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Editorial
by Rob J Hyndman

In this issue

On behalf of the editorial board, I am pleased to present Volume 17 Issue 3 of the R Journal.
This issue features eleven research articles, plus news from CRAN, BioConductor and the R
Foundation.

TBC

The articles discuss various R packages that have been developed, covering a wide range of
topics. Each article provides an overview of the package, its functionality, and examples of
its use. All packages discussed are available on CRAN. Supplementary material with fully
reproducible code is available for download from the Journal website.

Rob J Hyndman
Monash University

https://journal.r-project.org
r-journal@r-project.org
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lsirm12pl: An R Package for the Latent
Space Item Response Model
Dongyoung Go, Gwanghee Kim, Jina Park, Junyong Park, Minjeong Jeon, Ick Hoon Jin

Abstract The item response model in latent space (LSIRM; Jeon et al. (2021)) uncovers
unobserved interactions between respondents and items in the item response data by
embedding both in a shared latent metric space. The R package lsirm12pl implements
Bayesian estimation of the LSIRM and its extensions for various response types, base model
specifications, and missing data handling. Furthermore, the lsirm12pl package provides
methods to improve model utilization and interpretation, such as clustering item positions
on an estimated interaction map. The package also offers convenient summary and plotting
options to evaluate and process the estimated results. In this paper, we provide an overview
of the LSIRM’s methodological foundation and describe several extensions included in the
package. We then demonstrate the use of the package with real data examples contained
within it.

1 Introduction

Item response theory (IRT) models are a widely-used statistical approach to analyze assess-
ment data in various fields, e.g., medical, educational, psychological, health, and marketing
research (An and Yung, 2014; Zanon et al., 2016). IRT models are designed to establish a
relationship between observed item response data and unobserved person characteristics,
commonly referred to as latent traits, e.g., competencies, attitudes, or personality (de Ayala,
2009; Brzezińska, 2018). IRT models can predict the probability of a correct (or positive)
response as a function of the respondents’ latent traits and item features, such as item
difficulty and discrimination. Additional technical details of IRT models are provided in the
subsequent section.

Several R packages are available for estimating IRT models. The ltm package (Rizopou-
los, 2006) is available to analyze dichotomous and polytomous item response data, including
a one-parameter logistic (1PL) model (or the Rasch model), a two-parameter logistic (2PL)
model, a three-parameter model (Rasch, 1960; Birnbaum, 1968) and a graded response
model (Samejima, 1968). The eRm package (Mair and Hatzinger, 2007) estimates various
extensions of the Rasch model, such as the rating scale model (RSM) (Andrich, 1978), partial
credit model (PCM) (Masters, 1982), linear logistic test model (LLTM) (Scheiblechner, 1972),
the linear rating scale model (LRSM) (Fischer and Parzer, 1991), and the linear partial credit
model (LPCM) (Glas and Verhelst, 1989; Fischer and Ponocny, 1994). The mirt package
(Chalmers, 2012) can estimate a wide range of IRT models, including exploratory and con-
firmatory multidimensional item response models. The pcIRT package (Hohensinn, 2018)
provides functions for estimating IRT models for polytomous (nominal) and continuous
data, including the multidimensional polytomous Rasch model (Andersen, 1973) and the
continuous rating scale model (Müller, 1987), using conditional maximum likelihood (CML)
estimation (Baker and Kim, 2023).

Conventional IRT models are typically based on two assumptions: conditional inde-
pendence and homogeneity. Conditional independence assumes that item responses are
independent of each other conditional on respondents’ latent traits. The homogeneity
assumption is, e.g., that respondents with the same ability have the same probability of
answering a question correctly and that respondents have the same probability of answering
a question with the same item difficulty. However, these assumptions are often violated
in practice due to unobserved interactions between respondents and items, e.g., when
particular items are more similar to each other (e.g., testlets) or when particular respondents
show different probabilities of giving correct responses to certain items compared to other
respondents with similar ability (e.g., differential item functioning). Violations of these
assumptions can lead to biased parameter estimates and inferences (Chen and Wang, 2007;
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Braeken, 2010; Myszkowski and Storme, 2024). While some existing methods can address
known violations prior to data analysis, there is currently no approach that enables the
detection or management of unknown sources of violations in item response analysis, to the
best of our knowledge.

Jeon et al. (2021) proposed a latent space item response model (LSIRM) that addresses
such limitations of conventional IRT models. The LSIRM aims to estimate inherent inter-
actions between respondents and items, alongside the latent traits of both. A key feature
is its visual representation of these interactions in a low-dimensional latent space, called
an interaction map in the form of distances between them. Interaction maps offer a clear
and intuitive interpretation of complex respondent-item relationships, allowing users to
identify patterns and clusters based on spatial proximity on the map. Additional details of
the LSIRM are provided in a later section.

This paper presents the lsirm12pl package in R that offers Bayesian estimation of the
LSIRM and its extensions. Jeon et al. (2021) focused on the response data for binary items
and the Rasch model as the base model, and currently, no package is available to estimate
the LSIRMs. To broaden the applicability of latent space item response modeling, lsirm12pl
enables: (1) modeling continuous item responses; (2) missing data handling under different
missing mechanisms assumptions (Rubin, 1976); and (3) an extended base model specifica-
tion using the 2PL model both for binary and continuous item response data. The package
also offers options to cluster latent positions of items in the estimated interaction map using
spectral clustering and the Neyman-Scott process model. The lsirm12pl supplies convenient
summary and plotting options for interaction maps, model assessment, diagnosis, and result
process and interpretation, aiming to improve the utilization of the LSIRM in practice.

The subsequent sections of the paper are structured as follows. To begin, we provide a
concise overview of the 1PL and 2PL IRT models. We then delve into the LSIRM for binary
response data and demonstrate how to fit the model with the package functions using a real
dataset. Next, we extend the LSIRM to accommodate continuous data and provide guidance
on fitting this extended model using the lsirm12pl package. In the end, we conclude the
paper with final remarks and a discussion of future developments.

2 Item response theory models

IRT models are essential for analyzing item response data, which comprises respondents’
answers to items on tests, surveys, or questionnaires. This section briefly discusses two
widely utilized IRT models for dichotomous item response data.

2.1 1PL IRT Model

The 1PL model, also known as the Rasch model (Rasch, 1961), is a classic IRT model for
analyzing dichotomous item response data. Suppose Y =

{
yk,i

}
∈ {0, 1}N×P is the N × P

binary item response matrix under analysis, where yk,i = 1 indicates a correct (or positive)
response of the respondent k to the item i. In the Rasch model, the probability of the correct
response for item i given by respondent k is given as follows:

logit(P(yk,i = 1|θk, βi)) = θk + βi, θk ∼ N(0, σ2),

where θk ∈ R is the respondent intercept parameter of respondent k, βi ∈ R is the item
intercept parameter of item i. The person intercept parameter represents the latent trait of
interest, such as cognitive ability. The item intercept parameter represents the item easiness
(or minus difficulty). As the respondent’s ability increases, her/his likelihood of giving
correct responses increases. On the other hand, the likelihood of correct responses decreases
as the difficulty of the item increases. Note that based on the model, the probability of a
respondent’s giving a correct response to an item is a function of the two parameters – the
person’s ability and the item’s difficulty. This means that respondents with the same level
of ability are assumed to have the same probability of giving a correct response to an item.
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Similarly, items with the same level of difficulty are assumed to have the same probability
of being correctly responded to. In other words, interactions between persons and items are
not allowed in this model. However, in reality, respondents with the same level of ability
and items with the same level of difficulty may show a different success probability due to
unobserved characteristics they may have, violating the assumptions.

2.2 2PL IRT Model

The 2PL model (Birnbaum, 1968) extends the 1PL model by incorporating a discrimination
parameter for each item. This parameter reflects the ability of the item to differentiate among
respondents with similar abilities. The item discrimination parameters are also considered
as item slopes, indicating how quickly the probability of correct responses increases as the
respondent’s abilities increase (An and Yung, 2014). A larger discrimination parameter
indicates that the item is better at distinguishing between respondents with similar ability
levels. In the 2PL model, the probability of person k giving a correct response to item i is
given as follows:

logit(P(yk,i = 1|θk, αi, βi)) = αiθk + βi, θk ∼ N(0, σ2), (1)

where αi ∈ R is the discrimination parameter for the item i. For model identifiability, one
of the item slope parameters is fixed at 1, e.g., α1 = 1. With the term αiθk, the 2PL model
allows for an interaction between respondents and items to some degree. However, it is not
likely to capture all interactions between respondents and items that might not depend on
respondents’ ability (Jeon et al., 2021).

3 Standard lsirm: 1pl lsirm for dichotomous data

The LSIRM (Jeon et al., 2021) has been proposed as an extension of the conventional IRT
models. The key idea of the LSIRM is to place respondents and items in a low-dimensional,
shared metric space, called an interaction map, so that their unobserved interactions can be
captured in the form of distances between them. Below we provide a brief overview of the
LSIRM in its original form, presented for dichotomized data.

3.1 Statistical framework

To capture unobserved interactions between respondents and items, the original LSIRM
(Jeon et al., 2021) embeds items and respondents in an interaction map, i.e., a D-dimensional
latent Euclidean space. Note that the interaction map is used as a tool to represent pairwise
interactions between respondents and items; thus, the dimensions of an interaction map do
not represent any specific quantity or have a substantive meaning. The original LSIRM is
built on the 1PL IRT model; thus, we refer to the original LSIRM as the 1PL LSIRM.

The 1PL LSIRM assumes that the probability of giving a correct answer to item i by the
respondent k is determined by a linear combination of the main effect of the respondent k,
the main effect of the item i, and the pairwise distance between the latent position of item i
and the latent position of respondent k. Then, the model is given by:

logit(P(yk,i = 1|θk, βi, γ, zk, wi)) = θk + βi − γd(zk, wi), (2)

where θk ∈ R and βi ∈ R represent the respondent’s latent trait and the item’s easiness,
respectively, same as in the conventional 1PL model. These two terms can also be seen
as the main effects of respondents and items. The third term, −γd(zk, wi), captures the
interactions between respondents and items, where zk ∈ RD and wi ∈ RD are the latent
position of the respondent k, and the latent position of the item i, respectively, where γ ≥ 0
is the weight of the distance term d(zk, wi). For a distance function d : RD × RD 7→ [0, ∞),
we use a Euclidean norm (that is, d(zk, wi) = ||zk − wi||) as a distance function in lsirm1pl
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to maintain simplicity and enhance the interpretability of the model (Hoff et al., 2002). The
weight of the distance term γ ≥ 0 indicates the amount of interactions between respondents
and items in the data, such that large γ implies stronger evidence for respondent by item
interactions in the data. In contrast, near zero γ implies little evidence of respondent-item
interactions in the data, thus suggesting that one may go with the conventional IRT model
without the interaction term.

The likelihood function of the observed data with the 1PL LSIRM is

L (Y = y|θ, β, γ, Z, W) =
N

∏
K=1

P

∏
i=1

P(Yk,i = yk,i|θk, βi, γ, zk, wi),

where θ = (θ1, . . . , θN), β = (β1, . . . , βP), Z = (z1, . . . , zN) and W = (w1, . . . , wP). Here,
item responses are assumed to be independent conditional on the positions of respondents
and items in an interaction map, as well as the main effects of respondent and item. This
means that the traditional conditional independence assumption is alleviated with the
model by accounting for respondent-item interactions. The detailed parameter estimations
are described in the following Section.

3.2 Parameter Estimation

The R package lsirm12pl applies a fully Bayesian approach using the Markov chain Monte
Carlo (MCMC) for estimation of the LSIRM. Following is the posterior distribution of the
1PL LSIRM.

π (θ, β, γ, Z, W |Y = y) ∝
N

∏
k=1

P

∏
i=1

P(Yk,i = yk,i|θk, βi, γ, zk, wi)

×
N

∏
k=1

π(θk)×
P

∏
i=1

π(βi)× π(γ)×
N

∏
k=1

π(zk)
P

∏
i=1

π(wi)

The priors for the model parameters are specified as follows:

θk | σ2 ∼ N(0, σ2), σ2 > 0

βi | τ2
β ∼ N(0, τ2

β), τ2
β > 0

log γ | µγ, τ2
γ ∼ N(µγ, τ2

γ), µγ ∈ R, τ2
γ > 0

σ2 | aσ, bσ ∼ Inv-Gamma(aσ, bσ), aσ > 0, bσ > 0

zk ∼ MVND(0, ID)

wi ∼ MVND(0, ID).

where 0 is a D-vector of zeros and ID is D × D identity matrix. The argument names and
default values for the prior specifications in the lsirm12pl are described in our Github site 1.

To generate posterior samples for θ, β, γ, Z and W , we use the Metropolis-Hastings-
within-Gibbs sampler (Chib and Greenberg, 1995). The conditional posterior distribution
for each parameter is given in Equations in the Github site. We list the arguments, the
default values for the jumping rules, and the standard deviations of the Gaussian proposal
distributions in the Github site.

The log-odds of the probability of giving correct responses depend on the latent posi-
tions through distances, as discussed in Jeon et al. (2021). Because distances are invariant
to translations, reflections, and rotations of the positions of respondents and items, the
likelihood function is invariant under these transformations. To resolve the identifiability
issue of latent positions, the lsirm12pl package applies Procrustes transformation (Gower,
1975) as a post-processing of posterior samples, which is a standard procedure in the latent
space modeling literature (Hoff et al., 2002; Sewell and Chen, 2015; Jeon et al., 2021).

1https://github.com/jiniuslab/lsirm12pl
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3.3 An Illustrated Example

Here, we demonstrate how to apply the 1PL LSIRM to real datasets using the lsirm12pl
package. To this end, we use the Inductive Reasoning Developmental Test (TDRI) dataset
(Golino, 2016) from the package, which contains item responses from 1,803 Brazilians (52.5%
female) of ages ranging from 5 to 85 years (M = 15.75; SD = 12.21). TDRI is a pencil-and-
paper test consisting of 56 items that are designed to assess developmentally sequenced and
hierarchically organized inductive reasoning.

The lsirm12pl package provides several functions for fitting the LSIRM, which requires
setting hyperparameter values for prior distributions and/or tuning parameters for MCMC
chains. By default, the lsirm function runs with the default settings unless otherwise
specified by the user. The default MCMC run setting includes 15,000 iterations, 2,500
burn-ins, and 5 thinning. The base function for running the LSIRM is

lsirm(A ∼ <term 1>(<term 2>,<term 3>,...))

where A is an item response matrix to be analyzed, <term1> is for the model option – either
‘lsirm1pl’ or ‘lsirm2pl’, while <term 2> and <term 3> are other specific options for the chosen
model, which are detailed in the documentation of the lsirm12pl package. The following
is an example of how to fit the 1PL LSIRM to the TDRI dataset (with no missing) with a
default estimation setting with 4 MCMC chains using 2 multi-core processors. Additional
details of other default values can be found in the documentation of the lsirm12pl package.

R > library("lsirm12pl")
R > data <- lsirm12pl::TDRI
R > data <- data[complete.cases(data),]
R > head(data)

i1 i2 i3 i4 ... i54 i55 i56
1 1 1 1 1 ... 0 0 0
2 1 1 1 1 ... 0 0 0
3 1 1 1 1 ... 0 0 0
4 1 1 1 1 ... 0 0 0
5 1 1 1 1 ... 0 0 0

R > lsirm_result <- lsirm(data ~ lsirm1pl(chains = 4, multicore = 2, seed = 2025))

The estimation results of the model parameters θ, β, γ, Z, and W are stored in individual
lists per chain, while all results across the chains are stored in a single list.

The summary() function generates a summary of the first chain by default, but users can
obtain summaries of other chains by setting the chain.idx option. The function provides
posterior estimates of the “covariate coefficients” (model parameters such as β), allowing
the users to select the "mean", "median", or "mode" through the estimate option. It also
provides the highest posterior density interval (HPD) for the model parameters with the CI
option that allows the users to set different significance levels. Additionally, the function
supplies the Bayesian information criterion (BIC) and the maximum log posterior value.
When the column names are available in the input data, the summary() function uses these
names in the summary of the results.

R > summary(lsirm_result, chain.idx = 1, estimate = 'mean', CI = 0.95)
==========================
Summary of model
==========================

Call: lsirm.formula(formula = data ~ lsirm1pl(chains = 4, multicore = 2, seed = 2025))
Model: lpl LSIRM
Data type: binary
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Variable Selection: FALSE
Missing: NA
MCMC sample of size 15000, after burnin of 2500 iteration

Covariate coefficients posterior means of chain 1 :

Estimate 2.5% 97.5%
i1 6.42354 5.82468 7.0642
...
i56 -1.01604 -2.58822 0.8133

---------------------------

Overall BIC (Smaller is better) : 43661.52

Maximum Log-posterior Iteration:
value iter

[1,] -11487 137

The diagnostic() function checks the convergence of MCMC for each parame-
ter using various diagnostic tools, such as trace plots, posterior density distributions,
autocorrelation functions (ACF), and Gelman-Rubin-Brooks plots. The diagnostic()
function has options: draw.item, and gelman.diag. The draw.item option in the
diagnostic() function specifies the names and indexes of the parameters to diagnose.
The draw.item option is set to a list where a key represents each parameter such as
``beta'',``theta'',``gamma'',``alpha'',``sigma'', and ``sigma_sd'', and the values
indicate the indices of these parameters. The indexes can be expressed as vectors. In the
following example code, the draw.item option is set as list(``beta'' = c(1)) to check
the diagnostic of the first index of the beta parameter, i.e. β1. With gelman.diag = TRUE, the
Gelman-Rubin convergence diagnostic, known as potential scale reduction factors (PSRF), is
obtained.

R > diagnostic(lsirm_result,
draw.item = list("beta" = c(1)),
gelman.diag = TRUE)

Potential scale reduction factors:

Point est. Upper C.I.
beta [i1] 1.01 1.04

Figure 1 displays the output of diagnostic() for β1: trace plot (top left), posterior
density plot (top right), autocorrelation plot (bottom left), and Gelman-Rubin-Brooks plot
(bottom right). Different colors indicate different MCMC chains. Trace plots visualize the
mixing of the MCMC chains. In a well-converged model, the trace plots should show that
chains fluctuate consistently around a constant value, which indicates the parameter space
is thoroughly explored. Density plots display the distribution of the sampled parameter
values. In a converged model, the density plots should exhibit smooth, overlapping curves
across different chains, which demonstrates that the samples are drawn from the same
posterior distribution. Autocorrelation plots measure the correlation between samples at
different lags. For a converged model, the autocorrelation should decrease rapidly as the
lag increases, which suggests the samples are independent and the parameter space has
been effectively explored. Gelman-Rubin-Brooks plots show a shrink factor, known as the
potential scale reduction, which compares the variance within each chain to the variance
between chains. A shrink factor value close to 1 indicates the within-chain variance is similar
to the between-chain variance, providing evidence of good convergence. By examining
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Figure 1: Diagnostics of β1 using the diagnostic() function on the results of the 1PL LSIRM fitted to
the TDRI dataset. The top left is the trace plot, the top right is the posterior density plot, the bottom
left is the autocorrelation plot, and the bottom right is the Gelman-Rubin-Brooks plot. Different colors
represent different MCMC chains.

these diagnostics collectively, the convergence of the model parameters from the LSIRM can
be ensured.

The lsirm12pl package supplies the gof() function that assesses the goodness of fit of
the LSIRM to the item response data being analyzed. A main diagnostic tool is a boxplot that
displays the average posterior ‘predicted’ response value for each item (item-wise means)
with the average ‘observed’ response value for each item indicated by red dots. When the
model fits well, the red dot is close to the midline of the boxplot. The gof() function includes
a chain.idx option to choose a specific chain for assessing the goodness of fit. By default,
the first MCMC chain is selected (i.e. chain.idx=1). When the diagnostic() function shows
good convergence for all parameters, it does not matter which chain is chosen because the
parameter estimates must be consistent across all chains. For illustration, we use the first
MCMC chain by setting chain.idx=1.

For binary data, the gof() function additionally offers a receiver operating characteristic
(ROC) curve. The ROC curve is a graphical representation that assesses the performance
of a binary classifier. The area under the curve (AUC) quantifies the overall ability of the
model to distinguish between classes, with values ranging from 0.5 to 1. A higher AUC and
a curve close to the top-left corner indicate better performance.

R > gof(lsirm_result, chain.idx = 1)

Figure 2 presents the output of the gof() function for the TDRI dataset, showing the
results for the first MCMC chain, including both the boxplot (left) and the ROC curve (right).
In this example, all of the red dots are closely located at the midline of the boxplot and the
area under the curve (AUC) of the ROC curve approaches 1, suggesting that the fit of the
LSIRM to the data is satisfactory.

The main outcome of the LSIRM fitting is the estimates of the respondent and item main
effects and the interaction map. For a visual summary of these outputs, the user can use the
plot() function with the option argument.

R > plot(lsirm_result, option = "beta", chain.idx = 1)
R > plot(lsirm_result, option = "theta", chain.idx = 1)

Figures 3 display the plot() results for summarizing βi and θk by setting the option
argument as the "beta" and "theta", respectively. option="beta" generates the boxplots
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Figure 2: Goodness of fit of the 1PL LSIRM for the TDRI data using the gof() function. The box plots of
the average posterior predicted response values for items (item-wise means) with the average observed
response value for each item indicated by red dots (left) and the receiver operating characteristic (ROC)
curve (right).

(a) βi (b) θk

Figure 3: Visual summaries of the parameter estimate of βi and θk using the plot() function based
on the 1PL LSIRM fitted to the TDRI dataset. (a) Boxplots of the posterior samples for βi; outliers are
suppressed in the boxplots for the sake of simplicity. (b) Boxplots of the point estimate for θk as a
function of the total sum scores of positive responses.

of the posterior samples for βi, while option="theta" generates the boxplots of the point
estimates for θk, plotted against the total sum scores of positive responses (ranging from
0 to P, where P is the number of items). In Figure 3a, as the item number increases (from
left to right on the x axis), the βk estimates decrease, indicating that earlier items are easier.
In Figure 3b, individuals who correctly answer more items (i.e., higher sum scores) have
higher θi estimates. It is sensible that those who answer more items correctly have higher θi
values, as θi represents their ability levels.

The plot() also returns the interaction map with option="interaction". The interaction
map is created based on the estimated latent position of the item and respondent, wi
and zk, respectively. Note that the primary and unique advantage of the LSIRM lies in
deriving intuitive information from the interaction map, based on the distances between
respondents and items, between respondents, and between items. In the interaction map,
a shorter distance between the latent position of the item i (wi) and the latent position of
the respondent k (zk) indicates a stronger dependence (or interactions), which implies that
the respondent k is more likely to respond correctly (or positively) to the item i, given the
person’s ability. In the lsirm12pl package, the interaction map is set to a two-dimensional
space, as in Jeon et al. (2021), for parsimony and interpretability.

R > plot(lsirm_result, option = "interaction", chain.idx = 1)

Figure 4a (top left) displays the interaction map based on the 1PL LSIRM for the TDRI
data. The latent positions of items are represented as red numbers and respondents as
black dots on the map. Note that the two coordinates (dimensions) of the map do not
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(a) Original (b) Oblimin rotation

(c) MAR (d) MCAR

Figure 4: The estimated interaction maps based on the 1PL LSIRM fitted to the TDRI dataset. (a) The
original interaction map. (b) The rotated interaction map using oblimin rotation. (c) The interaction
map based on the MAR assumption. (d) The interaction map based on the MCAR assumption which
has been reflected across the y-axis to facilitate comparisons with the other interaction maps. Red
numbers represent item positions and black dots represent respondent positions in all plots.

represent specific quantities or substantive meaning, as the interaction map is simply a tool
to represent respondent-by-item interactions (Jeon et al., 2021). In Figure 4a, we observe that
respondents are widely spread around the center of the interaction map, while the items are
separated by some clusters. For example, items located in the far north, such as items 50, 52,
53, 54, and 55 (red numbers), are far from most respondents (black dots) on the map. This
suggests that most respondents are less likely to respond correctly to those specific items,
regardless of their ability levels. In other words, those items located in the south are difficult
items, which is also confirmed in Figure 3(a).

R > plot(lsirm_result, option = "interaction", rotation = TRUE, chain.idx = 1)

If desired, one can rotate the interaction map to improve the interpretability of the
coordinates of the map with rotation=TRUE.

The lsirm12pl package offers the oblimin rotation (Jennrich, 2002) using the GPArotation
package in R (Bernaards and Jennrich, 2005). Figure 4b (top left) shows the rotated version
of the original map shown in Figure 4a (top right). In this example, the original and rotated
maps appear pretty similar, although on the right there seems to be slight clockwise rotation
compared to the one on the left; after rotation, the x- and y- coordinates may be interpreted
based on the items that are closely placed to the respective coordinates.

Further, the lsirm12pl package offers an option to cluster latent positions of items.
Two types of clustering methods are available: spectral clustering (Ng et al., 2001; von
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Luxburg, 2007) and the Neyman-Scott process modeling approach (Thomas, 1949; Neyman
and Scott, 1952; Yi et al., 2024), with cluster option as spectral and neyman, respectively.
Spectral clustering is a technique that clusters points based on the eigenvalues of a similarity
matrix, using the spectral properties of the data to identify clusters. The implementation of
spectral clustering is based on the kernlab package (Karatzoglou et al., 2004) in R where the
number of clusters is determined using the average silhouette width (Batool and Hennig,
2021). The Neyman-Scott point process modeling approach is a method to cluster points
in time or space. Parent points (cluster center) are generated using a Poisson process, with
offspring points clustered around each parent based on a defined probability distribution.
The lsirm12pl package implements this method directly; it applies the MCMC algorithm
a number of times independently to determine the distribution of the cluster number and
cluster centers. Then, the mode of the cluster number distribution is chosen as the optimal
cluster number. With the optimal cluster number, the cluster center that minimizes the
Bayesian information criterion is selected, and items are assigned to the nearest cluster based
on Euclidean distances.

R > plot(lsirm_result, cluster = "spectral", chain.idx = 1)

Clustering result (Spectral Clustering):
group item

A 49, 50, 51, 52, 53, 54, 55, 56
B 33, 34, 35, 36, 37, 38, 39, 40
C 41, 42, 43, 44, 45, 46, 47, 48
D 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24

E 25, 26, 27, 28, 29, 30, 31, 32

R > plot(lsirm_result, cluster = "neyman", chain.idx = 1)

|==================================================| 100%
Clustering result (Neyman-Scott process):

group item
A 33, 34, 35, 36, 37, 38, 39, 40
B 49, 52, 54, 55
C 25, 26, 27, 28, 29, 30, 31, 32
D 17, 18, 19, 20, 21, 22, 23, 24
E 50, 51, 53, 56
F 9, 10, 11, 12, 13, 14, 15, 16
G 1, 2, 3, 4, 5, 6, 7, 8
H 41, 42, 43, 44, 45, 46, 47, 48

Figures 5a and 5b are item clustering results based on spectral clustering and the Neyman-
Scott process model, respectively. In both plots, the gray dots indicate respondents, where
numbers in colors indicate items with different cluster memberships. The Neyman-Scott
process modeling approach additionally displays the center of the item cluster (alphabets A
to H) and a contour for each item cluster. In this example, the spectral clustering method
identifies five clusters, while the Neyman-Scott process modeling approach identifies eight
clusters. Overall, the Neyman-Scott process modeling approach further split the items near
the center (red items on the left) and in the north (light green items on the left) compared to
the spectral clustering method.

3.4 Flexible Modeling Options

The lsirm12pl package provides a range of flexible modeling options for the LSIRM.
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(a) Spectral Clustering (b) Neyman-Scott Process Model

Figure 5: The interaction map with item clustering results based on the 1PL LSIRM fitted to the TDRI
dataset, using (a) spectral clustering and the (b) Neyman-Scott process modeling approach. In both
plots, the gray dots indicate respondents, while numbers in colors indicate items with different cluster
memberships. The Neyman-Scott process approach additionally displays the center of the cluster
(alphabets A to H) and a contour for each cluster.

First, with fixed_gamma option, one can fix the distance weight γ to a constant value of 1.
By doing so, the scale of the latent space can be standardized, easing comparison between
different interaction maps. The default value of fixed_gamma option is FALSE (i.e., γ is freely
estimated).

R > lsirm_result <- lsirm(data ~ lsirm1pl(fixed_gamma = TRUE))

Second, with spikenslab option, one can apply a model selection with the spike-and-slab
prior for the distance weight γ (Ishwaran and Rao, 2005). The spike-and-slab prior is a
mixture of two log-normal priors: one is densely concentrated near zero, while another is
more broadly spread across positive values. With this option, one can determine whether γ
is zero or not, which in turn determines whether the distance term is needed for the data
being analyzed. If γ is not zero, it is evidence for item-by-respondent interactions in the
data being analyzed, and thus it would be useful to investigate the interactions between
respondents and items with the LSIRM approach. The default value of spikenslab option is
FALSE.

The posterior probability of γ being non-zero is indicated by the return value of
pi_estimate. A pi_estimate value greater than 0.5 suggests that γ is likely non zero.
Note that the two options fixed_gamma and spikenslab cannot be used simultaneously.

R > lsirm_result <- lsirm(data ~ lsirm1pl(spikenslab = TRUE))
R > lsirm_result$pi_estimate
[1] 0.9984

Third, the package offers options for handling missing data. In the context of missing
data, three key assumptions are considered (Rubin, 1976): missing completely at random
(MCAR), missing at random (MAR), and missing not at random (MNAR). MCAR occurs
when the probability of missing data on a variable is unrelated to any other measured
variables or the variable itself, making the missingness entirely random. MAR happens
when the probability of missing data on a variable is related to some of the observed data
but not the missing data itself, meaning the missingness can be explained by other observed
variables. Unlike MCAR and MAR, MNAR assumes that the missing data mechanism
depends on the unobserved data itself, making it challenging to estimate the model with-
out strong assumptions or additional information about the missing data. Therefore, we
focus on two types of missing data, MCAR and MAR, in the lsirm12pl package with the
missing_data option.

With missing_data = "mcar", the missing data are assumed to follow MCAR and
the parameters are estimated solely based on the observed elements of the dataset being
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analyzed. On the other hand, with missing_data="mar", the missing data are assumed to be
MAR, and the data augmentation algorithm (Tanner and Wong, 1987) is applied to impute
missing values. With missing_data="mar", the function returns the posterior samples of the
imputed responses with imp and the probability of a correct response with imp_estimate.
Imputed values are listed in the order of respondents. Note that all missing values should
be recoded via missing.val. The percentage of missing data in the TDRI dataset is 30%,
and missing values are replaced with 99 which is the default coding of missing data. The
missing_data option can be used in combination with other options such as (spikenslab =
TRUE,missing_data = "mar").

R > data <- lsirm12pl::TDRI
R > data[is.na(data)] <- 99
R > lsirm_result <- lsirm(data ~ lsirm1pl(missing_data = "mcar"))
R > lsirm_result <- lsirm(data ~ lsirm1pl(missing_data = "mar"))
R > lsirm_result$imp_estimate
[1] 0.9900 0.9868 0.9768 0.9884 0.9716 0.9716
...
[997] 0.9860 0.9788 0.8240 0.9924
[ reached getOption("max.print") -- omitted 32327 entries ]

R > plot(lsirm_result, option = "interaction")

Figures 4(c) and 4(d) show the resulting interaction maps with MAR and MCAR as-
sumptions, respectively. Note that a reflection is applied to the interaction map with MCAR
assumptions (c) across the y-axis to ease comparisons with the other interaction plots. Reflec-
tion or rotation does not change the interpretations of the interaction map as interpretations
are based on the distances, not the positions themselves. If the interaction maps of two
missing assumptions are considerably different, further investigation is necessary to deter-
mine which assumption would be more suitable for the analyzed data. In this example, the
interaction maps with the missing data options are similar to the original map presented in
Figure 4a. Note that the original interaction map (a) is based on the complete item response
data with no missing values; that is, the data includes only respondents who answered all
items. In contrast, the interaction maps with the missing data option are based on MAR and
MCAR assumptions. The similarity between these maps suggests that the observed only
or imputed item response data provides a reasonable representation of the original item
response data.

4 2pl lsirm for dichotomous data

The two-parameter LSIRM (2PL LSIRM) extends the 1PL LSIRM with item discrimination
parameters.

4.1 Statistical framework

The 2PL LSIRMs the probability of a correct response by respondent k to item i as follows:

logit
(

P(Yk,i = 1|θk, αi, βi, γ, zk, wi)
)
= αiθk + βi − γd(zk, wi), θk ∼ N(0, σ2),

where θk, βi, zk, wi and γ have similar interpretations to Equation (2), while αi represents
the item discrimination parameters and one of the αi parameters is fixed at 1, e.g., α1 = 1 to
ensure identifiability.

The observed data likelihood function under the 2PL LSIRM is given as

L (Y = y|θ, α, β, γ, Z, W) =
N

∏
k=1

P

∏
i=1

P(Yk,i = yk,i|θk, αi, βi, γ, zk, wi).
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4.2 Parameter Estimation

Following is the posterior distribution of the 2PL LSIRM.

π (θ, β, γ, Z, W |Y = y) ∝
N

∏
k=1

P

∏
i=1

P(Yk,i = yk,i|θk, αi, βi, γ, zk, wi)

×
N

∏
k=1

π(θk)×
P

∏
i=1

π(αi)×
P

∏
i=1

π(βi)× π(γ)×
N

∏
k=1

π(zk)
P

∏
i=1

π(wi)

The prior distributions for θk, βi, zk, wi, and γ are identical for the 1PL LSIRM. For item
discrimination parameters α, a log-normal distribution is used with a mean of µα and a
variance of τ2

α , as α is typically assumed to be positive. The argument names and default
values for the prior specification are shown in the Github site. For the item discrimination
parameters α, the arguments and default values are pr_mean_alpha = 0.5,pr_sd_alpha =
1.

The conditional posterior distribution for each parameter follows the same form as the
Equation in the Github site. The jumping rule for each parameter is given in the Github site.
The default jumping rule for α is jump_alpha = 1.

4.3 An Illustrated Example

We apply the 2PL LSIRM to the TDRI data. The default settings of the 2PL LSIRM are the
same as the 1PL LSIRM except for α. The base function for the 2PL LSIRM is

lsirm(A ∼ lsirm2pl())

The 2PL LSRIRM for dichotomous data was fitted with 4 MCMC chains using 2 multi-
core processors, as demonstrated in the following example code. Similarly to the lsirm1pl
results, the estimation results for the model parameters θ, β, α, γ, Z, and W for each chain
are provided in individual lists.

R > library("lsirm12pl")
R > data <- lsirm12pl::TDRI
R > data <- data[complete.cases(data),]
R > lsirm_result <- lsirm(data ~ lsirm2pl(chains = 4, multicore = 2, seed = 2025))

To diagnose the results of the 2PL LSIRM analysis, we can use the diagnostic() function.
Similarly to the diagnostic of the 1PL LSIRM, the convergence of MCMC for each parameter
can be checked using various diagnostic tools, such as trace plots, posterior density distri-
butions, autocorrelation functions (ACF), and Gelman-Rubin-Brooks plots. By setting the
draw.item option to list('beta'= c(1)), we perform diagnostics for the βi parameter of
the first item (i = 1).

R > diagnostic(lsirm_result,
draw.item = list(beta = c(1)),
gelman.diag = T)

Potential scale reduction factors:

Point est. Upper C.I.
beta [i1] 1 1

Figure 6 displays the diagnostic results for β1 of the results of the 2PL LSIRM fitted
to the TDRI dataset. These plots help us assess the convergence of MCMC for β1. The
interpretation of each plot from the diagnostic() function is the same as mentioned for the
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Figure 6: Diagnostics of β1 using the diagnostic() function on the results of the 2PL LSIRM fitted to
the TDRI dataset. The top left is the trace plot, the top right is the posterior density plot, the bottom
left is the autocorrelation plot, and the bottom right is the Gelman-Rubin-Brooks plot. Different colors
represent different MCMC chains.

1PL LSIRM in the previous Section. In Figure 6, the convergence of β1 was confirmed by
various diagnostic tools.

The gof() function assesses the goodness-of-fit of the LSIRM. Figure 7 visualizes the
box plots of the posterior predicted response values (item-wise means) compared with the
observed item-wise means and the ROC curve to check the performance of the 2PL LSIRM
fitted to the TDRI dataset. In the figure, most of the red dots are located close to the midline
of the boxplots and the AUC is 0.97, indicating the fit of the 2PL LSIRM to the TDRI dataset
is satisfactory.

R > gof(lsirm_result, chain.idx = 1)

Figure 7: Goodness of fit of the 2PL LSIRM for the TDRI data using the gof() function. The box plots
of the average posterior predicted response values for items against the average observed response
value for each item indicated by red dots (left) and the receiver operating characteristic (ROC) curve
(right).

Similarly to the 1PL LSIRM, the plot() function can generate different graphs for the
2PL LSIRM results with the option argument:
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R > plot(lsirm_result, option = "beta", chain.idx = 1)
R > plot(lsirm_result, option = "theta", chain.idx = 1)
R > plot(lsirm_result, option = "alpha", chain.idx = 1)

(a) βi (b) θk (c) αi

Figure 8: Summarizing βi and θk using the plot() function on the results of the 2PL LSIRM fitted to
the TDRI dataset. (a) Boxplots of the posterior samples for βi. (b) Boxplots of the point estimate for θk
as a function of the total sum scores of positive responses. (c) Box plots of the posterior samples for αi.

Figure 8 illustrates the results of the plot() function with the "beta", "theta", and
"alpha" options for the 2PL LSIRM, respectively. Similarly to the 1PL LSIRM, βi decreases
for later items, indicating that later items are more difficult than earlier items. In addition,
respondents with more correctly answered items (that is, higher sum scores) have higher θk
estimates. Lastly, the distribution of the posterior samples for αi is similar across all items.

The plot() function can be used to create a visualization of the interaction map based
on the 2PL LSIRM by setting option argument as "interaction". Figures 9a and 9b show
the original and rotated interaction maps, respectively. In the interaction maps based on
the 1PL and 2PL LSIRM, we notice that although the clustering of items is similar, the
distances between item groups appear smaller in the interaction map of the 2PL LSIRM.
This difference arises because the 2PL LSRIM takes item discrimination (α) into account,
which explains some degree of item-by-person interactions. The interaction map with the
oblimin rotation (b) shows a slight clockwise rotation compared to the original interaction
map (a), similarly to the 1PL LSIRM’s case.

R > plot(lsirm_result, option = "interaction", chain.idx = 1)
R > plot(lsirm_result, option = "interaction", rotation = TRUE, chain.idx = 1)

The plot() function visualizes the cluster of the latent positions of items by using
spectral clustering and the Neyman-Scott process modeling approach, achieved by setting
the cluster option to spectral and neyman, respectively.

R > plot(lsirm_result, cluster = "spectral", chain.idx = 1)

Clustering result (Spectral Clustering):
group item

A 49, 50, 51, 52, 53, 54, 55, 56
B 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40
C 41, 42, 43, 44, 45, 46, 47, 48
D 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16
E 17, 18, 19, 20, 21, 22, 23, 24

R > plot(lsirm_result, cluster = "neyman", chain.idx = 1)

|==================================================| 100%

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 19

(a) Original (b) Oblimin rotation

Figure 9: The interaction map based on the 2PL LSIRM fitted to the TDRI dataset. (a) Visualization of
the interaction map based on the 2PL LSIRM. (b) A rotated interaction map using oblimin rotation.
Red numbers and black dots represent the latent positions for items and respondents, respectively, in
both plots.

Clustering result (Neyman-Scott process):
group item

A 33, 34, 35, 36, 37, 38, 39, 40
B 49, 50, 51, 52, 53, 54, 55, 56
C 41, 42, 43, 44, 45, 46, 47, 48
D 17, 18, 19, 20, 21, 22, 23, 24
E 25, 26, 27, 28, 29, 30, 31, 32
F 1, 2, 3, 4, 5, 6, 7, 8
G 9, 10, 11, 12, 13, 14, 15, 16

(a) Spectral Clustering (b) Neyman-Scott Process Model

Figure 10: The interaction map with the item clustering results based on the 2PL LSIRM fitted to the
TDRI dataset, using (a) spectral clustering and (b) the Neyman-Scott process modeling approach. In
both plots, the gray dots indicate respondents, where numbers in colors indicate items with different
cluster memberships. The Neyman-Scott process approach additionally displays the center of the
cluster (alphabets) and a contour for each cluster.

Figure 10a and 10b display the result of spectral clustering and the Neyman-Scott process
approach, respectively. The interpretation of gray dots, numbers, alphabets, and contours
is the same as the 1PL LSIRM case. Spectral clustering resulted in 5 clusters, whereas the
Neyman-Scott process approach resulted in 7 clusters. That is, the Neyman-Scott process
approach identified more item groups than the spectral clustering. The overall clustering
results are similar to the 1PL LSIRM case.
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The flexible modeling options discussed with the 1PL LSIRM can be applied to the 2PL
LSIRM. That is, fixed_gamma fixes the distance weight γ to 1 and spikenslab assigns a spike
and slab prior to γ. Additionally, the two missing data options, missing_data = "mcar"
and missing_data = "mar", are available for the 2PL LSIRM.

R > lsirm_result <- lsirm(data ~ lsirm2pl(fixed_gamma = TRUE))
R > lsirm_result <- lsirm(data ~ lsirm2pl(spikenslab = TRUE))
R > lsirm_result <- lsirm(data ~ lsirm2pl(missing_data = "mcar"))
R > lsirm_result <- lsirm(data ~ lsirm2pl(missing_data = "mar"))

5 Lsirm for continuous item responses data

We consider an extension of the LSIRM for continuous item response data (LSIRM-
continuous), which is done by using an appropriate link function following the generalized
linear model framework (McCullagh and Nelder, 2019).

5.1 Statistical framework

Consider the continuous item response data consisting of the N × P matrix Y =
{

yk,i
}
∈

RN×P. By choosing the identity link function for continuous item responses, the 1PL LSIRM-
continuous is given as follows:

yk,i | θ, β, γ, Z, W , σ2
ϵ = θk + βi − γd(zk, wi) + ϵk,i, θk ∼ N(0, σ2), ϵk,i ∼ N(0, σ2

ϵ ).

where θk and βi are the main effects of the respondent k and the item i, respectively. zk and
wi are the latent positions of the respondent k and the item i, respectively. An additional
error term ϵk,i ∼ N(0, σ2

ϵ ) explains residuals unexplained by the 1PL LSIRM-continuous. A
shorter distance between wi and zk indicates that the respondent k is likely to give a higher
response value to item i given the main effects of the respondent and the item.

It is straightforward to extend the 1PL LSIRM-continuous to the 2PL version by adding
item discrimination (or slope) parameters αi. The 2PL LSIRM-continuous for yk,i is given as
follows:

yk,i | θ, α, β, γ, Z, W , σ2
ϵ = αiθk + βi − γd(zk, wi) + ϵk,i, θk ∼ N(0, σ2), ϵk,i ∼ N(0, σ2

ϵ ).

The interpretations of the model parameters in the 2PL LSIRM-continuous are similar to the
case of the 1PL LSIRM-continuous and the 2PL LSIRM. For model identifiability, one of the
item slopes is fixed to 1, e.g., α1 = 1.

The likelihood function of the 1PL LSIRM-continuous is given as

L
(

Y = y|θ, β, γ, Z, W , σ2
ϵ

)
=

N

∏
k=1

P

∏
i=1

L(Yk,i = yk,i|θk, βi, γ, zk, wi, σ2
ϵ ),

=
N

∏
k=1

P

∏
i=1

N(yk,i,; θk + βi − γ||zk − wi||, σ2
ϵ ),

and the likelihood function of the 2PL LSIRM-continuous is given as

L
(

Y = y|θ, α, β, γ, Z, W , σ2
ϵ

)
=

N

∏
k=1

P

∏
i=1

N(yj,i; αiθk + βi − γ||zk − wi||, σ2
ϵ ).
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5.2 Parameter Estimation

Following is the posterior distribution of LSRIM-continuous.

π
(

θ, β, γ, Z, W , σ2
ϵ |Y = y

)
∝

N

∏
k=1

P

∏
i=1

N(yk,i,; θk + βi − γ||zk − wi||, σ2
ϵ )

×
N

∏
k=1

π(θk)×
P

∏
i=1

π(βi)× π(γ)×
N

∏
k=1

π(zk)×
P

∏
i=1

π(wi)× π(σ2
ϵ )

The priors of the model parameters in the LSIRM-continuous are set the same as the priors
for the LSIRM. For the error term σ2

ϵ , we set the prior as follows:

σ2
ϵ |aσϵ , bσϵ ∼ Inv-Gamma(aσϵ , bσϵ), aσϵ > 0, bσϵ > 0.

The conditional posterior distributions of the LSIRM-continuous are similar to the LSIRM,
which are given in the Github site. The jumping rule defaults remain the same as in the
binary case (shown in the Github site).

5.3 An Illustrated Example

We demonstrate the application of the LSIRM-continuous using the Big Five Personality Test
(FPT) dataset (Goldberg, 1992), which is included in the package. Data were collected from
1,015,342 respondents using an interactive online personality test from 2016 to 2018. The
“Big-Five Factor Markers” from the international personality item pool were used in the test,
which consists of 50 questions with response categories 1 = disagree, 3 = neutral, and 5 =
agree based on a five-point Likert scale. Negatively worded items were reverse-coded. For
illustration purposes, we randomly selected a sample of 3,000 respondents from the original
data. We treated the ordinal item responses as continuous data, which is a common practice
in applied research and is generally considered acceptable for other models, such as factor
analysis.

The main fitting function for running the 1PL and 2PL LSIRM-continuous is identical to
the 1PL and 2PL LSIRM for binary data. The function automatically identifies the data type
and applies the appropriate models. Following is the code for data pre-processing and 1PL
LSIRM-continuous fitting.

R > data <- lsirm12pl::BFPT
R > data[(data==0)|(data==6)] = NA
R > reverse <- c(2, 4, 6, 8, 10, 11, 13, 15, 16, 17,

18, 19, 20, 21, 23, 25, 27, 32, 34,
36, 42, 44, 46)

R > data[, reverse] <- 6 - data[, reverse]
R > data <- data[complete.cases(data),]
R > head(data)

EXT1 EXT2 EXT3 ... OPN8 OPN9 OPN10
1 2 3 2 ... 2 4 4
2 1 3 3 ... 4 3 4
3 4 3 3 ... 2 4 4
5 1 4 3 ... 3 5 3
6 1 3 2 ... 3 5 3
8 3 5 4 ... 4 3 4

R > lsirm_result <- lsirm(data ~ lsirm1pl(niter = 25000, nburn = 5000, nthin = 10,
jump_beta = 0.08, jump_theta = 0.3,
jump_gamma = 1.0,
chains = 4, multicore = 2, seed = 2025))
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To ensure convergence of the parameters, a different number of iterations and jumping
rules of parameters are applied in this example. The estimated results for each chain
are returned in the list containing estimated information on θ, β, γ, Z, W , σ, and σϵ. The
functions summary(), diagnostics(), and gof() described for the 1PL LSIRM can be applied
similarly to obtain a summary, diagnosis, and goodness-of-fit results, respectively.

R > diagnostic(lsirm_result, draw.item = list(beta = c("AGR1")))

Figure 11: Diagnostics of βAGE1 using the diagnostic() function on the results of the 1PL LSIRM-
continuous fitted to the FPT dataset. The top left is the trace plot, the top right is the posterior density
plot, the bottom left is the autocorrelation plot, and the bottom right is the Gelman-Rubin-Brooks plot.
Different colors represent different MCMC chains.

Figure 11 displays the diagnostic results for βAGE1 obtained using the diagnostic()
function. The results suggest the convergence of βAGE1 is achieved for this model.

Figure 12 shows the result of the goodness of fit assessment for the continuous example
data. Unlike binary data, ROC is not available for continuous data, so the results of the gof()
function include only the boxplots of the average predicted response values (item-wise
means) against the observed item-wise means (marked with red dots). In this example, the
red dots are located close to the midlines of the boxplots, implying a satisfactory model fit.

R > gof(lsirm_result, chain.idx = 1)

Same as before, the plot() function can be used to summarize the parameter estimate of
βi and θk.

R > plot(lsirm_result, option = "beta", chain.idx = 1)
R > plot(lsirm_result, option = "theta", chain.idx = 1)

Figure 13a shows the boxplots of the posterior samples for βi. The parameter estimate of
β35 is the smallest , while the estimates for β41 to β50 are relatively high. Figure 13b shows
the boxplots of the point estimates of θk as a function of the sum scores of the observed
responses binned into 10 groups to prevent overlap and improve readability on the x-axis. As
expected, higher sum scores are aligned with higher θk values (indicating socially desirable
characteristics).

Figure 14a illustrates the interaction map derived from the 1PL LSIRM-continuous. In
the interaction map, the latent positions of the respondents are positioned around the center,
while the items are scattered in a triangular pattern showing roughly three clusters (in the
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Figure 12: Goodness of fit of the 1PL LSIRM-continuous for the BFPT dataset using the gof() function.
The box plots of the average posterior predicted response value for items against the average observed
response value for each item indicated by red dots.

(a) βi (b) θk

Figure 13: Visual summaries of βi and θk using the plot() function on the 1PL LSIRM-continuous
fitted to the FPT dataset. (a) Boxplots of the posterior samples for βi. (b) Boxplots of the point estimates
of θk as a function of the total sum scores of the responses binned into 10 groups

north, west, and east) in addition to the cluster around the center. The original interaction
map is slightly rotated counterclockwise in the rotated interaction map, so that the items are
more closely placed to the two coordinates.

R > plot(lsirm_result, chain.idx = 1)
R > plot(lsirm_result, rotation = TRUE, chain.idx = 1)

Figure 15a and Figure 15b depict the result of spectral clustering and the Neyman-Scott
process modeling approach for the BFPT example dataset, respectively. Gray dots, numbers
with colors, alphabets, and contours have the same interpretations as the clustering results
presented earlier with the binary LSIRM models. In Figure 15b, the items in cluster C,
highlighted in purple and located near the center of the interaction map, are closer to the
latent positions of most people compared to other items. This implies that these items
are more likely to receive higher response values. Conversely, items in clusters that are
positioned farther from the center, such as clusters A, B, and E, are distant from many (but
different groups of) respondents, indicating they are likely to receive lower response values
by those who are far away from the corresponding item clusters.

R > plot(lsirm_result, cluster = "spectral", chain.idx = 1)

Clustering result (Spectral Clustering):
group item
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(a) Original (b) Oblimin rotation

Figure 14: The interaction map based on the 1PL LSIRM-continuous fitted to the FPT dataset. (a)
Visualization of the interaction map based on the 1PL LSIRM-continuous. (b) A rotated interaction
map of the 1PL LSIRM-continuous using oblimin rotation. Red numbers and black dots represent the
latent positions for items and respondents, respectively.

A 11, 13, 16, 17, 18, 20
B 38, 41, 42, 43, 44, 45, 46, 48, 49, 50
C 1, 2, 3, 4, 5, 7, 8, 9, 10
D 6, 21, 22, 24, 25, 26, 27, 28, 29, 30
E 12, 14, 15, 19, 23, 31, 32, 33, 34, 35,

36, 37, 39, 40, 47

R > plot(lsirm_result, cluster = "neyman", chain.idx = 1)

|==================================================| 100%
Clustering result (Neyman-Scott process):

group item
A 38, 41, 42, 43, 44, 45, 46, 48, 49, 50
B 1, 2, 3, 4, 5, 7, 8, 9, 10
C 6, 21, 22, 24, 25, 26, 27, 28, 29, 30
D 23, 31, 32, 33, 34, 35, 36, 37, 39, 40, 47
E 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

The flexible modeling options discussed with the binary LSIRM can be applied to the
functions for the LSIRM-continuous.

R > lsirm_result <- lsirm(data ~ lsirm1pl(fixed_gamma = TRUE))
R > lsirm_result <- lsirm(data ~ lsirm1pl(spikenslab = TRUE))
R > lsirm_result <- lsirm(data ~ lsirm1pl(missing_data = "mcar"))
R > lsirm_result <- lsirm(data ~ lsirm1pl(missing_data = "mar"))

6 Conclusion

In this paper, we introduced the R package lsirm12pl for estimating the LSIRM (Jeon et al.,
2021) and its extensions. The LSIRM is a powerful extension of conventional IRT models
that allow for the estimation and visualization of potential interactions between respondents
and items in an interaction map, a low dimensional Euclidean space. The original LSIRM
framework was proposed for binary item response data based on the 1PL IRT base model.
To broaden its applicability, we extended the original LSIRM to cover different response
types and model specifications. Further, we added several useful options, e.g., for handling
missing data, item clustering, and model assessment.
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(a) Spectral Clustering (b) Neyman-Scott Process Model

Figure 15: The interaction map with item clustering results based on the 1PL LSIRM model-continuous
fitted to the FPT dataset, using (a) spectral clustering and (b) Neyman-Scott process approach. In both
plots, the gray dots indicate respondents, where numbers in colors indicate items with different cluster
memberships. The Neyman-Scott process approach additionally displays the center of the cluster
(alphabets) and a contour for each cluster.

It is worth noting that one may observe some variability in clustering results across
multiple chains. Such variability stems from at least three factors: First, clustering is an
unsupervised method, meaning that results are not uniquely determined and may naturally
vary across Markov chains. Second, we apply the Neyman-Scott Process clustering to
the posterior distributions of the LSIRM model, and the clustering outcomes are therefore
directly influenced by the estimated LSIRM results. Third, Bayesian models inherently
incorporate uncertainty, reflected in the posterior distributions and subsequently in the
clustering outcomes. Having said that, we noted in our empirical analysis that the overall
clustering structure was pretty stable across multiple chains. For critical applications, we
recommend implementing a consensus clustering approach by aggregating results across
multiple chains to identify the most robust and stable groupings.

A fully Bayesian approach was used for model estimation with a Metropolis-Hastings-
within-Gibbs sampler. The lsirm12pl package offers default estimation settings for priors,
jumping rules, number of iterations, burn-ins, and thinning. The default estimation setting
works reasonably well in a broad range of situations, but users can manually revise the
estimation settings if desired. In addition, the package lsirm12pl offers convenient supple-
mental functions to evaluate, summarize, visualize, diagnose, and interpret the estimated
results. We provided detailed illustrations of the package with real data examples available
in the package. We hope that these illustrations guide researchers in using the lsirm12pl
package for the analysis of their own datasets.

The R package lsirm12pl is our first step in making the LSIRM approach more applica-
ble and usable in practice. The code is written using Rcpp (Eddelbuettel and François,
2011; Eddelbuettel, 2013; Eddelbuettel and Balamuta, 2018) and RcppArmadillo (Ed-
delbuettel and Sanderson, 2014) in R for efficient computation. For example, in our
first data example with 726 respondents and 56 test items, the computation time for
one chain using a single core lsirm1pl was 1.93 minutes on an Apple M1 laptop. We
provide additional details of our package implementation in the package GitHub site
(https://github.com/jiniuslab/lsirm12pl). We will continue to update the package by
incorporating additional modeling, data analysis, and visualization options to make the
lsirm12pl package more useful in a wider range of situations. For example, we are currently
engaged in the development of other extensions, such as for ordinal and longitudinal data.
As advancements are made, we will systematically include them in the software package.
This ongoing development will further enhance the utility and applicability of the LSIRM in
various practical scenarios.
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Converting LaTeX Legacy R Journal
Articles into R Markdown Articles using
texor and rebib
by Abhishek Ulayil, Dianne Cook, Heather Turner, Mitchell O’Hara-Wild, and Christophe Dervieux

Abstract In 2021 the R Journal made a change of templates for article writing to R Markdown
instead of LaTeX. The reasons were to encourage better reproducibility of articles using
dynamic documents, enable interactivity in articles, and to make the articles more accessible
for print-disabled readers. A resulting challenge was to explore whether legacy articles might
be suitably converted into HTML output. This paper describes the process of converting
an R Journal article from LaTeX to HTML format via R Markdown, and the two new R
packages, texor and rebib, that can be used to achieve the conversion.

1 Introduction

The R Journal is the primary open-access outlet for publications produced by the R com-
munity. It was started in 2009, evolving from the R News newsletter that ran from 2001, to
become a more formal publication that encourages and provides credit for the documenta-
tion of statistical computing research.

The tooling behind the production of the R Journal is regularly updated. Early articles
were typeset using LaTeX (The LaTeX Project, 2023), based on a specific, but changing,
template. Using LaTeX requires that code is separated from the documentation, and there
is a chance that code chunks in the paper don’t reproduce the results reported. With the
emergence of dynamic document systems such as R Markdown (Xie et al., 2018), a tight
coupling of code and documentation is possible. Code chunks are dynamically executed
when the document is typeset using a system like knitr (Xie, 2015), making reporting of
computing research more reproducible.

In 2019, with the help of funding from the R Consortium, work began to update opera-
tions to adopt an R Markdown template, that would produce both HTML and PDF versions
of the paper. In mind, was also to develop, adopt and encourage good standards for R
Journal articles.

There are numerous benefits of HTML format:

1. Articles can include interactive graphics (to allow readers to query, re-focus, and watch
an animation, for example) and interactive tables (enabling re-sorting in different ways
to better digest the information).

2. It is the best format for accessibility (The Daisy Consortium, 2023). Screen readers
and other assistive technologies can deliver the content to print-disabled readers. (See
Byrne-Haber et al. (2023) for current guidelines.)

3. HTML provides a more comfortable reading experience on mobile devices, which are
increasingly used as researchers work on the move and share work via social media.

4. Search engines can easily access the full text of articles, facilitating the discovery of
published articles.

These provide the motivations for converting all of the legacy R Journal articles into
HTML.

A key decision when designing the conversion software was whether to convert the
LaTeX source to HTML; the PDF output to HTML; or the LaTeX source to R Markdown,
which would then be converted to HTML using the current journal tools. The latter approach
was decided to be the most versatile and useful. If an article can be converted from LaTeX to
R Markdown, it would help authors make the transition to reproducible publishing, beyond
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what the R Journal needed. Once an article is in R Markdown format it can be adapted to
include the code for dynamic execution.

In addition to the article format, changes to the website structure were important for
delivering the publication. Website architectures are also constantly evolving, and the
emergence of distill (Dervieux et al., 2022) allows the journal website to optimally deliver R
Markdown articles.

The rjtools was developed to create articles using R Markdown for the R Journal and
to embed them into the journal website. The packages described here, texor and rebib,
describe software to convert legacy LaTeX format articles into R Markdown, so that they
can be rendered in HTML in the new website.

The paper is organised as follows. Section 2 gives an overview of the conversion process,
which includes pre-processing using regular expressions, post-processing using Lua filters,
and handling of figures, tables and equations. Section 3 describes the texor package that
handles most of the conversion. Section 4 describes tools for special handling of bibliography
files. The supplementary materials have folders containing specific examples that can be
used for understanding how the conversions are done.

2 The internals of converting from LaTeX to R Markdown

The decision to convert to R Markdown format means that the final output to PDF and
HTML will depend on Pandoc (MacFarlane et al., 2023). Pandoc is a versatile document
conversion program written in Haskell that is core to numerous documentation systems,
including R Markdown and Quarto. Pandoc first converts a document into an abstract
syntax tree. From this, it can convert to a different format, including custom ones.

Pandoc can be used to do the conversion from LaTeX to R Markdown also. However,
some pre-processing is necessary to handle special R Journal LaTeX styling. And further
post-processing is necessary to handle specific R Journal R Markdown styling. The texor
package contains functionality to handle this pre- and post-processing of the document, in a
workflow illustrated in Figure 1.

2.1 Pre-processing using regular expressions

LaTeX is a very descriptive language, that allows authors substantial freedom for customiza-
tion. Markdown (Gruber, 2002), on which R Markdown is based, is more restrictive and was
designed to make it easier to create web pages without the distraction of a gazillion HTML
tags. The beauty of Markdown is that it allows the author to focus on writing, without
format cluttering the text. The drawback is that it is simple typesetting, optimized for web
delivery.

While Pandoc can do most of the heavy lifting, it cannot cope with all the freedom
with which LaTeX documents are written. An example of this is with formatting of code.
Pandoc only handles the verbatim environment, but there are many ways to format code in
LaTeX, and the R Journal template has a special \code{} command. If the code environment
is not verbatim, then Pandoc will also try to process the actual code content as LaTeX
commands and will likely lose details. It is better to convert these synonyms into verbatim
environments prior to passing the document to Pandoc.

The functions in texor that handle the pre-processing using regular expressions are:

• stream_editor(): operates like the sed function in unix (Ritchie and Thompson, 1978)
and allows generic text pattern matching and replacement.

• patch_code_env(): replaces the common code environments, code, example, Sin, Sout,
Scode, Sinput, smallverbatim, boxedverbatim, smallexample with verbatim.

• patch_equations(): handles various equation environments.
• patch_figure_env(): handles various figure environments.
• patch_table_env(): handles various table environments.
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Figure 1: Workflow of the document conversion conducted by texor. (Note: AST is pandoc’s abstract
syntax tree.)
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These functions are verbose and describe all the changes being made. They also create a
backup of the original file before making the changes.

2.2 Post-processing using Lua filters

Lua (Ierusalimschy et al., 1996) is a programming language, that is lightweight and fast:
ideal for procedural operations. It is embedded in many other applications to allow custom
scripting for extensibility. Pandoc allows users to provide custom Lua filters to produce
custom output formats. The texor package handles the post-processing of the R Markdown
document into the special format for the R Journal using a suite of Lua filters.

Here is an example of a Lua filter available in texor:

function Div(el)
if el.classes[1] == 'thebibliography' then

return { }
end

end

This filter reads the abstract syntax tree, selecting all the Div elements. Then it looks
for the class “thebibliography.” This Div element contains the LaTeX bibliographic records,
that appear at the very end of papers. It should not be in the document when using the
“RJ-web-article” layout, because it is added from meta-data when the R Markdown is knitted.
So the Lua filter removes this section.

2.3 Figures

Standard, single figure

Figure definitions in LaTeX are many and varied! The standard, single-figure definition with
the figure environment and raster image format such as PNG or JPG, is handled by Pandoc.
It will convert:

\begin{figure}[htbp]
\centering
\includegraphics[width=0.35\textwidth]{Rlogo-5.png}
\caption{The logo of R.}
\label{figure:rlogo}

\end{figure}

to

<figure id="figure:rlogo">
<img src="Rlogo-5.png" style="width:35.0%" />
<figcaption>Figure 1: The logo of R.</figcaption>
</figure>

PDF format images

Images in PDF format are converted to PNG, in the pre-processing of the LaTeX document,
and then post-processed using Pandoc as described above.

Multiple figures

Multiple figures are supported with the latest versions of Pandoc, so definitions like:
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\begin{figure*}[htbp]
\centering
\includegraphics[width=0.45\textwidth]{Rlogo-5.png}
\includegraphics[width=0.45\textwidth]{normal}
\caption{Images side by side}
\label{fig:twoimages}

\end{figure*}

will be converted to:

<figure id="fig:twoimages">
<p><img src="Rlogo-5.png" style="width:45.0%" alt="image" /><img
src="normal.png" style="width:45.0%" alt="image" /></p>
<figcaption>Figure 3: Images side by side</figcaption>
</figure>

tikz format images

Some legacy articles define images using tikz commands, such as:

\begin{figure}

%% Generated Image will included as a PNG above automatically
\centering

\tikzstyle{process} = [rectangle, rounded corners,
minimum width=3cm,
minimum height=1cm,
text centered,
draw=black]
\tikzstyle{arrow} = [thick,->,>=stealth]
\begin{tikzpicture}[node distance=4cm]
%Nodes
...

This is handled by pre-processing the LaTeX to create the image, as both PDF, and then
PNG, for inclusion in the R Markdown document using:

<figure id="fig:tikz">
<img src="tikz/figtikz.png" style="width:100.0%" />

<figcaption>Figure 5: Tikz Image example</figcaption>
</figure>

Algorithm2e graphics as figures

Algorithm2e graphics using the algorithm2e package in LaTeX are supported, and the
following description will yield the result in Figure 2.

\begin{algorithm}[htbp]
\SetAlgoLined
\KwData{this text}
\KwResult{how to write algorithm with \LaTeX2e }
initialization\;
\While{not at end of this document}{
read current\;
\eIf{understand}{
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Figure 2: How to write algorithms.

go to next section\;
current section becomes this one\;
}{
go back to the beginning of current section\;
}
}
\caption{How to write algorithms}

\label{alg:how}
\end{algorithm}

<figure id="alg:how">
<img src="alghow.png" style="width:100.0%" />

<figcaption>Algorithm 1: How to write algorithms</figcaption>
</figure>

2.4 Equations

Math is handled primarily by Pandoc. The inline math and equation descriptions are
unchanged between LaTeX and R Markdown.

The HTML output renders math using MathJax. This does mean that some functionality,
like \bm, \boldmath and \mathbbm are not supported, and special definitions can only be
handled in a limited capacity.

The numbering of equations is a bit trickier. LaTeX automatically numbers equations,
unless specifically instructed not to. Equation numbering in R Markdown requires specific
labeling using (\#eq:xx) as described in Xie (2023). The texor helps by adding the labeling
using a Lua filter to convert the existing \label{..} to (\#eq:xx).

2.5 Tables

Tables form one of the biggest challenges in migrating from LaTeX to R Markdown, because
the sophistication is not completely replicated. However, there have been many improve-
ments in table definitions for R Markdown that are increasingly producing the beautifully
crafted tables possible in LaTeX. The conversion in texor can mostly handle the simple
tables, and for producing more complex tables it may be necessary to manually edit the
resulting Rmd file to make conditional tables, one to render specifically for HTML output
using packages such as kableExtra (Zhu, 2021), gt (Iannone et al., 2023), htmlTable (Gordon
et al., 2022), tableHTML (Boutaris et al., 2023), tables (Murdoch, 2023) or DT (Xie et al.,
2023). A benefit of using conditional markup is that it can take advantage of HTML-specific
features, such as sortable columns or paged tables.
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Generic tables

Simple LaTeX tables are converted into traditional markdown format tables by Pandoc. So
this table definition:

\begin{table}[htbp]
\centering
\begin{tabular}{l | llll }
\hline
Graphics Format & LaTeX & Markdown & Rmarkdown & HTML \\
\hline
PNG & Yes & Yes & Yes & Yes \\
JPG & Yes & Yes & Yes & Yes \\
PDF & Yes & No & No & No \\
SVG & No & Yes & Yes & Yes \\
Tikz & Yes & No & Yes & No \\
Algorithm & Yes & No & No & No \\

\hline
\end{tabular}
\caption{Image Format support in various Markup/Typesetting Languages}
\label{table:1}
\end{table}

will be converted to:

::: {#table:1}
-------------------------------------------------------
Graphics Format LaTeX Markdown Rmarkdown HTML
----------------- ------- ---------- ----------- ------
PNG Yes Yes Yes Yes

JPG Yes Yes Yes Yes

PDF Yes No No No

SVG No Yes Yes Yes

Tikz Yes No Yes No

Algorithm Yes No No No
-------------------------------------------------------

: Table 1: Image Format support in various Markup/Typesetting
Languages

:::

Multicolumn tables

A multicolumn table requires:

1. The stream editor modifies the \multicolumn{..} to \multicolumnx{..}.

2. A LaTeX macro is used to redefine the \multicolumnx{..} to \multicolumn{---}
(which is accepted by pandoc).

3. Pandoc reads the table and transforms it to markdown.
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EXAMPLE X Y
1 2 1 2

EX1 X11 X12 Y11 Y12
EX2 X21 X22 Y21 Y22
EX3 X31 X32 Y31 Y32
EX4 X41 X42 Y41 Y42
EX5 X51 X52 Y51 Y52

Table 1: An example multicolumn table.

Also note that the stream editor is used to rename table* environment to table environ-
ment because the HTML format is single column, so the asterisk indicating that the table
should be drawn over the full width of the page is redundant in this case.

Other tables

Tables with images, math, code or links in the cells are generally handled. Also widetable
tables that allow for specific width or wrapping of tables into blocks are also partially
handled.

3 Using texor

The package texor can be installed from CRAN and the development version from https:
//github.com/Abhi-1U/texor. The website for the package, https://abhi-1u.github.io/
texor, has vignettes documenting usage.

Note that you will need to use Pandoc Version > 3.0.0 (if possible latest) for the best
results. You can check your version with:

rmarkdown::pandoc_version()

The only function that a user will typically require is latex_to_web(). This creates the R
Journal style R Markdown file from a given R Journal style LaTeX file. This is achieved by
several sequential steps: convert_to_markdown(), generate_rmd(), and produce_html().

For converting the 14 years of legacy R Journal articles, batch processing of issues was
conducted.

For individuals who are interested in submitting their paper to the R Journal but have
written their article using the legacy LaTeX format and wish to convert it to the current R
Markdown format, you can use the latex_to_web() function on your paper directory. This
will get you about 80% of the way to an R Markdown version of your paper. You will then
want to:

• Edit the lines where figures are included. The conversion will create HTML
code to define the image. This should be changed into Markdown description
![Caption](Image) or using knitr::include_graphic(Image) in an R code chunk,
in order for both HTML and PDF versions of the paper to be created when the rjtools
article template is knitted.

• Edit the tables for aesthetics. The conversion will create Markdown tables, which will
convert appropriately to HTML and PDF. However, to have more control and to create
more elegant tables using knitr::kable provides a finer level of control.

• Include your R code to dynamically do the computing described in your article. If
any code block is time-consuming to complete, saving intermediate output, or caching
would be recommended.
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4 Managing the bibliography using rebib

Typically bibliographies are generated during the processing of a LaTeX article using the
BibTeX software (Feder, 2006) operating on a .bib list of references. The current R Journal
template requires the inclusion of the .bib file. But LaTeX actually uses a .bbl format for
references, which is what BibTeX generates as an intermediate format during the article
processing.

The instructions for R Journal authors have changed over time. Initially, authors were
instructed to run BibTeX on their article and to include the .bbl formatted references directly
in the .tex file. This was to avoid clashes in citation keys between multiple articles in an
issue. Later on, authors were instructed to provide a .bib file instead. During the conversion
of legacy articles, it was discovered that some papers had references in both the .tex file
and in separate .bbl or .bib files. Usually, the different files were equivalent, but sometimes
references were only found in one source and in some cases the files contained conflicting
information! While LaTeX can technically handle either .bbl or .bib formatted references,
R Markdown can only handle .bib.

The rebib package was developed to handle these tricky situations. It converts embedded
LaTeX bibliographies into a close BibTeX equivalent. The features of the package are:

• extracting embedded bibliographic entries from a .tex file;
• creating the mandatory title and author fields;
• creating the optional URL, ISBN, publisher, pages and year fields, when available;
• storing remaining information in "journal" (internally) and "publisher" (when writ-

ing BibTeX file);
• ignoring commented LaTeX code;
• tracking citations included in the document, and
• aggregating references from embedded bibliographic entries with references from

supplementary .bbl and .bib files.

The package rebib can be installed from CRAN and the development version from https:
//github.com/Abhi-1U/rebib. The website for the package, https://abhi-1u.github.io/
rebib, has vignettes documenting usage.

5 The process of converting all the legacy articles

The R Journal has been operating since 2009 and has published 682 articles through 2022 in
addition to numerous editorials and news items. These LaTeX articles are the main focus of
the conversions made with texor and rebib.

5.1 Batch processing

The code is designed to process all the articles in an issue at a time, by operating on all the
files in the directory housing the issue. Each processing function, from pre-processing the
text in the LaTeX file to post-processing accepts a directory name as the argument. Generally,
if a problem is encountered with one article, the processing will skip to the next. The vignette
Introduction to texor provides more details.

5.2 Known problems requiring manual fixes

The problems encountered with some articles are many and varied, and include:

• The table format is often not as neat in the HTML as in the LaTeX. It can be made close
to the original with extra effort in the R Markdown description.

• Some of the figure files are missing - so the figure may need to be extracted from the
pdf file and included with knitr::include_graphics().
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• Figures and equations may need some resizing. Sometimes the figure or equation
might extend outside the text region in the HTML, which can be fixed by specifying
the preferred size, or breaks in the equation lines.

• Alignment in multi-line equations may need adjusting.
• Alignment of columns in a table may not be the same as the original, for example, the

text might be center-aligned, instead of the original left-aligned.
• Specialty LaTeX definitions included by an author for their article may not be recog-

nized by Pandoc, leaving the original command as is, in the article.

5.3 Plan for release

The HTML versions of all successfully converted legacy articles will be on the R Journal
website late in 2023. The final step in the integration requires the R Markdown file to be
knitted in place to capture the metadata for each article.

5.4 Reporting problems

As a consequence of this project, the journal website has been furnished with an additional
link titled “CONTRIBUTE”. Visiting this link will give you details on how to report a
problem with an article that you are reading, or even to make a suggestion on improving
operations.

6 Summary

The original motivation for the texor and rebib packages was to convert legacy LaTeX
articles into HTML format for accessibility. Thus it only creates an .Rmd (R Markdown) file
which is used to produce only an HTML version. The original PDF remains as published.
The goal is to use the packages for future articles where the authors have chosen to submit
only in the legacy LaTeX template.

However, the software can also be used by authors themselves to convert to dynamic
documents, by providing an initial R Markdown version of their LaTeX, that with some
modification, such as including their R code for computations directly in the document, will
produce both PDF and HTML versions of their submitted paper.

Adopting the new R Markdown template also provides better standards for R Journal
articles. It encourages authors to be more conscious that their work is reproducible. There
is more standardization of file names and file structure, and this helps the editors and
reviewers check papers. This in turn makes it easier to build the issues, eliminating some
common errors that authors make that cause compilation failure.

There are many benefits of providing good standards, though, and an important one
is that this can have positive spillover effects for the R community. Authors can become
more aware of good practice. For example, one of the useful elements when an article is in
HTML format is that figures can be made richer with an alt-text (alternative text) element.
In an R Markdown code chunk generating a figure, this can be set using fig.alt. Alt-text
provides a textual alternative to non-text content in HTML documents, and serves various
purposes: screen readers can deliver the content to print-disabled people, it is displayed
in place of the image if it fails to load, and can serve to assist search engines. It is a work
in progress: to encourage adoption by authors of new article submissions, and it would be
useful to edit into the converted legacy articles at a later date.

There are many other journals that have a similar backlog of legacy articles. A current
and ongoing project is being conducted by arXiv Accessibility Project (2023) to convert their
collection of articles from LaTeX (shared as PDF) to HTML, utilizing LaTeXML (Miller and
Ginev, 2023). The work conducted for the R Journal might be of interest to similarly small
journals that operate without paid staff. Converting legacy articles provides accessibility to
a wealth of educational material.
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After the change was made to use R Markdown, a new development for the open-source
scientific and technical publishing community has emerged: quarto (Allaire et al., 2024).
Although R Markdown would suggest a focus on R, it was always possible to include
code chunks written in other languages. But Quarto makes this cleaner, and thus more
appealing for non-R developers. It also provides a cleaner typesetting. At some point, the R
Journal will likely shift to a Quarto template, which is reasonably straightforward, but for
the present R Markdown is a suitable dynamic document delivery system for the R Journal.
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Supplementary materials

The supplementary materials has example folders containing LaTeX documents that allow
the reader to see how different common patterns in the legacy documents are handled with
the conversion. These include:

• code-env: Explains how different code environments defined by the R Journal style
are handled, and additional details such as code in figure environments, and code in
table environments.

• math-env: Examples of inline math, display math, and how equation numbering is
handled by a Lua filter to convert from LaTeX labeling to R Markdown labeling.

• figure-env: Explains how the variety of figure definitions are handled in the con-
version, including different image formats, numbering, captions, labeling, multiple
images, and tikz images with an example adapted from (Cassidy, 2013).

• table-env: Examples of how a variety of table types are converted, including multi-
column, complex and wide tables.

• lua-filters: Overview and lots of small examples of Lua filters to handle the custom
output needed for the R Markdown format.

• metadata: This has a collection of additional format handling including extracting
metadata like author names and affiliations, article identifiers used in the review
process, and handling citations, footnotes and links.

• bibliography: The bibliography was handled differently over the years of the journal,
and this details how to use the rebib functionality to handle bbl files, embedded bbl,
to convert into the standard .bib format.

In each of these folders there is a RJwrapper.tex, and .tex file, with the extra template
files RJournal.sty and Rlogo-5.png and .bib files. These match the legacy template file
structure, from which the RJwrapper.pdf file is created. To test the conversion for each of
these examples, set the path directory to one of the folders and use the latex_to_web()
function as follows:

article_dir <- "path-to-this supplementary folder"
texor::latex_to_web(article_dir)

This will create an .Rmd and .html files in the same directory, that demonstrate the
converted R Markdown version and the HTML output format.

You’ll need to ensure that you have the latest versions of texor and rebib, and Pandoc
(at least later than version 3.0.0).
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Source materials

The texor and rebib source code and materials to reproduce this paper are available at:

• texor: Version 1.3.0 https://abhi-1u.github.io/texor
• rebib: Version 0.3.2 https://abhi-1u.github.io/rebib/
• This paper: https://github.com/Abhi-1U/texor-rjarticle
• More details on rjtools are at https://rjournal.github.io/rjtools/
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Feature-Based Time-Series Analysis in R
using the Theft Ecosystem
by Trent Henderson and Ben D. Fulcher

Abstract Time series are measured and analyzed across the sciences. One method of quanti-
fying the structure of time series is by calculating a set of summary statistics or ‘features’,
and then representing a time series in terms of its properties as a feature vector. The resulting
feature space is interpretable and informative, and enables conventional statistical learning
approaches, including clustering, regression, and classification, to be applied to time-series
datasets. Many open-source software packages for computing sets of time-series features
exist across multiple programming languages, including ‘catch22’ (22 features: Matlab,
R, Python, Julia), ‘feasts’ (43 features: R), ‘tsfeatures’ (62 features: R), ‘Kats’ (40 features:
Python), ‘tsfresh’ (783 features: Python), and ‘TSFEL’ (156 features: Python). However, there
are several issues: (i) a singular access point to these packages is not currently available; (ii)
to access all feature sets, users must be fluent in multiple languages; and (iii) these feature-
extraction packages lack extensive accompanying methodological pipelines for performing
feature-based time-series analysis, such as applications to time-series classification. Here we
introduce a solution to these issues in the form of two complementary statistical software
packages for R called ‘theft’: Tools for Handling Extraction of Features from Time series
and ‘theftdlc’: theft ‘downloadable content’. ‘theft’ is a unified and extendable framework
for computing features from the six open-source time-series feature sets listed above as
well as custom user-specified features. ‘theftdlc’ is an extension package to ‘theft’ which
includes a suite of functions for processing and interpreting the performance of extracted
features, including extensive data-visualization templates, low-dimensional projections, and
time-series classification. With an increasing volume and complexity of large time-series
datasets in the sciences and industry, ‘theft’ and ‘theftdlc’ provide a standardized framework
for comprehensively quantifying and interpreting informative structure in time series.

1 Introduction

Taking repeated measurements of some quantity through time, forming a time series, is
common across the sciences and industry. The types of time series commonly analyzed are
diverse, ranging from time-varying signals of an electroencephalogram (West et al., 1999),
CO2 concentration in the atmosphere (Kodra et al., 2011), light-curves from distant stars
(Barbara et al., 2022), and the daily number of clicks on a webpage (Kao et al., 2021). We
can ask many different questions about such data, for example: (i) “can we distinguish
the dynamics of brain disorders from neurotypical brain function?”; (ii) “can we classify
different geospatial regions based on their temporal CO2 concentration?”; or (iii) “can we
classify new stars based on their light curves?”. One approach to answering such questions
is to capture properties of each time series and use that information to train a classification
algorithm. This can be achieved by extracting from each time series a set of interpretable
summary statistics or ‘features’. Using this procedure, a collection of univariate time series
can be represented as a time series × feature matrix which can be used as the basis for
a range of conventional statistical learning procedures (Fulcher and Jones, 2017; Fulcher,
2018).

The range of time-series analysis methods that can be used to define time-series features is
vast, including properties of the distribution, autocorrelation function, stationarity, entropy,
methods from the physics nonlinear time-series analysis literature (Fulcher et al., 2013).
Because features are real-valued scalar outputs of a mathematical operation, and are often
tightly linked to underlying theory (e.g., Fourier analysis or information theory), they
can yield interpretable understanding of patterns in time series and the processes that
produce them—information that can guide further investigation. The first work to organize
these methods from across the interdisciplinary literature encoded thousands of diverse
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time-series analysis methods as features and compared their behavior on a wide range
of time series (Fulcher et al., 2013). The resulting interdisciplinary library of thousands
of time-series features has enabled new ways of doing time-series analysis, including the
ability to discover high-performing methods for a given problem in a systematic, data-
driven way through large-scale comparison (overcoming the subjective and time-consuming
task of selecting methods manually) (Fulcher and Jones, 2014). This approach has been
termed ‘highly comparative time-series analysis’ and has been implemented in the Matlab
software hctsa, which computes > 7700 time-series features (Fulcher and Jones, 2017).
The approach of automated discovery provided by hctsa has been applied successfully
to many scientific problems, such as classifying zebra finch motifs across different social
contexts (Paul et al., 2021), classifying cord pH from fetal heart-rate dynamics (Fulcher
et al., 2012), and classifying changes in cortical dynamics from manipulating the firing of
excitatory and inhibitory neurons (Markicevic et al., 2020). While hctsa is comprehensive in
its coverage of time-series analysis methods, calculating all of its features on a given dataset
is computationally expensive and it requires access to the proprietary Matlab software,
limiting its broader use.

The past decade has seen the development of multiple software libraries that implement
different sets of time-series features across a range of open-source programming languages.
Here, we focus on the following six libraries:

• catch22 (C, Matlab, R, Python, Julia) computes a representative subset of 22 features
from hctsa (Lubba et al., 2019). The > 7700 features in hctsa were applied to 93 time-
series classification tasks to retain the smallest number of features that maintained
high performance on these tasks while also being minimally redundant with each
other, yielding the catch22 set. catch22 was coded in C for computational efficiency,
with wrappers for Matlab, and packages for: R, as Rcatch22 (Henderson, 2021); Julia,
as Catch22.jl (Harris, 2021); and Python, as pycatch22. catch22 is also commonly
extended to include mean and variance to form "catch24" in order to achieve compet-
itive performance on tasks where the dataset has not been standardized (Henderson
et al., 2023).

• tsfeatures (R) is the most prominent package for computing time-series features in R
(Hyndman et al., 2020). The 62 features in tsfeatures include techniques commonly
used by econometricians and forecasters, such as crossing points, seasonal and trend
decomposition using Loess (Cleveland et al., 1990), autoregressive conditional het-
eroscedasticity (ARCH) models, unit-root tests, and sliding windows. tsfeatures also
includes sixteen features from hctsa that were previously used to organize tens of
thousands of time series in the CompEngine time-series database (Fulcher et al., 2020).

• feasts (R) shares a subset of the same features as tsfeatures, computing a total of 43
features (O’Hara-Wild et al., 2021). However, the scope of feasts as a software package
is larger: it is a vehicle to incorporate time-series features into the software ecosystem
known as the tidyverts1—a collection of packages for time series that follow tidy data
principles (Wickham, 2014). This ensures alignment with the broader and popular
tidyverse collection of packages for data wrangling, summarization, and statistical
graphics (Wickham et al., 2019). feasts also includes functions for producing graphics,
but these are largely focused on exploring quantities of interest in econometrics, such
as autocorrelation, seasonality, and Seasonal and Trend decomposition using Loess
(STL).

• tsfresh (Python) includes 783 features that measure properties of the autocorrelation
function, entropy, quantiles, fast Fourier transforms, and distributional characteris-
tics (Christ et al., 2018). tsfresh also includes a built-in feature filtering procedure,
FeatuRe Extraction based on Scalable Hypothesis tests (FRESH), that uses a hypothesis-
testing process to control the percentage of irrelevant extracted features (Christ et al.,
2017). tsfresh has been used widely to solve time-series problems, such as anomaly

1https://tidyverts.org
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detection in Internet-of-Things streaming data (Yang et al., 2021) and sensor-fault classi-
fication (Liu et al., 2020). tsfresh is also commonly accessed through the FreshPRINCE
functionality within the popular sktime Python library (Löning et al., 2019).

• TSFEL (Python) contains 156 features that measure properties associated with distribu-
tional characteristics, the autocorrelation function, spectral quantities, and wavelets
(Barandas et al., 2020). TSFEL was initially designed to support feature extraction of
inertial data—such as data produced by human wearables—for the purpose of activity
detection and rehabilitation.

• Kats (Python), developed by Facebook Research, contains a broad range of time-series
functionality, including operations for forecasting, outlier and property detection,
and feature calculation (Jiang et al., 2022). The feature-calculation module of Kats is
called tsfeatures and includes 40 features (30 of which mirror R’s tsfeatures package).
Kats includes features associated with crossing points, STL decomposition, sliding
windows, autocorrelation and partial autocorrelation, and Holt–Winters methods for
detecting linear trends.

The six feature sets vary over several orders of magnitude in their computation time, and
exhibit large differences in both within-set feature redundancy—how correlated features
are within a given set—and between-set feature redundancy—how correlated, on average,
features are between different pairwise comparisons of sets (Henderson and Fulcher, 2021).
While each set contains a range of features that could be used to tackle time-series analysis
problems, there are currently no guidelines for selecting an appropriate feature set for a given
problem, nor methods for combining the different strengths of all sets. Performance on a
given time-series analysis task depends on the choice of the features that are used to represent
the time series, highlighting the importance of being able to easily compute many different
features from across different feature sets. Furthermore, following feature extraction, there
exists no set of visualization and analysis templates for common feature-based problem
classes, such as feature-based time-series classification—like the tools provided in hctsa
(Fulcher and Jones, 2017). Here we present a solution for these challenges in the form
of two connected open-source packages for R called theft: Tools for Handling Extraction
of Features from Time series (which unifies the six disparate feature sets and provides a
consistent interface for general feature extraction) (Henderson, 2025b); and theftdlc: theft
downloadable content (which handles the subsequent processing, analysis, and visualization
of time-series features) (Henderson, 2025c). Together, we refer to these packages as the theft
‘ecosystem’.

2 The theft ecosystem for R

theft unifies the six free and open-source feature sets described in Section 1, thus overcoming
barriers in using diverse feature sets developed in different software environments and the
differences in their syntax and input-output structures. The package also enables users to
manually specify the functions for any number of features they wish to extract on top of the
six pre-existing sets. theftdlc builds upon the foundation of theft by providing an extensive
analytical pipeline as well as statistical data visualization templates for understanding
feature behavior and performance. To our knowledge, such pipelines and templates do
not currently exist in the free and open-source setting, making theftdlc a useful tool for
both computing and understanding features. While there is some software support for
computing features in a consistent setting (such as in tsflex (Van Der Donckt et al., 2022),
which also provides sliding window extraction capability), such software is limited to only
specifying the functional form of individual time-series features rather than automatically
accessing features contained in existing feature sets. We partition the analytical capabilities
of theft and theftdlc into two separate packages for two reasons: (i) it reduces dependencies
if users wish only to extract features and conduct analysis themselves; and (ii) having
a separate analysis package means additional functionality can be continuously added
without exhausting R package dependency limits.
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An overview of the broad functionality of the theft ecosystem is presented in Figure
1. The workflow begins in theft with automated installation of Python libraries (if the
three Python-based feature sets are required) through the function install_python_pkgs
which takes the name of the virtual environment to create (venv) and the path to the Python
interpreter to use (python) as arguments (Fig.1A). The Python environment containing the
installed software is then instantiated within the R session using init_theft (Fig.1B). Time-
series data (Fig.1C) is loaded into the environment and converted to a tsibble::tbl_ts
data structure if required (Fig.1D) (Wang et al., 2020). Time-series features are then extracted
in theft using the desired pre-existing sets or user-supplied features (Fig.1E). The workflow
transitions to theftdlc where the user can pass the extracted features into a range of statistical
and visualization functions to derive interpretable understanding of the patterns in their
dataset (Fig.1F–M). A variety of plot types are readily available, including heatmaps of the
time-series × feature matrix (Fig.1F) and feature × feature matrix (Fig.1G), and violin plots
of feature distributions (Fig.1H). Basic feature selection functionality is available through
the shrink function (Fig.1I) which implements penalized maximum likelihood generalized
linear models using a backend to the R package glmnet. Low-dimensional projection func-
tionality is provided by the project function (Fig.1J). Time-series classification operations
are accessible via the classify function (Fig.1K). Distributional summaries of time-series
feature and time-series classification values are available through the interval function
(Fig.1L). Finally, basic cluster analysis is possible through the cluster function (Fig.1M).
Importantly, theft and theftdlc use R’s S3 object-oriented programming system, meaning
classes and their methods are defined to ensure easy usage with R generic functions, such
as plot. Classes are defined for feature-calculation objects (Fig.1E; feature_calculations),
low dimensional projection objects (Fig.1I; feature_projection), interval calculation ob-
jects (Fig.1K; interval_calculations), and cluster objects (Fig.1L; feature_clusters). The
individual functions of both theft and theftdlc are discussed in detail in the following
sections.

In this paper, we demonstrate how the theft ecosystem can be used to tackle a time-
series classification problem, using the Bonn University electroencephalogram (EEG) dataset
as a case study (Andrzejak et al., 2001). The dataset contains 500 time series, each of
length T = 4097, with 100 time series each from five labeled classes: (i) awake with
eyes open (labeled eyesOpen); (ii) awake with eyes closed (eyesClosed); (iii) epileptogenic
zone (epileptogenic); (iv) hippocampal formation of the opposite hemisphere of the brain
(hippocampus); and (v) seizure activity (seizure). Note that classes (i) and (ii) are from
healthy volunteers, while classes (iii), (iv), and (v) are from a presurgical diagnosis archive.
The time series are comprised of EEG segments 23.6 seconds in duration that were cut
out of continuous multichannel recordings, converted from analog to digital using 12-bit
conversion, and then written onto a computer at a sampling rate of 173.614Hz. Further
trimming of start and end discontinuities from the original 4396 samples was then performed,
resulting in a final time series of length T = 4097 samples. This dataset was chosen as a
demonstrative example because it has been widely studied as a time-series classification
problem, and prior studies have focused on properties of the dynamics that accurately
distinguish the classes—which is well-suited to the feature-based approach. For example,
prior analysis (using hctsa) revealed that seizure recordings are characterized most notably
by higher variance, as well as lower entropy, lower long-range scaling exponents, and many
other differences (Fulcher et al., 2013). We can easily read the data file in from its zipper
format online and convert to a tsibble ready for use:

2.1 System requirements

In order to access the features from tsfresh, TSFEL, and Kats in theft, Python >=3.10 is
required (Python 3.10 is recommended). To use all other functionality across both theft and
theftdlc, only R >=3.5.0 is required.
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Figure 1: theft and theftdlc together implement a workflow for extracting features from univariate
time series and processing and analyzing the results. First, the user can install the relevant Python
libraries (A) within R and point it to the correctly installed versions (B). Next, a time-series dataset
(C) is converted into a tsibble (D) with key variables, a time index variable, and a measured variable.
One or more feature sets or custom user-supplied features are then computed on the dataset (E). A
range of statistical analysis and data visualization functionality is available in theftdlc on the resulting
feature data, including: (F) normalized time series x feature matrix visualization; (G) normalized
feature x feature correlation matrix visualization; (H) violin plots of feature distributions (including
by group/class where applicable); (I) basic feature selection using penalized maximum likelihood
generalized linear models; (J) low-dimensional projections of the feature space; (K) time-series classifi-
cation procedures (a common application of feature-based time-series analysis); (L) evaluating the
uncertainty intervals of the resulting performance metrics through a range of distributional summary
methods; and uncovering hidden structure in time-series data through cluster analysis in the feature
space.
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2.2 Installing Python libraries

Prior to calculating features, the requisite Python feature sets need to be installed. The
install_python_pkgs function in theft handles this operation entirely within R—all that
needs to be supplied is venv (a string specifying the name of the new virtual environment to
create) and python (a string specifying the filepath to the Python interpreter to use). Note that
the filepath to the Python interpreter will differ depending on the user’s operating system
and will require correct specification. For example, on Windows it might be a path similar to
"C:/Users/YourName/AppData/Local/Programs/Python/Python310/python.exe", whereas
on Linux or MacOS (which was used for the present work) it could be a path similar to
"/usr/local/bin/python3.10" or "/usr/bin/python3".

An example call which installs the Python libraries into a new virtual environment and
initiates the virtual environment within R is shown in the code below. Note that init_theft
only needs to be run once per session.

install_python_pkgs(venv = "theft-eco-py", python = "/usr/local/bin/python3.10")
init_theft("theft-eco-py")

2.3 Extracting features

In feature-based time-series analysis, each univariate time series in a dataset is represented
as a feature vector, such that the dataset can be represented as a time series × feature data
matrix. Any single feature set, or combination of multiple feature sets, can be computed for a
given time-series dataset with the theft function calculate_features. calculate_features
takes a tbl_ts as input, using the data structure defined by the tsibble package for R (Wang
et al., 2020). This ensures consistency with the broader tidyverts collection of R packages
for conducting time-series analysis. A tbl_ts is a temporal data structure which is defined
by a key which identifies each unique time series and an index which identifies the time
indices. Other columns are treated as measured variables. Since theft is a univariate tool,
calculate_features only accepts inputs that have one measured variable. Since much
of the functionality in theftdlc is associated with time-series classification problems, if
multiple keys are defined, the first is treated as an “ID” variable, while the second is treated
as the “grouping” variable for classification.

Users can control various aspects of the feature extraction process through modifica-
tion of optional arguments. The catch22 feature set can be expanded to form ‘catch24’
with included mean and standard deviation by setting catch24 = TRUE. Features from the
"compengine" subset of tsfeatures can be calculated by setting use_compengine = TRUE
which substantially increases computation time for the addition of 16 features. The in-built
algorithm in tsfresh for selecting relevant features can be used for that set by specify-
ing tsfresh_cleanup = TRUE (Christ et al., 2017). In addition, it is a common practice in
feature-based time-series analysis to quantify the relative performance of features. For
situations where differences in mean and variance are not of interest, z-scoring can be used
to standardize each time series prior to the calculation of time-series features. The argument
z_score enables automatic normalization of each time series within calculate_features
prior to computing features. Further, users may always wish to disable package warnings
when computing features. This can be achieved by setting warn = FALSE. Last, parallel pro-
cessing can be engaged by setting the n_jobs argument to a value ≥ 2 (calculate_features
defaults to serial processing). Currently, parallelization has only been implemented for
tsfeatures, tsfresh, and tsfel.

The output of calculate_features is an S3 object of class feature_calculations, which
in this example is stored in the R environment as all_features. Within this object is a data
frame which contains five columns if the dataset is labeled (as in time-series classification),
and four otherwise: id (unique identifier for each time series), names (feature name), values
(feature value), feature_set (feature set name), and group (class label, if applicable). This
output structure ensures that, regardless of the feature set selected, the resulting object is
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always of the same format and can be used with the rest of the theftdlc functions without
manual data reshaping.

For the Bonn EEG dataset of 500 time series, each of length T = 4097 samples, calculating
features for all sets in theft took ≈ 5.7 hours on a 2019 MacBook Pro with an Intel Core
i7 2.6 GHz 6-Core CPU. The extensive computation time was largely driven by tsfeatures,
noting that the other five sets ranged from just seconds (catch22) to several minutes. With
the sixteen "compengine" features enabled, computation time increased to ≈ 11.8 hours.
Previous work provides a comprehensive discussion of computation speed between the
sets and the scalability with time-series length (Henderson and Fulcher, 2021). An example
call which extracts features from all six sets for the Bonn EEG dataset is shown in the code
below.

all_features <- calculate_features(
data = bonn_eeg,
feature_set = c("catch22", "feasts", "tsfeatures",

"tsfresh", "tsfel", "kats"),
use_compengine = FALSE, catch24 = TRUE)

theft is also set up to enable users to calculate their own custom features. For example,
we could specify two new features such as the mean and standard deviation by adding
the requisite functions and the names for those features in a list to the additional features
argument, as demonstrated in the code below. User-supplied functions must take a vector
input and return a numeric scalar value to be a valid time-series feature.

all_features_msd <- calculate_features(
data = bonn_eeg,
feature_set = c("catch22", "feasts", "tsfeatures",

"tsfresh", "tsfel", "kats"),
features = list("mean" = mean, "sd" = sd),
use_compengine = FALSE)

In addition, previous work highlighted that it can be helpful to provide a simple
benchmark of performance for the more comprehensive feature sets (Henderson et al.,
2023). As such, two simple feature sets—“quantiles” and “moments”—are also available
in calculate_features to enable the quick computation of a set of quantiles and the first
four moments of the distribution to serve as a baseline for more sophisticated feature
sets. “quantiles” and “moments” are both able to be specified directly as values to the
feature_set argument of calculate_features. By default, the "quantiles" feature set
includes a collection of 100 quantiles from the range 0.01 to 1.

Users who wish to explore the computed results efficiently can also download the
pre-computed features and classifiers used in this paper:

files <- c("all_features", "mf_results", "feature_classifiers")

for(f in files){
temp <- tempfile()
download.file(paste0("https://github.com/hendersontrent/bonn-eeg-data/raw/refs/heads/main/",

f, ".Rda"), temp)
load(temp)
unlink(temp)

}

2.4 Normalizing features

Different features vary over very different ranges; e.g., features that estimate p-values
from a hypothesis test vary over the unit interval, whereas a feature that computes the

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=theftdlc
https://CRAN.R-project.org/package=theft
https://CRAN.R-project.org/package=tsfeatures
https://CRAN.R-project.org/package=theft


CONTRIBUTED RESEARCH ARTICLE 50

length of a time series takes (often large) positive integer values. These differences in
scale can complicate the visualization of feature behavior and the construction of statistical
learning algorithms involving diverse features. To overcome these limitations, a common
pre-processing step involves scaling all features. Several of theftdlc’s internal functions
utilize rescaling functionality—specifically, providing the user the choice of five methods
for converting a set of raw feature values, x, to a normalized version, z:

1. z-score ("zScore"): zi =
xi−µ

σ ,

2. linear scaling to unit interval ("MinMax"): zi =
xi−min(x)

max(x)−min(x) ,

3. maximum absolute scaling ("MaxAbs"): zi =
xi

|max(x)|

4. sigmoid ("Sigmoid"): zi =
[
1 + exp(− xi−µ

σ )
]−1

,

5. and outlier-robust sigmoid ("RobustSigmoid"): zi =
[
1 + exp

(
− xi−median(x)

IQR(x)/1.35

)]−1
,

where µ is the mean, σ is the standard deviation, and IQR(x) is the interquartile range of
x. All four transformations end with a linear rescaling to the unit interval. The outlier-robust
sigmoid transformation, introduced in (Fulcher et al., 2013), can be helpful in normalizing
feature-value distributions with large outliers. Feature normalization is implemented in the
R package normaliseR which is a key dependency for theftdlc (Henderson, 2024).

2.5 Visualizing the feature matrix

A hallmark of large-scale feature extraction is the ability to visualize the intricate pat-
terns of how different time-series analysis algorithms behave across a time-series dataset.
This can be achieved in theftdlc by specifying type = "matrix" when calling plot on a
feature_calculations object to produce a heatmap of the time series (rows) × feature
matrix (columns) which organizes the rows and columns to help reveal interesting patterns
in the data. The plot of the combination of all six open feature sets for the Bonn EEG dataset
is shown in Figure 2. We can see some informative structure in this graphic, including many
groups of features with similar behavior on this dataset (i.e., columns with similar patterns),
indicating substantial redundancy across the joint set of features (Henderson and Fulcher,
2021). The bottom block of 100 rows, which visually have the most distinctive properties,
was found to correspond to time series from the seizure class, indicating the ability of this
large combination of time-series features to meaningfully structure the dataset.

plot(all_features,
type = "matrix",
norm_method = "RobustSigmoid",
clust_method = "average")

In matrix plots in theftdlc, hierarchical clustering is used to reorder rows and columns
so that time series (rows) with similar properties are placed close to each other and features
(columns) with similar behavior across the dataset are placed close to each other—where
similarity in behavior is quantified using Euclidean distance in both cases (Day and Edels-
brunner, 1984). In Figure 2, we specify the usage of average (i.e., unweighted pair group
method with arithmetic mean) agglomeration. Default settings within plot enable users
to easily generate outputs in a single line of code, but more advanced users may seek to
tweak the optional arguments. For example, different linkage algorithms for hierarchical
clustering can be controlled by supplying the argument to clust_method, which uses aver-
age agglomeration as a default, and the different rescaling methods defined earlier can be
supplied to the norm_method argument, which defaults to "zScore".

2.6 Projecting low-dimensional feature-spaces

Low-dimensional projections are a useful tool for visualizing the structure of high-
dimensional datasets in low-dimensional spaces. Here we are interested in representing a
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Figure 2: A time series by feature matrix heatmap produced by generating a matrix plot on the feature
calculations object. Extracted feature vectors for each time series (500) in the Bonn EEG dataset using
all six feature sets in theft (1005 features in total, after filtering out 85 features with NaN values) are
represented as a heatmap. Similar features (columns) and time series (rows) are positioned close to
each other using (average) hierarchical clustering. Each tile is a normalized value for a given time
series and feature.
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time-series dataset in a two-dimensional projection of the feature space, which can reveal
structure in the dataset, including how different labeled classes are organized. For linear
dimensionality reduction techniques, such as principal components analysis (PCA) (Jolliffe,
2002), the results can be visualized in two dimensions as a scatterplot, where the principal
component (PC) that explains the most variance in the data is positioned on the horizontal
axis and the second PC on the vertical axis, and each time series is represented as a point
(colored by its group label in the case of a labeled dataset). When the structure of a dataset
in the low-dimensional feature space matches known aspects of the dataset (such as class
labels), it suggests that the combination of diverse time-series features can capture rele-
vant dynamical properties that differ between the classes. It can also reveal new types of
structure in the dataset, like clear sub-clusters within a labeled class, that can guide new
understanding of the dataset. Low-dimensional projections of time-series features have
been shown to meaningfully structure time-series datasets: revealing sex and day/night
differences in Drosophila (Fulcher and Jones, 2017), distinguishing types of stars based on
their light curves (Barbara et al., 2022), and categorizing sleep epochs (Decat et al., 2022).

Several algorithms for projecting feature spaces are available in theftdlc:

• Principal components analysis (PCA)—"PCA"
• t-Stochastic Neighbor Embedding (t-SNE)—"tSNE"
• Classical multidimensional scaling (MDS)—"ClassicalMDS"
• Kruskal’s non-metric multidimensional scaling—"KruskalMDS"
• Sammon’s non-linear mapping non-metric multidimensional scaling—"SammonMDS"
• Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP)—

"UMAP"

Time-series datasets can be projected in low-dimensional feature spaces in theftdlc using
the project function. Users can control algorithm hyperparameters by supplying additional
arguments to the ... argument of project—the function then passes these arguments
to the requisite dimension reduction algorithm internally. The project function returns
an S3 object of class feature_projection, which can then be passed to plot which will
automatically draw the appropriate two-dimensional scatterplot. The feature_projection
class is a list object which contains elements representing the user-supplied feature data
frame, the model data, the two-dimensional projected data frame, and the model fit object
itself. The plot method for this object contains only one other argument (show_covariance)
which specifies whether to draw covariance ellipses for each group in the scatterplot (if a
grouping variable is detected).

The low-dimensional projection plot for the Bonn EEG dataset (using t-SNE and all
> 1000 non-NaN features across the six feature sets included in theft) is shown in Figure
3 with perplexity 15, as produced by the code below. The low-dimensional projection
meaningfully structures the labeled classes of the dataset. Specifically, two of the presurgical
diagnosis classes—epileptogenic (epileptogenic zone) and hippocampus (hippocampal
formation of the opposite hemisphere of the brain)—appear to exhibit considerable overlap
in the projected space, while the two healthy volunteer classes eyesOpen (awake state with
eyes open) and eyesClosed (awake state with eyes closed) occupy space further away from
the other classes but closer to each other. The seizure class occupies a space largely separate
from the other four classes in the projection, consistent with its distinctive periodic dynamics
(Fulcher et al., 2013).

low_dim_calc <- project(all_features,
method = "MinMax",
low_dim_method = "tSNE",
perplexity = 15)

plot(low_dim_calc)
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Figure 3: Low-dimensional projection of the Bonn EEG dataset using theft. Using t-SNE with perplexity
15, the high-dimensional feature space of >1000 features is projected into two dimensions. Each point
represents a time series which is colored according to its class label. Time series that are located close
in this space have similar properties, as measured by the six feature sets in theft.
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2.7 Constructing classifiers with multiple features

Combinations of complementary, discriminative features can often be used to construct
accurate time-series classifiers (Fulcher and Jones, 2014). Drawing on computed time-series
features (that may derive from one or more existing feature sets), theftdlc can fit and
evaluate classifiers using the classify function. This allows users to evaluate the relative
performance of each feature set, of the combination of all sets, or any other combination of
features. Providing easy access to a range of classification algorithms and accompanying
inferential tools (such as null permutation testing to obtain p-values and performance
distributions through the resampling-based algorithm) through classify allows users to
compare sets of features to better understand the most accurate feature sets for a given
time-series classification problem. The code presented below provides an example usage for
the Bonn EEG dataset with a linear support vector machine (SVM) classifier (which is the
default and so does not require explicit specification).

mf_results <- classify(
data = all_features,
by_set = TRUE,
train_size = 0.8,
n_resamples = 100,
use_null = TRUE)

The classify function is flexible in that users can supply any function that can be used
with R’s native stats::predict generic. For example, a user could easily use a radial basis
function SVM instead:

rbfClassifier <- function(formula, data){
mod <- e1071::svm(formula, data = data, kernel = "radial", scale = FALSE,

probability = TRUE)
}

mf_results_rbf <- classify(
data = all_features,
classifier = rbfClassifier,
by_set = TRUE,
train_size = 0.8,
n_resamples = 100,
use_null = TRUE)

In the above code, we specified that we want classify to fit separate classifiers for each
feature set, using a training set size that is 80% of the input data size, with 100 resamples
for each feature set as a way to incorporate uncertainty. We also enabled null model fitting
for permutation testing. In applications involving small datasets, or when small effects are
expected, it is useful to quantify how different the observed classification performance is
from a null setting in which data are classified randomly (i.e., could the same results have
been obtained by chance?). One method for inferring test statistics is to use permutation
testing—a procedure that samples a null process many times to form a distribution against
which a value of importance (i.e., the classification accuracy result from a model) can be
compared to estimate a p-value (Ojala and Garriga, 2009). In theft, permutation testing is
implemented for evaluating classification performance in classify through the use_null
argument. When set to TRUE, classify will compute results for n_resamples models where
the class labels match the data, but also n_resamples models where the class labels are
shuffled, thus severing the input-output relationship. In the absence of any data errors,
we would expect the mean classification accuracy for the empirical null distribution to
approximate chance for the problem. This provides a useful comparison point for the
main (non-shuffled) models—if the main models statistically outperform the empirical
null models, then the result, quantified by the p-value, is likely not due to chance, thus
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indicating that the set of time-series features represent quantities that can meaningfully
capture differences between classes.

The resampling procedure begins by partitioning the input data into n_samples number
of seeded train-test splits for reproducibility, using train_size to govern the size of the
training set for each split. Importantly, the procedure tracks the class representation in the
first resample and preserves these proportions for all subsequent resamples. The feature
data for each resample is then normalized as a z-score by computing the mean and standard
deviation of each feature in the training set, and using these values to rescale both the
training and test sets. This ensures that test data are completely unseen. The procedure
then iterates over each resample and fits the classification algorithm for each. By default,
classify calculates the following accuracy metrics, where C is the number of classes, TP is
the number of true positives, FP is the number of false positives, and FN is the number of
false negatives:

• Accuracy ("accuracy"): ∑C
i=1 TPi

∑C
i=1(TPi+FPi+FNi)

• Mean precision ("precision"): 1
C ∑C

i=1
TPi

TPi+FPi

• Mean recall ("recall"): 1
C ∑C

i=1
TPi

TPi+FNi

• F1 score ("f1"): 2 Precision·Recall
Precision+Recall

classify returns a list with two elements: (i) the train and test sizes; and (ii) a data
frame of classification results. While the raw results are useful, theftdlc enables auto-
mated analysis of them. The theftdlc::interval and compare_features functions were
designed to enable fast and intuitive comparisons between individual features and entire
sets. theftdlc::interval produces summaries of classification results with uncertainty
using three distinct methods: (i) standard deviation—"sd"; (ii) confidence interval based off
the t-distribution—"se"; and (iii) quantile summary—"quantile".

Users can compute different interval summaries by modifying the additional arguments:

• metric—the classification performance metric to calculate intervals for. Can be one of
"accuracy", "precision", "recall", or "f1"

• by_set—whether to compute intervals for each feature set. If FALSE, the function will
instead calculate intervals for each individual feature

• type—whether to calculate a ±SD interval with "sd", confidence interval based off
the t-distribution with "se", or a quantile with "quantile"

• interval—the width of the interval to calculate. Defaults to 1 if type = "sd" to
produce a ±1SD interval. Defaults to 0.95 if type = "se" or type = "quantile" for a
95% interval

• model_type—whether to calculate intervals for main models with "main" or null
models with "null" if the use_null argument of classify was use_null = TRUE

Below we calculate the mean ±1SD for each feature set. For the Bonn EEG dataset, we
find that the set of all features (All features) produced the highest mean classification
accuracy (91.2%) and catch22 (the smallest feature set) produced the lowest mean accuracy
(80.1%). The best performing individual feature set was the largest—tsfresh—with a mean
classification accuracy of 90.8% which was marginally below the set of all features.

set_intervals <- theftdlc::interval(
mf_results,
metric = "accuracy",
by_set = TRUE,
type = "sd",
model_type = "main"
)

set_intervals

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=theftdlc


CONTRIBUTED RESEARCH ARTICLE 56

0.80

0.85

0.90

All features tsfresh feasts tsfeatures TSFEL Kats catch22
Feature set

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Figure 4: Comparison of mean classification accuracy between feature sets in theft for the five-class
Bonn EEG classification task. Classification accuracy using a linear SVM is presented for each of the
six feature sets in theft as well as the combination of all their features. The number of features retained
for analysis after filtering is displayed in parentheses after the feature set name on the horizontal axis
which has been sorted from highest to lowest mean accuracy. Mean classification accuracy across the
same 100 resamples is displayed as colored points for each set with one standard deviation error bars.

#> feature_set .mean .lower .upper
#> 1 All features 0.9115 0.8827069 0.9402931
#> 2 Kats 0.8274 0.7908680 0.8639320
#> 3 TSFEL 0.8353 0.8019226 0.8686774
#> 4 catch22 0.8005 0.7691217 0.8318783
#> 5 feasts 0.8525 0.8172126 0.8877874
#> 6 tsfeatures 0.8363 0.8061940 0.8664060
#> 7 tsfresh 0.9079 0.8783138 0.9374862

theftdlc::interval returns an S3 object of class interval_calculations which is a
data frame that can be used with the plot generic through theftdlc. The resulting plot is
presented in Figure 4 where we see the considerable overlap in mean ±1SD classification
accuracy between the feature sets.

plot(set_intervals)

While the visual aid is useful, we often want to understand if a given feature set has
performed better than we might expect due to chance. Or can we determine if a given
feature set has statistically outperformed another (such as the set of all features compared to
tsfresh), therefore providing guidance on which features to retain for subsequent analysis?
How can we estimate if the performance of the smallest and fastest-to-compute set – catch22
– is meaningfully different from the larger feature sets with close average classification
accuracy values (i.e., Kats, TSFEL, and tsfeatures)? The compare_features function in
theftdlc enables pairwise comparisons between either individual features or entire feature
sets, or to their own respective empirical null distributions (i.e., the ‘chance’ distribution). It
does so through usage of the resampled t-test which accounts for the correlation between
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samples in the calculation of the test statistic (Nadeau and Bengio, 2003). The resampled t-
test is implemented through the correctR R package (Henderson, 2025a). compare_features
returns a data frame with columns for the hypothesis that was tested, the test statistic,
p-value, adjusted p-value (if specified), and the means of each group for each hypothesis test.
compare_features can operate on any of the metrics computed in classify. The function
only takes a small number of arguments in addition to the output of classify:

• metric—the classification performance metric to calculate intervals for. Can be one of
"accuracy", "precision", "recall", or "f1"

• by_set—whether to compare entire feature sets (TRUE) or individual features (FALSE)
• hypothesis—whether to compare each entire feature set or individual feature to its

own empirical null distribution ("null", if permutation testing was used in classify)
or to each other ("pairwise")

• p_adj—method for adjusting p-values for multiple comparisons. Defaults to "none"
for no adjustments, but can take any valid option received by stats::p.adjust

For example, we can statistically compare the performance of each feature set against
their empirical null distributions (formed by the distribution of performance on shuffled
class label data) using the code presented below. When specifying hypothesis = "null",
theftdlc automatically applies a one-tailed test, since the hypothesis is that the main models
should outperform their null counterparts. We find that, for the full Bonn EEG dataset
with 100 time series per class and strong differences between signals, mean classification
accuracy for each feature set is far higher than chance level (20%) over 100 resamples.
Further, we obtain extremely small p-values close to zero (displayed in the table below
as zero due to rounding for visual clarity), providing support for the low probability of
obtaining classification accuracy results at least as extreme as what we observed under the
null hypothesis. This confirms that time-series features can effectively distinguish between
classes in the dataset. Note that we drop some of the columns reported by theftdlc here for
spatial reasons.

compare_features(mf_results,
metric = "accuracy",
by_set = TRUE,
hypothesis = "null",
p_adj = "none")

hypothesis set_mean null_mean t_statistic p.value

All features != own null 0.911 0.192 12.496 0
Kats != own null 0.827 0.188 9.701 0
TSFEL != own null 0.835 0.197 10.638 0
catch22 != own null 0.800 0.203 8.699 0
feasts != own null 0.853 0.192 10.003 0

tsfeatures != own null 0.836 0.197 11.157 0
tsfresh != own null 0.908 0.192 13.787 0

We can then compare the feature sets to one another to provide statistical evidence for
any differences in the performance ranges visualized in Figure 4 using the code below. For
hypothesis = "pairwise", theftdlc applies a two-tailed test. We find that the set of all
features outperforms all individual sets at α < 0.05 except for tsfresh (p = 0.820), feasts
(p = 0.094), and tsfeatures (p = 0.077).

compare_features(mf_results,
metric = "accuracy",
by_set = TRUE,
hypothesis = "pairwise",
p_adj = "none")
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hypothesis set_a_mean set_b_mean t_statistic p.value

All features != catch22 0.911 0.800 3.026 0.003
All features != feasts 0.911 0.853 1.713 0.090
All features != Kats 0.911 0.827 2.306 0.023
All features != tsfeatures 0.911 0.836 2.066 0.041
All features != TSFEL 0.911 0.835 2.058 0.042

All features != tsfresh 0.911 0.908 0.198 0.843
catch22 != feasts 0.800 0.853 -1.249 0.215
catch22 != Kats 0.800 0.827 -0.634 0.527
catch22 != tsfeatures 0.800 0.836 -0.871 0.386
catch22 != TSFEL 0.800 0.835 -0.873 0.385

catch22 != tsfresh 0.800 0.908 -2.776 0.007
feasts != Kats 0.853 0.827 0.579 0.564
feasts != tsfeatures 0.853 0.836 0.414 0.680
feasts != TSFEL 0.853 0.835 0.419 0.676
feasts != tsfresh 0.853 0.908 -1.436 0.154

Kats != tsfeatures 0.827 0.836 -0.198 0.843
Kats != TSFEL 0.827 0.835 -0.183 0.855
Kats != tsfresh 0.827 0.908 -2.006 0.048
tsfeatures != TSFEL 0.836 0.835 0.025 0.980
tsfeatures != tsfresh 0.836 0.908 -1.796 0.076

TSFEL != tsfresh 0.835 0.908 -1.913 0.059

2.8 Finding and understanding informative individual features

Fitting models which use multiple features as inputs is often useful for predicting class labels.
However, users are also typically interested in understanding patterns in their dataset, such
as interpreting the types of time-series analysis methods that best separate different classes,
and the relationships between these top-performing features. This can be achieved using
mass univariate statistical testing of individual features, quantifying their performance
either relative to an empirical null distribution or each other. theftdlc implements the ability
to identify top-performing features in the compare_features function by setting by_set =
FALSE, with an example usage for the Bonn EEG dataset (using features from all six packages)
shown in the code below. We implement parallel processing to speed up computation time.

feature_classifiers <- classify(data = all_features,
by_set = FALSE,
train_size = 0.8,
n_resamples = 100,
use_null = TRUE)

feature_vs_null <- compare_features(feature_classifiers,
by_set = FALSE,
hypothesis = "null",
n_workers = 6)

Straightforward dplyr syntax can then be used to identify the top n features (Wickham
et al., 2023). We have the choice of either mean classification accuracy or p-values relative
to the empirical null to determine informative features. For illustrative purposes, here we
have used mean classification accuracy to find the top n = 40 features. We show the top 20
features below for spatial reasons. We see that the 17 best-performing individual features
achieve > 50% accuracy (which far exceeds the chance probability for a five-class problem
of 20%).
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top_40 <- feature_vs_null |>
dplyr::slice_max(feature_mean, n = 40)

top_40 |>
top_n(feature_mean, n = 20)
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hypothesis feature_mean null_mean t_statistic p.value

tsfresh_values__
autocorrelation__lag_6 != own null

0.537 0.138 4.054 0.000

tsfresh_values__
autocorrelation__lag_7 != own null

0.537 0.136 4.244 0.000

tsfresh_values__
autocorrelation__lag_8 != own null

0.527 0.138 4.513 0.000

tsfresh_values__
change_quantiles__f_agg_"mean"__
isabs_True__qh_1.0__ql_0.4 != own
null

0.524 0.142 7.373 0.000

tsfresh_values__
change_quantiles__f_agg_"mean"__
isabs_True__qh_1.0__ql_0.2 != own
null

0.521 0.146 6.819 0.000

tsfresh_values__
change_quantiles__f_agg_"mean"__
isabs_True__qh_0.8__ql_0.4 != own
null

0.520 0.148 7.016 0.000

TSFEL_0_Wavelet energy_25.0Hz !=
own null

0.515 0.145 7.903 0.000

TSFEL_0_Wavelet standard
deviation_25.0Hz != own null

0.515 0.145 7.903 0.000

tsfresh_values__
change_quantiles__f_agg_"mean"__
isabs_True__qh_0.8__ql_0.2 != own
null

0.512 0.148 6.362 0.000

tsfresh_values__
change_quantiles__f_agg_"mean"__
isabs_True__qh_0.6__ql_0.2 != own
null

0.511 0.141 7.350 0.000

TSFEL_0_Median absolute diff != own
null

0.504 0.147 6.645 0.000

TSFEL_0_Mean absolute diff != own
null

0.504 0.146 6.298 0.000

TSFEL_0_Sum absolute diff != own
null

0.504 0.146 6.298 0.000

tsfresh_values__
absolute_sum_of_changes != own null

0.504 0.146 6.298 0.000

tsfresh_values__
change_quantiles__f_agg_"mean"__
isabs_True__qh_1.0__ql_0.0 != own
null

0.504 0.146 6.298 0.000

tsfresh_values__ mean_abs_change !=
own null

0.504 0.146 6.298 0.000

TSFEL_0_Signal distance != own null 0.501 0.146 6.136 0.000
tsfresh_values__
change_quantiles__f_agg_"mean"__
isabs_True__qh_0.8__ql_0.0 != own
null

0.500 0.144 7.167 0.000

tsfresh_values__
autocorrelation__lag_5 != own null

0.500 0.132 3.280 0.001

tsfresh_values__
augmented_dickey_fuller__attr_
"teststat"__autolag_"AIC" != own null

0.497 0.140 5.100 0.000
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Understanding what each feature within the table measures can provide in-
sight into the types of features relevant for the classification problem. For exam-
ple, we see features that measure properties associated with autocorrelation (e.g.,
tsfresh_values__autocorrelation_lag_6 which measures the value of the autocorrelation
function at lag 6) and signal peaks (e.g., TSFEL_0_Median absolute diff which measures
the median value of all absolute differences along the signal), among others. However,
interpreting this table is challenging as the relationships between the features are unknown—
are all the 40 features behaving differently, or are they all highly correlated to each other
and essentially proxy metrics for the same underlying time-series property? We can better
understand these relationships by visualizing the pairwise feature × feature correlation
matrix.

To achieve this, we can filter the original feature data to only include the top features, as-
sign it to a feature_calculations object type, and make use of the plot function in theftdlc
to visualize pairwise absolute correlations between the top performing features. This is pre-
sented visually in Figure 5. The plot reveals two main groups of highly correlated (|ρ| ⪆ 0.8)
features: in the bottom left and upper right of the plot. The cluster in the bottom left contains
features that capture different types of autocorrelation structure in the time series, includ-
ing linear autocorrelation coefficients (e.g., tsfresh_values__autocorrelation_lag_6)
and the variance of means over sliding windows (e.g., tsfeatures_stability). The
large cluster in the top right (containing features from tsfresh and TSFEL exclu-
sively) contains features sensitive to variance—including change quantiles (e.g.,
tsfresh_values__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.4
which measures the mean of the absolute change of the time series values inside quantiles
0.4 − 1.0), wavelet variance (e.g., TSFEL_0_Wavelet standard deviation_25.0Hz which
measures the variance of coefficients from Ricker wavelets with widths 1 − 10 at the
lower quarter of the assumed sampling frequency of 100Hz), and the ‘distance traveled’
by the signal (e.g., TSFEL_0_Signal distance which measures the sum of square root
squared differences). While the differences between classes—as identified through the
list of top features—in this case were simple (i.e., autocorrelation and variance), other,
more complex features may perform the strongest on other problems, or even different
pairs of classes within the five-class dataset investigated here. Identifying when simple
features perform well is important as it can provide interpretable benchmarks for assessing
relative performance gains achieved by more complex and/or less interpretable alternative
classifiers (Henderson et al., 2023).

feature_matrix_filt <- all_features |>
dplyr::filter(feature_set %in% top_40$feature_set &

names %in% top_40$original_names) |>
structure(class = c("feature_calculations", "data.frame"))

plot(feature_matrix_filt, type = "cor")

Having identified the discriminative features, it can be important to understand how
they differ amongst the labeled classes of a dataset. This can be achieved by visualizing
the distribution of values for each class for each of the features. In theftdlc, a violin plot
can be produced in plot by setting type = "violin", where each time series is represented
as a point organized and colored by its class label. Note that a boxplot alternative (which
highlights univariate outliers as points) is also possible through specifying type = "box".
Here, for visual clarity, we show violin plots for a selected feature from the variance cluster
of features from Figure 5: 0_Signal distance from TSFEL (mean classification accuracy
50.1% over 100 resamples); and a selected feature from the autocorrelation-sensitive cluster
of features: values_autocorrelation_lag_6 from tsfresh (mean classification accuracy
53.7% over 100 resamples). The outputs are shown in Figure 6. Consistent with their high
classification scores relative to chance (20%), both features are individually informative
of class differences. The plot shows that with regard to autocorrelation structure, we
see that eyesClosed exhibits typically weak to moderate negative coefficient values at lag
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Figure 5: A group of change quantile and difference-associated features and a group of autocorrelation-
sensitive features perform the best at distinguishing between the five classes in the Bonn EEG dataset
using the absolute Spearman correlation coefficient to capture feature-feature similarity. To aid the
identification of similarly performing features, the matrix of correlation coefficients between features
were then organized using hierarchical clustering (on Euclidean distances with average linkage) along
rows and columns to order the heatmap graphic.
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6, while hippocampus and epileptogenic exhibit typically moderate positive coefficients.
eyesClosed is characterized by weak to moderate coefficient values largely within the 0− 0.5
range, while seizure exhibits a substantially wider distribution of values than the other
classes—a distribution which almost spans the entire range of coefficients exhibited by
the others. This defining lack of temporal predictability in short-range autocorrelation
coefficients for seizure time series is consistent with prior work and is characteristic of the
more erratic nature of seizure state brain activity (Fulcher et al., 2013).

The plot also shows that with regard to signal distance (i.e., ∑T−1
t=1

√
1 + (xt+1 − xt)

where T is the length of the time series and x is the vector of values), all classes except
seizure exhibit similar values with subtle differences in the mean and variance of their
feature value distributions. This is consistent with the lower classification performance
of this feature compared to values_autocorrelation_lag_6. For seizure, we again see a
wide distribution of feature values definitive of this class. Practically, since signal distance
measures the total distance traveled by the signal between time points, it can be inferred
that seizure state brain activity (as measured by an EEG) fluctuates far more than healthy
brain activity and measurements from the epileptogenic zone (i.e., the difference between
values at any two consecutive time points is, on average, larger), consistent with known
dynamics of seizure states (Andrzejak et al., 2001).

Together, these two feature case studies reinforce the interpretative benefits to a feature-
based approach to time-series analysis. Features can not only organize time-series data,
reveal structure, and predict class membership, but they can also provide insight into
the underlying generative properties that distinguish different time series—such as the
difference in brain activity between seizure state and regular brain function.

plot(feature_matrix_filt,
type = "violin",
feature_names = c("values__autocorrelation__lag_6",

"0_Signal distance")) +
theme(strip.text = element_text(size = 6))

2.9 Additional functionality

In addition to the functionality demonstrated here, theft and theftdlc include a collection
of other functions, not demonstrated in this article for brevity, including cluster analysis
(through the cluster function in theftdlc), simple feature selection using penalized maxi-
mum likelihood generalized linear models (through the shrink function in theftdlc), and
the processing of hctsa-formatted Matlab files in theft. Readers are encouraged to explore
this additional functionality in the detailed vignettes included with the packages.

3 Discussion

Feature-based time-series analysis is a powerful computational tool for tackling statistical
learning problems using sequential (typically time-ordered) data. We have introduced the
theft and theftdlc packages for R which implement the extraction, processing, visualization,
and statistical analysis of time-series features. The value of time-series features stems from
their interpretability and strong connection to theory that can be used to understand the
empirical properties of their dynamics. theft provides a unified interface to extracting
features from six open-source packages—catch22, feasts, tsfeatures, Kats, tsfresh, and
TSFEL—while theftdlc provides a comprehensive range of analyses to leverage the combined
contributions from all of these packages. For the first time in the free and open-source
software setting, the theft ecosystem provides a full workflow for conducting feature-
based time-series analysis, taking the analyst from feature extraction through to generating
interpretable insights about their data. theftdlc introduces a set of simply named functions
that make analysis of time-series features calculated in theft intuitive and streamlined:
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Figure 6: Violin plots (on original feature value scale) of a sample of two of the top 40 features of
all six feature sets in theft for classifying Bonn EEG groups. Classes differ in their variance and
autocorrelation properties.

classify, project, cluster, interval, plot, and compare_features. theft and theftdlc
reduce the need to construct complex, bespoke workflows with multiple software libraries
that were not designed to work together—the theft ecosystem provides an extensive suite
of functions, but also presents a set of templates for advanced users to alter and adapt as
their research requires.

We demonstrated the theft ecosystem on the five-class Bonn EEG time-series classifica-
tion problem (Andrzejak et al., 2001), in which the full feature-based classification analysis
pipeline—from feature extraction to normalization, classification, and interpretation of indi-
vidual features—was achieved using a small number of key functions in theft and theftdlc.
We showed that this intuitive pipeline could be used to derive insights about the temporal
patterns which distinguish different classes of EEG time series and produce high-performing
results in a simple statistical learning classification context. In other settings, emphasis may
be placed on the classification procedure, where more complex classifiers—such as Gaussian
processes or generalized additive models—may yield strong results. In others, users may
not have a labeled dataset and instead seek to uncover structure in their data. For such cases,
the cluster functionality of theftdlc may prove valuable in deriving scientific understand-
ing. Regardless of the feature-based time-series analysis context, theft and theftdlc enable
consistent, end-to-end analytical pipelines.

As new and more powerful features (and feature sets) are developed in the future, they
can be incorporated into theft to enable ongoing assessments of the types of problems they
are best placed to solve. In addition to the analysis templates provided through functions
in theftdlc, there is much flexibility for users to adapt them or build new functionality
for their own use-cases, such as applying different types of statistical learning algorithms
on extracted feature matrices (e.g., feature selection), or to adapt the results to different
applications such as extrinsic regression (Tan et al., 2021) or forecasting (Montero-Manso
et al., 2020). Future work could also aim to reduce redundancy from across the combined
features towards a new reduced feature set that combines the most generically informative
and unique features from across the available feature-extraction packages (following the
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aims of the catch22 feature set, selected from a library of > 7700 candidate features in hctsa
(Lubba et al., 2019)).
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QTE.RD: An R Package for Quantile
Treatment Effects in
Regression-Discontinuity Designs
by Zhongjun Qu and Jungmo Yoon

Abstract The QTE.RD package provides methods to test, estimate, and conduct uniform
inference on quantile treatment effects in sharp regression discontinuity designs, allowing
for covariates, and implementing robust bias correction. The package offers four main
functions for estimating quantile treatment effects and uniform confidence bands, testing
hypotheses related to treatment effects, selecting bandwidths using cross-validation or mean
squared error criteria, and visualizing the estimated effects and confidence bands. This note
includes an empirical illustration of the package’s functionality using data on the impact of
tracking on student achievement.

1 Introduction

The regression discontinuity (RD) design (Thistlethwaite and Campbell, 1960) has become an
important methodology for identifying and estimating causal effects from observational data.
Under a sharp RD design, the assignment to a treatment is fully determined by whether
the value of a covariate, known as the running variable, surpasses a fixed cutoff. The
randomization near the cutoff allows for the estimation of treatment effects by comparing
individuals above the threshold with those below it. To date, the majority of studies in the
RD literature have focused on the average treatment effect (ATE).

Treatment effects are often heterogeneous, and the concept of quantile treatment effects
(QTE; Lehmann (1975), and Doksum (1974)) offers a flexible framework for documenting
the heterogeneity. Four key issues often arise in such contexts: 1) Constructing a uniform
confidence band that covers the quantile treatment effects at a given confidence level; 2)
Testing the statistical significance of the treatment effect within a given quantile range
(Treatment Significance); 3) Assessing whether the treatment effects are equal across all
quantiles (Treatment Homogeneity); 4) Determining if the effects are uniformly positive or
uniformly negative within this quantile range (Treatment Unambiguity).

Furthermore, if heterogeneity is detected by examining the above issues, utilizing co-
variates can help pinpoint the source of the heterogeneity. For instance, consider a sample
comprising both males and females. If the quantile treatment effects are equal within each
gender group but differ between groups, introducing a gender dummy into the model
will reveal homogeneous quantile treatment effects for both groups. In this context, QTE
estimates plotted as a function of the quantile index should show that the effects are identical
within each group but differ between them. However, if the QTE demonstrates a non-zero
slope in quantile for any subgroup, it indicates that treatment heterogeneity persists even
after accounting for initial covariates. This then indicates the need for further analysis with
additional explanatory variables to fully understand the underlying heterogeneity.

These considerations motivated the study of Qu and Yoon (2019) and Qu et al. (2024).
The former study develops methods for conducting uniform inference on QTEs for sharp
RD designs without covariates, while the latter paper extends the methods to allow for
covariates. The proposed package implements their methods in an easy-to-use fashion. Four
functions are provided:

1. rd.qte(). This function provides point estimates of QTEs over a range of quantiles
and a uniform confidence band that covers these effects at a given confidence level.
The estimation is based on local-linear regressions. The user can specify whether or
not to include any covariates and how many of them to include in the regression.
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The function provides results either without any bias correction or with robust bias
corrections (Qu et al. (2024)).

2. rdq.test(). This function provides testing results for three hypotheses on the treat-
ment effects outlined above: Treatment Significance, Homogeneity, and Unambiguity.
The user can choose whether to allow for covariates, and whether to conduct robust
bias correction. The critical values are obtained via simulations when implementing
these tests.

3. rdq.bandwidth(). This function implements two bandwidth selection rules: the cross-
validation bandwidth and the MSE optimal bandwidth. In practice, one can apply
both methods to examine result sensitivity.

4. plot.qte(). This function generates figures summarizing the QTE estimates and
their uniform confidence bands, helping users visualize the results from testing and
estimation.

For the validity of these methods, the covariates must be balanced at the cutoff, meaning
that their distribution does not change discontinuously at the RD threshold. Correlations
with the running variable are permitted. Bias correction is applied to ensure that the tests
and confidence intervals achieve correct asymptotic coverage. This is necessary because
the underlying nonparametric functions are approximated using local linear methods, and
omitted terms can distort inference if not properly accounted for—a well-known issue in
the nonparametric estimation literature. Our proposed procedure not only estimates the
bias but also accounts for the uncertainty in that estimation, which is why we refer to it as
robust bias correction.

When implementing these methods, users need to supply the following input: the
outcome variable in y, treatment status in d (0 or 1), independent variables in x, and a
quantile range T . The first column of x is a scalar running variable, and the remaining
columns in x include additional covariates, which can be discrete or continuous. When there
are no covariates, x is just a column vector of the running variable.

Let x0 denote the cutoff and z0 the value of the remaining covariates at which to evaluate
the effects (e.g., if a female dummy is included, z0 = 1 indicates the female subgroup).
The main objects of the analysis are the conditional quantile functions on the right and left
sides of the cutoff: Q(τ|x+0 , z0) and Q(τ|x−0 , z0), and the QTE at this cutoff: Q(τ|x+0 , z0)−
Q(τ|x−0 , z0).

The above functions can also be used to analyze data from a randomized controlled trial
(RCT). In this case, the two sides of the cutoff are replaced by observations from the control
and treatment groups, respectively. Let Q1(τ|x, z) be the conditional quantile function of the
treatment (d = 1) group and Q0(τ|x, z) be that of the control (d = 0) group, then the QTE
at (x, z) is defined as Q1(τ|x, z)− Q0(τ|x, z). If we have x = x0 for some x0, the estimate
we provide will correspond to the local treatment effect near the chosen x0, placing no
restriction on the effects away from x0.

Unlike in the RD setting, the choice of x in the RCT setting involves making a modeling
decision: x typically represents a baseline variable that is highly predictive of the outcome,
while z is used to examine additional treatment heterogeneity. This approach allows quantile
treatment effects to vary nonparametrically with the baseline variable and linearly with
additional covariates. In our empirical example, we use the baseline test score as x. Because it
is highly predictive of the outcome (the endline test score), it is natural to examine the effects
of tracking separately for students at different points in the initial performance distribution.
To capture further heterogeneity, we use student and teacher characteristics as covariates z,
which enables us to examine how treatment effects vary linearly with observable student
and classroom factors.

There are several R and Stata packages available for estimating QTE. Table 1 provides a
comparison of these packages with QTE.RD. As indicated in the table, to our knowledge,
there is currently no R package for estimating QTEs under RD designs, even for the simplest
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setting without covariates. There are, however, Stata functions rddqte and rdqte that can
be used in RD designs by applying methods in Frandsen et al. (2012) and Chiang et al.
(2019). These Stata functions are particularly useful for fuzzy designs. But they do not offer
methods allowing heterogeneous effects by groups or continuous covariates. So if the goal
is to explore the heterogeneity in full generality for sharp RD designs, it is suitable to use
QTE.RD.

Additionally, some R and Stata packages are available for estimating QTE under al-
ternative identification strategies. The R packages qte and quantreg.nonpar rely on the
conditional independence (or unconfoundedness) assumption between the potential out-
comes and the selection variable. The Stata package ivqte is based on the availability of
instrumental variables. While they are useful for these alternative research designs, they are
not directly applicable to RD designs.

Table 1: Comparisons of R/Stata packages and functions

Package
Name

Statistical
Platform

Research
Design

Hetero.
Effects

Conf.
Band

Bias
Correction

Regression
Model

Estimation
Method

qte R CI × pointw × QR Linear
ivqte Stata IV × pointw × DR Linear
quantreg.nonpar R CI × uniform ✓ QR Series
rddqte Stata RDD × pointw × DR Local
rdqte Stata RDD × uniform ✓ DR Local
QTE.RD R RDD ✓ uniform ✓ QR Local

Note: ‘CI’ = conditional independence (unconfoundedness); ‘IV’ = instrumental variable; ‘RDD’ = regression
discontinuity design; ‘pointw’ = confidence band is pointwise w.r.t. the quantile level τ; ‘uniform’ = confidence
band is uniform in τ. ‘QR’ = quantile regression; ‘DR’ = distributional regression; ‘Linear’ = linear regression;
‘Series’ = series estimation; ‘Local’ = local polynomial regression. The symbol ✓ means that the indicated
feature is available.

We apply the functions of this package to study the impact of tracking (assigning students
into separate classes by prior achievement) on student achievement using the dataset of
Duflo et al. (2011). Their experimental data includes 121 primary schools in Kenya which
received funds in 2005 to hire a new teacher and split their single first-grade class into two
sections. The schools were randomly divided into the treated group, 61 tracking schools,
and the control group, 60 non-tracking schools. In tracking schools, students were assigned
to sections based on baseline test scores. In non-tracking schools, students were randomly
assigned.

The experimental design has rich random variations, featuring elements of both ran-
domized controlled trials (RCT) and RD. By comparing tracking and non-tracking schools,
that is, by exploiting the RCT structure, one can study the effect of tracking on all students.
Additionally, by analyzing median students within tracking schools, that is, by exploiting
the RD structure, one can study the effect of tracking on marginal students who barely made
or missed the opportunity of being assigned to a high ability section. Both structures were
exploited in Duflo et al. (2011), though they focused on average effects instead of quantile
effects.

The experiment lasted for 18 months. The main outcome variable is the sum of math and
language scores on the endline tests administered in all schools at the end of the program.
Duflo et al. (2011) also examined the long-run effect using a follow-up test which was given
one year after the tracking ended. We analyze the short-term effect by focusing on the
endline test. To study the heterogeneity in effects, we use as covariates the baseline test
score, students’ gender and age (at the endline test), and whether teachers are civil servants
or contract teachers.

From the RD design, we find no evidence that marginal students assigned to the lower
section (i.e., those falling just below the median of the initial achievement distribution)
performed any worse than those assigned to the upper section, despite the fact that the
latter group had higher achieving peers. This finding, while confirming Duflo et al. (2011),
is more definitive in that it documents the lack of effect, not only on average, but also at any
points of the outcome distribution. Examining heterogeneity across groups by covariates,
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we find that the effects of assigning to an upper section are negative for girls but positive for
boys across quantiles. In particular, female students who were at the bottom of the endline
scores may fare worse if they were assigned to the upper section. However, these effects are
mostly statistically insignificant, suggesting that a larger dataset is needed to draw more
precise conclusions regarding this heterogeneity.

From the RCT design, we find uniformly positive effects of tracking. Test scores were
higher in tracking schools than in non-tracking schools up to 0.351 standard deviations. The
null hypothesis of no effect is firmly rejected. The biggest effects can be found for students
who were at the middle of the baseline test distribution, male and younger students, and
those taught by contract teachers. Our findings from the RCT support that tracking may
be beneficial to all students, not just to those assigned to high achievement sections. If
the peer effect is the dominant factor in the effect of tracking, the marginal students who
are assigned to the lower section may have much to lose. But our findings from the RDD
indicate that even this group did not suffer at all. This can be explained if, as Duflo et al.
(2011) argued, tracking allows teachers to closely match their instruction to the need of
students and benefits all students.

Below, we first review the statistical methods implemented in the package, and after that
we will provide details on the implementation in the context of the empirical application.

2 Methods for quantile treatment effects with and without covariates

This section presents materials in the following order: the model and the issues of inter-
est, the main estimation steps along with the bandwidth selection methods, the uniform
confidence bands with and without bias correction, and finally, the computation of tests
related to treatment significance, homogeneity, and unambiguity. We also highlight that the
methods can be used to estimate local effects in RCTs in addition to RD designs.

2.1 Model

Let y represent the outcome variable, x be the running variable, and z (q × 1) be a set of
covariates. We focus on the sharp RD design in which the treatment status shifts at x = x0:
no one below x0 is treated, and everyone above x0 is treated. For theoretical analysis,
define two local neighborhoods of x0: the left neighborhood B−(x0) = [x0 − δ, x0) and the
right neighborhood B+(x0) = [x0, x0 + δ] with δ a small positive constant. With Q(τ|x, z)
denoting the τ-th conditional quantile of y given x and z, the model we assume to hold is
given by:

Q(τ|x, z) = g1(x, τ) + z′β1(τ) + xz′γ1(τ) over τ ∈ T for any x ∈ B−(x0),

Q(τ|x, z) = g2(x, τ) + z′β2(τ) + xz′γ2(τ) over τ ∈ T for any x ∈ B+(x0),

where g1(x, τ) and g2(x, τ) are continuous nonparametric functions of x and τ. For a given
z, the QTE at the τ-th quantile is defined as

δ(τ|z) = δ(τ|x0, z) = lim
x↓x0

Q(τ|x, z)− lim
x↑x0

Q(τ|x, z),

where limx↓x0 denotes the value of the function as x approaches the limit from the right side
of the cutoff, and limx↑x0 from the left side of the cutoff. Explicit conditions on the model
are stated in Assumptions 1–4 of Qu et al. (2024). These allow for correlations between the
running variable and the covariates.

We will denote the two right hand side limiting expressions by Q(τ|x+0 , z) and Q(τ|x−0 , z),
respectively. The methods in this package primarily address the following issues:

1. Uniform Confidence Band. For any given z and coverage level p, obtain a band
[Lp(τ|z), Up(τ|z)] such that Pr{δ(τ|z) ∈ [Lp(τ|z), Up(τ|z)] for all τ ∈ T } ≥ p holds
asymptotically.
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2. Treatment Significance. Test H0 : δ(τ|z) = 0 for all τ ∈ T against H1 : δ(τ|z) ̸= 0 for
some τ ∈ T .

3. Treatment Homogeneity. Test H0 : δ(τ|z) is constant over T against H1 : δ(τ|z) ̸=
δ(s|z) for some τ, s ∈ T .

4. Treatment Unambiguity. Test H0 : δ(τ|z) ≥ 0 over T against H1 : δ(τ|z) < 0 for some
τ ∈ T . Alternatively, test δ(τ|z) ≤ 0 over T against δ(τ|z) > 0 for some τ ∈ T .

2.2 Estimation

The estimation is based on local linear quantile regressions, in which the conditional quantile
functions on the two sides of the cutoff are approximated by:

Q(τ|x, z) ≈ α−0 (τ) + α−1 (τ)(x − x0) + z′β−(τ) + (x − x0)z′γ−(τ) (for x below the cutoff),

Q(τ|x, z) ≈ α+0 (τ) + α+1 (τ)(x − x0) + z′β+(τ) + (x − x0)z′γ+(τ) (for x above the cutoff).

The interactive terms (x − x0)z′γ−(τ) and (x − x0)z′γ+(τ) are important and they are
discussed below in Remark 1. The estimation solves the following two minimization
problems separately:

min
α−0 ,α−1 ,β− ,γ−

n

∑
i=1

ρτ

(
yi − α−0 − α−1 (xi − x0)− z′iβ

− − (xi − x0)z′iγ
−) (1 − di)K ((xi − x0)/bn,τ) ,

min
α+0 ,α+1 ,β+ ,γ+

n

∑
i=1

ρτ

(
yi − α+0 − α+1 (xi − x0)− z′iβ

+ − (xi − x0)z′iγ
+
)

diK ((xi − x0)/bn,τ) ,

where n is the sample size, xi is the running variable value for individual i, di = 1(xi ≥ x0) is
the treatment indicator, zi is a set of covariates, ρτ is the check function: ρτ(u) = u(τ − 1{u <
0}), K(·) is a kernel function, and bn,τ is a quantile-dependent bandwidth discussed later.
See Koenker (2005) for a comprehensive treatment of quantile regressions and Yu and Jones
(1998) for local linear quantile regressions.

In the implementation, we solve the above two optimization problems for an equidistant
grid of quantiles over T and then apply linear interpolation between adjacent quantiles to
obtain continuous functions over quantiles. This gives us the estimated conditional quantile
curves on the two sides of the cutoff: Q̂(τ|x−0 , z) = α̂−0 (x, τ) + z′ β̂−(τ), and Q̂(τ|x+0 , z) =
α̂+0 (x, τ) + z′ β̂+(τ). The QTE estimate, prior to any bias correction, is given by

δ̂(τ|z) = Q̂(τ|x+0 , z)− Q̂(τ|x−0 , z) for any τ ∈ T .

This QTE estimate is affected by a bias term that depends on the second-order derivative
of the conditional quantile function; its expression is given in Corollary 2 of Qu et al. (2024).
The main effect of this bias is to distort the coverage level of the confidence band and
the rejection frequency of the hypothesis tests under the null hypothesis. This motivates
the usage of bias-corrected estimates at the cost of estimation efficiency. To estimate the
bias, we first run two local quadratic regressions for the two sides of the cutoff for each τ.
To that end, we solve the same minimization problem as the local linear regression case,
except the local linear approximation is replaced by quadratic regression with the same
bandwidth bn,τ . Then, the bias-corrected estimator is computed as (x can be either x+0
or x−0 ): Q̂(τ|x, z)− B̂v(x, z, τ)b2

n,τ . The bias correction affects the distribution of the QTE
estimator, and our methods incorporate an extra term into the distribution to account for this
additional estimation uncertainty motivated by Calonico et al. (2014); see the discussions in
Subsection 2.4.

Remark 1 We now discuss how to interpret the estimates to ease the application. If zi is a dummy
variable, e.g., equal to one for females, then the QTEs for men and women are given by α+0 (τ)− α−0 (τ)
and α+0 (τ)− α−0 (τ) + β+(τ)− β−(τ). If zi is a continuous variable, then the QTE at x = x0 for
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z = z0 is given by α+0 (τ)− α−0 (τ) + z′0(β+(τ)− β−(τ)). The interactive term (xi − x0)z′i makes
∂Q(τ|x, z)/∂x vary with z. If zi is a binary variable, then this slope is equal to α+1 and α+1 + γ+ for
zi = 0 and zi = 1, respectively. It is essential to allow the coefficients of zi to change at the cutoff,
otherwise, the QTE estimate will be biased if the treatment effects are heterogeneous across z values.

Remark 2 Including covariates does not appear to improve estimation efficiency in the quantile
RD setting, because their role differs from the mean RD case. To see this, consider two scenarios.
In both cases, suppose the running variable is x, the cutoff is at x0, and the covariate z is binary
(z = 0, 1), representing two groups. In the first scenario, the treatment effect is heterogeneous in z. If
the model does not contain any covariates (i.e., z is not included), the RD estimator identifies the
unconditional quantile treatment effect over the groups. Once z is included, the estimator recovers
quantile treatment effects separately for groups 0 and 1. That is, when heterogeneity is present,
including covariates leads to different estimands. The resulting estimates are not directly comparable,
and the issue is therefore not efficiency. This contrasts with the RD-in-mean setting, where including
covariates does not change the estimand: the intercept still identifies the average treatment effect, as
shown in Calonico et al. (2019). In the second scenario, the treatment effect is homogeneous across z.
Then, the true coefficient on the z = 1 indicator is equal to zero, and including z may actually reduce
efficiency, as it increases the number of estimated parameters without reducing residual variation.
For additional discussion and details, see Section 3.1 in Qu et al. (2024).

2.3 Bandwidth selection

The package offers two methods to choose bandwidth parameters: cross-validation and
minimizing the MSE. In both cases, the bandwidth at the median bn,0.5 is determined first.
This value is then used to determine bandwidths at other quantiles, using the formula of Yu
and Jones (1998):

(bn,τ/bn,0.5)
4+d = 2τ (1 − τ) /[πϕ(Φ−1(τ))2] for τ ∈ T ,

where ϕ and Φ are the standard normal density and cumulative distribution functions.

Cross validation bandwidth: For a given candidate bandwidth, estimate the conditional
median at (xi, zi) by a local linear or quadratic regression, treating x as an interior or a
boundary point, leaving out (yi, xi, zi). The goodness of fit is measured by the difference
between yi and the estimated conditional median. Repeat the estimation and compute the
mean absolute deviation over 50% of the observations closest to x. The cross-validation
bandwidth minimizes this mean absolute deviation.

MSE-optimal bandwidth: First obtain a pilot bandwidth for the median using leave-one-out
cross validation. Then construct the MSE-optimal bandwidth for the median by applying
this pilot bandwidth to calculate the necessary quantities in the bandwidth formula from
Corollary 3 of Qu et al. (2024).

Providing two selection rules (the cross-validation bandwidth selection rule and the
MSE-optimal rule) allows users to assess the sensitivity of their results to different choices.
However, we note that, although the cross-validation bandwidth is intuitive, its theoretical
properties in the current setting have not been formally studied. The package also allows
users to directly specify bandwidth values without using these two methods, providing an
additional channel for robustness analysis.

2.4 Uniform confidence band with/without robust bias correction

The confidence band we compute relies on the following asymptotic approximation in
Corollary 2 of Qu et al. (2024):

(nbn,τ)
1/2(Q̂(τ|x, z)− Q(τ|x, z)− b2

n,τ Bv(x, z, τ)) = D1,v (x, z, τ) + op (1) ,
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where x can be either x+0 or x−0 , Bv(x, z, τ) is a bias term, and D1,v (x, z, τ) converges to a
Gaussian process over τ with mean zero with a pivotal distribution conditioning on the
data, making it readily simulatable.

Using this approximation, the uniform confidence band without bias correc-
tion (e.g., ignoring the bias) is computed as follows: Define σn,τ to be an es-
timate of (nbd

n,τ)
−1/2[ED1,v (x, z, τ)2]1/2, obtained via simulations. Compute the

band as [Q̂(τ|x, z) − σn,τCp, Q̂(τ|x, z) + σn,τCp], where Cp is the p-th percentile of

supτ∈T |D1,v (x, z, τ) /
√

ED1,v (x, z, τ)2|. This band is wider at quantiles with sparse data.

To obtain a confidence band with robust bias correction, we implement the following
steps: First, run a local quadratic regression for each quantile to estimate the bias Bv(x, z, τ),
denoted as B̂v(x, z, τ), and compute the bias corrected estimator (nbd

n,τ)
1/2(Q̂(τ|x, z) −

B̂v(x, z, τ)b2
n,τ). This estimator admits the following approximation by Lemma 2 in Qu et al.

(2024): (nbd
n,τ)

1/2(Q̂(τ|x, z) − B̂v(x, z, τ)b2
n,τ − Q(τ|x, z)) = D1,v (x, z, τ) − D2,v (x, z, τ) +

op (1) over T , where D1,v (x, z, τ) is as stated above, and the new term D2,v (x, z, τ), is
due to bias estimation. The terms D1,v (x, z, τ) and D2,v (x, z, τ) capture the estimation
uncertainty of Q̂(τ|x, z) and B̂v(x, z, τ), respectively. The resulting uniform confidence band
is [Q̂(τ|x, z)− B̂v(x, z, τ)− σn,τCp, Q̂(τ|x, z)− B̂v(x, z, τ) + σn,τCp], where σn,τ and Cp are
as before, with D1,v (x, z, τ) replaced by D1,v (x, z, τ)− D2,v (x, z, τ). This band is centered
at the bias corrected estimate and is wider than the band without bias correction due to the
presence of D2,v (x, z, τ). More details on computing this confidence band can be found in
PROC-A on p.528 of Qu et al. (2024).

2.5 Hypothesis testing

To compute the tests, as before, let δ̂(τ|z) = Q̂(τ|x+0 , z)− Q̂(τ|x−0 , z). Let ŵ(τ) ≥ 0 be a

user-chosen weight function, satisfying ŵ(τ)
p→ w(τ), a smooth function over T . Define

W(τ) = (nbd
n,τ)

1/2ŵ(τ)(δ̂(τ|z)− b2
n,τ(B̂v(x+0 , z, τ)− B̂v(x−0 , z, τ))), where B̂v represents the

bias estimate. The hypotheses of treatment significance, homogeneity, and unambiguity are
tested using the following statistics, respectively:

WS (T ) = supτ∈T |W(τ)| ,

WH (T ) = supτ∈T

∣∣∣∣W(τ)−
√

nbd
n,τŵ(τ)∫

s∈T
√

nbd
n,sŵ(s)ds

∫
τ∈T W(τ)dτ

∣∣∣∣ ,

WA (T ) = supτ∈T |1 (W(τ) ≤ 0)W(τ)| .

In the case of non-positive effects under the null hypothesis, replace 1 (W(τ) ≤ 0) by
1 (W(τ) ≥ 0). The tests have built-in bias corrections. No restrictions on biases are im-
posed across quantiles. To implement tests without bias correction, simply omit the term
(B̂v(x+0 , z, τ)− B̂v(x−0 , z, τ)) when computing the test, and the critical values are adjusted
automatically.

Sometimes it is desirable to set ŵ(τ) such that the standard deviation of
(nbd

n,τ)
1/2(δ̂(τ|z)− b2

n,τ(B̂v(x+0 , z, τ)− B̂v(x−0 , z, τ))) is equalized across quantiles under the
null hypothesis. Or, one might assign equal weight to all quantiles. The package provides
both options. The asymptotic distributions of the tests, under a general ŵ(τ), are given in
Corollary 5 of Qu et al. (2024).

2.6 Local QTE in RCT

As highlighted in the introduction, the functions in QTE.RD are flexibly designed to ac-
commodate more than the RD design. For example, they can be used to analyze data
from a randomized controlled trial. In this case, the two sides of the cutoff are replaced
by observations from the control and treatment groups, respectively. The nonparametric
component of the model x will be a variable that is highly predictive of the outcome of the
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experiment. The linear component of the model includes other covariates z, which explores
the heterogeneity in the treatment effect.

Specifically, let Q1(τ|x, z) be the conditional quantile function of the treatment (d = 1)
group and Q0(τ|x, z) be that of the control (d = 0) group, then the QTE at (x, z) is defined
as Q1(τ|x, z)− Q0(τ|x, z). If x = x0 for some x0, the estimate gives the local effect near a
chosen covariate value x0, placing no restriction on the effects away from x0. The main
difference from the RD case is that here x0 typically represents an interior point instead of a
boundary point for the purpose of estimation and inference. The next section will focus on
the RD setting only, while the empirical application section shows how to use the functions
in the package to analyze data from the RCT as well as from the RDD.

3 R functions

This section explains the main R functions in the package.

QTE and Uniform confidence band

The function rd.qte() provides the QTE and 100 · (1 − α)% uniform confidence band.
Save data in y, x, d, specify appropriate values for x0, z0, tau, and run

rd.qte(y,x,d,x0,z0,tau,bdw=8,bias=1)

This line of code estimates the conditional QTE with bias correction. When no covariates
are included, x is simply a vector of the running variable and z0 can be left unspecified.
When covariates are included, x should be a matrix with the running variable in the first
column and the covariates in the remaining columns. In this case, z0, which specifies the
covariate subgroups to be evaluated, must be explicitly provided, as illustrated in Remark
1. The option bias=1 means that the QTE estimate is bias corrected. When bias=0, the
above command estimates the QTE without bias correction. Additional arguments have
the following meanings. The quantile indexes to estimate, T , are denoted by tau. For
example, when T = [0.1, 0.9], one may set ‘tau = seq(0.1,0.9,by=0.05)’. It will generate
an evenly spaced grid with increment 0.05. If bdw is set to a scalar, then it is interpreted as
the bandwidth for the median, and the bandwidth values for other quantiles are determined
within the code using Yu and Jones’s (1998) formula. If bdw is a vector with the same
dimension as tau, then the program will use these values for the respective quantiles
accordingly.

If a user saves outputs of rd.qte() in an object A, the QTE estimate is saved in A$qte. A
also has a few extra outcomes. A$qm.est is Q̂(τ|x−0 , z) and A$qp.est is Q̂(τ|x+0 , z). To obtain
a uniform band, one can use summary.qte().1 This can be done by

summary(A,alpha=0.1)

Because ‘bias=1’ when running rd.qte(), the uniform band that will be produced is
the robust confidence band. If ‘bias=0’, the uniform band would not incorporate bias
adjustments. Because ‘alpha=0.1’, one will get a 90% uniform band.

If a user saves outputs of the summary function in an object A2, the uniform confidence
band will be saved in A2$uband. If ‘bias=1’, A$qte and A2$uband are the bias-corrected QTE
and uniform bands, and if ‘bias=0’, they are not bias corrected. In addition, the uniform
confidence bands for Q̂(τ|x−0 , z) and Q̂(τ|x+0 , z) are saved in A2$uband.m and A2$uband.p,
respectively. These conditional quantile functions will be bias corrected if ‘bias=1’. For all
results, the values are ordered as in tau. For example, if ‘tau= seq(0.1,0.9,by=0.05)’, then
the first value is for the 10-th percentile, and so forth.

Testing Hypotheses on QTE

1This function is a S3 method for class qte.
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The function rdq.test() tests the hypotheses on QTE. To test the treatment significance
hypothesis, run

rdq.test(y,x,d,x0,z0,tau,bdw,bias,alpha=0.1,type=1,std.opt)

The option alpha sets the desired confidence level 1 − α. When ‘alpha=0.1’, one will
get a critical value at the 10% level. When ‘alpha=c(0.1,0.05)’, critical values at the 10%
and 5% levels will be reported. The bandwidth value bdw can be either a scalar (setting
the bandwidth at the median) or a vector with the same length as tau. If ‘bias=1’, the
test statistic is bias corrected and critical values are robust to the bias correction. When
‘std.opt=1’, the test statistic is standardized by the pointwise standard deviations of the
limiting process. As a result, the quantiles that are estimated imprecisely receive less weight
in the construction. When ‘std.opt=0’, the tests are not standardized, i.e., setting ŵ(τ) = 1,
as explained in Section 2.5. The default is ‘std.opt=1’.

To test the treatment homogeneity hypothesis, just change the type option to ‘type=2’.
For the unambiguity hypothesis with the effects unambiguously positive under the null
hypothesis2, run

rdq.test(y,x,d,x0,z0,tau,bdw,alpha=0.1,type=3)

Conversely, if the effects are unambiguously negative under the null hypothesis, set
‘type=4’.3 One can set multiple values for type. For example, when ‘type=c(1,2,3,4)’, all
four hypotheses (significance, homogeneity, positive and negative unambiguity) will be
tested.

If a user saves outputs of rdq.test() in an object B, test statistics, critical values, and
p-values are saved in B$test.stat, B$cr.value, and B$p.value, respectively.

Bandwidth selection

To obtain a bandwidth (at the median), run

rdq.bandwidth(y,x,d,x0,z0,cv=1,val=5:20)

The function rdq.bandwidth() can provide two types of bandwidth: the cross-validation
(CV) bandwidth and the (MSE) optimal bandwidth. When ‘cv=1’, the function produces
both. When ‘cv=0’, the MSE optimal bandwidth is obtained. The CV bandwidth is global
with respect to the model. Even when QTEs are conditional on covariates, a single CV
bandwidth will be obtained. In contrast, the MSE optimal bandwidth is local to z0, meaning
that the optimal bandwidth values will be different across covariate subgroups.

The CV bandwidth requires a series of candidate values. When ‘val=5:20’ as in the
example above, the CV procedures tries each of {5, 6, . . . , 20} to select the optimal CV
bandwidth value.

The optimal bandwidth requires a pilot bandwidth in order to estimate nuisance parame-
ters in the asymptotic MSE expression. When ‘cv=1’, the CV bandwidth is used for the pilot
bandwidth at τ = 0.5. When ‘cv=0’, the value provided by the argument hp will be used for
the pilot bandwidth. See the command below for this case. If ‘cv=1’, hp can be ignored.

rdq.bandwidth(y,x,d,x0,z0,cv=0,hp=10)

rdq.bandwidth() has some additional arguments as shown below.

rdq.bandwidth(y,x,d,x0,z0,cv=1,val=5:10,pm.each=1,bdy=1,p.order=1,xl=0.5)

2This hypothesis is sometimes referred to as the positive dominance hypothesis.
3This type of unambiguity hypothesis is referred to as the negative dominance hypothesis.
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In the case the additional arguments are not specified, reasonable default values will be
used. These additional arguments have the following meanings.

The option pm.each concerns the CV bandwidth. When ‘pm.each=1’, it calculates the CV
bandwidth on each side of the cutoff x0. When ‘pm.each=0’, it will treat x0 as an interior
point (assume that there is no jump at x0) and obtains a single CV bandwidth. The default is
‘pm.each=0’.

The option p.order determines how the CV bandwidth is calculated. When ‘p.order=1’,
a local linear regression is used, when ‘p.order=2’, a local quadratic regression is used. The
default is the local linear regression.

When the option ‘bdy=1’, the CV procedure treats each evaluation point as a boundary
value, as suggested in Imbens and Lemieux (2008). This is the default option. When ‘bdy=0’,
the CV procedure treats each evaluation point as an interior value. If ‘xl=0.5’, then the
CV bandwidth uses the 50% of observations closest to x0. The default value is 0.5. The
MSE-optimal bandwidth uses the boundary value formula. Note that it is valid for an
interior point as well.

If a user saves outputs of rdq.bandwidth() in an object C, and if ‘cv=1’, C$cv is the CV
bandwidth. For the MSE optimal bandwidth, values for each side of the cutoff are calculated
separately. C$opt.m (and C$opt.p) is the optimal bandwidth from the left (right) side of the
cutoff. All the reported bandwidth values are for the median where τ = 0.5.

Plot QTE

The function plot.qte() makes QTE plot with uniform confidence bands. It has the
syntax4

plot(A2)

where A2 is an object produced by summary.qte() fitting. The required inputs are
the quantile index (saved in A2$tau), the QTE estimate (A2$qte), and the uniform band
(A2$uband). The function has an option ptype. Set ptype=1 to obtain QTE plots and ptype=2
for conditional quantile plots. The default value is 1.

Section 4 offers step-by-step guides for these functions using an empirical example,
which features RCT as well as RDD.

4 Impact of tracking

As explained in the introduction, in this randomized experiment conducted in Kenya,
schools were randomly assigned to tracking and non-tracking schools. This variation from
the RCT allows one to test whether tracking is beneficial to all students, including low
achieving students. Within tracking schools, students above the median of the baseline test
were assigned to the upper section. This variation from the RDD allows one to ask whether
a student at the median would be better off if she is assigned to the upper section. We will
consider both types of variations in this empirical illustration.

4.1 Data and Variables

First we read the data set of Duflo et al. (2011)5 and define some key variables.

data("ddk_2011")
trk <- ddk_2011$tracking
con <- ddk_2011$etpteacher
hgh <- ddk_2011$highstream
yy <- ddk_2011$ts_std
xx <- ddk_2011$percentile

4This function is a S3 method for class qte.
5The dataset is included in the package. For additional details, please refer to the package manual.
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There are three indicator variables; trk takes 1 for tracking schools, con takes 1 for
students assigned to a contract teacher, hgh takes 1 for students assigned to high-achieving
sections (if in tracking schools). The variable yy is the endline test scores normalized by the
mean and standard deviation of non-tracking schools and xx is student’s percentile rank
from the baseline test. Because the outcome variable is normalized, the unit of the effect is a
standard deviation of the endline test score (of non-tracking schools).

4.2 RDD

This section focuses on tracking schools and presents results from the RD design. We
examine students near the median of the baseline test, and compare marginal students
who just made the upper section to those who narrowly missed it. The dependent variable
and the running variable (yc and xc below) include students in tracking schools only. The
cutoff point is the median of the baseline percentile distribution (x0 = 50), and the treatment
indicator (dc below) takes 1 if students are in high achieving sections.

yc <- yy[trk==1]
xc <- xx[trk==1]
dc <- hgh[trk==1]
x0 <- 50
tlevel <- 1:9/10
hh <- 20

The last two lines set the values of two parameters; tlevel defines the quantile range
T = [0.1, 0.9] and hh is the bandwidth at the median. More details on bandwidth selection
will be discussed later.

QTE from RDD without covariates

In rd.qte(), when x includes the running variable only and z0 is unspecified, one can
estimate quantile effects at x0 without covariate.

A <- rd.qte(y=yc,x=xc,d=dc,x0,z0=NULL,tau=tlevel,bdw=hh,bias=1)
A2 <- summary(A,alpha=0.1)
A2

QTE
----------------------------------------------------------------------

Bias cor. Pointwise Uniform
Tau Est. Robust S.E. 90% Conf. Band
0.1 -0.104 0.137 -0.427 0.218
0.2 -0.001 0.139 -0.327 0.324
0.3 -0.068 0.146 -0.410 0.274
0.4 -0.074 0.148 -0.423 0.274
0.5 -0.157 0.173 -0.564 0.250
0.6 -0.069 0.211 -0.565 0.426
0.7 -0.020 0.262 -0.636 0.597
0.8 -0.023 0.309 -0.749 0.702
0.9 -0.003 0.252 -0.595 0.590

The outcome table shows some essential elements of the analysis including point esti-
mates, standard errors, and uniform confidence bands. Because the bias option is activated,
‘bias=1’, the table reports the bias corrected point estimate and the robust standard error
and robust uniform band. If ‘bias=0’, one would obtain QTE estimates and uniform bands
without the bias correction. Because ‘alpha=0.1’, a 90% uniform confidence band is reported.
If ‘alpha=0.05’, one would get a 95% uniform confidence band.

The estimated quantile effects are small in magnitude (the maximum effect is −0.157
standard deviation when τ = 0.5) and the uniform confidence band includes zero through-
out the quantile range. This confirms a finding in Duflo et al. (2011) who concluded that
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“the median student in tracking schools scores similarly whether assigned to the upper or
lower section.” The QTE estimate provides even stronger evidence that not only on average
but also on the entire endline score distribution, students near the median of the initial test
scores fare similarly regardless of whether they were assigned to the upper or lower ability
section.

To examine the shape of the effect graphically, plot.qte() function can be used to
produce QTE plots along with uniform confidence bands as in Figure 1.

y.text <- "test scores"
m.text <- "Effects of Assignment to Lower vs. Upper sections"
plot(A2,ytext=y.text,mtext=m.text)
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Effects of assignment to lower vs. upper sections 

Figure 1: QTE Estimates from RDD

It is of interest to examine the conditional quantile functions from two sides of the cutoff.
The function plot.qte() can make such plots with the option ‘ptype=2’. The inputs for
conditional quantile plots include estimates for two conditional quantile functions, qp and qm,
and their uniform bands, bandp and bandm. These outputs are produced by summary.qte()
and already saved in A2 as the next example shows. In Figure 2, we put two figures on top
of each other. To produce separate figures, simply apply the command twice, once for each
side of the cutoff.

y.text <- "test scores"
m.text <- "Conditional quantile functions"
sub.text <- c("Upper section","Lower section")
plot(A2,ptype=2,ytext=y.text,mtext=m.text,subtext=sub.text)

To test the (lack of) effect, one can use the rdq.test() function. When
‘alpha=c(0.1,0.05)’, it provides critical values at the 10% and 5% levels. The type op-
tion determines the type of tests to be conducted. The lines below set ‘type=c(1,2,3,4)’,
leading to tests for all four hypotheses including significance, homogeneity, and positive
and negative dominance.

B <- rdq.test(y=yc,x=xc,d=dc,x0,z0=NULL,tau=tlevel,bdw=hh,bias=1,alpha=c(0.1,0.05),
+ type=c(1,2,3,4))

Testing hypotheses on quantile process
--------------------------------------------------------------------------------
NULL Hypthoesis test stat. critical value p value

10% 5%
================================================================================
Significance: QTE(tau|x,z)=0 for all taus 0.86 2.36 2.64 0.94
Homogeneity: QTE(tau|x,z) is constant 0.52 1.90 2.13 0.98
Dominance: QTE(tau|x,z)>=0 for all taus 0.86 2.10 2.41 0.57
Dominance: QTE(tau|x,z)<=0 for all taus 0.00 2.06 2.29 1.00
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Figure 2: Conditional Quantile Functions

The outcome table displays the null hypotheses to be tested, test statistics, critical values,
and p-values. All four tests indicate that QTEs are likely to be zero over the entire quantile
range.

The empirical evidence from the RDD indicates that there is no difference in endline
achievement between marginal students regardless of whether they were assigned to the
upper or lower section. Because students in the upper section had much higher achieving
peers, this implies that there may be a factor that offsets the positive peer effect. One
possibility is that tracking may allow teachers to adjust their instruction to students’ needs.
Exploring this potential channel, Duflo et al. (2011) documented evidence that teachers
had incentives to focus on the students at the top of the distribution. If this is the case, the
median students from the bottom section may get benefits from the instruction that better
matches their need.

The bandwidth (at the median) can be estimated as follows.

C <- rdq.bandwidth(y=yc,x=xc,d=dc,x0,z0=NULL,cv=1,val=(5:20))
C

Selected Bandwidths
------------------------------------------------------------
Method Values
============================================================
Cross Validation 20
MSE Optimal 16.3 16.3

Because the cross-validation option is on, ‘cv=1’, the table reports both CV and MSE
optimal bandwidths. The candidate values are {5, 6, . . . , 20} for cross-validation, as given by
‘val=(5:20)’. We have used the bandwidth 20 because it was selected by the cross validation
method. If the sample is very large, computing the CV bandwidth may take a long time. In
such a case, set ‘cv=0’ and use the MSE optimal bandwidth at least for the initial stage of
data exploration.

QTE from RDD with covariates

To see heterogeneity in the effect of tracking, one can include additional covariates. This
section compares effects of tracking for boys and girls. The covariate zc is a female dummy
and the evaluation point z0 is set by ‘z.eval = c(0,1)’. The order of display in the outcome
table is the same as the order of the group in z0.
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zc <- ddk_2011$girl[trk==1]
z.eval <- c(0,1)
A <- rd.qte(y=yc,x=cbind(xc,zc),d=dc,x0,z0=z.eval,tau=tlevel,bdw=hh,bias=1)
A2 <- summary(A,alpha=0.1)

QTE
----------------------------------------------------------------------

Bias cor. Pointwise Uniform
Tau Est. Robust S.E. 90% Conf. Band

----------------------------------------------------------------------
Group-1 (boys)

0.1 0.295 0.187 -0.154 0.743
0.2 0.090 0.224 -0.445 0.625
0.3 0.063 0.207 -0.432 0.559
0.4 -0.026 0.232 -0.581 0.528
0.5 0.031 0.275 -0.628 0.689
0.6 0.353 0.333 -0.443 1.150
0.7 0.597 0.369 -0.286 1.481
0.8 0.160 0.466 -0.955 1.275
0.9 0.159 0.416 -0.835 1.154

----------------------------------------------------------------------
Group-2 (girls)

0.1 -0.406 0.141 -0.737 -0.074
0.2 -0.161 0.195 -0.620 0.297
0.3 -0.100 0.224 -0.626 0.426
0.4 -0.233 0.241 -0.798 0.332
0.5 -0.475 0.270 -1.108 0.158
0.6 -0.291 0.291 -0.976 0.393
0.7 -0.158 0.363 -1.010 0.695
0.8 -0.236 0.433 -1.253 0.781
0.9 0.000 0.322 -0.756 0.756

Because ‘z.eval <-c(0,1)’ and z0 = 0 means boys, the outcome table shows results for
boys first (shown as Group-1) and girls later (Group-2). For boys, the quantile effects of
being in the upper ability section is positive but insignificant. For girls, the effects are mostly
negative and insignificant. But at the bottom of the outcome distribution, when τ = 0.1, the
negative effect turns to be significant. To see the group-wise difference graphically, one can
draw QTE plots as follows.

y.text <- "test scores"
m.text <- c("Boys","Girls")
plot(A2,ytext=y.text,mtext=m.text)

The plot clearly shows that tracking has a positive but insignificant effect for marginal
male students, but the effect is negative for marginal female students and significantly so at
the left tail. To explore further, it will be useful to draw plots for the conditional quantile
functions separately for each group.

y.text <- "test scores"
m.text <- c("Boys","Girls")
sub.text <- c("Upper section","Lower section")
plot(A2,ptype=2,ytext=y.text,mtext=m.text,subtext=sub.text)

The plot is omitted to save space, but it shows that for girls, the conditional quantile
function of endline test scores for the upper section is consistently below that of the lower
section, and the difference is largest at the left tail.

Tests for hypotheses for each group can be done as well.

B <- rdq.test(y=yc,x=cbind(xc,zc),d=dc,x0,z0=z.eval,tau=tlevel,bdw=hh,bias=1,
+ alpha=c(0.1,0.05),type=c(1,2,3,4))
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Figure 3: QTE Estimates from RDD by Student Gender

The results indicate that it is not possible to reject hypotheses that the QTE is consistently
zero for boys, but there is evidence that the effects can be negative for girls. For female stu-
dents the null hypothesis of no effect (significance) and positive uniform effect (dominance)
are rejected at the 5% confidence level. The bandwidth can be selected as well.

C <- rdq.bandwidth(y=yc,x=cbind(xc,zc),d=dc,x0,z0=z.eval,cv=1,val=(5:20))

Selected Bandwidths
------------------------------------------------------------
Method Values
============================================================
Cross Validation 19
MSE Optimal,Group-1 14.3 14.2
MSE Optimal,Group-2 17.9 20.0

When users would like to see the effect of the bias correction on point estimates and
uniform bands, it will be convenient to use the function rdq.band(). Its options are the
same as those in rd.qte(). The difference is that it implements estimation with and without
bias correction and presents results side by side.

D <- rdq.band(y=yc,x=cbind(xc,zc),d=dc,x0,z0=z.eval,tau=tlevel,bdw=hh,alpha=0.1)

QTE and Uniform Bands
----------------------------------------------------------------------

Bias cor. 90% Uniform Conf. Band
Tau Est. Est. Non-robust Robust

----------------------------------------------------------------------
Group-1 (boys)

0.1 0.118 0.295 -0.194 0.430 -0.123 0.712
0.2 0.014 0.090 -0.366 0.394 -0.415 0.596
0.3 0.022 0.063 -0.326 0.370 -0.415 0.542
0.4 -0.023 -0.026 -0.425 0.379 -0.595 0.542
0.5 0.044 0.031 -0.433 0.522 -0.645 0.706
0.6 0.093 0.353 -0.484 0.670 -0.469 1.176
0.7 0.194 0.597 -0.451 0.839 -0.288 1.482
0.8 0.096 0.160 -0.684 0.876 -0.923 1.243
0.9 0.267 0.159 -0.431 0.965 -0.800 1.118

----------------------------------------------------------------------
Group-2 (girls)

0.1 -0.204 -0.406 -0.464 0.056 -0.736 -0.075
0.2 -0.111 -0.161 -0.460 0.238 -0.619 0.296
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0.3 -0.128 -0.100 -0.542 0.286 -0.639 0.439
0.4 -0.186 -0.233 -0.652 0.281 -0.823 0.358
0.5 -0.335 -0.475 -0.839 0.170 -1.117 0.167
0.6 -0.136 -0.291 -0.685 0.413 -0.988 0.406
0.7 -0.142 -0.158 -0.814 0.530 -1.029 0.714
0.8 -0.148 -0.236 -0.938 0.642 -1.275 0.803
0.9 0.085 0.000 -0.522 0.692 -0.783 0.783

Without bias correction, the effect for girls at the 10th percentile is no longer statistically
significant, as the estimate is smaller. Otherwise, the conclusion does not change.

4.3 RCT

The schools in the sample were randomly assigned to tracking and non-tracking schools.
Using this random variation, one can compare students between tracking and non-tracking
schools to examine the impact of tracking on the entire student population. The tracking
variable trk is the treatment assignment d for the RCT. We use the baseline test score as
the nonparametric component x. Because it is highly predictive of the endline test score, it
is natural to examine the effects of tracking separately for groups at various points of the
initial performance distribution. To examine the heterogeneity in effects, we use student
and teacher characteristics as covariates z. We continue to use ‘hh=20’ for the bandwidth at
the median. Users can change the bandwidth value and examine the robustness of results.

QTE from RCT without covariates

dr <- trk
A <- rd.qte(y=yy,x=xx,d=dr,x0=50,z0=NULL,tau=tlevel,bdw=hh,bias=1)
A2 <- summary(A,alpha=0.1)

QTE
----------------------------------------------------------------------

Bias cor. Pointwise Uniform
Tau Est. Robust S.E. 90% Conf. Band
0.1 0.234 0.051 0.115 0.354
0.2 0.227 0.063 0.079 0.374
0.3 0.293 0.064 0.143 0.443
0.4 0.278 0.068 0.119 0.437
0.5 0.304 0.075 0.128 0.480
0.6 0.308 0.086 0.106 0.509
0.7 0.308 0.106 0.060 0.556
0.8 0.351 0.135 0.034 0.668
0.9 0.280 0.139 -0.044 0.605

To estimate the QTE without a covariate, set ‘z0=NULL’. By letting ‘x0=50’, we focus on
the median students from the initial achievement distribution and estimate the effect of
assigning them to tracking or non-tracking schools. For this group, test scores were between
0.227 (τ = 0.2) and 0.351 (τ = 0.8) standard deviations higher in tracking schools than in
non-tracking schools when measured by quantile effects. The size of the effect is notably
higher than the average unconditional effect, 0.14 standard deviations higher in tracking
schools, as reported in Duflo et al. (2011). This difference suggests that the effect of tracking
may be quite different for high and low-achieving students.

To check this, one can change the value of x0. Set ‘x0 = 20’, then one can study the effect
of tracking for the initially low achieving students.

A <- rd.qte(y=yy,x=xx,d=dr,x0=20,z0=NULL,tau=tlevel,bdw=hh,bias=1)

The quantile effects for this group of low achieving students from the baseline test are
indeed much smaller. Test scores were up to 0.179 standard deviation higher in tracking
schools than in non-tracking schools. Next, set ‘x0 = 80’ and examine the initially high
achieving students.
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A <- rd.qte(y=yy,x=xx,d=dr,x0=80,z0=NULL,tau=tlevel,bdw=hh,bias=1)

The estimated effects are larger than those for x0 = 20 but still smaller than those for
x0 = 50. The results so far suggest that the impact of tracking from the RCT is the strongest
around the median of the initial achievement distribution. This finding is in harmony with
Figure 3 in Duflo et al. (2011).

By student’s gender & teacher’s type

There are two types of teachers: regular teachers who are civil-servants and contract
teachers who are hired on short-term contracts by local school committees. The contract
teachers have much stronger incentives to teach well because a good record of performance
may lead them to a regular teaching job. To examine heterogeneous effects across groups
defined by student’s gender and teacher’s type, define the resulting four groups as follows.
The covariates z include indicators for student’s gender and for contract teacher, and
z0 = ((0, 0), (1, 0), (0, 1), (1, 1))′. This specification means that Group-1 consists of boys
taught by regular teachers, while the remaining three groups are defined accordingly

zw <- cbind(ddk_2011$girl,con)
z.eval <- cbind(rep(c(0,1),2),rep(c(0,1),each=2))
A <- rd.qte(y=yy,x=cbind(xx,zw),d=dr,x0=50,z0=z.eval,tau=tlevel,bdw=hh,bias=1)
A2 <- summary(A,alpha=0.1)

An outcome table with four groups is not easy to read. It will be easier to examine results
visually by QTE plots as in Figure 4.

y.text <- "test scores"
m.text <- c("boys & regular teachers","girls & regular teachers",
+ "boys & contract teachers","girls & contract teachers")
plot(A2,ytext=y.text,mtext=m.text)

-0
.5

0.
0

0.
5

1.
0

1.
5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

boys & regular teachers

-0
.5

0.
0

0.
5

1.
0

1.
5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

girls & regular teachers

-0
.5

0.
0

0.
5

1.
0

1.
5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

boys & contract teachers

-0
.5

0.
0

0.
5

1.
0

1.
5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

girls & contract teachers

Quantile Index

te
st

 s
co

re
s

Figure 4: QTE Estimates from RCT by Student Gender and Teacher Type

The biggest effect can be found for boys taught by contract teachers.

By age of students
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Students in the sample differ greatly in age. The average student at the endline test is 9.3
years old. But the age of the middle ninety percent of students ranges from 7 to 12 years at
the time of the test. Below we compare the effects across four age groups.

zw <- ddk_2011$agetest
z.eval <- c(7,9,10,11)
A <- rd.qte(y=yy,x=cbind(xx,zw),d=dr,x0=50,z0=z.eval,tau=tlevel,bdw=hh,bias=1)
A2 <- summary(A,alpha=0.1)

The effects by age groups are displayed in Figure 5. The bigger effects can be found for
younger students. The maximum quantile effect of tracking at age seven is 0.602 standard
deviation, while at age twelve it is 0.285 standard deviation.

y.text <- "test scores"
m.text <- c("age 7","age 9","age 10","age 12")
plot(A2,ytext=y.text,mtext=m.text)
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Figure 5: QTE Estimates from RCT, by Student Age

Testing hypotheses for each age group can also be conducted as follows.

B <- rdq.test(y=yy,x=cbind(xx,zw),d=dr,x0=50,z0=z.eval,tau=tlevel,bdw=hh,
+ bias=1,alpha=c(0.1,0.05),type=c(1,2,3,4))

Test results indicate that QTEs are significant and uniformly positive for all four age
groups.

5 Conclusion

QTE.RD is a comprehensive R package designed for analyzing quantile treatment effects
under sharp RD designs. The package enables researchers to test, estimate, and conduct uni-
form inference on quantile treatment effects (QTEs), incorporating covariates, implementing
robust bias correction, selecting the bandwidth, and plotting the estimation results, all in
the same place. To our knowledge, this is the first comprehensive R package for estimating
quantile effects under RD designs.

The package can be expanded in two directions to encompass a greater range of empirical
applications. The first is to accommodate time-series RD designs (Hausman and Rapson,
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2018). Developing valid inference results for time-series data would be the first step in
achieving this goal. The second is to allow for more than a few covariates in the model,
which might require incorporating penalization or some covariate selection methods to
guide model specification. We intend to pursue these directions and expand the capacity of
this package accordingly.
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BoundaryStats: An R Package to Calculate
Boundary Overlap Statistics
by Amy Luo

Abstract Ecologists and epidemiologists frequently rely on spatially distributed data. Studies
in these fields may concern geographic boundaries, as environmental variation can deter-
mine the spatial distribution of organismal traits or diseases. In such cases, environmental
boundaries produce coincident geographic boundaries in, for example, disease prevalence.
Boundary analysis can be used to investigate the co-occurrence of organismal trait or disease
boundaries and underlying environmental boundaries. Within boundary analysis, boundary
overlap statistics test for the presence of significant geographic boundaries and spatial asso-
ciations between the boundaries of two variables. There is one pre-existing implementation
of boundary overlap statistics, though it is only on Windows and ESRI ArcView, limiting the
availability of boundary overlap statistics to researchers. I have created BoundaryStats—an
R package available on CRAN—that implements boundary overlap statistics. BoundaryStats
is the first open-source, cross-platform implementation of these statistical methods, making
the statistics more widely accessible to researchers.

1 Introduction

Geographic boundaries are an intrinsic feature of spatial ecology and epidemiology, as
the relationships between an underlying environmental variable and organismal traits or
disease prevalence often produce coincident geographic boundaries. Boundaries are areas
in which spatially distributed variables (e.g., bird plumage coloration, disease prevalence,
annual rainfall) rapidly change over a narrow geographic space. They can also represent
edges or discontinuities (e.g., neighborhood edges, ecotype boundaries). Boundary zones
themselves may be of interest; for example, the temporal boundary dynamics between
ecotypes can provide insight into the factors that produce mosaic landscapes (Bowman et al.,
2023).

Boundary analysis involves the analysis of spatial boundaries to answer questions about
values within a bounded area, patterns of change across a landscape, and associations
between the spatial patterns of multiple variables (Jacquez, 2010). Within boundary analysis,
boundary overlap statistics can be used to test the association between the boundaries of two
spatially distributed variables (Jacquez et al., 2000). These statistics fall within two categories:
boundary statistics (i.e., tests for the presence of cohesive boundaries) and boundary overlap
statistics (i.e., tests for spatial association between boundaries). BoundaryStats runs two
boundary statistics and three boundary overlap statistics, as initially described in Jacquez
(1995) and Fortin et al. (1996). The boundary statistics are (1) the length of the longest
boundary and (2) the number of cohesive boundaries on the landscape (Fortin et al., 1996).
The boundary overlap statistics are (1) the amount of direct overlap between boundaries in
variables A and B, (2) the mean minimum distance between boundaries in A and B, and (3)
the mean minimum distance from boundaries in A to boundaries in B (Fortin et al., 1996;
Jacquez, 1995).

While other spatial statistics account for complications like spatial autocorrelation and
environmental heterogeneity (Wagner and Fortin, 2005), boundary overlap statistics can
uniquely leverage geographic discontinuities to answer spatial questions. By identifying
significant cohesive boundaries, researchers can delineate relevant geographic sampling
units (e.g., populations as conservation units for a species or human communities with
increased disease risk) (Jacquez, 2010). Associations between the spatial boundaries of
two variables can be useful in assessing the extent to which an underlying landscape
variable drives the spatial distribution of a dependent variable. For example, ecologists are
often interested in whether landscape-level ecological boundaries limit gene flow, thereby
producing population structure; if the putative ecological boundary is limiting gene flow, one
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Figure 1: Example boundary subgraphs. Gray cells are missing values, white cells are non-boundary
cells, and purple cells are boundary elements. Subgraphs are each represented using a line connecting
all the boundary element cells that comprise them.

would expect concordant geographic boundaries in the ecological variable and population
structure (Tarroso et al., 2014; Wagner and Fortin, 2013). The presence of boundaries can
similarly limit the distribution of taxonomically similar species (Polakowska et al., 2012).
In an epidemiological context, this may look like neighborhood effects on public health
outcomes, including COVID-19 infection risk (Hong et al., 2021; van Ham et al., 2012) or
spatial relationships between high pollutant density and increased disease risk (Adimalla
et al., 2020; Waller et al., 1992).

Currently, there is at least one tool that has implemented boundary overlap statistics:
GEM, which was released as an extension of ESRI ArcView and a standalone Windows
package. GEM is not available as a cross-platform, free, and open-source software, thereby
limiting its accessibility to researchers. BoundaryStats implements boundary and boundary
overlap statistics in R. It is available to download on CRAN, making the tools more accessible
for researchers, especially in epidemiology and spatial ecology.

2 Boundary definitions

In this framework, we classify raster cells into a pseudobinary: boundary elements (1),
non-boundary cells (0), or missing data (NA). For categorical variables, the algorithm for
identifying boundary elements is simple: if any of a cell’s neighbors—based on the queen
criterion (i.e., eight neighboring cells, including diagonal cells)—belongs to a different
category, the cell is classified as a boundary element. For quantitative variables, boundaries
exist where two different but internally homogeneous areas neighbor one another (e.g.,
an area with very low values meets an area with very high values), but these boundaries
are generally fuzzy; they represent steep transitions that can still occur over the width
of multiple cells. Therefore, we define boundary elements as the cells with the highest
boundary intensity values, with the threshold set by the user. Boundary intensity values
can be calculated through several different methods, including the magnitude of change
across cells or the probability that cells belong to each neighboring spatial group (see details
below). Boundaries are defined here as subgraphs of boundary elements, or contiguous
cells that are all marked as boundary elements (Figure 1).

Boundary intensities for variables with landscape-level patterns can be calculated in a
number of ways, including: lattice- and triangulation-wombling (Fortin et al., 1996; Jacquez,
1995; St-Louis et al., 2004; Strydom and Poisot, 2023), fuzzy set modeling (Jacquez, 1995),
Monmonier’s algorithm (Manni et al., 2004), spatial Bayesian clustering (Caye et al., 2016;
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Safner et al., 2011), agglomeration of inner lines (Wei and Larsen, 2019), and removal of outer
lines (Wei and Larsen, 2019). For quantitative variables, BoundaryStats will accept raster
objects with the spatial variable directly or boundary intensity values calculated from these
or other methods. If given boundary intensity values, boundary elements will be classified
directly using the top percent of values. The default proportion of values is 0.2, though this
threshold can be changed by the user. When given the variable directly, BoundaryStats will
use the Sobel-Feldman operator to calculate the boundary intensity. In accepting either the
variables or boundary intensities, there is flexibility for users to define boundaries using
relevant metrics for their data.

The Sobel-Feldman operator is commonly used for edge detection in computer vision
applications. It approximates the magnitude of the partial derivative (i.e., rate of change)
across each cell using the following kernels:

Gx =

1 0 −1
2 0 −2
1 0 −1

 ∗ A (1)

Gy =

 1 2 1
0 0 0
−1 −2 −1

 ∗ A (2)

where A is the input raster cell and its queen neighbors, and Gx and Gy are the rates of
variable change in the horizontal or vertical directions, respectively. The boundary intensity
value is the overall rate of change:

G =
√

G2
x + G2

y (3)

3 Statistics

BoundaryStats runs two boundary statistics and three boundary overlap statistics, as initially
described in Jacquez (1995) and Fortin et al. (1996). Below, I describe these five statistics.

3.1 Number of subgraphs

The first boundary statistic is the number of subgraphs, which describes the number of
boundaries on the landscape for a variable. In a raster of boundary elements, it is the number
of unique subgraphs, or sets of contiguous boundary element cells (three subgraphs each in
Figure 2, Panels A and B).

3.2 Longest subgraph

The other boundary statistic included here is the length of the longest subgraph, or boundary.
The function calculates the longest length across each subgraph, then converts the length
to distance based on the cell resolution and the projection of the raster. The length of the
longest subgraph is then retained (Figure 2, Panel C).

3.3 Direct overlap

The direct overlap statistic is a count of the number of overlapping boundary elements of
two variables, when the two raster objects are overlaid (Figure 2, Panel D).

3.4 Mean minimum distance between boundaries

This statistic describes the spatial proximity between boundaries of variables x and y, as
defined by the mean distance to the nearest boundary element of the other variable. Spatial
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relationships between boundaries may not result in direct overlap, so this statistic accounts
for potential correlations in non-overlapping boundaries. For each boundary element in x,
the function calculates the distance to the nearest boundary element in y, then repeats the
inverse for each boundary element in y (Figure 2, Panels E and F). It then takes the mean of
these minimum distances across all boundary elements in both raster objects:

Oxy =
∑Nx

i=1 min(di) + ∑
Ny
j=1 min(dj)

Nx + Ny
(4)

where i and j are boundary elements for variables x and y, respectively; min(di) is the
minimum distance between boundary element i to a boundary element for y; min(dj) is the
minimum distance between boundary element j to a boundary element in x; and Nx and Ny
are the number of boundary elements for x and y, respectively.

3.5 Mean minimum distance from boundary x to boundary y

This statistic describes the mean distance from boundary elements in x to the nearest
boundary element in y. It is an indicator for whether the boundaries in x depend on y. The
reciprocal nature of the previous statistic implies some reciprocity of effect, as opposed
to the unidirectionality implicit here. For each boundary element in the raster for x, the
function calculates the distance to the nearest boundary element of y, then takes the mean
across all boundary elements in x (Figure 2, Panel E):

Ox =
∑Nx

i=1 min(di)

Nx
(5)

4 Neutral models

In addition to calculating each statistic, BoundaryStats uses iterations of a neutral landscape
model to determine whether the boundaries in the input landscape differ from a random
landscape. Users select a neutral landscape model and number of iterations of that model to
produce a null distribution of each statistic, based on the selected model and the structure of
the input landscape. BoundaryStats implements three neutral landscape models: stochastic
landscapes, Gaussian random fields, and modified random clusters. All three neutral
landscape models draw some parameters from the original raster and simulate landscapes
with similar parameters. Cells with missing values (i.e., NA values) will be ignored in all
models.

The simplest neutral landscape model is complete stochasticity. While this model is not
realistic—a complete lack of spatial autocorrelation is unlikely and may inflate the statistical
significance of the observed data—we include it here as a complete null for users who are
interested in a lack of spatial autocorrelation. This method takes all the cell values from the
input raster and assigns each value to a random cell. Each cell in the simulated raster is
assigned a value from the original dataset, with no replacement of values. The simulated
raster has the exact same values as the original raster, but values are randomly placed with
no spatial autocorrelation.

The next neutral landscape model simulates a Gaussian random field with the same
degree of spatial autocorrelation as the input raster. It is suited for continuous or discrete
quantitative variables. This method calculates the range of autocorrelation in the original
raster by fitting a variogram using functions from gstat (Pebesma, 2004). The function then
simulates a Gaussian random field with the same range of spatial autocorrelation, extent,
and resolution as the input raster using methods from the fields package.

The modified random cluster model is an implementation of the method described by
Saura and Martínez-Millan for simulating neutral landscapes for categorical variables (Saura
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Figure 2: Example boundaries and statistics. (A) and (B) are boundary elements for hypothetical
variables A and B. White cells are non-boundaries, gray are missing values, and purple or teal are
boundary elements. (C) Length of the longest subgraph. (D) Produced by overlaying cells in A and
B. Dark blue cells, highlighted by white dots, are where the boundary elements overlap. (E) For
every boundary element for variable A, the nearest boundary element for variable B. Circular arrows
indicate distance to self. (F) For every boundary element for B, the nearest boundary element for A.
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Figure 3: Modified random cluster procedure, adapted from Saura and Martínez-Millan 2000. (A)
Percolated raster with p = 0.5. (B) Marked cells merged into clusters. (C) Clusters assigned a category.
(D) Unmarked cells filled based on neighbors.

and Martínez-Millan, 2000). The first step is a percolated raster (Figure 3, Panel A). Each cell
is assigned a value 0 ≤ x ≤ 1 from a uniform distribution, and cells with values above a
threshold probability p are marked. p is defined by the user, and higher values of p result in
larger cluster sizes in the final simulated raster. Next, contiguous sets of marked cells are
grouped into clusters, using the rook criterion (i.e., neighbors are the four edge-touching
neighbors) (Figure 3, Panel B). Clusters are then assigned a category (Figure 3, Panel C).
Categories from the input raster are chosen one at a time, and random clusters are assigned
to that category. When the proportion of that category in the simulated raster reaches the
proportion in the original raster, clusters are then assigned to the next category, until all the
clusters are assigned. In the last step, the unmarked cells are categorized based on the most
frequent category among their neighbors using the queen criterion (Figure 3, Panel D). If
there is a tie between two categories, one of the tied categories is picked at random. If all
neighbors are unassigned, a random category is picked; probabilities for each category are
based on their proportions in the input raster.

5 Implementation and example

Data in this example are from Luo et al. (2024), in which the authors hypothesized that
song divergence is facilitating genetic divergence in white-crowned sparrows through
speciation by sexual selection. The data below are song boundaries and genetic admixture
interpolations from the study. White-crowned sparrows sing different songs that vary
across the landscape, and song boundaries are the spatial transitions between two song
groups. The boundary intensities between song groups were estimated using GeoOrigins
(Hulme-Beaman et al., 2020), based on the acoustic dissimilarity and spatial relationship
between recorded songs. Genetic admixture is the estimated proportion of an individual’s
genetic material from different populations. In this case, there are two populations (north
and south), so the admixture coefficients are the estimated proportions of genetic material
from the northern population. The admixture coefficients of individual birds were estimated
in fastSTRUCTURE (Raj et al., 2014), and the values were interpolated using local kriging in
gstat.

5.1 Read in data

Read in raster data to terra (Hijmans, 2023) SpatRaster objects (Figure 4). The two objects
need the same projection, extent, and resolution.

library(terra)
library(magrittr)

songs <- rast('data/2010_2022_song_boundaries.asc')
genetic <- rast('data/genetic_interpolation.asc') %>%
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Figure 4: Maps of (A) song boundary intensity and (B) genetic admixture between two populations.

resample(., songs)
songs <- crop(songs, genetic) %>%

mask(., genetic)

5.2 Calculate spatial boundaries for variables

The first step of the analysis is to define which cells are boundary elements (i.e., part of
a boundary) using the define_boundary function. By default, the function takes quan-
titative variables (cat = FALSE). For quantitative variables, boundary intensity can be
calculated however the user chooses; if the input raster already contains boundary inten-
sities, the argument calculate_intensity should be set to FALSE (default). Users can also
set calculate_intensity to TRUE to use the Sobel-Feldman operator to calculate the boundary
intensities.

The song raster already contains boundary intensity values, from which boundary
elements can be directly determined. But the values in the genetic raster are the trait data,
so boundary intensity needs to be calculated from the genetic admixture coefficient values
(calculate_intensity = TRUE).

library(BoundaryStats)

song_boundaries <- define_boundary(songs)
genetic_boundaries <- define_boundary(genetic, calculate_intensity = TRUE)

5.3 Plot boundary overlap

This optional step is to visualize where the boundaries of the two variables are overlap-
ping using plot_boundary (Figure 5). The function is a wrapper function for ggplot from
ggplot2 (Wickham, 2016), and the colors and trait names can optionally be customized. If
output_raster is TRUE (default is FALSE), then the function will return a SpatRaster object
with one layer that includes boundary elements for each trait and where the boundary
elements overlap.

plot_boundary(genetic_boundaries, song_boundaries, trait_names = c("Genetic", "Song"))

5.4 Create null distributions for statistics

For both boundary statistics, use the function boundary_null_distrib. For the three over-
lap statistics, use the function overlap_null_distrib. Both functions simulate random
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Figure 5: Output of the plot_boundary function.

iterations of a raster based on the specified neutral landscape model and input data. Statis-
tics are calculated for each iteration, and custom null probability distributions are calculated
based on the iterations. The resulting objects will be used for the statistical tests described in
the section below.

Both functions take the SpatRaster object(s), a neutral landscape model, and the number
of iterations. Further arguments may be required, depending on these arguments. For
overlap_null_distrib, separate models can be specified for the two variables, and the
variable in the first argument is assumed to depend on the variable in the second argument.
The argument rand_both specifies whether the function should simulate random landscapes
for the second SpatRaster object; since some hypotheses assume x depends on a specific
underlying distribution of boundaries in y, users can choose to keep boundaries for y static
for each iteration. For this example, the genetic boundary is hypothesized to depend on song
boundaries. Therefore, the SpatRaster object containing the genetic admixture interpolation
is the first argument, and I keep the song boundaries static (rand_both = FALSE).

song_boundary_null <- boundary_null_distrib(songs, calculate_intensity = FALSE, cat = FALSE,
n_iterations = 100, threshold = 0.2, model = "gaussian")

genetic_boundary_null <- boundary_null_distrib(genetic, calculate_intensity = TRUE,
cat = FALSE, n_iterations = 100, threshold = 0.2, model = "gaussian")

boundary_overlap_null <- overlap_null_distrib(genetic, songs, rand_both = FALSE,
n_iterations = 100, x_calculate_intensity = TRUE, threshold = 0.2, x_model = "gaussian")

5.5 Run statistical tests

The two functions for boundary statistics require only the raster with boundary elements
and the matching null distribution object, produced by boundary_null_distrib.

n_boundaries(song_boundaries, song_boundary_null)

#> n_boundary p-value
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#> 13 0

longest_boundary(song_boundaries, song_boundary_null)

#> longest_boundary p-value
#> 45260.75 0.02

n_boundaries(genetic_boundaries, genetic_boundary_null)

#> n_boundary p-value
#> 1 0

longest_boundary(genetic_boundaries, genetic_boundary_null)

#> longest_boundary p-value
#> 61454.64 0.00

The functions for boundary overlap statistics also take the boundary element rasters and
null distribution as arguments. In this case, it requires two boundary element SpatRaster
objects, one for each variable. The order of the variables should match the order used in
overlap_null_distrib. I am interested in whether the genetic boundary depends on song
boundaries (i.e., a unidirectional trend), so I am using the n_overlap_boundaries (direct
overlap) and average_min_x_to_y (Ox) tests but not the average_min_distance (Oxy) test.
The genetic boundary raster is the first argument, and the song boundary raster is the second
argument.

n_overlap_boundaries(genetic_boundaries, song_boundaries, boundary_overlap_null)

#> n_overlapping p-value
#> 44 0

average_min_x_to_y(genetic_boundaries, song_boundaries, boundary_overlap_null)

#> avg_min_x_to_y p-value
#> 1911.751 0.000

5.6 Interpretation of example data output

When analyzing the data from Luo et al. (2024), the boundary statistics for the genetic data
were significant, suggesting the presence of one cohesive genetic boundary. The boundary
statistics for the song data were less clear, as the p-values were at or around 0.05. If the
analysis was repeated with more iterations of the neutral landscape model, it may suggest
multiple cohesive song boundaries. Results from the boundary overlap statistics show
significant direct overlap between the genetic and song boundaries and spatial proximity
from the genetic boundary to song boundaries, suggesting a spatial correlation between
boundaries of the two variables. While boundary overlap statistics can only demonstrate a
correlation between boundaries, the results are generally consistent with the hypothesis that
song boundaries are facilitating a coincident genetic boundary.

6 Summary

BoundaryStats implements five boundary overlap statistics. Boundary analyses like the
boundary overlap statistics implemented here can be used across many contexts that make
use of spatially distributed data. For example, spatial ecologists and epidemiologists can
use boundary overlap statistics to assess whether environmental variables are influencing
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the distribution of organismal traits or disease occurrences. Environmental influences can,
in some cases, be detected through the co-occurrence and coincidence of geographic bound-
aries; environmental boundaries may produce boundaries in the variables of interest. As
such, this new open-source, cross-platform implementation will make boundary statistical
methods more widely accessible to researchers.
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R package GofCens: Goodness-of-Fit
Methods for Right-Censored Data
by Mireia Besalú, Klaus Langohr, Matilde Fransciso, Arnau Garcia-Fernández, and Guadalupe
Gómez Melis

Abstract This paper presents the R package GofCens, which offers graphical tools and
implements goodness-of-fit tests for right-censored data. The first part provides a thorough
review of current methodologies for assessing goodness of fit in the presence of right-
censored data. The subsequent sections present the main functions of GofCens and are
illustrated by means of a right-censored sample from a log-normal distribution and a data
set on NBA players’ mortality, which is included in the package.

1 Introduction

Goodness-of-fit techniques are important to test the validity of parametric models and to
ensure that the modeling assumptions hold true. Historically, goodness-of-fit tests have
been developed for complete data, that is, when all the individual sample measurements
have been observed. The Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling
statistics are among the most commonly used goodness-of-fit tests. They are based on a
measure of the discrepancy between the empirical and theoretical distribution functions.

In order to account for censored data, these statistics can be modified replacing the
empirical distribution function by the product-limit estimator of the distribution function.
Modifications of Kolmogorov-Smirnov statistics for censored or truncated data go back to
Fleming et al. (1980) and Koziol and Byar (1975). Pioneer extensions of Cramér-von Mises
and Anderson-Darling goodness-of-fit statistics to account for random right-censored data
are found in Pettitt and Stephens (1976) and Koziol and Green (1976). Concerning chi-
squared tests, Mihalko and Moore (1980) propose an extension to censored data, specifically
for type II right-censored data.

When the theoretical distribution function is completely specified and the data are un-
censored, the above tests are all distribution-free, with known distributions. However,
this property no longer holds when data are censored or when the theoretical distribution
function involves unknown parameters. Moreover, there is no general theory of asymptotic
optimality in such cases (Lehmann and Romano, 2005). In fact, any test can achieve high
asymptotic power or perform uniformly well against local or contiguous alternatives, es-
pecially when the family of possible alternatives is extensive (Janssen, 2000). Given these
limitations, graphical techniques have become a standard and straightforward way to assess
distributional assumptions. They allow for a more intuitive examination of model fit. In
addition, graphical methods complement formal goodness-of-fit tests. They often provide
insights that the tests alone may not reveal.

The most well-known plots for assessing goodness-of-fit are probability plots. These
include the Probability–Probability (P–P) plot, which compares the theoretical and estimated
cumulative distribution functions, and the Quantile–Quantile (Q–Q) plot, which compares
theoretical and estimated quantiles. There are also two alternatives to these plots: the
Stabilised Probability plot (Michael, 1983), which transforms the axes of the P-P plot to
approximately get the same variance in each plotted point, and the Empirically Rescaled
plot (Waller and Turnbull, 1992), which is very useful when there is a high percentage of
random right-censored data.

Goodness-of-fit methods for complete data and right-censored observations are widely
available. However, many of these methods are not implemented in R, and those that are
tend to be scattered across different packages. Among the publicly available computational
tools in R, the fitdistrplus package (Delignette-Muller and Dutang, 2015; Delignette-Muller
et al., 2025) provides the function fitdistcens(), which returns the result of the fit of
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any parametric distribution to a possibly right-censored data set. The function cdfcomp()
of the same package can be used to graphically compare multiple fitted distributions
with uncensored data. The probplot() function from the e1071 package (Meyer et al.,
2024) generates probability plots for specified theoretical distribution. Additionally, the
distChooseCensored() function from the EnvStats package (Millard, 2013; Millard and
Kowarik, 2025) performs Shapiro-Wilk and Shapiro-Francia goodness-of-fit tests for normal,
log-normal, and Gamma distributions, handling both complete and singly censored data
(Royston, 1993).

In this work, we present the R package GofCens (Langohr et al., 2025), which provides
various analytical methods and graphical tools to assess the goodness of fit of parametric
models for non-negative, right-censored lifetime data. These tools can also be applied to
complete lifetime data. Right censoring is restricted to type I or random censoring, and
non-informative censoring is assumed for the failure time. In what follows, we review
the analytical and graphical goodness-of-fit techniques for complete and right-censored
data implemented in GofCens. Thereafter, the main functions of the GofCens package are
presented and applied to a real data set, respectively. We conclude the paper with some final
remarks on the current state of the package and possible enhancements.

2 Methods

Let T denote the time to an event of interest, with distribution function F. The GofCens
package provides goodness-of-fit methods to assess whether a univariate sample from T,
either right-censored or complete, comes from a specified distribution family F0(t; θ), such
as the Weibull, where θ is a vector of unknown parameters. Formally, the null hypothesis
in a goodness-of-fit test is given by H0 : F(t) = F0(t; θ). Specifically, the GofCens package
provides implementations of well-known tests such as the Kolmogorov-Smirnov, Cramér-
von Mises, and Anderson-Darling tests based on the empirical distribution function for
complete data and their extensions for right-censored data. Additionally, GofCens includes
a chi-squared-type test based on the squared differences between observed and expected
counts using random cells, with an extension tailored for right-censored data. Recognizing
that these tests may not always yield high power, GofCens complements them with a series
of graphical tools to aid in selecting the most suitable parametric model.

Goodness-of-fit tests based on the empirical distribution function are typically developed
under a fully specified null hypothesis H0 : F(t) = F0(t; θ∗), such as a Weibull distribution
with known parameters (e.g., α = 2 and β = 1). They are less often formulated for
the more general case H0 : F(t) = F0(t; θ) , where θ is unknown. This distinction has
important implications for how such tests are applied in practice. This situation is common
when fitting empirical data to parametric distributions with unknown parameters. To
address it, we replace the unknown parameter θ with its maximum likelihood estimator
θ̂. Following the recommendations in Capasso et al. (2009), the implementation of the
four tests —Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling, and chi-squared
tests— uses bootstrap techniques that involve the maximum-likelihood re-estimation of the
unknown parameters θ in each simulated sample as we describe in Subsection Bootstrap
methods.

In what follows, we briefly outline the theory underlying these methods for testing
H0 : F(t) = F0(t; θ∗) assuming that the data consist of a sample of n individuals, each subject
to random right censoring. We denote by T1, . . . , Tn independent random variables with a
common distribution F(·) and by C1, . . . , Cn independent censoring random variables with
a common distribution H(·), independent of T1, . . . , Tn. The observed variables are defined
as Yi = min(Ti, Ci) and δi = 1{Ti ≤ Ci}, i = 1, . . . , n.
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Tests based on empirical distribution functions

In order to test H0 : F(t) = F0(t; θ∗) for all t ≥ 0, we can use statistics based on a distance
between F0(t; θ∗) and F̂n(t), the empirical distribution function for complete data, or either
the Kaplan-Meier or the Nelson-Aalen estimator, if right-censored data are present. In both
cases, large values of the distance indicate evidence against the hypothesized model.

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov goodness-of-fit test is the most used analytical method to test
goodness of fit when one is dealing with uncensored data. Fleming et al. (1980) published a
modification of the Kolmogorov-Smirnov test in an attempt to obtain increased power when
applied to uncensored data. They also generalized this test for arbitrarily right-censored
data.

For complete data, the Kolmogorov-Smirnov statistic is defined as Dn = supt |F̂n(t)−
F0(t; θ∗)|, where F̂n(t) is the empirical distribution function. To account for right-censored
data, the Kolmogorov-Smirnov statistic is modified as

D̂n = sup
0≤t≤tm

|F̂n(t)− F0(t; θ∗)| = sup
0≤t≤tm

∣∣∣∣∣
∫ t

0

Ŝn(t)S0(s; θ∗)

Ŝn(s)
d
[
Λ̂n(s)− Λ0(s; θ∗)

]∣∣∣∣∣ . (1)

Here, F̂n, is replaced by F̂n = 1 − Ŝn = 1 − e−Λ̂n , being Λ̂n the Nelson-Aalen estimator
of the cumulative hazard function. In this case, S0 and Λ0 denote the survival and the
cumulative hazard function of the hypothesized distribution F0, respectively, and tm is the
largest observed time in the sample.

The standardized modified Kolmogorov-Smirnov statistic for censored data converges
in distribution to sup0≤t≤F0(tm ;θ∗) |B(F0(t; θ∗))|, where B(t) is a Brownian bridge. According

to the results in Koziol and Byar (1975), the asymptotic distribution of D̂n is given by

lim
n→∞

P(
√

nD̂n ≤ k) =
∞

∑
j=−∞

(−1)je−2j2k2
P
(∣∣∣Z − 2jk

√
1 − T

T

∣∣∣ < k
√

1
T − T2

)
, (2)

where Z is a standard normal random variable and T = F0(tm; θ∗). An approximation for
the p value is proposed by Fleming et al. (1980), which is considered acceptable when the
p value is less than 0.8 and excellent when it is less than 0.2.

Cramér-von Mises-type test

For uncensored data, the Cramér-von Mises statistic is given by

Mn = n
∫ +∞

−∞

(
F̂n(t)− F0(t; θ∗)

)2dF0(t).

For right-censored data, let Y1, . . . , Ynr represent the nr observed failure times, that
is, ∑n

i=1 δi = nr. If we transform the order failure times Y(1), . . . , Y(nr) into Uniform(0, 1)
random variables u(1), . . . , u(nr), defined as u(i) = F0(Y(i); θ∗), and adopt the convention
that u(0) = 0 and u(nr+1) = 1, we can express the modified Cramér-von Mises statistic as

M̂n = nr

nr+1

∑
j=1

F̂n(u(j−1))(u(j) − u(j−1))
(

F̂n(u(j−1))− (u(j) + u(j−1))
)
+

nr

3
, (3)

which can be easily computed. However, although the asymptotic distribution of M̂n has
been studied by Pettitt and Stephens (1976) and Koziol and Green (1976), its practical
implementation is not straightforward.
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Anderson-Darling test

The Anderson-Darling test statistic is a modification of Mn where the integrand is weighted
by the inverse of F0(t)(1 − F0(t)):

An = n
∫ +∞

−∞
(F̂n(t)− F0(t; θ∗))2 dF0(t; θ∗)

F0(t; θ∗)(1 − F0(t; θ∗)
.

For right-censored data, using the same notation as in the Cramér-von Mises statistic,
the Anderson-Darling statistic is computed as

Ân = −nr + nr

nr

∑
j=1

(F̂n(u(j−1))− 1)2
[
log |1 − u(j−1)| − log |1 − u(j)|

]
+ nr

nr−1

∑
j=1

F̂2
n(u(j))

[
log |u(j+1)| − log |u(j)|

]
− nr log |u(n)|.

(4)

As with the Cramér-von Mises statistic, the asymptotic distribution of Ân has been studied
by Pettitt and Stephens (1976) but its practical implementation is not straightforward.

Chi-squared type tests

Kim (1993) introduced a general class of χ2 goodness-of-fit statistics for randomly right-
censored data, extending Pearson’s statistic where the cells are replaced by random cells.

Random cells are built as intervals in R whose boundaries depend on some sample
summaries. These boundaries are defined by a vector φ of r statistics, yielding intervals
Ij(φ) = (aj−1(φ), aj(φ)], where j = 1, . . . , M, and −∞ = a0(φ) < a1(φ) < · · · < aM(φ) =
∞. For instance, we might take the quantiles 1/M, 2/M, . . . , 1 as random cells boundaries
a1(φ), . . . , aM(φ).

The observed frequency of cell j, Nnj(φ) = n
∫

Ij(φ) dF̂n, is calculated using either the
empirical distribution function or 1 minus the Kaplan-Meier estimator of the survival
function if there are right-censored data. The expected probability of cell j under the null
hypothesis of a fully specified distribution, F0(t; θ∗), is denoted by pj(θ

∗, φn).

The class of χ2 statistics is defined as

Tn = V⊤
n (θ∗, φn) · Kn(θ

∗, φn) · Vn(θ
∗, φn), (5)

where Kn(θ∗, φ) is a symmetric, non-negative definite matrix. Kn(θ∗, φ) is, in most cases,
the inverse of a consistent estimator of the asymptotic variance-covariance matrix of the
random vector Vn(θ∗, φn). The matrix can be computed following formulas (3.1) in Kim
(1993). The vector Vn(θ∗, φ) = (νnj)j=1,...,M, contains differences between observed and
expected frequencies. Each component is defined as

νnj(θ
∗, φn) = n− 1

2 Nnj(φn)− n
1
2 · pj(θ

∗, φn).

The limiting distribution of Tn is a linear combination of independent noncentral χ2-
distributed variables which is complex to implement.

Computation of test statistic’s distribution

The limiting distributions of the statistics in (3), (4), and (5) under the null hypothesis
H0 : F(t) = F0(t; θ), when the parameter θ is unknown and replaced by its maximum
likelihood estimate θ̂, are too complex to implement directly. Therefore, the corresponding
p values are computed using bootstrap methods (see Subsubsection Bootstrap methods for
right-censored data). For consistency, the p values of the Kolmogorov-Smirnov test are also
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obtained using bootstrap.

The function KScens() of the GofCens package calculates the value of the test statistic of
the Kolmogorov-Smirnov test, and, by default, approximates the p value using bootstrap
methods. Alternatively, the function also allows p value computation based on the asymp-
totic distribution given in (2). The function CvMcens() in the GofCens package calculates
the observed Cramér-von Mises statistic adapted for right-censored data, and provides
an approximation of the corresponding p value using bootstrap methods. The function
ADcens() in the GofCens package calculates the observed Anderson-Darling statistic for
right-censored data and provides an approximation of the corresponding p value using
bootstrap methods. The chisqcens() function in the GofCens package uses bootstrap
techniques to compute the p values.

Bootstrap methods for right-censored data

Since the asymptotic distributions of the described goodness-of-fit statistics are unknown
when the null hypothesis is not fully specified, bootstrap techniques offer a practical al-
ternative for computing p values. The bootstrap method is as well a practical alternative
if H0 is fully specified, but the asymptotic distribution depends on a complex expression.
This section describes the application of bootstrapping to derive p values for tests presented
in the previous subsection. We use the notation Gn to refer to any of the following test
statistics: the Kolmogorov–Smirnov statistic defined in (1), the Cramér–von Mises statistic
in (3), the Anderson–Darling statistic in (4), and the chi-squared statistic in (5).

To test the null hypothesis H0 : F(t) = F0(t; θ) using complete and right-censored
data, we follow the guidelines of Capasso et al. (2009). Accordingly, the observed data is
utilized to estimate the parameter θ, denoted as θ̂n, using maximum likelihood estimation.
Subsequently, we generate B independent bootstrap samples of the same size (n) as the
original data set as follows. Specifically, for each iteration b, b = 1, . . . , B, we compute the

bootstrap statistic (Ĝθ̂n
n )b carrying out the following steps:

1. Generation of survival times Tb
1 , . . . , Tb

n from the fitted distribution F0(t; θ̂n).

2. Generation of censoring times Cb
1, . . . , Cb

n from the non-parametric estimation of H
obtained with the Kaplan-Meier estimator.

3. Generation of observed survival times Yb
i = min(Tb

i , Cb
i ), and event indicators δb

i =

1{Tb
i ≤ Cb

i }, i = 1, . . . n.

4. Maximum likelihood estimation of the parameter, θ̂b
n, given (Yb

i , δb
i ), i = 1, . . . n.

5. Computation of the bootstrap statistic, (Ĝθ̂n
n )b.

By repeating this process for many bootstrap samples —the default value of the functions
KScens(), CvMcens(), ADcens(), and chisqcens() is B = 999—, the sequence of bootstrap

statistics, (Ĝθ̂n
n )b, b = 1, · · · , B, represents the empirical distribution of the statistic Gn under

the null hypothesis.

The p value is calculated by comparing the observed test statistic Ĝn to the empirical
distribution of the bootstrap statistic. Specifically, the p value is the proportion of bootstrap

statistic values (Ĝθ̂n
n )b greater than or equal to the observed statistic Ĝn:

p =
1

B + 1
( B

∑
i=1

1{Ĝn ≤ (Ĝθ̂n
n )b}+ 1

)
,

where adding 1 in both the numerator and the denominator avoids a zero p value.

Note that steps 2 and 3, which involve generating the right-censored sample, are crucial.
This is because the distribution of Gn depends not only on F0 but also on H and the propor-
tion of censored data. The functions KScens(), CvMcens(), ADcens(), and chisqcens() are
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designed so that, if the original data contains no right-censored observations, the censoring
times in step 2 are automatically set to ∞.

Moreover, as explained and illustrated in Section ‘Goodness-of-fit tests’ below, these
functions allow testing the null hypothesis of a fully specified choice of the parameters,
H0 : F(t) = F0(t; θ∗). In this case, the survival times in step 1 are generated from F0(t; θ∗).

Goodness-of-fit plots

The GofCens package provides six different plots for evaluating goodness of fit, applica-
ble to both right-censored and complete data. In most cases, a roughly straight line formed
by the points suggests good agreement with the hypothesized theoretical distribution.

Probability-probability and Stabilized Probability plots

The probability-probability plot (P-P plot) maps F̂0(t) against F̂n(t), where F̂0(t) corre-
sponds to either F0(t; θ) with the unknown parameters replaced by their maximum likeli-
hood estimates or to F0(t; θ∗). F̂n represents either the empirical distribution function or
1 minus the Kaplan-Meier estimator of the survival function, if right-censored data are
present.

In order to enhance the interpretability of the P-P plot and because some of the plotted
points have a larger variability than others, Michael (1983) proposed the Stabilized Probabil-
ity plot (SP plot). In the same way as the arcsin transformation can be used to stabilize the
variance of a uniform order statistic, this function can be applied to stabilize the variance of
F̂0(t). The variances of the resulting SP plotted points are all approximately equal.

Quantile-quantile plot

The quantile-quantile plot (Q-Q plot) maps the theoretical quantiles against the estimated
quantiles, that is, F̂−1

0 (F̂n(t)) against t. An empirical rescaling of the axes can help to
overcome the problem that the plotted points might not be evenly spread, in particular
in the presence of right-censored data. The Empirically Rescaled plot (ER plot) plots
F̂u(F̂−1

0 (F̂n(t))) against F̂u(t), where F̂u(t) is the empirical cumulative distribution function
of the points corresponding to the uncensored observations (Waller and Turnbull, 1992).

Table 1 provides an overview of the axes of the probability and quantile-quantile plots.

Plot Abscissa Ordinate

P-P plot F̂n(t) F̂0(t)
Q-Q plot t F̂−1

0 (F̂n(t))
SP plot π

2 arcsin
(

F̂n(t)
1
2
)

π
2 arcsin

(
F̂0(t)

1
2
)

ER plot F̂u(t) F̂u(F̂−1
0 (F̂n(t)))

Table 1: Probability and quantile-quantile plots to assess goodness of fit.

Cumulative hazard and Kaplan-Meier plots

Another set of plots consists of cumulative hazard plots, derived from transforming the
cumulative hazard function Λ in such a way that it becomes linear in t or in log(t). The
Nelson-Aalen estimator Λ̂ of Λ is computed from the data, and the distribution-specific
transformation A(Λ̂(t)) is then plotted against either t or its natural logarithm. The trans-
formations for all the distributions considered in the GofCens package are detailed in Table
2.

In addition, the GofCens package includes a function to graphically compare the Kaplan-
Meier estimate of the survival function (1 − F̂n(t)) with the parametric estimations of the
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Distribution Survival function Cum. hazard function Plot

Exponential
[Exp(β)]

e−
t
β t

β Λ̂(t) vs t

Weibull
[Wei(α, β)]

e−( t
β )

α

( t
β )

α log Λ̂(t) vs log t

Gumbel
[Gum(µ, β)]

1 − e−e
− t−µ

β − log
(
1 − e−e

− t−µ
β )

− log
(
− log(1 − e−Λ̂(t))

)
vs t

Log-Logistic
[LLogis(α, β)]

1

1 +
(

t
β

)α log
(
1 +

( t
β

)α) log
(
eΛ̂(t) − 1

)
vs log t

Logistic
[Logis(µ, β)]

e−
t−µ

β

1 + e−
t−µ

β

log
(
1 + e−

t−µ
β
)

log
(
eΛ̂(t) − 1

)
vs t

Log-Normal
[LN(µ, β)]

∞∫
log t−µ

β

1√
2π

e−
x2
2 dx − log

(
1 − Φ

( log t−µ
β

))
Φ−1(1 − e−Λ̂(t)) vs log t

Normal
[N(µ, β)]

∞∫
t

1
β
√

2π
e
− (x−µ)2

2β2 dx − log
(
1 − Φ

( t−µ
β

))
Φ−1(1 − e−Λ̂(t)) vs t

4-Parameter
Beta
[Beta(α, γ, a, b)]

1 −
B(α,γ,a,b)(t)

B(α, γ)
− log

(
1 − B(α,γ,a,b)(t)

B(α,γ)

)
B−1
(α,γ,a,b)

(
B(α, γ)

(
1 − e−Λ̂(t))) vs t

Table 2: List of the distributions that are implemented in the GofCens package. The last column shows
the specific transformations of time and the estimated cumulative hazard function of the cumulative
hazard plots, which are implemented by the function cumhazPlot(). The shape parameters are denoted
by α > 0 and γ > 0, the location parameter by µ ∈ R, and the scale parameter by β > 0. The time t

will be always positive. B(α, γ) denotes the Beta function and B(α,γ,a,b)(t) =
∫ t−a

b−a
0 uα−1(1 − u)γ−1du.

survival function from the parametric models under study (1 − F̂0(t)).

3 The GofCens package

Installation and dependencies

The GofCens package can easily be installed from any CRAN repository by running the R
command

R> install.packages("GofCens")

As shown on the corresponding web page of the CRAN (https://cran.r-project.
org/web/packages/GofCens/index.html), GofCens depends on the packages survival (Th-
erneau and Grambsch, 2000) and actuar (Dutang et al., 2008; Goulet et al., 2025). The former
is needed to estimate the survival and cumulative hazard functions, whereas the latter
implements several distributions that are not available in standard R packages. Additionally,
GofCens imports functions from the following packages: the fitdist() and fitdistcens()
functions of the fitdistrplus package (Delignette-Muller and Dutang, 2015; Delignette-Muller
et al., 2025) provide the estimation of the distributions’ parameters; the packages ggplot2
(Wickham, 2016; Wickham et al., 2025), gridExtra (Auguie, 2017), and the base package
grid are needed for several features of the graphical tools; and the bootstrap methods to
compute the p values of the Kolmogorov-Smirnov, Cramér-von Mises, Anderson-Darling,
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and chi-squared type tests are implemented with the function boot() of the boot package
(Canty and Ripley, 2024). Moreover, the is() function from the base package methods is
used internally to verify object classes during function execution.

Package overview

The GofCens package provides both graphical tools and statistical test functions to assess
goodness of fit for the distributions shown in Table 2.

The graphical functions, which facilitate visual evaluation of the model adequacy, in-
clude:

• Function probPlot() draws the probability and quantile-quantile plots of Table 1.

• Function cumhazPlot() draws the cumulative hazard plots of Table 2.

• Function kmPlot() draws the Kaplan-Meier estimates of the survival function and
overlays parametric fits of the survival function.

The statistical test functions, which implement goodness-of-fit tests, include:

• Function KScens() implements the Kolmogorov-Smirnov test adapted to right-censored
data.

• Function CvMcens() implements the Cramér-von Mises test adapted to right-censored
data using bootstrap techniques.

• Function ADcens() implements the Anderson-Darling test adapted to right-censored
data using bootstrap techniques.

• Function gofcens() computes the test statistics of the Kolmogorov-Smirnov, Cramér-
von Mises, and Anderson-Darling tests adapted to right-censored data and returns the
corresponding p values.

• Function chisqcens() implements the chi-squared type test based on random cells
and using bootstrap techniques.

These functions share several features: although they are primarily designed for right-
censored data, they can also be applied to complete datasets. They provide parameter
estimates for the distributions under study and support two input formats: users can either
provide vectors with the observed survival times and the corresponding event indicator,
or use the common formula interface with a Surv object. Earlier versions of the functions
were implemented in R by Febrer Galvany (2015), Besalú Mayol (2016), and García Carrasco
(2017).

Specific features of the statistical test functions include the following: On the one hand,
these functions can be used to assess the goodness of fit for any distribution, provided that
the corresponding pname, dname, and rname functions are available. On the other hand,
they return test-specific objects for which print, summary, and print.summary methods are
implemented.

In addition, the GofCens package comes with a data frame called nba, which contains
the survival times of 3962 former players of the National Basketball Association (NBA) until
2019. These data were analyzed previously by Martínez et al. (2022).

A simulated example

Following, we will present the main features of the eight functions and illustrate their
use with simulated survival times. For this purpose, we generate 300 survival times from
a log-normal distribution with location parameter µ = 2 and scale parameter β = 1,
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i.e., T ∼ LN(2, 1), and 300 censoring times from an exponential distribution with scale
parameter β = 20, i.e, C ∼ Exp(20):

R> set.seed(123)
R> survt <- round(rlnorm(300, 2, 1), 2)
R> censt <- round(rexp(300, 1 / 20), 2)

The observed right-censored survival times, Y = min(T, C), and the corresponding event
indicators, δ = 1{T ≤ C}, are computed as follows:

R> times <- pmin(survt, censt)
R> delta <- as.numeric(survt <= censt)

In total, 106 (35.3%) survival times of the generated sample are right-censored:

R> table(delta)
0 1

106 194

Graphical tools: Functions probPlot(), cumhazPlot(), and kmPlot()

Function probPlot()

The probPlot() function allows users to assess graphically how well any of the distributions
in Table 2 fit to a sample of right-censored survival or complete times. For this purpose,
the function implements the four probability and quantile-quantile plots in Table 1. By
default, the function draws all four plots, but provides users with the option to choose only
a subset of these. If the user does not provide specific distribution parameters, the maximum
likelihood estimates are used to draw the plots. One graphical feature of the function is the
option for users to choose between the base package graphics, which is the default, and the
ggplot2 package for drawing the plots. In the former case, probPlot() internally calls the
par() function, enabling users to set graphical parameters within the function call.

For the illustration of the probPlot() function, we assess how well the log-normal
distribution (left panel of Figure 1) and the Weibull distribution (right panel of Figure 1) fit
to the sample data. The four plots in the left panel show fairly straight lines, thus confirming
that the underlying distribution is the log-normal distribution, whereas the plots in the right
panel clearly show that the Weibull distribution would not be an adequate distribution to
model the data.

The R code used to draw the plots in the left and right panels of Figure 1 is the following:

R> library("GofCens")
R> probPlot(times, delta, distr = "lognormal", cex.lab = 1.3)
R> probPlot(times, delta, distr = "weibull", ggp = TRUE)

To illustrate additional functionalities of this function, we apply it again to the data set
to assess the suitability of fitting a log-normal distribution with parameters µ = 2 and β = 1.
For this purpose, we employ the params0 argument, whose default value is NULL, to specify
the parameter values. Additionally, the main argument is a Surv object and we utilize the m
argument to display the four probability plots in a single row, as shown in Figure 2. From
these plots, it becomes evident that this log-normal distribution does not fit well to the data.
Furthermore, we set prnt = TRUE so that the function provides both the parameter values
used in the probability plots and the maximum likelihood estimates of the parameters,
together with the values of the Akaike (AIC) and the Bayesian (BIC) information criteria.

R> probPlot(Surv(times, delta) ~ 1, distr = "lognormal", m = matrix(1:4,
+ nrow = 1), params0 = list(location = 2, scale = 1.5), ggp = TRUE, prnt = TRUE)
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Figure 1: Probability plots applied to a right-censored sample from a log-normal distribution assuming
log-normal (left panel) and Weibull distributions (right panel). Both figures are drawn with the
probPlot() function.

Distribution: log-normal

Parameters used in probability plots:
Location: 2

Scale: 1.5

Parameter estimates:
Location (se): 1.988 (0.058)

Scale (se): 0.883 (0.045)

AIC: 1266.899
BIC: 1274.307
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Probability plots for log−normal distribution

Figure 2: Probability plots applied to a right-censored sample from a log-normal distribution assuming
a log-normal distribution with specific parameters (µ = 2, β = 1.5). The plots are drawn with the
probPlot() function.

Function cumhazPlot()

The cumhazPlot() function can be used to generate cumulative hazard plots for any of the
distributions listed in Table 2. As previously noted, the cumulative hazard plot is based on a
transformation of the cumulative hazard function to achieve linearity in either t or log(t).
Consequently, given a set of survival times, this function serves as a useful tool to assess
which parametric model best fits the data.

By default, the function generates cumulative hazard plots for the Weibull, Gumbel,
log-logistic, logistic, log-normal, and normal distributions. Additionally, users can opt to
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choose the exponential and beta distributions or select any subset of these distributions.
Similar to the probPlot() function, users can choose between the base graphics package
(default) or ggplot2 to draw the plots.

Setting the argument prnt to TRUE (default is FALSE), the function also returns the maxi-
mum likelihood estimates for the specified distribution, along with the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) values.

An illustration with the previously generated right-censored sample from the log-normal
distribution is shown in Figure 3. As expected, the points of the cumulative hazard plot
for the log-normal distribution show a fairly straight line, whereas most of the other dis-
tributions under study can clearly be discarded. This conclusion is further supported by
comparing the AIC and BIC values across all distributions, with the log-normal distribution
showing the lowest values.

The corresponding code is the following, where argument degs = 2 is used to return the
parameter estimates, which are shown below, with two decimal digits (default is degs = 3).

R> cumhazPlot(times, delta, font.lab = 4, cex.lab = 1.3, degs = 2, prnt = TRUE)

Parameter estimates

weibull
Shape (se): 1.27 (0.07)
Scale (se): 10.98 (0.62)
AIC: 1304.05
BIC: 1311.45

loglogistic
Shape (se): 1.94 (0.11)
Scale (se): 7.18 (0.42)
AIC: 1272.48
BIC: 1279.89

lognormal
Location (se): 1.99 (0.06)

Scale (se): 0.88 (0.05)
AIC: 1266.9
BIC: 1274.31

gumbel
Location (se): 6.38 (0.33)

Scale (se): 4.95 (0.3)
AIC: 1342.49
BIC: 1349.9

logistic
Location (se): 8.51 (0.43)

Scale (se): 3.84 (0.23)
AIC: 1430.25
BIC: 1437.66

normal
Location (se): 9.89 (0.49)

Scale (se): 7.54 (0.38)
AIC: 1456.22
BIC: 1463.63
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Figure 3: Cumulative hazard plots for six different distribution applied to a right-censored sample
from a log-normal distribution. The plots are drawn with the cumhazPlot() function.

If users want to assess the goodness of fit of the exponential and the beta distribution
and compare these with the fit of the log-normal distribution, they must specifically select
these distributions, as shown in the following example. Notice that users need to provide
the limits for the beta distribution, as the default domain, (0, 1), does not cover the range of
the sample’s survival times. In this example, plots are drawn using the ggplot2 package (ggp
= TRUE), and parameter estimates are not displayed on the screen. The resulting plots are
shown in Figure 4, where we observe that neither the exponential nor the beta distribution
fits the data well. The corresponding R code is the following.

R> cumhazPlot(times, delta, distr = c("exponential", "beta", "lognormal"),
+ betaLimits = c(0, 100), ggp = TRUE)

0

1

2

3

0 10 20 30
Time

Λ̂
(T

im
e

)

Exponential

0.0

0.1

0.2

0.3

0 10 20 30
Time

F
−1

(1
−

ex
p

(−
Λ̂

(T
im

e
))

)

Beta

−2

−1

0

1

2

0 1 2 3
Log(Time)

Φ
−1

(1
−

ex
p

(−
Λ̂

(T
im

e
))

)

Lognormal

Figure 4: Cumulative hazard plots for the exponential, beta, and log-normal distribution applied to a
right-censored sample from a log-normal distribution. The domain of the beta distribution is (0, 100).

Function kmPlot()

The kmPlot() function allows users to graphically compare the nonparametric Kaplan-Meier
estimate of the survival function for a right-censored or complete sample of survival times
with parametric estimates based on different models. For this purpose, each parametric
estimate is individually overlaid on the Kaplan-Meier estimator of S(t). Likewise the
cumhazPlot() function, this is done by default for the Weibull, Gumbel, log-logistic, logistic,

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 112

log-normal, and normal distributions, with the option to also include the exponential and
beta distributions. The plots are generated using the graphics package by default, but setting
ggp = TRUE enables the use of the ggplot2 package. With both options, the pointwise 95%
confidence intervals are plotted.

In the example shown in Figure 5, the estimated survival functions for the six default
distributions are overlaid on the nonparametric estimate of S(t). As expected, the log-
normal distribution exhibits the best fit to the data. However, based on these plots, the
log-logistic distribution might also be considered as a parametric model that fits the sample
data well.

The R code used to draw the Kaplan-Meier plots in Figure 5 is the following:

R> kmPlot(times, delta, ggp = TRUE)
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Figure 5: Kaplan-Meier plots for six different distribution applied to a right-censored sample from
a log-normal distribution. The shaded area represent the pointwise 95% confidence intervals of the
survival function. The plots are drawn with the kmPlot() function.

Goodness-of-fit test functions

In this section, we briefly describe and illustrate the use of the five functions in the
GofCens package that implement the tests presented in the ‘Methods’ section.

The basic print methods of all functions return the test statistic and the p-value, whereas
the summary methods do also provide the maximum likelihood estimates for the parameters
of the hypothesized distribution F0(t; θ) as well as the values of both the AIC and BIC. The
functions have also in common that they offer the option to test the null hypothesis for
specific parameter values of F0, i.e., F0(t; θ∗). Each function returns an object of its own class,
enabling the use of object-specific print and summary methods.

Function KScens()

The KScens() function enables users to assess the goodness of fit using the Kolmogorov-
Smirnov test adapted to right-censored data. It supports the eight distributions in Table 2
as well as any other distribution for which the corresponding pname, dname, and rname
functions are implemented. The function computes the test statistic in (1) and, by default,
estimates the p value using bootstrap methods.
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As illustrated below with the data from the generated right-censored sample, the function
returns, by default, a list with two elements:

• The null distribution.

• The test result, which includes the Kolmogorov-Smirnov test statistic (A) and the
p value.

Additionally, the summary method provides two more elements:

• The maximum likelihood estimates of the parameters of the distribution under study.

• The values of the AIC and BIC.

In the illustration, we run the KScens() function to assess the goodness of fit of the log-
normal and the Weibull distributions, first using bootstrapping to approximate the p value,
and second calculating the p value following the results in Fleming et al. (1980). Additionally,
in the second example, we apply the function summary method, which returns the parameter
estimates, their standard errors and both the AIC and BIC. As shown, the p value obtained
for the log-normal distribution is, as expected, larger (0.115) than the p value (0.042) for
the Weibull distribution.

R> set.seed(123)
R> KScens(times, delta, distr = "lognormal")

Null hypothesis: the data follows a lognormal distribution

KS Test results:
A p-value

0.781 0.115

R> set.seed(123)
R> summary(KScens(times, delta, distr = "weibull", boot = FALSE))

Distribution: weibull

KS Test results:
A p-value

1.391 0.042

Parameter estimates (se):
shape scale
1.273 (0.067) 10.98 (0.621)

AIC: 1304.046
BIC: 1311.453

Functions CvMcens() and ADcens()

The CvMcens() function calculates the test statistic of the Cramér-von Mises test in (3), while
the ADcens() function calculates the test statistic of the Anderson-Darling test in (4), and
both employ bootstrap techniques to estimate the corresponding p values. These functions
share the same arguments, allowing users to specify the number of bootstrap samples,
among other options. The default number of bootstrap samples for both functions is 999,
which may result in lengthy computation times for large sample sizes. In such cases, users
might consider reducing the number of bootstrap samples. For example, in the illustrations
of the CvMcens() function below, with n = 300 and 999 bootstrap samples, the computation
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times are approximately 15 seconds using R version 4.5.0 on Windows 10 x64 (build 19045)
with an Intel(R) Core(TM) i5-8500 processor (3.00 GHz).

The null hypotheses in the illustrations remain the same as before, as do the conclusions:
we would conclude that the data may come from a log-normal distribution, but not from a
Weibull distribution.

R> set.seed(123)
R> summary(CvMcens(times, delta, distr = "lognormal"))

Distribution: lognormal

CvM Test results:
CvM p-value

0.054 0.450

Parameter estimates (se):
location scale
1.988 (0.058) 0.883 (0.045)

AIC: 1266.899
BIC: 1274.307

R> set.seed(123)
R> summary(CvMcens(times, delta, distr = "weibull"))

Distribution: weibull

CvM Test results:
CvM p-value

0.376 0.001

Parameter estimates (se):
shape scale
1.273 (0.067) 10.98 (0.621)

AIC: 1304.046
BIC: 1311.453

Applying the function ADcens() in the same way as CvMcens(), the p values are similar: p =
0.52 in the case of the log-normal distribution and p = 0.001 with the Weibull distribution.

Note that due to the use of resampling methods, with both functions it is advisable to pre-
viously set the seed of R’s random number generation in order to guarantee reproducibility
of the test results.

As mentioned before, users can also test the null hypothesis that the data come from a
specific choice of the distribution under study, i.e., H0 : F(t) = F0(t; θ∗). While this may be
less relevant in practical applications, it can be useful for examining the properties of these
tests. To perform such a test, users need to specify particular values for the distribution’s
parameters. For example, below we test the null hypothesis that the data follow a log-
normal distribution with location and scale parameters µ = 2 and β = 1.5. In this case,
as shown, the Anderson-Darling test clearly rejects the null hypothesis (p = 0.001). Note
that the output now includes both the specified parameter values for the null hypothesis
and the maximum likelihood estimates. In addition, we use the outp argument of the
summary.ADcens() function to change the format of the output.

R> set.seed(123)
R> summary(ADcens(times, delta, distr = "lognormal",
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+ params0 = list(location = 2, scale = 1.5)), outp = "table")

Distribution: lognormal

Null hypothesis:
--------- | ---------
Parameter | Value
--------- | ---------
location | 2
scale | 1.5
--------- | ---------

AD Test results:
------- | -------
Metric | Value
------- | -------
AD | 9.536
p-value | 0.001
------- | -------

Parameter estimates:
--------- | --------- | ---------
Parameter | Value | s.e.
--------- | --------- | ---------
location | 1.988 | 0.058
scale | 0.883 | 0.045
--------- | --------- | ---------

AIC: 1266.899
BIC: 1274.307

Function gofcens()

Rather than performing each of the three tests individually, users can run the Kolmogorov-
Smirnov, Cramér-von Mises, and Anderson-Darling tests simultaneously with the gofcens()
function, which calls each corresponding test function. This approach is especially useful
for comparing the tests in a specific context or in a larger study, such as comparing their
statistical power. However, a potential drawback is longer computation times, as each test
function employs bootstrap methods to estimate the p values. In the following examples,
using the same data and null hypotheses as before, the computation time is approximately
20 seconds on R version 4.5.0, running on Windows 10 x64 (build 19045) with an Intel(R)
Core(TM) i5-8500 processor (3.00 GHz). Note that in the second example, we modify options
in the summary.gofcens() function: the number of bootstrap samples is displayed, while
the AIC and BIC values are omitted.

R> set.seed(123)
R> gofcens(times, delta, distr = "lognormal")

Null hypothesis: the data follows a lognormal distribution

Test statistics
KS CvM AD

0.781 0.054 0.500

p-values
KS CvM AD
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0.115 0.450 0.520

R> set.seed(123)
R> summary(gofcens(times, delta, distr = "weibull"), print.AIC = FALSE,
+ print.BIC = FALSE, print.infoBoot = TRUE)

Distribution: weibull

Test statistics
KS CvM AD

1.391 0.376 2.828

p-values
KS CvM AD

0.001 0.001 0.001

Parameter estimates (se):
shape scale
1.273 (0.067) 10.98 (0.621)

Number of bootstrap samples: 999

Function chisqcens()

The chisqcens() function implements the chi-squared type test of Kim (1993) explained in
Section ‘Chi-squared type tests’. Likewise the KScens(), CvMcens(), and ADcens() functions,
the computation of the p value is achieved with bootstrap techniques using BS = 999 as
default value for the number of bootstrap samples. The function’s default output includes
the hypothesized distribution, the value of the test statistic, and the corresponding p value.
The extended output provided by the summary.chisqcens() function also includes the
parameter estimates, the the AIC and BIC values as well as two values related to the number
of random cells: the number initially chosen by the user (Original) and the final number
used in the analysis (Final). The latter may be smaller due to the presence of right-censored
data. For example, in the illustrations below using right-censored data from a log-normal
distribution, we set M = 8 random cells, but this number is reduced to M = 7 due to censoring.

R> set.seed(123)
R> chisqcens(times, delta, M = 8, distr = "lognormal")

Null hypothesis: the data follows a lognormal distribution

Chi-squared Test results:
Statistic p-value

3.123 0.154

R> set.seed(123)
R> summary(chisqcens(times, delta, M = 8, distr = "weibull"))

Distribution: weibull

Chi-squared Test results:
Statistic p-value

8.599 0.002

Parameter estimates (se):
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shape scale
1.273 (0.067) 10.98 (0.621)

Cell numbers:
Original Final

8 7

AIC: 1304.046
BIC: 1311.453

Again, based on the outputs, we would choose the log-normal distribution instead of the
Weibull distribution, because its value of the test statistic is clearly smaller (3.123 vs 8.599)
and the p value is far larger (p = 0.154 vs p = 0.002).

The following illustration highlights two features of the goodness-of-fit test functions
in the GofCens package. First, all functions return structured objects that can be stored as
standard objects for further use in R. Second, users can test the goodness-of-fit of distributions
different from the eight distributions in Table 2. In this example, we apply the chisqcens()
function using the gamma distribution. As shown, the parameter estimates are reported
with the default names theta1 and theta2, and the result is an object of class chisqcens,
further processed with the summary method to display detailed results.

R> set.seed(123)
R> result <- summary(chisqcens(times, delta, M = 8, distr = "gamma"))
R> result

Distribution: gamma

Chi-squared Test results:
Statistic p-value

6.176 0.006

Parameter estimates (se):
theta1 theta2
1.65 (0.144) 0.165 (0.019)

Cell numbers:
Original Final

8 7

AIC: 1293.124
BIC: 1300.532

R> class(result)

[1] "summary.chisqcens" "chisqcens"

4 Real data example: Survival times of retired NBA players

In this section, we apply several functions of the GofCens package to determine the para-
metric model that best fits the survival times of former NBA players.

The data frame nba comes with the GofCens package and contains the survival times
(variable survtime) of all 3962 former players of the National Basketball Association (NBA)
from its inception until July 2019. These data have been published and analyzed by Martínez
et al. (2022), where survival times are measured as the elapsed time (in years) from the
end of the NBA career until either death (cens == 1) or July 31, 2019 (cens == 1). By this
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date, 864 (21.8%) of the former players had died, with uncensored post-NBA survival times
ranging from a few days until nearly 70 years. The estimated median survival time is 54.1
years as shown below in the output of the function npsurv of the rms package (Harrell Jr,
2025) and Figure 6, which shows the Kaplan-Meier estimate of the survival function.

R> data("nba")
R> library("rms")
R> npsurv(Surv(survtime, cens) ~ 1, nba)

Call: npsurv(formula = Surv(survtime, cens) ~ 1, data = nba)
n events median 0.95LCL 0.95UCL

[1,] 3962 864 54.1 53.1 55.1

The R code to draw the plot in Figure 6 is the following:

R> par(las = 1, cex.lab = 1.3, cex.axis = 1.2, font.lab = 4, font.axis = 2,
+ mar = c(5, 5, 2, 2), yaxs = "i", xaxs = "i")
R> survplot(npsurv(Surv(survtime, cens) ~ 1, nba), lwd = 3,
+ xlab = "Years after NBA career", time.inc = 5, col.fill = grey(0.6),
+ ylab = "Estimated survival probability", xlim = c(0, 75))
R> abline(h = 0.5, lwd = 2, lty = 2)
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Figure 6: Survival function of times from the end of the NBA career until death among retired players.
The shaded area represents the confidence bands of the survival function.

In order to model parametrically the survival times and estimate the median, we need
to know which distribution is the most appropriate distribution. For this purpose, we take
advantage of the cumhazPlot() function, which provides the six cumulative hazard plots
shown in Figure 7:

R> cumhazPlot(Surv(survtime, cens) ~ 1, nba, font.lab = 4, cex.lab = 1.3,
+ lwd = 3, colour = "blue")

According to the plots in Figure 7, the logistic distribution fits reasonably well to the
data, even though the corresponding plot does not show a completely straight line of the
points. In addition, we could also consider the normal distribution for parametric analyses
of the survival times. To choose one of either distributions, we run the following code to
draw the probability and quantile-quantile plots that are shown in the left and right panels
of Figure 8 with the probPlot() function.

R> probPlot(Surv(survtime, cens) ~ 1, nba, distr = "logistic", ggp = TRUE)
R> probPlot(Surv(survtime, cens) ~ 1, nba, distr = "normal", ggp = TRUE)
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Figure 7: Cumulative hazard plots for six different distributions applied to the survival times of former
NBA players. The plots are generated with the cumhazPlot() function.

According to the plots in Figure 8, the logistic distribution appears to be a slightly better
choice than the normal distribution, as the points in all four plots on the right panel show
some curvature.

Note that in the previous function calls, we used the formula versions of both functions,
which allows for the inclusion of the data frame nba in the argument list, which simplifies
their use.
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Figure 8: Logistic and normal probability plots for the survival times of former NBA players. The
plots are drawn with the probPlot() function.

Finally, we apply the gofcens() function to both distributions in order to complement
the plots with the results of the Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-
Darling tests.

R> set.seed(123)
R> summary(gofcens(Surv(survtime, cens) ~ 1, nba, distr = "logistic"))

Distribution: logistic
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Test statistics
KS CvM AD

2.099 1.277 13.849

p-values
KS CvM AD

0.001 0.009 0.002

Parameter estimates (se):
location scale
53.077 (0.457) 9.013 (0.218)

AIC: 8460.297
BIC: 8472.866

R> set.seed(123)
R> summary(gofcens(Surv(survtime, cens) ~ 1, nba, distr = "normal"))

Distribution: normal

Test statistics
KS CvM AD

2.736 2.666 22.957

p-values
KS CvM AD

0.001 0.002 0.001

Parameter estimates (se):
location scale
53.004 (0.518) 16.977 (0.368)

AIC: 8512.579
BIC: 8525.148

Following the test results, we would reject the null hypothesis in both cases: the
Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-Darling tests all yield small p-
values, indicating that neither the logistic nor the normal distribution are adequate models
for the survival times of former NBA players. This result is not unexpected given the
large sample size, which increases the power of the tests and makes even minor deviations
from the model detectable. Despite the rejection, the diagnostic plots in Figures 7 and 8
suggest that the logistic distribution provides a somewhat better fit to the data than the
normal distribution. Therefore, it seems reasonable to use the logistic model as a practical
approximation. Based on the maximum likelihood estimates, the fitted parameters are
µ̂ = 53.08 and β̂ = 9.01, yielding an estimated median survival time of approximately 53.1
years, which is close to the non-parametric estimate of 54.1 years.

5 Conclusion

In this paper we have presented the R package GofCens, whose functions offer both ana-
lytical methods and graphical tools to assess the goodness of fit for right-censored lifetime
data. While the graphical functions can be used to assess the goodness of fit for the eight
distributions listed in Table 2, which represent the most common ones in survival analysis,
the goodness-of-fit test functions are more flexible and can be applied to any distribution
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available in R. GofCens incorporates new functions for goodness-of-fit analyses while uni-
fying functions that are otherwise scattered across various R packages. As shown with
several examples, this package is a user-friendly tool that enables users to determine the
most suitable parametric distribution for analyzing their data.

For the analysis of a given data set in practice, it is important to highlight the usefulness
of including probability or cumulative hazards plots alongside the goodness-of-fit tests
provided in GofCens. While statistical tests offer summary statistics, such plots offer a
comprehensive view of the data, thus revealing peculiarities that might escape detection
through summary statistics alone. Moreover, the importance of selecting a specific distribu-
tion depends on the context of the analysis. For example, precise distributional assumptions
may be less critical when evaluating test statistics, but become essential when estimating
quantiles or making extrapolations. The selection of any of the four tests presented herein is,
to some extent, subjective, influenced by personal preference and convenience, as none of
them emerges as optimal for all censoring situations, parametric families, or sample sizes.

In recent years, additional goodness-of-fit techniques for right-censored data have been
developed, including transformation-based procedures (Goldmann et al., 2015) and mod-
ifications of classical tests using pseudo-complete samples or randomization strategies
(Balakrishnan et al., 2015). While these methods can offer improved performance in specific
settings, they often involve specialized implementation or focus on narrower applications.
In contrast, GofCens implements established, flexible approaches with broad applicabil-
ity and interpretability, supporting classical tests enhanced by resampling and graphical
diagnostics.

Feasible extensions of this package include expanding the range of distributions sup-
ported by the graphical functions. Since, for example, the cumhazPlot() function requires
distribution-specific transformations of the cumulative hazard function, such an extension
is not straightforward. Additional developments could involve adapting its functions to
handle left-truncated and interval-censored data. Furthermore, exploring residual-based
methods to assess the parametric assumptions an accelerated failure time model may be a
promising direction for further development.
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moonboot: An R Package Implementing
m-out-of-n Bootstrap Methods
by Christoph Dalitz and Felix Lögler

Abstract The m-out-of-n bootstrap is a possible workaround to compute confidence intervals
for bootstrap inconsistent estimators, because it works under weaker conditions than the
n-out-of-n bootstrap. It has the disadvantage, however, that it requires knowledge of an
appropriate scaling factor tau(n) and that the coverage probability for finite n depends
on the choice of m. This article presents an R package moonboot which implements
the computation of m-out-of-n bootstrap confidence intervals and provides functions for
estimating the parameters tau(n) and m. By means of Monte Carlo simulations, we evaluate
the different methods and compare them for different estimators.

1 Introduction

The bootstrap is a resampling method introduced by Efron (1979), which repeatedly simu-
lates samples of the same size n as the observed data by n-fold drawing with replacement.
Let us call this method the n-out-of-n bootstrap , in order to distinguish it from different sam-
pling schemes. For each of these samples, the estimator T of interest is computed, thereby
simulating a sample T∗

1 , . . . , T∗
R for the distribution of T, where R is the number of bootstrap

repetitions. For sufficiently smooth estimators T, this bootstrap distribution asymptotically
approaches the true distribution of T (Giné and Zinn, 1990; Shao and Tu, 1995), and it can
thus be used to construct confidence intervals for T. The coverage probability of confidence
intervals based on flipping the quantiles of the bootstrapped distribution T∗

1 , . . . , T∗
R at the

point estimate (“basic bootstrap”) can be shown to be first order accurate, i.e. up to O(n−1/2).
Under certain conditions, it is even possible to make the confidence intervals second order
accurate, i.e. up to O(n−1), by studentized sampling (“bootstrap-t”) or accelerated bias
correction (“BCa bootstrap”) (Hall, 1988; DiCiccio and Efron, 1996; Davison and Hinkley,
1997). Compared to other methods for estimating confidence intervals, the bootstrap is more
versatile because it neither relies on a likelihood function, nor does it require asymptotic
normality. The bootstrap has thus become a standard technique for estimating confidence
intervals, and it is even included in vanilla R with the package boot (Canty and Ripley,
2021), which implements five different methods in boot.ci().

There are, however, bootstrap inconsistent estimators, i.e., estimators for which the n-
out-of-n bootstrap fails to yield confidence intervals with an asymptotically correct coverage
probability. Examples include extreme order statistics (Bickel et al., 1997), the Grenander
estimator of a monotonous density (Sen et al., 2010), Chernoff’s estimator of the mode and
Tukey’s shorth (Léger and MacGibbon, 2006), or Chatterjee’s rank correlation index (Lin
and Han, 2024; Dalitz et al., 2024). See the discussion by Lin and Han (2024) for a literature
review and further examples. A possible workaround in these cases is the m-out-of-n
bootstrap , which samples only m < n observations. This can be done with or without
replacement. Politis and Romano (1994), who introduced this method, only considered
sampling without replacement, which they called subsampling . They have shown that the
m-out-of-n bootstrap without replacement works under much weaker conditions than the
n-out-of-n bootstrap, provided m is chosen such that, for n → ∞, m → ∞ and m/n → 0.
The only condition is that the estimator, suitably scaled by some factor τn, possesses a limit
distribution, whereas no smoothness of the estimator or uniformity of the convergence are
required. If the sampling is instead done with replacement, Bickel et al. (1997) have shown
that a similar result requires additional restrictions on the estimator. Sampling without
replacement thus works under weaker conditions than sampling with replacement, and, in
the present article, we therefore only consider sampling without replacement. Our package
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moonboot1 supports sampling both with and without replacement by means of an argument
replace, which is set to FALSE by default.

The wider applicability of the m-out-of-n bootstrap comes at a price, though. One
drawback is that the scaling factor τn must be known. Bertail et al. (1999) explained that it
must be chosen such that τ2

n Var(T) converges to some constant, and they also suggested
a method to estimate the scaling factor with another bootstrap. For root-n consistent
estimators, it is τn =

√
n, but not all estimators are root-n consistent, especially if they are

bootstrap inconsistent, and even if root-n consistency is conjectured it can be difficult to
prove (Lin and Han, 2024). Moreover, the m-out-of-n bootstrap can have less than first order
accuracy: Politis and Romano (1994) gave a theoretical example with accuracy O(n−1/3) for
an optimal choice of m, and even worse for other choices of m. That the accuracy depends
on the choice of m was demonstrated, too, in a simulation study by Kleiner et al. (2014).
And for the sample quantiles and sampling with replacement, Arcones (2003) has shown
that the choice m ∝ n2/3 is optimal. This raises the problem of how to choose m, and several
heuristics have been suggested in the literature (Politis et al., 1999; Götze and Račkauskas,
2001; Bickel and Sakov, 2008; Chung and Lee, 2001; Lee and Yang, 2020).

Due to these shortcomings, the usual n-out-of-n bootstrap is generally preferable for
bootstrap consistent estimators. However, there are bootstrap inconsistent estimators and
there is thus need for an R package that facilitates the application of the m-out-of-n bootstrap
by providing the required functions. To this end, we present a new package moonboot,
evaluate the algorithms implemented therein by means of Monte Carlo simulations, and
give recommendations and use cases for their application. The name of the package was
inspired by an article by Götze and Račkauskas (2001), who abbreviated the m-out-of-n
bootstrap as “moon bootstrap”.

2 The m-out-of-n bootstrap

Let X1, . . . , Xn be i.i.d. random variables, θ be some parameter of their underlying distri-
bution, and Tn = Tn(X1, . . . , Xn) be an estimator for θ. Let us additionally assume2 that
E(T2

n) < ∞. The m-out-of-n bootstrap requires that, for some scaling factor τn which behaves
for n → ∞ as

τm(n)

τn
→ 0 for m(n) → ∞ with

m(n)
n

→ 0, (1)

the estimator converges in distribution to some limit law when centered around the true
parameter θ and scaled with τn:

Sn = τn(Tn − θ)
n→∞−→ S in distribution (2)

Note that condition (1) implies that τn → ∞, and thus the convergence (2) requires that Tn
converges to θ in probability (in other words: Tn must be consistent), because it follows from
(2) that

P(|Tn − θ| > ε) = Fn(−τnε) + (1 − Fn(τnε))
n→∞−→ 0

where Fn is the cumulative distribution function of Sn. Moreover, if additionally the second
moment of Sn converges to some constant, the scaling factor τn is related to the rate of
decrease of the variance of Tn:

V = lim
n→∞

Var(Sn) = lim
n→∞

Var(τnTn) ⇒ Var(Tn) ∼
V
τ2

n
for n → ∞ (3)

This relationship allows one to determine τn theoretically by means of an analytical calcula-
tion, or to estimate it by means of Monte Carlo simulations.

1This article used version 2.0.x, available, e.g., from https://github.com/cdalitz/moonboot.
2Politis and Romano (1994) did not make this assumption, but it is necessary for the estimation of the scaling

factor τn with the method by Bertail et al. (1999).
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Politis and Romano (1994) have shown that, under the assumptions (2) and (1), a confi-
dence interval with asymptotic coverage probability (1 − α) can be constructed as[

Tn −
q(1 − α/2)

τn
, Tn −

q(α/2)
τn

]
(4)

where q(1 − α/2) and q(α/2) are the quantiles of the scaled bootstrap distribution τm(T∗
m −

Tn), where T∗
m denotes the bootstrap samples obtained by m-fold drawing without replace-

ment. In moonboot, this interval is implemented by mboot.ci(...,method="politis").

If the variance of Sn converges to some value σ2 and the limiting distribution of S is the
normal distribution with standard deviation σ, then the m-out-of-n bootstrap can alternatively
be used to estimate the variance σ2 and compute the standard confidence interval

Tn ± z1−α/2 σ̂∗
m with σ̂∗

m =
τm

τn

√
Var(T∗

m) (5)

In moonboot, this is implemented by mboot.ci(...,method="norm"). Although this inter-
val is only reasonable for asymptotically normal estimators, its coverage probability can
have a faster convergence to the nominal value than the interval (4) provided asymptotic
normality indeed holds (Dalitz et al., 2024).

Sherman and Carlstein (2004) observed that the scaling with τm/τn in (4) can be omitted
if the interval is centered around one of the Tm instead of Tn. They suggested using the
first m samples for computing Tm, but this is an arbitrary choice and thus even the location
of the confidence interval is not uniquely determined by the data. Moreover, the lack of
scaling increases the interval length. The greater length is compensated by the higher
volatility of the location so that the coverage probability still is close to the nominal value.
This does not hold, however, for drawing without replacement as m approaches n, and
a compromise must be made between small interval length and approximate coverage
probability. Sherman and Carlstein (2004) suggested a heuristic method for choosing m on
the basis of a double bootstrap, and they gave the rule of thumb to choose m between n1/2

and n2/3. However, due to the greater interval length, this method should only be used as
a last resort if the convergence rate τn is unknown and cannot be estimated from the data.
In moonboot, this method is implemented by mboot.ci(...,method="sherman") and the
method for estimating m by estimate.m.sherman().

2.1 Estimation of τn

According to Eq. (3), the formula for the scaling factor τn can be determined by an analytic
investigation of Var(Tn), which can not only be difficult for some estimators, but it requires
an ad hoc study of the specific estimator Tn under consideration. This thwarts the application
of the m-out-of-n bootstrap out-of-the-box.

Fortunately, the relationship (3) makes it possible to estimate τn by another bootstrap
(Bertail et al., 1999). If the variance Vm = Var(T∗

m) is estimated by sampling with different
subsampling sizes m and τn is assumed to be of the form τn = nβ, then the asymptotic
relationship (3) becomes

log Vm ≈ −2β log m + log V (6)

and β can be estimated with a least-squares fit. For the choice of the test values m, Bertail
et al. (1999) suggested mi = nγi , but wrote that “the difficult problem of choosing the
γi’s requires more work on a case-by-case basis”3. This casts doubt on the whole method,
because removing the necessity of a detailed asymptotic analysis of the estimator is the
whole point of estimating τn from the data. Indeed, we have not found a sequence of values
for the γi that worked equally well in all of our examples. We thus leave the choice of the
γ-sequence as an option to the user and use the default of five values between 0.2 and 0.7,
which worked reasonably well for some of our estimators.

3Note that Bertail et al. (1999) wrote nβi for the test values mi , but we have renamed them to nγi to avoid
confusion with the power β that is to be estimated.
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Figure 1: Volatility index after Politis et al. (1999) as a function of m for Chatterjee’s correlation (xicor)
and Tukey’s shorth for n = 1000.

Bertail et al. (1999) suggested the alternative of using quantiles instead of the variance,
but as the method involves taking logarithms, this makes no sense when the estimator tends
to be negative or close to zero. As a workaround, (Politis et al., 1999) suggested replacing
Vm in Eq. (6) with the average of quantile ranges

Qm =
1
J

J

∑
j=1

(
quantile(T∗

m, α
high
j )− quantile(T∗

m, αlow
j )

)
(7)

We have implemented this, too, with the choice α
high
j = 0.75 + j · 0.05 and αlow

j = 0.25 − j ·
0.05 for j = 0, . . . , 4, but the results in section 2.4.1 show that this makes almost no difference
in comparison to using the variance.

This method is implemented in moonboot by estimate.tau(), which is automatically
called by mboot.ci() when no rate for the parameter tau is provided.

2.2 Choice of m

According to Politis and Romano (1994), the m-out-of-n bootstrap asymptotically works for
any choice of m satisfying m → ∞ and m/n → 0 as n → ∞. This, however, leaves a wide
range of choices, e.g. m = cnβ for any β ∈ (0, 1), and the simulations in section 2.4 show that
the convergence rate of the coverage probability depends on the choice of m. It might thus
be desirable to choose m in a data-dependent way, for which different methods have been
suggested in the literature (Politis et al., 1999; Chung and Lee, 2001; Götze and Račkauskas,
2001; Bickel and Sakov, 2008; Lee and Yang, 2020).

Politis et al. (1999, ch. 9.3.2) suggested a minimum volatility method for estimating m,
which is based on the idea that there should be some range for m where its choice has
little effect on the estimated confidence interval endpoints. The optimal m is that with the
lowest “volatility” of the confidence interval, which is defined as the running standard
deviation of the interval endpoints around each specific choice for m. Before computing the
standard deviation, the interval endpoints should be smoothed out, too, by averaging over
the endpoints computed for the neighboring choices for m.

The algorithm has two parameters, the window width hci for smoothing the interval end
points and the window width hσ for computing the running standard deviation. Politis et al.
(1999) recommended hci = hσ = 2 or 3, which corresponds to a range of 5 or 7 values. To
avoid finding a minimum that is too close to n, as happens in Fig. 1b, we have restricted the
search range to values m < n/2. For efficiency reasons, Politis et al. (1999) recommended
not to try every m, but only a grid of equidistant values. Our implementation in the function
estimate.m.volatility() in the package moonboot therefore only tries out a maximum of
50 values for m.
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Figure 2: Kolmogorov distance between the CDFs of S∗
m and S∗

m/2 for the estimator of the maximum
of a uniform distribution with n = 200. The left results are for a single sampling per m, and the right
results for averaging over fivefold sampling.

The methods by Götze and Račkauskas (2001) and Bickel and Sakov (2008) are both
based on minimizing the distance between the distributions of S∗

m and S∗
m′ for different

choices m and m′ of the subsampling size. As a distance measure, both articles utilized
the Kolmogorov distance, i.e., the maximum distance between the cumulative distribution
functions. The methods differ in the values that are tried out for m and m′: Götze and
Račkauskas (2001) suggested searching the minimum among all values for m and m/2,
whereas Bickel and Sakov (2008) searched the minimum distance between mj and mj+1 for
mj = ⌈qjn⌉, with the recommendation to set q = 0.75. These methods are provided by
moonboot as estimate.m(...,method="goetze") and estimate.m(...,method="bickel"),
respectively.

Trying out all combinations of m and m/2, as suggested by Götze and Račkauskas (2001),
has a runtime of order O(Rn2), and it would thus be preferable to use a more efficient
minimum search like, e.g., a Golden Section Search (Press et al., 1992). Such algorithms,
however, are devised for deterministic functions, not for random functions. As can be seen
in Fig. 2, the Kolmogorov distance d(m, m/2) between two randomly sampled distributions
scatters considerably and this is only somewhat remedied by repeated sampling. This means
that even the usual initial bracketing process by going downhill with increasing step size
is unreliable when sampling from specific data, even if, on average, the function actually
has a non-boundary minimum4. We therefore stuck to the original suggestion by Götze and
Račkauskas (2001) and have implemented an exhaustive search over all even values for m.

Two other methods have been suggested in the literature, which we have not included
in moonboot. Chung and Lee (2001) based their method on the assumptions of root-n
consistency and asymptotic normality of the estimator. Although the assumption of root-
n consistency might be overcome by replacing factors n1/2 with τn in the formulas, the
normality assumption is essential for that method because it is based on an Edgeworth
expansion. In our tests with non-normal estimators, the coverage probabilities were very low
and did not even converge to the nominal value for large n. Lee and Yang (2020) suggested
using a double bootstrap for estimating the coverage probability for different values of m
and to choose the m where this estimate is close to the nominal value. In our experiments,
however, the estimated coverage probability based on an in-sample bootstrap was either
way too low or almost one and thus rarely close to the nominal value. For xicor, this behavior
was not even monotone in m, which made the method difficult to apply. Moreover, it has
a runtime complexity of O(R2n2), which made Monte Carlo simulations for its evaluation
infeasible.

4Fig. 2 in the article by Götze and Račkauskas (2001) shows that even this is not guaranteed, and the method
can thus fail.
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2.3 Functions provided by moonboot

Like in the boot package, the computation of the confidence interval is split into two steps:
the sampling procedure for simulating the bootstrap distribution T∗

m, and the computation
of the confidence interval therefrom. Using the same interface makes it easy for a user to
switch between boot and moonboot. Moreover, this interface is very flexible because it
allows for statistics defined on complicated data structures for which only the user knows
how to do the sub-indexing. The interface consists of the following two functions:

mboot(data, statistic, m, R=1000, replace=FALSE, ...)
Simulates the bootstrap distribution of the given estimator statistic, which must have
been defined as a function with two arguments: statistic(data,indices). For
multidimensional data, each row in data is assumed to be one data point. Additional
arguments are passed to statistic.

mboot.ci(boot, conf=0.95, tau=NULL, type=c("all", "basic", "norm"))
Estimates the confidence interval with Eqs. (4) (“basic”) or (5) (“norm”). tau must be a
function that computes τn from its argument n. If it is not provided, it is estimated with
estimate.tau() with the default settings of this function. According to the results
in Section 2.4.1, this is not recommended, though, and it is preferable to provide the
correct value for tau.

Calling these functions requires knowledge of the scaling factor τn and a choice for
the subsample size m. For the cases that τn is not known or that m shall be chosen in a
data-based way, two other functions are provided:

estimate.tau(data, statistic, R=1000, replace=FALSE, min.m=3,
gamma=seq(0.2, 0.7, length.out=5), method="variance", ...)

Estimates the scaling factor with the method by Bertail et al. (1999). The val-
ues for m are tried out as mi = nγi . min.m is the minimum sample size for which
the statistic makes sense and can be computed. The estimation is based on the
scaling behavior of the variance (method="variance") or of the quantile ranges
(method="quantile").

estimate.m(data, statistic, tau, R=1000, replace=FALSE, min.m=3,
method="bickel", params=NULL, ...)

Estimates m with the method by Bickel and Sakov (2008) (method="bickel"),
the method by Götze and Račkauskas (2001) (method="goetze"), or with the volatility
index (method="politis"). params is a list that can be used to pass additional
parameters for the underlying method, e.g. params=list(q=0.75) for the method by
Bickel and Sakov (2008). min.m is the minimum sample size for which the statistic
makes sense and can be computed.

2.4 Typical usage

Let us assume that you want to estimate a confidence interval for an estimator my.stat on
the basis of some data x. Then you must first define a wrapper function that computes
my.stat only for the data selected according to the provided indices:

boot.stat <- function(dat, indices) {
my.stat(dat[indices])

}

Without any knowledge about the asymptotic properties of my.stat, you can estimate a
95% confidence interval with:
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estimator θ̂ data model true θ τn
max(x) xi ∼ unif(0, 1) 1 n
moonboot::shorth(x) xi ∼ norm(0, 1) 0 n1/3

XICOR::xicor(x,y) xi ∼ unif(−1, 1), yi ∼ xi +N (0, 0.5) 0.3818147
√

n
mean(x) xi ∼ power(2, 0, 1) 3/4

√
n

Table 1: Tested estimators and data generation processes. x = (x1, . . . , xn) and y = (y1, . . . , yn) are the
simulated data sets.

boot.out <- mboot(x, boot.stat, m=sqrt(NROW(x)))
ci <- mboot.ci(boot.out, type="basic")
print(ci)

Beware that this automatically estimates the asymptotic convergence rate 1/τ2
n of the

variance of my.stat with the method by Bertail et al. (1999). It is thus better to provide this
rate in the parameter tau, if you happen to know it. For a root-n consistent estimator, e.g., it
is τn =

√
n and you can call mboot.ci() as follows5:

ci <- mboot.ci(boot.out, tau=function(n) { n^0.5 }, type="basic")

3 Examples

In order to evaluate the implemented methods, we applied them to four different estimators,
three of which were bootstrap inconsistent. A summary can be found in Tbl. 1, and the
detailed description follows. x1, . . . , xn denote the i.i.d. sample values drawn from the given
distributions.

Maximum of a uniform distribution (max). The maximum likelihood estimator for the
upper bound of a uniform distribution between zero and θ is θ̂ = max{x1, . . . , xn}. This
estimator was already given by Bickel et al. (1997) as an example of a bootstrap inconsistent
estimator. It has the nice property that its probability density g(t) can be readily computed
as

g(t) =
{

ntn−1θ−n for 0 ≤ t ≤ θ
0 else

(8)

This estimator is neither root-n consistent, nor asymptotically normal. The scaling factor τn
can be computed from Eq. (8) as

Var(θ̂) = θ2 n
(n + 2)(n + 1)2

n→∞∼ θ2

n2 ⇒ τn = n (9)

Tukey’s Shorth (shorth). This is the mean of the data points in the shortest interval that
contains half of the data. For symmetric distributions with a strongly unimodal density,
Andrews et al. (1972, p. 50ff) has shown that this estimator is cube root consistent, i.e.,
τn = n1/3. Bootstrap inconsistency of the shorth was mentioned by Léger and MacGibbon
(2006). We have implemented this estimator in moonboot as shorth() and applied it to
normally distributed data.

Chatterjee’s rank correlation (xicor). This coefficient ξn was introduced by Chatterjee
(2021) as an estimator for an index ξ(X, Y) that is zero, if the two random variables X and Y
are independent, and one, if Y is a measurable function of X. For continuous X and Y, this is
an interesting example of a root-n consistent estimator (Lin and Han, 2022) that is bootstrap
inconsistent (Lin and Han, 2024; Dalitz et al., 2024). We have used the implementation

5It is more efficient to just set tau=sqrt, of course, but the example uses a more complicated way for the sake of
clarity.
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method estimator true β (γ1, γ5) n estimated β n estimated β
variance mean 0.5 (0.2, 0.5) 100 0.4723 500 0.4870

(0.4, 0.8) 0.5964 0.5480
max 1.0 (0.2, 0.5) 0.6789 0.7730

(0.4, 0.8) 0.9595 1.0043
xicor 0.5 (0.2, 0.5) 0.1821 0.2945

(0.4, 0.8) 0.4914 0.5052
quantile mean 0.5 (0.2, 0.5) 100 0.5394 500 0.5164

range (0.4, 0.8) 0.6167 0.5600
max 1.0 (0.2, 0.5) 0.8355 0.8722

(0.4, 0.8) 1.1068 1.0872
xicor 0.5 (0.2, 0.5) 0.0332 0.2128

(0.4, 0.8) 0.4880 0.5171

Table 2: Dependency of the estimation of τn = nβ on the chosen endpoints for the sequence mi = nγi

and two different values for n. The better choice is marked in bold for each estimator. The estimated
values for the power β in τn have been averaged over 100 estimations.

xicor() from the package XICOR (Chatterjee and Holmes, 2023) to compute ξn, and the
function given by Dalitz et al. (2024) to compute ξ(X, Y) for the model X ∼ Y + ε, where ε
is normally distributed with zero mean and σ = 0.5. Note that we have used the original
definition of ξn by Chatterjee (2021), not the bias reduced form suggested by Dalitz et al.
(2024).

Mean of an unsymmetric distribution (mean). The mean is a very well-behaved statistic:
it is asymptotically normal, root-n consistent and bootstrap consistent. It can thus serve as
a simple test case of how well the m-out-of-n bootstrap performs for bootstrap consistent
estimators. We have simulated data according to the density f (x) = 3x2 for x ∈ [0, 1], which
was already used in a study by Dalitz (2017), and for which we have implemented the
random number generator rpower() in moonboot.

4 Results

For all four estimators, we have evaluated the methods for estimating τn and the different
choices for m in the m-out-of-n bootstrap without replacement by means of Monte Carlo
simulations. We have computed confidence intervals with a nominal coverage probability
Pcov of 0.95 and estimated the actual coverage probability by repeating the computation
N = 104 times. This means that the accuracy (i.e. the width of a 95% confidence interval)
of the estimated Pcov is about ±0.005. Using a larger N would have made the simulation
for the method by Goetze intractable. All simulations were done with R = 1000 bootstrap
repetitions.

4.1 Estimation of τn

Our simulations confirmed that the choice for the extreme values of the trial values mi = nγi

for i = 1, . . . , 5 indeed influence the accuracy of the estimation of τn. For the mean estimator,
e.g., we achieved the best results for γ1 = 0.2 and γ5 = 0.5, whereas this choice was poor
for xicor and max (see Tbl. 2). The results for estimation by means of the variance or quantile
ranges are similar. We thus conclude that it does not matter which method is used. The
results for xicor, however, are a warning that the estimation of τn with the method by Bertail
et al. (1999) can be grossly inaccurate, unless the range of the γi has been luckily guessed.
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4.2 Choice of m

To see how the coverage probability depends on the choice of m, we have first used the fixed
formula m = nβ with different choices for β. The results in Fig. 3 show that the coverage
probability indeed depends on the choice of m. Moreover, the optimal choice for β depends
on the estimator: β = 1/3 was, e.g., a decent choice for shorth, but a poor choice for xicor.

The results for the data based methods for choosing m are summarized in Fig. 4. The
method by Politis et al. (1999) cannot be recommended, because the resulting coverage
probability never approached the nominal value in our simulations. For the shorth, it was
only about 0.7 even for high values of n. For the other estimators, it was somewhat greater,
but nevertheless too small. This behavior can be understood from the curves showing m(n)
in Fig. 4: The method by Politis et al. (1999) always chooses an m proportional to n, which
means that the condition limn→∞ m/n = 0 is violated.

The methods according to Götze and Račkauskas (2001) and Bickel and Sakov (2008),
on the other hand, both showed for all estimators a similar coverage probability which
approached the nominal value with increasing n. The method by Bickel and Sakov (2008)
was slightly better for three of the four tested estimators. It should be noted, though, that
there was considerable fluctuation in the estimated values for m, as can be concluded from
the wide error bars in Fig. 4. As the method by Götze and Račkauskas (2001) has a much
higher runtime of order O(Rn2), the method by Bickel and Sakov (2008), which has a
runtime of order O(Rn), is preferable from a runtime perspective, too.

Out of curiosity, we have also compared the m-out-of-n bootstrap without replacement
with the ordinary n-out-of-n bootstrap for the estimator mean, which is bootstrap consistent
and thus allows for a comparison. For bootstrap consistent estimators with additional
smoothness properties6, it was generally proven by Bickel et al. (1997) that estimates based
on the m-out-of-n bootstrap with or without replacement are less efficient than those based
on the n-out-of-n bootstrap. The mean is an example of such an estimator. As can be seen
in Fig. 5, the m-out-of-n bootstrap is competitive with the basic bootstrap only for large
n ≳ 2000 and a luckily chosen m. For a data based choice of m with the method by Bickel
and Sakov (2008), the coverage probability is smaller, although the difference in the interval
length is small. This again demonstrates that, for bootstrap consistent estimators, the usual
n-out-of-n bootstrap is preferable, especially because the best choice for m is not known, in
general.

5 Violation of the assumptions

The assumptions (1) & (2), under which the m-out-of-n bootstrap works, are quite weak,
but there are nevertheless some estimators that violate these conditions. For example,

6Most notably that it is twice Fréchet differentiable.
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Figure 3: Coverage probability Pcov of the m-out-of-n bootstrap without replacement for the choices
m = nβ with β ∈ { 1
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4}. Note that the n-axis uses a logarithmic scale.
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Figure 4: Comparison of the three data based methods for choosing m in the m-out-of-n bootstrap
without replacement. The upper plots show the mean value m(n) together with error bars ± sd(m)
and a least squares fit log(m) = log(cnβ). The bottom plots show the resulting coverage probabilities.
Note that the n-axis uses a logarithmic scale.

inconsistent estimators, i.e., estimators that do not converge in probability to the true
parameter value, violate the assumptions because consistency is a necessary condition for
the assumptions to hold, as shown in section 2.2. Using moonboot in such a case is an error
on the side of the user, and if the user has determined the scaling factor τn by an analysis of
the estimator, he usually will be aware of this. It might be, however, that a user relies on the
fully automated estimation of τn provided by moonboot and thus is not aware of a violation
of the assumptions.

We therefore have tested our package with two unbiased, yet inconsistent estimators,
too. Please note that these estimators are bizarre examples and are not meant to be used in
practice. The first estimator is only the very first observation as an estimator for the mean µ
of the unsymmetric distribution moonboot::dpower(..,2,0,1):

µ̂1 = X1 (10)

The distribution of this estimator is the same for all sample sizes, and the scaling factor is
thus τn ∝ 1, which fulfills condition (2), but violates condition (1). The second estimator
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Figure 5: Comparison of the m-out-of-n bootstrap without replacement with the ordinary n-out-of-n
(basic) bootstrap for the bootstrap consistent estimator mean. Note that the n-axis uses a logarithmic
scale.

estimates the parameter λ of a Poisson distribution. For a Poisson distribution, both mean
and variance are λ, which allows for the construction of an unbiased estimator for λ from
the unbiased estimators X for the mean and S2 for the variance as follows:

λ̂n = nX − (n − 1)S2 =
n

∑
i=1

Xi −
n

∑
i=1

(
Xi − X

)2 (11)

As both X and S2 are root-n consistent estimators, the scaling factor for condition (2) to hold
is τn ∝ n−1/2, which again is in violation of condition (1).

As the assumptions (1) & (2) are only sufficient, but not necessary conditions for the
m-out-of-n bootstrap, we first estimated the coverage probability of the “basic” m-out-of-n
bootstrap interval when the correct scaling factor τn is provided. For µ̂1, the coverage
probability obviously neither depends on n nor on the subsampling size m, and it turned
out to be about 0.52 for a nominal 0.95 interval. For λ̂n, the coverage probability decreased
with increasing n and was only about 0.17 for n = 5000 and m =

√
n. These results show

that the m-out-of-n bootstrap indeed does not work for these inconsistent estimators.

We then estimated the scaling factors with estimate.tau() for n = 100 and n = 500,
and, for all parameter settings, the mean estimates for β in τn = nβ were less than 0.002
for µ̂1 and less than −0.40 for λ̂n. This means that, for these estimators, the violation of the
assumptions can be automatically detected due to suspiciously small estimated values for β.
In order to make the user aware of this issue, mboot.ci() gives a warning if τn decreases or
if its increase is suspiciously small, i.e., if it increases at a slower rate than n0.01.

6 Conclusions

The moonboot package provides ready-to-run implementations of the m-out-of-n bootstrap
and methods for estimating its parameters. Our simulations have shown that the quality of
the data based method for estimating the scaling factor τn is highly sensitive to a parameter
for which no universal recommendations can be made. It is thus recommended to estimate
τn by a different method, e.g., by model based Monte Carlo simulations of the variance of
the estimator and estimating it by means of Eq. (3). For a data based choice of m, the method
by Bickel and Sakov (2008) as implemented in estimate.m(...,method="bickel") can be
recommended, according to our simulations.

Acknowledgements

We thank the anonymous reviewers for their valuable comments and for the suggestion to
investigate the case when the assumptions are violated.

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 136

References

D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey. Robust
Estimators of Location. Princeton University Press, Princeton, USA, 1972. [p131]

M. A. Arcones. On the asymptotic accuracy of the bootstrap under arbitrary resampling
size. Annals of the Institute of Statistical Mathematics, 55:563–583, 2003. [p126]

P. Bertail, D. N. Politis, and J. P. Romano. On subsampling estimators with unknown rate of
convergence. Journal of the American Statistical Association, 94(446):569–579, 1999. [p126,
127, 130, 131, 132]

P. J. Bickel and A. Sakov. On the choice of m in the m out of n bootstrap and confidence
bounds for extrema. Statistica Sinica, 18(3):967–985, 2008. [p126, 128, 129, 130, 133, 135]

P. J. Bickel, F. Götze, and W. R. van Zwet. Resampling fewer than n observations: gains,
losses, and remedies for losses. Statistica Sinica, 7(1):1–31, 1997. [p125, 131, 133]

A. Canty and B. D. Ripley. boot: Bootstrap R (S-Plus) Functions, 2021. R package version
1.3-28. [p125]

S. Chatterjee. A new coefficient of correlation. Journal of the American Statistical Association,
116(536):2009–2022, 2021. doi: 10.1080/01621459.2020.1758115. [p131, 132]

S. Chatterjee and S. Holmes. XICOR: Robust and generalized correlation coefficients, 2023. R
package. https://CRAN.R-project.org/package=XICOR. [p132]

K.-H. Chung and S. M. Lee. Optimal bootstrap sample size in construction of percentile
confidence bounds. Scandinavian Journal of Statistics, 28(1):225–239, 2001. [p126, 128, 129]

C. Dalitz. Construction of confidence intervals. Technical Report 2017-01, Hochschule
Niederrhein, Fachbereich Elektrotechnik und Informatik, 2017. [p132]

C. Dalitz, J. Arning, and S. Goebbels. A simple bias reduction for Chatterjee’s correlation.
Journal of Statistical Theory and Practice, 18:51, 2024. doi: 10.1007/s42519-024-00399-y.
[p125, 127, 131, 132]

A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Application. Cambridge
University Press, 1997. [p125]

T. J. DiCiccio and B. Efron. Bootstrap confidence intervals. Statistical Science, 11(3):189–228,
1996. [p125]

B. Efron. Bootstrap methods: another look at the jackknife. Annals of Statistics, 7(1):1–26,
1979. [p125]

E. Giné and J. Zinn. Bootstrapping general empirical measures. The Annals of Probability,
pages 851–869, 1990. [p125]
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Rgof and R2sample: Testing and
Benchmarking for the Univariate
Goodness-of-Fit and Two-Sample
Problems
by Wolfgang Rolke

Abstract In a goodness-of-fit problem one attempts to see whether a data set might have been
generated by some theoretical probability distribution, possibly with unknown parameters.
In a (non-parametric) two-sample problem one wants to check whether two data sets could
have come from the same unspecified distribution. Both are among the oldest and best
studied problems in Statistics. While they seem quite different, there are a number of
similarities between these problems, not the least of which is that many methods exist that
have versions for both. The two packages discussed in this article bring together a large
number of methods and many different scenarios, most of which do not yet have existing
implementations. They also include routines that allow a developer of a new method to
quickly compare its performance (aka power) to those included in the package for a large
number of cases.

1 Introduction

Both the goodness-of-fit and the nonparametric two-sample problem have histories going
back a century, with many contributions by some of the most eminent statisticians. In the
goodness-of-fit problem we have a sample (x1, .., xn) drawn from a random variable X. We
also have a probability distribution F, possibly with unknown parameters, and we wish
to test H0 : X ∼ F. In the two-sample problem we also have a second sample (y1, .., ym)
drawn from some distribution G, and here we want to test H0 : F = G, that is we want to
test whether the two data sets were generated by the same (unspecified) distribution.

The literature on both of these problems is vast and steadily growing. Detailed discus-
sions can be found in D’Agostini and Stephens (1986), Thas (2010), Raynor et al. (2012). For
an introduction to Statistics and hypothesis testing in general see Casella and Berger (2002)
or Bickel and Doksum (2015).

Some tests such as the Kolmogorov-Smirnov test are already implemented for both
problems in base R R Core Team (2021). Many others can be run through various existing
packages, for example the Anderson-Darling goodness-of-fit test is available in the R pack-
age ADGofTest Bellosta (2011). There are a number of packages with tests that focus on a
specific distribution, for example the nortest Gross and Ligges (2015) package has five tests
for composite normality. There are also packages that allow the user to run several tests, for
example the twosamples Dowd (2022), dgof Taylor and Emerson (2009), EnvStats Millard and
Kowarik (2017) and goftest Faraway et al. (2007) packages.

However, there are no packages that bring together as many tests as R2sample and Rgof.
Moreover, some methods do not currently have any R implementations, for example Zhang’s
test, Lehmann-Rosenblatt, the Wasserstein p1 test and almost all tests for discrete data.

Both packages have the following features:

• many methods are implemented for both continuous and discrete data.

• the methods are implemented using both Rcpp Eddelbuettel et al. (2024) and parallel
programming.

• the packages include routines to run several test and then find a corrected p value for
the combination of tests.
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• some of the methods allow for data with weights.

• the routines allow for a random sample size, assumed to come from a Poisson distri-
bution.

• in the two-sample problem some methods make use of large-sample formulas, there-
fore allowing for very large data sets.

• the routines can also use any other user-defined tests.

• the packages include routines to easily carry out power studies and draw power
graphs.

• the packages include routines to easily compare the power of a new test to those
included in the packages.

• in the two-sample package the user can provide a routine that generates new data
from a model. This can be used as an alternative to the permutation method to find p
values.

There are several reasons for including tests for discrete data. In the context of a computer
program this means a finite (and usually fairly small) number of different values which then
repeat many times.

• Tests for discrete data such as from Binomial or Poisson distributions are of interest in
their own right.

• There are currently almost no implementations of either goodness-of-fit or two-sample
methods for discrete data in R.

• It also makes it possible to apply the tests to very large continuous data sets via dis-
cretization. While a goodness-of-fit test for a continuous data set with (say) 100,000
observations can be done in a matter of a few minutes, for larger data sets the calcula-
tions will be quite time consuming. Data sets with many millions of observations are
not uncommon today. Binning the data and then running the corresponding discrete
tests however is quite fast.

• There are also situations where the underlying distribution is continuous but the data
is collected in binned form. This is for example often the case for data from high energy
physics experiments and from astronomy because of finite detector resolution. In some
fields this is referred to as histogram data. For the purpose of either the goodness-of-fit
or two-sample problems standard discrete data and histogram data can be treated the
same, with the midpoints of the bins used as observations where such are needed.

For the two-sample problem p values are found via the permutation method. If the data
sets are large for some of the tests the p values can be found via large sample approximations.
In the goodness-of-fit case p values are always found via simulation. While large sample
approximations are know for some methods such as Kolmogorov-Smirnov and Anderson-
Darling, there are no known large sample theories for most of the other tests. Moreover,
in the more common situation where the distribution under the null hypothesis depends
on parameters, which have to be estimated from the data, even those tests no longer have
known large sample theories and one is forced to use simulation to find p values.

The packages Rgof Rolke (2023b) and R2sample Rolke (2023a) are available from CRAN.

2 Goodness-of-fit / two-sample hybrid problem

As was mentioned in the abstract, while the goodness-of-fit problem and the two-sample
problem are quite different, they also share certain features such as methods that exist for
both. On a deeper level they are both hypothesis tests in the Fisherian sense, in that they are
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tests without an alternative hypothesis. These tests are usually done for confirmation, that
is in the goodness-of-fit case the researcher wants to make sure that his assumed probability
model is reasonably good, without any consideration of how it might be wrong.

There is yet another connection between these types of problems. Sometimes one wants
to carry out a goodness-of-fit test. However, the model under the null hypothesis is quite
complex with a large number of nuisance parameters Therefore calculating values from the
distribution function requires integration in high dimensions and is at present not feasible.
It is however possible to sample from the distribution. So the problem now changes from a
goodness-of-fit to a two-sample problem.

If the null hypothesis in the goodness-of-fit problem does not fully specify the distri-
bution but just its functional form one can then estimated the parameters from the data.
However, in this situation the permutation method for estimating the p value fails, it is ex-
tremely conservative. Instead the user can provide a routine to generate new data, essentially
using a parametric bootstrap approach.

3 The types of problems

The problems that can be analyzed with these packages are as follows:

• Goodness-of-Fit Problem - Continuous Data: We have a sample x of size of n drawn
from some random variable X. F is a continuous probability distribution, which may
depend on unknown parameters. We want to test X ∼ F.

• Goodness-of-Fit Problem - Discrete Data: We have a set of values vals and a vector
of counts x. F is a discrete probability distribution, which may depend on unknown
parameters. We want to test X ∼ F.

• Two-sample Problem - Continuous Data: We have a sample x of size of n, drawn
from some unknown continuous probability distribution F, and a sample y of size m,
drawn from some unknown continuous probability distribution G. We want to test
F = G.

• Two-sample Problem - Discrete Data: We have a set of values vals and vectors of
counts x and y, drawn from some unknown discrete probability distributions F and G.
We want to test F = G.

In all of the above problems, the sample size can either be fixed or follow a Poisson
distribution with a known rate. In all cases the data can be weighted. In all cases the user
can provide his/her own testing method.

4 The methods

In the following we list the methods included in the packages. Most are well known and
have been in use for a long time. For their details see the references. They are:
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Rgof R2sample
Method Continuous Discrete Continuous Discrete

Chi-Square Tests Yes Yes Yes Yes
Kolomorov-Smirnov Yes Yes Yes Yes
Kuiper Yes Yes Yes Yes
Cramer-von Mises Yes Yes Yes Yes
Anderson-Darling Yes Yes Yes Yes
Zhang’s tests Yes No Yes No
Wasserstein Yes Yes Yes Yes
Watson’s test Yes Yes No No
Lehmann-Rosenblatt No No Yes Yes

There are of course many other tests that could have also been implemented in the
routines. All the tests included share the following features. They are true omnibus tests,
that is not designed with any specific alternative in mind. For this reason we did not include
the class of Neyman’s smooth tests, for example. Moreover they are all tests that do not
depend on some tuning parameters. The exception here are the chi-square tests, which
depend on the choice of the number and shape of the bins. The chi-square tests are included
because they are so well known and widely used, even so their power often leaves much to
be desired.

We denote the cumulative distribution function (cdf) by F, its empirical distribution
function (edf) by F̂. In the case of the two-sample problem we also have the edf of the second
data set Ĝ and the edf of the combined data set Ĥ.

1. Chi-Square Tests

In the case of continuous data the routines include eight chi-square tests, with either equal
size (ES) or equal probability (EP) bins, either a large (nbins[1]=50) or a small (nbins[2]=10)
number of bins and with either the Pearson (P) or the log-likelihood (L) formula. Here
and in what follows nbins and similar items are arguments to the routines that the user can
change. So the combination of a large number of equal size bins and Pearson’s chi-square
formula is denoted by ES-l-P, etc.

In the case of discrete data the type and the number of classes is already given, and for a
second test these are combined for a total of nbins[2]=10. Again both chi-square formulas
are used. So here the case of a large number of bins and Pearson’s formula is denoted by l-P.

In all cases neighboring bins with low counts are joined until all bins have a count
of at least minexpcount=5. In all cases the p values are found using the usual chi-square
approximation.

If parameters have to be estimated, this is done via the user-provided routine phat. As
long as the method of estimation used is consistent and efficient and the expected counts
are large enough the chi-square statistic will have a chi-square distribution, as shown by
Fisher (1922) and Fisher (1924).

Alternatively we can use the argument ChiUsePhat=FALSE. In that case the value pro-
vided by phat is used as a starting point but the parameters are estimated via the method of
minimum chi-square. This method has the desirable feature that if the null hypothesis is
rejected for this set of values, it will always be rejected for any other as well. For a discussion
of this estimation method see Berkson (1980).

2. Kolmogorov-Smirnov (KS)

This test is based on the largest absolute distance between F and F̂ in the goodness-of-fit
problem and between F̂ and Ĝ in the two-sample problem. The tests were first proposed in
Kolmogorov (1933), Smirnov (1939) and are among the most widely used tests today. There
is a known large sample distribution of the test statistic in the two-sample problem, which
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is used either if both sample sizes exceed 10000 or if the argument UseLargeSample=TRUE is
set. In the goodness-of-fit case the large sample theory is known only in the case of a fully
specified distribution under the null hypothesis. Because this is rarely of interest the large
sample approximation is not used.

3. Kuiper (K)

This test is closely related to Kolmogorov-Smirnov, but it uses the sum of the largest
positive and negative differences as a test statistic. It was first proposed in Kuiper (1960).

4. Cramer-vonMises (CvM)

This test is based on the integrated squared differences:

• Goodness-of-Fit:
∫ ∞
−∞

(
F(x)− F̂(x)

)2
dF(x)

• Two-Sample:
∫ ∞
−∞

(
F̂(x)− Ĝ(x)

)2
dĤ(x)

The goodness-of-fit version is discussed in Cramer (1928) and von Mises (1928). The
two-sample version was proposed in Anderson (1962).

5. Anderson-Darling (AD)

This test is similar to the Cramer-vonMises test but with an integrand that emphasizes
the tails:

• Goodness-of-Fit:
∫ ∞
−∞

(F(x)−F̂(x))
2

F(x)(1−F(x) dF(x)

• Two-Sample:
∫ ∞
−∞

(F̂(x)−Ĝ(x))
2

Ĥ(x)(1−Ĥ(x)
dĤ(x)

It was first proposed in Anderson and Darling (1952). The two-sample version is dis-
cussed in Pettitt (1976).

6. Zhang’s tests (ZA, ZK and ZC)

These tests were proposed in Zhang (2002) and Zhang (2006). They are variations of test
statistics based on the likelihood ratio and different weight functions. Note that these tests
do not work for discrete data, that is, they never achieve the correct type I error rate. They
are therefore not run for discrete data.

7. Wasserstein p=1 (Wassp1)

A test using the Wasserstein p=1 metric. It is based on a comparison of quantiles. In
the goodness-of-fit case these are the quantiles of the data set and the quantiles of the cdf,
and in the two-sample problem they are the quantiles of the individual data sets and the
quantiles of the combined data set. If n = m the test statistic in the continuous case takes a
very simple form: 1

n ∑n
i=1 |xi − yi|. In the goodness-of-fit problem for continuous data the

user has to supply a function that calculates the inverse of the cdf under the null hypothesis.
For a discussion of the Wasserstein distance see Vaserstein (1969).

There are also a number of tests which are only implemented for either the goodness-of-fit
or the two-sample problem:

8. Watson’s Test (W), Goodness-of-Fit Problem
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This test is closely related to the Cramer-vonMises test. It adjust that tests statistic via a
squared difference of the mean of F̂(xi) and 0.5. It was proposed in Watson (1961).

9. Lehmann-Rosenblatt (LR), Two-sample Problem

Let ri and si be the ranks of x and y in the combined sample, then the test statistic is
given by

1
nm(n + m)

[
n

n

∑
i=1

(ri − 1)2 + m
m

∑
i=1

(si − 1)2

]

For details see Lehmann (1951) and Rosenblatt (1952).

5 Simultaneous inference

As no single test can be relied upon to consistently have good power, it is reasonable to
employ several of them. We would then reject the null hypothesis if any of the tests does so,
that is, if the smallest p value is less than the desired type I error probability α.

This procedure clearly suffers from the problem of simultaneous inference, and the true
type I error probability will be much larger than α. It is however possible to adjust the p
value so it does achieve the nominal type I error. A sketch of the algorithm is as follows:

• generate a new data set under the null hypothesis, run the desired tests and record the
smallest p value.

• repeat B(=1000) times.

• use the empirical distribution function F̂p of the B smallest p values to estimate their
distribution function.

• apply F̂p to the smallest p value of the data set. This is essentially the probability
integral transform.

Here is an example: say the null hypothesis specifies a uniform [0, 1] distribution and
a sample size of 250. Next we find the smallest p value in each run for two selections of
four methods. One includes the methods by Wilson, Anderson-Darling, Zhang’s ZC and
a chi square test with a small number of bins and using Pearson’s formula. This selection
has good power against a large number of alternatives. As a second selection we use the
methods by Kolmogorov-Smirnov, Kuiper, Anderson-Darling and Cramer-vonMises. For
the case where the null hypothesis specifies a Uniform [0, 1] distribution these tests turn out
to be highly correlated.

Next we find the empirical distribution function for the two sets of p values and draw
their graphs. We also add the curve for the cases of four identical tests and the case of four
independent tests, which of course is the Bonferroni correction. These are shown in figure 1.

As one would expect, the two curves for the p values fall between the extreme cases of
total dependence and independence. Moreover, the curve of our good selection is closer to
the curve of independence than the selection of correlated methods.

Finally we simply have to apply this function to the smallest p value found for the actual
data.

Rgof::gof_test_adjusted_pvalues and R2sample::twosample_test_adjusted_pvalues find these
adjusted p values. Their arguments are the same as those of Rgof::gof_test and
R2sample::twosample_test, see the section Usage 2.7. For an example that uses this adjustment
method in the context of simultaneous confidence bands see Aldor-Noima et al. (2013).
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Figure 1: Distribution functions of the smallest p value for four dependence cases.

6 Special circumstances

6.1 Random sample size

In some cases the sample size is not determined at the beginning of the experiment but
is a consequence of other factors. As an example, in high energy physics experiments the
sample size is determined by the luminosity (aka energy) at which the accelerator is run,
and by how long. In such a situation the distributions of the test statistics are different from
the fixed sample size case, and there are no known null distributions. In the case of the
chi-square tests, for example, the bin counts are now independent according to the theory
of marked Poisson processes, and therefore the degrees of freedom need to be adjusted
accordingly. Often though it is reasonable to assume that the sample size has a Poisson
distribution. If so the routines in Rgof and R2sample have an argument rate to indicate a
random sample size from a Poisson distribution with rate λ.

6.2 Weighted samples

Another variation is as follows. Say we have a continuous random variable X and a weight
function w. There also exists a random variable Y such that E[ f (Y)] = E[ f (X)w(x)] for
(almost) any function f . In other words, these are weights as one encounters in importance
sampling. Say we wish to test whether the distribution of Y is F but using observations from
X with their weights. This is done very easily with the routines by supplying the weights as
arguments. These weights can then be used to find for example the empirical distribution
function, and with it run tests such as Kolmogorov-Smirnov or Anderson-Darling.

One field were this situation is common is high energy physics. There we have the
Standard Model, the current best model for explaining the physics of collision experiments
in particle accelerators such as the Large Hadron Collider at CERN. Say we wish to test
some specific part of this theory, that is we want to do a goodness-of-fit test. However, the
Standard Model depends on dozens of parameters. The calculations of the probabilities
needed for a goodness-of-fit test are at present not feasible. Among other issues they would
require integration in very high dimensions. However, it is possible to generate a Monte
Carlo sample from the Standard Model, so instead we can run a two-sample test, comparing
the data to the Monte Carlo sample. There is however another problem. The Monte Carlo
sampling of the Standard Model is very computationally expensive. There exist a number
of such samples, each for a specific set of the parameters of the Standard Model. Now if the
test we wish to do requires a sample with a slightly different set of parameters we can use
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an existing sample and importance sampling. The routines in the packages discussed here
make this very easy.

7 Usage

7.1 Goodness-of-fit problem - testing

The routine to carry out hypothesis tests is Rgof::gof_test. It’s arguments are

• x: a data set, either the continuous outcomes or the counts in the discrete case.

• vals=NA: all possible values of the discrete random variable, or NA if data is continu-
ous.

• pnull: a function to calculate values for the cdf.

• rnull: a function to generate new data under the null hypothesis.

• w=function(x) -99: a weight function if weights are present, or -99 if not.

• phat=function(x) -99: a function to estimate parameters, or -99 if null hypothesis is
simple and no parameters are estimated.

• TS: routine to calculate test statistics other than those included.

• TSextra: a list passed to TS.

• nbins=c(50, 10): number of bins to use in chi-square tests.

• rate=0: rate of Poisson if sample size is random, 0 if sample size is fixed.

• Range=c(-Inf, Inf): range of continuous random variable.

• B=5000: number of simulation runs.

• minexpcount=5: required minimal expected counts for chi-square tests.

• maxProcessors=1: number of cores to use for parallel processing, 1 means no parallel
programming.

• doMethod=“all”: vector with names of methods, if not all are to be included.

The format of the routines pnull, rnull and w has to be as follows. In the continuous
case we will use as an example the normal distribution and in the discrete case the Binomial
distribution with 10 tries.

• Continuous data, no parameter estimation: a function of one variable, the data. For
example, pnull=function(x) pnorm(x)

• Continuous data, with parameter estimation: a function of two variables, the data and
a vector of parameter estimates. For example, pnull=function(x,p) pnorm(x,p[1],p[2])

• Discrete data, no parameter estimation: a function without arguments. For example,
pnull=function() pbinom(0:10, 10, 0.5)

• Discrete data, with parameter estimation: a function of one variable, a vector of
parameter estimates. For example, pnull=function(p) pbinom(0:10, 10, p)
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Continuous data

As an example we generate N = 1000 observations from a standard normal distribution.
Then we test to see whether the data comes from a normal distribution with the mean
estimated from the data, so in this case the null hypothesis is true:

pnull = function(x, mu=0) pnorm(x, mu) # cdf under null hypothesis
rnull = function(mu=0) rnorm(1000, mu) # generate data under null hypothesis
phat = function(x) mean(x) # estimate parameter
x = rnull() # data from distribution under the null hypothesis
Rgof::gof_test(x, NA, pnull, rnull, phat=phat)

#> $statistics
#> KS K AD CvM W ZA ZK ZC
#> 0.0208 0.0407 0.6500 0.0926 0.0911 3.2940 1.4780 12.4900
#> ES-l-P ES-s-P EP-l-P EP-s-P ES-l-L ES-s-L EP-l-L EP-s-L
#> 37.4800 9.6060 51.7300 11.9200 38.5700 9.4030 50.2600 12.4700
#>
#> $p.values
#> KS K AD CvM W ZA ZK ZC
#> 0.4712 0.4712 0.2328 0.2546 0.2354 0.6292 0.7692 0.5828
#> ES-l-P ES-s-P EP-l-P EP-s-P ES-l-L ES-s-L EP-l-L EP-s-L
#> 0.4011 0.2120 0.3302 0.1550 0.3542 0.2250 0.3840 0.1315

If we wish to find an adjusted p value for a combination of tests we can run

Rgof::gof_test_adjusted_pvalue(x, NA, pnull, rnull, phat=phat)

#> p values of individual tests:
#> W : 0.128
#> ZC : 0.232
#> AD : 0.08
#> ES-s-P : 0.212
#> adjusted p value of combined tests: 0.2267

Next we generate a data set from a t distribution with 5 degrees of freedom, so now the
null hypothesis is false. Here and in the examples that follow we only show the p values of
the tests:

y = rt(1000, 5) # data where null hypothesis is false
Rgof::gof_test(y, NA, pnull, rnull, phat=phat)[["p.values"]]

#> KS K AD CvM W ZA ZK ZC
#> 0.0106 0.0106 0.0000 0.0048 0.0034 0.0000 0.0000 0.0000
#> ES-l-P ES-s-P EP-l-P EP-s-P ES-l-L ES-s-L EP-l-L EP-s-L
#> 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0408

If the quantile function (aka inverse) of the cdf is known it can be included. It is then
used in some of the chi-square tests and the Wasserstein test. It can be passed to the routine
that finds the test statistic(s) via the list TSextra:

TSextra = list(qnull=function(x, mu) qnorm(x, mu))
Rgof::gof_test(x, NA, pnull, rnull, phat=phat, TSextra=TSextra)[["p.values"]]

#> KS K AD CvM W ZA ZK ZC Wassp1
#> 0.4710 0.4710 0.2288 0.2444 0.2238 0.6198 0.7664 0.5762 0.1760
#> ES-l-P ES-s-P EP-l-P EP-s-P ES-l-L ES-s-L EP-l-L EP-s-L
#> 0.4011 0.2120 0.5634 0.4413 0.3542 0.2250 0.5182 0.4210
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A user can also use this routine to run their own test. For example, let’s say we wish to
include the Neyman’s smooth test from the DDST (P Niecek 2016) package:

NeymanSmoothTest = function(x, pnull, param) {
ts=as.numeric(unlist(ddst::ddst.norm.test(x))[1])
names(ts) = "DDST"
ts

}
Rgof::gof_test(x, NA, pnull, rnull, phat=phat, TS=NeymanSmoothTest)[["p.values"]]

#> DDST
#> 0.5482

Rgof::gof_test(y, NA, pnull, rnull, phat=phat, TS=NeymanSmoothTest)[["p.values"]]

#> DDST
#> 0

The routine has to have the following form:

newTS(x, pnull, param, TSextra)

x is the data set and pnull the distribution function under the null hypothesis, as de-
scribed above. param is the estimated parameters in the case of a composite null hypothesis
and is ignored in the case without parameter estimation. The argument TSextra, a list of
items also needed for calculating the test statistic, is optional.

Next we assume that the sample size was random and drawn from a Poisson distribution
with rate 950. One of the consequences of this is that now the degrees of freedom of the
chi-square tests is the number of bins - number of estimated parameters rather than number
of bins - 1 - number of estimated parameters.

Rgof::gof_test(x, NA, pnull, rnull, phat=phat, TSextra=TSextra, rate=950)[["p.values"]]

#> KS K AD CvM W ZA ZK ZC Wassp1
#> 0.4736 0.4736 0.2406 0.2580 0.2372 0.6206 0.7642 0.5782 0.1904
#> ES-l-P ES-s-P EP-l-P EP-s-P ES-l-L ES-s-L EP-l-L EP-s-L
#> 0.2602 0.1210 0.4009 0.2779 0.2936 0.1517 0.4539 0.2957

As an example for the use of importance sampling weights we generate the data from a
mixture of two normal random variables but as above test for a simple normal distribution
with unknown mean.

rnull = function(mu=0) c(rnorm(500, -1), rnorm(500, 1))
x = rnull()
w=function(x, mu=0) dnorm(x, mu)/(dnorm(x, -1)/2+dnorm(x, 1)/2)
Rgof::gof_test(x, NA, pnull, rnull, w=w, phat=phat)[["p.values"]]

#> KS K CvM AD
#> 0.7990 0.7718 0.6330 0.4516

Rgof::gof_test(y, NA, pnull, rnull, w=w, phat=phat)[["p.values"]]

#> KS K CvM AD
#> 0 0 0 0
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Discrete data

Here we will consider the following example. The null hypothesis specifies a binomial
distribution with n = 100 trials and a success probability p, estimated from the data. As an
example where the null hypothesis is false we generate data that is a mixture of a binomial
distribution with p = 0.5 and a discrete uniform distribution on the integers from 30 to 70.

set.seed(1234)
vals = 0:100 # all possible values
pnull = function(p=0.5) pbinom(0:100, 100, p)
rnull = function(p=0.5) table(c(0:100,rbinom(1000, 100, p)))-1
phat = function(x) mean(0:100*x)/1000
x = rnull()
Rgof::gof_test(x, vals, pnull, rnull, phat=phat)$p.values

#> KS K AD CvM W Wassp1 l-P s-P l-L s-L
#> 0.2320 0.2752 0.4858 0.3132 0.2460 0.6257 0.1599 0.5592 0.1456 0.1456

y = table(c(0:100, rbinom(900, 100, 0.5), sample(30:70, size=100, replace=TRUE)))-1
Rgof::gof_test(y, vals, pnull, rnull, phat=phat)$p.values

#> KS K AD CvM W l-P s-P l-L s-L
#> 0.3846 0.3290 0.0000 0.0174 0.0114 0.0000 0.0000 0.0000 0.0000

Here we have an example where most tests correctly reject the null hypothesis but some
do not.

Note that the routine rnull has to insure that all values of vals are present, even if many
have counts of zero.

Again the user can provide his/her own test statistic. The routine has to be as follows:

newTS(x, pnull, param, vals, TSextra)

Here x is the counts and pnull the distribution function under the null hypothesis
as described above. param is the estimated parameters in the case of a composite null
hypothesis and is ignored in the case without parameter estimation. vals is the set of values
where P(X = vals) > 0. The argument TSextra, a list of items also needed for calculating
the test statistic, is optional.

7.2 Goodness-of-fit problem - power estimation

To estimate the power of the various tests we can use the function gof_power. It’s arguments
are the same as gof_test, as well as

• ralt: a function that generates data under the alternative hypothesis.

• param_alt: a vector of values to be passed to ralt.

• With.p.value=FALSE: set to TRUE if the new user supplied routine calculates p values.

• alpha=0.05: type I error probability to be used for test.

• B=1000: number simulation runs.

As an example say we wish to estimate the power of the tests when the null hypothesis
specifies a normal distribution, but the data comes from a t distribution. We have 500
observations, and both the mean and standard deviation are estimated from the data. The
package also includes the routine plot_power, which has as its argument the output from the
gof_power command and draws the power curve. It is shown in figure 2.
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pnull = function(x, p=c(0,1)) pnorm(x, p[1], p[2]) # cdf under null hypothesis
rnull = function(p=c(0,1)) rnorm(500, p[1], p[2]) # generate data under null hypothesis
phat = function(x) c(mean(x), sd(x)) # estimate parameters
TSextra = list(qnull = function(x, p=c(0,1)) qnorm(x, p[1], p[2])) # quantile function
ralt = function(df) rt(500, df) # generate data under alternative
tmp=Rgof::gof_power(pnull, NA, rnull, ralt, param_alt=4*1:10, phat=phat, TSextra = TSextra)
Rgof::plot_power(tmp, "df", "Standard Normal vs t Distributions")

Figure 2: Power graph for goodness-of-fit-tests of normal vs t distributions, with mean and standard
deviation estimated from the data.

plot_power has the arguments

• pwr: a matrix, usually the output of the gof_power command.

• xname: name of parameter of ralt.

• title=" ": title of graph

• Smooth=TRUE: should curves be smoothed?

• span=0.25: parameter for smoothing routine.

Power estimation for discrete data works the same. As an example consider the following.
One data set comes from a Poisson distribution, restricted to the set of integers from 70 to
140. The second data set is a 50-50 mixture of Poisson random variables with a rate of 100
and a rate of 100 + λ. The power graph is in figure 3.

vals=70:140
pnull=function(lambda) (ppois(70:140, lambda)-ppois(69,lambda))/(ppois(140, lambda)-ppois(69,lambda))
rnull=function(lambda) {

vals=70:140
x=rpois(1000, lambda)
x[x<70]=70
x[x>140]=140
x=table(c(70:140, x))-1

}
phat=function(x) sum(70:140*x)/1000
ralt=function(lambda) {

vals=70:140

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 150

x=c(rpois(500, 100), rpois(500, 100+lambda))
x[x<70]=70
x[x>140]=140
x=table(c(70:140, x))-1

}
tmp=Rgof::gof_power(pnull, vals, rnull, ralt, param_alt=2*0:8, phat=phat)
Rgof::plot_power(tmp, "lambda", "Poisson vs Mixture of Poisson Distributions")

Figure 3: Power graph for goodness-of-fit-tests of Poisson vs a mixture of Poisson distributions, with
the rate estimated from the data.

7.3 Two-sample problem - testing

p values are generally found using the permutation method. The idea of a permutation
test is simple. Say we have data sets x1, .., xn and y1, .., ym. They are combined into one
large data set x1, .., xn, y1, .., ym, permuted and split again in sets of size n and m. Under
the null hypothesis these new data sets come from the same distribution as the actual data.
Therefore calculating the tests statistics for them and repeating many times one can build up
the distributions of the test statistics and find p values from them.

In the case of continuous data the routines also allow for the use of large sample formulas
for some of the tests. In the discrete case none of the methods (outside of the chi-square
tests) has a known large sample theory.

In the discrete case the permutation method is somewhat more complicated. Say we
have data sets with values v1, .., vk and counts x1, .., xk, y1, .., yk. One can then simply expand
these to yield a large data set with x1 + y1 v1’s, x2 + y2 v2’s and so on. Then this vector is
permuted and split as described above. The drawback of this sampling method is that its
calculation speed increases with the sample size and would be impossible for data sets with
very large counts.

Alternatively R2sample provides the following option. One can show that the distribution
of the permuted data sets is as follows: let n = ∑ xi and m = ∑ yi, then

P(XXX = aaa|xxx, yyy) =

[
k

∏
j=1

(
xj + yj

aj

)]
/
(

n + m
n

)
for any aaa such that 0 ≤ ai ≤ xi; i = 1, .., k and ∑ ai = n.

It is possible to sample from this distribution as follows: Let N and M be the sample
sizes of the two data sets, respectively. Let p = N/(N + M) be the proportion of events
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in the first data set. Say that in a data set we have x1 observations of the smallest discrete
value v1 in the first data set and y1 in the second. We can then generate a random sample
by drawing an observation from a Binomial with parameters x1 + y1 and p. We repeat this
for all values of the discrete random variable. We also need to insure, though, that the total
number of observations in the first simulated data set is again N and in the second data set
M. If this is not so, we randomly choose two values, giving a higher priority for those with
high counts, and flipping one observation between the two data sets. This is repeated until
the simulated data set has N events total.

The routine is twosample_test. It’s arguments are

• x, y: the two data sets, either the observations in the continuous case or the counts in
the discrete case. x can also be a list with elements x and y, and then y is ignored.

• vals=NA: the possible values of the discrete random variables, or NA for continuous
data.

• TS: routine to calculate test statistics other than those included

• TSextra: a list passed to TS

• wx = rep(1, length(x)): weights for x data

• wy = rep(1, length(y)): weights for y data

• B=5000: number of simulation runs

• nbins=c(50,10): number of bins to use in chi -quare tests

• minexpcount=5: required minimal expected counts for chi-square tests

• maxProcessors: number of cores to use for parallel processing, default is 1 less than
are detected on computer

• UseLargeSample: should large sample approximations be used instead of permuta-
tion?

• samplingmethod="Binomial": sampling method for discrete data.

• rnull: a function that generates data from a model, possibly with parameter estimation.
This is needed in the goodness-of-fit/two-sample hybrid problem.

• doMethod="all": vector with names of methods, if not all are to be included.

The arguments match those of gof_test, where this makes sense.

Continuous data

The x and y1 data sets come from a standard normal distribution, and y2 from a normal
distribution with mean 1.

x = rnorm(100)
y1 = rnorm(150)
y2 = rnorm(150, 1)
R2sample::twosample_test(x, y1)[["p.values"]]

#> KS Kuiper CvM AD LR ZA ZK ZC
#> 0.9514 0.8730 0.9242 0.9126 0.8992 0.7480 0.4502 0.7888
#> Wassp1 ES large ES small EP large EP small
#> 0.8580 0.6309 0.2454 0.4334 0.9496

R2sample::twosample_test(x, y2)[["p.values"]]
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#> KS Kuiper CvM AD LR ZA ZK ZC
#> 0 0 0 0 0 0 0 0
#> Wassp1 ES large ES small EP large EP small
#> 0 0 0 0 0

Again, the user can provide their own test statistic:

DiffStandardizedMeans = function(x, y) {
TS = abs(mean(x)/sd(x)-mean(y)/sd(y))
names(TS) = "DSM"
TS

}
R2sample::twosample_test(x, y1, TS=DiffStandardizedMeans)[["p.values"]]

#> DSM
#> 0.585

R2sample::twosample_test(x, y2, TS=DiffStandardizedMeans)[["p.values"]]

#> DSM
#> 0

The user supplied routine has to be a function of the two data sets x and y and optionally
a list TSextra.

As an example for weighted data, let’s say the x data set actually came from a t distribu-
tion with 5 degrees of freedom:

x = rt(100, 5)
wx = dnorm(x)/dt(x, 5)
R2sample::twosample_test(x, y1, wx=wx)[["p.values"]]

#> KS Kuiper CvM AD ES large ES small EP large EP small
#> 0.2400 0.2354 0.2522 0.2560 0.7627 0.8632 0.3814 0.8636

R2sample::twosample_test(x, y2, wx=wx)[["p.values"]]

#> KS Kuiper CvM AD ES large ES small EP large EP small
#> 0.0004 0.0004 0.0000 0.0000 0.0001 0.0000 0.0270 0.0000

If the data sets are very large using permutation to derive the null distribution of the
test statistics can be very slow. In this case one can use the argument UseLargeSample=TRUE.
This will be done automatically if both sample sizes are at least 10000.

x = rnorm(1e5)
y1 = rnorm(1e5)
y2 = rnorm(1e5, 0.02)
R2sample::twosample_test(x, y1)[["p.values"]]

#> KS Kuiper CvM AD
#> 0.098 0.1214 0.1602 0.1330
#> ES large ES small EP large EP small
#> 0.2683 0.3347 0.0974 0.1988

R2sample::twosample_test(x, y2)[["p.values"]]

#> KS Kuiper CvM AD
#> 0.0112 0.0542 0.0046 0.0013
#> ES large ES small EP large EP small
#> 0.0935 0.0074 0.6170 0.0717
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Discrete data

As an example for the case of discrete data we will use two data sets from geometric random
variables with slightly different rates. x and y have to have the same length as vals and x+y
has to be positive for all values in vals.

x = table(rgeom(1000, 0.7))
y = table(rgeom(1000, 0.8))
vals = unique(c(names(x), names(y))) # all values from either x or y
x1 = rep(0, length(vals))
names(x1)=vals
y1 = x1
x1[names(x)]=x
y1[names(y)]=y
vals = as.numeric(vals)
R2sample::twosample_test(x1, y1, vals)[["p.values"]]

#> KS Kuiper CvM AD LR ZA Wassp1 large small
#> 0 0 0 0 0 0 0 0 0

Again the user can supply their own test. The routine has to be a function of the two
data sets x and y and a vector vals of possible values of the discrete random variable. A list
TSextra is optional.

7.4 Two-sample problem - power estimation

The package R2sample includes the routine twosample_power. The arguments TS, TSextra, B,
nbins, minexpcount, UseLargeSample and maxProcessor are the same as in twosample_test.
In addition we have

• f: a function that generates a list with two vectors called x and y and (in the case of
discrete data) a vector vals. The function can have zero, one or two arguments.

• . . . arguments passed to f.

• With.p.value=FALSE: set to TRUE is user supplied routine calculates p values.

• alpha=0.05: type I error probability for the tests.

As an example for continuous data we again consider the case of normal vs t distributions.
One data set with 10001 observations comes from a standard normal distribution, the other
with 10002 observations from a t distribution with df degrees of freedom. Because of the
large sample sizes the large sample approximations are used.

f=function(df) {
x=rnorm(10001)
y=rt(10002, df)
list(x=x, y=y)

}
tmp=R2sample::twosample_power(f, df=seq(5, 100, 5))
R2sample::plot_power(tmp, "df", "Data from Standard Normal vs t Distributions")

For discrete data we again consider the case of a Poisson random variable vs a 50-50
mixture of Poisson random variables:

f=function(a) {
vals=70:140
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Figure 4: Power graph for two-sample tests where one data set comes from a standard normal
distribution and the other from a t distribution.

x=rpois(1000, 100)
x[x<70]=70
x[x>140]=140
x=table(c(70:140, x))-1
y=c(rpois(500, 100), rpois(500, 100+a))
y[y<70]=70
y[y>140]=140
y=table(c(70:140, y))-1
I=seq_along(vals)[x+y>0]
list(x=x[I], y=y[I], vals=vals[I])

}
tmp=R2sample::twosample_power(f, a=seq(0,5,0.25))
R2sample::plot_power(tmp, "lambda", "Data from Poisson vs Mixture of Poisson Distributions")

Figure 5: Power graph for two-sample tests where one data set comes from Poisson distribution and
the other from a mixture of two Poisson distributions.
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8 Benchmarking

Say a researcher has developed a new method for the univariate goodness-of-fit problem
and wants to see how it stacks up in comparison to the standard methods such as the
chi-square tests or the Kolmogorov-Smirnov test. Both Rgof and R2sample packages include
the routine run_studies, which makes this very easy.

As a specific example say we wish to see whether the Kolmogorov-Smirnov test or
the Anderson-Darling test has better power when the null hypothesis specifies a normal
distribution with mean and standard deviation unspecified, but in reality the data comes
from a t distribution. Say we run the Rgof::gof_power command for a sample size of 500, a t
distribution with 8 degrees of freedom and a true type I error of 5%, and we find that the
Kolmogorov-Smirnov test has a power of 43% whereas the Anderson-Darling test has a
power of 70%. It is then true that the Anderson-Darling test will also have a higher power
for any other combination of sample size, degrees of freedom and true type I error. In order
to assess the ranking of the methods it therefore suffices to run each case study with just one
combination of n, α and the parameter under the alternative.

8.1 Goodness-of-fit problem

Here the user needs to create a function that finds either the test statistic or, if possible, the p
value of the new test. Its arguments should be as described previously. Say the routine is
called myTS and is designed for continuous data and calculates the test statistic. Then the
user can run

run_studies(myTS)

This will run 20 different case studies and provide some information on the relative
power of the new method when compared to those included in Rgof. For a list of the case
studies see the appendix.

If the routine actually calculates a p value, run instead

run_studies(myTS, With.p.value=TRUE)

This will of course be much faster as it does not require simulation.

The arguments of run_studies are

• TS: the name of the new test routine

• study: the name of the study to run, or all studies if missing

• TSextra: a list of additional info passed to TS, if such are needed

• With.p.value=FALSE: TRUE if routine finds p values

• BasicComparison=TRUE: if TRUE the values for sample size, type I error etc from
included studies are used.

• nsample = 500: desired sample size

• alpha = 0.05: desired type I error probability

• param_alt: (list of) parameters for alternative distributions

• maxProcessor: number of cores to use for parallel programming, number of cores - 1 if
missing

• B = 1000: number of simulation runs

As an example we will use the R built-in ks.test to do the Kolmogorov-Smirnov test:
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myTS=function(x, pnull, param) {
if(length(formals(pnull))==1) # case studies without parameter estimation

mypnull=function(x) pnull(x)
else mypnull=function(x) pnull(x, param) # case studies with parameter estimation
z=ks.test(x, mypnull)[["p.values"]]
names(z)="RKS"
z

}
pwrs=run.studies(myTS, With.p.value = TRUE)

#> Average number of studies a method is close to the best::
#> EP-l-P ES-l-P EP-l-L RKS ES-l-L EP-s-P EP-s-L KS K ES-s-P
#> 5.450 5.9 6.200 6.900 6.950 8.875 9.175 9.400 9.400 10.175
#> W CvM ES-s-L ZA ZK Wassp1 ZC AD
#> 10.525 10.550 10.850 11.625 11.850 12.050 12.300 13.050

Note that the performance of RKS is much lower than that of the Kolmogorov-Smirnov
test included in the Rgof package. This is due to the fact the R routine ks.test does not
actually allow for parameter estimation.

As another example say the user routine calculates the test statistic and the user wants
to find the power of the methods in the case where the null hypothesis specifies a normal
distribution with mean and standard deviation estimated from the data, but the true distri-
bution is a t distributions with df degrees of freedom. He also wants a sample size of 1000
and a true type I error of 0.1 Then he can run

run_studies(myTS, "normal.t.est", nsample=1000, alpha=0.1, param_alt=5*1:10)

8.2 Two-sample problem

This works in the exact same way as in the goodness-of-fit problem.

8.3 Real data examples

R sunspots data

This data set has the monthly mean relative sunspot numbers from 1749 to 1983, collected at
Swiss Federal Observatory, Zurich until 1960, then Tokyo Astronomical Observatory. It is
part of the base R program. It is of course a time series, but we will treat it here as if it were
independent data.

A histogram of the data suggests that an exponential model might be a good fit. However,
all the tests in Rgof reject that null hypothesis:

library(ggplot2)
dta=data.frame(Sunspots=c(sunspots))
ggplot(dta, aes(x=Sunspots)) +

geom_histogram(color="black", fill="white") +
ggtitle("Sunspots Data")

pnull = function(x, p=1) pexp(x, p)
TSextra=list(qnull= function(x, p=1) qexp(x, p))
rnull = function(p) rexp(N, p)
phat = function(x) 1/mean(x)
Rgof::gof_test(c(sunspots), NA, pnull, rnull, phat=phat, TSextra = TSextra, Range=c(0, Inf))
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Figure 6: Histogram of sunspots data set.

#> $statistics
#> KS K AD CvM W ZA ZK ZC
#> 0.0631 0.1260 0.000 2.8873 1.8894 0.0000 0.0000 0.0000
#> Wassp1 ES-l-P ES-s-P EP-l-P EP-s-P ES-l-L ES-s-L EP-l-L
#> 5.2559 154.7900 100.0300 252.8700 84.6450 170.2800 122.7200 255.0200
#> EP-s-L
#> 84.1610
#>
#> $p.values
#> KS K AD CvM W ZA ZK ZC Wassp1 ES-l-P ES-s-P
#> 0 0 0 0 0 0 0 0 0 0 0
#> EP-l-P EP-s-P ES-l-L ES-s-L EP-l-L EP-s-L
#> 0 0 0 0 0 0

Death by horsekicks data

This is the famous data set first discussed in Bortkewitsch (1898) and analyzed in many
statistics text books and articles, see for example Preece et al. (1988). It is the number of
soldiers in the Prussian army killed by being kicked by a horse between 1875 to 1894. The
data is

Number of Deaths Frequencies
0 109
1 65
2 22
3 3
4 1
5+ 0

We will run the tests to see whether a Poisson model might fit this data set:

vals=0:5
x=c(109, 65, 22, 3, 1, 0)
pnull = function(lambda=1) c(ppois(0:4,lambda), 1)
rnull = function(lambda=1) {

x = rpois(200, lambda)
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x[x>5]=5
table(c(0:5, x))-1

}
phat = function(x) sum(0:5*x)/200
Rgof::gof_test(x, vals, pnull, rnull, phat=phat)

#> $statistics
#> KS K AD CvM W Wassp1 l-P s-P l-L s-L
#> 0.5434 0.5481 0.0323 0.0026 4.5350 0.0124 0.0628 0.0628 0.0625 0.0625
#>
#> $p.values
#> KS K AD CvM W Wassp1 l-P s-P l-L s-L
#> 0.4830 0.6372 0.9434 0.9412 0.5288 0.9386 0.8021 0.8021 0.8026 0.8026

All methods fail to reject the null hypothesis, so the Poisson distribution is a good model
for the horsekick data.

9 Conclusion

The R packages Rgof and R2sample bring together a large number of methods for the
univariate goodness-of-fit problem and the univariate two-sample problem. The routines
make it easy to run these tests simultaneously. They are implemented for both continuous
and discrete data and can handle a number of different situations such as random sample
sizes and weighted data. The packages also include routines for power estimation as well as
routines for benchmarking new tests.

10 Appendix

10.1 Case Studies for Goodness-of-fit Problem

Without parameter estimation

1. uniform.linear U[0,1] vs a linear model on [0,1] with slope s.

2. uniform.quadratic U[0,1] vs a quadratic model with vertex at 0.5 and
some curvature a.

3. uniform.bump U[0,1] vs U[0,1]+N(0.5,0.05).

4. uniform.sine U[0,1] vs U[0,1]+Sine wave

5. beta22.betaaa Beta(2,2) vs Beta(a,a)

6. beta22.beta2a Beta(2,2) vs Beta(2,a)

7. normal.shift N(0,1) vs N(µ,1)

8. normal.stretch N(0,1) vs N(0, σ)

9. normal.t N(0,1) vs t(df)

10. normal.outlier1 N(0,1) vs N(0,1)+U[2,3]

11. normal.outlier2 N(0,1) vs N(0,1)+U[-3,-2]+U[2,3]

12. exponential.gamma Exp(1) vs Gamma(1,b)

13. exponential.weibull Exp(1) vs Weibull(1,b)

14. exponential.bump Exp(1) vs Exp(1)+N(0.5,0.05)
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15. trunc.exponential.linear Exp(1) vs Linear, on [0,1]

With parameter estimation

16. normal.t.est N(µ,σ) vs t(df)

17. exponential.weibull.est Exp(λ) vs Weibull(1,b)

18. trunc.exponential.linear.est Exp(λ) vs Linear, on [0,1]

19. exponential.gamma.est Exp(λ) vs Gamma(1,b)

20. normal.cauchy.est N(µ,σ) vs Cauchy (Breit-Wigner)

10.2 Case Studies for two-sample problem

The first 14 case studies are the same as those of the goodness-of-fit problem. The others are

15. gamma.normal Gamma(µ) vs N(x̄, sd(x)), here the mean of the
normal distribution are the sample mean and sample standard deviation of the x data
set.

16. normal.normalmixture N(0,1) vs N(−µ,1)+N(µ,1)

17. uniform.uniformmixture U[0,1] vs. αU[0,1/2]+(1-α)U[1/2,1]

18. uniform.betamixture U[0,1] vs. αU[0,1/2]+(1-α)Beta(2,2)

19. chisquare.noncentral χ2(5) vs. χ2(5, τ)

20. uniform.triangular U[0,1] vs. triangular
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Rendering LaTeX in R
by Paul Murrell

Abstract The xdvir package provides functions for rendering LaTeX fragments as labels,
annotations, and data symbols in R plots. There are convenient high-level functions for
rendering LaTeX fragments, including labels on ggplot2 plots, plus lower-level functions for
more fine control over the separate authoring, typesetting, and rendering steps. There is
support for making use of LaTeX packages, including TikZ graphics. The rendered LaTeX
output is fully integrated with R graphics output in the sense that LaTeX output can be
positioned and sized relative to R graphics output and vice versa.

1 Introduction

Text labels, titles, and annotations are essential components of any data visualization.
Viewers focus a lot of their attention on text (Borkin et al., 2016), text is the most effective
way to communicate some types of information (Hearst, 2023), and the message obtained
from a data visualization can be heavily influenced by the text on a plot (Kong et al., 2018).

R provides relatively flexible tools for adding text labels to plots. For example, in the
graphics package, we can specify an overall plot title and axis titles via the main, xlab, and
ylab arguments to the plot() function and we can add text at arbitrary locations on the plot
with the text() and mtext() functions.

Unfortunately, these core tools for drawing text are quite limited in terms of the format-
ting of the text. For example, there is no facility for emphasizing an individual word using a
bold or italic face within a text label.

The ggtext (Wilke and Wiernik, 2022a) and gridtext (Wilke and Wiernik, 2022b) packages
greatly improved the situation by allowing text labels to include a small subset of markdown
and HTML (plus CSS). This allowed, for example, changes in font face and color within text
labels.

More recently, the marquee package (Pedersen and Mitáš, 2025) improved the situation
a great deal further by providing full support for markdown within text labels. This made it
possible to lay out more complex arrangements of text and even graphical content within
text labels.

However, despite these advances, there are still some text formatting tasks that remain
out of reach. For example, Figure 1 shows a plot with a text annotation in the top-right
corner that contains a combination of features that cannot be produced using the available
text-drawing tools.

The annotation in Figure 1 may not appear to be particularly special nor particularly
complicated at first glance, but it harbors several important details:

• The text is a mixture of plain text and mathematical expressions (like z̄i). Furthermore,
the mathematical expressions use a different font (Latin Modern) than the plain text
(TeX Gyre Adventor) and the mixture is broken across multiple lines.

The R graphics system can draw mathematical expressions (Murrell and Ihaka, 2000)
and that includes a mixture of plain text and mathematical expressions. Furthermore,
the R graphics system uses a separate symbol font for mathematical expressions
compared to plain text. However, further changes in font within the plain text are
not possible and line breaks are not supported. There is also the problem that the
typesetting of mathematical expressions in R graphics is not of a very high quality.

• The text is not all the same color; the final two words (but not the full stop) are red.
Furthermore, the final two words are bold; they have a different font face compared
to the rest of the text.

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=ggtext
https://CRAN.R-project.org/package=gridtext
https://CRAN.R-project.org/package=marquee


CONTRIBUTED RESEARCH ARTICLE 163

We ‘move’ the original population’s mean to
a new ̄𝑧� and calculate the average fitness at
that new mean phenotype of the population
to get the adaptive landscape, 𝑊̄�, then we
combine the population mean and the aver-
age fitness to get the fitness function.
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Figure 1: A plot with a text annotation in the top-right corner that contains several typesetting
challenges: in-line mathematical expressions like z̄i; changes in color so that the last two words
match the colour of the thicker line in the plot; and automated line-breaks with full justification and
hyphenation.

The R graphics system can only draw a character value with a single color and a
single font face. The gridtext and ggtext packages make it possible to change color
within a character value, but they do not allow a mixture of character values and R
mathematical expressions. Furthermore, they do not provide support for MathML
<math> tags.

• The text is broken over multiple lines. Furthermore, the text is fully justified (not
ragged-left or ragged-right justified) and one word has been split across lines and
hyphenated. Although it is not obvious from the plot itself, the line breaks were also
automatically generated to fit the text into a fixed width.

The R graphics system can draw a character value across multiple lines, but only if
explicit newlines are embedded in the character value (i.e., the line breaks are manual).
The base function strwrap() can be used to break lines, but it is only designed for
monospaced terminal output and ragged-right justification. The gridtext and ggtext
packages can calculate simple automated line breaks, but they will not break a word
across lines (or hyphenate) and they cannot fully justify the resulting text. The marquee
package can automate line breaks and fully justify text, but it cannot hyphenate nor
can it produce mathematical expressions.

The features outlined above are all examples of typesetting; determining an arrangement
of individual characters and symbols (glyphs) that could be as simple as placing one
character after another (from left to right), but could also be as complex as arranging
mathematical symbols, splitting text into multiple columns, or writing text vertically from
top to bottom.

From R 4.3.0, it has been possible to draw text from a set of typeset glyphs using the
functions grDevices::glyphInfo() and grid::grid.glyph() (Murrell et al., 2023). This
facility offers the promise of being able to render arbitrary typeset text in R. However, it
presupposes that we are able to generate a set of typeset glyphs.
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The marquee package provides an example of a package that can generate typeset glyphs.
It is capable of converting markdown input into a set of glyphs and their positions, which
are then rendered in R.

This article describes the xdvir package, which is another example of a package that can
generate typeset glyphs. In this case, the input is LATEX, a TEX engine processes the LATEX
source to create DVI output, which is essentially a set of glyphs and their positions, and then
xdvir reads the DVI output and renders the result in R.1 The benefit of the xdvir package is
that it provides access to the typesetting capabilities of LATEX, which includes hyphenation,
fully justified text, mixtures of plain text and mathematical expressions—all of the features
demonstrated in Figure 1—and much more.

The next section describes the basic usage of the xdvir package. This is followed by a
section that breaks down the design of the xdvir package to show the steps that are required
to render LATEX output in R. Subsequent sections explore several of the complexities that
can arise with rendering LATEX text in R graphics and some of the solutions that the xdvir
package provides. The article ends with several extended examples of rendering LATEX text
in R.

2 LATEX text labels in R

The simplest way to draw LATEX text with the xdvir package is to call the grid.latex()
function. The first argument to this function is a character value, which is interpreted as a
fragment of LATEX code. For example, the following code draws a text label that contains a
subset of the larger annotation from Figure 1. We use just a subset here in order to keep the
code readable.

Because LATEX code tends to contain a large number of backslashes, the code below uses
the r"(...)" syntax for raw character constants, so that we do not have to escape each
backslash with a double backslash. The resulting image is shown below the code. Although
it is not immediately obvious from that image, the text, or rather the glyphs, in the image
are rendered by R.

library(xdvir)

simpleTeX <- r"(We move the original mean to $\bar z_i$)"

grid.latex(simpleTeX)

We move the original mean to ̄𝑧�

It is possible to produce something similar to this result using the plotmath feature in R,
as shown in the following code (and the image below the code). However, this demonstrates
that one advantage of using xdvir, even for a simple piece of text like this, is the superior
quality of the LATEX fonts and typesetting for mathematical expressions.

plotmath <- expression("We move the original mean to "*bar(italic(z))[i])

grid.text(plotmath)

We move the original mean to z i

1This process mirrors one way of working with LATEX documents: LATEX source (a .tex file) is processed by a TEX
engine to produce DVI output (a .dvi file) and then the DVI output is processed to render PDF output (a .pdf file).
The final processing step is performed by a DVI driver, for example dvipdf for PDF output or dvips for PostScript
output. Different TEX engines produce different DVI output. For example, LuaTEX produces a .dvi file, but X ETEX
produces a slightly different DVI output in the form of a .xdv file. Consequently, there are different DVI drivers
for different DVI output, for example xdvipdfmx for processing a .xdv file to a .pdf file. The xdvir package is
essentially a DVI driver that works for both .dvi files and .xdv files and produces R output, hence the name xdvir.
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Another immediate benefit of xdvir is that we can automatically fit the text within a
specified width. For example, the following code draws the LATEX fragment tex again, but
this time forces it to fit within a column that is half the width of the image.

grid.latex(simpleTeX, width=.5)

We move the origi-
nal mean to ̄𝑧�

As the function name grid.latex() suggests, that function produces low-level drawing
in the grid package graphics system. The text is just drawn relative to the current grid
viewport, wherever that may be on the page. While this is extremely flexible, it is more
likely that we want to combine and coordinate the text with a high-level plot of some sort,
like the annotation in Figure 1. There are various ways that low-level grid drawing can be
combined with a high-level plot, but we will leave those demonstrations to later sections.

Instead, for now, we will demonstrate a more common scenario: drawing LATEX text
labels on a ggplot2 plot (Wickham, 2016). For this purpose, the xdvir package provides the
element_latex() function. This allows us to specify a LATEX fragment as a plot label and
then we can indicate the special nature of the label via the ggplot2::theme() function.

For example, the following code uses the same LATEX fragment from the example above
as the title of a ggplot2 plot. The resulting plot is shown in Figure 2. One detail about this
result is that the text in this title is larger than the text drawn by the call to grid.latex()
above, even though exactly the same TEX fragment is being drawn. A closer inspection
reveals that the font is also different. These differences reflect the fact that grid.latex() and
element_latex() respect the graphical parameter settings—font families and font sizes—
that are in effect when the LATEX fragment is drawn. In Figure 2 that means respecting
the theme settings of the ggplot2 plot. The ggIntro object in the code below contains a
description of the main ggplot2 plot from Figure 1. The code for generating ggIntro is not
shown in order to keep the code below readable, but it is available in the supplementary
materials for this article.

library(ggplot2)

ggIntro +
labs(title=simpleTeX) +
theme(plot.title=element_latex())

The xdvir package also provides a geom_latex() function for drawing text labels, similar
to the standard ggplot2::geom_text() function. The values specified for the label aesthetic
for geom_latex() are treated as fragments of LATEX code. For example, Figure 3 shows a
plot with a set of red points and a set of red labels, one for each point. The points are
drawn using the standard ggplot::geom_point() function, but the labels are drawn using
geom_latex() from the xdvir package. The red labels for the red points in Figure 3 are
small LATEX fragments that each describe a simple LATEX mathematical expression. The data
set used for the red points and labels is stored in a data frame called means and the LATEX
fragments are in a column called label, as shown below.

means$label

#> [1] "$\\bar x_1$" "$\\bar x_2$" "$\\bar x_3$" "$\\bar x_4$" "$\\bar x_5$"

The following code draws the plot in Figure 3. A call to ggplot2::geom_point() draws
the red points and a call to geom_latex() draws the red labels. The ggGeom object in the code
below describes the main plot, which consists of gray dots, horizontal and vertical lines, and
y-axis labels. The code for generating ggGeom is not shown in order to keep the code below
readable, but it is available in the supplementary materials for this article.
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We move the original mean to ̄𝑧𝑖

Figure 2: The ggplot2 plot from Figure 1, without the text annotation, but with a title that was specified
using a LATEX fragment and the function element_latex().

ggGeom +
geom_point(aes(x, sample), data=means, colour=2, size=4) +
geom_latex(aes(x, sample, label=label), data=means,

size=6, vjust=-.4, colour=2)

3 Under the hood

The previous section showed that simple usage of the xdvir package only requires specifying
a LATEX fragment as the text to draw. For example, several examples used the LATEX fragment
shown below.

simpleTeX

#> [1] "We move the original mean to $\\bar z_i$"

The grid.latex() function has three tasks to perform in order to draw that LATEX frag-
ment in R:

Authoring: The LATEX fragment has to be turned into a complete LATEX document.

The author() function in the xdvir package allows us to perform this step separately.
For example, the following code takes the LATEX fragment simpleTeX and produces a
complete LATEX document, simpleDoc, that is ready to typeset.

simpleDoc <- author(simpleTeX)

simpleDoc

#> %% R package xdvir_0.1.3; engine name: XeTeX; engine version: XeTeX 3.141592653-2.6-
#> \documentclass[varwidth]{standalone}
#> \usepackage{unicode-math}
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Figure 3: A ggplot2 plot with text labels specified as LATEX fragments and drawn using the
geom_latex() function.

#> \begin{document}
#> We move the original mean to $\bar z_i$
#> \end{document}

Typesetting: The LATEX document has to be typeset to produce a set of glyphs and their
positions.

The typeset() function in the xdvir package allows us to perform this step separately.
For example, the following code takes the LATEX document simpleDoc and produces a
"DVI" object, simpleDVI, that contains instructions specifying the fonts to use (lines
that contain x_fnt_def and fnt_num in the output below), the glyphs to use from those
fonts (lines that contain x_glyph in the output below), and where to draw those glyphs
(lines that contain down and right and x_glyph). The output shown below has been
trimmed to save space and to make it easier to read.

simpleDVI <- typeset(simpleDoc)
simpleDVI

#> pre version=7, num=25400000, den=473628672, mag=1000,
#> comment=R package xdvir_0.1.3; engine name: XeTeX; engine version: XeTe
#> bop counters=1 0 0 0 0 0 0 0 0 0, p=-1
#> xxx1 k=47
#> x=pdf:pagesize width 143.26802pt height 9.48027pt
#> down3 a=-4114988
#>
#> ...
#>
#> push
#> x_fnt_def fontnum=40, ptsize=655360
#> fontname=/home/mitchell/.TinyTeX/texmf-dist/fonts/opentype/public/lm/lm
#> fnt_num_40
#> x_glyph id=113, x=0, y=0
#> x_glyph id=50, x=619315, y=0
#> w3 b=218235
#> x_glyph id=75, x=0, y=0
#>
#> ...
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Rendering: The result of the typesetting step has to be drawn in R.

The render() function in the xdvir package allows us to perform this step separately.
For example, the code below renders the typesetting information from the simpleDVI
object in R. The resulting image is shown below the code.

render(simpleDVI)

We move the original mean to ̄𝑧�

One detail about the output above is that the rendered text from this render() call is
smaller and in a different font compared to the example from the previous section, which was
produced by a grid.latex() call. This reflects the fact that grid.latex(), in the authoring
step, respects the font family and font size that are in effect when the text is rendered. By
contrast, the render() call is drawing typeset information from a LATEX document that just
makes use of the default LATEX font, Computer Modern (or to be more precise, a modernized
version called Latin Modern) at 10pt.

4 LATEX packages

The code examples so far have dealt with relatively simple fragments of LATEX code that
consist of just text plus some simple mathematical expressions. While this is already useful,
it barely scratches the surface of what is possible with LATEX code.

Many additional effects can be obtained with LATEX code by loading LATEX packages. As a
simple example, changing the color of text requires loading the LATEX package xcolor. These
LATEX packages can be loaded using the packages argument of the grid.latex() function (or
the element_latex() function or the geom_latex() function). For example, the following
code draws text with the last two words in red.

colourTeX <- r"(We combine to get the \textcolor{red}{Fitness Function})"

grid.latex(colourTeX, packages="xcolor")

We combine to get the Fitness Function

The argument packages="xcolor" is used in the authoring step to load the package in the
LATEX document preamble. This is demonstrated below with an explicit call to the author()
function. We can see that \usepackage{xcolor} has been added to the LATEX document.

colourDoc <- author(colourTeX, packages="xcolor")

colourDoc

#> %% R package xdvir_0.1.3; engine name: XeTeX; engine version: XeTeX 3.141592653-2.6-
#> \documentclass[varwidth]{standalone}
#> \usepackage{unicode-math}
#> \usepackage{xcolor}
#> \begin{document}
#> We combine to get the \textcolor{red}{Fitness Function}
#> \end{document}

This in turn affects the typesetting step: without the xcolor package, the LATEX command
\textcolor would not be recognized; with the xcolor package, the \textcolor command
produces instructions to change color in the "DVI" output. This is demonstrated below with
an explicit call to the typeset() function. An example of the color-change instructions is the
line containing color push in the output below the code.
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colourDVI <- typeset(colourDoc)
colourDVI

#> pre version=7, num=25400000, den=473628672, mag=1000,
#> comment=R package xdvir_0.1.3; engine name: XeTeX; engine version: XeTe
#> bop counters=1 0 0 0 0 0 0 0 0 0, p=-1
#>
#> ...
#>
#> x_fnt_def fontnum=40, ptsize=655360
#> fontname=/home/mitchell/.TinyTeX/texmf-dist/fonts/opentype/public/lm/lm
#> fnt_num_40
#> x_glyph id=113, x=0, y=0
#> x_glyph id=50, x=619315, y=0
#>
#> ...
#>
#> xxx1 k=20
#> x=color push rgb 1 0 0
#> x_glyph id=54, x=0, y=0
#> x_glyph id=66, x=427950, y=0
#>
#> ...

The argument packages="xcolor" is also used in the rendering step because, without
it, the rendering would not take any notice of the instructions to change color. This is
demonstrated below with an explicit call to the render() function. The resulting image
differs from the previous one because it uses the default LATEX font, but we can see the same
change in color for the last two words.

render(colourDVI, packages="xcolor")

We combine to get the Fitness Function

There are several LATEX packages with predefined support in the xdvir package, including
xcolor for changes in color and fontspec for changes in font. Support can be added for other
LATEX packages with the LaTeXpackage() function. We will see other predefined packages
and an example of defining a new LATEX package in later sections.

5 Justifying text

By default, the LATEX text drawn by grid.latex() is centered upon a specified location. For
example, the following code draws the simpleTeX fragment vertically centered at a location
half-way up the image (as indicated by the gray line).

grid.latex(simpleTeX, y=.5)

We move the original mean to ̄𝑧�

We can specify a different justification using the vjust argument. For example, the
following code draws the same simpleTeX fragment at the same location, but with a bottom-
justification. Notice that the bottom of the text is based on the bounding box of the text, so
the bottom of the text is the bottom of the subscript “i”.

grid.latex(simpleTeX, y=.5, vjust="bottom")
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We move the original mean to ̄𝑧�

In some situations it will be much more useful to justify text relative to the text baseline,
as shown by the following code.

grid.latex(simpleTeX, y=.5, vjust="baseline")

We move the original mean to ̄𝑧�

The xdvir package has a very simple algorithm for determining the text baseline, but
there is also predefined support for the LATEX package preview, which produces a more
reliable baseline. That baseline can be accessed, assuming the preview package is loaded, by
specifying vjust="preview-baseline".

There is also an hjust argument for horizontal justification. This accepts the standard val-
ues, "left", "centre", and "right", but also accepts "bbleft", "bbcentre", and "bbright".
The latter three are based on a bounding box around the actual ink that is drawn, which
does not include space before or after glyphs (left-side bearing and right-side bearing). The
following code provides a demonstration of the difference by drawing the simple LATEX
fragment from previous examples as the title of a ggplot2 plot. We add a (mathematical)
vertical bar to the end of the LATEX fragment and draw the title larger than normal and justify
the text against the right side of the plot region, using "right" justification first and then
using "bbright" justification. The output below the code just shows the very top of the plot
in order to save space.

rightBearingTeX <- paste0(simpleTeX, "$|$")

ggIntro +
labs(title=rightBearingTeX) +
theme(plot.title=element_latex(size=20, hjust="right"))

We move the original mean to ̄𝑧𝑖|

ggIntro +
labs(title=rightBearingTeX) +
theme(plot.title=element_latex(size=20, hjust="bbright"))

We move the original mean to ̄𝑧𝑖|

The difference between the two plots is that the second vertical bar is precisely aligned
with the right edge of the plot region whereas the first vertical bar is slightly to the left of
the right edge of the plot region (because of the right-side bearing of the vertical bar glyph).
This is a very small detail, but it is something that can be visually jarring if we are trying to
align components of a plot in order to produce a clean design. This fine level of control is
exactly the sort of precision that we are seeking by working with LATEX typesetting.

6 Integrating text

Justifying LATEX text is a simple example of a larger problem: integrating LATEX text. For
example, the text annotation in Figure 1 is integrated with the plot in the sense that it is
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positioned relative to the plot region. In fact, closer inspection reveals that the text annotation
is carefully top-justified with the maximum y-value of the red line and right-justified with
the maximum x-value of the red line.

Put in terms of integration rather than justification, the text annotation in Figure 1 is
integrated with the plot because the LATEX text is drawn at a location that is coordinated with
the location of other R graphics drawing in the plot.

Another example of integration, that reverses the roles, is coordinating other R graphics
drawing with the location of LATEX text. The following code provides a simple example.
The LATEX fragment is the simple one from previous examples with two additions: there are
\zsavepos commands to mark specific locations within the text and associate them with
labels ("a" and "b"); and there are \Rzmark commands to export those locations for R to see.

zrefTeX <- r"(We move the original\zsavepos{a} mean to \zsavepos{b}$\bar z_i$
\Rzmark{a}\Rzmark{b})"

If we render this LATEX fragment, we just get the familiar output. The commands that
we added to the LATEX fragment are based on the LATEX package zref, so we must load that
package.

grid.latex(zrefTeX, packages="zref")

We move the original mean to ̄𝑧�

However, we can now access the special locations in the LATEX output using the getMark()
function from the xdvir package. For example, the following code accesses location "a",
which is just after the word “original”, and draws a small red dot at that location.

a <- getMark("a")
grid.circle(a$devx, a$devy, r=unit(.5, "mm"), gp=gpar(col=2, fill=2))

We move the original mean to ̄𝑧�

The following code accesses location "b", which is just before the letter “z”, and draws a
curved arrow from "a" to "b".

b <- getMark("b")
grid.xspline(unit.c(a$devx, .5*(a$devx + b$devx), b$devx),

unit.c(a$devy, a$devy - unit(3, "mm"), a$devy),
shape=-1, gp=gpar(col=2, fill=2),
arrow=arrow(length=unit(2, "mm"), type="closed"))

We move the original mean to ̄𝑧�

The exported locations also produce “anchors” that we can use to justify LATEX text. For
example, the following code draws the simple LATEX fragment with position "a" at the center
of the image (which is indicated by gray lines).

grid.latex(zrefTeX, packages="zref", hjust="a", vjust="a")

We move the original mean to ̄𝑧�

Figure 4 provides a more realistic demonstration. This figure shows the plot from Figure
1 with a line added to visually connect the thick red line with the red part of the LATEX
annotation. The code for this plot is not shown for reasons of space, but it makes use of
the same basic idea as the code above by saving locations within the LATEX output and then
accessing them with the getMark() function. The full code is available in the supplementary
materials for this article.
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Figure 4: The ggplot2 plot from Figure 1, including the LATEX annotation, with a line added relative to
marked locations within the LATEX annotation (and relative to the thick red line).

7 LATEX graphics

The examples so far have demonstrated using LATEX code to describe text labels, combined
with using R to draw general graphics—lines and circles and so on. It is also possible to use
LATEX to draw general graphics. In particular, the LATEX package TikZ provides very powerful
and flexible graphics facilities. The xdvir package provides support for the LATEX package
TikZ, so we are able to render TikZ graphics in R.

For example, the following LATEX code describes a TikZ picture consisting of two text
labels enclosed within circles, with arrows connecting the circles.

tikzTeX <- r"(%
\path (0, 0) node[circle,minimum size=.5in,draw,thick] (x) {\sffamily{R}}

(3, 0) node[circle,minimum size=.5in,draw,thick] (y) {Ti\textit{k}Z!};
\draw[-{stealth},thick] (x) .. controls (1, 1) and (2, 1).. (y);
\draw[-{stealth},thick] (y) .. controls (2, -1) and (1, -1) .. (x);)"

The following code draws this TikZ picture in R. The argument packages="tikzPicture"
is necessary to ensure that the TikZ package is loaded in the authoring step, that TikZ output
is produced in the typesetting step, and that R takes notice of the TikZ output in the rendering
step.

grid.latex(tikzTeX, packages="tikzPicture")

R TikZ!

The label on the x-axis of Figure 3 is another simple TikZ picture that uses TikZ commands
to draw the Greek letter mu within a circle. This example is not completely trivial because it
uses the LATEX concept of “phantom” text to make the circle large enough to fit a capital “M”
even though no such character is drawn. This is another example of the detailed typesetting
capabilities that access to LATEX provides.
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muDot <- r"(%
\begin{tikzpicture}
\node[draw,circle,thick,inner sep=0.5mm]{\vphantom{M}$\mu$};
\end{tikzpicture})"

The LATEX code this time includes an explicit \begin{tikzpicture} and
\end{tikzpicture}. Those commands were implicitly added in the previous exam-
ple because we specified packages="tikzPicture". This time, we have explicitly provided
the commands, so we just specify packages="tikz".

grid.latex(muDot, packages="tikz")

𝜇

We will see a more complex example of TikZ output in a later section. Figure 5 is also a
TikZ picture that has been rendered in R.

8 Programmatic generation of LATEX

One obstacle to adopting the xdvir package is that it assumes that the user knows how to
create a LATEX fragment (i.e., write LATEX code). While the xdvir package provides some
assistance so that the user is only required to write a LATEX fragment rather than a complete
LATEX document, LATEX fragments for text labels tend to be more complex than plain text
labels, thanks to the additional markup that is required.

However, LATEX code is still just text. This means that all of the text-generating tools in R
are available to help with authoring LATEX fragments. For example, the labels used to render
text data symbols in Figure 3 could be generated via a simple call to the paste0() function,
as shown below.

paste0("$\\bar x_", 1:5, "$")

#> [1] "$\\bar x_1$" "$\\bar x_2$" "$\\bar x_3$" "$\\bar x_4$" "$\\bar x_5$"

There are also packages that can generate larger fragments of LATEX code. For example,
there are packages like xtable (Dahl et al., 2019) and latexpdf (Bergsma, 2023) for generating
LATEX tables and the rmarkdown package (Xie et al., 2018) can generate LATEX documents from
Markdown input. The Literate Programming section of the Reproducible Research CRAN
Task View provides a more comprehensive list of relevant R packages. The texPreview
package (Sidi and Polhamus, 2024) may also be helpful for previewing the output of LATEX
code within an R session.

Some of these tools can be particularly useful for generating larger chunks of LATEX code,
although the LATEX code that is produced may consist of entire documents rather than just
LATEX fragments. The next section describes how we can cope with that situation.

9 Customization and debugging

Most of the examples in this article take a fragment of LATEX code and pass it to the
grid.latex() function, which performs an authoring step, a typesetting step, and a render-
ing step. We saw in a previous section that there are functions author(), typeset(), and
render() that allow us to perform these steps separately (see Figure 5). This provides more
control over the individual steps and allows us to inspect the results of the individual steps,
which can be useful for debugging. In this section, we explore further options for controlling
the authoring, typesetting, and rendering steps.
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Figure 5: The design of the ‘xdvir‘ package.

The author() function transforms a LATEX fragment into a complete LATEX document.
Although there are arguments to the author() function that allow some control over that
transformation, e.g., the packages argument, it does not allow full control over the compo-
sition of the LATEX document. Fortunately, a LATEX document within R is essentially just a
character vector, so another way to author a LATEX document is to create an external text file
and read that into R. This allows complete control over the content of the LATEX document.
Another possibility is that we want to use a LATEX document that we did not create, for
example, if we write Markdown code and convert it to LATEX code.

The typeset() function transforms a LATEX document into a "DVI" object that contains a
set of typeset glyphs. There is limited control over this process as well, with only the engine
argument allowing us to select between "xetex" or "luatex". Again, one way to obtain
greater control is to perform this step outside of R by running a TEX engine, e.g., xelatex,
on an external text file to produce a DVI file. The xdvir package provides the readDVI()
function to read external DVI files into R and these can then be passed to the render()
function for drawing.

One important caveat is that both a "LaTeXdocument" object that is produced by the
author() function and a "DVI" object that is produced by the typeset() function contain
information about how they were created, for example, the TEX engine that was specified
and the LATEX packages that were loaded. The typeset() function checks this information
and warns if we ask to typeset a "LaTeXdocument" that was produced for a different TEX
engine. Similarly, the render() function, which also has an engine argument, checks and
warns if we ask to render a "DVI" object that was produced using a different TEX engine.

External LATEX documents and DVI files do not (explicitly) contain this information so it
is up to the user to ensure that the TEX engine, and any LATEX packages, are consistent with
the arguments provided to the functions typeset() and render(). In some situations, even
with the appropriate level of care, it will be impossible to avoid warnings.

10 Example 1

This section demonstrates a more complete example of rendering LATEX text within a plot.
The plot, shown in Figure 6, provides a clear example of the more advanced typesetting
capabilities of LATEX; the text annotation in the top-left corner of the plot is not only typeset
into two columns, but both columns are fully justified and feature several examples of
hyphenation.

This example also demonstrates one way to integrate a grid.latex() call with a plot
that was drawn using functions from the graphics package. We will also see a simple
demonstration of the LaTeXpackage() function to allow use of a LATEX package that has no
predefined support in xdvir.
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From a general and economic policy per-
spec�ve, the en�re period from 1820 to
1930 can be described as a rela�vely lib-
eral period. With the ”Pacific War”, as
a result of which the nitrate mines were
awarded to Chile, the economy experi-
enced a profound upswing. The period
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a phase in which the government increas-
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ensured liberaliza�on of trade and finance.

Figure 6: A plot with a two-column text annotation. This plot is an adaptation of Figure 4.1 from
Thomas Rahlf’s book “Data Visualisation with R” (Rahlf, 2017).

The details of the code that produces the main plot—everything except the two columns
of text in the top-left corner—are not relevant to this article so we perform this drawing just
with a call to a rahlfPlot() function that is defined in the supplementary material for the
article. The result is shown in Figure 7.

rahlfPlot()

Because the main plot is drawn using functions from the graphics package, in order
to integrate the output from grid.latex() with the plot, we need to convert the plot to
an equivalent drawing that uses functions from the grid package. This can be achieved
with the grid.echo() function from the gridGraphics package (Murrell and Wen, 2020), as
shown below.

library(gridGraphics)
grid.echo()

We want to integrate the LATEX text with the main plot. In particular, we want the top of
the text to be aligned with the value 14,000 on the y-scale of the plot. There is also a 1cm gap
between the left of the text and the y-axis line. In order to achieve this, we can navigate to
the grid viewport that corresponds to the main plot region, which also has scales that match
the plot scales. The naming scheme for the grid viewports that grid.echo() generates is
described in Murrell (2015).

downViewport("graphics-window-1-1")

We are now ready to render the LATEX text within the plot. The LATEX code for this example
is shown below. This is a larger LATEX fragment than we have previously seen, but more
importantly it contains a larger number of LATEX commands to control the typesetting of the
text. For example, we control the font family with a \setmainfont command, we control

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=gridGraphics


CONTRIBUTED RESEARCH ARTICLE 176

m
ill

io
n 

19
90

 In
te

rn
ati

on
al

 G
ea

ry
-K

ha
m

is
 d

ol
la

rs

1800 1850 1900 1950 2000

     0

 2,000

 4,000

 6,000

 8,000

10,000

12,000

14,000

Pacific War

Allende Regime

Military Regime

Gross national product of Chile
Annual figures

Source: Rolf Lüders, The Comparative Economic Performance of Chile 1810-1995, www.ggdc.net/maddison

Figure 7: The main plot from Figure 6 without the two columns of text annotation. This plot is drawn
using functions from the graphics package.

font size and vertical line spacing with a \fontsize command, we control the overall width
of the text using a minipage environment, we set the number of columns using a multicol
environment, and we control the horizontal spacing between columns with a \setlength
command.

#> \setmainfont{Lato-Light}
#> \fontsize{12pt}{17pt}\selectfont
#> \setlength{\columnsep}{1cm}
#> \begin{minipage}[t]{16.25cm}
#> \begin{multicols}{2}
#> From a general and economic policy perspective, the entire period from
#> 1820 to 1930 can be described as a relatively liberal period. With the
#> "Pacific War", as a result of which the nitrate mines were awarded to
#> Chile, the economy experienced a profound upswing. The period from
#> 1940 to 1973 is generally seen as a phase in which the government
#> increasingly intervened in the economy and Chile was isolated
#> internationally. During the Allende regime (1971 to 1973), this policy
#> was exaggerated and the economy practically became a central
#> economy. The military regime (1973 to 1990)---despite numerous
#> violations of human rights---ensured liberalization of trade and
#> finance.
#> \end{multicols}
#> \end{minipage}

The \setmainfont and \fontsize commands in the LATEX code require the LATEX package
fontspec to be loaded, but this is not a problem because there is predefined support for
fontspec in the xdvir package. However, the multicol environment in the LATEX code
requires the LATEX package multicol and there is no predefined support for that in xdvir.
The following code uses the LaTeXpackage() function to provide support for the LATEX
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Figure 8: A plot with annotated mathematical expression. This plot is an adaptation of the plot in
Schneider.

package multicol. In a simple case like this, all we have to do is provide a name for the
package ("multicol") and use the preamble argument to provide the LATEX code that should
be added in the authoring step to load the LATEX package. We also call the registerPackage()
function so that we can refer to this LATEX package just by its name.

multicol <- LaTeXpackage("multicol",
preamble="\\usepackage{multicol}")

registerPackage(multicol)

Finally, we call grid.latex() to add the LATEX text to the plot. The object rahlfTeX
contains the LATEX code, we specify the LATEX packages that have to be loaded, including the
"multicol" package that we just registered, and we position the text 1cm in from the left of
the the plot viewport and at 14,000 on the y-axis. The final result is shown in Figure 6.

grid.latex(rahlfTeX,
packages=c("fontspec", "multicol"),
x=unit(1, "cm"), y=unit(14000, "native"),
hjust="left", vjust="top")

11 Example 2

This section looks at another more complete example of a plot with a LATEX annotation (Figure
8). This example demonstrates the sophisticated effects that are possible by combining
TikZ graphics with LATEX typesetting, in this case to produce an annotated mathematical
expression. This example also demonstrates a way to integrate lower-level grid.latex()
output with a ggplot2 plot (rather than using element_latex() or geom_latex()).

The main plot in this example is a ggplot2 plot. The details of the code that generates
the main plot are not particularly relevant to this article, so the main plot is described in the
object ggSchneider, which is defined in the supplementary materials for the article. One
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Figure 9: The main plot from Figure 8 without the annotated mathematical expression. This plot is
produced using the packages ggplot2 and ggtext.

point worth noting is that the labeling on the x-axis, which combines italic Greek letters
with upright digits and signs, is produced using the ggtext package. In other words, this
example combines two levels of text annotation: labels on the x-axis that are relatively
simple, but still beyond the capabilities of core R text drawing; and much more sophisticated
text annotations that require access to a complex system like LATEX. The main plot produced
by ggSchneider is shown in Figure 9.

ggSchneider

The start of the LATEX code for the annotated expression is shown below (the full code
is included in the supplementary materials for this article). The LATEX code is arranged in
three blocks: the first block of code defines some colors; the second block describes the main
mathematical expression, but includes some \eqnmark commands to save locations within
the expression; and the third block shows one of the additional mathematical expression
annotations, which refers to one of the saved locations within the main mathematical
expression, in this case the “z”, and positions a label relative to that location, in this case the
label “z-score”, which is positioned above and to the left of the “z”.

#> \definecolor{myviolet}{HTML}{440154}
#> \definecolor{myblue}{HTML}{3B528B}
#> \definecolor{myindigo}{HTML}{21908C}
#> \definecolor{mygreen}{HTML}{5DC863}
#>
#> \huge$
#> \eqnmark[myviolet]{z}{z} =
#> \frac{
#> \eqnmark[myblue]{x}{X}-
#> \eqnmark[myindigo]{mu}{\mu}}{
#> \eqnmark[mygreen]{sigma}{\sigma}}
#> $
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#>
#> \annotate[
#> yshift=1em,
#> myviolet,
#> align=right]
#> {above, left}
#> {z}
#> {$z$-score}
#>

There are several LATEX packages required by this LATEX code, in particular the \eqnmark
and \annotate commands require the LATEX package annotate-equations. As in the
previous example, we can add support for this package using the LaTeXpackage() and
registerPackage() functions. One difference this time is that the annotate-equations
package is being loaded from a local TeX directory. The previous example relied on the LATEX
package being available as part of the user’s (or the system-wide) TEX installation.

annotateEquations <-
LaTeXpackage(name="annotate",

preamble="\\usepackage{TeX/annotate-equations}")
registerPackage(annotateEquations)

The LATEX package annotate-equations is built on TikZ graphics. We do not need to load
the LATEX package tikz because annotate-equations will do that automatically. However,
xdvir by default makes use of the bounding box information from TikZ graphics and, for
images with saved locations like this, that bounding box is unreliable. The predefined
support for the LATEX package tikz in the xdvir package includes a tikzPackage() function
that allows us to load TikZ, but ignore its bounding boxes, as shown in the following code.

tikzNoBBox <-
tikzPackage(name="tikzNoBBox", bbox=FALSE)

registerPackage(tikzNoBBox)

Finally, we will use the LATEX package roboto to access specific variations of the Roboto
font for the text labels in the annotated mathematical expressions.

roboto <-
LaTeXpackage(name="roboto",

preamble="\\usepackage[sfdefault,condensed]{roboto}")
registerPackage(roboto)

Rendering the annotated mathematical expression on the plot requires integrating the
LATEX output with the ggplot2 plot. In particular, we want to align the top of the LATEX output
with the top of the density curve and we want to align the right side of the LATEX output
with the right edge of the label “160” on the x-axis.

We saw in an earlier section how to use element_latex() to draw LATEX text in labels
such as the plot title on a ggplot2 plot and how to use geom_latex() to draw LATEX text
as data symbols. In this example, we are adding a single LATEX annotation at a specific
position within a ggplot2 plot, so we use the gggrid package (Murrell, 2022). This package
provides the grid_panel() function, which we can add to a ggplot2 plot, much like the
standard ggplot2::geom_point() function, to add grid drawing to a ggplot2 plot. The first
argument to grid_panel() is a function that must generate a grid grob for ggplot2 to draw,
based on the data values that ggplot2 passes to it. In this case, we define a function called
annotation(), which calls the xdvir function latexGrob(). The latexGrob() function is
similar to grid.latex() except that it creates a description of something to draw rather
than immediately drawing it. We pass to latexGrob() the LATEX code to draw the annotated
mathematical expression (schneiderTeX), a set of packages to load, and arguments that
position the output relative to the plot. The final result is shown in Figure 8.
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Figure 10: A plot with numbered list items as annotations below the plot. This plot is an adaptation of
Figure 10 from Murrell (in press).

library(gggrid)

annotation <- function(data, coords) {
latexGrob(schneiderTeX,

packages=c("tikzNoBBox", "annotate", "roboto", "xcolor"),
x=unit(coords$x, "npc") + 0.5*stringWidth("160"),
y=coords$y, hjust=1, vjust=1)

}

ggSchneider +
grid_panel(annotation,

aes(x=x, y=y),
data=data.frame(x=160, y=dnorm(100, mean=100, sd=15)))

12 Example 3

This section provides another demonstration of the range of possibilities that is provided by
LATEX typesetting. This time we add annotations that are formatted as numbered list items
below a plot (Figure 10).

The main plot is a ggplot2 plot with a number of relatively simple annotations already
added. The details of the code are not particularly relevant to this article, so the main plot
is described in the object ggANZJS, which is defined in the supplementary materials for
the article. One point worth noting is that the LATEX annotations that we will be adding
are required to fit within the lines that extend below the plot. In other words, we will be
specifying a fixed width for the LATEX output to fit into. The main plot produced by ggANZJS
is shown in Figure 11.

ggANZJS

We will focus on drawing just the left-hand LATEX annotation. The LATEX code is shown
below. This includes commands to control the font size and an enumerate environment that
creates a numbered list item.

#> %
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Figure 11: The main plot from Figure 10 without the numbered list items as annotations. This plot is
produced using the ggplot2 package.

#> \fontsize{10}{12}
#> \selectfont
#> \begin{enumerate}
#> \item New Zealand closes its borders to \textit{almost} all travellers at
#> \textbf{23:59, 19 March 2020 (NZDT)}.
#> \end{enumerate}

As with the previous example, we have a single annotation that we want to position quite
carefully, so we define a function that generates a grid grob to use with the grid_panel()
function from the gggrid package. The labelLeft() function calls latexGrob(), gives it the
LATEX code to draw (closeTeX), specifies the position for the LATEX output, and specifies a
width for the output to be typeset within.

labelLeft <- function(data, coords) {
x1 <- coords$x[1]
x2 <- coords$x[2]
w <- unit(1 - x2, "npc") - unit(1, "mm")
gap <- 15
latex1 <- latexGrob(closeTeX,

x=unit(x1, "npc") - unit(2, "mm"),
y=unit(0, "npc") - unit(gap, "mm") - unit(2, "mm"),
hjust=1, vjust=1,
width=w)

}

The following code combines the left-hand label annotation, and a very similar right-
hand label annotation, with the ggANZJS plot. The final result is shown in Figure 10.

ggANZJS +
grid_panel(labelLeft,

aes(x=borders),
data=data.frame(borders=c(borderClosed, borderOpen))) +

grid_panel(labelRight,
aes(x=borders),
data=data.frame(borders=c(borderClosed, borderOpen)))
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Figure 12: A lattice plot with LATEX text used for the plot title and for annotations in each panel.

13 Example 4

This section provides an example of integrating grid.latex() output with a multi-panel
lattice plot (Sarkar, 2008). The plot is shown in Figure 12.

The main plot is a lattice plot consisting of multiple panels, with separate lines for males
and females. The details of the code for generating the main plot are not relevant to this
article, so it is described in the object latticeCrime, which is defined in the supplementary
material. The main plot produced by latticeCrime is shown in Figure 13.

latticeCrime

We can add drawing to each panel of a lattice plot by providing a panel function. The
panel function is passed the relevant data for the panel, and the code within the panel
function is run in the panel viewport, which means that the appropriate axis scales are
available. This means that we can include a call to grid.latex() within a panel function
in order to add LATEX text to each panel. For example, the following code defines the panel
function for Figure 12. This function calculates the appropriate label for the panel and
encloses that within a LATEX minipage environment that is the width of the panel. This means
that the label is typeset to be fully-justified within the panel (unless it is a single line that is
narrower than the panel). We use a minipage environment in the LATEX fragment rather than
just using the width argument to grid.latex() because minipage produces a more precise

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice


CONTRIBUTED RESEARCH ARTICLE 183

0

300

600

900

0

300

600

900

0

300

600

900

0

300

600

900

2016 2018 2020 2022 2016 2018 2020 2022 2016 2018 2020 2022 2016 2018 2020 2022

Figure 13: The main plot from Figure 12 without the title and annotations in each panel. This plot is
produced using the lattice package.
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width. The panel function then calls grid.latex() to draw that LATEX fragment, placing
the label slightly above the first data value for males. The call to the mainPanel() function
draws the yellow and blue lines that are part of the main plot.

latexPanel <- function(x, y, subscripts, groups, ...) {
type <- crime$Type[subscripts][1]
labelY <- y[groups == "Male"][1]
labelWidth <- convertWidth(unit(1, "npc"), "in", valueOnly=TRUE)
panelTeX <- paste0("\\begin{minipage}{", labelWidth, "in}",

type,
"\\end{minipage}")

grid.latex(panelTeX,
x=0, hjust="left",
y=unit(labelY, "native") + unit(4, "mm"), vjust="bottom",
gp=gpar(col=lightGrey, fontsize=8))

mainPanel(x, y, subscripts, groups, ...)
}

The title of a lattice plot can be specified as a grid grob. This means that we can call
latexGrob() to generate a title for the plot in Figure 12. The LATEX fragment below describes
the label, first defining three colors, and then giving the title text, with the words “Male”
and “Female” colored differently.

titleTeX <- r"(%
\definecolor{lightGrey}{RGB}{128,128,128}
\definecolor{lattice1}{RGB}{105,169,234}
\definecolor{lattice2}{RGB}{181,124,1}
\color{lightGrey}
Number of Incidents for \textcolor{lattice1}{Males} and
\textcolor{lattice2}{Females}
)"

The following code calls latexGrob() to define the title. We pass the LATEX fragment
titleTeX, we position the title to line up with the left edge of the first column of panels, and
we load the LATEX package xcolor so that the colors work.

latexTitle <- latexGrob(titleTeX, x=titleX, hjust="left",
packages="xcolor")

The following code creates the final plot by adding the panel function latexPanel and
the title latexTitle to the main plot latticeCrime. The final result is shown in Figure 12.

update(latticeCrime,
panel=latexPanel,
main=latexTitle)

14 Discussion

The xdvir package provides convenient high-level functions for rendering LATEX fragments
as labels, annotations, or data symbols on R plots. The package also provides lower-level
functions that allow more fine control over the authoring, typesetting, and rendering of
LATEX code in R.

The benefit of the xdvir package is access to the typesetting capabilities of LATEX. This
ranges from relatively simple features like changes in font family, font weight, and font style,
and automatic line breaks, to intermediate features like full justification, hyphenation, and
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high-quality mathematical expressions, and more advanced features like enumerated lists,
multiple columns, and TikZ graphics.

One limitation of the xdvir package is that rendering LATEX fragments is noticeably
slower than rendering simple character values. This is mainly because the typesetting step
requires running a TEX engine to produce a DVI file. The xdvir package performs some
caching in order to minimize the problem, but the time cost can still be quite large. For
example, Figure 12 requires running a TEX engine 17 times.

Another limitation of the xdvir package is that it requires a graphics device that can
render typeset glyphs. This currently includes the pdf() and quartz() devices, plus all
devices based on the Cairo graphics library (Packard et al., 2025), and graphics devices
provided by the ragg package (Pedersen and Shemanarev, 2025).

A final major limitation of xdvir is that it only currently supports two TEX engines: X ETEX
and recent LuaTEX. The function TeXstatus() can be used to report on whether these are
available. An implicit limitation is that xdvir requires a TEX installation, though that is
simplified through a dependency on the tinytex package (Xie, 2024).

Given these limitations, it is worth discussing alternative approaches. The first section of
this article mentioned gridtext, ggtext, and marquee. These packages provide alternative
ways to render non-trivial text labels, but do so through Markdown and/or HTML rather
than LATEX. Although they may not be able to produce as wide a range of results compared
to LATEX code, they will perform much faster and require fewer dependencies than xdvir.
There are also a number of packages that perform specific text-placement tasks, for example
geomtextpath (Cameron and van den Brand, 2025), which can arrange text along an arbi-
trary path, and directlabels [Hocking (2025)} and ggforce (Pedersen, 2025), which provide
functions for cleverly positioning text annotations, though without typesetting facilities.
The advantage of xdvir by comparison with these packages is that it is possible to produce
more advanced typesetting results thanks to having access to LATEX.

The tikzDevice package (Sharpsteen and Bracken, 2023) is an interesting alternative
because, where xdvir integrates LATEX text with R graphics, tikzDevice reverses the process
and integrates R graphics with LATEX. The tikzDevice package provides an R graphics
device that converts R plots into TikZ pictures so that R plots can include labels with LATEX
fragments and R plots can be deeply integrated with LATEX documents. There is also a ggtikz
package (Thomas, 2024) that builds on tikzDevice to allow TikZ annotations on ggplot2
plots. The main difference compared to xdvir is the destination: if we use xdvir, we end up
with LATEX output within an R plot; if we use tikzDevice or ggtikz, we end up with an R
plot within LATEX output. If the final destination is a LATEX document, then tikzDevice or
ggtikz may provide more convenience and greater control. However, if the final destination
is more general, or unknown, then xdvir may be the more appropriate solution.

The latex2exp package (Meschiari, 2022) is another package that works in the opposite
direction to xdvir. This package takes a LATEX fragment and converts it to an R plotmath
expression. This allows users familiar with LATEX to access R’s math-drawing facility whereas
xdvir allows users to access LATEX’s math-drawing facility, which is far superior. The
advantage of latex2exp, as with many of these alternative approaches, is that it does not
have any system dependencies, whereas xdvir requires a TEX installation.

Another alternative approach to including LATEX output in R plots is to import an im-
age of the LATEX output. This approach harks back to early solutions for including LATEX
mathematical expressions in web pages by generating PNG images from LATEX fragments.
However, more modern technologies, such as SVG, mean that this approach can yield a
much higher-quality result, as demonstrated by Schneider. One simple advantage of the
xdvir approach is the level of convenience that it provides by automating the authoring
and typesetting steps. The xdvir package also provides more possibilities to integrate LATEX
output with other drawing in R through anchors and saved positions.

Some of the limitations of xdvir may also be overcome by further development. For
example, it may be possible to extend support to more TEX engines and to more graphics
devices. Providing support for more LATEX packages is another area for future work.
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lqmix: an R Package for Longitudinal Data
Analysis via Linear Quantile Mixtures
by Marco Alfò, Maria Francesca Marino, Maria Giovanna Ranalli, Nicola Salvati

Abstract The analysis of longitudinal data gives the chance to observe how unit behaviors
change over time, but it also poses a series of issues. These have been the focus of an
extensive literature in the context of linear and generalized linear regression, moving also, in
the last ten years or so, to the context of linear quantile regression for continuous responses.
In this paper, we present lqmix, a novel R package that assists in estimating a class of linear
quantile regression models for longitudinal data, in the presence of time-constant and/or
time-varying, unit-specific, random coefficients, with unspecified distribution. Model pa-
rameters are estimated in a maximum likelihood framework via an extended EM algorithm,
while parameters’ standard errors are derived via a block-bootstrap procedure. The analysis
of a benchmark dataset is used to give details on the package functions.

1 Introduction

Quantile regression (Koenker and Bassett, 1978) has become quite a popular technique to
model the effect of observed covariates on the conditional quantiles of a continuous response
of interest. This represents a well-established practice for the analysis of data when the
focus goes beyond the conditional mean. Comprehensive reviews on this topic can be found,
among others, in Koenker and Hallock (2001), Yu et al. (2003), Koenker (2005), and Hao and
Naiman (2007).

With longitudinal data, dependence between observations recorded from the same
statistical unit needs to be taken into account to avoid bias and inefficiency in parameter
estimates. Different modeling alternatives are available in the literature for handling such a
dependence. For a general presentation, see e.g., Diggle et al. (2002) and Fitzmaurice et al.
(2012), while for a focus on quantile regression see Marino and Farcomeni (2015). Here,
we consider quantile regression models that include unit-specific random coefficients to
describe such a dependence; this gives rise to a conditional model specification which allows
one to draw unit-level inferential conclusions on the effect of covariates on the longitudinal
outcome of interest. In this framework, a standard way of proceeding is based on specifying
a parametric distribution for the random coefficients, as suggested, e.g., by Geraci and Bottai
(2007, 2014). An alternative consists in leaving the distribution unspecified and estimating it
from the observed data, by using a finite mixture specification. This can arise from discrete,
unit-specific, random coefficients with unspecified distribution that remains constant or
evolves over time according to a hidden Markov chain, as proposed by Alfó et al. (2017)
and Farcomeni (2012), respectively. A more flexible specification based on combining both
time-constant (TC) and time-varying (TV), unit-specific, discrete, random coefficients may
also be adopted, as proposed by Marino et al. (2018). When compared to fully parametric
alternatives, this semi-parametric approach offers a number of specific advantages, as it helps
(i) avoid unverifiable assumptions on the random coefficient distribution; (ii) account for
extreme and/or asymmetric departures from the homogeneous model; (iii) avoid integral
approximations and, thus, considerably reduce the computational effort for parameter
estimation.

In this paper, we describe the R package (R Core Team, 2019) lqmix (Marino
et al., 2023), available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=lqmix, which is intended to provide maximum like-
lihood (ML) estimates for TC and/or TV mixtures of linear quantile regression models for
longitudinal data. An indirect estimation approach, based on an extended Expectation-
Maximization algorithm (EM - Dempster et al., 1977) is employed.
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The package lqmix features some relevant R packages available for the analysis of
longitudinal data on the CRAN repository. It is related to packages lme4 (Bates et al.,
2015) and lqmm (Geraci, 2014) tailored, respectively, to the analysis of general clustered
observations via mixed models for the conditional mean and the conditional quantiles of a
response. Here, TC random coefficients following a parametric distribution are considered
to model dependence between observations and a ML approach is employed to derive
parameter estimates. lqmix is also strongly related to the LMest R package (Bartolucci et al.,
2017). This allows modeling the mean of longitudinal observations via hidden Markov
models (Zucchini and MacDonald, 2009; Bartolucci et al., 2013). In this case, TV random
coefficients with unspecified distribution that evolves over time according to a Markov
chain are considered to account for dependence between measures from the same unit
and a ML approach is adopted to derive parameter estimates. Other R packages that can
be fruitfully related to lqmix are rqpd (Koenker and Bache, 2014), pqrfe (Danilevicz et al.,
2022), and npmlreg (Einbeck et al., 2018). The former allows for the estimation of linear
quantile regression models for panel data by considering either a penalized fixed effect
estimation (Koenker, 2004) or a correlated random-effect method (Abrevaya and Dahl, 2008).
In both cases, parameters are estimated by minimizing an extended quantile loss function.
Similarly, pqrfe allows for the estimation of quantile regression models for longitudinal data
based on unit-specific fixed effects; three different estimation methods are implemented,
each based on the minimization of a different loss function. Last, the npmlreg R package
entails mixtures of (generalized) linear models for clustered observations by employing
a ML approach for parameter estimation. Finally, it is worth mentioning the quantreg
R package (Koenker, 2022) for estimation and inference in linear models for conditional
quantiles. Comparing these alternative packages with lqmix, it is worth highlighting that
the latter fills in a blank by providing modeling tools not available in these other packages
and ensures greater flexibility thanks to the non-parametric nature of the random coefficient
distribution, which allows one to avoid untestable parametric assumptions. The second
benefit one could have from lqmix entails the modeling of quantiles rather than the mean.
Quantile regression allows one to analyze the impact that predictors may have on different
parts of the conditional response distribution, as well as to deal with outliers and/or heavy
tails that make the Gaussian assumption typically used for continuous data unreliable.

The modeling of longitudinal data via quantile regression is also possible by considering
packages and environments out of the R world, although none of them allows consideration
of random coefficients and the possibility of modeling them non-parametrically and/or
dynamically. The Stata modules xtqreg (Machado and Santos Silva, 2021) and xtmdqr
(Pons and Melly, 2022) allow for the estimation of linear quantile regression models for
longitudinal data based on the use of fixed effects. These modules differ in the way model
parameters are estimated: the former considers the method of moments introduced by
Machado and Santos Silva (2019), while the latter builds up on the minimum distance
approach described by Galvao and Wang (2015). The qregpd module (Baker, 2016) is also
worth mentioning; it implements the quantile regression estimator developed in Graham
et al. (2015) for panel data. Last, the qreg Stata module (Machado et al., 2021) allows for the
estimation of linear quantile regressions under the assumption of independent observations.
Similarly does also the quantreg SAS procedure.

The paper is structured as follows. The different proposals available in the literature
on finite mixtures of linear quantile regression models are described in Section “Modeling
alternatives”, where the case of TC, TV, and the combination of TC and TV random coefficients
are discussed. ML estimation is reviewed in Section “Model estimation and inference”, where
details of the EM algorithm and the bootstrap procedure for standard error estimation are
described. The proposed R package is presented in Section “The lqmix R package”, where
the analysis of a benchmark dataset is discussed. The last section contains some concluding
remarks.
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2 Modeling alternatives

Consider the case in which a longitudinal study is planned to record the value of a continu-
ous response variable Y and a set of covariates (or predictors or explanatory variables) on a
sample of n statistical units, at T different measurement occasions. This is a balanced study,
with common (at least in unit-time) and equally spaced occasions, in discrete time. Let Yit
denote the value of the response for unit i = 1, . . . , n, at occasion t = 1, . . . , T, and yit the cor-
responding realization for i = 1, . . . , n, and t = 1, . . . , T . Further, let yi = (Yi1, . . . , YiT)

′ and
yi = (yi1, . . . , yiT)

′ be the T-dimensional vector of responses and its realization, respectively.
A frequent issue to address when dealing with longitudinal studies is that of missingness.
This may entail both the response and the covariates. Here, we assume that the latter are
fully observed, while an ignorable missingness (Rubin, 1976) may affect the outcome. That
is, some units in the sample may present incomplete response sequences due to either
monotone or non-monotone missing data patterns (Little and Rubin, 2002). In this sense, a
varying number of measures Ti may be available for each unit, even though missingness is
assumed to be independent from unobserved responses – M(C)AR assumption.

Random coefficient models represent a standard approach to analyze the effect of ob-
served covariates on a response Y that is repeatedly observed over time. This also holds
in the quantile regression framework, where the interest is in modeling the conditional
quantiles of the response distribution as a function of fixed and random coefficients. To
ensure flexibility and avoid unverifiable parametric assumptions on the random coefficient
distribution, a specification based on finite mixtures represents a viable strategy to adopt.
For this purpose, we developed the lqmix R package.

In this section, we describe the methodology underlying the proposed package, and
present some alternative formulations of quantile regression models available in the lit-
erature to deal with longitudinal data. In detail, we consider models based on discrete,
unit-specific, random coefficients with unspecified distribution able to capture unit-specific
sources of unobserved heterogeneity due to omitted covariates. According to the chosen
specification, these may remain constant and/or evolve over time, leading to a model based
on TC, TV, or both TC and TV random coefficients, respectively. The following sections
present each of these formulations in detail.

2.1 Linear quantile mixtures with TC random coefficients

For a given quantile level q ∈ (0, 1), let βq denote a quantile-dependent, p-dimensional,
vector of parameters associated with the (design) vector xit = (xit1, . . . , xitp)

′. Also, let
zit = (zit1, . . . , zitd)

′ denote a set of d ≥ 1 covariates (not included in xit) associated with a
vector of unit- and quantile-specific random coefficients bi,q = (bi1,q, . . . , bid,q)

′. The latter
account for unobserved heterogeneity that is not captured by the elements in xit and may
be used to describe dependence between repeated measurements from the same unit. In
this sense, conditional on bi,q, the longitudinal responses from the same unit, Yi1, . . . , Yit,
are assumed to be independent (local independence assumption) of each other. In detail,
for a given quantile level q ∈ (0, 1) and conditional on the vector bi,q, the response Yit is
assumed to follow an Asymmetric Laplace Distribution (ALD - e.g., Yu and Moyeed, 2001),
with density

fy|b(yit | bi,q; q) =
[

q(1 − q)
σq

]
exp

{
−ρq

[yit − µit,q

σq

]}
.

Here, ρq(·) denotes the quantile asymmetric loss function (Koenker and Bassett, 1978), while
q, σq, and µit,q denote the skewness, the scale, and the location parameter of the distribution,
respectively. The ALD is a working model that is used to recast estimation of parameters
for the linear quantile regression model in a maximum likelihood framework. The location
parameter of the ALD, µit,q, is modeled as

µit,q = x′itβq + z′itbi,q. (1)
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The modeling structure is completed by the mixing distribution fb,q(bi,q; Σq), i.e., the dis-
tribution of the random coefficients bi,q, where Σq identifies a (possibly) quantile-dependent
covariance matrix. Rather than specifying such a distribution parametrically as in, e.g.,
Geraci and Bottai (2014), Alfó et al. (2017) proposed to leave it unspecified and use a Non-
Parametric Maximum Likelihood approach (NPML – Laird, 1978; Lindsay, 1983a,b) to
estimate it directly from the observed data. This approach is known to lead to the estima-
tion of a (quantile-specific) discrete mixing distribution defined over the set of locations
{ζ1,q, . . . , ζGq ,q}, with mixture probabilities πg,q = Pr(bi,q = ζg,q), i = 1, . . . , n, g = 1, . . . , Gq,
and Gq ≤ n. Under this approach, for bi,q = ζg,q, the location parameter of the ALD in
Equation (1) becomes

µitg,q = x′itβq + z′itζg,q,

while the model likelihood is defined by the following expression:

L(· | q) =
n

∏
i=1

Gq

∑
g=1

[
Ti

∏
t=1

fy|b(yit | bi,q = ζg,q; q)

]
πg,q. (2)

This equation clearly resembles the likelihood of a finite mixture of linear quantile regression
models with TC, discrete, random coefficients.

2.2 Linear quantile mixtures with TV random coefficients

While the model specification introduced in the previous section accounts for unit-specific
omitted covariates, it may fall short in handling time variations in such unobserved hetero-
geneity. To address this limitation Farcomeni (2012) introduced a linear quantile regression
model with TV, discrete, random intercepts. Rather than allowing the distribution of these
intercepts to vary freely, it is modeled via a discrete-time Markov chain to ensure parsimony
and interpretability. While such a proposal entails unit-specific intercepts only, a broader
specification with general TV, discrete, random coefficients can also be considered.

As before, let xit = (xit1, . . . , xitp)
′ denote a vector of p covariates associated with the

vector of parameters βq = (β1,q, . . . , βp,q)′. Further, let wit = (wit1, . . . , witl)
′ denote a set

of l ≥ 1 explanatory variables not included in xit, associated with a vector of unit-, time-,
and quantile-specific random coefficients αit,q = (αit1,q, . . . , αitl,q)

′. These are assumed to
evolve over time according to a homogeneous, first order, hidden Markov chain {Sit,q} that
depends on the specified quantile level q. In detail, {Sit,q} is defined over the finite state
space Sq = {1, . . . , mq}, with initial and transition probabilities δsi1,q and γsit |sit−1,q, defined
as:

δsi1,q = Pr(Si1,q = si1,q)

and
γsit,q |sit−1,q ,q = Pr(Sit,q = sit,q | Sit−1,q = sit−1,q).

As for the model based on TC random coefficients detailed above, local independence
holds, together with the convenient assumption of conditional ALD for the responses.
For a given quantile level q ∈ (0, 1), the joint conditional distribution of the observed
Ti-dimensional response vector yi = (yi1, . . . , yiTi )

′ is given by

fy|s(yi | si,q; q) = fy|s(yi1 | si1,q; q)
Ti

∏
t=2

fy|s(yit | sit,q; q).

Here, si,q = (si1,q, . . . , siTi ,q)
′ is the vector of states visited by the i-th unit and fy|s(yit | sit,q; q)

denotes the ALD with skewness q, scale σq, and location parameter µitsit,q ,q. This latter is
modeled as

µitsit,q ,q = x′itβq + w′
itαsit,q ,q.
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Figure 1: An example of longitudinal trajectories affected by both time-constant and time-varying
unobserved heterogeneity

According to the assumptions above, the likelihood function is

L(· | q) =
n

∏
i=1

mq

∑
si1

· · ·
mq

∑
siTi

=1

[
δsi1,q

Ti

∏
t=2

γsit,q |sit−1,q

] [
Ti

∏
t=1

fy|s(yit | sit,q; q)

]
.

When looking at the above expression, we may recognize it is a dynamic extension of
Equation (2), as it represents the likelihood of a dynamic finite mixture of linear quantile
regression models with TV, discrete, random coefficients. These coefficients are here assumed
to vary as a function of the hidden states visited by the observed units over the observed
time window.

2.3 Linear quantile mixtures with both TC and TV random coefficients

In some real data applications, both TC and TV sources of unit-specific unobserved het-
erogeneity may be present and influence the response distribution. We report in Figure 1
the longitudinal trajectories representing the evolution of a given response measured over
(at most) 6 time occasions for a sample of 25 statistical units. From this figure, it is clear
that both sources of unobserved heterogeneity affect the response. TC unobserved features
may be responsible for differences between units in terms of baseline levels and systematic
temporal trends; TV unobserved features may instead explain the sudden temporal shocks
characterizing individual trajectories. These latter may be rather difficult to capture via TC
random coefficients or unit-specific random slopes associated with a time variable. In these
situations, the linear quantile mixtures described above are no longer appropriate, as they
may account for one source at a time only. To model empirical cases where both sources
of between and within-unit variation are present, Marino et al. (2018) introduced a linear
quantile regression model where TC and TV random coefficients may be jointly present in
the linear predictor.

Let xit = (xit1, . . . , xitp)
′ indicate a p-dimensional vector of covariates associated with

the parameters βq = (β1,q, . . . , βp,q)′. Furthermore, let zit = (zit1, . . . , zitd)
′ and wit =

(wit1, . . . , witl)
′ denote two disjoint vectors of d ≥ 1 and l ≥ 1 explanatory variables (not

included in xit), respectively. The former is associated with the vector of unit- and quantile-
specific random coefficients bi,q = (bi1,q, . . . , bid,q)

′ taking value in the set {ζ1,q, . . . , ζGq ,q}
with probability πg,q = Pr(bi,q = ζg,q), g = 1, . . . , Gq. The latter is associated to the vector
of unit-, time-, and quantile-specific random coefficients αit,q = (αit1,q, . . . , αitl,q)

′, which
evolves over time according to a homogeneous, first order, quantile-dependent, hidden
Markov chain {Sit,q}. As before, this is defined over the finite state space Sq = {1, . . . , mq}
and is fully described by means of the initial probability vector δq = (δ1,1, . . . , δmq ,q)′ and
the transition probability matrix Γq, with generic element γsit,q |sit−1,q ,q. The reader must note
that the intercept term is included in either zit or wit (or in neither), but never in both. A
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similar principle applies to unit-specific, discrete, random slopes in the model, ensuring
that zit and wit have no common elements. Further, random coefficients ζg,q and αsit,q ,q are
assumed to be independent.

For a given quantile level q ∈ (0, 1) and conditional on bi,q = ζg,q and αit,q = αsit,q ,q,
longitudinal responses recorded on the same unit are assumed to be independent (local
independence) and to follow an ALD with skewness, scale, and location parameter denoted
by q, σq, and µitgsit ,q, respectively. This latter parameter is defined by the following regression
model:

µitgsit,q ,q = x′itβq + z′itζg,q + w′
itαsit,q ,q.

Based on such assumptions, the likelihood function is

L(· | q) =
n

∏
i=1

Gq

∑
g=1

mq

∑
si1

· · ·
mq

∑
siTi

=1

[
δsi1,q

Ti

∏
t=2

γsit,q |sit−1,q

] [
Ti

∏
t=1

fy|b,s(yit | bi,q = ζg,q, sit,q; q)

]
πg,q,

where, as before, fy|b,s(yit | bi,q = ζg,q, sit,q; q) denotes the density of the ALD. In this
framework, unobserved unit-specific features that remain constant over time are captured
by the random coefficients ζg,q; sudden temporal shocks in the unit-specific profiles, due to
TV sources of unobserved heterogeneity, are captured instead by the random coefficients
αsit,q ,q.

To conclude this section, it is worth noticing that, when a single hidden state (mq = 1)
is considered and bi,q = ζg,q, the location parameter µitgsit,q ,q simplifies to µitg,q and the
model reduces to the linear quantile mixture with TC random coefficients only. Also, when a
single mixture component is considered (Gq = 1), the location parameter µitgsit,q ,q simplifies
to µitsit,q ,q and the model above reduces to the dynamic finite mixture of linear quantile
regressions with TV random coefficients only. Last, when both Gq and mq are equal to 1, the
model reduces to a standard linear quantile regression model, without random coefficients.
These properties make this latter specification more flexible and general than the alternatives
described so far, at the cost of a higher computational complexity.

3 Model estimation and inference

In this section, we describe the algorithm for ML estimation of model parameters in the
linear quantile mixture models detailed in the previous section. We focus on the specification
based on both TC and TV random coefficients, as the simpler alternatives based on TC or
TV random coefficients only can be derived as special cases. We provide details of an EM
algorithm for parameter estimation in Section “Maximum likelihood estimation”; the procedure
for deriving standard errors and choosing the optimal number of mixture components
and/or states of the hidden Markov chain is described in Section “Standard errors and model
selection”.

3.1 Maximum likelihood estimation

Let θq denote the global set of free model parameters for a given quantile level q ∈ (0, 1). To
derive an estimate for such a vector, we may rely on indirect maximization of the likelihood
function via an extended version of the EM algorithm (Dempster et al., 1977). Let ui,q(g)
and vit,q(h) be the indicator variables for bi,q = ζg,q and Sit,q = h, respectively, and let
vit,q(h, k) = vit−1,q(h)× vit,q(k) denote the indicator variable for unit i moving from state
h at occasion t − 1 to state k at occasion t, with g = 1, . . . , Gq, and h, k = 1, . . . , mq. For a
given q ∈ (0, 1), the EM algorithm starts from the following complete-data log-likelihood
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function:

ℓc(θq) =
n

∑
i=1

{[ Gq

∑
g=1

ui,q(g) log πg,q

]
(3)

+

[ mq

∑
h=1

vi1,q(h) log δh,q +
Ti

∑
t=2

mq

∑
h=1

mq

∑
k=1

vit,q(h, k) log γk|h,q

]

+

[
Ti

∑
t=1

Gq

∑
g=1

mq

∑
h=1

ui,q(g)vit,q(h) log fy|b,s(yit | bi,q = ζg,q, Sit,q = h)

]}
.

At the r-th iteration, the E-step of the EM algorithm requires the computation of the expected
value of the complete-data log-likelihood in Equation (3), conditional on the observed
data y = (y1, . . . , yn)′ and the current parameter estimates θ

(r−1)
q . That is, it requires the

computation of
Q(θq | θ

(r−1)
q ) = IE

[
ℓc(θq) | y, θ

(r−1)
q

]
.

This means computing the posterior expectations of the indicator variables ui,q(g), vit,q(h),
and vit,q(h, k). Regarding these two latter, a simplification is obtained by considering the
forward and backward probabilities (Baum et al., 1970; Welch, 2003) typically used in the
hidden Markov model framework; see Marino et al. (2018) for further details. In the M-step
of the algorithm, parameter estimates θ̂q are derived by maximizing Q(θq | θ

(r−1)
q ) with

respect to θq.

The E- and the M-step are alternated until convergence, which is defined as the (relative)
difference between two subsequent likelihood values being lower than a given threshold,
ε > 0.

3.2 Standard errors and model selection

Following the standard procedure used in the quantile regression framework, standard
errors for model parameter estimates are derived by exploiting a nonparametric bootstrap
approach (see e.g., Buchinsky, 1995). In detail, we employ a block-bootstrap procedure,
where a re-sampling of the statistical units is performed and the corresponding sequence of
observed measurements is retained to preserve within-unit dependence (Lahiri, 1999).

Let θ̂
(r)
q denote the vector of model parameter estimates obtained in the r-th bootstrap

sample, r = 1, . . . , R. Estimates of the standard errors for the vector θ̂q correspond to the
diagonal elements of the matrix

V̂(θ̂q) =

√√√√ 1
R

R

∑
r=1

(
θ̂
(r)
q − θ̂q

) (
θ̂
(r)
q − θ̂q

)′
.

A crucial point when dealing with finite mixtures is the choice of the number of components
and/or hidden states. For a fixed quantile level q, a simple and frequently used solution is
as follows: parameter estimates are computed for varying combinations of the number of
components and states, [Gq, mq], and the model with the best fit, typically measured via log-
likelihood or penalized likelihood criteria (such as AIC or BIC), is retained. However, given
that these criteria may suffer from early stopping due to lack of progress rather than true
convergence and the log-likelihood may present multiple local maxima, the EM algorithm
is initialized from different starting points and the model corresponding to the highest
likelihood value is retained before applying the penalization. In this regard, a deterministic
start may be employed alongside a set of random start initializations. The deterministic
start is obtained by first estimating a linear regression model for the mean response using
maximum likelihood, including all covariates – both those associated with fixed effects and
those assumed to have a TC or TV random effect. The estimated fixed regression coefficients
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serve as initial values for the corresponding parameters. Initial values for TC and/or TV
random coefficients are obtained by adding an appropriate constant to the corresponding
fixed effect estimates from the homogeneous model. Prior component probabilities and/or
initial probabilities for the latent Markov chain are set uniformly; transition probabilities
γk|h,q, k, h = 1, . . . , m are instead set to (1 + wI(k = h))/(m + w), where w is a tuning
constant. Random starting points are generated by perturbing the deterministic starting
values.

While a multi-start strategy may mitigate the risk of local maxima, it is worth highlighting
that the final solutions may still lie on the boundary of the parameter space. This can lead to
several issues such as (i) splitting components or latent states into multiple subgroups, (ii)
convergence to (near-)identical parameter estimates across different components or hidden
states; (iii) inflated standard errors; or (iv) instability in fixed-effect estimates. Therefore, it
is strongly recommended to carefully examine the selected solution and prefer a simpler
model whenever there are indications of the above-mentioned issues. To conclude, note that
the selection of the optimal number of components and/or states (Gq and/or mq) should be
guided by the need of capturing the unobserved sources of heterogeneity characterizing the
data. In this sense, the primary goal is that of providing a sufficiently accurate approximation
of the true, possibly continuous, distribution of the random coefficients in the model, rather
than identifying homogeneous clusters of units, as typically done within the finite mixture
framework.

4 The lqmix R package

In this section, we introduce the R package lqmix, developed to deal with linear quantile
mixture models for longitudinal data. We illustrate the main functions for estimation and
inference on the parameters of models described in the previous sections by considering the
application to the labor pain benchmark dataset (Davis, 1991). Details on this dataset are
given in the following.

4.1 Labor pain data

Firstly reported by Davis (1991) and since then analyzed by Jung (1996) and Geraci and
Bottai (2007) among others, labor pain data come from a randomized clinical trial aiming at
analyzing the effectiveness of a medication for relieving labor pain in women. A total of
n = 83 women were randomized to a treatment/placebo group, and a response variable
evaluating the self-reported amount of pain measured every 30 minutes on a 100-mm line
was recorded. Here, 0 corresponds to absence of pain, while 100 corresponds to extreme
pain. The number of available measurements per woman ranges from a minimum of 1
to a maximum of Ti = 6. That is, we are in the presence of an unbalanced longitudinal
design, for which a MAR assumption seems to be reasonable. A total of ∑83

i=1 Ti = 357
measurements are available.

Together with the outcome of interest (meas), two covariates are available: trt denotes
an indicator variable identifying the group each woman is assigned to (1 = treatment, 0
= placebo), while time identifies the measurement occasion the response was recorded at.
Data are stored in the data frame pain included in the lqmix package, as shown below.

R> head(pain)

id meas trt time
1 1 0.0 1 1
2 1 0.0 1 2
3 2 0.0 1 1
4 2 0.0 1 2
5 2 0.0 1 3
6 2 2.5 1 4
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Data are severely skewed, and skewness changes magnitude and sign over time. In
Figure 2, we report some selected diagnostics for a linear mixed model based on TC,
Gaussian, random intercepts, using trt, time, and their interaction (trt:time) as covariates.

R> outLME = lmer(meas ~ trt + time + trt:time + (1|id), data = pain)
R> par(mfrow = c(1,2))
R> qqnorm(residuals(outLME), main = "")
R> qqline(residuals(outLME))
R> qqnorm(unlist(ranef(outLME)$id), main = "")
R> qqline(unlist(ranef(outLME)$id))

In particular, Figure 2 reports the Normal probability plots for model residuals: the left
panel shows unit- and time-specific residuals, while the right one shows the empirical Bayes
estimates of unit-specific random intercepts. As can be easily noticed, both plots indicate
the presence of potentially influential observations in the data, as well as the violation of
the Gaussian assumption for the random intercepts in the model. Therefore, using linear
quantile mixtures seems to be a reasonable choice for the analysis of such data.
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Figure 2: Labor pain data. Linear mixed effect model with Gaussian random intercepts. Normal
probability plot for unit- and time-specific residuals (left plot) and for empirical Bayes estimates of
unit-specific intercepts (right plot).

4.2 The lqmix function

The main function implemented in the lqmix R package is lqmix. It allows for the estimation
of the parameters of a linear quantile mixture based on either TC, TV, or both types of
discrete random coefficients. The input arguments can be displayed on the R console as
follows:

R> args(lqmix)

function (formula, randomTC = NULL, randomTV = NULL, group, time, G = NULL, m = NULL, data,
qtl = 0.5, eps = 10^-5, maxit = 1000, se = TRUE, R = 200, start = 0,
parInit = list(betaf = NULL, betarTC = NULL, betarTV = NULL, pg = NULL,
delta = NULL, Gamma = NULL, scale = NULL),
verbose = TRUE, seed = NULL, parallel = FALSE, ncores = 2)

The first mandatory argument, formula, denotes a two-side formula of the type (resp ∼
Fexpr), where resp is the response variable and Fexpr is an expression determining the
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fixed-coefficient vector, xit. On the other side, randomTC and randomTV are two one-side
formulas of the type (∼ Rexpr1) and (∼ Rexpr2), where Rexpr1 and Rexpr2 identify the
columns of covariates associated with TC and TV random-coefficient vectors, zit and wit,
respectively. Note that both these arguments are optional, so that the user may decide to
estimate a linear quantile regression model with either TC or TV random coefficients, or with
a combination of them. Further, variables reported in Rexpr1 and Rexpr2 must not overlap
and, if any of them appears also in the fixed effect formula (formula), the corresponding
parameter is estimated as a TC/TV random coefficient only. The arguments group and time
are strings indicating the grouping and time variable, respectively. All such variables are
taken from the data frame specified through the (mandatory) argument data. The arguments
G and m are used to specify the number of mixture components and/or hidden states in the
model, respectively, while qtl allows to specify the quantile level (by default, qtl = 0.5).
The arguments se, R, and start allow to specify whether block-bootstrap standard errors
should be computed (by default, se = TRUE), the number of bootstrap samples to be used
for this purpose (by default, R = 200), and the initialization rule to consider. As regards
this latter, three possible specifications are allowed: start = 0 is used for a deterministic
start of model parameters (the default option); start = 1 is used for a random start of
model parameters; start = 2 is used to consider a starting rule based on given model
parameters specified via the parInit list argument. The arguments maxit, eps, and verbose
identify the maximum number of iterations for the EM algorithm (by default, maxit = 1000),
the corresponding tolerance level (by default eps = 10−5), and whether output should
be printed (by default, verbose = TRUE), respectively. As far as the seed argument, this
is devoted to setting a seed for random number generation that is used for the random
starting rule (start=1) described so far and computing model parameters’ standard errors.
The arguments parallel and ncores control parallel computing when standard errors are
requested, with ncores defaulting to 2.

Estimating linear quantile mixtures with TC random coefficients

To explore features of the lqmix function, we start by considering a two-component linear
quantile mixture (Gq = 2) for the median (qtl = 0.5) with a TC random intercept for the
analysis of the pain data. This is estimated as follows:

R> outTC = lqmix(formula = meas ~ time + trt + trt:time, randomTC = ~1, time = "time",
group = "id", G = 2, data = pain)

--------|-------|-------|--------|-------------|-------------|
model | qtl | G | iter | lk | (lk-lko) |

--------|-------|-------|--------|-------------|-------------|
TC | 0.5 | 2 | 0 | -1682.31 | NA |
TC | 0.5 | 2 | 8 | -1607.11 | 4.64719e-06 |

--------|-------|-------|--------|-------------|-------------|
Computing standard errors ...
|===========================================================================| 100%

The running time for the above command is 1.930 seconds when run on an Apple M1
architecture (16GB, MacOS: Sequoia 15.5). This represents the architecture used for all the
codes illustrated in the paper. In the following, we report the output of the above call to
lqmix, which is an object of class lqmix, obtained by using the print method of the S3 class.

R> outTC

Model: TC random coefficients with G=2 at qtl=0.5
******************************************************
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---- Observed process ----

Fixed Coefficients:
time trt time.trt

11.6669 -2.1659 -10.8335

Time-Constant Random Coefficients:
(Intercept)

Comp1 1.3325
Comp2 43.3325

Residual scale parameter: 7.3289 - Residual standard deviation: 20.7294

---- Latent process ----

Mixture probabilities:
Comp1 Comp2

0.6737 0.3263

Log-likelihood at convergence: -1607.11
Number of observations: 357 - Number of subjects: 83

Looking at the output, we may recognize two separate sections, reporting estimates for the
observed and the latent process, respectively. As regards the observed process, the estimated
fixed coefficients suggest how self-reported pain increases as time passes by, together with
a positive effect of the treatment under investigation (negative sign for the trt variable),
with benefits that increase with time. On the other side, the estimated random coefficients
highlight the presence of two well-separated groups of women, reporting a low and a
medium pain at the baseline, respectively. In the last part, the estimated scale parameter
and the corresponding error standard deviation are shown. This latter corresponds to the
standard deviation of an ALD. As regards the latent process, estimates highlight that 67.37%
of women belong to the first mixture component (low-pain level); the remaining 32.63%
belong to the second one (medium-pain level). All estimated parameters are stored in the
object outTC as betaf (the fixed coefficients), betarTC (the TC random coefficients), scale
(the scale parameter), sigma.e (the conditional standard deviation of responses), and pg (the
component prior probabilities). Further, when leaving the statement se = TRUE (default
value), the outTC object also contains information on the estimated standard errors of model
parameters obtained via the bootstrap procedure detailed in Section “Standard Errors and
model selection”. These standard errors can be accessed by prefixing the corresponding
parameter names with se., as listed above.

The following information are also stored in the the outTC object: the log-likelihood
value at convergence (lk), the number of model parameters (npar), the values of AIC and
BIC (aic and bic), the quantile level (qtl), the number of mixture components (G), the total
number of subjects and observations (nsbjs and nobs), the mixture components’ posterior
probabilities obtained at convergence of the EM algorithm (postTC), the bootstrap variance-
covariance matrices of the regression coefficients (vcov), the type of missingness data are
affected by (miss), the estimated model (model), and the model call (call). Last, model
matrices associated with fixed and TC random coefficients are stored in the outTC object as
mmf and mmrTC, respectively.

Estimating linear quantile mixtures with TV random coefficients

The same lqmix function can be used to obtain parameter estimates for a quantile mixture
with TV random coefficients. To analyze the labor pain data, we consider a linear quantile
mixture for the median (qtl = 0.5), with a TV random intercept defined over a two-state
latent space (mq = 2):
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R> outTV = lqmix(formula = meas ~ time + trt + trt:time, randomTV = ~1, time = "time",
group = "id", m = 2, data = pain)

--------|-------|-------|--------|-------------|-------------|
model | qtl | G | iter | lk | (lk-lko) |

--------|-------|-------|--------|-------------|-------------|
TV | 0.5 | 2 | 0 | -1688.99 | NA |
TV | 0.5 | 2 | 10 | -1576.61 | 0.366345 |
TV | 0.5 | 2 | 20 | -1575.79 | 9.32048e-05 |
TV | 0.5 | 2 | 29 | -1575.79 | 9.43243e-06 |

--------|-------|-------|--------|-------------|-------------|
Computing standard errors ...
|======================================================================| 100%

The running time for obtaining results is 3.351 seconds. The output of estimation is given
below.

R> outTV

Model: TV random coefficients with m=2 at qtl=0.5
******************************************************

---- Observed process ----

Fixed Coefficients:
time trt time.trt

6.5012 -0.4923 -6.0013

Time-Varying Random Coefficients:
(Intercept)

St1 0.4924
St2 60.9926

Residual scale parameter: 5.8337 - Residual standard deviation: 16.5003

---- Latent process ----

Initial probabilities:
St1 St2

0.7667 0.2333

Transition probabilities:
toSt1 toSt2

fromSt1 0.8883 0.1117
fromSt2 0.0271 0.9729

Log-likelihood at convergence: -1575.795
Number of observations: 357 - Number of subjects: 83

Results for the observed process allow us to derive similar conclusions to those detailed
in the previous section, even though the magnitude of the effects is reduced. As regards
the latent layer of the model, the print method shows the estimates for the initial and the
transition probabilities of the hidden Markov chain. Based on such estimates, one may
conclude that 76.67% of women start in the first hidden state which, based on the estimated
time-varying random intercepts, is characterized by a low pain level. The remaining 23.33%
of women start the study with an intermediate baseline pain level. Looking at the estimated
transition probabilities, we may notice that, regardless of the treatment effect, labor pain
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tends to increase as time passes by, with women being in the low pain state moving towards
the medium pain state with probability equal to 0.1117. Estimated parameters are stored in the
object outTV as betaf (the fixed coefficients), betarTV (the TV random coefficients), scale
(the scale parameter), sigma.e (the conditional standard deviation of responses derived
from an ALD with parameters scale and qtl), delta (the initial probability vector), and
Gamma (the transition probability matrix). As detailed in the previous section, bootstrap
standard errors are stored by using the prefix “se.” to the names of parameters of interest.
Last, posterior probabilities for the latent states of the hidden Markov chain and the model
matrix for the TV random coefficients are stored as posTV and mmrTV, respectively, in the
outTV object.

Estimating linear quantile mixtures with TC and TV random coefficients

When specifying both the randomTC and the randomTV formulas, and therefore both G and
m, the lqmix function allows for the estimation of linear quantile mixtures based on both
TC and TV, discrete, random coefficients. To analyze labor pain data, we consider a linear
quantile mixture for the median (qtl = 0.5), with a TV random intercept, with mq = 2
hidden states, and a TC random slope for the time variable, with Gq = 2 components. To
estimate such a model and consider a random start initialization (start=1), the following
command can be run:

R> outTCTV = lqmix(formula = meas ~ trt + time + trt:time, randomTC = ~ time, randomTV = ~1,
time = "time", group = "id", m = 2, G = 2, data = pain, se = FALSE, start = 1, seed = 10)

--------|-------|-------|-------|--------|-------------|-------------|
model | qtl | m | G | iter | lk | (lk-lko) |

--------|-------|-------|-------|--------|-------------|-------------|
TCTV | 0.5 | 2 | 2 | 0 | -1723.86 | NA |
TCTV | 0.5 | 2 | 2 | 10 | -1594.61 | 14.8135 |
TCTV | 0.5 | 2 | 2 | 20 | -1554.41 | 3.47302 |
TCTV | 0.5 | 2 | 2 | 30 | -1541.16 | 0.165982 |
TCTV | 0.5 | 2 | 2 | 37 | -1541.12 | 2.98304e-06 |

--------|-------|-------|-------|--------|-------------|-------------|

This requires a running time of 0.240 seconds. The output of the above call to lqmix, obtained
through the print method of the S3 class, is reported below.

R> outTCTV

Model: TC and TV random coefficients with m=2 and G=2 at qtl=0.5
******************************************************************

---- Observed process ----

Fixed Coefficients:
trt trt.time

-9.2859 -5.0428

Time-Constant Random Coefficients:
time

Comp1 5.5428
Comp2 14.9178

Time-Varying Random Coefficients:
(Intercept)

St1 8.7859
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St2 69.7859

Residual scale parameter: 5.1259 - Residual standard deviation: 14.4983

---- Latent process ----

Mixture probabilities:
Comp1 Comp2

0.7381 0.2619

Initial probabilities:
St1 St2

0.8036 0.1964

Transition probabilities:
toSt1 toSt2

fromSt1 0.9641 0.0359
fromSt2 0.0434 0.9566

Log-likelihood at convergence: -1541.12
Number of observations: 357 - Number of subjects: 83

As it is clear from the output, the linear quantile mixture with both TC and TV, discrete,
random coefficients produces more refined information when compared to those discussed
so far. Also in this case, we may recognize in the output the two sections entailing the
observed and the latent process, respectively. In the former, estimates for the fixed, the
TC, and the TV random coefficients are reported. For the latent part, the output reports
information on the mixture, the initial, and the transition probabilities.

By looking at the results, we conclude again that self-reported pain is lower for women
under medication (negative sign for the trt variable) and that benefits increase with time.
Looking at the estimated TC random coefficients and the corresponding prior probabilities,
we may distinguish two well separated groups of women. They exhibit different trends
in pain levels over time: 73.81% experience a mild increase in pain levels, whereas 26.19%
show a steeper increase. On the other side, the estimated TV random coefficients identify
two groups of women characterized by a low and a medium baseline labor pain level,
respectively. At the beginning of the observation period, 80.36% of women belong to the
first group, while the remaining 19.64% to the second. By looking at the estimated transition
probability matrix, we conclude that the group composition remains largely unchanged
over time once controlling for the other effects in the model (γhh > 0.95, h = 1, 2).

Estimated parameters are stored in the object outTCTV. Now both those related to the
TC finite mixture as well as those related to the hidden Markov chain are referenced. In
detail, outTCTV contains betaf (the fixed coefficients), betarTC (the TC random coefficients),
betarTV (the TV random coefficients), scale (the scale parameter), sigma.e (the conditional
standard deviation of responses derived from an ALD with parameters scale and qtl), pg
(the component prior probabilities), delta (the initial probabilities), and Gamma (the transition
probabilities). Standard errors (if computed), as well as additional information on the data,
the estimated model, posterior probabilities, and model matrices are stored in the outTCTV
object.

4.3 The search_lqmix function for model selection

As described in Section “Standard errors and model selection”, the number of mixture com-
ponents Gq and the number of hidden states mq in the model are unknown quantities that
need to be estimated. Moreover, a multi-start strategy is frequently needed to solve, at least
partially, the potential multimodality of the likelihood surface. Both issues can be addressed
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by means of the search_lqmix() function. Input arguments and corresponding default
values can be displayed on the R console though the args function:

R> args(search_lqmix)

function (formula, randomTC = NULL, randomTV = NULL, group, time, Gv = NULL, mv = NULL, data,
method = "bic", nran = 0, qtl = 0.5, eps = 10^-5, maxit = 1000, se = TRUE, R = 200,
verbose = TRUE, seed = NULL, parallel = FALSE, ncores = 2)

Most of the arguments of this function correspond to those described so far. The remaining
ones are specified as follows. Gv and mv denote vectors identifying the range for the number
of mixture components, Gq, and the number of hidden states, mq, to be considered, respec-
tively, for a fixed quantile level q ∈ (0, 1). When both arguments are specified, the search
of the optimal linear quantile mixture with TC and TV random coefficients is performed.
When only one out the two arguments is specified, a linear quantile mixture based on either
TC or TV random coefficients is estimated. A linear quantile regression with no random
coefficients is also estimated either when both mv and/or Gv include the value 1, or when Gv
includes 1 and mv = NULL, or when mv includes 1 and Gv = NULL. In this case, the function
lqr() implemented in the lqmix R package and described in the following is employed.

The argument method is used for model selection purposes. One of three possible values
is admitted: “bic” (by default), “aic”, or “lk”. The former two identify the optimal model
as that providing the minimum value of the BIC or the AIC index, respectively. The latter,
selects the optimal model as the one corresponding to the maximum log-likelihood value.

The argument nran specifies the number of random starts to be considered for each
value in the range identified by Gv and mv. This number is strictly related to the type of
model for which the optimal search is performed. In detail, following a similar strategy as
that suggested by Bartolucci et al. (2017) for the LMest R package, when a linear quantile
mixture based on TC random coefficients only is considered, the number of random initial-
izations is set equal to nran× (Gq − 1); when only TV random coefficients are allowed, the
number of random initializations is set equal to nran× (mq − 1); last, when both TC and
TV random coefficients are considered, the number of random initializations is set equal
to nran× (Gq − 1)× (mq − 1). By default, nran = 0, so that no random initializations are
considered. The seed argument is used to fix a seed and ensure reproducibility of results
when the multi-start strategy based on random initializations is considered to estimate
model parameters, as well as for deriving standard errors (when requested). Last, parallel
and ncores are used for parallel computing of the standard errors.

We report below the results of the model selection strategy applied to the pain data,
when focusing on a linear quantile mixture with a TV random intercept and a TC random
slope associated to the variable time, for the quantile level q = 0.5. The search is done by
looking for the optimal number of components (Gq) and hidden states (mq), both in the set
{1, 2}, by setting nran=50. The optimal model is selected according to the BIC index.

R> > sTCTV = search_lqmix(formula = meas ~ trt + time + trt:time, randomTC = ~time,
randomTV = ~1, group = "id", time = "time", nran = 50, mv = 1:2, Gv = 1:2,
data = pain, seed = 10)

Search the optimal linear quantile mixture model
*************************************************
Random start: 0 ...
--------|-------|--------|-------------|

model | qtl | iter | lk |
--------|-------|--------|-------------|

HOM | 0.5 | 0 | -1707.73 |
--------|-------|--------|-------------|
Random start: 0 ... 1 ... 2 ... 3 ... 4 ... 5 ... 6 ... 7 ... 8 ... 9 ... 10 ... 11 ...
--------|-------|-------|--------|-------------|-------------|
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model | qtl | G | iter | lk | (lk-lko) |
--------|-------|-------|--------|-------------|-------------|

TC | 0.5 | 2 | 0 | -1626.59 | NA |
TC | 0.5 | 2 | 1 | -1626.59 | 6.65801e-07 |

--------|-------|-------|--------|-------------|-------------|
Random start: 0 ... 1 ... 2 ... 3 ... 4 ... 5 ... 6 ... 7 ... 8 ... 9 ... 10 ... 11 ...
--------|-------|-------|--------|-------------|-------------|

model | qtl | G | iter | lk | (lk-lko) |
--------|-------|-------|--------|-------------|-------------|

TV | 0.5 | 2 | 0 | -1575.79 | NA |
TV | 0.5 | 2 | 4 | -1575.79 | 8.79175e-06 |

--------|-------|-------|--------|-------------|-------------|
Random start: 0 ... 1 ... 2 ... 3 ... 4 ... 5 ... 6 ... 7 ... 8 ... 9 ... 10 ... 11 ...
--------|-------|-------|-------|--------|-------------|-------------|

model | qtl | m | G | iter | lk | (lk-lko) |
--------|-------|-------|-------|--------|-------------|-------------|

TCTV | 0.5 | 2 | 2 | 0 | -1538.76 | NA |
TCTV | 0.5 | 2 | 2 | 3 | -1538.76 | 8.36816e-06 |

--------|-------|-------|-------|--------|-------------|-------------|
Computing standard errors for the optimal model...
|===========================================================================| 100%

The running time for the above command is 20.942 seconds and the output is stored in the
sTCTV object. This can be shown by means of the print method of the class S3 as follows:

R> sTCTV

Opt model: TC and TV random coefficients with m=2 and G=2 at qtl=0.5
*********************************************************************

---- Observed process ----

Fixed Coefficients:
trt trt.time

-4.3237 -5.0294

Time-Constant Random Coefficients:
time

Comp1 5.3294
Comp2 15.6627

Time-Varying Random Coefficients:
(Intercept)

St1 4.0237
St2 49.1746

Residual scale parameter: 4.7858 - Residual standard deviation: 13.5363

---- Latent process ----

Mixture probabilities:
Comp1 Comp2

0.6351 0.3649

Initial probabilities:
St1 St2

0.7553 0.2447
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Transition probabilities:
toSt1 toSt2

fromSt1 0.9552 0.0448
fromSt2 0.1497 0.8503

Log-likelihood at convergence: -1538.76
Number of observations: 357 - Number of subjects: 83

As reported in the first output line, the optimal model for the median (qtl = 0.50) according
to the BIC criterion (the default option) is based on Gq = 2 mixture components and mq = 2
hidden states. Results we obtain are in line with those reported in the previous section.
Differences are due to the model selection strategy that aims at identifying the global
maximum of the likelihood function.

To provide further insights into the analysis of the pain data and look at the potential
of the lqmix R package, we also search for the optimal model for a different quantile level.
Specifically, we apply the search_lqmix function for qtl = 0.75 to study the impact of
observed covariates on higher pain levels. When looking at the results reported below, we
may notice that again the optimal specification (according to the BIC criterion) is obtained
for Gq = 2 and mq = 2. Further, pain levels are lower when medication is taken, even
though the estimated effect is lower than before. This result claims a lower beneficial
effect of treatment for those women reporting higher pain levels. Comparing the estimated
TC random coefficients for qlt = 0.75 with those from the model for qtl = 0.50, we
observe now a more pronounced increase of pain levels over time; the estimated TV random
coefficients identify instead two groups of women declaring again a low and a medium
baseline pain level, respectively. Baseline estimates, as expected, are now higher than those
obtained for qtl = 0.50. The estimated transition probability matrix highlights a very high
persistence in each of the two states; this means that baseline levels remain pretty constant
over time.

R> sTCTV75 = search_lqmix(formula = meas ~ trt + time + trt:time, randomTC = ~time,
randomTV = ~1, nran = 50, group = "id", time = "time", mv = 1:2,

Gv = 1:2, data = pain, seed = 10, qtl = 0.75)

R> sTCTV75

Opt model: TC and TV random coefficients with m=2 and G=2 at qtl=0.75
*********************************************************************

---- Observed process ----

Fixed Coefficients:
trt trt.time

-1.0538 -7.6027

Time-Constant Random Coefficients:
time

Comp1 8.5027
Comp2 17.9231

Time-Varying Random Coefficients:
(Intercept)

St1 5.1538
St2 65.9891

Residual scale parameter: 4.2329 - Residual standard deviation: 17.8476
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---- Latent process ----

Mixture probabilities:
Comp1 Comp2

0.6965 0.3035

Initial probabilities:
St1 St2

0.7393 0.2607

Transition probabilities:
toSt1 toSt2

fromSt1 0.9761 0.0239
fromSt2 0.0526 0.9474

Log-likelihood at convergence: -1577.189
Number of observations: 357 - Number of subjects: 83

4.4 The summary method for lqmix and search_lqmix objects

The summary method, when applied to objects of class lqmix or search_lqmix, generates a
summary object that allows for inference on model parameters. For search_lqmix objects, it
returns the summary of the optimal model. In the following, we present the output of the
summary method for the sTCTV object described so far.

R> summary(sTCTV)

Opt model: TC and TV random coefficients with m=2 and G=2 at qtl=0.5
***************************************************************************

---- Observed process ----

Fixed Coefficients:
Estimate St.Error z.value P(>|z|)

trt -4.3237 2.6423 -1.6363 0.0997 .
trt.time -5.0294 0.7494 -6.7108 <2e-16 ***

Time-Constant Random Coefficients:
Estimate St.Error z.value P(>|z|)

time_Comp1 5.3294 0.5207 10.236 < 2.2e-16 ***
time_Comp2 15.6627 0.8050 19.457 < 2.2e-16 ***

Time-Varying Random Coefficients:
Estimate St.Error z.value P(>|z|)

(Intercept)_St1 4.0237 1.6985 2.369 0.0175 *
(Intercept)_St2 49.1746 4.8451 10.149 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual scale parameter: 4.7858 - Residual standard deviation: 13.5363

---- Latent process ----

Mixture probabilities:
Estimate St.Error
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Comp1 0.6351 0.0668
Comp2 0.3649 0.0668

Initial probabilities:
Estimate St.Error

St1 0.7553 0.0507
St2 0.2447 0.0507

Transition probabilities:
Estimate St.Error

fromSt1toSt1 0.9552 0.0181
fromSt1toSt2 0.0448 0.0181
fromSt2toSt1 0.1497 0.0546
fromSt2toSt2 0.8503 0.0546

Log-likelihood at convergence: -1538.76
Number of observations: 357 - Number of subjects: 83

As before, two different sections may be distinguished. In the former, estimates, standard
errors, test statistics, and corresponding approximate p-values for assessing significance of
model parameters for the observed process are reported. These information are completed
with the estimates of the scale parameter and the corresponding conditional standard
deviation of the error terms. In the latter section of the output, estimates and standard errors
for the parameters characterizing the latent layer of the model are reported.

5 Other methods for lqmix and search_lqmix objects

To provide users with a familiar and consistent interface, the lqmix R package includes basic
methods typically available for regression model objects. Together with the print and the
summary methods introduced in the previous sections, the logLik and coef methods are
implemented. These return the maximum log-likelihood value obtained at convergence
of the EM algorithm and the estimated fixed effect coefficients, respectively. Further, the
methods AIC and BIC may be used for model selection purposes. When the above methods
are applied to objects of class search_lqmix, these refer to the optimal specification identified
via the search_lqmix function. The plot method returns graphical representations for the
outputs of the lqmix and the search_lqmix functions. In detail, a graphical display of
the mixture component probabilities and/or of the transitions across states of the hidden
Markov chain is provided when applied to an lqmix object. A plot reporting the value of
the chosen model selection criterion for varying number of components and/or hidden
states (defined in Gv and mv, respectively) is also provided when applied to objects of class
search_lqmix. We report in Figure 3 the results of such a method applied to the sTCTV object
detailed in Section “The search_lqmix function for model selection”.

Further methods implemented in the package are predict, residuals, and vcov. The
former two return the conditional predicted values and the conditional residuals, given
the component membership and/or the state occupied at a given occasion by units in the
sample; vcov returns instead the variance-covariance matrix of fixed model parameters
obtained from the block-bootstrap procedure detailed above.

6 Linear quantile regression for independent data

The package lqmix is thought for dealing with longitudinal data. However, it also imple-
ments the function lqr() for estimating a homogeneous linear quantile regression model
via a ML approach. This is obtained by exploiting the parallelism between the ALD and the
asymmetric quantile loss function. Input arguments for the lqr function and corresponding
default values are as follows:
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Figure 3: Results from the plot method
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R> args(lqr)

function (formula, data, qtl = 0.5, se = TRUE, R = 100, verbose = TRUE, seed = NULL,
parallel = FALSE, ncores = 2)

These arguments are identical to those described above for the functions that are built
to estimate parameters of linear quantile mixtures. As evident, also in this case the user
may specify whether standard errors need to be computed. In this case, a block-bootstrap
approach is employed. By default, R = 200 re-samples are considered. All methods described
in the previous section and available for lqmix and search_lqmix objects are also available
for objects of class lqr.

7 Conclusions

Quantile regression is a fundamental tool of analysis when (i) the response distribution is
skewed, (ii) outlying values are present, (iii) interest entails both the center and the tails
of the response distribution. When dealing with longitudinal data, dependence between
observations from the same subject must be properly considered to avoid biased inference.
Thus, linear quantile regression models with unit-specific random coefficients may be
effectively employed.

In this paper, we present the lqmix R package to estimate mixtures of linear quantile re-
gression models for continuous longitudinal data, possibly affected by random missingness.
Strong and unverifiable parametric assumptions on the random coefficients are avoided by
considering a mixture specification. Either TC or TV random coefficients, or a combination
of both can be fitted to deal with different sources of unobserved heterogeneity affecting the
longitudinal process. That is, the package allows us to deal with unit-specific unobserved
features (omitted covariates in the model) which may vary and/or stay constant over the
observational period, while looking at the quantiles of the conditional response variable.

Three main functions are implemented in the package. A first one, lqmix, allows the
estimation of the different model specifications obtained by considering TC or TV random
coefficients only, or a combination of them. A second function, search_lqmix, allows for
the searching of the optimal model specification, based on various model selection criteria.
A last function, lqr, is devoted to the estimation of linear quantile regression models for
cross-sectional data. For a concise understanding, we report in Table 1 the description of the
main parameters required by such functions.

When looking at the scalability of lqmix, the computational effort increases with the
complexity of the model. Linear quantile mixtures of quantile regressions with TC random
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Table 1: Description of the main arguments for the functions lqmix, search_lqmix, and lqr.

Arguments Description lqmix search_lqmix lqr

formula an object of class formula: a symbolic description of the
model to be fitted of the form resp ∼ Fexpr

yes yes yes

randomTC a one-sided formula of the form ∼ z1 + z2 + ... + zr yes yes no
randomTV a one-sided formula of the form ∼ w1 + w2 + ... + wl yes yes no
group a string indicating the grouping variable yes yes no
time a string indicating the time variable yes yes no
G number of mixture components associated to TC random

coefficients
yes no no

m number of states associated to the TV random coefficients yes no no
Gv vector of possible number of mixture components associ-

ated to TC random coefficients
no yes no

mv vector of possible number of mixture components associ-
ated to TV random coefficients

no yes no

data a data frame containing the variables named in formula,
randomTC, randomTV, group, and time

yes yes yes

qtl quantile to be estimated yes yes yes
eps tolerance level for (relative) convergence of the EM algo-

rithm
yes yes no

maxit maximum number of iterations for the EM algorithm yes yes no
se standard error computation for the optimal model yes yes yes
R number of bootstrap samples for computing standard

errors
yes yes yes

nran number of repetitions of each random initialization no yes no

coefficients are computationally less demanding than those with TV random coefficients,
which in turn are more efficient than models incorporating both TC and TV random terms.
Additional factors influencing computational load include the number of repeated measures
and, most significantly, the number of units in the sample. In our experience, lqmix easily
handles datasets of small to moderate size (about 10 thousand units). For larger datasets,
the computational effort increases, particularly in the estimation of standard errors. In
this respect, parallel computing proves beneficial in managing computation times and
maintaining performance.

Another aspect that is important to highlight entails the selection of the number of
bootstrap samples to consider for the estimation of the standard errors, R. Practitioners are
always recommended to set R to the value that ensures the stability of results, bearing in
mind that the higher the model complexity the larger R is expected to be.

Further updates of the package will include the possibility to deal with multivariate
responses in the spirit of Alfò et al. (2021). Here, outcome-specific random coefficients are
considered to model the unobserved heterogeneity characterizing each response variable.
The corresponding multivariate distribution is left unspecified and estimated directly from
the data. This proposal can be extended to the TV setting, as well as, to the mixed one (based
on both TC and TV random coefficients) and implemented in the package. The inclusion
of observed covariates on the latent layer of the model (as in mixtures of experts models)
represents a further extension we aim at working on.
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Exploring Image Analysis in R:
Applications and Advancements
by Tim Brauckhoff, Julius Rublack, and Stefan Rödiger

Abstract This review offers an overview of image processing packages in R, covering
applications such as multiplex imaging, cell tracking, and general-purpose tools. We found
38 R packages for image analysis, with adimpro and EBImage being the oldest, published in
2006, and biopixR among the newest, released in 2024. Of these packages, over 90 % are
still active, with two-thirds receiving updates within the last 1.5 years. The pivotal role of
bioimage informatics in life sciences is emphasized in this review, along with the ongoing
advancements of R’s functionality through novel code releases. It focuses on complete
analysis pipelines for extracting valuable information from biological images and includes
real-world examples. Demonstrating how researchers can use R to tackle new scientific
challenges in image analysis, the review provides a comprehensive understanding of R’s
utility in this field.

1 Introduction

Advancements in microscopy and computational tools have become pivotal to biological
research, facilitating detailed investigation of cellular and molecular processes previously
inaccessible. Consequently, imaging methodologies, staining protocols, and fluorescent
labeling — particularly those employing genetically encoded fluorescent proteins and
immunofluorescence — have resulted in a substantial increase in the capacity to examine
cellular structures, dynamics, and functions (Swedlow et al., 2009; Peng et al., 2012; Chessel,
2017; Moen et al., 2019; Schneider et al., 2019).

As with any significant advance in today’s world, software is required to facilitate the
acquisition, analysis, management, and visualization of image data resulting from these
techniques. The current techniques have allowed the capture of biological phenomena
with an unparalleled level of complexity and resolution (Eliceiri et al., 2012). As a result,
an ever-growing amount of image data is being generated (Peng et al., 2012). Alongside
the three spatial dimensions, images now encompass additional dimensions like time and
color channels. Biomedical images exhibit this high level of complexity, as evidenced by
the analysis of dense cell turfs where cells may partially overlap (Peng, 2008; Swedlow
et al., 2009). The increase in complexity demands computational approaches. Nevertheless,
the challenge posed is not solely due to complexity. As imaging technology advances, the
volume of image data generated from experiments also sees a steep rise (Peng, 2008; Caicedo
et al., 2017).

The need for quantitative information from images to understand and develop new
biological concepts has led to the emergence of bioimage informatics as a specialized field
of study (Eliceiri et al., 2012; Murphy, 2014). Bioimage informatics is primarily concerned
with the extraction of quantitative information from images to interpret biological concepts
or develop new ones (Chessel, 2017; Moen et al., 2019; Schneider et al., 2019). Bioimage
informatics focuses on the automation of objective and reproducible image data analysis,
while concurrently developing tools for the visualization, storage, processing, and analysis of
such data (Swedlow and Eliceiri, 2009; Peng et al., 2012). Crucial advancements range from
cell phenotype screening, drug discovery, and cancer diagnosis to gene function, metabolic
pathways, and protein expression patterns. The basic operations in bioimage informatics
are feature extraction and selection, segmentation, registration, clustering, classification,
annotation, and visualization (Peng, 2008).

Due to recent advancements, the utilization of microscopy in biology has evolved into
a quantitative approach, as opposed to solely a visual one. Thus, various essential open-
source platforms, applications, and languages have emerged, which have now become
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well-established within the life science community (Paul-Gilloteaux, 2023). Python, R, and
MATLAB are among the most favored programming languages in bioinformatics (Giorgi
et al., 2022), with Python and R being extensively used in biomedicine (Roesch et al., 2023). R
plays a pivotal role in the fields of statistics, bioinformatics, and data science. It is a versatile
statistical software that is used in various assays, for example, in gene expression analyses
(Rödiger et al., 2013, 2015b; Burdukiewicz et al., 2022; Chilimoniuk et al., 2024). Furthermore,
it is one of the top ten most prevalent programming languages across the globe, with a
thriving community that has developed numerous extensions and packages for various
applications (Giorgi et al., 2022). Originally developed for statistical analysis, R and its pack-
ages now offer robust capabilities for image analysis and automation (Chessel, 2017; Haase
et al., 2022). The growing demand for automation and data-driven analysis underscores
the necessity for flexible and integrated computational tools. R’s expanding ecosystem of
packages, ranging from general-purpose image processing to specialized, domain-specific
workflows, facilitates the creation of customized solutions tailored to diverse research needs.
The extensible framework and robust statistical capabilities support seamless integration
of image analysis with downstream data interpretation, promoting reproducibility and
efficiency across the entire analytical pipeline (Rödiger et al., 2015a; Chessel, 2017; Giorgi
et al., 2022; Haase et al., 2022).

R can integrate with other programming languages through the use of packages such as
reticulate (Ushey et al., 2024) for Python, which enables users to leverage the strengths of
multiple languages within their research workflows, enhancing flexibility across diverse
domains. Another example of this is Bio7. Bio7 is an open-source platform designed
for ecological modeling, scientific image analysis, and statistical analysis. It provides
an R development environment and integration with the ImageJ application (Austenfeld
and Beyschlag, 2012). ImageJ is a widely-used, public-domain Java-based software suite
specifically developed for biological image processing and analysis, that supports various
file formats, advanced image manipulation techniques, and a vast array of plugins and
scripts (Schneider et al., 2012).

A common difficulty in bioinformatics is the large number of file formats, some of which
are proprietary. A lack of standardization means that general tools must deal with this vast
array of file formats. The open-source approach provides access to the code of applications,
packages, and extensions, thereby facilitating modification and further development by the
community. This enhances reproducibility and validation, offering flexibility and adaptabil-
ity for scientific discovery. This makes open-source methods ideally suited to the diverse and
interdisciplinary field of biological imaging research (Swedlow and Eliceiri, 2009; Rödiger
et al., 2015a). The Open Microscopy Environment (OME) offers a standardized, open-source
framework for the management, analysis, and exchange of biological imaging data, with a
particular focus on the integration and preservation of rich metadata — such as experimental
conditions, cell types, acquisition parameters, microscope specifications, and quantification
methods (Goldberg et al., 2005). A central objective of OME is to ensure lossless storage and
interoperability across diverse proprietary and non-proprietary platforms. This objective ad-
dresses the common issue of metadata loss during format conversions within image analysis
pipelines. By establishing standardized formats and protocols, OME fosters compatibility
between proprietary systems and enhances reproducibility. The widely adopted OME-TIFF
format extends the traditional TIFF structure by embedding metadata in XML, enabling
efficient storage and retrieval of large, multidimensional datasets commonly encountered in
fluorescence imaging (Linkert et al., 2010; Leigh et al., 2016; Besson et al., 2019). In addition,
the OME-ZARR format, developed under the Next-Generation File Format (NGFF) initiative,
has been optimized for scalable, cloud-based storage of large N-dimensional arrays, with
metadata stored in human-readable JSON. The system’s capacity for partial data access
is a notable feature, contributing to enhanced performance in distributed workflows by
combining formats such as OME-TIFF, Hierarchical Data Format 5 (HDF5), and Zarr (Moore
et al., 2021, 2023)1. Increasing adoption of these formats by commercial imaging software
vendors further strengthens their relevance and sustainability (Linkert et al., 2010). In the

1https://ngff.openmicroscopy.org/about/index.html, accessed 07/13/2025
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context of R-based workflows, the RBioFormats package provides a native interface to the
OME Bio-Formats Java library. This enables the reading of proprietary file formats and
associated metadata, output to OME-TIFF, and seamless integration of image acquisition
with downstream analysis (Andrzej Oleś, John Lee, 2023). This facilitates the establishment
of flexible, standardized, and reproducible image analysis pipelines within the R ecosystem.

The heterogeneous and dynamic nature of images presents a constant challenge for image
analysis. Capturing precise and high-quality images that accurately represent the changing
characteristics of an experiment can be difficult, even for experienced researchers (Swedlow
et al., 2009). Additionally, visualizing and analyzing multi-gigabyte data sets requires
substantial computational power. The process of detailed analysis of image sequences,
which involves identifying and tracking objects, followed by the presentation of the resulting
data and the exploration of the underlying biological mechanisms, adds further complexity
(Swedlow and Eliceiri, 2009). To at least simplify the process of selecting the appropriate
software, this review provides an overview of R packages suitable for image analysis and
outlines their applications in biological laboratory settings.

2 Methods

In this study, a review of the literature was conducted over the period September 2023
to March 2024. The objective was to identify and analyze R packages that are suitable for
bioimage informatics applications. The primary resources included the Comprehensive R
Archive Network (CRAN)2, GitHub repositories3, rOpenSci’s r-universe4, the Bioconductor
repository5, OpenAlex database, PubMed, and Google Scholar. The chosen sources allowed
for an extensive coverage of R package repositories while also providing access to relevant
scientific literature. By combining these resources, the study aimed to provide a comprehen-
sive overview of available tools and techniques within the domain of bioimage informatics
using R.

The search strategy centered around pertinent keywords, including “bioimage,”
“biomedical image analysis,” “imaging,” “microscopy,” “histology,” and “pathology” and
the following search strings:

• https://openalex.org/works?page=1&filter=title_and_abstract.search%3AR%
20packages%20for%20image%20analysis

• https://openalex.org/works?page=1&filter=title_and_abstract.search%
3Aimage%20processing%20in%20R

• https://openalex.org/works?page=1&filter=title_and_abstract.search%
3Amicroscopy%20imaging%20in%20R%20packages

• https://pubmed.ncbi.nlm.nih.gov/?term=biomedical+image+analysis&filter=
dates.1963%2F1%2F1-2025%2F3%2F26&filter=pubt.review&filter=other.
excludepreprints

• https://scholar.google.de/scholar?hl=de&as_sdt=0%2C5&q=image+analysis+in+
R&btnG=

• https://scholar.google.de/scholar?hl=de&as_sdt=0%2C5&q=bioimage+analysis+
in+R&btnG=

• https://scholar.google.de/scholar?hl=de&as_sdt=0%2C5&q=microscopy+
imaging+analysis+in+R&btnG=

2https://cran.r-project.org/, accessed 04/17/2025
3https://github.com/, accessed 04/17/2025
4https://ropensci.r-universe.dev/builds, accessed 04/17/2025
5https://www.bioconductor.org/, accessed 04/17/2025
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The identified packages were then subjected to an analysis to understand their usage,
dependencies on other libraries, repository hosting platforms, and licensing terms.

The examples provided, along with this review, were created using RMarkdown. All
computations were performed using the R programming language, version 4.3.3, on a 64-bit
x86_64-pc-linux-gnu platform with the Ubuntu 22.04.3 LTS operating system. We utilized
the RStudio Integrated Development Environment (IDE, 2023.09.0+463 “Desert Sunflower”,
Ubuntu Jammy).

This review will examine a variety of R packages designed for image analysis, including
both general-purpose tools and those crafted for specific applications. This overview aims
to demonstrate the diverse capabilities and adaptability of these tools within and beyond
biological research contexts. Given the significant interest in the localization of microplastics
in cells and the environment, our examples will primarily focus on the analysis of microbead
particles made of polymethylmethacrylate (PMMA), which measure approximately 12 µm
and fall within the microplastic size range (Geithe et al., 2024). As microbeads are round,
spherical objects in images, they visually resemble other commonly imaged objects such as
seeds and cells.

3 Dividing to conquer - advanced segmentation strategies

Image segmentation is a crucial preliminary step in image analysis and interpretation. It
involves dividing an image into distinct regions by assigning a label to each pixel. The
primary objective is to delineate regions pertinent to the specific task (Peng, 2008; Ghosh et al.,
2019; Niedballa et al., 2022a). This process frequently employs features such as pixel intensity,
gradient magnitude, or texture measures. Based on these features, segmentation techniques
can be classified into three categories: region-based, edge-based, or classification-based.
Classification-based methods assign class labels to pixels based on their feature values,
whereas region-based and edge-based techniques focus on within-region homogeneity and
between-region contrast. One straightforward method of segmentation is thresholding,
which involves comparing pixel values against one or more intensity thresholds. This
process typically separates the image into foreground and background regions (Sonka and
Fitzpatrick, 2000; Jähne, 2002).

Another image segmentation method was proposed by Ren and Malik (2003). This
approach integrates a preprocessing step that segments the image into superpixels, feature
extraction based on Gestalt cues, evaluation of the extracted features, and the training of a
linear classifier. Superpixels are clusters of pixels that are similar with respect to properties
such as color and texture, resulting in larger subregions of the image. The primary objective
of this preprocessing step is to simplify the image and reduce the number of regions
considered for segmentation. Previously, this involved evaluating every single pixel. The
division of the image into regions larger than pixels but smaller than objects allows for the
superpixels to encompass a greater quantity of information, adhere to the boundaries of
natural image objects, reduce the presence of noise and outliers, and enhance the speed
of the subsequent segmentation process. In summary, this method can be described as
segmentation based on low-level pixel grouping (Ren and Malik, 2003; Hossain and Chen,
2019; Mouselimis et al., 2023).

However, segmentation is not limited to the differentiation of the foreground and back-
ground. Pixel classification plays a critical role in a number of applications, including visual
question answering, object counting, and tracking. In these applications, classification occurs
not just spatially but also temporally. These applications are diverse, encompassing fields
such as traffic analysis and surveillance, medical imaging, and cell biology (Ghosh et al.,
2019). While a relatively straightforward technique, thresholding has inherent limitations in
distinguishing between background, noise, and foreground. Therefore, the next section will
offer a more sophisticated approach, by presenting a package that utilizes deep learning for
image segmentation (Smith et al., 2021).
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3.1 imageseg: a deep learning package for forest structure analysis

By venturing beyond the traditional laboratory setting, the imageseg package offers a unique
approach to analyzing forest structures through deep learning-based image segmentation,
utilizing TensorFlow (https://www.tensorflow.org/). This R package employs the power
of convolutional neural networks with the U-Net architecture to streamline image segmen-
tation tasks (Niedballa et al., 2022a). According to the authors, this R package has been
designed to be user-friendly, with pre-trained models that require only input images, making
it accessible even to those without specialist knowledge. A comprehensive vignette accom-
panies the package, which provides detailed instructions on how to set up the software
and explains how to utilize its functions effectively (Niedballa et al., 2022c). Developed
primarily for forestry and ecology applications, imageseg includes pre-trained data sets
representing various aspects of forest structure, such as canopy and understory vegetation
density. Its flexibility allows for customization with different training data, enabling users
to develop customized image segmentation workflows for other fields such as microscopy
and cell biology. The package supports both binary and multiclass segmentation. For image
processing within the R programming environment, the imageseg package integrates with
the magick package (Niedballa et al., 2022a).

3.2 EBImage: specialized segmentation strategy for touching objects

The segmentation of closely adjacent objects, which is particularly prevalent in cell mi-
croscopy, represents a common challenge that is addressed by the EBImage package, which
is equipped with a variety of segmentation algorithms. A typical approach involves the
application of either global or adaptive thresholding, followed by connected set labeling,
with the objective of distinguishing individual objects. To achieve more precise segmentation
of touching objects, techniques such as watershed transformation or Voronoi segmentation
are employed (Pau et al., 2010).

The watershed algorithm is employed to delineate touching microbeads (Figure 1A-C).
Initially, the image is transformed into a binary image by applying a threshold (Figure 1B).
After utilizing the watershed function the result is visualized by assigning distinct colors
to the microbeads, effectively illustrating the algorithm’s capacity to differentiate between
touching objects (Figure 1C).

# Load necessary library
library(EBImage)

# Load the image from the specified path
image <- readImage("figures/beads.png")

# Display the original image
EBImage::display(image)

# Apply a threshold to the original image to create a binary image
img_thresh <- thresh(image, offset = 0.05)

# Read the binary image and display it
EBImage::display(img_thresh)

# Perform watershed segmentation on the distance map of the thresholded image
segmented <- EBImage::watershed(distmap(img_thresh))

# Color the labels of the segmented image
segmented_col <- colorLabels(segmented)

# Display the resulting image after watershed segmentation
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EBImage::display(segmented_col)

Figure 1: Watershed Segmentation in EBImage: A) Original image used for watershed segmentation
in EBImage. B) The thresh() function was employed to generate a binary image with the objective of
effectively separating the foreground from the background. The binary representation of the image
facilitates further segmentation processes by simplifying the image. C) Presents the result of the
watershed segmentation, which is visually represented by the assignment of a distinct color to each
object. This technique is particularly effective in differentiating touching objects, as evidenced by the
clear separation of microbeads in the image.

4 Unveiling the hidden - feature extraction

The primary objective of feature extraction is to condense the original data into significant
objects that encapsulate crucial information pertinent to each specific image (Jude Hemanth
and Anitha, 2012). Feature extraction may be applied to a predefined region of interest (ROI)
or may involve the identification of the ROI, a process often referred to as segmentation,
which was reviewed in the previous sections. Within any given ROI, a multitude of attributes
typically exist, representing different states of the object under analysis. These attributes,
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or features, are of vital importance for the interpretation of the detected objects and can
enable applications such as disease diagnosis or the identification of promising candidates.
Features related to individual pixels may include aspects such as neighborhood relationships,
connectivity, and gradients, which are one-dimensional descriptions. Nevertheless, more
intelligible and interpretable information is frequently derived from descriptions of regions
or objects (Sonka and Fitzpatrick, 2000; Shirazi et al., 2018). Object-level features encompass
a range of characteristics, including size, shape, texture, intensity, and spatial distribution.
Shape features can be further categorized into specific characteristics, including perimeter,
radius, circularity, and area. It is crucial to acknowledge that the successful extraction of
object features is dependent on the quality and accuracy of the image segmentation process
(Shirazi et al., 2018).

This section is devoted to an examination of R packages that enable the automated
extraction of quantitative features. The biopixR package offers automated and interactive
object detection strategies. The pliman package, initially developed for the analysis of plant
images, has the potential to be adaptable to a range of different domains. The FIELDimageR
package is capable of supporting the analysis of drone-captured images from agricultural
field trials as well as images from pollen, which exhibit similar characteristics to cellular
images. These tools provide novel perspectives for interdisciplinary research, facilitating
the adaptation of methodologies across diverse fields.

4.1 biopixR: versatile biological image processing

The biopixR package is a comprehensive toolbox developed primarily for microbead anal-
ysis. It encompasses a range of functions, including image importation, preprocessing,
segmentation, feature extraction, and clustering. The primary objective is to enable the
detection of objects and the extraction of quantitative data, including intensity values,
shape, and texture characteristics. These functionalities are integrated into user-friendly
pipelines that support batch processing, thereby enhancing accessibility. The preprocessing
capabilities include edge restoration and a variety of filter functions (Brauckhoff et al., 2024).

To illustrate the feature extraction process, the analysis focuses on a microbead image (Fig-
ure 2A). The image is initially converted to grayscale. Afterwards the objectDetection()
function is applied to detect image objects. The extracted objects are then represented
visually by plotting the highlighted contours of the objects and enumerating the microbeads
according to their cluster IDs, thus distinguishing them as individual entities (Figure 2B).

# Loading necessary package
library(biopixR)

# Importing the image
beads <- importImage("figures/beads2.jpg")

# Plot original image
beads |> plot(axes = FALSE)

# Converting the image to grayscale
beads <- grayscale(beads)

# Detecting objects in the image using edge detection
objects <-

objectDetection(beads, # Image to process
method = 'edge', # Method for object detection
alpha = 1, # Threshold adjustment factor
sigma = 0) # Smoothing factor

# Displaying internal visualization of object detection with marked contours
# and centers
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objects$marked_objects |> plot(axes = FALSE)

# Adding text annotations at the centers of detected objects
text(objects$centers$mx, # x-coordinates of object centers

objects$centers$my, # y-coordinates of object centers
objects$centers$value, # Text to display (value of the object center)
col = "green", # Color of the text
cex = 1.5)

Figure 2: Microbead Detection using biopixR: A) The original image shows red fluorescent mi-
crobeads, with the majority appearing as isolated, round, spherical objects. Some microbeads are
clustered together or overlapping, forming aggregated structures, while others are partially captured
within the image frame. B) In the grayscale microbead image, edges of the microbeads are highlighted
in purple, and the labeling ID (value) is displayed at the center of each object in green.

4.2 pliman: an R package for plant image analysis

pliman is designed to analyze plant images, particularly leaves and seeds, to help identify
disease states, lesion shapes, and quantify objects. It supports various functions, including
image transformation, binarization, segmentation, and detailed analysis, all facilitated
by a detailed vignette.6 A key feature of pliman is its automation of quantitative feature
extraction (Figure 3 and 4), which traditionally requires manual, time-consuming, and
error-prone methods. The features of this package are versatile, encompassing a range of
segmentation strategies, the analysis of shape and contour characteristics of leaves and seeds,
the counting of objects, and the quantification of disease states from leaf images. While the
primary focus is on plant imaging, the techniques used are applicable to other fields such
as cellular imaging. This cross-applicability is further emphasized by the package’s batch
processing capabilities, which allow for autonomous analysis of multiple images, critical for
high-throughput phenotyping tasks (Olivoto, 2022).

# Loading necessary package
library(pliman)

6https://tiagoolivoto.github.io/pliman/index.html, accessed 07/11/2024
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# Import requires EBImage:
# Importing the main image
beads <- EBImage::readImage("figures/beads2.jpg")

# Importing additional images for background and foreground
foreground <- EBImage::readImage("figures/foreground.jpg")
background <- EBImage::readImage("figures/background.jpg")

# Displaying the microbead image
EBImage::display(beads)

# Combining the foreground and background images and arranging them in 2 rows
pliman::image_combine(foreground, background, nrow = 2, col = "transparent")

Figure 3: Preparing Segmentation using pliman: The image comprises two sections. On the left, an
image of microbeads is displayed. On the right, a cropped view from the same image illustrates two
states for segmentation: the microbead (foreground) in red, and the background is shown in black,
emphasizing the clear division needed for segmentation analysis.

# Performing segmentation based on provided background and foreground images
analyze_objects(

img = beads, # Main image of microbeads
background = background, # Background sample image
foreground = foreground, # Foreground sample image
marker = "id", # Displaying enumeration
contour_col = "yellow" # Color for the contour of the segmented objects

)
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Figure 4: Segmentation Results using pliman: The image depicts the segmentation results obtained
via the pliman analyze_objects() function. It displays the contours of the segmented objects, outlined
in yellow. Each distinct object within the segmentation is numbered, facilitating its identification.

4.3 FIELDimageR: an R package for the analysis of drone-captured images

The FIELDimageR package, is an R package designed for the specific purpose of analyzing
drone-captured images from agricultural field trials. The package offers a variety of func-
tions for ROI selection, the extraction of foregrounds (Figure 5), watershed segmentation,
quantification and shape analysis (Matias et al., 2020). The developers have applied this
package to analyze pollen, which visually resembles cells under a microscope. This suggests
that FIELDimageR may be applicable for use in microbiological image analysis. For the
spatial analysis, the package utilizes the terra package (Matias et al., 2020).7

To showcase the functionalities of the FIELDimageR package and its parallels with biolog-
ical applications, the same microbead image is subjected to analysis. The image is initially
transformed into a ‘SpatRaster’ object and then segmented using an intensity threshold (Fig-
ure 5). The microbeads are correctly identified as the foreground objects by the fieldMask()
function. Subsequently, a distinct labeling ID is assigned to each microbead, as illustrated
by a color gradient. Moreover, the contours of each individual object are displayed (Figure
6). The results of the segmentation and the extraction of shape-related information are
presented in the interactive leaflet interface (Figure 7). Presenting information like cluster
ID, size, perimeter and width of the detected objects.

# Loading necessary packages
library(FIELDimageR)
library(FIELDimageR.Extra)
library(terra)
library(sf)
library(leafsync)
library(mapview)

# Using the same image as imported in the previous example
# Creating a SpatRaster object using the 'terra' package
EX.P <- rast("figures/beads2.jpg")
EX.P <- imgLAB(EX.P)

#> [1] "3 layers available"

# Removing background based on a vegetation index

7https://github.com/OpenDroneMap/FIELDimageR, accessed 05/07/2024
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EX.P.R1 <-
fieldMask(
mosaic = EX.P, # Input SpatRaster object
index = "BIM", # Index representing vegetation
cropValue = 5, # Threshold value for the index
cropAbove = F # Indicates to remove values below the threshold

)

# Displaying the original, background, and foreground images
EX.P.R1$newMosaic

Figure 5: Displaying the original, background, and foreground Images: The original image (left)
shows the fluorescent microbeads. The middle image displays the background in white (TRUE) and
all objects detected by segmentation in black (FALSE). The right image shows only the foreground
(microbeads) after detection through segmentation using the fieldMASK() function.

# Labeling of all microbeads
EX.P.Total <- fieldCount(mosaic = EX.P.R1$mask, plot = T)

Figure 6: Labeling of Microbeads: The fieldCount() function is used to label individual microbeads.
This function utilizes the mask produced in the previous section to identify the objects. The left image
displays the labeling with a color gradient indicating distinct objects. On the right, the object contours
are shown. The output of the function includes more than just the labeling value (named ID in this
package); it also provides information on area, perimeter, width, and geometry of the detected objects.

# Combining the 'FIELDimageR.Extra', 'mapview' and 'leafsync' to create an
# interactive view
m1 <- fieldView(EX.P, r = 1, g = 2, b = 3)
m2 <- mapview(EX.P.Total)
sync(m1, m2)
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Figure 7: Displaying Results with an Interactive leaflet Tool: The tool displays the original image
on the left. For comparison, the cursor is mirrored to the corresponding image (only visible in
HTML format). The left image provides detailed information interactively. Hovering over the objects
reveals their labeling ID. Performing a left-click opens a detailed window providing information for
the individual object, such as area, perimeter, width, and shape. The packages FIELDimageR.Extra,
mapview, and leafsync are used to create the interactive display.

In summary, packages such as EBImage and biopixR provide direct pipelines for the
extraction of features from images, including shape, size, radius, and perimeter, as well
as texture information through the calculation of Haralick texture features (Haralick et al.,
1973; Pau et al., 2010; Brauckhoff et al., 2024). The biopixR package employs the imager
and magick packages for image processing (Brauckhoff et al., 2024), whereas pliman and
FIELDimageR rely on EBImage for direct image analysis, with FIELDimageR also utilizing
terra and raster for spatial data exploration (Matias et al., 2020; Olivoto, 2022). In com-
parison to the other packages discussed in this section, biopixR facilitates the process of
object detection by eliminating the necessity for the generation of masks or the provision of
representative sample images of the foreground and background. Nevertheless, in contrast
to the other packages, biopixR lacks the functionality of watershed segmentation for the
enhanced handling of touching objects (Figure 2B and Figure 4) (Matias et al., 2020; Olivoto,
2022; Brauckhoff et al., 2024).

5 Decoding complexity - clustering, classification and annotation

The automation of measuring cellular phenomena and the effects of compounds, which
started in the late 1990s, is now increasingly significant owing to the progress of machine
learning (ML) algorithms and computing power. These advancements are enhancing the
field of bioinformatics’ accessibility to these techniques. Consequently, they are being
more commonly employed with the aim of gaining novel biological insights (Murphy,
2014; Moen et al., 2019; Weiss et al., 2022). One of the latest methods of image analysis
involves comparing the morphological characteristics of cells from captured images with pre-
classified training data that represent a specific state (Moen et al., 2019). Bioimage informatics
methods aim to generate fully automated models for biological systems (Murphy, 2014).

A major challenge in handling new data sets is the need to label images, which is
critical to assigning meaning to the objects within them. This is particularly important in
medical imaging, where expert knowledge is essential for accurate labeling (Boom et al.,
2012; Weiss et al., 2022). In ML, two common techniques that can be used to categorize
data into distinct groups are clustering and classification. Clustering, an unsupervised
learning method, is used to discover underlying structures or patterns in unlabeled data
by assessing similarities between data points (Mostafa and Amano, 2019). Classification, a
form of supervised learning, involves building a model from previously labeled training
data to make predictions about new data (Mostafa and Amano, 2019; Kumar Dubey et al.,
2022). This requires prior labeling of the data to determine the characteristics of each group,
a process known as annotation. However, manual annotation is time-consuming and labor-
intensive, requiring significant human effort to identify relevant details in an image (Yao
et al., 2016; Weiss et al., 2022). Because images often require multi-label annotation - the
assignment of multiple semantic concepts to a single image - there has been a growing
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demand for automated image annotation systems that aim to reduce the burden of manual
labeling and increase the efficiency of data processing (Nasierding et al., 2009).

To effectively analyze complex image data sets, researchers require advanced pattern
recognition techniques that can extract meaningful biological insights from these images.
This enables them to transform visual data into actionable scientific knowledge (Behura,
2021). Some of the most widely used clustering algorithms for this purpose include:

• k-means: is a centroid-based algorithm that partitions n observations into k clusters by
minimizing within-cluster sum of squares. It does require specifying the number of
clusters beforehand (Struyf et al., 1996).

• Partitioning Around Medoids (PAM): a k-means relative, seeks to identify k represen-
tative objects from the data set, which are robust representations of the clusters’ center
and are also referred to as medoids. Clusters are formed by assigning each object to its
nearest medoid, with the objective of optimizing within-cluster similarity (Kaufman
and Rousseeuw, 1990; Van der Laan et al., 2003).

• c-means: also known as Fuzzy C-Means (FCM), extends the concept of k-means to
allow each data point to belong to more than one cluster (Bezdek et al., 1984).

• Density-Based Spatial Clustering of Applications with Noise (DBSCAN): is a density-
based clustering algorithm that groups together points that are closely packed together
and separates them from points that lie alone in low-density regions. It does not
require specifying the number of clusters beforehand (Ester et al., 1996; Schubert et al.,
2017).

• Self-Organizing Maps (SOM): are a type of neural network architecture that systemati-
cally organizes input features into a spatially coherent representation. This method
can be utilized for clustering based on various object features, thereby facilitating the
discovery of patterns within these objects (Kohonen, 1990, 2013).

5.1 pixelclasser: a simplified support vector machine approach for pixel classification

The pixelclasser package is a tool for classifying image pixels into user-defined color
categories using a simplified version of the Support Vector Machine (SVM) technique. It
includes functions that allow users to visualize image pixels, define classification rules,
classify pixels, and store the resulting information.8 Users must provide a test set that
captures the variation between categories, as the package requires manual placement of
rules for each category - automatic rule construction methods are not included. In addition,
pixelclasser provides quality control of the classifications and comes with a detailed
vignette to facilitate the use of this classification tool.9 The classification on the pixel-level
can be used for image segmentation via pixel clustering.

5.2 biopixR: pattern recognition of shape- and texture-related features

The biopixR package incorporates two unsupervised ML clustering algorithms: SOM
and PAM. PAM organizes a distance matrix into clusters, identifying medoids as robust
representatives of each cluster, typically specified with a predefined number of groups (k)
(Kaufman and Rousseeuw, 1990; Van der Laan et al., 2003; Park and Jun, 2009). This approach
clusters Haralick texture features extracted from multiple images within a directory, thereby
enabling image classification based on these features (Haralick et al., 1973). The optimal
number of clusters (k) is automatically determined using silhouette analysis (Rousseeuw,
1987; Brauckhoff et al., 2024). SOM is used to cluster object features related to object shape
and intensity, thereby facilitating the identification of patterns within these characteristics
(Brauckhoff et al., 2024).

The capacity for pattern recognition within the biopixR package is demonstrated by
the clustering of shape-related and pixel-intensity information from an example image of

8https://github.com/ropensci/pixelclasser, accessed 07/11/2024
9https://cloud.r-project.org/web/packages/pixelclasser/vignettes/pixelclasser.html, accessed

07/11/2024
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microbeads (Figure 8A). The image depicts both single and aggregated microbeads, wherein
the former exhibit a round, spherical shape, while the latter appear more oval. The extracted
features and the corresponding cluster are depicted in Figure 8B, which showcases the
identification of patterns within these objects based on their shape characteristics.

# Load the 'biopixR' package
library(biopixR)

# Import an image from the specified path
img <- importImage("figures/beads.png")

# Set seed for reproducibility
set.seed(123)

# Extract shape features from the image
result <- shapeFeatures(

img,
alpha = 0.8,
sigma = 0.7,
xdim = 2,
ydim = 1,
SOM = TRUE,
visualize = FALSE

)

# Define colors for plotting points based on classes
colors <- c("darkgreen", "darkred")

# Plot the image without axes and add colored points representing the classes
img |> plot(axes = FALSE)
with(result,

points(
result$x,
result$y,
col = colors[factor(result$class)],
pch = 19,
cex = 1.2

))
text(c(471), c(354), c("A"), col = "darkred", cex = 5)

# Create a data frame with various shape features and the pixel-intensity
df <- data.frame(

size = result$size,
intensity = result$intensity,
perimeter = result$perimeter,
circularity = result$circularity,
eccentricity = result$eccentricity,
radius = result$mean_radius,
aspectRatio = result$aspect_ratio

)

# Min-Max Normalization Function
min_max_norm <- function(x) {

(x - min(x)) / (max(x) - min(x))
}
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# Applying the function to each column
df_normalized <- as.data.frame(lapply(df, min_max_norm))

# Create a boxplot of the normalized data
boxplot(

df_normalized,
ylab = "normalized values",
xaxt = "n",
cex.lab = 1.25,
cex.axis = 1.25

)

# Add axis ticks and diagonal labels
axis(1, at = 1:ncol(df), labels = FALSE) # Add axis ticks but no labels
text(

cex = 1.2,
x = seq_len(ncol(df_normalized)),
y = -0.07,
labels = colnames(df_normalized),
adj = 0,
srt = -45,
xpd = TRUE

)

# Highlight specific rows based on class
highlight_rows <-

which(result$class == 2) # Example row indices to highlight

# Add points for the specific rows
# Adding points for each column
for (col in 1:ncol(df_normalized)) {

points(
rep(col, length(highlight_rows)),
df_normalized[highlight_rows, col],
col = "red",
pch = 19,
cex = 1.5

)
}

text(c(0.5),
c(0.98),
c("B"),
col = "darkred",
cex = 5)
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Figure 8: Clustering Microbeads Based on Shape and Intensity Features: A) The utilization of
Self-Organizing Maps (SOM) enables the clustering of microbeads into two distinct groups based on
shape and intensity features extracted using the shapeFeatures() function. This method enables the
precise clustering of microbeads according to a range of properties, including intensity, area, perimeter,
circularity, radius, and aspect ratio. This facilitates a deeper understanding of the morphological
variations observed in the microbeads. B) The attributes utilized as input for the SOM algorithm are
illustrated in this plot. To ensure comparability, the different parameters have been normalized using
a min-max normalization procedure. The points highlighted in red represent the microbeads that are
also highlighted in red in Figure A. Notably, these highlighted points differ from the most commonly
occurring values in all attributes except for the intensity.
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6 Harmonizing visions - techniques and approaches in image registration

The process of image registration plays a pivotal role in the analysis of medical images, as
it enables the comparison of multiple images representing different conditions (Jenkinson
and Smith, 2001). This process, which can be described as image alignment, entails aligning
a series of images within a single coordinate system, thereby ensuring consistency across
images (Peng, 2008; Rittscher, 2010). A variety of techniques are employed in image reg-
istration, including mutual information registration, spline-based elastic registration, and
invariant moment feature-based registration, among others (Peng, 2008). These methods
are of particular significance in the field of medical imaging, where they are employed to
enhance the analysis of images obtained by techniques such as computed tomography (CT)
and magnetic resonance imaging (MRI) (Sonka and Fitzpatrick, 2000).

6.1 RNiftyReg: interface for the ‘NiftyReg’ image registration tools

The RNiftyReg package provides an interface to the ‘NiftyReg’ image registration library,
which supports both linear and non-linear registration in two and three dimensions (Clayden
et al., 2023). This package has been utilized in research on brain connectivity (Clayden
et al., 2013), and it includes a comprehensive README that introduces its features and
capabilities.10

7 Jack of all trades - general purpose R packages for broad-spectrum
analysis

Five principal image processing packages for R offer a broad range of algorithms and
capabilities for complete image analysis, rendering them suitable as general-purpose tools.
These packages are imager, magick, EBImage, OpenImageR and SimpleITK. This section will
introduce each of these key packages and their roles in image analysis.

7.1 imager: wrapper for the ‘CImg’ C++ image processing library

The imager R package, created by Barthelmé and Tschumperlé (2019), integrates the func-
tionality of the ‘CImg’ library, developed by David Tschumperlé, into R.11 This allows users
to edit and create images. The package uses two primary data structures: raster images,
known as cimg, and pixel sets, referred to as pixelset. These structures, encoded as four-
dimensional numeric or logical arrays, permit the execution of basic R functions such as
plot(), print(), or as.data.frame(), as well as the processing of hyperspectral images
and videos (Barthelmé and Tschumperlé, 2019). The 4D arrays encompass two spatial
dimensions (width and height), one temporal or depth dimension, and one color dimension
(Barthelme et al., 2024). imager offers over 100 standard commands for tasks such as loading,
saving, resizing, and denoising of images.12 The imager package supports the file formats
JPEG, PNG, and BMP and is available on CRAN (Barthelme et al., 2024).

7.2 EBImage: image processing and analysis for biological imaging data in R

The EBImage package, established in 2006, is one of the oldest image processing tools
available in R and can be accessed via the Bioconductor repository. It is primarily written
in R and C/C++ (Andrzej Oleś, 2017). EBImage provides a suite of general tools for image
processing and analysis, particularly excelling in microscopy-based cell assays. It features
specialized commands for cell segmentation and the extraction of quantitative data from
images (Pau et al., 2010). The package employs the RGB color system for color detection,

10https://github.com/jonclayden/RNiftyReg, accessed 07/11/2024
11https://github.com/asgr/imager, accessed 07/11/2024
12https://asgr.github.io/imager/, accessed 07/11/2024
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which is based on pixel intensities. The incorporation of the EBImage package into the
R workflow facilitates the automation and objectivity of the image analysis procedure
(Heineck et al., 2019). Images in EBImage are managed as an extension of R‘s base array,
specifically the package-specific Image class. As images are treated as multidimensional
arrays, algebraic operations are possible. This class structure includes various slots, with
the .data slot holding the numeric pixel intensity array and the colorMode slot managing the
image’s color information. Adjusting the colorMode setting changes the image’s rendering
mode (Andrzej Oleś, 2017; Heineck et al., 2019). Typically, the first two dimensions of
an image carry spatial information, while additional dimensions are variable and can
represent color channels, time points, replicas, or depth. EBImage also features an interactive
display interface through GTK+, and offers a set of functions for automated image-based
phenotyping in biology, including cell segmentation, feature extraction, statistical analysis,
and visualization (Pau et al., 2010). It supports a range of file formats, including JPEG, PNG,
and TIFF, and can handle additional formats through integration with the ’ImageMagick’
image-processing library (Pau et al., 2010; Andrzej Oleś, 2017).

7.3 magick: advanced image processing in R using ‘ImageMagick’

This package is built upon ‘Magick++’, the C++ API for the ‘ImageMagick’ image process-
ing library.13 The R package provides access to ‘ImageMagick’ functionalities, enabling
both basic and complex image manipulations directly in R. Notably, images in magick are
automatically displayed in the RStudio console, creating a dynamic and interactive edit-
ing environment. The wide variety of functions made available through this package are
impressive. The possibilities range from functions that are rather ‘just for fun’, such as
implosion or introduction of noise, to more advanced processing techniques, including
different segmentation techniques, edge detection, and a toolbox for morphology operations.
The magick package is compatible with a diverse range of image formats and encompasses
the functionalities required for format conversion. This includes the conversion to the
formats supported by the EBImage package. It also handles multiple frames, facilitating
the creation and processing of animated graphics. Each operation in magick creates a new,
altered version of the image, preserving the original (Ooms, 2024a).14 Recent developments
include the introduction of a shiny application that enables users to interactively perform
basic image processing tasks such as blurring and edge detection.15 The magick package is
compatible with a range of popular file formats, including PNG, BMP, TIFF, PDF, SVG, and
JPEG, and is available through the CRAN repository (Ooms, 2024a).16

7.4 OpenImageR: a general-purpose image processing library

OpenImageR is a lesser known but highly versatile general-purpose image processing library
that integrates both the R and C++ programming languages. This package offers a com-
prehensive array of functions for preprocessing, filtering, and feature extraction. Images
are treated as two- or three-dimensional objects, represented by matrices, data frames, or
arrays, with the third dimension representing color information. The functionalities within
OpenImageR are organized into three main categories: basic functions, which include import-
ing, displaying, cropping, and thresholding; filter functions, which feature augmentation
and various edge detection algorithms; and image recognition, which incorporates functions
from the ‘ImageHash’ Python library. In recent updates, a number of new features have
been incorporated, including Gabor feature extraction, which was originally developed in
MATLAB and based on code by Haghighat et al. (2015). The most recent version incorpo-
rates image segmentation techniques that utilize superpixels and clustering. Images can
be visualized through the shiny application or the grid package. OpenImageR is capable of

13https://imagemagick.org/script/magick++.php, accessed 07/11/2024
14https://www.imagemagick.org/Magick++/ImageDesign.html, accessed 07/11/2024
15https://georgestagg.github.io/shinymagick/, accessed 07/11/2024
16https://imagemagick.org/, accessed 07/11/2024
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handling a multitude of image formats, including PNG, TIFF, and JPG (Mouselimis et al.,
2023).17 18

7.5 SimpleITK: a streamlined wrapper for ITK in biomedical image analysis

The following section will introduce a prominent tool in biomedical image analysis, the
wrapper for the Insight Segmentation and Registration Toolkit (ITK), known as SimpleITK
(Rittscher, 2010). SimpleITK represents a streamlined version of the original ITK, an open-
source C++ library that features a wide array of imaging algorithms and frameworks
(Lowekamp et al., 2013; Yaniv et al., 2017). This library has been in development for
approximately two decades and is particularly favored in the medical image analysis
community (Lowekamp et al., 2013; Beare et al., 2018). The objective of SimpleITK is to
simplify the accessibility of ITK algorithms by reducing their complexity, thereby making
these sophisticated tools more approachable for a broader audience (Lowekamp et al., 2013).
Adapted for the R programming language through SWIG, SimpleITK offers over 250 image
processing algorithms that function across various scripting and prototyping environments
(Lowekamp et al., 2013; Yaniv et al., 2017; Beare et al., 2018). In contrast to other general-
purpose image processing packages, which treat images as mere arrays, SimpleITK treats
images as objects within a physical space, thereby providing a set of metadata about image
and voxel geometry in world coordinates (Lowekamp et al., 2013; Yaniv et al., 2017; Beare
et al., 2018). This nuanced representation is of particular importance for specific medical
imaging applications. Additionally, SimpleITK incorporates metadata such as the origin,
pixel spacing, and a matrix defining the physical orientation of image axes (Yaniv et al., 2017).
However, the complexity of the underlying ITK library may impede customization and
necessitate familiarity with C++. Another challenge for R developers arises from the fact that
the documentation is also based on C++ (Beare et al., 2018). To facilitate the learning process,
Yaniv et al. (2017) has developed a series of Jupyter notebooks that provide an introduction
to the package and its capabilities for both Python and R users. These notebooks serve as
educational tools and a resource for research, providing full coverage of the entire spectrum
of image analysis processes (Beare et al., 2018).19 In combination with R, SimpleITK enables
detailed image processing and facilitates the subsequent statistical evaluation of quantified
data. The software is compatible with a range of digital image formats, including JPEG,
BMP, PNG, and TIFF, and is capable of analyzing 2D and 3D images (Beare et al., 2018). The
package is obtained through the GitHub repository.20

In summary, these packages and their associated libraries offer a vast array of algorithms
that can be accessed in R. This includes features from the ‘CImg’, ‘ImageMagick’ and ITK
libraries, along with the diverse algorithms encoded in the EBImage package. These flexible
packages provide the foundation for the development of numerous tailored applications.

8 Exploring the facets of complexity - multiplexed imaging in R

Multiplexed imaging is a crucial technology for analyzing complex biological processes at
the single-cell level, especially in tissue-based cancers and autoimmune diseases (Harris
et al., 2022a). This technique enables the simultaneous assessment of multiple protein
and DNA molecules, overcoming limitations that hinder advancements in understanding
biological interactions and phenomena (Gerdes et al., 2013; Goltsev et al., 2018). Multiplex
imaging is the result of a multiplex experiment, in which multiple species (Aherne et al.,
2024), biomolecules (Damond et al., 2019), or cell types (Creed et al., 2021) are labeled
with different probes, dyes, or antibodies simultaneously. This technique allows for the
differentiation of components within the resulting image (Eling et al., 2020). In comparison
to standard immunofluorescence experiments, the number of distinct targets is significantly

17https://github.com/mlampros/OpenImageR, accessed 07/11/2024
18https://mlampros.github.io/OpenImageR/index.html, accessed 07/11/2024
19https://github.com/InsightSoftwareConsortium/SimpleITK-Notebooks, accessed 07/11/2024
20https://github.com/SimpleITK/SimpleITKRInstaller, accessed 07/11/2024
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increased, reaching up to 50 different target molecules (Damond et al., 2019; Einhaus et al.,
2023). This can be used to distinguish between species in a biofilm (Aherne et al., 2024),
or to obtain an overview of the biomarker distribution or tissue composition in a sample
(Damond et al., 2019; Yang et al., 2020). The technique has the capacity to reveal the positions
and interactions of individual cells, provide insight into the activities of biomolecules, and
holds the potential for the reconstruction of the three-dimensional tissue architecture of
a given sample (Harris et al., 2022b; Cho et al., 2023; Zhao and Germain, 2023). Several
imaging techniques are used to obtain detailed insights into the spatial interactions between
cells, including Co-Detection by indEXing (CODEX) (Goltsev et al., 2018), Multiplex Ion
Beam Imaging (MIBI) (Angelo et al., 2014), and Multiplexed Immunofluorescence Imaging
(MxIF) (Gerdes et al., 2013; Harris et al., 2022a; Feng et al., 2023). These methods generate
vast amounts of imaging data, often terabytes across hundreds of slides, which necessitates
sophisticated image analysis pipelines (Harris et al., 2022b).

8.1 mxnorm: normalize multiplexed imaging data

Managing technical variability within these pipelines is crucial, and intensity normalization
is one approach to address this issue (Harris et al., 2022b). The R package mxnorm addresses
this by providing tools for implementing, evaluating, and visualizing various normalization
techniques (Harris, 2023). These tools aid in measuring technical variability and evaluating
the efficacy of various normalization methods. They enable users to apply customized
methods to improve image consistency by reducing technical variations while preserving
biological signals. mxnorm provides an analysis pipeline for multiplex images, incorporating
normalization algorithms inspired by the ComBat paper, the fda package, and the tidyverse
framework (Harris et al., 2022a). For researchers who want to effectively standardize
multiplexed imaging data, these features make mxnorm a powerful resource (Harris, 2023).

8.2 DIMPLE: manipulation and exploration of multiplex images

To assess patient outcomes, understand disease mechanisms, and develop effective cancer
therapies, the DIMPLE R package is designed to extract critical information from the tumor
microenvironment (TME). DIMPLE facilitates quantification and visualization of cellular in-
teractions within the TME using spatial data. It also enables correlation of these interactions
and phenotypic data with patient outcomes through sophisticated statistical modeling.
DIMPLE provides researchers with an extensive toolkit to analyze cellular interactions and
transform raw multiplex imaging data into actionable biological insights, potentially identi-
fying prognostic indicators for cancer research and therapy development. To support the
analysis process, a shiny application is provided (Masotti et al., 2023).21

8.3 cytomapper: visualization of multiplex images and cell-level information

The cytomapper package is designed to visualize multiplexed read-outs and cell-level infor-
mation obtained by multiplex imaging technologies (Nils Eling, Nicolas Damond, Tobias
Hoch, 2020). It offers various functions to view pixel-level information across multiple chan-
nels and display expression data for individual cells. Additionally, cytomapper includes
features to gate cells based on their expression values, enhancing the analysis of complex
data sets. It is compatible with data from various multiplex imaging technologies and
requires single-cell read-outs, multi-channel TIFF stacks, and segmentation masks. The
cytomapper package is a versatile tool for researchers working with advanced imaging data
sets to explore cellular behaviors and properties (Eling et al., 2020).

21https://github.com/nateosher/DIMPLE, accessed 07/11/2024
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8.4 SPIAT: analyzing spatial properties of tissues

The SPIAT package, standing for Spatial Image Analysis of Tissues, is among the most
comprehensive tools for multiplex image analysis (Trigos et al., 2022). Developed with
compatibility for multiplex imaging technologies like CODEX and MIBI, SPIAT facilitates
the analysis of spatial data by using X and Y coordinates of cells, their marker intensities, and
phenotypes. It features six analysis modules that support a variety of functions including vi-
sualization, cell co-localization, distance measurements between cell types, categorization of
the immune microenvironment in relation to tumor areas, analysis of cellular neighborhoods
and clusters, and quantification of spatial heterogeneity (Yang et al., 2020; Trigos et al., 2022).
To use SPIAT, images must be pre-segmented and cells phenotyped, typically using external
software like HALO and InForm to prepare the correct input format (Yang et al., 2020). The
package provides a shiny application that assists the user in formatting spatial data from
the aforementioned sources in a manner that ensures compatibility with the functions of
the SPIAT package.22 SPIAT is designed to be user-friendly, making complex spatial analysis
accessible to researchers with varying computational skills (Feng et al., 2023).

8.5 Seurat: spatially resolved transcriptomics (SRT)

Spatially resolved transcriptomics (SRT) is a commonly used approach for the quantification
of gene expression levels in tissue sections while preserving positional information (Larsson
et al., 2023). The Seurat package (Hao et al., 2024) is a package for spatial transcriptomics and
multiplexed imaging analysis. It shares some similarities with the SPIAT and spatialTIME
packages. For assays with cell segmentation, Seurat facilitates the visualization of individual
cell boundaries or centroids, thereby enabling more precise mapping of molecular signals
to cells. In contrast to other reviewed packages, Seurat’s unique feature is its integration
of spatial and molecular data for spatial data analysis. In particular, it enables the joint
analysis of spatially-resolved gene expression data alongside traditional single-cell RNA-seq,
allowing researchers to map cell types and states within their native tissue context, along
with metadata. Notably, Seurat supports the analysis and visualization of spatial omics
data at both single-cell and subcellular resolution. Seurat deliberately supports a broad
range of spatial technologies, including the Akoya CODEX/Phenocycler™ platform and
sequencing-based platforms such as Visium Spatial Gene Expression, 10x Genomics and
Slide-seq. To achieve these capabilities, Seurat offers statistical methods to identify genes
or features with spatially structured expression patterns, which facilitate the uncovering
of region-specific biological processes. Since its first publication in 2015 (Satija et al., 2015),
its functionality has expanded to include support for image-based spatial transcriptomics
(highly multiplexed imaging technologies). Seurat uses image data (e.g., raw, masked,
processed images, 10X Genomics Visium Image).

8.6 spatialTIME: spatial analysis of Vectra immunofluorescence data

The spatialTIME package has been designed for the analysis of immunofluorescence data
with the objective of identifying spatial patterns within the TME. The package appears
to be designed to work with data acquired by the Vectra Polaris™ imaging system.23

It facilitates the spatial analysis of multiplex immunofluorescence data, enabling spatial
characterization and architectural reconstruction. Additionally, the package includes a shiny
application, iTIME, which offers a user-friendly point-and-click interface that mirrors many
of the capabilities found in spatialTIME (Creed et al., 2021).24 The package also comes with
a detailed vignette to help users get started with its features (Creed et al., 2024).

22https://github.com/TrigosTeam/SPIAT-shiny, accessed 07/11/2024
23https://web.archive.org/web/20250125194642/https://www.akoyabio.com/wp-content/uploads/2021/

11/Vectra_Polaris_Product_Note_with_MOTiF_Akoya.pdf, accessed 07/14/2025
24https://fridleylab.shinyapps.io/iTIME/, accessed 07/11/2024
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In summary, R offers a range of tools for analyzing multiplex imaging data. However, it
is important to note that these packages, except for the cytomapper package, require image
preprocessing and use the resulting data frames as input for analysis.

9 Tracing the dance - R packages for analyzing cellular movement dynam-
ics

Cellular migration is essential for various physiological and pathological functions, includ-
ing development, immune responses, wound healing, and tumor progression (Bise et al.,
2011; Yamada and Sixt, 2019; Hossian and Mattheolabakis, 2020), making it a crucial field in
disciplines such as neuroscience, oncology, and regenerative medicine (Kaiser and Bruinink,
2004; Hu et al., 2023). To gain insight into these biological processes, researchers can track
cell movement by manually tracing their positions in sequential images for 2D coordinates
or by incorporating the z coordinate for 3D analysis (Hu et al., 2023). By studying cell
migration at multiple levels - from the molecular components and the behavior of individual
cells to the dynamics of cell populations - researchers can unravel the complex interactions
that influence the movement of cells (Maheshwari and Lauffenburger, 1998). Such wide
studies are crucial in advancing our understanding of phenomena such as cancer metastasis,
which could lead to new therapeutic strategies (Um et al., 2017).

9.1 celltrackR: analyzing motion in two or three dimensions

The celltrackR package is intended for analyzing motion in two or three dimensions,
primarily using data from time-lapse microscopy or x-y-(z) coordinates. It is useful in
both biological settings for tracking cells and in non-biological contexts for object tracking
(Textor et al., 2024). Additionally, the package provides a web user interface to facilitate the
analysis process.25 The package contains standard analytical tools, such as mean square
displacement and autocorrelation, as well as algorithms for simulating artificial tracks
using various models, such as Brownian motion and the Beauchemin model of lymphocyte
migration (Textor et al., 2024). Furthermore, celltrackR provides a complete pipeline for
track analysis, including data management, quality control, and methods for detecting
tracking errors, such as track interpolation and drift correction (Wortel et al., 2021). The
package is well-documented, providing detailed vignettes that guide users through the
migration analysis process (Textor et al., 2024).

10 Mapping the unseen - exploring spatial properties in bioimage data

In this section, we explore the use of R tools for analyzing spatial properties in applications
such as transcriptomics. One notable package is the MoleculeExperiment package (noa,
2024), which can be used to analyze molecular data within image-based data sets. This
package builds upon other popular packages like EBImage, focusing on raster analysis, and
terra (Hijmans, 2024) for handling geographic information systems (GIS) tasks. Raster or
gridded data are spatial data structures that divide regions into rectangles called cells or
pixels, storing one or more values. These grids contrast with vector data representing points,
lines, and polygons in GIS contexts. Each pixel represents an area on a surface, making color
image rasters unique due to their multiple bands containing reflectance values for specific
colors or light spectra.

The terra package (formerly known as raster/sp) offers fast operations through opti-
mized back-end C++ code. Users can perform various raster tasks such as creating objects,
executing spatial/geometric functions like re-projections and resampling, filtering, and
conducting calculations. Functions within the package facilitate extracting essential statistics
from entire SpatRaster data sets, including mean values, maximum values, value ranges, or

25https://github.com/ingewortel/celltrackR, accessed 07/11/2024
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counts of NA cells. In addition to these analytical capabilities, terra provides functionality
for visualizing data and interacting with rasters, enhancing user experience when working
with gridded spatial information. This versatility makes the package an essential tool in
analyzing transcriptomic data within image-based data sets using R tools (Hijmans, 2020).

11 Numbers game - simplifying scientific image data representation

The R environment offers multiple additional tools for the extraction of information from
data, with a particular focus on the extraction of measuring points in scientific diagrams.
This task is of particular significance when data is available exclusively in image format, for
instance from publications or other sources.

11.1 digitize: use data from published plots or images

The digitize package is a well-established and mature tool that simplifies importing data
from digital images by providing a user-friendly interface for calibration and point location.
It leverages the readbitmap package to read various bitmap formats such as BMP, JPEG, PNG,
and TIFF. When reading these image files, digitize relies on the magic number embedded
within each file rather than solely relying on the file extension. For seamless integration
with JPEG and PNG images, this package depends on external libraries like ‘libjpg’ and
‘libpng’ (Poisot, 2011). Interestingly, the packages can be used for other purposes as well. For
example, Figure 9 demonstrates that the digitize package can quantify certain structures
in images. This example illustrates how fluorescent objects in an image can be identified by
their position and subsequently quantified by their number.

Figure 9: Counting using digitize: The figure provided to digitize, consists of cells with DNA
damage (similar to Rödiger et al. (2018)). The nucleus is colored with DAPI (blue) and the γH2AX
histone, a marker for DNA double strand breaks, is stained with a specific antibody. The digitize
package is used to interactively extract the coordinates (shown in the console) by using the cursor to
define the region of interest (blue cross) and tag the objects within it (red circles). In the screenshot it is
displayed how digitize is invoked in RKWard (0.7.5z+0.7.6+devel3, Linux, TUXEDO OS 2, (Rödiger
et al., 2012)).
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11.2 juicr: extraction of numerical data from scientific images

juicr is a tool designed to automate the extraction of numerical data from scientific images.
It offers users a Tcl/Tk graphical user interface (GUI) that simplifies point-and-click manual
extraction with advanced features such as image zooming, calibration capabilities, and
classification options. Additionally, juicr provides semi-automated tools for fine-tuning
extraction attempts. To ensure optimal performance, this package depends on the EBImage
package, which must be installed and loaded prior to utilization. Once data is extracted
using juicr, users can choose to save their results in various formats including comma-
separated values (CSV) files or postscript (EPS) files for easy import into other software.
Moreover, extractions can also be saved as fully-embedded and standalone HTML files, that
preserve all extraction details, setup configurations, and image modifications. These HTML
files provide a means of storing data while ensuring long-term accessibility and replicability
for future reference and analysis purposes (Lajeunesse, 2021).

11.3 image2data: transforming images into data sets

In recent years, the conversion of images into data sets has emerged as an essential tool in
various fields such as computer vision, healthcare, and geospatial analysis. The image2data
R package provides functionality to convert images into data sets (Caron and Dufresne,
2022). The primary function image2data() takes an image file with extensions like .png,
.tiff, .jpeg or .bmp as input and converts it into a data set. Each row of the resulting data
set represents a pixel (or subject), while columns represent variables such as x-coordinate,
y-coordinate, and hex color code. The image2data() function offers methods for reducing
data sets, yielding results akin to pixelated images with adjustable precision values. Higher
precision leads to more data points, while lower precision yields fewer. This example
showcases a pixelated representation of a pixel-based image in PNG format, highlighting its
unique visual attributes. Users have the ability to customize and modify various elements
by adjusting their corresponding hex color codes for precise control over hues, saturation
levels, and brightness.

# Loading the required packages
library(image2data)
library(data.table)

# Path to the image file
image <- "figures/test3.png"
img <- EBImage::readImage(image)

# Subsampling the image data
beads_subsample <- image2data(

path = image, # Path to the image file
reduce = .2, # Reduction factor for subsampling

# (20 % of original number of pixels)
seed = 42, # Seed for random number generation by

# return (for reproducibility)
showplot = FALSE # Whether to show a plot of the subsampled data

) |> as.data.table() # Converting the result to a data.table

# Display a part of the subsampled data
beads_subsample

#> x y g
#> <num> <num> <char>
#> 1: 0.1022393 -0.9263444 #2F5C61
#> 2: -0.1022393 0.4006978 #121D11
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#> 3: 1.2449136 -0.5213380 #121B10
#> 4: 0.4871401 -1.6588028 #151E1C
#> 5: -0.3548305 -1.5381626 #0D1B0D
#> ---
#> 23151: -1.1486884 1.1159219 #352B5E
#> 23152: -0.6074216 0.1508003 #252E60
#> 23153: 1.4975048 0.5988925 #14180B
#> 23154: -1.3651952 0.2025032 #2A306B
#> 23155: 0.3428023 -0.3231434 #112048

EBImage::display(img)

# Plotting the subsampled data
plot(beads_subsample$x, # x-coordinates

beads_subsample$y, # y-coordinates
col = beads_subsample$g, # Color based on hex code extracted by image2data()
pch = 19, # Plotting character (solid circle)
xlab = "",
ylab = "")
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Figure 10: Application Example of the image2data Package: The image displays nuclei stained with
DAPI (blue) and a quantitative marker for DNA double strand breaks, was labeled with a specific
antibody (green). The image2data package extracted 20% of the pixels from the original image (top),
creating a table with x|y coordinates and corresponding hex color codes. This data was then used to
reassemble the image using R’s base plot (bottom).
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12 Engaging insights - interactive approaches to image analysis

The analysis and processing of images to extract useful information can be a challenging
endeavor. Consequently, the implementation of interactive approaches accompanied by
immediate visual feedback regarding parameter alterations represents a significant aid
in simplifying image analysis. Therefore, this section will focus on interactive tools and
functions from packages that facilitate the exploration of images and the extraction of useful
insights.

12.1 cytomapper: a shiny application for hierarchical gating and visualization of multiplex
images

The cytomapper package, designed for processing multiplex images, includes a shiny appli-
cation that facilitates the hierarchical gating of cells using specific markers and allows for the
visualization of selected cells. The graphical user interface (GUI) of this shiny application is
designed to assist in the process of cell labeling. Furthermore, the data from the selected cells
can be saved as a SingleCellExperiment, thereby enabling various downstream processing
methods (Eling et al., 2020; Nils Eling, Nicolas Damond, Tobias Hoch, 2020). The cytomapper
package offers comparable functionality for feature extraction as described in the beginning,
providing an algorithm for extracting morphological and intensity features from multiplex
images (Nils Eling, Nicolas Damond, Tobias Hoch, 2020).

12.2 colocr: interactive ROI selection in image analysis through shiny app

The colocr package, which facilitates the exploration of fluorescent microscopic images,
features a GUI accessible through a shiny app. This GUI can be invoked locally or accessed
online. The process of image analysis frequently necessitates the input of manual labor,
particularly in the selection of ROIs. This package streamlines the process of selecting ROIs
by semi-automating it, thereby allowing users to review and interactively select one or
more ROIs. Moreover, the app offers the option to interactively adjust parameters such
as threshold, tolerance, denoising, and hole filling, thereby enhancing user control and
precision in image analysis by providing immediate feedback (Ahmed et al., 2019; Ahmed,
2020).26

26https://mahshaaban.shinyapps.io/colocr_app2/, accessed 07/11/2024

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859

https://mahshaaban.shinyapps.io/colocr_app2/


CONTRIBUTED RESEARCH ARTICLE 238

Figure 11: Shiny Application of the colocr Package: The figure depicts an interactive image
analysis graphical user interface (GUI), invoked locally from the RStudio integrated development
environment (IDE). It comprises multiple sliders for real-time parameter adjustments and sup-
ports the selection of multiple distinct regions of interest (ROIs). Users can interactively select
ROIs and extract characteristics such as pixel intensity. Furthermore, the tool offers function-
alities to compute co-localization, providing comprehensive analysis capabilities. Available at:
https://mahshaaban.shinyapps.io/colocr_app2/ or run: colocr::colocr_app().

12.3 magick: shiny and Tcl/Tk tools for interactive image exploration

A basic demo version of an interactive web interface for the magick R package is available
via a shiny app. While it remains a demonstration version and does not encompass all
the functionalities of the full package, it is not suitable for in-depth analysis of large-scale
imaging data. In contrast, the app provides fundamental tools for image processing, in-
cluding blurring, imploding, rotating, and more. This tool is designed to facilitate basic
image processing tasks in an interactive environment.27 Additionally, a distinct package is
available that provides the functionality of magick in an interactive manner. This package,
called magickGUI, was developed by Ochi (2023). The interactive features are based on the
Tcl/Tk wrapper for R and include functions for thresholding, edge detection, noise reduction,
and many more.

27https://github.com/jeroen/shinymagick, accessed 07/11/2024
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12.4 biopixR: interactive Tcl/Tk function for feature extraction

In the biopixR package, the tcltk package — which enables Tcl/Tk integration in R — was
employed to create an interactive function. This function initiates the launch of a GUI that
streamlines the process of feature extraction by facilitating object detection and enabling
users to select between edge detection and thresholding for segmentation. The GUI displays
the currently detected edges (when using edge detector) or all detected coordinates (when
using threshold) and the object centers within an image. The application includes sliders
that allow users to adjust parameters and magnify the image. This interactive function is
designed to facilitate the parameter selection process, as the chosen parameters affect the
quality of image segmentation (Brauckhoff et al., 2024).

13 Tailored tools - specialized R packages for image processing

In contrast to the previously mentioned general-purpose tools, some packages have been
designed with a specific focus on particular research areas. These specialized tools address
the unique challenges encountered in those fields and offer versatile solutions for analyzing
the data collected in those domains. While a complete survey of the available packages is
outside the scope of this article, a concise overview of the most pertinent packages and their
applications will be presented.

13.1 fslr: analysis of neuroimage data

The fslr package serves as a wrapper for the FSL software, enabling the use of the ‘FMRIB’
Software Library within the R environment. The FSL software is a widely utilized tool for
the analysis and processing of neuroimaging data, including MRI. The package employs the
use of NIfTI images to facilitate the execution of processing tasks, thereby introducing capa-
bilities such as brain extraction and tissue segmentation, which were previously unavailable
in R (Muschelli et al., 2015; Muschelli, 2022).

13.2 colocr: co-localization analysis of fluorescence microscopy images

A common application derived from fluorescence microscopy, which is extensively utilized
in biological research, is co-localization analysis. This analysis assesses the distribution
of signals across different color channels to determine whether the positioning of objects
is correlated (Dunn et al., 2011; Ahmed et al., 2019). The objective of this software is to
streamline the analysis process by providing tools for loading images, selecting regions
of interest, and calculating co-localization statistics (Ahmed et al., 2019; Ahmed, 2020). It
incorporates methods outlined by Dunn et al. (2011).28

CRAN offers a list of packages tailored to medical image analysis, accompanied by
detailed descriptions of their applications. This list can be accessed via the following URL:

https://cran.r-project.org/web/views/MedicalImaging.html

Moreover, the Bioconductor repository contains a number of packages focused on single-
cell analysis, as detailed by Amezquita et al. (2019). The Bioconductor project is an ini-
tiative dedicated to the collaborative development and the use of scalable software for
computational biology and bioinformatics. Its objective is to reduce the entry barriers to
interdisciplinary research and to improve the remote reproducibility of scientific findings
(Gentleman et al., 2004). Other packages identified during the course of our research, though
not explored in depth, are acknowledged in the forthcoming summary:

28https://github.com/ropensci/colocr, accessed 07/11/2024
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Table 1: Overview of R packages for tailored applications in image processing. This table summarizes
key aspects such as general application, repository (Repo) hosting (CRAN, Bioconductor (Bioc),
GitLab), linked libraries, and package dependencies. It also includes information on licensing and
current status. The current status is divided into the date of first publication on the corresponding
repository (*). Active repository status is indicated by a circle, with the date of the latest update (°).
Some packages that are no longer maintained are marked as archived (†).

Application Repo
based

on License Status

adimpro
by Polzehl and Tabelow
(2007)

Adaptive
Smoothing

CRAN Image
Magick

GPL
(≥ 2)

*2006-10-27
°2023-09-06

phenopix
by Filippa et al. (2016)

Vegetation
phenology

CRAN jpeg GPL-2 *2017-06-16
°2024-01-19

gitter
by Wagih and Parts
(2014)

Pinned
Microbial
Cultures

CRAN-
archived

EBImage LGPL *2013-06-29
†2020-01-16

TCIApathfinder
by Russell et al. (2018)

Cancer Imaging CRAN Rnifti MIT *2017-08-20
°2019-09-21

SPUTNIK
by Inglese et al. (2018)

Mass
Spectrometry

Imaging

CRAN imager GPL
(≥ 3)

*2018-02-19
°2024-04-16

SAFARI
by Fernández et al.
(2022)

Shape analysis CRAN EBImage GPL
(≥ 3)

*2021-02-25

pavo
by Maia et al. (2019)

Spectral and
Spatial analysis

CRAN magick
&

imager

GPL
(≥ 2)

*2012-12-05
°2023-09-24

miet
by Combès (2020)

Magnetic
Resonance

images

gitlab Rnifti MIT *2019-09-06
°2023-12-20

scalpel
by Petersen et al. (2017)

Calcium
imaging

CRAN - GPL
(≥ 2)

*2017-03-14
°2021-02-03

ProFit
by Robotham et al.
(2016)

Galaxy images CRAN-
archived

EBImage LGPL-3 *2016-09-29
†2022-08-08

fsbrain
by Schäfer and Ecker
(2020) & Schaefer (2024)

Neuroimaging CRAN magick MIT *2019-10-30
°2024-02-03

geomorph
by Adams and
Otárola-Castillo (2013)

Geometric
morphometric
shape analysis

CRAN jpeg GPL
(≥ 3)

*2012-10-26
°2024-03-05

imbibe Medical images CRAN Rnifti BSD-3-
clause

*2020-10-26
°2022-11-09

opencv
by Ooms and Wijffels
(2024)

edge, body, face
detection

CRAN OpenCV MIT *2019-04-01
°2023-10-29

DRIP jump regression,
denoising,
deblurring

CRAN - GPL
(≥ 2)

*2015-09-22
°2024-02-05

imagefluency
by Mayer (2024)

image statistics
based on

fluency theory

CRAN magick
& Open-
ImageR

GPL-3 *2019-09-27
°2024-02-22

mand
by Kawaguchi (2021)

Neuroimaging CRAN imager GPL-2
GPL-3

*2020-05-06
°2023-09-12
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Application Repo
based

on License Status

recolorize
by Weller et al. (2024)

Segmentation CRAN imager CC BY
4.0

*2021-12-07

MaxContrastProjection
by Jan Sauer (2017)

maximum
contrast

projection

Bioc EBImage Artistic-
2.0

*2017-04-25
†2020-04-28

14 Combining forces - making use of the open-source approach

The majority of the aforementioned packages are designed to encompass all facets of image
analysis, including preprocessing, quantification, and visualization. This integration is
typically achieved through the utilization of one or more general-purpose packages (Table
1 and 2). The combination of existing packages or libraries with new code facilitates the
development of specialized packages. R, as a package-based language, provides a convenient
means of combining these specialized packages to meet the specific needs of the individual
user. The following section illustrates the combination of packages to perform statistical
analysis on quantified image data.

14.1 biopixR and countfitteR: quantitative analysis of DNA double strand breaks

DNA double strand breaks (DSBs) represent a particularly severe form of DNA damage,
frequently resulting in apoptotic cell death in the absence of repair. The extent of DNA
damage can be quantified through immunofluorescence staining, which employs antibodies
against the phosphorylated histone protein H2AX (γH2AX). The staining process results in
the formation of γH2AX foci, which serve as a quantitative representation of the number of
DNA DSBs. It has been proposed that the number of DNA DSBs is indicative of the efficacy
of an anti-tumor agent, thereby enabling the assessment of individual patient responses
to therapies and the evaluation of the general cytotoxic effects of treatments in vivo. This
enables more precise modulation of therapy according to the patient’s individual needs
(Rödiger et al., 2018; Ruhe et al., 2019; Schneider et al., 2019).

In the following example, the biopixR package was employed to quantify DNA double-
strand breaks, resulting in an output of foci per cell (Figure 12). To achieve this objective, the
green fluorescent foci were extracted by applying the objectDetection() function to the
green color channel of the image (Figure 12A). The result of the foci extraction is illustrated
in Figure 12B using the changePixelColor() function, whereby each of the distinct foci
is highlighted in a different color. The DAPI-stained nuclei were extracted through the
application of thresholding on the blue color channel. Subsequently, the resulting data
frame was subjected to size filtering in order to eliminate any detected noise. The final
quantification of foci per cell was achieved by comparing the coordinates of nuclei and foci
in the obtained data frames. This result can then be further analyzed using the countfitteR
package, which provides an automated evaluation of distribution models for count data
(Burdukiewicz, 2019; Chilimoniuk et al., 2021). The resulting distribution is presented in
Figure 13.

# Load the 'biopixR' package
library(biopixR)

# Import image from specified path
DSB_img <- importImage("figures/tim_242602_c_s3c1+2+3m4.tif")

# Extract the blue color channel representing the nuclei and
# the green color channel representing yH2AX foci
core <- as.cimg(DSB_img[, , , 3])
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yH2AX <- as.cimg(DSB_img[, , , 2])

# Process the nuclei: thresholding, labeling, and converting to a data frame
cores <-

threshold(core) |> label() |> as.data.frame() |> subset(value > 0)

# Calculate the center and size for the nuclei
DT <- as.data.table(cores)
cores_center <-

DT[, list(mx = mean(x),
my = mean(y),
size = length(x)), by = value]

# Filter the nuclei based on size, to discard noise
cores_clean <-

sizeFilter(cores_center,
cores,
lowerlimit = 150,
upperlimit = Inf)

# Detect objects yH2AX foci in green color channel
DSB <- objectDetection(yH2AX, alpha = 1.1, sigma = 0)

# Function to compare coordinates from two data frames and count matches
compareCoordinates <- function(df1, df2) {

# Create a single identifier for each coordinate pair
df1$coord_id <- paste(round(df1$mx), round(df1$my), sep = ",")
df2$coord_id <- paste(df2$x, df2$y, sep = ",")

# Find matches by checking if coordinates from df2 exist in df1
matches <- df2$coord_id %in% df1$coord_id

# Convert df2 to a data table and add a column indicating matches
DT <- data.table(df2)
DT$DSB <- matches

# Summarize the results
result <-
DT[, list(count = length(which(DSB == TRUE))), by = value]

return(result)
}

# Compare coordinates between detected DSB centers and cleaned nuclei coordinates
count <- compareCoordinates(DSB$centers, cores_clean$coordinates)

# Extract the count column for further analysis
to_analyze <- count[, 2]
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Figure 12: Quantification of DNA Double Strand Breaks: A) The image displays cells with nuclei
stained using DAPI. The quantitative marker for DNA double strand breaks, γH2AX, targeted with a
specific antibody, is visible as green fluorescent foci. The experimental procedure follows the method
described by Rödiger et al. (2018). B) The γH2AX foci are quantified using the biopixR package. The
detected foci are highlighted in different colors using the changePixelColor() function.

Figure 13: Analyzing Count Data with the countfitteR Package: The data representing the number
of foci per cell obtained from the biopixR analysis were imported into the interactive shiny interface
of the countfitteR package. This package analyzed the distribution and summarized the results. One
outcome is illustrated in this figure, which shows the frequency distribution of a specific count of foci
per cell.

15 Exploring the blank spot - z-stack imaging in R

Z-stack imaging refers to the capture of images that possess a third dimension, specifically
image depth, which enables the spatial capture of molecules or the reconstruction of the
three-dimensional architecture of tissues. One method for achieving z-stacking involves
capturing multiple two-dimensional images at uniform intervals over the depth of an object
by changing the focal plane. The individual 2D images are then reconstructed to create a 3D
model (Trivedi and Mills, 2020; Kim et al., 2022).

The only packages currently available in the R programming language for dealing with
z-stack imaging are spatialTIME and MaxContrastProjection. However, the spatialTIME
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package necessitates preprocessing and is therefore unable to handle the images directly
(Creed et al., 2021). The other package, MaxContrastProjection, has unfortunately been
removed from Bioconductor. The package is capable of performing maximum contrast
projection, whereby the z-stacks of a 3D image are merged into a 2D image (Jan Sauer, 2017).
To the best of our knowledge, these are the only packages in R that address the topic of
z-stack imaging.

16 Scaling new heights - high throughput analysis in the era of small
and big data?

The exponential growth of data, which reached levels of zettabytes (1021 bytes) as early as
2012 (Sagiroglu and Sinanc, 2013), is accompanied by a significant increase in image gener-
ation due to advancements in imaging technologies such as microscopy. High-resolution
images produced in a single experiment can result in data sets exceeding terabytes (Peng
et al., 2012; Eliceiri et al., 2012). This surge in data generation across various fields has
initiated the era of Big Data, which presents considerable challenges in the handling and
interpretation of massive data sets (Cui et al., 2015). In automated microscopy, the rapid
acquisition of large image volumes facilitates extensive screening processes but complicates
the conversion of image stacks into actionable information and discoveries, resulting in a
critical need for analytical pipelines that can efficiently identify regions of interest, compute
relevant features, and perform statistical analysis, ensuring reproducibility and reliability
(Wollman and Stuurman, 2007).

The extraction of quantitative information from images is a common practice, but it
is becoming increasingly complex and error-prone when performed manually. This com-
plexity requires the implementation of high-throughput methods capable of autonomously
processing multiple images (Olivoto, 2022). These developments are crucial not only in
specialized fields such as immunohistochemistry, fluorescence in situ hybridization (Ollion
et al., 2013), drug discovery, and cell biology (Shariff et al., 2010), but also in promoting
a data-driven approach to biological research, thereby accelerating tasks and enhancing
research productivity (Rittscher, 2010).

The R programming language has limitations in handling large data sets. Since R places
temporary copies of data in the random access memory (RAM) to access objects, it can lead
to memory overload when processing data sets that exceed the available RAM. Additionally,
R uses RAM to store generated data, so large lists of imported images can easily overwhelm
the RAM. Moreover, R typically executes code on a single thread, not utilizing the full
capabilities of the central processing unit (CPU). Several packages address issues such as
file-based access and parallel computing, thereby enhancing R‘s capability to handle big
data. One approach is to combine R with the ’Hadoop’ library (Prajapati, 2013; Oussous
et al., 2018). Another effective method for managing big data is the use of the HDF5, which
efficiently manages data storage and access, provides multicore reading and writing, and is
well-suited for organizing complex data collections. The cytomapper package utilizes HDF5
to optimize file management (Nils Eling, Nicolas Damond, Tobias Hoch, 2020; Folk et al.,
2011; Koranne, 2011).

Other packages, such as pliman, biopixR, and FIELDimageR, include features for opti-
mized batch processing, such as parallel processing, by utilizing the foreach package for
multi-core processing (Olivoto, 2022; Brauckhoff et al., 2024; Matias et al., 2020). However,
these packages are not fully optimized for big data. The biopixR package simplifies image
processing by providing a pipeline that scans entire directories and verifies image unique-
ness using Message Digest 5 (MD5) sums. It enables the application of specific filters to
batches of images and generates an RMarkdown log file detailing the operations performed.
The results are saved in a manageable CSV format, enhancing the efficiency of handling
whole image directories (Brauckhoff et al., 2024).
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In conclusion, while R offers a range of options for handling big data, these options are
not widely implemented in image processing packages. Consequently, the optimization and
creation of workflows capable of handling big data is left to the end-user.

17 Summary

In conclusion, we present a summary of the major R packages previously discussed. This
summary provides an overview of the general applications, published repositories, and
licensing information associated with these packages. Furthermore, it includes a list of the
dependencies or libraries that these packages rely on. The status column indicates both the
initial publication date and the date of the most recent update, thereby demonstrating the
ongoing commitment to maintaining these packages (Table 2).

Table 2: Summary of key characteristics of major R packages for image processing. The table details
general applications, repository (Repo) sources (CRAN, Bioconductor (Bioc), and GitHub), primary
package or library dependencies, and licensing information. The status column indicates the date of
first publication (*) and the most recent update (°) for each package.

Application Repo based on License Status

imager
by Barthelmé and
Tschumperlé (2019)

general
purpose

CRAN Cimg LGPL-3 *2015-08-26
°2024-04-26

magick
by Ooms (2024b)

general
purpose

CRAN Image
Magick

MIT *2016-07-24
°2024-02-18

EBImage
by Pau et al. (2010)

general
purpose

Bioc - LGPL *2006-04-27
°2024-05-01

biopixR
by Brauckhoff et al.
(2024)

bioimages CRAN imager &
magick

LGPL
(≥ 3)

*2024-03-25
°2024-11-11

pliman
by Olivoto (2022)

plant images CRAN EBImage GPL
(≥ 3)

*2021-05-15
°2023-10-14

mxnorm
by Harris et al.
(2022a)

multiplex
images

CRAN - MIT *2022-02-22
°2023-05-01

DIMPLE
by Masotti et al.
(2023)

multiplex
images

GitHub - MIT *2023-09-07

cytomapper
by Eling et al. (2020)

multiplex
images

Bioc EBImage GPL
(≥ 2)

*2020-10-28
°2024-05-01

SPIAT
by Yang et al. (2020)

spatial data Bioc Spatial
Experi-
ment

Artistic-2.0 *2022-11-02
°2024-05-01

spatialTIME
by Creed et al.
(2021)

spatial data CRAN - MIT *2021-05-14
°2024-03-11

celltrackR
by Wortel et al.
(2021)

motion
analysis

CRAN - GPL-2 *2020-03-31
°2024-03-26

FIELDimageR
by Matias et al.
(2020)

agricultural
field trails

GitHubEBImage GPL-3 *2019-11-01
°2024-05-03

fslr
by Muschelli et al.
(2015)

MRI of the
brain

CRAN FMRIB
library

GPL-3 *2014-06-13
°2022-08-25
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Application Repo based on License Status

colocr
by Ahmed et al.
(2019)

fluorescence
microscopy

CRAN imager &
magick

GPL-3 *2019-05-31
°2020-05-08

imageseg
by Niedballa et al.
(2022a)

image seg-
mentation

CRAN magick MIT *2021-12-09
°2022-05-29

SimpleITK
by Beare et al.
(2018)

general
purpose

GitHub Simple
ITK

Apache 2.0 *2015-11-16
°2020-09-17

pixelclasser
by Real (2024)

image seg-
mentation

CRANjpeg & tiff GPL-3 *2021-10-21
°2023-10-18

OpenImageR general
purpose

CRAN Rcpp GPL-3 *2016-07-09
°2023-07-08

RniftyReg image
registration

CRAN Rcpp &
Rnifti

GPL-2 *2010-09-06
°2023-07-18

The packages outlined in Table 2 are examined in terms of their individual dependen-
cies. A minimal number of dependencies is essential for ensuring long-term stability and
functionality. The packages are organized according to their dependencies and imports,
which were extracted from the DESCRIPTION files to facilitate the identification of similarities
between the packages. The relationships between the packages are illustrated in the form of
a dendrogram (Figure 14).
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Figure 14: Dendrogram of Hierarchically Clustered Package Dependencies: The dendrogram
depicts the outcomes of a hierarchical clustering of various image analysis packages, based on their
named dependencies and imports, as extracted from their respective DESCRIPTION files. Each branch
represents a distinct package, and the proximity between branches reflects the degree of similarity
in their dependencies and imports. The required distance matrix was calculated using the binary
method, also known as Jaccard distance. To perform the hierarchical clustering, the complete linkage
clustering method was employed (R Core Team, 2023).

18 Conclusion

The Tables 1 and 2 highlight an array of R packages employed within bioimage informatics.
These tools cater to diverse applications such as adaptive smoothing, vegetation phenology
analysis, microbial culture imaging, cancer imaging, mass spectrometry imaging, shape

The R Journal Vol. 17/3, September 2025 ISSN 2073-4859

https://CRAN.R-project.org/package=colocr
https://CRAN.R-project.org/package=imageseg
https://github.com/SimpleITK/SimpleITKRInstaller
https://CRAN.R-project.org/package=pixelclasser
https://CRAN.R-project.org/package=OpenImageR
https://CRAN.R-project.org/package=RNiftyReg


CONTRIBUTED RESEARCH ARTICLE 247

analysis, spectral and spatial analysis, magnetic resonance image processing, calcium imag-
ing, galaxy image analysis, neuroimaging, geometric morphometric shape analysis, medical
image processing, edge detection, body and face recognition, jump regression, denoising,
and deblurring.

Many of these packages rely on common image processing libraries such as ‘ImageMag-
ick’ and ‘CImg’ or specialized libraries like ‘RNifti’ for neuroimaging data and OpenCV
for computer vision tasks. Some notable examples include adimpro, gitter, SAFARI, pavo,
rental, scalpel, ProFit, and fsbrain.

The majority of these packages are hosted on CRAN, which serves as the primary
repository for R packages. Notably, one package, rental, is hosted on GitLab, indicating that
some packages may also be developed and distributed through alternative platforms. R is an
open-source, free, and cross-platform programming language that extends these values to
its packages (R Core Team, 2023). The CRAN Repository Policy states that package authors
“should make all reasonable efforts to provide cross-platform portable code,” typically
requiring packages to run on at least two major R platforms.29 Similarly, the standard tests
employed by Bioconductor encompass evaluations on all major platforms, including Linux,
macOS, and Windows.30 Thus, it can be concluded that the majority of packages in these
repositories are compatible across multiple platforms.

The most commonly used license in this domain is the GNU General Public License
(GPL), particularly versions 2 and 3. Other licenses employed include the Lesser GNU
General Public License (LGPL), MIT, Apache License 2.0, and others. The prevalence of
open-source licenses reflects the collaborative nature of R package development. It’s essential
to ensure compatibility when combining code from different packages with varying licenses;
otherwise, legal considerations might arise.

As previously outlined, the most fundamental image processing packages in R are imager,
magick, EBImage, OpenImageR, and SimpleITK. Primarily, imager, magick, and EBImage form
the foundation for the majority of the specialized packages reviewed. These packages
support various formats, with JPEG and PNG being the most common and supported by all
five packages. BMP and TIFF are also widely supported, while PDF and SVG formats are
exclusively supported by magick.

Table 3: Supported File Formats by Main Image Processing Packages

imager magick EBImage OpenImageR SimpleITK

JPEG + + + + +
PNG + + + + +
BMP + + - - +
TIFF - + + + +
PDF - + - - -
SVG - + - - -

The ongoing development of new code by the R community significantly enhances the
capabilities of image analysis, fostering both growth and adaptability within the community.
This ensures that R remains well-equipped to address emerging challenges effectively. The
result is a diverse range of image processing packages, including versatile general-purpose
tools and specialized pipelines designed for intricate analyses of biological images. This
extensive array of tools in R not only demonstrates the versatility and applicability of these
packages across different scientific disciplines but also solidifies R’s position as an invaluable
resource for researchers interested in leveraging image analysis to uncover novel insights.
This review provides a concise overview of the current landscape of image processing
packages available in R, emphasizing the pivotal role these tools play in advancing scientific

29https://cran.r-project.org/web/packages/policies.html, accessed 06/10/2024
30https://contributions.bioconductor.org/bioconductor-package-submissions.html, accessed

06/10/2024
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research and discovery. The comprehensive toolkit, R, empowers researchers to drive
forward innovations and enrich the scientific community. Finally, it is noteworthy that 92%
of the 38 discovered packages are active in their respective repositories and thus considered
up to date. Furthermore, 66% of these packages have been actively maintained with updates
in the past 1.5 years. Among the identified packages, 14 provide users with GUIs or
interactive functions. These packages include: FIELDimageR, cytomapper, colocr, biopixR,
EBImage, magick, imager, pavo, pliman, imagefluency, geomorph, fsbrain, scalpel, and
adimpro. The majority of the 38 packages identified during the research can be considered
autonomous, offering all the necessary features for extensive image data analysis, including
image import, processing, and visualization. However, some packages related to multiplex
imaging necessitate preprocessing, rendering them unable to provide a complete analysis
within the R environment.

All mentioned packages are open source and available either on CRAN, Bioconductor or
GitHub.

Predicting the future is challenging, yet here we provide some opinions on trends in
bioimage informatics, which ultimately will also be seen in R. Publications and conferences
in the fields of image processing and computer vision show that advances are driven
by artificial intelligence (AI), deep learning (particularly Convolutional Neural Networks
(CNNs), Large Language Models (LLMs), and Vision Transformer models (VTs)), and data
visualization (Ye et al., 2024; Belcher et al., 2023; Rabbani et al., 2021; Hameed et al., 2021;
van der Velden et al., 2022). One example of deep learning is imageseg, which is using a CNN
(U-Net and U-Net++ architectures) for general purpose image segmentation (Niedballa et al.,
2022b). Another development is the deeper integration of R with advanced deep learning
frameworks, which will enable users to build and deploy models, with applications like
image classification, segmentation, and object detection. An example of such integration is
ellmer, which makes various LLMs accessible from R for output streaming, tool calling, and
structured data extraction.

The question arises: Is AI merely a buzzword, or is it here to stay? Given that AI
is grounded in science and we already see applications in R, the latter is more probable.
Consequently, R bioimage packages will be developed that combine image data with other
multimodal data types, such as text and sensor data. Generative AI and advanced visu-
alization techniques are also one topic due to the availability of generative models like
diffusion models and Generative Adversarial Networks (GANs). These technologies open
new possibilities for image augmentation and enhanced data visualization. It is important
that such technologies stick to one of R’s strengths, which is explainability, in particular
focusing on transparent, understandable, and explainable AI (xAI).
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