
Vol. 3/2, October 2003 2

R Help Desk
An Introduction to Using R’s Base Graphics

Marc Schwartz

Preface

As the use of R grows dramatically, an increas-
ingly diverse base of users will begin their explo-
ration of R’s programmatic approach to graphics.
Some new users will start without prior experience
generating statistical graphics using coded functions
(ie. they may have used GUI based “point-and-click”
or “drag-and-drop” graphic processes) and/or they
may be overwhelmed by the vast array (pardon
the pun) of graphic and plotting functions in R.
This transition can not only present a steep learning
curve, but can perhaps, by itself, become a barrier to
using R entirely, which would be an unfortunate out-
come.

R has essentially two separate core plotting en-
vironments in the default (base plus ‘recommended
package’) installation. The first is the extensive set
of base graphic functions and the second is the com-
bination of the grid (Murrell, 2002) and lattice pack-
ages (Sarkar, 2002), which together provide for ex-
tensive Trellis conditioning plots and related stan-
dardized functionality. For the purpose of this intro-
duction, I shall focus exclusively on the former.

The key advantages of a programmatic plotting
approach are much finer control over the plotting
process and, importantly, reproducibility. Days,
weeks or even months later, you can return to re-
use your same code with the same data to achieve
the same output. Ultimately, productivity is also en-
hanced because, once created, a single plotting func-
tion can be called quickly, generating one or an entire
series of graphics in a largely automated fashion.

R has a large number of “high” and “low” level
plotting functions that can be used, combined and
extended for specific purposes. This extensibility en-
ables R to meet a wide spectrum of needs, as demon-
strated by the number of contributed packages on
CRAN that include additional specialized plotting
functionality.

The breadth of base plotting functions is usually
quite satisfactory for many applications. In conjunc-
tion with R’s innate ability to deal with data in vec-
torized structures and by using differing ‘methods’,
one can further reduce the need for lengthy, repeti-
tive and complex code. In many cases, entire data
structures (ie. a linear model object) can be passed as
a single argument to a single plotting function, creat-
ing a default plot or series of plots.

Further, where default plot settings are perhaps
inappropriate for a given task, these can be ad-
justed to your liking and/or disabled. The base

graphic can be enhanced by using various lower
level plotting functions to add data points, lines,
curves, shapes, titles, legends and text annotations.
Formatted complex mathematical formulae (Murrell
and Ihaka, 2000; Ligges, 2002) can also be included
where required.

If a graphics ‘device’ is not explicitly opened
by the user, R’s high level plotting functions will
open the default device (see ?Devices) specified by
options("device"). In an interactive session, this is
typically the screen. However, one can also open an
alternative device such as a bitmap (ie. PNG/JPEG) or
a PostScript/PDF file for publishing and/or presen-
tation. I will focus on using the screen here, since
the particulars concerning other devices can be plat-
form specific. Note that if you intend to create plots
for output to something other than the screen, then
you must explicitly open the intended device. Dif-
ferences between the screen and the alternate device
can be quite significant in terms of the resultant plot
output. For example, you can spend a lot of time cre-
ating the screen version of a plot, only to find out it
looks quite different in a PostScript file,

Various parameters of the figure and plot regions
within a device can be set in advance by the use of
the par() function before calling the initial plot func-
tion. Others can be set as named arguments to the
plot functions. Options set by par() affect all graph-
ics; options set in a graphics call affect only that call.
(See ?par and ?plot.default for some additional
details).

It is possible to divide the overall graphic device
into a row/column grid of figures and create individ-
ual plots within each grid section (ie. a matrix of scat-
terplots like a pairs() plot) or create a graphic that
contains different plot types (ie. a scatterplot with
boxplots placed on the x and y axes). For more in-
formation, see ?layout, ?split.screen and graphic
parameters ‘mfcol’ and ‘mfrow’ in ?par.

For additional details regarding graphic devices,
parameters and other considerations, please review
“Graphical Procedures” (Ch. 12) in “An Introduc-
tion to R” (Venables, Smith and R Core, 2003) and
“Graphics” (Ch. 4) in “Modern Applied Statistics
with S” (Venables and Ripley, 2002).

Let’s Get Plotting

In this limited space, it is not possible to cover all
the combinations and permutations possible with R’s
base graphics functionality (which could be a thick
book in its own right). Thus, I will put forth a fi-
nite set of practical examples that cover a modest
range of base plots and enhancements. For each plot,

R News ISSN 1609-3631

Vol. 3/2, October 2003 3

we will create some simple data to work with, cre-
ate a basic plot using a standard function to demon-
strate default behavior and then enhance the base
plot with additional detail. The included graphic for
each will show the final result. I recommend that you
consult the R help system for each function (using
?FunctionName) to better understand the syntax of
each function call and how each argument impacts
the resultant output.

Scatterplot with a regression line and con-
fidence / prediction intervals

Linear Regression Plot

x vals

y
va

ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−4

−2

0

2

4
Fitted Line
Confidence Bands
Prediction Bands

The plot() function is a generic graphing func-
tion that can accept of variety of data structures
through specific defined ‘methods’. Frequently,
these arguments are numeric vectors representing
the two-dimensional (x,y) coordinate pairs of points
and/or lines to display. If you want to get a feel
for the breadth of plotting methods available use
methods(plot).

In the next example we first create a series of sim-
ple plots (not shown) then create the more complex
scatterplot shown above. To do this we create an x-y
scatterplot using type = "n" so that the axis ranges
are established, but nothing is plotted initially. We
then add the data points, the axes, a fitted regression
line, and confidence and prediction intervals for the
regression model:

Create our data

set.seed(1)

x <- runif(50, -2, 2)

set.seed(2)

y <- x + rnorm(50)

Create the model object

mod <- lm(y ~ x)

Plot the data and add a regression line

using default plot() behavior

plot(x, y)

abline(mod)

Plot the model object, going through a

sequence of diagnostic plots. See ?plot.lm

plot(mod)

Create prediction values and confidence limits

using a new dataframe of x values, noting the

colnames need to match your model term names.

newData <- data.frame(x = seq(min(x), max(x),

by = (max(x) - min(x)) / 49))

pred.lim <- predict(mod, newdata = newData,

interval = "prediction")

conf.lim <- predict(mod, newdata = newData,

interval = "confidence")

Function to color plot region

color.pr <- function(color = "white")

{

usr <- par("usr")

if (par("xlog"))

usr[1:2] <- 10 ^ usr[1:2]

if (par("ylog"))

usr[3:4] <- 10 ^ usr[3:4]

rect(usr[1], usr[3], usr[2], usr[4],

col = color)

}

Color the plot background

par(bg = "blue")

Define margins to enable space for labels

par(mar = c(5, 6, 5, 3) + 0.1)

Create the plot. Do not plot the data points

and axes to allow us to define them our way

plot(x, y, xlab = "x vals", ylab = "y vals",

type = "n", col.lab = "yellow", font.lab = 2,

cex.lab = 1.5, axes = FALSE, cex.main = 2,

main = "Linear Regression Plot",

col.main = "yellow", xlim = c(-2.1, 2.1),

ylim = range(y, pred.lim, na.rm = TRUE))

Color the plot region white

color.pr("white")

Plot the data points

points(x, y, pch = 21, bg = "yellow", cex=1.25)

Draw the fitted regression line and the

prediction and confidence intervals

matlines(newData$x, pred.lim, lty = c(1, 4, 4),

lwd = 2, col = c("black", "red", "red"))

matlines(newData$x, conf.lim, lty = c(1, 3, 3),

lwd = 2, col = c("black", "green4", "green4"))

Draw the X and Y axes, repectively

axis(1, at = -2:2, col = "white",

col.axis = "white", lwd = 2)

axis(2, at = pretty(range(y), 3), las = 1,

col = "white", col.axis = "white", lwd = 2)

Draw the legend

legend(-2, max(pred.lim, na.rm = TRUE),

legend = c("Fitted Line", "Confidence Bands",

"Prediction Bands"),

lty = c(1, 3, 4), lwd = 2,

col = c("black", "green4", "red"),

horiz = FALSE, cex = 0.9, bg = "gray95")

Put a box around the plot

box(lwd = 2)

R News ISSN 1609-3631

Vol. 3/2, October 2003 4

Barplot with confidence intervals and ad-
ditional annotation

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

%
 In

ci
de

nc
e

(+
/−

95
%

 C
I)

A B C
126 409 284

p = 0.8285 p = 0.0931 p = 0.1977

4.8%

2.7% 2.8%

Benchmark Value: 4.5%

Incidence of Event By Group

Total N = 819

barplot() can draw essentially three types of
plots with either vertical or horizontal bars (using
the argument horiz = TRUE / FALSE). The first is
a series of individual bars where the height argu-
ment (which defines the bar values) is a simple vec-
tor. The second is a series of stacked multi-segment
bars where height is a matrix and beside = FALSE.
The third is a series of grouped bars where height is
a matrix and beside = TRUE. In the second and third
cases, each column of the matrix height represents
either the values of the bar segments in each stacked
bar, or the values of the individual bars in each bar
group, respectively.

barplot() returns either a vector or a matrix
(when beside = TRUE) of bar midpoints that can be
assigned to a variable (ie. mp <- barplot(...)). You
can use this information to locate bar midpoints for
text and/or line placement. To locate the midpoint
of bar groups, use colMeans(mp) to enable the place-
ment of a bar group label.

Here we will create a vertical barplot, with each
of the three bars representing a proportion. We will
add binomial confidence intervals and p values from
binom.test() using a ‘benchmark’ value that will be
plotted. We will label the y axis with percentages
(prop * 100), add bar values above the top of each
bar and put sample sizes centered below each bar un-
der the x axis.

Create our data

A <- data.frame(Event = c(rep("Yes", 6),

rep("No", 120)), Group = "A")

B <- data.frame(Event = c(rep("Yes", 11),

rep("No", 398)), Group = "B")

C <- data.frame(Event = c(rep("Yes", 8),

rep("No", 276)), Group = "C")

BarData <- rbind(A, B, C)

attach(BarData)

Create initial ’default’ barplots

barplot(table(Group))

barplot(table(Group), horiz = TRUE)

barplot(table(Event, Group))

barplot(table(Event, Group), beside = TRUE)

Let’s get our summary data from the dataframe

table.data <- table(Event, Group)

Get sample sizes

n <- as.vector(colSums(table.data))

Get number of "Yes" events

events <- as.vector(table.data["Yes",])

Proportion of "Yes" events

prop.events <- events / n

Group names from table dimnames

Group.Names <- dimnames(table.data)$Group

Define our benchmark value

benchmark <- 0.045

Get binomial confidence limits and p values

stats <- mapply(binom.test, x = events, n = n,

p = benchmark)

ci[, 1] = lower and ci[, 2] = upper

ci <- matrix(unlist(stats["conf.int",]),

ncol = 2, byrow = TRUE)

p.val <- unlist(stats["p.value",])

Define Y axis range to include CI’s and

space for a legend in the upper LH corner

YMax <- max(ci[, 2]) * 1.25

Define margins to enable space for labels

par(mar = c(5, 6, 5, 3) + 0.1)

Do the barplot, saving bar midpoints in MidPts

MidPts <- barplot(prop.events, space = 1,

axes = FALSE,axisnames = FALSE,

ylim = c(0, YMax))

Define formatted Y axis labels using

axTicks() and draw the Y Axis and label

YLabels <- paste(formatC(axTicks(2) * 100,

format = "f", digits = 1),

"%", sep = "")

YAxisLab <- "% Incidence (+/-95% CI)"

axis(2, labels = YLabels, at = axTicks(2),

las = 1)

mtext(YAxisLab, side = 2, adj = 0.5,

line = 4.5, cex = 1.1, font = 2)

Draw the X axis using Group Names at bar

midpoints

axis(1, labels = Group.Names, at = MidPts,

font = 2, cex.axis = 1.25)

Draw Sample Sizes and p Values below Group

Names

mtext(n, side = 1, line = 2, at = MidPts,

cex = 0.9)

p.val.text <- paste("p = ",

formatC(p.val, format = "f", digits = 4),

sep = "")

mtext(p.val.text, side = 1, line = 3,

at = MidPts, cex = 0.9)

Place formatted bar values above the left edge

of each bar so that CI lines do not go through

numbers. Left edge = MidPts - (’width’ / 2)

bar.vals <- paste(formatC(

prop.events * 100, format = "f", digits=1),

"%", sep = "")

text(MidPts - 0.5, prop.events, cex = 0.9,

labels = bar.vals, adj = c(0, -0.5), font=1)

R News ISSN 1609-3631

Vol. 3/2, October 2003 5

Draw confidence intervals, first drawing

vertical line segments and then upper and

lower horizontal boundary segments

segments(MidPts, ci[, 1], MidPts, ci[, 2],

lty = "solid", lwd = 2)

segments(MidPts - 0.25, ci[, 1],

MidPts + 0.25, ci[, 1], lty = "solid", lwd=2)

segments(MidPts - 0.25, ci[, 2],

MidPts + 0.25, ci[, 2], lty = "solid", lwd=2)

Plot benchmark line

abline(h = benchmark, lty = "dotdash",

lwd = 2, col = "blue")

Draw legend

legend(1, YMax * 0.95, lty = "dotdash",

legend = "Benchmark Value: 4.5%", lwd = 2,

col = "blue", horiz = FALSE, cex = 0.9,

bg = "gray95")

Draw title and sub-title

mtext("Incidence of Event By Group", side = 3,

line = 3, cex = 1.5, font = 2)

mtext(paste("Total N = ", sum(n), sep = ""),

side = 3, line = 1, cex = 1, font = 2)

Put box around plot

box()

detach(BarData)

Paired Boxplots with outliers colored and
median / mean values labeled

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

0

2

4

6

8

10

12

14

A1 B1 A2 B2

135 175 250 500

5.1

7.5

3.2

5.15.0

7.6

2.7

4.6

Distribution of ’Measure’ by ’Group’

Mean
Median

J.W. Tukey’s Box-Whisker plots (Tukey, 1977) are
a quick and easy way to visually review and com-
pare the distributions of continuous variables. For
some descriptive information on the structure and
interpretation of these plots including additional ref-
erences, see ?boxplot.stats.

Here we will generate continuous measures in
four groups. We will generate default plots and then
enhance the layout of the plot to visually group the
data and to annotate it with key labels.

Create our data

set.seed(1)

A1 <- data.frame(Group = "A1",

Measure = rnorm(135, 5))

set.seed(2)

A2 <- data.frame(Group = "A2",

Measure = rgamma(250, 3))

set.seed(3)

B1 <- data.frame(Group = "B1",

Measure = rnorm(175, 7.5))

set.seed(4)

B2 <- data.frame(Group = "B2",

Measure = rgamma(500, 5))

BPData <- rbind(A1, A2, B1, B2)

attach(BPData)

Create default boxplots

boxplot(Measure)

boxplot(Measure, horizontal = TRUE)

boxplot(Measure ~ Group)

Adjust Group factor levels to put A1 / B1

and A2 / B2 pairs together

Group <- factor(Group,

levels = c("A1", "B1", "A2", "B2"))

Show default boxplot with re-grouping

boxplot(Measure ~ Group)

Define that boxplot midpoints to separate

the pairs of plots

at <- c(1.25, 1.75, 3.25, 3.75)

Draw boxplot, returning boxplot stats in S

which will contain summary data for each Group.

See ?boxplot.stats

S <- boxplot(Measure ~ Group, boxwex = 0.25,

col = c("orange", "yellow"), notch = TRUE,

at = at, axes = FALSE)

Draw thicker green lines for median values

When notch = TRUE, median width = boxwex / 2

segments(at - 0.0625, S$stats[3,],

at + 0.0625, S$stats[3,],

lwd = 2, col = "darkgreen")

Get Group means and plot them using a

diamond plot symbol

means <- by(Measure, Group, mean)

points(at, means, pch = 23, cex = 0.75,

bg = "red")

Color outlier values using x,y positions from S

points(at[S$group], S$out, pch = 21, bg="blue")

Draw Y axis, rotating labels to horiz

axis(2, las = 1)

Draw X Axis Group Labels

axis(1, at = at, labels = S$names,

cex.axis = 1.5, font.axis = 2)

mtext(S$n, side = 1, at = at, line = 3)

Draw Mean values to the left edge of each

boxplot

text(at - 0.125, means, labels = formatC(

means, format = "f", digits = 1),

pos = 2, cex = 0.9, col = "red")

Draw Median values to the right edge of

each boxplot

text(at + 0.125, S$stats[3,],

labels = formatC(S$stats[3,], format = "f",

digits = 1),

pos = 4, cex = 0.9, col = "darkgreen")

Draw a box around plot

box()

Add title and legend

title("Distribution of ’Measure’ by ’Group’",

R News ISSN 1609-3631

Vol. 3/2, October 2003 6

cex.main = 1.5)

legend(0.5, max(Measure),

legend = c("Mean", "Median"),

fill = c("red", "darkgreen"))

detach(BPData)

Additional Resources

For additional information on using R’s plotting
functionality, see: Venables, Smith and R Core (2003);
Venables and Ripley (2002); Fox (2002); Dalgaard
(2002). In addition, Uwe Ligges’ recent R News ar-
ticle (Ligges, 2003) provides excellent insights into
how best to utilize R’s documentation and help re-
sources.

If you are in need of expert guidance on creating
analytic graphics, such as the pros and cons of using
particular graphic formats and their impact on the
interpretation of your data, two critically important
references are “Visualizing Data” (Cleveland, 1993)
and “The Elements of Graphing Data” (Cleveland,
1994).

Bibliography

Cleveland, W. S. (1993): Visualizing Data. Summit,
NJ: Hobart Press. 6

Cleveland, W. S. (1994): The Elements of Graphing
Data. Summit, NJ: Hobart Press, revised edition.
6

Dalgaard, P. (2002): Introductory Statistics with R.
New York: Springer-Verlag. 6

Fox, J. (2002): An R and S-PLUS Companion to Applied
Regression. Thousand Oaks: Sage. 6

Ligges, U. (2002): R Help Desk – Automation of
Mathematical Annotation in Plots. R News, 2 (3),
32–34. ISSN 1609-3631. URL http://CRAN.
R-project.org/doc/Rnews/. 2

Ligges, U. (2003): R Help Desk – Getting Help – R’s
Help Facilities and Manuals. R News, 3 (1), 26–28.
ISSN 1609-3631. URL http://CRAN.R-project.
org/doc/Rnews/. 6

Murrell, P. (2002): The grid Graphics Package. R
News, 2 (2), 14–19. ISSN 1609-3631. URL http:
//CRAN.R-project.org/doc/Rnews/. 2

Murrell, P. and Ihaka, R. (2000): An Approach to Pro-
viding Mathematical Annotation in Plots. Journal
of Computational and Graphical Statistics, 9 (3), 582–
599. 2

Sarkar, D. (2002): Lattice: An Implementation of Trel-
lis Graphics in R. R News, 2 (2), 19–23. ISSN
1609-3631. URL http://CRAN.R-project.org/
doc/Rnews/. 2

Tukey, J. (1977): Exploratory Data Analysis. Reading,
MA: Addison-Wesley. 5

Venables, W. N. and Ripley, B. D. (2002): Modern Ap-
plied Statistics with S. New York: Springer-Verlag,
4th edition. 2, 6

Venables, W. N., Smith, D. M. and the R De-
velopment Core Team (2003): An Introduction
to R. URL http://CRAN.R-project.org/doc/
manuals.html. 2, 6

Marc Schwartz
MedAnalytics, Inc., Minneapolis, Minnesota, USA
MSchwartz@MedAnalytics.com

R News ISSN 1609-3631

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/manuals.html
http://CRAN.R-project.org/doc/manuals.html
mailto:MSchwartz@MedAnalytics.com

