawn very large or only display data
at higher grouping levels. For some applications (e.g., the car market in §8), smaller manufacturers
can be grouped together into a group called Other.

6 Visualising changes in the UK Consumer Price Index

The Consumer Price Index (CPI) summarises how prices change for a basket of a wide range of
products and services. It is an important measure of inflation and influences both government policy
and public attitudes. The basket is continually reviewed and revised as it is supposed to cover typical
costs of living. It is said that Margaret Thatcher, when she was UK Prime Minister, supported the
basket being amended yearly to reflect as quickly as possible changes in the public’s spending habits.
This meant that the public’s switching to cheaper alternatives was identified and included more
quickly, having a lowering effect on the index.
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Figure 1: UK Consumer Price Index changes August 2017 to August 2018. The red dotted line shows
the overall percentage change. The rectangles with blue borders show the changes of the main sectors.
Heights are percentage changes, widths are index values in August 2017, so that the areas of the
rectangles are each group contributions to the overall change. The grey bars show the percentage and
absolute changes for the individual components.

Every country produces its own CPI and they have many different ways of displaying information
on how their index changes between two time points. Some use barcharts (e.g., National Bureau
of Statistics of China (2024) and US Bureau of Labor Statistics (2023)). France also has stacked bars
(Banque de France (2017)). Germany includes a kaleidoscope plot (Statistisches Bundesamt (2024)).
The UK includes multiple time series (Office for National Statistics (2024)) as well as different kinds of
barchart. Most of these displays just show percentage changes. A few have accompanying displays of
how big the sectors comprising the index are. What is needed is a display showing both individual
percentage changes and their contributions to the change in the index (i.e., the individual absolute
changes). This is what UpAndDown plots do.

In the UK’s CPI of 2017 there were 12 main groups with Transport having the biggest weight (156
out of 1000) (ONS, 2019). All of these groups, except Education, were further subdivided into up to 7
subgroups and the subgroups were subdivided yet again into up to 9 individual components. Overall
there were 85 individual items with weights ranging from 1 (e.g., solid fuels) to 86 (Restaurants &
Cafes). Figure 1 is an UpAndDown plot of the CPI changes over one year plotted horizontally for
comparison with the kind of standard barchart that is often used. Horizontal plots are useful for
giving an overview of the data before deciding what to concentrate on in detail.

To draw the plot, first load the package with

library(UpAndDownPlots)

Prepare the data for plotting using the ud_prep function. CPIuk is the dataset, weight is the vector
of individual component weightings, v1 is the initial component value and v2 the final one. Two levels
are to be plotted, Sector and Component, both are to be left in their original order.

yp <- ud_prep(CPIuk, weight="Weight", v1="Aug2017", v2="Aug2018", levs=c("Sector",
"Component"), sortLev=c("orig", "orig"))

ud_plot takes the data and prepares the plots and data summaries. The parameter drawFrom
specifies in which order the levels are plotted, in this case the lower Component level first and the
higher Sector level on top.

yd <- ud_plot(yp, drawFrom="SmallToBig")

A horizontal unlabelled UpAndDown plot has been chosen.

yd$uad

It can be seen that only one sector declined, the one on the far right that turns out to be Miscella-
neous goods and services, that one component (liquid fuels) had a much higher jump in price, over
30%, than any other, and that the components of sectors did not change uniformly. Plots showing
only percentage changes would show neither the relative importance of the separate parts of the index
nor that liquid fuels are only a small component of the index. They would emphasize neither the
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Clothing and footwear
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Health
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Figure 2: CPI changes ordered by percentage changes of sectors and by percentage changes of
components within sectors. Two sectors, Transport and Recreation and Culture, made the biggest
contributions to change. Prices increased for all components in most sectors.

hierarchical structure of the index nor the relative importance of components within sectors.

There are a number of ways UpAndDown plots can be varied and extended to make them more
informative: the plot can be drawn vertically with labels for either sectors or their components; the
sectors and their components can be sorted in various ways; colour can be employed to distinguish
sectors. Figure 2 shows a version ordered by percentage changes of sectors and by percentage changes
of components within the sectors. The plot has labels for the sectors and is drawn vertically to make
those labels readable.

The preparatory code with ud_prep defines the sorting of the levels using the parameter sortLev.

yq <- ud_prep(CPIuk, weight="Weight", v1="Aug2017", v2="Aug2018", levs=c("Sector",
"Component"), sortLev=c("perc", "perc"))

Labels are added for the sectors using the parameter labelvar. Limits have been set for the
percentage change axis to add sufficient space for the labels using the parameter vscale.

yf <- ud_plot(yq, labelvar="Sector", drawFrom="SmallToBig", vscale=c(-30, 30))

A vertical labelled UpAndDown plot has been chosen.

yf$uadl

There are 85 components at the lowest level of the CPI, too many to label effectively unless the
plot is drawn very tall. Plots like Figure 2 (and indeed Fig 1) are drawn to give an overview to help
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Figure 3: Percentage changes in population between 2011 and 2017 by age, gender, district, and area.

decide what final plot or plots to draw. Perhaps only changes at the Sector level might be displayed,
perhaps changes for the Componentlevel of one sector, say Recreation and culture, might be displayed.

7 Visualising population changes in Northern Ireland

National Statistics Offices study demographic changes to understand how their country’s population
is developing: which groups are growing or declining and how areas are changing. The NIpop data in
the package come from the Northern Ireland Statistics and Research Agency and include population
estimates for seven years. This section considers the changes between 2011 and 2017.

Figure 3 shows UpAndDown plots for each of the possible grouping variables. The code uses the
dgroup function to produce two sets of UpAndDown plots for each of the individual classification vari-
ables specified. One set is labelled, the other not. The grid.arrange function from gridExtra(Auguie,
2017) is used to plot the graphics together in a single display.

Age groups displayed the most variation with a high percentage increase amongst the 65+ group
and a decline in the 16-39 group. Male and female changes were similar. All the districts increased in
population, while some of the 80 areas actually declined in population.

library(gridExtra)
g4 <- dgroup(NIpop, byvars=c("age", "gender", "LGD2014_name", "area_name"),

v1="y2011", v2="y2017")
grid.arrange(g4$uadgl)

There are many alternatives using more than one classification variable. If you plot the Northern
Ireland population data changes grouped first by gender and then by age, there will be two bars in
the gender layer and eight in the age layer. If you plot the changes grouped first by age and then by
gender, there will be four bars in the age layer and eight in the gender layer. In both plots the eight
bars in the lowest layer will be the same, but they will be grouped differently. Table 1 shows the
absolute and percentage changes for the data: firstly for gender and then age by gender; secondly for
age and then gender by age. Some conclusions can be drawn from the tables by careful inspection.
More can be seen with graphics.

Figure 4 is a graphic for age and gender together. It reveals that there was a much bigger percentage
increase in numbers of older men than in numbers of older women (albeit from a lower base), that
there was little difference between males and females in the youngest group, and that the decline in
16-39 year-olds was greater for females than for males.

ag <- ud_prep(NIpop, v1="y2011", v2="y2017", levs=c("age", "gender"),
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Table 1: Absolute and percentage changes in N. Ireland population estimates by age and gender.

gender change % change

Females 25590 2.77
Males 30980 3.48

gender age change % change

Females 00-15 4950 2.67
Females 16-39 -8790 -2.95
Females 40-64 12960 4.45
Females 65+ 16470 10.97
Males 00-15 4930 2.52
Males 16-39 -3840 -1.31
Males 40-64 9120 3.21
Males 65+ 20770 17.94

age change % change

00-15 9880 2.59
16-39 -12630 -2.13
40-64 22080 3.84
65+ 37240 14.01

age gender change % change

00-15 Females 4950 2.67
00-15 Males 4930 2.52
16-39 Females -8790 -2.95
16-39 Males -3840 -1.31
40-64 Females 12960 4.45
40-64 Males 9120 3.21
65+ Females 16470 10.97
65+ Males 20770 17.94

sortLev=c("orig", "perc"))
kag <- ud_plot(ag, labelvar="age")
kag$uadl

These results may vary by the 11 districts and a plot of changes by district, age, and gender could
be drawn. For the purposes of the article, three districts have been chosen: the cities of Belfast and
Derry and the district of Newry, Mourne and Down. Figure 5 shows the plot. The two younger groups
declined in population for both males and females in Derry and Strabane. In Belfast the number of
male 16-39 year-olds actually increased, but the main difference to the other districts is the somewhat
lower increase in the male 65+ group and the lack of any increase in the female 65+ group.

NIpopW <- NIpop %>% filter(LGD2014_name %in% c("Belfast", "Derry City and Strabane",
"Newry, Mourne and Down"))

zdag <- ud_prep(NIpopW, v1="y2011", v2="y2017", levs=c("LGD2014_name", "age", "gender"),
sortLev=c("perc", "orig", "perc"))

zdag2 <- ud_plot(zdag, labelvar="LGD2014_name", drawFrom="SmallToBig")
zdag2$uadl

In all the above three displays the levels have been sorted by percentage change, except for the age
groups where, for obvious reasons, their original order has been retained.

8 Visualising brand share change in German car sales

An example of displaying brand share change in UpAndDown plots is shown in Figure 6 for the
German car industry between 2017 and 2018. The patchwork package (Pedersen, 2024) is used to plot
more than one graphic in a figure.

library(patchwork)

Only the compact market sector is to be displayed.

AutoSalesXcomp <- AutoSalesX %>% filter(Segment=="Compact")

The aim is to compare brand shares by Manufacturer, so that level is specified.

yxp <- ud_prep(AutoSalesXcomp, v1="sales17", v2="sales18", levs=c("Manufacturer"),
sortLev=c("perc"))

The ud_plot function prepares graphics for changes in sales.

yM <- ud_plot(yxp, labelvar="Manufacturer")
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Figure 4: Percentage changes in population between 2011 and 2017 by age and then gender (males
above, females below).
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Figure 5: Percentage changes in population between 2011 and 2017 for three districts (changes outlined
in blue), four age groups (outlined in brown), and gender (filled bars).
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Figure 6: Compact car sales changes in Germany by manufacturer between 2017 and 2018. The plot
on the left is drawn with a baseline of zero change and ordered by percentage changes. The plot on the
right is drawn with a baseline of the overall market change and ordered by changes in market share.

The next code snippet calculates brand shares by manufacturer and the changes in them between
the two years. It orders the data by these changes in brand share.

AutoSalesXcomp <- AutoSalesXcomp %>% mutate(S17=sum(sales17), S18=sum(sales18),
p17=100*sales17/S17, p18=100*sales18/S18, msch=p18-p17) AutoSalesXcompS <- AutoSalesXcomp
%>% arrange(msch)

The brand share data are prepared in the usual way but using the b parameter to set the baseline
value at the overall percentage change in the market.

yxs <- ud_prep(AutoSalesXcompS, v1="sales17", v2="sales18", levs=c("Manufacturer"),
sortLev=c("orig")) yS <- ud_plot(yxs, b=yM$TotPerc, labelvar="Manufacturer")

The two labelled graphics are drawn side by side using patchwork.

yM$uadl + yS$uadl

Vehicles selling less than 1000 in both years have been reclassified as Other and the data have been
aggregated by manufacturer. To avoid overlapping, not all manufacturers are labelled. The plot on
the left uses a baseline of 0 and shows that the whole segment declined. It has been ordered by bar
height, i.e. percentage changes. Of the bigger manufacturers, Mercedes and Ford had year-on-year
increases. The plot on the right uses a baseline of the overall market change, a little under −5.9%. It
has been ordered by bar area, using the areas proportional to market share changes. The calculations
were carried out in advance and the manufacturers sorted accordingly, as can be seen in the code.

Mercedes and Ford gained the most market share and VW and Opel lost the most. Dacia gained in
sales and market share, while Skoda lost sales, but still gained more market share than Dacia because
they had a bigger starting value and performed better than the market. It would be difficult to compare
the bar area sizes in the right plot, so ordering is essential (if those are the comparisons you want to
make).
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Area conservation holds for share changes as well. If a producer i sells ki different products, then
the sum of their bar areas using total market percentage change as the baseline equals the equivalent
area for producer i as a whole.

Graphical displays are always relative. The visual representation of a statistic is proportional to
the value of the statistic. Comparisons should only be made between lengths or areas that are on the
same scales. The widths of bars in UpAndDown plots are always proportional to initial values (sales,
market shares, volumes etc.), while the heights are proportional to percentages representing relative
changes, and the areas are proportional to amounts representing absolute changes (if the baseline is 0)
or share changes (if the base line is the total percentage change).

9 Summary

Displaying percentage and absolute changes between two time points in the same plot is very helpful,
especially when individual components are of quite different sizes. Being able to drill down (or
aggregate up) through multiple levels thanks to area conservation makes UpAndDown plots a
powerful descriptive and exploratory tool. For the UK CPI dataset they showed that one sector
actually declined in price and that individual components in other sectors also did. They showed that
Transport and Recreation and Culture were the biggest drivers of inflation. The UpAndDown plots
for the example of Northern Ireland population data showed the declines in the numbers of younger
people and increases in the numbers of older ones, the increases in population across all districts, the
different age patterns for males and females, and the decline in numbers of young people in the Derry
Local Government District. The final example of the German car sales data showed that UpAndDown
plots can be used to display brand share changes too. The conclusions were that although the overall
market declined, two of the biggest manufacturers increased their sales. They also showed that the
biggest loss in market share was for a manufacturer with a medium percentage loss of sales, because
that manufacturer started from a high initial level of sales.

The display of market share changes in an UpAndDown plot is a surprising and powerful addi-
tional feature. In principle it would be possible to draw all three changes (percentage, absolute, and
share) in the same plot. Be that as it may, it would not be a good idea. What is a good idea is drawing
a separate UpAndDown plot for the market share changes, when this is the kind of change of most
interest. The fact that the relevant bar areas also have the property of area conservation underlines the
strength of the basic concept of UpAndDown plots.

As graphics become more complex, tools for adjusting and adapting them become more important.
UpAndDown plots allow the flexible ordering of classifying levels for non-hierarchical data, multiple
sorting methods for the elements of individual levels, and a rearranging of the order of drawing levels,
all to make the displays more informative.

Future goals include developing related displays for multiple time points and adding interactivity.
Studying an UpAndDown plot would be easier if it were interactive. Querying, changing the order of
levels, sorting in different ways, zooming, linking to other graphics, would all be valuable tools (as
they would be for every kind of graphic).
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Bioconductor Notes, December 2024
by Maria Doyle, Bioconductor Community Manager, and Bioconductor Core Developer Team

1 Introduction

Bioconductor provides tools for the analysis and comprehension of high-throughput ge-
nomic data. The project has entered its twentieth year, with funding for core development
and infrastructure maintenance secured through 2025 (NIH NHGRI 2U24HG004059). Ad-
ditional support is provided by NIH NCI, Chan-Zuckerberg Initiative, National Science
Foundation, Microsoft, and Amazon. In this news report, we give some updates on core
team and project activities.

2 Software

Bioconductor 3.20, released in October 2024, is now available. It is compatible with R 4.4 and
consists of 2289 software packages, 431 experiment data packages, 928 up-to-date annotation
packages, 30 workflows, and 5 books. Books are built regularly from source, ensuring full
reproducibility; an example is the community-developed Orchestrating Single-Cell Analysis
with Bioconductor.

3 Core Team and Infrastructure Updates

Of note:

In GenomicRanges, reference build hg38 is now used in vignettes and examples.

GEOquery now supports retrieval of RNASeq quantification data prepared by NCBI, as
well as search.

HDF5Array sports many improvements to coercions from CSC_H5SparseMatrixSeed,
H5SparseMatrix, TENxMatrix, or H5ADMatrix to SparseArray:

these should be significantly more efficient, thanks to various tweaks that happened in
the SparseArray and Delayed5Array packages.

HDF5Array will now support coercing an object with more than 2ˆ31 nonzero values,
and oercion from any of the classes above to a sparseMatrix derivative now fails early if
object to coerce has >= 2ˆ31 nonzero values.

All *Seed classes in the package now extend the new OutOfMemoryObject class defined
in BiocGenerics (virtual class with no slots).

See the NEWS section in the release announcement for a complete account of changes
throughout the ecosystem.

4 Community and Impact

4.1 Publications and Preprints

In October 2024, two notable preprints were published by Bioconductor contributors:

• Eleven quick tips for writing a Bioconductor package Authors: Charlotte Soneson,
Lori Shepherd, Marcel Ramos, Kevin Rue-Albrecht, Johannes Rainer, Hervé Pagès, and
Vincent J. Carey (Bioconductor Core Team and collaborators). This preprint provides
concise, practical advice for developing high-quality Bioconductor packages.
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• Learning and teaching biological data science in the Bioconductor community Authors:
Bioconductor Training Committee and others. This preprint explores the Bioconductor
community’s role in advancing biological data science education and training.

4.2 ELIXIR BioHackathon Europe 2024

Bioconductor participated in this collaborative event (November 4–8), held in Barcelona, to
advance interoperability and innovation in life sciences. Key contributions included projects
focused on EDAM-bio.tools and training infrastructure.

4.3 Training Domain Launch

Bioconductor is developing training.bioconductor.org, a centralised website for accessing
and organising high-quality Bioconductor training materials. This work is still in progress,
with the Training Committee actively discussing ways to restructure existing resources and
improve their discoverability. A key focus is supporting community-driven tutorials and
emphasising pedagogical quality to better serve learners.

4.4 Bioconductor Carpentry Single-Cell Module

Bioconductor now features an official single-cell RNA sequencing (scRNA-seq) module
in the Carpentries Incubator. This module, renamed from the Orchestrating Single-Cell
Analysis (OSCA) curriculum, provides a structured introduction to scRNA-seq analysis
with Bioconductor and is aimed at both learners and educators.

4.5 Bioconductor Joins Bluesky

In October 2024, Bioconductor expanded its social media presence by joining Bluesky. This
move reflects Bioconductor’s commitment to engaging with its global community across
diverse platforms. We invite you to follow us to stay updated on the latest news, events,
and community highlights.

5 Conferences

5.1 BioCAsia2024

Held in Sydney, Australia (November 7–8), the Bioconductor Asia meeting fostered col-
laboration and knowledge sharing among regional and global Bioconductor users and
developers. For more details, visit the BioCAsia2024 website.

5.2 Galaxy and Bioconductor Community Conference

Announced in September 2024, the first Galaxy and Bioconductor Community Conference
(GBCC 2025) is scheduled for June 23–26, 2025, at Cold Spring Harbor Laboratory, New
York. The conference aims to showcase the integration of Galaxy and Bioconductor tools,
promoting reproducible workflows and community-driven development. For more details,
see the blog post.

6 Boards and Working Groups Updates

6.1 New Board Members

• The Community Advisory Board (CAB) welcomes new members Zahraa Alsafwani,
Jasmine Daly, Tobilola Ogunbowale, and Lluis Revilla. We extend our gratitude to
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outgoing members Daniela Cassol, Estefania Mancini, Jordana Muwanguzi, and Mike
Smith for their service.

• The Technical Advisory Board (TAB) welcomes new members Michael Lawrence and
Jacques Serizay. Outgoing members Sean Davis and Michael Love are also warmly
thanked for their contributions.

6.2 Code of Conduct Committee Elections

In October 2024, Bioconductor sought new members to join its Code of Conduct (CoC)
Committee, which plays a vital role in maintaining the integrity and safety of our community.
The CoC meets 3–4 times annually to address important issues. Applications are now closed,
but you can learn more about the committee and its work on the Code of Conduct page.

If you are interested in becoming involved with any Bioconductor working group please
contact the group leader(s).

7 Using Bioconductor

Start using Bioconductor by installing the most recent version of R and evaluating the
commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker images provides a very effective on-ramp for power users to rapidly obtain
access to standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.
• A list of available software linking to pages describing each package.
• A question-and-answer style user support site and developer-oriented mailing list.
• A community slack workspace (sign up) for extended technical discussion.
• The F1000Research Bioconductor gateway for peer-reviewed Bioconductor workflows

as well as conference contributions.
• The Bioconductor YouTube channel includes recordings of keynote and talks from

recent conferences, in addition to video recordings of training courses.
• Our package submission repository for open technical review of new packages.

Upcoming and recently completed events are browsable at our events page.

The Technical and and Community Advisory Boards provide guidance to ensure that the
project addresses leading-edge biological problems with advanced technical approaches, and
adopts practices (such as a project-wide Code of Conduct) that encourages all to participate.
We look forward to welcoming you!

We welcome your feedback on these updates and invite you to connect with us through
the Bioconductor Slack workspace or by emailing community@bioconductor.org.

Maria Doyle, Bioconductor Community Manager
University of Limerick
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Bioconductor Core Developer Team
Dana-Farber Cancer Institute, Roswell Park Comprehensive Cancer Center, City University of New
York, Fred Hutchinson Cancer Research Center, Mass General Brigham
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Changes on CRAN
2024-10-01 to 2024-12-31

by Kurt Hornik, Uwe Ligges, and Achim Zeileis

1 CRAN growth

In the past 3 months, 504 new packages were added to the CRAN package repository.
104 packages were unarchived, 173 were archived and 1 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:
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On 2024-12-31, the number of active packages was around 21860.

2 CRAN package submissions

From oktober 2024 to december 2024 CRAN received 6179 package submissions. For these,
9795 actions took place of which 7408 (76%) were auto processed actions and 2387 (24%)
manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting

auto 2129 490 1403 96 0 1991 668 290
manual 986 0 8 3 27 1072 226 58

These include the final decisions for the submissions which were
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archive publish

auto 2056 (33.7%) 1805 (29.6%)
manual 982 (16.1%) 1254 (20.6%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

3 CRAN mirror security

Currently, there are 94 official CRAN mirrors, 73 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

4 CRAN Task View Initiative

There is one new task view:

• Paleontology: Maintained by William Gearty, Lewis A. Jones, Erin Dillon, Pedro
Godoy, Harriet Drage, Christopher Dean, Bruna Farina.

Currently there are 48 task views (see https://CRAN.R-project.org/web/views/), with
median and mean numbers of CRAN packages covered 110 and 121, respectively. Overall,
these task views cover 4885 CRAN packages, which is about 22% of all active CRAN
packages.
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News from the Forwards Taskforce
by Heather Turner

Abstract Forwards is an R Foundation taskforce working to widen the participation of under-represented
groups in the R project and in related activities, such as the useR! conference. This report rounds up
activities of the taskforce during 2024.

0.1 Accessibility

Di Cook supervised Krisanat Anukarnsakulchularp on an R Consortium funded project to facilitate
adding alt text to figures in R Journal articles. Jonathan Godfrey and Heather Turner were advisors on
the project. The main outcomes are:

• Some Guidance for Writing alt text for Data Plots
• A prototype Shiny app for authors to add or review alt text for a published article.
• Tests of using LLM services to produce draft alt text for authors to review.

A post on the project is planned for the R Consortium Blog.

Heather Turner, along with Abhishek Ulayil, co-mentored Yinxiang Huang on the Google Summer
of Code (GSoC) 2024 project Converting Sweave to R Markdown using the texor package. The
motivating application was converting package vignettes from Sweave/PDF to R Markdown/HTML
for improved accessibility. This project resulted in the new function rnw_to_rmd(), added to texor in
version 1.4.

Liz Hare was selected for the 2024 rOpenSci Champions program. She wrote a blog post on
Resources For Using R With Screen Readers and along with her fellow champion Alican Cagri Gokcek,
she organized a multilingual webinar on the same topic. Liz also co-hosted a Turing Way Fireside
Chat on How to make things more Accessible in Data Science, considering accessibility in broad sense,
not just in terms of disability.

0.2 Community engagement

Kevin O’Brien, gwynn gebeyhu and Heather Turner gave virtual talks at the hybrid Ghana R Confer-
ence 2024, Kumasi, June 6–7, 2024. Kevin and gwynn have joined the Ghana R Users Community as
advisory committee members, as they plan for Ghana R Conference 2025.

gwynn also gave a virtual talk to R-Ladies Gaborone on R in Research.

Kevin attended the inaugural Open Source Community Collider organized by Open Source Science
(OSS), which was designed to build connections and drive collaboration across the open source and
open science communities.

As part of the DiveRSE seminar series, Ella Kaye had a conversation with Malvika Sharan about
their experiences in the Research Software Engineering community, and the challenges and successes
they’ve encountered when working to improve equity, diversity, inclusion and accessibility (EDIA).

Ella led the development of new branding for rainbowR, ready for promoting the community more
widely. She presented lightning talks on the community at useR! 2024 (with co-lead Hanne Oberman),
posit::conf(2024) (video), and RPySOC24, the conference run by the open source community of the
National Health Service in the UK. rainbowR also increased their presence on social media with a
LinkedIn group and a Bluesky account. Ella has been selected for the Software Sustainability Institute’s
2025 Fellowship programme, which will enable her to further establish the rainbowR community in
2025.

0.3 R Contribution/on-ramps

Following on from R Project Sprint 2023, the R Contribution Working Group arranged a series of R
Dev Days as satellites to R-related conferences, involving many Forwards members (Heather Turner,
gwynn gebeyehu, Ella Kaye, Saranjeet Kaur Bhogal, Mike Chirico, Michael Lawrence, Paola Corrales
and Di Cook). The R Dev Day format takes advantage of people already travelling to a common
venue, so the events could be run at low cost and we found that it was possible for both novice and
experienced participants to make meaningful contributions in the shorter time. For more details see
the reports on the satellite events to London satRday 2024, useR! 2024, posit::conf(2024), RSECon24,
Shiny in Production 2024 and LatinR 2024 (virtual). In summary, attendance at the events ranged from
9 to 44 participants; the number of issues worked on at each event was usually around half the number

The R Journal Vol. 16/4, December 2024 ISSN 2073-4859

https://forwards.github.io/
https://r-consortium.org/all-projects/2023-group-2.html#accessibility-enhancements-for-the-r-journal
https://numbats.github.io/alt-text-for-data-plots/
https://r-consortium.org/blog/
https://summerofcode.withgoogle.com/archive/2024/projects/hBLJrIOd
https://CRAN.R-project.org/package=texor
https://ropensci.org/blog/2024/02/15/champions-program-champions-2024/
https://ropensci.org/blog/2024/09/05/screen-readers-tools/
https://vimeo.com/1008631708
https://www.youtube.com/watch?v=Ac9czT3Tr8A
https://ghana-rusers.org/r-conference-2024/
https://ghana-rusers.org/r-conference-2024/
https://www.youtube.com/watch?v=n9T1v2CEI4w
https://www.opensource.science/updates/inaugural-run-of-the-open-source-community-collider-a-smashing-success
https://www.opensource.science
https://diverse-rse.github.io/events/2024-07-31
https://rainbowr.org/posts/2024-06-07_new-look/
https://rainbowr.org
https://www.youtube.com/watch?v=zOEZtIPj6Vk
https://nhsrcommunity.com/conference24.html
https://www.linkedin.com/groups/13115940/
https://bsky.app/profile/rainbowr.bsky.social
https://www.software.ac.uk/news/introducing-2025-fellowship-cohort-insights-and-celebrations
https://www.software.ac.uk/news/introducing-2025-fellowship-cohort-insights-and-celebrations
https://contributor.r-project.org/r-project-sprint-2023/
https://github.com/r-devel/r-dev-day/blob/main/reports/2024-04_imperial2024.md
https://github.com/r-devel/r-dev-day/blob/main/reports/2024-07_plus2024/plus2024.md
https://github.com/r-devel/r-dev-day/blob/main/reports/2024-08_hutch2024.md
https://github.com/r-devel/r-dev-day/blob/main/reports/2024-09_RSECon24.md
https://github.com/r-devel/r-dev-day/blob/main/reports/2024-10_sip2024/sip2024.md
https://github.com/r-devel/r-dev-day/blob/main/reports/2024-11-18_LatinR2025.md


CONTRIBUTED RESEARCH ARTICLE 201

of participants, with around half of these resulting in a patch or closing a bug during, or shortly after,
the event. The remaining issues were generally works in progress, where participants were able to
contribute to addressing the issue. Given the success of these events, we plan to run repeats in 2025
and expand to other regions/communities.

Forwards members also promoted the work of the R Contribution group in conference talks:
Heather Turner presented The R Contribution Working Group at useR! 2024 and Contributing to the R
Project at posit::conf(2024); Saranjeet Kaur Bhogal gave talks on Enhancing the R Dev Guide at useR!
2024 and Empowering New Contributors: The Evolving Role of the R Development Guide at PyData
Global 2024, while Ella Kaye presented C for R Users at useR! 2024. Ella’s talk inspired participants to
take on a C-based issue at the satellite R Dev Day.

In the first half of 2024, Ella Kaye and Heather Turner facilitated a C Study Group for existing or
aspiring contributors wanting to learn or refresh their basic knowledge of C. In contrast to the C Book
Club that was run in 2023, the study group used open materials from the C sessions of CS50, Harvard
University’s Introduction to Computer Science course, supplemented with material from the Deep R
Programming book by Marek Gagolewski. Participants of the group have gone on to tackle C-related
bugs in R. Ella plans to run the study group again in 2025, see the C Study Group 2025 page on the R
Contributors website for further details.

Heather Turner and gwynn gebeyhu were on the steering committee, along with Bettina Grün,
for an R Consortium funded project developing the CRAN Cookbook. This online book, written by
Jasmine Daly and Beni Altmann, provides a user-friendly guide for solving issues that are common
found in packages submitted to CRAN. While this is of benefit to all package maintainers, it should
particularly help new package authors make their package CRAN-ready.

Saranjeet Kaur Bhogal visited Heather Turner at Warwick University for a week-long Book Dash on
the R Development Guide in December 2024. This provided the opportunity to review and merge in
long-standing pull requests (PRs) that had been opened during Saranjeet’s work on the guide under
Google Season of Docs 2022, as well as more recent PRs opened during R Dev Days. We were pleased
that other members of the community joined in remotely, see the Forwards blog post for a short report.

0.4 Conferences

Several members of Forwards joined in with a DEI Huddle, where community members engaged with
useR! 2024 organizers on diversity, equality and inclusion matters. The organizers confirmed that
diversity scholarships would be available and following the huddle they were able to arrange limited
childcare for participants. Heather Turner, along with Abhishek Ulayil, participated in one of the
online Fireside chats in the run-up to the conference, on the theme of Building foundations for R’s
future as an accessible and diverse collaboration.

Kevin O’Brien organised a short R track for PyData Global, which took place virtually, December
3-5, 2024. Videos should appear on the PyData YouTube channel in due course. PyData events provide
a forum for data scientists using languages including Python, Julia and R. The R track at PyData
Global was intended to encourage more involvement of R users in this community.

0.5 Social Media

Since Bluesky has gained popularity in recent months, we are now bridging our Mastodon account
to Bluesky: R-Forwards.hachyderm.io.ap.brid.gy. We encourage Mastodon and Bluesky users that
do not have an account on both platforms to consider bridging with Bridgy Fed to enable greater
interaction between R users on both platforms, e.g. following and mentioning.

We also created a Forwards page on LinkedIn enabling LinkedIn users to follow or mention us.
LinkedIn is now home to a very vibrant R community and Kevin O’Brien has been helping to signal
boost the growing number of R community pages via the R User Community LinkedIn page, the
followership of which grew from 16400 to 19000 followers during 2024.

0.6 Changes in Membership

Previous members

The following members have stepped down: Isabella Gollini, Liz Hare. We thank them for their
contributions to the taskforce over several years.

Heather Turner
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