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Editorial
by Rob J Hyndman

In this issue

On behalf of the editorial board, I am pleased to present Volume 17 Issue 2 of the R Journal.
This issue features ten research articles, plus news from CRAN, BioConductor and the R
Foundation.

The first article concerns the CRAN Task View initiative, which provides valuable curated lists
of R packages in specific areas. The article describes the current status of the initiative and
how users can contribute.

The remaining articles discuss various R packages that have been developed, covering a
wide range of topics. Each article provides an overview of the package, its functionality,
and examples of its use. All packages discussed are available on CRAN. Supplementary
material with fully reproducible code is available for download from the Journal website.

Rob J Hyndman
Monash University

https://journal.r-project.org
r-journal@r-project.org
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The CRAN Task View Initiative
by Achim Zeileis, Roger Bivand, Dirk Eddelbuettel, Kurt Hornik, Julia Piaskowski, and Nathalie
Vialaneix

Abstract CRAN Task Views have been available on the Comprehensive R Archive Network
since 2005. They provide guidance about which CRAN packages are relevant for tasks
related to a certain topic, and can also facilitate automatic installation of all corresponding
packages. Motivated by challenges from the growth of CRAN and the R community as a
whole since 2005, all of the task view infrastructure and workflows were rethought and
relaunched in 2021/22 in order to facilitate maintenance, and to foster deeper interactions
with the R community. The redesign encompassed the establishment of a group of CRAN
Task View Editors, moving all task view sources to dedicated GitHub repositories, adopting
well-documented workflows with a code of conduct, and leveraging R/Markdown files
(rather than XML) for the content of the task views.

1 Motivation and background

The Comprehensive R Archive Network (CRAN, https://CRAN.R-project.org/), com-
prised of approximately one hundred mirror pages around the world along with a content-
delivery network (CDN), is the canonical site for downloading not only the base R system
(R Core Team, 2025) but also more than twenty thousand extension packages (actually, 22765
at the time of writing) contributed by users from the R community. CRAN is a very useful
resource within the R ecosystem, but its content can be hard to grasp and navigate. Espe-
cially users new to R can struggle with getting started and finding the relevant R packages
for the tasks they want to accomplish.

To mitigate this problem, Zeileis (2005), in cooperation with the CRAN team, introduced
“CRAN Task Views” that provide guidance about which CRAN packages are relevant for
tasks related to a given topic. Task views offer a brief overview of the included packages on
a dedicated CRAN page (see https://CRAN.R-project.org/web/views/ for an overview)
and also enable the automatic installation of all packages from a task view using the ctv
package (Zeileis and Hornik, 2024). The views are intended to have a sharp focus so that it
is sufficiently clear which packages should be included (or excluded). They are not meant to
endorse the “best” packages for a given task but they can distinguish a shorter list of most
relevant/important core packages from the remaining regular packages.

While CRAN Task Views alone were certainly not able to overcome all the challenges of
navigating CRAN, they proved to be useful enough to be continued over the subsequent
years. However, due to the growth of CRAN (see, e.g., Hornik et al., 2024) and of the R
community as a whole since the introduction of task views in 2005, the thriving of the task
views was limited by several design decisions regarding their format and the corresponding
workflows:

• The format for authoring a new task view was based on XML (extensible markup
language). This required that task view maintainers as well as anyone who wanted to
contribute write XML and HTML (hypertext markup language) directly.

• The format required that the packages included in a task view needed to be described
in the information text and listed separately to be categorized into core and regular
packages.

• Task views were typically proposed by individual contributors (and only in some
cases by teams).

• The onboarding process for CRAN was mostly coordinated by Achim Zeileis alone.
• All task views were maintained in a single subversion (SVN) repository on the R-Forge

platform (Theußl and Zeileis, 2009) to which all task view maintainers had access.
• Contributions from the R community were mostly limited to e-mails to the respective

maintainers (except where the maintainers set up other channels of communication
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themselves, e.g., through a separate GitHub repository).

This setup worked sufficiently well in 2005 when there were about 500 packages on
CRAN and initially 4 task views, listing on average 20 packages each. (Within a year, the
number of task views increased to 12.) But by now there are 48 task views, with median
and mean numbers of CRAN packages covered 112 and 123, respectively. Overall, these
task views cover 4941 CRAN packages, which is about 22% of all CRAN packages. This
change in scope and scale necessitated a change in infrastructure and workflows that the
new CRAN Task View Initiative, described in detail in the next section, aims to provide.

2 New design

Motivated by the challenges from the growth of CRAN and the R community as a whole,
almost all aspects of the CRAN Task Views were rethought and relaunched in 2021/22 in
order to facilitate maintenance and foster more interactions with the R community. The
important changes are:

• The CRAN Task View Initiative is now overseen by a group of CRAN Task View Editors
(rather than an individual) who review proposals of new task views, support the
onboarding of the corresponding maintainers, and monitor the activity in existing task
views. The corresponding official e-mail is CRAN-task-views@R-project.org.

• All activities are hosted on GitHub (rather than R-Forge) in a dedicated organization
(https://github.com/cran-task-views/) which provides interfaces and workflows
that many R users are familiar with. In particular, it offers a wide range of possibilities
for the community to engage with the task views, most notably through issues and
pull requests.

• Each task view is hosted in a separate repository within the cran-task-views organi-
zation (rather than all in one repository), giving the maintainers more freedom while
preserving sufficient control for the editors. Also, separate projects provide better
visibility for each task view and a clearer separation of responsibilities.

• For new task view proposals, the principal maintainer of a task view is expected to
assemble a team of 1 to 5 co-maintainers to share the workload and reflect different
perspectives. The same was also strongly encouraged for older task views that had
previously been maintained by a single person. Ideally the co-maintainers should be a
diverse group in terms of gender, origin, scientific field, etc.

• The file format for authoring task views is now based on R/Markdown (rather than
XML and HTML directly). The files can be processed and rendered into HTML output
for CRAN with dedicated functions from the ctv package, leveraging the popular
packages knitr (Xie, 2015) and rmarkdown (Xie et al., 2018) based on the document
converter pandoc (MacFarlane, 2025).

• As the task view files are now dynamic R/Markdown documents, it was easy to avoid
certain redundancies from the old XML-based format, e.g., the package list with core
and regular packages is compiled automatically from the information text and does
not have to be specified separately.

• All contributions must now explicitly adhere to the code of conduct of the initiative,
adapted from the Contributor Covenant code of conduct.

More details on the CRAN Task View Initiative are available in the GitHub repository
https://github.com/cran-task-views/ctv. This provides an overview of the activities,
detailed documentation, and the possibility to raise issues that concern the initiative as a
whole (rather than individual task views).

The current CRAN Task View Editors are Roger Bivand, Dirk Eddelbuettel, Julia Pi-
askowski, Nathalie Vialaneix, and Achim Zeileis. Former contributors include: Henrik
Bengtsson, Rocío Joo, David Meyer, and Heather Turner. The primary contributor from the
CRAN team is Kurt Hornik.
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Figure 1: Screenshot of the header and introduction of the "Econometrics" task view.

3 Using task views

First and foremost, the web page of each task view can be read by interested users (see
Figure 1 for an example). The clear structure and focus of the task views should help the
readers to quickly gain a first overview of a topic and to search for specific relevant packages
more efficiently.

Another benefit of task views that has probably been underappreciated for a long time
is that they allow the easy installation of the associated packages (either all of them or just
the core packages). The headers of all task view web pages now promote this possibility
explicitly. To make use of this, the ctv package needs to be installed, e.g., via

install.packages("ctv")

The package provides the two functions install.views() and update.views(), where
the latter only installs those packages which are not installed and up-to-date. For example,
in order to install the full “Econometrics” task view either one of the following two calls can
be used:

ctv::install.views("Econometrics")
ctv::update.views("Econometrics")

Moreover, two functions are provided for querying the information from task views from
within R. First, information on a single task view can be obtained with the ctv() function.

ctv::ctv("Econometrics")

#> CRAN Task View
#> --------------
#> Name: Econometrics
#> Topic: Econometrics
#> Maintainer: Achim Zeileis, Grant McDermott, Kevin Tappe
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#> Contact: Achim.Zeileis@R-project.org
#> Version: 2025-09-01
#> Repository: https://CRAN.R-project.org
#> Source: https://github.com/cran-task-views/Econometrics/
#> Packages: AER*, aod, apollo, apt, bacondecomp, bayesm, betareg, bimets, BMA,
#> BMS, boot, bootstrap, brglm, CADFtest, car*, censReg, clubSandwich,
...

To list all task views available from CRAN, the function available.views() can be used:

ctv::available.views()

#> CRAN Task Views
#> ---------------
#> Name: ActuarialScience
#> Topic: Actuarial Science
#> Maintainer: Christophe Dutang, Vincent Goulet
#> Repository: https://CRAN.R-project.org
#> ---------------
#> Name: Agriculture
#> Topic: Agricultural Science
#> Maintainer: Julia Piaskowski, Adam Sparks, Adrian Correndo
#> Repository: https://CRAN.R-project.org
#> ---------------
...

The objects returned by ctv() and available.views() include additional information
which is not shown by the print() method. This may be useful for more specific computa-
tions based on the task views. For example, a citation object (Hornik et al., 2012) can be
obtained from the list returned by ctv().

ctv::ctv("Econometrics")$citation

#>
#> Zeileis A, McDermott G, Tappe K (2025). _CRAN Task View:
#> Econometrics_. Version 2025-09-01,
#> <https://CRAN.R-project.org/view=Econometrics>.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> author = {Achim Zeileis and Grant McDermott and Kevin Tappe},
#> title = {CRAN Task View: Econometrics},
#> year = {2025},
#> note = {Version 2025-09-01},
#> url = {https://CRAN.R-project.org/view=Econometrics},
#> }

4 Contributing

Users from the R community can contribute in two ways to the CRAN Task View Initiative:
They can either provide suggestions for an existing task view, or they can propose a new one
on a topic that is not yet covered. In either case, all contributions must be made under the
code of conduct.

Contributions to existing task views are welcome, encouraged, and in fact crucial for
keeping the task views up to date. Typical contributions would be improvements in existing
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content (e.g., adding details, clarifications, or corrections) or suggestions of additional
content (e.g., packages or links). To facilitate such contributions, each task view includes
the e-mail address of the principal maintainer as well as a link to the associated GitHub
repository. Thus, contributors can choose the most convenient alternative among the
following ones:

• Send an e-mail to the principal maintainer.
• Raise an issue in the GitHub repository.
• Provide a pull request in the GitHub repository.

To avoid having a pull request become more involved or disruptive, it is frequently
suggested to first discuss proposed changes by raising an issue, and to make sure that the
modified task view file still works correctly (see Section 6).

For proposing new task views, the CRAN Task View Initiative provides a standardized
workflow including a review and onboarding process. All steps are detailed at https:
//github.com/cran-task-views/ctv/blob/main/Proposal.md. In the following, we just
outline the essential aspects.

First, it is important that the prospective maintainers consider the time and work that is
required to put together a proposal, to refine it during the review and onboarding process,
and most importantly to actively maintain the task view in the future.

Second, a fundamental and very crucial step is to formulate the topic of the new task
view so that it has a clear scope that is neither too narrow nor too wide. The goal is not
to cover “every package” remotely related to the topic but rather the set of packages that
clearly fall within the scope. The coverage should be similar to what an introductory text
book on the topic would cover. Non-CRAN packages may also be included but the focus
of CRAN task views should be packages on CRAN (as the name conveys). Finally, task
views should not rate the packages or endorse certain “best” packages but rather give an
overview of what is available. A bit of emphasis to the more important packages can be
given in two ways: (a) The most important packages can be flagged as core packages. (b)
In the information text the more important packages can be listed first in the respective
sections.

Third, based on the information formulated as outlined above, the proposal can be made
in the GitHub issues of the ctv repository. This initiates a first review that is carried out in
the comments of the issue tracker which are open to all members of the community. In all
cases, the CRAN Task View Editors are explicitly invited to comment, as may be maintainers
of related task views or of relevant core packages etc. Provided that there is sufficient
endorsement from the CRAN Task View Editors, typically after revisions and refinements
from the prospective maintainers, a proposal is accepted, initiating an onboarding process
that leads to the publication of the task view on CRAN.

Finally, the maintainers of the task view are responsible for keeping it up to date by
checking CRAN regularly. Contributions from the community, as described at the beginning
of this section, are eminently useful for this and hence explicitly encouraged. Moreover,
some R packages like CTVsuggest (Dijk, 2023) can support the maintainers in discovering
new relevant packages on CRAN.

5 Handling package archivals

The CRAN packages listed in task views should ideally be maintained actively, so that
improved versions are released by the corresponding maintainers in case the daily CRAN
checks discover any issues. However, it is not straightforward to test for active maintenance
fully automatically and even actively maintained packages may be temporarily archived
on CRAN. Hence, the following strategy is adopted within the CRAN Task View Initiative:
When a CRAN package from a task view is archived, it is still listed in the task view like
before. It is only flagged as archived in the text and is not installed automatically anymore
by install.views() and update.views().
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This strategy gives both the package maintainers and the task view maintainers some
time to resolve the situation. Specifically, the task view maintainers can decide whether to

• exclude the package from the task view immediately, e.g., if it was archived for policy
violations, at the request of the maintainer, or did not have any updates for many
years and is not associated with a public repository;

• wait some more for an improved version, e.g., when they see that the package maintain-
ers already started addressing the problem; or

• reach out to the package maintainers to check if they intend to release a corrected version
or even to help with releasing an improved version.

To help discovering archived packages and initiating one of the actions above, the CRAN
team regularly checks whether any task view contains packages that have been archived
on CRAN for 60 days or more. If so, they create an issue in the corresponding task view
repository.

After the period of grace (100 days) ends, the situation should be resolved by the task
view maintainers, typically by excluding packages that are still archived from the task view.
For sufficiently relevant packages, it may be sensible to replace the package listing by a link,
e.g., to a GitHub repository for the package.

6 R/Markdown format

The file format for CRAN task views leverages the R/Markdown format (Xie et al., 2018) so
that standard Markdown can be used for formatting and structuring the text and a handful
of special R functions are provided to link to CRAN packages, other task views, GitHub
projects, etc. The format is mostly self-explanatory and is illustrated below using an excerpt
from the Econometrics task view:

---
name: Econometrics
topic: Econometrics
maintainer: Achim Zeileis, Grant McDermott, Kevin Tappe
email: Achim.Zeileis@R-project.org
version: 2025-04-01
source: https://github.com/cran-task-views/Econometrics/
---

Base R ships with a lot of functionality useful for (computational) econometrics,
in particular in the stats package. This functionality is complemented by many
packages on CRAN, a brief overview is given below. There is also a certain
overlap between the tools for econometrics in this view and those in the task
views on `r view("Finance")`, `r view("TimeSeries")`, and
`r view("CausalInference")`.

Further information can be formatted with standard Markdown syntax, e.g., for
_emphasizing text_ or showing something really important in **bold face**.
R/Markdown syntax with special functions can be used to link to a standard
package like `r pkg("mlogit")` or an important "core" package like
`r pkg("AER", priority = "core")`.

### Links
- [The Title of a Relevant Homepage](http://path/to/homepage/)

The document structure consists of three main blocks: (a) Some metainformation is given
in the YAML header at the beginning (separated by lines with ---), followed by (b) the
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information in the main text, and (c) a concluding special section called ### Links. Details
are explained in the official documentation: https://github.com/cran-task-views/ctv/
blob/main/Documentation.md.

The information in the main text should be a short description of the packages, ex-
plaining which packages are useful for which tasks. Additionally, short R code chunks
with special functions are used for linking to CRAN resources: pkg() for regular packages,
pkg(..., priority = "core") for important core packages, and view() for related task
views. Moreover, code projects in other repositories can be linked by dedicated functions,
e.g., bioc() or github() for packages on Bioconductor or GitHub, respectively.

In order to check whether a task view file has been formatted properly it can be read
into R and rendered to HTML (see also Figure 1) which can be opened and inspected in a
browser. Additionally, the function check_ctv_packages() can be used to check whether
some of the listed packages are actually not available on CRAN or not currently maintained
(archived). The functions are illustrated below, assuming that the Econometrics.md file is in
the local working directory:

ctv::ctv2html("Econometrics.md", cran = TRUE)
browseURL("Econometrics.html")
ctv::check_ctv_packages("Econometrics.md")

Note that the extension .md (rather than .Rmd) has been adopted for the files so that
GitHub renders a Markdown preview on the fly. Finally, in case the maintainers of a task
view want to leverage GitHub Actions, a validate-ctv workflow is provided at https:
//github.com/cran-task-views/ctv/tree/main/validate-ctv which runs the functions
above and processes the results.

7 Available task views

Currently, there are 48 task views on CRAN with the following names and maintainers:

• ActuarialScience (Dutang, Goulet).
• Agriculture (Piaskowski, Sparks, Correndo).
• Bayesian (Park, Cameletti, Pang, Quinn).
• CausalInference (Mayer, Zhao, Greifer, Huntington-Klein, Josse).
• ChemPhys (Mullen).
• ClinicalTrials (Wang, Jaki, Harris, Doyle, Meyer, Igl).
• Cluster (Grün).
• CompositionalData (Hron, Palarea-Albaladejo, Templ, Menafoglio).
• Databases (Tang, Balamuta).
• DifferentialEquations (Petzoldt, Soetaert).
• Distributions (Dutang, Kiener, Swihart).
• DynamicVisualizations (Zhang, Cook, Lyttle).
• Econometrics (Zeileis, McDermott, Tappe).
• Environmetrics (Simpson).
• Epidemiology (Jombart, Rolland, Gruson).
• ExperimentalDesign (Groemping, Morgan-Wall).
• ExtremeValue (Dutang).
• Finance (Eddelbuettel).
• FunctionalData (Scheipl, Arnone, Hooker, Tucker, Wrobel).
• GraphicalModels (Hojsgaard).
• HighPerformanceComputing (Eddelbuettel).
• Hydrology (Albers, Prosdocimi).
• MachineLearning (Hothorn, Frick, Kook).
• MedicalImaging (Whitcher, Clayden, Muschelli).
• MetaAnalysis (Dewey, Viechtbauer).
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• MissingData (Josse, Mayer, Tierney, Vialaneix).
• MixedModels (Bolker, Piaskowski, Tanaka, Alday, Viechtbauer).
• ModelDeployment (Tang, Balamuta).
• NaturalLanguageProcessing (Wild).
• NetworkAnalysis (Telarico, Krivitsky, Hollway).
• NumericalMathematics (Borchers, Hankin, Sokol).
• OfficialStatistics (Templ, Kowarik, Schoch).
• Omics (Aubert, Hocking, Vialaneix).
• Optimization (Schwendinger, Borchers).
• Paleontology (Gearty, Jones, Dillon, Godoy, Drage, Dean, Farina).
• Pharmacokinetics (Denney, Nayak).
• Phylogenetics (Gearty, O’Meara, Berv, Ballen, Ferreira, Lapp, Schmitz, Smith, Upham,

Nations).
• Psychometrics (Mair, Rosseel, Gruber).
• ReproducibleResearch (Blischak, Hill, Marwick, Sjoberg, Landau).
• Robust (Maechler).
• Spatial (Bivand, Nowosad).
• SpatioTemporal (Pebesma, Bivand).
• SportsAnalytics (Baumer, Nguyen, Matthews).
• Survival (Allignol, Latouche).
• TeachingStatistics (Northrop).
• TimeSeries (Hyndman, Killick).
• Tracking (Joo, Basille).
• WebTechnologies (Sepulveda, Beasley).

8 Outlook

The new CRAN Task View Initiative has redesigned and relaunched the infrastructure and
workflows for CRAN Task Views so that they can thrive in the years to come. In particular,
many tools are used that are well-established in the R community such as knitr/rmarkdown
or collaborations through GitHub projects. Moreover, various steps have been taken in
order to assure that all task views are actively maintained and foster contributions from the
community, either in terms of additions/improvements for existing task views, or in the
form of new proposals.

Since announcing the new initiative in Spring 2022, many task views were already
improved, e.g., by adding new content, extending the maintainer teams, or incorporating
feedback from the community. Additionally, there were already twelve successful new task
view proposals (ActuarialScience, Agriculture, CausalInference, CompositionalData, Dy-
namicVisualizations, Epidemiology, MixedModels, NetworkAnalysis, Omics, Paleontology,
Phylogenetics, SportsAnalytics). This shows that the review and onboarding process for
the new task views works successfully. While the review and revision times are sometimes
somewhat long (as the work on the task views is typically not a top priority in the jobs of
either the editors or the task view authors), we feel that the reviews are very constructive,
often involve other community members, and yield task views of higher quality.

While these steps already accomplished important improvements in the initiative, further
challenges remain for the future. Apart from improving the breadth and depth of the task
views, the most important aim is probably to better connect with those R users who would
profit from the information provided in the task views. We feel that this was easier in the
mid-2000s for two reasons:

1. CRAN (and hence its task views) were actively browsed/searched by many R users,
whereas today many more users will expect that useful content is presented to them,
e.g., via either search engines or large language models.

2. Twenty years ago, the R community was smaller, and there was a common under-
standing of “free” software as a contract between developers and users to actively
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share in the progress of a given project (as in the spirit of the “Debian Social Contract”,
see https://www.debian.org/social_contract, especially point 2). Since then the R
community has grown in size and complexity, the typical career paths of new members
have changed, and R is increasingly perceived as one among many free-of-charge
software applications. But in contrast to R, most of the other free-of-charge software is
actually paid for by surrendering data, not by sharing a responsibility for the progress
of the project.

Both of these points have probably affected the expectations of users with regard to how
much effort to apply to learning about the software they have chosen to use (but which
they are not purchasing). This needs to be taken into account in further improvement of
the effectiveness of task views. Therefore, one goal is to improve discoverability, including
tags for search engine optimization, and prompts for chatbots based on large language
models (LLMs). In terms of tags, DublinCore and Highwire Press metainformation tags
have already been added to the HTML pages. In terms of LLM-based chatbots, it appears
that prompts such as “Where can I find more information on R packages for X?”, where X is
(closely related to) a task view topic, typically links to the corresponding CRAN Task Views.

Another goal is to better connect with those sub-communities for whom the task views
are relevant. This could be accomplished by including more representatives from these sub-
communities in broader teams of task view maintainers, in order to restore the open source
social contract and sharing the responsibility for the task views. Moreover, listing the task
views in more online overviews/tutorials geared towards these different sub-communities
would help to spread the information.

We end with a call to the R community to support us in accomplishing these goals:

• If you find task views useful, pass on the information to your colleagues and students.
For example by including links in tutorials or course materials or by spreading the
word on your social media channels.

• If task views have been useful for you, e.g., for improving the set of tools for research
projects, consider citing the relevant task views in the resulting manuscripts.

• If you have ideas for improving task views, please let us know as described in Section 4.
Suggestions regarding the task view infrastructure in general are very welcome as are
concrete ideas for the different existing task views.

• If you are interested in establishing a task view on a new topic in your field, recruit
contributors and submit a proposal (as outlined in Section 4).

Any of the above are highly appreciated and would help us and the maintainers of CRAN
Task Views to continue to aid R users and developers in making topical and informed choices
about the R packages in their workflows.
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boinet: An R Package for Bayesian
Optimal Interval Design for Dose Finding
Based on Both Efficacy and Toxicity
Outcomes
by Yusuke Yamaguchi, Kentaro Takeda and Kazushi Maruo

Abstract Bayesian optimal interval based on both efficacy and toxicity outcomes (BOIN-ET)
design is a model-assisted oncology phase I/II trial design, aiming to establish an optimal
biological dose accounting for efficacy and toxicity in the framework of dose-finding. Some
extensions of BOIN-ET design are also available to allow for time-to-event efficacy and
toxicity outcomes based on cumulative and pending data (time-to-event BOIN-ET: TITE-
BOIN-ET), ordinal graded efficacy and toxicity outcomes (generalized BOIN-ET: gBOIN-ET),
and their combination (TITE-gBOIN-ET). boinet package is an R package to implement
the BOIN-ET design family. The package supports the conduct of simulation studies to
assess operating characteristics of BOIN-ET, TITE-BOIN-ET, gBOIN-ET, and TITE-gBOIN-ET
designs, where users can choose design parameters in flexible and straightforward ways
depending on their own application. We demonstrate its capability and effectiveness using
several simulation studies.

1 Introduction

A paradigm shift in anti-cancer treatment with the emergence of molecular targeted agents
and immunotherapies is calling for a reform of dose-finding strategy in phase I oncology
clinical trials. Traditional dose-finding procedures designed to establish the maximum
tolerated dose underlie an assumption of a monotonic dose-efficacy relationship; that is,
the higher dose level is assumed to be more toxic and efficacious. However, the monotonic
dose-efficacy relationship would be doubtful in many cases of the targeted agents and
immunotherapies, where the efficacy may reach a plateau beyond a given dose level or
even take an umbrella shape (Calabrese and Baldwin, 2001; LoRusso et al., 2010; Reynolds,
2010). Accordingly, a concept of optimal biological dose (OBD) has been introduced into
the framework of dose-finding (Corbaux et al., 2019; Fraisse et al., 2021). The OBD, which
is generally defined as a tolerable dose having adequate efficacy under an assumption of
non-monotonic dose-efficacy relationships, is established with a dose-escalation rule based
jointly on toxicity and efficacy. Numerous dose-finding designs to incorporate the trade-off
between toxicity and efficacy have been proposed, broadly classified as algorithm-based
designs (Lin and Ji, 2020), model-based designs (Thall and Cook, 2004; Yuan et al., 2016;
Riviere et al., 2018), and model-assisted designs (Takeda et al., 2018; Yuan et al., 2019; Li
et al., 2020; Lin et al., 2020; Yin and Yuan, 2020; Lin and Ji, 2021). Particularly, the model-
assisted designs are known to yield superior performance compared with more complicated
model-based designs and to be implemented in as simple a way as the algorithm-based
designs (Yuan et al., 2019).

Bayesian optimal interval based on efficacy and toxicity outcomes (BOIN-ET) design
proposed by Takeda et al. (2018) is one of the model-assisted designs and has been widely
used to establish the OBD, where the dose-escalation decision is determined by minimizing
a posterior probability of incorrect dose assignments in terms of both efficacy and toxicity.
Furthermore, the BOIN-ET design has been extended in two ways to accommodate impor-
tant clinical features unique to molecular targeted agents and immunotherapies. Firstly, the
occurrence of efficacy responses and/or adverse events may be delayed due to the mecha-
nism of the agents. Such late-onset efficacy and toxicity outcomes usually require a longer
assessment window than the typical first one or two cycles for the traditional cytotoxic
agents (Postel-Vinay et al., 2009; Weber et al., 2015). Ignoring the feature of late-onset toxicity
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may cause potential dose reductions or interruptions in later phase trials. To allow for
sequential enrollment even before patients have completed the required efficacy and toxicity
assessment window, Takeda et al. (2020) proposed time-to-event BOIN-ET (TITE-BOIN-ET)
design, which extends the BOIN-ET design to use cumulative and pending data of both
efficacy and toxicity for the dose-escalation decision (Lin and Yuan, 2020). Secondly, the
efficacy and toxicity outcomes are often summarized by binary outcomes, scored as an
overall response (ORR) or not an ORR for efficacy, and scored as a dose-limiting toxicity
(DLT) or not a DLT for toxicity; however, the molecular targeted agents and immunother-
apies are more likely to be featured by multiple low or moderate grades of toxicities than
DLTs (Penel et al., 2011). Besides, the efficacy response may prefer to be evaluated by the
combination of ORR and long-term stable disease (SD) in solid tumors and by accounting
for the difference between complete remission (CR) and partial remission (PR) in lymphoma.
To allow for the ordinal graded efficacy and toxicity assessment, Takeda et al. (2022a) pro-
posed generalized BOIN-ET (gBOIN-ET), which extends the BOIN-ET design to use ordinal
graded efficacy and toxicity data for the dose-escalation decision. Takeda et al. (2023) pro-
posed time-to-event generalized BOIN-ET (TITE-gBOIN-ET) to address simultaneously the
aforementioned challenges of the late-onset ordinal graded efficacy and toxicity outcomes.
Keyboard package (Yuan et al., 2025) and escalation package (Brock et al., 2024) are existing
R packages that implement other types of the OBD-finding designs, while there are no R
packages that provide functions to implement the BOIN-ET, TITE-BOIN-ET, gBOIN-ET, and
TITE-gBOIN-ET design.

boinet package (Yamaguchi and Takeda, 2025) is an R package to implement the BOIN-
ET design family. The package supports the conduct of simulation studies to assess operating
characteristics of BOIN-ET, TITE-BOIN-ET, gBOIN-ET, and TITE-gBOIN-ET, where users
can choose design parameters in flexible and straightforward ways depending on their own
application. It should be noted that the selection of OBD in the BOIN-ET design family is
carried out at the end of the trial after completing the dose-escalation procedure: (i) the
toxicity and efficacy probabilities at each dose level are estimated using all data obtained
from the entire cohort, and then (ii) given the estimated toxicity and efficacy probabilities,
the utility to measure the toxicity-efficacy trade-off is computed and serves as a basis for the
OBD selection. The boinet package offers several options regarding methods to estimate
the efficacy probability and measures to select the OBD. The operating characteristics of the
design are summarized by the percentage of times that each dose level is selected as OBD
and the average number of patients who are treated at each dose level. The percentage of
times that the study is terminated and the expected study duration are also provided. We
demonstrate the capability and effectiveness of the boinet package.

This article is organized as follows. We first describe the BOIN-ET, TITE-BOIN-ET,
gBOIN-ET, and TITE-gBOIN-ET designs implemented by the package. We then provide
details on how to use the boinet package through simulation studies. The article is concluded
with a brief discussion.

2 Case example

The BOIN-ET design family is a relatively new methodological development, and while
they are being implemented in ongoing trials, published case results using these specific
designs are still forthcoming. We here provide one case study that has actually implemented
the TITE-BOIN-ET design.

A two-part phase I/II study evaluating a combination of luspatercept and erythropoiesis-
stimulating agent (ESA) in patients with low-risk myelodysplastic syndromes without ring
sideroblasts having failed to achieve a response after ESA without disease progression is
being conducted (Ades et al., 2024). The primary objective of this dose-finding part of the
trial was to determine the optimal dose in terms of both toxicity and efficacy for luspatercept
+ ESA, for selection in the randomized part B of the trial. Based on a TITE-BOIN-ET design,
four dose levels were tested: Dose level 1 (n=3); Dose level 2 (n=3); Dose Level 3 (n=3); Dose
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Level 4 (n=15). The toxicity was measured by a dose-limiting toxicity at Day 21 of cycle 1
for non-hematological toxicity, up to Day 42 for hematological toxicity. The efficacy was
measured by a response rate (complete response + partial response + stable disease with
hematological improvement), and the assessment window for efficacy was 21 days.

3 Methodology

Consider a dose-finding trial aiming to determine the OBD of a test drug, and suppose that
J dose levels are investigated by sequentially assigning small cohorts of patients to the next
dose levels until reaching a maximum number of patients enrolled. Suppose that patients in
the current cohort have been treated at dose level j, and let nj denote the cumulative number
of patients treated at dose level j for j = 1, . . . , J. Let τT and τE be the assessment window
for toxicity and efficacy respectively. We below describe the dose-escalation procedure
in the BOIN-ET, TITE-BOIN-ET, gBOIN-ET, and TITE-gBOIN-ET designs, followed by an
introduction to the OBD selection. Further details are found in the original articles (Takeda
et al., 2018, 2020, 2022b,a, 2023).

3.1 Dose-escalation procedure in BOIN-ET and TITE-BOIN-ET design

Let pTj and pEj be a true toxicity and efficacy probability at dose level j for j = 1, . . . , J,
respectively. Let ϕp and δp be a target toxicity and efficacy probability respectively, which are
pre-specified by trial physicians according to the disease and the definition of toxicity and
efficacy. Lower and upper toxicity boundaries are pre-specified as λ

p
1 and λ

p
2 respectively,

which satisfy a condition of 0 ≤ λ
p
1 ≤ ϕp ≤ λ

p
2 < 1. A lower efficacy boundary is also

pre-specified as η
p
1 with a condition of 0 ≤ η

p
1 < δp < 1. Let p̂Tj and p̂Ej be an observed

toxicity and efficacy probability at dose level j respectively, which are calculated using the
cumulative toxicity and efficacy data in different ways for the BOIN-ET and TITE-BOIN-ET
design (see subsections below). Then, the dose level used in the next cohort is determined
by the following rule:

1. If p̂Tj ≤ λ
p
1 and p̂Ej ≤ η

p
1 , escalate to dose level j + 1.

2. If p̂Tj < λ
p
2 and p̂Ej > η

p
1 , stay at the same dose level j.

3. If p̂Tj ≥ λ
p
2 , de-escalate to dose level j − 1.

4. If λ
p
1 < p̂Tj < λ

p
2 and p̂Ej ≤ η

p
1 , consider the following additional rules:

4-1 If dose level j + 1 has never been used until the current cohort, escalate to dose
level j + 1.

4-2 Otherwise, choose arg maxj′∈{j−1,j,j+1} p̂Ej′ as the dose level for the next cohort;
if more than two dose levels have the same highest observed efficacy probability,
randomly select one of them.

Optimal values of (λp
1 , λ

p
2 , η

p
1 ) are determined as values that minimize a posterior probability

of incorrect decisions under the following six hypotheses:

H1j : (pTj = ϕ
p
1 , pEj = δ

p
1 ), H2j : (pTj = ϕ

p
1 , pEj = δp), H3j : (pTj = ϕp, pEj = δ

p
1 ),

H4j : (pTj = ϕp, pEj = δp), H5j : (pTj = ϕ
p
2 , pEj = δ

p
1 ), H6j : (pTj = ϕ

p
2 , pEj = δp)

where ϕ
p
1 is the highest toxicity probability that is deemed sub-therapeutic such that dose-

escalation should be pursued, and ϕ
p
2 is the lowest toxicity probability that is deemed

overly toxic such that dose de-escalation is needed. δ
p
1 is the minimum probability deemed

efficacious such that the dose levels with less than δ
p
1 are considered sub-therapeutic. Here,

ϕ
p
1 , ϕ

p
2 , and δ

p
1 are design parameters to be pre-specified along with the target probabilities

of ϕp and δp. Given non-informative prior probabilities of the six hypotheses; i.e., Pr(H1j) =
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Pr(H2j) = Pr(H3j) = Pr(H4j) = Pr(H5j) = Pr(H6j) = 1/6, a grid search approach can be
used to find the optimal values of (λp

1 , λ
p
2 , η

p
1 ) conditioned on ϕ

p
1 < λ

p
1 < ϕp < λ

p
2 < ϕ

p
2

and δ
p
2 < η

p
2 < δp. For example, considering ϕp = 0.3, ϕ

p
1 = 0.1ϕp, ϕ

p
2 = 1.4ϕp, δp = 0.6,

and δ
p
1 = 0.6δp, the optimal values of (λp

1 , λ
p
2 , η

p
1 ) are given by λ

p
1 = 0.14, λ

p
2 = 0.35, and

η
p
1 = 0.48.

A key difference between the BOIN-ET and TITE-BOIN-ET design is the timing to
determine the dose level used in the next cohort and to start the enrollment for the next
cohort. The BOIN-ET design requires all the patients enrolled in the current cohort to
complete the toxicity and efficacy assessment windows; in other words, the decision time
is always the time when the last patient enrolled in the cohort completes the toxicity and
efficacy assessment windows. In contrast, the TITE-BOIN-ET design allows for flexibility
in the decision time, where the dose escalation decision is based on the cumulative data
at a certain decision time. Differences in the decision time between the BOIN-ET and
TITE-BOIN-ET designs lead to different calculations of the observed toxicity and efficacy
probabilities, p̂Tj and p̂Ej for i = 1, . . . , nj, which are described below.

BOIN-ET (Takeda et al., 2018): Let yTij and yEij be a binary toxicity and efficacy outcome
observed within the assessment windows of τT and τE for the i-th patient at dose level j,
respectively. Given the cumulative toxicity and efficacy data for dose level j; i.e., {yTij : i =
1, . . . , nj} and {yEij : i = 1, . . . , nj}, we have p̂Tj = ∑

nj
i=1 yTij/nj and p̂Ej = ∑

nj
i=1 yEij/nj.

TITE-BOIN-ET (Takeda et al., 2020; Lin and Yuan, 2020): Let ỹTij be a binary toxicity
outcome observed at a certain decision time for the i-th patient at dose level j, where ỹTij = 1
if the patient has experienced the toxicity and ỹTij = 0 if the patient has not yet experienced
the toxicity. Let γTij denote that ỹTij is ascertained (γTij = 1) or is still pending (γTij = 0)
at the decision time, and uTij denote the time to the toxicity outcome if ỹTij = 1 and to
censoring if ỹTij = 0. Note that (ỹTij, γTij) = (0, 1) indicates the censoring at uTij = τT , and
(ỹTij, γTij) = (0, 0) indicates the censoring at uTij < τT . In the same way, (ỹEij, γEij, uEij) is
defined for efficacy data of the i-th patient at dose level j. Given the cumulative toxicity
and efficacy data for dose level j at the decision time; i.e., {(ỹTij, γTij, uTij) : i = 1, . . . , nj}
and {(ỹEij, γEij, uEij) : i = 1, . . . , nj}, we have p̂Tj = ∑

nj
i=1 ỹTij/ñTj and p̂Ej = ∑

nj
i=1 ỹEij/ñEj,

where ñTj = ∑
nj
i=1(γTij + (1 − γTij)uTij/τT) and ñEj = ∑

nj
i=1(γEij + (1 − γEij)uEij/τE).

3.2 Dose-escalation procedure in gBOIN-ET and TITE-gBOIN-ET design

Yuan et al. (2007) proposed an equivalent toxicity score (ETS) to measure the relative severity
of different toxicity grades in the dose allocation procedure and established the following
severity weights related to DLT: (1) grade 0 and 1 toxicities are not of concern (no DLT); (2)
two grade 2 toxicities are equivalent to a grade 3 toxicity (0.5 DLT); (3) a grade 3 toxicity is
equivalent to a DLT (1 DLT); and (4) a grade 4 toxicity is equivalent to 1.5 grade 3 toxicities
(1.5 DLT). A target ETS is obtained by a weighted sum of overall toxicity grades. Takeda et al.
(2022a) extended this concept to an efficacy score named the equivalent efficacy score (EES)
to measure the relative effectiveness of different efficacy outcomes and used the relative
effectiveness of different efficacy outcomes: (1) progressive disease (PD) is not an effective
outcome (no response); (2) an SD is equivalent to 0.25 PRs (0.25 responses); (3) a PR is
equivalent to a response (1 response); and (4) a CR is equivalent to 3.0 PRs (3.0 responses).
A target EES is obtained by a weighted sum of overall efficacy grades. In addition, the
normalized ETS and EES are defined as ETS∗ = ETS/ETSmax and EES∗ = EES/EESmax
respectively, where ETSmax is the ETS for the most severe toxicity grade and EESmax is the
EES for the most desirable efficacy response. The normalized ETS and EES ranging from 0
to 1 are assumed to follow quasi-Bernoulli distributions.

Let µTj and µEj be a true quasi-Bernoulli toxicity and efficacy probability at dose level j
for j = 1, . . . , J, respectively. Let ϕµ and δµ be a target quasi-Bernoulli toxicity and efficacy
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probability respectively. Lower and upper quasi-Bernoulli toxicity boundaries are pre-
specified as λ

µ
1 and λ

µ
2 respectively, which satisfy a condition of 0 ≤ λ

µ
1 ≤ ϕµ ≤ λ

µ
2 < 1.

A lower quasi-Bernoulli efficacy boundary is also pre-specified as η
µ
1 with a condition of

0 ≤ η
µ
1 < δµ < 1. Let µ̂Tj and µ̂Ej be an observed quasi-Bernoulli toxicity and efficacy

probability at dose level j respectively, which are calculated using the cumulative toxicity
and efficacy data in different ways for the gBOIN-ET and TITE-gBOIN-ET design (see
subsections below). Then, the dose level used in the next cohort is determined by the
following rule:

1. If µ̂Tj ≤ λ
µ
1 and µ̂Ej ≤ η

µ
1 , escalate to dose level j + 1.

2. If µ̂Tj < λ
µ
2 and µ̂Ej > η

µ
1 , stay at the same dose level j.

3. If µ̂Tj ≥ λ
µ
2 , de-escalate to dose level j − 1.

4. If λ
µ
1 < µ̂Tj < λ

µ
2 and µ̂Ej ≤ η

µ
1 , consider the following additional rules:

4-1 If dose level j + 1 has never been used until the current cohort, escalate to dose
level j + 1.

4-2 Otherwise, choose arg maxj′∈{j−1,j,j+1} µ̂Ej′ as the dose level for the next cohort;
if more than two dose levels have the same highest observed quasi-Bernoulli
efficacy probability, randomly select one of them.

Optimal values of (λµ
1 , λ

µ
2 , η

µ
1 ) are determined as values that minimize a posterior probability

of incorrect decisions under the following six hypotheses:

H1j : (µTj = ϕ
µ
1 , µEj = δ

µ
1 ), H2j : (µTj = ϕ

µ
1 , µEj = δµ), H3j : (µTj = ϕµ, µEj = δ

µ
1 ),

H4j : (µTj = ϕµ, µEj = δµ), H5j : (µTj = ϕ
µ
2 , µEj = δ

µ
1 ), H6j : (µTj = ϕ

µ
2 , µEj = δµ)

where ϕ
µ
1 is the highest quasi-Bernoulli toxicity probability that is deemed sub-therapeutic

such that dose-escalation should be pursued, and ϕ
µ
2 is the lowest quasi-Bernoulli toxicity

probability that is deemed overly toxic such that dose de-escalation is needed. δ
µ
1 is the

minimum quasi-Bernoulli probability deemed efficacious such that the dose levels with less
than δ

µ
1 are considered sub-therapeutic. Given non-informative prior probabilities of the

six hypotheses; i.e., Pr(H1j) = Pr(H2j) = Pr(H3j) = Pr(H4j) = Pr(H5j) = Pr(H6j) = 1/6,
a grid search approach can be used to find the optimal values of (λµ

1 , λ
µ
2 , η

µ
1 ) conditioned on

ϕ
µ
1 < λ

µ
1 < ϕµ < λ

µ
2 < ϕ

µ
2 and δ

µ
2 < η

µ
2 < δµ. For example, considering ϕµ = 0.313 (which is

the case of target ETS = 0.47 and ETSmax = 1.5), ϕ
µ
1 = 0.1ϕµ, ϕ

µ
2 = 1.4ϕµ, δµ = 0.583 (which

is the case of target EES = 1.75 and EESmax = 3.0), and δ
µ
1 = 0.6δµ, the optimal values of

(λ
µ
1 , λ

µ
2 , η

µ
1 ) are given by λ

µ
1 = 0.14, λ

µ
2 = 0.37, and η

µ
1 = 0.46.

The relationship between the gBOIN-ET and TITE-gBOIN-ET designs is the same as
that between the BOIN-ET and TITE-BOIN-ET designs. The gBOIN-ET design requires all
the patients enrolled in the current cohort to complete the toxicity and efficacy assessment
windows. In contrast, the TITE-gBOIN-ET design allows for flexibility in the decision time,
where the dose escalation decision is based on the cumulative data at a certain decision time.
The observed quasi-Bernoulli toxicity and efficacy probabilities, µ̂Tj and µ̂Ej for i = 1, . . . , nj,
in the gBOIN-ET and TITE-gBOIN-ET design are calculated as follows.

gBOIN-ET (Takeda et al., 2022a): Let xTij and xEij be a quasi-Bernoulli toxicity and efficacy
outcome (i.e., normalized ETS and EES) observed within the assessment windows of τT
and τE for the i-th patient at dose level j, respectively. Given the cumulative toxicity and
efficacy data for dose level j; i.e., {xTij : i = 1, . . . , nj} and {xEij : i = 1, . . . , nj}, we have

µ̂Tj = ∑
nj
i=1 xTij/nj and µ̂Ej = ∑

nj
i=1 xEij/nj.
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TITE-gBOIN-ET (Takeda et al., 2023): Let x̃Tij be a quasi-Bernoulli toxicity outcome (i.e.,
normalized ETS) observed at a certain decision time for the i-th patient at dose level j, where
x̃Tij = 1 if the patient has experienced the toxicity and x̃Tij = 0 if the patient has not yet
experienced the toxicity. Let κTij denote that x̃Tij is ascertained (κTij = 1) or is still pending
(κTij = 0) at the decision time, and vTij denote the time to the toxicity outcome if x̃Tij = 1 and
to censoring if x̃Tij = 0. Note that (x̃Tij, κTij) = (0, 1) indicates the censoring at vTij = τT ,
and (x̃Tij, κTij) = (0, 0) indicates the censoring at vTij < τT . In the same way, (x̃Eij, κEij, vEij)
is defined for efficacy data of the i-th patient at dose level j. Given the cumulative toxicity
and efficacy data for dose level j at the decision time; i.e., {(x̃Tij, κTij, vTij) : i = 1, . . . , nj}
and {(x̃Eij, κEij, vEij) : i = 1, . . . , nj}, we have µ̂Tj = ∑

nj
i=1 x̃Tij/ṅTj and µ̂Ej = ∑

nj
i=1 x̃Eij/ṅEj,

where ṅTj = ∑
nj
i=1(κTij + (1 − κTij)vTij/τT) and ṅEj = ∑

nj
i=1(κEij + (1 − κEij)vEij/τE).

3.3 Optimal biological dose selection

In the BOIN-ET design family, the selection of OBD is carried out at the end of the trial after
completing the dose-escalation procedure. Firstly, the (quasi-Bernoulli) toxicity and efficacy
probabilities at each dose level are estimated using all data obtained from the entire cohort.
Then, given the estimated (quasi-Bernoulli) toxicity and efficacy probabilities, the utility
to measure the toxicity-efficacy trade-off is computed and serves as a basis for the OBD
selection. We below describe the estimation method of the toxicity and efficacy probabilities
and the OBD selection measures.

Estimation of (quasi-Bernoulli) toxicity probability To ensure the monotonically increas-
ing dose-toxicity relationship, isotonic regression (Bril et al., 1984) is usually used to estimate
the (quasi-Bernoulli) toxicity probability. Specifically, the pool-adjacent-violators algorithm
(Barlow et al., 1972) is performed on the observed (quasi-Bernoulli) toxicity probability to
obtain the estimated (quasi-Bernoulli) toxicity probability.

Estimation of (quasi-Bernoulli) efficacy probability The dose-efficacy relationship is
typically unknown at the design stage and may show nonmonotonic patterns. There are
three methods available to estimate the (quasi-Bernoulli) efficacy probability:

• Simple use of the observed (quasi-Bernoulli) efficacy probability

• Model averaging of multiple unimodal isotonic regressions (Lin and Yin, 2017)

• Fractional polynomial logistic regression (Takeda et al., 2018)

Measure to select the OBD Given the estimated (quasi-Bernoulli) toxicity and efficacy
probabilities, there are four different measures to select the OBD. Three of them are to select
a dose that maximizes a utility quantifying the toxicity-efficacy trade-off, and the other is to
select an admissible dose that offers the highest estimated efficacy probability. Specifically,
the OBD is selected as a dose level of:

• Maximizing utility defined by a weighted function (Lin and Yin, 2017; Zhou et al.,
2019)

• Maximizing utility defined by truncated linear functions (Li et al., 2020; Lin and Ji,
2021)

• Maximizing utility defined by scoring (Lin et al., 2020)

• Having the highest (quasi-Bernoulli) efficacy probability among admissible doses
(Takeda et al., 2018)
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Yamaguchi et al. (2024) reported the comparative performance of several OBD selection
approaches, in which users can find guidance on the choice of (i) the method to estimate
the efficacy probability, and (ii) the measure to select the OBD. In general, the most straight-
forward measure, selecting an admissible dose with the highest efficacy, is recommended
for selecting the OBD due to its simplicity, and the efficacy probability modeling would
lead to limited gains in the OBD selection (Yamaguchi et al., 2024). Default options used
in many functions of boinet package are (i) simple use of the observed (quasi-Bernoulli)
efficacy probability, and (ii) having the highest (quasi-Bernoulli) efficacy probability among
admissible doses.

3.4 Additional dose-escalation rules

Some additional dose-escalation rules implemented in the boinet package are described
below. During the dose-escalation, dose skipping is not allowed from a safety viewpoint. In
addition, a dose elimination rule is introduced to avoid patient assignment to inefficient or
severely toxic dose levels. A dose level is eliminated from the investigation if a posterior
probability that the toxicity probability is greater than the target toxicity probability is larger
than a certain threshold, which is set to 0.95 as the default. Apart from this, a dose level is
eliminated from the investigation if a posterior probability that the efficacy probability is
less than the minimum efficacy probability is larger than a certain threshold, which is set to
0.99 as the default. When dose levels at which the next cohort patients would be assigned
have been eliminated, the trial is terminated, and the patient enrollment is stopped. At the
end of the trial, if all dose levels are eliminated due to these criteria, the OBD is determined
as not applicable.

Other cases in which early trial termination is implemented include (i) when the decision
is de-escalation from the lowest dose, and (ii) when the number of patients treated at the
current dose level reaches a certain threshold, which is set to the maximum sample size as
default. Moreover, when the decision is escalation from the highest dose, the stay decision is
made alternatively. In addition, if no patients are allocated to some dose levels (for example,
a case where the dose-escalation procedure does not reach the highest dose level), these
dose levels are not included in the estimation of toxicity and efficacy probabilities.

4 Implementation

We below illustrate the four main functions from the boinet package: boinet(),
tite.boinet(), gboinet(), and tite.gboinet() which conduct simulation studies with
a particular scenario and provide operating characteristics of the BOIN-ET, TITE-BOIN-
ET, gBOIN-ET, and TITE-gBOIN-ET designs, respectively. The boinet package is
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-
project.org/package=boinet. Further to the conduct of simulation studies, the package
offers a function, obd.select(), which can be used for selecting the OBD at the end of an
actual trial. The illustration of this function is omitted here but it asks users to enter the
estimated toxicity and efficacy probabilities for each dose level, the design parameters (e.g.,
target toxicity and efficacy probability), and the measure to select the OBD, returning an
OBD.

As simulation study settings used commonly for the BOIN-ET, TITE-BOIN-ET, gBOIN-
ET, and TITE-gBOIN-ET design, consider a dose-finding trial with six dose levels and
suppose that three patients were enrolled per cohort. In particular, the trial treated three
patients at the lowest dose level in the first cohort and then sequentially assigned three
patients to the next dose level until reaching the maximum sample size of 36 patients (i.e.,
12 cohorts at the maximum). The target (quasi-Bernoulli) toxicity and efficacy probability
were set to 0.33 and 0.60 respectively. The toxicity and efficacy assessment windows were 30
and 45 days respectively, and the accrual rate (average number of days necessary to enroll 1
patient) was 10 days. These simulation study settings were given by:
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Figure 1: Dose-toxicity and dose-efficacy relationship considered in simulation study.

> n.dose <- 6 # Six dose levels
> start.dose <- 1 # Starting with the lowest dose level
> size.cohort <- 3 # Three patients assigned to each cohort
> n.cohort <- 12 # Twelve cohorts at the maximum

> # Target (quasi-Bernoulli) toxicity and efficacy probability
> phi <- 0.33
> delta <- 0.60
>
> tau.T <- 30 # Thirty days of toxicity assessment windows
> tau.E <- 45 # Forty-five days of efficacy assessment windows
> accrual <- 10 # Ten days of accrual rate

4.1 BOIN-ET

The boinet() function supports the conduct of simulation studies for the BOIN-ET design
and returns a list of the summary results. The usage of the boinet() function is as follows:

boinet(
n.dose, start.dose, size.cohort, n.cohort,
toxprob, effprob,
phi=0.3, phi1=phi*0.1, phi2=phi*1.4, delta=0.6, delta1=delta*0.6,
alpha.T1=0.5, alpha.E1=0.5, tau.T, tau.E,
te.corr=0.2, gen.event.time="weibull",
accrual, gen.enroll.time="uniform",
stopping.npts=size.cohort*n.cohort,
stopping.prob.T=0.95, stopping.prob.E=0.99,
estpt.method="obs.prob", obd.method="max.effprob",
w1=0.33, w2=1.09,
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plow.ast=phi1, pupp.ast=phi2, qlow.ast=delta1/2, qupp.ast=delta,
psi00=40, psi11=60,
n.sim=1000, seed.sim=100)

Some of the key arguments are detailed in Table 1, 2, 3, and 4 in Appendix. Here, toxprob
and effprob are vectors of true toxicity and efficacy probabilities with a length equal to the
number of dose levels investigated.

We considered a scenario of the true toxicity and efficacy probabilities as given in Figure
1(a):

> toxprob <- c(0.05,0.15,0.25,0.35,0.45,0.55)
> effprob <- c(0.05,0.30,0.55,0.57,0.59,0.61)

and used (i) the observed efficacy probability for the efficacy probability estimation and (ii)
the highest estimated efficacy probability as the measure to select the OBD:

> estpt.method <- "obs.prob"
> obd.method <- "max.effprob"

Then, the boinet() is implemented with the previously specified arguments:

> boinet(
+ n.dose=n.dose, start.dose=start.dose,
+ size.cohort=size.cohort, n.cohort=n.cohort,
+ toxprob=toxprob, effprob=effprob,
+ phi=phi, delta=delta,
+ tau.T=tau.T, tau.E=tau.E, accrual=accrual,
+ estpt.method=estpt.method, obd.method=obd.method)

and returns the following output:

Simulation results:

Dose1 Dose2 Dose3 Dose4 Dose5 Dose6
Toxicity prob. 0.05 0.15 0.25 0.35 0.45 0.55
Efficacy prob. 0.05 0.30 0.55 0.57 0.59 0.61
No. Pts treated 3.40 7.00 15.90 7.00 2.00 0.60
Select % 1.70 12.00 54.40 25.50 5.30 0.80

No OBD % 0.3
Trial duration (days) 778.9

Trial design settings:

Target toxicity prob. 0.330
Target efficacy prob. 0.600
Lower toxicity boundary 0.153
Upper toxicity boundary 0.390
Lower efficacy boundary 0.480

Tox. assessment window (days) 30
Eff. assessment window (days) 45
Accrual rate (days) 10

Efficacy prob. estimation: obs.prob

OBD selection: max.effprob
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The simulation results include the number or the percentage of times that each dose level
was selected as OBD (Select %), the average number of patients who were treated at each
dose level (No. Pts treated), the percentage of times that the study was terminated (Stop
%), and the expected study duration (Trial duration (days)). The trial design settings,
such as the lower and upper toxicity/efficacy boundaries used for the dose-escalation, are
also displayed. The average number of patients treated at Dose 3 was 15.90, and Dose 3 was
selected as an OBD in 54.40% of the simulated trials, on average. The OBD was not selected
in 0.3% of the simulated trials, on average. The trial duration was an average of 778.9 days.

4.2 TITE-BOIN-ET

The tite.boinet() function supports the conduct of simulation studies for the TITE-BOIN-
ET design and returns a list of the summary results. The usage of the tite.boinet() function
is as follows:

tite.boinet(
n.dose, start.dose, size.cohort, n.cohort,
toxprob, effprob,
phi=0.3, phi1=phi*0.1, phi2=phi*1.4, delta=0.6, delta1=delta*0.6,
alpha.T1=0.5, alpha.E1=0.5, tau.T, tau.E,
te.corr=0.2, gen.event.time="weibull",
accrual, gen.enroll.time="uniform",
stopping.npts=size.cohort*n.cohort,
stopping.prob.T=0.95, stopping.prob.E=0.99,
estpt.method="obs.prob", obd.method="max.effprob",
w1= 0.33, w2=1.09,
plow.ast=phi1, pupp.ast=phi2, qlow.ast=delta1/2, qupp.ast=delta,
psi00=40, psi11=60,
n.sim=1000, seed.sim=100)

Some of the key arguments are detailed in Table 1, 2, 3, and 4 in Appendix. It should be
noted that the TITE-BOIN-ET design has a suspension rule which holds off the decision
on dose allocation (i.e., patient enrollment to the next cohort) until adequate information
is collected, where the dose allocation is allowed only if more than 50% of patients have
finished the assessment at the current dose level.

We considered a scenario of the true toxicity and efficacy probabilities as given in Figure
1(a):

> toxprob <- c(0.05,0.15,0.25,0.35,0.45,0.55)
> effprob <- c(0.05,0.30,0.55,0.57,0.59,0.61)

and used (i) the observed efficacy probability for the efficacy probability estimation and (ii)
the highest estimated efficacy probability as the measure to select the OBD:

> estpt.method <- "obs.prob"
> obd.method <- "max.effprob"

Then, the tite.boinet() is implemented with the previously specified arguments:

> tite.boinet(
+ n.dose=n.dose, start.dose=start.dose,
+ size.cohort=size.cohort, n.cohort=n.cohort,
+ toxprob=toxprob, effprob=effprob,
+ phi=phi, delta=delta,
+ tau.T=tau.T, tau.E=tau.E, accrual=accrual,
+ estpt.method=estpt.method, obd.method=obd.method)

and returns the following output:
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Simulation results:

Dose1 Dose2 Dose3 Dose4 Dose5 Dose6
Toxicity prob. 0.05 0.15 0.25 0.35 0.45 0.55
Efficacy prob. 0.05 0.30 0.55 0.57 0.59 0.61
No. Pts treated 3.60 6.40 14.60 7.40 3.00 0.90
Select % 1.80 12.90 55.10 22.50 6.20 1.00

No OBD % 0.5
Trial duration (days) 476.5

Trial design settings:

Target toxicity prob. 0.330
Target efficacy prob. 0.600
Lower toxicity boundary 0.153
Upper toxicity boundary 0.390
Lower efficacy boundary 0.480

Tox. assessment window (days) 30
Eff. assessment window (days) 45
Accrual rate (days) 10

Efficacy prob. estimation: obs.prob

OBD selection: max.effprob

The average number of patients treated at Dose 3 was 14.60, and Dose 3 was selected as an
OBD in 55.10% of the simulated trials, on average. The OBD was not selected in 0.5% of the
simulated trials, on average. The trial duration was an average of 476.5 days.

4.3 gBOIN-ET

The gboinet() function supports the conduct of simulation studies for the gBOIN-ET design
and returns a list of the summary results. The usage of the gboinet() function is as follows:

gboinet(
n.dose, start.dose, size.cohort, n.cohort,
toxprob, effprob, sev.weight, res.weight,
phi, phi1=phi*0.1, phi2=phi*1.4, delta, delta1=delta*0.6,
alpha.T1=0.5, alpha.E1=0.5, tau.T, tau.E,
te.corr=0.2, gen.event.time="weibull",
accrual, gen.enroll.time="uniform",
stopping.npts=size.cohort*n.cohort,
stopping.prob.T=0.95, stopping.prob.E=0.99,
estpt.method="obs.prob", obd.method="max.effprob",
w1=0.33, w2=1.09,
plow.ast=phi1, pupp.ast=phi2, qlow.ast=delta1/2, qupp.ast=delta,
psi00=40, psi11=60,
n.sim=1000, seed.sim=100)

Some of the key arguments are detailed in Table 1, 2, 3, and 4 in Appendix. Here, toxprob
and effprob are matrices of true quasi-Bernoulli toxicity and efficacy probabilities with
a row length equal to the number of outcome categories and a column length equal to
the number of dose levels investigated. sev.weight and res.weight are weights assigned
to toxicity and efficacy outcome categories respectively. For example, considering the
ETS and EES, we can use sev.weight=c(0.00,0.50,1.00,1.50) for grade 0/1, 2, 3, and 4
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toxicity and res.weight=c(0.00,0.25,1.00,3.00) for PD, SD, PR, and CR efficacy response,
respectively

We considered a scenario of the true quasi-Bernoulli toxicity and efficacy probabilities as
given in Figure 1(b):

> toxprob <- rbind(c(0.82,0.65,0.41,0.42,0.34,0.26),
+ c(0.10,0.20,0.34,0.28,0.31,0.34),
+ c(0.05,0.10,0.15,0.18,0.21,0.24),
+ c(0.03,0.05,0.10,0.12,0.14,0.16))
>
> effprob <- rbind(c(0.30,0.20,0.05,0.05,0.05,0.05),
+ c(0.35,0.30,0.25,0.20,0.15,0.10),
+ c(0.30,0.40,0.20,0.25,0.30,0.30),
+ c(0.05,0.10,0.50,0.50,0.50,0.55))

The weights assigned to toxicity and efficacy outcome categories were given by:

> sev.weight <- c(0.00,0.50,1.00,1.50)
> res.weight <- c(0.00,0.25,1.00,3.00)

and we used (i) the observed efficacy probability for the efficacy probability estimation and
(ii) the highest estimated efficacy probability as the measure to select the OBD:

> estpt.method <- "obs.prob"
> obd.method <- "max.effprob"

Then, the gboinet() is implemented with the previously specified arguments:

> gboinet(
+ n.dose=n.dose, start.dose=start.dose,
+ size.cohort=size.cohort, n.cohort=n.cohort,
+ toxprob=toxprob, effprob=effprob,
+ sev.weight=sev.weight, res.weight=res.weight,
+ phi=phi, delta=delta,
+ tau.T=tau.T, tau.E=tau.E, accrual=accrual,
+ estpt.method=estpt.method, obd.method=obd.method)

and returns the following output:

Simulation results:

Dose1 Dose2 Dose3 Dose4 Dose5 Dose6
Tox.cat1 0.82 0.65 0.41 0.42 0.34 0.26
Tox.cat2 0.10 0.20 0.34 0.28 0.31 0.34
Tox.cat3 0.05 0.10 0.15 0.18 0.21 0.24
Tox.cat4 0.03 0.05 0.10 0.12 0.14 0.16
nETS 0.10 0.18 0.31 0.33 0.38 0.43
Eff.cat1 0.30 0.20 0.05 0.05 0.05 0.05
Eff.cat2 0.35 0.30 0.25 0.20 0.15 0.10
Eff.cat3 0.30 0.40 0.20 0.25 0.30 0.30
Eff.cat4 0.05 0.10 0.50 0.50 0.50 0.55
nEES 0.18 0.26 0.59 0.60 0.61 0.66
No. Pts treated 3.80 7.20 17.60 5.40 1.70 0.30
Select % 2.90 8.20 63.10 19.50 5.50 0.70

No OBD % 0.1
Trial duration (days) 780.1
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Trial design settings:

Target toxicity prob. 0.330
Target efficacy prob. 0.600
Lower toxicity boundary 0.153
Upper toxicity boundary 0.390
Lower efficacy boundary 0.480

Tox. assessment window (days) 30
Eff. assessment window (days) 45
Accrual rate (days) 10

Efficacy prob. estimation: obs.prob

OBD selection: max.effprob

The average number of patients treated at Dose 3 was 17.60, and Dose 3 was selected as an
OBD in 63.10% of the simulated trials, on average. The OBD was not selected in 0.1% of the
simulated trials, on average. The trial duration was an average of 780.1 days.

4.4 TITE-gBOIN-ET

The tite.gboinet() function supports the conduct of simulation studies for the gBOIN-ET
design and returns a list of the summary results. The usage of the tite.gboinet() function
is as follows:

tite.gboinet(
n.dose, start.dose, size.cohort, n.cohort,
toxprob, effprob, sev.weight, res.weight,
phi, phi1=phi*0.1, phi2=phi*1.4, delta, delta1=delta*0.6,
alpha.T1=0.5, alpha.E1=0.5, tau.T, tau.E,
te.corr=0.2, gen.event.time="weibull",
accrual, gen.enroll.time="uniform",
stopping.npts=size.cohort*n.cohort,
stopping.prob.T=0.95, stopping.prob.E=0.99,
estpt.method="obs.prob", obd.method="max.effprob",
w1=0.33, w2=1.09,
plow.ast=phi1, pupp.ast=phi2, qlow.ast=delta1/2, qupp.ast=delta,
psi00=40, psi11=60,
n.sim=1000, seed.sim=100)

Some of the key arguments are detailed in Table 1, 2, 3, and 4 in Appendix. It should be
noted that the TITE-gBOIN-ET design has a suspension rule which holds off the decision
on dose allocation (i.e., patient enrollment to the next cohort) until adequate information
is collected, where the dose allocation is allowed only if more than 50% of patients have
finished the assessment at the current dose level.

We considered a scenario of the true quasi-Bernoulli toxicity and efficacy probabilities as
given in Figure 1(b):

> toxprob <- rbind(c(0.82,0.65,0.41,0.42,0.34,0.26),
+ c(0.10,0.20,0.34,0.28,0.31,0.34),
+ c(0.05,0.10,0.15,0.18,0.21,0.24),
+ c(0.03,0.05,0.10,0.12,0.14,0.16))
>
> effprob <- rbind(c(0.30,0.20,0.05,0.05,0.05,0.05),
+ c(0.35,0.30,0.25,0.20,0.15,0.10),
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+ c(0.30,0.40,0.20,0.25,0.30,0.30),
+ c(0.05,0.10,0.50,0.50,0.50,0.55))

The weights assigned to toxicity and efficacy outcome categories were given by:

> sev.weight <- c(0.00,0.50,1.00,1.50)
> res.weight <- c(0.00,0.25,1.00,3.00)

and we used (i) the observed efficacy probability for the efficacy probability estimation and
(ii) the highest estimated efficacy probability as the measure to select the OBD:

> estpt.method <- "obs.prob"
> obd.method <- "max.effprob"

Then, the tite.gboinet() is implemented with the previously specified arguments:

> tite.gboinet(
+ n.dose=n.dose, start.dose=start.dose,
+ size.cohort=size.cohort, n.cohort=n.cohort,
+ toxprob=toxprob, effprob=effprob,
+ sev.weight=sev.weight, res.weight=res.weight,
+ phi=phi, delta=delta,
+ tau.T=tau.T, tau.E=tau.E, accrual=accrual,
+ estpt.method=estpt.method, obd.method=obd.method)

and returns the following output:

Simulation results:

Dose1 Dose2 Dose3 Dose4 Dose5 Dose6
Tox.cat1 0.82 0.65 0.41 0.42 0.34 0.26
Tox.cat2 0.10 0.20 0.34 0.28 0.31 0.34
Tox.cat3 0.05 0.10 0.15 0.18 0.21 0.24
Tox.cat4 0.03 0.05 0.10 0.12 0.14 0.16
nETS 0.10 0.18 0.31 0.33 0.38 0.43
Eff.cat1 0.30 0.20 0.05 0.05 0.05 0.05
Eff.cat2 0.35 0.30 0.25 0.20 0.15 0.10
Eff.cat3 0.30 0.40 0.20 0.25 0.30 0.30
Eff.cat4 0.05 0.10 0.50 0.50 0.50 0.55
nEES 0.18 0.26 0.59 0.60 0.61 0.66
No. Pts treated 3.90 7.20 15.70 6.20 2.40 0.60
Select % 3.00 8.10 61.00 20.70 5.90 1.20

No OBD % 0.1
Trial duration (days) 441.0

Trial design settings:

Target toxicity prob. 0.330
Target efficacy prob. 0.600
Lower toxicity boundary 0.153
Upper toxicity boundary 0.390
Lower efficacy boundary 0.480

Tox. assessment window (days) 30
Eff. assessment window (days) 45
Accrual rate (days) 10
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Efficacy prob. estimation: obs.prob

OBD selection: max.effprob

The average number of patients treated at Dose 3 was 15.70, and Dose 3 was selected as an
OBD in 61.00% of the simulated trials, on average. The OBD was not selected in 0.1% of the
simulated trials, on average. The trial duration was an average of 441.0 days.

5 Summary

The concept of OBD is now widely accepted as an alternative to MTD in oncology dose-
finding trials, and the BOIN-ET design family is simple and flexible enough to establish the
OBD while accounting for toxicity and efficacy in the framework of dose-finding. The boinet
package has been developed to support the conduct of simulation studies to assess operating
characteristics of BOIN-ET, TITE-BOIN-ET, gBOIN-ET, and TITE-gBOIN-ET designs. Users
can choose design parameters in flexible and straightforward ways depending on their
own application, and several options regarding methods to estimate the efficacy probability
and measures to select the OBD are applicable. The package would assist practitioners in
efficiently assessing the design features of their studies.
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6 Appendix: Key arguments used in boinet(), tite.boinet(), gboinet(),
and tite.gboinet() function

Argument Description

phi Numeric value between 0 and 1 specifying the target (quasi-Bernoulli)
toxicity probability. Represents the maximum acceptable toxicity rate.
Default is 0.3 (30%).

phi1 Numeric value specifying the highest (quasi-Bernoulli) toxicity proba-
bility that is deemed sub-therapeutic such that dose-escalation should
be pursued. Default is phi*0.1.

phi2 Numeric value specifying the lowest (quasi-Bernoulli) toxicity prob-
ability that is deemed overly toxic such that dose de-escalation is
needed. Default is phi*1.4.

delta Numeric value between 0 and 1 specifying the target (quasi-Bernoulli)
efficacy probability. Represents the desired minimum efficacy rate.
Default is 0.6 (60%).

delta1 Numeric value specifying the minimum probability deemed effica-
cious such that the dose levels with efficacy < delta1 are considered
sub-therapeutic. Default is delta*0.6.

Table 1: Arguments regarding target (quasi-Bernoulli) toxicity and efficacy probability.

Argument Description

alpha.T1 Numeric value specifying the probability that a (quasi-Bernoulli)
toxicity outcome occurs in the late half of the toxicity assessment
window. Used for event time generation. Default is 0.5.

alpha.E1 Numeric value specifying the probability that a (quasi-Bernoulli)
efficacy outcome occurs in the late half of the efficacy assessment
window. Used for event time generation. Default is 0.5.

te.corr Numeric value between -1 and 1 specifying the correlation between
toxicity and efficacy, specified as Gaussian copula parameter. Default
is 0.2 (weak positive correlation).

gen.event.time Character string specifying the distribution for generating event
times. Options are "weibull" (default) or "uniform". A bivariate
Gaussian copula model is used to jointly generate the time to first
toxicity and efficacy outcome, where the marginal distributions are
set to Weibull distribution when gen.event.time="weibull", and
uniform distribution when gen.event.time="uniform".

gen.enroll.time Character string specifying the distribution for enrollment times. Op-
tions are "uniform" (default) or "exponential". Uniform distribution
is used when gen.enroll.time="uniform", and exponential distri-
bution is used when gen.enroll.time="exponential".

Table 2: Arguments regarding data generation.
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Argument Description

stopping.npts Integer specifying the maximum number of patients per dose for
early study termination. If the number of patients at the current
dose reaches this criterion, the study stops the enrollment and is
terminated. Default is size.cohort*n.cohort.

stopping.prob.T Numeric value between 0 and 1 specifying the early study termina-
tion threshold for toxicity. If P(toxicity > phi) > stopping.prob.T, the
dose levels are eliminated from the investigation. Default is 0.95.

stopping.prob.E Numeric value between 0 and 1 specifying the early study termina-
tion threshold for efficacy. If P(efficacy < delta1) > stopping.prob.E,
the dose levels are eliminated from the investigation. Default is 0.99.

Table 3: Arguments regarding early study termination criteria.

Argument Description

estpt.method Character string specifying the method for estimating efficacy proba-
bilities. Options: "obs.prob" (observed efficacy probabilities/rates),
"fp.logistic" (fractional polynomial), or "multi.iso" (model averaging
of multiple unimodal isotonic regression). Default is "obs.prob".

obd.method Character string specifying the method for OBD selection. Op-
tions: "utility.weighted", "utility.truncated.linear", "utility.scoring", or
"max.effprob" (default).

w1 Numeric value specifying the weight for toxicity-efficacy trade-off in
"utility.weighted" method. Default is 0.33.

w2 Numeric value specifying the penalty weight for toxic doses in "util-
ity.weighted" method. Default is 1.09.

plow.ast Numeric value specifying the lower toxicity threshold for "util-
ity.truncated.linear" method. Default is phi1.

pupp.ast Numeric value specifying the upper toxicity threshold for "util-
ity.truncated.linear" method. Default is phi2.

qlow.ast Numeric value specifying the lower efficacy threshold for "util-
ity.truncated.linear" method. Default is delta1/2.

qupp.ast Numeric value specifying the upper efficacy threshold for "util-
ity.truncated.linear" method. Default is delta.

psi00 Numeric value specifying the utility score for (toxicity=no, effi-
cacy=no) in "utility.scoring" method. Default is 40.

psi11 Numeric value specifying the utility score for (toxicity=yes, effi-
cacy=yes) in "utility.scoring" method. Default is 60.

Table 4: Arguments regarding optimal biological dose (OBD) selection.
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Partitioned Local Depth (PaLD)
Community Analyses in R
by Lucy D’Agostino McGowan, Katherine Moore, and Kenneth S. Berenhaut

Abstract Partitioned Local Depth (PaLD) is a framework for holistic consideration of com-
munity structure for distance-based data. This paper describes an R package, pald, for
calculating Partitioned Local Depth (PaLD) probabilities, implementing community analy-
ses, determining community clusters, and creating data visualizations to display community
structure. We present essentials of the PaLD approach, describe how to use the pald package,
walk through several examples, and discuss the method in relation to commonly used
techniques.

0.1 Introduction

Partitioned Local Depth (PaLD) is a framework for holistic consideration of community
structure for distance-based data. Leveraging a socially inspired perspective, the approach
provides network-based community information which is founded on new measures of
local depth and pairwise cohesion (partitioned local depth). The method does not require
distributional assumptions, optimization criteria, nor extraneous inputs. A complete de-
scription of the perspective, together with a discussion of the underlying social motivation,
theoretical results, and applications to additional data sets is provided in Berenhaut et al.
(2022). A brief technical description is included below, directly following the introduction.

As suggested in Berenhaut et al. (2022), a main goal of PaLD is to “transform input
dissimilarity comparisons into output pairwise relationship strengths (or cohesion) and
resulting weighted networks”. This is intended to provide within- and between-community
structural information which goes beyond simple cluster labeling. Building on existing
approaches to (global) depth, local depth expresses features of centrality via an interpretable
probability which is free of parameters and robust to outliers. Partitioning the probabilities
which define local depth, we then obtain a measure of cohesion between pairs of individuals.
Both local depth and cohesion reflect aspects of relative position (rather than absolute
distance) and provide a straightforward way to account for varying density across the space.
As shown in Berenhaut et al. (2022), provided that two sets are separated (in the sense
that the minimum between-set distance is greater than the maximum within-set distance),
cohesion is invariant under the contraction and dilation of the distances within each set.
This property may be particularly valuable when one has reason to believe that there is
heterogeneity in density across the space.

As cohesion captures a sense of the relationship strength between points, we can then
analyze and visualize the resulting community structure via a network whose edges are
weighted by (mutual) cohesion. The underlying social framework motivates a straight-
forward yet elegant threshold for distinguishing between strongly and weakly cohesive
pairs.

Networks obtained from cohesion can be displayed using a force-directed graph drawing
algorithm; here we will graphically emphasize the strong ties (colored by connected compo-
nent). We refer to the connected components of the network of strong ties as community
“clusters”. Note that to qualify as a cluster in this definition, one may not have any strong
ties with those outside the cluster, and thus the existence of disjoint groups is a strong signal
for separation. Here, clusters are identified without additional user inputs nor optimization
criteria. If one wishes to further break the community graph into groups, one may consider
using community detection methods (such as spectral clustering or the Louvain algorithm),
as available, say, in the igraph package. The collection of strong ties may be used in place
of (weighted) k-nearest neighbors in settings such as classification and smoothing. Overall,
the structural information obtained from local depth, cohesion and community graphs can
provide a holistic perspective to the data which does not require the use of distributional
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assumptions, optimization criteria nor additional user inputs.

It is important to emphasize at the outset that community analyses go beyond simple
cluster labeling to address intra- and inter-cluster structure, and can supplement results
from other methods for clustering, embedding, data depth, nearest neighbors, etc. In
addition, the method does not require distributional assumptions, optimization criteria, nor
extraneous inputs. Theoretical considerations (see Berenhaut et al. (2022)) and examples
point to distinctive properties that assist in considerations of complex data, in particular with
respect to varying density and high dimensions. See the section Cultural and Psychological
distance analysis, below, for some discussion in the context of density-based methods.

After a brief introduction to the partitioned local depth approach (including a concrete
and instructive example), below, we present a new package, pald, for calculating partitioned
local depths, implementing community analyses, and creating data visualizations to display
community structure. This paper describes how to use the package, walks through several
examples, and contrasts the method results with commonly used techniques. Together,
these demonstrate both the novelty of the method and utility of the implementation in the
package described.

0.2 The partitioned local depth approach

The PaLD methodology as introduced in Berenhaut et al. (2022) offers a parameter-free
approach to analyzing community structure in distance-based data. First, consider a ground
set S equipped with a meaningful measure of pairwise distance (or dissimilarity), d :
S × S → R ∪ ∞. We require only that d satisfies the requirements that for all x, y ∈ S with
y ̸= x,

d(x, x) ≤ d(y, x) and d(x, x) < d(x, y). (1)

Note that d need not necessarily be symmetric nor positive (see (i) below).

We begin with a concept formalizing locality to a pair. For any pair (x, y) ∈ S × S , the
local focus, Ux,y (illustrated in Figure 1 for two-dimensional Euclidean data) is defined via

Ux,y
def
= {z ∈ S | d(z, x) ≤ d(y, x) or d(z, y) ≤ d(x, y)}. (2)

The set Ux,y is comprised of elements that are “locally” relevant to the pair (x, y). Eq. (1)
guarantees that both x and y are elements of Ux,y. For discussion from a social perspective,
wherein the data are embedded in a latent social space, see Social Framework in Berenhaut
et al. (2022). Recall that in (2), the distance d need not be symmetric; leveraging the social
perspective, we are interested in the direct closeness of z to x and y, not the reverse (see also
(iv), below).

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=pald


CONTRIBUTED RESEARCH ARTICLE 3

Figure 1: The local focus for two points, x and y, where S is a subset of R2, under Euclidean distance
(reproduced with permission from Berenhaut et al. (2024)). The points in red are outside the focus,
Ux,y. Those in green (and z in blue) are in the focus and closer to x, while those in gray are closer to y.

Now, suppose that x is fixed, and select Y and Z uniformly at random from S \ {x} and
Ux,Y, respectively. The local depth of x, ℓS (x), is defined as the probability that Z is closer to
x than it is to Y (with a coin flip in the case Z is equidistant), i.e.

ℓS (x) def
= P(d(Z, x) < d(Z, Y)). (3)

The local depth of x can be thought of as a measure of the extent to which x is (relatively)
surrounded by other elements of S (under d).

Finally, the cohesion, Cx,w, of w to x, for a given w ∈ S , is obtained through a partitioning
of the probability defining local depth in (3). In particular,

Cx,w
def
= P(Z = w and d(Z, x) < d(Z, Y)). (4)

The cohesion of w to x can be viewed as the contribution of w to the local depth of x. Eq. (1)
guarantees that when Z = x, d(Z, x) < d(Z, Y). For some theoretical properties of cohesion,
see Berenhaut et al. (2022). Note that the sum of all cohesions is conserved at n/2, where

n def
= |S|; we thus have a constant mean local depth of 0.5 (independent of n).

A universal threshold for strong cohesion (see Berenhaut et al. (2022)) is defined via

T def
= P(Z = W and d(Z, X) < d(Z, Y)), (5)

where X, Y, Z, and W are selected uniformly at random from S , S \ X, UX,Y, and UX,Y,
respectively. The threshold, T, can be conveniently calculated as one half the average of the
diagonal of the matrix of pairwise cohesion values (see Berenhaut et al. (2022) for details),
i.e.

T =
1
2

(
1
n ∑

x∈S
Cx,x

)
. (6)

A strong relationship connection between x and w is then established when:

min{Cx,w, Cw,x} ≥ T. (7)

For further details on PaLD, including theoretical results, discussion of the underlying
social perspective and applications, see Berenhaut et al. (2022) (see also Berenhaut and
Moore (2022)).

Before moving on to a simple concrete example, we provide a few remarks, for the
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interested reader, on the concepts introduced above.

(i) (Distances and dissimilarities) For the purposes of the package, we require only
the inequalities in (1). This implies the convenient form of the threshold in (7), see
Berenhaut et al. (2022), and is crucial to the underlying social perspective of conflict.
For a more general mathematical PaLD framework, wherein the concepts of locality
and support are further refined see Berenhaut et al. (2024). As the definitions in (2),
(3) and (4) only depend on triplet distance comparisons, local depth and cohesion are
invariant under monotone transformations of distance, and negative distances are fine.
If meaningful in context, distances need not be symmetric and self-distances, d(x, x),
may vary over x (subject to the constraint in (1)). The triangle inequality may be
violated to some extent, mirroring ideas of strong triadic closure (Granovetter (1973)).

(ii) (Local foci) The concept of local foci in (2) is crucial to all that follows. It allows for
consideration of the data at varying scales without the need for localizing parameters.
The selection of Z in (3) and (4) reflects the larger presence of individuals in smaller
foci (see Feld (1981) for discussion is social settings). The results in Berenhaut et al.
(2022) regarding limiting irrelevance of density and separation under increasing con-
centration are driven by local comparisons. Self-cohesions (i.e., diagonal elements of
C) are not necessarily equal. This is driven by the fact that by (4),

Cx,x =
1

n − 1 ∑
y ̸=x

1
|Ux,y|

, (8)

and Cx,x is dependent on local density around x.

(iii) (Non-monotonicity of the size of local foci) As distance away from an element, x,
increases, monotonicity in volume of local foci is not necessary. In particular, consider
the one-dimensional set S = {B, x, A, C, D}, with B = 5, x = 11, A = 16, C = 18, D =
19. Under Euclidean distance, d(x, A) = 5 < 6 = d(x, B) but |Ux,A| = |{x, A, C, D}| =
4 and |Ux,B| = |{x, B, A}| = 3. This further emphasizes the capturing of local density,
an important feature of PaLD.

(iv) (Assymmetry) Note that the definitions in (2), (3) and (4) are stated to allow for
asymmetric distances, as may occur for instance when considering distances on graphs.
Note that even symmetric distances can easily lead to asymmetric cohesion. This is the
case even for the simple one-dimensional data considered in Example 1. In considering
strong relationships based on cohesion, though, symmetrization is employed in (7).

(v) (The use of weighted networks) In what follows, we will at times have occasion to
consider a network with node set S and pairwise edges weighted via the respective
values of cohesion. When viewed as a weighted (connectivity) network in this sense,

(a) the weighted nodal degrees are the values of local depth, addressing considera-
tions of (local) data depth,

(b) the network may be embedded in low-dimensional Euclidean space via standard
network embedding techniques, providing visualization of the data that adapts
to relative density,

(c) the isolated nodes of either the original network or that restricted to strong ties
can provide information regarding outliers,

(d) the connected components of the network restricted to strong ties (i.e. those with
weights above the threshold in (6)) can be taken as “clusters" in the classical sense,

(e) weighted or unweighted network neighbors may be used in place of k-nearest
neighbors in settings such as classification and smoothing, and

(f) some network analyses can be informative regarding data structure.
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Ideas of distance on networks can be complex, though, and this is particularly so for
general weighted networks (e.g. correlation or social networks). As is the case here,
edge weights may reflect intensity of connection as opposed to simple pairwise dis-
tance, and it is important to exercise caution when applying naïve functions intended
for unweighted networks (or simple distance-based weighted networks) in igraph
and other software.

(vi) (Matrix methods) For convenience, we use the igraph package to analyze weighted
networks, where appropriate. Matrix-based methods are also possible. For instance,
we employ igraph::components to obtain community clusters from networks, but
alternatively one could use blocks extraction directly from the cohesion matrix using
packages such as lintools.

(vii) (Density-based methods and localized approaches) Complimentary density-based
methods such as DBSCAN (density-based spatial clustering of applications with noise)
and its hierarchical variant HDBSCAN (see for instance Campello et al. (2020)), seek to
identify high-density regions as clusters. We discuss these in the context of a concrete
example below (see Cultural and Psychological distance analysis). Determination
of required parameter values can be challenging. There are also extent methods for
considering data depth which probe local structure (see Paindaveine and Van Bever
(2013) and Agostinelli and Romanazzi (2011)). These often also require localizing
parameters. In Berenhaut et al. (2022) (see Theorem 2: Limiting Irrelevance of Density),
it is shown that local depth and cohesion account for varying density in the sense
that, provided subsets are sufficiently separated, the cohesion is maintained, as within-
subset distances are contracted or dilated, without the need to search over a parameter
space.

(viii) (Social latent spaces) The definitions in (2), (3), (4), and (6), are developed from a
social perspective. The interested reader can refer to the section Social Framework in
Berenhaut et al. (2022). For further discussion see Berenhaut et al. (2024) and Berenhaut
and Moore (2022).

Example 1. As a concrete example demonstrating the PaLD framework, consider the one-

dimensional set S def
= {1, 3, 7, 8, 9, 13, 17}, with pairwise (Euclidean) distances given in the

array below.

1 3 7 8 9 13 17
1 0 2 6 7 8 12 16
3 2 0 4 5 6 10 14
7 6 4 0 1 2 6 10
8 7 5 1 0 1 5 9
9 8 6 2 1 0 4 8
13 12 10 6 5 4 0 4
17 16 14 10 9 8 4 0

The local depths (rounded to three decimal places) are

1 3 7 8 9 13 17
0.409 0.463 0.588 0.675 0.600 0.471 0.294

while the pairwise cohesions (in matrix form) are given by

1 3 7 8 9 13 17
1 0.210 0.127 0.036 0.024 0.012 0.000 0.000
3 0.137 0.220 0.048 0.036 0.024 0.000 0.000
7 0.048 0.048 0.220 0.137 0.109 0.028 0.000
8 0.024 0.052 0.163 0.218 0.163 0.056 0.000
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9 0.024 0.024 0.109 0.137 0.220 0.063 0.024
13 0.000 0.000 0.012 0.036 0.103 0.188 0.133
17 0.000 0.000 0.000 0.000 0.012 0.107 0.175

where (non-diagonal) cohesion values above the threshold of

0.1036 = (1/14)(0.210 + 0.220 + 0.220 + 0.218 + 0.220 + 0.188 + 0.175) (9)

are indicated in blue; see (7)). The resulting weighted network of pairwise cohesion values is
displayed in Figure 2; here strong ties (with cohesion values above the threshold) are colored
according to community clusters (the connected components of the network of strong ties),
i.e. {1, 3}, {7, 8, 9} and {13, 17}.

1

3

7

8

9
13

17

1

3

7

8

9
13

17

Figure 2: The community cluster network for the simple one-dimensional data considered in Example
1. Strong ties (with cohesion values above the threshold) are colored according to community clusters
(the connected components of the network of strong ties), while weak ties are indicated in grey.

Note that the cohesion of the element 17 to the element 1 is zero. This reflects the fact that
when an element, Y, other than 1 is selected uniformly at random from S , and an element Z
is selected uniformly at random from Ux,Y, 17 is never, at once, equal to Z and closer to 1
than it is to the opposing element Y. In fact, 17 is not an element of U1,y, for y ∈ {3, 7, 8}.
For y ∈ {9, 13, 17}, 17 ∈ U1,y, but in each case, d(17, y) < d(17, 1). This zero cohesion is
reflected in the absence of any edge (grey or colored) from the node for 17 to the node for 1,
in Figure 2.

We now turn to discussion of the pald package.

0.3 pald

The main functions in the pald package can be split into 3 categories:

1. A function for computing the matrix of cohesion values, as defined in (4).
2. Functions for extracting useful information from the cohesion matrix, such as local

depths, neighbors, community clusters, and graph objects.
3. Plotting functions for community graphs.

In addition, the package provides a number of pertinent example data sets which may be
used to demonstrate community analysis, including a synthetic data set of two-dimensional
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points created by Gionis et al. to demonstrate aggregation, clustering data generated from
the scikit-learn Python package (Pedregosa et al., 2011), data describing cognate relationships
between words across 87 Indo-European languages (Dyen et al., 1992), data compiled by
Love and Irizarry (2015) of tissue gene expressions, data employing information from the
World Values Survey (Inglehart et al., 2014) on cultural values regarding family, religion,
education, and institutions for several regions (Muthukrishna et al., 2020), and three example
data sets generated for the Berenhaut et al. (2022) paper.

While it is not a necessity, the pald package is designed to function well with the pipe
operator, |>, particularly for those who are familiar with tidyverse-based approaches. This
functionality will be demonstrated briefly below.

Creating the cohesion matrix

For the purposes of the pald package, the sole input for the Partitioned Local Depth (PaLD)
computations is a distance matrix or dist object. Recall that the collection of input distances
(or dissimilarities) is assumed to satisfy the requirements in (1). More generally, the method
only requires triplet distance comparisons, as opposed to exact numeric distances (see
Berenhaut et al. (2022)).

For demonstration purposes, we first show how one can compute a distance matrix
from an input data frame with, say, two variables x1 and x2. The input data may be
of any dimension; in fact the PaLD framework provides advantages when considering
high-dimensional data (see the Examples section as well as Berenhaut et al. (2022)).

library(pald)
df <- data.frame(

x1 = c(6, 8, 8, 16, 4, 14),
x2 = c(5, 4, 10, 8, 4, 10)

)
rownames(df) <- c("A", "B", "C", "D", "E", "F")

The dist function returns a (default Euclidean) pairwise distance matrix for an input
data frame, as demonstrated below. If the data are already provided as a distance matrix (or
dist object), the user can skip to the next step. Note that the distance matrix needed for the
subsequent functions does not need to be a dist object and need not be symmetric.

d <- dist(df)

The function above creates a dist object. If converted to a matrix, this will be an n × n
distance matrix, where n corresponds to the number of observations in the original data
frame (in this example n = 6).

This dist object, or a distance matrix, can then be passed to the cohesion_matrix func-
tion in order to calculate pairwise cohesion values.

cohesion_matrix(d)

#> A B C D E F
#> A 0.25000000 0.18333333 0.06666667 0.0000000 0.18333333 0.0000000
#> B 0.14000000 0.24000000 0.05000000 0.0000000 0.10666667 0.0000000
#> C 0.07333333 0.07333333 0.20333333 0.0000000 0.03333333 0.0800000
#> D 0.00000000 0.00000000 0.00000000 0.2333333 0.00000000 0.1333333
#> E 0.14000000 0.10666667 0.03333333 0.0000000 0.24000000 0.0000000
#> F 0.00000000 0.00000000 0.05000000 0.1400000 0.00000000 0.2400000
#> attr(,"class")
#> [1] "cohesion_matrix" "matrix" "array"

Equivalently, the user can use the native pipe |> as follows.
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df |>
dist() |>
cohesion_matrix()

#> A B C D E F
#> A 0.25000000 0.18333333 0.06666667 0.0000000 0.18333333 0.0000000
#> B 0.14000000 0.24000000 0.05000000 0.0000000 0.10666667 0.0000000
#> C 0.07333333 0.07333333 0.20333333 0.0000000 0.03333333 0.0800000
#> D 0.00000000 0.00000000 0.00000000 0.2333333 0.00000000 0.1333333
#> E 0.14000000 0.10666667 0.03333333 0.0000000 0.24000000 0.0000000
#> F 0.00000000 0.00000000 0.05000000 0.1400000 0.00000000 0.2400000
#> attr(,"class")
#> [1] "cohesion_matrix" "matrix" "array"

The cohesion matrix output by the cohesion_matrix function is the main input for the
majority of the remaining functions.

Functions for extracting information from the cohesion matrix

From the cohesion matrix, a variety of useful quantities can be computed. Below, we create a
cohesion matrix using the functions described in the previous section.

df |>
dist() |>
cohesion_matrix() -> cohesion

The local_depths function calculates the depth of each point, as defined in (3), outputting
a vector of local depth probabilities.

local_depths(cohesion)

#> A B C D E F
#> 0.6833333 0.5366667 0.4633333 0.3666667 0.5200000 0.4300000

In this case, the (locally) deepest point is A.

The strong_threshold function will calculate the cohesion threshold for strong ties
given in (5), which reflects typical cohesion for local points (see Berenhaut et al. (2022)).
Computationally, this is equal to half the average of the diagonal of the cohesion matrix,
and is a threshold that may be used to distinguish between strong and weak ties.

strong_threshold(cohesion)

#> [1] 0.1172222

Here, the threshold is a little above 0.117.

The function cohesion_strong will update the cohesion matrix to set all weak ties to
zero (via the strong_threshold function). Reflecting (7), by default, the matrix will also
be symmetrized, using the entry-wise (parallel) minimum of the cohesion matrix and its
transpose.

cohesion_strong(cohesion)

#> A B C D E F
#> A 0.25 0.14 0.0000000 0.0000000 0.14 0.0000000
#> B 0.14 0.24 0.0000000 0.0000000 0.00 0.0000000
#> C 0.00 0.00 0.2033333 0.0000000 0.00 0.0000000
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#> D 0.00 0.00 0.0000000 0.2333333 0.00 0.1333333
#> E 0.14 0.00 0.0000000 0.0000000 0.24 0.0000000
#> F 0.00 0.00 0.0000000 0.1333333 0.00 0.2400000
#> attr(,"class")
#> [1] "cohesion_matrix" "matrix" "array"

The community_graphs function takes the cohesion matrix and creates igraph objects,
graphs that describe the (symmetrized) relationship structure between points. This function
will output a list of three objects:

• G: the weighted (community) graph whose edge weights are mutual cohesion
• G_strong: the weighted (community) graph consisting of edges for which mutual

(symmetrized) cohesion (i.e. the minimum of the two directed cohesion values for any
given pair) is greater than the threshold for strong ties

• layout: the graph layout. By default this is provided by the Fruchterman Reingold
(FR) force-directed graph drawing algorithm for the graph G, as implemented in the
igraph package.

graphs <- community_graphs(cohesion)
graphs[["G_strong"]]

#> IGRAPH c4d81a7 UNW- 6 3 --
#> + attr: name (v/c), weight (e/n)
#> + edges from c4d81a7 (vertex names):
#> [1] A--B A--E D--F

Here we see that there are three connected components, ties A-B and A-E form the first
community cluster, and the tie D-F which forms another.

The any_isolated() function will check whether there are any isolated points (according
to cohesion).

any_isolated(cohesion)

Here, there are no isolated points, i.e. points having zero cohesion with all other points in
the data (an extreme form of outlier).

The “community clusters” identified by PaLD are the connected components of the graph
of strong ties, G_strong. To directly calculate these, we can use the community_clusters
function. This will output a data frame with two columns; the first corresponds to the
individual (point), as identified by the row name of the original input data frame, df, the
second identifies the community that the individual belongs to.

community_clusters(cohesion)

#> point community
#> A A 1
#> B B 1
#> C C 2
#> D D 3
#> E E 1
#> F F 3

In this example, three communities are identified with these six points. Points A, B, and E
fall into Community 1. Point C is in Community 2 (a community of size 1) and points D and
F fall into Community 3.
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0.4 Plotting functions

The final category of function is that for data visualization. We can begin by visualizing the
points in the data frame df (Figure 3). When visualizing these points, it is important to have
the aspect ratio of the x and y axes equal to 1 so as to not distort distances. When using the
ggplot2 package for this visualization, one can use the command coord_fixed(ratio = 1).
If using the plot function included in the base library, one can use the asp = 1 argument.

library(ggplot2)
ggplot(df, aes(x1, x2)) +

geom_text(label = rownames(df)) +
coord_fixed(ratio = 1) +
xlim(c(4, 16)) +
ylim(c(4, 16))
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4 8 12 16
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Figure 3: Visualization of the points from the data frame df

We can pass the cohesion matrix to the plot_community_graphs function to view the
relationship between points (Figure 4). The function will also permit parameters that can be
passed to plot.igraph via the ... argument.

plot_community_graphs(cohesion,
vertex.label.cex = 2,
vertex.label.dist = 0.9)
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Figure 4: PaLD graph displaying the relationship between the points in data frame df

Notice in this plot the force-directed layout does not match that of the original data
frame as seen in Figure 3. Since our original data is two-dimensional, it may be reasonable
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to use the latter as the layout for plotting. Figure 5 includes this update as well as others
addressing some of the aesthetics, such as employing more readable labels. The layout
argument allows the user to pass a matrix to dictate the 2-dimensional layout of the graph.
For example, if we wanted the graph to match the visualization displayed in Figure 3, we
could pass as.matrix(df) (a matrix of the data frame df) to the layout argument (Figure 5).
Here, we increase the vertex size and change the vertex label color, through the argument
specifications vertex.size = 100 and vertex.label.color = "white". Additionally, to
allow axes, we use axes = TRUE, and to put these back on the original scale we set rescale
= FALSE, resetting the axis limits using xlim and ylim. The par(pty = "s") function forces
the subsequent plot to be square.

par(pty = "s")

plot_community_graphs(cohesion,
layout = as.matrix(df),
vertex.size = 100,
vertex.label.color = "white",
axes = TRUE,
rescale = FALSE,
asp = 1,
xlim = c(4, 16),
ylim = c(4, 16))
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Figure 5: PaLD graph displaying the relationship between the points in data frame df, matching the
original layout in Figure 3

0.5 Examples

We will demonstrate the utility of the pald package through several illustrative examples.

Community analysis for tissue gene expression data

The first example is from a subset of data from Zilliox and Irizarry (2007), McCall et al.
(2011), and McCall et al. (2014), obtained from the tissuesGeneExpression bioconductor
package (Love and Irizarry, 2015) consisting of 22,215-dimensional gene expression data
from 189 tissue samples. A (Euclidean) dist object was created using this data set and is
included in the pald package in an object called tissue_dist.

The tissue_dist object is a dist object resulting in a distance matrix with 189 rows and
189 columns.
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We can create the cohesion matrix using the cohesion_matrix function.

tissue_cohesion <- cohesion_matrix(tissue_dist)

We can display relationships between tissue samples, both locally and globally through
the plot_community_graphs function (Figure 6). For clarity of the display, we show how
to remove the labels using show_labels = FALSE. We will instead color according to the
labels by passing these to the vertex.color argument for the plot.igraph function (via the
... argument). Similarly, we can add a legend using the legend() function, as you would
for an igraph visualization. Additionally, we use the edge_width_factor and emph_strong
arguments to adjust the width of the lines between and within PaLD communities.

labels <- rownames(tissue_cohesion)
plot_community_graphs(tissue_cohesion,

show_labels = FALSE,
vertex.size = 4,
vertex.color = as.factor(labels),
edge_width_factor = 35,
emph_strong = 5)

legend("topleft",
legend = unique(as.factor(labels)),
pt.bg = unique(as.factor(labels)),
col = "black",
pch = 21)

Figure 6: Community cluster network for the tissue data. The line colors indicate the PaLD communi-
ties; the point colors indicate the tissue classification.

A summary of community strong ties can be produced via the following code. Note that
tissue_graph_strong is an igraph object corresponding to the graph displayed in Figure 6,
restricted only to strong ties.
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tissue_graphs <- community_graphs(tissue_cohesion)
tissue_graph_strong <- tissue_graphs[["G_strong"]]
E <- igraph::get.edgelist(tissue_graph_strong)
tissue_strong_ties <- data.frame(

strong_ties = apply(E, 1, paste, collapse = ",")
)
tissue_strong_ties |>

table() |>
sort(decreasing = TRUE)

#> strong_ties
#> kidney,kidney
#> 273
#> colon,colon
#> 241
#> hippocampus,hippocampus
#> 191
#> cerebellum,cerebellum
#> 186
#> liver,liver
#> 85
#> endometrium,endometrium
#> 81
#> placenta,placenta
#> 4
#> kidney,endometrium
#> 3

Note that there are only three strong ties between different tissue types (kidney and
endometrium) in the community cluster network of 1,064 strong ties total.

0.6 Cognate-based Language Families

This example explores a data set from Dyen et al. (1992) that summarizes relationships
between 87 Indo-European languages from the perspective of cognates, coded using 2,655-
dimensional binary vectors. A dist object was created from this data set and is included in
the pald package in an object called cognate_dist.

Here we will demonstrate how one can further apply functions in the igraph package
to objects output from the pald package. We can first use the cohesion_matrix function to
calculate the cohesion matrix and the community_graphs function to create a list with the
weighted community graph, the weighted community graph with only strong ties included,
and the layout. From this, we can extract the graph with only the strong ties, here called
cognate_graph_strong.

cognate_cohesion <- cohesion_matrix(cognate_dist)
cognate_graphs <- community_graphs(cognate_cohesion)

cognate_graph_strong <- cognate_graphs[["G_strong"]]

We can then use the neighbors function from the igraph package to extract the strong
neighbors in this graph. For example, we can extract all neighbors for the language “French”,
via the following code.

french_neighbors <- igraph::neighbors(cognate_graph_strong, "French")
french_neighbors
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#> + 8/87 vertices, named, from 5c6bb3a:
#> [1] Italian
#> [2] Ladin
#> [3] Provencal
#> [4] Walloon
#> [5] French_Creole_C
#> [6] French_Creole_D
#> [7] Spanish
#> [8] Catalan

Similarly, we can sort and print the associated neighborhood weights by subsetting the
cohesion matrix.

cognate_cohesion["French", french_neighbors] |>
sort(decreasing = TRUE)

#> Walloon
#> 0.03258771
#> Provencal
#> 0.02871174
#> French_Creole_C
#> 0.02406057
#> French_Creole_D
#> 0.02406057
#> Ladin
#> 0.02094596
#> Italian
#> 0.01997696
#> Catalan
#> 0.01859688
#> Spanish
#> 0.01679733

We can again use the plot_community_graphs function to visualize the community
clusters (Figure 7). One may note the commonly identifiable language clusters and that,
under a slight rotation, some of the underlying geography is mirrored in the plot.

plot_community_graphs(
cognate_cohesion,
edge_width_factor = 30,
emph_strong = 3,
vertex.size = 3,
vertex.label.cex = 0.7,
vertex.label.dist = 1

)
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Figure 7: Community structure for 87 Indo-European languages, which employs cognate information
that was coded via 2,665-dimensional binary vectors. Commonly identifiable language clusters arise
along with informative inter- and intra-cluster structure. Several ancient languages are centrally
located.

Community analysis for generated data

The pald package includes three randomly generated data frames corresponding to plots
from Berenhaut et al. (2022):

• exdata1 is a data set consisting of 8 points used to create Figure 1 in Berenhaut et al.
(2022)

• exdata2 is a data set consisting of 16 points used to create Figure 2 in Berenhaut et al.
(2022)

• exdata3 is a data set consisting of 240 points used to create Figure 4D in Berenhaut
et al. (2022)

Here, we will demonstrate how to use exdata3. These points were generated from
bivariate normal distributions with varying means and variances. There are eight “true”
communities.

We can contrast resulting community clusters obtained via PaLD (i.e. connected com-
ponents of the network of strong ties) with clusters as obtained through common cluster
analysis techniques. Here we will consider two common clustering methods. The code
below calculates the cohesion matrix (exdata_cohesion) as well as the community clus-
ters obtained via PaLD (exdata_pald), along with k = 8 clusters obtained via k-means
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(exdata_kmeans) and hierarchical clustering using complete linkage (exdata_hclust). Re-
call that there is no need to determine values for extraneous inputs in the case of PaLD
(e.g. the number of clusters, as is necessary to specify for k-means and hierarchical cluster-
ing).

exdata_cohesion <- exdata3 |>
dist() |>
cohesion_matrix()

exdata_pald <- community_clusters(exdata_cohesion)$community

exdata_kmeans <- kmeans(exdata3, 8)$cluster

exdata_hclust <- exdata3 |>
dist() |>
hclust() |>
cutree(k = 8)

The information is displayed in Figure 8.

par(mfrow = c(1, 3), pty = "s")
plot(

exdata3,
pch = 16,
col = pald_colors[exdata_pald],
xlab = "",
ylab = "",
main = "PaLD Communities",
asp = 1

)
plot(

exdata3,
pch = 16,
col = pald_colors[exdata_kmeans],
xlab = "",
ylab = "",
main = "K-Means Clusters (k = 8)",
asp = 1

)
plot(

exdata3,
pch = 16,
col = pald_colors[exdata_hclust],
xlab = "",
ylab = "",
main = "Hiearchical Clusters (k = 8)",
asp = 1

)
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Figure 8: PaLD, k-means, and hierarchical 8-clustering of randomly generated example data (from
Berenhaut et al. (2022); Figure 4D).

Cohesion is particularly useful when considering data with varying local density; see
Berenhaut et al. (2022) for further examples, discussion, and theoretical results. Note that the
PaLD algorithm is able to detect the eight natural groups within the data (along with inter-
and intra-community structure not displayed here) without the use of any additional inputs
(e.g., number of clusters) nor optimization criteria. Despite the user input of the “correct”
number of clusters (i.e., k = 8) both k-means and hierarchical clustering do not provide the
desired result.

Cultural and Psychological distance analysis

In this example we perform a PaLD analysis for cultural distances obtained in Muthukrishna
et al. (2020) from two recent waves of the World Values Survey (2005 to 2009 and 2010 to
2014; see Inglehart et al. (2014)). Distances are computed using the cultural fixation index
(CFST), which is a measure built on the framework of fixation indices from population
biology (Bell et al. (2009); Cavalli-Sforza et al. (1994)). Recall that the foundation of PaLD
in within-triplet comparisons allows for the employment of application-dependent and
non-Euclidean measures of dissimilarity. The dist object is included in the pald package
(cultures). We will first create the cohesion matrix using the dist object cultures, and
proceed to plot the community graph.

cultures_cohesion <- cohesion_matrix(cultures)

plot_community_graphs(
cultures_cohesion,
edge_width_factor = 30,
emph_strong = 3,
vertex.label.cex = 0.7,
vertex.size = 3,
vertex.label.dist = 1

)
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Figure 9: Community structure for cultural distance data.

In addition to viewing the local and global community structure as seen in Figure 9, the
pald package allows for a two-dimensional display of cohesion against distance for the data,
via the dist_cohesion_plot function, as seen below (Figure 10).

dist_cohesion_plot(cultures, mutual = TRUE)
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Figure 10: A plot of cohesion versus distance for the data. The identified communities are colored as
in Figure 9.

Notice here that the magnitude of the distances within each of the identified communities
varies substantially between regions; in fact, the most disparate two regions in the United
States (at distance ≈ 0.027) are far closer than the two most similar in India (at distance
≈ 0.043). Despite this, India remains a cohesive whole, and locally disparate regions in
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the United States such as East South Central and California are not strongly cohesive. For
discussion of subtleties in local density (see Berenhaut et al. (2022). Additionally, currently
available techniques require specification of parameters, as seen in the previous section.
For further discussion of the cultural distance data in relation to community analysis see
Berenhaut et al. (2022).

Given the inherent variation in density over regions, it is of interest to consider comple-
mentary results from density-based methods such as DBSCAN and its variant HDBSCAN.
Employing the dbscan package (see Hahsler et al. (2019)), for DBSCAN with parameters
eps=0.34 and minPts=3, we have a result with five clusters and six regions being classified as
noise. Therein, (excluding noise) the Indian region is split into two communities. Similarly,
for HDBSCAN, with minPts=3, we have a result with five clusters and eight noise points.
Here again (excluding the noise points), India has been split into two communities. The
parameter choices used for both methods were determined by maximizing normalized
mutual information (NMI; see Ana and Jain (2003)), when comparing with the underlying
partition of the regions into Europe, United States, India and China, by regional information),
giving values of 0.848 and 0.819, respectively. For comparison, the corresponding NMI value
for the result in Figure 9 is 0.933. Further discussion is available in Berenhaut et al. (2022).
It is important to note the required parameter choices for both DBSCAN and HDBSCAN
and that results can be somewhat sensitive to changes in these. For instance, for DBSCAN,
an increase in the value of minPts from 3 to 5, and a decrease in eps value from 0.34 to 0.30
leads to a large number of noise points (25), and a decrease in NMI value from 0.848 to 0.685.
For HDBSCAN an increase in the value of minPts from 3 to 5 leads to 15 noise points, and a
decrease in NMI value from 0.819 to 0.760, while a decrease in the value of minPts from 3 to
2 leads to 10 clusters and a decrease in NMI to 0.762.

0.7 Computational considerations

Computation of the cohesion matrix as implemented in the package is of order O(n3). The
method is highly parallelizable, though, and recent work has resulted in extensive speed-up
(see Devarakonda and Ballard (2024)). Approximations are also available (see Baron et al.
(2021)). Note that the method is entirely deterministic, and one does not need to search a
parameter space nor select initial values.

0.8 Summary

This paper introduces the pald package, demonstrating its utility for providing novel
parameter-free community analysis which can easily be implemented for a variety of data
sets, supplementing results from other methods for clustering, embedding, data depth,
nearest neighbors, etc. Example code is provided along with discussion in the context of
other commonly used R-based approaches.
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Student t-Lévy regression model in yuima
by Hiroki Masuda, Lorenzo Mercuri, and Yuma Uehara

Abstract This paper presents an estimation and simulation method in the R package yuima
for a linear regression model driven by a Student-t Lévy process with constant scale and
arbitrary degrees of freedom. This process finds applications in several fields, for example
finance, physics, biology, etc. The first challenge involves simulating sample paths at high-
frequency levels, as only unit-time increments are Student-t distributed. In yuima, we solve
this problem by means of the inverse Fourier transform for simulating the increments of
a Student-t Lévy defined on an interval with any length. The second challenge is the joint
estimation of trend, scale, and degrees of freedom, a problem not previously explored in the
literature. In yuima, we develop a two-step estimation procedure that efficiently deals with
this issue. Numerical examples are given in order to explain methods and classes used in
the yuima package.

1 Introduction

The yuima package in R provides several simulation and estimation methods for stochastic
processes (YUIMA Project Team, 2024; Brouste et al., 2014; Iacus and Yoshida, 2018). This
paper introduces new classes and methods in yuima for simulating and estimating a t-
Lévy regression model based on high-frequency observations. This model can be seen
as a generalization of a t-Lévy process (Heyde and Leonenko, 2005; Cufaro Petroni, 2007)
by adding covariates, which can be either deterministic or stochastic processes. Adding
covariates to a continuous-time stochastic process is a widely used approach for constructing
new processes in various fields. For example, in finance, periodic deterministic covariates
can be employed to capture the seasonality observed in commodity markets (Sørensen, 2002).
Alternatively, in insurance and medicine, covariates are often incorporated into mortality
rate dynamics to account for age and cohort effects (see Haberman and Renshaw, 2009;
Castro-Porras et al., 2021, and references therein).

In such fields, data often exhibit heavy-tailed behavior in the margins and thus, the
inclusion of a t-Lévy process as a driving noise would be useful. However, despite the
simple mathematical definition of a t-Lévy regression model, it poses significant challenges
both in deriving its mathematical properties and in implementing numerical methods. A key
difficulty arises from the fact that the t-Lévy driving noise is not closed under convolution.
Consequently, the distribution of its increments follows a t-distribution only over a unit-time
interval.

Motivated by this fact, in yuima, we propose three simulation methods for a t-Lévy
regression model. The key element is the construction of a random number generator for the
noise increments, which is essential for several discretized simulation methods and involves
the numerical inversion of the characteristic function. More specifically, our method is
based on the approximation of the cumulative distribution function, and our method can
relieve numerical instability compared with directly using the density function especially
for simulating small time increments. Additionally, yuima provides a two-stage estimation
procedure and the corresponding estimator has consistency and asymptotic normality as
shown in Masuda et al. (2024).

The rest of this paper is organized as follows. We briefly summarize the t-Lévy regression
model in Section 2. We introduce the new yuima classes and methods in Section 3 and we
show some examples with simulated and real data that highlight their usage in Section 4.
Finally, Section 5 concludes the paper.
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2 Student t-Lévy regression model

In this section, we review the main characteristics of the t-Lévy regression model and the
t-Lévy process used as its driving noise. We highlight the main issues that arise in the
simulation and estimation procedures for these models. For a complete discussion on all
mathematical aspects and the properties of these procedures in both cases, we refer to
Masuda et al. (2024).

The proposed t-Lévy regression model is a continuous-time stochastic process of the
form:

Yt = Xt · µ + σJt, t ∈ [0, Tn], (1)

where the q-dimensional vector process X = (Xt) with càdlàg paths contains the covariates;
the dot denotes the inner product in Rq and J = (Jt) is a scaled t-Lévy process such that its
unit-time distribution L(J1) is given by:

L(J1) = tν := tν(0, 1), (2)

where tν(µ1, σ1) denotes the scaled Student-t distribution1 with density: The parameters ν >
0, and σ > 0 represent the degree of freedom, location, and scale parameters, respectively
(see Heyde and Leonenko, 2005; Cufaro Petroni, 2007, for more details on a t-Lévy process).
For this model, we consider the situation where we estimate these three unknown parameters
based on a discrete-time sample {(Xtj , Ytj)}

[nTn ]
j=0 with tj = tn

j := j
n and Tn → ∞ as n → ∞.

To develop the yuima simulation and estimation algorithms for the model in (1), we
need to address two problems: first, the simulation of the sample path of J = (Jt) on a small
time grid with ∆t ̸= 1 which is essential for handling the increments:

∆jY = ∆jX · µ + σ∆j J, j = 0, 1, . . . , [nTn]

where ∆jZ denotes Ztj − Ztj−1 for any stochastic process Z = (Zt). Second, the identification
of an efficient procedure for estimating the model parameters (µ, σ) in (1) and the degree of
freedom ν in (2). We will introduce both the simulation and estimation methods below.

Due to the stationary behavior of the L'evy increments, i.e. L(∆i J) = L(Jh) and h :=
ti − ti−1 = 1

n for i = 1, . . . , [nTn], L(Jh) admits the Lebesgue density:

x 7→ 1
π

∫ ∞

0
cos(ux){φJ1,ν(u)}hdu

=

(
21−ν/2

Γ(ν/2)

)h
1
π

∫ ∞

0
cos(ux)uνh/2 (Kν/2(u))

h du, (3)

where φJ1,ν(u), the characteristic function of L(J1) = tν is given by

φJ1,ν(u) :=
21−ν/2

Γ(ν/2)
|u|ν/2Kν/2(|u|), u ∈ R (4)

and Kν(t) denotes the modified Bessel function of the second kind (ν ∈ R, t > 0):

Kν(t) =
1
2

∫ ∞

0
sν−1 exp

{
− t

2

(
s +

1
s

)}
ds.

We here remark that although the explicit expression of (3) cannot be obtained for general
h, the tail index of L(Jh) is the same as that of L(J1) (Berg and Vignat, 2008, Theorem 2),

1Let J1 be a scaled Student-t random variable with parameters ν > 0 µ1 = 0 and σ1 = 1, its transformation
Z1 :=

√
νJ1 is a Student-t r.v. see @johnson1995continuous Ch. 28 with the following density function:

fZ1 (z; ν) :=
Γ( ν+1

2 )√
πνΓ( ν

2 )

{
1 +

z2

ν

}−(ν+1)/2

.
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and hence, modeling tail index via student t-Lévy process makes sense. A classical method
for simulating t-Lévy increments based on this Fourier inversion representation is through
the rejection method, as discussed in Hubalek (2005) and Devroye (1981). However, this
method can become time-consuming and unstable when dealing with very small values of h,
primarily due to the oscillatory behavior encountered during the numerical evaluation of the
density. Such a problem often arises since to express the high-frequency observed situation
from a continuous process, we should take a finer mesh of simulating the underlying process
than that of simulating the discrete observations. For this issue, in yuima, the Random
Number Generator for the increments is developed using the inverse quantile method. The
first step involves integrating the density in (3) to obtain the cumulative distribution function
(CDF). This approach leads to a more stable behavior in the tails of the CDF compared to
the density tails, owing to a mitigation effect observed during the numerical evaluation of
the following double integral:

F(y) =
∫ y

−∞

1
π

∫ ∞

0
cos(ux){φJ1,ν(u)}hdudx.

Further details on our approach are provided in the next section. Another way to simulate
t-Lévy process is using series representation. Numerically, for each time t, we need ad-hoc
truncation of the infinite sum. The Gaussian approximation of a small-jump part is also
valid (Asmussen and Rosiński, 2001), but the associated error may not be easy to control in
a practical manner. For more details, see Massing (2018).

Following Masuda et al. (2024), yuima provides a two-stage estimation algorithm for
(µ, σ, ν) ∈ Θµ × Θσ × Θν. Denote by (µ0, σ0, ν0) the true parameter values of the model in
(1); the two-step algorithm can be summarized as follows:

1. An estimator â := (µ̂n, σ̂n) of a0 = (µ0, σ0) is obtained by maximizing the Cauchy
quasi-likelihood:

ân := (µ̂n, σ̂n) ∈ argmax
a∈Θµ×Θσ

H1,n(a). (5)

The Cauchy quasi-(log-)likelihood H1,n(a) conditional on X has the following form:

H1,n(a) :=
Nn

∑
j=1

log
{

1
hσ

ϕ1

(∆jY − µ · ∆jX
hσ

)}

= Cn −
Nn

∑
j=1

{
log σ + log

(
1 + ϵj(a)2

)}
,

where ϕ1 denotes the density function of the standard Cauchy distribution and the
term Cn does not depend on a = (µ, σ). Nn := [nBn] is the number of observations in
the part [0, Bn] of the entire period [0, Tn] where (Bn) is a positive sequence satisfying
Bn ≤ Tn and nϵ′′ ≲ Bn ≲ n1−ϵ′ for some ϵ′, ϵ′′ ∈ (0, 1).

2. Then, we construct an estimator ν̂n of ν0 using the Student-t quasi-likelihood on the
“unit-time’ ’ residual sequence ϵ̂i:

ϵ̂i := σ̂−1
n (Yi − Yi−1 − µ̂n · (Xi − Xi−1)) ,

for i = 1, . . . , [Tn], which is expected to be approximately i.i.d. tν-distributed. There-
fore ν̂n solves:

ν̂n ∈ argmax
ν∈Θν

H2,n(ν),

where

H2,n(ν) :=
[Tn ]

∑
i=1

(
−1

2
log π + log Γ

(
ν + 1

2

)
− log Γ

(ν

2

)
− ν + 1

2
log
(

1 + ϵ̂2
i

))
.
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We note that the first estimation scheme is based on the locally Cauchy property of J:

h−1 Jh
L−→ t1 (standard Cauchy) as h → 0. Let ûa,n :=

√
Nn(ân − a0) and ûν,n :=

√
Tn(ν̂n − ν0).

Under some regularity conditions on the covariate process X = (Xt) (see Masuda et al.,
2024, Assumption 2.1 in for all requirements on X), the estimators have the following joint
asymptotic normality:

(Γ̂1/2
a,n ûa,n, Γ̂1/2

ν,n ûν,n)
L−→ Nq+2(0, Iq+2),

where ψ1 denotes the trigamma function and

Γ̂a,n = diag

(
1

2σ̂2
n Nn

Nn

∑
j=1

(
1
h

∆jX
)⊗2

,
1

2σ̂2
n

)
,

Γ̂ν,n =
1
4

(
ψ1

(
ν̂n

2

)
− ψ1

(
ν̂n + 1

2

))
,

Since Γ̂1/2
a,n and Γ̂ν,n can be constructed only by the observations, we can easily obtain the

confidence intervals of each parameter.
We conclude this section by noting that the function H2,n(ν) is concave with respect to ν,
as demonstrated in Masuda et al. (2024). This result follows directly from the fact that the
driving noise in the t-Lévy regression model is a scaled t-Lévy process with a unit-time
distribution as defined in (2).

3 Classes and methods for t-lévy regression models

This section provides an overview of the new classes and methods introduced in yuima
for the mathematical definition, trajectory simulation, and estimation of a Student Lévy
Regression model. To handle this model, the first step involves constructing an object of
the yuima.LevyRM-class. As an extension of the yuima-class refer to Brouste et al. (2014)
for more details, yuima.LevyRM-class inherits slots such as @data, @model, @sampling, and
@functional from its parent class. The remaining slots store specific information related to
the Student-t-Lévy regression model.

Notably, the slot @unit_Levy contains an object of the yuima.th class, which represents
the mathematical description of the Student-t Lévy process Jt (see the subsequent section
for detailed explanations). The labels of the regressors are saved in the slot @regressors,
while slots @LevyRM and @paramRM respectively cache the names of the output process Yt and
a string vector reporting the regressors’ coefficients, the scale parameter, and the degree of
freedom. The yuima.th-class is obtained by the new setLaw_th constructor. This function
requires the arguments used for the numerical inversion of the characteristic function, and
its usage is discussed in the next section.

Once the yuima.th-object is created, we define the system of stochastic differential
equations (SDEs) that describes the behavior of the regressors, with their mathematical def-
initions stored in an object of the yuima.model-class. Both yuima.th and yuima.model
objects are used as inputs for the setLRM constructor, which returns an object of the
yuima.LevyRM-class. The following chunk code reports the input for this new function.

setLRM(unit_Levy, yuima_regressors, LevyRM = "Y", coeff = c("mu", "sigma0"), data = NULL,
sampling = NULL, characteristic = NULL, functional = NULL)

As is customary for any class extending the yuima-class, the simulate method enables
the generation of sample paths for the Student Lévy Regression model. To simulate trajecto-
ries, an object of the yuima.sampling-class is constructed to represent an equally spaced
grid-time used in trajectory simulation. The regressors’ paths are obtained using the Euler
scheme, while the increments of the Student-t Lévy process are simulated using the random
number generator available in the slot @rng of the yuima.th-object.
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Figure 1: Scheme of classes and methods in yuima for the t-Lévy Regression model.

The last method available in yuima is estimation_LRM. This method allows the users to
estimate the model using either real or simulated data. The estimation follows a two-step
procedure, introduced in Masuda et al. (2024).

estimation_LRM(start, model, data, upper, lower)

For this function, the minimal inputs are @start, @model, @data, @upper and @lower. The
arguments @start are the initial points for the optimization routine while @upper and @lower
correspond to the box constraints. The @yuima.LevyRM-object is passed to the function
through the input @model while the input @data is used to pass the dataset to the internal
optimization routine. Figure 1 describes these new classes and methods, along with their
respective usage.

3.1 yuima.th: A new class for mathematical description of a Student-t Lévy process

In this section, the steps for the construction of an yuima.th-object are presented. As re-
marked in Section 3, this object contains all information on the scaled Student-t Lévy process.
Moreover, detailed information is provided regarding the numerical algorithms utilized for
evaluating the density function (3). The construction of this object is accomplished using
the setLaw_th constructor, and the subsequent code snippet displays its corresponding
arguments.

setLaw_th(h = 1, method = "LAG", up = 7, low = -7, N = 180, N_grid = 1000,
regular_par = NULL)

The input h is the length of the step-size of each time interval for the Student-t Lévy
increment ∆Jh = Jh − J0. Its default value, h=1, indicates that the yuima.th-object describes
completely the process Jt at time 1. The argument method refers to the type of quadrature
used for the computation of the integral in (3) while the remaining arguments govern the
precision of the integration routine.

The yuima.th-class inherits the slots @rng, @density, @cdf and @quantile from its par-
ent class yuima-law Masuda et al. (2022). These slots store respectively the random number
generator, the density function, the cumulative distribution function and the quantile func-
tion of Jh.
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As mentioned in Section 1, the density function with h ̸= 1 does not have a closed-form
formula and, therefore, the inversion of the characteristic function is necessary. yuima
provides three methods for this purpose: the Laguerre quadrature, the COS method and the
Fast Fourier Transform. The Gauss-Laguerre quadrature is a numerical integration method
employed for evaluating integrals in the following form:

I =
∫ +∞

0
f (x) e−xdx.

This procedure has been recently used for the computation of the density of the variance
gamma and the transition density of a CARMA model driven by a time-changed Brownian
motion (Loregian et al., 2012; Mercuri et al., 2021), this motivates its application in this paper.

Let f (x) be a continuous function defined on [0,+∞) such that:

I =
∫ +∞

0
f (x) e−xdx < +∞;

the integral I can be approximated as follows:

I ≈
N

∑
j=1

ω
(
k j
)

f
(
k j
)

, (6)

where k j is the jth-root of the N-order Laguerre polynomial2 LN (x) and the weights
ω
(
k j
)

, j = 1, . . . , N are defined as:

ω
(
k j
)
=

k j

(N + 1)2 L2
N+1

(
k j
) . (7)

To apply the approximation in (6), we rewrite the inversion formula in (3) as follows:

f (x) =
1
π

(
21− ν

2

Γ (ν/2)

)h ∫ +∞

0
cos (ux) uνh/2 (Kν/2 (u))

h du

=
1
π

(
21− ν

2

Γ (ν/2)

)h ∫ +∞

0
cos (ux) uνh/2 (Kν/2 (u))

h eue−udu. (8)

Applying the result in (6), the density function of Jh can be approximated with the formula
reported below:

f̂N
(

xj
)
=

1
π

(
21− ν

2

Γ (ν/2)

)h N

∑
j=1

cos
(
k jx
)

kνh/2
j

(
Kν/2

(
k j
))h ekj ω

(
k j
)

. (9)

Notably, the approximation formula’s precision in equation (9) can be enhanced through the
argument N in the setLaw_th constructor. The roots k j and the weights ω

(
k j
)

are internally
computed using the gauss.quad function from the R package statmod (Smyth et al., 2023;
Giner and Smyth, 2016), with a maximum allowed order of 180 for the Laguerre polynomial.

The COS method is based on the Fourier Cosine expansion employed for an even function
with the compact domain [−π, π]. This method has been widely applied in the finance
literature for the computation of the exercise probability of an option and its no-arbitrage
price, we refer to Fang and Oosterlee (2009), Fang and Oosterlee (2011) and references
therein for details. Let g (θ) : [−π, π] → R be an even function, its Fourier Cosine expansion
reads:

g (θ) =
1
2

a0 +
∞

∑
k=1

ak cos (kθ) (10)

2The Laguerre polynomial can be defined recursively as follows: L0 (x) , L1(x) = 1 − x, . . . , LN (x) =
(2N−x)LN−1(x)−(N−1)LN−2(x)

N
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with
ak =

2
π

∫ π

0
g (θ) cos (kθ)dθ.

Denoting with f (x) the density function of Jh, the new function ḡ (θ) is defined as:

ḡ (θ) := f
(

L
π

θ

)
L
π

1{−π≤θ≤π}, (11)

can be applied. The coefficient ak is determined as follows:

ak =
2
π

∫ π

0
ḡ (θ) cos (kθ)dθ

=
2
π

∫ π

0
f
(

L
π

θ

)
cos (kθ)

L
π

dθ.

Setting θ = π
L x, we have:

ak =
2
π

∫ L

0
f (x) cos

(
k

π

L
x
)

dx. (12)

The coefficient ak can be rewritten using the characteristic function of Jh at k π
L , i.e.:

ak =
2
π

[
φ
(

k
π

L

)
−
∫ +∞

L
f (x) cos

(
k

π

L
x
)

dx
]

. (13)

For a sufficiently large L, the coefficient ak can be approximated as follows:

ak ≈
2
π

φ
(

k
π

L

)
. (14)

The following series expansion is achieved:

f (x) =
1
2

ā0 +
+∞

∑
k=1

āk cos
(

k
π

L
x
)

(15)

with
āk = ak

π

L
≈ 2

L
φ
(

k
π

L

)
.

Finally, (15) can be approximated by truncating the series as follows:

f̂N (x) =
1
2

â0,L +
N

∑
k=1

âk,L cos
(

k
π

L
x
)

(16)

with
âk,L =

2
L

φ
(

k
π

L

)
.

The precision of f̂N,L (x) in (16) depends on N and L. Users can select these two quantities
using N and the couple (up, low) respectively. L is computed internally in the setLaw_th
constructor as L = max(|low|,up). The last method available in yuima for the compu-
tation of the density of t-Lévy increments over a time interval with length h is based on
the inversion of the characteristic function by means of the Fast Fourier Transform FFT
Singleton (1969), Cooley and Tukey (1965) 3. Denoting the density function as f (x) and the
characteristic function as φ (u) := E

[
eiuJh

]
for the scaled t-Lévy Jh, the density f (x) can be

obtained as follows:
3Since yuima manages SDEs driven by a Lévy process. For a user-defined noise, the random number generator

in the simulation algorithm and the density function for the estimation procedure are constructed using the yuima
function FromCF2yuima_law see the documentation YUIMA Project Team (2024) for more details. This function
internally implements the same FFT algorthim described in this paper.
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f (x) =
1

2π

∫ +∞

−∞
e−iuxE

[
eiuJh

]
du

=
1

2π

∫ +∞

−∞
e−iux φ (u)du. (17)

As first step, we apply to the integral in (17) the change variable u = 2πω and we have:

f (x) =
∫ +∞

−∞
e−i2πωx φ (2πω)dω. (18)

We consider discrete support for x and ω. The x grid has the following structure:

x0 = a, . . . , xj = a + j∆x, . . . , xN = b (19)

with ∆x = b−a
N where N + 1 is the number of the points in the grid in (19). Similarly, we

define a ω grid:

ω0 = −N
2

∆ω, . . . , ωn = −N
2
+ n∆ω . . . , ωN =

N
2

∆ω (20)

where ∆ω = 1
N∆x = 1

b−a . Both grids have the same dimension N + 1, ∆x shrinks as N → +∞
while ∆ω reduces for large values of b − a. For any xj in the grid we can approximate the
integral in (17) using the left Riemann summation, therefore, we have the approximation
f̂N
(

xj
)
:

f̂N
(

xj
)
= ∆ω

N

∑
n=1

e2iπ(− N
2 ∆ω+(n−1)∆u)xj φ (−πN∆u + 2π (n − 1))

= ∆ωeiπN∆ω
N

∑
n=1

e−2iπ(n−1)∆u(a+(j−1)∆x)φ (−πN∆ω + 2π (n − 1))

= ∆ωeiπN∆ω
N

∑
n=1

e
−2iπ(n−1)(j−1)

N φ (−πN∆ω + 2π (n − 1)) e
−2iπ(n−1)a

N . (21)

The last equality in (21) is due to the identity ∆ω∆x = 1
N . To evaluate the summation in

(21), we use the FFT algorithm and

f̂N
(

xj
)
= ∆ωeiπN∆ωFFT

[
φ (−πN∆ω + 2π (n − 1)) e

−2iπ(n−1)a
N

]
. (22)

In this case, we have two sources of approximation errors that we can control using the
arguments up, low and N in the setLaw_th constructor. N denotes the number of intervals in
the grid used for the Left-Riemann summation while up, low are used to compute the step
size of this grid.

Once the density function has been obtained using one of the three methods described
above, it is possible to approximate the cumulative distribution function using the Left-
Riemann summation computed on the grid in (19), therefore the cumulative distribution
function F (·) for each xj on the grid is determined as follows:

F̂
(

xj
)
= ∑

xk<xj

f̂N (xk)∆x. (23)

In this way, we can construct a table that we can use internally in the cdf and quantile
functions. Moreover, to evaluate the cumulative distribution function at any x ∈

(
xj−1, xj

)
,

we interpolate linearly its value using the couples
(
xj−1, F̂

(
xj−1

))
and

(
xj, F̂

(
xj
))

. The
random numbers can be obtained using the inversion sampling method.

We conclude this section with a numerical comparison among the three methods im-
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plemented in yuima. To assess the precision of our code we use as a target the cumulative
distribution function of a Student-t with ν = 3 computed through the R function pt (R
Core Team, 2024). To conduct this comparison, we construct three yuima.th-objects as
displayed in the code snippet reported below4.

# To instal YUIMA from Github repository
R> library(pak)
R> pak::pkg_install("yuimaproject/yuima")

##########
# Inputs #
##########
R> library(yuima)
R> nu <- 3
R> h <- 1 # step size for the interval time
R> up <- 10
R> low <- -10

# Support definition for variable x
R> x <- seq(low,up,length.out=100001)

# Definition of yuima.th-object
R> law_LAG <- setLaw_th(h = h, method = "LAG", up = up, low = low, N = 180) # Laguerre
R> law_COS <- setLaw_th(h = h, method = "COS", up = up, low = low, N = 180) # COS
R> law_FFT <- setLaw_th(h = h, method = "FFT", up = up, low = low, N = 180) # FFT

# Cumulative Distribution Function: we apply the cdf method to the yuima.th-object
R> Lag_time <- system.time(ycdf_LAG <- cdf(law_LAG, x, list(nu=nu))) # Laguerre
R> COS_time <- system.time(ycdf_COS<-cdf(law_COS, x, list(nu=nu))) # COS
R> FFT_time <- system.time(ycdf_FFT<-cdf(law_FFT, x, list(nu=nu))) # FFT

User can specify the numerical methods of the inversion of the characteristic function
using the input method. This argument assumes three values: "LAG" for the Gauss-Laguerre
quadrature, "COS" for the Cosine Series Expansion and "FFT" for the Fast Fourier Transform.
Once the yuima.th-object has been constructed, its cumulative distribution function is
computed by applying the yuima method5 cdf that returns the cumulative distribution
function for the numeric vector x. To enable a direct comparison with the outputs of the R
functions dt, pt, rt, and qt, the yuima methods dens, cdf, quantile, and rand refer to the
increments of a t-Lévy process Zt, rather than the corresponding scaled t-Lévy process Jt.
Specifically, when t = 1, the functions pt and cdf compute the same cumulative distribution
function, as illustrated in Figure 2.

For all numerical approaches available for cdf, we have a good level of precision that is
also confirmed by Table 1. As expected the fastest method is the FFT which seems to be also
the most precise.

To further investigate this fact, we study the behaviour of the cumulative distribution
function when h varies. For h = 0.01, we observe an oscillatory behaviour on tails for the
FFT and COS while the Laguerre method seems to be more stable as shown in Figure 3. To
have a fair comparison, we set N = 180, however we notice that the precision of FFT can be
drastically improved by tuning the inputs N, up and low.

4We recommend to download the latest yuima version using the function pk_install available in pak Csárdi
and Hester (2024).

5An object of yuima.th-class inherits the dens method for the density computation, cdf for the evaluation of
the cumulative distribution function, quantile for the quantile function and rand for the generation of the random
sample. We refer to Masuda et al. (2022) for the usage of these methods.
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Figure 2: Cumulative distribution function comparison for a Student-t random variable with ν = 3.

Table 1: Summary comparison of the distance between each method available in yuima and the
cumulative distribution function obtained using the R function ‘pt‘.

Metric COS FFT LAG

RMSE 2.10e-02 2.10e-02 0.064000
Max 3.20e-02 3.20e-02 0.085000
Min 7.88e-05 2.18e-05 0.000497
sec. 1.47e+00 4.00e-02 1.200000
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Figure 3: Cumulative distribution function comparison for a Student-t Lévy increment with ν = 3 and
h = 0.01.
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4 Numerical examples

This section presents a series of numerical examples demonstrating the practical application
of newly developed classes and methods within the Student-t Regression model. Specifically,
we showcase the simulation and estimation of models where the regressors are determined
by deterministic functions of time in the first example. The second example introduces
integrated stochastic regressors. Lastly, we perform an analysis using real data in the final
example.

4.1 Model with Deterministic Regressors

In this example, we consider two deterministic regressors and the dynamics of the model
have the following form:

Yt = µ1 cos (5t) + µ2 sin (t) + σJt (24)

with the true values (µ1, µ2, σ0, ν0) = (5,−1, 3, 3). The estimation of the model (24) has been
investigated in Masuda et al. (2024) where the empirical distribution of the studentized
estimates has been discussed. To use the simulation method in yuima we have to write the
dynamics of the regressors X1,t := cos (5t) and X2,t =:, that is:

d
[

X1,t
X2,t

]
=

[
−5 sin (5t)

cos (t)

]
dt (25)

with the initial condition:
X1,0 = 1, X2,0 = 0.

In the following, we show how to implement this model in yuima. In this example, we
set hn = 1/50, and thus the number of the observations n over unit time is 50. We also set
the terminal time of the whole observations Tn = 50 and that of the partial observations
Bn = 15.

R> library(yuima)
##########
# Inputs #
##########
# Inputs for Fourier Inversion
R> method_Fourier <- "FFT"; up <- 6; low <- -6; N <- 2^17; N_grid <- 60000

# Inputs for the sample grid time
R> Factor <- 1
R> Factor1 <- 1
R> initial <- 0; Final_Time <- 50 * Factor; h <- 0.02/Factor1

We notice that the variable Factor1 controls the step size of the time grid. Indeed for
different values of this quantity, we have a different value for h for example Factor1 = 1,
2, 4, 7.2 corresponds h = 0.02, 0.01, 0.005, 1/365.

The first step is the definition of an object of yuima.th-class using the constructor
setLaw_th. This object contains the random number generator, the density function, the
cumulative distribution function and the quantile function for constructing the increments
of a Student-t Lévy process.

#######################################
# Example 1: Deterministic Regressors #
#######################################

R> mu1 <- 5; mu2 <- -1; scale <- 3; nu <- 3 # Model Parameters
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# Model Definition
R> law1 <- setLaw_th(method = method_Fourier, up = up, low = low,

N = N, N_grid = N_grid) # yuima.th

R> class(yuima_law)
[1] "yuima.th"
attr(,"package")
[1] "yuima"

The next step is to define the dynamics of the regressors described in (25). This set of
differential equations is defined in yuima using the standard constructor setModel. Once
an object containing the mathematical description of the regressors has been defined, we
use setLRM to obtain the yuima.LevyRM. In the following, we report the command lines for
the definition of the Student Lévy Regression Model in (24).

R> regr1 <- setModel(drift = c("-5*sin(5*t)", "cos(t)"), diffusion = matrix("0",2,1),
solve.variable = c("X1","X2"), xinit = c(1,0)) # Regressors definition

R> Mod1 <- setLRM(unit_Levy = law1, yuima_regressors = regr1) # t-Regression Model

R> class(Mod1)
[1] "yuima.LevyRM"
attr(,"package")
[1] "yuima"

Using the object Mod1 we simulate a trajectory of the model in (24) using the yuima
method simulate.

# Simulation
R> samp <- setSampling(initial, Final_Time, n = Final_Time/h)
R> true.par <- unlist(list(mu1 = mu1, mu2 = mu2, sigma0 = scale, nu = nu))

R> set.seed(1)

R> sim1 <- simulate(Mod1, true.parameter = true.par, sampling = samp)

Figure 4 reports the simulated sample paths for the regressors X1,t, X2,t and the Student
Lévy Regression model Yt.

The next step is to study the behaviour of the two-step estimation procedure described in
Section 2. To run this procedure, we use the method estimation_LRM and then we initialize
randomly the optimization routine as shown in the following command lines.

# Estimation
R> lower <- list(mu1 = -10, mu2 = -10, sigma0 = 0.1)
R> upper <- list(mu1 = 10, mu2 = 10, sigma0 = 10.01)

R> start <- list(mu1 = runif(1, -10, 10), mu2 = runif(1, -10, 10),
+ sigma0 = runif(1, 0.01, 4))

R> Bn <- 15*Factor

R> est1 <- estimation_LRM(start = start, model = sim1, data = sim1@data,
+ upper = upper, lower = lower, PT = Bn)

R> class(est1)
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Figure 4: Simulated Trajectory of the Student Lévy Regression model defined in
eqrefeq:Regr1.
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[1] "yuima.qmle"
attr(,"package")
[1] "yuima"

R> summary(est1)
Quasi-Maximum likelihood estimation

Call:
estimation_LRM(start = start, model = sim1, data = sim1@data,

upper = upper, lower = lower, PT = Bn)

Coefficients:
Estimate Std. Error

mu1 5.029555 0.03538355
mu2 -1.128905 0.18026088
sigma0 2.425147 0.12523404
nu 2.735344 0.47457435

-2 log L: 3236.535 73.3833

It is also possible to construct the dataset without the method simulate. This result can
be achieved by constructing an object of yuima.th-class that represents the increment of
the Student-t Lévy process on the time interval with length h.

# Dataset construction without YUIMA
R> time_t <- index(get.zoo.data(sim1@data)[[1]])
R> X1 <- zoo(cos(5*time_t), order.by = time_t)
R> X2 <- zoo(sin(time_t), order.by = time_t)
R> law1_h <- setLaw_th(h = h, method = method_Fourier, up = up, low = low,

N = N, N_grid = N_grid)

R> print(c(law1_h@h,law1@h))
[1] 0.02 1.00

The object law1_h refers to the Student-t Lévy increment over an interval with length
0.02 as it can be seen looking at the slot ...@h.

R> set.seed(1)
R> names(nu)<- "nu"
# Simulation a t-Levy process Z_t.
R> Z_t <- zoo(cumsum(c(0,rand(law1_h, Final_Time/h,nu))), order.by = time_t)
# Sample path a scaled t-Levy process J_t
R> J_t <- Z_t/sqrt(nu)
# Sample path of a t-Levy regression model
R> Y <- mu1 * X1 + mu2 * X2 + scale * J_t
R> data1_a <- merge(X1, X2, Y)

We observe that, as highlighted in Section 3.1, the yuima method rand returns the
increments of a t-Lévy process Zt. To obtain the trajectory of the scaled t-Lévy process Jt in
(24), the process Zt needs to be rescaled by the factor

√
ν. The estimation is performed by

means of the method estimation_LRM as in the previous example.

R> est1_a <- estimation_LRM(start = start, model = Mod1, data = setData(data1_a),
+ upper = upper, lower = lower, PT = Bn)
R> summary(est1_a)
Quasi-Maximum likelihood estimation
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Call:
estimation_LRM(start = start, model = Mod1, data = setData(data1_a),

upper = upper, lower = lower, PT = Bn)

Coefficients:
Estimate Std. Error

mu1 4.987778 0.03642823
mu2 -1.164138 0.18558422
sigma0 2.495930 0.12888927
nu 2.407683 0.41221590

-2 log L: 3232.784 85.32438

Using the result stored in the summary we can construct a confidence interval using the
command lines reported below.

R> info_sum <- summary(est1_a)@coef
R> alpha <- 0.025
R> Confidence_Int_95 <- rbind(info_sum[,1]+info_sum[,2]*qnorm(alpha),
+ info_sum[,1]+info_sum[,2]*qnorm(1-alpha),unlist(true.par),
+ info_sum[,1])
R> rownames(Confidence_Int_95) <- c("LB","UB","True_par","Est_par")
R> print(Confidence_Int_95, digit = 4)

mu1 mu2 sigma0 nu
LB 4.916 -1.5279 2.243 1.600
UB 5.059 -0.8004 2.749 3.216
True_par 5.000 -1.0000 3.000 3.000
Est_par 4.988 -1.1641 2.496 2.408

Based on the aforementioned examples, the estimated value for the σ parameter deviates
from its true value. To further investigate this observation, we conducted a comparative
analysis using the three integration methods discussed in Section 3.1. This exercise was
repeated for three different values of h = 0.01, 0.005 and 1

365 . To ensure a fair comparison
among the Laguerre, Cosine Series expansion, and Fast Fourier Transform methods, we set
the argument N = 180. The obtained results are presented in Table 2.

Table 2: Estimated parameters for h = 0.01, 0.005, 1/365 and different integration methods. The
number of points for the inversion of the characteristic function is N = 180. The parenthesis shows the
asymptotic standard error. The last row reports the seconds necessary for the simulation of a sample
path.

Laguerre Method COS Method FFT Method

Parameter Lag_0.01 Lag_0.005 Lag_1_365 COS_0.01 COS_0.005 COS_1_365 FFT_0.01 FFT_0.005 FFT_1_365

µ̂1 4.968 5.019 4.976 4.939 5.065 4.875 4.934 5.069 4.876
(0.029) (0.020) (0.014) (0.041) (0.049) (0.054) (0.042) (0.049) (0.054)

µ̂2 -1.065 -1.044 -0.914 -1.192 -1.195 -0.555 -1.179 -1.178 -0.528
(0.146) (0.104) (0.074) (0.210) (0.247) (0.277) (0.213) (0.248) (0.277)

σ̂0 2.770 2.794 2.657 3.993 6.654 10.010 4.055 6.674 10.010

(0.101) (0.072) (0.051) (0.145) (0.172) (0.192) (0.148) (0.172) (0.193)
ν̂ 3.462 3.281 3.067 2.827 2.223 2.227 5.749 8.310 15.175

(0.615) (0.580) (0.538) (0.492) (0.377) (0.378) (1.063) (1.571) (2.940)
sec. 2.07 2.02 2.07 1.10 1.24 1.34 0.15 0.24 0.39

In the Laguerre method, we observe that reducing the step size h leads to improved
estimates of ν, however looking at the asymptotic standard error, the estimates for σ0 seem
to maintain the bias. As for the remaining methods, the estimates exhibit unsatisfactory
performance due to the imposed restriction of N = 180 (that is the maximum value allowed
for the Laguerre quadrature in the evaluation of the density in (8)). This outcome is not
unexpected, given the Laguerre method’s ability to yield a valid distribution even with a
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relatively small value of N, as demonstrated in Figure 3. Nevertheless for the COS and the
FFT, it is possible to enhance the results by increasing the value of the argument N that yields
a more accurate result in the simulation of the sample path for the model described in (24).

Table 3: Estimated parameters for N = 1000, 5000, 104 in the COS and the FFT methods. The step size
h is 1/365. The parenthesis shows the asymptotic standard error. The last row reports the seconds
necessary for the simulation of a sample path.

COS Method FFT Method

Parameter COS_1000 COS_5000 COS_10000 FFT_1000 FFT_5000 FFT_10000

µ1 4.968 4.975 4.975 4.968 4.975 4.975
(0.034) (0.016) (0.016) (0.035) (0.306) (0.016)

µ2 -0.887 -0.909 -0.909 -0.886 -0.908 -0.908
(0.174) (0.082) (0.082) (0.177) (0.022) (0.082)

σ0 3.300 2.964 2.964 3.363 2.963 2.964

(0.064) (0.057) (0.057) (0.065) (0.057) (0.057)
ν 2.713 2.765 2.765 3.279 2.760 2.702

(0.470) (0.480) (0.480) (0.579) (0.479) (0.468)
sec. 3.49 14.83 33.70 0.38 0.44 0.45

Table 3 shows the estimated parameters for the varying value of N and h = 1/365. As
expected increasing the precision in the quadrature improved estimates for both methods.
Notably for N ≥ 5000, all estimates fall within the asymptotic confidence interval at the 95%
level.

This example suggests a possible strategy for selecting the optimal N for the grid defined
in (20), particularly when h = 1

365 (commonly used for daily data). The strategy consists of
the following steps:

• Estimate the model using Laguerre quadrature with the maximum allowable polyno-
mial order (180).

• Using the estimates from the previous step as an initial guess, re-estimate the model
using the FFT method with N = 500. If the resulting estimates are sufficiently close to
those obtained in the previous step, stop.

• Otherwise, using the Laguerre estimates as the initial guess, double the number of
intervals in the grid in (20) and re-estimate the model using the FFT. Repeat this process
until two successive estimates are sufficiently close. The Euclidean norm can be used
to determine whether the estimates are sufficiently close.

4.2 Model with integrated stochastic regressors

In this section, we consider two examples whose regressors are stochastic. Moreover, to
satisfy the regularity conditions, the regressors are supposed to be an integrated version of
stochastic processes.

Example 1 In this example, we consider the following continuous time regression model
with a single regressor:

Yt = µ
∫ t

0
Xudu + σJt, J1 ∼ tν, (26)

with the true values (µ0, σ0, ν0) = (−3, 3, 2.5), and the process X is supposed to be the Lévy
driven Ornstein-Uhlenbeck process defined as:

dXt = −Xtdt + 2dZt,

where the driving noise Z is the Lévy process with Z1 ∼ NIG(1, 0, 1, 0). The normal
inverse Gaussian (NIG) random variable is defined as the normal-mean variance mixture

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 73

of the inverse Gaussian random variable, and the probability density function of Zt ∼
NIG(α, β, δt, µt) is given by

x 7→ αδt exp{δt
√

α2 − β2 + β(x − µt)}K1(αψ(x; δt, µt))
πψ(x; δt, µt)

where α2 := γ2 + β2 and ψ(x; δt, µt) :=
√
(δt)2 + (x − µt)2. More detailed theoretical

properties of the NIG-Lévy process are given for example in ?.

For the simulation by yuima, we formally introduce the following system:

d

[
X1,t
X2,t

]
=

[
X2,t
−X2,t

]
dt +

[
0
2

]
dZt, (27)

with the initial condition:
X1,0 = 0, X2,0 = 0.

The process X1,t corresponds to the regressor
∫ t

0 Xudu in the regression model (26). Due to
the specification of the new yuima function, we will additionally construct the “full” model:

Yt = µ1X1,t + µ2X2,t + σJt, J1 ∼ tν, (28)

and simulate the trajectory of Y with µ2 = 0. After that, we will estimate the parameters
(µ1, σ, ν) by the original model (26). From now on, we show the implementation of this
model in yuima. The sampling setting is unchanged from the previous example code:
hn = 1/50, n = 1/hn = 50, Tn = 50, Bn = 15.

R> library(yuima)
##########
# Inputs #
##########
# Inputs for Fourier Inversion
R> method_Fourier = "FFT"; up = 6; low = -6; N = 2^17; N_grid = 60000

# Inputs for the sample grid time
R> Factor <- 1
R> Factor1 <- 1
R> initial <- 0; Final_Time <- 50 * Factor; h <- 0.02/Factor1

The role of the variable Factor1 is the same as in the previous section. By using the
constructor setLaw_th, we define yuima.th-class in a similar manner. After that, we
construct the “full” model (28) by the constructors setModel and setLRM. A trajectory of Y
and its regressors can be simulated by the YUIMA method simulate.

####################################################
# Regressor: Integrated NIG-Levy driven OU process #
####################################################
R> mu1 <- -3; mu2 <- 0; scale <- 3; nu <- 2.5 # Model Parameters

# Model Definition
R> lawILOU <- setLaw_th(method = method_Fourier, up = up, low = low, N = N,
+ N_grid = N_grid) # yuima.th

R> regrILOU <- setModel(drift = c("X2", "-X2"), jump.coeff = c("0", "2"),
+ solve.variable = c("X1","X2"), xinit = c(0,0), measure.type = "code",
+ measure = list(df = "rNIG(z, 1, 0, 1, 0)")) # Regressors definition

# t-Regression model
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Figure 5: Simulated Trajectory of the Student Lévy Regression model defined in
eqrefeq:yuex1

R> ModILOU <- setLRM(unit_Levy = lawILOU, yuima_regressors = regrILOU)

# Simulation
R> sampILOU <- setSampling(initial, Final_Time, n = Final_Time/h)
R> true.parILOU <- unlist(list(mu1 = mu1, mu2 = mu2, sigma0 = scale, nu = nu))
R> set.seed(1)
R> simILOU <- simulate(ModILOU, true.parameter = true.parILOU, sampling = sampILOU)

Next we extract the trajectories of Y and X1 from the yuima.LevyRM-class: simILOU and
construct the new model for the estimation of the parameters. Figure 5 shows the simulated
sample paths for the regressor and the response process Y.

# Data extraction
R> Dataset <- get.zoo.data(simILOU)
R> newData <- Dataset[-2]
R> newData <- merge(newData$X1, newData$Y)
R> colnames(newData) <- c("X1","Y")
R> plot(newData)

# Define the model for estimation
R> regrILOU1 <- setModel(drift = c("0"), diffusion = matrix(c("0"),1,1),
+ solve.variable = c("X1"), xinit = c(0)) # Regressors definition
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# t-Regression model
R> ModILOU1 <- setLRM(unit_Levy = lawILOU, yuima_regressors = regrILOU1)

# Estimation
R> lower1 <- list(mu1 = -10, sigma0 = 0.1)
R> upper1 <- list(mu1 = 10, sigma0 = 10.01)
R> startILOU1 <- list(mu1 = runif(1, -10, 10), sigma0 = runif(1, 0.01, 4))

R> Bn <- 15*Factor
R> Data1 <- setData(newData)
R> estILOU1 <- estimation_LRM(start = startILOU1, model = ModILOU1, data = Data1,
+ upper = upper1, lower = lower1, PT = Bn)
R> summary(estILOU1)
Quasi-Maximum likelihood estimation

Call:
estimation_LRM(start = startILOU1, model = ModILOU1, data = Data1,

upper = upper1, lower = lower1, PT = Bn)

Coefficients:
Estimate Std. Error

mu1 -2.959621 0.02112734
sigma0 2.778659 0.03208519
nu 2.404843 0.13018410

-2 log L: 69711.32 854.3838

Example 2 In this example, we consider the following regression model:

Yt = µ1

∫ t

0
V1,udu + µ2

∫ t

0
V2,udu + σJt, J1 ∼ tν (29)

where the process X = (V1, V2) satisfy

dV1,t =
1
ϵ
(V1,t − V3

1,t − V2,t + s)dt, (30)

dV2,t = (γV1,t − V2,t + α)dt + σ′dwt, (31)

with
(ϵ, s, γ, α, σ′) = (1/3, 0, 3/2, 1/2, 2),

and standard Wiener process w. We set the true values

(µ1,0, µ2,0, σ0, ν0) = (8,−4, 8, 3).

The process V is the so-called stochastic FitzHugh-Nagumo process which is a classical
model for describing a neuron; V1 expresses the membrane potential of the neuron and
V2 represents a recovery variable. Its theoretical properties such as hypoellipticity, and
Feller and mixing properties are well summarized in León and Samson (2018). The paper
also provides a nonparametric estimator of the invariant density and spike rate. Similarly,
other integrated degenerate diffusion can be considered as regressors. Its ergodicity for the
regularity conditions is studied for example in Wu (2001). For the statistical inference for
degenerate diffusion processes, we refer to Ditlevsen and Samson (2019) and Gloter and
Yoshida (2021).

For the implementation of the regression model (29) on YUIMA, we formally consider
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the following dynamics:

d


V1,t
V2,t
V3,t
V4,t

 =


V3,t
V4,t

3(V3,t − V3
3,t − V4,t)

3
2 V3,t − V4,t +

1
2

 dt +


0
0
0
2

 dwt, (32)

with the initial condition:

V1,0 = 0, V2,0 = 0, V3,0 = 0, V4,0 = 0.

The first and second elements correspond to the regressor in (29). As in the previous example,
we first simulate data by the “full” model defined as:

Yt = µ1V1,t + µ2V2,t + µ3V3,t + µ4V4,t + σJt, J1 ∼ tν, (33)

with µ3 = µ4 = 0, and after that, we extract the simulated data and estimate the parameters
based on the original regression model (29). Below we show how to implement on yuima.
In this example, we set hn = 1/200, n = 1/hn = 200, Tn = 1000, Bn = 300. The values of
them are controlled by the variables Factor and Factor1 in the example code.

R> library(yuima)
##########
# Inputs #
##########
# Inputs for Fourier Inversion
R> method_Fourier = "FFT"; up = 6; low = -6; N = 2^17; N_grid = 60000

# Inputs for the sample grid time
R> Factor <- 20
R> Factor1 <- 4
R> initial <- 0; Final_Time <- 50 * Factor; h <- 0.02/Factor1

############################################################
# Regressor: Integrated stochastic FitzHugh-Nagumo process #
############################################################

R> mu1 <- 8; mu2 <- -4; mu3 <- 0; mu4 <- 0; scale <- 8; nu <- 3 # Model Parameters
# Model Definition
R> lawFN <- setLaw_th(method = method_Fourier, up = up, low = low,
+ N = N, N_grid = N_grid) # yuima.th

R> regrFN <- setModel(drift = c("V3", "V4", "3*(V3-V3^3-V4)", "1.5*V3-V4+0.5"),
+ diffusion = matrix(c("0", "0", "0", "2"),4,1),
+ solve.variable = c("V1","V2", "V3", "V4"),
+ xinit = c(0,0,0,0)) # Regressors definition

R> ModFN <- setLRM(unit_Levy = lawFN, yuima_regressors = regrFN) # t-regression model

# Simulation
R> sampFN <- setSampling(initial, Final_Time, n = Final_Time/h)
R> true.parFN <- unlist(list(mu1 = mu1, mu2 = mu2, mu3 = mu3, mu4 = mu4,
+ sigma0 = scale, nu = nu))
R> set.seed(12)
R> simFN <- simulate(ModFN, true.parameter = true.parFN, sampling = sampFN)

In this example, both Factor and Factor1 are larger than the previous example, and
hence it takes a higher computational load than the previous one. Figure 6 shows the
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Figure 6: Simulated Trajectory of the Student Lévy Regression model defined in
eqrefeq:yuex2.

simulated sample paths for the regressor and the Student Lévy Regression model Y. Now
we move on to the estimation phase.

R> Dataset <- get.zoo.data(simFN)
R> newData <- Dataset[-c(3,4)]
R> newData <- merge(newData$X1,newData$X2, newData$Y)
R> colnames(newData) <- c("X1","X2", "Y")
R> plot(newData)

# Define the model for estimation
R> regrFN1 <- setModel(drift = c("0", "0"), diffusion = matrix(c("0", "0"),2,1),
+ solve.variable = c("X1", "X2"), xinit = c(0,0)) # Regressors definition
R> ModFN1 <- setLRM(unit_Levy = lawFN, yuima_regressors = regrFN1) # t-Regression model.

# Estimation
R> lower1 <- list(mu1 = -10, mu2 = -10, sigma0 = 0.1)
R> upper1 <- list(mu1 = 10, mu2 =10, sigma0 = 10.01)
R> startFN1 <- list(mu1 = runif(1, -10, 10), mu2 = runif(1, -10, 10),
+ sigma0 = runif(1, 0.01, 4))

R> Bn <- 15*Factor
R> Data1 <- setData(newData)
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R> estFN1 <- estimation_LRM(start = startFN1, model = ModFN1, data = Data1,
+ upper = upper1, lower = lower1, PT = Bn)
R> summary(estFN1)
Quasi-Maximum likelihood estimation

Call:
estimation_LRM(start = startFN1, model = ModFN1, data = Data1,

upper = upper1, lower = lower1, PT = Bn)

Coefficients:
Estimate Std. Error

mu1 8.041838 0.04895791
mu2 -4.041518 0.04495255
sigma0 7.712157 0.04452616
nu 3.020972 0.11837331

-2 log L: 403960.9 1291.516

4.3 Real data regressors

In this section, we show how to use the yuima package for the estimation of a Student
Lévy Regression model in a real dataset. We consider a model where the daily price of the
Standard and Poor 500 Index is explained by the VIX index and two currency rates: the
YEN-USD and the Euro Usd rates. The dataset was provided by Yahoo.finance and ranges
from December 14th 2014 to May 12th 2023. We downloaded the data using the function
getSymbol available in quantmod library. To consider a small value for the step size h we
estimate our model every month h = 1/30. We report below the code for storing the market
data in an object of yuima.data-class

R> library(yuima)
R> library(quantmod)
R> getSymbols("^SPX", from = "2014-12-04", to = "2023-05-12")
# Regressors
R> getSymbols("EURUSD=X", from = "2014-12-04", to = "2023-05-12")
R> getSymbols("VIX", from = "2014-12-04", to = "2023-05-12")
R> getSymbols("JPYUSD=X", from = "2014-12-04", to = "2023-05-12")

R> SP <- zoo(x = SPX$SPX.Close, order.by = index(SPX$SPX.Close))
R> Vix <- zoo(x = VIX$VIX.Close/1000, order.by = index(VIX$VIX.Close))
R> EURUSD <- zoo(x = `EURUSD=X`[,4], order.by = index(`EURUSD=X`))
R> JPYUSD <- zoo(x = `JPYUSD=X`[,4], order.by = index(`JPYUSD=X`))
R> Data <- na.omit(na.approx(merge(Vix, EURUSD, JPYUSD, SP)))
R> colnames(Data) <- c("VIX", "EURUSD", "JPYUSD", "SP")
R> days <- as.numeric(index(Data))-as.numeric(index(Data))[1]

# equally spaced grid time data
R> Data <- zoo(log(Data), order.by = days)
R> Data_eq <- na.approx(Data, xout = days[1] : tail(days,1L))
R> yData <- setData(zoo(Data_eq, order.by = index(Data_eq)/30)) # Data on monthly basis

We decided to work with log-price (see Data variable in the above code) to have quantities
defined on the same support of a Student-t Lévy process, i.e.: the real line. Since the
estimation method in yuima requires that the data are observed on an equally spaced grid
time, we interpolate linearly to estimate possible missing data to get a log price for each day.
Figure 7 shows the trajectory for each financial series.
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Figure 7: Financial data observed on a monthly equally grid time ranging from December 14th 2014 to
May 12th 2023.
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To estimate the model we perform the same steps discussed in the previous examples
and we report below the code for reproducing our result.

# Inputs for integration in the inversion formula
R> method_Fourier <- "FFT"; up <- 6; low <- -6; N <- 10000; N_grid <- 60000

# Model Definition
R> law <- setLaw_th(method = method_Fourier, up = up, low = low, N = N,
+ N_grid = N_grid)
R> regr <- setModel(drift = c("0", "0", "0"), diffusion = matrix("0",3,1),
+ solve.variable = c("VIX", "EURUSD", "JPYUSD"), xinit = c(0,0,0))
Mod <- setLRM(unit_Levy = law, yuima_regressors = regr, LevyRM = "SP")

# Estimation
R> lower <- list(mu1 = -100, mu2 = -200, mu3 = -100, sigma0 = 0.01)
R> upper <- list(mu1 = 100, mu2 = 100, mu3 = 100, sigma0 = 200.01)
R> start <- list(mu1 = runif(1, -100, 100), mu2 = runif(1, -100, 100),
+ mu3 = runif(1, -100, 100), sigma0 = runif(1, 0.01, 100))
R> est <- estimation_LRM(start = start, model = Mod, data = yData, upper = upper,
+ lower = lower, PT = floor(tail(index(Data_eq)/30,1L)/2))
R> summary(est)

Quasi-Maximum likelihood estimation

Call:
estimation_LRM(start = start, model = Mod, data = yData, upper = upper,

lower = lower, PT = floor(tail(index(Data_eq)/30, 1L)/2))

Coefficients:
Estimate Std. Error

mu1 0.000335328 0.004901559
mu2 -0.062235188 0.033027232
mu3 0.016291220 0.039382559
sigma0 0.082031691 0.004859138
nu 3.062728822 0.616466913

-2 log L: -1506.067 48.17592

5 Conclusion

In this paper, we have presented classes and methods for a t-Lévy regression model. In
particular, the simulation and the estimation algorithm have been introduced from a com-
putational point of view. Moreover three different algorithms have been developed for
computing the density, the cumulative distribution and the quantile functions and the
random number generator of the t-Lévy increments defined over a non-unitary interval.
These latter methods can be also used in any stochastic model available in yuima for the
definition of the underlying noise.

Based on our simulated data, for the estimation of the degrees of freedom the Laguerre
method seems to be more accurate. However, due to the restriction on the number of
roots used in the evaluation of the integral, we notice a bias on the estimation of the scale
parameter. Such bias seems to be observable also in the other implemented methods when
the same number of points is used in the evaluation of the integral for the inversion of
the characteristic function. However for the COS and the FFT methods, the numerical
precision can be improved. In particular, it is possible to ensure that the estimates fall in the
asymptotic confidence interval at 95% level even if the estimates of the degrees of freedom
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in the simplest model (first example) seem to underestimate the true value. As concerns
computational time, the FFT methods with a sufficiently large computational precision
(N ≥ 5000) and h sufficiently small seems to be an acceptable compromise.
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Sfislands: An R Package for
Accommodating Islands and Disjoint
Zones in Areal Spatial Modelling
by Kevin Horan, Katarina Domijan, and Chris Brunsdon

Abstract Fitting areal models which use a spatial weights matrix to represent relationships
between geographical units can be a cumbersome task, particularly when these units are
not well-behaved. The two chief aims of sfislands are to simplify the process of creating an
appropriate neighbourhood matrix, and to quickly visualise the predictions of subsequent
models. The package uses visual aids in the form of easily-generated maps to help this
process. This paper demonstrates how sfislands could be useful to researchers. It begins
by describing the package’s functions in the context of a proposed workflow. It then
presents two worked examples showing a selection of potential use-cases. These range from
earthquakes in Indonesia, to river crossings in London. We aim to show how the sfislands
package streamlines much of the human workflow involved in creating and examining such
models.

1 Introduction

A key feature which differentiates spatial statistics is the non-independence of observations
and the expectation that neighbouring units will be more similar than non-neighbouring
ones (Tobler, 1970). If this is not accounted for, the assumptions of many types of models
will be violated. The relationships between all spatial units in a study can be represented
numerically in a spatial weights matrix. In order to build this, we must first decide on
what constitutes being a neighbour. We might see this as a continuous relationship where
degree of neighbourliness is a function of connectivity, which could be represented as some
measure of distance. Alternatively it could be a binary situation where each pair of units
either are (1) or are not (0) neighbours. This can be based on a condition such as contiguity
of some sort, or a distance constraint. It is the job of the modeller to formulate a hypothesis
which justifies their choice of neighbourhood structure.

For R users, the spdep package (Bivand, 2022) has long been popular for the creation of
these matrices. More recently, in reference to the increasing use of sf structures (Pebesma,
2018), the sfdep package (Parry and Locke, 2024) has presented generally similar function-
ality by wrapping spdep functions with functions that follow the sf naming convention
(function names starting with st_), as well as a “use a data.frame for everything” attitude.

The most appropriate form of neighbourhood structure will depend on the specific
context. Briz-Redón et al. (2021) compared different structures in the context of COVID-19
data. They note that Earnest et al. (2007) found that distance-based matrices were more
appropriate when examining birth defects in Australia, whereas Duncan et al. (2017) found
that a first-order contiguity structure produced a better fit than others in the context of lip
cancer incidence in Scotland.

The most commonly used neighbourhood structure is one based on first-order queen
contiguity, where units are considered neighbours if they share at least a vertex or boundary.
However, as the name suggests, this will lead to problems when non-contiguous units such
as islands or exclaves are present. Less obviously, depending on how the geographic units
are described, areas on either side of rivers may be inappropriately classified as neighbours
or not neighbours. Furthermore, the presence of infrastructure such as tunnels, bridges
or ferry services might be satisfactory to meet our hypothesis of the required degree of
connectivity to be considered neighbours. Again, such information may not be apparent
from a basic set of polygons. In order to create what a researcher considers to be an
appropriate neighbourhood structure, incorporating all of the domain knowledge that
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they might have about the system, it should be simple and intuitive to add and remove
connections between spatial units. This might mean adding links to account for man-made
infrastructure, or cutting links to incorporate natural barriers such as rivers or mountains.

The aim of sfislands (Horan et al., 2024) is to deal with the situations described above in
a convenient and open manner. It allows us to set up a structure, quickly map it, and then
examine whether or not we are happy with how it represents our hypothesis of relationships
between units. The structure can then be edited and the process re-iterated until we have
described a spatial relationship structure with which we are satisfied.

It should be noted that while this package offers convenient tools for the examination,
visualisation, addition and removal of neighbourhood linkages between units, such an
approach to dealing with disconnected units is not always appropriate and other methodolo-
gies are available. These issues are discussed in more depth by Bivand and Portnov (2004)
and Freni-Sterrantino et al. (2018).

The above can be considered as the pre-functions of the package. A second category of
features, which we refer to as post-functions, are for use after the creation of a model. Having
fit a model with mgcv (Wood, 2011) in particular, the process of extracting estimates for
certain types of effects can be somewhat awkward. These post-functions augment the original
dataframe with these estimates and their standard errors in tidy format. They also allow for
quick visualisation of the output in map form.

1.1 Typical use-cases

In this paper, we will look at two examples to show different use-cases for sfislands. The
first example focuses on earthquakes in Indonesia. It shows a scenario where all of the
functions are used, from setting up contiguities, to modelling and examining the predictions
of the model. The second example looks at London and how, despite an absence of islands,
the presence of a river means that some of the pre-functions of sfislands can be useful.

2 Why use sfislands?

Below, we outline some of the benefits of the package in the context of a proposed workflow
for fitting areal spatial models.

Step 1: Pre-functions for setting up neighbourhood structure

1. It addresses an issue commonly seen in online help forums where an inexperienced
user wishes to get started with a model but fails at the first hurdle because their
neighbourhood structure contains empty records. sfislands will include a contiguity
for all units.

2. It gives tools to immediately visualise this structure as a map.

3. These maps are created using ggplot2 (Wickham, 2016), which allows users to apply
additional styling and themes using ggplot2 syntax.

4. As the nodes can be labelled by index, it makes it very easy to add and remove
connections as appropriate with confidence and without reference to the names of
these areas.

5. Connections which have been induced by a function from the package but which
are not based on geographical contiguity can be accessed to ensure openness in the
process.
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Table 1: Pre-functions: setting up a neighbourhood structure.

function purpose
st_bridges() create a neighbourhood contiguity structure, with

a k-nearest neighbours condition for islands
st_quickmap_nb() check structure visually on map
st_check_islands() check the contiguities which have been assigned to

islands
st_force_join_nb() enforce changes by adding connections
st_force_cut_nb() enforce changes by removing connections

Rect1 Rect2

Rect3

Rect4

Rect5

Figure 1: Simplified scenario with five rectangles.

Step 2: Modelling

These neighbourhood structures can be used in modelling packages such as mgcv, brms
(Bürkner, 2017), r-inla (Bakka et al., 2018) and more.

Step 3: Post-functions for models

1. It simplifies the process of extracting estimates from models, such as those with
random effects and Markov random field structures created using mgcv. Compatibility
with more packages can be added at a future date.

2. These effects can be quickly visualised as ggplot2 maps.

3 Pre-functions

The first group of functions, shown in Table 1, deals with the creation of a neighbourhood
structure in the presence of discontiguities. The resultant structure can be quickly mapped
to check if it is satisfactory. Connections can be forcibly added or removed by name or index
number. By an iterative process of changes and examination of a quickly-generated guide
map, a satisfactory structure can be decided upon.

We will now go through each function in more detail using the set of rectangles shown
in Figure 1 for demonstration purposes. Rectangles 1, 2 and 3 are contiguous while 4 and 5
can be viewed as “islands”.

3.1 st_bridges()

This function requires at least two arguments: an sf dataframe and, from that, the name of
one column of unique row identifiers, ideally names, of each spatial unit. It creates a neigh-
bourhood structure where non-island units are joined by first-order queen contiguity, while
island units are joined to their k-nearest neighbours. The output is a named neighbourhood
structure in either list or matrix form as desired, which can be either a standalone object
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or included as an additional column in the original sf dataframe. While we have chosen
to append the neighbourhood structure to the original data frame in this way by default,
the user should be warned that any subsequent row sub-setting (filter) operation on this
object will invalidate the list column involved. While it is not necessary in all modelling
packages for the neighbourhood list or matrix to be named, it is good practice to do so and is
mandatory when using, for example, mgcv.

One solution when confronted with islands in a dataset is to simply exclude them
from the analysis. In the first two examples of using st_bridges(), we have chosen to
ignore islands with the argument remove_islands = TRUE and to return a list and ma-
trix structure respectively by specifying this in the nb_structure argument and choosing
add_to_dataframe = FALSE:

# output a named list

st_bridges(rectangles,
"name",
remove_islands = TRUE,
nb_structure = "list",
add_to_dataframe = FALSE) |>

head()

#> $Rect1
#> [1] 2 3
#>
#> $Rect2
#> [1] 1 3
#>
#> $Rect3
#> [1] 1 2

# output a named matrix

st_bridges(rectangles,
"name",
remove_islands = TRUE,
nb_structure = "matrix",
add_to_dataframe = FALSE) |>

head()

#> [,1] [,2] [,3]
#> Rect1 0 1 1
#> Rect2 1 0 1
#> Rect3 1 1 0

Alternatively, in the following examples, we choose to join islands to their 1 nearest
neighbour, which is the default setting, and to return the output as a column called “nb” in
the original sf dataframe (add_to_dataframe = "TRUE" is the default setting):

# output a named list as a column "nb" in original dataframe

st_bridges(rectangles,
"name",
link_islands_k = 1,
nb_structure = "list") |>

head()
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#> Simple feature collection with 5 features and 2 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 0 ymin: 0 xmax: 6 ymax: 4
#> CRS: NA
#> name nb geometry
#> 1 Rect1 2, 3 POLYGON ((0 0, 0 2, 2 2, 2 ...
#> 2 Rect2 1, 3, 4 POLYGON ((2 0, 2 2, 4 2, 4 ...
#> 3 Rect3 1, 2, 5 POLYGON ((2 2, 2 4, 4 4, 4 ...
#> 4 Rect4 2 POLYGON ((5 0, 5 1, 6 1, 6 ...
#> 5 Rect5 3 POLYGON ((0.8 3, 0.8 4, 1.8...

# output a named matrix as a column "nb" in original dataframe

st_bridges(rectangles,
"name",
link_islands_k = 1,
nb_structure = "matrix") |>

head()

#> Simple feature collection with 5 features and 2 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 0 ymin: 0 xmax: 6 ymax: 4
#> CRS: NA
#> name nb.1 nb.2 nb.3 nb.4 nb.5 geometry
#> 1 Rect1 0 1 1 0 0 POLYGON ((0 0, 0 2, 2 2, 2 ...
#> 2 Rect2 1 0 1 1 0 POLYGON ((2 0, 2 2, 4 2, 4 ...
#> 3 Rect3 1 1 0 0 1 POLYGON ((2 2, 2 4, 4 4, 4 ...
#> 4 Rect4 0 1 0 0 0 POLYGON ((5 0, 5 1, 6 1, 6 ...
#> 5 Rect5 0 0 1 0 0 POLYGON ((0.8 3, 0.8 4, 1.8...

These structures can serve as the input to models in brms, r-inla, rstan (Stan Develop-
ment Team, 2020) or mgcv. brms requires a matrix structure while mgcv models use a list.
Rather than having a separate neighbours object, it is included in the original sf dataframe
as a named list or matrix, in the spirit of the sfdep package.

3.2 st_quickmap_nb()

It is much more intuitive to examine these structures visually than in matrix or list format.
This can be done with the st_quickmap_nb() function as shown in Figure 2.

# default is 'nodes = "point"'

st_bridges(rectangles,
"name",
link_islands_k = 1) |>

st_quickmap_nb()

If we wish to make edits, it might be more useful to represent the nodes numerically
rather than as points (Figure 3).

# with 'nodes = "numeric"'

st_bridges(rectangles,
"name",
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Figure 2: Queen contiguity and islands connected to nearest neighbour.

1 2
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5

Figure 3: Queen contiguity and islands connected to nearest neighbour. Nodes are shown as numeric
indices.

link_islands_k = 1) |>
st_quickmap_nb(nodes = "numeric")

3.3 st_check_islands()

This function will show us transparently what connections have been made which are
not based on contiguity. It gives both the name and index number of each pair of added
connections. In this example, two pairs have been added.

# show summary of non-contiguous connections in a dataframe

st_bridges(rectangles,
"name",
link_islands_k = 1) |>

st_check_islands()

#> island_names island_num nb_num nb_names
#> 1 Rect4 4 2 Rect2
#> 2 Rect5 5 3 Rect3

3.4 st_force_join_nb()

If we feel that 4 should also be connected to 3, this can be done by forcing a join (Figure 4).

# add an extra connection using numeric index

st_bridges(rectangles, "name",
link_islands_k = 1) |>

st_force_join_nb(3,4) |>
st_quickmap_nb(nodes = "numeric")

3.5 st_force_cut_nb()

And perhaps there is a wide river between rectangles 1 and 2 which justifies removing the
connection. We will edit it this time using names (Figure 5).
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Figure 4: With an additional connection between 3 and 4.

1 2

3

4

5

Figure 5: With the removal of connection between 1 and 2.

# remove an existing connection using unit name, not index

st_bridges(rectangles, "name",
link_islands_k = 1) |>

st_force_join_nb(3,4) |>
st_force_cut_nb("Rect1","Rect2") |>
st_quickmap_nb(nodes = "numeric")

Having decided upon an appropriate neighbourhood structure, the next step is to use
this in the context of a model. The use of such structures is particularly associated with CAR
(conditional autoregressive) or ICAR-type (intrinsic conditional autoregressive) models
(Besag, 1974). These are often implemented in a Bayesian framework using brms, r-inla or
rstan. For example, the brms ICAR structure requires the neighbourhood relationships to
be in matrix form. The pre-functions will output the neighbourhood structure in the desired
format for use in any of these frameworks. A convenient frequentist alternative is to use the
mgcv package which requires a named list of neighbours. It has the functionality to create
such models using bs="mrf". It also has the ability to combine these with a hierarchical
structure using bs="re". While the outputs from the Bayesian structures mentioned above
can be extracted in the same way as any other component of the model, it can be somewhat
awkward to get the estimates from mgcv models. sfislands has two post-functions to
conveniently extract and visualise these.

4 Post-functions

Table 2 shows the second set of functions in the package and their purpose.

4.1 st_augment()

This function augments the original dataframe with the estimated means and standard errors
of the spatially varying predictions from a fitted mgcv model in a similar manner to how the
broom package (Robinson et al., 2023) operates. The geometry column, as per convention,
remains as the last column of the augmented dataframe, while the predictions are positioned

Table 2: Post-functions: tidy estimates from mgcv.

function purpose
st_augment() augment the original dataframe with model predictions
st_quickmap_preds() generate quick maps of these predictions
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Table 3: The naming procedure for augmented columns from different mgcv structures.

mgcv syntax column name
s(region, bs = ’re’) random.effect.region
s(region, covariate, bs = ’re’) random.effect.covariate|region
s(sub-region, bs = ’mrf’, xt = list(nb = data$nb)) mrf.smooth.sub-region
s(sub-region, by = covariate, bs = ’mrf’, xt = list(nb = data$nb)) mrf.smooth.covariate|sub-region

immediately before it. 1 The spatially varying predictions which st_augment() extracts
from an mgcv model are

• random effects (which are called in mgcv with bs='re'), and
• ICAR components (bs='mrf').

Consider the model structure described in the code below using mgcv syntax. In this
model y is the dependent variable which is being estimated with a fixed intercept, a fixed
slope for some covariate, a set of random intercepts and slopes for the covariate at a region
level, and a set of ICAR varying intercepts and slopes at a lower sub-region level.

# creating an mgcv model

mgcv::gam(
y ~ covariate + # fixed intercept and effect for covariate
s(region, bs = "re") + # random intercept at level region
s(region, covariate, bs = "re") + # random slopes at level region
s(sub-region,
bs = 'mrf',
xt = list(nb = data$nb),
k = k) + # ICAR varying intercept at level sub-region

s(sub-region, by = covariate,
bs = 'mrf',
xt = list(nb = data$nb),
k = k), # ICAR varying slope for covariate at level sub-region

data = data,
method = "REML")

When labelling the new prediction columns which are augmented to the original
dataframe from such a model, st_augment() follows the formula syntax of the lme4 package
(Bates et al., 2015), where the pipe symbol (|) indicates “grouped by”. Table 3 shows how
the augmented columns in this scenario would be named. Each column name begins with
either random.effect. or mrf.smooth. as appropriate. An additional column is also added
for the standard error of each prediction, as calculated by mgcv. These columns are named
as above but with se. prepended (e.g. se.random.effect.region).

4.2 st_quickmap_preds()

These estimates can then be quickly mapped. As it is possible to include more than 1
spatially varying component, the output of this function is a list of plots. They can be
viewed individually by indexing, or all at once using, for example, the plotlist argument
from the ggarrange() function which is part of the ggpubr (Kassambara, 2023) package.
We will see this function in practice in the following example. The maps which it generates
are automatically titled and subtitled according to the type of effect. For example, the
map showing predictions for random.effect.region will have “region” as its title and
“random.effect” as its subtitle.

1In a similar way, st_augment() can also be used to append the random effects from lme4 (Bates et al.,
2015) and nlme (Pinheiro et al., 2023) models to an sf dataframe, which can then be easily mapped using
st_quickmap_preds(). Compatibility with models created using different packages can be introduced in the
future.
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1000 km

Figure 6: Indonesia faults. Surrounded by a 10 kilometre buffer.

5 Indonesia (example 1)

Modelling earthquakes in Indonesia serves as a good example to demonstrate this package.
Firstly, Indonesia is composed of many islands. Secondly, earthquake activity is known to
be associated with the presence of faults which exist below sea level and thus do not respect
land boundaries. Therefore it is reasonable to expect similar behaviour in nearby provinces
regardless of whether or not they are contiguous. We aim to model the incidence, or count
per unit area, of earthquake activity by province across Indonesia, controlling for proximity
to faults.

5.1 Data

The data for this section have been downloaded from the National Earthquake Information
Center, USGS earthquake catalogue. The datasets with accompanying explanations are avail-
able at https://github.com/horankev/quake_data. They capture all recorded earthquakes
in and close to Indonesia from the beginning of January 1985 to the end of December 2023.
Figure 6 shows a map of Indonesia, divided into 33 provinces, with other neighbouring or
bordering countries filled in grey. The many local faults which lie within 300km of the shore
are shown in yellow with green outlines.

To get an interpretable measure of the concentration of faults in any area, these faults are
transformed from linestrings to polygons by setting a buffer of 10km around them, which
explains their green outline. Now both our faults and the sizes of provinces are in units of
kilometres squared. This means we can generate a unitless metric of what proportion of any
administrative unit is covered by these buffered faults. This measure across provinces is
shown in Figure 7.

Earthquake incidence per province has been calculated as the total number of earth-
quakes with an epicentre within that province per unit area. We have restricted counts to
earthquakes >5.5 on the moment magnitude scale, which is the point at which they are often
labelled as potentially damaging.

The occurrences of these earthquakes are shown in Figure 8, their total per province in
Figure 9, and finally, their incidence or count per square kilometre can be seen in Figure 10.
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Figure 7: Indonesia fault concentration. Square kilometre of buffered fault per square kilometre of
province area.

1000 km

magnitude

M: 5.5 − 6

L: 6.1 − 6.9

XL: 7+

Figure 8: Earthquakes in Indonesia of magnitude > 5.5, 1985-2023. Categorised by magnitude as
medium, large or extra-large.
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Figure 9: Earthquake count in Indonesia, 1985-2023, mag > 5.5: count by province.
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Figure 10: Earthquake incidence in Indonesia, 1985-2023, mag > 5.5: count per square kilometre by
province.

5.2 Model

As this is count data, we will model it as a Poisson distribution with λ as the mean count
per province. For i = 1, ..., n provinces, the dependent variable in this model is

yi = earthquake counti (1)

while the explanatory variable is

xi = fault concentrationi =
area of buffered faults in provincei

province areai
. (2)

Firstly, when excluding the incidence and just modelling counts, where yi =
earthquake count in provincei, the Poisson model is of the following form:

yi|λi ∼ Pois(λi) (3)

with
E(yi|λi) = λi. (4)

We model
log(λi) = β0 + β1xi + γi. (5)

where γi is a term with a correlation structure reflecting a province’s location relative to
other provinces.

We can describe these relationships by setting up a neighbourhood structure based on
queen contiguity where a pair of provinces are considered neighbours if they share at least
one point of boundary. This can be modelled as a Markov random field to generate an ICAR
model with a spatially varying term. Each of these terms will be correlated with the others
according to the neighbourhood structure we have defined.

The Markov random field here follows a multivariate Gaussian distribution. γi is a
vector of province effects having a distribution with mean 0 and precision P where

[p]ij = vi if i = j and vi is the number of adjacent provinces to province i,

[p]ij = −1 if provinces i and j are adjacent, and

[p]ij = 0 otherwise.

A further constraint that Σjγj = 0 is applied so that the distribution is identifiable.

We now include an offset term (here, area) because we are more interested in modelling
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the incidence than in the actual count, such that

log(
λi

areai
) = β0 + β1xi + γi (6)

which is equivalent to

log(λi) = β0 + β1xi + γi + log(areai). (7)

We are still modelling log(λ) rather than the incidence, but we are adding an offset to
adjust for differing areas. Modelling log(λ) and adding an offset is equivalent to modelling
incidence, and coefficients can be interpreted that way.

When interpreting the estimated coefficients of the model, it can be useful to look at it in
the following form:

λi = eβ0+β1xi+γi areai. (8)

Having described the type of model we wish to implement, we now show how sfislands
can be used to streamline the process.

5.3 Pre-functions

Such models, however, cannot incorporate locations which have no neighbours. In the
case of Indonesia, this is quite problematic. It is composed of many islands. The estimated
count of islands according to Andréfouët et al. (2022) is 13,558. While it is not unusual for a
country to have a number of often small offshore islands, Indonesia is entirely composed
of (at least portions of) an archipelago of islands, so many of these islands or groups of
islands are individual provinces in their own right. We might like to hypothesise that just
because a province is a disconnected island, this should not mean that it is independent
of other nearby provinces in terms of earthquake incidence. A standard first-order queen
contiguity structure would mean the exclusion of disconnected units entirely from the
model. An alternative strategy of assigning neighbour status based on a distance metric
would overcome this, but the threshold size of distance necessary for such a structure might
be inappropriately large for the non-islands provinces. Many extra unwanted contiguities
could be added when only those related to disconnected units were desired. We would like
to use a compromise between these two strategies.

In this case, we use st_bridges() for setting up the queen contiguity structure as usual,
but with the additional stipulation that unconnected units (provinces which are islands
or collections of islands) are considered neighbours to their k nearest provinces. For this
example, we have set the value of k to 2. The resulting neighbourhood structure is shown in
Figure 11. Note how it can be styled with a combination of internal arguments (size, colour,
fill etc.) and additional ggplot2 layers.

# join islands to k=2 nearest neighbours
# various arguments exist for altering colours and sizes
# additional ggplot themes and layers can be added

st_bridges(provinces_df, "province", link_islands_k = 2) |>
st_quickmap_nb(fillcol = "antiquewhite1",

bordercol = "black", bordersize = 0.5,
linkcol = "darkblue", linksize = 0.8,
pointcol = "red", pointsize = 2) +

theme(panel.background = element_rect(fill = "#ECF6F7", colour = "black",
linewidth=1.5),

axis.text = element_blank()) +
geom_sf(data=nearby_countries_df,

fill="gray50", linewidth=0.5, colour="black")
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Figure 11: Neighbourhood structure for Indonesian provinces created by st_bridges() with k=2.

This neighbourhood structure now has no unconnected provinces so it is suitable for
use in an ICAR model. However, if we are not entirely happy with this structure because of
some domain knowledge about the inter-relationships between certain island provinces, we
might wish to

• add some additional contiguities using st_force_join_nb()

• and remove one using st_force_cut_nb().

To cater for the possibility that a modeller might not be familiar with the names of the
various geographic units but still wishes to enforce alterations to their relationships, we
can look at a map (Figure 12) where the nodes are shown by index number instead of as
points (using the argument nodes='numeric'). This makes it easy to cut and join neighbour
connectivities as desired. Furthermore, there is an option to show concave hulls drawn
around each unit (using concavehull = TRUE). This is also shown in Figure 12. These shapes
are not used in the assignment of contiguities but it can be useful to see them in a situation
such as Indonesia where many individual provinces are actually multipolygons of more
than one island. Without them, it is not clear whether an island is a province in its own right,
or which group of islands together form one province.

# with 'concavehull = TRUE' and 'nodes = "numeric"'

st_bridges(provinces_df, "province", link_islands_k = 2) |>
st_quickmap_nb(fillcol = "antiquewhite1",

bordercol = "black", bordersize = 0.5,
linkcol = "tomato", linksize = 0.5,
nodes = "numeric",
numericcol = "black", numericsize = 6,
concavehull = TRUE,
hullcol = "darkgreen", hullsize = 0.2) +

theme(panel.background = element_rect(fill = "#ECF6F7", colour = "black",
linewidth=1.5),

axis.text = element_blank())

Having enforced some adjustments to the neighbourhood structure, outlined in the code
below, the new structure can be seen in Figure 13. Edge effects have also been mitigated
by imposing additional connections on the two extreme provinces (1 and 23), which would
otherwise have only one neighbour, so that they now also include their two next closest
neighbours.
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Figure 12: Neighbourhood structure for Indonesian provinces. Viewed with st_quickmap_nb(), using
the arguments nodes = 'numeric' and concavehull = TRUE.

# a series of forced joins and cuts by index number

joins_df <- tribble(
~x, ~y,
1, 24,
1, 30,
3, 13,
13, 17,
14, 25,
20, 29,
19, 23,
16, 27,
22, 23,
7, 19,
7, 20,
19, 28,
4, 18,
21, 26,
22, 28

)

st_bridges(provinces_df, "province", link_islands_k = 2) |>
st_force_join_nb(xy_df = joins_df) |>
st_force_cut_nb(19,22) |>
st_quickmap_nb(fillcol = "antiquewhite1",

bordercol = "black", bordersize = 0.5,
linkcol = "darkblue", linksize = 0.8,
pointcol = "red", pointsize = 2) +

theme(panel.background = element_rect(fill = "#ECF6F7", colour = "black",
linewidth=1.5),

axis.text = element_blank()) +
geom_sf(data=nearby_countries_df,

fill="gray50", linewidth=0.5, colour="black") +
annotation_scale()
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Figure 13: Neighbourhood structure for Indonesian provinces, after alterations using st_force_join()
and st_force_cut(). As many connections are being enforced at once, we can feed these to the
function as a data frame rather than using consecutive function calls as before.

5.4 mgcv model

We now create the ICAR model using, in this case, the mgcv package. We will be able to use
the output of st_bridges, which we have named prep_data, as both the data source for the
model and the neighbourhood structure (by specifying the column nb which contains the
neighbourhood list).

mod_pois_mrf <- gam(damaging_quakes_total ~
fault_concentration +
s(province, bs='mrf', xt=list(nb=prep_data$nb), k=24) +
offset(log(area_province)),

data=prep_data, method="REML",family = "poisson")

We can see from the summary below that the adjusted R-squared is 0.983 and deviance
explained is 93.3%. The coefficient for fault_concentration confirms an expected positive
mean global association between earthquake and fault incidence.

#>
#> Family: poisson
#> Link function: log
#>
#> Formula:
#> damaging_quakes_total ~ fault_concentration + s(province, bs = "mrf",
#> xt = list(nb = prep_data$nb), k = 24) + offset(log(area_province))
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -9.5648 0.1744 -54.845 < 2e-16 ***
#> fault_concentration 5.9971 1.9245 3.116 0.00183 **
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Approximate significance of smooth terms:
#> edf Ref.df Chi.sq p-value
#> s(province) 19.19 23 166.6 <2e-16 ***
#> ---
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#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.983 Deviance explained = 93.3%
#> -REML = 104.81 Scale est. = 1 n = 33

Returning to the initial question, what is the additional risk level of earthquakes in a
province, having controlled for the concentration of faults? This can be seen as a measure of
the activity level of faults locally and it is spatially smoothed by the autoregressive process.
It is represented in the model summary by the component s(province). However, the
extraction of individual predictions for this component for each province from the mgcv
model requires a number of steps. We now demonstrate how these are streamlined into a
single function by the sfislands package.

5.5 Post-functions

The function st_augment() allows us to add the spatially varying predictions from the
model as new columns to the original dataframe in a process similar to that of the broom
package. For instance, we see from the output of the following code chunk that the
original dataframe is now augmented with columns called mrf.smooth.province and
se.mrf.smooth.province which show the predictions for the γi component and their stan-
dard errors. Note that this is how we would expect them to be named, based on the previous
discussion surrounding Table 3. They are positioned immediately before the final geometry
column of the sf dataframe, and after the neighbours list column, nb.

# column names of augmented dataframe

mod_pois_mrf |>
st_augment(prep_data) |>
names() |>
dput()

#> c("province", "province_id", "S", "M", "L", "XL", "quake_total",
#> "quake_density", "damaging_quakes_total", "damaging_quakes_density",
#> "area_fault_within", "area_province", "fault_concentration",
#> "nb", "mrf.smooth.province", "se.mrf.smooth.province", "geometry"
#> )

This output can now be piped into the st_quickmap_preds() function to get a quick
visualisation of these estimates for γi on a map, as shown in Figure 14. Again, note that the
title and subtitle of the image are as previously discussed.

# st_quickmap_preds() outputs a list of ggplots

plot_mrf <- mod_pois_mrf |>
st_augment(prep_data) |>
st_quickmap_preds(scale_low = "darkgreen",

scale_mid = "ivory",
scale_high = "darkred",
scale_midpoint = 0)

# in this case, there is only one plot in the list
# so we call it by index
# it is then supplemented with additional ggplot functions

plot_mrf[[1]] +
coord_sf(datum=NA, default = TRUE) +
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Figure 14: Estimates of γi shown as a map using st_quickmap_preds().

theme(panel.background = element_rect(fill = "#ECF6F7", colour = "black",
linewidth=1.5),

axis.text = element_blank()) +
geom_sf(data=provinces_df, fill=NA, colour="black", linewidth=0.5) +
geom_sf(data=nearby_countries_df, fill="gray50", colour="black",

linewidth=0.5) +
labs(fill="relative\nincidence") +
annotation_scale() +
coord_sf(datum=NA, default = TRUE) +
theme(legend.position = "inside",

legend.position.inside = c(0.92,0.77),
legend.box.background = element_rect(colour = "black", linewidth = 1),
legend.title = element_text())

If we wish to apply the inverse link function (the exponential function in the case of this
Poisson model) to map these values to a more interpretable scale, this will not be generated
by the function st_quickmap_preds(). Instead, we must use the augmented dataframe
which is produced by st_augment() and create the appropriate extra column with the usual
tidyverse mutate() function. This allows us to produce the map in Figure 15. As these
coefficients are multiplicatively related to the earthquake incidence, values below 1 imply
an earthquake incidence which is lower than expected.

The provinces with the 3 most elevated incidences are labelled in red. We can see that,
controlling for the effects of proximity to faults, the province of Nusa Tenggara Barat has 8.7
times the expected incidence, or number of major earthquakes per square kilometre. The
two lowest-scoring provinces, labelled in green, have essentially no incidence of earthquake
epicentres within their boundaries, controlling for what their proximity to faults alone
would suggest.

5.6 Workflow summary

In this example, we have gone through a number of stages carefully, making changes to
contiguities that we deemed appropriate as we went. However, in practice, at least in a
first iteration, it might not be necessary to go through all of these steps. A rough and ready
model, complete with spatially varying coefficients and visual output, can be generated
with sfislands using nothing more than three or four lines of code, such as the following:

# workflow:
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Figure 15: Map showing estimates of exp(γi). This is produced by adding an additional column to the
dataframe produced by st_augment().

# 1. set up neighbourhood structure

prep_data <- st_bridges(provinces_df, "province")

# 2. define model

mod <- gam(quake_mlxl_total ~
fault_concentration +
s(province, bs='mrf', xt=list(nb=prep_data$nb), k=22) +
offset(log(area_province)),

data=prep_data, method="REML",family = "poisson")

# 3. augment tidy estimates

tidy_ests <- st_augment(mod, prep_data)

# 4. visualise them

st_quickmap_preds(tidy_ests)

6 London (example 2)

The next example looks only at using the pre-functions of sfislands, but in a situation where
the presence of actual islands is not the problem we seek to deal with. Consider the wards of
London (sourced from the Greater London Authority’s London Datastore) and available
at https://github.com/horankev/london_liverpool_data. In Figure 16 the st_bridges()
function is applied to them to construct a queen contiguity neighbourhood structure. As can
be seen from the st_check_islands() function, this collection of London wards contains no
isolated units.

st_bridges(london, "GSS_CODE") |>
st_check_islands()

#> No disconnected units were found in original data
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Figure 16: Wards of Greater London. Queen contiguity.

#> [1] 0

The st_quickmap_nb() function gives an immediate visual representation of the struc-
ture. 2 Because this map is created using ggplot2, it can be easily supplemented by adding a
layer showing the course of the river Thames which is also visible in Figure 16.

# same as sfdep:st_contiguity() as there are no islands
# an extra layer for the river Thames

st_bridges(london, "GSS_CODE") |>
st_quickmap_nb() +
geom_sf(data=thames, colour="blue", linewidth=1.5) +
theme(panel.background = element_rect(fill = "#F6F3E9", colour = "black",

linewidth=1.5))

When a study area has a river running through it, problems can arise with constructing
appropriate neighbourhood structures. Depending on how the geometries are defined,
the presence of a river can cause problems in two ways. In one situation, the river could
be expressed as a polygon in its own right meaning that, using the condition of queen
contiguity, it severs any potential contiguity between units on either side of its banks. In this
situation, no spatial units will be neighbours with the units directly across the river from
them. At the other extreme, if the river is not included as a geometry (as is the case here) all
units on opposing banks are automatically considered neighbours.

Depending on the presence of river crossings, two areas which are physically quite close
but on opposing banks might be very distinct. If there is no means of crossing the river
within a reasonable distance, somebody living on the banks of a river might be more likely
to go about their life primarily on their side of the river, despite the short distance as the
crow flies of facilities on the other side. This could be relevant in terms of, say, modelling
of house prices where we might want to incorporate issues such as local amenities into a
neighbourhood structure.

2st_quickmap_nb() can also be used to visualise any contiguity structure created by spdep or sfdep as long as
that structure is included in an sf dataframe as a column named nb.
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10 km

Figure 17: Riverside wards of Greater London. Queen contiguity disregarding river.

sfislands provides convenient functions for this sort of situation. Let us start by restrict-
ing our wards of interest to just those which are on either side of the river Thames. Figure
17 shows the resultant contiguities when the river is ignored.

# which wards are alongside the river

riverside <- thames |> st_intersects(london) |> unlist() |> unique()

# only map these wards

st_bridges(london[riverside,],"NAME") |>
st_quickmap_nb(linksize = 0.5) +
geom_sf(data=thames, colour="blue", linewidth=1.5) +
annotation_scale(location="br") +
coord_sf(datum=NA) +
theme(panel.background = element_rect(fill = "#F6F3E9", colour = "black",

linewidth=1.5))

In order to take account of actual connectivity, we can add a layer showing the road
and pedestrian bridges or tunnels. Details of these were sourced from the Wikipedia (2024)
article titled “List of crossings of the River Thames”. In Figure 18, we have also drawn a 1
kilometre buffer around each crossing. This was chosen as an arbitrary measure of what
might be considered a “reasonable” distance within which to consider opposing banks
as being connected. The vast majority of units on opposing banks have access to a river
crossing within this threshold and thus should be considered as neighbours. Only the
extreme eastern units and one to the south west should not have a connection across the
river according to this criterion.

In order to identify the changes we wish to make, we use the nodes = "numeric"
argument in st_quickmap_nb(). Now we can identify each unit by its position in the
contiguity structure. Here we have shaded in pink the units which are not within 1 kilometre
of a river crossing (see Figure 19).

# with 'nodes = "numeric"'

st_bridges(london[riverside,],"NAME") |>
st_quickmap_nb(nodes = "numeric", numericsize = 4, linksize = 0.5) +
geom_sf(data=no_touch_buffer, fill="pink", alpha=0.3) +
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Figure 18: Riverside wards of Greater London. Road and pedestrian crossing and tunnels surrounded
by 1 kilometre buffer shaded green.
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Figure 19: Riverside wards of Greater London. Index number for each ward shown at centroid. Wards
which are not within 1 kilometre of a crossing are shaded pink.

geom_sf(data=crossings_roadped |> st_buffer(1000),
fill="darkgreen", alpha=0.3) +

geom_sf(data=thames, colour="blue", linewidth=1.5) +
geom_sf(data=crossings_roadped, size=1, colour="yellow") +
annotation_scale(location="br") +
coord_sf(datum=NA) +
theme(panel.background = element_rect(fill = "#F6F3E9", colour = "black",

linewidth=1.5))

This allows us to easily cut the ties across the river for these units by using the function
st_force_cut_nb(). 3 Having made these adjustments, st_quickmap_nb() now shows a
connectivity structure (Figure 20) which reflects our hypothesis of how influence should
extend across the river in the presence or absence of crossings.

This example shows that the pre-functions of sfislands have uses for situations which do
not involve islands. They can be used to apply domain knowledge to easily design the most

3While we are using the index of the units in this example, the function also accepts names as arguments which
may be more convenient in some circumstances.
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10 km

Figure 20: Riverside wards of Greater London. Contiguities across the river have been cut for the pink
wards.

appropriate neighbourhood structure.

# enforce cuts for the links where there is no crossing

cut_df <- tribble(
~x, ~y,
18, 17,
19, 17,
19, 20,
20, 21,
21, 22,
47, 48,
45, 46,
45, 47,
39, 65,
1, 2

)
st_bridges(london[riverside,], "NAME") |>

st_force_cut_nb(xy_df = cut_df) |>
st_quickmap_nb(bordercol = "black", bordersize = 0.5, linksize = 0.5) +
geom_sf(data=no_touch_buffer, fill = "pink", alpha = 0.3) +
geom_sf(data=crossings_roadped |> st_buffer(1000),

fill= "darkgreen", alpha = 0.3) +
geom_sf(data=thames, colour = "blue", linewidth = 1.5) +
annotation_scale(location = "br") +
coord_sf(datum=NA) +
theme(panel.background = element_rect(fill = "#F6F3E9", colour = "black",

linewidth = 1.5))

7 Summary

These examples have shown the varying scenarios in which sfislands can be useful. It
aims to contribute to spatial modelling by making an awkward area less awkward. Rather
than having a default attitude of ignoring islands when building neighbourhood structures
based on contiguity, it offers a convenient system for enforcing linkages if that is deemed
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to be the most appropriate course of action. Even when no islands are present, it provides
a simple procedure for tailoring a neighbourhood structure with bespoke contiguities to
match a given hypothesis. It also provides helper functions to use these structures in
spatial regression models, notably those built with mgcv, which streamline the human effort
necessary to examine the estimates. In future, compatibility with other modelling packages
can be added to broaden the package’s capabilities.
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rPDBapi: A Comprehensive R Package
Interface for Accessing the Protein Data
Bank
by Selcuk Korkmaz and Bilge Eren Yamasan

Abstract The RCSB Protein Data Bank (PDB) is a foundational resource for bioinformatics
and structural biology, providing essential 3D structural data for large biological molecules.
This data underpins advancements in drug discovery and genomics. The rPDBapi package
aims to bridge the existing gap in accessing PDB data through the R programming language,
offering a user-friendly, powerful interface that enhances the accessibility of PDB data for
the R community. Leveraging the PDB’s XML-based API, rPDBapi simplifies the creation
of custom queries, making data retrieval more efficient. It also introduces advanced func-
tionalities within R, such as customized search capabilities and direct data manipulation,
demonstrating its potential to significantly impact research workflows in bioinformatics
and structural biology. Through detailed examples, the paper illustrates how rPDBapi
enables precise data retrieval and analysis, facilitating a deeper understanding of molecular
functions and interactions. This contribution makes structural biology data more accessible
to researchers using R, simplifying access to PDB resources.

1 Introduction

The RCSB Protein Data Bank (PDB) is an essential resource in bioinformatics and structural
biology, offering a vast repository of 3D structural data of large biological molecules (Burley
et al., 2022). This data is crucial for researchers aiming to unravel molecular functions
and interactions, playing a pivotal role in advancing drug discovery and genomic studies
(Korkmaz et al., 2018). Traditionally, access to the PDB has been facilitated through various
web interfaces and a suite of programmatic tools, with Python-based solutions like PyPDB
being particularly prominent (Gilpin, 2016). However, the breadth and depth of data housed
within the PDB necessitate diverse access methods to cater to the specific needs and technical
preferences of the global research community.

The complexity and sheer volume of the data underscore the importance of developing
more intuitive and flexible tools that can streamline the process of data retrieval and analysis,
thereby enhancing the efficiency of scientific research and innovation. In this context, the
accessibility of the PDB through these platforms not only democratizes the availability of
critical scientific data but also encourages the continuous evolution of computational tools
designed to meet the growing demands of multidisciplinary research fields.

To support diverse queries, ranging from atomic interactions to protein-protein inter-
actions within large assemblies, the PDB data hierarchy is structured to provide detailed
information at various levels of biological organization. At the core are individual atoms,
which are grouped into residues. Residues are organized into chains, typically representing
a single protein or nucleic acid molecule. Chains are then assembled into biological assem-
blies, which may represent complete macromolecular complexes as they exist in biological
systems. This hierarchical structure facilitates the comprehensive representation of complex
biological entities.

To elaborate, the PDB data organization can be detailed as follows:

Entry:

• Each structure in the PDB is designated by a unique alphanumeric ID (PDB ID, e.g.,
1Q2W) and includes annotations such as the title of the structure, the list of depositors,
deposition date, release date, and experimental details.

• The entry also includes information about the methodology used for structure deter-
mination (e.g., X-ray crystallography, NMR spectroscopy, cryo-electron microscopy)
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and the resolution of the structure if applicable.
• Additional metadata may include the biological significance of the structure, references

to related literature, and the conditions under which the structure was determined.

Entity:

This level describes the distinct molecules within entries, categorized into three types:

• polymer_entity:

– Represents macromolecules such as proteins, DNA, and RNA, defined by their
amino acid or nucleotide sequences.

– Annotations at this level include details about the biological source, such as the
organism from which the sequence was derived, expression system, and any
modifications to the sequence (e.g., post-translational modifications in proteins).

– Polymer entities also include secondary structure annotations, domains, and
functional sites (e.g., active sites in enzymes).

• branched_entity:

– Encompasses carbohydrates composed of saccharide units linked by glycosidic
bonds, which can be linear or branched.

– These entities often play crucial roles in biological recognition processes, such as
cell-cell communication, and are annotated with information about their specific
linkages and glycosidic bond types.

– The branched entity level may also include annotations about the biological
function of the carbohydrate, its involvement in glycoproteins, and interactions
with other biomolecules.

• nonpolymer_entity:

– Covers small molecules like enzyme cofactors, ligands, inhibitors, ions, and
solvent molecules.

– Annotations at this level include details about the chemical structure (e.g.,
SMILES, InChI), molecular weight, charge, and other relevant physicochemi-
cal properties.

– Nonpolymer entities are often involved in critical biological processes, such as
enzyme catalysis, signaling, or structural stability, and are annotated with their
roles within the macromolecular complex.

Entity Instance:

• Refers to the specific copies of entities within entries, often called “chains.”
• This level provides information that can vary between instances, such as structural

connectivity, secondary structure, and domain organization.
• It also includes details about the conformation of the chain in the structure, including

information on any alternative conformations (e.g., alternate locations of side chains
or backbone conformers).

• The entity instance level allows the representation of multiple conformations of the
same entity within a single structure, which can be critical for understanding dynamic
aspects of biomolecular function.

Assembly:

• Describes the biological assemblies, which represent the quaternary structure of the
macromolecular complex as it exists in vivo.

• Annotations include details about the number and types of chains involved in the
assembly, the symmetry and transformations required to generate the assembly, and
evidence supporting the biological relevance of the assembly (e.g., experimental
validation, computational prediction).
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• The assembly level may also include information about the stoichiometry of the
complex, interactions between different chains (e.g., protein-protein or protein-nucleic
acid interactions), and the overall topology of the assembly.

• For multimeric complexes, this level is crucial for understanding the functional orga-
nization and cooperative interactions within the assembly.

Chemical Component:

• Includes all residues (e.g., amino acids in proteins, nucleotides in DNA/RNA) and
small molecules found in entries.

• Annotations at this level encompass chemical descriptors such as SMILES (Simplified
Molecular Input Line Entry System) and InChI (International Chemical Identifier),
chemical formula, systematic names, and alternative names (e.g., common names or
trade names for small molecules).

• The chemical component level also includes information about covalent modifications,
such as post-translational modifications in proteins (e.g., phosphorylation, glycosyla-
tion) or synthetic modifications in nucleic acids.

• For ligands and cofactors, this level may also include details about binding affinities,
interaction partners, and the specific role of the chemical component in the biological
function of the macromolecular complex.

This hierarchical data organization in the PDB ensures that the complex nature of biolog-
ical macromolecules and their interactions are accurately represented, enabling researchers
to extract detailed insights from structural data. Whether the focus is on atomic-level inter-
actions, the role of specific residues, or the overall architecture of a large protein complex,
the PDB structure allows for comprehensive and flexible data exploration.

A notable gap remains in providing streamlined, R-based access to the PDB—a gap
that the rPDBapi package seeks to close (Korkmaz and Yamasan, 2024). By offering a
user-friendly, powerful interface to the PDB designed for the R programming community,
rPDBapi significantly enhances the accessibility of critical PDB data. This leap in accessibility
is particularly impactful given R’s widespread adoption across statistical computing and
bioinformatics, disciplines that rely heavily on comprehensive and intricate data analysis.

rPDBapi leverages the PDB’s existing XML-based API to streamline the process of
crafting custom queries, thereby simplifying what was once a complex task. This facility
to generate customized queries with ease represents a fundamental shift towards more
versatile and efficient data retrieval practices. It ensures that researchers can quickly adapt
their data-gathering strategies to suit the unique needs of their projects, from exploratory
analyses in genomic studies to the identification of potential drug targets.

Moreover, rPDBapi introduces advanced functionalities within R, such as specialized
search capabilities, sequence retrieval, and direct data manipulation. The package’s ability
to construct customized JSON queries for specific data retrieval needs, coupled with its
support for extracting FASTA sequences and performing nuanced searches across the PDB,
exemplifies the breadth of its utility. Whether facilitating the download of structure files for
molecular modeling, enabling batch queries for sequence analysis, or providing direct access
to paper titles and chemical descriptions within the PDB, rPDBapi stands as a testament
to the evolving landscape of bioinformatics tools. It not only simplifies access to a vast
array of structural biology data but also fosters an environment where scientific discovery
is accelerated through efficient data analysis and workflow integration. The workflow for
querying and retrieving data from the RCSB PDB using the rPDBapi package is illustrated in
Figure 1, highlighting the interaction between core functions, API requests, and downstream
data processing.

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=rPDBapi
https://CRAN.R-project.org/package=rPDBapi
https://CRAN.R-project.org/package=rPDBapi
https://CRAN.R-project.org/package=rPDBapi
https://CRAN.R-project.org/package=rPDBapi


CONTRIBUTED RESEARCH ARTICLE 112

Figure 1: Data Retrieval and Query Workflow for RCSB PDB API Using rPDBapi Package

In essence, rPDBapi aims to significantly improve the way researchers interact with the
RCSB PDB through programmatic means. By offering a more accessible pathway for R users
to engage with PDB data, the package seeks to enhance the usability and flexibility of data
exploration and analysis within the fields of bioinformatics and structural biology.

2 Using the Package

The accessibility and retrieval of specific data from the RCSB PDB are facilitated through var-
ious search functions, each designed to meet the nuanced needs of the scientific community.
These functions are built on a foundation of low-level core functions—send_api_request,
handle_api_errors, and parse_response—which ensure efficient interaction with the RCSB
PDB’s APIs. send_api_request handles the actual communication with the PDB server,
while handle_api_errors manages potential issues during the request, and parse_response
processes and extracts the relevant data from the server’s responses. This section explores
the details of these search functions, illuminating their utility in fetching lists of PDB IDs
based on diverse search criteria.

2.1 Installation and Setup

rPDBapi package can be installed from CRAN (The Comprehensive R Archive Network)
and loaded as follows:

# install.packages("rPDBapi", repos = "http://cran.us.r-project.org")
library("rPDBapi")

The package is currently in a state of active development. The latest version in devel-
opment can be accessed via GitHub (https://github.com/selcukorkmaz/rPDBapi). This
paper was composed utilizing rPDBapi version 2.1.

2.2 Retrieving PDB IDs

Utilizing query_search function to query PDB database enables researchers to uncover a
wealth of structural information pertinent to specific biological entities or processes. These
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queries can range from searches for structures associated with particular terms, such as
specific molecules or complexes like hemoglobin, to more refined strategies targeting data
linked to unique PubMed IDs, source organisms identified by NCBI Taxonomy IDs, or
structures determined by specific experimental methodologies. Further, the PDB’s func-
tionality to compare protein structure similarities and conduct advanced searches based on
authorship, organism, UniProt IDs, or PFAM numbers exemplifies the database’s versatility
and its role in facilitating detailed comparative analyses and structural elucidation.

A primary method of querying the PDB involves searching for structures related to a
specific term, such as a biological molecule or complex. For instance, executing a query for
hemoglobin yields a list of PDB IDs corresponding to structures associated with hemoglobin
assemblies. This search modality is instrumental in gathering a broad spectrum of structural
data pertinent to a particular molecule or complex, facilitating comparative analyses and
structural elucidation.

The following code snippet exemplifies a search that returns the first 6 PDB IDs related
to hemoglobin, showcasing the breadth of data available for this fundamental biological
machinery.

pdbs = query_search(search_term = "hemoglobin")
head(pdbs)

#> [1] "2PGH" "3PEL" "3GOU" "6IHX" "1G08" "1G09"

Another refined search strategy involves querying the PDB using PubMed ID numbers.
This approach allows researchers to find structures that are directly linked to specific
scientific publications, ensuring a bridge between the structural data and the corresponding
bibliographic sources.

pdbs = query_search(search_term = 32453425, query_type = "PubmedIdQuery")
pdbs

#> [1] "6XTX" "6XTY"

Here, structures associated with a given PubMed ID are retrieved, offering a targeted
exploration of structural data underpinned by the scientific literature.

Advanced search functions further refine data retrieval capabilities. Queries can be
constructed based on authorship, enabling the exploration of contributions from specific
researchers or research groups. Similarly, searches can target structures derived from
particular organisms or those associated with specific UniProt IDs or PFAM numbers,
enhancing the precision and relevance of search results. Building on the advanced search
capabilities, researchers can explore deeper into the structural biology landscape by querying
the PDB for entries associated with specific Pfam IDs. Pfam IDs are used to identify protein
domains, which are conserved parts of a protein’s sequence and structure. The following
example focuses on the Pfam ID “PF00069”, which corresponds to the protein kinase domain,
a common and functionally important domain in many signaling proteins.

# Search by PFAM number (protein kinase domain)
pdbs = query_search(search_term = "PF00069", query_type="pfam")
head(pdbs)

#> [1] "1A06" "1A9U" "1APM" "1AQ1" "1ATP" "1B38"

By querying the PDB for this specific Pfam ID, we can retrieve all related PDB entries
and analyze the distribution of protein lengths within this domain family. This analysis
provides insights into the structural variability and conservation of domain length among
different proteins.

We then focus on the first 100 PDB entries for analysis, although this number can be
adjusted according to research needs:
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# Load necessary libraries
library(rPDBapi)
library(Biostrings)
library(ggplot2)

# Get first 100 entries
pdbs <- pdbs[1:100]

The next step involves calculating the length of each protein sequence associated with the
retrieved PDB IDs. The get_protein_length function is used to fetch the FASTA sequence for
each PDB ID, convert it into an AAString using the Biostrings package, and then determine
the number of amino acids (protein length) in the sequence:

get_protein_length <- function(pdb_id) {
fasta <- get_fasta_from_rcsb_entry(pdb_id, chain_id = "A")
sequence <- AAString(fasta)
return(nchar(sequence))

}

# Apply the function to all retrieved PDB IDs
protein_lengths <- sapply(pdbs, get_protein_length)

# Create a data frame for plotting
length_data <- data.frame(PDB_ID = names(protein_lengths), Length = protein_lengths)

head(length_data)

#> PDB_ID Length
#> 1A06 1A06 332
#> 1A9U 1A9U 379
#> 1APM 1APM 350
#> 1AQ1 1AQ1 298
#> 1ATP 1ATP 350
#> 1B38 1B38 299

Finally, we visualize the distribution of protein lengths using a histogram (Figure 2).
This plot provides a clear representation of how protein lengths vary within the protein
kinase domain family, offering valuable insights into the structural characteristics of this
important protein domain.

# Plot the distribution of protein lengths
ggplot(length_data, aes(x = Length)) +

geom_histogram(binwidth = 10, fill = "blue", color = "black", alpha = 0.7) +
labs(x = "Protein Length (Amino Acids)",

y = "Frequency") +
theme_minimal() +
theme(
plot.title = element_text(size = 10),
axis.title.x = element_text(size = 8),
axis.title.y = element_text(size = 8),
axis.text = element_text(size = 7)

)
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Figure 2: Histogram of protein lengths in the kinase domain family.

These examples illustrate the depth and versatility of search functions available for
querying the PDB, each designed to support specific research objectives and inquiries.
Through these search mechanisms, the PDB continues to serve as an invaluable resource for
the scientific community, enabling the advancement of knowledge in the structural biology
domain. For more examples and additional functionalities, please refer to the package
documentation.

2.3 Data Search

To enhance the utility of the RCSB PDB database for researchers, the rPDBapi package
provides functions such as perform_search, data_fetcher, and describe_chemical. While
these functions facilitate advanced search capabilities and streamlined data retrieval, it
is important to acknowledge that they primarily serve as wrappers for building queries
and parsing responses from the powerful RCSB PDB Data API. The real strength of these
functions lies in their ability to simplify and customize API interactions, enabling users to
execute refined searches and efficiently fetch data based on specific criteria without needing
to directly interact with the API itself.

perform_search(. . . ) function

The perform_search function is designed to enhance the way researchers interact with
the RCSB PDB database by allowing for highly customizable searches. Here is a general
overview of the function:

perform_search(
search_operator,
return_type = "ENTRY",
request_options = NULL,
return_with_scores = FALSE,
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return_raw_json_dict = FALSE,
verbosity = TRUE

)

This function connects with the RCSB PDB’s RESTful API and lets users search the
database using specific criteria provided through the search_operator parameter. This
capability is particularly useful for complex searches where precise results are needed.

To refine searches, the perform_search function can be combined with various custom
search operators. These operators enable the construction of complex search queries cus-
tomized to specific needs. Detailed documentation for each search operator is available in the
RCSB PDB Search Operators (https://search.rcsb.org/#search-operators). Moreover,
Searchable attributes include annotations from the mmCIF dictionary, external resources,
and additional annotations provided by RCSB PDB. Internal additions to the mmCIF dic-
tionary and external resource annotations are prefixed with ‘rcsb_’. For a comprehensive
list of available attributes for text searches, refer to the Structure Attributes Search (https:
//search.rcsb.org/structure-search-attributes.html) and Chemical Attributes Search
(https://search.rcsb.org/chemical-search-attributes.html) pages.

Default Search Operator

The DefaultOperator function constructs a basic search operator using a single value.
This operator is useful for general searches where a straightforward query is required.

DefaultOperator <- function(value) {
res <- list(value = value)
structure(res, class = c("DefaultOperator", class(res)))

}

Exact Match Search Operator

The ExactMatchOperator function allows for precise search operations by matching an
exact attribute value. This is particularly useful when the user needs to retrieve entries that
exactly match a given criterion.

ExactMatchOperator <- function(attribute, value) {
res <- list(attribute = attribute, value = value, operator = "exact_match")
structure(res, class = c("ExactMatchOperator", class(res)))

}

Inclusion Search Operator

The InOperator function is designed for scenarios where the search needs to include
values from a specified set. This operator is ideal for filtering results based on a list of
possible values.

InOperator <- function(attribute, value) {
res <- list(attribute = attribute, operator = "in", value = value)
structure(res, class = c("InOperator", class(res)))

}

Contains Words and Contains Phrase Operators

For text-based searches, the ContainsWordsOperator and ContainsPhraseOperator func-
tions are invaluable. These operators search for attributes containing certain words or
specific phrases, respectively, making them perfect for querying descriptive fields.

ContainsWordsOperator <- function(attribute, value) {
res <- list(attribute = attribute, operator = "contains_words", value = value)
structure(res, class = c("ContainsWordsOperator", class(res)))

}
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ContainsPhraseOperator <- function(attribute, value) {
res <- list(attribute = attribute, operator = "contains_phrase", value = value)
structure(res, class = c("ContainsPhraseOperator", class(res)))

}

Comparison and Range Search Operators

The ComparisonOperator and RangeOperator functions enable users to perform com-
parison checks or specify a range for attribute values. These operators are essential when
the search requires evaluating attributes against numerical or date ranges.

ComparisonOperator <- function(attribute, value, comparison_type) {
if (ComparisonType[[comparison_type]] == "not_equal") {
param_dict <- list(operator = "equals", negation = TRUE)

} else {
param_dict <- list(operator = ComparisonType[[comparison_type]])

}
param_dict$attribute <- attribute
param_dict$value <- value
structure(param_dict, class = c("ComparisonOperator", class(param_dict)))

}

RangeOperator <- function(attribute, from_value, to_value, include_lower = TRUE,
include_upper = TRUE, negation = FALSE) {

res <- list(
operator = "range",
attribute = attribute,
negation = negation,
value = list(from = from_value, to = to_value)

)
structure(res, class = c("RangeOperator", class(res)))

}

Comparison and Range Search Operators

Lastly, the ExistsOperator function checks the existence of a specific attribute within the
database, ensuring that the search results only include entries where the attribute is present.

ExistsOperator <- function(attribute) {
res <- list(attribute = attribute, operator = "exists")
structure(res, class = c("ExistsOperator", class(res)))

}

One of the key features of perform_search is its ability to return different types of data
depending on the user’s needs. By default, it returns general information about PDB entries,
but users can adjust this to retrieve specific types of data, such as structural or assembly
details.

This function allows users to specify the format of the returned data by setting the
return_type parameter. This parameter determines the level of detail and specificity of the
search results. The available return types include:

• entry: Returns a list of PDB IDs, providing a general overview of relevant entries.

• assembly: Returns a list of PDB IDs appended with assembly IDs, formatted as
[pdb_id]-[assembly_id]. This is particularly useful for researchers interested in biolog-
ical assemblies.
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• polymer_entity: Returns a list of PDB IDs appended with entity IDs in the format
[pdb_id]_[entity_id], corresponding to polymeric molecular entities. This is ideal for
focusing on specific protein or nucleic acid chains within the structure.

• non_polymer_entity: Returns a list of PDB IDs appended with entity IDs in the format
[pdb_id]_[entity_id], corresponding to non-polymeric entities, such as ligands. This
allows for the identification of small molecules or other non-polymeric components
within a structure.

• polymer_instance: Returns a list of PDB IDs appended with asym IDs in the format
[pdb_id].[asym_id], corresponding to instances of certain polymeric molecular entities,
also known as chains. The asym_id corresponds to the _label_asym_id from the
mmCIF schema, which may differ from the _auth_asym_id selected by the author at
the time of deposition.

• mol_definition: Returns a list of molecular definition identifiers, which include chem-
ical component entries identified by alphanumeric codes (e.g., ATP, ZN) and BIRD
entries identified by BIRD IDs (e.g., PRD_000154). This return type is useful for
chemical and molecular component searches.

Additionally, the perform_search function allows for further customization through
options like request_options, which can be used to fine-tune the search, such as filtering
results by certain criteria or setting constraints like date ranges or experimental methods.

For users who want to prioritize the most relevant results, the function can include
relevance scores with the search results by setting the return_with_scores option to TRUE.
This helps in quickly identifying the most pertinent entries in a large set of results.

In some cases, researchers may want to access the raw data returned by the PDB API. The
return_raw_json_dict option allows users to retrieve this data in its original JSON format for
further processing or analysis.

Finally, the verbosity option controls how much information is displayed during the
search process. When enabled, it provides detailed feedback on the search, which can be
helpful for understanding how the function is working or troubleshooting any issues.

To further enhance the search experience, the RCSB PDB Search API consolidates requests
to a variety of specialized search services, allowing for highly targeted data retrieval. These
services include:

• text: Performs attribute searches against textual annotations associated with PDB
structures. This service is useful for searching within structure-related information.

• text_chem: Similar to the text service but focuses on molecular definitions. It’s ideal
for searching through chemical attributes associated with PDB entries.

• full_text: Executes unstructured searches across multiple text attributes related to
both PDB structures and molecular definitions, making it a powerful tool for broad
searches that need to cover a wide range of text fields.

• sequence: Employs the MMseqs2 software to perform fast sequence matching searches,
similar to BLAST, based on a user-provided FASTA sequence. It supports protein,
DNA, and RNA sequence searches with configurable cutoffs like E-value or percentage
identity.

• seqmotif: Allows for short motif searches against nucleotide or protein sequences
using simple patterns, PROSITE-like syntax, or regular expressions.

• structure: Conducts fast 3D shape matching searches using a BioZernike descriptor
strategy, which can be performed in strict or relaxed modes depending on the desired
accuracy.
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• strucmotif: Facilitates structure motif searches across all available PDB structures,
providing a focused approach to identifying similar structural motifs.

• chemical: Offers comprehensive chemical searches based on molecular formula, chemi-
cal structure, and a variety of matching criteria. It includes powerful tools for searching
chemical fingerprints and performing graph-based matching for exact, strict, or relaxed
criteria.

Each of these services allows researchers to customize their searches precisely to their
needs, whether they are looking for specific chemical components, structural motifs, or
sequence patterns.

Consider a scenario where a researcher wishes to find all non-polymer entities related to
“Mus musculus” and “Homo sapiens” within the PDB. The perform_search function can be
configured as follows:

search_operator = InOperator(value=c("Mus musculus", "Homo sapiens"),
attribute="rcsb_entity_source_organism.taxonomy_lineage.name")

return_type = "NONPOLYMER_ENTITY"
results = perform_search(search_operator, return_type)
head(results)

#> [1] "12CA_3" "1A1I_4" "1A2B_3" "1A4I_2" "1A4M_2" "1A52_2"

Faceted queries (or facets) add another layer of functionality to the perform_search
function by allowing users to group and perform calculations on PDB data through a simple
search query. Facets organize search results into categories, or “buckets,” based on specified
field values.

When the facets property is included in the request_options of a search request, the
results are returned along with numerical counts that indicate how many matching IDs
were found for each facet term. This allows researchers to quickly gauge the distribution
of search results across different categories. If the query context is omitted in the search
request but facets are specified, the response will contain only the facet counts, offering a
summary view of the data distribution.

By combining faceted queries with the other flexible search operators and return types,
the perform_search function becomes an incredibly powerful tool for bioinformatics re-
search, enabling users to conduct comprehensive and precise searches within the RCSB PDB
database.

Below is an example that demonstrates how to use the ComparisonOperator to filter
results based on a specific date (2019-08-20), along with faceted queries to categorize the
search results by experimental methods.

# Create the ComparisonOperator for the date
operator_date <- ComparisonOperator(

attribute = "rcsb_accession_info.initial_release_date",
value = "2019-08-20",
comparison_type = "GREATER"

)

# Define the facets for request options
request_options <- list(

facets = list(
list(

name = "Methods",
aggregation_type = "terms",
attribute = "exptl.method"

)
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)
)

# Specify the return type
return_type <- "ENTRY"

# Perform the search with the specified return type and request options
results <- perform_search(

search_operator = operator_date,
return_type = return_type,
request_options = request_options

)

# Display the results
results

#> [1] "3IX2" "3QOB" "4FPQ" "5BK8" "5BKA" "5BKF" "5BKG" "5BKH" "5BKI" "5BKJ"

Kinases are a large family of enzymes that play crucial roles in signal transduction and
cellular regulation. To analyze the sequence identity among different kinase-related proteins,
we first perform a search for PDB entries using the keyword “protein kinase.”

# Load necessary libraries
library(rPDBapi)
library(Biostrings)
library(msa)
library(r3dmol)
library(gplots)

set.seed(123)
# Define the search operator for a full-text search using the keyword "protein kinase"
search_operator <- list(

type = "terminal",
service = "full_text",
parameters = list(value = "protein kinase")

)

# Perform the search for PDB entries
protein_entities <- perform_search(

search_operator = search_operator,
return_type = "ENTRY"

)

# Display the first 10 PDB IDs retrieved
protein_entities <- protein_entities[1:10]
protein_entities

#> [1] "5J5T" "4UY9" "5BT8" "1CSN" "7KAC" "1V0P" "8FKO" "4Y85" "1E8X" "1TO6"

The search retrieves PDB entries associated with protein kinases. We then select the first
10 entries for further analysis. The next step involves retrieving the amino acid sequences
for these proteins and performing multiple sequence alignment using the msa package.

# Function to retrieve and process protein sequences
get_protein_sequence <- function(pdb_id) {

fasta <- get_fasta_from_rcsb_entry(pdb_id, chain_id = "A")
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AAString(fasta)
}

# Retrieve protein sequences for the selected PDB IDs
sequences <- lapply(protein_entities, get_protein_sequence)
names(sequences) <- protein_entities

# Perform multiple sequence alignment
alignment <- msa(AAStringSet(sequences), method = "ClustalW")

#> use default substitution matrix

# Convert alignment to a matrix for pairwise sequence identity calculation
alignment_matrix <- as.matrix(alignment)

We calculate the pairwise sequence identity between the aligned sequences, allowing us
to quantify the similarity between the kinase-related proteins, and create a heatmap using
the gplots package (Figure 3).

# Function to calculate pairwise sequence identity
pairwise_identity <- function(seq1, seq2) {

sum(seq1 == seq2) / length(seq1) * 100
}

# Calculate pairwise sequence identity
n <- length(sequences)
identity_matrix <- matrix(NA, n, n)
rownames(identity_matrix) <- names(sequences)
colnames(identity_matrix) <- names(sequences)

for (i in 1:n) {
for (j in i:n) {
identity_matrix[i, j] <- pairwise_identity(alignment_matrix[i, ],

alignment_matrix[j, ])
identity_matrix[j, i] <- identity_matrix[i, j]

}
}

par(cex.main=1)

# Visualize the pairwise sequence identity as a heatmap
heatmap.2(identity_matrix, xlab = "PDB ID", ylab = "PDB ID",

col = colorRampPalette(c("blue", "white", "red"))(100),
labRow = rownames(identity_matrix), labCol = colnames(identity_matrix),
trace = "none", key = TRUE, key.title = "Identity", key.xlab = "Scale",
density.info = "none", scale = "none")
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Figure 3: Heatmap of sequence identity among kinase proteins.

The resulting heatmap provides a visual representation of the sequence identity among
the selected kinase proteins, with higher identity values indicated by warmer colors.

In addition to sequence analysis, visualizing the 3D structures of proteins can provide
valuable insights into their functional mechanisms. We use the r3dmol package to create an
interactive visualization of the protein structures (Figure 4-5).

# Function to visualize the structures using r3dmol with color
visualize_structure <- function(pdb_id) {

pdb_path <- get_pdb_file(pdb_id, filetype = "pdb", save = TRUE)$path

viewer <- r3dmol() %>%
m_add_model(pdb_path, format = "pdb") %>%
m_set_style(style = m_style_cartoon(
color = "spectrum"

)) %>%
m_zoom_to()

return(viewer)
}

# Visualize the first protein structure
visualize_structure(protein_entities[1])
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Figure 4: 3D structure of the first kinase protein.

# Visualize the second protein structure
visualize_structure(protein_entities[2])

Figure 5: 3D structure of the second kinase protein.

Here, we retrieve and visualize the first two protein structures from the list of kinase-
related PDB entries. The visualization uses a “spectrum” color scheme to highlight different
regions of the protein structure, providing an intuitive understanding of the protein’s 3D
conformation.

data_fetcher(. . . ) function

In the rapidly evolving field of structural biology, efficient access to specific datasets from
the RCSB PDB is crucial for researchers aiming to conduct detailed analyses of biological
structures. To cater to this need, the data_fetcher function has been developed, streamlining
the process of fetching data based on user-defined IDs, data types, and properties. This
function exemplifies a customized approach to data retrieval, offering flexibility in how data
is fetched and presented, thereby enhancing research workflows.
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Consider a scenario where a researcher is interested in retrieving and analyzing CRISPR-
associated entries from the RCSB PDB database to elucidate trends over time in the deposi-
tion of CRISPR-related structures. The query_search function is employed to identify entries
related to CRISPR, leveraging specified properties including molecular weight metric (molec-
ular_weight), experimental method (method), and accession information (deposit_date).

properties <- list(rcsb_entry_info = c("molecular_weight"),
exptl = "method",
rcsb_accession_info = "deposit_date")

ids = query_search("CRISPR")

head(ids)

#> [1] "2Y9H" "4ILM" "4XTK" "5FCL" "7EI1" "6TUG"

The data fetched by data_fetcher is structured as a dataframe for analytical convenience,
with entries uniquely identified and their deposit dates converted to a standard date format
to facilitate temporal analysis.

df = data_fetcher(
id = ids,
data_type = "ENTRY",
properties = properties,
return_as_dataframe = TRUE

)

head(df)

#> # A tibble: 6 x 4
#> ID molecular_weight method deposit_date
#> <chr> <chr> <chr> <chr>
#> 1 2Y9H 240.96 X-RAY DIFFRACTION 2011-02-14T00:00:00Z
#> 2 4ILM 302.01 X-RAY DIFFRACTION 2012-12-31T00:00:00Z
#> 3 4XTK 309.28 X-RAY DIFFRACTION 2015-01-23T00:00:00Z
#> 4 5FCL 226.22 X-RAY DIFFRACTION 2015-12-15T00:00:00Z
#> 5 7EI1 680.57 X-RAY DIFFRACTION 2021-03-30T00:00:00Z
#> 6 6TUG 416.5 X-RAY DIFFRACTION 2020-01-07T00:00:00Z

Subsequent processing extracts the deposit year for each entry, enabling the aggregation
of data on an annual basis.

# Convert character vector to Date
df$deposit_date <- as.Date(df$deposit_date, "%Y-%m-%dT%H:%M:%SZ")

# Adding year column
df$year <- as.numeric(format(df$deposit_date, "%Y"))

# Counting entries per year
df_summary <- aggregate(ID ~ year, data = df, FUN = length)

head(df_summary)

#> year ID
#> 1 2004 7
#> 2 2005 2
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#> 3 2006 6
#> 4 2007 2
#> 5 2008 4
#> 6 2009 4

The use of the ggplot2 library facilitates the visualization of this aggregated data, with a
line plot generated to display the trend in the number of CRISPR-related database deposits
over time (Figure 6).

ggplot(df_summary, aes(x = year, y = ID)) +
geom_line(color = "red") +
xlim(c(min(df_summary$year), max(df_summary$year)+1)) +
geom_point() +
labs( x = 'Year', y = 'Number of Deposits')
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Figure 6: Number of CRISPR Deposits by Year

The data_type argument can be one of the following: ENTRY,
POLYMER_ENTITY, BRANCHED_ENTITY, NONPOLYMER_ENTITY, POLYMER_ENTITY_INSTANCE,
BRANCHED_ENTITY_INSTANCE, NONPOLYMER_ENTITY_INSTANCE, ASSEMBLY, and
CHEMICAL_COMPONENT. The properties for each of these data types are available in
JSON format on the RCSB website (https://data.rcsb.org/#data-schema). Additionally,
we have provided Supplementary files that list the properties for each data type. These files
help users identify the appropriate keywords for their queries.

In the following example, we retrieve information on polymer entities, such as taxonomy
and cluster membership, for specific IDs.

properties <- list(rcsb_entity_source_organism = c("ncbi_taxonomy_id",
"ncbi_scientific_name"),

rcsb_cluster_membership = c("cluster_id", "identity"))

ids = c("4HHB_1", "12CA_1", "3PQR_1")
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df = data_fetcher(
id = ids,
data_type = "POLYMER_ENTITY",
properties = properties,
return_as_dataframe = TRUE

)

df

#> # A tibble: 3 x 5
#> ID ncbi_taxonomy_id ncbi_scientific_name cluster_id identity
#> <chr> <chr> <chr> <chr> <chr>
#> 1 4HHB_1 9606 Homo sapiens 120 100
#> 2 12CA_1 9606 Homo sapiens 5 100
#> 3 3PQR_1 9913 Bos taurus 1256 100

For more examples and details on additional functionalities, please consult the package
documentation.

describe_chemical(. . . ) function

Beyond macromolecular structures, the PDB also houses extensive data on chemical com-
pounds that play crucial roles in biological processes and interactions. To facilitate access to
this valuable information, the describe_chemical function allows researchers to retrieve
comprehensive descriptions of chemical compounds based on their unique RCSB PDB
identifiers.

The describe_chemical function is designed to query the RCSB PDB for detailed de-
scriptions of chemical compounds, utilizing their 3-character chemical ID as the query
parameter. This function provides a detailed examination of chemical compounds, includ-
ing their chemical composition, molecular properties such as formula weight and charge,
and key identification markers like unique IDs and names. It furnishes standardized chemi-
cal descriptors, such as SMILES and InChI strings, facilitating computational analysis and
database searches. Additionally, the function connects compounds to external databases
(e.g., DrugBank, PubChem) for expanded research opportunities, and lists synonyms and
alternative names to aid in cross-referencing across scientific literature. For compounds with
biological significance, it may include information on molecular interactions and potential
drug targets, alongside a historical record of the compound’s database entries, highlighting
the evolution of its scientific understanding. This comprehensive suite of data supports a
wide range of scientific inquiries, from basic chemical analysis to complex pharmacological
research.

A typical application of the describe_chemical function involves querying the database
for information on adenosine triphosphate, a central molecule in cellular energy transfer,
using its chemical ID ‘ATP’:

chem_desc <- describe_chemical('ATP')
chem_desc$rcsb_chem_comp_descriptor$smiles

#> [1] "c1nc(c2c(n1)n(cn2)C3C(C(C(O3)COP(=O)(O)OP(=O)(O)OP(=O)(O)O)O)O)N"

This example demonstrates how to retrieve the SMILES notation for ATP from the
RCSB PDB using the describe_chemical function. ATP is fundamental to biochemistry and
molecular biology, making its detailed chemical description highly valuable for a broad
spectrum of research applications.
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2.4 Data Retrieval

Accessing the RCSB PDB data is crucial for researchers aiming to model, visualize, and under-
stand the molecular mechanisms underlying biological processes and diseases. The rPDBapi
package offers functions such as get_pdb_file, get_info, and get_fasta_from_rcsb_entry
to facilitate efficient data retrieval. However, it is important to acknowledge that these
functions largely act as wrappers around the robust RCSB PDB Data API, which handles
the majority of the search and retrieval tasks. Moreover, get_pdb_file relies on the bio3d
package’s read.pdb function to process PDB files. While these functions simplify interaction
with the API and external tools by providing options for various file formats, optional
compression, and FASTA sequence extraction, their primary contribution is streamlining
access to existing resources rather than creating entirely new functionality.

get_pdb_file(. . . ) function

Access to structural data for proteins, nucleic acids, and complex assemblies is vital for
researchers aiming to model, visualize, and understand the molecular mechanisms underly-
ing biological processes and diseases. Recognizing the importance of efficient data retrieval,
the get_pdb_file function has been developed to facilitate the downloading of PDB files
from the RCSB PDB database. This function supports various file formats and offers options
for optional compression, addressing the need for streamlined access to structural data.

The get_pdb_file function is designed to enhance user access to the RCSB PDB by
allowing the downloading of files in different formats, including the traditional PDB format,
the newer CIF format, XML for those who prefer it, and structure factor files for entries
where these are available. By default, the function opts for CIF files due to their compactness
and comprehensive nature, and it advises the use of compression to expedite the download
process.

To demonstrate the utility of get_pdb_file, consider the retrieval of the CIF file for
hemoglobin (PDB ID: 4HHB):

pdb_file <- get_pdb_file(pdb_id = "4HHB", filetype = "cif")

Upon execution, get_pdb_file returns a list object of class pdb encompassing several
components:

atom: A dataframe containing detailed atomic coordinate data for both ATOM and
HETATM records.

head(pdb_file$atom)

#> type eleno elety alt resid chain resno insert x y z o b
#> 1 ATOM 1 N <NA> VAL A 1 <NA> 19.323 29.727 42.781 1 49.05
#> 2 ATOM 2 CA <NA> VAL A 1 <NA> 20.141 30.469 42.414 1 43.14
#> 3 ATOM 3 C <NA> VAL A 1 <NA> 21.664 29.857 42.548 1 24.80
#> 4 ATOM 4 O <NA> VAL A 1 <NA> 21.985 29.541 43.704 1 37.68
#> 5 ATOM 5 CB <NA> VAL A 1 <NA> 19.887 31.918 43.524 1 72.12
#> 6 ATOM 6 CG1 <NA> VAL A 1 <NA> 20.656 32.850 42.999 1 61.79
#> segid elesy charge
#> 1 1 N <NA>
#> 2 1 C <NA>
#> 3 1 C <NA>
#> 4 1 O <NA>
#> 5 1 C <NA>
#> 6 1 C <NA>

xyz: A numeric matrix representing the spatial coordinates of the atomic and het-
eroatomic data.
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head(pdb_file$xyz[1,])

#> [1] 19.323 29.727 42.781 20.141 30.469 42.414

calpha: A logical vector indicating the presence of C-alpha elements within the dataset.

head(pdb_file$calpha)

#> [1] FALSE TRUE FALSE FALSE FALSE FALSE

Building on this foundation, secondary structure determination is a critical step in
understanding protein function and interaction. Using the PDB file retrieved, we can
visualize the secondary structure elements—such as alpha helices, beta sheets, and coils—
using the r3dmol package.

The following example demonstrates how to load and visualize the secondary structure
of a protein from a PDB file, with distinct coloring applied to different structural elements
(Figure 7):

# Load necessary libraries
library(rPDBapi)
library(r3dmol)

# Retrieve and save a PDB structure
pdb_path <- get_pdb_file("1XYZ", filetype = "pdb", save = TRUE)
pdb_file <- pdb_path$path # Use the path returned by get_pdb_file

# Load the structure into r3dmol and set visualization styles
viewer <- r3dmol() %>%

m_add_model(pdb_file, format = "pdb") %>%
m_set_style(
sel = m_sel(ss = "helix"), # Select alpha helices
style = m_style_cartoon(color = "red") # Color helices red

) %>%
m_set_style(
sel = m_sel(ss = "sheet"), # Select beta sheets
style = m_style_cartoon(color = "yellow") # Color sheets yellow

) %>%
m_set_style(
sel = m_sel(ss = "coil"), # Select coils/turns
style = m_style_cartoon(color = "blue") # Color coils blue

) %>%
m_zoom_to()

# Display the viewer with secondary structure
viewer
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Figure 7: Secondary structure visualization of protein 1XYZ with color-coded elements.

This code provides a clear visualization of the secondary structure of the protein encoded
by PDB ID 1XYZ. By applying distinct colors to alpha helices, beta sheets, and coils, the
viewer can quickly identify and analyze the structural elements within the protein. The
r3dmol package facilitates this visualization with a simple yet powerful API, making it an
essential tool for structural biology research.

For further examples, please refer to the package documentation.

get_info(. . . ) function

The ability to efficiently retrieve information about specific PDB entries is crucial for re-
searchers conducting structural analyses, comparative studies, and drug design. To facilitate
this, the get_info function has been developed to query the RCSB PDB using its REST API,
enabling the retrieval of comprehensive information for any given PDB ID. This function
exemplifies the integration of web-based services into bioinformatics workflows, offering
streamlined access to a wealth of structural data.

The get_info function serves as a gateway to the vast data repository of the PDB,
allowing users to look up detailed information about a specific PDB entry by utilizing the
REST API. The function is designed to handle JSON data and HTTP requests efficiently,
ensuring that users can easily convert and access information associated with both current
and legacy PDB entry identifiers.

A typical use case involves querying information for hemoglobin (PDB ID: “4HHB”):

hemoglobin_info <- get_info(pdb_id = "4HHB")

The query for hemoglobin (PDB ID: “4HHB”) through the get_info function yields
extensive data, reflecting the structure’s rich historical and scientific significance.

Key contributors such as Fermi, G., and Perutz, M.F., are acknowledged, highlighting
the collaborative efforts behind the structure’s elucidation.
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hemoglobin_info$audit_author

#> name pdbx_ordinal
#> 1 Fermi, G. 1
#> 2 Perutz, M.F. 2

Detailed crystallographic data, including cell dimensions and symmetry space group
(“P 1 21 1”), are provided, essential for understanding the structure’s geometric context.

hemoglobin_info$cell

#> $angle_alpha
#> [1] 90
#>
#> $angle_beta
#> [1] 99.34
#>
#> $angle_gamma
#> [1] 90
#>
#> $length_a
#> [1] 63.15
#>
#> $length_b
#> [1] 83.59
#>
#> $length_c
#> [1] 53.8
#>
#> $zpdb
#> [1] 4

hemoglobin_info$symmetry

#> $int_tables_number
#> [1] 4
#>
#> $space_group_name_hm
#> [1] "P 1 21 1"

In addition to retrieving detailed information about specific PDB entries, researchers can
also perform more complex analyses, such as multiple sequence alignment, leveraging the
get_info function to further investigate structural and experimental characteristics. Below is
a step-by-step guide demonstrating how to perform such an analysis:

# Load necessary libraries
library(rPDBapi)
library(Biostrings)
library(msa)
library(ggplot2)

# Step 1: Perform a search for kinase-related PDB entries
search_operator <- list(

type = "terminal",
service = "full_text",
parameters = list(value = "kinase")
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)

# Perform the search and limit the number of entries
protein_entities <- perform_search(

search_operator = search_operator,
return_type = "ENTRY"

)
protein_entities <- protein_entities[1:10] # Select the first 10 entries

# Step 2: Fetch sequence data and perform multiple sequence alignment
get_protein_sequence <- function(pdb_id) {

fasta <- get_fasta_from_rcsb_entry(pdb_id)
AAString(fasta[[1]])

}

# Retrieve and align protein sequences
sequences <- lapply(protein_entities, get_protein_sequence)
names(sequences) <- protein_entities
alignment <- msa(AAStringSet(sequences), method = "ClustalW")

#> use default substitution matrix

alignment_matrix <- as.matrix(alignment)

# Step 3: Calculate pairwise sequence similarity
pairwise_similarity <- function(seq1, seq2) {

sum(seq1 == seq2) / length(seq1) * 100
}

n <- length(sequences)
similarity_matrix <- matrix(NA, n, n)
rownames(similarity_matrix) <- names(sequences)
colnames(similarity_matrix) <- names(sequences)
for (i in 1:n) {

for (j in i:n) {
similarity_matrix[i, j] <- pairwise_similarity(alignment_matrix[i, ],

alignment_matrix[j, ])
similarity_matrix[j, i] <- similarity_matrix[i, j]

}
}

# Step 4: Fetch and analyze structural and experimental information using get_info
get_structural_info <- function(pdb_id) {

info <- get_info(pdb_id)

# Extract relevant structural and experimental data
resolution <- info$rcsb_entry_info$diffrn_resolution_high$value
r_free <- info$refine$ls_rfactor_rfree
r_work <- info$refine$ls_rfactor_rwork
molecular_weight <- info$rcsb_entry_info$molecular_weight
citation_year <- info$rcsb_primary_citation$year

return(list(
pdb_id = pdb_id,
resolution = resolution,
r_free = r_free,
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r_work = r_work,
molecular_weight = molecular_weight,
citation_year = citation_year

))
}

structural_info <- lapply(protein_entities, get_structural_info)

# Step 5: Compile the structural information into a data frame
structural_data <- data.frame(

PDB_ID = sapply(structural_info, function(x)
if (!is.null(x$pdb_id))
x$pdb_id

else
NA_character_),

Resolution = sapply(structural_info, function(x)
if (!is.null(x$resolution))
x$resolution

else
NA_real_),

R_free = sapply(structural_info, function(x)
if (!is.null(x$r_free))
x$r_free

else
NA_real_),

R_work = sapply(structural_info, function(x)
if (!is.null(x$r_work))
x$r_work

else
NA_real_),

Molecular_Weight = sapply(structural_info, function(x)
if (!is.null(x$molecular_weight))
x$molecular_weight

else
NA_real_),

Citation_Year = sapply(structural_info, function(x)
if (!is.null(x$citation_year))
x$citation_year

else
NA_integer_)

)

structural_data

#> PDB_ID Resolution R_free R_work Molecular_Weight Citation_Year
#> 1 1QK1 2.70 0.2190 0.1950 346.49 2000
#> 2 5J5T 2.85 0.2058 0.1750 42.59 2017
#> 3 2AP9 2.80 0.2840 0.2580 191.89 NA
#> 4 1SUW 2.45 0.2522 0.2110 114.60 2005
#> 5 5BT8 2.30 0.2481 0.2151 254.05 NA
#> 6 3L2D 2.40 0.2670 0.1970 176.43 2010
#> 7 1B3Q 2.60 0.2850 0.2130 85.33 1999
#> 8 1CSN 2.00 NA 0.2070 35.10 1995
#> 9 7KAC 1.85 0.2318 0.2167 77.02 2021
#> 10 1V0P 2.00 0.2650 0.1940 66.98 2003

This example demonstrates how to integrate the get_info function into a more extensive
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workflow that includes searching for specific proteins, aligning their sequences, calculat-
ing pairwise sequence similarity, and retrieving associated structural and experimental
information. The combination of sequence analysis and detailed structural data retrieval en-
ables comprehensive studies on protein function, evolutionary relationships, and potential
applications in drug design.

get_fasta_from_rcsb_entry(. . . ) function

A crucial component of RCSB PDB is the FASTA sequence, which represents the pri-
mary structure of proteins or nucleic acids in a concise and standardized format. The
get_fasta_from_rcsb_entry function is designed to streamline the process of fetching
FASTA sequences from the PDB for specified entry IDs. This function enhances the accessi-
bility of sequence data, supporting a wide array of bioinformatics analyses and research
applications. The function operates by issuing an HTTP request to the PDB’s RESTful API,
specifically targeting the endpoint associated with FASTA sequence data.

An example use case involves retrieving the FASTA sequence for hemoglobin (PDB ID:
“4HHB”), illustrating the function’s applicability:

fasta_sequence <- get_fasta_from_rcsb_entry(rcsb_id = "4HHB",
chain_id = "A",
verbosity = FALSE)

Upon successful execution, the function returns a structured list containing the FASTA
sequence data for the specified PDB entry. For “4HHB”, the output encapsulates critical
details, including entity ID, chains, sequence and FASTA header:

# Split the sequence into chunks of 60 characters
split_sequence <- strsplit(fasta_sequence, '(?<=.{60})', perl = TRUE)[[1]]

# Print the split sequence with line breaks
cat(split_sequence, sep = "\n")

#> VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK
#> KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPA
#> VHASLDKFLASVSTVLTSKYR

In this scenario, the function queries the RCSB PDB for the FASTA file associated with
“4HHB”, returning a list of FASTA sequences that represent the various polypeptide chains
within the hemoglobin structure.

To further illustrate the utility of the get_fasta_from_rcsb_entry function, we con-
ducted a sequence analysis and motif search using hemoglobin sequences retrieved from
PDB entries 4HHB and 1A6M.

library(rPDBapi)
library(Biostrings)

# Retrieve the FASTA sequence for the first PDB entry (4HHB)
fasta_sequence_1 <- get_fasta_from_rcsb_entry("4HHB", chain_id = "B")
protein_sequence_1 <- fasta_sequence_1

# Convert the first sequence to an AAStringSet object for protein sequences
aa_sequence_1 <- AAStringSet(protein_sequence_1)

# Retrieve the FASTA sequence for a second PDB entry (1A6M)
fasta_sequence_2 <- get_fasta_from_rcsb_entry("1A6M", chain_id = "A")
protein_sequence_2 <- fasta_sequence_2
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# Convert the second sequence to an AAString object for alignment
aa_sequence_2 <- AAString(protein_sequence_2)

Next, we performed a pairwise alignment between the two protein sequences using
the pairwiseAlignment function from the Biostrings package. The sequences were aligned
using the BLOSUM62 substitution matrix, which is commonly used for protein sequence
alignment due to its balanced scoring of amino acid substitutions. This alignment allowed
us to examine the similarities and differences between the sequences at the amino acid level:

# Perform pairwise alignment between the two protein sequences
alignment <- pairwiseAlignment(

aa_sequence_1,
aa_sequence_2,
substitutionMatrix = "BLOSUM62",
gapOpening = 10,
gapExtension = 0.5

)
alignment

#> Global PairwiseAlignmentsSingleSubject (1 of 1)
#> pattern: VHLTPEEKSAVTALWGKVNVDEVGG--EALGRLL...HFGKEFTPPVQAAYQKVVAGVANALAHKY----H
#> subject: V-LSEGEWQLVLHVWAKVEADVAGHGQDILIRLF...RHPGDFGADAQGAMNKALELFRKDIAAKYKELGY
#> score: 86.5

Finally, we conducted a motif search on the 4HHB sequence to identify specific amino
acid patterns:

# Search for motifs (e.g., a specific amino acid pattern) in the first sequence
motif <- "VHLTPEEKS"
match_positions <- vmatchPattern(motif, aa_sequence_1)
match_positions

#> MIndex object of length 1
#> [[1]]
#> IRanges object with 1 range and 0 metadata columns:
#> start end width
#> <integer> <integer> <integer>
#> [1] 1 9 9

The motif search successfully identified the presence and positions of the specified
pattern within the 4HHB sequence.

We further quantified the alignment by calculating the alignment score and the percent-
age identity between the two sequences:

# Extract the alignment score
alignment_score <- score(alignment)
cat("Alignment Score:", alignment_score, "\n")

#> Alignment Score: 86.5

# Calculate the percentage identity
identity <- pid(alignment)
cat("Percentage Identity:", identity, "%\n")

#> Percentage Identity: 24.34211 %
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Furthermore, phylogenetic analysis is a powerful tool in bioinformatics, enabling re-
searchers to explore evolutionary relationships between proteins, nucleic acids, or organisms
based on sequence data. The R package ecosystem, including ape, phangorn, and ggtree,
provides comprehensive tools for constructing and visualizing phylogenetic trees.

In this example, we demonstrate how to construct a phylogenetic tree for a set of
hemoglobin-related protein sequences retrieved from the RCSB PDB using the query_search
and get_fasta_from_rcsb_entry functions. The process involves multiple sequence alignment,
distance matrix calculation, tree construction using the Neighbor-Joining method, and tree
visualization with enhanced styling.

# Load necessary libraries
library(rPDBapi)
library(Biostrings)
library(ape)
library(ggtree)
library(msa)
library(phangorn)

# Step 1: Use query_search to retrieve PDB IDs related to a specific keyword
pdb_ids <- query_search(search_term = "hemoglobin")

# Filter or limit to the first 50 PDB IDs for demonstration purposes
pdb_ids <- pdb_ids[1:50]

# Function to retrieve sequences
get_protein_sequence <- function(pdb_id) {

fasta <- get_fasta_from_rcsb_entry(pdb_id, chain_id = "A")
return(AAString(fasta))

}

# Retrieve sequences for all PDB IDs
sequences <- lapply(pdb_ids, get_protein_sequence)

# Combine sequences into a single AAStringSet object
combined_sequences <- AAStringSet(sequences)
names(combined_sequences) <- pdb_ids

# Perform multiple sequence alignment
alignment <- msa(combined_sequences, method = "ClustalW")

#> use default substitution matrix

alignment

#> CLUSTAL 2.1
#>
#> Call:
#> msa(combined_sequences, method = "ClustalW")
#>
#> MsaAAMultipleAlignment with 50 rows and 145 columns
#> aln names
#> [1] -VLSPADKTNIKSTWDKIGGHAGDY...FTPAVHASLDKFFAAVSTVLTSKYR 3PEL
#> [2] -VLSPADKTNIKSTWDKIGGHAGDY...FTPAVHASLDKFFAAVSTVLTSKYR 3GOU
#> [3] -VLSPADKTNIKSTWDKIGGHAGDY...FTPAVHASLDKFFAAVSTVLTSKYR 2QLS
#> [4] -VLSPADKTNIKSTWDKIGGHAGDY...FTPAVHASLDKFFTAVSTVLTSKYR 1FHJ
#> [5] -VLSAADKSNVKACWGKIGSHAGEY...FTPAVHASLDKFFSAVSTVLTSKYR 3D4X
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#> [6] -VLSAADKSNVKACWGKIGSHAGEY...FTPAVHASLDKFFSAVSTVLTSKYR 3GQP
#> [7] -VLSPADKTNIKASWEKIGSHGGEY...FTPAVHASLDKFLSSVSTVLTSKYR 4YU3
#> [8] -VLSPADKTNIKASWEKIGSHGGEY...FTPAVHASLDKFLSSVSTVLTSKYR 4YU4
#> [9] -VLSPADKTNIKTAWEKIGSHGGEY...FTPAVHASLDKFLANVSTVLTSKYR 2RAO
#> ... ...
#> [43] -VLSGTDKTNVKSIFSKIGGQADDY...LTPEAHASLDKFLCAVGLVLTAKYR 2ZFB
#> [44] -VLSASDKTNVKGVFAKVGGSAEAY...LTPEVHASLDKFMCAVAKELTAKYR 3WR1
#> [45] -MLTEDDKQLIQHVWEKVLEHQEDF...YTPQVQVAYDKFLAAVSAVLAEKYR 1V75
#> [46] -MLTEDDKQLIQHVWEKVLEHQEDF...YTPQVQVAYDKFLAAVSAVLAEKYR 1WMU
#> [47] -MLTAEDKKLIQQAWEKAASHQEEF...YTPEVHAAFDKFLSAVSAVLAEKYR 1HBR
#> [48] XSLSSKDKDTVKALWGKIADKAEEI...FTPEVHISYDKFFSALARALAEKYR 1XQ5
#> [49] XSLSATDKARVKALWDKIEGKSAEL...FTPEVHLSVDKFLACLALALSEKYR 1SPG
#> [50] ---------MPKSFYDAVGG--AKT...LDDEHRRELLDYLEMAAHSLVNSPF 1NGK
#> Con -VLSAADK?NVKAAW?KVGGHAGEY...FTPAVHASLDKFL??VSTVLTSKYR Consensus

The multiple sequence alignment step aligns the sequences to identify conserved regions,
which is crucial for constructing a meaningful phylogenetic tree. The aligned sequences are
then converted into a format suitable for phylogenetic analysis:

# Convert the aligned sequences to a matrix
alignment_matrix <- as.matrix(alignment)

# Convert the alignment matrix to a phyDat object
alignment_phyDat <- phyDat(alignment_matrix, type = "AA")

# Construct a distance matrix using a protein distance measure
dist_matrix <- dist.ml(alignment_phyDat)

# Construct the tree using Neighbor-Joining method
tree <- NJ(dist_matrix)

tree

#>
#> Phylogenetic tree with 50 tips and 48 internal nodes.
#>
#> Tip labels:
#> 3PEL, 3GOU, 2QLS, 1FHJ, 3D4X, 3GQP, ...
#>
#> Unrooted; includes branch length(s).

The Neighbor-Joining method (Saitou and Nei, 1987) was used to construct the phyloge-
netic tree, which is commonly employed due to its efficiency and ability to produce unrooted
trees that represent the evolutionary distances between sequences. The resulting tree can
then be visualized using the ggtree package (Figure 8), which offers extensive customization
options:

# Visualize the phylogenetic tree using ggtree with enhanced styling
ggtree(tree) +
geom_tiplab(aes(label = label), size = 2, fontface = "italic", align = TRUE) +
geom_nodepoint(color = "blue", size = 3, shape = 21, fill = "lightblue") +
geom_treescale(x = 0, y = -2, width = 0.05) +
theme_tree2() +
labs(title = "Phylogenetic Tree of Selected PDB Entries",

subtitle = "Based on Multiple Sequence Alignment") +
theme(plot.title = element_text(hjust = 0.5, size = 10, face = "bold"),
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plot.subtitle = element_text(hjust = 0.5, size = 8),
plot.caption = element_text(size = 8, face = "italic"))
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Figure 8: Phylogenetic tree of hemoglobin-related proteins with styled nodes for clarity.

The phylogenetic tree allows for the clear presentation of evolutionary relationships
between the selected hemoglobin-related proteins. It highlights how sequences cluster
based on similarity, providing insights into the evolutionary history of these proteins.
The enhanced styling, including colored nodes and labels, improves the readability and
interpretability of the phylogenetic tree, making it a valuable tool for both research and
presentation.

2.5 Retrieving Specific Fields and Papers

To enhance the utility of this PDB database for targeted data exploration, we introduce two
R functions: find_results and find_papers. These functions allow for precise retrieval of
specific data fields from search results, customized to the unique informational needs of
researchers.

The find_results function executes a search in the PDB using a provided term and
retrieves information for a designated field (e.g., citation) from each search result. It lever-
ages the query_search and get_info functions for searching the PDB and fetching the
requested details. This approach enables users to specify the search term and the field
of interest, with a default focus on citation information. The versatility of find_results
is further enhanced by its support for a wide array of fields, including but not limited to
audit_author, exptl_crystal_grow, and struct_keywords, allowing for comprehensive data
mining customized to the researcher’s needs.
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Retrieving citation information for structures related to CRISPR:

crispr_citations <- find_results("CRISPR", field = "citation")
crispr_citations[[1]]

#> country id journal_abbrev journal_id_issn journal_volume
#> 1 US primary Nat.Struct.Mol.Biol. 1545-9993 18
#> page_first pdbx_database_id_doi pdbx_database_id_pub_med rcsb_authors
#> 1 680 10.1038/NSMB.2043 21572442 Sashital....
#> rcsb_is_primary rcsb_journal_abbrev
#> 1 Y Nat Struct Mol Biol
#> title
#> 1 An RNA-Induced Conformational Change Required for Crispr RNA Cleavage by the Endoribonuclease Cse3.
#> year
#> 1 2011

This example underscores the function’s efficacy in aggregating citation information,
facilitating researchers in keeping abreast of recent structural investigations related to
CRISPR, a revolutionary genome editing technology.

The find_papers function is specifically designed for bibliographic data retrieval, fetch-
ing paper titles from the PDB related to a given search term. This facilitates an efficient
overview of scholarly articles pertaining to a specific subject area.

To compile titles of papers related to CRISPR:

covid_paper_titles <- find_papers("CRISPR", max_results = 5)

# Truncate paper titles to 50 characters
covid_paper_titles <- lapply(covid_paper_titles, function(title) {

if(nchar(title) > 50) {
paste0(substr(title, 1, 47), "...")

} else {
title

}
})

# Display the truncated titles
covid_paper_titles

#> $`2Y9H`
#> [1] "An RNA-Induced Conformational Change Required f..."
#>
#> $`4ILM`
#> [1] "Recognition and cleavage of a nonstructured CRI..."
#>
#> $`4XTK`
#> [1] "Crystal structure and nuclease activity of tm17..."
#>
#> $`5FCL`
#> [1] "Structural plasticity and in vivo activity of C..."
#>
#> $`7EI1`
#> [1] "A distinct structure of Cas1-Cas2 complex provi..."

Focusing on CRISPR, this example facilitates access to pertinent literature, assisting
researchers in staying abreast of ongoing studies and findings.
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To further demonstrate the power of these functions, let’s explore entries related to
“ligase,” a key enzyme involved in the process of joining two molecules. We will analyze the
structural data and related literature to gain insights into the scientific focus surrounding
ligase research.

First, we load the necessary R libraries required for performing searches. We will use tm
for text processing, and wordcloud for visualization. Next, we define the search operator,
specifying that we want to find PDB entries related to “ligase.” The perform_search function
will later use this operator to query the PDB database.

# Load necessary libraries
library(rPDBapi)
library(tm)
library(wordcloud)

# Define the search operator to find PDB entries related to "ligase"
search_operator <- list(

type = "terminal",
service = "full_text",
parameters = list(value = "ligase")

)

We perform the search in the PDB using the previously defined operator. The return_type
is set to “ENTRY” to ensure that we retrieve specific PDB entries related to ligase.

# Perform the search with the return type set to "ENTRY"
ligase_entries <- perform_search(

search_operator = search_operator,
return_type = "ENTRY"

)

Since the search might return a large number of results, we select a manageable subset
(e.g., the first 100 entries) for detailed analysis.

# Select a subset of entries for analysis (e.g., the first 100)
pdb_ids <- ligase_entries[1:100]

For each selected PDB ID, we fetch both the structural information and related papers
using the find_results and find_papers functions. This helps in linking the structural data
with the corresponding scientific literature.

# Function to fetch results and related papers for a given PDB ID
fetch_pdb_info <- function(pdb_id) {

results <- find_results(pdb_id) # Fetch structural data
papers <- find_papers(pdb_id) # Fetch related papers

return(list(results = results, papers = papers))
}

# Apply the function to all selected PDB IDs
pdb_info <- lapply(pdb_ids, fetch_pdb_info)

This section analyzes the fetched PDB information, focusing on the number of related
papers and their titles. This helps in understanding the research focus and the amount of
attention each structure has received in the scientific community.

# Function to analyze PDB info

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=tm
https://CRAN.R-project.org/package=wordcloud


CONTRIBUTED RESEARCH ARTICLE 140

analyze_pdb_info <- function(info) {
# Extract the number of related papers
num_papers <- length(info$papers[[1]])

# Extract titles of related papers
paper_titles <- paste(info$papers[[1]], collapse = "; ")

return(list(num_papers = num_papers, paper_titles = paper_titles))
}

# Apply the analysis to each PDB ID
pdb_analysis <- lapply(pdb_info, analyze_pdb_info)

For easier analysis and visualization, we convert the list of results into a data frame. This
data frame will contain the PDB IDs, the number of related papers, and the titles of those
papers.

# Convert the list into a data frame for easier analysis
pdb_analysis_df <- data.frame(

PDB_ID = pdb_ids,
Number_of_Papers = sapply(pdb_analysis, function(x) x$num_papers),
Paper_Titles = sapply(pdb_analysis, function(x) x$paper_titles)

)

# Truncate with ellipses if the title is longer than 50 characters
pdb_analysis_df_truncated <- pdb_analysis_df
pdb_analysis_df_truncated$Paper_Titles <-

ifelse(
nchar(pdb_analysis_df_truncated$Paper_Titles) > 50,
paste0(substr(

pdb_analysis_df_truncated$Paper_Titles, 1, 47
), "..."),
pdb_analysis_df_truncated$Paper_Titles

)

head(pdb_analysis_df_truncated)

#> PDB_ID Number_of_Papers Paper_Titles
#> 1 1B04 1 Structure of the adenylation domain of an NAD+-...
#> 2 3RR5 1 ATP-dependent DNA ligase from Thermococcus sp. ...
#> 3 4EFB 1 Crystal structure of DNA ligase
#> 4 2YV1 1 Crystal Structure of Succinyl-CoA Synthetase Al...
#> 5 8F5D 1 Architecture and genomic arrangement of the Mur...
#> 6 1V9P 1 Crystal structure of NAD(+)-dependent DNA ligas...

To identify common themes and keywords in the related papers, we perform a word
frequency analysis. This involves creating a text corpus, cleaning the text, and generating a
word cloud that visually represents the most frequent terms.

# Combine all paper titles into a single string
all_titles <- paste(pdb_analysis_df$Paper_Titles, collapse = " ")

# Create a corpus and clean the text
corpus <- Corpus(VectorSource(all_titles))
corpus <- tm_map(corpus, content_transformer(tolower))
corpus <- tm_map(corpus, removePunctuation)
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corpus <- tm_map(corpus, removeNumbers)
corpus <- tm_map(corpus, removeWords, stopwords("en"))

Finally, we create a term-document matrix from the cleaned corpus and generate a word
cloud (Figure 9). This visualization highlights the most common words in the paper titles,
providing insights into the main research topics associated with the selected ligase-related
structures.

# Create a term-document matrix
tdm <- TermDocumentMatrix(corpus)
m <- as.matrix(tdm)
word_freqs <- sort(rowSums(m), decreasing = TRUE)
word_freqs_df <- data.frame(word = names(word_freqs), freq = word_freqs)

# Generate a word cloud to visualize common themes
wordcloud(words = word_freqs_df$word, freq = word_freqs_df$freq, min.freq = 2,

max.words = 100, random.order = FALSE, colors = brewer.pal(8, "Dark2"))
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Figure 9: Word cloud showing frequent terms in paper titles related to ligase structures.

2.6 Constructing JSON Queries

Efficient access and retrieval of specific subsets of RCSB PDB data are essential for sup-
porting a broad range of scientific inquiries. The generate_json_query function represents
a sophisticated tool designed to facilitate this process, enabling researchers to construct
customized JSON queries based on specific criteria such as identifiers, data types, and
desired properties. This function exemplifies the integration of programmable queries into
research workflows, enhancing the accessibility and utility of PDB data.

Consider a scenario where a researcher wishes to retrieve specific information about two
PDB entries, identified by “1XYZ” and “2XYZ”, focusing on certain cell and experimental
properties:

ids <- c("1XYZ", "2XYZ")
properties <- list(cell = c("volume", "angle_beta"), exptl = c("method"))
json_query <- generate_json_query(ids, "ENTRY", properties)

# Insert a single break line after "entry_ids: [\"1XYZ\", \"2XYZ\"]"
json_query <- gsub("(\\[\"1XYZ\", \"2XYZ\"\\])", "\\1\n", json_query)

# Display the modified output with one break line
json_query

#> [1] "{entries(entry_ids: [\"1XYZ\", \"2XYZ\"]\n){cell {volume, angle_beta}, exptl {method}}}"
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This example demonstrates the function’s utility in generating a JSON query that targets
specific PDB entries and requests detailed information about their cellular dimensions and
experimental methods. The generated query can then be used to fetch the relevant data
from the PDB, facilitating targeted analyses and research activities.

3 Discussion

The development and integration of the rPDBapi package into the bioinformatics and
structural biology research toolkit represent a significant advancement in the accessibility
and utility of the RCSB PDB for the R community. By providing a comprehensive interface,
rPDBapi facilitates a streamlined and intuitive approach to data retrieval and analysis,
addressing the critical need for direct access to PDB resources within R.

rPDBapi offers an array of powerful functions that simplify the process of accessing and
analyzing PDB data. These functions, such as constructing customized JSON queries, retriev-
ing FASTA sequences, and performing nuanced searches, empower researchers to efficiently
customize their data retrieval strategies. This customization is crucial for accommodating
the diverse needs of projects, whether they involve exploratory analyses in genomics or the
identification of potential drug targets. The flexibility in data gathering provided by the
package allows researchers to adapt quickly to unique project goals, improving the overall
efficiency of research workflows and enabling more sophisticated analyses.

Several key R packages were incorporated into the functionality of rPDBapi to enhance
data handling and visualization capabilities. Packages such as dplyr (Wickham et al., 2023a),
purrr (Wickham and Henry, 2023), and magrittr (Bache and Wickham, 2022) streamline
data management and manipulation, providing a user-friendly interface for working with
large datasets retrieved from the PDB. Communication with the RCSB PDB API is handled
through httr (Wickham, 2023), jsonlite (Ooms, 2014), and xml2 (Wickham et al., 2023b),
ensuring efficient data access and retrieval. Additionally, the bio3d (B.J. et al., 2006) package
is utilized for downloading and storing biological molecule structures across various formats,
enriching the package’s utility in structural biology research.

To support downstream analysis, several key R packages were integrated throughout this
manuscript. The Biostrings (Pages et al., 2024) and msa (Bodenhofer et al., 2015) packages
were instrumental in performing sequence alignment and calculating pairwise sequence
identity from the retrieved FASTA sequences. These packages enabled the in-depth sequence
analysis of proteins retrieved via rPDBapi, allowing for comparison and evolutionary insight
into the sequences. For text mining and thematic exploration of PDB-related literature, we
utilized the tm (Feinerer and Hornik, 2024) and wordcloud (Fellows, 2018) packages. These
were used to extract, clean, and visualize keywords from the titles and abstracts of papers
associated with specific PDB entries, generating a word cloud that highlighted the most
frequent terms in the dataset.

The gplots (Warnes et al., 2024) package played a crucial role in visualizing the pairwise
sequence identity data through heatmaps, providing a clear visual representation of the
similarity among the aligned protein sequences. Additionally, the r3dmol (Su and Johnston,
2021) package was utilized for 3D molecular visualization, which allowed interactive explo-
ration of protein structures retrieved via rPDBapi. This integration provided visual insight
into structural features, enhancing the analysis of protein conformation and interactions.

For phylogenetic analysis, we incorporated the ape (Paradis et al., 2024), phangorn
(Schliep et al., 2023), and ggtree (Yu et al., 2017) packages. These were essential for con-
structing and visualizing phylogenetic trees, which provided insights into the evolutionary
relationships among proteins based on their sequence alignment. This comprehensive
analysis pipeline, starting with sequence retrieval from rPDBapi and concluding with evo-
lutionary tree construction, demonstrates the package’s integration with the broader R
ecosystem for complex downstream analyses.

The streamlined data access offered by rPDBapi, combined with the aforementioned
downstream analysis tools, has the potential to accelerate scientific discovery in bioinformat-
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ics and structural biology. Immediate access to a vast repository of structural information
enables rapid hypothesis testing, iterative analysis, and exploratory research, which can lead
to novel insights into molecular mechanisms, disease pathology, and therapeutic targets.

In addition to its core features, rPDBapi promotes collaborative and interdisciplinary
research efforts by democratizing access to PDB data within R. The integration of structural
biology data into broader research initiatives across computational biology, genomics, and
pharmacology is crucial for addressing complex biological questions. By making PDB data
more accessible to R users, the package fosters a cross-disciplinary approach that enhances
the scope and depth of bioinformatics research.

While rPDBapi is a significant advancement for the R community, it is essential to
recognize similar tools available in other programming environments. Libraries such as
PyPDB for Python (Gilpin, 2016), BioJava (Lafita et al., 2019), and BioPython (Cock et al.,
2009) offer robust access to PDB data for their respective communities, enabling similar
functionalities in querying and analyzing biological structures.

Looking ahead, the continued development of rPDBapi will be instrumental in address-
ing emerging challenges and opportunities in structural biology research. Future updates
could include enhanced integration with other bioinformatics resources, support for novel
structural determination methodologies, and tools for visualizing and interactively explor-
ing molecular structures. As the PDB grows in complexity, innovative approaches to data
analysis and management will be essential, and rPDBapi will remain an important tool for
the evolving landscape of bioinformatics research.

4 Conclusion

rPDBapi provides an essential tool for the R community to access and interact with the
RCSB Protein Data Bank (PDB), bridging a significant gap in bioinformatics and structural
biology research. By offering a streamlined interface for querying, retrieving, and analyzing
PDB data, the package simplifies the process of handling complex biological datasets. While
rPDBapi largely serves as a wrapper around existing RCSB PDB APIs and other packages
like bio3d, its key contribution lies in enhancing accessibility and usability for R users.
The package’s ability to integrate advanced query functions and support flexible data
formats allows researchers to efficiently navigate PDB datasets and customize data retrieval
to specific research needs. As a result, rPDBapi represents a valuable addition to the R
ecosystem, promoting a more efficient workflow for bioinformatics and structural biology
studies.
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rqPen: An R Package for Penalized
Quantile Regression
by Ben Sherwood, Shaobo Li, and Adam Maidman

Abstract Quantile regression directly models a conditional quantile of interest. The R
package rqPen provides penalized quantile regression estimation using the lasso, elastic net,
adaptive lasso, SCAD, and MCP penalties. It also provides extensions to group penalties,
both for groups of predictors and grouping variable selection across quantiles. This paper
presents the different approaches to penalized quantile regression and how to use the provided
methods in rqPen.

1 Introduction

The package rqPen allows users to model conditional quantiles using a penalized quantile
regression approach. It supports a wide range of penalties and includes cross-validation and
information criterion approaches for selecting tuning parameters. Koenker and Bassett (1978)
proposed quantile regression as a robust alternative to mean regression that directly models
a conditional quantile of interest without the need for assumptions about the distribution or
moment conditions for the error term. Since Tibshirani (1996) introduced the lasso penalty,
investigating the combination of different penalties and loss functions has been an active area
of interest. Penalties provided in rqPen are lasso, elastic net (Zou and Hastie, 2005), SCAD
(Fan and Li, 2001), MCP (Zhang, 2010), adaptive lasso (Zou, 2006), group lasso (Yuan
and Lin, 2005), group extensions of adaptive lasso, SCAD, and MCP (Wang et al., 2007;
Huang et al., 2012; Breheny and Huang, 2009), and a group lasso penalty where variables are
grouped across quantiles (Wang et al., 2024). Extending the theoretical results of penalized
estimators to the quantile regression setting has been an active area of research. Examples
include deriving the rate of convergence for lasso (Belloni and Chernozhukov, 2011) and
group lasso (Kato, 2012) and deriving oracle properties for non-convex penalties such as
SCAD and MCP (Wang et al., 2012). Discussed in these papers is how minimizing the
penalized objective functions for quantile regression can be framed as linear programming
problems or, in the case of group lasso, second-order cone programming problems. The linear
programming formulation is particularly familiar to researchers in quantile regression because
this is the most common approach for solving quantile regression problems, including in the
quantreg package (Koenker and D’Orey, 1987, 1994), while a second-order cone programming
problem can be solved using convex optimization software, including the R package Rmosek
(Koenker and Mizera, 2014).

The ability to analyze large data sets is one of the major appeals of penalized regression
methods. However, linear programming and second-order cone programming algorithms
become computationally burdensome for large data sets. Further complicating matters is
that the quantile loss function is non-differentiable, while popular algorithms for penalized
objective functions rely on a differentiable loss function, for instance, Friedman et al. (2010)
(elastic net), Breheny and Huang (2011) (non-convex penalties), Breheny and Huang (2015)
(group non-convex penalties), and Yang and Zou (2015) (group lasso). Yi and Huang (2017)
proposed using a Huber-type approximation of the quantile loss and coordinate descent
algorithm for solving elastic net penalized quantile regression which is implemented in the
R package hqreg. Assuming a good initial estimator is provided, Peng and Wang (2015)
proposed a coordinate descent algorithm (QICD) for non-convex penalties. The R package
conquer approximates the quantile loss with a convolution of the quantile loss and Kernel
function (He et al., 2023; Tan et al., 2022).

The package rqPen provides an implementation of the Huber-type approximation and
linear programming algorithms. It allows users to fit quantile regression models with all
of the penalty functions discussed in the first paragraph and provides tools for using cross-
validation or information criterion to select tuning parameters. In addition, it provides plots
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for comparing cross-validation results and coefficient estimates as the sparsity parameter,
λ, changes. The package allows for estimating multiple quantiles with a call to a single
function and provides plots of how coefficient values change with the different quantiles being
modeled.

The packages quantreg, conquer, hrqglas, and hqreg are alternatives for penalized quantile
regression in R. However, there are some substantial differences between rqPen and these
packages. The package rqPen allows users to fit quantile regression models using the elastic
net, SCAD, MCP, adaptive lasso, group lasso, group SCAD, group MCP and group adaptive
lasso penalties, along with allowing users to choose between an L1 or L2 norm for all group
penalties. In addition, users can fit models for multiple quantiles, use cross-validation or
information criterion (IC) approaches to choose tuning parameters, and create plots of the
change in coefficient estimates for different quantiles and tuning parameters. Also, commonly
used functions such as predict(), coef(), and plot() can be used with the rq.pen.seq and
rq.pen.seq.cv objects created by rqPen functions. The package quantreg fits unpenalized
quantile regression models and provides the SCAD and lasso penalty. For both penalized
and unpenalized quantile regression, conquer offers computationally efficient estimation
for large n or p data sets. Users of conquer can choose between lasso, elastic net, group
lasso, sparse-group (Simon et al., 2013), group SCAD and group MCP. To the best of our
knowledge, conquer is the only package that offers the sparse-group lasso penalty for quantile
regression. While hrqglas provides penalized group lasso, it does not provide any of the other
group penalties, nor does it allow for simultaneous estimation of multiple quantiles. Similarly,
hqreg provides the elastic net penalty using the Huber approximation, but not adaptive lasso,
SCAD or MCP. However, hrqglas and hqreg provide methods for robust mean regression
using the Huber loss function, something rqPen does not do. Both packages are required for
rqPen and provide the backbone for the algorithms that use a Huber approximation for the
group, hrqglas, and non-group, hqreg, penalties. The package rqPen provides a variety of
algorithms and penalty functions that users can choose from. In addition, it provides tools
not available in other penalized quantile regression packages, such as plots of how coefficients
change with the quantile being modeled or the sparsity parameter, allowing for multiple
estimates of quantiles in a single line of code, and functions for information criterion based
approaches to tuning parameter selection. Finally, it provides a penalty that guarantees
consistent variable selection across quantiles, an option not available in the other packages
mentioned.

2 Penalized estimation of quantile regression

Consider observations {yi, xi}n
i=1, where xi = (1, xi1, . . . , xip)⊤ ∈ Rp+1, and the model

yi = x⊤
i βτ

0 + ϵi, (1)

where P (ϵi < 0|xi) = τ . Define ρτ (u) = u[τ − I(u < 0)], Koenker and Bassett (1978)
proposed estimating (1) by minimizing

n∑
i=1

ρτ (yi − x⊤
i β), (2)

which is available in the package quantreg. Let mi be the weight for observation i, w be
a vector of weights for a predictor or group of predictors, and λ and a are penalty tuning
parameters. The package rqPen provides functions for estimating βτ

0 by minimizing

1
n

n∑
i=1

miρτ (yi − x⊤
i β) + Pw,λ,a(β), (3)

where λ > 0 and the plausible values of a depend on the penalty being used. The penalty
function Pλ,a(β) can take the form of a group or individual penalty.
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2.1 Individual Penalty

Let wj be a weight for a variable j. For an individual penalty, (3) has the form of

1
n

n∑
i=1

miρτ (yi − x⊤
i β) +

p∑
j=1

pwjλ,a(|βj |). (4)

The package rqPen supports four different forms of individual penalties: elastic net,
adaptive lasso, SCAD and MCP. Users can also specify ridge and lasso, which are special
cases of the elastic net. The SCAD, ps

λ,a(), and MCP, pm
λ,a() penalty functions are

ps
λ,a(|x|) = λ|x|I(0 ≤ |x| < λ) +

aλ|x| − (x2 + λ2)/2
a − 1 I(λ ≤ |x| ≤ aλ) +

(a + 1)λ2

2 I(|x| > aλ),

pm
λ,a(|x|) = λ

(
|x| − x2

2aλ

)
I(0 ≤ |x| < aλ) +

aλ2

2 I(|x| ≥ aλ),

where a > 2 for the SCAD penalty function and a > 1 for MCP.
The following defines Pλ,a(β) for the four different penalty functions, plus two important

special cases.

1. Elastic net: pwjλ,a(|βj |) = λwj

[
α|βj | + (1 − α)β2

j

]
, where a ∈ [0, 1].

(a) Lasso: a special case with a = 1.
(b) Ridge: a special case with a = 0.

2. Adaptive Lasso: pwjλ,a(|βj |) = λwj |β̃j |−a|βj |, where a > 0 and β̃j is the Ridge
estimator for the same values of wj and λ.

3. SCAD: pwjλ,a(|βj |) = ps
wjλ,a(|βj |), where a > 2.

4. MCP: pwjλ,a(|βj |) = pm
wjλ,a(|βj |), where a > 1.

The weights, wj , allow for different weights for predictors and must be non-negative.
If wj = 0 then that variable will be unpenalized. In rqPen these weights are labeled as
penalty.factors or group.penalty.factors. The lasso estimator provides the backbone
for the algorithm of the three non-elastic net penalties. As ρτ (x) + ρτ (−x) = |x|, the lasso
estimator minimizes,

1
n

n∑
i=1

miρτ (yi − x⊤
i β) +

p∑
j=1

ρτ (λwjβj) + ρτ (−λwjβj). (5)

For i ∈ {1, . . . , n} define ỹi = yi, x̃i = xi, and m̃i = mi. Let ej ∈ Rp+1 represent a
unit vector with a value of one in the jth position and zero in all other entries. For each
j ∈ {1, . . . , p} define x̃n+2j−1 = −nλwjej and x̃n+2j = nλwjej . In addition, for each
i ∈ {n + 1, . . . , n + 2p} define ỹi = 0 and m̃i = 1. Then minimizing (5) is equivalent to
minimizing

1
n

n+2p∑
i=1

m̃iρτ (ỹi − x̃⊤
i β). (6)

The objective function (6) has the same form as (2) except for the scaling factor, n−1, and
the weights. This approach of creating the augmented 2p samples and then using standard
quantile regression is implemented in rqPen where the problem is solved using the rq()
function from quantreg. Note this approach is different from using rq(method="lasso",...)
within quantreg, which uses a linear programming approach but does not formulate the
problem using augmented data.

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=rqPen
https://CRAN.R-project.org/package=rqPen
https://CRAN.R-project.org/package=rqPen
https://CRAN.R-project.org/package=quantreg
https://CRAN.R-project.org/package=quantreg


Contributed research article 149

For large values of n and p the linear programming algorithms become computationally
burdensome. To decrease computational complexity, Yi and Huang (2017) proposed approxi-
mating the quantile loss function with a Huber-like function and a new coordinate descent
algorithm that requires a differentiable loss function. The Huber loss function proposed by
Huber (1964) is

hγ(t) =
t2

2γ
I(|t| ≤ γ) +

[
|t| − γ

2

]
I(|t| > γ).

Note ρτ (u) = u[τ − I(u < 0)] = 1
2 (|u| + (2τ − 1)u) and for sufficiently small γ, |u| ≈ hγ(u).

The Huber-approximated quantile loss is

hτ
γ(u) = hγ(u) + (2τ − 1)u, (7)

and for small γ, ρτ (u) ≈ 1
2hτ

γ(u). The package hqreg implements the approach of Yi and
Huang (2017) and the function hqreg(), with method="quantile", solves the problem of

1
2n

n∑
i=1

hτ
γ(yi − x⊤

i β) + λ

p∑
j=1

wj |βj |. (8)

In rqPen, solving (8) is done by calling hqreg::hqreg() and thus hqreg is a required
package. The Huber approximation with lasso is the default for rq.pen(), one of the main
functions in rqPen. In addition, optimization of the adaptive lasso, SCAD and MCP problems
can be solved using a version of (8), which is available in rqPen but not hqreg. The adaptive
lasso can be solved using the same approach because it is a special case of a lasso problem
with different weights for each coefficient. The initial estimators necessary for the weights are
determined by a ridge estimator with the same value of λ. The SCAD and MCP functions
are approximated by a local linear approximation (LLA) as proposed by Zou and Li (2008).
Let pwjλ,a(|βj |) represent a generic penalty function and p′

wjλ,a(|βj |) be the derivative with
respect to βj . Let β̄j be the lasso estimator for the same value of λ and weights. The LLA
approach uses the following approximation,

1
n

n∑
i=1

miρτ (yi − x⊤
i β)+

p∑
j=1

pwjλ,a(|βj |)

≈ 1
n

n∑
i=1

miρτ (yi − x⊤
i β) +

p∑
j=1

p′
wjλ,a(|β̄j |)|βj |. (9)

Again, the problem becomes a special case of a lasso estimator with specific weights for each
predictor. Thus all the non-group penalties, except for elastic net and ridge, can be solved
using linear programming or Huber approximation algorithms.

The elastic net penalty of

1
n

n∑
i=1

miρτ (yi − x⊤
i β) + λ

p∑
j=1

wj

[
a|βj | + (1 − a)β2

j

]
, (10)

cannot be framed as a linear programming problem because of the ridge penalty. Thus for
a ̸= 1, the rqPen implementation of elastic net only uses the Huber approximation approach
provided in hqreg. While hqreg provides a computational backbone, rqPen provides SCAD,
MCP, and adaptive lasso penalties that are not provided in hqreg(). In addition, hqreg()
does not include any group penalties or allow for weights for observations, mi. If weights are
specified then the group lasso with singleton groups, implemented in hrqglas, is used instead
of using hqreg() from hqreg.
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2.2 Group Penalty predictors

When there exists a group structure to the predictors then a group penalty can often
account for this structure. For instance, non-binary categorical variables or polynomial
transformations of predictors. This section assumes the p predictors are partitioned into G

groups and βg represents the coefficients associated with the gth group of predictors. Group
penalized quantile regression estimators minimize

1
n

n∑
i=1

miρτ (yi − x⊤
i β) +

G∑
g=1

pwgλ,a(||βg||q). (11)

Users can choose four penalty functions for pwg ,λ,a(): (1) lasso; (2) Adaptive lasso; (3)
SCAD; and (4) MCP. Specifically,

1. lasso:
∑G

g=1 pwgλ,a(||βg||2) = λ
∑G

g=1 wg||βg||2;

2. Adaptive lasso:
∑G

g=1 pwgλ,a(||βg||q) = λ
∑G

g=1 wg||β̃g||−a
q ||βg||q, where a > 0 and β̃j

is the Ridge estimator for the same values of λ and wg;

3. SCAD: Pa(β) =
∑G

g=1 ps
wgλ,a(||βg||q), where a > 2;

4. MCP: Pa(β) =
∑G

g=1 pm
wgλ,a(||βg||q), where a > 1.

The values of q in rq.group.pen() is limited to q ∈ {1, 2} and can be changed with
norm=q. If q = 2 then group variable selection will be all-or-nothing, that is all variables
within a group will be selected or none of them will be. The choice of q = 1 allows for
bi-level variable selection (Breheny and Huang, 2009). Users cannot specify norm=1 and
penalty="gLASSO", default penalty of group lasso, because that is equivalent to the individual
lasso penalty implemented in rq.pen().

Huang et al. (2012) provide an excellent review of group penalties, including a discussion
of the use of q = 1. For differentiable loss functions, Breheny and Huang (2009) provide a
computational perspective on q = 1, while Sherwood et al. (2020) compare oracle model
selection properties for q = 1 and q = 2.

For q = 1, the group lasso estimator becomes a special case of the individual lasso
estimator, and this is also true for the adaptive lasso penalty. For the SCAD and MCP
penalties, LLA will be used to approximate the non-convex penalties. Let β̄g be an initial
group lasso estimator and the penalized objective function is approximated by

1
n

n∑
i=1

miρτ (yi − x⊤
i β) +

G∑
g=1

p′
wgλ,a(||β̄g||q)||βg||q. (12)

Thus for the case of q = 1 this becomes an individual lasso problem and the algorithms
discussed in the previous section apply. In particular, the problem can be framed as a linear
programming problem. While for q = 2 (12) becomes a special case of the group lasso
problem. These group lasso problems are not linear programming problems, but second-order
cone programming problems. Second-order cone programming problems can be solved by
existing convex optimization software such as Rmosek (Koenker and Mizera, 2014). However,
there are some barriers to using Rmosek, for instance it requires a copy of Mosek installed
on the user’s computer. In addition, similar to linear programming problems, second-order
cone programming algorithms can be computationally burdensome for large values of n or p.
For q = 2, the Huber approximation described in the previous subsection is used. However,
hqreg cannot be used to solve this problem because the approach of Yi and Huang (2017)
is not for a group penalty. Instead, the algorithm of Yang and Zou (2015) is implemented.
See Sherwood and Li (2022) for details regarding the application of this algorithm to the
asymmetric Huber regression setting. This approach is available in the package hrqglas,
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which is maintained by two of the authors and provides the computational backbone for the
L2 group penalties.

2.3 Estimation of Multiple Quantiles

For a set of quantiles of interest, (τ1, . . . , τB), Belloni and Chernozhukov (2011) proposed
minimizing,

1
n

B∑
b=1

n∑
i=1

miρτb

(
yi − x⊤

i βτb

)
+

λ̃

n

B∑
b=1

p∑
j=1

√
τb(1 − τb)σ̂j |βτb

j |, (13)

where σ̂j = n−1 ∑n
i=1 x2

ij . We use λ̃ in (13) to emphasize that the scaling of the tuning
parameter is different than that used in rqPen, specifically λ = λ̃

n . The penalized objective
function of (13) provides a quantile specific weight of

√
τb(1 − τb) and a predictor specific

weight of σ̂j , while λ is assumed to have the same value. In rqPen, this approach is generalized
to allow for different penalties and user choices of the quantile, predictor, and observation
weights. For an individual penalty the estimator minimizes,

1
n

B∑
b=1

n∑
i=1

miρτb

(
yi − x⊤

i βτb

)
+

B∑
b=1

p∑
j=1

pwjdbλ,a(|βτb
j |). (14)

For a group penalty the penalized objective function is

1
n

B∑
b=1

n∑
i=1

miρτb

(
yi − x⊤

i βτb

)
+

B∑
b=1

G∑
g=1

pwgdbλ,a(||βg||q). (15)

Note, the wjdbλ term allows users to specify specific weights for a predictor, wj , and
specific weights for a quantile, db. For instance, if a user chooses the lasso penalty with
wj = n−1 ∑n

i=1 x2
ij , db = n−1√

τb(1 − τb), and mi = 1 then (14) is equivalent to (13). The
optimization of (14) and (15) consist of B different optimization problems. In rqPen they
are solved separately using the algorithms that have been discussed previously, except the
same sequence of λ is used for all B problems. In Belloni and Chernozhukov (2011) they
suggest choosing the same value of λ for all the quantiles, albeit with the quantile-specific
weights. We later present how users can choose a single value of λ and coefficient estimates
come from either (14) or (15). Alternatively, users can choose B different values of λ and
then the solutions come from B different optimizations of (4) or (11). The latter approach is
equivalent to a data-driven approach for estimating the optimal quantile-specific weights, db.

Consistent selection across quantiles

The penalties discussed previously do not ensure consistent selection across the quantiles.
That is for two quantiles τ1 and τ2, it is possible for a variable’s coefficient to be non-zero
at τ1, but zero at τ2. Our opinion is this is often hard to interpret. Consider the case
where B quantiles are considered. Define, βj = (βτ1

j , . . . , βτB
j )⊤ ∈ RB as the vector of

the jth coefficient for all B quantiles. Define ||βj ||2,w,d =
√∑B

b=1 dbwj(β
τb
j )2, as weighted

L2-norm that allows for predictor, mj , and quantile, wk, specific weights. If a user desires
consistent variable selection across quantiles they can use the group quantile penalized
objective function,

1
n

B∑
b=1

n∑
i=1

miρτb

(
yi − x⊤

i βτb

)
+ λ

p∑
j=1

||βj ||2,w,d. (16)

We refer to this penalty as the group quantile penalty (Li and Sherwood, 2025).
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2.4 Tuning parameter selection

There are two tuning parameters, λ and a, that need to be set. The value of a defaults
to commonly used values for each penalty: (1) elastic-net (a = 1); (2) adaptive lasso
(a = 1); (3) SCAD (a = 3.7); and (4) MCP (a = 3). Users can also specify values
of a, except for the cases of Ridge (a = 0) and lasso (a = 1) where the value of a is
fixed. Typically the value of a is not as much of a concern as the value of λ, a potential
notable exception to this would be the elastic net penalty. Users can specify a sequence
for values of λ otherwise, a sequence will be automatically generated. Define Hτ

γ (β) =
1

2n

∑n
i=1 mih

τ
γ(yi − x⊤

i β). Define ã = a if the elastic net penalty is used and one otherwise.
If a = 0, that is the ridge penalty is being used, then ã = .001. The default value for an
individual penalty is λmax = maxj,b 1.05

∣∣∣ ∂
∂βj

Hτb
γ (0p+1)

∣∣∣ (wjdbã)
−1 and for a group penalty

is λmax = maxg,b 1.05
∣∣∣∣∣∣ ∂

∂βg
Hτb

γ (0p+1)
∣∣∣∣∣∣

q
(wgdb)

−1. The 1.05 multiplier is used to ensure that
λmax provides a completely sparse solution regardless of whether the Huber approximation
is used or not. If any predictors or groups are unpenalized at a given quantile then they are
excluded from these calculations.

Both cross-validation and information criterion are provided as tools for selecting the
optimal pair of (λ, a). Let β̂

τ
λ,a be the coefficient estimates for quantile τ using tuning

parameters λ and a. Define kτ
λ,a as the number of non-zero coefficients in β̂τ

λ,a. The quantile
information criterion (QIC) is defined as

QIC(τ , λ, a) = log
[

n∑
i=1

miρτ (yi − x⊤
i β̂

τ
λ,a)

]
+

mkτ
λ,a

2n
, (17)

where the value of m depends on the criterion being used. Users can select between AIC
(m = 2), BIC [m = log(n)], and a version of the large p BIC proposed by Lee et al. (2014,
m = log(n) log(p)).

Cross-validation is the other approach implemented for choosing the optimal pair of (λ, a).
Consider the case of K folds, let nk be the number of observations in the kth fold, yk

i , xk
i ,

and mk
i be the ith response, predictor vector, and weights for the kth fold and β̂

τb
−k,λ,a be

the fit for the bth quantile excluding the kth fold for given values of λ and a. By default,
even if Huber approximations are used, cross-validation is done using quantile loss. However,
this can be changed by setting cvFunc in the later described functions rq.group.pen.cv(),
rq.gq.pen.cv(), or rq.pen.cv(). For instance, cvFunc=abs will use absolute value loss
regardless of the quantile being modeled. For simplicity of presentation, the following assumes
quantile loss is used. The average quantile loss at a given fold is

Cτ
k (λ, a) =

1
nk

nk∑
i=1

mk
i ρτ (y

k
i − xk

i
⊤

β̂
τ
−k,λ,a). (18)

The cross-validation functions return two summaries of the cross-validation for selecting
(λ, a). The return value btr provides a table of the values of a and λ that minimize

Cτ (λ, a) =
1
K

K∑
k=1

Cτ
k (λ, a). (19)

In addition it provides the λ value associated with the sparsest solution that is within one
standard error of the value that minimizes (19). The standard error for a given pair of (λ, a)
is calculated as √√√√ 1

K − 1

K∑
k=1

[
Cτ

k (λ, a) − Cτ (λ, a)
]2. (20)

The average summary can be replaced by changing the parameter cvSummary. For instance,
cvSummary=median would use the median values of Cτ

k (λ, a).
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Users can also choose to optimize λ and a, so they are the same values across all quantiles.
When evaluating the cross-validation error they can choose to not provide equal weight to
each quantile by entering quantile specific weights of zb. The return value gtr provides
results for the value of λ and a that minimize

C(λ, a) =
B∑

b=1
zbC

τb(λ, a). (21)

Users can choose between a single pair of (λ, a) that minimizes (21) or B, potentially different,
pairs that minimize (19) separately for each quantile except for when minimizing (16). That
is a joint optimization problem and thus only joint selection of tuning parameters using (21)
is allowed. In addition, results for the one standard error approach, where the standard error
for a fixed (λ, a) pair is √√√√ 1

K − 1

K∑
k=1

B∑
b=1

zb

[
Cτ

k (λ, a) − Cτ (λ, a)
]2, (22)

are provided. The one standard error rule finds the sparsest solution, by increasing λ, where
the value of (19) or (21) are within one standard error of the optimal value, assuming the
optimal a is fixed.

By setting groupError=FALSE each observation is weighted equally and (19) and (21)
are replaced by

∑K
k=1 nkCτ

k (λ, a), and
∑B

b=1 zb
∑K

k=1 nkCτ
k (λ, a), respectively.

Tuning parameter selection for multiple quantiles using an information criterion

For the case of multiple, B, quantiles being modeled, rqPen offers two different approaches
for selecting the tuning parameters. One approach is to select B pairs of (λ, a) that minimize
the B different versions of (17). The other approach is given weights (z1, . . . , zb), the optimal
pair of (λ, a) minimizes,

B∑
b=1

zbQIC(τb, λ, a). (23)

The weights offer flexibility to a user who wants to provide more weight to a specific quantile.
The default value for all the weights is one thus giving equal weight to each quantile.

2.5 Additional notes on Huber approximation

For Huber approximation, a value of γ is needed. If γ is too large then the estimator will
have a large amount of bias. If γ is too small the algorithms will become unstable. The
values of γ are updated for each value of λ. Let rk be the vector of residuals corresponding
to the estimator using the kth value of λ, λk, and Q.1(|rk|) be the 10th percentile of the
absolute values of these residuals. For an individual penalty we use what is implemented in
hqreg, which is very similar to what is outlined by Yi and Huang (2017). Specifically,

γk = I(|1 − τ | < .05)max
{

.0001, min
[
γk−1, Q.01(|rk|)

]}
+I(|1 − τ | >= .05)max

{
.001, min

[
γk−1, Q.1(|rk|)

]}
.

For the group penalties, as presented in Sherwood and Li (2022),

γk = min
{

4, max
[
.001, Q.1(|rk|)

]}
.

One reason the linear and second-order cone programming problems are computationally
slow for larger values of p is they optimize across all potential predictors. Tibshirani
et al. (2012) proposed a strong rule for discarding predictors that can greatly decrease the
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computational complexity of penalized optimization. The strong rule assumes a differentiable
loss function and thus is only implemented for the Huber approximations. In addition, the
Huber approximation approaches use warm starts across a path of potential λ values. It
starts with the largest potential value of λ then uses that solution as the initial value for the
next largest potential value of λ. This iterative process is continued until all solutions have
been found. The linear programming approaches rely on quantreg::rq() which does not
have an option for initial values. Thus warm starts are not implemented for those approaches.
For an individual penalty, the calculations of the strong rule are done in the package hqreg,
and details can be found in Yi and Huang (2017). A similar approach has been used for
group penalties (Sherwood and Li, 2022).

3 Description of functions

Below are the main functions of rqPen and an S3 method that is unique to rqPen,
bytau.plot().

• rq.pen() minimizes (14) to provide estimates of a quantile regression model, for
potentially multiple quantiles, using an individual penalty of either elastic-net, adaptive
lasso, SCAD, or MCP. If not specified, a sequence of λ values is automatically generated.
Returns an rq.pen.seq S3 object that works with bytau.plot(), coef(), plot(),
predict(), and print() methods.

• rq.gq.pen() minimizes (16) to provide a quantile regression model for multiple quan-
tiles using the group quantile lasso penalty. It also returns an rq.pen.seq S3 object
and can be used with the same methods listed above.

• rq.group.pen() minimizes (15) and is a group penalty version of rq.pen(). Users
have access to group versions of the lasso, adaptive lasso, SCAD, and MCP penalties.
The lasso penalty is restricted to the L2-norm. For other penalties, users can choose
between the L1- or L2-norm. It also returns an rq.pen.seq S3 object and can be used
with the same methods listed above.

• rq.pen.cv() automates K-folds cross-validation for selecting the tuning parameters λ

and a. If λ is left undefined, a sequence of λ values will be automatically generated.
For a, the default values described earlier will be used, unless the user specifies a
sequence. If multiple quantiles are modeled then it provides the optimal pair of (λ, a)
for each quantile and the optimal pair across all quantiles. Returns an rq.pen.seq.cv
S3 object that works with bytau.plot(), coef(), plot(), predict(), and print()
methods.

• rq.gq.pen.cv() is the group quantile lasso version of rq.pen.cv(). It does everything
listed above, but for the group quantile penalty. It also returns an rq.pen.seq.cv
object.

• rq.group.pen.cv() is the group version of rq.pen.cv(). It does everything listed
above, but for group penalties. It also returns an rq.pen.seq.cv object.

• qic.select() takes an rq.pen.seq or rq.pen.seq.cv object and provides the optimal
values of (λ, a) using an information criterion, as explained in the previous section. It
returns a ‘qic.select’ S3 object that works with coef(), predict(), and print()
methods.

• bytau.plot() plots coefficient estimates for each predictor as a function of τ .

The rq.pen() function provides estimates of conditional quantiles from minimizing a
penalized objective function for a sequence of λ values.

rq.pen(x, y, tau = 0.5, lambda = NULL,
penalty = c("LASSO", "Ridge", "ENet", "aLASSO", "SCAD", "MCP"),
a = NULL, nlambda = 100, eps = ifelse(nrow(x) < ncol(x), 0.05, 0.01),
penalty.factor = rep(1, ncol(x)),
alg = ifelse(sum(dim(x)) < 200, "br", "huber"), scalex = TRUE,
tau.penalty.factor = rep(1, length(tau)),
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coef.cutoff = 1e-08, max.iter = 10000, converge.eps = 1e-07,
lambda.discard = TRUE, weights=NULL, ...)

The function rq.pen() requires a design matrix x and vector of response y. The predictors
in the design matrix will be centered to have mean zero and standard deviation one when
minimizing the penalized objective function unless scalex is set to FALSE. While the
predictors are scaled, the coefficients are returned on the original scale of x. The quantiles
modeled are set with tau. Users can choose the penalty function, with the default being lasso.
A pre-specified lambda sequence can be set, lambda. If the user does not specify a sequence
of λ values then λmin = ϵλmax, where ϵ can be set by eps and nlambda is the number
of λ values considered. Though very small values of λ may be discarded if the coefficient
estimates are not changing much with smaller values of λ, unless lambda.discard=FALSE.
For non-ridge or non-lasso penalties, a sequence of values can also be selected for a. If a
is not set then default values depend on the penalty, elastic-net (a = 0), adaptive lasso
(a = 1), SCAD (a = 3.7) and MCP (a = 3). Penalty factors can be set for predictors,
penalty.factor, or quantiles, tau.penalty.factor. Observation weights are set using
weights. The linear programming algorithms can provide very small, but non-zero estimates,
and these coefficients are set to zero if they are below coef.cutoff. The choice of algorithm
can be set using alg. Two linear programming algorithms are provided, the Barrodale and
Roberts algorithm (br) (Barrodale and Roberts, 1974), as described in Koenker and D’Orey
(1987) and Koenker and D’Orey (1994), and the Frisch-Newton (fn) approach, described in
Portnoy and Koenker (1997). Both approaches rely on implementations in quantreg. Setting
rq.pen(alg="huber") uses the approach of Yi and Huang (2017) implemented in hqreg. In
addition, they can set the maximum number of iterations, max.iter, or convergence criteria,
converge.eps, though these only apply to the “huber’ ’ algorithms.

coef.rq.pen.seq(object, tau = NULL, a = NULL, lambda = NULL, modelsIndex = NULL,
lambdaIndex = NULL, ...)

Using coef(), users can extract coefficients for specific quantiles, tau, and tuning
parameters, a and lambda, from class rq.pen.seq object. Alternatively, they can directly
specify the models and lambda values using modelsIndex and lambdaIndex, respectively.
If none of these values are set then a matrix of coefficients for all quantiles and tuning
parameters will be returned.

coef.rq.pen.seq.cv(object, septau = TRUE, cvmin = TRUE, useDefaults = TRUE,
tau = NULL, ...)

With an rq.pen.seq.cv object, the coef() function returns coefficients based on the
cross-validation results. If cvmin=TRUE then the tuning parameters associated with the
minimum cross-validation error are returned, otherwise the one standard error rule is used.
When septau=TRUE then the tuning parameters are optimized individually for each quantile.
Users can identify the specific quantiles, tau, they wish to return. The default is to return
results for all quantiles. Setting useDefaults=FALSE ignores the cross-validation results and
users can use the arguments in coef.rq.pen.seq() to select coefficients. For instance, if
useDefaults=FALSE and no other arguments are provided then all coefficients are returned.

Function bytau.plot() has a similar form for the rq.pen.seq and rq.pen.seq.cv
objects.

bytau.plot.rq.pen.seq(x, a = NULL, lambda = NULL, lambdaIndex = NULL, ...)

bytau.plot.rq.pen.seq.cv(x, septau = TRUE, cvmin = TRUE, useDefaults = TRUE, ...)

These functions produce a plot of how coefficients change with quantiles. The arguments
in bytau.plot.rq.pen.seq() and bytau.plot.rq.pen.seq.cv() are the same as those
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covered for coef(), but with one major difference. Only one vector of coefficients can be
provided for each quantile. When using an rq.pen.seq object, users must specify a single
pair of (λ, a). When using an rq.pen.seq.cv object, users can rely on the default tools for
selecting coefficients or specify a single pair of λ and a.

Both rq.pen.seq and rq.pen.seq.cv objects have plot() functions. Using plot()
with an rq.pen.seq.cv object provides a plot of how the cross-validation error changes with
λ for each quantile.

plot.rq.pen.seq.cv(x, septau = TRUE, tau = NULL, logLambda = FALSE, main = NULL, ...)

If septau=TRUE then a separate plot is created for each quantile, otherwise one plot is
created that combines the cross-validation error across all quantiles. Users can limit the
plots to a subset of quantiles, tau. If logLambda=TRUE then the x-axis will be log(λ). The
main text can be set otherwise the main title depends on the name of the variable and the
value of septau.

While plot() for an rq.pen.seq object creates a plot of the coefficients as they change
with λ.

plot.rq.pen.seq(x, vars = NULL, logLambda = TRUE, tau = NULL, a = NULL,
lambda = NULL, modelsIndex = NULL, lambdaIndex = NULL, main = NULL, ...)

The plot() function will create a plot for each combination of τ and a. Users can specify
specific values of tau and a if they only want to consider a subset. They can also limit the
values of lambda. Choice of models and λ values can also be done using modelsIndex and
lambdaIndex. The main text can be set. If logLambda=TRUE then the λ values are reported
on the natural log scale.

4 Applications

This section details how to use individual and group penalties. Different individual penalties
and algorithms will be applied to the Barro data set from the quantreg package. In addition,
the group quantile penalty is used with the Barro data set. While the group penalties for
predictors will be used with the Ames housing data (De Cock, 2011) available in AmesHousing.

4.1 The Barro data set

The Barro data set, available in quantreg, contains GDP growth rates and 13 other potential
explanatory variables. See Koenker and Machado (1999) for more details.

Using different algorithms

First, we look at fitting a model with the SCAD penalty for τ = .5 using three different
algorithms.

library(rqPen)
#quantreg is required for rqPen, but call directly here
#because we need the Barro data set
library(quantreg)
data(barro)
y <- barro$y.net
x <- as.matrix(barro[,-1])
qbr <- rq.pen(x,y,alg="br", penalty="SCAD")
qfn <- rq.pen(x,y,alg="fn", penalty="SCAD")
qhuber <- rq.pen(x,y,alg="huber",penalty="SCAD")
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Where “br” and “fn” are the Barrodale and Roberts (Koenker and D’Orey, 1987, 1994) and
Frisch-Newton (Portnoy and Koenker, 1997) interior point method for linear programming
problems implemented in quantreg::rq(). The following code takes the 25th value in the
sequence of λ values and compares the coefficients for the three different approaches creating
three different rq.pen.seq objects.

targetLambda <- qbr$lambda[25]
brCoef <- coefficients(qbr,lambda=targetLambda)
fnCoef <- coefficients(qfn, lambda=targetLambda)
huberCoef <- coefficients(qhuber, lambda=targetLambda)
coefDf <- cbind(brCoef,fnCoef,huberCoef)
colnames(coefDf) <- c("br","fn","huber")
coefDf

#> br fn huber
#> intercept 0.02018841 0.02018852 0.02131606
#> lgdp2 0.00000000 0.00000000 0.00000000
#> mse2 0.00000000 0.00000000 0.00000000
#> fse2 0.00000000 0.00000000 0.00000000
#> fhe2 0.00000000 0.00000000 0.00000000
#> mhe2 0.00000000 0.00000000 0.00000000
#> lexp2 0.00000000 0.00000000 0.00000000
#> lintr2 0.00000000 0.00000000 0.00000000
#> gedy2 -0.01773640 -0.01773726 -0.06602351
#> Iy2 0.02366121 0.02366100 0.02917322
#> gcony2 -0.02007166 -0.02007206 -0.02269923
#> lblakp2 -0.01433958 -0.01433962 -0.01524323
#> pol2 -0.01112295 -0.01112292 -0.01067910
#> ttrad2 0.04986245 0.04986267 0.04863867

The three different algorithms provide coefficient estimates that are different but similar.
For larger data sets, with a large number of observations or variables, we recommend using
the Huber approximation because this greatly reduces computational time while providing a
reasonable solution (Yi and Huang, 2017). The following presents a plot of how the coefficient
values from qhuber change with λ.

plot(qhuber)
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Multiple quantiles

Next, we fit a model for multiple quantiles of τ ∈ {.1, .5, .9} and will also consider values
of a ∈ {3, 4} for the additional tuning parameter for SCAD. A fit with multiple quantiles
remains an rq.pen.seq object.

qmult <- rq.pen(x,y,tau=c(.1,.5,.9),a=c(3,4),penalty="SCAD")

The following code provides a plot of the coefficients for τ = .1 and a = 4.

plot(qmult, tau=.1,a=4)
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Using IC to select tuning parameters

When jointly optimizing the tuning parameter selection the same values of λ and a will be
selected for each quantile by minimizing (23). Otherwise, the optimal tuning parameters will
be selected by minimizing (17) for each quantile separately. Users can specify method="AIC",
method="BIC" or method="PBIC" for a large p BIC proposed by Lee et al. (2014). When
doing joint selection, users can also specify weights, zb in (23). The default is to provide an
equal weight, of one, for all quantiles.

The below code selects the tuning parameters of (λ, a) for the qmult model using AIC.
This code will create two qic.select objects, qic_sep and qic_joint.

qic_sep <- qic.select(qmult,method="AIC")
qic_joint <- qic.select(qmult, method="AIC", septau=FALSE)

Below provides the tuning parameters selected by the two different approaches. The
modelsInfo attribute provides information on the model selected for each quantile.

qic_sep$modelsInfo

#> tau modelIndex a minQIC lambdaIndex lambda
#> <num> <int> <num> <num> <int> <num>
#> 1: 0.1 1 3 -0.80983835 100 0.001744156
#> 2: 0.5 3 3 0.05987224 71 0.006721156
#> 3: 0.9 5 3 -0.86499611 82 0.004029227

qic_joint$modelsInfo

#> modelIndex a tau minQIC lambdaIndex lambda
#> tau0.1a3 1 3 0.1 -0.80983835 100 0.001744156
#> tau0.5a3 3 3 0.5 0.06799888 100 0.001744156
#> tau0.9a3 5 3 0.9 -0.86105610 100 0.001744156

The above tables provide the following information for the models selected for each
quantile.

• ‘tau‘: The quantile being modeled.

• ‘a‘: The value of a selected.

• ‘minQIC‘: The QIC value for the given quantile and tuning parameters.

• ‘lambdaIndex‘: The position in the sequence for the preceding λ value.

• ‘lambda‘: The value of λ at the minimum cross-validation error.

When defining qic_joint we set septau=FALSE. Thus only a single pair of (λ, a) is
selected to the be the best for all nine quantiles. That is why the values of lambda and a are
the same for all quantiles in qic_joint$modelsInfo, but can differ in qic_sep$modelsInfo.
The coefficients can be extracted using coef().

coef(qic_sep)

#> tau=0.1 tau=0.5 tau=0.9
#> intercept 0.0238504916 -0.024276359 -0.045586339
#> lgdp2 -0.0267825117 -0.024713637 -0.034210392
#> mse2 0.0129219159 0.010444821 0.017737529
#> fse2 0.0008487373 0.000000000 -0.004439600
#> fhe2 -0.0186593726 0.000000000 0.000000000
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#> mhe2 0.0081453667 0.000000000 0.000000000
#> lexp2 0.0487678850 0.057746988 0.085483398
#> lintr2 -0.0010966058 -0.001761961 -0.002291657
#> gedy2 -0.3527018635 -0.068097230 -0.035234865
#> Iy2 0.0853432506 0.081856907 0.057654273
#> gcony2 -0.2044733845 -0.098175742 -0.084273528
#> lblakp2 -0.0226578393 -0.026987474 -0.033076575
#> pol2 -0.0282535823 -0.025880939 0.000000000
#> ttrad2 0.1155784172 0.140594440 0.225825288

coef(qic_joint)

#> tau=0.1 tau=0.5 tau=0.9
#> intercept 0.0238504916 -0.0326938848 -0.039997413
#> lgdp2 -0.0267825117 -0.0268792897 -0.034043618
#> mse2 0.0129219159 0.0108844720 0.018840828
#> fse2 0.0008487373 0.0000000000 -0.005800585
#> fhe2 -0.0186593726 0.0003025406 0.000000000
#> mhe2 0.0081453667 0.0052844922 0.002750732
#> lexp2 0.0487678850 0.0639833573 0.083730580
#> lintr2 -0.0010966058 -0.0020594254 -0.002348213
#> gedy2 -0.3527018635 -0.0471775148 -0.047890233
#> Iy2 0.0853432506 0.0797565855 0.059880455
#> gcony2 -0.2044733845 -0.0973417525 -0.088821669
#> lblakp2 -0.0226578393 -0.0264829810 -0.033128704
#> pol2 -0.0282535823 -0.0314157975 0.001284625
#> ttrad2 0.1155784172 0.1654870976 0.227607952

Predictions from models

Users can make predictions from either the qic.select or rq.pen.seq objects. Prediction
from a qic.select object will return predictions for all quantiles modeled.

# creating new data using the mean of all variables
newData <- apply(barro,2,mean)[-1] #removing response
predict(qic_sep,newData)

#> tau=0.1 tau=0.5 tau=0.9
#> [1,] -0.0002466134 0.01894553 0.03922352

The default for predict() for an rq.pen.seq object is to return predictions for all values
of λ, a, and τ . For qmult this results in 900 predictions for one row of predictors because
there are 100 λ values, 3 a values, and 3 quantiles being modeled.

allPreds <- predict(qmult,newData)
allPreds[,1:5] #Present the first five predictions

#> tau0.1a3 L1 tau0.1a3 L2 tau0.1a3 L3 tau0.1a3 L4 tau0.1a3 L5
#> -0.01338804 -0.01338804 -0.01338804 -0.01338804 -0.01338804

Following the coef.rq.pen.seq code presented in the previous section, users can specify
predictions from specific values of λ, τ , or a.

somePreds <- predict(qmult,newData, tau=c(.1,.5,.9),a=4,lambda=qmult$lambda[25])
somePreds

#> tau0.1a4 tau0.5a4 tau0.9a4
#> [1,] -0.008353503 0.01773852 0.05166048
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Cross-validation for tuning parameter selection

The function rq.pen.cv() creates an rq.pen.seq.cv object that can be used to select
tuning parameters. Below we consider a similar model but use elastic net instead of SCAD.
We set tauWeights to have zb = τb(1 − τb), which provides more weights to errors at the
median and less to the more extreme quantiles.

set.seed(1)
tauVals <- c(.1,.5,.9)
qcv <- rq.pen.cv(x,y,tau=tauVals,a=c(.1,.5,1),penalty="ENet",

tauWeights = tauVals*(1-tauVals))

The plot() function with an rq.pen.seq.cv object can create a plot of cross-validation
error for a single quantile, (18), or across all quantiles, (21). The following provides a plot
for cross-validation error for τ = .5 as a function of λ and a.

plot(qcv,tau=.5)
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The error bars are only provided for the sequence associated with the optimal value of
a, a = .5 in this example. The dashed lines are only for that optimal value, too. The first
dashed line is at the value of λ that minimizes the cross-validation error, while the second
dashed line is at the value of λ which is one standard error above the minimum value. Users
can also get a similar plot that describes how the cross-validation error across all quantiles
changes with λ and a. If a user is only interested in one quantile then the above and below
plot would be identical.

plot(qcv,septau=FALSE)
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For an rq.pen.seq.cv object the predict() function relies on the coef() function.
Below are four predictions using the four combinations of septau and cvmin.

p1 <- predict(qcv,newData)
p2 <- predict(qcv,newData, septau = FALSE)
p3 <- predict(qcv,newData, cvmin=FALSE)
p4 <- predict(qcv,newData, septau=FALSE,cvmin=FALSE)
pred <- cbind(t(p1),t(p2),t(p3),t(p4))
colnames(pred) <- c("sepMin","jointMin","sep1se","joint1se")
pred

#> sepMin jointMin sep1se joint1se
#> tau0.1a0.1 -0.00170812 -0.002409442 -0.006801621 -0.006044798
#> tau0.5a0.1 0.01895257 0.018958411 0.019494565 0.017972817
#> tau0.9a1 0.03892322 0.038575608 0.051660477 0.051154967

The print() of an rq.pen.seq.cv object provides information about the cross-validation
results.

qcv <- rq.pen.cv(x,y,tau=tauVals,a=c(.1,.5,1),penalty="ENet",
tauWeights = tauVals*(1-tauVals))

qcv

#>
#> Cross validation tuning parameter optimized for each quantile
#> tau minCv lambda lambdaIndex lambda1se lambda1seIndex a
#> <num> <num> <num> <int> <num> <int> <num>
#> 1: 0.1 0.003125878 0.002005356 98 0.09308038 43 0.5
#> 2: 0.5 0.006990980 0.008095657 78 0.23056721 30 0.5
#> 3: 0.9 0.002900349 0.013193903 71 0.08680707 44 0.1
#> cvse modelsIndex nonzero nzse
#> <num> <int> <int> <int>
#> 1: 0.0007264311 2 14 5
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#> 2: 0.0014415984 5 11 3
#> 3: 0.0006872771 7 13 11
#>
#> Cross validation tuning parameter optimized across all quantiles
#> tau minCv lambda lambdaIndex lambda1se lambda1seIndex a
#> <num> <num> <num> <int> <num> <int> <num>
#> 1: 0.1 0.002291483 0.01230468 72 0.3268231 25 0.1
#> 2: 0.5 0.002291483 0.01230468 72 0.3268231 25 0.1
#> 3: 0.9 0.002291483 0.01230468 72 0.3268231 25 0.1
#> cvse modelsIndex nonzero nzse
#> <num> <int> <int> <int>
#> 1: 0.0003916137 1 14 6
#> 2: 0.0003916137 4 13 11
#> 3: 0.0003916137 7 13 4

The printed output returns results optimized at each quantile and grouping across all
quantiles.

• ‘tau‘: The quantile being modeled.

• ‘minCv‘: The value of the minimum cross-validation error.

• ‘lambda‘: The value of λ at the minimum cross-validation error.

• ‘lambdaIndex‘: The position in the sequence for the preceding λ value.

• ‘lambda1se‘: The λ value using the one standard error rule.

• ‘a‘: The optimal value of a decided by the minimum cross-validation error, and the
same value is used for the one standard error λ value.

• ‘cvse‘: The standard error of the cross-validation error for the values of (λ, a) that
provide the smallest cross-validation error.

• ‘modelsIndex‘: The position of the corresponding ‘rq.pen.seq‘ object in the ‘fitmodels‘
list.

• ‘nonzero‘: The number of nonzero coefficients at the minimum value.

• ‘nzse‘: The number of nonzero coefficients at the one standard error rule.

Crossing quantiles

Crossing quantiles occurs when multiple quantiles are being modeled and predictions of
a lower quantile are larger than predictions from an upper quantile. Take the following
example using the Barro data set that looks at the fitted values for a model of the .1, .2 and
.5 quantiles, for the 50th value in the λ sequence.

qCross <- rq.pen.cv(x,y,tau=c(.1,.2, .5))
fitCross <- predict(qCross,newx=x)

#> Warning in checkCrossSep(preds, sort, object$fit$penalty): Crossing quantiles
#> at observations 17, 28, 40, 79, 94, 109, 139, 152 when using seperate
#> optimization for each lambda. Setting septau=FALSE may reduce the number of
#> crossings. In addition, using rq.gq.pen() may reduce the number of crossings.

Warnings are provided about potential crossings at observations 17, 28, 40, 79, 94,
109, 139, and 152. Further inspection verifies this is the case as the fitted values at these
observations have the .1 quantile larger than the .2 quantile. Examining these predictions
verifies that is the case.
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fitCross[c(17, 28, 40, 79, 94, 109, 139, 152),]

#> tau0.1a1 tau0.2a1 tau0.5a1
#> Zimbabwe75 2.477067e-02 0.024519238 0.031127465
#> United_States75 1.252791e-02 0.009830172 0.014629574
#> Indonesia75 2.545159e-02 0.024898722 0.037985364
#> Gambia85 -3.663382e-03 -0.004988545 0.009901519
#> Zaire85 -3.490489e-02 -0.034921445 -0.019417390
#> United_States85 -5.850236e-05 -0.005162521 0.005242369
#> Yemen85 1.213681e-02 0.006765797 0.016998950
#> Norway85 3.488170e-02 0.034015862 0.046534611

There is an option to sort the predictions when there are crosses. The default is not to
do this because crossing quantiles can often be evidence of a misspecified model. Even when
using the sort option there is a warning provided that the original predictions had crossing
values.

fitSort <- predict(qCross, newx=x, sort=TRUE)

#> Warning in checkCrossSep(preds, sort, object$fit$penalty): Quantile predictions
#> sorted at observations 17, 28, 40, 79, 94, 109, 139, 152 when using seperate
#> optimization for each lambda. Setting septau=FALSE may reduce the number of
#> crossings. In addition, using rq.gq.pen() may reduce the number of crossings.

fitSort[c(17, 28, 40, 79, 94, 109, 139, 152), ]

#> tau0.1a1 tau0.2a1 tau0.5a1
#> Zimbabwe75 0.024519238 2.477067e-02 0.031127465
#> United_States75 0.009830172 1.252791e-02 0.014629574
#> Indonesia75 0.024898722 2.545159e-02 0.037985364
#> Gambia85 -0.004988545 -3.663382e-03 0.009901519
#> Zaire85 -0.034921445 -3.490489e-02 -0.019417390
#> United_States85 -0.005162521 -5.850236e-05 0.005242369
#> Yemen85 0.006765797 1.213681e-02 0.016998950
#> Norway85 0.034015862 3.488170e-02 0.046534611

Consistent selection across quantiles

Note the output for coefficients(qic_sep) and coefficients(qic_joint) both show the
sparsity structure changes with the quantile being modeled. We find interpreting such results
to be difficult. A penalty that enforces the same sparsity structure across quantiles would
avoid this issue. The following code will minimize (16). Coefficients from the 13th entry in the
λ sequence demonstrate that this approach provides consistency in variable selection across
the quantiles. This property will hold for any value of λ. The function rq.gq.pen.cv()
can be used for cross-validation of this approach. The function rq.gq.pen() returns a
rq.pen.seq object and thus functions such as predict(), plot(), and qic.select() will
work as previously described.

qCons <- rq.gq.pen(x,y,tau=tauVals)
coefficients(qCons,lambdaIndex=13)

#> tau0.1a1 tau0.5a1 tau0.9a1
#> intercept -0.1039717886 0.0565817889 0.212830365
#> lgdp2 -0.0002948174 -0.0003086188 -0.000304075
#> mse2 0.0000000000 0.0000000000 0.000000000
#> fse2 0.0000000000 0.0000000000 0.000000000
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#> fhe2 0.0000000000 0.0000000000 0.000000000
#> mhe2 0.0000000000 0.0000000000 0.000000000
#> lexp2 -0.0094731519 -0.0093673950 -0.008568437
#> lintr2 0.0000000000 0.0000000000 0.000000000
#> gedy2 0.0000000000 0.0000000000 0.000000000
#> Iy2 0.0721650464 0.0699737010 0.070700812
#> gcony2 -0.0426233067 -0.0442306488 -0.038750494
#> lblakp2 -0.0290133965 -0.0290175588 -0.028373662
#> pol2 -0.0096515098 -0.0097285059 -0.010002021
#> ttrad2 0.0000000000 0.0000000000 0.000000000

4.2 Group Penalty Example

The Ames Housing data contains many factor variables and is available in AmesHousing.
For simplicity of presentation, we consider only Overall_Cond, Garage_Type, Full_Bath,
Fireplaces, and Lot_Config as potential predictors. Some of these are categorical predictors,
and thus a group penalty can account for the group structure. For the group variables some
factor levels are merged due to small number of observations in a group. For instance, we
combine the groups FR2 and FR3, frontage on two or three sides, in Lot_Config because
only 14 houses are in group FR3. The function rq.group.pen() creates an rq.pen.seq
object, where the models are fit with a group penalty. In the below example, we fit a model
for log sale price using these predictors but do not penalize the Lot_Config variable. For
the other groups the square root of the group size is used as the group penalty factor. In
addition, quantile-specific penalties of τ (1 − τ ) are used. Two rq.pen.seq objects are fit,
one with q = 1, norm=1, and the other with q = 2, norm=2.

library(AmesHousing)
library(forcats)
ames <- make_ames()
ames$Overall_Cond <- fct_collapse(ames$Overall_Cond,

below=c("Very_Poor","Poor","Fair","Below_Average"),
above=c("Above_Average","Good","Very_Good",

"Excellent", "Very_Excellent"))
ames$Garage_Type <- fct_collapse(ames$Garage_Type,

other=c("Basment","BuiltIn","CarPort","More_Than_Two_Types"))
ames$Lot_Config <- fct_collapse(ames$Lot_Config, frontage=c("FR2","FR3"))

x_g <- cbind(model.matrix(~ Overall_Cond+Garage_Type+Full_Bath
+Fireplaces+Lot_Config,ames))[,-1]

y_g <- log(ames$Sale_Price)
g <- c(rep(1,2),rep(2,3),3,4,rep(5,3))
gpf <- sqrt(xtabs(~g))
gpf[5] <- 0
qAmes1 <- rq.group.pen(x_g,y_g,groups=g, group.pen.factor = gpf, tau=tauVals,

penalty="gSCAD",norm=1,tau.penalty.factor=tauVals*(1-tauVals))
qAmes2 <- rq.group.pen(x_g,y_g,groups=g, group.pen.factor = gpf, tau=tauVals,

penalty="gSCAD",tau.penalty.factor=tauVals*(1-tauVals))

The below plots present how the median coefficient estimates change with λ.

plot(qAmes1,tau=.5)
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plot(qAmes2,tau=.5)
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Two important things to note from the above two plots. First, for both models, the
unpenalized coefficients for Lot_Config are never set to zero. Second, the group coefficients
for qAmes2 go to zero as a group. While the grouped coefficients for qAmes1 tend to go to
zero as a group but do not have to converge to zero at the same time. For instance, for
τ = .5 and using the 40th value of λ the garage and overall condition coefficients from qAmes1
provide a mix of zero and non-zero coefficients. This does not occur for the default setting of
q = 2, norm=2.

coefficients(qAmes1,tau=.5, lambdaIndex=40)
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#> tau0.5a3.7
#> intercept 11.425638982
#> Overall_CondAverage 0.005564408
#> Overall_Condabove 0.000000000
#> Garage_Typeother 0.000000000
#> Garage_TypeDetchd -0.033878344
#> Garage_TypeNo_Garage -0.036836894
#> Full_Bath 0.346115172
#> Fireplaces 0.135504921
#> Lot_ConfigCulDSac 0.081517065
#> Lot_Configfrontage -0.066503584
#> Lot_ConfigInside -0.023914057

The following plot presents how the coefficients for Full_Bath change with τ at the 40th
λ value, where vars=7 because Full_Bath is the seventh coefficient.

bytau.plot(qAmes1,vars=7,lambdaIndex=40)
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The bytau.plot() can also be used with an rq.pen.seq.cv object. The below code
creates an rq.pen.seq.cv object using the group lasso penalty.

qgl <- rq.group.pen.cv(x_g,y_g,g,tau=tauVals)

The below code provides the plot for the coefficient of GarageType_BuiltIn using the
one standard error rule and the λ tuning parameter is selected to be optimal across all
quantiles.

bytau.plot(qgl,vars=7,septau=FALSE,cvmin=FALSE)
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Other functions such as predict(), coef() and qic.select() work the same for a
group penalty method as they do for an individual penalty, presented in the Barro data set
example. The rq.pen(), rq.group.pen(), and rq.gq.pen() functions return rq.pen.seq
objects. While, the rq.pen.cv(), rq.group.pen.cv() and rq.gq.pen.cv() functions re-
turn rq.pen.seq.cv objects.

5 Simulations

Alternative packages for convex penalized quantile regression that were discussed earlier are
quantreg, conquer, hrqglas, and hqreg. The only one of these four that is not used by rqPen
is conquer. In this section two simulations settings are presented to compare the speed and
quality of the solution found by conquer and rqPen for the lasso and group lasso penalties.
The maximum number of iterations for the algorithms are set to 5000 and the tolerance
for convergence was set to .001. Otherwise the default options for both packages are used.
Simulations were run on a Dell Latitude 7410 laptop with an Intel Core i7 vPRO processor.

5.1 Simulations for lasso penalty

Let xi ∼ N(0, Ip) the responses are generated from a model of,

yi = x⊤
i β∗ + ϵi, (24)

where β∗ = (β̃, 0p−10)⊤, ϵi ∼ N(0, 1), and the errors are independent. The entries of β̃ are
generated from a standard normal distribution in each simulation. Data was generated fifty
times for each combination of n ∈ {200, 2000, 20000} and p ∈ {30, 100, 300}. The methods
were fit for 50 λ values equally spaced from .05 to .25. For all methods we model τ = .5.

Three algorithms are considered, rq.pen() with alg="br" and alg="huber", and
conquer.reg(). In each simulation the time it took for the algorithms to run and the value of
the objective functions at the 50 different λ values were recorded. Using rq.pen(alg="br"),
which relies on quantreg, was dramatically slower than the other approaches. Results, that
are consistent with the literature when comparing a penalized approximation approach to
commonly used linear programming algorithms (Yi and Huang, 2017; Tan et al., 2022).
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Figure 1: Log time in seconds of lasso quantile regression using conquer and the Huber approxima-
tion in rqPen.
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Figure 2: Ratio of quantile regression lasso objective function at the rqPen-huber and conquer
solutions, where rqPen-br is the baseline.

Thus we focus on the speed differences between the Huber approximation in rqPen and the
convolution smoothing approach of conquer. Figure 1 presents a comparison of the base
10 log time of the two approaches for different values of n and p, which demonstrates that
the Huber approximation approach in rqPen, which relies on hqreg, is consistently faster.
To compare the accuracy of the algorithms, we evaluate a ratio of the objective function,
using quantile loss, at the solution to the objective function from the BR algorithm. The
BR approach does not replace the quantile loss with an approximation and thus this ratio
is always greater than or equal to one for both alternative approaches. Figure 2 provides
the ratios for different values of n and p. Note, the ratios also would depend on λ, but
that information is not included in the figure for ease of presentation. Both approaches are
providing minimized objective values very similar to the exact approach, with the Huber
approximation approach tending to be a little closer.
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Figure 3: Log time in seconds of group lasso quantile regression using conquer and the Huber
approximation in rqPen.

5.2 Simulations for group lasso penalty

For group lasso let xij = (xij1, xij2)⊤, where P (xij1 = 1) = P (xij2 = 1) = 1/3 and these
are disjoint events. That is it represents a single observation of a multinomial random
variable with 3 categories and equal probability of belonging to any of the three categories.
Let xi = (xi1, . . . , xig)⊤, where the predictors are independent of each other. The data
generating mechanism for y is the same as (24). Again, data was generated fifty times for
each combination of n ∈ {200, 2000, 20000} and g ∈ {15, 50, 150}. The methods were fit for
50 λ equally spaced values from .05 to .001. Again, for all methods we model τ = .5.

The group lasso methods implemented in rqPen, using rq.group.pen(), and conquer,
using conquer.reg(penalty="group",...) are compared in these simulations. Both
approaches replace the quantile loss function with a smooth approximation. When the
quantile loss is used, the optimization problem is a second order cone programming problem
that can be solved using convex optimization software. See Sherwood and Li (2022) for a
comparison of the Huber approximation approach and using Rmosek for quantile regression
with a group lasso penalty. To compare the two methods time and a ratio of the rqPen and
conquer penalized objective functions evaluated at the solutions. Figure 3 and 4 present the
time and objective function results, respectively. While, rqPen tends to find a solution that
provides a smaller value at the objective function, the results from conquer are noticeably
faster. Note, the implementation of group lasso in rqPen relies on hrqglas.

6 Summary

The rqPen package provides a penalized approach to estimating quantile regression models.
The package supports the elastic-net, adaptive lasso, SCAD, and MCP penalty functions.
For group predictors there are group penalty versions of the lasso, adaptive lasso, SCAD, and
MCP penalties. In addition, users can use a group quantile penalty that ensures consistent
variable selection across the quantiles. The package is available on CRAN.

Research in penalized quantile regression, and more generally quantile regression with
large data sets, is an active area of research. The package currently does not include some
recent innovations in the field. Censored quantile regression is a useful tool for survival
analysis and an active area of research. Zheng et al. (2018) present a penalized quantile
regression approach for estimating an interval of quantiles for censored data. While, Sze
Ming Lee and Xu (2023) provides a unifying approach to estimation and inference for
censored quantile regression that possibly could be extended to penalized settings. Another
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Figure 4: Ratio of quantile regression group lasso objective function at the rqPen and conquer
group lasso solutions.

interesting work that provides a framework that could possibly be extended to penalized
quantile regression is Volgushev et al. (2019), which proposes a method for estimating quantile
regression that splits up initial analysis across multiple computers and then combines the
estimates. A challenge here would be dealing with the different sparsity patterns that could
arise on the different machines. Inference for penalized methods has also been an active area
of research. Recently, Alexandre Belloni and Kato (2019) propose an approach where they
do not approximate the quantile loss function and Yan et al. (2023) provide an approach for
when the loss function is approximated with a smoothing function. Quantiles are more easily
understood when the response is continuous. For users interested in estimating conditional
quantiles for count data, one easy solution is to jitter the response (Machado and Silva, 2005).
All of these works suggest that there is a variety of existing work that could be developed
into useful software and plenty of work to be done in the future.
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bartcs: An R Package for Bayesian
Nonparametric Adjustment for
Confounding
by Yeonghoon Yoo and Chanmin Kim

Abstract This article presents an overview of the bartcs R package, which employs a Bayesian
additive regression trees-based method for selecting confounders. It uses a Dirichlet distribution
as a common variable selection probability prior, updating both the exposure and outcome models
simultaneously while fitting tree priors for each. This data-driven method determines which variables
(i.e., confounders) affect both models by assigning more posterior weight to them. It supports
continuous and binary exposure variables, as well as continuous outcome variables, and is written in
C++ for improved computational speed. Additionally, it can take advantage of multiple threads for
parallel computing if OpenMP is available on the platform.

1 Introduction

In observational studies, drawing causality often relies on the ignorability assumption (Rosenbaum and
Rubin, 1983) that all confounders are included in the adjustment procedure. Alternative approaches,
such as difference-in-differences (Abadie, 2005), still seek to address confounding without relying
on ignorability by adopting a different set of assumptions (e.g., the parallel trends assumption). A
confounder or confounding variable is a common cause that simultaneously affects both exposure and
outcome (Figure 1 (a)). Two groups with different exposure levels, distinguished by the distribution of
the confounding variable, also experience its impact on their respective outcome values. Therefore, to
estimate the causal relationship between exposure and outcome, it is crucial to select this common
cause in the data and adjust for it. In many recent applications, the number of potential confounders is
often enormous, making it difficult to select the optimal set of true confounders among them. In this
context, the optimal set is a confounder set with an appropriate level of uncertainty that reduces bias
in estimating the final causal effect.

The main distinction between confounder selection and the traditional variable selection method
is that variables that meet the ignorability assumption should be chosen. Several criteria need to be
met by the selected confounders in order to reduce the bias of estimated causal effects. Among them,
“disjunctive cause criterion”(VanderWeele, 2019) requires that the chosen variables be related to expo-
sure and/or outcome. In Figure 1 (a), a confounder set X that satisfies the disjunctive cause criterion
consists of variables that either affect exposure A, affect outcome Y, or simultaneously affect both A
and Y. A better condition than this is “disjunctive cause criterion without instruments”(VanderWeele,
2019), which removes the variables related to exposure but not directly associated with outcome.
An instrument, or instrumental variable, is a variable that influences exposure A but does not affect
outcome Y. It is known to amplify bias in causal effect estimation when there is an unmeasured
confounder (Myers et al., 2011). In Figure 1 (b), if a certain confounder from X is unmeasured and not
adjusted for (i.e., in the presence of an unmeasured confounder), conducting adjustment for instrument
Z leads to additional bias, known as “Z-bias" (Ding et al., 2017). Therefore, the best practice is to
remove this instrument during the covariate adjustment process. However, manually identifying a set
of confounders that meet these criteria among a large number of potential confounders is challenging.

Methods based on data and statistical models for performing such confounder selection have
recently been proposed. One such method is the Bayesian adjustment for confounding (BAC) method
proposed by Wang et al. (2012); Lefebvre et al. (2014), which connects exposure and outcome models
through common variable inclusion indicator variables to identify confounders. Wang et al. (2015)
later modified the BAC method to work with generalized linear outcome models. Wilson and Reich
(2014) suggested a method based on decision theory with a similar goal, which performs well for a
variety of sample sizes. In terms of selecting relevant covariates for use in propensity score, Shortreed
and Ertefaie (2017) proposed the outcome-adaptive LASSO method. In addition, Häggström (2018)
proposed a method for identifying the causal structure and estimating the causal effect using a
probability graphical model.

Despite the advantages of the previously mentioned methods, they each have limitations. To
address these shortcomings, Kim et al. (2023) proposed a novel Bayesian non-parametric model that
aims to overcome these limitations. They suggested a new method that employs Bayesian additive
regression trees (BART; Chipman et al. (2010)) with a shared prior for the selection probabilities, which
links the exposure and outcome models. This approach allows for the flexibility and precision of
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a Bayesian nonparametric model, while also identifying and integrating covariates that are related
to both the exposure and outcome into the final estimator. Caron et al. (2022) similarly applied a
sparsity-inducing Dirichlet prior to the selection probabilities in the outcome model of Bayesian Causal
Forest, a variant of BART proposed by Hahn et al. (2020). However, while their approach focuses
on inducing sparsity among variables used within the trees, our method introduces a common prior
shared by both the outcome and exposure models to facilitate confounder identification. This paper
introduces bartcs, a new R package developed by Yoo (2024) that implements the Bayesian additive
regression trees method for confounder selection proposed by Kim et al. (2023). The package, which is
written in C++ and integrated into R via Rcpp for fast computation and easy use, can be downloaded
from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/package=bartcs.
Certain sections of the code referred to the BART package by Sparapani et al. (2021) under the GPL
license, with modifications. In particular, the development of efficient code involved referencing
the existing BART package algorithm in following aspects: 1) code related to obtaining residuals in
the Bayesian backfitting process; 2) code dedicated to efficiently searching for variables eligible for
splitting when proposing a splitting variable during the tree alteration process; 3) code for calculating
the µ parameter value of leaf nodes; 4) code for obtaining sufficient statistics for all bottom nodes.

Figure 1: Directed Acyclic Graphs (DAGs): (a) the relationship between exposure A and outcome Y is
confounded by covariates X; (b) Adjusting for instrument Z, which affects exposure A but is unrelated
to outcome Y, may introduce additional bias if there is an unmeasured covariate in X.

In this paper, we provide an overview of the package, including installation instructions, usage
examples, and a demonstration of its performance on simulated data. We also include a comparison
with other existing confounder selection methods. Our aim is to provide researchers with a useful
tool for identifying relevant confounders in their causal inference studies and to enable them to make
more accurate causal inferences.

2 Overview of model

We first express causal estimation within a potential outcome framework (Rubin, 1974). For each unit
i = 1, · · · , N, the potential outcome for the i-th unit is defined as Yi(a), representing the potential
value of the outcome Yi that could be observed under the binary exposure Ai = a ∈ {0, 1}. Under the
Stable Unit Treatment Value Assumption (SUTVA) (Rubin, 1980), the potential outcomes correspond
to the observed outcome as follows: Yi = Yi(Ai) for Ai ∈ {0, 1}. The target causal estimand is

∆(1, 0) = E[Yi(1)− Yi(0)],

which represents the average difference between two potential outcomes under two exposure levels 0
and 1. In the later section, we will also explain the utilization of the proposed model by extending it
for cases involving continuous exposure.

However, unlike randomized trials, the exposure assignment is not randomized in observational
studies, making it impossible to directly identify either E[Yi(1)] or E[Yi(0)] from observed data. With
no unmeasured confounders X i, the following strong ignorable treatment assignment assumption
(Rosenbaum and Rubin, 1983) holds

{Yi(1), Yi(0)} ⊥ Ai|X i,

and 0 < Pr(Ai = 1|X i = x) < 1 for all x; i = 1, · · · , N. The first part is also known as the unconfound-
edness assumption, and the second part is referred to as the positivity or overlap assumption, which
states that each unit has a non-zero probability of being assigned to each treatment condition. This
strong ignorable treatment assignment assumption is sufficient to identify the target causal estimand
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Package Lang. Description
bacr (Wang et al., 2015) R Assume (generalized-) linear models (i.e., parametric

models) for exposure and outcome. Supports bino-
mial, Poisson, Gaussian exposure and outcome.

BayesPen (Wilson et al., 2015) R Assume linear models (i.e., parametric models) for
exposure and outcome. Support continuous out-
come.

CovSelHigh (Häggström, 2017) R Confounder selection performed via either
Markov/Bayesian networks (model-free selection
of confounders).

BART (Sparapani et al., 2021) C++ Incorporate the Dirichlet sparse prior of Linero
(2018) for variable selection in the BART outcome
model. Support various outcome types (categorical,
continuous, binary, survival outcome). This does not
primarily focus on confounder selection, but rather vari-
able selection, and this variable selection functionality
is enabled by setting sparse=TRUE in wbart (con-
tinuous outcome) pbart/lbart (binary outcome)
mbart/mbart2 (categorical outcome) surv.bart (sur-
vival outcome) functions.

bcf † (Hahn et al., 2020) C++ Specify different BART models for confounding ad-
justment and heterogeneous effect estimation, and
regularizing the treatment effect directly. This model
lacks the ability for both variable selection and confounder
selection. Support continuous outcome.

bartCause† (Hill, 2011) C++ Fit exposure and outcome models using the BART
algorithm, producing estimates of treatment effects.
This model lacks the ability for both variable selection and
confounder selection. Support continuous and binary
outcome.

bartcs (Yoo, 2024) C++ Use BART outcome and exposure models with the
common Dirichlet prior for confounder selection.
Support binary and continuous exposure, and con-
tinuous outcome.

Table 1: Summary of different confounder selection methods.

∆(1, 0) (Rosenbaum and Rubin, 1983; Ding and Li, 2018; Li et al., 2023). In practice, even if the true
treatment assignment mechanism satisfies the above conditions, finite observed data may have only
one treatment condition value for certain combinations of X. In this case, a non-overlap region occurs
for that X combination, and target causal estimates in such cases inevitably rely on extrapolation
dependent on the model. When non-overlap is severe, it can amplify bias in the target causal estimate.
Therefore, recent research interest lies in whether estimates in such regions are provided with an
appropriate level of uncertainty (Papadogeorgou and Li, 2020; Oganisian and Roy, 2020; Li et al., 2023).
Any method based on outcome regression cannot provide accurate estimation in the non-overlapping
region. Further discussion on this topic is available in Li et al. (2023).

Another notable aspect of this assumption is that it is untestable. Therefore, it is not possible to
conduct tests based on the data to determine which confounder X satisfies the above assumption.
However, confounders X that meet the criteria presented in the introduction (disjunctive cause
criterion or disjunctive cause criterion without an instrument; (VanderWeele, 2019)) can be considered
a minimum basis for a “proper” confounder set. With this strong ignorable treatment assignment
assumption in place, we can identify the causal effect by the following equation of the observable
quantities:

∆(1, 0; x) = E[Yi|Ai = 1, X i = x]− E[Yi|Ai = 0, X i = x],

and finally identify and estimate the target estimand ∆(1, 0) by averaging over confounders X. Thus,
the two key tasks in estimating causal effects are identifying the confounders among a potentially
large set of covariates, and determining the outcome model (i.e., E[Yi|Ai = a, X i = x], a ∈ {0, 1})
with flexibility and precision. The bartcs R package was developed to address these challenges by
utilizing Bayesian additive regression trees (BART) models for confounder selection and causal effect

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=bacr
https://cran.r-project.org/package=BayesPen
https://cran.r-project.org/package=CovSelHigh
https://cran.r-project.org/package=BART
https://cran.r-project.org/package=bcf
https://cran.r-project.org/package=bartCause
https://CRAN.R-project.org/package=bartcs
https://CRAN.R-project.org/package=bartcs


CONTRIBUTED RESEARCH ARTICLE 179

estimation.

2.1 Overview of BART

The BART model (Chipman et al., 2010) is an ensemble of decision trees that can be represented by the
following equations:

yi = µ0 + f (X i) + ϵi

f (X i) =
T

∑
t=1

g(X i; Tt,Mt),

where ϵi follows a normal distribution with mean 0 and variance σ2, and g(X i; Tt,Mt) is a function
that maps the tree structure and parameters to the response, for all i = 1, · · · , N. We specify a BART
prior on f , comprised primarily of two components: a prior concerning the complexity of each tree, Tt,
and a prior concerning its terminal nodes, Mt. For each of T distinct trees, Tt represents the structure
of the t-th tree and Mt = {µt,1, µt,2, · · · , µt,nt} represents its mean parameters at the terminal nodes.
Each tree has internal nodes that are split based on a “splitting variable” Xj and “splitting value” c
(Figure 2). In many papers that use continuous outcome data, the outcome variable y is centered. In
this case, µ0 is set to 0. As mentioned in Sparapani et al. (2016), when the sample size is moderate or
larger, centering is not necessarily required due to the flexibility of f . Proceeding with the assumption
that the outcome data has also been centered, µ0 = 0 for the explanation here.

In the Markov Chain Monte Carlo (MCMC) update, Bayesian backfitting(Hastie and Tibshirani,
2000) is utilized within a Metropolis-within-Gibbs sampler. This involves fitting each tree in the
ensemble sequentially, using the residual responses: R−t := y − ∑j ̸=t g(X; Tj,Mj) where R−t denotes
unexplained outcome residuals for the t-th tree. In each iteration of the MCMC update, a new tree
structure is proposed by randomly selecting one of three possible tree alterations:

GROW: Choose a terminal node at random, and create two new terminal nodes. This process
involves randomly selecting a predictor, Xj, and its associated “splitting value,” c, to create the
two new terminal nodes.

PRUNE: Pick an internal node at random where both children are terminal nodes (known as a
“singly internal node” (Kapelner and Bleich, 2016)) and remove both of its children (thus making
it a terminal node).

CHANGE: Select an internal node at random and modify its splitting variable and value
according to the priors.

When BART was first introduced by Chipman et al. (2010), four tree alteration steps (GROW, PRUNE,
CHANGE, and SWAP) were considered. However, following work by Kapelner and Bleich (2016),
who proposed the bartMachine package for BART implementation, demonstrated that omitting the
SWAP step does not significantly affect the performance in terms of tree updates or parameter mixing.
Notably, since GROW and PRUNE are paired as opposite moves, and CHANGE moves are reversible
through opposite-direction CHANGE moves, the detailed balance condition continues to hold without
the SWAP step. Specifically, when using the grow and change alterations, a new covariate is randomly
selected from a set of P available covariates as the splitting variable, according to the assumed prior.
The original BART model used a uniform prior of {1/P, 1/P, · · · , 1/P} on the selection probabilities
s = (s1, s2, · · · , sP). However, to promote sparsity, Linero (2018) proposed using a Dirichlet prior
(s1, s2, · · · , sP) ∼ D(α/P, · · · , α/P). This prior specification, as outlined in Table 1, enables the
variable selection functionality of the BART package. Through this, it can be utilized as a Bayesian
variable selection method to choose important predictors in regression problems. Kim et al. (2023)
have adapted this method for causal inference, proposing a way to select confounders. By specifying a
common Dirichlet prior on the selection probabilities of the outcome and exposure models, it allows
for the selection of important variables (i.e., confounders) in both models. Additionally, it is worth
noting that a tree rotation proposal (Pratola, 2016) has been suggested to enable more radical mixing
than the classical ’change’ alteration step. This aspect is planned to be incorporated into the future
updates of the bartcs package. In the following section, we will explain the specific setting of this
method and the steps involved in computing the posterior distributions.

2.2 BART confounder selection

The bartcs package in R is designed for selecting confounding variables, particularly when a large
number of potential confounding variables are present, and for estimating the average treatment
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Figure 2: The tree structures consist of T trees, each with nodes represented by circles. Terminal nodes,
shown in blue, have µ values. The outcome estimate Ŷ of each observation is calculated by adding up
the µ values of the terminal nodes where the observation falls within each tree. The method used to
split each internal node into two different children nodes is the “splitting rule,” which consists of a
“splitting variable” (i.e., Xj) and a “splitting value” (i.e., c).

effect (ATE) given the chosen set of confounding variables. To accomplish this, the package uses the
Bayesian additive regression trees (BART) model to specify the exposure and outcome models as
follows:

P(Ai = 1) = Φ (µ1 + f1(X i)) (1)

f1(X i) =
T

∑
t=1

g1(X i; Tt,Mt)

Separate Outcome Models : Yi|Ai = a = µa
2 + f a

2 (X i) + ϵa
i , ϵa

i ∼ N(0, σ2
a ) (2)

f a
2 (X i) =

T

∑
t=1

ga
2(X i; T a

t ,Ma
t )

Single Outcome Model : Yi = µ3 + f3(Ai, X i) + ϵi, ϵi ∼ N(0, σ2), (3)

f3(Ai, X i) =
T

∑
t=1

g3(Ai, X i; T ′
t ,M′

t)

f1 ∼ BART, f a
2 ∼ BART, f3 ∼ BART

for i = 1, · · · , N in Equations 1 and 3, and for i ∈ Ia where Ia denotes a set of units under each
exposure arm a ∈ {0, 1} in Equation 2. In Equation 1, Φ(·) is the standard normal cumulative
distribution function. Note that it is required to replace Equation 1 with Ai = µ1 + f1(X i) + ϵi where
ϵi ∼ N(0, τ2) when considering a continuous exposure (in Section 5). As mentioned earlier, here we
will proceed with the assumption that the outcome data has been centered, setting µ1, µa

2, and µ3 to
0 for the purpose of elaborating on the methodology. We incorporate a common sparsity-inducing
Dirichlet prior s12 = (s1, s2, · · · , sP) ∼ D(α/P, · · · , α/P) in the exposure model (Equation 1) and the
outcome model (Equation 2) resulting in a conjugate update (Figure 3). Alternatively, a common
Dirichlet prior is introduced on s13 = (s0, s1, s2, · · · , sP) in the single outcome model (Equation 3),
where s0 represents the probability of exposure A, and the transformed form of s13 is incorporated as
the selection probability in the exposure model. We will delve into this aspect in detail later.

If a particular covariate, Xj, is frequently used as a splitting variable in either the model for A or the
model for Y, the model will assign more weight to the selection probability sj through larger numbers
of splits on Xj. This means that the selection probabilities will tend to favor covariates that have a
relationship with A, Y, or both A and Y. The final confounders chosen for effect estimation in the
model for Y will be those that were proposed for splitting through this prior and were accepted during
the updating step of the model for Y, which will further prioritize variables that have a relationship
with Y. This characteristic satisfies the “disjunctive cause criterion without instruments” in confounder
selection.

Remark

The proposed method assumes that the available set of high-dimensional covariates in the dataset
includes all true confounders. Therefore, it is not necessary (and indeed may be detrimental) to
pre-select covariates, as doing so could inadvertently exclude true confounders. By providing all
available P covariates (potential confounders) as input, the proposed method will select confounders
in a data-driven manner.
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Figure 3: A shared sparsity-inducing prior for the selection probability vector connects the exposure
model and outcome model, enabling the selection of the splitting variables in both models. The
selection probability vector is updated based on the number of splitting variables used to describe
each tree.

However, if there are unmeasured confounders (i.e., if not all true confounders are included in the
set of potential confounders), our method cannot entirely avoid biases (e.g., Z-bias, M-bias, etc.). If you
suspect that important confounders are unmeasured (thus missing from the potential confounders set),
we recommend excluding, in advance, variables that are suspected of being instrumental variables
(which affect only the exposure but not the outcome), as well as potential colliders (variables that
are believed to have no direct effects on both exposure and outcome), before applying the proposed
method.

Separate outcome models

For a binary exposure, we separate the outcome model into two distinct sub-models, in order to align
the dimensions of the covariates in both the exposure and outcome models (note that the outcome
model includes exposure A as an additional covariate if a single outcome model is specified). For
Equations 1 and 2, a sparsity-inducing prior is applied to s12 = (s1, s2, · · · , sP), which is shared among
three models: one for exposure and two for outcomes.

We use “Bayesian backfitting”(Hastie and Tibshirani, 2000) to obtain posterior samples for the
exposure and outcome models. For the exposure model, this involves a Metropolis-within-Gibbs
sampler, where we fit each tree Tt iteratively using residual responses :

Ri,−t = Zi − ∑
j ̸=t

g1(X i; Tj,Mj)

for i = 1, · · · , N where Zi is a latent variable for the binary exposure constructed based on Albert and
Chib (1993) as follows

Zi ∼
{

N ( f1(X i), 1) I(Zi>0) for Ai = 1;
N ( f1(X i), 1) I(Zi≤0) for Ai = 0.

Note that the variance parameter (σ2) is assigned a value of 1 as a result of the construction of the latent
variable. For each tree Tt for the exposure model, we propose a new tree structure Tt from the full
conditional [Tt|R1,−t, · · · , Rn,−t] (i.e., grow, prune or change alterations), and update the parameters
within the tree through the full conditional [Mt|Tt, R1,−t, · · · , Rn,−t].

To draw samples for Mt, we assume a prior µ ∼ N(µµ/T, σ2
µ) on each of the leaf parameters

Mt = {µ1, µ2, · · · , µtb}, where tb is the number of terminal nodes in tree Tt. The range center of latent
variable Zi’s is set as the mean, µµ, and σ2

µ is empirically determined to satisfy Tµµ − 2
√

Tσµ = Zmin

and Tµµ + 2
√

Tσµ = Zmax where Zmin and Zmax represent the minimum and maximum values of
Zi’s (Kapelner and Bleich, 2016).

We generate a sample µη from the posterior distribution for the η-th terminal node in tree Tt by
using the following equation:

µη ∼ N

 1
1/σ2

µ + nη/σ2

(
µµ/T

σ2
µ

+
∑i∈Oη

Ri,−t

σ2

)
,

(
1

σ2
µ
+

nη

σ2

)−1
 ,

where Oη and nη correspond to the observation indices and the number of observations, respectively,
for the η-th terminal node. In our implementation, we set the µµ value to 0, and consequently, the
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bartcs package is constructed to shift the Y and Z variables to have a mean value of 0.

For separate outcome models, we also perform a backfitting step to draw samples from P(T a
1 , · · · , T a

T ,
Ma

1, · · · ,Ma
T , σ2

a |D) for each A = a ∈ {0, 1} by computing the residual responses iteratively as fol-
lows:

Ha
i,−t = yi − ∑

j ̸=t
ga

2(X i; T a
j ,Ma

j ) for i ∈ Ia,

where Ia represents the set of observations corresponding to A = a ∈ {0, 1}. Afterwards, a process
is undertaken to update each tree based on [T a

t |Ha
·,−t, σ2

a ] and the parameters of its corresponding
terminal nodes from [Ma

t |T a
t , H·,−t, σ2

a ] for each exposure level a ∈ {0, 1}. This process is analogous
to the one described earlier for the exposure model.

For each MCMC iteration, once all the tree structures and corresponding parameters have been
updated, we proceed to update the variance parameter (σ2

a in each outcome model (2)) using the Gibbs
sampler. This is achieved by sampling from the inverse gamma distribution given by:

σ2
a ∼ Inv.Gamma

(
aσ +

|Ia|
2

, bσ +
1
2

{
∑

i∈Ia

(
yi −

T

∑
t=1

ga
2(X i; T a

t ,Ma
t )

)})
,

where aσ = bσ = 3.

Next, we update the parameter α in the prior distribution of selection probabilities s12 ∼ D(α/P, · · · , α/P)
based on a prior of the form α/(α + P) ∼ Beta(a0, b0), where a0 = 0.5 and b0 = 1 (Linero, 2018). The
Metropolis-Hastings algorithm is then used to update the parameter. To delve deeper into the α prior
in high-dimensional data, refer to Sparapani et al. (2021). Finally, we update s12 using a conjugate sam-
pling update as follows: s12 ∼ D(α/P + n1,1 + n1,21 + n1,20, · · · , α/P + nP,1 + nP,21 + nP,20), where
nj,21 and nj,20 represent the numbers of splits on the confounder Xj in two separate outcome models,
and nj,1 represents the number of splits on Xj in the exposure model.

The posterior computation process for the approach employing the separate outcome models
strategy is outlined in Algorithm 1 through pseudocode.

Single outcome model

Using two separate outcome models for two exposure levels, as outlined in Hill (2011) and Hahn
et al. (2020), can result in biased estimates if there is a lack of common support in confounders.
While a single outcome model can be a viable alternative, it can be challenging to apply a shared
sparsity-inducing prior to s12 = (s1, s2, · · · , sP) due to differences in covariate dimensions between
the exposure and outcome models. Let s13 = (s0, s1, s2, · · · , sP) represent the selection probabilities,
with s0 denoting the probability of exposure A used in the outcome model. To apply this vector to
the exposure model, s13 is transformed to s′13 = (s1/(1 − s0), s2/(1 − s0), · · · , sP/(1 − s0)). Then,
updating s13 is based on the following equation (likelihood × prior):

Q = (1 − s0)
−n·,1 sn0,3+α/P−1

0 sn1,3+n1,1+α/P−1
1 · · · snP,3+nP,1+α/P−1

P ,

using the Metropolis-Hastings algorithm, where nj,3 represents the number of splits on the confounder
Xj in the single outcome model and n·,1 = ∑P

j=1 nj,1. The proposal distribution for s13 is designed to
follow the full conditional in the separate outcome models, D(n0,3 + c + α/P, n1,1 + n1,3 + α/P, n2,1 +
n2,3 + α/P, · · · , nP,1 + nP,3 + α/P), and a positive value c is added to prevent proposals for infrequent
exposure. In the bartcs package, the value of c is set to the number of splits on A in the outcome model
(n0,3). This is to ensure sufficient proposal probability for exposure. Whether the proposed variables
are actually accepted is determined through the M-H step, so based on our experience, this setting
does not significantly affect the performance of confounder selection.

All posterior computation steps are identical to the separate outcome models method, except for
the difference that there is only one outcome model. Therefore, updates for the trees and parameters
of the outcome model are based on one [T ′

t |H ·,−t, σ2] and one [M′
t|T ′

t , H ·,−t, σ2] for each tree t.
Subsequently, sampling for σ2 is carried out based on the following inverse gamma distribution:

σ2 ∼ Inv.Gamma

(
aσ +

N
2

, bσ +
1
2

{
N

∑
i=1

(
Yi −

T

∑
t=1

g3(X i; T ′
t ,M′

t)

)})
,

where aσ = bσ = 3. The posterior computation process for the approach employing the single outcome
model strategy is outlined in Algorithm 2 through pseudocode.

Given the M set of posterior samples for BART parameters, the causal effect estimand ∆(1, 0) can
be estimated using either the separate models or the single model. For the separate outcome models,
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Algorithm 1 Posterior Computation (Separate Outcome Models)

Require: Samples from the previous iteration (Tt, T 1
t , T 0

t ,Mt,M1
t ,M0

t ) for t = 1, . . . , T
and (σ2

1 , σ2
0 , s12), and data (yi, Ai, X i) for i = 1, · · · , N

1: for r = 1, . . . , M iteration do
2: for i = 1, . . . , N do

3: Zi ∼

 N
(

∑T
t=1 g1(X i; Tt,Mt), 1

)
I(Zi>0) for Ai = 1;

N
(

∑T
t=1 g1(X i; Tt,Mt), 1

)
I(Zi≤0) for Ai = 0

▷ latent exposure

variable
4: end for
5: for j = 1, . . . , T do
6: for i = 1, . . . , N do
7: R(r)

i,−j = Zi − ∑t ̸=j g1(X i; Tt,Mt) ▷ residual of the exposure model

8: H1,(r)
i,−j = yi − ∑t ̸=j g1

2(X i; T 1
t ,M1

t ) ▷ residual of the outcome model for i ∈ I1

9: H0,(r)
i,−j = yi − ∑t ̸=j g0

2(X i; T 0
t ,M0

t ) ▷ residual of the outcome model for i ∈ I0

10: end for
11: T (r)

j ∼ [Tj|R
(r)
1,−j, · · · , R(r)

N,−j, 1] ▷ based on one of the three acceptance ratios

12: T 1,(r)
j ∼ [T 1

j |H
1,(r)
·,−j , σ2

1 ] ▷ based on one of the three acceptance ratios

13: T 0,(r)
j ∼ [T 0

j |H
0,(r)
·,−j , σ2

0 ] ▷ based on one of the three acceptance ratios

14: M(r)
j ∼ [Mj|T

(r)
j , R(r)

1,−j, · · · , R(r)
N,−j, 1]

15: M1,(r)
j ∼ [M1

j |T
1,(r)

j , H1,(r)
·,−j , σ2

1 ]

16: M0,(r)
j ∼ [M0

j |T
0,(r)

j , H0,(r)
·,−j , σ2

0 ]

where, for each a ∈ {0, 1}, Ha,(r)
·,−j denotes {Ha,(r)

i,−j |i ∈ Ia}
17: end for
18:

σ2
1 ∼ Inv.Gamma

(
aσ +

|I1|
2

, bσ +
1
2

{
∑

i∈I1

(
yi −

T

∑
t=1

g1
2(X i; T 1

t ,M1
t )

)})

σ2
0 ∼ Inv.Gamma

(
aσ +

|I0|
2

, bσ +
1
2

{
∑

i∈I0

(
yi −

T

∑
t=1

g0
2(X i; T 0

t ,M0
t )

)})

19: Update s(r)12 via the Gibbs algorithm:

s(r)12 ∼ D
(
n1,1 + n1,21 + n1,20 + α/P, · · · , nP,1 + nP,21 + np,20 + α/P

)
20: end for
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Algorithm 2 Posterior Computation (Single Outcome Model)

Require: Samples from the previous iteration (Tt, T ′
t ,Mt,M′

t) for t = 1, . . . , T and (σ2, s13),
and data (yi, Ai, X i) for i = 1, · · · , N

1: for r = 1, . . . , M iteration do
2: for i = 1, . . . , N do

3: Zi ∼

 N
(

∑T
t=1 g1(X i; Tt,Mt), 1

)
I(Zi>0) for Ai = 1;

N
(

∑T
t=1 g1(X i; Tt,Mt), 1

)
I(Zi≤0) for Ai = 0

▷ latent exposure

variable
4: end for
5: for j = 1, . . . , T do
6: for i = 1, . . . , N do
7: R(r)

i,−j = Zi − ∑t ̸=j g1(X i; Tt,Mt) ▷ residual of the exposure model

8: H(r)
i,−j = yi − ∑t ̸=j g3(X i; T ′

t ,M′
t) ▷ residual of the outcome model

9: end for
10: T (r)

j ∼ [Tj|R
(r)
1,−j, · · · , R(r)

N,−j, 1] ▷ based on one of the three acceptance ratios

11: T ′,(r)
j ∼ [T ′

j |H
(r)
1,−j, · · · , H(r)

N,−j, σ2] ▷ based on one of the three acceptance ratios

12: M(r)
j ∼ [Mj|T

(r)
j , R(r)

1,−j, · · · , R(r)
N,−j, 1]

13: M′,(r)
j ∼ [M′

j|T
′,(r)

j , H(r)
1,−j, · · · , H(r)

N,−j, σ2]

14: end for
15:

(σ2)(r) ∼ Inv.Gamma

(
aσ +

N
2

, bσ +
1
2

{
N

∑
i=1

(
yi −

T

∑
t=1

g3(X i; T
′,(r)

t ,M′,(r)
t )

)})

16: Update s(r)13 based on the M-H algorithm:
17:

Proposal: s(r)13 ∼ D (n0,3 + c + α/P, n1,1 + n1,3 + α/P, · · · , nP,1 + nP,3 + α/P)

18:

Acceptance Ratio: PAR(s13 → s(r)13 ) = min

1,

 1 − ∑P
j=1 sj

1 − ∑P
j=1 s(r)j

∑J
j=1 nj,3


19: end for
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the estimate is obtained by

∆̂(1, 0) =
1
N

N

∑
i=1

[
1
M

M

∑
m=1

{
f 1,(m)
2 (X i)− f 0,(m)

2 (X i)
}]

,

where f a,(m)
2 is the m-th posterior samples for A = a ∈ {0, 1}. For the single outcome model, the

estimate is obtained by

∆̂(1, 0) =
1
N

N

∑
i=1

[
1
M

M

∑
m=1

{
f (m)
3 (1, X i)− f (m)

3 (0, X i)
}]

,

where f (m)
3 is the m-th posterior samples.

3 Simulated example

The bartcs R package makes it easy to implement the confounder selection process described in
the previous section. It includes two main functions, separate_bart() for the separate outcome
models and single_bart() for the single outcome model. The package not only offers a summary of
the estimated causal effects but also includes visualizations of posterior inclusion probabilities and
convergence.

The bartcs package offers multi-threading support through Open Multi-Processing (OpenMP),
an API for shared memory parallel programming that manages thread creation, management, and
synchronization for efficient data and computation division among different threads. This allows
bartcs to specify intensive computations as parallel regions, leading to improved computational
efficiency through parallel computing.

The bartcs package is available under the general public license (GPL ≥ 3) from the Comprehensive
R Archive Network (CRAN) at https://cran.r-project.org/package=bartcs and can be installed and
loaded into the current R session as follows:

install.packages("bartcs", dependencies=TRUE)
library("bartcs")

We will showcase the practical usage of the features in the bartcs package using simulated examples
and the Infant Health and Development Program (IHDP) data.

As a simple example of the bartcs package, we use a simulated dataset from Scenario 1 in Kim
et al. (2023) to illustrate its features. The data-generating model incorporates both the non-linear
propensity score and outcome models, and serves to evaluate the ability to detect 5 true confounding
variables out of a huge set of possible covariates, along with the precision of the model’s estimation.
The dataset consists of 300 observations with 100 potential confounders (X1 − X100), each generated
from a normal distribution with mean 0 and variance 1. Of the 100 possible confounders, X1 − X5
are true confounders. The outcome model includes the five true confounders and two additional
predictors, X6 and X7 as follows:

P(Ai = 1) = Φ(0.5 + h1(Xi,1) + h2(Xi,2)− 0.5|Xi,3 − 1|+ 1.5Xi,4Xi,5)

Yi = f (X i) + ϵi, ϵi ∼ N(0, 0.32)

f (X i) = h1(Xi,1) + 1.5h2(Xi,2)− Ai + 2|Xi,3 + 1|+ 2Xi,4 + exp(0.5Xi,5)

−0.5Ai|Xi,6| − Ai|Xi,7 + 1|

where h1(x) = (−1)I(x<0) and h2(x) = (−1)I(x≥0) for i = 1, · · · , 300. The data was generated with
the following code:

set.seed(42)
N <- 300
P <- 100
cov <- list()
for (i in 1:P) {

cov[[i]] <- rnorm(N, 0, 1)
}

X <- do.call(cbind, cov)
h1 <- ifelse(X[, 1] < 0, 1, -1)
h2 <- ifelse(X[, 2] < 0, -1, 1)
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prob <- pnorm(0.5 + h1 + h2 - 0.5 * abs(X[, 3] - 1) + 1.5 * X[, 4] * X[, 5])
Trt <- rbinom(N, 1, prob)
mu1 <- 1 * h1 + 1.5 * h2 - 1 + 2 * abs(X[, 3] + 1) + 2 * X[, 4] + exp(0.5 * X[, 5]) -

0.5 * 1 * abs(X[, 6]) - 1 * 1 * abs(X[, 7] + 1)
mu0 <- 1 * h1 + 1.5 * h2 - 0 + 2 * abs(X[, 3] + 1) + 2 * X[, 4] + exp(0.5 * X[, 5]) -

0.5 * 0 * abs(X[, 6]) - 1 * 0 * abs(X[, 7] + 1)
Y1 <- rnorm(N, mu1, 0.3)
Y0 <- rnorm(N, mu0, 0.3)
Y <- Trt * Y1 + (1 - Trt) * Y0

For users’ convenience, the same data can be generated using the built-in function synthetic_data( )
from the bartcs package with the following arguments settings: N = 300 (sample size), P = 100 (number
of potential confounders), and seed = 42 (seed number).

Examining the standardized mean differences (SMD) of the (potential) confounders generated
through the data generating process above, the following observations can be made. The standardized
mean differences (SMD) values presented below were computed using the tableone R package (Yoshida
and Bartel, 2022), which can be installed from CRAN.

library("tableone")
Xdata <- as.data.frame(cbind(Trt,X))
names(Xdata) <- c("Trt", paste0(rep("X", 100),1:100))
Table <- CreateTableOne(vars = paste0(rep("X", 12),1:12), strata = "Trt",

data = Xdata, test = FALSE)
print(Table, smd = TRUE)

Stratified by Trt
0 1 SMD

n 164 136
X1 (mean (SD)) 0.28 (0.96) -0.39 (0.90) 0.718
X2 (mean (SD)) -0.25 (0.99) 0.24 (0.92) 0.517
X3 (mean (SD)) -0.14 (1.02) 0.03 (0.90) 0.178
X4 (mean (SD)) 0.06 (1.08) -0.07 (1.04) 0.118
X5 (mean (SD)) -0.08 (0.86) 0.01 (1.05) 0.091
X6 (mean (SD)) -0.03 (1.06) 0.15 (0.98) 0.177
X7 (mean (SD)) -0.04 (1.03) 0.01 (0.94) 0.050
X8 (mean (SD)) -0.11 (0.99) 0.20 (1.00) 0.312
X9 (mean (SD)) 0.07 (1.04) 0.05 (1.02) 0.017
X10 (mean (SD)) -0.04 (1.13) -0.13 (0.96) 0.087
X11 (mean (SD)) 0.05 (1.02) -0.12 (0.98) 0.169
X12 (mean (SD)) 0.13 (1.01) -0.23 (0.99) 0.363

When looking at the results for the first 12 X variables, it is noted that for true confounders X1
and X2, SMD values greater than 0.1, indicative of inadequate covariate balance between the groups,
are observed. Similar lack of covariate balance between the groups is also noticed for X3 and X4.
However, due to randomness, differences between the groups are observed for some covariates other
than the true confounders. In this simulation scenario, with the partial presence of the signal from
some covariates other than true confounders, the goal is to assess the performance of the model under
consideration.

With a generated data set, we fit the BART confounder selection model (the separate outcome
models) using separate_bart().

library("bartcs")
separate_fit <- separate_bart(

Y = Y, trt = Trt, X = X, num_tree = 200, num_chain = 4,
num_burn_in = 10000, num_thin = 5, num_post_sample = 2000

)

The following are the main arguments used in the separate_bart() function call:

• Y represents a vector of observed outcome values.
• trt denotes a vector of exposure(treatment) values, which is binary. Binary treatment values

need to be either 0 or 1. Continuous exposure values can be handled in single_bart() function.
• X is a data frame of potential confounders.

The following are the remaining settings for the fit: 4 MCMC chains (num_chain) with 200 trees
(num_tree) are used. Each MCMC chain runs 20000 iterations, with 10000 burn-in iterations (num_burn_in)
and a thinning factor of 5 (num_thin). There are other optional arguments available for hyper-parameter
settings with the following default values:
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• α = 0.95 (alpha) and β = 2 (beta): these govern the probability that a node at depth d is
nonterminal as follows

α(1 + d)−β.

• ν = 3 (nu) and q = 0.95 (q): to set a conjugate prior for the variance σ2 with σ2 ∼ νλ/χ2
ν, we use

the following equation to determine the values P(σ < σ̂) = q, where σ̂ represents the residual
standard deviation obtained from a linear regression of Y on X.

• PGROW = 0.28, PPRUNE = 0.28, PCHANGE = 0.44 (step_prob = c(0.28, 0.28, 0.44)): proba-
bilities of three tree alteration steps.

• dir_alpha = 5: this is an initial value for hyperparameter α in the sparsity inducing Dirichlet
prior D(α/P, α/P, · · · , α/P).

separate_fit

`bartcs` fit by `separate_bart()`

mean 2.5% 97.5%
SATE -2.2851546 -2.6022894 -1.9692134
Y1 0.7195622 0.4663024 0.9833689
Y0 3.0047169 2.8116436 3.1946016

The separate_bart() returns a S3 bartcs object. A bartcs object includes the posterior means and 95%
credible intervals for the sample average treatment effect (SATE), and the potential outcomes Y(1)
and Y(0). It is important to note that the true values for the SATE, E[Y(1)], and E[Y(0)] are −2.55,
0.64, and 3.19 respectively, and the 95% credible intervals produced by the separate_bart() function
include these values.

For a more in-depth understanding of the output, the summary() function can be used. It provides
details regarding the treatment values, tree structure, MCMC chain, and outcomes for each of the
chains.

summary(separate_fit)

`bartcs` fit by `separate_bart()`

Treatment Value
Treated group : 1
Control group : 0

Tree Parameters
Number of Tree : 200 Value of alpha : 0.95
Prob. of Grow : 0.28 Value of beta : 2
Prob. of Prune : 0.28 Value of nu : 3
Prob. of Change : 0.44 Value of q : 0.95

Chain Parameters
Number of Chains : 4 Number of burn-in : 10000
Number of Iter : 20000 Number of thinning : 5
Number of Sample : 2000

Outcome
estimand chain 2.5% 1Q mean median 3Q 97.5%

SATE 1 -2.6070044 -2.3892357 -2.2830389 -2.2800555 -2.1765359 -1.9757766
SATE 2 -2.6013548 -2.4017854 -2.2877997 -2.2877071 -2.1798863 -1.9611401
SATE 3 -2.5961329 -2.3952700 -2.2794876 -2.2793208 -2.1609143 -1.9644475
SATE 4 -2.6090523 -2.4001084 -2.2902924 -2.2923171 -2.1812900 -1.9761443
SATE agg -2.6022894 -2.3965077 -2.2851546 -2.2842764 -2.1748201 -1.9692134
Y1 1 0.4705203 0.6322748 0.7174467 0.7174147 0.8027479 0.9668359
Y1 2 0.4707973 0.6305094 0.7223111 0.7213076 0.8153911 0.9851455
Y1 3 0.4653391 0.6277828 0.7190511 0.7194586 0.8080547 0.9804701
Y1 4 0.4614500 0.6273396 0.7194400 0.7175295 0.8087480 0.9920899
Y1 agg 0.4663024 0.6292846 0.7195622 0.7185828 0.8087121 0.9833689
Y0 1 2.8082437 2.9361088 3.0004857 2.9998629 3.0664869 3.1897135
Y0 2 2.8189069 2.9442181 3.0101107 3.0107896 3.0778268 3.2013420
Y0 3 2.8002284 2.9362280 2.9985387 2.9972708 3.0646989 3.1920314
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Y0 4 2.8210957 2.9427012 3.0097324 3.0133450 3.0772579 3.1960383
Y0 agg 2.8116436 2.9404458 3.0047169 3.0053406 3.0713420 3.1946016

For each estimand category, there are five results (rows) that represent the output from each of the 4
MCMC chains and an aggregated output.

For visualization purposes, there are two options available as S3 methods for the bartcs object. The
first option is the posterior inclusion probability (PIP) plot. PIP is the probability that a variable is used
as a splitting variable, and can be interpreted as the importance of a variable. The inclusion_plot()
function is a wrapper for the bar_chart() function from the ggcharts package (Neitmann et al., 2020),
allowing the use of its arguments to customize the plot. The recommended arguments to use are top_n
and threshold.

plot(separate_fit, method = "pip", top_n = 10)
plot(separate_fit, method = "pip", threshold = 0.5)

X31

X96

X69

X6

X1

X2

X3

X4

X5

X7

0.00 0.25 0.50 0.75 1.00

Probability

V
ar

ia
bl

es

PIP (Separate Model)

(a) Plotting PIP with top_n argument

X1

X2

X3

X4

X5

X7

0.00 0.25 0.50 0.75 1.00

Probability

V
ar

ia
bl

es

PIP (Separate Model)

(b) Plotting PIP with threshold argument

Figure 4: Posterior inclusion probability (PIP) plots

In Figure 4, the argument top_n allows us to select variables with the top top_n highest PIPs. The
argument threshold displays variables with PIP greater than threshold. From a decision-theoretical
perspective (Barbieri and Berger, 2004; Linero, 2018), variables with PIPs larger than 0.5 can be
considered chosen confounders. It is worth noting that the five true confounders X1 − X5 are all
correctly selected as true confounders with PIPs of 1, along with one extra predictor X7 in the outcome
model.

The second option for visualization is the traceplot, which is mainly used to check MCMC
convergence. The function provides a traceplot of the sample average treatment effect (SATE) for
each MCMC chain. Traceplots of other parameters such as dir_alpha (the hyperparameter α in the
sparsity-inducing Dirichlet prior D(α/P, · · · , α/P)) and sigma2_out (the variance parameter in the
outcome model) are also available by using the argument parameter.

plot(separate_fit, method = 'trace')
plot(separate_fit, method = 'trace', parameter = 'dir_alpha')

In Figure 5, the traceplots of the SATE and dir_alpha parameters are shown for four different
MCMC chains. Concerning the dir_alpha parameter (α), the actual value employed as the hyper-
parameter for the Dirichlet prior is derived by dividing the total number of potential confounders,
denoted as P (i.e., α/P). In the setting of simulation data where P = 100 is utilized, the hyper-
parameter to be estimated is notably small, represented as α/100. Hence, compared to the variability
observed in the traceplot, the variability of the actual α/P (illustrated within the range of 0.5/100
to 4.5/100 in Figure 5.(b)) can be interpreted as substantially smaller. Alternatively, extending the
chain length for sampling the α parameter could be considered. However, in this dataset, due to
the significant presence of confounders (i.e., the counts of splits nj,1, nj,21, nj,20 added to α/P during
the conjugate update are quite large), confounder selection is minimally influenced by the current α
samples.

Although traceplots offer a convenient means of visual inspection, it is recommended to employ
the Gelman-Rubin diagnostics provided by the gelman.diag() function in the coda package (Plummer
et al., 2006) for a comprehensive convergence assessment, as illustrated in the subsequent section.
Furthermore, despite the suggestion of a modified R̂ (Vehtari et al., 2021) as an alternative to the
Gelman-Rubin diagnostic, it is presently unsupported in the coda package. Nonetheless, once the
mcmc.list object is generated (explained later in this section), it can be directly employed if a function
for computing the modified R̂ becomes available within the coda package in the future.
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Figure 5: Traceplots for multiple MCMC chains

We evaluated the performance of bartcs in comparison to other models, including those generated
by the bacr R package (Wang et al., 2015) that inspired our model development. The bacr package is
easily installed via CRAN and loaded into the current R session as follows:

install.packages("bacr", dependencies=TRUE)
library("bacr")

To fit the model of this package, we used the bac() function where the input data needs to be provided
in the form of a data frame. To fit the exposure and outcome models in this case, a generalized linear
model is used, and it is necessary to specify the family of the model based on the data type (e.g..
familyX="binomial" and familyY="gaussian"). The MCMC algorithm was run for 10000 iterations
after discarding the first 10000 iterations as burn-ins. Additionally, no interaction between the exposure
and each confounder was assumed.

Z <- as.data.frame(cbind(Y,Trt,X))
fit.bac <- bac(

data = Z, exposure = "Trt", outcome = "Y",
confounders = paste("V", 3:(P + 2), sep = ""),
interactors = NULL, familyX = "binomial", familyY = "gaussian",
omega = Inf, num_its = 20000, burnM = 10000, burnB = 10000, thin = 5

)

The result can be checked through the summary() function as follows:

summary(fit.bac)

BAC objects:

Exposure effect estimate:
posterior mean 95% posterior interval

-1.6 (-2.1, -1.3)

Covariates with posterior inclusion probability > 0.5:
posterior inclusion probability

V3 1.00000
V4 1.00000
V5 1.00000
V6 1.00000
V7 1.00000
V99 0.92100
V14 0.70305
V54 0.67480
V90 0.62345

The posterior mean of the SATE was estimated to be −1.6, which was significantly different from the
true SATE value of −2.55. Moreover, the 95% credible interval (−2.1,−1.3) did not include the true
value. When considering the importance of selected confounders based on the posterior inclusion
probability, bacr included all important confounders X1 − X5 (that is, V3 − V7 in the summary), but
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also added X12, X52, X88, and X97 (that is, V14, V54, V90, V99 in the summary) with high PIPs, which
were not true confounders. Notably, X6 and X7, which are additional predictors of the outcome model,
were not included. This result may be attributed to the fact that bacr relies on a parametric model and
therefore may struggle to account for the non-linear and complex data structure.

3.1 Connection to coda package

To summarize the results, generic functions such as summary() and plot() were adapted to work on
the bartcs objects. Additionally, mcmc.list objects were included as components in the bartcs object
to allow for the use of functions from the coda R package (Plummer et al., 2006). The mcmc_list
component of the bartcs object can produce summary statistics for each of E[Y(1)], E[Y(0)], SATE
using the summary function and generate trace plots and posterior densities for parameters using the
plot function. Figure 6 displays plot of mcmc_list based on coda package.

summary(separate_fit$mcmc_list)

Iterations = 10005:20000
Thinning interval = 5
Number of chains = 4
Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
SATE -2.285155 0.1639173 1.833e-03 2.489e-03
Y1 0.719562 0.1328857 1.486e-03 2.122e-03
Y0 3.004717 0.0977850 1.093e-03 1.790e-03
dir_alpha 1.576421 0.7317213 8.181e-03 6.836e-02
sigma2_out1 0.001731 0.0003359 3.756e-06 5.533e-06
sigma2_out0 0.001310 0.0002334 2.609e-06 3.784e-06

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
SATE -2.6022894 -2.396508 -2.284276 -2.174820 -1.969213
Y1 0.4663024 0.629285 0.718583 0.808712 0.983369
Y0 2.8116436 2.940446 3.005341 3.071342 3.194602
dir_alpha 0.5772667 1.024000 1.423480 2.003651 3.390765
sigma2_out1 0.0011718 0.001490 0.001698 0.001935 0.002483
sigma2_out0 0.0009263 0.001146 0.001289 0.001446 0.001845

plot(separate_fit$mcmc_list)

The convergence of the MCMC can be assessed by utilizing the convergence diagnostics offered by
the coda package. To examine the convergence of six parameters, we can employ the gelman.diag()
function on the mcmc.list object, specifically on separate_fit$mcmc_list.

library("coda")
gelman.diag(separate_fit$mcmc_list)

Potential scale reduction factors:

Point est. Upper C.I.
ATE 1.00 1.00
Y1 1.00 1.00
Y0 1.00 1.01
dir_alpha 1.02 1.07
sigma2_out1 1.00 1.00
sigma2_out0 1.00 1.00

Multivariate psrf

1.02
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Figure 6: Plot of mcmc-list using the coda R package

Based on the convergence diagnostics, it can be concluded that there are no issues with the
convergence of the MCMC, similar to the visual inspection.

4 Real data example

In the previous section, the separate_bart() function was used to demonstrate a separate outcome
model strategy. In this section, a single outcome model is tested using the single_bart() function,
based on the Infant Health and Development Program (IHDP) dataset as an example. This dataset
was collected from a longitudinal study that tracked the development of low-birth-weight premature
infants. The study participants in the treatment group received intensive care and home visits
from trained providers and their cognitive test scores were evaluated at the end of the intervention
period. The dataset includes a variety of pretreatment variables, including 6 continuous and 19 binary
covariates. The original IHDP data is generated from a randomized experiment setting. However, the
IHDP data used by Hill (2011) and Louizos et al. (2017) was manipulated to induce covariate imbalance
between treatment groups by removing a subset of the treated group. Specifically, all children with
nonwhite mothers were removed from the treated group. We utilize a synthesized variant of the IHDP
data as presented in Louizos et al. (2017). This version was created employing the NPCI package
(Dorie, 2016) to ascertain the true counterfactual values. As seen in Figure 7, the data generated in this
manner significantly violates the overlap assumption for estimating the sample average treatment
effect (SATE). This figure depicts the degree of overlap between two groups (Treated vs Control) for
selected covariates. Red crosses represent the control group, and blue triangles represent the treated
group. In certain intervals of extreme values for each covariate, there are regions where only control
group data exists, or very few data points from the treated group are present. For example, in the
interval where the X5 covariate is less than −4, there is no data from the treated group. Non-overlap
occurs in these regions. In the case of the binary covariate X18, there is only one data point from the
treated group at the value of 0. Therefore, technically speaking, situations like non-overlap can occur
in the estimation process. In such a scenario, one of the objectives is to investigate whether a single
outcome model can properly estimate the true SATE.

The IHDP data can be loaded by

data("ihdp", package = "bartcs")

and Table 2 displays the summary statistics of the variables. In the dataset, y_factual is the observed
outcome Y (i.e., Y(A)) and y_cfactual is the counterfactual outcome Y (i.e., Y(1 − A)).

We fit the single outcome model using the single_bart() function.

single_fit <- single_bart(
Y = ihdp$y_factual,
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Treatment = 1 (n=139) Treatment = 0 (n=608)
Variable Mean IQR Mean IQR
Y 6.43 (5.83, 7.34) 2.41 (1.45, 3.08)
X⋆

1 0.21 (-0.40, 0.95) -0.05 (-0.75, 0.79)
X⋆

2 0.18 (-0.20, 0.60) -0.04 (-0.60, 0.60)
X⋆

3 -0.04 (-0.73, 0.38) 0.01 (-0.73, 0.76)
X⋆

4 -0.22 (-0.88, 0.16) 0.05 (-0.88, 0.16)
X⋆

5 -0.14 (-0.69, 0.56) 0.03 (-0.50, 0.68)
X⋆

6 0.21 (-0.53, 0.96) -0.05 (-0.86, 0.63)
X7 0.52 (0.00, 1.00) 0.51 (0.00, 1.00)
X8 0.09 (0.00, 0.00) 0.1 (0.00, 0.00)
X9 0.68 (0.00, 1.00) 0.49 (0.00, 1.00)
X10 0.29 (0.00, 1.00) 0.38 (0.00, 1.00)
X11 0.25 (0.00, 0.50) 0.27 (0.00, 1.00)
X12 0.22 (0.00, 0.00) 0.22 (0.00, 0.00)
X13 0.38 (0.00, 1.00) 0.35 (0.00, 1.00)
X14 1.58 (1.00, 2.00) 1.44 (1.00, 2.00)
X15 0.14 (0.00, 0.00) 0.14 (0.00, 0.00)
X16 0.94 (1.00, 1.00) 0.97 (1.00, 1.00)
X17 0.69 (0.00, 1.00) 0.57 (0.00, 1.00)
X18 0.99 (1.00, 1.00) 0.96 (1.00, 1.00)
X19 0.15 (0.00, 0.00) 0.13 (0.00, 0.00)
X20 0.06 (0.00, 0.00) 0.15 (0.00, 0.00)
X21 0.17 (0.00, 0.00) 0.15 (0.00, 0.00)
X22 0.04 (0.00, 0.00) 0.09 (0.00, 0.00)
X23 0.01 (0.00, 0.00) 0.09 (0.00, 0.00)
X24 0.06 (0.00, 0.00) 0.14 (0.00, 0.00)
X25 0.27 (0.00, 1.00) 0.13 (0.00, 0.00)

Table 2: Summary statistics for the IHDP data set. ⋆ denotes a continuous potential confounder.

trt = ihdp$treatment,
X = ihdp[, 6:30],
num_tree = 50,
num_chain = 4,
num_post_sample = 2000,
num_thin = 5,
num_burn_in = 10000

)
single_fit

`bartcs` fit by `single_bart()`

mean 2.5% 97.5%
SATE 3.964842 3.747028 4.180764
Y1 6.382810 6.188199 6.581852
Y0 2.417969 2.338264 2.496962

The function single_bart() returns a bartcs object, which displays the posterior means and 95%
credible intervals for the sample average treatment effect (SATE), and the potential outcomes Y(1)
and Y(0). The summary() and plot() functions can also be used with this bartcs object generated by
single_bart().

summary(single_fit)

`bartcs` fit by `single_bart()`

Treatment Value
Treated group : 1
Control group : 0

Tree Parameters
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Figure 7: A plot illustrating the degree of overlap between two groups (Treated vs Control) for selected
covariates. Red crosses represent the control group, and blue triangles represent the treated group. In
certain intervals for each covariate, there are regions where only control group data exists, or very few
data points from the treated group are present. Non-overlap occurs in these regions.

Number of Tree : 50 Value of alpha : 0.95
Prob. of Grow : 0.28 Value of beta : 2
Prob. of Prune : 0.28 Value of nu : 3
Prob. of Change : 0.44 Value of q : 0.95

Chain Parameters
Number of Chains : 4 Number of burn-in : 10000
Number of Iter : 20000 Number of thinning : 5
Number of Sample : 2000

Outcome
estimand chain 2.5% 1Q mean median 3Q 97.5%

SATE 1 3.758373 3.894465 3.969119 3.968867 4.042380 4.183131
SATE 2 3.744731 3.886575 3.957434 3.956101 4.026455 4.165961
SATE 3 3.760480 3.905973 3.980315 3.980162 4.054086 4.206488
SATE 4 3.730287 3.879606 3.952498 3.953050 4.028315 4.158430
SATE agg 3.747028 3.891543 3.964842 3.965384 4.038288 4.180764
Y1 1 6.196530 6.318675 6.387760 6.387443 6.453303 6.589611
Y1 2 6.181788 6.310026 6.376027 6.376233 6.439727 6.573960
Y1 3 6.196317 6.329945 6.396885 6.397153 6.464297 6.601299
Y1 4 6.169429 6.303404 6.370570 6.371514 6.435679 6.562172
Y1 agg 6.188199 6.314489 6.382810 6.382215 6.449542 6.581852
Y0 1 2.339020 2.391137 2.418640 2.418824 2.446414 2.498677
Y0 2 2.336131 2.392407 2.418593 2.418124 2.446167 2.495229
Y0 3 2.337997 2.388738 2.416570 2.416414 2.444457 2.495583
Y0 4 2.340288 2.389536 2.418073 2.418218 2.446018 2.497264
Y0 agg 2.338264 2.390199 2.417969 2.418042 2.445718 2.496962

We also fitted separate outcome models to the ihdp data and compared the results from the single
outcome model.

separate_fit <- separate_bart(
Y = ihdp$y_factual,
trt = ihdp$treatment,
X = ihdp[, 6:30],
num_tree = 50,
num_chain = 4,
num_post_sample = 2000,
num_thin = 5,
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num_burn_in = 10000
)

separate_fit

`bartcs` fit by `separate_bart()`

mean 2.5% 97.5%
SATE 3.924013 3.702316 4.148937
Y1 6.342504 6.134043 6.550242
Y0 2.418491 2.340920 2.497081

Similar to the separate outcome models strategy, in single_bart(), the plot() function for the
bartcs object can also be employed to check the convergence of the MCMC chain. The traceplots for
the ATE is presented in Figure 8 with the following line.

plot(single_fit, method = 'trace')
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Figure 8: Traceplot of SATE for IHDP dataset

As this is a simulated version of the IHDP data, the true values are known and are 4.02 for the
sample average treatment effect (SATE), 6.45 for E[Y(1)], and 2.43 for E[Y(0)]. The outputs from the
two models accurately reflect these true values within their 95% credible intervals. Additionally, the
PIP plots (Figure 9) depict chosen confounders with PIP values larger than 0.5.

The important aspect here is that in the case of the single outcome model, the exposure variable
(trt) is also incorporated into the selection process. As indicated in Equation 2, because the exposure
variable is included as one of the covariates in the outcome model, it is subject to variable selection.
This means that in the computation of PIP, it is treated similarly to other confounders, producing the
following plot (a) in Figure 9. In Figure 9, plot (a) displays the potential confounders for the single
outcome model, which have a posterior inclusion probability of 0.5 or more, while plot (b) illustrates
the confounders with a posterior inclusion probability of 0.5 or more when the separate outcome
models strategy is used. It is noteworthy that X4, X6, and X15 were consistently chosen as confounders
with posterior inclusion probability 1.

4.1 Computation speed

In Figure 10, the computational speed of two models, the separate and single models, is depicted for
two different settings of the number of trees (100 vs. 200) based on the scenario in Section 3. The speed
was assessed using 5000 MCMC iterations across various combinations of N and P. We considered
three values of N (100, 500, and 1000) and three values of P (circle for N × 0.3, triangle for N × 0.5,
and cross for N × 1).

For 100 BART trees, the separate models required 8 to 98 seconds (18 to 190 seconds for 200 BART
trees) for computation, while the single model took 7 to 86 seconds (14 to 168 seconds for 200 BART
trees), depending on the (N, P) combination. Both models exhibited similar computational speeds
overall, considering the MCMC iterations. However, the single model, which fits two BART models
(exposure and one outcome model), was found to be more efficient with slightly smaller biases and
mean square errors (MSEs) across various scenarios (Kim et al., 2023). Therefore, it is recommended
to utilize the single model (single_bart() function), especially when N is large, due to its faster
computational speed.
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Figure 9: PIP plot for IHDP dataset

Additionally, depending on the number of trees used, a significant improvement in computation
speed can be observed. It is generally suggested to start with 50 trees as a “good starting value,”
(Kapelner and Bleich, 2016) so using a smaller number of trees is also advised to gain computational
advantages in terms of speed. The results in this manuscript were obtained using R 4.3.0 on a Mac
Studio with a M1 chip and 128 GB of memory. bartcs 1.2.2 and bacr 1.0.1 were used for the analysis.
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Figure 10: The computation times for both the single outcome model (red) and separate outcome
models (black) based on the number of observations (N) under two different numbers of trees. A
cross symbol (+) represents the scenario where the number of potential confounders (P) is equal to the
number of observations (N), a triangle (△) represents the scenario where P = N × 0.5 and a circle (⃝)
represents the scenario where P = N × 0.3. These results are obtained from 5000 MCMC iterations
based on the scenario in Section 3.

5 Continuous exposure example

When it comes to a continuous exposure variable, the formula in Equation 1 is changed as follows:

Ai = µ1 + f1(X i) + ϵi, ϵj ∼ N(0, τ2). (4)

f1(X i) =
T

∑
t=1

g1(X i; Tt,Mt)

This altered formula is used in conjunction with the single outcome model to perform confounder se-
lection. However, the separate outcome models strategy, which fits two distinct outcome models based
on the two exposure levels, is not suitable for the continuous exposure variable. The single_bart()
function has the versatility to handle both binary and continuous treatments, and automatically identi-
fies the binary treatment when there are only two unique values. To demonstrate this, we generate a
data set similar to the previous example.
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set.seed(42)
N <- 300
P <- 100
cov <- list()
for (i in 1:P) {

cov[[i]] <- rnorm(N, 0, 1)
}

X <- do.call(cbind, cov)
h1 <- ifelse(X[, 1] < 0, 1, -1)
h2 <- ifelse(X[, 2] < 0, -1, 1)
mu_trt <- 0.5 + h1 + h2 - 0.5 * abs(X[, 3] - 1) + 0.5 * X[, 4] * X[, 5]
Trt <- rnorm(N, mu_trt, 0.3)
mu_y <- 1 * h1 + 1 * h2 - Trt + 1 * abs(X[, 3] + 1) + 1 * X[, 4] + exp(0.5 * X[, 5]) -

0.5 * Trt * abs(X[, 6]) - 0.5 * Trt * abs(X[, 7] + 1)
Y <- rnorm(N, mu_y, 0.3)
treatment <- quantile(Trt, 0.75)
control <- quantile(Trt, 0.25)

We use the function single_bart() to fit the generated data. The first and third quantile val-
ues of Trt will serve as the basis for comparing two different exposure levels. As arguments in
single_bart(), we need to provide these two pre-specified exposure levels (a =trt_treated and
a′ =trt_control). In the this case, the causal estimand is ∆(a, a′) = E[(Y(a)− Y(a′)].

single_fit <- single_bart(
Y = Y, trt = Trt, X = X,
trt_treated = treatment, trt_control = control,
num_tree = 200, num_chain = 4,
num_burn_in = 10000, num_thin = 5, num_post_sample = 2000

)
single_fit

`bartcs` fit by `single_bart()`

mean 2.5% 97.5%
SATE -2.8097339 -4.2581469 -1.732448
Y1 0.9982417 0.2753606 1.677726
Y0 3.8079756 3.0967180 4.740133

Similar to other bartcs objects, the summary() and plot() functions can be applied to the continuous
exposure scenario. Figure 11 displays a PIP plot, which demonstrates that out of 100 possible con-
founders, all of the true confounders except X1, X2, and two additional predictors were captured
effectively, with high PIP values.
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(b) Plotting PIP with threshold = 0.5 argument

Figure 11: PIP plot for continuous exposure

6 Heterogeneous effects

The proposed method not only estimates the SATE but also provides posterior samples of Yi(1) and
Yi(0), enabling inference on individual heterogeneous treatment effects. The return object includes a
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component called chains, which is a list containing the results from each MCMC chain. Each element
in this list is an mcmc.list object (from the coda package) that holds the posterior samples of Yi(1)
and Yi(0). The following explains how to extract posterior samples when applying the separate model
to the generated data from Section 3.

separate_fit <- separate_bart(
Y = Y, trt = Trt, X = X, num_tree = 200, num_chain = 4,
num_burn_in = 10000, num_thin = 5, num_post_sample = 2000

)

# Y(1) samples from the 1st MCMC chain
separate_fit$chains[[1]]$Y1_sample
# Y(0) samples from the 1st MCMC chain
separate_fit$chains[[1]]$Y0_sample

The posterior means of Yi(1) and Yi(0) for i = 1, · · · , N can be obtained by aggregating the posterior
samples across multiple chains, as shown below:

Y1_sample <- do.call(cbind, lapply(separate_fit$chains, function(x) x$Y1_sample))
rowMeans(Y1_sample)
Y0_sample <- do.call(cbind, lapply(separate_fit$chains, function(x) x$Y0_sample))
rowMeans(Y0_sample)

7 Summary and discussion

In conclusion, the bartcs R package is a powerful tool for causal inference using BART. It allows
users to adjust for confounders and estimate treatment effects using a flexible non-parametric method.
The package’s ability to handle high-dimensional and non-linear confounding, binary exposure, and
continuous exposure makes it a versatile tool for a wide range of applications. Additionally, the
package’s support for parallel computing and visualization of results make it a user-friendly and
easy-to-interpret tool. The bartcs package is a valuable resource for researchers in various fields.

In this paper, we assessed the performance of the proposed method in a scenario where all true
confounders are included in the potential confounder pool, and additional predictors for the outcome
model are also present within the potential confounder pool. In this scenario, the proposed method
demonstrated precise average treatment effect (SATE) estimation and accurately identified the true
confounders. Moreover, in the study by Kim et al. (2023), the proposed method exhibited accurate
confounder selection performance and reliable estimation of SATEs even in scenarios involving
instrumental variables in the data generating process. This success is attributed to the satisfaction
of the disjunctive cause criterion without instruments by the proposed method, as outlined in the
introduction section (VanderWeele, 2019). Additionally, the method demonstrated outstanding results
in simulation scenarios with diverse effect sizes and varying numbers of true confounders.

The single outcome model and separate outcome models introduced in this paper both demonstrate
excellent performance in confounder selection and average treatment effect estimation. However, in
cases where a continuous treatment variable is required, the single outcome model should be applied.
Additionally, as indicated in Section 4, the single outcome model has a slightly faster computation
speed than the separate outcome models when the sample size is large because it uses one less BART
model. On the other hand, the separate outcome models strategy has the advantage of relatively faster
convergence of the MCMC chain during the process of updating the selection probability vector of the
BART prior using a simple Gibbs update. Therefore, it is necessary to selectively choose between the
two models based on the context of the data being applied.

While not currently integrated into the bartcs package, the confounder selection method presented
here using BART holds potential for extension to various data types. For count or categorical outcomes,
it might be feasible to substitute the proposed outcome model with the log-linear BART model
suggested by Murray (2021). Similarly, for survival outcomes, the survival BART model proposed
by Sparapani et al. (2016) could serve as the outcome model. Exploring the specific computation
algorithms for these extensions could be a fruitful avenue for future research.

One limitation of the proposed method is its lack of consideration for correlation and temporal
relationships among potential confounders. Currently, no research has explored the distribution
of weights in the selection probability vector when high correlation exists among covariates in the
potential confounder pool. An approach worth investigating may involve leveraging a causal Directed
Acyclic Graph (DAG) to constrain the selection of certain covariates in the prior setting of the selection
probability vector. This too presents a promising direction for future research. Furthermore, our model
currently assumes a common hyper-prior for all hyperparameters α associated with the selection
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probability vector. This approach restricts our ability to incorporate differing prior weights across
potential confounders. Exploring more flexible specifications, such as assigning separate hyper-priors
to each α, represents an important avenue for future research.

Another limitation, as mentioned previously in the remark in Section 2, is that biases arising from
unmeasured confounders are inherently unavoidable when the set of potential confounders does not
include all true confounders. If important confounding variables are suspected to be missing from
the available data, one should carefully exclude—prior to using the proposed method—variables
suspected to be instruments (which influence the exposure but not the outcome) and potential colliders
(which do not directly affect both exposure and outcome).

Computational details

R itself and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/. The results in this manuscript were obtained using R 4.3.0 on a Mac
Studio with a M1 chip and 128 GB of memory. bartcs 1.3.0 and bacr 1.0.1 were used for the analysis.
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Appendix

The appendix presents results from simulation studies conducted under various scenarios that were
not covered in the main text.

Scenario A: 5 true confounders and 2 additional predictors

The results from applying the single model to the example in Section 3 demonstrate that the estimates
closely match the true values of SATE (-2.55), E[Y(1)] (0.64), and E[Y(0)] (3.19), consistent with findings
from the separate model. Notably, all corresponding 95% credible intervals contain the true parameter
values.

attach(synthetic_data(N = 300, P = 100, seed = 42))
single_fit <- single_bart(

Y = Y, trt = Trt, X = X,
num_tree = 200, num_chain = 4,
num_burn_in = 10000, num_thin = 5, num_post_sample = 2000

)
single_fit

`bartcs` fit by `single_bart()`

mean 2.5% 97.5%
SATE -2.4219319 -2.6327170 -2.2125321
Y1 0.7077994 0.5664953 0.8491844
Y0 3.1297313 3.0100750 3.2520308

For a more in-depth understanding of the output, the summary() function can be used. It provides
details regarding the treatment values, tree structure, MCMC chain, and outcomes for each of the
chains.

summary(single_fit)

`bartcs` fit by `single_bart()`

Treatment Value
Treated group : 1
Control group : 0

Tree Parameters
Number of Tree : 200 Value of alpha : 0.95
Prob. of Grow : 0.28 Value of beta : 2
Prob. of Prune : 0.28 Value of nu : 3
Prob. of Change : 0.44 Value of q : 0.95

Chain Parameters
Number of Chains : 4 Number of burn-in : 10000
Number of Iter : 20000 Number of thinning : 5
Number of Sample : 2000

Outcome
estimand chain 2.5% 1Q mean median 3Q 97.5%

SATE 1 -2.6372424 -2.4971912 -2.4278177 -2.4274520 -2.3559219 -2.2195278
SATE 2 -2.6347996 -2.4962662 -2.4236981 -2.4257645 -2.3521617 -2.2205205
SATE 3 -2.6229176 -2.4872413 -2.4163175 -2.4188511 -2.3472130 -2.1968565
SATE 4 -2.6321432 -2.4898965 -2.4198942 -2.4185564 -2.3492909 -2.2160691
SATE agg -2.6327170 -2.4929933 -2.4219319 -2.4229442 -2.3510791 -2.2125321
Y1 1 0.5635365 0.6562010 0.7044118 0.7037438 0.7524049 0.8418673
Y1 2 0.5678166 0.6558246 0.7050962 0.7054015 0.7548294 0.8466451
Y1 3 0.5718781 0.6606816 0.7112623 0.7108116 0.7596594 0.8529911
Y1 4 0.5598710 0.6626540 0.7104274 0.7117518 0.7603410 0.8518614
Y1 agg 0.5664953 0.6587662 0.7077994 0.7082389 0.7566797 0.8491844
Y0 1 3.0100293 3.0916675 3.1322295 3.1333000 3.1735625 3.2536797
Y0 2 3.0101642 3.0857730 3.1287944 3.1295026 3.1688030 3.2518096
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Y0 3 3.0067741 3.0866910 3.1275798 3.1257193 3.1693086 3.2485622
Y0 4 3.0158387 3.0909104 3.1303216 3.1291042 3.1697493 3.2501879
Y0 agg 3.0100750 3.0885669 3.1297313 3.1291107 3.1705643 3.2520308

To evaluate the performance of confounder selection, 500 simulated datasets were generated
using the data-generating process described in Section 3, with five true confounders and two addi-
tional predictors included in the outcome model. Figure A1 presents the average posterior inclusion
probabilities across these datasets, comparing the separate model (top panel) with the single model
(bottom panel). The results clearly indicate that all five true confounders (highlighted by red circles)
are selected with posterior probability equal to one, while irrelevant noise variables are consistently
excluded. Additionally, in the single model, the starred point representing the treatment variable is
also selected with probability one.
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Figure A1: Average PIPs across 500 simulated datasets based on the scenario described in Section 3,
comparing the separate and single models. Red circles indicate the true confounders, green circles
represent additional predictor variables included in the outcome model, and empty circles denote
noise variables. In the single model, the first starred point corresponds to the treatment variable.

Scenario B: 20 true confounders

This scenario is designed to assess the performance of confounder selection when there are 20 true
confounders among 100 potential confounders. Data were generated using the following data-
generating prcoess:

set.seed(42)
N <- 600
P <- 100
cov <- list()
for (i in seq_len(P)) {
cov[[i]] <- rnorm(N, 0, 1)

}
X <- do.call(cbind, cov)
h1 <- ifelse(X[, 1] < 0, 1, -1)
h2 <- ifelse(X[, 2] < 0, -1, 1)
prob <- pnorm(0.5 + h1 + h2 - 0.5 * abs(X[, 3] - 1) +

1.5 * X[, 4] * X[, 5] + X[, 6:20] %*% rep(0.5, 15))
Trt <- rbinom(N, 1, prob)
mu1 <- 1 * h1 + 1.5 * h2 - 1 + 2 * abs(X[, 3] + 1) + 2 * X[, 4] + exp(0.5 * X[, 5]) -
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0.5 * 1 * abs(X[, 6]) - 1 * 1 * abs(X[, 7] + 1) + X[, 6:20] %*% rep(0.5, 15)
mu0 <- 1 * h1 + 1.5 * h2 - 0 + 2 * abs(X[, 3] + 1) + 2 * X[, 4] + exp(0.5 * X[, 5]) -
0.5 * 0 * abs(X[, 6]) - 1 * 0 * abs(X[, 7] + 1) + X[, 6:20] %*% rep(0.5, 15)

Y1 <- rnorm(N, mu1, 0.3)
Y0 <- rnorm(N, mu0, 0.3)
Y <- Trt * Y1 + (1 - Trt) * Y0

Examining the results from the separate model shows that the estimated SATE slightly deviates
from its true value of -2.55. This deviation stems primarily from a minor bias in the estimation of
E[Y(0)]. Such bias arises because, as the number of confounders increases, achieving adequate overlap
in confounder distributions between treatment groups becomes more challenging within a limited
sample size.

separate_fit <- separate_bart(
Y = Y, trt = Trt, X = X, num_tree = 200, num_chain = 4,
num_burn_in = 10000, num_thin = 5, num_post_sample = 2000

)

separate_fit
`bartcs` fit by `separate_bart()`

mean 2.5% 97.5%
SATE -2.207329 -2.4512574 -1.958840
Y1 1.050447 0.8839941 1.224950
Y0 3.257776 3.0882004 3.425323

In the case of the single model, the bias is noticeably smaller. This reflects the relative advantage of the
single model, as also discussed in Kim et al. (2023).

single_fit
`bartcs` fit by `single_bart()`

mean 2.5% 97.5%
SATE -2.352218 -2.5377421 -2.162899
Y1 1.011433 0.9065068 1.120402
Y0 3.363651 3.2602485 3.465711

single_fit
`bartcs` fit by `single_bart()`

mean 2.5% 97.5%
SATE -2.352218 -2.5377421 -2.162899
Y1 1.011433 0.9065068 1.120402
Y0 3.363651 3.2602485 3.465711

To assess confounder selection performance, 500 simulated datasets were generated based on the
data-generating process described above, including 20 true confounders. Figure A2 shows the average
posterior inclusion probabilities obtained across these datasets, comparing results from the separate
model (top panel) and the single model (bottom panel). The results clearly demonstrate that all 20 true
confounders (marked with red circles) are consistently selected with posterior probabilities equal to
one, whereas irrelevant noise variables are effectively excluded from the models.

Scenario C: 5 true confounders and 2 instrumental variables

This scenario includes 5 true confounders among 100 potential confounders, and in particular, it
includes 2 instrumental variables (i.e., variables that affect only the exposure). The data generating
process for this scenario is as follows:

set.seed(42)
N <- 300
P <- 100
cov <- list()
for (i in seq_len(P)) {
cov[[i]] <- rnorm(N, 0, 1)

}
X <- do.call(cbind, cov)
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Figure A2: Average PIPs across 500 simulated datasets based on the scenario containing 20 true
confounders, comparing the separate and single models. Red circles indicate the true confounders,
and empty circles denote noise variables. In the single model, the first starred point represents the
treatment variable.

h1 <- ifelse(X[, 1] < 0, 1, -1)
h2 <- ifelse(X[, 2] < 0, -1, 1)
prob <- pnorm(0.5 + h1 + h2 - 0.5 * abs(X[, 3] - 1) +

1.5 * X[, 4] * X[, 5] + 1.5 * X[, 6] - 1 * X[, 7])
Trt <- rbinom(N, 1, prob)
mu1 <- 1 * h1 + 1.5 * h2 - 1 + 2 * abs(X[, 3] + 1) +
2 * X[, 4] + exp(0.5 * X[, 5])

mu0 <- 1 * h1 + 1.5 * h2 - 0 + 2 * abs(X[, 3] + 1) +
2 * X[, 4] + exp(0.5 * X[, 5])

Y1 <- rnorm(N, mu1, 0.3)
Y0 <- rnorm(N, mu0, 0.3)
Y <- Trt * Y1 + (1 - Trt) * Y0

When the separate model is fitted, the 95% credible intervals successfully capture the true values of
SATE, E[Y(1)], and E[Y(0)], which are -0.98, 2.21, and 3.19, respectively. Similarly, the single model
also provides accurate estimates of the true values.

separate_fit <- separate_bart(
Y = Y, trt = Trt, X = X, num_tree = 200, num_chain = 4,
num_burn_in = 10000, num_thin = 5, num_post_sample = 2000

)

separate_fit
`bartcs` fit by `separate_bart()`

mean 2.5% 97.5%
SATE -0.905955 -1.172369 -0.634617
Y1 2.173088 1.976194 2.375582
Y0 3.079043 2.898203 3.261354

single_fit <- single_bart(
Y = Y, trt = Trt, X = X, num_tree = 200, num_chain = 4,
num_burn_in = 10000, num_thin = 5, num_post_sample = 2000

)

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 205

single_fit
`bartcs` fit by `single_bart()`

mean 2.5% 97.5%
SATE -0.9421112 -1.116511 -0.7714885
Y1 2.1999294 2.089350 2.3124345
Y0 3.1420407 3.040003 3.2451105

To assess confounder selection performance, 500 simulated datasets were generated based on the data-
generating process described above, including 5 true confounders and 2 instrumental variables. Figure
A3 shows the average posterior inclusion probabilities obtained across these datasets, comparing
results from the separate model (top panel) and the single model (bottom panel). The results clearly
demonstrate that all 5 true confounders (marked with red circles) are consistently selected with
posterior probabilities equal to one, whereas irrelevant noise variables are effectively excluded from
the models.
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Figure A3: Average PIPs across 500 simulated datasets based on the scenario containing 5 true
confounders and 2 instrumental variables, comparing the separate and single models. Red circles
indicate the true confounders, green circles represent the instrumental variables, and empty circles
denote noise variables. In the single model, the first starred point represents the treatment variable.
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MSmix: An R Package for clustering
partial rankings via mixtures of Mallows
Models with Spearman distance
Marta Crispino∗, Cristina Mollica∗, Lucia Modugno
∗ jointly first authors

Abstract MSmix is a recently developed R package implementing maximum likelihood estimation of
finite mixtures of Mallows models with Spearman distance for full and partial rankings. The package
is designed to implement computationally tractable estimation routines, with the ability to handle
arbitrary forms of partial rankings and a large number of items. The frequentist estimation task is
accomplished via Expectation-Maximization algorithms, integrating data augmentation strategies to
recover the unobserved heterogeneity and the missing ranks. The package also provides functionalities
for uncertainty quantification of the parameter estimates, via diverse bootstrap methods and asymp-
totic confidence intervals. Generic methods for S3 class objects are constructed for more effectively
managing the output of the main routines. The usefulness of the package and its computational
performance compared with competing software is illustrated via applications to both simulated and
original real ranking datasets.

1 Introduction

Ranking data play a pivotal role in numerous research and practical domains, where the focus is on
comparing and ordering a set of n items according to personal preferences or other relevant criteria.
From market surveys to sports competitions, from academic assessments to online recommendation
systems, rankings are ubiquitous in modern society to capture human choice behaviors or, more
generally, ordinal comparison processes in various contexts.

Ranking data analysis has attracted significant attention, as evidenced by the extensive literature on
the subject (see Critchlow et al., 1991; Marden, 1995, for fundamental reviews) and by the development
of a broad spectrum of probabilistic models designed to capture meaningful choice patterns and
quantify estimation uncertainty. Traditionally, four main classes of parametric models have been
identified, each representing a distinct ranking generative process. The first category, order statistics
models (OSs), is originally attributed to Thurstone (1927) and conceptualizes rankings as arising
from the ordering of latent item utilities. The second, paired comparison models, is exemplified by
the Bradley-Terry model (BT) proposed by Bradley and Terry (1952) and is based on the possibility
to decompose a ranking sequence into the corresponding set of pairwise comparisons. The third
category, stagewise models, breaks the ranking process into sequential stages and is well represented
by the popular Plackett-Luce model (PL) introduced by Luce (1959) and Plackett (1975). Finally,
distance-based models, often referred to as Mallows models (MMs), trace their origins to the seminal
work by Mallows (1957). In this paper, we focus on the last class, which provides an ideal option for
applications where a meaningful consensus ranking can be identified in the sample and, consequently,
offers a valuable parametric tool for rank aggregation tasks (Marden, 1995). For further insights into
probabilistic ranking models and their unique characteristics, that can support the critical choice of
suitable parametric families for specific real contexts, the reader is referred to Liu et al. (2019) and
Alvo and Yu (2014).

The MM is based on the assumption that a modal consensus ranking of the n items exists in the
population, effectively capturing the collective preferences. Under this framework, the likelihood of
observing any particular ranking decreases as its distance from the consensus increases. While the
distance measure in the MM induces distinct probabilistic models, it only needs to satisfy minimal
properties. This simplicity offers researchers remarkable flexibility to choose the distance that best
fits their scientific context. For example, Kendall and Cayley distances are well suited for sorting
problems, Hamming works well in coding theory, and Spearman distance is particularly suitable
for applications involving human preferences or social choice (Diaconis, 1988). Traditionally, the
choice of the distance in the MM was mainly driven by computational considerations, specifically
the availability of a closed-form expression for the model normalizing constant (or partition function).
This favored the use of Kendall, Cayley, and Hamming distances, while the Spearman distance has
been relatively underexplored due to its perceived intractability, despite its relevance in preference
domains. However, Crispino et al. (2023) recently demonstrated that the Spearman distance is a metric
that combines both computational feasibility and interpretability. By leveraging the unique properties
of the Spearman distance, and by means of a novel approximation of the model partition function,
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the authors addressed the critical inferential challenges that historically limited its application. Their
approach enabled the development of an efficient strategy to fit the MM with Spearman distance
(MMS) for datasets with arbitrary forms of partial rankings. Moreover, they extended the model to
finite mixtures, allowing the capture of possible unobserved sample heterogeneity.

Clustering ranking data to detect and characterize groups with similar preferences has long been
a major motivation for extending traditional methods beyond their basic forms. This practical need
is reflected in the fact that nearly all R packages dedicated to ranking analysis include clustering
methods. From a methodological perspective, the clustering problem has been tackled using both
model-based strategies and machine learning approaches. For example, the PLMIX package (Mollica
and Tardella, 2020) fits finite PL mixtures for partial top rankings within the Bayesian framework
(Mollica and Tardella, 2017), which notably recovers the maximum likelihood estimation (MLE)
described in Gormley and Murphy (2006) as a special case when a noninformative prior is specified.
For the same parametric class, the PlackettLuce package (Turner et al., 2020) implements MLE
procedures for generalizations of the PL model that are capable of handling partial and tied rankings,
as well as including covariates to achieve model-based partitioning via PL trees. Concerning OSs, the
StatRank package addresses the estimation of finite mixture generalizations from both full and partial
rankings through the generalized method of moments (Soufiani and Chen, 2015). Additionally, the
R package Rankcluster (Jacques et al., 2014), offers an innovative model-based clustering approach
through mixtures of Insertion Sort Rank data models (Jacques and Biernacki, 2014), which is able to
handle partial rankings with arbitrary patterns of incompleteness and, if needed, with multivariate
(hierarchical) structures. An additional contribution to rankings with missing data is provided by
the prefmod package (Hatzinger and Dittrich, 2012), which primarily analyzes preference data in the
form of paired comparisons, hence also rankings as a by-product, by using the BT and extensions
thereof to accommodate ties, subject- and item-specific covariates, as well as partial observations with
different censoring forms and missingness processes. However, the extension proposed in Hatzinger
and Dittrich (2012) for clustering heterogeneous data relies on the introduction of non-parametric
random-effects models that, in the case of rankings, are implemented only for completely-observed
sequences (Hatzinger and Maier, 2023).

Regarding the availability of software which is more related to our proposal, one can first notice
that only a few packages of the Comprehensive R Archive Network (CRAN) implement MMs and
generalizations thereof. BayesMallows (Sørensen et al., 2020) is the unique package adopting the
Bayesian perspective to perform inference for the MM and its finite mixture extension. The flexibility of
BayesMallows stands in the wide range of supported distances (including Spearman) and ranked data
formats (complete and partial rankings, as well as pairwise comparisons). Moreover, BayesMallows
provides estimation uncertainty by building posterior credible sets for the model parameters. Although
Bayesian inference of ranking data is effectively addressed, the R packages adopting the frequentist
perspective provide users with less flexibility and computational performance. For example, pmr (Lee
and Yu, 2013) performs MLE of several ranking models, including the MM with Kendall, Footrule, and
Spearman distances. However, despite the variety of parametric distributions, pmr does not handle
partial rankings nor mixtures. Additionally, the estimation routines require the enumeration of all
n! permutations for the global search of the consensus ranking MLE and the naïve computation of
the partition function, implying that the analysis of ranking datasets with n ≥ 12 items is unfeasible.
The rankdist package (Qian and Yu, 2019) fits mixtures of MMs with various basic and weighted
metrics (Lee and Yu, 2012), including the Spearman, on a sample of either full or top-k partial rankings.
While the implementation for the Kendall distance is highly efficient, it shares similar drawbacks with
pmr, since the partition function of the MMS is computed by summing over all n! permutations, and
the MLE of the consensus ranking is obtained through a time-consuming local search. As a result,
the procedures can be highly demanding, especially in mixture model applications. Moreover, the
package does not support the analysis of full rankings with n ≥ 12 items or of top-k rankings with
n ≥ 8 items. Other packages related to the MM, but limited to the Kendall distance, are RMallow
(Gregory, 2020), which fits the MM and mixtures thereof to both full or partially-observed ranking
data, and ExtMallows (Li et al., 2018), which supports the MM and the extended MM (Li et al., 2020).

Our review underscores that most of the available packages for frequentist estimation of the MM
focus on distances admitting a convenient analytical expression of the model normalizing constant
(more often, the Kendall), in the attempt to simplify the estimation task. Moreover, regardless of
the chosen metric, these packages face common limitations, particularly in handling large datasets
and partial rankings, typically restricted to top-k sequences. These computational constraints impose
restrictions on the sample size, the number of items, and the censoring patterns they can feasibly
handle. Finally, the current implementations generally lack methods for quantifying MLE uncertainty,
particularly for the consensus ranking or when a finite mixture is assumed.

MSmix efficiently enlarges the current suite of methods for model-based clustering of full and
partial rankings via mixture-based analysis, by achieving several methodological and computational
advances that overcome the practical limitations experienced with the existing packages, namely: 1)
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implementation of a recent normalizing constant approximation and of the closed-form MLE of the
consensus ranking, to allow inference for the MMS even with a large number of items; 2) analysis of
arbitrary forms of incompleteness in the observed sample of partial rankings via data augmentation
strategies; 3) availability of routines for measuring estimation uncertainty of all model parameters,
through bootstrap and asymptotic confidence intervals (CIs); 4) possible parallel execution of the
Expectation-Maximization (EM) algorithms over multiple starting points, to better and more efficiently
explore the critical mixed-type parameter space.

The paper is organized as follows. In Section 2, we first provide the methodological background
of the MMS specification and its finite mixture extension within the frequentist domain. We then
detail the approaches considered for the quantification of inferential uncertainty. Section 3 outlines the
package architecture, the main computational aspects, and shows a comparison with existing packages.
Section 4 represents the core part of the paper, illustrating the usage of the routines included in MSmix,
with applications to brand new ranking datasets and simulations. Finally, Section 5 discusses possible
directions for future releases of our package.

2 Methodological background

In this work, we consider ranking experiments where the same set of n items is presented to the
assessors for comparative evaluation. Respondents can provide either a full ranking, by completely
and uniquely attributing the n positions to the items, or a partial ranking, by assigning distinct
positions only to a subset of the items and leaving the attribution of the remaining ranks undetermined.
The novel R package MSmix implements finite mixtures of MMS (MMS-mix) for full and partial
rankings with the following key features: i) the unranked items are treated as missing data and are
implicitly assumed to occupy the non-assigned positions; ii) missing data may occur at any position
within the observed partial ranking, i.e., not necessarily in bottom positions as in the top-k rankings;
iii) inferential procedures rely on the implementation of EM algorithms assuming that the missing
data generative process is Missing at Random (MAR), see Little (2011) and references therein for a
general discussion on ignorable missingness in likelihood-based methods.

2.1 The Mallows model with Spearman distance and its mixture extension

Let r = (r1, . . . , rn) be a full ranking of n items, with the generic entry ri indicating the rank assigned
to item i. A full ranking r is a permutation of the first n integers and belongs to the finite discrete space
of permutations, Pn. The MMS assumes that the probability of observing the ranking r is

P(r |ρ, θ) =
e−θ d(r,ρ)

Z(θ)
r ∈ Pn,

where ρ ∈ Pn is the consensus ranking, θ ∈ R+
0 is the concentration, d(r, ρ) = ∑n

i=1(ri − ρi)
2 is the

Spearman distance, and Z(θ) = ∑r∈Pn
e−θ d(r,e), with e = (1, 2, ..., n), is the normalizing constant.

Let r = {r1, . . . , rN} be a random sample of N full rankings drawn from the MMS and Nl be
the frequency of the l-th distinct observed ranked sequence rl , such that ∑L

l=1 Nl = N. As shown in
Crispino et al. (2023), the observed-data log-likelihood can be written as follows

ℓ(ρ, θ|r) = −N
(

log Z(θ) + 2θ
(

cn − ρT r̄
))

,

where cn = n(n + 1)(2n + 1)/6, the symbol T denotes the transposition (row vector), r̄ = (r̄1, . . . , r̄n)
is the sample mean rank vector whose i-th entry is r̄i =

1
N ∑L

l=1 Nlrli, and ρT r̄ = ∑n
i=1 ρi r̄i is the scalar

product. The MLE of the consensus ranking is given by the ranking arising from ordering the items
according to their sample average rank,

ρ̂ = (ρ̂1, . . . , ρ̂i, . . . , ρ̂n) with ρ̂i = rank(r̄)i .

The MLE θ̂ of the concentration parameter is the value equating the expected Spearman distance
under the MMS, Eθ(D), to the sample average Spearman distance d = 1

N ∑L
l=1 Nld(rl , ρ̂). The root

of this equation can be found numerically, provided that one can evaluate the expected Spearman
distance, given by

Eθ [D] =
∑r∈Pn

d(r, e)e−θ d(r,e)

Z(θ)
=

∑d∈Dn
dNd e−dθ

∑d∈Dn
Nd e−dθ

,

with Dn =
{

d = 2h : h ∈ N0 and 0 ≤ d ≤ 2(n+1
3 )

}
and Nd = |{r ∈ Pn : d(r, e) = d}|. The exact
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values of the frequencies Nd are available for n ≤ 20 (sequence A175929 in the Online Encyclopedia of
Integer Sequences). In order to tackle inference on rankings of a larger number of items, Crispino et al.
(2023) introduced an approximation of the Spearman distance distribution. In MSmix, we implement
their strategy, so that when the normalizing constant and the expected Spearman distance cannot
be computed exactly, inference targets an approximation. Algorithm 1 reported in Appendix A1
illustrates the steps described above.

In order to account for the unobserved sample heterogeneity typical in real ranking data and, more
generally, to increase the model flexibility, an MMS-mix can be adopted. Under the MMS-mix, the
sampling distribution is assumed to be

P(r|ρ, θ, ω) =
G

∑
g=1

ωgP(r |ρg, θg) =
G

∑
g=1

ωg
e−2θg (cn−ρT

g r)

Z(θg)
r ∈ Pn,

with ωg and (ρg, θg) denoting respectively the weight and the pair of MMS parameters of the g-th
mixture component. Murphy and Martin (2003) first proposed an EM algorithm to fit such mixture
models, but the more efficient version described by Crispino et al. (2023) is implemented in the MSmix
package (Algorithm 2 in Appendix A1).

2.2 Inference on partial rankings

MSmix implements two schemes to draw inference from partial rankings with arbitrary types of
censoring. One is the recent proposal of Crispino et al. (2023), which extends the method originally
described by Beckett (1993) to the finite mixture framework. The key idea is to augment each distinct
partially observed ranking rl with the corresponding set C(rl) ⊂ Pn of compatible full rankings and
then maximize the complete-data log-likelihood

ℓc(ρ, θ, ω, z, r∗|r) =
M

∑
m=1

G

∑
g=1

Nmzmg

(
log ωg − 2θg

(
cn − ρT

g r∗m
)
− log Z(θg)

)
, (1)

where r∗m is a generic full ranking belonging to C(rl), Nm is its latent frequency, ∑M
m=1 Nm = | ∪L

l=1
C(rl)|, and zm = (zm1, . . . , zmG) is its latent group membership. The algorithm to maximize (1) is
outlined in Algorithm 3 in Appendix A1.

Algorithm 3 requires the computationally intensive construction and iterative computations on the
sets C(rl) associated to each partial observation. This typically demands a lot of memory, especially
in the case of many censored positions (greater than 10, say) and large sample sizes. To address this
issue, in MSmix we propose the use of a second scheme to draw inference on partial rankings, that
uses a Monte Carlo (MC) step in place of the complete augmentation, giving rise to a MCEM-type
algorithm (Wei and Tanner, 1990). Let κ > 0 be a tuning constant and Is ⊂ {1, 2, . . . , n} be the subset
of items actually ranked in the observed partial ranking rs.1 The core idea is to iteratively complete
the missing ranks by sampling from the postulated MMS-mix conditionally on the current values of
the parameters. Specifically, the MC step is designed as follows:

MC step: for s = 1, . . . , N, simulate

z̃s | ẑs ∼ Multinom
(
1, (ẑs1, . . . , ẑsG)

)
(2)

r̃s | ρ, θ, z̃s ∼
G

∑
g=1

z̃sgP
(
r|ρg, κθg

)
(3)

and complete the partial ranking rs with the full sequence r∗s = (r∗s1, . . . , r∗sn) such that r∗si = rsi
for i ∈ Is whereas, for i /∈ Is, the positions must be assigned to the items so that their relative
ranks match those in r̃s.

The tuning constant in (3) serves to possibly increase the variability (for 0 < κ < 1) or the concentration
(for κ > 1) of the sampled rankings around the current consensus ranking. The MCEM scheme is
detailed in Algorithm 4 in Appendix A1.

1Note that for a better account of sampling variability and exploration of the parameter space, the MCEM
algorithm works at the level of the single observed units, indexed by s = 1, . . . , N, instead of the aggregated data
(rl , Nl)l=1,...,L.
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2.3 Uncertainty quantification

To quantify estimation uncertainty, we constructed confidence sets using both asymptotic likelihood
theory and bootstrap procedures.

Concerning the former approach, Critchlow (1985) showed that, although the MMS-mix model is
not regular due to the presence of the discrete component Pn in the parameter space, the likelihood
asymptotically behaves as if the consensus ranking parameters were known (Marden, 1995). This
result justifies the construction of CIs based on the asymptotic likelihood theory for the continuous
parameters of the MMS-mix. In particular, we adopt the methodology described in Mclachlan and Peel
(2000), which allows us to derive the standard errors from the output of the EM algorithm without an
additional computational burden.

Since asymptotic CIs rely on large sample approximations, their validity depends on having a
sufficiently large sample size. This is especially crucial in mixture models, where the required sample
size must be very large (Mclachlan and Peel, 2000). Therefore, we also employ a non-parametric
bootstrap approach (Efron, 1982). Specifically, for b = 1, . . . , B, we draw with replacement a sample

r(b) = {r(b)1 , . . . , r(b)N } from the observed data r, and then compute the MLEs ρ̂(b) and θ̂(b).2 Then,
to summarize the uncertainty on ρ̂, we construct itemwise CIs, providing plausible sets of ranks
separately for each item. To guarantee narrower intervals as well as a proper account of possible
multimodality, these are obtained as highest probability regions of the n bootstrap first-order marginals,
that is the sets of most likely ranks for each item at the given 100(1 − α)% level of confidence. We
also provide a way to visualize the variability of the bootstrap MLEs through a heatmap of the
corresponding first-order marginals, that is, the n × n matrix whose (i, j)−th element is given by
1
B ∑B

b=1 I
[ρ̂

(b)
i =j]

. For the continuous concentration parameter, the bounds of the 100(1 − α)% CIs are

determined as the quantiles at level α/2 and (1 − α/2) of the MLE bootstrap sample.

In the presence of multiple mixture components (G > 1), the bootstrap CIs of the component-
specific parameters are determined using the non-parametric bootstrap method applied on each
subsample of rankings allocated to the G clusters (Taushanov and Berchtold, 2019). We considered two
approaches to perform this allocation: i) the deterministic Maximum A Posteriori (MAP) classification
(separated method) or ii) a simulated classification at each iteration b from a multinomial distribution
with the estimated posterior membership probabilities ẑ (soft method). The key difference between the
two methods is that the separated one ignores the uncertainty in cluster assignment, hence, it does not
return CIs for the mixture weights and, in general, leads to narrower CIs for the component-specific
parameters. In contrast, the soft method accounts for this uncertainty, allowing the construction of
intervals for the mixture weights and providing more conservative CIs.

3 Package architecture and implementation

The MSmix package is available on the CRAN at https://cran.r-project.org/web/packages/MSmix.
The software is mainly written in R language, but several strategies have been designed to effectively
address the computational challenges, especially related to the analysis of large samples of partial
rankings with a wide set of alternatives. The key approaches adopted to limit execution time and
memory load are described below.

• Even though the input ranking dataset is required in non-aggregated form, as detailed in Section
4.1, most of the proposed inferential algorithms first determine the frequency distribution of
the observations, and then work at aggregated level. This step reduces data volume and,
consequently, the overall computational burden.

• For very large n, the approximate Spearman distance distribution is evaluated over a predefined
grid of distance values. This approach prevents the computation of frequencies Nd from
becoming numerically intractable or prohibitive, both in terms of computational time and
memory allocation.

• The ranking spaces Pn for n ≤ 11, needed for the data augmentation of partial rankings in
Algorithm 3, are internally stored in the package and available for offline use.

• MSmix is one of the few R packages for ranking data which includes the parallelization option
of the iterative estimation procedures over multiple initializations. This is crucial to guarantee a
good parameter space exploration and convergence achievement at significantly reduced costs
in terms of execution time.

2For full rankings and a single mixture component, the MSmix package also offers the parametric bootstrap
method, where each simulated sample r(b) is obtained by randomly sampling from the fitted MMS rather than
from the observed data.

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859

https://cran.r-project.org/web/packages/MSmix


CONTRIBUTED RESEARCH ARTICLE 211

Table 1: Characteristics of the existing R packages for the MLE of MMS mixtures.

Full rankings Top partial Arbitrary partial
G = 1 G > 1 G = 1 G > 1 G = 1 G > 1

pmr ✓ ✗ ✗ ✗ ✗ ✗

rankdist ✓ ✓ ✓ ✓ ✗ ✗

MSmix ✓ ✓ ✓ ✓ ✓ ✓

• The implementation of some critical steps is optimized with a call to functions coded in the C++
language, such as the essential computation of the Spearman distance.

According to their specific task, the objects contained in MSmix can be grouped into five main
categories, namely

Ranking data functions: objects denoted with the prefix "data_" that allow to apply several transfor-
mations or summaries to the ranking data.

Model functions: all the routines aimed at performing an MMS-mix analysis.

Ranking datasets: objects of class "data.frame" denoted with the prefix "ranks_", which collect the
observed rankings in the first n columns and possible covariates. Most of them are original
datasets never analyzed earlier in the literature.

Spearman distance functions: a series of routines related to the Spearman distance computation and
its distributional properties.

S3 class methods: generic functions for the S3 class objects associated with the main routines.

In Section 4, we extensively describe the usage of the above objects through applications on simulated
and real-world data.

3.1 Performance benchmarking

The algorithms developed in MSmix result in impressive gains in terms of overall efficiency compared
to the few existing R packages for the frequentist analysis of ranking data with the MMS, that is, pmr
and rankdist. Their general characteristics are outlined in Table 1, highlighting the greater flexibility
of MSmix to handle different forms of partial rankings in a finite mixture framework.

Table 2 reports the execution times for an experiment with full rankings and G = 1, representing
the only case supported by all the three packages. Specifically, we simulated N = 100 full rankings
from the MMS with increasing number of items n and then fitted the true model. The comparison
shows that MSmix outperforms the other packages in all scenarios and its remarkable speed seems
almost not to be impacted by n, at least up to n = 20. This happens because, for the homogeneous case,
MSmix exploits the theoretical properties of the Spearman distance and conveniently implements the
MLEs as a one-step procedure, without the need to iterate (nor to locally search).

The results of two additional experiments, both supported exclusively by MSmix and rankdist, are
reported in Table 3. The first (left panel) concerns inference of a basic MMS on top partial rankings: we
simulated N = 100 full rankings of n = 7 items from the MMS, and then censor them with decreasing

Table 2: Comparison among MSmix, rankdist and pmr in terms of computational times (seconds) to
fit the basic MMS (G = 1) on full rankings with increasing number of items. Note: not run indicates
that we did not perform the fit because of the excessive computing time and the symbol ✗ indicates
that the fit is not supported.

MSmix rankdist pmr
n = 5 0.004 0.01 0.263
n = 6 0.004 0.028 3.955
n = 7 0.003 0.276 137.781
n = 8 0.004 2.748 not run
n = 9 0.004 32.1 not run

n = 10 0.004 538.71 not run
n = 15 0.004 ✗ ✗
n = 20 0.004 ✗ ✗
n = 50 0.031 ✗ ✗
n = 100 0.485 ✗ ✗
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Table 3: Comparison between Msmix and rankdist to fit a basic MMS on partial top−k rankings (left)
and a MMS-mix with G = 2 components on full rankings (right). Computational times (in seconds)
averaged over 100 independent replications.

MSmix rankdist
k = 5 0.029 0.301
k = 4 0.041 0.321
k = 3 0.064 0.386
k = 2 0.103 0.543
k = 1 0.122 0.673

MSmix rankdist
n = 5 0.049 0.089
n = 6 0.035 0.185
n = 7 0.023 0.262
n = 8 0.024 0.411
n = 9 0.018 0.612

number of top-k ranked items. The second (right panel) concerns inference of MMS-mix with full
rankings: we simulated N = 100 full rankings of increasing length n from the MMS-mix with G = 2
components, and then estimated the true model. Again, MSmix turns out to be particularly fast and
more efficient when compared to the competing package. Moreover, the choice of n = 7 is motivated
by the fact that rankdist only works with a maximum of 7 items in the case partial rankings are
considered.

The comparative analysis of this section was performed using R version 4.4.0 on a macOS Monterey
12.7.3 (2.5GHz Intel Core i7 quad-core). For further results and discussion on the computational
performance of the MSmix package, see Appendix A2.

4 Using the MSmix package

4.1 Data format

The knowledge of the data format adopted in a package is, especially for ranked sequences, crucial
before safely conducting any ranking data analysis. The MSmix package privileges the ranking data
format, which is a natural choice for the MM, and the non-aggregate form, meaning that observations
must be provided as an integer N × n matrix or data.frame with each row representing individual
observed partial rankings. Missing positions must be coded as NAs and ties are not allowed.

We start the illustration of the main functionalities of MSmix by using a new full ranking dataset
contained in the package, called ranks_antifragility. This dataset, stemming from a 2021 survey
on Italian startups during the COVID-19 outbreak, collects rankings of n = 7 crucial antifragility
features.3 Since covariates are also included, the N = 99 full rankings can be extracted from the first
n = 7 columns as follows

R> n <- 7
R> ranks_AF <- ranks_antifragility[, 1:n]
R> str(ranks_AF)

'data.frame': 99 obs. of 7 variables:
$ Absorption : int 4 1 3 4 2 2 1 2 4 4 ...
$ Redundancy : int 2 4 4 2 3 1 4 1 3 3 ...
$ Small_stressors : int 1 3 1 7 4 6 5 4 6 6 ...
$ Non_monotonicity : int 3 2 2 1 1 3 2 5 1 7 ...
$ Requisite_variety : int 5 7 7 3 7 7 7 3 7 2 ...
$ Emergence : int 6 6 6 6 6 5 6 7 2 1 ...
$ Uncoupling : int 7 5 5 5 5 4 3 6 5 5 ...

To facilitate the visualization of the outputs, let us shorten the item labels, and then see the appearance
of the rankings provided by the very first three startups.

R> names(ranks_AF) <- substr(x = names(ranks_AF), start = 1, stop = 3)
R> ranks_AF[1:3, ]
Abs Red Sma Non Req Eme Unc

1 4 2 1 3 5 6 7
2 1 4 3 2 7 6 5
3 3 4 1 2 7 6 5

3The antifragility properties reflect a company’s ability to not only adapt but also improve its activity and grow
in response to stressors, volatility and disorders caused by critical and unexpected events.

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 213

The switch to the ordering format (and vice versa) can be easily realized with the data_conversion
routine, that has the flexibility to support partial sequences with arbitrary patterns of censoring. Here
is the transformation into orderings of the above three full rankings.

R> data_conversion(data = ranks_AF[1:3, ])
[,1] [,2] [,3] [,4] [,5] [,6] [,7]

1 3 2 4 1 5 6 7
2 1 4 3 2 7 6 5
3 3 4 1 2 7 6 5

4.2 Data description and manipulation

Descriptive statistics and other useful sample summaries can be obtained with the data_description
routine that, differently from analogous functions supplied by other R packages, can handle partial
observations with arbitrary type of censoring. The output is a list of S3 class "data_descr", whose
components can be displayed with the print.data_descr method. For the entire Antifragility sample,
the basic application of these commands is the following

R> data_descr_AF <- data_description(rankings = ranks_AF)
R> print(data_descr_AF)

Sample size: 99
N. of items: 7

Frequency distribution of the number of ranked items:
1 2 3 4 5 6 7
0 0 0 0 0 0 99

Number of missing positions for each item:
Abs Red Sma Non Req Eme Unc
0 0 0 0 0 0 0

Mean rank of each item:
Abs Red Sma Non Req Eme Unc
2.45 3.27 4.02 2.71 5.38 5.01 5.15

Borda ordering:
"Abs" "Non" "Red" "Sma" "Eme" "Unc" "Req"

First-order marginals:
Abs Red Sma Non Req Eme Unc Sum

Rank1 37 13 6 34 3 3 3 99
Rank2 28 25 10 18 3 9 6 99
Rank3 13 20 22 18 10 7 9 99
Rank4 6 18 28 16 11 9 11 99
Rank5 6 12 14 4 19 20 24 99
Rank6 6 8 9 3 16 39 18 99
Rank7 3 3 10 6 37 12 28 99
Sum 99 99 99 99 99 99 99 693

Pairwise comparison matrix:
Abs Red Sma Non Req Eme Unc

Abs 0 67 80 52 86 83 82
Red 32 0 63 41 79 79 75
Sma 19 36 0 33 75 68 64
Non 47 58 66 0 86 84 84
Req 13 20 24 13 0 43 47
Eme 16 20 31 15 56 0 59
Unc 17 24 35 15 52 40 0

where the two displayed matrices correspond, respectively, to the first-order marginals, with the
(j, i)-th entry indicating the number of times that item i is ranked in position j, and the pairwise
comparison matrix, with the (i, i′)-th entry indicating the number of times that item i is preferred to
item i′. The function data_description also includes an optional subset argument which allows to
summarize specific subsamples defined, for example, through a condition on some of the available
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Figure 1: ECDFs of the marginal rank distributions (left) and bubble plot of the pairwise comparison
matrix (right) for the Antifragility dataset. These plots correspond, respectively, to the elements named
ecdf and pc of the output list returned by the generic method plot.data_descr.

covariates. The idea is to facilitate a preliminary exploration of possible different preference patterns
influenced, for example, by some of the observed subjects’ characteristics.

Finally, we created a further generic method for the class "data_descr" to offer a more attractive
and intuitive rendering of the fundamental summaries, that is, the function plot.data_descr. This
method produces a list of five plots by relying on the fancy graphical tools implemented in the ggplot2
package (Wickham, 2016), namely: 1) the barplot with the percentages of the number of ranked items
in the observed rankings, 2) the pictogram of the mean rank vector, 3) the heatmap of the first-order
marginals (either by item or by rank), 4) the Empirical Cumulative Distribution Functions (ECDFs)
of the marginal rank distributions and 5) the bubble plot of the pairwise comparison matrix. For the
Antifragility dataset, the following code snippet illustrates the creation of the above graphics and how
to access, separately, to the ECDFs and the bubble plot displayed in Figure 1.

R> p_descr_AF <- plot(data_descr_AF)
R> p_descr_AF$ecdf()
R> p_descr_AF$pc()

Concerning ranking data manipulation, MSmix provides functions designed to switch from
complete to partial sequences, with the routine data_censoring, or from partial to complete sequences,
with the routines data_augmentation and data_completion. These functions are particularly useful
in simulation scenarios for evaluating the robustness of inferential procedures in recovering the
actual data-generating mechanisms under various types and extents of censoring and different data
augmentation strategies for handling partial data.

With data_censoring, complete rankings can be converted into partial rankings in two distinct
ways. One approach obscures only the bottom ranks to produce a top partial ranking (set topk = TRUE),
while the other obscures ranks at any position (set topk = FALSE). In both cases, users can specify how
many positions are retained for each sequence through two schemes: (i) a deterministic method, where
an integer vector (of length N) is provided to the nranked argument specifying the desired number of
ranks to be retained in each partial sequence; (ii) a stochastic method, where nranked = NULL (default)
and a numeric vector is provided to the probs argument defining the (n − 1) probabilities associated
with retaining different number of ranks (from 1 to n − 1). These probabilities determine the random
number of ranks to be retained in each partial sequence after censoring.4 An example of a deterministic
top-k censoring scheme is implemented below to covert the complete Antifragility ranking data into
top-3 rankings.

R> N <- nrow(ranks_AF)
R> top3_AF <- data_censoring(rankings = ranks_AF, topk = TRUE, nranked = rep(3,N))
R> top3_AF$part_rankings[1:3,]
Abs Red Sma Non Req Eme Unc

1 NA 2 1 3 NA NA NA
2 1 NA 3 2 NA NA NA
3 3 NA 1 2 NA NA NA
> table(top3_AF$nranked)

4Recall that a partial sequence with (n − 1) observed entries corresponds to a full ranking.
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The output of data_censoring is a list with a first component, named part_rankings, corresponding to
the input complete data matrix rankings with suitably censored (NA) entries, and a second component,
named nranked, corresponding to the vector with the number of actually visible positions in each
partial ranking.

An example of stochastic top-k censoring scheme on the same dataset, that will result in a random
number of bottom positions obscured, can be run as follows

R> top_AF <- data_censoring(rankings = ranks_AF, topk = TRUE, probs = c(1:(n-2),0))
R> top_AF$part_rankings[1:3,]
Abs Red Sma Non Req Eme Unc

1 4 2 1 3 5 NA NA
2 1 NA 3 2 NA NA NA
3 3 NA 1 2 NA NA NA

R> table(top_AF$nranked)
1 2 3 4 5
1 14 16 19 49

In this case, the vector probs assigns an increasing chance of retaining a higher number of top positions,
with the exception of a zero value in the last entry, forcing the non-occurrence of full rankings after
censoring. Apart from the different setting for the topk argument, applying a censoring scheme to
arbitrary positions requires a similar syntax to the top-k. The main difference is that, instead of the
censoring process acting only on the bottom part of the rankings, the positions to be censored are
determined uniformly at random once the number of ranks to be kept is specified by the user (either
deterministically or stochastically).

We conclude this section with an illustration of the counterpart commands of data_censoring
available in MSmix, which act on partial rankings and fill in the missing positions with different
criteria. The first, called data_augmentation, is the key function for estimating a MMS-mix on partial
rankings via Algorithm 3. Here is a toy example with only two partial rankings characterized by
different types of censoring.

R> ranks_toy <- rbind(c(2, NA, 1, NA, 3), c(NA, 4, NA, 1, NA))
R> ranks_toy

[,1] [,2] [,3] [,4] [,5]
[1,] 2 NA 1 NA 3
[2,] NA 4 NA 1 NA

R> data_augmentation(rankings = ranks_toy)
[[1]]

[,1] [,2] [,3] [,4] [,5]
[1,] 2 4 1 5 3
[2,] 2 5 1 4 3

[[2]]
[,1] [,2] [,3] [,4] [,5]

[1,] 2 4 3 1 5
[2,] 3 4 2 1 5
[3,] 3 4 5 1 2
[4,] 2 4 5 1 3
[5,] 5 4 2 1 3
[6,] 5 4 3 1 2

The output list contains the matrices of all full rankings compatible with each partial sequence.5

We remark that, despite the name rankings of the input (partially ranked) data matrix, the function
data_augmentation can also be applied to partial observations expressed in ordering format. In
general, it supports the data augmentation of sequences containing at most 10 missing entries.

The second function, named data_completion, completes each partial ranking with a single
compatible full ranking. To complete the rankings in ranks_toy, one needs to set the ref_rho argument
equal to a matrix of the same dimensions as ranks_toy, containing the reference full rankings in each
row. In the example below, we use the identity permutation and its opposite as the reference sequences
for completion.

5These correspond to the sets C(r) introduced in Section 2.2.
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R> data_completion(rankings = ranks_toy, ref_rho = rbind(1:5, 5:1))
[,1] [,2] [,3] [,4] [,5]

[1,] 2 4 1 5 3
[2,] 5 4 3 1 2

The output is the matrix obtained by filling in the missing entries of each partial sequence with the
relative positions of the unranked items according to the reference full ranking.6 The data_completion
command accommodates any type of censoring, similar to data_augmentation, but without the need
to enumerate all possible orders of missing positions. Consequently, there is no upper limit on the
number of NA entries in the partial sequences.

4.3 Sampling

The function devoted to simulating an i.i.d. sample of full rankings from a MMS-mix is rMSmix, which
relies on the Metropolis-Hastings (MH) procedure implemented in the R package BayesMallows
(Sørensen et al., 2020). When n ≤ 10, the routine also offers the possibility to perform exact sampling
by setting the logical mh argument to FALSE.

The rMSmix function requires the user to specify: i) the desired number of rankings (sample_size),
ii) the number of items (n_items) and iii) the number of mixture components (n_clust). The mixture
parameters can be separately passed with the (optional) arguments rho, theta and weights, set to NULL
by default. If the user does not input the above parameters, the concentrations are sampled uniformly
in the interval (1/n2, 3/n3/2),7 while the simulation of the consensus parameters and the weights
can be selected with the logical argument uniform. The option uniform = TRUE consists in generating
the non-specified parameters uniformly in their support. Here is an example where N = 100 full
rankings of n = 8 items are exactly generated from a 3-component MMS-mix, with assigned and equal
concentrations θ = (.15, .15, .15) and the other parameters sampled uniformly at random.

R> sam_unif <- rMSmix(sample_size = 100, n_items = 8, n_clust = 3, theta = rep(.15, 3),
+ uniform = TRUE, mh = FALSE)

The function rMSmix returns a list of five named objects: the N × n matrix with the simulated
complete rankings (samples), the model parameters actually used for the simulation (rho, theta and
weights) and the simulated group membership labels (classification). For the previous example,
they can be extracted as follows

R> sam_unif$samples[1:3,]
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 6 1 7 5 8 3 2 4
[2,] 2 1 3 7 5 4 8 6
[3,] 6 2 7 5 8 3 1 4

R> sam_unif$rho
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 6 2 1 5 4 3 8 7
[2,] 4 2 5 3 8 7 1 6
[3,] 6 2 8 4 7 3 1 5

R> sam_unif$weights
[1] 0.49165535 0.04123627 0.46710838

R> table(sam_unif$classification)
1 2 3
35 5 60

One can note that, with uniform sampling, cluster separation and balance of the drawings among
the mixture components are not guaranteed. In fact, cluster 2 has a very small weight (ω2 ≈ 0.04)
corresponding to only 5 observations; moreover, the consensus rankings of clusters 2 and 3 are
quite similar, as testified by their low relative Spearman distance obtained by dividing the output of
command spear_dist included in MSmix by the maximum value of the metric.8

6These sequences correspond to the result of data completion from the MC step described in Section 2.2.
7The concentration parameters play a delicate role. In fact, if θ is too close to zero, the MMS turns out to be

indistinguishable from the uniform distribution on Pn, while if θ is too large the MMS distribution would tend to a
Dirac on the consensus ranking ρ. The critical magnitude turns out to be θ ∼ c/n2 with c > 0 fixed (Zhong, 2021).

8The maximum Spearman distance among two rankings of a given length n is equal to 2(n+1
3 ).
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(a) Samples with uniformly generated parameters. (b) Samples from separated clusters.

Figure 2: Heatmap of the Spearman distance matrix between all pairs of full rankings for two simulated
samples from a 3-component MMS-mix, obtained by setting uniform = TRUE (a) and uniform = FALSE
(b) in the rMSmix routine.

R> max_spear_dist <- 2*choose(8+1,3)
R> spear_dist(rankings = sam_unif$rho[2,], rho = sam_unif$rho[3,])/max_spear_dist
[1] 0.1904762

To ensure separation among the mixture components and non-sparse weights, the user can set the
option uniform = FALSE. Specifically, the consensus rankings are drawn with a minimum Spearman
distance from each other equal to 2

G (n+1
3 ), and the mixing weights are sampled from a symmetric

Dirichlet distribution with (large) shape parameters α = (2G, . . . , 2G) to favour populated and
balanced clusters.

R> sam_sep <- rMSmix(sample_size = 100, n_items = 8, n_clust = 3, theta = rep(.15, 3),
+ uniform = FALSE, mh = FALSE)

The three clusters are now more balanced and their central rankings have a larger relative distance.

R> sam_sep$weights
[1] 0.5214495 0.2594782 0.2190723

R> spear_dist(rankings = sam_sep$rho)/max_spear_dist
1 2

2 0.6309524
3 0.7023810 0.6666667

In Figure 2, we show the separation among clusters in the two examples through the Spearman
distance matrix of the simulated samples, which quantifies the dissimilarity between each pair of
observations. Specifically, Figures 2a and 2b can be constructed as follows9

R> plot(spear_dist(rankings = sam_unif$samples), show_labels = FALSE)
R> plot(spear_dist(rankings = sam_sep$samples), show_labels = FALSE)

where the argument show_labels = FALSE allows to drop the labels of the observations over the axes
in the case of large samples. The heatmaps indicate the presence of only two well-separated clusters in
the sample obtained with uniformly generated parameters (Figure 2a), while three groups are evident
when the simulation is performed by controlling the distance among components (Figure 2b).

In conclusion, rMSmix is designed to facilitate the implementation of alternative sampling schemes,
that can be fruitful to assess the performance of the inferential procedures and their robustness under
a variety of simulation scenarios.

4.4 Application on full rankings

In this section, we show how to perform a mixture model analysis on the Antifragility rankings. To
this aim, we use the command fitMSmix, the core function of the MSmix package, which performs

9Notably, the plot.dist function of MSmix fills in the gap of a generic method for objects of class "dist" in R,
since it allows to visualize, and hence compare, distance matrices of any metric.
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Figure 3: Bump plot depicting the estimated consensus rankings of the G = 3 clusters for the
ranks_antifragility dataset. This plot corresponds to the element named bump_plot of the output
list returned by the generic method plot.emMSmix.

MLE of the MMS-mix on the input rankings via EM algorithm with the desired number n_clust of
components. The number of multiple starting points, needed to address the issue of local maxima, can
be set through the argument n_start, and the list init possibly allows to configure initial values of
the parameters for each starting point.

The code below shows how to estimate the MMS-mix with a number of components ranging from
1 to 6 and save the values of the Bayesian information criterion (BIC) in a separate vector for then
choosing the optimal number of clusters.

R> FIT.try <- list()
R> BIC <- setNames(numeric(6), paste0('G = ', 1:6))
R> for(i in 1:6){
+ FIT.try[[i]] <- fitMSmix(rankings = ranks_AF, n_clust = i, n_start = 50)
+ BIC[i] <- FIT.try[[i]]$mod$bic}

The BIC values of the six estimated models are

R> print(BIC)
G = 1 G = 2 G = 3 G = 4 G = 5 G = 6

1494.435 1461.494 1442.749 1444.223 1449.714 1453.101

suggesting G = 3 as the optimal number of groups (lowest BIC). The function fitMSmix creates an
object of S3 class "emMSmix", which is a list whose main component, named mod, describes the best
fitted model over the n_start initializations. It includes, for example, the MLE of the parameters
(rho, theta and weights), the fitting measures (log_lik and bic), the estimated posterior membership
probabilities (z_hat) and the related MAP allocation (map_classification) as well as the binary
indicator of convergence achievement (conv).

The MLEs of the best fitted model can be shown also through the generic method summary.emMSmix,

R> summary(object = FIT.try[[3]])
Call:
fitMSmix(rankings = ranks_AF, n_clust = 3, n_start = 50)

-----------------------------
--- MLE of the parameters ---
-----------------------------

Component-specific consensus rankings:
Abs Red Sma Non Req Eme Unc

Group1 5 6 4 7 2 1 3
Group2 1 3 4 2 5 6 7
Group3 2 3 4 1 7 6 5

Component-specific consensus orderings:
Rank1 Rank2 Rank3 Rank4 Rank5 Rank6 Rank7
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Figure 4: Heatplot of the estimated cluster membership probabilities for each observation of the
ranks_antifragility dataset. This plot corresponds to the element named est_clust_prob of the
output list returned by the generic method plot.emMSmix.

Group1 "Eme" "Req" "Unc" "Sma" "Abs" "Red" "Non"
Group2 "Abs" "Non" "Red" "Sma" "Req" "Eme" "Unc"
Group3 "Non" "Abs" "Red" "Sma" "Unc" "Eme" "Req"

Component-specific precisions:
Group1 Group2 Group3
0.111 0.241 0.087

Mixture weights:
Group1 Group2 Group3
0.083 0.343 0.574

which also displays the estimated modal orderings in the rows of the second output matrix. The
generic function plot.emMSmix is also associated to the class "emMSmix" and constructs a list of two
fancy plots, see commands below.

R> p_fit3_AF <- plot(FIT.try[[3]])
R> p_fit3_AF$bump_plot()
R> p_fit3_AF$est_clust_prob()

The first one is the bump plot (Figure 3) depicting the consensus ranking of each cluster, with different
colors assigned to each item, circle sizes proportional to the estimated weights and lines to better
highlight item positions in the modal orderings of the various components. For this example, we
note that the size of the second cluster is almost half that of the third cluster, while the first cluster is
very small. Moreover, the two larger groups (2 and 3) exhibit very similar modal rankings and quite
opposite preferences with respect to the first cluster (items such as “Emergence”, “Requisite variety”,
and “Uncoupling” are ranked at the top in cluster 1, but placed at the bottom in groups 2 and 3).

Figure 4 shows, instead, the individual cluster memberships probabilities, describing the uncer-
tainty with which each observation could be assigned to the mixture components. For example, the
units 10, 15, 19, 20, 71, 74, 78 and 94 have high probabilities (close to 1) of belonging to group 1. Instead,
some units (e.g., unit 8, 28, 36, and 44) have similar membership probabilities of belonging to clusters
2 or 3, indicating less confidence in their assignment to one of the two groups. On the other hand,
when some clusters are close on the ranking space, a certain degree of uncertainty in recovering the
true membership is expected.

The package provides also routines for computing the CIs, working with the object of class
"emMSmix" as first input argument. For example, we can produce asymptotic CIs for the precisions
and mixture weights with confintMSmix, which is a function specific for full ranking data. With the
default confidence level (conf_level = 0.95), one obtains

R> confintMSmix(object = FIT.try[[3]])
Asymptotic 95%CIs for the precisions:

lower upper
Group1 0.000 0.226
Group2 0.153 0.329
Group3 0.068 0.106

Asymptotic 95%CIs for the mixture weights:
lower upper

Group1 0.021 0.144
Group2 0.195 0.491
Group3 0.473 0.676

Another possibility relies on bootstrap CI calculation. Let us opt for the soft bootstrap method
(the default choice when G > 1) which, unlike the separated one (type = "separated"), produces CIs
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Figure 5: Kernel densities of the soft bootstrap MLEs of the precision parameters (left) and the
weights (right) for the ranks_antifragility dataset. These plots correspond, respectively, to the
elements named theta_density and weights_density of the output list returned by the generic
method plot.bootMSmix.

also for weights. We require n_boot = 500 bootstrap samples and then print the output object of class
"bootMSmix" through the generic function print.bootMSmix.

R> CI_bootSoft <- bootstrapMSmix(object = FIT.try[[3]], n_boot = 500, all = TRUE)
R> print(CI_bootSoft)
Bootstrap itemwise 95%CIs for the consensus rankings:

Abs Red Sma Non Req Eme
Group1 "{3,4,5,6,7}" "{4,5,6,7}" "{2,3,4,5,6}" "{6,7}" "{1,2,3,4}" "{1,2}"
Group2 "{1}" "{2,3}" "{4}" "{2,3}" "{5}" "{6}"
Group3 "{1,2,3}" "{2,3}" "{4,5}" "{1,2}" "{7}" "{5,6}"

Unc
Group1 "{2,3,4,5}"
Group2 "{7}"
Group3 "{4,5,6}"

Bootstrap 95%CIs for the precisions:
lower upper

Group1 0.068 0.212
Group2 0.193 0.314
Group3 0.069 0.112

Bootstrap 95%CIs for the mixture weights:
lower upper

Group1 0.071 0.101
Group2 0.283 0.404
Group3 0.505 0.636

The logical argument all indicates whether the MLEs estimates obtained from the bootstrap samples
must be returned in the output. When all = TRUE, as in this case, the user can visualize the bootstrap
sample variability with the generic function plot.bootMSmix. It returns a list with the heatmap of the
first-order marginals of the bootstrap samples, and the kernel densities for the precisions and weights.
For this application, the latter two plots (Figure 5) are obtained as follows.

R> p_ci_soft <- plot(CI_bootSoft)
R> p_ci_soft$theta_density()
R> p_ci_soft$weights_density()

4.5 Application on partial rankings

In this section, we illustrate how to perform inference on the partial rankings collected in the original
ranks_beers dataset. These data were gathered through an online survey administered to the partici-
pants of the 2018 Pint of Science festival held in Grenoble. A sample of N = 105 subjects provided their
partial rankings of n = 20 beers according to their personal tastes. The partial rankings, characterized
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Figure 6: Percentages of the number of ranked items in the ranks_beers dataset. This barplot
corresponds to the element named n_ranked_distr of the output list returned by the generic method
plot.data_descr.

by different censoring patterns (that is, not exclusively top-k sequences), are recorded in the first 20
columns of the dataset, while column 21 contains a covariate regarding respondents’ residency.

The barplot with the percentages of the number of beers actually ranked by the participants is
reported in Figure 6. We restrict the analysis to partial rankings with maximum 8 missing positions,
to show both the data augmentation schemes (Algorithms 3 and 4) implemented in the package.
Note that, since our EM algorithms rely on the MAR assumption, we preliminarily conducted an
empirical evaluation to assess whether the realized missingness pattern significantly deviates from
this hypothesis. This check is described in Appendix A3.

Thanks to the subset argument of fitMSmix, we can specify the subsample of observations to be
considered directly in the fit command. To speed up the estimation process, we parallelize the multiple
starting points by setting parallel = TRUE.10

R> rankings <- ranks_beers[,1:20]
R> subset_beers <- (rowSums(is.na(rankings)) <= 8)
R> library(doParallel)
R> registerDoParallel(cores = detectCores())
R> FIT_aug <- fitMSmix(rankings,n_clust = 1, n_start = 15,
+ subset = subset_beers, mc_em = FALSE, parallel = TRUE)
R> FIT_mcem <- fitMSmix(rankings, n_clust = 1, n_start = 15,
+ subset = subset_beers, mc_em = TRUE, parallel = TRUE)

The logical mc_em argument indicates whether the MCEM scheme (Algorithm 4) must be applied.
When mc_em = FALSE (default), Algorithm 3 is implemented.11 We note that, for this application, the
results of the two methods are very similar.

R> spear_dist(FIT_aug$mod$rho,FIT_mcem$mod$rho)/(2*choose(20+1,3))
[1] 0.001503759

R> c('theta_aug' = FIT_aug$mod$theta, 'theta_mcem' = FIT_mcem$mod$theta)
theta_aug theta_mcem

0.008580397 0.008964391

One can then evaluate the uncertainty associated to the consensus ranking estimated via the
MCEM with the non-parametric bootstrap (default for G = 1). Also in this case, we can parallelize
over the multiple starting points of the EM algorithm used to fit the bootstrap samples.

R> boot_mcem <- bootstrapMSmix(object = FIT_mcem, n_boot = 300, n_start = 15,
all = TRUE, parallel = TRUE)

R> print(boot_mcem)
Bootstrap itemwise 95%CIs for the consensus rankings:

10Note that exact reproducibility of this section may not be possible due to the use of parallelization, which can
lead to minor variations in inferential results between runs.

11This type of data augmentation is supported for up to 10 missing positions in the partial rankings. However, it
is important to note that while this operation may be feasible in principle for some datasets, it can be slow and
memory-intensive. For instance, augmenting and storing all rankings compatible with the subset of the beers
dataset with a maximum of 10 missing positions requires more than 3GB of storage space.
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Figure 7: Heatmap of the bootstrap MLE of the consensus ranking for a subsample of the ranks_beers
dataset. On the y-axis, items are ordered according to the MLE of ρ (top-ranked beer at the bottom).
This plot corresponds to the element named rho_heatmap of the output list returned by the generic
method plot.bootMSmix.

Stella Kwak KronKron Faro
Group1 "{12,13,14,15,16,17,18}" "{2,3,4,5,6}" "{19,20}" "{8,9,10,11,12,13,14,15}"

Kron1664 Chimay Pelforth KronCarls
Group1 "{14,15,16,17,18}" "{1,2}" "{11,12,13,14,15}" "{12,13,14,15,16,17,18}"

KronKanter Hoegaarden Grimbergen Pietra
Group1 "{19,20}" "{6,7,8,9,10,11,12}" "{2,3,4,5,6,7}" "{6,7,8,9,10,11,12,13}"

Affligem Goudale Leffe Heineken
Group1 "{3,4,5,6,7,8}" "{4,5,6,7,8,9,10}" "{6,7,8,9,10,11}" "{14,15,16,17,18}"

Duvel Choulette Orval
Group1 "{2,3,4,5,6,7,8}" "{12,13,14,15,16,17,18}" "{5,6,7,8,9,10,11,12,13,15}"

Karmeliet
Group1 "{1,2,3,4,5,6}"

Bootstrap 95%CIs for the precisions:
lower upper

Group1 0.007 0.013
R> plot(boot_mcem)$rho_heatmap()

The heatmap of the bootstrap output, displayed in Figure 7, helps in understanding the variability
and confidence in the rankings of the beers. In fact, the top ranked beer (Chimay) and the two bottom
ranked ones (KronKanter and KronKron) are quite reliably ranked in those positions. On the contrary,
the ranks of the other beers are more uncertain, with itemwise 95% bootstrap-based CIs for some
beers being as wide as 10 positions (out of 20). Note also that some itemwise regions can result in
subsets of non-contiguous ranks, as in the case of Orval whose CI does not include rank 14. We
conclude this section by stressing that the application to the beers dataset represents a non-trivial case
of ranking data analysis, since currently there are no other R packages supporting MLE of the MM on
partially-ranked sequences with arbitrary missing positions.

4.6 Additional options

The MSmix package also supplies some functions to deal with the distribution of the Spearman
distance. Although these functions are primarily used internally to fit the model (see the algorithms in
Appendix A1), they are made available for external use due to their standalone utility.
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The function spear_dist_distr returns the (log-)frequency distribution of the Spearman distance
under the uniform model. If n ≤ 20, the function returns the exact distribution by relying on a call to
the get_cardinalities routine of BayesMallows. Here is an example with n = 5.

R> spear_dist_distr(n_items = 5)
$distances
[1] 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
$logcard
[1] 0.000000 1.386294 1.098612 1.791759 1.945910 1.791759 1.386294 2.302585
[9] 1.791759 2.302585 1.791759 2.302585 1.791759 2.302585 1.386294 1.791759
[17] 1.945910 1.791759 1.098612 1.386294 0.000000

When n > 20, the approximate distribution introduced by Crispino et al. (2023) is returned and, in the
case n ≥ 170, its calculation is restricted over a fixed grid of values of the Spearman distance to limit
computational burden.

The functions partition_fun_spear, expected_spear_dist and var_spear_dist provide, respec-
tively, the partition function Z(θ), the expected value Eθ [D] and the variance Vθ [D] of the Spearman
distance under the MMS. For n = 5, one has

R> partition_fun_spear(theta = 0.1, n_items = 5)
[1] 3.253889
R> expected_spear_dist(theta = 0.1, n_items = 5)
[1] 2.421115
R> var_spear_dist(theta = 0.1, n_items = 5)
[1] 4.202741

For these functions, the computation is exact or approximate according to the same principle described
for spear_dist_distr.

5 Conclusions

The new MSmix package enriches the R software environment with functions to analyze finite mixtures
of MMS on full and partial rankings with arbitrary patterns of censoring. Inference is conducted
within the ML framework via EM algorithms. Estimation uncertainty is quantified with bootstrap
methods and approximate CIs from the asymptotic likelihood theory.

The innovative contributions of MSmix span from both methodological and computational ad-
vancements to address the lacks and limitations found in most of the existing packages, especially the
possibility of realizing a ranking data analysis with many items and missing positions or assessing
estimation uncertainty of model parameters. Moreover, the estimation procedures have been gener-
alized and optimized to work effectively across a spectrum of censoring patterns, rather than being
limited solely to the top-k scenario. The package also exploits the construction of S3 class objects and
related generic methods to offer a unified and original analysis framework. In this regard, a special
attention was devoted to the development of effective visualization tools and summaries, that can
assist the users in the reporting results and designing conclusions with a more transparent account of
the associated uncertainty.

Our inferential procedures rely on EM algorithms assuming a MAR missing data mechanism.
Under the MAR assumption, missingness does not depend on the unobserved preferences, allowing
the EM algorithm to yield unbiased estimates without explicitly modeling the missing data process
(Rubin, 1976; Little and Rubin, 2019). Although MAR is a common simplifying assumption in partial
ranking analysis (Beckett, 1993; Jacques and Biernacki, 2014; Piancastelli and Barreto-Souza, 2025), it
may not hold in real-world settings. For instance, top-k rankings can arise when respondents omit
to rank certain items due to unfamiliarity or low popularity, indicating that missingness depends on
unobserved preferences and could, thus, significantly depart from the pure MAR assumption. It is well
known that ignoring the missingness process under non-MAR scenarios can bias estimates obtained
from standard EM algorithms (Little and Rubin, 2019). However, the effects of MAR violations on
the estimation accuracy of EM algorithms, as well as methods to address non-ignorable missingness,
remain largely unexplored in the partial ranking literature. In this context, extending the methods
provided by MSmix to better handle missing data in ranking models would represent a valuable
methodological contribution for future research.

The package architecture and its computational achievements can facilitate code extensibility for
accomplishing these innovative directions. For example, its flexibility in accommodating diverse data
censoring patterns could be of support for exploring the plausibility of the standard MAR assumption
or developing extensions of parametric mixture models incorporating non-ignorable missing data
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mechanisms. Moreover, the package capability to analyze data characterized by a large number of
alternatives could motivate the interest in clustering similar items, as recently proposed for the MM in
Piancastelli and Friel (2025), or even in developing methods to solve bi-clustering problems. Finally, to
better characterize choice processes, the EM algorithms could be integrated with an additional step for
estimating the impact of individual and/or item-specific covariates - a typical but complex task in
preference analysis from ranking data (see e.g., Gormley and Murphy, 2008; Zhu et al., 2021). We are
currently working in this direction with a proposal to enrich the MMS-mix with a Mixture of Experts
model (Jacobs et al., 1991; Jordan and Jacobs, 1994), that is, a mixture model in which the weights are
functions of the covariates (Crispino et al., 2024). Future releases of MSmix will also include functions
to deal with different distances among rankings.
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7 Appendix

7.1 Estimation algorithms

We here provide the pseudo-code of the estimation algorithms implemented in MSmix. In the
heterogeneous case (G > 1), the latent group membership of the l-th distinct observed ranking rl is
denoted with zl = (zl1, . . . , zlG), where zlg = 1 if the observation belongs to component g and zlg = 0
otherwise.

Algorithm 1 MLE of the MMS parameters from full rankings
Input: r = {r1, . . . , rN} full n-rankings.

Preliminary steps:

- For l = 1, . . . , L, compute the frequency Nl of each distinct observed ranking rl .

- Compute either the exact or the approximate frequency distribution of the Spearman
distance {d, Nd}d∈Dn .

1. Compute the MLE of the consensus ranking ρ:

(a) Compute the sample mean rank vector r̄ = (r̄1, . . . , r̄n).

(b) Compute ρ̂ = rank(r̄).

2. Compute the MLE of the concentration parameter θ:

(a) Compute the sample average distance d̄ = 1
N ∑L

l=1 Nld(rl , ρ̂) = 2(cn − ρ̂T r̄).

(b) Apply uniroot to find the solution of the equation Eθ(D) = 2(cn − ρ̂T r̄) in θ.

Output: ρ̂ and θ̂.

Algorithm 2 MLE of the MMS-mix parameters from full rankings

Input: r = {r1, . . . , rN} full n-rankings; G number of clusters; ρ(0), θ(0), ω(0) initial values.

Preliminary steps:

- For l = 1, . . . , L, compute the frequency Nl of each distinct observed ranking rl .

- Compute either the exact or the approximate frequency distribution of the Spearman
distance {d, Nd}d∈Dn .

Repeat the E- and M-step below until convergence:

E-step: for l = 1, . . . , L and g = 1, . . . , G, compute ẑlg =
ω̂gP(rl |ρ̂g ,θ̂g)

∑G
g′=1 ω̂g′P(rl |ρ̂g′ ,θ̂g′)

.

M-step: for g = 1, . . . , G compute

(a) ω̂g = N̂g/N with N̂g = ∑L
l=1 Nl ẑlg.

(b) The MLE of ρg as in step 1 of Algorithm 1, by replacing r̄ with
r̄g = (r̄g1, . . . , r̄gn), where r̄gi =

1
N̂g

∑L
l=1 Nl ẑlgrli.

(c) The MLE of θg as in step 2 of Algorithm 1, by replacing r̄ with r̄g and ρ̂ with ρ̂g.

Output: ρ̂ = {ρ̂1, . . . , ρ̂G}, θ̂ = {θ̂1, . . . , θ̂G}, ω̂ = {ω̂1, . . . , ω̂G}, and ẑ = {ẑ1, . . . , ẑN}.

7.2 Performance of the algorithms

In this section, we further explore and discuss the computational efficiency of the estimation algorithms
under a variety of scenarios illustrated in the following:

• Homogeneous data (G = 1). When the data is homogeneous, the Algorithm 1 performs efficiently
even for large sample sizes N (see Table 4). This is because the typical computational challenges
associated to the MLE of ρ (the consensus ranking) with other distance specification in the MM
are eliminated. In fact, with Spearman distance the problem simplifies to the straightforward
application of the Borda rank aggregation method, where items are ranked based on their
sample average rank. This closed-form solution avoids the need of time consuming iterative
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Algorithm 3 MLE of the MMS-mix parameters from partial rankings

Input: r = {r1, . . . , rN} partial n-rankings; G number of clusters; ρ(0), θ(0), ω(0) initial values.

Preliminary steps: for l = 1, . . . , L,

- compute the frequency Nl of each distinct observed ranking rl .

- Compute and store the sets C(rl) of full rankings compatible with each distinct rl .

Repeat the E- and M-step below until convergence:

E-step:

(a) For each distinct rl with l = 1, . . . , L and for each r∗m′ ∈ C(rl), compute

p̂lm′ = P(r∗m′ |rl , ρ̂, θ̂, ω̂) =
∑G

g=1 ω̂ge−2θ̂g(cn−ρ̂T
g r∗m′ )−log Z(θ̂g)

∑s∗∈C(rl) ∑G
g=1 ω̂ge−2θ̂g(cn−ρ̂T

g s∗)−log Z(θ̂g)
.

(b) For m = 1, . . . , M, compute N̂m = ∑l: r∗m′∈C(rl) Nl p̂lm′ .

(c) For m = 1, . . . , M, and g = 1, . . . , G, compute ẑmg =
ω̂gP

(
r∗m

∣∣ρ̂g, θ̂g
)

∑G
g′=1 ω̂g′P

(
r∗m

∣∣ρ̂g′ , θ̂g′
) .

M-step: for g = 1, . . . , G, compute

- ω̂g = N̂g/N with N̂g = ∑M
m=1 N̂m ẑmg.

- The MLE of ρg as in M-step (b) of Algorithm 2, by replacing r̄g with
r̄∗g = (r̄∗g1, . . . , r̄∗gn), where r̄∗gi =

1
N̂g

∑M
m=1 N̂m ẑmgr∗mi.

- The MLE of θg as in M-step (c) of Algorithm 2, by substituting r̄g with r̄∗g .

Output: ρ̂ = {ρ̂1, . . . , ρ̂G}, θ̂ = {θ̂1, . . . , θ̂G}, ω̂ = {ω̂1, . . . , ω̂G} and ẑ = {ẑ1, . . . , ẑN}.

Algorithm 4 MLE of the MMS-mix parameters from partial rankings (MCEM)

Input: r = {r1, . . . , rN} partial n-rankings; G number of clusters; ρ(0), θ(0), ω(0) initial values.

Preliminary step: for s = 1, . . . , N, complete rs at random, obtaining a full ranking r∗s ∈ C(rs).

Repeat the E-, M- and MC-step below until convergence:

E-step: for s = 1, . . . , N, compute ẑs as in E-step of Algorithm 2, by replacing rl with r∗s .

M-step: same as in Algorithm 2.

MC step: for s = 1, . . . , N, complete rs with the scheme (2)-(3), obtaining an updated r∗s ∈ C(rs).

Output: ρ̂ = {ρ̂1, . . . , ρ̂G}, θ̂ = {θ̂1, . . . , θ̂G}, ω̂ = {ω̂1, . . . , ω̂G}, and ẑ = {ẑ1, . . . , ẑN}.

estimation procedures and multiple initializations for addressing issues of local optima. This
is a major advantage over existing R packages, which rely on global or local search methods
that quickly become computationally prohibitive as n increases. Concerning the MLE of θ
(the dispersion parameter), we recall that this step relates to N through the sample average
Spearman distance, whose computation is optimized with the use of an internal C++ routine
called from the BayesMallows package. Moreover, the analytical approximation of the expected
Spearman distance proposed by Crispino et al. (2023), and implemented in MSmix, improves
the computational efficiency for the MLE of θ, particularly for large n.

N 500 1000 5000 10000 20000 50000 1e+05
time (s) 0.009 0.01 0.08 0.29 1.04 8.3 54.56

Table 4: Computational times (seconds) of Algorithm 1 applied on rankings of n = 20 items sampled
from a MMS with increasing sample size N.

• Heterogeneous data (G > 1). as G increases, the computational burden naturally grows since the
EM algorithm must iteratively estimate both the cluster-specific parameters and the individual
cluster membership probabilities. However, Algorithm 2 maintains efficiency by leveraging the
Borda method for estimating the cluster-specific consensus rankings, significantly simplifying a
critical step in the clustering process. Nevertheless, since clustering involves iterative updates,
our package optimizes the E- and M-steps to ensure computational efficiency, even in large N
and G scenarios, as shown in Table 5. Let us also add that, in general, more complex problems -
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such as when clusters are less distinct - require a great number of initializations to reliably reach
the global optimum. The number of starting points is controlled by the argument n_start of
the fitMSmix function and a parallelization of the EM algorithm over multiple initializations
is also possible thanks to the parallel argument. These options enlarge the applicability and
efficiency of MMS-mixtures, and reduce computational time by improving the exploration of
the mixed-type parameter space for increasing G.

G 5 10 15 30 60
time (s) 3.1 4.6 15.8 27.1 47.6

Table 5: Computational times (seconds) of Algorithm 2 running with 10 starting points on N = 5000
rankings of n = 20 items sampled from a MMS-mix with increasing number G of clusters.

• Big data scenarios. In the context of ranking data, “big data” typically refers to cases with a
large number of items (n) and a small sample size (N), where the primary focus is on rank
aggregation. Even in such cases, Algorithm 1 remains efficient (see Table 6). For extremely large
n, the main computational challenge is the computation of the partition function which, in our
implementation, relies on the approximation of the frequency distribution of the Spearman
distance among n-rankings (provided by the spear_dist_distr function in the package). When
n > 170, the function returns an approximation restricted over a fixed grid of values for the
Spearman distance to limit both the computational and memory load.

n 200 500 1000 5000 10000
time (s) 2.74 2.58 3.38 3.66 3.9

Table 6: Computational times (seconds) of Algorithm 1 applied on N = 200 rankings sampled from a
MMS with increasing number n of items.

7.3 Empirical evaluation of the MAR assumption for a subsample of the Beers dataset

In the reduced Beers dataset used in our application, 18 respondents (39%) provided full rankings,
while 28 (61%) ranked only a subset of the alternatives.

R> n_items <- 20
R> rankings <- ranks_beers[,1:n_items]
R> subset_beers <- (rowSums(is.na(rankings)) <= 8)
R> rankings_subset <- rankings[subset_beers,]
R> is_partial <- rowSums(is.na(rankings_subset))>1
R> cbind(Freq = table(is_partial), '%' = round(100*prop.table(table(is_partial))))

Freq %
FALSE 18 39
TRUE 28 61

Notably, although the survey design did not require respondents to prioritize their most liked items,
the incomplete rankings exhibit a clear top-like censoring pattern, as highlighted by the higher rate of
missingness for bottom positions.

R> rankings_subset_part <- rankings_subset[is_partial,]
R> orderings_subset_part <- data_conversion(rankings_subset_part)
R> na_perc_by_rank <- round(100*colMeans(is.na(orderings_subset_part)),1)
R> names(na_perc_by_rank) <- paste("Rank", 1:n_items)
R> na_perc_by_rank
Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10

7.1 7.1 3.6 3.6 3.6 7.1 7.1 14.3 3.6 7.1
Rank 11 Rank 12 Rank 13 Rank 14 Rank 15 Rank 16 Rank 17 Rank 18 Rank 19 Rank 20

28.6 32.1 35.7 39.3 42.9 50.0 53.6 46.4 46.4 46.4

In the case of top-k rankings, missing data could be significantly related to lower preferences,
suggesting a Missing Not At Random (MNAR) process. To assess a possible critical deviation from the
assumed MAR mechanism, we checked whether items which are more frequently missing in partial
sequences systematically receive lower preferences from respondents who provided full rankings.
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Figure 8: Relationship between the missingness proportion of the items in the partial rankings and
their mean ranks from full rankings for the reduced ranks_beers dataset.

Specifically, we explored the relationship between the average ranks resulting from the complete
rankings and the missingness rate of each item in the partial rankings. The code below shows that,
thanks to descriptive tools supplied by MSmix designed to facilitate a focused analysis of subsamples,
the computation of these quantities is straightforward.

R> descr_full=data_description(rankings_subset,subset=!is_partial)
R> descr_part=data_description(rankings_subset,subset=is_partial)
R> na_prop_part_by_item <- descr_part$n_ranks_by_item[1,]/nrow(rankings_subset_part)

The relationship was first evaluated through a graphical inspection as follows.

R> plot(na_prop_part_by_item, descr_full$mean_rank,
xlab="Missingness proportion in partial rankings",
ylab="Mean rank from full rankings",
cex.lab=0.9, pch=20)

The scatterplot in the Figure 8 does not reveal a clear association pattern. To formally assess this, we
performed a rank-correlation test12 as follows

R> library(coin)
R> test_df=data.frame(NaProp=na_prop_part_by_item, AvgRank=descr_full$mean_rank)
R> perm_test <- spearman_test(AvgRank ~ NaProp, data = test_df,

distribution = approximate(nresample = 10000))
R> perm_test
Approximative Spearman Correlation Test
data: AvgRank by NaProp
Z = -0.18296, p-value = 0.8603
alternative hypothesis: true rho is not equal to 0

The resulting p-value is well above the conventional 0.05 threshold, indicating no statistically signifi-
cant evidence against the MAR assumption.

12We opted for the permutation test based on the Spearman correlation, as it is nonparametric and allows to
better captures monotonic relationships in the case of small samples and ties occurring after rank-transformation.
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CvmortalityMult: Cross-Validation for
Multi-Population Mortality Models
by David Atance, and Ana Debón

Abstract This article presents the CvmortalityMult R package, a novel tool designed
for modelling, forecasting and evaluating mortality models for several populations. The
package facilitates the fitting and forecasting of multipopulation mortality models, providing
accurate projections in an increasingly interconnected world characterized by minimal or no
borders between countries. By incorporating different cross-validation (CV) techniques, the
package allows for the assessment of the forecasting accuracy of multipopulation mortality
models for specific countries or regions within a country. Through an empirical application
to Spanish regions, we demonstrate the efficacy and simplicity of the CvmortalityMult
R package in selecting and evaluating multipopulation mortality models. By providing
accessible tools for mortality modelling, forecasting and testing, this package stands out as
a valuable resource for advancing the understanding and forecasting of mortality trends
across diverse populations. Its contributions extend to enhancing decision-making in critical
fields such as life insurance, public health, and pension plan sustainability.

1 Introduction

Currently, the loss of clear and defined borders between states/countries is leading pop-
ulations worldwide to experience a similar dynamic of mortality. Indeed, mortality im-
provements or reductions can rapidly spread to other countries, causing correlated mortality
dynamics, as observed with the COVID-19 pandemic. Thus, multipopulation mortality
models provide a valuable approach for considering mortality membership in a group
rather than individually (Li and Lee, 2005). These models enable the joint fitting of multiple
populations, regions in the same country, or both sexes simultaneously.

On the basis of the original Lee and Carter (1992) model, many researchers have de-
veloped models to fit the mortality of related populations or countries with similar socioe-
conomic statutes or even both sexes in the same population (Brouhns et al., 2002; Debón
et al., 2011; Dowd et al., 2011; Jarner and Kryger, 2011; Li and Hardy, 2011; Russolillo
et al., 2011; Villegas and Haberman, 2014; Danesi et al., 2015; Chen and Millossovich, 2018;
Bégin et al., 2023). The application of these multipopulation mortality models is relevant
in diverse contexts, facilitating the concurrent modelling of multiple populations. This is
particularly true within the field of life insurance, where companies operate worldwide and
make assumptions about future mortality trends. Therefore, using such models ensures
the consistency and reliability of the products across different countries. Notably, in the
European Union, where gender-neutral pricing is enforced, it is necessary to model both
sexes simultaneously (Ahmadi and Li, 2014). Moreover, multipopulation mortality models
can include the correlation structure among populations when projecting future trends
(Antonio et al., 2017; Bozikas and Pitselis, 2020).

The rise of “big data” has shifted the focus of many problems, and its methods have
become a new field complementary to statistics. Within this domain, “resampling methods”
are fundamental tools; these techniques are based on repeatedly drawing samples from a
dataset and refitting models to obtain additional information. Advances in computational
power have increased researchers’ interest in these methods, which were developed in 1990.
The two most common types of “resampling methods” are bootstrap and “cross-validation”
(CV) methods (James et al., 2013a).

Bootstrap is a fundamental tool in the actuarial field that has had multiple applications
throughout the literature. This method has been employed for various purposes, such as
prediction errors in claim insurance (England and Verrall, 1999), establishing confidence
bounds for discounted reserves (Hoedemakers et al., 2003), and estimating confidence
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intervals in mortality through different bootstrap versions (Brouhns et al., 2005; Koissi et al.,
2006; Debón et al., 2008b; Liu and Braun, 2010; D’Amato et al., 2012). The CV method
divides sample data into k folds, where k − 1 subsets are typically employed to train
the model(s), and the remaining set is used to test the forecasting accuracy (Hastie et al.,
2009). The process is iterated k times. For time series data, preserving the chronological
order of the sets is necessary. This technique has been employed in other fields, such as
finance, biology, and marketing. When applying CV methods to mortality modelling, these
techniques must be adapted to time series analysis to use all available data for both testing
and training (Tashman, 2000; Bergmeir and Benítez, 2012), which are also known as time
series CVs (Hastie et al., 2009). Specifically, in each iteration, the training set must consist of
observations that chronologically occurred before the test set observations corresponding to
the end of each series (Hyndman and Athanasopoulos, 2021). Furthermore, in our analysis,
each observation corresponds to a three-way array involving three categories: age, period
and region or country. As a result, these methods have been adapted to assess the forecasting
ability of multipopulation mortality models appropriately.

In the context of mortality modelling it should be noted that only recently researchers
have applied CV techniques. However, most applications have focused on single-population
models, see, for instance, Villegas et al. (2017); Hyndman et al. (2019); Atance et al. (2020b);
Kessy et al. (2022); SriDaran et al. (2022); Lindholm and Palmborg (2022), and Barigou
et al. (2023). To the best of our knowledge, the existing literature on the use of resampling
methods in mortality modelling has focused on single-population mortality models, and
among these studies, only one SriDaran et al. (2022) introduced a CV function designed for
fitting, forecasting, and testing out-of-sample age-specific probabilities of death, with the
selection of the testing period based on the mean squared error (MSE) measure.

This paper introduces the CvmortalityMult R package, which allows us to fit and forecast
five multipopulation mortality models. Moreover, this package enables the application of
CV methods to select the “best” multipopulation mortality model in forecasting among
different scenarios. The idea is to determine which model produces the best forecasting
outcomes for the period and the selected countries or regions. To achieve this goal, we
implement several CV techniques following the terminology established by Tashman (2000)
and Bergmeir and Benítez (2012) for evaluating time-series forecasts. Additionally, we
adapt the methodology proposed by Atance et al. (2020b), which is primarily designed for
single-population mortality models, to evaluate the forecasting ability of multipopulation
mortality models over short, medium and long term horizons. The package incorporates
multiple CV techniques to facilitate this evaluation.

Moreover, the package includes five variations of the classical Lee and Carter (1992)
model to fit and forecast mortality in regions/populations that form part of a group rather
than considering them individually. First, Russolillo et al. (2011) proposed adding a new
multiplicative effect to represent different countries/regions within a multiplicative mortal-
ity model. Second, Debón et al. (2011) integrated the region/country effect as an additive
index through an additive model. Third, Carter and Lee (1992) and Li and Lee (2005) first
modelled the entire group and then incorporated a specific term for each region/country
using the common-factor model. Fourth, Carter and Lee (1992) and Wilmoth and Valkonen
(2001) proposed the joint-K model, which includes two specific country/region terms along
with a common trend. Finally, Li and Lee (2005) and Hyndman and Ullah (2007) extended
the common-factor model by incorporating two additional region/country terms with
the augmented common-factor model. These five multipopulation mortality models were
chosen because of their promising results compared with those of other mortality models
(Debón et al., 2011; Dong et al., 2020), and their frequent usage in multipopulation modelling
literature (Villegas et al., 2017). We introduce into the CvmortalityMult R package several
functions that allow us to fit, forecast and evaluate those five multipopulation mortality
models. However, if the functions detect only one population, they can fit the well-known
Lee and Carter (1992) model.

The paper is structured as follows. Section 2 focuses on describing multipopulation
mortality models. Section 3 discusses the CV methods in multipopulation mortality models.
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Section 4 presents the CvmortalityMult R package, installation and the main functions.
Section 5 presents a case study detailing the use of the package. Finally, Section 6 draws
conclusions from the results in the previous section.

2 Models

In this section, we introduce five of the most important multipopulation mortality models,
which serve as benchmarks to test the forecasting accuracy using CV methods. Indeed,
the CvmortalityMult R package requires a set of crude age-specific probabilities of death
for age x, period t and, in each region i, q̇x,t,i. These crude rates are directly obtained as
q̇x,t,i = dx,t,i/E0

x,t,i, where dx,t,i represents the number of recorded deaths and Ex,t,i denotes
the initial population exposed to risk for an age x, period t and, region i. Crude mortality
rates, along with other life table indicators, can be obtained using the LifeTable function
from the MortalityLaws R package (Pascariu, 2022). This set of crude probabilities is
then used to generate smoothed and forecasted estimates, q̂x,t,i, of the true but unknown
mortality probabilities qx,t,i. Therefore, in the context of multipopulation mortality data,
“one observation ahead” corresponds to a set of data containing the probabilities of death
for all ages and populations considered for the following year.

2.1 Multiplicative mortality model

Russolillo et al. (2011) proposed incorporating a multiplicative index term into the Lee and
Carter (1992) model to shift the mortality for each region in the population group. That is:

logit (qx,t,i) = log
(

qx,t,i

1 − qx,t,i

)
= ax + bx · kt · Ii + εx,t,i; (1)

where ax captures the general age shape of the mortality curve, kt describes the general
trend of the group of populations over time, bx represents how each age-specific probability
of death reacts to changes in the general level of mortality, and Ii represents a multiplicative
index associated with mortality for each member of the group of populations considered.
Both ax and bx are the common age-dependent and time-independent parameters for all
the regions considered respectively, whereas kt is the same for all considered regions and
corresponds with the time-dependent parameter, as in the initial version of Lee and Carter
(1992), Ii is a different index for each population considered.

Notably, the logit link function is employed to fit the age-specific probabilities of death.
The logit transformation ensures that values of qx,t,i between 0 and 1 (Lee, 2000) are obtained.
This transformation also maintains the historical ties to the early actuarial work of Perks
(1932), as noted by Haberman and Renshaw (2011).

2.2 Additive mortality model

Debón et al. (2011) propose incorporating an additive index term into the Lee-Carter struc-
ture to modify the mortality of each region in the multipopulation model. Its expression is
as follows:

logit (qx,t,i) = log
(

qx,t,i

1 − qx,t,i

)
= ax + bx · kt + Ii + εx,t,i. (2)

As in the previous model, the same components ax, bx and kt are shared across all the studied
regions (populations). This fact is a necessary and sufficient condition to avoid divergence
in the forecasting of age-specific probabilities of death of subpopulations; see Debón et al.
(2011) and Ahcan et al. (2014). The number of parameters is the same as that in the model of
Russolillo et al. (2011), with similar interpretations except for Ii; more details are given in
Debón et al. (2011). However, the additive formulation provides a more straightforward
structure than the multiplicative formulation does because it incorporates regional effects
through an additive index term.
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2.3 Common-factor mortality model

Carter and Lee (1992) and Li and Lee (2005) proposed modelling the mortality of different
populations through a common long-term component for the whole group combined with
an age-dependent specific term for each population i. This model is represented as:

logit (qx,t,i) = log
(

qx,t,i

1 − qx,t,i

)
= ax,i + Bx · Kt + εx,t,i, (3)

where ax,i represents the baseline shape of the mortality curve for each ith specific population,
while the long-term change over time across the whole mortality group is captured by Bx ·Kt.
These parameters serve the same function as bx and kt do in previous mortality models but
apply to the whole group of populations.

2.4 Joint-k mortality model

Carter and Lee (1992) and Wilmoth and Valkonen (2001) introduced a model that assumes
two specific population age-dependent terms, and a common trend among the group of
populations, is given by:

logit (qx,t,i) = log
(

qx,t,i

1 − qx,t,i

)
= ax,i + bx,i · kt + εx,t,i. (4)

where kt represents a common mortality trend among the different considered populations
while axi and bxi are specific for each population i. Indeed, the axi parameter retains the
same meaning as in the common factor mortality model, and bxi captures the effect of a
time-varying mortality index kt at age x for each population i.

2.5 Augmented common-factor mortality model

Li and Lee (2005) and Hyndman et al. (2013) introduced two population-specific terms to
the common factor model. This model is expressed as:

logit (qx,t,i) = log
(

qx,t,i

1 − qx,t,i

)
= ax,i + Bx · Kt + bx,i · kt,i + εx,t,i. (5)

The first three terms correspond to the components of the common-factor mortality model
(3), whereas bxi · kti captures deviations in the short to medium-term changes in the age-
specific probability of death for each population i to the common trend. Importantly,
including the population-specific terms bxi and kti may imply significant divergences in the
mortality forecasts across different populations. Our choice of capital letters in Equations (3)
and (5) follows the notation introduced by Li and Lee (2005), who use upper-case symbols
to denote the common (or “group-wide”) Lee–Carter factor and lower-case symbols for the
population-specific effects.

All the models discussed are implemented using the software R Core Team (2022) via the
gnm library (Turner and Firth, 2023). Details on the calibration approach can be found in
Debón et al. (2011). The parameters are obtained by maximizing the model’s log-likelihood,
assuming a quasi-Binomial distribution of deaths in all considered models:

L (qx,t,i; q̂x,t,i) = ∑
x

∑
t

∑
i

wx,t,i {qx,t,i · log (q̂x,t,i) + (1 − qx,t,i) · log (1 − q̂x,t,i) + cte} , (6)

where wx,t,i corresponds to weights assigned to each age, period, and population considered,
q̂x,t,i is derived by rearranging the terms in Equation (1):

q̂x,t,i =
eax+bx ·kt ·Ii

1 + eax+bx ·kt ·Ii
, (7)
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in the case of the multiplicative model. For the other models, the corresponding inverse
transformations apply for (2) – (5). We maximize the log-likelihood function because it is an
effective estimation method in the actuarial and demography literature for the parameter
estimation process (Brouhns et al., 2002; Renshaw and Haberman, 2006; Cairns et al., 2009).

2.6 Forecasting multipopulation mortality models

To project the age-specific probabilities of death, qx,t,i, it is essential to forecast the value of
the trend parameters ktn , ktn ,i, and Ktn for all the multipopulation mortality models. These
models are formulated as follows:

Multiplicative → logit (qx,tn+s,i) = ax + bx · ktn+s · Ii,

Additive → logit (qx,tn+s,i) = ax + bx · ktn+s + Ii,

Common-factor → logit (qx,tn+s,i) = ax,i + Bx · Ktn+s,

Joint-k → logit (qx,tn+s,i) = ax,i + bx,i · ktn+s,

Augmented common-factor → logit (qx,tn+s,i) = ax,i + Bx · Ktn+s + bx,i · kt(n+s),i,

(8)

where qx,tn+s,i corresponds to the forecasted age-specific probability of death for age x,
period tn + s and population i, and ktn+s, kt(n+s),i, Ktn+s are the projections of the trend
parameters ktn , ktn ,i, and Ktn considering that tn is the last in-sample period.

In the CvmortalityMult R package, three alternative approaches are considered to project
the time series kt, Kt and kti , assuming they follow ARIMA (autoregressive integrated mov-
ing average model) independent processes. First, a random walk with drift (ARIMA (0,1,0)
with drift) is assumed, which is a common assumption in the actuarial literature (Cairns
et al., 2006; Haberman and Renshaw, 2011; Villegas et al., 2018). Second, the Cvmortality-
Mult R package allows the user to assume the best ARIMA (p,d,q) model according to the
auto.arima function in the forecast R- package (Hyndman and Khandakar, 2008; Hyndman
et al., 2023) for each trend parameter kt, Kt and/or kti , as described by Debón et al. (2008b),
Villegas et al. (2018) and Hunt and Blake (2020). The auto.arima function determines the
best ARIMA (p,d,q) model on the basis of the outcomes according to the corrected Akaike
information criterion (AICc). Third, users can specify the (p, d, q) order for each ARIMA
model by setting the corresponding parameters. Across the three approaches, the user can
decide whether to include different ARIMA configurations by changing the arguments in
the auto.arima or Arima functions as in the forecast R package.

3 Cross-validation methods

CV is a tool that focuses on assessing the predictive power of models. Identifying the best
model benefits insurance companies in actuarial and financial applications, such as pricing
and reserving, where forecasting is arguably more relevant than explanation (SriDaran et al.,
2022). Thus, this methodology is valuable for identifying which model is the most accurate
forecaster for single-population mortality models (Atance et al., 2020b) and can be used for
a set of related populations. This section describes the CV methods (Burman, 1989; Bergmeir
and Benítez, 2012) applied to evaluate the out-of-sample accuracy of multipopulation
models.

The performance of a model varies between in-sample and out-of-sample evaluations
(Bartolomei and Sweet, 1989; Pant and Starbuck, 1990). Therefore, partitioning data into
training and test sets is fundamental for accurately assessing the forecasting ability of
models. Various possibilities exist for evaluating time series forecasts, also referred to as
the CV in time series (Hastie et al., 2009). These methods differ on the basis of the forecast
horizon and the method of forecasting the out-of-sample validation, also known as “last
block evaluation” in individual time series analysis (Tashman, 2000; Bergmeir and Benítez,
2012). Among the different available methods, we have adapted several approaches in
CvmortalityMult R package to assess the forecasting ability of multipopulation mortality
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models from different perspectives. Specifically, we follow the terminology established by
Tashman (2000) and Bergmeir and Benítez (2012) to evaluate time series forecasting but
adapt it for multipopulation mortality models.

3.1 Fixed-origin evaluation

Fixed-origin evaluation, also known as the out-of-sample test or hold-out method (Lachen-
bruch and Mickey, 1968; Tashman, 2000), is one of the most commonly used methods for
assessing the forecasting accuracy of mortality models (Ahcan et al., 2014; Atance et al.,
2020a). In this approach, adapted for time series analysis, the dataset is chronologically
divided only once into training and test sets. The model is fitted using the training set,
with its final point as the fixed origin for forecasting, as shown Figure 1 for a three-way
array that incorporates three dimensions: ages in rows, periods in columns, and regions
in the third dimension. This fixed-origin method generates a single forecast to predict all
or specific periods in the test set. The forecasting accuracy is then evaluated for different
forecast horizons.

This CV approach has also been employed for assessing the forecasting ability of multi-
population mortality models; see, for instance, Danesi et al. (2015), Antonio et al. (2017) and
Bozikas and Pitselis (2020).

Figure 1: A schematic representation of the three-way array utilizing the fixed-origin cross-validation
(CV) technique. The training and test sets are shown in blue and orange, respectively. In our package,
the initial training set size is specified by the argument trainset1, whereas the forecast horizon
is defined by nahead. To ensure the proper application of the fixed-origin evaluation, the sum of
trainset1 and nahead must equal the total number of provided periods.

3.2 Rolling-origin-recalibration evaluation

In rolling-origin-recalibration (RO-recalibration) evaluation for time series, we initiate the
procedure by partitioning the sample into “k” subsets of data, while maintaining the chrono-
logical order. The first subset corresponds to the training set, and forecasts are generated
with a fixed horizon to assess the model’s performance. In each iteration, the model is
recalibrated by incorporating all preceding information in the training set (Armstrong and
Grohman, 1972; Tashman, 2000; Bergmeir and Benítez, 2012; Hyndman and Athanasopoulos,
2021). The test set periods are sequentially added to the training set to forecast the next
set of periods, as shown in Figure 2. Consequently, the beginning of the evaluation shifts
forward at each iteration. The model’s accuracy is assessed using the average forecasting
performance across the k iterations:

RO-recalibrationk =
1
k

k

∑
i=1

Goodness of fit measurei. (9)

In this type of time series CV, the specific variant of rolling-origin (RO) recalibration applied
depends on the size of the initial training set and the forecast horizon of each test set. For
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instance, k-fold CV (Hastie et al., 2009; James et al., 2013b; Bergmeir et al., 2018) requires the
training set size and forecast horizon for each test set to be equal. Notably, to our knowledge,
the application of the k-fold CV for analysing the forecasting proficiency of multipopulation
mortality models has yet to be documented. We recommend that the initial training set
contain more periods than the forecast horizon does to ensure reliable results. If the training
and test set sizes differ, the common version RO-recalibration should be applied.

Notably, the “leave-one-out CV” (LOOCV) (Burman, 1989; Shao, 1993) is a special case
of RO-recalibration, where the forecast horizon is equal to one, regardless of the initial
training set size. Unlike approaches that generate two subsets of comparable size, LOOCV
is a distinct approach that involves selecting and forecasting a single observation as the test
set, whereas the preceding available observations constitute the training set. To implement
this approach, the procedure is repeated (n - trainset1) times, where n denotes the total
number of observations in the dataset and (trainset1) is the size of the initial training set.

Among the different resampling methods, this technique is widely acknowledged for
assessing the predictive performance of single mortality models, as evidenced in various
studies, such as those in Li and O’Hare (2019), Atance et al. (2020b), Barigou et al. (2023), and
Atance and Navarro (2024). Additionally, only one preliminary work Atance and Debón
(2022) applied RO-recalibration LOOCV, i.e., the prediction of multipopulation mortality
models moving forward by one year for each iteration.

Figure 2: Schematic representation of the cross-validation method for a three-way array using the
rolling-origin (RO) recalibration technique. The training, test, and omitted sets are depicted in blue,
orange, and white, respectively. The initial training set size is denoted as trainset1, whereas nahead
specifies both the forecast horizon and the size of each test set.

3.3 Rolling-window evaluation

“Rolling-window evaluation” is similar to RO-recalibration but maintains a constant training
set size across each forecast iteration (Armstrong and Grohman, 1972; Tashman, 2000). It is
also referred to as “time series CV” (TSCV) (Hart, 1994; Bergmeir and Benítez, 2012), “fixed-
size rolling-window” (Swanson and White, 1997), or “fixed-size rolling sample” (Callen
et al., 1996). Data are partitioned into training and test sets as in previous techniques.
In each iteration, the training set incorporates the forecasted periods from the test set
while discarding the earliest observations and preserving chronological order, as shown in
Figure 3. The model and the forecast origin are also recalibrated at each window/iteration.
The forecasting accuracy of the model is assessed using the same procedure as that in
RO-recalibration, as expressed in Eq. (9).

Similar to the RO-recalibration technique, there are different variants of rolling-window
evaluation. Indeed, the common CV, k-fold CV and LOOCV approaches are also variants.
However, in these approaches, the training set size is constant throughout the iterations.

To our knowledge, the CvmortalityMult R package provides the first function for
analysing the forecasting ability of multipopulation mortality models using CV techniques.

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859

https://cran.r-project.org/web/packages/CvmortalityMult/index.html


CONTRIBUTED RESEARCH ARTICLE 238

Figure 3: Schematic representation of the cross-validation method for a three-way array using the
rolling-window evaluation technique. The training, test, and omitted sets are depicted in blue,
orange, and white, respectively. The training set size, denoted as trainset1, remains consistent across
iterations, starting with an initial training set. The argument nahead specifies both the forecast horizon
and the size of each test set.

Notably, RO recalibration and rolling-window evaluation have not previously been imple-
mented in any R package for assessing the forecasting accuracy of multipopulation mortality
models. The CvmortalityMult R package addresses this gap by enabling the application of
various time series CV methods.

4 The CvmortalityMult R-package

Table 1 introduces the main functions incorporated in the CvmortalityMult R package,
along with a brief description of every function. Furthermore, these functions have been
categorized into four groups: fitting, forecasting, plotting, and CV. In the following sections,
we explain with several examples the procedural details and parameter structure essential
for using the primary functions of the package.

Initially, the procedure involves the use of five mortality multipopulation functions to
calibrate age-specific probabilities of death across various regions (populations). Notably,
the CvmortalityMult R package allows for the fitting of a single-mortality model when the
user provides data for only one population.

During the forecasting stage, the package subsequently facilitates age-specific probabili-
ties of death projections under various ARIMA(p, d, q) specifications, employing the object
obtained in the preceding step. During the plotting stage, users have the opportunity to
visualize the parameters obtained in the initial fitting stage, forecasts of the age-specific prob-
ability of death, and displays specific values across the Spanish regions in a geographical
map. This procedure allows for a comprehensive understanding of the behaviour exhibited
by each population under consideration.

Finally, during the CV stage, we introduce the function for applying different resampling
methods to assess the forecasting accuracy of multipopulation mortality models. This func-
tion enables the modification of the fitting and forecasting periods, uses the functions of the
preceding steps, and allows for the evaluation of the model forecasting performance using
various goodness-of-fit measures. Notably, the structure of the multipopulation mortality
data was aligned with a three-way array (age × time × region/population). For each
probability of death, data are available for different ages, periods and regions/populations.
Consequently, the applications of CV techniques need to be adapted to evaluate the project-
ing ability of these models effectively.

Notably, this paper does not include an example of every function argument. However,
the reader is referred to the function documentation and the package vignette for a complete
description of the CvmortalityMult R package.

Two datasets are included in the package: SpainRegions and SpainNat. These datasets
originate from the Spanish National Institute (Instituto Nacional de Estadística, INE). Life
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Function name Brief description
Fitting fitLCmulti() Fitting the multiplicative, additive,

common-factor, joint-k or
augmented common-factor multipopulation
mortality models, and the single version
of the Lee-Carter model.

Forecasting forecast.fitLCmulti() Forecasting the multiplicative, additive,
or S3 method forecast() common-factor, joint-k or

augmented common-factor multipopulation
mortality models, and the single version
of the Lee-Carter model.

Plotting plot.fitLCmulti() Plot the parameters for
the S3 method plot() the multipopulation or single-population

mortality models.
plot.forLCmulti() Plot the forecasting parameters for
the S3 method plot() the multipopulation or single-population

mortality models.
SpainMap() Plot the regions of

Spain with the percentiles of the
variable chosen by the users.

CV multipopulation_cv() CV techniques using the
methods described in Section 2.3.

Measures of accuracy MeasureAccuracy() Measure for testing the accuracy
of the single-population or multipopulation
mortality models.

Table 1: Summary of the main functions in the CvmortalityMult R package.

tables and abridged lifetables were obtained with the methodology proposed by Muriel
et al. (2010) on the basis of the work in Elandt-Johnson and Johnson (1980). On the one hand,
the SpainRegions dataset comprises 10800 observations, encompassing 20 age groups, 30
periods (1990 - 2020), and 18 regions for both males and females in Spain, including national
data (the regions in Spain are referred to as autonomous communities). On the other hand,
the SpainNat dataset contains 600 observations, corresponding to national data for males
and females in Spain covering 20 age groups, 30 periods (this dataset was created for the
application of a single-population mortality model, and it can be obtained as a subgroup of
the SpainRegions database). These datasets are structured as a data frame and include the
following variables:

• ccaa: A vector of the 17 different regions of Spain, including national data. Figure 4
shows the identification of each region on the Spanish map.

• years: A vector of the period range, spanning from 1990 - 2020 for both datasets.

• ages: A vector of the age groups (children under 1 year, between 1 year and 5 years,
and then by groups of 5 years, with the last group being between 90 and 94 years).

• qx_male: A vector of the age-specific probabilities of death for the male population.

• qx_female: A vector of the age-specific probabilities of death for the female population.

• lx_male: A vector of the estimated number of individual males living in each age
group during each period in a specific region/population, based on an initial group of
l0 = 100, 000 individuals aged 0 (Pitacco et al., 2009).

• lx_female: A vector of the estimated number of individual females alive in each age
group during each period in a specific region/population.

• series: The sex included in both datasets “male and female population”.
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• label: A tag indicating the dataset type, either “Spain regions” or “Spain National
population”.

Figure 4: Administrative structure of Spain (regions are referred to as autonomous communities).

Furthermore, we have included the dataset regions, which contains the geographical
values of the Spanish regions. The SpainMap function facilitates the creation of a map
displaying the Spanish regions along with the variables incorporated in this dataset.

5 Application of the CvmortalityMult R- package

5.1 Fitting

Model fitting of the age-specific probabilities of death, qx,t,i (at age x, period t, and i re-
gion/population), under a quasi-Binomial distribution of deaths and a logit link is per-
formed using the gnm package developed by Turner and Firth (2023).

The proposed multipopulation mortality models present challenges related to parameter
identifiability. The parameter solution for the considered multipopulation mortality models
(ax, axi , bx, Bx, bxi , kt, Kt, kti , Ii) are not unique, as any transformation of these parameters
that preserves the model structure is also a solution, highlighting inherent identifiability
problems in mortality models (Enchev et al., 2017; Villegas et al., 2018). This identifiability
problem is addressed as follows: by setting kt0 = 0, b0 = 1 and I1 = 1 for the multiplicative
model; by setting kt0 = 0, b0 = 1 and I1 = 0 for the additive model (Debón et al., 2011), by
setting B0 = 1, and Kt0 = 0 for the common-factor model (Carter and Lee, 1992), by setting
b0,1 = 1, and kt0 = 0 for the joint-K model (Carter and Lee, 1992), and by setting B0 = 1,
b0,1 = 1, Kt0 = 0, and kt0,1 = 0 for the augmented-common-factor model (Li and Lee, 2005).

The fitLCmulti() facilitates the fitting of multipopulation mortality models, includ-
ing the multiplicative model (Russolillo et al., 2011), additive model (Debón et al., 2011),
common-factor model (CFM) (Carter and Lee, 1992), joint-K model (Carter and Lee, 1992)
and augmented common-factor model (ACFM) (Li and Lee, 2005). It also supports fitting
a single version of the Lee-Carter model (Lee and Carter, 1992) in the CvmortalityMult R
package. The synopsis of this function is outlined below:
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fitLCmulti(model, qxt, periods, ages, nPop, lxt = NULL)

The fitting function requires the following information as input:

• The model refers to the multipopulation mortality model cho-
sen to fit the mortality rates. The available options include
c('additive','multiplicative','CFM','joint-K','ACFM'). Users must select
one model to fit.

• qxt is a vector or matrix containing the crude age-specific probabilities of death for
every age, period, and region. The function automatically identifies the data structure
(vector or matrix) that users provide.

• lxt is a vector or matrix with the estimated number of individual males alive in each
age group during each period in a specific region. The function automatically identifies
the data structure (vector or matrix) that users provide. If this argument is not included
(NULL), the function internally estimates this value to obtain the parameters for fitting
the multipopulation mortality model.

• The periods, and ages vectors reflect the period range and age range, respectively,
from the dataset.

• nPop is a numeric value that indicates the number of populations/regions considered
in the dataset.

Importantly, for the effective utilization of the fitting functions, the array or matrix containing
the qxt and lxt (if it is included) should be organized chronologically with the primary
or general population placed first. This fact is essential for the ACFM, which needs to fit
first the mortality of the whole group. In the dataset labelled SpainRegions, the principal
population pertains to the mortality data encompassing the entire nation of Spain and is
positioned as the first entry in the dataset.

We demonstrate the application of this function by fitting the additive and multiplicative
multipopulation mortality models to the SpainRegions dataset for both male and female
cases. However, the other multipopulation mortality models can be applied only by mod-
ifying the model input. Indeed, in the explanation of the function fitLCmulti() in the
CvmortalityMult R package, users can find examples of how other multipopulation mortal-
ity models (common-factor, joint-k and augmented common-factor) are fitted and forecasted
for male Spain regions. Additionally, we generate a vector containing the lower age in each
age group considered in the paper.

> SpainRegions
Mortality Data
Spain Regions for males and females
Years 1991 : 2020
Abridged Ages 0 : 90
> ages <- c(0, 1, 5, 10, 15, 20, 25, 30, 35, 40,
+ 45, 50, 55, 60, 65, 70, 75, 80, 85, 90)

In fact, multiplicative and additive multipopulation mortality models can be fitted using the
following code:

> additive_Spainmales <- fitLCmulti(model= 'additive', qxt = SpainRegions$qx_male,
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_male)
> additive_Spainfemales <- fitLCmulti(model= 'additive', qxt = SpainRegions$qx_female,
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_female)
> multi_Spainmales <- fitLCmulti(model= 'multiplicative', qxt = SpainRegions$qx_male,
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_male)
> multi_Spainfemales <- fitLCmulti(model = 'multiplicative', qxt = SpainRegions$qx_female,
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_female)
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The output from the fitting functions is an object of the class fitLCmulti, which provides a
brief summary of the fitting process, including among other things, the following informa-
tion:

• ax, bx, kt, and Ii are the estimated parameters for the multipopulation mortality
models.

• formula, and model refer to the gnm formula and the fitted multipopulation mortality
model, respectively.

• data.used includes mortality rates to fit the mortality data.

• qxt.crude refers to the crude values of the probabilities of death for every age, period,
and region. These values are provided by the user for fitting the selected mortality
model.

• qxt.fitted, and logit.qxt.fitted are the fitted values of the probabilities of death
for every age, period, and region using the multipopulation mortality model on a
probability or logit scale

(
qx,t

1−qx,t

)
.

Once we have adjusted the crude age-specific probabilities of death for different groups
of ages, periods, and regions, the plot.fitLCmulti() function allows us to show the parame-
ters obtained. Figures 5 and 6 provide the fitted parameters of the additive and multiplicative
multipopulation mortality models, respectively, for male populations in Spain. The plots
are generated using the following code:

> plot(additive_Spainmales)
> plot(multiplicative_Spainmales)

Notably, the plot.fitLCmulti() function generates different plots depending on the se-
lected model. For example, if the augmented common-factor model is chosen by setting
model = 'ACFM', the plot function will display the estimated parameters, axi , Bx, Kt, bxi , and
kti , for the provided populations.

Our example is the dataset of Spanish regions. We have included the SpainMap function
in the package. This function facilitates the plotting of the Ii parameters of the regions of
Spain in Figure 7. We recommend reviewing the regions dataset to identify the order of
the regions before using the SpainMap function. In the context of multipopulation mortality
models, the multiplicative and additive indices for the regions of Spain (with the reminder
that the first population is the national dataset and will not be shown) can be obtained with
the following code:

> SpainMap(multiplicative_Spainmales$Ii[2:18],
+ main = c("Multiplicative for males"),
+ name = c("Ii"))
> SpainMap(regionvalue = additive_Spainmales$Ii[2:18],
+ main = c("Additive for males"),
+ name = c("Ii"), bigred = FALSE)

Additionally, the fitting function applies to a single population. Specifically, we design
this function to fit cases where mortality data are provided for only one population, and the
Lee-Carter mortality model for a single population is fitted. Users can implement this by
using the following R code:

> LC_SpainNatmales <- fitLCmulti(model = 'additive', qxt = SpainNat$qx_male,
+ periods = c(1991:2020), ages = c(ages), nPop = 1, lxt = SpainNat$lx_male)
> LC_SpainNatfemales <- fitLCmulti(model = 'multiplicative', qxt = SpainNat$qx_female,
+ periods = c(1991:2020), ages = c(ages), nPop = 1, lxt = SpainNat$lx_female)
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Figure 5: Parameters for the multiplicative mortality model fitted to the male population of Spain for
ages 0 – 90 and the period 1991 – 2020.

We use two of the five multipopulation models to demonstrate the operation of the function
for one-single population independently of the model provided. However, there is no need
to specify this argument in the fitLCmulti function, as it inherently fits the Lee-Carter
version for a single population.

Similarly, the parameters of the Lee-Carter model for single-population mortality can be
plotted using the plot.fitLCmulti() function. Therefore, Figure 8 can be obtained using
the following code:

plot(LC_SpainNatmales)

Figure 6: Parameters for the additive mortality model fitted to the male population in Spain regions
for ages 0 – 90 and the period 1991 – 2020.

Figure 7: Geographical index, Ii, for multiplicative (left) and additive (right) multipopulation mortality
models for the male populations in Spain regions for ages 0 – 90 and the period 1991 – 2020.
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Figure 8: Parameters for the LC single-population mortality model fitted to the Spain male population
for ages 0 – 90 and the period 1991 – 2020.

From Figures 5-8, several interesting results emerge:

• All the left panels, ax, correspond to the average behaviour of age-specific probabilities
of death across all studied periods and regions.

• The second panels, bx, demonstrate how age-specific probabilities of death for each
age group (considering all regions) respond to changes in mortality trend, as captured
by kt. Large values of bx are observed among Spanish males between 20 and 40 years
of age; therefore, there is a substantial reduction in the age-specific probabilities of
death in this age group (1991 - 2020). This phenomenon is attributed to the impact
of AIDS and drugs on Spanish males during the 1980s and 1990s, which led to an
initial increase in age-specific probabilities of death and total deaths in these age
groups, followed by a significant decline in age-specific probabilities of death due to
the introduction of new therapies and medications during the 1990s and 2000s (Felipe
et al., 2002; Debón et al., 2008a; Atance et al., 2020a), as can be observed in bx for the
additive and multiplicative models.

• The third panels reveal the impact of the COVID-19 pandemic on the trend parameter
kt for all considered models among males in Spain. Similar trends can be observed
for females, although these trends are not shown. However, they can be generated by
modifying the fitting object in the plot function. The incorporation of 2020 into the
model fitting process induces an upturn in age-specific probabilities of death in the
final observed period, disrupting the declining trend observed in the preceding years
(1990 - 2019).

• Finally, the right panels, Ii, in the multipopulation approach depict the geographical
distribution of the indices corresponding to each region. These panels allow us to
discern distinct regional behaviours on the basis of the chosen multipopulation ap-
proach. To complement this presentation, we have included Figure 7, which displays
the values of Ii for Spanish males in each region using the additive and multiplicative
models with the regions with the highest mortality highlighted in red. Notably, the pa-
rameter Ii leads to a different interpretation in each model. In the multiplicative model,
higher values indicate lower age-specific probabilities of death as the region value
is multiplied by the trend parameter. Therefore, with a decreasing trend parameter,
as observed in the case of Spain, higher values of Ii correspond to lower age-specific
probabilities of death. Conversely, the additive model incorporates the region index to
the general trend among the regions (ax + bx · kt). Consequently, lower values or the
most negative index regions present lower age-specific probabilities of death.

5.2 Forecasting

The CvmortalityMult R package enables the projection of future age-specific probabilities
of death using the ARIMA (p,d,q) processes. This projection applies to the trend param-
eters, kt, Kt, and kt,i in multipopulation mortality models. Two common assumptions for
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the trend parameters kt, Kt, and kt,i in the actuarial and demography literature are often
considered: first, a multivariate random walk with drift (ARIMA(0,1,0)) (Cairns et al.,
2006, 2009; Haberman and Renshaw, 2011; Villegas et al., 2017), and second, the selection
of the best ARIMA (p,d,q) process (Renshaw and Haberman, 2006; Debón et al., 2008b;
Villegas et al., 2017; Atance et al., 2020a) for estimating the future values of kt, Kt, and
kti . To estimate the future values of the trend parameters kt, Kt, and kti , we employ the
forecast function from the forecast R package (Hyndman and Khandakar, 2008), allowing
the projection of the future values for various types of ARIMA processes considered in our
package. In the CvmortalityMult R package, users can choose different ARIMA processes,
ktmethod=c('arima010','arimapdq','arimauser'). The selection process is applied for
single or all trend parameters considered in each multipopulation or single-population
mortality model. The ellipsis argument (...) provides users with the flexibility to include
different ARIMA configurations, changing the arguments in the auto.arima or Arima func-
tions, depending on the ktmethod provided. This functionality mirrors the behavior of
the forecast R package for time series (Hyndman and Khandakar, 2008). Additionally,
users must provide nahead, indicating the number of periods to forecast the future value of
age-specific probabilities of death for each considered region. For example, the code below
provides future age-specific probabilities of death for Spanish male and female regions for
the next ten years (nahead = 10), using different ARIMA options in the package:

> fut_additive_Spainmales <- forecast(object = additive_Spainmales,
+ nahead = 10, ktmethod = 'arimapdq')
> fut_multiplicative_Spainmales <- forecast(object = multiplicative_Spainmales,
+ nahead = 10, ktmethod = 'arima010')
> fut_additive_Spainfemales <- forecast(object = additive_Spainfemales,
+ nahead = 10, ktmethod = 'arimapdq')
> fut_multiplicative_Spainfemales <- forecast(object = multiplicative_Spainfemales,
+ nahead = 10, ktmethod = 'arima010')

The outputs from these forecast functions are objects of the class forLCmulti, which
provides a brief summary of the forecasting process, with the following information:

• ax, bx, kt, and Ii provide the estimated parameters for the multipopulation mortality
models.

• arimakt provides the ARIMA (p,d,q) process considered to adjust the time series kt,
Kt, or kti and the obtained coefficients.

• kt.fut provides the future values of kt, Kt, or kt,i using the selected ARIMA (p,d,q)
configurations for the nahead periods.

• kt.futintervals provides estimates of the future values of kt, Kt, or kt,i for the point
forecast (kt.fut). Additionally, it includes the lower and upper 80% and 95% confi-
dence intervals, utilizing the chosen ARIMA (p,d,q) process for the specified nahead
periods.

• formula and model define the gnm formula and the forecasted multipopulation mortal-
ity model, respectively.

• qxt.crude represents the crude values of the probabilities of death for every age,
period, and region. These values are provided by the user for fitting the selected
mortality models.

• qxt.future, and logit.qxt.future represent the future values of the probabilities of
death for every, age, period and region using the chosen multipopulation mortality
model in the probability or logit scale.

Once we have projected the age-specific probabilities of death from different ages,
periods, and regions, the plot.forLCmulti() function allows us to show the projected values
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of trend parameters kt, Kt, and kti . The logit death probabilities for the mean in-sample
age and the out-of-sample forecast are shown for all the populations considered. Figures 9
and 10 provide these interesting results for the additive and multiplicative multipopulation
mortality models, respectively, for males in Spain. The visualizations are generated with the
following code:

> plot(fut_additive_Spainmales)
> plot(fut_multiplicative_Spainmales)

Figure 9: The left panel represents to the in-sample trend parameter kt and its projected value. The right
panel displays the actual and projected logit mortality rates using the multiplicative multipopulation
mortality model for the 18 populations considered for age 40 (mean age in the populations considered)
in terms of the in-sample period from 1991 – 2020 and the out-of-sample period extending, 10 years
ahead.

Similarly, during the forecasting process, users can employ the same function to project
future values of age-specific probabilities of death when providing data for a single pop-
ulation. Specifically, the function forecasts age-specific probabilities of death using the
Lee-Carter model for a single population, as demonstrated below:

> fut_LC_Spainmales <- forecast(object = LC_SpainNatmales,
+ nahead = 10, ktmethod = 'arimapdq')
> fut_LC_Spainfemales <- forecast(object = LC_SpainNatfemales,
+ nahead = 10, ktmethod = 'arima010')

Equally, for the single-population mortality model, users can plot two remarkable results.
For example, Figure 11 can be obtained using the following code:

> plot(fut_LC_Spainmales)

5.3 Cross-Validation

In this section, we present the CV function developed in the CvmortalityMult R package
to evaluate the forecasting ability of multipopulation mortality models with different CV
methods. Thus, the CV time series function uses the next synopsis:

multipopulation_cv(qxt, model = c('multiplicative', 'additive', 'CFM', 'joint-K', 'ACFM'),
+ periods, ages, nPop, lxt = NULL,
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Figure 10: The left panel represents the in-sample trend parameter kt and its projected value. The
right panel displays the actual and projected logit mortality rates using the additive multipopulation
mortality model for the 18 populations considered for age 40 (mean age in the populations considered)
in terms of the in-sample period from 1991 – 2020 and the out-of-sample period extending, 10 years
ahead.

Figure 11: The left panel represents the in-sample trend parameter kt and its projected value. The right
panel displays the actual and projected logit mortality rates using the Lee-Carter model for a single
population for the only population considered for age 40 (mean age in the populations considered)
in terms of the in-sample period from 1991 – 2020 and the out-of-sample period extending, 10 years
ahead.

+ nahead, trainset1, fixed_train_origin = TRUE,
+ ktmethod = c('arimapdq', 'arima010', 'arimauser'), order = NULL,
+ measures = c('SSE', 'MSE', 'MAE', 'MAPE', 'All'))

This CV function requires the following information as input:

• qxt, lxt, periods, ages, nPop, ktmethod and order should match the corresponding
values used as in the fitting and forecasting functions for the multipopulation and
single mortality models as inputs.
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• model = c('multiplicative','additive','CFM','joint-K','ACFM') specifies the
multipopulation mortality model that users wish to assess for forecasting ability
using the specific resampling technique. Users can apply the multiplicative, additive,
common-factor, joint-K, and augmented common-factor multipopulation models and
the single version of the Lee-Carter model presented in this paper separately.

• measures = c('SSE','MSE','MAE','MAPE','All') denotes the adjustment measure
that users wish to employ for testing the forecasting ability of the model using the
specific resampling technique. If measures = c('All'), all the measures will be
provided by the function. Additionally, each accuracy measure has a dedicated help
function to clarify the underlying equations. Users can access this help function in
the CvmortalityMult R package using the following code: ?MeasureAccuracy, where
users can select the specific measure of accuracy for testing the age-specific mortality
rates (SSE, MSE, MAE or MAPE).

• trainset1 specifies the number of chronological periods to consider as the initial
training set. This value must be greater than 2 to meet the minimum time series size
(Hyndman and Khandakar, 2008). Additionally, we recommend that this value be
greater than nahead to maintain consistency among the forecasts in every iteration
(Tashman, 2000).

• nahead is the number of periods to project ahead in each iteration and the size of each
test set among the selected CV techniques. Moreover, it should be noted that the
multipopulation_cv() function aims to maintain a uniform length for all the testing
sets (iterations). However, the last test set may have fewer periods to align with the
total number of periods provided by the user as (periods).

• fixed_train_origin = c(TRUE,FALSE,'add_remove1') is a logical variable that spec-
ifies whether the starting point of the initial training set remains fixed throughout the
CV process. This option allows users to maintain a constant starting point where
the model will be fitted in every iteration or allow it to shift, thereby determin-
ing whether a rolling window evaluation is applied. By default, the package sets
fixed_train_origin = TRUE, meaning that the first period in the training set re-
mains fixed across all iterations and the model recalibrations of the CV method.
However, users can opt to allow the training set starting point to shift by setting
fixed_train_origin = FALSE or fixed_train_origin = 'add_remove1', thereby im-
plementing a rolling-window evaluation while keeping the training set size constant
in each iteration, defined by the user by nahead argument. When fixed_train_origin
= FALSE, in every iteration, the user-defined nahead periods are removed from the
beginning of the training set, while the next nahead periods are added to the training
set from the previous test set. Consequently, the number of projected periods (nahead)
also determines how many periods are added or deleted in every iteration. In contrast,
when fixed_train_origin = 'add_remove1', the training set size is also fixed across
iterations. However, only one new period is added and one period is removed in each
forecast. This process allows users to evaluate the forecasting accuracy of nahead-step-
ahead projections using more test samples. Users may specify fixed_train_origin
= 'add_remove1', and any value of nahead greater than or equal to one, provided
it is consistent with the number of periods available in the dataset. Notably, when
nahead = 1, the configuration fixed_train_origin = 'add_remove1' yields results
equivalent to those obtained using fixed_train_origin = FALSE, which means in a
LOOCV method keeping the same size of the training set (trainset1) across iterations.

The sizes of nahead and trainset1 can be determined by the temporal correlation within
the values of the analysed series by using “blocks” of data rather than choosing data
randomly (Racine, 2000; Bergmeir and Benítez, 2012).

With this function, the user can apply different CV methods for multipopulation
models depending on three main inputs that must be provided: nahead, trainset1, and
fixed_train_origin. Indeed, the following CV techniques can be applied:
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1. Fixed-origin evaluation is implemented by setting the arguments so that nahead +
trainset1 = periods while keeping the default value of fixed_train_origin = TRUE.

2. RO-recalibration evaluation requires that trainset1 > 2 and that
fixed_train_origin = TRUE remain at its default value, regardless of the value
assigned to nahead. Specifically, when nahead = 1, leave-one-out CV (LOOCV) is
applied. When nahead = trainset1, k-fold CV (CV) is performed. For all other
values, a standard time series CV approach is used while keeping the origin of the
first training set fixed in all possible options.

3. Rolling-window evaluation requires setting fixed_train_origin = FALSE or
fixed_train_origin = 'add_remove1', independently of the values assigned to
nahead and trainset1. As in the previous CV technique, if nahead = 1, a
LOOCV approach with a rolling window of 1 is applied, which remains equiva-
lent whether fixed_train_origin is set to FALSE or 'add_remove1'. When nahead >1
and fixed_train_origin = FALSE, the training set is updated by incorporating and
discarding nahead periods in each iteration. Conversely, when fixed_train_origin =
'add_remove1', the training set updates by adding and removing only one observation
per iteration while forecasting nahead periods.

We present the results for RO-recalibration using the standard CV approach for male
Spanish regions. The main input parameters are set as follows: trainset1 = 8, nahead =
5 and fixed_train_origin = TRUE (default value). This procedure is applied to the five
multipopulation mortality models included in the package. To replicate these results, the
user can use the following code:

> SpainRegions
> ages <- c(0, 1, 5, 10, 15, 20, 25, 30, 35, 40,
+ 45, 50, 55, 60, 65, 70, 75, 80, 85, 90)

> cv_SM_multi <- multipopulation_cv(qxt = SpainRegions$qx_male,
+ model = c('multiplicative'), #see options below
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_male,
+ trainset1 = 8, nahead = 5, ktmethod = c('arimapdq'), measures = c("MSE"))

While we executed to female Spanish regions an RO-recalibration was performed using
trainset1 = 10, nahead = 1 and fixed_train_origin = TRUE (default value). This
configuration corresponds to a LOOCV approach, which fixes the origin in the first training,
using the following code:

> loocv_SF_multi <- multipopulation_cv(qxt = SpainRegions$qx_female,
+ model = c('multiplicative'), #see options below
+ periods = c(1991:2020), ages = c(ages), nPop = 18, lxt = SpainRegions$lx_female,
+ trainset1 = 10, nahead = 1, ktmethod = c('arimapdq'), measures = c("MSE"))

Available values for model = 'additive','multiplicative','CFM','joint-K', and
'ACFM'. Changing the string assigned to model is sufficient to switch to the corresponding
specification. The output from the CV function is an object of the MultiCv class, which
provides a brief summary of the CV method employed, including the following information:

• ax, bx, Ii, kt.fitted, kt.future, and kt.arima correspond to the same outputs as
those in the adjustment and forecast functions. However, since the adjustment process
has been repeated several times (depending on the process), each of these outputs
is a list of the iterations executed, denoted as follows: loop-h from period-1 to
period-2, where “h” denotes the corresponding iteration.

• meas_ages, meas_periodsfut, meas_pop, and meas_total represent the accuracy mea-
sures provided by the resampling technique, each emphasizing different aspects of
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the forecasting ability. Indeed, the objective of the CvmortalityMult R package is to
provide a tool for evaluating the forecasting accuracy of multipopulation models from
various ages, namely, across different age groups, future periods, regions considered,
or a global measure spanning all ages, future periods, and regions considered. This
function allows users the flexibility to choose the specific viewpoint they wish to
prioritize in the decision-making process regarding forecasting capabilities.

• model, and CV_method designate the multipopulation mortality model and the CV-
method that users wish to apply for testing the forecasting ability, respectively. Users
can apply both, the multiplicative and additive models presented in this paper sepa-
rately.

Figures 12-13 present the results of the CV techniques for the five multipopulation mor-
tality models applied across ages, periods and regions, respectively. Additionally, we have
included Figures 14 and 15 with the MSE measure throughout different regions of Spain only
for the multiplicative and additive multipopulation mortality models. The result of the other
models are available upon request to the authors and can be found in the reproduction file.
These plots can be reproduced using the R script entitled CvmortalityMult_reproduction.R.
From Figures 13-15, we note the following points:

• The ACFM and joint-K models present lower forecasting results when the MSE mea-
sure is used across the ages and future periods considered, using both CV time series
techniques.

• The five considered models yield similar results for the age range 0 - 60, whereas for
the last section of the mortality curve (60 - 90), the ACFM and joint-K model perform
better in terms of the forecasting results.

• Concerning the forecasting periods, the ACFM and joint-K models demonstrate better
forecasting results in the medium term, as captured by RO-recalibration CV. However,
while the five models exhibit comparable results when evaluating short-term forecast-
ing ability, RO-recalibration LOOCV with the multiplicative model yields the worst
result.

• The MSE measures for the different regions of Spain considered for each CV method are
shown in Figures 14 and 15. The multipopulation mortality model produces different
results depending on the region. Specifically, the multiplicative model yields the best
forecasting results for Galicia, Pais Vasco, Cataluña, and Comunidad Valencia. In
contrast, depending on the CV model and population considered, the additive model
produces superior outcomes for Galicia, Asturias, Pais Vasco, Cataluña, Comunidad
Valencia, and Andalucia.

Notably, the CV function allows the computation of global measures of forecasting ability
considering all ages, future periods, and regions, as shown in Table 2. The results indicate
that the ACFM and joint-K model for standard CV, whereas the CFM and ACFM for LOOCV
demonstrate better forecasting ability when all available forecasting information is used.
This finding is consistent with the observations mentioned above.

Therefore, the CvmortalityMult R package displays the forecasting ability of the mul-
tipopulation mortality models in various ways, allowing the user to determine the most
suitable model for their specific objectives. We present two alternatives to assess the forecast-
ing ability of the models but there are other additional CV time series techniques that can be
implemented with the multipopulation_cv() function modifying nahead, trainset1 and
fixed_train_origin.

6 Summary and discussion

Accurately forecasting age-specific probabilities of death is essential for dealing with life-
contingent risk, ensuring solvency within the European (re)insurance industry, and address-
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CV method Multipopulation mortality model
Common CV males Multiplicative Additive CFM joint-K ACFM
MSE 0.000160 0.000142 0.000142 0.000132 0.000124
LOOCV females Multiplicative Additive CFM joint-K ACFM
MSE 0.000089 0.000066 0.000061 0.000062 0.000059

Table 2: Summary of the MSE global measure of forecasting ability.

Figure 12: Plot visualizing the MSE over the group of ages considered in regions of Spain for males
and females, applying CV time series techniques for five

multipopulation mortality models.

Figure 13: Plot visualizing the MSE over the test sets of future periods considered in regions of Spain
for males and females, applying two CV time series techniques for five

multipopulation mortality models.

ing the sustainability of public pension system plans, among other purposes. Multipopu-
lation mortality models offer a valuable approach to forecasting age-specific probabilities
of death. These models allow the incorporation of data from regions in the same country
or group of countries with similar characteristics, transcending borders in a globalized
context, where national and international movements occur daily. Moreover, these models
are recommended to enrich mortality data with observations from different regions in the
same country or group of countries sharing similar characteristics. The CvmortalityMult R
package facilitates access to five of these multipopulation mortality models, providing an R
interface to the functions necessary for model fitting and forecasting simply.

Furthermore, comparing various models can be challenging when the most suitable
model is selected. Indeed, CV methods offer a valuable tool for evaluating the forecasting

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859

https://cran.r-project.org/web/packages/CvmortalityMult/index.html


CONTRIBUTED RESEARCH ARTICLE 252

Figure 14: Plot visualizing the MSE in regions of Spain for males, applying RO-recalibration CV for
the multiplicative and additive

multipopulation mortality models.

Figure 15: Plot visualizing the MSE in regions of Spain for males, applying RO-recalibration LOOCV
for the multiplicative and additive multipopulation mortality models.

ability of models. The CvmortalityMult R package allows the application of several CV
time series techniques, for assessing the forecasting ability of multiple populations over
short, medium and long term horizon. To the best of our knowledge, the CvmortalityMult R
package is the first to apply these methods to multipopulation mortality models, especially
for three-way array data. Users only need to provide multipopulation mortality data, specify
the number of periods to be used as the training or testing set, and decide whether it remains
fixed at the origin of the first training set. Then, the CvmortalityMult R package computes
various measures highlighting different forecasting ability aspects. Consequently, users can
prioritize selecting the most appropriate multipopulation mortality model on the basis of
their specific requirements and perspectives.
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Bioconductor Notes, September 2025
by Maria Doyle, Bioconductor Community Manager, and Bioconductor Core Developer Team

1 Introduction

Bioconductor provides tools for the analysis and comprehension of high-throughput ge-
nomic data. The project has entered its twenty-first year, with funding for core development
and infrastructure maintenance secured through 2025 (NIH NHGRI 2U24HG004059). Ad-
ditional support is provided by NIH NCI, Chan-Zuckerberg Initiative, National Science
Foundation, Microsoft, and Amazon. In this news report, we give some updates on core
team and project activities.

2 Software

#> Loading required package: htmlwidgets

#> 'getOption("repos")' replaces Bioconductor standard repositories, see
#> 'help("repositories", package = "BiocManager")' for details.
#> Replacement repositories:
#> CRAN: https://cloud.r-project.org
#> 'getOption("repos")' replaces Bioconductor standard repositories, see
#> 'help("repositories", package = "BiocManager")' for details.
#> Replacement repositories:
#> CRAN: https://cloud.r-project.org
#> 'getOption("repos")' replaces Bioconductor standard repositories, see
#> 'help("repositories", package = "BiocManager")' for details.
#> Replacement repositories:
#> CRAN: https://cloud.r-project.org
#> 'getOption("repos")' replaces Bioconductor standard repositories, see
#> 'help("repositories", package = "BiocManager")' for details.
#> Replacement repositories:
#> CRAN: https://cloud.r-project.org

Bioconductor 3.21, released in April 2025, is now available. It is compatible with R 4.4 and
consists of 2341 software packages, 432 experiment data packages, 928 up-to-date annotation
packages, 30 workflows, and 8 books. Books are built regularly from source, ensuring full
reproducibility; an example is the community-developed Orchestrating Single-Cell Analysis
with Bioconductor.

3 Core Team and Infrastructure Updates

Of note:

• A pair of machines with NVIDIA GPUs were added to the system. See devel branch
build reports for more information.

• An HDF5Array vignette includes new performance analysis data.

NEWS summaries for three contributed packages chosen at random from the 72 new
software contributions are:

• CARDspa: CARD is a reference-based deconvolution method that estimates cell
type composition in spatial transcriptomics based on cell type specific expression
information obtained from a reference scRNA-seq data. A key feature of CARD
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is its ability to accommodate spatial correlation in the cell type composition across
tissue locations, enabling accurate and spatially informed cell type deconvolution as
well as refined spatial map construction. CARD relies on an efficient optimization
algorithm for constrained maximum likelihood estimation and is scalable to spatial
transcriptomics with tens of thousands of spatial locations and tens of thousands of
genes.

• G4SNVHunter G-quadruplexes (G4s) are unique nucleic acid secondary structures
predominantly found in guanine-rich regions and have been shown to be involved
in various biological regulatory processes. G4SNVHunter is an R package designed
to rapidly identify genomic sequences with G4-forming potential and accurately
screen user-provided single nucleotide variants (also applicable to single nucleotide
polymorphisms) that may destabilize these structures. This enables users to screen
key variants for further experimental study, investigating how these variants may
influence biological functions, such as gene regulation, by altering G4 formation.

• jazzPanda This package contains the function to find marker genes for image-based
spatial transcriptomics data. There are functions to create spatial vectors from the cell
and transcript coordinates, which are passed as inputs to find marker genes. Marker
genes are detected for every cluster by two approaches. The first approach is by
permutation testing, which is implemented in parallel for finding marker genes for
one sample study. The other approach is to build a linear model for every gene. This
approach can account for multiple samples and background noise.

See the NEWS section in the release announcement for a complete account of changes
throughout the ecosystem.

4 Community and Impact

4.1 Outreachy Internships

The December–March 2025 Outreachy program concluded successfully, with interns con-
tributing to Bioconductor and sharing their reflections in a blog post. We also highlighted
the rewarding experience of mentoring for Outreachy.

4.2 Community Updates

The Bioconductor community has migrated from Slack to Zulip for discussions; read more
about the move here. We also reflected on our two years of Carpentries membership.

In July 2025, Bioconductor blog posts became available through R-bloggers, broadening
their reach to the wider R community. One of our first posts became one of the week’s most-
read, a promising sign of growing visibility. We welcome contributions to the Bioconductor
blog; if you have an idea, please get in touch via Zulip or email.

4.3 Publications and Preprints

Vince Carey, a long-time member of the Bioconductor Core Team, has published his reflec-
tions on the evolving complexity of the Bioconductor ecosystem in a recent journal article,
“Bioconductor: Planning a third decade of comprehensive support for genomic data science”.
He also shared his thoughts in a blog post, “Ask and you shall receive”.
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5 Conferences and Workshops

5.1 Recaps

• Developers’ Forum: A Bioconductor Developers’ Forum was held on July 28, 2025.
The event sparked discussions that have led to the creation of a new #rust channel on
the Bioconductor Zulip, for community members interested in using Rust with R and
Bioconductor.

• GBCC 2025: The Galaxy and Bioconductor Community Conference (GBCC 2025) was
held in June 2025. A full report of the conference can be found in the July 2025 Galaxy
Community Newsletter. Recordings of talks are available in a YouTube playlist.

• Bioconductor in scverse workshop: A successful workshop was held in January 2025,
focusing on the integration of Bioconductor tools with the scverse ecosystem. Read
the recap here.

• Global Training: We have had a busy year of training events, with courses in Kenya,
a microbiome course in Brazil, and a course in Ethiopia (blog post forthcoming).

5.2 Announcements

• EuroBioC 2025: The European Bioconductor conference is taking place from September
17-19, with pre-conference workshops from September 15-16. For more information,
visit the conference website.

• BioCAsia 2025: BioCAsia 2025 will be held as part of the ABACBS conference in
Adelaide on November 27. The focus is on hands-on workshops, and registration is
now open. For more information, visit the conference website.

6 Project News

6.1 ggplot2 4.0.0 and Bioconductor

Version 4.0.0 of ggplot2 was released on September 11, 2025. The new version introduces
a significant internal change from the S3 to the S7 object system, and breakages in some
Bioconductor packages that customize ggplot2’s functionality. We received early notification
from ggplot2 developers through Bioconductor Zulip, and outlined the potential impact on
developers and users, and provided guidance on how to adapt to this transition in a blog
post in July. The ggplot2 team’s proactive communication ahead of their release helped the
Bioconductor community prepare, and we appreciate their support.

6.2 Project Collaborations

We highlight several new collaborations:

• Bioconductor to Galaxy: This project aims to improve the integration of Bioconductor
tools within the Galaxy platform. A group worked on this at the GBCC2025 CoFest,
and you can read more about it in this blog post.

• EDAM Ontology: We continue our work on the EDAM ontology to improve the
FAIRness of our packages. See the latest update here. Our project was selected for the
annual BioHackathon Europe in Berlin, November 3-7. In-person places are full but
remote participation is possible and free.

• Physalia Collaboration: We have partnered with Physalia Courses to offer high-
quality training in computational biology. Read about it here.

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859

https://artifact.galaxyproject.org/news/2025-07-11-june2025-newsletter/
https://artifact.galaxyproject.org/news/2025-07-11-june2025-newsletter/
https://www.youtube.com/playlist?list=PLdl4u5ZRDMQTJ0O_FIO9ayqaUDfnMo4-4
https://blog.bioconductor.org/posts/2025-01-08-bioc-in-scverse-workshop/
https://blog.bioconductor.org/posts/2025-05-21-kenya-course/
https://blog.bioconductor.org/posts/2025-07-10-microbiome-course-brazil/
https://training.bioconductor.org/workshops/2025-08-Addis-Ababa/index.html
https://eurobioc2025.bioconductor.org/
https://biocasia2025.bioconductor.org/
https://blog.bioconductor.org/posts/2025-07-07-ggplot2-update/
https://blog.bioconductor.org/posts/2025-07-07-ggplot2-update/
https://blog.bioconductor.org/posts/2025-07-03-bioc-to-galaxy/
https://blog.bioconductor.org/posts/2025-07-18-edam/
https://github.com/elixir-europe/biohackathon-projects-2025/blob/main/13.md
https://blog.bioconductor.org/posts/2025-06-20-physalia-collaboration/


CONTRIBUTED RESEARCH ARTICLE 261

7 Boards and Working Groups Updates

The Community Advisory Board (CAB) and the Technical Advisory Board (TAB) held their
annual call for new members, which closed on August 31, 2025. The selection process is
currently underway, and new members will be announced later this year.

In March 2025, we published a blog post introducing Stevie Pederson as the new CAB
Co-Chair. The post also highlights the role of the CAB, its working groups, and ways for
community members to get involved.

8 Using Bioconductor

Start using Bioconductor by installing the most recent version of R and evaluating the
commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker images provides a very effective on-ramp for power users to rapidly obtain
access to standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.
• A list of available software linking to pages describing each package.
• A question-and-answer style user support site and developer-oriented mailing list.
• A community Zulip workspace (sign up) for extended technical discussion.
• The F1000Research Bioconductor gateway for peer-reviewed Bioconductor workflows

as well as conference contributions.
• The Bioconductor YouTube channel includes recordings of keynote and talks from

recent conferences, in addition to video recordings of training courses.
• Our package submission repository for open technical review of new packages.

Upcoming and recently completed events are browsable at our events page.

The Technical and Community Advisory Boards provide guidance to ensure that the
project addresses leading-edge biological problems with advanced technical approaches, and
adopts practices (such as a project-wide Code of Conduct) that encourages all to participate.
We look forward to welcoming you!

We welcome your feedback on these updates and invite you to connect with us through
the Bioconductor Zulip workspace or by emailing community@bioconductor.org.

Maria Doyle, Bioconductor Community Manager
University of Limerick

Bioconductor Core Developer Team
Dana-Farber Cancer Institute, Roswell Park Comprehensive Cancer Center, City University of New
York, Fred Hutchinson Cancer Research Center, Mass General Brigham
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Changes on CRAN
2025-04-01 to 2025-06-30

by Kurt Hornik, Uwe Ligges, and Achim Zeileis

1 CRAN growth

In the past 3 months, 546 new packages were added to the CRAN package repository.
145 packages were unarchived, 570 were archived and 0 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:

2000 2010 2020

0
50

00
10

00
0

15
00

0
20

00
0

Year

Number of CRAN Packages

2000 2010 2020

50
10

0
20

0
50

0
10

00
20

00
50

00
20

00
0

Year

Number of CRAN Packages (Log−Scale)

On 2025-06-30, the number of active packages was around 22397.

2 CRAN package submissions

From April 2025 to June 2025 CRAN received 7476 package submissions. For these, 11748 ac-
tions took place of which 8890 (76%) were auto processed actions and 2858 (24%) manual
actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting

auto 2423 693 1619 132 0 2576 877 311
manual 1166 0 11 5 31 1284 291 69

These include the final decisions for the submissions which were

The R Journal Vol. 17/2, June 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 263

archive publish

auto 2338 (31.8%) 2327 (31.7%)
manual 1152 (15.7%) 1528 (20.8%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

3 CRAN mirror security

Currently, there are 93 official CRAN mirrors, 77 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

4 CRAN Task View Initiative

Currently, there are 48 task views (see https://CRAN.R-project.org/web/views/), with
median and mean numbers of CRAN packages covered 107 and 122, respectively. Overall,
these task views cover 4891 CRAN packages, which is about 22% of all active CRAN
packages.
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R Foundation News
by Torsten Hothorn

1 Donations and members

Membership fees and donations received between 2025-03-26 and 2025-09-16.

1.1 Donations

Richard Cousineau (Canada)

1.2 Supporting institutions

Alfred Mueller Analytic Services, München (Germany), Departement Klinische Forschung,
Basel (Switzerland), Ef-prime, Inc., Tokyo (Japan), NIFU Nordic Institute for Studies in
Innovation, Research and Education, Oslo (Norway), The University of Auckland, Statistics
Department, Auckland (New Zealand), University of Iowa, Iowa City (United States)

1.3 Supporting members

Vedo Alagic (Austria), Jose Alaya (Peru), Kristoffer Winther Balling (Denmark), Maurice
Baudet von Gersdorff (Germany), Amit Behera (United States), Ashanka Beligaswatte
(Australia), Chris Billingham (United Kingdom), Emmanuel Blondel (France), Tom Boulay
(United States), Andreas Büttner (Germany), Robert Carnell (United States), Chao Cheng
(China), William Chiu (United States), Thomas Collins (United States), Giuseppe Corbelli
(Italy), Charles Cowens (United States), Alistair Cullum (United States), Ajit de Silva (United
States), Elliott Deal (United States), Dubravko Dolic (Germany), Serban Dragne (United
Kingdom), Mitch Eppley (United States), Guenter Faes (Germany), Aurélien Ginolhac (Lux-
embourg), Susan Gruber (United States), Chris Hanretty (United Kingdom), James Harris
(United States), Benedikt Haug (Netherlands), Takehiko Hayashi (Japan), Knut Helge Jensen
(Norway), Brian Johnson (United States), Christian Kampichler (Netherlands), Katharina
Kesy (Germany), An Khuc (United States), Mohammad Golam Kibria (United States), Se-
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