
Vol. 2/3, December 2002 32

R Help Desk
Automation of Mathematical Annotation in Plots

Uwe Ligges

Welcome to the R Help Desk

Welcome to the first issue of a regular series of R Help
Desk columns.

As the title of the column suggests, it is intended
to present answers to frequently asked questions re-
lated to R, for example well known questions from
the R mailing lists. More specifically, the intention is
to address problems which cannot be described and
explained completely in a few lines of text, as it is
common in manuals, help pages, typically styled an-
swers on mailing lists, or the R FAQ (Hornik, 2002).

So, on the one hand, articles published in this col-
umn are intended to present solutions to common
problems. On the other hand, to be easy to read by
less experienced R users, the articles should not be
too technical.

Contributions

It is a pleasure to start as the editor of this column.
Like Bill Venables in his first issue of the Program-
mer’s Niche, I would like to take the opportunity to
invite you, the reader, to contribute articles. If you
have any ideas on how to describe solutions to com-
mon programming problems and (more or less) fre-
quently asked questions, please send your contribu-
tions to ligges@statistik.uni-dortmund.de.

Introduction to mathematical anno-
tation in plots

Many users know about R’s capabilities of typeset-
ting mathematical annotation in plots, which were
introduced by Murrell and Ihaka (2000). Related to
this topic, I frequently heard and read sentences like
“Mathematical annotation in plots can be typeset us-
ing a LATEX–like syntax”.

• This statement is partly true for two reasons:
Typesetting is programmed in a way, both in R
and in LATEX. The “keywords” for typesetting
objects like greek letters, fractions etc. are quite
similar.

• The statement is mainly wrong, or at least con-
fusing: The syntax is fortunately more or less
the syntax of the S language with some small
specialities, therefore most R users will know
about its main rules.

Let us start collecting the required information to
typeset formulas in R. We do not need any special
functions to typeset, since the regular mechanisms
used to typeset character strings, like the arguments
main or xlab in plot(), or functions like text() etc.,
are sufficient.

We will not be able to specify mathematical an-
notation as character strings, but we need to spec-
ify them as S expressions or calls — without evalu-
ating them. Some functions to specify unevaluated
S expression, or, more specifically, functions to ma-
nipulate and work with S expressions and calls are
described in detail by Venables and Ripley (2000).
For those interested in more technicalities, the Pro-
grammer’s Niche by Venables (2002) in the previ-
ous newsletter gives some nice insights into the lan-
guage.

Anyway, the most frequently used reference for
our purpose certainly is the help page ?plotmath.

Having collected most of the required informa-
tion, we know that expression() is an appropri-
ate function to specify an unevaluated S expression.
Thus, we can easily produce the following example
(just try it out!).

> plot(0, main =

expression(y == alpha*x[1] + beta*x[2]^2))

The resulting plot will have a rather nice formula in
its main title.

Automation

The question how to replace some variables in formu-
las by their values seems to be more sophisticated, but
is still documented in the examples of ?plotmath.

In particular, the function substitute() is de-
signed to substitute any variables in a call by their
value (from a given environment or list of objects).
As an extension of our first example

> a <- 3.5

> x <- 1:2

> substitute(y == a + alpha*x[1] + beta*x[2]^2,

list(a = a))

will replace the variable a (but not x) in the expres-
sion with its value. Such a mechanism is of special in-
terest for some automated generation of plots, where
the user is not willing to specify the calls to each plot
separately.

Let us construct a small example (you might want
to try it out before looking at the code): Consider you
are working with a bivariate normal distribution, for
which you automatically calculate the mean µ and
the covariance matrix Σx:

µ =
(
µ1
µ2

)
, Σx =

(
σ1 σ3
σ2 σ4

)
.

R News ISSN 1609-3631

ligges@statistik.uni-dortmund.de

Vol. 2/3, December 2002 33

In the same procedure, you want to generate a nice
plot for some presentation, including the formula for
the density of your multivariate normal distribution:

f (x) =
1√

(2π)n det(Σx)
×

exp
(
−1

2
(x−µ)TΣ−1

x (x−µ)
)

.

Further on, suppose you would like to print out
the calculated values of µ and Σx in the same plot.
One possible solution would be the following code.

> ## Let us set up an empty plot:

> plot(1:8, type = "n")

> ## a list of imaginary calculated values:

> param.list <- list(mu1 = 0, mu2 = 0,

s1 = 3, s2 = 2, s3 = 2, s4 = 4)

> ## typeset density of 2-var. normal dist.

> text(1, 6, adj = 0, labels = expression(

f(x) == frac(1, sqrt((2 * pi)^n ~~

det(Sigma[x]))) ~~ exp * bgroup("(",

-frac(1, 2) ~~ (x - mu)^T * Sigma[x]^-1 *

(x - mu), ")")))

> ## typeset concrete values of mu and Sigma

> ## (from param.list):

> text(8, 3, adj = 1, labels = substitute(

"with " * mu == bgroup("(", atop(mu1, mu2),

")") * " , " * Sigma[x] ==

bgroup("(", atop(s1 ~~ s3, s2 ~~ s4), ")"),

param.list))

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

Index

1:
8

f(x) =
1

(2π)n det(Σx)
 exp



−

1

2
 (x − µ)TΣx

−1(x − µ)



with µ =



0

0



 , Σx =




3 2

2 4




Figure 1: Example – Typesetting the density of a bi-
variate normal distribution with substituted values

More automation

From another point of view, substitution might be
desirable for variables (objects) containing expres-
sions, or expression-like strings. Consider you
would like to pass such an object as an argument to
a function, and within that function the title for the
plot shall be constructed from different elements.

The following function will plot the object x ac-
cording to its class, and label the plot with a com-
pounded title. For the labelling two different objects
arg2 (an expression) and arg3 (a character string) are
expected by the function. This particular design of
the function is chosen for illustrating two possible
ways to achieve the typesetting:

> my.foo <- function(x, arg2, arg3, ...){

arg3 <- parse(text = arg3)[[1]]

plot(x, main =

substitute("Formula in \’arg2\’: " * arg2

* "; Formula in \’arg3\’: " * arg3,

list(arg2 = arg2, arg3 = arg3)),

...)

}

> my.foo(1:10, arg2 = quote(alpha[1] == 5),

arg3 = "y == alpha + beta*x + epsilon")

Neither for arg2, nor for arg3, it is possible
to substitute the variable by an object of mode
expression, which can include several objects of
mode call, because substitute() will fail in that
case. Instead, the trick is to pass an object of mode
call. In the first case, arg2 is specified in the func-
tion call using quote(). In the second case, arg3 is
specified as a character string that is parsed (i.e. an
expression is returned) inside the function. In order
to get an object of mode call, only the first element
of the returned list is extracted.

Legends

Another quite frequently asked question related to
mathematical annotation is how to deal with a cou-
ple of formulas at once, as required in legends. If
substitution of variables by values is not necessary,
expression() will still do the trick:

> plot(1:8, type = "n")

> legend(2, 3, expression(alpha^2, x[5], Omega))

But what about substituting? Consider you have cal-
culated values α = 1,β = 2, and want to present
those values within any legend. You will have to sub-
stitute the variables of each legend’s element sepa-
rately before putting them together in an expression.
The latter can be done by do.call() in a somewhat
tricky manner, constructing a call to expression()
with the legend’s elements as its arguments:

> a <- 3; b <- 5

> legend1 <- substitute(alpha == a, list(a = a))

> legend2 <- substitute(beta == b, list(b = b))

> legend(5, 5,

do.call("expression", list(legend1, legend2))

Working intensively with mathematical annota-
tion in plots involves the use of expressions and calls,
thus it is close to the language. Therefore this first is-
sue of the R Help Desk got a bit more technical than it
was intended to be.

I would like to close with a nice citation of Ven-
ables (2002): “Mind Your Language”.

R News ISSN 1609-3631

Vol. 2/3, December 2002 34

Bibliography

K. Hornik (2002). The R FAQ. ISBN 3-901167-51-X,
http://www.ci.tuwien.ac.at/~hornik/R/. 32

P. Murrell and R. Ihaka (2000). An Approach to Pro-
viding Mathematical Annotation in Plots, Journal
of Computational and Graphical Statistics, 9(3): 582–
599. 32

W. N. Venables and B. D. Ripley (2000). S Program-
ming. Springer-Verlag, New York. 32

W. N. Venables (2002). Programmer’s Niche, R
News, 2(2): 24–26, ISSN 1609-3631, http://CRAN.
R-project.org/doc/Rnews/. 32, 33

Uwe Ligges
Fachbereich Statistik, Universität Dortmund, Germany
ligges@statistik.uni-dortmund.de

Changes in R
by the R Core Team

User-visible changes

• The default colour palette now has "grey" in-
stead of "white" in location 8. See palette().

• grid(nx) behaves differently (but the same as
in R versions <= 0.64).

New features

• barplot() has a new argument ‘axis.lty’,
which if set to 1 allows the pre-1.6.0 behaviour
of plotting the axis and tick marks for the cat-
egorical axis. (This was apparently not inten-
tional, but axis() used to ignore lty=0.) The
argument ‘border’ is no longer “not yet used”.

• New operator :: in the grammar, for name
spaces.

• New faster rowsum(), also works on data
frames.

• grep(), sub(), gsub() and regexpr() have a
new argument ‘perl’ which if TRUE uses Perl-
style regexps from PCRE (if installed). New ca-
pabilities option "PCRE" to say if PCRE is avail-
able.

• Preparations for name space support:

– Functions in the base package are now
defined in a name space. As a tem-
porary measure, you can disable this
by defining the environment variable
R_NO_BASE_NAMESPACE.

– UseMethod dispatching now searches for
methods in the environment of the caller
of the generic function rather than the en-
vironment where the generic is defined.

• The objects created in the methods pack-
age to represent classes, generic functions,
method definitions, and inheritance relations
now themselves belong to true classes. In
particular, the "classRepresentation" objects
follow the description in “Programming with
Data” (section 7.6).

• Other additions and changes to the methods
package:

– The function setOldClass() has been
added, following the description on page
450 of “Programming with Data”. Use
it if old-style classes are to be sup-
plied in signatures for setMethod, partic-
ularly if the old-style classes have inheri-
tance. Many of the old-style classes in the
base package should be pre-specified; try
getClass("mlm"), e.g.

– The setGeneric() function applies some
heuristics to warn about possibly erro-
neous generic function definitions. (Be-
fore, obscure bugs could result.)

– The function promptMethods() has been
revised to work better and to provide
aliases for individual methods.

– The behavior of the as() function has
been generalized, in particular with a
‘strict=’ argument, the general goal be-
ing to let simple extensions of classes
pass through in method dispatch and re-
lated computations without altering the
objects. More to make method behavior
more “natural” than for direct use.

– Some inconsistencies following
detach("package:methods") have been
removed, so it should be possible to
detach/re-attach the methods package.

• New methods ([[, print, str) and extended
plot() method (including logical ‘horiz’) for
"dendrogram" class.

R News ISSN 1609-3631

http://www.ci.tuwien.ac.at/~hornik/R/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
mailto:ligges@statistik.uni-dortmund.de

