
Vol. 1/2, June 2001 29

1,0,0,0,-1,-1,0,0,-1,0,0)

R> C <- matrix(C, ncol=5)

R> cv <- C %*% V %*% t(C)

R> cr <- matrix(rep(0, ncol(cv)^2),

ncol=ncol(cv))

R> for (i in 1:5) {

for (j in 1:5) {

cr[i,j] <- cv[i,j] / sqrt(cv[i,i]*cv[j,j])

}

}

R> delta <- rep(0,5)

R> myfct <- function(q, alpha) {

lower <- rep(-q, ncol(cv))

upper <- rep(q, ncol(cv))

pmvt(lower, upper, df, cr, delta,

abseps=0.0001)$value - alpha

}

R> round(uniroot(myfct, lower=1, upper=5,

alpha=0.95)$root, 3)

[1] 2.561

Here n is the sample size vector of each level of
the factor, V is the covariance matrix of β. With the
contrasts C we can compute the correlation matrix cr
of Cβ. Finally, we are interested in the 95% quantile
of W. A wrapper function myfct computes the dif-
ference of the multivariate t probability for quantile q
and alpha. The alpha quantile can now be computed
easily using uniroot. The 95% quantile of W in this
example is 2.561; reference (1) obtained 2.562 using
80.000 simulation runs. The computation needs 8.06
seconds total time on a Pentium III 450 MHz with
256 MB memory.

Using package mvtnorm, the efficient computa-
tion of multivariate normal or t probabilities is now
available in R. We hope that this is helpful to users /
programmers who deal with multiple testing prob-
lems.

Bibliography

[1] Don Edwards and Jack J. Berry. The efficiency of
simulation-based multiple comparisons. Biomet-
rics, 43:913–928, December 1987. 28, 29

[2] A. Genz and F. Bretz. Numerical computation
of multivariate t-probabilities with application to
power calculation of multiple contrasts. Journal of
Statistical Computation and Simulation, 63:361–378,
1999. 27, 28

[3] Alan Genz. Numerical computation of multivari-
ate normal probabilities. Journal of Computational
and Graphical Statistics, 1:141–149, 1992. 27, 28

[4] Alan Genz. Comparison of methods for the
computation of multivariate normal probabili-
ties. Computing Science and Statistics, 25:400–405,
1993. 27

[5] P. D. Watson, M. B. Wolf, and I. S. Beck-
Montgemery. Blood and isoproterenol reduce
capillary permeability in cat hindlimb. The Amer-
ican Journal of Physiology, 252:H47–H53, 1987. 28

Torsten Hothorn
Friedrich-Alexander-Universität Erlangen-Nürnberg
Institut für Medizininformatik, Biometrie und Epidemi-
ologie
Waldstraße 6, D-91054 Erlangen
Torsten.Hothorn@rzmail.uni-erlangen.de

Frank Bretz
Universität Hannover
LG Bioinformatik, FB Gartenbau
Herrenhäuser Str. 2
D-30419 Hannover
bretz@ifgb.uni-hannover.de

Alan Genz
Department of Mathematics
Washington State University
Pullman, WA 99164-3113 USA
alangenz@wsu.edu

The first author gratefully acknowledges support by
Deutsche Forschungsgemeinschaft, grant SFB 539 /
A4.

Programmer’s Niche
Edited by Bill Venables

Save the environment

When you start to learn how to program in S you
don’t have to get very far into it before you find that
the scoping rules can be rather unintuitive. The sort
of difficulty that people first encounter is often some-
thing like the following (on S-PLUS 2000):

> twowaymeans <- function(X, f)

apply(X, 2, function(x) tapply(x, f, mean))

> twowaymeans(iris[,1:2], iris$Species)

Error in FUN(X): Object "f" not found

Dumped

The dismay expressed by disappointed neophytes on
S-news is often palpable. This is not helped by the
people who point out that on R it does work because
of the more natural scoping rules:

> twowaymeans(iris[,1:2], iris$Species)

R News ISSN 1609-3631

mailto:Torsten.Hothorn@rzmail.uni-erlangen.de
mailto:bretz@ifgb.uni-hannover.de
mailto:alangenz@wsu.edu

Vol. 1/2, June 2001 30

Sepal.Length Sepal.Width

setosa 5.006 3.428

versicolor 5.936 2.770

virginica 6.588 2.974

Some people even claim to have chosen R over S-
PLUS for the sake of the scoping rules alone. Strange,
but true.

The different scoping rules are just one conse-
quence of a feature of R, namely that its functions
have an “environment” attached to them which is
usually called the function closure. In S the search
path is the same for all functions, namely the local
frame, frame 1, frame 0 and the sequence of data di-
rectories or attached objects. This can be altered on
the fly and functions may be made to look at, and in-
terfere with, non-standard places on the search path
but this is usually regarded as a device strictly for the
excessively brave or the excessively lucky. For some,
even using frames 0 or 1 at all is considered rather
reckless.

This is the territory where R and S diverge very
markedly indeed. How is R so different? I will leave
readers to follow up this interesting story using the
standard references. All I will try to do here is give
an extended example that I hope motivates that kind
of followup study. In fact I intend to give the “other
story” that I referred to so tantalizingly in the first
Programmer’s Niche article, of course.

Function closures

We can think of the function closure as a little scratch-
pad attached to the function that initially contains
some objects on which its definition may depend.
This turns out to be a useful place to put other things
which the function needs to have, but which you
don’t want to re-create every time you call the func-
tion itself. If you understand the concept of frame 0
(the frame of the session) in S, this is a bit like a local
frame 0, but for that function alone.

Subsets revisited with caching

In my last article on profiling I used an example of a
recursive function to generate all possible subsets of
size r of a fixed set of size n. The result is an (n

r)× r
matrix whose rows define the subsets. Some time
ago I devised a way of speeding this process up in
S by storing (or ‘caching’) partial results in frame 0.
Doug Bates then pointed out that it could be done
much more cleanly using function closures in R.

Thinking back on the subset calculation, notice
that if you have all possible subsets of size r of the
integers 1, 2, . . . , n as a matrix then the subsets of any
set of size n stored in a vector v can be got by giving v
the elements of this matrix as an index vector and us-
ing the result to fill a similar matrix with the chosen
elements of v. (Oh well, think about it for a bit.)

The way we generate all possible subsets of size
r from n involves repeatedly generating all possible
subsets of smaller sizes from a smaller sets. What
we are going to do now is generate these indexing
vectors and store them in the the function closure.
The index vector for subsets of size 4 from sets of
size 10, say, will be given the non-standard name,
4 10. (It is no penalty to use non-standard names
here since these objects will always be accessed in-
directly.) Then when we need to generate a set of
subsets we will check to see if the index vector to do
it is cached in the environment first. If it is we do
the job by a single index computation; if not we first
generate the index by a recursive call and then use it.

Actually it is one of those times when the code
is easier to read than an explanation of it. However
even the code is not all that easy. The result, how-
ever, is a further spectacular increase in speed but at
the cost of greatly increasing your memory usage. If
you have to do this sort of computation repeatedly,
though, the advantages of the cached index vectors
in the environment are maintained, of course, so the
second time round, even for the large number of sub-
sets, the computation is nearly instantaneous (pro-
viding you are not hitting a memory limit and re-
peatedly swapping, swapping, swapping, . . .). So
the technique is both interesting and potentially im-
portant.

The code

To get a function with an explicit environment (and
not just the global environment) we are going to do
it in the “old way” by writing a function to generate
the function itself. OK, here goes:

makeSubsets <- function() {

putenv <- function(name, value)

assign(name, value,

envir = environment(Subsets))

getenv <- function(name)

get(name, envir = environment(Subsets))

thereIsNo <- function(name)

!exists(name, envir = environment(Subsets))

function(n, r, v = 1:n) {

v0 <- vector(mode(v), 0)

if(r < 0 || r > n) stop("incompatible n, r")

sub <- function(n, r, v) {

if(r == 0) v0 else

if(r == n) v[1:n] else {

if(r > 1) {

i1 <- paste(n-1, r-1)

i2 <- paste(n-1, r)

if(thereIsNo(i1))

putenv(i1, sub(n-1, r-1, 1:(n-1)))

if(thereIsNo(i2))

putenv(i2, sub(n-1, r, 1:(n-1)))

m1 <- matrix(v[-1][getenv(i1)],

R News ISSN 1609-3631

Vol. 1/2, June 2001 31

ncol = r-1)

m2 <- matrix(v[-1][getenv(i2)],

ncol = r)

} else {

m1 <- NULL

m2 <- matrix(v[2:n], ncol = 1)

}

rbind(cbind(v[1], m1), m2)

}

}

sub(n, r, v)

}

}

Subsets <- makeSubsets()

The local environment will initially contain the small
utility functions getenv, putenv and thereIsNo for
doing various things with the local environment.
Within the function itself the index matrices are re-
ferred to by the constructed character strings i1 and
i2.

Here are a few little comparisons on my oldish
Sun system:

best from last time

> system.time(x <- subsets2(20, 7))

[1] 22.26 3.96 26.29 0.00 0.00

first time round

> system.time(X <- Subsets(20, 7))

[1] 4.94 0.25 5.38 0.00 0.00

second time

> system.time(L <- Subsets(20, 7, letters))

[1] 1.90 0.04 2.00 0.00 0.00

These times are actually quite variable and depend a
lot on what is going on with the machine itself. Note
that with the fastest function we devised last time the
computation took about 26 seconds total time. With
the caching version the same computation took 5.38
seconds total time the first time and only 2 seconds
the next time when we did the same computation
with a different set.

Compression

There is a final speculative twist to this story that I
can’t resist throwing in even though its usefulness
will be very machine dependent.

It must be clear that storing oodles of very large
index vectors in the local environment will incur a
memory overhead that might well become a prob-
lem. Can we compress the vectors on the fly in any
way to cut down on this? The only way I have been
able to see how to do this has been to use so-called

“run length encoding”. Given a vector, v, the func-
tion rle finds the lengths of each run of consecutive
identical values and returns a list of two components:
one giving the values that are repeated in each run
and the other the lengths of the runs. This is the in-
verse operation to the one performed by rep: if we
feed those two components back to rep we re-create
the original vector.

The function rle is one of the neatest examples
of slick programming around. It is very short and
a nice little puzzle to see how it works. Here is a
cut-down version of it that returns a value with list
names matching the argument names of rep:

rle <- function (x) {

n <- length(x)

y <- x[-1] != x[-n]

i <- c(which(y), n)

list(x = x[i], times = diff(c(0, i)))

}

The thing you notice about these subset index vec-
tors (when the subsets are generated in this lexico-
graphic order) is that they do have long runs of re-
peated values. In fact the run-length encoded ver-
sion is an object typically only about half as big (in
bytes) as the object itself. This produces a compres-
sion of the memory requirements, but at an increased
computational cost again, of course. To incorporate
the idea into our makeSubsets function we need to
include this specialised version of rle in the local
environment as well and to modify the getting and
putting functions to include the encoding and decod-
ing:

putenv <- function(name, value)

assign(name, rle(value),

envir = environment(Subsets))

getenv <- function(name)

do.call("rep", get(name,

envir = environment(Subsets)))

No modification to the function itself is needed, and
this is one advantage of using accessor functions to
deal with the local environment, of course.

I think this is an interesting idea, but I have to re-
port that for all the systems I have tried it upon the
increased computational penalty pretty well elimi-
nates the gains made by caching. Quel domage!

Bill Venables
CSIRO Marine Labs, Cleveland, Qld, Australia
Bill.Venables@cmis.csiro.au

R News ISSN 1609-3631

mailto:Bill.Venables@cmis.csiro.au

