Recently, (Mazucheli 2017) uploaded the package mle.tools to CRAN. It can be used for bias corrections of maximum likelihood estimates through the methodology proposed by (Cox and Snell 1968). The main function of the package, coxsnell.bc()
, computes the bias corrected maximum likelihood estimates. Although in general, the bias corrected estimators may be expected to have better sampling properties than the uncorrected estimators, analytical expressions from the formula proposed by (Cox and Snell 1968) are either tedious or impossible to obtain. The purpose of this paper is twofolded: to introduce the mle.tools package, especially the coxsnell.bc()
function; secondly, to compare, for thirty one continuous distributions, the bias estimates from the coxsnell.bc()
function and the bias estimates from analytical expressions available in the literature. We also compare, for five distributions, the observed and expected Fisher information. Our numerical experiments show that the functions are efficient to estimate the biases by the Cox-Snell formula and for calculating the observed and expected Fisher information.
Since it was proposed by Fisher in a series of papers from 1912 to 1934, the maximum likelihood method for parameter estimation has been employed to several issues in statistical inference, because of its many appealing properties. For instance, the maximum likelihood estimators, hereafter referred to as MLEs, are asymptotically unbiased, efficient, consistent, invariant under parameter transformation and asymptotically normally distributed (Edwards 1992; Lehmann 1999). Most properties that make the MLEs attractive depend on the sample size, hence such properties as unbiasedness, may not be valid for small samples or even moderate samples (Kay 1995). Indeed, the maximum likelihood method produces biased estimators, i.e., expected values of MLEs differ from the real true parameter values providing systematic errors. In particular, these estimators typically have biases of order \(\mathcal{O}\left(n^{-1}\right)\), thus these errors reduce as sample size increases (Cordeiro and Cribari-Neto 2014).
Applying the corrective Cox-Snell methodology, many researchers have developed nearly unbiased estimators for the parameters of several probability distributions. Interested readers can refer to (Cordeiro et al. 1997), (Cribari-Neto and Vasconcellos 2002), (Saha and Paul 2005), (Lemonte et al. 2007), (Giles and Feng 2009) (Lagos-Álvarez et al. 2011), (Lemonte 2011), (Giles 2012b), (Giles 2012a), (Schwartz et al. 2013), (Giles et al. 2013), (Teimouri and Nadarajah 2013), (Xiao and Giles 2014), (Zhang and Liu 2015), (Teimouri and Nadarajah 2016), (Reath 2016), (Giles et al. 2016), (Schwartz and Giles 2016), (Wang and Wang 2017), (Mazucheli and Dey 2017) and references cited therein.
In general, the Cox-Snell methodology is efficient for bias corrections. However, obtaining analytical expressions for some probability distributions, mainly for those indexed by more than two parameters, can be notoriously cumbersome or impossible. (Stočsić and Cordeiro 2009) presented Maple and Mathematica scripts that may be used to calculate closed form analytic expressions for bias corrections using the Cox-Snell formula. They tested the scripts for 20 two-parameter continuous probability distributions, and the results were compared with those published in earlier works. In the same direction, researchers from the University of Illinois, at Urbana-Champaign, have developed a Mathematica program, entitled “CSCK MLE Bias Calculation” (Johnson et al. 2012b) that enables the user to calculate the analytic Cox-Snell MLE bias vectors for various probability distributions with up to four unknown parameters. It is important to mention that both, Maple (Maple 2017) and Mathematica (Wolfram Research, Inc. 2010), are commercial softwares.
In this paper, our objective is to introduce a new contributed R
(R Core Team 2016) package, namely
mle.tools that
computes the expected/observed Fisher information and the bias corrected
estimates by the methodology proposed by (Cox and Snell 1968). The theoretical
background of the methodology is presented in Section 2.
Details about the mle.tools package are described in Section
3. Closed form solutions of bias corrections are collected
from the literature for a large number of distributions and compared to
the output from the coxsnell.bc()
function, see Section
4. In Section 5, we compare various estimates of
Fisher’s information, considering a real application from the
literature. Finally, Section 6 contains some concluding remarks
and directions for future research.
Let \(X_1, \ldots, X_n\) be \(n\) be independent random variables with probability density function \(f\left( x_i \mid \mathbf{\theta} \right)\) depending on a \(p\)-dimensional parameter vector \(\mathbf{\theta} = \left(\theta_1, \ldots, \theta_p\right)\). Without loss of generality, let \(l =l\left(\mathbf{\theta} \mid \mathbf{x}\right)\) be the log-likelihood function for the unknown \(p\)-dimensional parameter vector \(\mathbf{\theta}\) given a sample of \(n\) observations. We shall assume some regularity conditions on the behavior of \(l\left(\mathbf{\theta} \mid \mathbf{x}\right)\) (Cox and Hinkley 1979).
The joint cumulants of the derivatives of \(l\) are given by: \[\begin{aligned} \kappa_{ij} &=& \mathbb{E}\left[\dfrac {\partial^2\, l}{\partial\,\mathbf{\theta}_i\, \partial\,\mathbf{\theta}_j} \right], \\ \nonumber \\ \kappa_{ijl} &=& \mathbb{E}\left[\dfrac {\partial^3\, l}{\partial\,\mathbf{\theta}_i\, \partial\,\mathbf{\theta}_j\, \partial\,\mathbf{\theta}_l} \right], \\ \nonumber \\ \kappa_{ij,l} &=& \mathbb{E}\left[\left(\dfrac {\partial^2\, l}{\partial\,\mathbf{\theta}_i\, \partial\,\mathbf{\theta}_j}\right)\,\left(\dfrac {\partial\, l}{\partial\,\mathbf{\theta}_l}\right)\right], \\ \nonumber \\ \kappa_{ij}^{(l)} &=& \dfrac {\partial\,\kappa_{ij}}{\partial\,\mathbf{\theta}_l} \end{aligned}\] for \(i, j, l = 1, \ldots, p\).
The bias expression of the \(s\)th element of \(\widehat{\mathbf{\theta}}\), the MLEs of \(\mathbf{\theta}\), when the sample data are independent, but not necessarily identically distributed, was proposed by (Cox and Snell 1968): \[\begin{aligned} \label{eq:coxsnell} \mathcal{B}\left(\widehat{\theta}_s\right) = \sum_{i=1}^{p}\,\sum_{j=1}^{p}\,\sum_{l=1}^{p}\,\kappa^{si}\,\kappa^{jl}\,\left[0.5 \kappa_{ijl} + \kappa_{ij,l}\right] + \mathcal{O} \left(n^{-2}\right), \end{aligned} \tag{1}\] where \(s = 1, \ldots, p\) and \(\kappa^{ij}\) is the \((i, j)\)th element of the inverse of the negative of the expected Fisher information.
Thereafter, (Cordeiro and Klein 1994) noticed that equation (1) holds even if the data are non-independent, and it can be re-expressed as: \[\begin{aligned} \label{eq:cordeiro-klein} \mathcal{B} \left(\widehat{\theta}_s\right) = \sum_{i=1}^{p}\,\kappa^{si}\sum_{j=1}^{p}\,\sum_{l=1}^{p}\left[\kappa_{ij}^{(l)} - 0.5 \kappa_{ijl}\right]\,\kappa^{jl} + \mathcal{O} \left(n^{-2}\right). \end{aligned} \tag{2}\]
Defining \(a_{ij}^{(l)} = \kappa_{ij}^{(l)} - 0.5 \kappa_{ijl}\), \(A^{(l)} = \left\{a_{ij}^{(l)}\right\}\) and \(K = \left[ -\kappa_{ij}\right]\), the expected Fisher information matrix for \(i, j, l = 1, \ldots, n\), the bias expression for \(\widehat{\mathbf{\theta}}\) in matrix notation is: \[\begin{aligned} \mathcal{B}\left(\widehat{\mathbf{\theta}}\right) = K^{-1} A \text{vec}\left(K^{-1}\right) + \mathcal{O}\left(n^{-2}\right), \end{aligned}\] where \(\text{vec} \left(K^{-1}\right)\) is the vector obtained by stacking the columns of \(K^{-1}\) and \(A = \left\{A^{1} \mid \cdots \mid A^{p}\right\}\).
Finally, the bias corrected MLE for \(\theta_s\) can be obtained as: \[\begin{aligned} \label{eq:mle-coxsnell} \widetilde{\theta}_s = \widehat{\theta}_s - \widehat{\mathcal{B}}\left(\widehat{\theta}_s\right). \end{aligned} \tag{3}\] Alternatively, using matrix notation the bias corrected MLEs can be expressed as (Cordeiro and Klein 1994): \[\begin{aligned} \label{eq:mle-cordeiro-klein} \widetilde{\mathbf{\theta}} = \widehat{\mathbf{\theta}} - \widehat{K}^{-1} \widehat{A} \text{vec} \left(\widehat{K}^{-1}\right), \end{aligned} \tag{4}\] where \(\widehat{K} = K\big|_{\mathbf{\theta}=\widehat{\mathbf{\theta}}}\) and \(\widehat{A} = A\big|_{\mathbf{\theta}=\widehat{\mathbf{\theta}}}\).
The current version of the mle.tools package, uploaded to CRAN in
February, 2017, has implemented three functions — observed.varcov()
,
expected.varcov()
and coxsnell.bc()
— which are of great interest
in data analysis based on MLEs. These functions calculate, respectively,
the observed Fisher information, the expected Fisher information and the
bias corrected MLEs using the bias formula in (1). The
above mentioned functions can be applied to any probability density
function whose terms are available in the derivatives table of the D()
function (see “deriv.c” source code for further details). Integrals,
when required, are computed numerically via the integrate()
function.
Below are some mathematical details of how the returned values from the
three functions are calculated.
Let \(X_{1}, \ldots, X_{n}\) be independent and identical random variables with probability density function \(f\left(x_{i}\mid \mathbf{\theta}\right)\) depending on a \(p\)-dimensional parameter vector \(\mathbf{\theta} = \left( \theta_1,\ldots,\theta_p\right)\). The \((j,k)\)th element of the observed, \(H_{jk}\), and expected, \(I_{jk}\), Fisher information are calculated, respectively, as \[\begin{aligned} H_{jk} =\left. {-\sum\limits_{i=1}^{n}\frac {\partial^{2}}{\partial \theta_{j}\partial \theta_{k}}\log f\left(x_{i}\mid {\mathbf{\theta} }\right) } \right\vert_{\mathbf{\theta }=\widehat{\mathbf{\theta}}} \end{aligned}\] and \[\begin{aligned} I_{jk}=-n\times E\left( \frac {\partial^{2}}{\partial \theta_{j}\partial \theta_{k}}\log f\left( x\mid \mathbf{\theta }\right) \right) = \left.-n \times\int\limits_{\mathcal{X}} \frac {\partial^2}{\partial\theta_j\partial \theta_k}\log f\left(x\mid \mathbf{\theta}\right) \times f\left(x\mid \mathbf{\theta }\right) \textrm{d}x\right\vert_{\mathbf{\theta }=\widehat{\mathbf{\theta}}}, \end{aligned}\] where \(j,k = 1,\ldots,p\), \(\mathbf{\widehat{\theta}}\) is the MLE of \(\mathbf{\theta}\) and \(\mathcal{X}\) denotes the support of the random variable \(X\).
The observed.varcov()
function is as follows:
function (logdensity, X, parms, mle)
where logdensity
is an R expression of the log of the probability
density function, X
is a numeric vector containing the observations,
parms
is a character vector of the parameter name(s) specified in the
logdensity expression and mle
is a numeric vector of the parameter
estimate(s). This function returns a list with two components (i) mle
:
the inputed MLEs and (ii) varcov
: the observed variance-covariance
evaluated at the inputed MLE argument. The elements of the Hessian
matrix are calculated analytically.
The functions expected.varcov()
and coxsnell.bc()
have the same
arguments and are as follows:
function (density, logdensity, n, parms, mle, lower = "-Inf", upper = "Inf", ...)
where density
and logdensity
are R expressions of the probability
density function and its logarithm, respectively, n
is a numeric
scalar of the sample size, parms
is a character vector of the
parameter names(s) specified in the density and log-density expressions,
mle
is a numeric vector of the parameter estimates, lower
is the
lower integration limit (-Inf
is the default), upper
is the upper
integration limit (Inf
is the default) and ...
are additional
arguments passed to the integrate()
function. The expected.varcov()
function returns a list with two components:
$mle
the inputed MLEs and
$varcov
the expected covariance evaluated at the inputed MLEs.
The coxsnell.bc()
function returns a list with five components:
$mle
the inputed MLEs,
$varcov
the expected variance-covariance evaluated at the inputed MLEs,
$mle.bc
the bias corrected MLEs,
$varcov.bc
the expected variance-covariance evaluated at the bias corrected MLEs
$bias
the bias estimate(s).
Furthermore, the bias corrected MLE of \(\theta_s\), \(s=1,\ldots, p\) denoted by \(\widetilde{\theta_s}\) is calculated as \(\widetilde{\theta_s} = \widehat{\theta}_s - \widehat{\mathcal{B}} \left( \widehat{\theta}_s \right)\), where \(\widehat{\theta}_s\) is the MLE of \({\theta}_s\) and \[\begin{aligned} {\widehat{\mathcal{B}}\left({\widehat{\theta }}_{s}\right) = } \left. {\sum\limits_{j=1}^{p}\sum\limits_{k=1}^{p} \sum\limits_{l=1}^{p}\kappa^{sj}\kappa^{kl}\left[ 0.5\kappa_{{jkl}}+\kappa_{{jk,l}}\right]} \right\vert_{\mathbf{\theta }=\widehat{\mathbf{\theta }}}, \end{aligned}\] where \(\kappa^{jk}\) is the (\(j,k\))th element of the inverse of the negative of the expected Fisher information, \[\begin{aligned} {\kappa_{jkl}=} \left.n \int\limits_{\mathcal{X}} \frac {\partial^3}{\partial \theta_j \partial \theta_k \partial \theta_l} \log f\left(x\mid \mathbf{\theta}\right) f\left(x\mid \mathbf{\theta }\right) \textrm{d}x\right\vert_{\mathbf{\theta }=\widehat{\mathbf{\theta}}}, \end{aligned}\]
\[\begin{aligned} \kappa_{jk,l}= \left.n \int\limits_{\mathcal{X}} \frac {\partial^2}{\partial\theta_j\partial \theta_k} \log f\left(x\mid \mathbf{\theta}\right) \frac {\partial }{{\theta }_{l}}\log f\left( x\mid\mathbf{\theta }\right) f\left(x\mid \mathbf{\theta }\right) \textrm{d}x\right\vert_{\mathbf{\theta }=\widehat{\mathbf{\theta}}} \end{aligned}\] and \(\mathcal{X}\) denotes the support of the random variable \(X\).
It is important to emphasize that first, second and third-order partial
log-density derivatives are analytically calculated via the D()
function, while integrals are computed numerically, using the
integrate()
function. Furthermore, if numerical integration fails
and/or the expected/observed information is singular, an error message
is returned.
In order to evaluate the robustness of the coxsnell.bc()
function, we
compare, through real applications, the estimated biases obtained from
the package and from the analytical expressions for a total of thirty
one continuous probability distributions. The analytical expressions for
each distribution, named as distname.bc()
, can be found in the
supplementary file “analyticalBC.R”. For example, the entry
lindley.bc(n, mle)
evaluates the bias estimates locally at n
and
mle
values.
In the sequel, the probability density function, the analytical Cox-Snell expressions and the bias estimates are provided for: Lindley, inverse Lindley, inverse Exponential, Shanker, inverse Shanker, Topp-Leone, Lévy, Rayleigh, inverse Rayleigh, Half-Logistic, Half-Cauchy, Half-Normal, Normal, inverse Gaussian, Log-Normal, Log-Logistic, Gamma, inverse Gamma, Lomax, weighted Lindley, generalized Rayleigh, Weibull, inverse Weibull, generalized Half-Normal, inverse generalized Half-Normal, Marshall-Olkin extended Exponential, Beta, Kumaraswamy, inverse Beta, Birnbaum-Saunders and generalized Pareto distributions.
It is noteworthy that analytical bias corrected expressions are not reported in the literature for the Lindley, Shanker, inverse Shanker, Lévy, inverse Rayleigh, half-Cauchy, inverse Weibull, inverse generalized half-normal and Marshall-Olkin extended exponential distributions.
According to all the results presented below, we observe concordance
between the bias estimates given by the coxsnell.bc()
function and the
analytical expression(s) for \(28\) out the \(31\) distributions. The
distributions which did not agree with the coxsnell.bc()
function were
the beta, Kumaraswamy and inverse beta distributions. Perhaps there are
typos either in our typing or in the analytical expressions reported by
(Cordeiro et al. 1997), (Lemonte 2011) and (Stočsić and Cordeiro 2009). Having this view,
we recalculated the analytical expressions for the biases. For the beta
and inverse beta distributions, our recalculated analytical expressions
agree with the results returned by the coxsnell.bc()
function, so
there are actually typos in the expression of (Cordeiro et al. 1997) and
(Stočsić and Cordeiro 2009). For the Kumaraswamy, we could not evaluate the analytical
expression given by the author but we compare the results from
coxsnell.bc()
function with a numerical evaluation in Maple
(Maple 2017) and the results are exactly equals.
One-parameter Lindley distribution with scale parameter \(\theta\) \[\begin{aligned} f(x\mid\theta) = \frac {\theta^2}{1 + \theta} (1 + x) \exp(-\theta x), \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expression (not previously reported in the literature): \[\begin{aligned} \label{bc-lindley} \mathcal{B}\left(\widehat{\theta}\right) = {\frac { \left( {{\theta}}^{3}+ 6\,{{\theta}}^{2}+ 6\,{\theta}+ 2 \right) \left( {\theta}+ 1\right) {\theta}}{n \left( {{\theta}}^{2}+ 4\,{\theta}+ 2 \right)^{2}}}. \end{aligned} \tag{5}\]
Using the data set from (Ghitany et al. 2008) we have \(n = 100\),
\(\widehat{\theta} = 0.1866\) and
\(\widehat{se}\left(\widehat{\theta}\right)= 0.0133\). Evaluating the
analytical expression (5) and the coxsnell.bc()
function, we have, respectively,
lindley.bc(n = 100, mle = 0.1866)
## theta
## 0.0009546
<- quote(theta^2 / (theta + 1) * (1 + x) * exp(-theta * x))
pdf <- quote(2 * log(theta) - log(1 + theta) - theta * x)
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 100,
parms = c("theta"), mle = 0.1866, lower = 0)$bias
## theta
## 0.0009546
Inverse Lindley distribution with scale parameter \(\theta\) \[\begin{aligned} f(x\mid\theta) = \frac {\theta^2}{1 + \theta} \left(\frac {1 + x}{x^3}\right)\exp\left(-\frac {\theta}{x}\right), \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expression (Wang 2015): \[\begin{aligned} \label{bc-invlindley} \mathcal{B}\left(\widehat{\theta}\right) ={\frac { \left( {\theta}+ 1 \right) {\theta}\, \left( {{\theta}}^{3}+ 6\,{{\theta}}^{2}+ 6\,{\theta}+ 2 \right) }{n\left( {{\theta}}^{2}+ 4\,{\theta}+ 2\right)^{2}}}. \end{aligned} \tag{6}\]
Using the data set from (Sharma et al. 2015) we have \(n = 58\),
\(\widehat{\theta} = 60.0016\) and
\(\widehat{se} \left(\widehat{\theta}\right) = 7.7535\). Evaluating
the analytical expression (6) and the
coxsnell.bc()
function, we have, respectively,
invlindley.bc(n = 58, mle = 60.0016)
## theta
## 1.017
<- quote(theta^2 / (theta + 1) * ((1 + x) / x^3) *
pdf exp(-theta / x))
<- quote(2 * log(theta) - log(1 + theta) - theta / x)
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 58,
parms = c("theta"), mle = 60.0016, lower = 0)$bias
## theta
## 1.017
Inverse exponential distribution with rate parameter \(\theta\) \[\begin{aligned} f(x \mid \theta) = \dfrac {\theta}{x^2}\,\exp\left(-\dfrac {\theta}{x}\right), \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expression (Johnson et al. 2012b): \[\begin{aligned} \label{bc-invexp} \mathcal{B}\left(\widehat{\theta}\right) = \dfrac {\theta}{n}. \end{aligned} \tag{7}\]
Using the data set from (Lawless 2011), we have \(n = 30\),
\(\widehat{\theta} = 11.1786\) and
\(\widehat{se}\left(\widehat{\theta}\right) = 2.0409\). Evaluating the
analytical expression (7) and the coxsnell.bc()
function, we have, respectively,
invexp.bc(n = 30, mle = 11.1786)
## theta
## 0.3726
<- quote(theta / x^2 * exp(- theta / x))
pdf <- quote(log(theta) - theta / x)
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 30,
parms = c("theta"), mle = 11.1786, lower = 0)$bias
## theta
## 0.3726
Shanker distribution with scale parameter \(\theta\) \[\begin{aligned} f(x \mid \theta) = \dfrac {\theta^2}{\theta^2 + 1}\,(\theta + x)\,\exp(-\theta\,x), \quad x > 0. \end{aligned}\]
\(\bullet\) For bias expression (not previously reported in the literature, see the “analyticalBC.R” file.
Using the data set from (Shanker 2015), we have \(n = 31\),
\(\widehat{\theta} = 0.0647\) and
\(\widehat{se} \left(\widehat{\theta}\right) = 0.0082\). Evaluating
the analytical expression and the coxsnell.bc()
function, we have,
respectively,
shanker.bc(n = 31, mle = 0.0647)
## theta
## 0.001035
<- quote(theta^2 / (theta^2 + 1) * (theta + x) *
pdf exp(-theta * x))
<- quote(2*log(theta) - log(theta^2 + 1) + log(theta + x) -
lpdf * x)
theta coxsnell.bc(density = pdf, logdensity = lpdf, n = 31,
parms = c("theta"), mle = 0.0647, lower = 0)$bias
## theta
## 0.001035
Inverse Shanker distribution with scale parameter \(\theta\) \[\begin{aligned} f(x \mid \theta) = \frac {\theta^2}{1 + \theta^2} \left(\frac {1 + \theta\,x}{x^3}\right)\exp\left(-\frac {\theta}{x}\right), \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expression (not previously reported in the literature): \[\begin{aligned} \label{bc-invshanker} \mathcal{B} \left(\widehat{\theta}\right) = \dfrac {\theta^3 + 2\,\theta}{n\,\left(\theta^2 + 1\right)}. \end{aligned} \tag{8}\]
Using the data set from (Sharma et al. 2015), we have \(n = 58\),
\(\widehat{\theta} = 59.1412\) and
\(\widehat{se}\left(\widehat{\theta}\right) = 7.7612\). Evaluating the
analytical expression (8) and the
coxsnell.bc()
function, we have, respectively,
invshanker.bc(n = 58, mle = 59.1412)
## theta
## 1.02
<- quote(theta^2 / (theta^2 + 1) * (theta * x + 1) /
pdf ^3 * exp(-theta / x))
x<- quote(log(theta) - 2 * log(x) - theta / x)
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 58,
parms = c("theta"), mle = 59.1412, lower = 0)$bias
## theta
## 1.02
Topp-Leone distribution with shape parameter \(\nu\) \[\begin{aligned} f(x \mid \nu) = 2\,\nu\,(1 - x)\,x^{\nu-1}\,(2 - x)^{\nu - 1}, \quad 0 < x < 1. \end{aligned}\]
\(\bullet\) Bias expression (Giles 2012a): \[\begin{aligned} \label{bc-toppleone} \mathcal{B}\left(\widehat{\nu}\right) = \dfrac {\nu}{n}. \end{aligned} \tag{9}\]
Using the data set from (Cordeiro and dos Santos Brito 2012), we have \(n = 107\),
\(\widehat{\nu} = 2.0802\) and
\(\widehat{se}\left(\widehat{\nu}\right) = 0.2011\). Evaluating the
analytical expression (9) and the coxsnell.bc()
function, we have, respectively,
toppleone.bc(n = 107, mle = 2.0802)
## nu
## 0.01944
<- quote(2 * nu * x^(nu - 1) * (1 - x) * (2 - x)^(nu - 1))
pdf <- quote(log(nu) + nu * log(x) + log(1 - x) + (nu - 1) *
lpdf log(2 - x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 107,
parms = c("nu"), mle = 2.0802, lower = 0, upper = 1)$bias
## nu
## 0.01944
One-parameter Lévy distribution with scale parameter \(\sigma\) \[\begin{aligned} f(x \mid \sigma) = \sqrt{\dfrac {\sigma}{2\,\pi}}\,x^{-\frac {3}{2}}\,\exp\left(-\dfrac {\sigma}{2\,x}\right), \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expression (not previously reported in the literature): \[\begin{aligned} \label{bc-levy} \mathcal{B} \left(\widehat{\sigma}\right) = \dfrac {2\,\sigma}{n}. \end{aligned} \tag{10}\]
Using the data set from (Achcar et al. 2013), we have \(n = 361\),
\(\widehat{\sigma} = 4.4461\) and
\(\widehat{se} \left(\widehat{\sigma}\right) = 0.3309\). Evaluating
the analytical expression (10) and the coxsnell.bc()
function, we have, respectively,
levy.bc(n = 361, mle = 4.4460)
## sigma
## 0.02463
<- quote(sqrt(sigma / (2 * pi)) * exp(-0.5 * sigma / x) /
pdf ^(3 / 2))
x<- quote(0.5 * log(sigma) - 0.5 * sigma / x - (3 / 2) * log(x))
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 361,
parms = c("sigma"), mle = 4.4460, lower = 0)$bias
## sigma
## 0.02463
Rayleigh distribution with scale parameter \(\sigma\) \[\begin{aligned} f(x \mid \sigma) = \frac {x}{\sigma^2}\,\exp\left(-\dfrac {x^2}{2\,\sigma^2}\right), \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expression (Xiao and Giles 2014): \[\begin{aligned} \label{bc-rayleigh} \mathcal{B} \left(\widehat{\sigma}\right) = -\dfrac {\sigma}{8\,n}. \end{aligned} \tag{11}\]
Using the data set from (Bader and Priest 1982), we have \(n = 69\),
\(\widehat{\sigma} = 1.2523\) and
\(\widehat{se} \left(\widehat{\sigma}\right) = 0.0754\). Evaluating
the analytical expression (11) and the
coxsnell.bc()
function, we have, respectively,
rayleigh.bc(n = 69, mle = 1.2522)
## sigma
## -0.002268
<- quote(x / sigma^2 * exp(- 0.5 * (x / sigma)^2))
pdf <- quote(- 2 * log(sigma) - 0.5 * x^2 / sigma^2)
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 69,
parms = c("sigma"), mle = 1.2522, lower = 0)$bias
## sigma
## -0.002268
Inverse Rayleigh distribution with scale parameter \(\sigma\) \[\begin{aligned} f(x \mid \sigma) = \frac {2\,\sigma^2}{x^3}\,\exp\left(-\dfrac {\sigma}{x^2}\right), \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expression (not previously reported in the literature): \[\begin{aligned} \label{bc-irayleigh} \mathcal{B} \left(\widehat{\sigma}\right) = \dfrac {3\sigma}{8\,n}. \end{aligned} \tag{12}\]
Using the data set from (Bader and Priest 1982), we have \(n = 63\),
\(\widehat{\sigma} = 2.8876\) and
\(\widehat{se} \left(\widehat{\sigma}\right) = 0.1819\). Evaluating
the analytical expression (12) and the
coxsnell.bc()
function, we have, respectively,
invrayleigh.bc(n = 63, mle = 2.8876)
## sigma
## 0.01719
<- quote(2 * sigma^2 / x^3 * exp(-sigma^2 / x^2))
pdf <- quote(2 * log(sigma) - sigma^2 / x^2)
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 63,
parms = c("sigma"), mle = 2.8876, lower = 0)$bias
## sigma
## 0.01719
Half-logistic distribution with scale parameter \(\sigma\) \[\begin{aligned} f(x \mid \sigma) = \dfrac {2\,\exp\left(-\dfrac {x}{\sigma}\right)}{\sigma\,\left[ 1 + \exp\left(-\dfrac {x}{\sigma}\right) \right]^2}, \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expressions (Giles 2012b): \[\begin{aligned} \label{bc-half-logistic} \mathcal{B}\left(\widehat{\sigma}\right) = -\dfrac {0.05256766607\,\sigma}{n}. \end{aligned} \tag{13}\]
Using the data set from (Bhaumik et al. 2009), we have \(n = 34\),
\(\widehat{\sigma} = 1.3926\) and
\(\widehat{se}\left(\widehat{\sigma}\right) = 0.2056\). Evaluating the
analytical expression (12) and the coxsnell.bc()
function, we have, respectively,
halflogistic.bc(n = 34, mle = 1.3925)
## sigma
## -0.002153
<- quote((2/sigma) * exp(-x / sigma) / (1 + exp(-x / sigma))^2)
pdf <- quote(-log(sigma) - x / sigma - 2 * log(1 + exp(-x / sigma)))
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 34,
parms = c("sigma"), mle = 1.3925, lower = 0)$bias
## sigma
## -0.002153
Half-Cauchy distribution with scale parameter \(\sigma\) \[\begin{aligned} f(x \mid \sigma) = \dfrac {2}{\pi}\,\dfrac {\sigma}{\sigma^2 + x^2}, \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expression (not previously reported in the literature): \[\begin{aligned} \label{bc-half-cauchy} \mathcal{B}\left(\widehat{\sigma}\right) = -\dfrac {\sigma}{n}. \end{aligned} \tag{14}\]
Using the data set from (Alzaatreh et al. 2016), we have \(n = 64\),
\(\widehat{\sigma} = 28.3345\) and
\(\widehat{se} \left(\widehat{\sigma}\right) = 4.4978\). Evaluating
the analytical expression (14) and the
coxsnell.bc()
function, we have, respectively,
halfcauchy.bc(n = 64, mle = 28.3345)
## sigma
## 0.4427
<- quote( 2 / pi * sigma / (x^2 + sigma^2))
pdf <- quote(log(sigma) - log(x^2 + sigma^2))
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 64,
parms = c("sigma"), mle = 28.3345, lower = 0)$bias
## sigma
## 0.4456
Half-normal distribution with scale parameter \(\sigma\) \[\begin{aligned} f(x \mid \sigma) = \sqrt{\dfrac {2}{\pi}}\,\dfrac {1}{\sigma}\,\exp\left(-\dfrac {x^2}{2\,\sigma^2}\right), \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expressions (Xiao and Giles 2014): \[\begin{aligned} \label{bc-half-normal} \mathcal{B} \left(\widehat{\sigma}\right) = -\dfrac {\sigma}{4\,n}. \end{aligned} \tag{15}\]
Using the data set from (Raqab et al. 2008), we have \(n = 69\),
\(\widehat{\sigma} = 1.5323\) and
\(\widehat{se} \left(\widehat{\sigma}\right) = 0.1304\). Evaluating
the analytical expression (15) and the
coxsnell.bc()
function, we have, respectively,
halfnormal.bc(n = 69, mle = 1.5323)
## sigma
## -0.005552
<- quote(sqrt(2) / (sqrt(pi) * sigma) * exp(-x^2 / (2 * sigma^2)))
pdf <- quote(-log(sigma) - x^2 / sigma^2 / 2 )
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 69,
parms = c("sigma"), mle = 1.5323, lower = 0)$bias
## sigma
## -0.005552
Normal distribution with mean \(\mu\) and standard deviation \(\sigma\) \[\begin{aligned} f(x \mid \mu, \sigma) = \dfrac {1}{\sqrt{2\,\pi}\,\sigma}\,\exp\left[-\dfrac {(x - \mu)^2}{2\,\sigma^2}\right], \quad x \in (-\infty, \infty). \end{aligned}\]
\(\bullet\) Bias expressions (Stočsić and Cordeiro 2009): \[\begin{aligned} \label{bc-normal} \mathcal{B} \left(\widehat{\mu}\right) = 0 \mbox{ and } \mathcal{B}\left(\widehat{\sigma}\right) = -\dfrac {3\,\sigma}{4\,n}. \end{aligned} \tag{16}\]
Using the data set from (Kundu 2005), we have \(n = 23\),
\(\widehat{\mu} = 4.1506\), \(\widehat{\sigma} = 0.5215\),
\(\widehat{se} \left(\widehat{\mu}\right) = 0.1087\) and
\(\widehat{se}\left(\widehat{\sigma}\right) = 0.0769\). Evaluating the
analytical expressions (16) and the coxsnell.bc()
function, we have, respectively,
normal.bc(n = 23, mle = c(4.1506, 0.5215))
## mu sigma
## 0.00000 -0.01701
<- quote(1 / (sqrt(2 * pi) * sigma) *
pdf exp(-0.5 / sigma^2 * (x - mu)^2))
<- quote(-log(sigma) - 0.5 / sigma^2 * (x - mu)^2)
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 23,
parms = c("mu", "sigma"), mle = c(4.1506, 0.5215))$bias
## mu sigma
## -4.071e-13 -1.701e-02
Inverse Gaussian distribution with mean \(\mu\) and shape \(\lambda\) \[\begin{aligned} f(x \mid \mu, \lambda) = \sqrt{\dfrac {\lambda}{2\,\pi\,x^3}}\,\exp\left[-\dfrac {\lambda\,(x - \mu)^2}{2\,x\,\mu^2}\right], \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expressions (Stočsić and Cordeiro 2009): \[\begin{aligned} \label{bc-invgauss} \mathcal{B}\left(\widehat{\mu}\right) = 0 \text{ and } \mathcal{B}\left(\widehat{\lambda}\right) = \frac {3\lambda}{n}. \end{aligned} \tag{17}\]
Using the data set from (Chhikara and Folks 1977), we have \(n = 46\),
\(\widehat{\mu} = 3.6067\), \(\widehat{\lambda} = 1.6584\),
\(\widehat{se} \left(\widehat{\mu}\right) = 0.7843\) and
\(\widehat{se}\left(\widehat{\lambda}\right) = 0.3458\). Evaluating
the analytical expressions (17) and the
coxsnell.bc()
function, we have, respectively,
invgaussian.bc(n = 46, mle = c(3.6065, 1.6589))
## mu lambda
## 0.0000 0.1082
<- quote(sqrt(lambda / (2 * pi * x^3)) *
pdf exp(-lambda * (x - mu)^2 / (2 * mu^2 * x)))
<- quote(0.5 * log(lambda) - lambda * (x - mu)^2 /
lpdf 2 * mu^2 * x))
(coxsnell.bc(density = pdf, logdensity = lpdf, n = 46,
parms = c("mu", "lambda"), mle = c(3.6065, 1.6589),
lower = 0)$bias
## mu lambda
## 3.483e-07 1.082e-01
Log-normal distribution with location \(\mu\) and scale \(\sigma\) \[\begin{aligned} f(x \mid \mu, \sigma) = \dfrac {1}{\sqrt{2\,\pi}\,x\,\sigma}\,\exp\left[-\dfrac {(\log x - \mu)^2}{\sigma^2}\right], \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expressions (Stočsić and Cordeiro 2009): \[\begin{aligned} \label{bc-lognormal} \mathcal{B} \left(\widehat{\mu}\right) = 0 \text{ and } \mathcal{B} \left(\widehat{\sigma}\right) = -\dfrac {3\,\sigma}{4\,n}. \end{aligned} \tag{18}\]
Using the data set from (Kumagai et al. 1989), we have \(n = 30\),
\(\widehat{\mu} = 2.164\), \(\widehat{\sigma} = 1.1765\),
\(\widehat{se} \left(\widehat{\mu}\right) = 0.2148\) and
\(\widehat{se} \left(\widehat{\sigma}\right) = 0.1519\). Evaluating
the analytical expressions (18) and the
coxsnell.bc()
function, we have, respectively,
lognormal.bc(n = 30, mle = c(2.1643, 1.1765))
## mu sigma
## 0.00000 -0.02941
<- quote(1 / (sqrt(2 * pi) * x * sigma) *
pdf exp(-0.5 * (log(x) - mu)^2 / sigma^2))
<- quote(-log(sigma) - 0.5 * (log(x) - mu)^2 / sigma^2)
lpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 30,
parms = c("mu", "sigma"), mle = c(2.1643, 1.1765),
lower = 0)$bias
## mu sigma
## -5.952e-09 -2.941e-02
Log-logistic distribution with shape \(\beta\) and scale \(\alpha\) \[\begin{aligned} f(x\mid \alpha, \beta) = \dfrac {(\beta / \alpha) \, (x / \alpha)^{\beta - 1}}{\left[1 + (x / \alpha)^\beta\right]^2}, \quad x > 0. \end{aligned}\]
\(\bullet\) For bias expressions, see (Reath 2016).
From (Reath 2016) we have \(n = 19\), \(\widehat{\alpha} = 6.2542\),
\(\widehat{\beta} = 1.1732\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 2.1352\),
\(\widehat{se} \left(\widehat{\beta}\right) =\) 0.2239,
\(\mathcal{\widehat{B}} \left(\widehat{\alpha} \right)=0.3585\) and
\(\mathcal{\widehat{B}} \left(\widehat{\beta} \right) = 0.0789\).
Evaluating the coxsnell.bc()
function, we have:
<- quote((beta / alpha) * (x / alpha)^(beta - 1) /
pdf 1 + (x / alpha)^beta)^2)
(<- quote(log(beta) - log(alpha) + (beta - 1) * log(x / alpha) -
lpdf 2 * log(1 + (x / alpha)^beta))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 19,
parms = c("alpha", "beta"), mle = c(6.2537, 1.1734),
lower = 0)$bias
## alpha beta
## 0.35854 0.07883
Gamma distribution with shape \(\alpha\) and rate \(\lambda\) \[\begin{aligned} f(x \mid \alpha, \lambda) = \dfrac {\lambda^\alpha}{\Gamma(\alpha)}\,x^{\alpha - 1}\,\exp(-\lambda\,x), \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expressions (Giles and Feng 2009): \[\begin{aligned} \label{bc-gamma-alpha} \mathcal{B} \left(\widehat{\alpha}\right) = \dfrac {\alpha\,\left[\Psi^{\prime}(\alpha) - \alpha\Psi^{\prime\prime}(\alpha)\right] - 2}{2\,n\left[\alpha\Psi^{\prime}(\alpha) - 1\right]^2} \end{aligned} \tag{19}\] and \[\begin{aligned} \label{bc-gamma-lambda} \mathcal{B} \left(\widehat{\lambda}\right) = \dfrac {\lambda\,\left[2\,\alpha\,\left(\Psi^{\prime}(\alpha)\right)^2 - 3\,\Psi^{\prime}(\alpha) - \alpha\,\Psi^{\prime\prime}(\alpha)\right]}{2\,n\left[\alpha\Psi^{\prime}(\alpha) - 1\right]^2}. \end{aligned} \tag{20}\]
Using the data set from (Delignette-Muller et al. 2008), we have \(n = 254\),
\(\widehat{\alpha} = 4.0083\), \(\widehat{\lambda} = 0.0544\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 0.3413\) and
\(\widehat{se} \left(\widehat{\lambda}\right) = 0.0049\). Evaluating
the analytical expressions (19),
(20) and the coxsnell.bc()
function, we have,
respectively,
gamma.bc(n = 254, mle = c(4.0082, 0.0544))
## alpha lambda
## 0.0448278 0.0006618
<- quote((lambda^alpha) / gamma(alpha) * x^(alpha - 1) *
pdf exp(-lambda *x))
<- quote(alpha * log(lambda) - lgamma(alpha) + alpha * log(x) -
lpdf * x)
lambda coxsnell.bc(density = pdf, logdensity = lpdf, n = 254,
parms = c("alpha", "lambda"), mle = c(4.0082, 0.0544),
lower = 0)$bias
## alpha lambda
## 0.0448278 0.0006618
Inverse gamma distribution with shape \(\alpha\) and scale \(\beta\) \[\begin{aligned} f(x\mid \alpha, \beta) = \dfrac {1}{\Gamma(\alpha)\,\beta^\alpha}x^{\alpha - 1}\,\exp\left(-\dfrac {x}{\beta}\right), \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expressions (Stočsić and Cordeiro 2009): \[\begin{aligned} \label{bc-invgamma-alpha} \mathcal{B} \left(\widehat{\alpha}\right) = {\frac {- 0.5\,{{\alpha}}^{2}\,\Psi^{\prime\prime}\left(\alpha\right) + 0.5\,\Psi^{\prime}\left( \alpha \right) {\alpha}- 1}{n\, \alpha\,\left(\Psi^{\prime} \left(\alpha\right)- 1 \right)^{2}}} \end{aligned} \tag{21}\] and \[\begin{aligned} \label{bc-invgamma-beta} \mathcal{B}\left(\widehat{\beta}\right) ={\frac { \beta\,\left( - 0.5\,\alpha \,\Psi^{\prime\prime} \left( \alpha \right) - 1.5\,\Psi^{\prime} \left(\alpha \right) + \left( \Psi^{\prime} \left( \alpha \right) \right)^{2}\alpha \right) }{n \left( \Psi^{\prime} \left( \alpha \right) \alpha - 1.0 \right)^{2}}}. \end{aligned} \tag{22}\]
Using the data set from (Kumagai and Matsunaga 1995), we have \(n = 31\),
\(\widehat{\alpha} = 1.0479\), \(\widehat{\beta} = 5.491\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 0.2353\) and
\(\widehat{se} \left(\widehat{\beta}\right) = 1.5648\). Evaluating the
analytical expressions (21),
(22) and the coxsnell.bc()
function, we
have, respectively,
invgamma.bc(n = 31, mle = c(5.4901, 1.0479))
## beta alpha
## 0.60849 0.08388
<- quote(beta^alpha / gamma(alpha) * x^(-alpha - 1) *
pdf exp(-beta / x))
<- quote(alpha * log(beta) - lgamma(alpha) -
lpdf * log(x) - beta / x)
alpha coxsnell.bc(density = pdf, logdensity = lpdf, n = 31,
parms = c("beta", "alpha"), mle = c(5.4901, 1.0479),
lower = 0)$bias
## beta alpha
## 0.60847 0.08388
Lomax distribution with shape \(\alpha\) and scale \(\beta\) \[\begin{aligned} f(x \mid \alpha, \beta) = \alpha\,\beta\,(1 + \beta\,x)^{-(\alpha + 1)}, \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expressions (Giles et al. 2013): \[\begin{aligned} \label{bc-lomax-alpha} \mathcal{B}\left(\widehat{\alpha}\right) = {\frac {2\,\alpha\, \left( \alpha+ 1 \right) \left( {\alpha}^{2} +\alpha - 2 \right) }{ \left( \alpha+ 3 \right) n}} \end{aligned} \tag{23}\] and \[\begin{aligned} \label{bc-lomax-beta} \mathcal{B}\left(\widehat{\beta}\right) = - {\frac {2\,\beta\, \left( \alpha+ 1.6485\right) \left( \alpha+ 0.3934\right) \left( \alpha- 1.5419\right) }{n\,\alpha\, \left( \alpha+ 3 \right) }}. \end{aligned} \tag{24}\]
Using the data set from Tahir et al. (2016), we have \(n = 179\),
\(\widehat{\alpha} = 4.9103\), \(\widehat{\beta} = 0.0028\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 0.6208\) and
\(\widehat{se} \left(\widehat{\beta}\right) = {3.4803\times 10^{-4}}\).
Evaluating the analytical expressions (23),
(24) and the coxsnell.bc()
function, we have,
respectively,
lomax.bc(n = 179, mle = c(4.9103, 0.0028))
## alpha beta
## 1.281e+00 -9.438e-05
<- quote(alpha * beta / (1 + beta * x)^(alpha + 1))
pdf <- quote(log(alpha) + log(beta) - (alpha + 1) *
lpdf log(1 + beta * x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 179,
parms = c("alpha", "beta"), mle = c(4.9103, 0.0028),
lower = 0)$bias
## alpha beta
## 1.281e+00 -9.439e-05
Weighted Lindley distribution with shape \(\alpha\) and scale \(\theta\) \[\begin{aligned} f(x \mid \alpha, \theta) = \dfrac {\theta^{\alpha + 1}}{(\theta + \alpha)\,\Gamma(\alpha)}\,x^{\alpha - 1}\,(1 + x)\,\exp(-\theta x), \quad x > 0. \end{aligned}\]
\(\bullet\) For bias expressions, see (Wang and Wang 2017):
Using the data set from (Ghitany et al. 2013), we have \(n = 69\),
\(\widehat{\alpha} = 22.8889\), \(\widehat{\theta} = 9.6246\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 3.9507\) and
\(\widehat{se}\left(\widehat{\theta}\right) = 1.6295\). Evaluating the
analytical expressions and the coxsnell.bc
function, we have,
respectively,
wlindley.bc(n = 69, mle = c(22.8889, 9.6246))
## alpha theta
## 1.0070 0.4167
<- quote(theta^(alpha + 1) / ((theta + alpha) * gamma(alpha)) *
pdf ^(alpha - 1) * (1 + x) * exp(-theta * x))
x<- quote((alpha + 1) * log(theta) + alpha * log(x) -
lpdf log(theta + alpha) - lgamma(alpha) - theta * x)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 69,
parms = c("alpha", "theta"), mle = c(22.8889, 9.6246),
lower = 0)$bias
## alpha theta
## 1.0068 0.4166
Generalized Rayleigh with shape \(\alpha\) and scale \(\theta\) \[\begin{aligned} f(x \mid \beta, \mu) = \dfrac {2\,\theta^{\alpha + 1}}{\Gamma(\alpha + 1)}\,x^{2\,\alpha + 1}\,\exp\left(-\theta\,x^2 \right), \quad x > 0. \end{aligned}\]
\(\bullet\) For bias expressions, see (Xiao and Giles 2014):
Using the data set from (Gomes et al. 2014), we have \(n = 384\),
\(\widehat{\theta} = 0.5195\), \(\widehat{\alpha} = 0.0104\),
\(\widehat{se} \left(\widehat{\theta}\right)= 0.2184\) and
\(\widehat{se} \left(\widehat{\alpha}\right)= 0.0014\). Evaluating the
analytical expressions and the coxsnell.bc()
function, we have,
respectively,
generalizedrayleigh.bc(n = 384, mle = c(0.5195, 0.0104))
## alpha theta
## 1.035e-02 8.865e-05
<- quote(2 * theta^(alpha + 1) / gamma(alpha + 1) *
pdf ^(2 * alpha + 1) * exp(-theta * x^2 ))
x<- quote((alpha + 1) * log(theta) - lgamma(alpha + 1) +
lpdf 2 * alpha * log(x) - theta * x^2)
coxsnell.bc(density = pdf, logdensity = lpdf, n = 384,
parms = c("alpha", "theta"), mle = c(0.5195, 0.0104),
lower = 0)$bias
## alpha theta
## 1.035e-02 8.865e-05
Weibull distribution with shape \(\beta\) and scale \(\mu\) \[\begin{aligned} f(x \mid \beta, \mu) = \dfrac {\beta}{\mu^\beta}\,x^{\beta - 1}\,\exp\left( -\dfrac {x}{\mu}\right)^\beta, \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expressions (the expressions below differs from (Stočsić and Cordeiro 2009)): \[\begin{aligned} \label{bc-weibull-mu} \mathcal{B} \left(\widehat{\mu}\right) = \dfrac {\mu\,(0.5543324495-0.3698145397\,\beta )}{n\,\beta^2} \end{aligned} \tag{25}\] and \[\begin{aligned} \label{bc-weibull-beta} \mathcal{B} \left(\widehat{\beta}\right) =\dfrac {1.379530692\,\beta}{n}. \end{aligned} \tag{26}\]
From (Datta and Datta 2013), we have \(n = 50\), \(\widehat{\mu} = 2.5752\),
\(\widehat{\beta} = 38.0866\),
\(\widehat{se} \left(\widehat{\mu}\right)= 0.2299\) and
\(\widehat{se} \left(\widehat{\beta}\right)= 2.2299\). Evaluating the
analytical expression (25),
(26) and the coxsnell.bc()
function, we have,
respectively,
weibull.bc(n = 50, mle = c(38.0866, 2.5751))
## mu beta
## -0.04572 0.07105
<- quote(beta / mu^beta * x^(beta - 1) *
pdf exp(-(x / mu)^beta))
<- quote(log(beta) - beta * log(mu) + beta * log(x) -
lpdf / mu)^beta)
(x coxsnell.bc(density = pdf, logdensity = lpdf, n = 50,
parms = c("mu", "beta"), mle = c(38.0866, 2.5751),
lower = 0)$bias
## mu beta
## -0.04572 0.07105
Inverse Weibull distribution with shape \(\beta\) and scale \(\mu\) \[\begin{aligned} f(x \mid \beta, \alpha) = \beta\,\mu^{\beta}\,x^{-(\beta + 1)}\,\exp\left[- \left(\dfrac {\mu}{x}\right)^\beta \right], \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expressions (not previously reported in the literature): \[\begin{aligned} \label{bc-invweibull-beta} \mathcal{B} \left(\widehat{\beta}\right) = \frac {1.379530690\,\beta}{n} \end{aligned} \tag{27}\] and \[\begin{aligned} \label{bc-invweibull-mu} \mathcal{B} \left(\widehat{\mu}\right) = {\frac {\mu\, \left( 0.3698145391\,\beta+ 0.5543324494 \right) }{n{\beta}^{2}}}. \end{aligned} \tag{28}\]
Using the data set from (Nichols and Padgett 2006), we have \(n = 100\),
\(\widehat{\beta} = 1.769\), \(\widehat{\mu} = 1.8917\),
\(\widehat{se} \left(\widehat{\beta}\right)= 0.1119\) and
\(\widehat{se} \left(\widehat{\mu}\right)= 0.1138\). Evaluating the
analytical expressions (27),
(28) and the coxsnell.bc()
function, we
have, respectively,
inverseweibull.bc(n = 100, mle = c(1.7690, 1.8916))
## beta mu
## 0.024404 0.007305
<- quote(beta * mu^beta * x^(-beta - 1) *
pdf exp(-(mu / x)^beta))
<- quote(log(beta) + beta * log(mu) - beta * log(x) -
lpdf / x)^beta)
(mu coxsnell.bc(density = pdf, logdensity = lpdf, n = 100,
parms = c("beta", "mu"), mle = c(1.7690, 1.8916),
lower = 0)$bias
## beta mu
## 0.024404 0.007305
Generalized half-normal distribution with shape \(\alpha\) and scale \(\theta\) \[\begin{aligned} f(x \mid \alpha, \theta) = \sqrt{\dfrac {2}{\pi}}\,\dfrac {\alpha}{\theta^\alpha}\,x^{\alpha - 1}\,\exp\left[-\dfrac {1}{2} \left(\dfrac {x}{\theta} \right)^{2\,\alpha}\right]. \end{aligned}\]
\(\bullet\) Bias expressions (Mazucheli and Dey 2017): \[\begin{aligned} \label{bc-genhalfnormal-alpha} \mathcal{B} \left(\widehat{\alpha}\right) = 1.483794456 \, \dfrac {\alpha}{n} \end{aligned} \tag{29}\] and \[\begin{aligned} \label{bc-genhalfnormal-theta} \mathcal{B} \left(\widehat{\theta}\right) = (0.2953497661 - 0.3665611957\,\alpha) \, \dfrac {\theta}{n\,\alpha^2}. \end{aligned} \tag{30}\]
Using the data set from (Nadarajah 2008b), we have \(n = 119\),
\(\widehat{\alpha} = 3.8096\), \(\widehat{\theta} = 4.9053\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 0.2758\) and
\(\widehat{se} \left(\widehat{\theta}\right) = 0.0913\). Evaluating
the analytical expressions (29),
(30) and the coxsnell.bc()
function,
we have, respectively,
genhalfnormal.bc(n = 119, mle = c(3.8095, 4.9053))
## alpha theta
## 0.047500 -0.003127
<- quote(sqrt(2 / pi) * alpha / theta^alpha * x^(alpha - 1)*
pdf exp(- 0.5 * (x / theta)^(2 * alpha) ))
<- quote(log(alpha) - alpha * log(theta) + alpha * log(x) -
lpdf 0.5 * (x / theta)^(2 * alpha))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 119,
parms = c("alpha", "theta"), mle = c(3.8095, 4.9053),
lower = 0)$bias
## alpha theta
## 0.047500 -0.003127
Inverse generalized half-normal distribution with shape \(\alpha\) and scale \(\theta\) \[\begin{aligned} f(x \mid \alpha, \theta) = \sqrt{\dfrac {2}{\pi}}\,\left(\dfrac {\alpha}{x}\right)\,\left(\dfrac {1}{\theta\,x}\right)^\alpha\,\exp\left[-\dfrac {1}{2} \left(\dfrac {1}{\theta\,x} \right)^{2\,\alpha}\right], \quad x > 0. \end{aligned}\]
\(\bullet\) For bias expressions (not previously reported in the literature, see the “analyticalBC.R” file.
Using the data set from (Nadarajah et al. 2011), we have \(n = 20\),
\(\widehat{\alpha} = 3.0869\), \(\widehat{\theta} = 0.6731\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 0.5534\) and
\(\widehat{se} \left(\widehat{\theta}\right) = 0.0379\). Evaluating
the analytical expressions and the coxsnell.bc()
function, we
have, respectively,
invgenhalfnormal.bc(n = 20, mle = c(3.0869, 0.6731))
## alpha theta
## 0.229016 -0.002953
<- quote(sqrt(2) * pi^(-0.5) * alpha * x^(-alpha - 1) *
pdf exp(-0.5 * x^(-2 * alpha) * (1 / theta)^(2 * alpha)) *
^(-alpha))
theta<- quote(log(alpha) - alpha * log(x) - 0.5e0 / (x^alpha)^2*
lpdf ^(-2 * alpha) - alpha * log(theta))
thetacoxsnell.bc(density = pdf, logdensity = lpdf, n = 20,
parms = c("alpha", "theta"), mle = c(3.0869, 0.6731),
lower = 0)$bias
## alpha theta
## 0.229016 -0.002953
Marshall-Olkin extended exponential distribution with shape \(\alpha\) and rate \(\lambda\) \[\begin{aligned} f(x \mid \alpha, \lambda) = \dfrac {\lambda\,\alpha\,\exp\left(-\lambda\,x\right)}{\left[1 - (1 - \alpha)\,\exp\left(-\lambda\,x\right)\right]^2}, \quad x > 0. \end{aligned}\]
\(\bullet\) For bias expressions (not previously reported in the literature, see the “analyticalBC.R” file.
Using the data set from (Linhart and Zucchini 1986), we have \(n = 20\),
\(\widehat{\alpha} = 0.2782\), \(\widehat{\lambda} = 0.0078\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 0.2321\) and
\(\widehat{se} \left(\widehat{\lambda}\right) = 0.0049\). Evaluating
the analytical expressions and the coxsnell.bc()
function, we
have, respectively,
moeexp.bc(n = 20, mle = c(0.2781, 0.0078))
## alpha lambda
## 0.210919 0.003741
<- quote(alpha * lambda * exp(-x * lambda) /
pdf 1- (1 - alpha) * exp(- x * lambda)))^2)
((<- quote(log(alpha) + log(lambda) - x * lambda -
lpdf 2 * log((1 - (1-alpha) * exp(- x * lambda))))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,
parms = c("alpha", "lambda"), mle = c(0.2781, 0.0078),
lower = 0)$bias
## alpha lambda
## 0.21086 0.00374
Beta distribution with shapes \(\alpha\) and \(\beta\) \[\begin{aligned} f(x \mid \alpha, \beta) = \dfrac {\Gamma(\alpha + \beta)}{\Gamma(\alpha)\,\Gamma(\beta)}\,x^{\alpha - 1}\,(1 - x)^{\beta - 1}, \quad 0 < x < 1. \end{aligned}\]
\(\bullet\) For bias expressions, see (Cordeiro et al. 1997).
Using the data set from (Javanshiri et al. 2015), we have \(n = 48\),
\(\widehat{\alpha} = 5.941\), \(\widehat{\beta} = 21.2024\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 1.1812\) and
\(\widehat{se} \left(\widehat{\beta}\right) = 4.3462\). Evaluating the
analytical expressions in (Cordeiro et al. 1997), our analytical
expressions and the coxsnell.bc()
function, we have, respectively,
beta.gauss.bc(n = 48, mle = c(5.941, 21.2024))
## alpha beta
## -4.784 -4.125
beta.bc(n = 48, mle = c(5.941, 21.2024))
## alpha beta
## 0.3582 1.3315
<- quote(gamma(alpha + beta) / (gamma(alpha) * gamma(beta)) *
pdf ^(alpha - 1) * (1 - x)^(beta - 1))
x<- quote(lgamma(alpha + beta) - lgamma(alpha) -
lpdf lgamma(beta) + alpha * log(x) + beta * log(1 - x))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 48,
parms = c("alpha", "beta"), mle = c(5.941, 21.2024),
lower = 0, upper = 1)$bias
## alpha beta
## 0.3582 1.3315
Kumaraswamy distribution with shapes \(\alpha\) and \(\beta\) \[\begin{aligned} f(x \mid \alpha, \beta) = \alpha\,\beta\,x^{\alpha - 1}\,(1 - x^\alpha)^{\beta - 1}, \quad 0 < x < 1. \end{aligned}\]
\(\bullet\) For bias expressions, see (Lemonte 2011).
Using the data set from (Wang et al. 2017), we have \(n = 20\),
\(\widehat{\alpha} = 6.3478\), \(\widehat{\beta} = 4.4898\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 1.5576\) and
\(\widehat{se} \left(\widehat{\beta}\right) = 2.0414\). Evaluating the
analytical expressions and the coxsnell.bc()
function, we have,
respectively,
kum.bc(n = 20, mle = c(6.3478, 4.4898))
## alpha beta
## -6.573 -13.323
<- quote(alpha * beta * x^(alpha - 1) *
pdf 1 - x^alpha)^(beta - 1))
(<- quote(log(alpha) + log(beta) + alpha * log(x) + (beta - 1) *
lpdf log(1 - x^alpha))
coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,
parms = c("alpha", "beta"), mle = c(6.3478, 4.4898),
lower = 0, upper = 1)$bias
## alpha beta
## 0.514 1.013
Inverse beta distribution with shapes \(\alpha\) and \(\beta\) \[\begin{aligned} f(x \mid \alpha, \beta) = \dfrac {\Gamma(\alpha + \beta)}{\Gamma(\alpha)\,\Gamma(\beta)}\,x^{\alpha - 1}\,(1 + x)^{-(\alpha + \beta)}, \quad x > 0. \end{aligned}\]
\(\bullet\) For bias expressions, see (Stočsić and Cordeiro 2009).
Using the data set from (Nadarajah 2008a), we have \(n = 116\),
\(\widehat{\alpha} = 28.5719\), \(\widehat{\beta} = 1.3783\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 4.0367\) and
\(\widehat{se} \left(\widehat{\beta}\right) = 0.1637\). Evaluating the
analytical expressions and the coxsnell.bc()
function, we have,
respectively,
invbeta.bc(n = 116, mle = c(28.5719, 1.3782))
## alpha beta
## 534.26 17.73
<- quote(gamma(alpha + beta) * x^(alpha - 1) *
pdf 1 + x)^(- alpha - beta) / gamma(alpha)/gamma(beta))
(<- quote(lgamma(alpha + beta) + alpha * log(x) -
lpdf + beta) * log(1 + x) - lgamma(alpha) - lgamma(beta))
(alpha coxsnell.bc(density = pdf, logdensity = lpdf, n = 116,
parms = c("alpha", "beta"), mle = c(28.5719, 1.3782),
lower = 0)$bias
## alpha beta
## 0.8025 0.0306
Birnbaum-Saunders distribution with shape \(\alpha\) and scale \(\beta\) \[\begin{aligned} f(x \mid \alpha, \beta) = \dfrac {1}{2\,\alpha\,\beta\,\sqrt{2\,\pi}}\,\left[\left(\dfrac {\beta}{x}\right)^{1/2} + \left(\dfrac {\beta}{x}\right)^{3/2}\right]\, \exp\left[-\dfrac {1}{2,\alpha^2}\,\left(\dfrac {x}{\beta} + \dfrac {\beta}{x} - 2\right)\right], \quad x > 0. \end{aligned}\]
\(\bullet\) Bias expressions (Lemonte et al. 2007): \[\begin{aligned} \label{bc-bs-alpha} \mathcal{B} \left(\widehat{\alpha}\right) = -\dfrac {\alpha}{4\,n}\,\left(1 + \dfrac {2 + \alpha^2}{\alpha\,(2\,\pi)^{-1/2}\,h(\alpha) + 1}\right) \end{aligned} \tag{31}\] and \[\begin{aligned} \label{bc-bs-beta} \mathcal{B} \left(\widehat{\beta}\right) = \dfrac {\beta^2\,\alpha^2}{2\,n\,\left[\alpha\,(2\,\pi)^{-1/2}\,h(\alpha) + 1\right]}, \end{aligned} \tag{32}\] where \[\begin{aligned} h(\alpha) = \alpha\,\sqrt{\dfrac {\pi}{2}} - \pi\,e^{2/\alpha^2}\,\left[1 - \Phi\left(\dfrac {2}{\alpha}\right)\right]. \end{aligned}\]
Using the data set from (Gross and Clark 1976), we have \(n = 20\),
\(\widehat{\alpha} = 0.3149\), \(\widehat{\beta} = 1.8105\),
\(\widehat{se} \left(\widehat{\alpha}\right) = 0.0498\) and
\(\widehat{se} \left(\widehat{\beta}\right) = 0.1259\). Evaluating the
analytical expressions (31), (32)
and the coxsnell.bc()
function, we have, respectively,
birnbaumsaunders.bc(n = 20, mle = c(0.3148, 1.8104))
## alpha beta
## -0.011991 0.004374
<- quote(1 / (2 * alpha * beta * sqrt(2 * pi)) *
pdf / x)^0.5 + (beta / x)^1.5) *
((beta exp(- 1/(2 * alpha^2) * (x / beta + beta/ x - 2)))
<- quote(-log(alpha) - log(beta) - 1 / (2 * alpha^2) *
lpdf / beta + beta/ x - 2) + log((beta / x)^0.5 +
(x / x)^1.5))
(beta coxsnell.bc(density = pdf, logdensity = lpdf, n = 20,
parms = c("alpha", "beta"), mle = c(0.3148, 1.8104),
lower = 0)$bias
## alpha beta
## -0.011991 0.004374
Generalized Pareto distribution with shape \(\xi\) and scale \(\sigma\) \[\begin{aligned} f(x \mid \xi, \sigma) = \dfrac {1}{\sigma}\,\left(1 + \dfrac {\xi\,x}{\sigma} \right)^{-(1/\xi + 1)}, \quad x > 0, \ \xi \neq 0. \end{aligned}\]
\(\bullet\) Bias expressions (Giles et al. 2016): \[\begin{aligned} \label{bc-gp-xi} \mathcal{B} \left(\widehat{\xi}\right) = - \dfrac {(1 + \xi)\,(3 + \xi)}{n\,(1 + 3\,\xi)} \end{aligned} \tag{33}\] and \[\begin{aligned} \label{bc-gp-sigma} \mathcal{B} \left(\widehat{\sigma} \right) = - \dfrac {\sigma\, \left(3 + 5\,\xi + 4\,\xi^2\right)}{n\,(1 + 3\,\xi)}. \end{aligned} \tag{34}\]
Using the data set from (Ross and Lott 2003), we have \(n = 58\),
\(\widehat{\xi} = 0.736\), \(\widehat{\sigma} = 1.709\),
\(\widehat{se} \left(\widehat{\xi}\right) = 0.223\) and
\(\widehat{se} \left(\widehat{\sigma}\right) = 0.41\). Evaluating the
analytical expressions (33), (34) and
the coxsnell.bc()
function, we have, respectively,
genpareto.bc(n = 58, mle = c(0.736, 1.709))
## xi sigma
## -0.03486 0.08126
<- quote(1 / sigma * (1 + xi * x / sigma )^(-(1 + 1 / xi)))
pdf <- quote(-log(sigma) - (1 + 1 / xi) * log(1 + xi * x / sigma))
Rlpdf coxsnell.bc(density = pdf, logdensity = lpdf, n = 58,
parms = c("xi", "sigma"), mle = c(0.736, 1.709),
lower = 0)$bias
## xi sigma
## -0.03486 0.08126
In this section, we present additional numerical results returned by
cosnell.bc()
, observed.varc()
and expected.varcov()
. For the data
describing the times between successive electric pulses on the surface
of isolated muscle fiber (Cox and Lewis 1966; Jørgensen 1982), we fitted the
exponentiated Weibull, Marshall-Olkin extended Weibull, Weibull,
Marshall-Olkin extended exponential and exponential distributions. These
distributions were also fitted by (Cordeiro and Lemonte 2013). There are 799
observations and for each distribution we report the MLEs, the bias
corrected MLEs, the observed variance-covariance obtained from the
numerical Hessian
\(\mathbf{H}_1^{-1} \left(\mathbf{\widehat{\theta}}\right)\), the observed
variance-covariance obtained from the analytical Hessian
\(\mathbf{H}_2^{-1} \left(\mathbf{\widehat{\theta}} \right)\), the
expected variance-covariance
\(\mathbf{I}^{-1} \left(\mathbf{\widehat{\theta}}\right)\) and the
expected variance-covariance evaluated at the bias corrected MLEs
\(\mathbf{I}^{-1} \left(\mathbf{\widetilde{\theta}} \right)\). The MLEs
and the \(\mathbf{H}_1^{-1} \left(\mathbf{\widehat{\theta}} \right)\)
matrix were obtained by the
fitdistrplus
package (Delignette-Muller et al. 2017). The R codes used to obtain the numerical
results are available in the supplementary material.
It is important to emphasize that for the Marshall-Olkin extended Weibull and exponentiated Weibull distributions, it is not possible to obtain analytical expressions for bias corrections. The exponentiated-Weibull family was proposed by (Mudholkar and Srivastava 1993). Its probability density function is: \[\begin{aligned} f(x \mid \lambda, \beta, \alpha) = \alpha\,\beta\,\lambda\,x^{\beta - 1}\,\textrm{e}^{-\lambda\,x^\beta}\,\left(1 - \textrm{e}^{-\lambda\,x^\beta} \right)^{\alpha - 1}, \end{aligned}\] where \(\lambda > 0\) is the scale parameter and \(\beta > 0\) and \(\alpha > 0\) are the shape parameters. The Marshall-Olkin extended Weibull distribution was introduced by (Marshall and Olkin 1997). Its probability density function is: \[\begin{aligned} f(x \mid \lambda, \beta, \alpha) = \dfrac {\alpha\,\beta\,\lambda\,x^{\beta - 1}\,\textrm{e}^{-\lambda\,x^\beta}}{\left(1 - \overline{\alpha}\,\textrm{e}^{-\lambda\,x^\beta}\right)^2}, \end{aligned}\] where \(\lambda > 0\) is the scale parameter, \(\beta > 0\) is the shape parameter, \(\alpha > 0\) is an additional shape parameter and \(\overline{\alpha} = 1 - \alpha\).
The fitted parameter estimates and their bias corrected estimates are shown in Table 1. We see that the bias corrected MLEs for \(\alpha\) and \(\lambda\) of the MOE-Weibull and exp-Weibull distributions are quite different from the original MLEs.
Distribution | \(\widehat{\alpha}\) | \(\widehat{\beta}\) | \(\widehat{\lambda}\) | \(\widetilde{\alpha}\) | \(\widetilde{\beta}\) | \(\widetilde{\lambda}\) |
---|---|---|---|---|---|---|
MOE-Weibull | 0.3460 | 1.3247 | 0.0203 | 0.3283 | 1.3240 | 0.0188 |
exp-Weibull | 1.9396 | 0.7677 | 0.2527 | 1.8973 | 0.7625 | 0.2461 |
Weibull | – | 1.0829 | 0.0723 | – | 1.0811 | 0.0723 |
MOE-exponential | 1.1966 | – | 0.0998 | 1.1820 | – | 0.0994 |
exponential | – | – | 0.0913 | – | – | 0.0912 |
It is important to assess the accuracy of MLEs. The two common ways for this are through the inverse observed Fisher information and the inverse expected Fisher information matrices. The results below show large differences between the observed \(\mathbf{H}^{-1}\) and expected \(\mathbf{I}^{-1}\) information matrices. As demonstrated by (Cao 2013), the \(\mathbf{I}^{-1}\) outperforms the \(\mathbf{H}^{-1}\) under a mean squared error criterion, hence with mle.tools the researchers may choose one of them and not use the easier. Furthermore, in general, we observe that the bias corrected MLEs decrease the variance of estimates.
\(\bullet\) Exponentiated Weibull distribution: \[\begin{aligned} \mathbf{H}_1^{-1} \left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rrr} 0.00726 & -0.00717 & 0.03564 \\ -0.00717 & 0.00718 & -0.03493 \\ 0.03564 & -0.03493 & 0.18045 \\ \end{array}\right], & \mathbf{H}_2^{-1} \left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rrr} 0.00729 & -0.00720 & 0.03579 \\ -0.00720 & 0.00721 & -0.03509 \\ 0.03579 & -0.03509 & 0.18120 \\ \end{array}\right], \\ \\ \mathbf{I}^{-1}\left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rrr} 0.00532 & -0.00524 & 0.02609 \\ -0.00524 & 0.00527 & -0.02545 \\ 0.02609 & -0.02545 & 0.13333 \\ \end{array}\right], & \mathbf{I}^{-1}\left(\mathbf{\widetilde{\theta}}\right) &= \left[\begin{array}{rrr} 0.00510 & -0.00510 & 0.02482 \\ -0.00510 & 0.00519 & -0.02454 \\ 0.02482 & -0.02454 & 0.12590 \\ \end{array}\right]. \end{aligned}\]
\(\bullet\) Marshall-Olkin extended Weibull distribution: \[\begin{aligned} \mathbf{H}_1^{-1}\left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rrr} 0.00004 & -0.00036 & 0.00052 \\ -0.00036 & 0.00361 & -0.00430 \\ 0.00052 & -0.00430 & 0.00748 \\ \end{array}\right], & \mathbf{H}_2^{-1}\left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rrr} 0.00005 & -0.00047 & 0.00068 \\ -0.00047 & 0.00468 & -0.00582 \\ 0.00068 & -0.00582 & 0.00967 \\ \end{array}\right], \\ \\ \mathbf{I}^{-1}\left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rrr} 0.00006 & -0.00056 & 0.00082 \\ -0.00056 & 0.00542 & -0.00699 \\ 0.00082 & -0.00699 & 0.01146 \\ \end{array}\right], & \mathbf{I}^{-1}\left(\mathbf{\widetilde{\theta}}\right) &= \left[\begin{array}{rrr} 0.00005 & -0.00051 & 0.00072 \\ -0.00051 & 0.00526 & -0.00651 \\ 0.00072 & -0.00651 & 0.01030 \\ \end{array}\right]. \end{aligned}\]
\(\bullet\) Weibull distribution: \[\begin{aligned} \mathbf{H}_1^{-1}\left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rr} 0.00004 & -0.00018 \\ -0.00018 & 0.00086 \\ \end{array}\right], & \mathbf{H}_2^{-1}\left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rr} 0.00004 & -0.00018 \\ -0.00018 & 0.00087 \\ \end{array}\right], \\ \\ \mathbf{I}^{-1}\left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rr} 0.00004 & -0.00018 \\ -0.00018 & 0.00089 \\ \end{array}\right], & \mathbf{I}^{-1}\left(\mathbf{\widetilde{\theta}}\right) &= \left[\begin{array}{rr} 0.00004 & -0.00018 \\ -0.00018 & 0.00089 \\ \end{array}\right]. \end{aligned}\]
\(\bullet\) Marshall-Olkin extended exponential distribution: \[\begin{aligned} \mathbf{H}_1^{-1}\left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rr} 0.00004 & 0.00081 \\ 0.00081 & 0.02022 \\ \end{array}\right], & \mathbf{H}_2^{-1}\left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rr} 0.00004 & 0.00081 \\ 0.00081 & 0.02023 \\ \end{array}\right], \\ \\ \mathbf{I}^{-1}\left(\mathbf{\widehat{\theta}}\right) &= \left[\begin{array}{rr} 0.00004 & 0.00083 \\ 0.00083 & 0.02094 \\ \end{array}\right], & \mathbf{I}^{-1}\left(\mathbf{\widetilde{\theta}}\right) &= \left[\begin{array}{rr} 0.00004 & 0.00082 \\ 0.00082 & 0.02047 \\ \end{array}\right]. \end{aligned}\]
\(\bullet\) Exponential distribution: \[\begin{aligned} \mathbf{H}_1^{-1}\left(\mathbf{\widehat{\theta}}\right) &= 0.000010433, & \mathbf{H}_2^{-1}\left(\mathbf{\widehat{\theta}}\right) &= 0.000010436, \\ \\ \mathbf{I}^{-1}\left(\mathbf{\widehat{\theta}}\right) &= 0.000010436, & \mathbf{I}^{-1}\left(\mathbf{\widetilde{\theta}}\right) &= 0.000010410. \end{aligned}\]
As pointed out by several works in the literature, the Cox-Snell methodology, in general, is efficient for reducing the bias of the MLEs. However, the analytical expressions are either notoriously cumbersome or even impossible to deduce. To the best of our knowledge, there are only two alternatives to obtain the analytical expressions automatically, those presented in (Stočsić and Cordeiro 2009) and (Johnson et al. 2012a). They use the commercial softwares Maple (Maple 2017) and Mathematica (Wolfram Research, Inc. 2010).
In order to calculate the bias corrected estimates in a simple way,
(Mazucheli 2017) developed an R (R Core Team 2016) package, uploaded to
CRAN on 2 February, 2017. Its main function, coxsnell.bc()
, evaluates
the bias corrected estimates. The usefulness of this function has been
tested for thirty one continuous probability distributions. Bias
expressions, for most of them, are available in the literature.
It is well known that the Fisher information can be computed using the
first or second order derivatives of the log-likelihood function. In our
implementation, the functions expected.varcov()
and coxsnell.bc()
are using the second order derivatives, analytically returned by the
D()
function. In a future work, we intend to check if there is any
gain in calculating the Fisher information from the first order
derivatives of the log-hazard rate function or from the first order
derivatives of the log-reversed-hazard rate function. (Efron and Johnstone 1990)
showed that the Fisher information can be computed using the hazard rate
function. (Gupta et al. 2004) computed the Fisher information from the first
order derivatives of the log-reversed-hazard rate function. In general,
expressions of the first order derivatives of the log-hazard rate
function (log-reversed-hazard rate function) are simpler than second
order derivatives of the log-likelihood function. In this sense, the
integrate()
function can work better. It is important to point out
that the hazard rate function and the reversed hazard rate function are
given, respectively, by
\(h \left(x\mid\mathbf{\theta}\right) = -\frac {d}{dx} \log \left[S(x\mid\mathbf{\theta})\right]\)
and
\(\overline{h} \left(x\mid\mathbf{\theta} \right) = \frac {d}{dx} \log \left[F(x\mid\mathbf{\theta})\right]\),
where \(S\left(x\mid\mathbf{\theta}\right)\) and
\(F\left(x\mid\mathbf{\theta}\right)\) are, respectively, the survival
function and the cumulative distribution function.
In the next version of mle.tools, we will include, using analytical first and second-order partial derivatives, the following:
the MLEs of \(g\left({\mathbf{\theta}}\right)\) and \({\textrm{Var}} \left[g \left({\mathbf{\theta}} \right) \right]\),
the negative log likelihood value \(-2\log (L)\),
the Akaike’s information criterion \(-2\log (L)+2p\),
the corrected Akaike’s information criterion \(-2\log (L)+\frac {2np}{n-p-1}\),
the Schwarz’s Bayesian information criterion \(-2\log (L)+p\log (n)\),
the Hannan-Quinn information criterion \(-2\log (L)+2\log \log(n) p\),
where \(L\) is the value of the likelihood function evaluated at the MLEs, \(n\) is the number of observations, and \(p\) is the number of estimated parameters.
Also, the next version of the package will incorporate analytical expressions for the distributions studied in Section 4 implemented in the supplementary file “analyticalBC.R”.
ActuarialScience, Distributions, Survival
This article is converted from a Legacy LaTeX article using the texor package. The pdf version is the official version. To report a problem with the html, refer to CONTRIBUTE on the R Journal homepage.
Text and figures are licensed under Creative Commons Attribution CC BY 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".
For attribution, please cite this work as
Mazucheli, et al., "mle.tools: An R Package for Maximum Likelihood Bias Correction", The R Journal, 2017
BibTeX citation
@article{RJ-2017-055, author = {Mazucheli, Josmar and Menezes, André Felipe Berdusco and Nadarajah, Saralees}, title = {mle.tools: An R Package for Maximum Likelihood Bias Correction}, journal = {The R Journal}, year = {2017}, note = {https://rjournal.github.io/}, volume = {9}, issue = {2}, issn = {2073-4859}, pages = {268-290} }